
Keycloak -
Identity and Access Management
for Modern Applications

Harness the power of Keycloak, OpenID Connect,
and OAuth 2.0 protocols to secure applications

Stian Thorgersen | Pedro Igor Silva

Keycloak - Identity and A
ccess

M
anagem

ent for M
odern A

pplications
Stian Thorgersen | Pedro Igor Silva

Implementing authentication and authorization for applications can be a daunting experience,
often leaving them exposed to security vulnerabilities. Keycloak is an open-source solution for
identity management and access management for modern applications.

Keycloak - Identity and Access Management for Modern Applications is a comprehensive
introduction to Keycloak, helping you get started with using it and securing your applications.
Complete with hands-on tutorials, best practices, and self-assessment questions, this easy-to-follow
guide will show you how to secure a sample application and then move on to securing diff erent
application types. As you progress, you will understand how to confi gure and manage Keycloak
as well as how to leverage some of its more advanced capabilities. Finally, you'll gain insights into
securely using Keycloak in production.

By the end of this book, you will have learned how to install and manage Keycloak as well as
how to secure new and existing applications.

Keycloak -
Identity and Access Management
for Modern Applications

Things you will learn:

• Understand how to install, confi gure,
and manage Keycloak

• Secure your new and existing applications
with Keycloak

• Gain a basic understanding of OAuth 2.0
and OpenID Connect

• Understand how to confi gure Keycloak
to make it ready for production use

• Discover how to leverage additional
features and how to customize Keycloak
to fi t your needs

• Get to grips with securing Keycloak
servers and protecting applications

Keycloak -
Identity and Access
Management for
Modern Applications

Harness the power of Keycloak, OpenID Connect,
and OAuth 2.0 protocols to secure applications

Stian Thorgersen

Pedro Igor Silva

BIRMINGHAM—MUMBAI

Keycloak - Identity and Access Management
for Modern Applications

Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Wilson D'souza
Publishing Product Manager: Yogesh Deokar
Senior Editor: Shazeen Iqbal
Content Development Editor: Romy Dias
Technical Editor: Sarvesh Jayant
Copy Editor: Safis Editing
Project Coordinator: Shagun Saini
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Aparna Bhagat

First published: May 2021

Production reference: 1120521

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80056-249-3

www.packt.com

http://www.packt.com

To those that are fighting against COVID-19. Specifically, to Jadiel Filho,
whose memory will be forever with us.

– Pedro Igor Silva

Contributors

About the authors
Stian Thorgersen started his career at Arjuna Technologies building a cloud federation
platform, years before most companies were even ready for a single-vendor public cloud.
He later joined Red Hat, looking for ways to make developers' lives easier, which is where
the idea of Keycloak started. In 2013, Stian co-founded the Keycloak project with another
developer at Red Hat.

Today, Stian is the Keycloak project lead and is also the top contributor to the project. He
is still employed by Red Hat as a senior principal software engineer focusing on identity
and access management, both for Red Hat and for Red Hat's customers.

In his spare time, there is nothing Stian likes more than throwing his bike down the
mountains of Norway.

Pedro Igor Silva is a proud dad of amazing girls. He started his career back in 2000 at an
ISP, where he had his first experiences with open source projects such as FreeBSD and
Linux, as well as a Java and J2EE software engineer. Since then, he has worked in different
IT companies as a system engineer, system architect, and consultant.

Today, Pedro Igor is a principal software engineer at Red Hat and one of the core
developers of Keycloak. His main area of interest and study is now IT security, specifically
in the application security and identity and access management spaces.

In his non-working hours, he takes care of his planted aquariums.

I want to thank my wonderful family for giving me the space and support
I've needed to write this book. The whole Packt editing team has helped this

first-time author immensely, but I'd like to give a special thanks to Romy
Dias, who edited most of my work.

About the reviewers
Hynek Mlnarik has over 20 years of experience in IT. Theoretical aspects of computer
science were so attractive to him that to his own surprise, he eventually found himself
holding a PhD in computer science. Yet as he likes the synergy of theory and practice,
he has simultaneously worked on the architecture, development, quality engineering,
and management of various IT systems, ranging from wholesale support and banking to
virtualization and security. In the last few years, his main interest has been in Keycloak,
which he has contributed a few lines of code to here and there, and now he reviews the
lines contributed by others.

Siddhartha De holds an MS degree in systems engineering from BITS Pilani and
holds around 10 years of experience in IT industries, which includes technical support,
consultation, and infrastructure design. He is currently employed at Red Hat Inc. (India).

Łukasz Budnik holds a PhD in information systems and is an inside-outside technologist
with over 20 years of experience designing and implementing IT solutions. He has worked
on projects such as real-estate portals, car/home insurance, voice and video solutions,
mobile banking, and medical systems. For the past 9 years, he has worked as a cloud
architect on platforms such as AWS, Azure, Heroku, and Rackspace. Łukasz is an expert
in cloud-native applications. He has been responsible for implementing rigorous security,
governance, and compliance programs in the cloud.

Łukasz is a happy husband and a father to three energetic boys.

He is a huge fan of the cloud and doesn't mind the rain (at all)!

Łukasz goes by the handle @lukaszbudnik on GitHub and Twitter.

Preface

Section 1: Getting Started with Keycloak

1
Getting Started with Keycloak

Technical requirements 4
Introducing Keycloak 4
Installing and running Keycloak 5
Running Keycloak on Docker 6
Installing and running Keycloak with
OpenJDK 7

Discovering the Keycloak admin

and account consoles 9
Getting started with the Keycloak
admin console 10
Getting started with the Keycloak
account console 14

Summary 15
Questions 15

2
Securing Your First Application

Technical requirements 18
Understanding the sample
application 18
Running the application 22

Understanding how to log in to
the application 23
Securely invoking the backend
REST API 27
Summary 27
Questions 28

Table of Contents

ii Table of Contents

Section 2: Securing Applications with
Keycloak

3
Brief Introduction to Standards

Authorizing application access
with OAuth 2.0 32
Authenticating users with
OpenID Connect 36
Leveraging JWT for tokens 39

Understanding why SAML 2.0 is
still relevant 41
Summary 42
Questions 42

4
Authenticating Users with OpenID Connect

Technical requirements 44
Running the OpenID Connect
playground 44
Understanding the Discovery
endpoint 46
Authenticating a user 48
Understanding the ID token 52
Updating the user profile 56
Adding a custom property 56
Adding roles to the ID token 58

Invoking the UserInfo endpoint 59

Dealing with users logging out 61
Initiating the logout 61
Leveraging ID and access token
expiration 61
Leveraging OIDC Session Management 62
Leveraging OIDC Back-Channel Logout 62
A note on OIDC Front-Channel Logout 63
How should you deal with logout? 63

Summary 64
Questions 64
Further reading 64

5
Authorizing Access with OAuth 2.0

Technical requirements 66
Running the OAuth 2.0
playground 66

Obtaining an access token 68
Requiring user consent 71

Table of Contents iii

Limiting the access granted to
access tokens 74
Using the audience to limit token access 75
Using roles to limit token access 76
Using the scope to limit token access 80

Validating access tokens 83
Summary 85
Questions 86
Further reading 86

6
Securing Different Application Types

Technical requirements 88
Understanding internal and
external applications 88
Securing web applications 90
Securing server-side web applications 93
Securing a SPA with a dedicated
REST API 94
Securing a SPA with an intermediary
REST API 96

Securing a SPA with an external REST API 97

Securing native and mobile
applications 99
Securing REST APIs and services 103
Summary 106
Questions 106
Further reading 106

7
Integrating Applications with Keycloak

Technical requirements 108
Choosing an integration
architecture 110
Choosing an integration option 112
Integrating with Golang
applications 113
Configuring a Golang client 113

Integrating with Java
applications 117
Using Quarkus 118
Using Spring Boot 122
Using Keycloak adapters 127

Integrating with JavaScript
applications 129

Integrating with Node.js
applications 132
Creating a Node.js resource server 134

Integrating with Python
applications 137
Creating a Python client 138
Creating a Python resource server 140

Using a reverse proxy 143
Try not to implement your own
integration 144
Summary 145
Questions 145
Further reading 146

iv Table of Contents

8
Authorization Strategies

Understanding authorization 148
Using RBAC 149
Using GBAC 150
Mapping group membership into
tokens 151

Using OAuth2 scopes 156

Using ABAC 157
Using Keycloak as a centralized
authorization server 158
Summary 160
Questions 160
Further reading 160

Section 3: Configuring and Managing
Keycloak

9
Configuring Keycloak for Production

Technical requirements 164
Setting the hostname for
Keycloak 165
Setting the frontend URL 165
Setting the backend URL 167
Setting the admin URL 168

Enabling TLS 168
Configuring a database 171
Enabling clustering 173

Configuring a reverse proxy 177
Distributing the load across nodes 178
Forwarding client information 179
Keeping session affinity 181

Testing your environment 182
Testing load balancing and failover 183
Testing the frontend and backchannel
URLs 184

Summary 185
Questions 185
Further reading 186

10
Managing Users

Technical requirements 188
Managing local users 188
Creating a local user 188

Managing user credentials 190
Obtaining and validating user
information 192

Table of Contents v

Enabling self-registration 195
Managing user attributes 196

Integrating with LDAP and
Active Directory 197
Understanding LDAP mappers 200
Synchronizing groups 200
Synchronizing roles 202

Integrating with third-party
identity providers 203

Creating a OpenID Connect identity
provider 204

Integrating with social identity
providers 208
Allowing users to manage
their data 209
Summary 212
Questions 212
Further reading 212

11
Authenticating Users

Technical requirements 214
Understanding authentication
flows 214
Configuring an authentication flow 216

Using passwords 220
Changing password policies 222
Resetting user passwords 224

Using OTPs 228
Changing OTP policies 229
Allowing users to choose whether they
want to use OTP 231
Forcing users to authenticate

using OTP 233

Using Web Authentication
(WebAuthn) 235
Enabling WebAuthn for an
authentication flow 236
Registering a security device and
authenticating 237

Using strong authentication 241
Summary 242
Questions 242
Further reading 243

12
Managing Tokens and Sessions

Technical requirements 246
Managing sessions 246
Managing session lifetimes 247
Managing active sessions 250
Expiring user sessions prematurely 252

Understanding cookies and their
relation to sessions 254

Managing tokens 255
Managing ID tokens' and access
tokens' lifetimes 256

vi Table of Contents

Managing refresh tokens' lifetimes 258
Enabling refreshing token rotation 260
Revoking tokens 261

Summary 263
Questions 263
Further reading 263

13
Extending Keycloak

Technical requirements 266
Understanding Service Provider
Interfaces 267
Packaging a custom provider 270
Installing a custom provider 271
Understanding the
KeycloakSessionFactory and
KeycloakSession components 272
Understanding the life cycle of a
provider 273
Configuring providers 275

Changing the look and feel 276

Understanding themes 277
Creating and deploying a new theme 281
Extending templates 284
Extending theme-related SPIs 285

Customizing authentication
flows 286
Looking at other customization
points 291
Summary 293
Questions 293
Further reading 293

Section 4: Security Considerations

14
Securing Keycloak and Applications

Securing Keycloak 298
Encrypting communication to Keycloak 298
Configuring the Keycloak hostname 299
Rotating the signing keys used by
Keycloak 299
Regularly updating Keycloak 302
Loading secrets into Keycloak from an
external vault 303
Protecting Keycloak with a firewall and
an intrusion prevention system 303

Securing the database 304
Protecting the database with a firewall 305
Enabling authentication and access
control for the database 305
Encrypting the database 305

Securing cluster
communication 306
Enabling cluster authentication 307
Encrypting cluster communication 307

Table of Contents vii

Securing user accounts 308
Securing applications 310
Web application security 311
OAuth 2.0 and OpenID Connect best
practice 312

Keycloak client configurations 313

Summary 316
Questions 316
Further reading 316

Assessments

Other Books You May Enjoy

Index

Preface
Keycloak is an open source identity and access management tool with a focus on modern
applications such as single-page applications, mobile applications, and REST APIs.

The project was started in 2014 with a strong focus on making it easier for developers to
secure their applications. It has since grown into a well-established open source project
with a strong community and user base. It is used in production for scenarios ranging
from small websites with only a handful of users up to large enterprises with millions
of users.

This book introduces you to Keycloak, covering how to install Keycloak as well as how to
configure it ready for production use cases. Furthermore, this book covers how to secure
your own applications, as well as providing a good foundation for understanding OAuth
2.0 and OpenID Connect.

Who this book is for
This book is for developers, system administrators, and security engineers, or anyone who
wants to leverage Keycloak and its capabilities to secure applications.

If you are new to Keycloak, this book will provide you with a strong foundation to
leverage Keycloak in your projects.

If you have been using Keycloak for a while, but have not mastered everything yet, you
should still find a lot of useful information in this book.

What this book covers
Chapter 1, Getting Started with Keycloak, gives you a brief introduction to Keycloak and
steps on how to get quickly up to speed by installing and running Keycloak yourself. It
also provides an introduction to the Keycloak admin and account consoles.

Chapter 2, Securing Your First Application, explains how to secure your first application
with Keycloak through a sample application consisting of a single-page application and a
REST API.

x Preface

Chapter 3, Brief Introduction to Standards, provides a brief introduction and comparison
of the standards Keycloak supports to enable you to integrate your applications securely
and easily with Keycloak.

Chapter 4, Authenticating Users with OpenID Connect, teaches how to authenticate users
by leveraging the OpenID Connect standard. This chapter leverages a sample application
that allows you to see and understand how an application authenticates to Keycloak
through Open ID Connect.

Chapter 5, Authorizing Access with OAuth 2.0, teaches how to authorize access to REST
APIs and other services by leveraging the OAuth 2.0 standard. Through a sample
application, you will see firsthand how an application obtains an access token through
OAuth 2.0, which the application uses to invoke a protected REST API.

Chapter 6, Securing Different Application Types, covers best practices on how to secure
different types of applications, including web, mobile, and native applications, as well as
REST APIs and other backend services.

Chapter 7, Integrating Applications with Keycloak, provides steps on how to integrate
your applications with Keycloak, covering a range of different programming languages,
including Go, Java, client-side JavaScript, Node.js, and Python. It also covers how you
can utilize a reverse proxy to secure an application implemented in any programming
language or framework.

Chapter 8, Authorization Strategies, covers how your application can use information
about the user from Keycloak for access management, covering roles and groups, as well
as custom information about users.

Chapter 9, Configuring Keycloak for Production, teaches how to configure Keycloak for
production, including how to enable TLS, configuring a relational database, and enabling
clustering for additional scale and availability.

Chapter 10, Managing Users, takes a closer look at the capabilities provided by Keycloak
related to user management. It also explains how to federate users from external sources
such as LDAP, social networks, and external identity providers.

Chapter 11, Authenticating Users, covers the various authentication capabilities provided
by Keycloak, including how to enable second-factor authentication, as well as security
keys.

Chapter 12, Managing Tokens and Sessions, helps understand how Keycloak leverages
server-side sessions to keep track of authenticated users, as well as best practices on
managing tokens issued to your applications.

Preface xi

Chapter 13, Extending Keycloak, explains how you can extend Keycloak, covering how
you can modify the look and feel of user-facing pages such as the login pages and account
console. It also provides a brief introduction to one of the more powerful capabilities of
Keycloak that allows you to provide custom extensions for a large number of extension
points.

Chapter 14, Securing Keycloak and Applications, provides best practices on how to secure
Keycloak for production. It also provides a brief introduction to some best practices to
follow when securing your own applications.

To get the most out of this book
To be able to run the examples provided in this book, you need to have OpenJDK and
Node.js installed on your computer. All code examples have been tested using OpenJDK
11 and Node.js 14 on Linux (Fedora). However, the examples should also work on newer
versions of OpenJDK and Node.js, as well as with Windows and mac OS.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Keycloak-Identity-and-Access-
Management-for-Modern-Applications. In case there's an update to the code,
it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Code in Action
Code in Action videos for this book can be viewed at https://bit.ly/3h6kdDm.

https://github.com/PacktPublishing/Keycloak-Identity-and-Access-Management-for-Modern-Applications
https://github.com/PacktPublishing/Keycloak-Identity-and-Access-Management-for-Modern-Applications
https://github.com/PacktPublishing/Keycloak-Identity-and-Access-Management-for-Modern-Applications
https://github.com/PacktPublishing/
https://bit.ly/3h6kdDm

xii Preface

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/
files/downloads/9781800562493_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Keycloak supports the authorization_code grant type and
the code and token response types."

A block of code is set as follows:

<Header>.<Payload>.<Signature>

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

{

 "access_token": "eyJhbGciOiJSUzI1NiIsI…",

 "expires_in": 299,

 "token_type": "bearer",

 "scope": "profile email",

 …

}

Any command-line input or output is written as follows:

$ npm install

$ npm start

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Now click on Load OpenID Provider Configuration."

Tips or important notes
Appear like this.

http://www.packtpub.com/sites/default/files/downloads/9781800562493_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781800562493_ColorImages.pdf

Preface xiii

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
http://authors.packtpub.com
http://packt.com

Section 1:
Getting Started with

Keycloak

In this section, you will get up and running with Keycloak, including securing your first
application in little to no time.

This section comprises the following chapters:

• Chapter 1, Getting Started with Keycloak

• Chapter 2, Securing Your First Application

1
Getting Started

with Keycloak
If you are new to Keycloak, this chapter will quickly get you up to speed. We'll start with
a brief introduction to Keycloak. Then, you will find out how easy it is to install Keycloak
and get it up and running. After we have started Keycloak, you will learn about the
Keycloak admin console, which provides a great interface for managing and configuring
Keycloak. Finally, we'll take a quick look at the Keycloak account console as well, which
lets users of your applications manage their own accounts.

By the end of this chapter, you will know how to get started with the Keycloak server, and
understand how you can use the Keycloak admin console to manage Keycloak. You will
learn how to prepare Keycloak with an example user in order to get started securing your
first application in the next chapter.

In this chapter, we're going to cover the following main topics:

• Introducing Keycloak

• Installing and running Keycloak

• Discovering the Keycloak admin and account consoles

4 Getting Started with Keycloak

Technical requirements
For this chapter, in order to run Keycloak, you will need to have Docker (https://
www.docker.com/) or JDK 8+ (https://openjdk.java.net/) installed on
your workstation.

Check out the following link to see the Code in Action video:

https://bit.ly/3nRLgng

Introducing Keycloak
Keycloak is an open source Identity and Access Management tool with a focus on modern
applications such as single-page applications, mobile applications, and REST APIs.

The project was started in 2014 with a strong focus on making it easier for developers to
secure their applications. It has since grown into a well-established open source project
with a strong community and user base. It is used in production for scenarios ranging from
small websites with only a handful of users up to large enterprises with millions of users.

Keycloak provides fully customizable login pages, including strong authentication, as well
as various flows, such as the recovery of passwords, requiring users to regularly update the
passwords, accepting terms and conditions, and a lot more. All of this without any need
to add anything to your applications, or any coding at all. All pages visible to your users
support custom themes, making it very easy to modify the look and feel of the pages to
integrate with your corporate branding and existing applications.

By delegating authentication to Keycloak, your applications do not need to worry about
different authentication mechanisms, or how to safely store passwords. This approach
also provides a higher level of security as applications do not have direct access to user
credentials; they are instead provided with security tokens that give them only access
to what they need.

Keycloak provides single sign-on as well as session management capabilities, allowing
users to access multiple applications, while only having to authenticate once. Both users
themselves and administrators have full visibility to where users are authenticated, and
can remotely terminate sessions when required.

Keycloak builds on industry standard protocols supporting OAuth 2.0, OpenID Connect,
and SAML 2.0. Using industry standard protocols is important from both a security
perspective and in terms of making it easier to integrate with existing and new applications.

https://www.docker.com/
https://www.docker.com/
https://openjdk.java.net/
https://bit.ly/3nRLgng

Installing and running Keycloak 5

Keycloak comes with its own user database, which makes it very easy to get started.
You can also easily integrate with existing identity infrastructure. Through its identity
brokering capabilities, you can plug in existing user bases from social networks, or other
enterprise identity providers. It can also integrate with existing user directories, such as
Active Directory and LDAP servers.

Keycloak is a lightweight and easy-to-install solution. It is highly scalable and provides
high availability through clustering capabilities. For additional redundancy, Keycloak
also supports clustering to multiple data centers.

A lot of effort has gone into making Keycloak usable out of the box, supporting common
use cases, but, at the same time, it is highly customizable and extendable when needed.
Keycloak has a large number of extension points where you can implement and deploy
custom code to Keycloak to modify existing behavior or add completely new capabilities.
Examples of extensions that can be written to Keycloak include custom authentication
mechanisms, integrations with custom user stores, and the custom manipulation of
tokens. You can even implement your own custom login protocols.

This section was a very brief introduction to the features and capabilities of Keycloak. As
this book aims to give you a practical guide to Keycloak, we will come back to many of
these features in later chapters, where you will learn firsthand how you can put these to use.

Installing and running Keycloak
In this section, you will quickly learn how to install and run Keycloak. Once you have
Keycloak up and running, we will take a look at the Keycloak admin console and the
Keycloak account console.

Keycloak provides a few options on how it can be installed, including the following:

• Running as a container on Docker

• Installing and running Keycloak locally (which will require a Java virtual machine,
such as OpenJDK)

• Running Keycloak on Kubernetes

• Using the Keycloak Kubernetes operator

If you already have Docker installed on your workstation, this is the recommended
approach as it is simpler to get up and running this way.

If you don't have Docker installed, it is easier to get started by installing and running it
locally. The only dependency required is a Java virtual machine.

6 Getting Started with Keycloak

Keycloak can also be easily deployed to Kubernetes, where you have the option of
using the Keycloak Kubernetes Operator, which makes installation, configuration, and
management even simpler. We are not going to provide instructions for Kubernetes in
this book, as we instead want to focus on Keycloak and its features. If you are interested in
knowing how to run Keycloak on Kubernetes, then the Keycloak website provides great
Getting started guides at https://www.keycloak.org/getting-started.

In the next section, we will look at how you can run Keycloak as a container on Docker.
If you prefer to run it locally, you can skip to the section titled Installing and running
Keycloak with OpenJDK.

Running Keycloak on Docker
With Docker, it is very easy to run Keycloak as you don't need to install a Java virtual
machine yourself, nor do you have to download and extract the Keycloak distribution.

To run Keycloak on Docker, simply execute the following command:

$ docker run -e KEYCLOAK_USER=admin -e KEYCLOAK_PASSWORD=admin
-p 8080 quay.io/keycloak/keycloak

As Keycloak does not ship with a default admin account, passing the environment
variables, KEYCLOAK_USER and KEYCLOAK_PASSWORD, makes it easy to create an
initial admin account. We are also using –p 8080 to publish the port used by Keycloak
to the host, so as to make it easy to access Keycloak.

After a few seconds, you will see a message along the lines of the following, meaning
Keycloak has started successfully:

Figure 1.1 – Start up message

You can verify that Keycloak is running by opening http://localhost:8080.

Congratulations! You now have Keycloak running as a Docker container and can
get started with trying Keycloak out by first discovering the Keycloak admin and
account consoles.

https://www.keycloak.org/getting-started

Installing and running Keycloak 7

Installing and running Keycloak with OpenJDK
As Keycloak is implemented in Java, it is easy to run Keycloak on any operating system
without the need to install additional dependencies. The only thing that you need to
have installed is a Java virtual machine, such as OpenJDK.

In the next section, we will install OpenJDK, which is required before running Keycloak.
If you already have a Java virtual machine installed, you can skip the next section and go
directly to the section entitled Installing Keycloak.

Installing OpenJDK
The best way of installing OpenJDK depends on the operating system you are using. Most
Linux distributions, for example, include OpenJDK packages in the default repositories.

By way of an example, on Fedora, you can install OpenJDK by executing the following
command:

$ sudo dnf install java-latest-openjdk

For instructions specific to your operating system, use one of the following URLs to find
the relevant instructions:

• Windows: https://www.google.com/
search?q=install+openjdk+windows

• macOS: https://www.google.com/search?q=install+openjdk+macos

• Ubuntu: https://www.google.com/
search?q=install+openjdk+ubuntu

Another simple way to install OpenJDK is to download one of the ready builds at
https://jdk.java.net/. Open this page in your browser and then click on the JDK
15 link next to Ready for use. Download the build for your operating system, and then
extract it to a suitable location. Once extracted, set the JAVA_HOME environment variable
to point to the extracted directory.

The following screenshot shows an example of installing a ready build of OpenJDK
on Linux:

$ mkdir ~/kc-book

$ cd ~/kc-book

$ tar xfvz ~/Downloads/openjdk-14.0.2_linux-x64_bin.tar.gz

$ export JAVA_HOME=~/kc-book/jdk-14.0.2

$ $JAVA_HOME/bin/java -version

https://www.google.com/search?q=install+openjdk+windows
https://www.google.com/search?q=install+openjdk+windows
https://www.google.com/search?q=install+openjdk+macos
https://www.google.com/search?q=install+openjdk+ubuntu
https://www.google.com/search?q=install+openjdk+ubuntu
https://jdk.java.net/

8 Getting Started with Keycloak

The last command (java –version) verifies that Java is working properly.

Now that you have OpenJDK installed, we will move on to installing Keycloak.

Installing Keycloak
Once you have the Java virtual machine installed on your workstation, the next step is
to download the distribution of Keycloak from the Keycloak website. Open https://
www.keycloak.org/downloads, and then download either the ZIP or the TAR.GZ
archive of the server (standalone server distribution). Once downloaded, simply extract
this archive to a suitable location.

The following screenshot shows an example of installing Keycloak on Linux:

$ cd ~/kc-book

$ unzip ~/Downloads/keycloak-11.0.1.zip

$ cd keycloak-11.0.1

$ export KC_HOME=~/kc-book/keycloak-11.0.1

Before starting Keycloak, we will create an initial admin account.

Creating an admin account
Keycloak does not ship with a default admin account. This is to prevent anyone from
running Keycloak with a default username and password in production.

This means that prior to using Keycloak, you need to create an initial admin account.

To create an admin account on Linux or macOS, execute the following command in
a terminal:

$ cd $KC_HOME

$ bin/add-user-keycloak.sh -u admin -p admin

On Windows, execute the following command:

> cd %KC_HOME%

> bin\add-user-keycloak.bat -u admin -p admin

Important note
For production systems, you should obviously use a more secure password,
including strongly considering using strong authentication, especially for the
admin account. Later in the book, we will cover how you can easily enable two-
factor authentication with Keycloak.

https://www.keycloak.org/downloads
https://www.keycloak.org/downloads

Discovering the Keycloak admin and account consoles 9

You are now ready to start Keycloak, which we will cover next.

Starting Keycloak
Once you have installed Keycloak and created the initial admin account, it's easy to start
Keycloak.

On Linux or macOS, start Keycloak with the following command:

$ cd $KC_HOME

$ bin/standalone.sh

Or, on Windows, execute the following command:

> cd %KC_HOME%

> bin\standalone.bat

After a few seconds, you will see a message along the lines of the following, meaning
Keycloak has started successfully:

Figure 1.2 – Start up message

You can verify that Keycloak is running by opening http://localhost:8080.

Congratulations! You now have Keycloak running on your workstation and can get started
with trying Keycloak out by first discovering the Keycloak admin and account consoles.

Discovering the Keycloak admin and account
consoles
In this section, we will take a look at the Keycloak admin and account consoles.
The admin console is an extensive console that allows you to configure and manage
Keycloak. The account console, on the other hand, is there to allow your end users
to manage their accounts.

10 Getting Started with Keycloak

Getting started with the Keycloak admin console
In this section, you will learn how to log in to the Keycloak admin console as well as learn
how to set up the basic configuration needed to secure your first application.

The Keycloak admin console provides an extensive and friendly interface for
administrators and developers to configure and manage Keycloak.

To access the admin console, open http://localhost:8080/auth/admin/ in
a browser. You will be redirected to the Keycloak login pages, where you can log in
with the admin username and password you created in the previous section while
installing Keycloak.

Once you have logged in, you will see the configuration for the master realm in Keycloak,
as shown in the following screenshot:

Figure 1.3 – The Keycloak admin console

You will learn a lot more about the admin console throughout the book, but let's go through
a few steps to make your Keycloak application ready to start securing applications.

Discovering the Keycloak admin and account consoles 11

Creating and configuring a realm
The first thing you will want to do is create a realm for your applications and users.
Think of a realm as a tenant. A realm is fully isolated from other realms, it has its own
configuration, and its own set of applications and users. This allows a single installation
of Keycloak to be used for multiple purposes. For example, you may want to have one
realm for internal applications and employees, and another realm for external applications
and customers.

To create a new realm, hover your mouse over the realm selector in the top-left corner
(just below the Keycloak logo). When hovering your mouse over the realm selector,
you will see a list of realms, including a button to create a new realm. Click on the Add
realm button:

Figure 1.4 – Realm selector

On the next page, enter a name for the realm. As the name is used in URLs, the name
should ideally not use special characters that need escaping in URLs (such as spaces).
Once created, you can set a human friendly display name. For example, use myrealm
for the name, and My Realm for the display name.

Creating a user
Once you have created the realm, let's create the first user in the realm:

1. From the left-hand menu, click on Users, and then click on Add User.

2. Enter a memorable username, and also enter a value of your choice for email, first
name, and last name.

The Email Verified option can be selected by an administrator if they know this is
the valid email address for the user.

12 Getting Started with Keycloak

3. Required User Actions allows an administrator to require a user to perform some
initial actions on the next login; for example, to require the user to review their
profile, or to verify their email address.

4. Remember to click on Save after you have completed the form:

Figure 1.5 – The Add user form

A user has a few standard built-in attributes, such as first name, but it is also possible
to add any custom attributes through the Attributes tab.

Before the user can log in, you have to create an initial temporary password. To do this,
click on the Credentials tab. In the Set Password section, enter a password and click
Set Password.

If the Temporary option is enabled, the user is required to change the password when
logging in for the first time. In cases where an administrator creates the user, this makes
a lot of sense.

Discovering the Keycloak admin and account consoles 13

Creating a group
Next, let's create a group and add the user we previously created to the group. From the
menu on the left-hand side, click on Groups, and then click on New.

Enter a name for the group, for example, mygroup, and then click on Save.

Once you have created the group, you can add attributes to the group. A user inherits
all attributes from a group it belongs to. This can be useful if, for example, you have a
group for all employees in an office and want to add the office address to all employees
in this group.

You can also grant roles to a group, which again is inherited by all members of the group.

To add the user to the group, go back to the Users page. Click View all users and select
the user you created previously.

Next, click on the Groups tab. In the right-hand column, select the group you created
previously and click on Join to add the user to the group.

Creating a global role
To create a global role, click on Roles in the menu on the left-hand side, and then click on
Add Role. Enter a role name, for example, myrole. You can also add a description to the
role, which can be especially useful if there are other administrators.

Any role in Keycloak can be turned into a composite role, allowing other roles to be
added to the role. A user who is granted a composite role will dynamically be granted
all roles within the composite role. Composite roles can even contain other composite
roles. This feature can be very powerful, but, at the same time, should be used with some
care. Composite roles can be a bit difficult to manage, and can also have a performance
overhead if overused, especially if there are many layers of composite roles.

To add the user to the role, go back to the Users page. Click View all users and select the
user you created previously.

Next, click on the Role Mappings tab. In the left-hand column, select the role you created
previously and click on Add selected to add the user to the role.

You have now created all the required initial configuration to get started securing your
first application, but first let's take a look at the Keycloak account console, which lets
users manage their own accounts.

14 Getting Started with Keycloak

Getting started with the Keycloak account console
The Keycloak account console provides an interface where users can manage their own
accounts, including the following:

• Updating their user profile

• Updating their password

• Enabling second factor authentication

• Viewing applications, including what applications they have authenticated to

• Viewing open sessions, including remotely signing out of other sessions

To access the account console, open http://localhost:8080/auth/realms/
myrealm/account/ in a browser (if you used a different realm name in the previous
section, replace myrealm with the name of your realm). You will be redirected to the
Keycloak login pages, where you can log in with the username and password you created
in the previous section while creating your first user:

Figure 1.6 – The Keycloak Account Console

Tip
You can also find the URL of the account console through the Keycloak admin
console. In the admin console, click on Clients, and then you will find the URL
of the account console next to the account client.

You have now learned how Keycloak not only provides an extensive admin console,
but also a self-management console for users of your applications to manage their own
accounts.

Summary 15

Summary
In this chapter, you have learned how to install Keycloak and get it up and running. You
also learned how to use the Keycloak admin console to create your first realm, including
an example user with an associated role. This provides you with the foundation on which
to continue building throughout the book.

In the next chapter, we will use what you have learned in this chapter in order to secure
your first application with Keycloak.

Questions
1. Can you run Keycloak on Docker and Kubernetes?

2. What is the Keycloak admin Console?

3. What is the Keycloak account console?

2
Securing Your

First Application
In this chapter, you will learn how to secure your first application with Keycloak. To make
things a bit more interesting, the sample application you will be running consists of two
parts, a frontend web application and a backend REST API. This will show you how a
user can authenticate to the frontend, and also how the frontend is able to securely invoke
the backend.

By the end of this chapter, you will have a basic understanding of how applications can be
secured by Keycloak by leveraging OpenID Connect.

In this chapter, we're going to cover the following main topics:

• Understanding the sample application

• Running the application

• Understanding how to log in to the application

• Securely invoking the backend REST API

18 Securing Your First Application

Technical requirements
To run the sample application included in this chapter, you need to have Node.js
(https://nodejs.org/) installed on your workstation.

You also need to have a local copy of the GitHub repository associated with the book. If you
have Git installed, you can clone the repository by running this command in a terminal:

$ git clone https://github.com/PacktPublishing/Keycloak-
Identity-and-Access-Management-for-Modern-Applications.git

Alternatively, you can download a ZIP of the repository from

https://github.com/PacktPublishing/Keycloak-Identity-and-
Access-Management-for-Modern-Applications/archive/master.zip.

Check out the following link to see the Code in Action video:

https://bit.ly/3nQjU0W

Understanding the sample application
The sample application consists of two parts – a frontend web application and a backend
REST API.

The frontend web application is a single-page application written in JavaScript. As we
want to focus on what Keycloak can offer, the application is very simple. Furthermore,
to make it as simple as possible to run the application, it uses Node.js. The application
provides the following features:

• Login with Keycloak.

• It displays the user's name.

• It displays the user's profile picture, if available.

• It shows the ID token.

• It shows the Access token.

• It refreshes the tokens.

• It invokes the secured endpoint provided by the backend.

https://nodejs.org/
https://github.com/PacktPublishing/Keycloak-Identity-and-Access-Management-for-Modern-Applications/archive/master.zip
https://github.com/PacktPublishing/Keycloak-Identity-and-Access-Management-for-Modern-Applications/archive/master.zip
https://bit.ly/3nQjU0W

Understanding the sample application 19

The backend REST API is also very simple, and is implemented with Node.js. It provides
a REST API with two endpoints:

• /public: A publicly available endpoint with no security

• /secured: A secured endpoint requiring an access token with the myrealm
global role

Node.js is used for the example applications as we want to make the code as easy to
understand and simple to run as possible, regardless of what programming language you
are familiar with.

The following diagram shows the relationship between the frontend, the backend, and
Keycloak. The frontend authenticates the users using Keycloak, and then invokes the
backend, which uses Keycloak to verify that the request should be permitted:

Figure 2.1 – Application overview

Now that you have a basic understanding of the sample application, let's look at some
more details on how it all comes together.

When the user clicks on the login button in the frontend application, the browser is
redirected to the Keycloak login page. The user then authenticates with Keycloak,
before the browser is redirected back to the application with a special code called an
authorization code. The application then invokes Keycloak to exchange the authorization
code for the following tokens:

• An ID token: This provides the application information pertaining to the
authenticated user.

• An access token: The application includes this token when making a request to a
service, which allows the service to verify whether the request should be permitted.

• A refresh token: Both the ID and the access token have short expirations, by
default, 5 minutes. The refresh token is used by the application to obtain new
tokens from Keycloak.

20 Securing Your First Application

The flow described is what is known as the authorization code flow in OpenID Connect.
If you are not already familiar with OAuth 2.0 or OpenID Connect, they can be a bit
daunting at first, but once you become familiar with them, they are actually quite simple
and easy to understand.

Luckily, the example application uses the Keycloak JavaScript and Node.js libraries,
which means you don't actually have to understand these specifications to get started
using Keycloak.

To help visualize the login process, a simplified sequence diagram is provided as follows:

Figure 2.2 – Authorization code flow in OpenID Connect simplified

The steps in this diagram are as follows:

1. The user clicks on the login button.

2. The application redirects to the Keycloak login page.

3. The Keycloak login page is displayed to the user.

4. The user fills in the username and password and submits the results to Keycloak.

5. After verifying the username and password, Keycloak sends the authorization code
to the application.

6. The application exchanges the authorization code for an ID token and an access
token. The application can now verify the identity of the user by inspecting the
ID token.

Understanding the sample application 21

Tip
By delegating authentication of the user to Keycloak, the application does not
have to know how to authenticate the user. This is especially relevant when the
authentication mechanisms change. For example, two-factor authentication can
be enabled without having to make changes to the application. This also means
the application does not have access to the user's credentials.

The next step related to Keycloak is when the frontend invokes the backend. The backend
REST API has a protected endpoint that can only be invoked by a user with the global
role, myrole.

To be completely accurate, the frontend is granted permissions to invoke the backend on
behalf of the user. This is part of the beauty of OAuth 2.0. An application does not have
access to do everything that the user is able to do, only what it should be able to do.

When the frontend makes a request to the backend, it includes the access token within the
request. By default, Keycloak uses JSON Web Signature (JWS) as the token format. These
types of tokens are often referred to as non-opaque tokens, meaning the contents of the
token are directly visible to the application.

The token also includes a digital signature, making it possible to verify that the token was
indeed issued by Keycloak. In essence, this means that the backend can both verify the
token and read the contents without a request to Keycloak, resulting in less demand on
the Keycloak server and lower latency when processing requests to the backend.

To help visualize what happens when the frontend sends a request to the backend, take a
look at the following diagram:

Figure 2.3 – Secured request from the frontend to the backend simplified

22 Securing Your First Application

The steps in the diagram are as follows:

1. The backend retrieves Keycloak's public keys. The backend does not need to do this
for all requests to the backend, but can instead cache the keys in memory.

2. The frontend sends a request to the backend, including the access token.

3. The backend uses the public keys it retrieved earlier to verify that the access token
was issued by a trusted Keycloak instance, and then verifies that the token is valid
and that the token contains the role, myrole.

4. The backend returns the results to the frontend.

You now have a basic understanding of how the sample applications is secured with
Keycloak. In the next section, you will learn how to run the sample application.

Running the application
In this section, you will learn how to run the sample application.

If you don't already have Node.js installed on your workstation, go to
https://nodejs.org/ for instructions on how to install it.

To run the frontend on Node.js, open a terminal and run the following commands:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch2/frontend/

$ npm install

$ npm start

Next, open a new terminal to run the backend using the following commands:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch2/backend/

$ npm install

$ npm start

Now that you have the sample application running with Node.js, you can register it with
Keycloak, which we will cover in the next section.

https://nodejs.org/

Understanding how to log in to the application 23

Understanding how to log in to the application
In the previous chapter, covering how to get started with Keycloak, you learned how to
run Keycloak, as well as how to create your first realm. Prior to continuing this section,
you should have Keycloak running with the realm created as covered in the previous
chapter. In summary, what you require before continuing is the following:

• Keycloak up and running

• A realm named myrealm

• A global role named myrole

• A user with the preceding role

Before an application can log in with Keycloak, it has to be registered as a client
with Keycloak.

Before registering the frontend, let's see what happens if an unregistered application tries
to authenticate with Keycloak. Open http://localhost:8000 and then click on the
Login button.

You will see an error page from Keycloak with the message Client not found. This error is
telling you that the application is not registered with Keycloak.

To register the frontend with Keycloak, open the Keycloak admin console. At the top
of the menu on the left-hand side, there is an option to select what realm you are
working with. Make sure you have selected the realm named myrealm. In the menu
on the left-hand side, click on Clients, and then click on Create.

Fill in the form with the following values:

• Client ID: myclient

• Client Protocol: openid-connect

• Root URL: http://localhost:8000

24 Securing Your First Application

The following diagram shows the Add Client form with the values you need to fill in:

Figure 2.4 – Creating the client in the admin console

Once you have filled in the form, click on Save. After you click Save, you will see the full
configuration for the client. There are two configuration options that are particularly
interesting at this point:

• Valid Redirect URIs: This value is very important in an OpenID Connect
authorization code flow when a client-side application is used. A client-side
application is not able to have any credentials as these would be visible to end
users of the application. To prevent any malicious applications from being able to
masquerade as the real application, the valid redirect URIs instruct Keycloak to
only redirect the user to a URL that matches a valid redirect URI. In this case,
since the value is set to http://localhost:8000/*, an application hosted
on http://attacker.com would not be able to authenticate.

• Web Origins: This option registers the valid web origins for the application for
Cross-Origin Resource Sharing (CORS) requests. To obtain tokens from Keycloak,
the frontend application has to send an AJAX request to Keycloak, and browsers do
not permit an AJAX request from one web origin to another, unless CORS is used

Now you can go back to the frontend by opening http://localhost:8000. This
time, when you click on the Login button, you will see the Keycloak login page. Log in
with the username and password you created during the previous chapter.

Let's take a look at the ID token that Keycloak issued. Click on the Show ID Token
button. The ID token that is displayed will look something like the following:

{

 "exp": 1603912252,

 "iat": 1603911952,

http://attacker.com

Understanding how to log in to the application 25

 "auth_time": 1603911952,

 "jti": "363b94b8-7e0c-4852-8287-d331c98153f2",

 "iss": "http://localhost:8080/auth/realms/myrealm",

 "aud": "myclient",

 "sub": "67855660-fd6e-4416-96d1-72c99db5e525",

 "typ": "ID",

 "azp": "myclient",

 "nonce": "b59c4dbf-d196-4af7-9451-8020b153caff",

 "session_state": "32e2501f-f5ca-4d73-9fad-067d4c52835a",

 "at_hash": "7p1VYLHv2T5qRAf2X9UzSw",

 "acr": "1",

 "email_verified": false,

 "realm_access": {

 "roles": [

 "offline_access",

 "uma_authorization",

 "myrole"

]

 },

 "name": "Stian Thorgersen",

 "preferred_username": "st",

 "locale": "en",

 "given_name": "Stian",

 "family_name": "Thorgersen",

 "email": "st@localhost"

}

Here is a list of some of the more interesting values within the ID token:

• exp: This is the date and time the token expires in seconds since 01/01/1970
00:00:00 UTC (often referred to as Unix or Epoch time).

• iss: This is the issuer of the token, which you may notice is the URL of the
Keycloak realm.

• sub: This is the unique identifier of the authenticated user.

• name: This is the first name and last name of the authenticated user.

26 Securing Your First Application

• preferred_username: This is the username of the authenticated user. You
should avoid this as a key for the user as it may be changed, and even refer to a
different user in the future. Instead, always use the sub field for the user key.

The ID token is used by the application to establish the identity of the authenticated user.

Next, let's take a look at the access token. Click on the Show Access Token button. Let's
also take a look at some fields in this token:

• allowed-origins: This is a list of permitted web origins for the application. The
backend service can use this field when deciding whether web origins should be
permitted for CORS requests.

• realm_access: This contains a list of global roles. It is the intersection between
the roles granted to the user, and the roles the client has access to.

• resource_access: This contains a list of client roles.

• scope: Scopes can be used both to decide what fields (or claims) to include in the
token, as well as be used by backends to decide what APIs the token can access.

Currently, the information within the tokens are the default fields available in Keycloak.
If you want to add additional information, Keycloak is very flexible in allowing you to
customize the contents within the tokens.

Let's give this a go by adding a picture for the user. Leave the tab with the frontend open,
and then open a new tab with the Keycloak admin console. In the menu on the left-
hand side, click on Users, then click on View all users, and select the user you created
previously. Now let's add a custom attribute to the user. Click on Attributes. In the table,
there will be two empty input fields at the bottom. In the Key column. set the value to
picture, and in the Value column, set the value to the URL to a profile picture (in the
following screenshot, I've used my GitHub avatar). Then, click on Add:

Figure 2.5 – Adding a custom attribute to a user

Securely invoking the backend REST API 27

Now, go back to the tab where you have the frontend open. To display the profile picture,
you can click on the Refresh button. When you click on this button, the tokens will be
refreshed, and the new ID token will now contain the picture attribute you just added,
which allows the application to display a profile picture for the user.

Next, you will learn how to securely invoke the backend from the frontend.

Securely invoking the backend REST API
Now, open http://localhost:3000/ and click on the Public endpoint link.
You will see a message saying Public message!. The public endpoint is not secured by
Keycloak, and can be invoked without an access token.

Next, let's try the secured endpoint that is protected by Keycloak. Open
http://localhost:3000/ again. This time, click on the Secured endpoint link. Now
you will see a message saying Access denied. The Keycloak Node.js adapter is denying
requests to this endpoint as it requires a valid access token to invoke the endpoint.

Let's now try to invoke the secured endpoint from the frontend. Open
http://localhost:8000/ and click on Invoke Service. You will now see a message
displayed saying Secret message!. If instead you get the message Access Denied, this is
most likely caused by the user not having the myrole role.

When you click Invoke Service, the frontend sends an AJAX request to the backend
service, including the access token in the request, which allows the backend to verify that
the invocation is done on behalf of a user who has the required role to access the endpoint.

Summary
In this chapter, you learned how to secure your first application, consisting of a frontend
web application and a backend REST API with Keycloak. You also gained a basic
understanding of how Keycloak leverages OpenID Connect to make this all happen in a
standard and secure way. Together with what you learned in the first chapter of the book,
you now have a solid foundation to start learning more about Keycloak.

In the next chapter, we will dive deeper into securing applications with Keycloak, giving
you a better understanding of how it all works.

28 Securing Your First Application

Questions
1. How does an application authenticate with Keycloak?

2. What do you need to configure in the Keycloak admin console in order to allow an
application to authenticate with Keycloak?

3. How does an application securely invoke a protected backend service?

Section 2:
Securing

Applications with
Keycloak

In this section, you will understand the options available in terms of how to secure
different application types, including different strategies for authorization.

This section comprises the following chapters:

• Chapter 3, Brief Introduction to Standards

• Chapter 4, Authenticating Users with OpenID Connect

• Chapter 5, Authorizing Access with OAuth 2.0

• Chapter 6, Securing Different Application Types

• Chapter 7, Integrating Applications with Keycloak

• Chapter 8, Authorization Strategies

3
Brief Introduction

to Standards
In this chapter, you will get a brief introduction to the standards that enable you to
integrate your applications securely and easily with Keycloak. We very briefly cover
OAuth 2.0, OpenID Connect, JSON Web Tokens (JWT), and SAML 2.0. If you are new
to these standards, this chapter will give you a gentle introduction without going too
much into detail. Even if you are fairly familiar with these standards, you may still want
to skim through this chapter.

By the end of this chapter, you will have a basic understanding of OAuth 2.0, OpenID
Connect, JWT, and SAML 2.0, along with a decent understanding of what these standards
can offer you.

In this chapter, we're going to cover the following main topics:

• Authorizing application access with OAuth 2.0

• Authenticating users with OpenID Connect

• Leveraging JWT for tokens

• Understanding why SAML 2.0 is still relevant

32 Brief Introduction to Standards

Authorizing application access with OAuth 2.0
OAuth 2.0 is by now a massively popular industry-standard protocol for authorization.

At the heart of OAuth 2.0 sits the OAuth 2.0 framework, which has enabled a whole
ecosystem of websites to integrate with each other. Prior to OAuth 2.0 there was OAuth
1, as well as more bespoke solutions to allow third-party applications to access data on
behalf of the user, but these approaches were complex or not easily interoperable. With
OAuth 2.0, sharing user data to third-party applications is easy, doesn't require sharing
user credentials, and allows control over what data is shared.

OAuth 2.0 is not only useful when dealing with third-party applications. It is also
incredibly useful for limiting access to your own applications. Just as it wasn't uncommon
for third-party applications to ask for your username and password to other sites, this was
a common pattern within the enterprise as well. Applications would, for example, ask for
your LDAP username and password, which would then be used to access other services
within the enterprise. This could effectively mean that if one application is compromised,
all services within the enterprise could also be compromised.

There are four roles defined in OAuth 2.0:

• Resource owner: This is typically the end user that owns the resources an
application wants to access.

• Resource server: This is the service hosting the protected resources.

• Client: This is the application that would like to access the resource.

• Authorization server: This is the server issuing access to the client, which is the role
of Keycloak.

In essence, in an OAuth 2.0 protocol flow, the client requests access to a resource on
behalf of a resource owner from the authorization server. The authorization server issues
a limited access to the resource in the form of an access token. After receiving the access
token, the client can access the resource at the resource server by including the access
token in the request.

Depending on the application type and use case, there are a number of different flows
that can be used. To help you decide what flow type you should use for your application,
you can use the following simple formula:

• If the application is accessing the resource on behalf of itself (the application is the
resource owner), use the Client Credentials flow.

Authorizing application access with OAuth 2.0 33

• If the application is running on a device without a browser or is input-constrained,
use the Device flow. This could, for example, be a smart TV where it would be
difficult for the user to enter the username and password.

• If none of the preceding conditions are applicable, use the Authorization Code flow.

In addition, there are two more flow types that are now legacy and should not be used:

• Implicit flow: This was a simplified flow for native applications and client-side
applications, which is now considered insecure and should not be used.

• Resource Owner Password Credentials flow: In this flow, the application collects
the user's credentials directly and exchanges them for an access token. It may
be tempting to use this grant type for native applications, when a browser is not
available, or simply because you want the login form to be directly integrated with
your application. You should not be tempted, though. It is inherently insecure as
you are exposing the user's credentials directly to the application, and you will also
run into other problems in the long run, when you want your users to use stronger
authentication than only a password, for example.

If you are not already familiar with the Authorization Code flow in OAuth 2.0, the
following diagram will help you understand how it works:

Figure 3.1 – OAuth 2.0 Authorization Code grant type simplified

34 Brief Introduction to Standards

In more detail, the steps in the diagram are as follows:

1. The application prepares what is called an authorization request, and requests the
user's browser to be redirected to Keycloak.

2. The user's browser redirects the user to Keycloak at an endpoint called the
authorization endpoint.

3. If the user is not already authenticated with Keycloak, Keycloak authenticates the
user. Once authenticated, Keycloak asks the user to provide their consent to allow
the application to access the service on their behalf.

4. The application receives an authorization code from Keycloak in the form of an
authorization response.

5. The application exchanges the authorization code for an access token through an
access token request to the token endpoint at Keycloak.

6. The application can now use the access token to invoke the protected resource.

Within an OAuth 2.0 flow there are two client types, which are confidential and public
clients. Confidential clients are applications such as a server-side web application that
are able to safely store credentials that they can use to authenticate with the authorization
server. Public clients, on the other hand, are client-side applications that are not
able to safely store credentials. As public clients are not able to authenticate with the
authorization server, there are two safeguards in place:

• The authorization server will only send the authorization code to an application
hosted on a pre-configured URL, in the form of a previously registered redirect URI.

• Proof Key for Code Exchange (PKCE, RFC 7636), which is an extension to OAuth
2.0, prevents anyone that intercepts an authorization code from exchanging it for an
access token.

As access tokens are passed around from the application to services, they typically have
a short lifetime. To allow applications to obtain new access tokens without going through
the complete flow, a refresh token is used. A refresh token should be kept securely by the
application and can be used by the application to obtain new access tokens.

Authorizing application access with OAuth 2.0 35

In addition to the core OAuth 2.0 framework, there are a few additional specifications
you should be aware of:

• Bearer Tokens (RFC 6750): OAuth 2.0 does not describe the type of access token,
or how it should be used. Bearer tokens are by far the most commonly used type
of access tokens, and they are typically sent to resource servers through the HTTP
Authorization header. They can also be sent in the form-encoded body, or as a
query parameter. An important thing to note here is that sending bearer tokens as a
query parameter has inherent security weaknesses and should be avoided.

• Token Introspection (RFC 7662): In OAuth 2.0, the contents of access tokens are
opaque to applications, which means the content of the access token is not readable
by the application. The token introspection endpoint allows the client to obtain
information about the access token without understanding its format.

• Token Revocation (RFC 7009): OAuth 2.0 considers how access tokens are
issued to applications, but not how they are revoked. This is covered by the token
revocation endpoint.

There are also a number of best practices on how you should use OAuth 2.0. There
are recommendations for native applications, browser-based applications, as well as
security considerations and best practices. We will cover these in later chapters.

By now you should have a basic understanding of what OAuth 2.0 is and how you can
leverage it in your applications. Don't worry if you don't fully understand all the details
as we will come back to this subject later. In most cases, you will not be required to have
a deep understanding of OAuth 2.0 in order to use it, as you should be using a library
that hides its complexity from you and that helps you apply it in the correct way for your
application.

One thing you may have noticed is that although OAuth 2.0 can grant access to resources,
it does not cover the authentication of users. This is covered by an extension to OAuth 2.0
called OpenID Connect, which we will look at next.

36 Brief Introduction to Standards

Authenticating users with OpenID Connect
While OAuth 2.0 is a protocol for authorization, it does not cover authentication. OpenID
Connect builds on top of OAuth 2.0 to add an authentication layer.

At the heart of OpenID Connect sits the OpenID Connect Core specification, which has
enabled a whole ecosystem of websites to no longer need to deal with user management
and authenticating users. In addition, it has significantly reduced the number of times
a user has to authenticate, as well as the number of different passwords a user has to
juggle, that is, if they care about using unique passwords for all websites they access.
Just think about the endless number of websites that allow you to sign in using Google,
or other social networks. I'm highlighting Google rather than other social networks here
due to the fact that they are actually implementing OpenID Connect properly, which
makes it incredibly easy to add sign-on with Google, compared to some other sites that
have done their own tweaks to OAuth 2.0 rather than implement OpenID Connect
according to the specifications.

OpenID Connect has not only enabled social login but is also, of course, very useful
within the enterprise in order to have a centralized solution for authentication,
supporting single sign-on. This also significantly increases security as applications
don't have access to the user credentials directly. It also enables the use of stronger
authentication, such as OTP or WebAuthn, without the need to support it directly
within applications.

Not only does OpenID Connect enable easy authentication within the enterprise, but
it also enables you to allow third parties such as employees at partner companies to access
applications within your enterprise without having to create individual accounts within
your enterprise.

Like OAuth 2.0, OpenID Connect defines a number of roles involved in the protocol:

• End User: This is the equivalent of the resource owner in OAuth 2.0. It is, of course,
the human being that is authenticating.

• Relying Party (RP): A somewhat confusing term for the application that would
like to authenticate the end user. It is called the relying party, as it is a party that is
relying on the OpenID Connect Provider to verify the identity of the user.

• OpenID Provider (OP): The identity provider that is authenticating the user, which
is the role of Keycloak.

In essence, in an OpenID Connect protocol flow, the Relying Party requests the identity of
the end user from the OpenID Provider. As it builds on top of OAuth 2.0 at the same time
as the identity of the user is requested, it can also obtain an access token.

Authenticating users with OpenID Connect 37

OpenID Connect utilizes the Authorization Code grant type from OAuth 2.0. The main
difference is that the client includes scope=openid in the initial request, which makes it an
authentication request, rather than an authorization request.

While OAuth 2.0 calls the different flows grant types, OpenID Connect refers to them as
flows. There are two flows in OpenID Connect that you should care about:

• Authorization Code flow: This uses the same flow as the OAuth 2.0 Authorization
Code grant type and returns an authorization code like OAuth 2.0 that can be
exchanged for an ID token, an access token, and a refresh token.

• Hybrid flow: In the Hybrid flow, the ID token is returned from the initial request
alongside an authorization code.

Just like OAuth 2.0, OpenID Connect also defines the Implicit flow. However,
we recommend that you do not use the Implicit flow at all.

OpenID Connect does not define equivalents to the Client Credential flow and the Device
flow. This makes sense as neither of these flows requires authenticating users, instead just
granting access to a service.

If you are not already familiar with the Authorization Code flow in OpenID Connect,
the following diagram will help you understand how it works:

Figure 3.2 – OpenID Connect Authorization Code flow simplified

In more detail, the steps in the diagram are as follows:

1. The application prepares what is called an authentication request, and requests
the user's browser to be redirected to Keycloak.

2. The user's browser redirects the user to Keycloak at an endpoint called the
authorization endpoint.

38 Brief Introduction to Standards

3. If the user is not already authenticated with Keycloak, Keycloak authenticates
the user.

4. The application receives an authorization code from Keycloak in the form
of an authentication response.

5. The application exchanges the authorization code for an ID token and an access
token through a token request to the token endpoint at Keycloak.

6. The application now has the ID token that it can use to discover the user's identity,
and can establish an authenticated session for the user.

In addition to the OpenID Connect Core specification, there are a few additional
specifications you should be aware of:

• Discovery: Allows clients to dynamically discover information about the OpenID
Provider

• Dynamic Registration: Allows clients to dynamically register themselves with the
OpenID Provider

• Session Management: Defines how to monitor the end user's authentication session
with the OpenID Provider, and how the client can initiate a logout

• Front-Channel Logout: Defines a mechanism for single sign-out of multiple
applications using embedded iframes

• Back-Channel Logout: Defines a mechanism for single sign-out for multiple
applications using a back-channel request mechanism, which we will cover in the
next chapter

OpenID Connect has two additional concepts on top of OAuth 2.0. It clearly specifies
the format of the ID token by leveraging the JWT specification, which, unlike the access
token in OAuth 2.0, is not opaque. It has a well-specified format, and the values (called
claims) within the token can be directly read by the client. This allows the clients to
discover information about the authenticated user in a standard way. In addition, it
defines a userinfo endpoint, which can be invoked with an access token and returns the
same standard claims as found in the ID token. In the next chapter, we will cover the
userinfo endpoint in more detail, including how you can control what information is
returned for a user.

For use cases where an increased level of security is required, there is a set of profiles from
what is called the Financial-grade API working group. These are profiles that describe
best practices of how OpenID Connect and related specifications should be used in
high-risk scenarios. You should not get too hung up on the name Financial-grade API,
as there is nothing specific to finance in these profiles.

Leveraging JWT for tokens 39

By now, you should have a basic understanding of what OpenID Connect is and how
you can leverage it in your applications. Don't worry if you don't fully understand all the
details as we will come back to this later. In most cases, you will not be required to have
a deep understanding of OpenID Connect in order to use it, as you should be using
a library that hides its complexity from you and that helps you to apply it in the correct
way for your application.

While OpenID Connect defines a standard format for the ID token, it also does not define
any standard for the access token. In the next section, you will find out why Keycloak
leverages JWT as the format for the default access tokens it issues.

Leveraging JWT for tokens
Keycloak has leveraged JWT as the format for access tokens from the very beginning of
the project. This was a very conscious decision for interoperability as well as performance
reasons.

Using a standard format, which is relatively easily consumable, makes it easier to integrate
with Keycloak. As JWT is based on JSON, it can also easily be parsed and understood in
any programming language.

In addition, as the resource servers are now able to directly read the value of the access
token, they do not always have to make a request to the OAuth 2.0 token introspection
endpoint, or the OpenID Connect UserInfo endpoint. This potentially eliminates two
additional requests to Keycloak for a request to the resource server, reducing latency
as well as significantly reducing the number of requests to Keycloak.

JWT comes from a family of specifications known as JOSE, which stands for JavaScript
Object Signing and Encryption. The related specifications are as follows:

• JSON Web Token (JWT, RFC 7519): Consists of two base64url-encoded JSON
documents separated by a dot, a header, and a set of claims

• JSON Web Signature (JWS, RFC 7515): Adds a digital signature of the header
and the claims

• JSON Web Encryption (JWE, RFC 7516): Encrypts the claims

• JSON Web Algorithms (JWA, RFC 7518): Defines the cryptographic algorithms
that should be leveraged for JWS and JWE

• JSON Web Key (JWK, RFC 7517): Defines a format to represent cryptographic
keys in JSON format

40 Brief Introduction to Standards

In addition to the preceding specifications, the OpenID Connect Discovery endpoint
advertises an endpoint where the JSON Web Key Set (JWKS) can be retrieved, as well
as what signing and encryption mechanisms from the JWA specification are supported.

When a resource server receives an access token, it is able to verify the token in the
following ways:

• Retrieving the JWKS URL from the OpenID Connect Discovery endpoint.

• Downloading the public signing keys for the OpenID Provider from the JWKS URL
endpoint. These are typically cached/stored at the Resource Server.

• Verifying the signature of the token using the public signing keys from the OpenID
Provider.

There are some potential issues with the JWT specifications that can lead to unexpected
vulnerabilities if care is not taken when validating a JWT. Let's take a look at two example
vulnerabilities that can occur through the incorrect application of these specifications:

• alg=none: Interestingly enough, the JWS specification defines an algorithm value
that is none. This basically means the JWS is unsigned. As this is a valid value,
a JWT library could tell you a JWS is valid even though it has not actually been
signed.

• RSA to HMAC: Another well-known issue is using the public RSA key, but setting
the algorithm to HMAC. Some libraries blindly accept these types of tokens as they
simply pick up the public RSA key and use it as the HMAC secret key.

These types of vulnerabilities can be avoided with a few relatively simple steps:

• Do not accept alg=none.

• Only use a key for the algorithm and the use (signing or encryption) it is intended
for, and don't blindly trust the values in the JWT header.

In general, you would want to pick up a trusted JWT library and make sure you use it in
the correct way. Or, even better, use an OpenID Connect/OAuth 2.0 library that supports
JWT as the access token, which can do it properly for you. If neither options are available
to you, it is very likely safer to use the token introspection endpoint than to try to validate
the token yourself. We will cover this in more detail in Chapter 5, Authorizing Access with
OAuth 2.0.

Understanding why SAML 2.0 is still relevant 41

By now, you should have a basic understanding of OAuth 2.0, OpenID Connect, and
JWT. In the next section, we will take a look at a significantly more mature specification,
SAML 2.0.

Understanding why SAML 2.0 is still relevant
Security Assertion Markup Language 2.0 (SAML 2.0) is a mature and robust protocol
for authentication and authorization. It is very widely used to enable single sign-on within
enterprise and other domains, such as education and government. It was ratified as an
OASIS Standard in March 2005, so has been around for a considerable amount of time.

SAML 2.0 is very widely available within enterprise applications, enabling you to easily
allow your existing users to authenticate to new applications you wish to deploy. Not only
is it available in self-hosted applications, but it is also available as an option for a large
number of Software-as-a-Service solutions, such as Salesforce, Google Apps, and Office
365. For enterprises, this is a great option when choosing hosted solutions in the cloud as
it quickly enables you to allow all your employees access to these solutions, without having
to create accounts for each individual employee.

Even though SAML 2.0 is more mature and perhaps also more widely used, you may still
want to favor OpenID Connect over SAML 2.0 for new applications. OpenID Connect
has a stronger focus on modern architecture, such as single-page applications, mobile
applications, REST APIs, and microservices, which means it is a better fit for the future.
Developers will also often find that OpenID Connect is simpler to understand, due to
OpenID Connect leveraging JSON and simple query parameters, while SAML 2.0 uses
more complicated XML documents.

If you are unfamiliar with the details of OAuth 2.0, OpenID Connect, and SAML 2.0,
we recommend starting by learning OAuth 2.0 and OpenID Connect. For this reason,
we are not going to cover SAML 2.0 in this book.

That being said, SAML 2.0 is still important today. You will often find that SAML 2.0 is
available to you as an option, while OpenID Connect is not. You may also find that SAML
2.0 is a better fit for your particular use case or, due to internal policies or compliance,
you may be required to use SAML 2.0. The great thing about Keycloak is that both options
are available to you. You can also seamlessly combine applications using OpenID Connect
with applications using SAML 2.0 in the same single sign-on experience.

42 Brief Introduction to Standards

Summary
In this chapter, you learned how to use OAuth 2.0 to provide your applications, as well as
third-party applications, with access to services without exposing credentials, as well as
only giving applications exactly what access they need. You also learned how OpenID
Connect can be leveraged for single sign-on to your applications, as well as allowing
external users to access your applications. Finally, you learned how SAML 2.0 is still an
important standard that you should be aware of, even though you may not want to choose
it for your own applications.

In the next chapter, you will get a deeper understanding of OAuth 2.0 with a practical
guide on how you can use Keycloak to leverage this standard in your applications.

Questions
1. How does OAuth 2.0 allow an application to access resources provided by a different

application without asking for the user's username and password?

2. What does OpenID Connect add to OAuth 2.0?

3. What does JWT add to OAuth 2.0?

4
Authenticating

Users with OpenID
Connect

In this chapter, you will get a deeper understanding of how Keycloak enables you to
authenticate users in your applications by leveraging the OpenID Connect standard.
Through using a sample application that was written for this book, we will see the
first-hand interaction between an application and Keycloak, including the contents
of requests and responses.

By the end of this chapter, you will have a good understanding of OpenID Connect,
including how to authenticate users, understanding the ID token, and how to deal
with users logging out.

In this chapter, we're going to cover the following main topics:

• Running the OpenID Connect playground

• Understanding the Discovery endpoint

• Authenticating a user

• Understanding the ID token

44 Authenticating Users with OpenID Connect

• Invoking the UserInfo endpoint

• Dealing with users logging out

Technical requirements
To run the sample application included in this chapter you need to have Node.js
(https://nodejs.org/) installed on your workstation.

You also need to have a local clone of the GitHub repository associated with the book.
The GitHub repository is available at https://github.com/PacktPublishing/
Keycloak-Identity-and-Access-Management-for-Modern-Applications.

Check out the following link to see the Code in Action video:

https://bit.ly/3nQ8WZe

Running the OpenID Connect playground
The OpenID Connect (OIDC) playground application was developed specifically for this
book in order to make it as easy as possible for you to understand and experiment with
OIDC in a practical way.

The playground application does not use any libraries for OIDC, but rather all OIDC
requests are crafted by the application itself. One thing to note here is that this application
is not implementing OIDC in a secure way, and is ignoring optional parameters in the
requests that are important for a production application. There are two reasons for this.
Firstly, it is so you can focus on understanding the general concepts of OIDC. Secondly, if
you decide to implement your own application libraries for OIDC you should have a very
good understanding of the specifications, and it is beyond the scope of this book to cover
OIDC in that much detail.

Before continuing with reading this chapter, you should start the OIDC playground
application, as it will be used throughout the rest of the chapter.

To run the OIDC playground application, open a terminal and run the following
commands:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch4/

$ npm install

$ npm start

https://nodejs.org/
https://github.com/PacktPublishing/Keycloak-Identity-and-Access-Management-for-Modern-Applications
https://github.com/PacktPublishing/Keycloak-Identity-and-Access-Management-for-Modern-Applications
https://bit.ly/3nQ8WZe

Running the OpenID Connect playground 45

To verify the application is running, open http://localhost:8000/ in your
browser. The following screenshot shows the OIDC playground application page:

Figure 4.1 – The OpenID Connect playground application

In order to be able to use the playground application you need Keycloak running, a realm
with a user that you can log in with, and have a client with the following configuration:

• Client ID: oidc-playground

• Access Type: public

• Valid Redirect URIs: http://localhost:8000/

• Web Origins: http://localhost:8000

If you are unsure about how to do this you should refer to Chapter 1, Getting Started with
Keycloak, and Chapter 2, Securing Your First Application.

In the next section, we will start taking a deeper look at OIDC by leveraging the
playground application, starting with understanding how applications can discover
information about an OpenID Provider.

46 Authenticating Users with OpenID Connect

Understanding the Discovery endpoint
The OIDC Discovery specification is an important aspect of both the interoperability
and usability of OIDC Relying Party libraries. Without this specification, you would be
required to do a lot of manual configuration in your applications to be able to authenticate
with an OpenID Provider (more information on OpenID Providers can be found in
Chapter 3, Brief Introduction to Standards).

It is an optional specification that an OpenID Provider can decide if it wants to implement
or not. Luckily, most OpenID Providers, including Keycloak, implement this specification.

By simply knowing the base URL (often referred to as the issuer URL) for your OpenID
Provider, a Relying Party can discover a lot of useful information about the provider.
It does this by loading what is called the OpenID Provider Metadata from a standard
endpoint, namely <base URL>/.well-known/openid-configuration.

To better understand the OpenID Provider Metadata, open the OIDC playground in your
browser. You can see there is already a value filled in for the issuer input.

The value for the issuer URL that is already filled in is http://localhost:8080/
auth/realms/myrealm. Let's break this URL apart and take a look at the parts of the
issuer URL:

• http://localhost:8080/auth: This is the root URL for Keycloak. In a
production system, this would obviously be a real domain name and would use
HTTPS (for example, https://auth.mycompany.com/).

• /realms/myrealm: As Keycloak supports multi-tenancy, this is used to separate
each realm in your Keycloak instance.

If you have Keycloak running on a different hostname, port, or have a different realm, you
should change the issuer field. Otherwise, you can leave it as is.

Now click on Load OpenID Provider Configuration. When you click on this button,
the playground application sends a request to http://localhost:8080/auth/
realms/myrealm/.well-known/openid-configuration (assuming you left
the issuer URL untouched) and receives a response in the form of the OpenID Provider
Metadata for this Keycloak instance. The returned metadata is displayed in the OpenID
Provider Configuration section of the playground application.

The following screenshot from the playground application shows an example of the loaded
OpenID Provider Metadata:

Understanding the Discovery endpoint 47

Figure 4.2 – OpenID Provider Metadata for Keycloak

In the following list, we'll take a look at what some of these values mean:

• authorization_endpoint: The URL to use for authentication requests

• token_endpoint: The URL to use for token requests

• introspection_endpoint: The URL to use for introspection requests

• userinfo_endpoint: The URL to use for UserInfo requests

• grant_types_supported: The list of supported grant types

• response_types_supported: The list of supported response types

With all of this metadata, the Relying Party can make intelligent decisions about how to
use the OpenID Provider, including what endpoints to send requests to and what grant
types and response types it can use.

If you took an extra good look at the metadata, you may have noticed that Keycloak
supports the authorization_code grant type and the code and token response
types. This is good news since we'll use this grant type and these response types to
authenticate the user in our playground application in the next section.

48 Authenticating Users with OpenID Connect

Authenticating a user
The most common way to authenticate a user with Keycloak is through the OpenID
Connect authorization code flow.

In summary, to authenticate a user with this flow, an application redirects to Keycloak,
which displays a login page to authenticate the user. After the user has authenticated, the
application receives an ID token, which contains information about the user.

In the following diagram, the authorization code flow is shown in more detail:

Figure 4.3 – The authorization code flow

The steps from the diagram are explained in more detail as follows:

1. The user clicks on a login button in the application.

2. The application generates an authentication request.

3. The authentication request is sent to the user in form of a 302 redirect, instructing
the user-agent to redirect to the authorization endpoint provided by Keycloak.

4. The user-agent opens the authorization endpoint with the query parameters
specified by the application via the authentication request.

5. Keycloak displays a login page to the user. The user enters their username and
password and submits the form.

6. After Keycloak has verified the user's credentials, it creates an authorization code,
which is returned to the application.

7. The application can now exchange the authorization code for the ID token, as well
as a refresh token.

Authenticating a user 49

8. Let's give this a go by going back to the OIDC playground application. As you
already loaded the OpenID Provider Metadata in the previous section, the
playground application already knows where to send the authentication request.
To send an authentication request, click on the button labelled 2 - Authentication.

The form that is displayed has the following values that you should fill in:

• client_id: This is the client ID for the application registered with Keycloak. If
you used a different value than oidc-playground when creating the client, you
should change this value.

• scope: The default value is openid, which means we will be doing an OpenID
request. Leave this as-is for now.

• prompt: This can be used for a few different purposes. For example, if you enter
the value none in this field, Keycloak will not display a login screen to the user, but
will instead only authenticate the user if the user already is logged in with Keycloak.
You can also use the value login to require the user to log in again even if they are
already logged in with Keycloak.

• max_age: This is the maximum number of seconds since the last time the user
authenticated with Keycloak. If, for example, you set this field to 60, it means that
Keycloak will re-authenticate the user if it was more than 60 seconds since the user
last authenticated.

• login_hint: If the application happens to know the username of the user that
it wants to authenticate it can use this parameter to have the username filled in
automatically on the login page.

Now let's take a look at what the authentication request will look like by clicking on the
button labeled Generate Authentication Request. You will now see the actual request that
the application will redirect the user-agent to in order to initiate the authentication.

The following screenshot from the playground application shows an example
authentication request:

Figure 4.4 – Authentication request

50 Authenticating Users with OpenID Connect

This includes setting the response_type parameter to code, meaning that the
application wants to receive an authorization code from Keycloak.

Next, click on the button labeled Send Authentication Request. You will now be
redirected to the Keycloak login pages. Fill in the username and password for your
user and click on Log In.

If you want to experiment a bit you can, for example, try the following steps:

• Set prompt to login: With this value, Keycloak should always ask you to
re-authenticate.

• Set max_age to 60: With this value, Keycloak will re-authenticate you if you wait
for at least 60 seconds since the last time you authenticated.

• Set login_hint to your username: This should prefill the username in the Keycloak
login page.

If you try any of the preceding steps, don't forget to generate and send the authentication
request again to see how Keycloak behaves.

After Keycloak has redirected back to the playground application, you will see the
authentication response in the Authentication Response section. The code is what is
called the authorization code, which the application uses to obtain the ID token and the
refresh token.

Now that the application has the authorization code, you can go ahead and exchange it for
some tokens.

Click on the button labeled 3 - Token. You will see the authorization code has already
been filled in on the form so you can go ahead and click on the button labeled Send
Token Request.

Under Token Request, you can see the request the application sends to the token
endpoint provided by Keycloak. It contains the authorization code and sets the
grant_type to authorization_code, which means the application wants to
exchange an authorization code for tokens.

Authenticating a user 51

An example Token Request is shown in the following screenshot from the playground
application:

Figure 4.5 – Token request

Under Token Response, you can see the response that Keycloak sent to the application.
If you get the error with the value invalid_grant, it is most likely for one of the
following two reasons:

• You did the steps a bit too slowly: The authorization code is only valid for one
minute by default, so if it took more than one minute between receiving the
authentication response from Keycloak and sending the token request, the request
will fail.

• You sent the token request more than once: The authorization code is only valid
once, so if it is included in more than one token request the request will fail.

The following screenshot shows an example successful token response from the
playground application:

Figure 4.6 – Token response

52 Authenticating Users with OpenID Connect

Let's take a look at the values within this response:

• access_token: This is the access token, which in Keycloak is a JWS. We'll look
more at this in the next chapter when we cover OAuth 2.0 in more detail.

• expires_in: As the access token is sometimes opaque, this will give the
application a hint when the token expires.

• refresh_token: This is the refresh token, which we will look more at in the
next section.

• refresh_token_expires_in: The refresh token is also opaque, and this gives
the application a hint when the refresh token expires.

• token_type: This is the type of the access token, which in Keycloak is always bearer.

• id_token: This is the ID token, which we will look at in more detail in the
next section.

• session_state: This is the ID of the session the user has with Keycloak.

• scope: The application requests a scope from Keycloak in the authentication request,
but the actual returned scope of the tokens may not match the requested scope.

In the next section, we will take a deeper look at the ID token that the playground
application just received from Keycloak.

Understanding the ID token
In the previous section, you received a token response, including an ID token from
Keycloak, but we didn't take a good look at what's inside the ID token.

The ID token is by default a signed JSON Web Token (JWT), which follows this format:

<Header>.<Payload>.<Signature>

The header and the payload are Base64URL-encoded JSON documents.

If you take a look at the Token Response in the playground application, you can see the
ID token in its encoded format. An example of the encoded ID token is also shown in the
following screenshot from the playground application:

Figure 4.7 – Encoded ID token

Understanding the ID token 53

Under the ID Token section, you will see the decoded token broken into three parts. The
header tells you what algorithm is used, the type of the payload, and the key ID of the key
that was used to sign the token.

An example of a decoded ID Token is shown in the following screenshot from the
playground application:

Figure 4.8 – Decoded ID token

54 Authenticating Users with OpenID Connect

Let's take a look at some of the claims (values) within the ID token:

• exp: When the token expires.

• iat: When the token was issued.

• auth_time: When the user last authenticated.

• jti: The unique identifier for this token.

• aud: The audience of the token, which must contain the Relying Party that is
authenticating the user.

• azp: The party the token was issued to.

• sub: The unique identifier for the authenticated user. When referring to a user
it is recommended to use this instead of a username or email, as they may change
over time.

Information
All times in JWT tokens are represented in Unix epoch time (seconds since
January 1, 1970). It's not all that readable to human beings, but great for
computers, and takes very little space compared to other formats. You can find
a handy tool to convert epoch times to human-readable dates at https://
www.epochconverter.com/.

In addition to the claims listed previously, there is information about the user such as the
given name, family name, and preferred username.

If you take a look at the exp value for the ID token with https://www.
epochconverter.com/, you will notice that the token expires in only a few minutes.

Usually, ID tokens have a short duration in order to mitigate the risk of tokens being
leaked. This doesn't mean that the application has to re-authenticate the user, rather there
is a separate refresh token that can be used to obtain an updated ID token. The refresh
token has a much longer expiration, and can only be used directly with Keycloak, which
means Keycloak can validate the token is still valid.

Next, let's try to refresh the ID token. Click on the button labeled 4 – Refresh, then click
on the button labeled Send Refresh Request.

In the Refresh Request window, you will see the request sent by the playground to the
Keycloak Token endpoint. It uses the grant type refresh_token, and includes the
refresh token and the client ID.

https://www.epochconverter.com/
https://www.epochconverter.com/
https://www.epochconverter.com/
https://www.epochconverter.com/

Understanding the ID token 55

The following screenshot from the playground applications shows an example refresh
request:

Figure 4.9 – Refresh request

Under the Refresh Response you will see the response Keycloak sent to the playground.
It is pretty much the same as the response for the original token request.

The following screenshot from the playground applications shows an example refresh
response:

Figure 4.10 – Refresh response

One thing to notice here is that the refresh response also includes a refresh token. It is
important that the application uses this updated refresh token the next time it wants to
refresh the ID token. This is important for a few reasons, including the following:

• Key rotation: Keycloak may rotate its signing keys, and it relies on clients receiving
new refresh tokens signed with the new keys.

• Session idle: A client (or a session) has a feature called session idle, which means
a refresh token may have shorter expiration than the associated session.

• Refresh token leak detection: To discover leaked refresh tokens, Keycloak will
not allow the re-use of refresh tokens. This feature is currently disabled by default
in Keycloak.

56 Authenticating Users with OpenID Connect

Finally, under ID Token you may notice that the token has more or less the same values
except the expiration time (exp), the issue time (iat), and the token ID (jti) have
changed.

Another benefit of refreshing the token is that your application can update information
about the user from Keycloak without having to re-authenticate. We'll now experiment
a bit with this.

For the next few sections, you should keep the playground application open. In a new
browser window open the Keycloak Admin Console, click on Users and locate the user
you used when authenticating to the playground application.

First, let's try to update the user profile.

Updating the user profile
Change the email, first name, and last name of the user. Then go back to the playground
application and click on the Send Refresh Request button. You will now notice that the
user profile was updated.

Now that you have tried updating the user profile, let's try to add a custom property
to the user.

Adding a custom property
Let's take a look at the steps to add a custom property:

1. Going back to the Keycloak Admin Console window, which should still have the
user open, click on Attributes.

2. In the table that is displayed, set the key to myattribute and the value to
myvalue, then click on Add. You have now added a custom attribute to the user,
but this is still not available to the application.

3. We will now create what is called a client scope. A client scope allows creating
re-usable groups of claims that are added to tokens issued to a client. In the menu
on the left-hand side, click on Client Scopes, then click on Create. For the name in
the form, enter myclaim. Leave everything else as-is and click Save.

Understanding the ID token 57

4. Now we'll add the custom attribute to the client scope by creating a mapper. Click
on Mappers, then click on Create.

Fill in the form with the following values:

- Name: myattribute

- Mapper Type: User Attribute

- User Attribute: myattribute

- Token Claim Name: myattribute

- Claim JSON Type: String

Make sure Add to ID Token is turned on, then click on Save. Next, we will add your
newly created client scope to the client.

5. In the menu on the left-hand side, click on Clients and locate the
oidc-playground application. Select Client Scopes; then, in the Optional
Client Scopes window, select myclaim and click on Add selected.

As we added this claim to the optional client scopes for the client, it means that the
client has to explicitly request this scope. If you had added it to the default client
scopes, it would have always been added for the client.

We're doing this as we want to show how a client can request different information
from Keycloak using the scope parameter. This allows the client to only request
the information it needs at any given time, which is especially useful when the user
is required to consent to access from the application, which we will take a look at in
the next chapter.

6. Now go back to the playground application and again click on the Send Refresh
Request button. You will notice that your custom attribute has not been added to
the ID token.

Tip
If you get an error when refreshing the token, it is probably because your
Single-Sign On (SSO) session with Keycloak has expired. By default, an SSO
session expires if there is no activity for 10 minutes. Later in the book, we will
look at how to change this.

58 Authenticating Users with OpenID Connect

Now let's send a new authentication request, but this time we'll include the myclaim
scope. In the playground application, click on 2 – Authentication. In the scope field,
set the value to openid myclaim. Make sure you leave openid in there because,
otherwise, Keycloak will not send you an ID token. Now go through these steps again to
obtain a new token:

1. Click on Generate Authentication Request.

2. Click on Send Authentication Request.

3. Click on 3 – Token.

4. Click on Send Token Request.

In the payload for the ID token, you will now notice the custom claim that you just added
to the client.

Now that you have added a custom attribute, let's add roles to the ID token.

Adding roles to the ID token
By default, roles are not added to the ID token. You can change this behavior by going to
Client Scopes, then selecting the roles client scope. Click on Mappers, then select realm
roles. Turn on Add to ID Token, and click Save.

Assuming that the user you are using was the user you created during Chapter 1, Getting
Started with Keycloak, the user should have a realm role associated with it. If it's a different
user, make sure it does have a realm role associated with it.

Go back to the playground application and refresh the token again. You will now see
realm_access within the ID token.

By default, all roles are added to all clients. This is not ideal as you want to limit what
access each individual client has. This has less impact on the ID token as it is only used to
authenticate the user to a specific client, while it has a bigger impact on the access token,
which is used to access other services.

By now you should have a reasonably good understanding of how an application uses the
ID token in order to authenticate the user, as well as discover information about the user.
If you want to experiment some more with client scopes, now would be a good time since
the playground application will allow you to play with scopes and see the result in the
ID token.

In the next section, we will take a look at a different way an application can discover
information about the authenticated user.

Invoking the UserInfo endpoint 59

Invoking the UserInfo endpoint
In addition to being able to find information about the authenticated user from the ID
token, it is also possible to invoke the UserInfo endpoint with an access token obtained
through an OIDC flow.

Let's try this out by opening the playground application. You may at this point have
to send new authentication and token requests, as it may be that your SSO session
has expired.

If you're a quick reader (or you obtained new tokens), then click on 5 – UserInfo. Under
UserInfo Request, you will see that the playground application is sending a request to the
Keycloak UserInfo endpoint, including the access token in the authorization header.

The following screenshot from the playground application shows an example UserInfo
Request:

Figure 4.11 – UserInfo request

Under UserInfo Response you will see the response Keycloak sent. You may notice that
this does not have all the additional fields in the ID token, but rather is just a simple JSON
response including only the user attributes.

The following screenshot from the playground application shows an example UserInfo
Response:

Figure 4.12 – UserInfo response

60 Authenticating Users with OpenID Connect

Just as you can configure what information Keycloak returns in the ID token through
client scopes and protocol mappers, you can also configure what information is returned
in the UserInfo endpoint. Further, you can control what information is returned to the
client that is invoking the UserInfo endpoint, and not the client that obtained the access
token. This means that if a single access token is sent to two separate resource servers, they
may see different information in the UserInfo endpoint for the same access token.

Let's try to add some custom information to the UserInfo endpoint. This time, instead of
using a client scope, we'll add a protocol mapper directly to the client. Open the Keycloak
Admin Console, then under clients locate the oidc-playground client. Click on
Mappers, then click on Create, and fill in the form with the following values:

• Name: myotherclaim

• Mapper Type: Hardcoded claim

• Token Claim Name: myotherclaim

• Claim value: My Other Claim

• Claim JSON Type: String

Make sure Add to userinfo is turned on then click on Save. Go back to the playground
application and send a new UserInfo request using the Send UserInfo Request button.
You will now see the additional claim myotherclaim in the response.

One thing to remember about the UserInfo endpoint is that it can only be invoked with
an access token obtained through an OIDC flow. We can try this out by going to the
playground application, then clicking on the 2 – Authentication button.

In the scope field, remove openid. Then click on Generate Authentication Request
and Send Authentication Request.

Now click on 3 – Token, then on Send Token Request. You will notice now that in
the Token Response there is no id_token value, which is why there is no ID token
displayed in the ID Token section.

Now, if you go to 5 – UserInfo and click on the Send UserInfo Request button you will
also notice that the UserInfo Request fails.

In the next section, we will take a look at how you can deal with users logging out.

Dealing with users logging out 61

Dealing with users logging out
Dealing with logout in a SSO experience can actually be a quite difficult task, especially
if you want an instant logout of all applications a user is using.

Initiating the logout
A logout can for example be initiated by the user through clicking on a logout button
in the application. When the logout button is clicked, the application would send a request
to the OpenID Connect RP-Initiated logout.

The application redirects the user to the Keycloak End Session endpoint, which is
registered in the OpenID Provider Metadata as end_session_endpoint. The
endpoint takes the following parameters:

• id_token_hint: A previously issued ID token. This token is used by Keycloak to
identify the client that is logging out, the user, as well as the session that the client
wants to log out of.

• post_logout_redirect_uri: If the client wants Keycloak to redirect back to
it after the logout, it can pass the URL to Keycloak. The client has to previously have
registered the logout URL with Keycloak.

• state: This allows the client to maintain state between the logout request and the
redirect. Keycloak simply passes this parameter when redirecting to the client.

• ui_locales: The client can use this parameter to hint to Keycloak what locale
should be used for the login screen.

When Keycloak receives the logout request, it will notify other clients in the same
session about the logout. Then it will invalidate the session, which effectively makes
all tokens invalid.

Leveraging ID and access token expiration
The simplest and perhaps most robust mechanism for an application to discover if
a logout has taken place is simply to leverage the fact that ID and access token usually
have a short expiration. As Keycloak invalidates the session on logout, a refresh token
can no longer be used to obtain new tokens.

This strategy has a downside that it may be a few minutes from the user having logged
out until all applications are effectively logged out, but in many cases, this is more
than sufficient.

62 Authenticating Users with OpenID Connect

This is also a good strategy for public clients. As they don't usually provide a service
directly themselves, but rather leverage the access token to invoke other services, they
will quickly realize the session is no longer valid.

In cases where tokens have a long validity, it is still good practice to invoke the Token
Introspection endpoint to check token validity periodically, which we will look at in the
next chapter.

Leveraging OIDC Session Management
Through OIDC Session Management, an application can discover if a session has been
logged out without the need for any request to Keycloak, or for Keycloak to send any
requests to it.

This works by monitoring the state of a special session cookie that Keycloak manages.
As the application is usually hosted on a different domain than Keycloak, it is not able to
read this cookie directly. Instead, a hidden HTML iframe tag loads a special page with
Keycloak that monitors the cookie value and sends an event to the application when it
observes the session state has changed.

This is an effective strategy, especially if the application is currently open. If the
application is not open, it does mean that the application would not observe the logout
until it is next opened. If, for example, a workstation was compromised, there is also
a chance that a malicious party could prevent the session iframe from doing its job,
leaving the application session still open. However, this can relatively easily be mitigated.
One option is to only keep the application session open while the application is open. The
Keycloak JavaScript adapter does exactly this by only storing tokens in the window state.
It is also, of course, mitigated by having a short expiration time for tokens.

The OIDC Session Management approach is sadly becoming less relevant today, as many
browsers have started blocking access to third-party content. This effectively means the
hidden session iframe is no longer able to access the session cookie in some browsers.
As such it is not a good idea to leverage this approach in new applications, and you will
most likely want to migrate away from this approach in applications that are already using
this approach.

Leveraging OIDC Back-Channel Logout
Through OIDC Back-Channel Logout, an application can register an endpoint to receive
logout events.

When a logout is initiated with Keycloak, it will send a logout token to all applications in
the session that have a back-channel logout endpoint registered.

Dealing with users logging out 63

The logout token is similar to an ID token, so it is a signed JWT. On receiving the logout
token, the application verifies the signature and can now log out of the application session
associated with the Keycloak session ID.

For server-side applications, using the back-channel logout is fairly effective. It does,
however, become a bit complex to deal with for clustered applications with session
stickiness. A common approach to scaling a stateful application is to distribute application
session among the instances of the application, and there is no guarantee the logout
request from Keycloak is sent to the same application instance that is actually holding
the application session. It is not trivial to configure a load balancer to route the logout
request to the correct session, so this is usually something that has to be dealt with at the
application level.

For stateless server-side applications, a logout request is also hard to handle, as usually
the session is stored in a cookie in this case. In this case, the application would have to
remember the logout request until the next time a request is made to the application for
the given session, or the application session expires.

A note on OIDC Front-Channel Logout
The OpenID Connect Front-Channel Logout renders a hidden iframe for each
application that has registered a front-channel logout endpoint on a logout page at the
OpenID Provider. This, in theory, would be a nice way to log out of stateless server-side
applications, as well as client-side applications. However, in practice, it can be unreliable.
There is no effective way for the OpenID Provider to discover that the application was
successfully logged out, so using this approach is a bit hit and miss.

In addition, the OIDC Front-Channel logout approach also suffers from browsers
blocking third-party content, which means that when the OpenID Provider opens
the logout endpoint in an iframe there is no access to any application-level cookies,
leaving the application unable to access the current authentication session.

How should you deal with logout?
In summary, the simplest approach is simply to rely on relatively short application sessions
and token expiration. As Keycloak will keep the user logged in, it is possible to effectively
use short application sessions without requiring users to frequently re-authenticate.

In other cases, or where logout has to be instant, you should leverage OIDC
Back-Channel logout.

64 Authenticating Users with OpenID Connect

Summary
In this chapter, you experienced first-hand the interactions in an OIDC authentication
flow. You learned how the application prepares an authentication request and then
redirects the user-agent to the Keycloak authorization endpoint for authentication. Then
you learned how the application obtains an authorization code, which it exchanges for an
ID token. By inspecting the ID token, you then learned how an application can find out
information about the authenticated users. You also learned how to leverage client scopes
and protocol mappers in Keycloak to add additional information about users. Finally, you
learned how to deal with not only single sign-on, but also single sign-out.

You should now have a basic understanding of OpenID Connect and how it can be used
to secure your own applications. We will build on this knowledge later in the book to get
you ready to start securing all your applications with Keycloak.

In the next chapter, you will get a deeper understanding of OAuth 2.0, with a practical
guide on how you can use Keycloak to use this standard in your applications.

Questions
1. How does the OpenID Connect Discovery specification make it easier for you to

switch between different OpenID Providers?

2. How does an application discover information about the authenticated user?

3. How do you add additional information about the authenticated user?

Further reading
Refer to the following links for more information on topics covered in this chapter:

• OpenID Connect Core specification: https://openid.net/specs/openid-
connect-core-1_0.html

• OpenID Connect Discovery specification: https://openid.net/specs/
openid-connect-discovery-1_0.html

• OpenID Connect Session Management specification: https://openid.net/
specs/openid-connect-session-1_0.html

• OpenID Connect Back-Channel Logout specification: https://openid.net/
specs/openid-connect-backchannel-1_0.html

https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-session-1_0.html
https://openid.net/specs/openid-connect-session-1_0.html
https://openid.net/specs/openid-connect-backchannel-1_0.html
https://openid.net/specs/openid-connect-backchannel-1_0.html

5
Authorizing Access

with OAuth 2.0
In this chapter, you will get a deeper understanding of how Keycloak enables you to
authorize access to REST APIs and other services by leveraging the OAuth 2.0 standard.
Through using a sample application that was written for this book, you will see first hand
the interaction between an application and Keycloak to retrieve an access token that can
be used to securely invoke a service.

We will start by getting the playground application up and running, before using the
playground application to obtain a token from Keycloak that can be used to securely
invoke a REST API. Then, we'll build on this knowledge to look at obtaining consent from
a user before granting access to the application, as well as how to limit the access provided
to the application. Finally, we'll look at how a REST API validates a token to verify
whether access should be granted.

By the end of this chapter, you will have a good understanding of OAuth 2.0, including
how to obtain an access token, understanding the access token, and how to use the access
token to securely invoke a service.

66 Authorizing Access with OAuth 2.0

In this chapter, we're going to cover the following main topics:

• Running the OAuth 2.0 playground

• Obtaining an access token

• Requiring user consent

• Limiting the access granted to access tokens

• Validating access tokens

Technical requirements
To run the sample application included in this chapter, you need to have Node.js
(https://nodejs.org/) installed on your workstation.

You also need to have the GitHub repository associated with the book checked out locally.
The GitHub repository is available at https://github.com/PacktPublishing/
Keycloak-Identity-and-Access-Management-for-Modern-Applications.

Check out the following link to see the Code in Action video:

https://bit.ly/3fcHEbV

Running the OAuth 2.0 playground
The OAuth 2.0 playground was developed specifically for this book in order to make it as
easy as possible for you to understand and experiment with OAuth 2.0 in a practical way.

It does not use any libraries for OAuth 2.0, but rather all OAuth 2.0 requests are crafted by
the application itself. One thing to note here is that this application does not implement
OAuth 2.0 in a secure way, and ignores optional parameters in the requests that are
important for a production application. There are two reasons for this. Firstly, this is done
so that you can focus on understanding the general concepts of OAuth 2.0. Secondly, if
you decide to implement your own libraries for OAuth 2.0, you should have a very good
understanding of the specifications, and it is beyond the scope of this book to cover
OAuth 2.0 in that much detail.

Before continuing with reading this chapter, you should start the OAuth 2.0 playground
application, as it will be used throughout the rest of the chapter.

There are two parts to the playground application: a frontend application and a
backend application.

https://nodejs.org/
https://github.com/PacktPublishing/Keycloak-Identity-and-Access-Management-for-Modern-Applications
https://github.com/PacktPublishing/Keycloak-Identity-and-Access-Management-for-Modern-Applications
https://bit.ly/3fcHEbV

Running the OAuth 2.0 playground 67

To run the playground application, open a terminal and run the following commands to
start the frontend part:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch5/frontend/

$ npm install

$ npm start

Then, in a new terminal window, run the following commands to start the backend part:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch5/backend/

$ npm install

$ npm start

To verify that the application is running, open http://localhost:8000/ in your
browser. The following screenshot shows the OpenID Connect Playground application:

Figure 5.1 – The OAuth 2.0 Playground application

In order to be able to use the playground application, you need Keycloak to be running,
as well as to have a realm with a user with the myrole global role and a client with the
following configuration:

• Client ID: oauth-playground

• Access Type: public

• Valid Redirect URIs: http://localhost:8000/

• Web Origins: http://localhost:8000

68 Authorizing Access with OAuth 2.0

If you are unsure about how to do this, you should refer to Chapter 1, Getting Started with
Keycloak, and Chapter 2, Securing Your First Application.

In the next section, we will start to take a deeper look into OAuth 2.0 by leveraging the
playground application.

Obtaining an access token
The most common way to obtain an access token that can be used to, for example, invoke
a secure REST API is through the OAuth 2.0 Authorization Code grant type.

In summary, to obtain an access token, an application redirects to Keycloak, which
authenticates the user and optionally prompts the user to grant the application access or
not, before returning an access token to the application. The application can then include
the access token in the requests it sends to the REST API, allowing the REST API to verify
whether access should be provided.

In the following diagram, the authorization code grant type is shown in more detail:

Figure 5.2 – The authorization code grant type

The steps in the diagram in more detail are as follows:

1. The user performs an action that requires sending a request to an external REST API.

2. The application generates an authorization request.

Obtaining an access token 69

3. The authorization request is sent to the user agent in the form of a 302 redirect,
instructing the user agent to redirect to the authorization endpoint provided
by Keycloak.

4. The user agent opens the authorization endpoint with the query parameters
specified by the application in the authorization request.

5. If the user is not already authenticated with Keycloak, a login page is displayed to
the user.

6. If the application requires consent to access the REST API, a consent page is displayed
to the user asking whether the user wants to provide access to the application.

7. Keycloak returns an authorization code to the application.

8. The application exchanges the authorization code for an access token, as well as a
refresh token.

9. The application can now use the access token to invoke the REST API.

Let's give this a go with the OAuth 2.0 Playground application. Open the playground
application at http://localhost:8000. First, you need to load the OAuth 2.0
provider configuration by clicking on the button labeled Load OAuth 2.0 Provide
Configuration. After you've done this, click on the button labeled 2 – Authorization.
You can leave the client_id and scope values as they are, then click on the button labeled
Send Authorization Request.

You will be redirected to the Keycloak login pages. Log in with the user you created in the
first chapter. After you have logged in and have been redirected back to the playground
application, the access token is displayed in the Access Token section. As Keycloak uses
JSON Web Token (JWT) for its default token format, the playground application is able
to directly parse and view the contents of the access token.

In the OpenID Connect Playground application that you experimented with in the
previous chapter, you generated an authentication request, received an authorization
code, then manually exchanged the authorization code for an ID token. As you've
already experimented with this part, and it is completely the same flow for an OAuth 2.0
Authorization Code grant type, this flow has been simplified to a single step in the OAuth
2.0 Playground application.

70 Authorizing Access with OAuth 2.0

The following screenshot shows an example access token from the playground application:

Figure 5.3 – Example access token displayed in the playground application

Let's take a look at some of the values within the access token:

• aud: This is a list of services that this token is intended to be sent to.

• realm_access: This is a list of global roles the token provides access to. It is a
union of the roles a user has been granted, and the roles an application is allowed
to access.

• resource_access: This is a list of client roles the token provides access to.

• scope: This is the scope included in the access token.

Requiring user consent 71

Now that the playground application has obtained an access token, let's try to invoke the
REST API. Click on the button labeled 3 – Invoke Service, then click on Invoke. You
should now see a response that says Secret message!, as shown in the following screenshot:

Figure 5.4 – Successful response from the playground application backend

You should now have a good understanding of how OAuth 2.0 can be leveraged to issue
an access token to an application that allows the application to access resources on behalf
of users.

In the next section, we will take a look at how the user can consent to grant the
application access.

Requiring user consent
When an application wants access to a third-party service on behalf of a user, the user
will usually be asked whether they want to grant access to the application. Without this
step, a user would not know what kind of access the application is getting, and if the user
is already authenticated with the authorization server, the user may not even observe the
application getting access.

In Keycloak, applications can be configured to either require consent or to not require
consent. For an external application you should always require consent, but for an
application you know and trust, you may choose to not require consent, which in essence
means that you as an admin are trusting the application and are granting it access on
behalf of users.

72 Authorizing Access with OAuth 2.0

To try this out yourself, open the Keycloak admin console and navigate to the
oauth-playground client. Then, turn on the Consent Required option, as shown
in the following screenshot:

Figure 5.5 – Requiring consent for a client

Once you have this enabled, go back to the playground application and obtain a new
token by clicking on the button labeled 2 – Authorization, followed by the button labeled
Send Authorization Request. You should now see a similar screen to what is displayed in
the following screenshot:

Figure 5.6 – Granting access

What type of access privileges the application is requesting is controlled by what scopes
the application is requesting.

Requiring user consent 73

One interesting aspect of scopes is that an application can initially ask for limited access.
As the user is starting to use more features within the application, the application can ask
for additional access as needed. Doing this may be less intimidating to the user as it is
clearer to the user why your application is asking for that access.

Let's give this a go by creating a new client scope and request this additional scope in the
playground application.

Go back to the Keycloak admin console and click on Client Scopes in the menu on the
left-hand side. Then, click on Create. Fill in the form with the following values:

• Name: albums

• Display On Consent Screen: ON

• Consent Screen Text: View your photo albums

The following screenshot shows the client scope that you should create:

Figure 5.7 – Creating a client scope

You can leave the other values as is, then click on Save. Now, navigate to the oauth-
playground client again, then click on Client Scopes. From the Optional Client Scopes
section in available client scopes, select albums and click on Add selected.

74 Authorizing Access with OAuth 2.0

Now, return to the playground application again, then click on the button labeled
2 – Authorization. In the scope field, enter albums, then click on Send Authorization
Request. This time, you should be prompted to grant access to view photo albums as
shown in the following screenshot:

Figure 5.8 – Granting access to photo albums

Keycloak remembers what consent a user has given to a particular application, which
means the next time the application asks for the same scope, the user will not be
prompted again.

Tip
Through the account console, a user can remove access to an application if
they wish. You can try this out by going to the account console, navigating to
Applications, then revoking the access for the oauth-playground application.
The next time you try to obtain an access token again through the playground
application, Keycloak will again ask you to provide access to oauth-
playground.

You should now have a good understanding of how an admin can grant access to trusted
applications on behalf of users, as well as how third-party applications can be required to
ask the user for consent prior to getting access.

In the next section, we will look at strategies for scoping access tokens, which in essence
means controlling what access a token provides to the application.

Limiting the access granted to access tokens
As access tokens get passed around from the application to services, it is important to
limit the access granted. Otherwise, any access token could potentially be used to access
any resource the user has access to.

Limiting the access granted to access tokens 75

There are a few different strategies that can be used to limit access for a specific access
token. These include the following:

• Audience: Allows listing the resource providers that should accept an access token.

• Roles: Through controlling what roles a client has access to, it is possible to control
what roles an application can access on behalf of the user.

• Scope: In Keycloak, scopes are created through client scopes, and an application can
only have access to a specific list of scopes. Furthermore, when applications require
consent, the user must also grant access to the scope.

Let's go through these one at a time and see exactly how this can be done with Keycloak,
starting with audience.

Using the audience to limit token access
At the moment, access tokens issued to the frontend part of the playground application
do not actually include the backend in the audience. The reason this works is that the
backend part has not been configured to check the audience in the token.

Let's start with configuring the backend to check the audience. Stop the backend part,
then open the Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch5/backend/keycloak.json file in a text editor. Change the
value of the verify-token-audience field to true, as shown in the following
screenshot:

Figure 5.7 – Enabling verifying the token audience for the backend

One thing to notice in this file is the resource field, which is the value the backend
will look for in the audience field to know whether it should accept the token.

Start the backend part again. Once started, go back to the playground application and
obtain a new access token. If you look at the values for the access token, you will see the
aud field, and you will also notice that oauth-backend is not included.

76 Authorizing Access with OAuth 2.0

If you now try to invoke the service through the playground application, you will get a
response telling you that access was denied. The backend is now rejecting the access token.

In Keycloak, there are two different ways to include a client in the audience. It can be
done manually by adding a specific client to the audience with a protocol mapper (added
directly to the client, or through a client scope), or it can be done automatically if a client
has a scope on another client role from another client.

Let's try to add the audience manually with a protocol mapper. Open the Keycloak
admin console and navigate to Clients. Create a new client with the Client ID value
set as oauth-backend.

Then, click on Save. After it has been saved, change Access Type to bearer-only, and click
Save again.

Now go back to the client list and open the oauth-playground client. Click on Mappers,
then click on Create. Fill in the form with the following values:

• Name: backend audience

• Mapper Type: Audience

• Included Client Audience: oauth-backend

• Then, click on Save.

• Go back to the playground application and obtain a new access token. Now
oauth-backend is included in the aud field, and if you again try to invoke the
service through the playground application, you will get a successful response.

When looking at the aud field of the access token, you may have noticed that account
was included. The reason this is included is that by default, a client has a scope on all roles,
and by default, a user has a few client roles for the account client that provide the user
access to the Keycloak account console. In the next section, we will take a closer look at
how roles work.

Using roles to limit token access
Keycloak has built-in support for roles, which can be used to grant users permissions.
Roles are also a very useful tool to limit the permissions for an application as you can
configure what roles are included in the access token for a given application.

Limiting the access granted to access tokens 77

A user has role mappings on a number of roles granting the user the permissions that
the role provides. A client, on the other hand, does not have roles assigned directly to it
but instead has a scope on a set of roles, which controls what roles can be included in the
tokens sent to the client. This means that the roles included in tokens are the intersection
between the roles a user has and the roles a client is allowed to use, as shown in the
following diagram:

Figure 5.8 – Roles included in tokens

Let's try this out in the playground application. Before making any changes, obtain a new
access token and take a look at the aud, realm_access, and resource_access claims.
The following shows an example access token with all non-relevant claims removed:

{

 "aud": [

 "oauth-backend",

 "account"

],

 "realm_access": {

 "roles": [

 "offline_access",

 "uma_authorization",

 "myrole"

]

 },

 "resource_access": {

 "account": {

 "roles": [

 "manage-account",

 "manage-account-links",

 "view-profile"

78 Authorizing Access with OAuth 2.0

]

 }

 }

}

Within the aud claim, you can see two clients. The oauth-backend client is included
as we explicitly included this client in the audience in the previous section. The account
client, on the other hand, is included as the token includes roles for the account client,
which by default results in the client automatically being added to the audience of the
token as we can assume that if the token includes roles specifically for a client, the token
is intended to be used to access this client.

You can also see that the token includes all roles granted to the user. By default, all roles
for a given user are included in the token. This is for convenience when getting started
with Keycloak and you should not include all roles in a production scenario.

Now, let's try to limit the role scope for the oauth-playground client to limit what is
included in the token. Open the Keycloak admin console and navigate to the oauth-
playground client. Then, click on the tab labeled Scope. You will notice that it has the
Full Scope Allowed option turned on. This is the feature that by default includes all
roles for a user in the tokens sent to this client.

Turn off Full Scope Allowed, then return to the playground application and obtain a new
access token. In the new access token, you will notice that there are no longer any roles in
the token and the aud claim now only includes the oauth-playground client. If you now
try to invoke the service with this token, you will get an access denied message. This is
because the service only permits requests that include the myrole role.

Go back to the Keycloak admin console and again open the scope tab for the oauth-
playground client. Under Realm Roles, select the myrole role and click on Add selected.
Return to the playground application and obtain a new access token, and you will now see
that the myrole role is included in the realm_access claim, as shown in the following
access token snippet:

{

 "aud": "oauth-backend",

 "realm_access": {

 "roles": [

 "myrole"

]

 }

}

Limiting the access granted to access tokens 79

It is also possible to add scope through a client scope that is attached to a client. This may
be a bit confusing as the term scope is somewhat overused within Keycloak. The following
list tries to clarify this potential confusion:

• A client has a scope on roles: This is configured through the Scope tab for a client.

• A client can access one or more client scopes: This is configured through the
Client Scopes tab for a client.

• A client scope can also have a scope on roles: When a client has access to a client
scope that in turn has a scope on roles, the client has a scope on the roles that the
client scope has.

As this may still be a bit confusing, let's experiment a bit with this in practice by
leveraging the playground application.

Before continuing, you should first remove the scope that the oauth-playground
client has on the myrole role. To do this, return to the Keycloak admin console, navigate
to the oauth-playground client, and click on the Scope tab. Then, select the myrole
role from the Assigned Roles section and click on Remove selected.

Now the tokens sent to the oauth-playground client no longer include the myrole
role, which is exactly what we want as we will now add this through a client scope instead
of directly to the client.

Open the Keycloak admin console and go to Client Scopes. Click on Create to create
a new client scope. For the name, enter myrole and leave everything else as is, then
click on Save. Now, select the tab labeled Scope. This is where you control what roles
are included in the token when this client scope is included. Select the myrole role from
Available Roles and click on Add selected.

You have now created a client scope that has a scope on the myrole role. Next, let's add
this client scope as an optional client scope to the oauth-playground client. Navigate
to the oauth-playground client and click on Client Scopes. In the Optional Client
Scopes section, select myrole and click on Add selected.

As you added the myrole client scope as an optional client scope, it means the myrole
role is only included in the token if the oauth-playground client explicitly requests
the myrole scope.

80 Authorizing Access with OAuth 2.0

Return to the playground application and obtain a new access token. You will see that
the myrole role is not yet included in the realm_access claim. In fact, the realm_
access claim should not be included at all since the client does not at this point have a
scope on any global roles. In the Scope field, set the value to myrole, and click on Send
Authorization Request to obtain a new access token that includes this scope. This results
in the playground application requesting the myrole scope, which in turn will add the
myrole role to the token.

In the next section, we will take a look at how scopes on their own can be leveraged to
limit the access granted by a token.

Using the scope to limit token access
The default mechanism in OAuth 2.0 to limit the permissions for an access token is
through scopes directly. Using scopes is especially useful with third-party applications
where users should consent to giving applications access to resources on their behalf.

Within Keycloak, a scope in OAuth 2.0 is mapped to a client scope. If you only want to
have a scope that the application can request that is then used by a resource provider to
provide limited access to resources, you can simply define an empty client scope that has
no protocol mappers and doesn't have access to any roles.

While defining scopes, it is important to not go overboard and to limit the number of
scopes you define, and consider how scope is represented to an end user, who should
understand what giving permissions to that scope implies, and not be confused by an
application requesting a large number of scopes.

Scopes should usually also be unique within all applications in your organization, so you
may want to prefix the scope with the name of the service, or even consider using the
URL of the service as a prefix.

Here are some example scopes to give you an idea:

• albums:view

• albums:create

• albums:delete

• https://api.acme.org/bombs/bombs.purchase

• https://api.acme.org/bombs/bombs.detonate

Limiting the access granted to access tokens 81

There is no standard for defining scopes, so you need to define your own. What can be
useful is looking at scopes defined by Google, GitHub, Twitter, and so on for inspiration.
One thing to bear in mind in these cases is that with GitHub and Twitter, they, in a way,
have a dedicated authorization server for a single service, which means they do not have
to worry as much about prefixing scopes with the service. On the other hand, Google uses
the same authorization server for multiple services.

Here are some example scopes defined by Google:

• https://www.googleapis.com/auth/gmail.compose

• https://www.googleapis.com/auth/photoslibrary.readonly

• https://www.googleapis.com/auth/calendar.events

Here are some example scopes defined by GitHub:

• repo

• write:org

• notifications

Let's give this a go with the playground application by imagining that we have a photo
album service that provides access to view albums, create albums, and delete albums.
We'll also pretend that the playground application offers functionality to view and manage
photo albums.

Start by creating the following three client scopes through the Keycloak admin console:

• albums:view

• albums:create

• albums:delete

We have already covered how to create client scopes previously, but in summary, the steps
you need to create a client scope are as follows:

1. Open Client Scopes in the Keycloak admin console.

2. Click on the button labeled Create.

3. Enter the name from the preceding list, and enter some value for the Consent
Screen Text field that describes to a user what permissions are given (for example,
View photo albums).

4. Click on the button labeled Save.

82 Authorizing Access with OAuth 2.0

After you have created the three client scopes, navigate to the oauth-playground
client and click on Client Scopes. In the Default Client Scopes section, select
albums:view and click on Add selected. Then, in the Optional Client Scopes section,
select albums:create and albums:delete, then click on Add selected.

We added the scope to view permissions as a default scope as we're assuming that the
playground application always requires viewing albums. On the other hand, we set the
ability to create and delete albums as optional. This is sometimes referred to as incremental
authorization, where the application requests additional permissions only when the user
starts using a part of an application that requires the additional permissions. This approach
makes it a lot more intuitive to the user why the application is requesting the permissions.

Before continuing, make sure the oauth-playground client requires consent by
selecting the Settings tab and then checking that Consent Required is turned on.

Now, return to the playground application and remove any value in the Scope field before
clicking on the Send Authorization Request button. Keycloak should now ask you to
grant the oauth-playground application access to view photo albums, as shown in
the following screenshot:

Figure 5.11 – Granting oauth-playground access to view photo albums

After clicking on Yes, the access token displayed within the playground application will
include albums:view in the scope claim. Let's now imagine that the user would like
to create a new photo album through the playground application, so it must have access
to also create albums. Set the value of the scope field to albums:create and click on Send
Authorization Request again. This time, you will be prompted to grant access to create
photo albums. After clicking Yes, this time you will see that the scope claim in the access
token now includes both albums:view and albums:create.

By now, you should have a good understanding of the different techniques for limiting the
access provided by a given access token. In the next section, we will take a look at how an
application can validate an access token.

Validating access tokens 83

Validating access tokens
You have two choices to validate an access token, either by invoking the token
introspection endpoint provided by Keycloak, or by directly verifying the token.

Using the token introspection endpoint is the simplest approach, and it also makes your
applications less tied to Keycloak being the authorization server. OAuth 2.0 does not
define a standard format for access tokens and these should be considered opaque to the
application. Instead, it defines a standard token introspection endpoint that can be used
to query the authorization server for the state of a token as well as claims associated with
the token. This also enables tokens to not be self-contained, meaning that not all relevant
information about the token is encoded into the token, but rather the token only serves
as a reference to the information.

One downside of using the token introspection endpoint is that it introduces extra latency
in processing the request as well as additional load on the authorization server. A common
technique here is to have a cache that remembers previously verified tokens preventing the
service from re-validating already verified tokens within a configurable amount of time.
The time between re-validating the token should be fairly short, usually in terms of a few
minutes only.

You can try to invoke the token introspection endpoint by using curl or any other tool
that lets you send an HTTP request.

First, we need two things: the credentials for the oauth-backend client and an encoded
access token.

To get the credentials for the oauth-backend client, go to the Keycloak admin console
and navigate to the oauth-backend client. Then, click on Credentials and copy the
value of the Secret field.

Open a terminal and set the secret to an environment variable as shown in the following
example:

$ export SECRET=b1e0073d-3f2b-4ea4-bec0-a35d1983d5b6

Keep this terminal open, then open the playground application and obtain a new access
token. At the bottom of the field, in the Encoded section, you will see the encoded access
token. Copy this value, then set an environment variable in the terminal you opened
previously as shown in the following example:

$ export TOKEN=eyJhbGciOiJSUzI1NiIsInR5c...

84 Authorizing Access with OAuth 2.0

Now, you can invoke the token introspection endpoint by running the following
command in the same terminal:

$ curl --data "client_id=oauth-backend&client_
secret=$SECRET&token=$TOKEN" http://localhost:8080/auth/realms/
myrealm/protocol/openid-connect/token/introspect

The endpoint will return a JSON document with the state of the token, and associated
information for the token, as shown in the following screenshot:

Figure 5.12 – Token introspection endpoint response

The other approach to verifying access tokens issued by Keycloak is validating them
directly in the application. As Keycloak uses JWT as its access token format, this means
you can parse and read the contents directly from your application, as well as verifying
that the token was issued by Keycloak as it is signed by Keycloak using its private signing
keys. We're not going to go into detail on how to do this though, as there are quite a lot of
mistakes you can make when verifying a token yourself and you should have a very good
understanding of JWT as well as the information within the token before you consider
implementing this approach yourself.

Summary 85

All Keycloak client libraries, which are referred to as application adapters by Keycloak,
verify tokens directly without the token introspection endpoint. There are also a number
of good libraries available for different programming languages you can use. To give you
an idea though to verify an access token, you would need to do the following:

• Retrieve the public signing keys from the JWKS endpoint provided by Keycloak.

• Verify the signature of the access token.

• Verify that the access token has not expired.

• Verify the issuer, audience, and type of the token.

• Verify any other claims that your application cares about.

You should now have a good idea of how a service can verify a token either by using the
token introspection endpoint or by directly verifying the token if it is a JWT.

Summary
In this chapter, you experienced first hand how to obtain access tokens using the OAuth
2.0 Authorization Code grant type. You learned how an admin can grant access to internal
applications on behalf of a user, and how users themselves can grant access to third-
party applications. You learned about various different techniques on how you can limit
the access provided by a specific access token. Finally, you learned how a service can
directly read and understand the contents of an access token issued by Keycloak, as it is
using JWT-based tokens. You also learned how the token introspection endpoint can be
leveraged to validate and discover information about an access token in a more standard
and portable way.

You should now have a basic understanding of OAuth 2.0 and how it can be used to secure
your own applications. We will build on this knowledge later in the book to get you ready
to start securing all your applications with Keycloak.

In the next chapter, you will learn about how to use Keycloak to secure a range of different
application types.

86 Authorizing Access with OAuth 2.0

Questions
1. How does an application invoke a protected REST API by leveraging OAuth 2.0?

2. What are the three different techniques you can use to limit the access provided
by an access token?

3. How can a service validate an access token to decide whether permission should
be granted?

Further reading
Refer to the following links for more information on the topics covered in this chapter:

• OAuth 2.0 Authorization Code grant specification: https://oauth.net/2/
grant-types/authorization-code/

• OAuth 2.0 token introspection specification: https://oauth.net/2/token-
introspection/

• OAuth scopes: https://oauth.net/2/scope/

https://oauth.net/2/grant-types/authorization-code/
https://oauth.net/2/grant-types/authorization-code/
https://oauth.net/2/token-introspection/
https://oauth.net/2/token-introspection/
https://oauth.net/2/scope/

6
Securing Different
Application Types

In this chapter, we will first begin by understanding whether the application we want to
secure is an internal or external application. Then, we will look at how to secure a range of
different application types, including web, native, and mobile applications. We will also look
at how to secure REST APIs and other types of services with bearer tokens.

By the end of this chapter, you will have learned the principles and best practices behind
securing different types of applications. You will understand how to secure web, mobile,
and native applications, as well as how bearer tokens can be used to protect any type of
service, including REST APIs, gRPC, WebSocket, and other types of services.

In this chapter, we're going to cover the following main topics:

• Understanding internal and external applications

• Securing web applications

• Securing native and mobile applications

• Securing REST APIs and services

88 Securing Different Application Types

Technical requirements
To run the sample application included in this chapter, you need to have Node.js
(https://nodejs.org/) installed on your workstation.

You also need to have a local copy of the GitHub repository associated with the book.
If you have Git installed, you can clone the repository by running this command in
a terminal:

$ git clone https://github.com/PacktPublishing/Keycloak-
Identity-and-Access-Management-for-Modern-Applications.git

Alternatively, you can download a ZIP of the repository from https://github.com/
PacktPublishing/Keycloak-Identity-and-Access-Management-for-
Modern-Applications/archive/master.zip.

Check out the following link to see the Code in Action video:

https://bit.ly/3b5R0F2

Understanding internal and external
applications
When securing an application, the first thing to consider is whether the application is an
internal application or an external application.

Internal applications, sometimes referred to as first-party applications, are applications
owned by the enterprise. It does not matter who developed the application, nor does it
matter how it is hosted. The application could be an off-the-shelf application, and it can
also be a Software as a Service (SaaS)-hosted application, while still being considered
an internal application.

For an internal application, there is no need to ask the user to grant access to the
application when authenticating to the user, as this application is trusted and the
administrator that registered the application with Keycloak can pre-approve the access on
behalf of the user. In Keycloak, this is done by turning off the Consent Required option
for the client, as shown in the following screenshot:

https://nodejs.org/
https://github.com/PacktPublishing/Keycloak-Identity-and-Access-Management-for-Modern-Applications/archive/master.zip
https://github.com/PacktPublishing/Keycloak-Identity-and-Access-Management-for-Modern-Applications/archive/master.zip
https://github.com/PacktPublishing/Keycloak-Identity-and-Access-Management-for-Modern-Applications/archive/master.zip
https://bit.ly/3b5R0F2

Understanding internal and external applications 89

Figure 6.1 – Internal application configured to not require consent

When a user authenticates or grants access to an internal application, the user is only
required to enter the username and password. For external applications, on the other
hand, a user must also grant access to the application.

External applications, sometimes referred to as third-party applications, are applications
that are not owned and managed by the enterprise itself, but rather by a third party. All
external applications should have the Consent Required option enabled, as shown in the
following screenshot:

Figure 6.2 – External application configured to require consent

90 Securing Different Application Types

When a user authenticates or grants access to an external application, the user is required
to not only enter the username and password but also to grant access to the application,
as shown in the following screenshot:

Figure 6.3 – User granting access to an external application

You should now understand the difference between an internal and an external
application, including how to require users to grant access to external applications.
In the next section, we will look at how to secure web applications with Keycloak.

Securing web applications
When securing a web application with Keycloak, the first thing you should consider is the
architecture of the application as there are multiple approaches:

• First and foremost, is your web application a traditional web application running on
the server side or a modern single-page application (SPA) running in the browser?

• The second thing to consider is whether the application is accessing any REST APIs,
and if so, are the REST APIs a part of the application or external?

If it is a SPA-type application invoking external APIs, then there are two further options
to consider. Does the application invoke the external REST API directly, or through
a dedicated REST API hosted alongside the application?

Securing web applications 91

Based on this, you should determine which of the following matches the architecture of
the application you are securing:

• Server side: If the web application is running inside a web server or an application
server.

• SPA with dedicated REST API: If the application is running in the browser and is
only invoking a dedicated REST API under the same domain.

• SPA with intermediary API: If the application is running in the browser and
invokes external REST APIs through an intermediary API, where the intermediary
API is hosted under the same domain as the application

• SPA with external API: If the application is running in the browser and only
invokes APIs hosted under different domains.

Before we take a look at details specific to these different web application architectures,
let's consider what is common among all architectures.

Firstly, and most importantly, you should secure your web application using the
Authorization Code flow with the Proof Key for Code Exchange (PKCE) extension.
If you are not sure what the Authorization Code flow is, you should read Chapter 4,
Authenticating Users with OpenID Connect, before continuing with this chapter. The PKCE
extension is an extension to OAuth 2.0 that binds the authorization code to the application
that sent the authorization request. This prevents abuse of the authorization code if it is
intercepted. We are not covering PKCE in detail in this book, as we recommend you use
a library. If you do decide not to use a library, you should refer to the specifications on
how to implement support for OAuth 2.0 and OpenID Connect yourself.

When porting existing applications to use Keycloak, it may be tempting to keep the login
pages in the existing application, then exchanging the username and password for tokens,
by using the Resource Owner Password Credential grant to obtain tokens. This would be
similar to how you would integrate your application with an LDAP server.

However, this is simply something that you should not be tempted to do. Collecting user
credentials in an application effectively means that if a single application is compromised,
an attacker would likely have access to all applications that the user can access. This
includes applications not secured by Keycloak, as users often reuse passwords. You
also do not have the ability to introduce stronger authentication, such as two-factor
authentication. Finally, you do not get all the benefits of using Keycloak with this
approach, such as single sign-on (SSO) and social login.

92 Securing Different Application Types

As an alternative to keeping the login pages within your existing applications, you may
be tempted to embed the Keycloak login page as an iframe within the application. This
is also something that you should avoid doing. With the login page embedded into the
application, it can be affected by vulnerabilities in an application, potentially allowing
an attacker access to the username and password.

As the login page is rendered within an iframe, it is also not easy for users to see where
the login pages are coming from, and users may not trust entering their passwords
into the application directly. Finally, with third-party cookies being frequently used for
tracking across multiple sites, browsers are becoming more and more aggressive against
blocking third-party cookies, which may result in the Keycloak login pages not having
access to the cookies it needs to function.

In summary, you should get used to the fact that an application should redirect the user
to a trusted identity provider for authentication, especially in SSO scenarios. This is
also a pattern that most of your users will already be familiar with as it is widely in use
nowadays. The following screenshot shows an example of the Google and Amazon login
pages, where you can see that they are not embedded in the applications themselves:

Figure 6.4 – Example from Google and Amazon showing external login pages

You should now have a good, basic understanding of how to go about securing a web
application with Keycloak. In the next section, we will start looking at how to secure
different types of web applications, starting with server-side web applications.

Securing web applications 93

Securing server-side web applications
When securing a server-side web application with Keycloak, you should register
a confidential client with Keycloak. As you are using a confidential client, a leaked
authorization code can't be leveraged by an attacker. It is still good practice to leverage
the PKCE extension as it provides protection against other types of attacks.

You must also configure applicable redirect URIs for the client as otherwise, you are
creating what is called an open redirect. An open redirect can be used, for example, in
a spamming attack to make a user believe they are clicking on a link to a trusted site. As an
example, if a spammer sends the https://trusted-site.com/...?redirect_
uri=https://attacker.com URL to a user in an email, the user may only notice
the domain name is to a trusted site and click on the link. If you have not configured an
exact redirect URI for your client, Keycloak would end up redirecting the user to the site
provided by the attacker.

With a server-side web application, usually, only the ID token is leveraged to establish
an HTTP session. The server-side web application can also leverage an access token if
it wants to invoke external REST APIs under the context of the user.

The following diagram shows the flow for a server-side web application:

Figure 6.5 – Server-side web application

94 Securing Different Application Types

In more detail, the steps in the diagram are as follows:

1. The web server redirects the browser to the Keycloak login pages using the
Authorization Code flow

2. The user authenticates with Keycloak.

3. The authorization code is returned to the server-side web application.

4. The application exchanges the authorization code for tokens, using the credentials
registered with the client in Keycloak.

5. The application retrieves the ID token directly from Keycloak as it does not need to
verify the token, and can directly parse the ID token to find out information about
the authenticated user, and establish an authenticated HTTP session.

6. Requests from the browser now include the HTTP session cookie.

In summary, the application leverages the Authorization Code flow to obtain an ID token
from Keycloak, which it uses to establish an authenticated HTTP session.

For server-side web applications, you can also choose to use SAML 2.0, rather than
using OpenID Connect. As OpenID Connect is generally easier to work with, it is
recommended to use OpenID Connect rather than SAML 2.0, unless your application
already supports SAML 2.0.

You should now have a good understanding of how to secure a server-side web application
with Keycloak. In the next section, we will look at web applications running on the client
side, starting with SPAs that have their own dedicated REST API backend.

Securing a SPA with a dedicated REST API
A SPA that has a dedicated REST API on the same domain should be secured with
Keycloak in the same way as a server-side web application. As the application has
a dedicated REST API, it should leverage the Authorization Code flow with a confidential
client for the highest level of security, and use an HTTP session to secure the API requests
from the client side to the dedicated REST API.

Securing web applications 95

The following diagram shows the flow for a SPA with a dedicated REST API:

Figure 6.6 – A SPA with a dedicated REST API

In more detail, the steps in the diagram are as follows:

1. The user clicks on the login link in the application, which sends a request to
the web server.

2. The web server redirects to the Keycloak login pages.

3. The user authenticates with Keycloak.

4. The authorization code is returned to the web server.

5. The web server exchanges the authorization code for tokens.

6. As the application retrieves the ID token directly from Keycloak, it does not need to
verify the token, and can directly parse the ID token to find out information about
the authenticated user, and establish an authenticated HTTP session.

Requests from the SPA to the dedicated REST API include the HTTP session cookie. In
summary, the application leverages the Authorization Code flow to obtain an ID token
from Keycloak, which it uses to establish an authenticated HTTP session, which enables
the SPA to securely invoke the REST API provided by the web server.

You should now have a good understanding of how to go about securing a SPA when there
is a dedicated REST API hosted on the same domain. In the next section, we will look at
a SPA where an external REST API is invoked, but it is done through a backend REST API
hosted on the same domain as the SPA.

96 Securing Different Application Types

Securing a SPA with an intermediary REST API
The most secure way to invoke external REST APIs from a SPA is through an intermediary
API hosted on the same domain as the SPA. By doing this, you are able to leverage
a confidential client and tokens are not directly accessible in the browser, which reduces
the risk of tokens, especially the refresh token, being leaked.

This type of SPA is often referred to as the backend for frontends patterns. Not only does
it have increased security, but it also makes your SPA more portable and may make
it easier to develop. This is due to the application not having to directly deal with external
APIs, but rather a dedicated REST API built specifically to service the frontend SPA.

Further, by default, browsers do not allow a SPA to invoke a REST API on a different
domain unless Cross-Origin Resource Sharing (CORS) is enabled. CORS enables a
REST API to return special HTTP headers that tell the browser a request from a different
origin is permitted. As the SPA is making the requests through an intermediary REST API
on the same domain, you don't need to deal with CORS in this case.

The following diagram shows the flow for a SPA with an intermediary REST API:

Figure 6.7 – SPA with an intermediary REST API

In more detail, the steps in the diagram are as follows:

1. The user clicks on the login link in the application, which sends a request to
the web server.

2. The web server redirects to the Keycloak login pages.

3. The user authenticates with Keycloak.

4. The authorization code is returned to the web server.

Securing web applications 97

5. The web server exchanges the authorization code for tokens.

6. As the web server retrieves the ID token directly from Keycloak, it does not need to
verify the token, and can directly parse the ID token to find out information about
the authenticated user, and establish an authenticated HTTP session. The refresh
token and access token are stored within the HTTP session.

7. Requests from the SPA to the dedicated REST API includes the HTTP session cookie.

8. The web server retrieves the access token from the HTTP session and includes it in
requests to the external REST API.

9. The web server returns the response to the SPA, including the HTTP session cookie.

In summary, the application leverages the Authorization Code flow to obtain an ID
token from Keycloak, which it uses to establish an authenticated HTTP session, which
enables the SPA to securely invoke the web server, which in turn proxies the request to the
external REST API.

You should now have a good understanding of how to secure a SPA with an intermediary
API hosted on the same domain, which is leveraged to invoke external REST APIs.
In the next section, we will look at a SPA where there is no REST API hosted on the
same domain.

Securing a SPA with an external REST API
The simplest way to secure a SPA with Keycloak is by doing the Authorization Code
flow directly from the SPA itself with a public client registered in Keycloak. This is a
somewhat less secure approach as the tokens, including the refresh token, are exposed
directly to the browser. For very critical applications, such as financial applications, this is
not an approach you want to use. However, there are a number of techniques that can be
leveraged to provide a good level of security for this approach, such as the following:

• Have a short expiration for the refresh token. In Keycloak, this is configured by
setting the client session timeouts for the client. This makes it possible to configure
a client to for example have refresh tokens that are valid for 30 minutes, while the
SSO session can be valid for several days.

• Rotate refresh tokens. In Keycloak, this is configured by enabling Revoke Refresh
Token for the realm, which results in previously used refresh tokens being
invalidated. If an invalid refresh token is used, the session is invalidated. This would
result in a leaked refresh token being quickly invalidated as both the SPA and the
attacker would try to use the refresh token, resulting in it being invalidated.

98 Securing Different Application Types

• Use the PKCE extension. For a public client, using the PKCE extension is required;
otherwise, there is a high chance that a leaked authorization code can be used by an
attacker to obtain tokens.

• Store tokens in the window state or HTML5 storage session, and avoid using easily
guessable keys such as window.sessionStorage.accessToken.

• Protect the SPA from Cross-Site Scripting (XSS) and other attacks by following
best practices from the Open Web Application Security Project (OWASP).

• Be careful when using third-party scripts in your application.

At the end of the day, this is a trade-off that you will have to decide for yourself. Are you
comfortable with the risk of tokens being leaked, and have you made sure your SPA is
secure? If so, then using this approach provides you with a simpler solution and also
removes the need to have a dedicated backend for your SPA, which also reduces the
cost of maintaining the application.

The following diagram shows the flow for a SPA with an external REST API:

Figure 6.8 – A SPA with an external REST API

In more detail, the steps in the diagram are as follows:

1. The SPA redirects to the Keycloak login pages.

2. After the user has authenticated, the authorization code is returned to the SPA.

3. The SPA exchanges the authorization code for tokens. As the SPA is running in
the browser, it does not have a way to secure credentials for the client and for this
reason, it uses a public client registered in Keycloak.

4. The SPA has direct access to the access token and includes this in requests to the
REST API.

5. The REST API is required to include CORS headers in the response. Otherwise,
the browser would block the SPA from reading the response.

Securing native and mobile applications 99

In summary, the SPA uses the Authorization Code flow directly to obtain tokens from
Keycloak, which results in the tokens being available directly in the browser, which has
a higher risk of tokens being leaked.

You should now have a good understanding of how to secure different types of web
applications, such as traditional server-side web applications, and more modern client-
side applications. You have learned that the best practice for securing any web application
is redirecting to the Keycloak login pages through the Authorization Code flow, with the
PKCE extension. Finally, you also learned that although a SPA can obtain tokens directly
from Keycloak, it may not be secure enough for highly sensitive applications.

In the next section, we will look at how to secure mobile applications with Keycloak.

Securing native and mobile applications
Securing a web application with Keycloak is more straightforward than securing a native
or mobile application. Keycloak login pages are essentially a web application and it is more
natural to redirect a user to a different web application when they are already within
the browser.

You may be tempted to implement login pages within the application itself to collect
the username and password, then leverage the OAuth 2.0 Resource Owner Password
Credential grant to obtain tokens. However, this is simply something that you should not
be tempted to do. As mentioned in the previous section, applications should never have
direct access to the user credentials, and this approach also means you miss out on a lot
of features provided by Keycloak.

To secure a native or mobile application, you should use the Authorization Code flow
with the PKCE extension instead. This is more secure, and at the same time gives you
the full benefits of using Keycloak.

Effectively, this means that your native or mobile application must use a browser to
authenticate with Keycloak. In this regard, there are three options available depending
on the type of application:

• Use an embedded web view.

• Use an external user agent (the user's default browser).

• Use an in-app browser tab without the application, which is supported on some
platforms, such as Android and iOS.

100 Securing Different Application Types

Using an embedded web view may be tempting as it provides a way to place the login
pages within the application. However, this option is not recommended as it is open to
vulnerabilities where the credentials may be intercepted. It also does not enable SSO as
there are no shared cookies between multiple applications.

Using an in-app browser tab is a decent approach as it enables leveraging the system
browser while displaying the login pages with the application. However, it is possible for
a malicious application to render a login page within the application that looks like an
in-app browser tab, allowing the malicious application to collect the credentials. For users
that are concerned about this, they can open the page in the external browser instead.

The following screenshot shows the Keycloak login page in an in-app browser tab
on Android:

Figure 6.9 – Keycloak login pages displayed in an in-app browser tab on Android

In all the options, the Keycloak login pages are opened in a browser to authenticate the user.
After the user is authenticated, the authorization code is returned to the application, which
can then obtain tokens from Keycloak. The following diagram shows the steps involved:

Securing native and mobile applications 101

Figure 6.9 – Native application

In more detail, the steps in the diagram are as follows:

1. The application opens the login page in an external browser or using an in-app
browser tab.

2. The user authenticates with Keycloak through the external browser.

3. The authorization code is returned to the application.

4. The application exchanges the authorization code for tokens.

To return the authorization code to the application, there are four different approaches
using special redirect URIs defined by OAuth 2.0:

• Claimed HTTPS scheme: Some platforms allow an application to claim an HTTPS
scheme (a URL starting with https://), which opens the URI in the application
instead of the system browser. For example, the https://app.acme.org/
oauth2callback/provider-name redirect URI could be claimed by an
application called Acme App, resulting in the callback being opened in the Acme
App rather than in the browser.

• Custom URI scheme: A custom URI scheme is registered with the application. When
Keycloak redirects to this custom URI scheme, the request is sent to the application.
The custom URI scheme should match the reverse of a domain that is owned by the
application developer. For example, the org.acme.app://oauth2/provider-
name redirect URI matches the domain name app.acme.org.

• Loopback interface: The application can open a temporary web server on a random
port on the loopback interface, then register the http://127.0.0.1/oauth2/
provider-name redirect URI, which will send the request to the web server
started by the application.

102 Securing Different Application Types

• A special redirect URI: By using the special urn:ietf:wg:oauth:2.0:oob
redirect URI, the authorization code is displayed by Keycloak, allowing the user to
manually copy and paste the authorization code into the application.

When available, the claimed HTTPS scheme is the recommended approach, as it is more
secure. In cases when neither a claimed HTTPS scheme nor a custom scheme can be used,
for example, in a CLI, the loopback interface option is a good approach.

To give you a better understanding of how a native application is secured with Keycloak,
there is an example application included with this chapter that you can try. The example
is showing a CLI that uses the system browser to obtain the authorization code.
Before running the example, you need to register a new client with Keycloak with
the following settings:

• Client ID: cli

• Access Type: public

• Standard Flow Enabled: ON

• Valid Redirect URIs: http://localhost/callback

After you have registered the client, you can run the sample in a terminal by running the
following commands:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch6/

$ npm install

$ node app.js

When you run the example CLI, it starts a temporary web server on a random port,
then it opens the authorization request in the system browser. After you have logged
in to Keycloak, it redirects to the web server provided by the application, including the
authorization code. The application now has access to the authorization code and can
exchange it for an access token.

When running the example CLI, you should see the following output:

Listening on port: 40437

Authorization Code: 32ab30d2…

Access Token: eyJhbGciOiJSUzI1NiIsInR3GOMibcto…

There are also, of course, cases where a browser is not available – for example, running
a terminal within a server that does not have a graphical interface. In these cases, the
Device Code grant type is a good option.

Securing REST APIs and services 103

In summary, the Device Code grant type works by the application showing a short code
that a user enters into a special endpoint at the authorization server in a different device
with a browser. After entering the code, the user will be asked to log in if they are not
already logged in. After completion, the application is able to retrieve the authorization
code from the authorization server.

You should now have a good understanding of how to secure native and mobile
applications with Keycloak by using the Authorization Code flow through an external
browser. In the next section, we will look at how to secure REST APIs with Keycloak.

Securing REST APIs and services
When an application wants to invoke a REST API protected by Keycloak, it first obtains
an access token from Keycloak, then includes the access token in the authorization header
in requests it sends to the REST API:

Authorization: bearer eyJhbGciOiJSUzI1NiIsInR5c…

The REST API can then verify the access token to decide whether access should be granted.

This approach makes it easy to provide a REST API that can be leveraged by many
applications, even making the REST API available as a public API on the internet
for third-party applications to consume.

In Chapter 5, Authorizing Access with OAuth 2.0, we covered how the application obtains
an access token from Keycloak, then includes the access token in requests it makes to
REST APIs so that the REST API can verify whether access should be granted. We also
covered various strategies for limiting the access provided by a specific access token,
as well as how an access token is verified by the REST API.

With microservices, using tokens to secure the services is especially useful as it enables
propagating the authentication context when a service invokes another service,
making it easy to provide full end-to-end authentication of the user, as shown in
the following diagram:

Figure 6.10 – End-to-end user authentication for microservices

104 Securing Different Application Types

In this example, the application includes an access token when it invokes Service A.
Service A is then able to invoke both Service B and Service C with the same access token,
resulting in all the services using the same authentication context.

Keycloak also has support for service accounts, which allows a service to obtain an access
token on behalf of itself by using the Client Credential grant type. Let's give this a go by
opening the Keycloak admin console and creating a new client. Use the following values
when creating the client:

• Client ID: service

• Client Protocol: openid-connect

• Access Type: confidential

• Standard Flow Enabled: OFF

• Implicit Flow Enabled: OFF

• Direct Access Grants Enabled: OFF

• Service Accounts Enabled: ON

The following screenshot shows the client you should create:

Figure 6.11 – Service account client in Keycloak

Securing REST APIs and services 105

As you have turned off the Standard Flow Enabled option for this client, it is not able to
obtain tokens using the Authorization Code flow, but as it has Service Accounts Enabled
turned on, it can use the Client Credential flow instead. The Client Credential flow allows
a client to obtain tokens on behalf of itself by using the credentials for the client.

To obtain an access token, the client makes a POST request to the Keycloak token
endpoint with the following parameters:

• client_id

• client_secrent

• grant_type=client_credentials

Let's try to use curl to get an access token. First, you need to go to the Credentials tab
for the client you just created and copy the secret for the client. Then, you can open
a terminal and run the following command:

$ export SECRET=<insert secret from Keycloak Admin Console>

$ curl --data "client_id=service&client_secret=$SECRET&grant_
type=client_credentials" http://localhost:8080/auth/realms/
myrealm/protocol/openid-connect/token

Keycloak will return an access token response, which is a JSON document that, among
other things, includes the access token:

{

 "access_token": "eyJhbGciOiJSUzI1NiIsI…",

 "expires_in": 299,

 "token_type": "bearer",

 "scope": "profile email",

 …

}

It is not only REST APIs that can leverage tokens. Simple Authentication and Security
Layer (SASL), which is a popular protocol for authentication for a range of protocols, also
include support for bearer tokens. gRPC and WebSockets can also leverage bearer tokens
for secure invocation.

In this section, you have learned how by including a bearer token in the request to
a service, the service is able to verify whether the request should be accepted by verifying
the token either directly or through the token introspection endpoint.

106 Securing Different Application Types

Summary
In this chapter, you learned the difference between an internal and an external application,
where external applications require asking the user for consent to grant access, while
internal applications do not. You then learned how different web application architectures
are secured with Keycloak, and why it is more secure to have a backend for a SPA that
obtains tokens from Keycloak, instead of directly obtaining tokens in the SPA itself.
You then learned how Keycloak can be used to secure other types of applications, such
as native and mobile applications. Finally, you learned that bearer tokens can be used
to secure a range of different services, including REST APIs, microservices, gRPC,
WebSockets, and a range of other protocols.

You should now have a good understanding of the principles and best practices for
securing your application with Keycloak. In the next chapter, we will look at what
options are available to integrate all your applications with Keycloak.

Questions
1. What is the best way to secure the invocations from a SPA to a REST API?

2. Can OAuth 2.0 and bearer tokens only be used to secure web applications
and REST APIs?

3. How should you secure a native or mobile application with Keycloak?

Further reading
For more information on the topics covered in this chapter, refer to the following links:

• OAuth 2.0 for browser-based apps: https://oauth.net/2/browser-based-
apps/

• OAuth 2.0 for mobile and native apps: https://oauth.net/2/native-
apps/

• AppAuth: https://appauth.io/

https://oauth.net/2/browser-based-apps/
https://oauth.net/2/browser-based-apps/
https://oauth.net/2/native-apps/
https://oauth.net/2/native-apps/
https://appauth.io/

7
Integrating

Applications with
Keycloak

So far, you have been presented with the main concepts and configuration options
in Keycloak. In this chapter, you finally will learn how to apply them so that you can
configure your applications and let them integrate with Keycloak.

Through some selected integration scenarios and coding examples, you will learn
which integration approach works best for you according to the technology stack your
applications are using and the platform they are running on. You will be presented with
different integration options for applications using GoLang, Java, JavaScript, Node.js, and
Python. If none of the options work for you, then don't worry – you will learn how to
integrate with Keycloak using a reverse proxy that sits in front of your application.

By the end of this chapter, you will have a good understanding of some of the available
integration options for you, depending on the characteristics of your applications
and their runtime, as well as what you should consider if none of the options herein
mentioned work for you and you need to look for alternatives.

108 Integrating Applications with Keycloak

In this chapter, we are going to cover the following topics and integrations:

• Choosing an integration architecture

• Choosing an integration option

• Integrating with Golang applications

• Integrating with Java applications

• Integrating with JavaScript applications

• Integrating with Node.js applications

• Integrating with Python applications

• Using a reverse proxy

• Try not to implement your own integration

Note
We are not opinionated about the integrations in this chapter, and the focus is
to show you how to integrate Keycloak with practically any type of application.

Technical requirements
The example code for this chapter can be find in the GitHub repository associated
with this book. If you have Git installed, you can clone the repository by running this
command in a terminal:

$ git clone https://github.com/PacktPublishing/Keycloak-
Identity-and-Access-Management-for-Modern-Applications.git

Alternatively, you can download a ZIP of the repository from https://github.com/
PacktPublishing/Keycloak-Identity-and-Access-Management-for-
Modern-Applications/archive/master.zip.

After cloning or extracting the repository, take a look at the ch7 directory, which is where
all the examples are located.

Before we begin, you need to run Keycloak on a different port. For that, start the server,
as follows:

$ cd $KC_HOME

$ bin/standalone.sh -Djboss.socket.binding.port-offset=100

https://github.com/PacktPublishing/Keycloak-Identity-and-Access-Management-for-Modern-Applications/archive/master.zip
https://github.com/PacktPublishing/Keycloak-Identity-and-Access-Management-for-Modern-Applications/archive/master.zip
https://github.com/PacktPublishing/Keycloak-Identity-and-Access-Management-for-Modern-Applications/archive/master.zip

Technical requirements 109

If you are using Docker, you should run the following command to start the server:

$ docker run -e KEYCLOAK_USER=admin \

 -e KEYCLOAK_PASSWORD=admin \

 -p 8180:8080 \

 quay.io/keycloak/keycloak

We are running Keycloak in a different port because the example applications we are
about to run will be listening on port 8080, the default port used by Keycloak. The server
should be available at http://localhost:8180/auth.

Now that the server has been started, create a new realm called myrealm .

Since we are going to integrate Keycloak with different types of applications, we need to
create a client in the myrealm realm for each of them.

Let's start by creating the mybrowserapp client, which we will use to protect browser-
based apps:

• Client ID: mybrowserapp

• Root URL: http://localhost:8080

For protecting server-side web applications, we will use a mywebapp client:

• Client ID: mywebapp

• Root URL: http://localhost:8080

After creating the mywebapp client in Keycloak, change the following settings on the
client details page:

• Access Type: Confidential

Let's create the client we will be using to protect the backend application:

• Client ID: mybackend

• Root URL: http://localhost:8080

After creating the mybackend client in Keycloak, change the following settings on the
client details page:

• Access Type: Confidential

• Direct Access Grants Enabled: ON

110 Integrating Applications with Keycloak

Note
As you will see in later chapters, the Direct Access Grants Enabled option
should be disabled for clients. The only reason we are doing this here is to make
the examples easier to follow when an access token needs to be obtained in any
way other than using a browser.

The last client we are going to create will be used by a reverse proxy running in front of an
application. Create a client with the following settings:

• Client ID: proxy-client

• Root URL: http://localhost

After creating the proxy-client client in Keycloak, change the following settings on
the client details page:

• Access Type: Confidential

Finally, create a user in Keycloak:

• Username : alice

• Password : alice

Regardless of the type of application we are about to integrate with, the configuration you
just created will not change due to the interoperable nature of Keycloak.

Before we dive into the different integrations, let's understand how they are grouped into
two main architectural styles, as well as how they impact how your application integrates
with Keycloak.

Check out the following link to see the Code in Action video:

https://bit.ly/2PRIqSM

Choosing an integration architecture
There are two main integration styles, depending on where the integration code and
configuration are located:

• Embedded

• Proxied

https://bit.ly/2PRIqSM

Choosing an integration architecture 111

Integrations that are embedded into your technology stack are usually provided by a
third-party library, framework, web container, or application server. In this style, your
application talks directly with Keycloak and is responsible for making requests and
processing OAuth2 and OpenID Connect responses. Applications using this style usually
need to implement some code or provide some form of configuration to enable support
for these protocols. Any setting you need to change will require you to redeploy your
application:

Figure 7.1 – Embedded integration style

On the other hand, in the proxied style, there is a layer of indirection where the
integration is managed by a service running in front of your application, which, in turn,
relies on HTTP headers to fetch tokens or any other security-related data associated with a
request. The integration code and configuration are outside your application's boundaries
and are managed through the external service:

Figure 7.2 – Proxied integration style

There is no rule of thumb when selecting the best integration style. And sometimes, you
may be constrained to use a specific one. They are not mutually exclusive, though, and
it is perfectly fine to have both within your application's ecosystem.

The proxied style is a good fit if you do not have control over the application code (for
example, legacy code) or if your application is behind a reverse proxy or API gateway and
you want to leverage its capabilities. It also gives you the ability to control and manage the
integration with Keycloak from a single place.

112 Integrating Applications with Keycloak

On the other hand, embedding the integration into your code is simpler as it does not
require managing an external service, giving you more control over the integration. Your
application is self-contained and, if the framework or library you are using provides good
support for OpenID Connect and OAuth2, the integration is usually just a matter of
writing a few lines of code or providing some configuration files.

In this section, you learned about the two main architectural styles you can use to
integrate with Keycloak.

In the next section, we will cover different integration options based on the styles that
have been presented.

Choosing an integration option
In addition to choosing between the two architectural styles we've just mentioned, we
should also understand some key points when it comes to choosing an integration.

There are quite a lot of client-side implementations for OpenID Connect and sometimes,
you may find hard to choose which one works better for you. If none of the options
suggested here work for you, it is important to be aware of how to choose alternatives.

As a rule of thumb, the decision for a good integration should be based on
implementations that do the following:

• Are widely adopted, actively maintained, and backed by a strong community of
developers.

• Are up to date with the latest versions of the OAuth2 and OpenID Connect
specifications.

• Are aligned with the security best practices for OAuth2 and OpenID Connect.

• Provide a good user experience, a simple configuration, and a deployment model.

• Hide details from developers as much as possible while still providing good defaults
to make your application aligned with security best practices.

• Avoid vendor lock-in and keep your application compliant with OAuth2 and
OpenID Connect as much as possible. Keycloak can integrate with any client that's
compliant with these specifications.

Ideally, you should be using whatever comes for free from the technology stack and
platform on which your applications are deployed.

Integrating with Golang applications 113

You may also consider looking at the OpenID Connect website for a list of certified
implementations. The list is available at https://openid.net/developers/
certified/.

In the next section, we are going to look at how to integrate Keycloak using different
technology stacks.

Note
The code examples provided in this chapter are not targeted at being run in
production; instead, they demonstrate how to integrate Keycloak with different
types of applications.

Integrating with Golang applications
Go applications can integrate with Keycloak using whatever library you prefer, as long as it
complies with the OpenID Connect or OAuth2 specifications.

For the sake of simplicity and to provide a generic example of how to integrate with
Keycloak, we are going to use the https://github.com/coreos/go-oidc package.
The code examples for this section are available in the following directory:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch7/golang

In the preceding directory, you will find a main.go file that contains all the code you will
need to follow and run the examples.

In the next section, we are going to start looking at how to enable a web application that
can authenticate users using Keycloak.

Configuring a Golang client
First, you need to create a provider using a base URL that the OpenID Connect Discovery
Document will be fetched from. This will set up the necessary endpoints that your
application will be talking to when you're authenticating users and obtaining tokens
from Keycloak. The following code creates a new provider using the discovery document
available at http://localhost:8180/realms/myrealm/.well-known/
openid-configuration:

func createOidcProvider(ctx context.Context) *oidc.Provider {

 provider, err := oidc.NewProvider(ctx, "http://
localhost:8180/realms/myrealm")

https://openid.net/developers/certified/
https://openid.net/developers/certified/
https://github.com/coreos/go-oidc
http://localhost:8180/realms/myrealm/.well-known/openid-configuration
http://localhost:8180/realms/myrealm/.well-known/openid-configuration

114 Integrating Applications with Keycloak

 if err != nil {

 log.Fatal("Failed to fetch discovery document: ",
err)

 }

 return provider

}

You also need to provide information about the client in Keycloak that the application will
use to access Keycloak. For that, we need to set the client ID and secret like so:

func createConfig(provider oidc.Provider) (oidc.Config, oauth2.
Config) {

 oidcConfig := &oidc.Config{

 ClientID: "mywebapp",

 }

 config := oauth2.Config{

 ClientID: oidcConfig.ClientID,

 ClientSecret: CLIENT_SECRET,

 Endpoint: provider.Endpoint(),

 RedirectURL: "http://localhost:8080/auth/callback",

 Scopes: []string{oidc.ScopeOpenID, "profile",
"email"},

 }

 return *oidcConfig, config

}

Note
You should change the reference to CLIENT_SECRET in the preceding code
with the secret generated by Keycloak for the mywebapp client. For that, go
the mywebapp client details page in Keycloak and click on the Credentials
tab. The client secret should be available from the Secret field in this tab.

Integrating with Golang applications 115

The next step is to change your application so that it redirects users to Keycloak when they
try to access the application. In the following code, we have set a cookie to track the value
of the state parameter and redirect users to Keycloak:

func redirectHandler(w http.ResponseWriter, r *http.Request) {

state := addStateCookie(w)

 http.Redirect(w, r, oauth2Config.AuthCodeURL(state), http.
StatusFound)

}

Note, however, that, as a developer, you are responsible for implementing how users are
redirected to Keycloak using the oauth2Config.AuthCodeuRL function. We are also
implementing the necessary logic to generate the state parameter, as well as how we
can store it as an HTTP cookie, so that we can associate the original authorization request
with a response from Keycloak once the user is authenticated. Depending on the library
you are using, you do not need to perform any of these steps in your code as they might be
performed transparently by the library.

Finally, let's implement the callback URL that Keycloak is going to redirect users to right
after a successful authentication attempt:

func callbackHandler(resp http.ResponseWriter, req *http.
Request) {

 err := checkStateAndExpireCookie(req, resp)

 if err != nil {

 http.Error(resp, err.Error(), http.StatusBadRequest)

 return

 }

 tokenResponse, err := exchangeCode(req)

 if err != nil {

 http.Error(resp, "Failed to exchange code", http.
StatusBadRequest)

 return

 }

 idToken, err := validateIDToken(tokenResponse, req)

 if err != nil {

 http.Error(resp, "Failed to validate id_token", http.
StatusUnauthorized)

 return

116 Integrating Applications with Keycloak

 }

 handleSuccessfulAuthentication(tokenResponse, *idToken,
resp)

}

The callback handler is responsible for the following:

• Checking whether the state is the same as the one that was originally sent when you
performed the authorization request to Keycloak.

• Exchanging the code that was returned from Keycloak to obtain the ID token,
access token, and refresh token.

• Verifying the ID token's validity in terms of signature, audience, and expiration
date.

Note
A proper integration would avoid reusing the same state value, as well as
managing local sessions once the user has been authenticated for the very
first time. In fact, clients should prefer using Proof Key for Code Exchange
(PKCE) to prevent Cross-Site Request Forgery (CSRF) and code replay
attacks. We are using the state due to the lack of PKCE support from the go-
oidc package. To use PKCE, you will need to implement it by yourself or use
some third-party package.

Let's start the application by running the following command at the root directory of your
project:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch7/golang

$ go run main.go

Your application should start and be available at http://localhost:8080. Now, try
to access that URL and log into Keycloak using the credentials for the user we created at
the beginning of this chapter.

If the integration is working properly, you should be redirected to Keycloak to
authenticate. After providing these user credentials, you should be redirected back to the
application, now as an authenticated user, and a page will appear that contains the tokens
that have been issued by the server.

Integrating with Java applications 117

In this section, you learned about the basics of to how integrate a GoLang application
with Keycloak. The go-oidc package is a well-known package that provides OpenID
Connect capabilities for client applications. It provides a good baseline for integrating
with Keycloak and allows you to enable authentication for your application. However, it
requires additional work from the developer to get it done right, as well as to maintain
the code.

If you are using a framework, such as Gin, or if you know about any other package that
do not require you to understand the integration internals while providing a rich set of
features and configuration, you should use that instead.

There are also quite a few third-party libraries you can find that are targeted at integrating
with Keycloak. Unfortunately, we cannot recommend any of them since they are not in
conformance with some of the recommendations that were mentioned at the beginning
of this chapter – mainly the fact they are not backed by a strong community but by
individuals.

In the next section, we are going to look at more integration options that use other
programming languages.

Integrating with Java applications
Frameworks, web containers, and application servers that provide support for OpenID
Connect and OAuth2 as part of their offerings should make your life a lot easier, since the
integration is already available to your application and there is no need to add any other
dependencies.

Leveraging what is already in your technology stack is usually the best choice. But that will
not always be the case.

Keycloak also provides client-side implementations that have support for some of the
most common frameworks, web containers, and application servers available. Also known
as Keycloak adapters, these implementations are targeted at people looking for a deeper
integration with Keycloak.

In the next few sections, we will look at the different options you can choose from so that
you can pick the one that works best for your applications.

118 Integrating Applications with Keycloak

Using Quarkus
Quarkus provides an OpenID Connect compliant extension called quarkus-oidc.
It provides a simple and rich configuration model that can protect both frontend and
backend applications. Quarkus has built-in support for the most common Integrated
Development Environments (IDEs), such as IntelliJ and Eclipse, and you should be able
to quickly create or configure an existing project in order to integrate it with Keycloak.

Tip
If you are new to Quarkus or just want to protect your applications using
OpenID Connect and Keycloak, please look at the guides available at
https://quarkus.io/guides. Most of these guides and code
examples use Keycloak as an OpenID Provider and will help you quickly get
started. Search for guides using OpenID Connect as a keyword to filter all
the available guides related to integrating with Keycloak.

In summary, the quarkus-oidc extension allows you to protect two main types of
applications: web-app and service.

The web-app type represents applications that authenticate using Keycloak through the
browser, using the authorization code grant type. These are frontend applications.

On the other hand, the service type represents applications that rely on bearer tokens
issued by a Keycloak server to authorize access to their protected resources. These are
backend applications.

To use the quarkus-oidc extension in your project, add the following dependency to
the application's pom.xml file:

<dependency>

 <groupId>io.quarkus</groupId>

 <artifactId>quarkus-oidc</artifactId>

</dependency>

Now that we've added the quarkus-oidc dependency, it is time to decide on the type of
application.

The code examples for this section are available in this book's GitHub repository at the
following link:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch7/quarkus

https://quarkus.io/guides

Integrating with Java applications 119

In the preceding directory, you will find a frontend directory and a backend directory,
both of which contain all the code you will need to follow and run the upcoming examples.

In the next section, we are going to start looking at how to enable a web application so that
we can authenticate users using Keycloak.

Creating a Quarkus client
In this section, we will be looking at the code examples that are available from the
following directory:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch7/quarkus/frontend

Let's start by configuring a web-app application by adding the following properties to the
src/main/resources/application.properties file:

quarkus.oidc.auth-server-url=http://localhost:8180/auth/realms/
myrealm

quarkus.oidc.client-id=mywebapp

quarkus.oidc.client-secret=CLIENT_SECRET

quarkus.oidc.application-type=web-app

quarkus.http.auth.permission.authenticated.paths=/*

quarkus.http.auth.permission.authenticated.policy=authenticated

From a configuration perspective, the main configuration options are as follows:

• The quarkus.oidc.auth-server-url property defines the URL that the
application should fetch the OpenID Connect Discovery document from.

• The quarkus.oidc.client-id property maps a client in Keycloak with this
application. For this application, we are going to use the mywebapp client, which
we created at the beginning of this chapter.

• The quarkus.oidc.client-secret property is the secret that was generated
by Keycloak when the client was created.

• The quarkus.oidc.application-type property defines that this application
is a web application.

• The quarkus.http.auth.permission.authenticated.paths and
quarkus.http.auth.permission.authenticated.policy properties
define that all the paths in the applications require an authenticated user.

120 Integrating Applications with Keycloak

Note
You should change the reference to CLIENT_SECRET in the src/main/
resources/application.properties file with the secret that was
generated by Keycloak for the mywebapp client. For that, go to the mywebapp
client details page in Keycloak and click on the Credentials tab. The client
secret should be available from the Secret field in this tab.

Let's start the application by running the following command at the root directory of your
project:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch7/quarkus/frontend

$./mvnw quarkus:dev

Your application should start and be available at http://localhost:8080. Try to
access that URL and log into Keycloak using the credentials for the user we created at the
beginning of this chapter.

If the integration is working properly, you should be redirected to Keycloak to
authenticate. After providing the necessary user credentials, you should be redirected back
to the application, now as an authenticated user.

Note
By default, Quarkus is going to set a cookie that will expire based on the
expiration time of the token issued by Keycloak. If you are experiencing the
user not redirected to Keycloak to authenticate, you might want to clear your
browser cookies. This behavior is something you can configure. For more
details, look at the quarkus-oidc extension documentation.

In this section, you learned about how to configure a web application in order to
authenticate users using Keycloak. At this point, you should be able to create your
own application or configure an existing one to authenticate users using Keycloak.

In the next section, we will look at how to configure a backend application to authorize
access to resources based on tokens issued by Keycloak.

Creating a Quarkus resource server
The code examples that will be presented in this section are available from the following
GitHub repository:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch7/quarkus/backend

Integrating with Java applications 121

For backend applications that have been protected using a OAuth2 Bearer Token,
the configuration is similar to configuring frontend applications, except for changing
quarkus.oidc.application-type to service, as well as quarkus.oidc.
client-id so that it maps to a different client in Keycloak:

quarkus.oidc.auth-server-url=http://localhost:8180/auth/realms/
myrealm

quarkus.oidc.client-id=mybackend

quarkus.oidc.credentials.secret=CLIENT_SECRET

quarkus.oidc.application-type=service

quarkus.http.auth.permission.authenticated.paths=/*

quarkus.http.auth.permission.authenticated.policy=authenticated

Note
You should change the reference to CLIENT_SECRET in the src/main/
resources/application.properties file with the secret that was
generated by Keycloak for the mybackend client. For that, go the mybackend
client details page in Keycloak and click on the Credentials tab. The client
secret should be available from the Secret field in this tab.

The quarkus.oidc.application-type property, which is now set to service,
indicates that this application should authorize access based on bearer tokens.

Let's start the application by running the following command at the root directory of
your project:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch7/quarkus/backend

$./mvnw quarkus:dev

Your application should start and be available at http://localhost:8080. To access
the resources at the running application, you will need an access token. To obtain one, use
the following command:

$ export access_token=$(\

 curl -X POST http://localhost:8180/auth/realms/myrealm/
protocol/openid-connect/token \

 --user mybackend:CLIENT_SECRET\

 -H 'content-type: application/x-www-form-urlencoded' \

 -d 'username=alice&password=alice&grant_type=password' | jq
--raw-output '.access_token' \

)

122 Integrating Applications with Keycloak

Once you have run this command, an access token will be saved in an access_token
environment variable, and you can now access the application:

$ curl -X GET \

 http://localhost:8080/hello \

 -H "Authorization: Bearer "$access_token

As a result, you should expect the following output from that command:

$ Hello RESTEasy

Now, if you try to access the application without a Bearer token or use an invalid one,
you should get a 401 status code, indicating that your request was forbidden:

$ curl -v -X GET \

 http://localhost:8080/hello

The quarkus-oidc extension validates tokens based on whether they represent a
JSON Web Token (JWT) or not. If the token is a JWT, the extension will try to validate
the token locally by checking its signatures, audience, and expiration date. Otherwise, if
the token is opaque and the format is unknown, it will invoke the token's introspection
endpoint at Keycloak to validate it. For Quarkus applications, the quarkus-oidc
extension is the best option you have. It provides an amazingly simple configuration while
providing a lot of other options you can use to customize its behavior.

We only covered the main steps of setting up the quarkus-oidc extension here so
that you can authenticate your users through Keycloak. There is lot more you can do
with this extension, such as leverage capabilities for logout, obtain information about the
subject into your beans, multi-tenancy, and so on. For more details, please check out the
extension's documentation at https://quarkus.io/guides/security#openid-
connect.

In the next section, we will look at how to integrate with Spring Boot applications.

Using Spring Boot
Spring Boot applications can integrate with Keycloak by leveraging Spring Security's
OAuth2/OpenID libraries. Spring Boot also has built-in support for the most common
IDEs, such as IntelliJ and Eclipse, so you should be able to quickly create or configure an
existing project so that it can be integrated with Keycloak.

There are two main libraries, where each is targeted by a specific type of application:
clients and resource servers.

https://quarkus.io/guides/security#openid-connect
https://quarkus.io/guides/security#openid-connect

Integrating with Java applications 123

The code examples in this section are available from the following GitHub repository:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch7/springboot

In the preceding directory, you will find a frontend directory and a backend directory
containing all the code you will need to follow and run the examples.

In the next section, we are going to start looking at how to enable a web application so that
we can authenticate users using Keycloak.

Creating a Spring Boot client
The code examples presented in this section are available from the following GitHub
repository:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch7/springboot/frontend

First, add the following dependencies to your project to enable OAuth2/Open ID
Connect support:

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-oauth2-client</artifactId>

</dependency>

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-security</artifactId>

</dependency>

You should now change the src/main/resources/application.yaml file so that
you can configure the application, as follows:

spring:

 security:

 oauth2:

 client:

 registration:

 myfrontend:

 provider: keycloak

 client-id: mywebapp

 client-secret: CLIENT_SECRET

124 Integrating Applications with Keycloak

 authorization-grant-type: authorization_code

 redirect-uri: "{baseUrl}/login/oauth2/code/"

 scope: openid

 provider:

 keycloak:

 authorization-uri: http://localhost:8180/auth/
realms/myrealm/protocol/openid-connect/auth

 token-uri: http://localhost:8180/auth/realms/
myrealm/protocol/openid-connect/token

 jwk-set-uri: http://localhost:8180/auth/realms/
myrealm/protocol/openid-connect/certs

Note
You should change the reference to CLIENT_SECRET in the preceding
configuration with the secret generated by Keycloak for the mywebapp client.
For that, go the mywebapp client details page in Keycloak and click on the
Credentials tab. The client secret should be available from the Secret field in
this tab.

Let's start the application by running the following command at the root directory of
your project:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch7/springboot/frontend

$./mvnw spring-boot:run

Your application should start and be available at http://localhost:8080. Try to
access that URL and log into Keycloak using the credentials for the user we created at the
beginning of this chapter.

If the integration is working properly, you should be redirected to Keycloak to
authenticate. After providing the user credentials, you should be redirected back to the
application, now as an authenticated user.

In this section, you learned about how to configure a web application to authenticate users
using Keycloak. With that, you should be able to create your own application or configure
an existing one to authenticate users using Keycloak.

In the next section, we will look at how to configure a backend application to authorize
access to resources based on tokens issued by Keycloak.

Integrating with Java applications 125

Creating a Spring Boot resource server
The code examples presented in this section are available from the following GitHub
repository:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch7/springboot/backend

First, add the following dependencies to your project to enable OAuth2/Open ID Connect
support:

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId> spring-boot-starter-oauth2-resource-server</
artifactId>

</dependency>

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-security</artifactId>

</dependency>

For backend applications protected using a OAuth2 Bearer Token, the configuration is
similar to configuring frontend applications. But here, the application is going to act as a
resource server that validates JWT tokens:

spring:

 security:

 oauth2:

 resourceserver:

 jwt:

 issuer-uri: http://localhost:8180/auth/realms/myrealm

Let's start the application by running the following command at the root directory of your
project:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch7/springboot/backend

$./mvnw spring-boot:run

126 Integrating Applications with Keycloak

Your application should start and be available at http://localhost:8080. For
accessing resources at the running application, you now need an access token. To obtain
one, use the following command:

$ export access_token=$(\

 curl -X POST http://localhost:8180/auth/realms/myrealm/
protocol/openid-connect/token \

 --user mybackend:CLIENT_SECRET\

 -H 'content-type: application/x-www-form-urlencoded' \

 -d 'username=alice&password=alice&grant_type=password' | jq
--raw-output '.access_token' \

)

Note
You should change the reference to CLIENT_SECRET in the preceding
command with the secret generated by Keycloak for the mybackend client.
For that, go the mybackend client details page in Keycloak and click on the
Credentials tab. The client secret should be available from the Secret field in
this tab.

Once you run this command, an access token will be saved in an access_token
environment variable, and you can now access the application:

$ curl -X GET \

 http://localhost:8080 \

 -H "Authorization: Bearer "$access_token

As a result, you should expect the following output from that command:

$ Greetings from Spring Boot!

Now, if you try to access the application without a Bearer token or use an invalid one,
you should get a 401 status code, indicating that your request was forbidden:

$ curl -v -X GET \

 http://localhost:8080

Integrating with Java applications 127

In this section, you learned about how to use Spring Security's OAuth2/OpenID libraries
to integrate with Keycloak. We only covered the main steps for setting up Spring Security
here so that you can authenticate your users through Keycloak. For more details, please
check out the Spring Security documentation at https://docs.spring.io/
spring-security-oauth2-boot/docs/current/reference/html5/.

In the next section, we are going to look at Keycloak adapters, which we can use as an
alternative in case none of the integration options we've presented so far work for you.

Using Keycloak adapters
In addition to the Keycloak server itself, there are several client libraries under the
Keycloak umbrella that provide integration with different languages, frameworks, web
containers, and application servers.

Also known as Keycloak adapters, these client implementations are meant for integrating
with Keycloak, so you should not expect from them to work with other OAuth2 and
OpenID Connect servers.

By being specific to Keycloak, you should expect a deeper integration from Keycloak
adapters with Keycloak where specific features or capabilities can't be found in any other
standard compliant client implementation.

Tip
It may sound like these adapters are the best you can get for integrating with
Keycloak, but you should always prefer using generic OpenID Connect
libraries, as well as whatever comes for free from the stack you are using,
as mentioned in the Choosing an integration option section.

We are not going to go deeper into all the Keycloak adapters. Instead, we will quickly
iterate over each one and point you to their respective documentation and examples.

In general, these adapters rely on hooks provided by the underlying programming
language, framework, web container, and application server they are related to, so you
should expect differences when using each adapter. However, regardless of the adapter you
choose, you will be using a keycloak.json file to configure the adapter and how your
application will be interacting with Keycloak to authenticate, authorize, and log out users.

From a configuration perspective, you should expect the same configuration experience
across the different adapters. However, you may experience some gaps in some of them
due to limitations and constraints from the underlying runtime.

https://docs.spring.io/spring-security-oauth2-boot/docs/current/reference/html5/
https://docs.spring.io/spring-security-oauth2-boot/docs/current/reference/html5/

128 Integrating Applications with Keycloak

In the following sections, you are going to learn about the different types of adapters and
the types of applications they are meant for. We are not going to deep dive into the details
because you will find the comprehensive documentation and examples for all the supported
adapters in the Keycloak Securing Applications documentation at https://www.
keycloak.org/docs/latest/securing_apps/ and in the Keycloak Quickstarts
repository at https://github.com/keycloak/keycloak-quickstarts.

Using WildFly and the Red Hat Enterprise Application Platform (EAP)
The Keycloak WildFly and EAP adapter are targeted at applications that have been
deployed to the WildFly JEE application server or to the Red Hat EAP.

You can use this adapter by following two main patterns:

• Embedded configuration

• Managed configuration

The embedded configuration means that the adapter's configuration is defined in a
keycloak.json file within your application.

In the managed configuration, the adapter's configuration is external to your application
and managed through the Keycloak adapter subsystem.

The main difference between these two approaches is whether you need to redeploy your
application due to configuration changes. In the managed configuration, changes to the
configuration are made via the application server management interfaces.

However, the managed configuration is usually not in sync with the latest configuration
options that you can set, and that makes the embedded configuration more appealing.

For more details about this adapter, check out the Keycloak WildFly and EAP adapter
documentation:

https://www.keycloak.org/docs/latest/securing_apps/#jboss-eap-
wildfly-adapter

Using JBoss Fuse
For more details about this adapter, check out the Keycloak Fuse adapter documentation:

https://www.keycloak.org/docs/latest/securing_apps/#_fuse7_
adapter

https://www.keycloak.org/docs/latest/securing_apps/
https://www.keycloak.org/docs/latest/securing_apps/
https://github.com/keycloak/keycloak-quickstarts
https://www.keycloak.org/docs/latest/securing_apps/#_fuse7_adapter
https://www.keycloak.org/docs/latest/securing_apps/#_fuse7_adapter

Integrating with JavaScript applications 129

Using a web container
For more details about this adapter, check out the following documentation:

• Keycloak Tomcat adapter documentation: https://www.keycloak.org/
docs/latest/securing_apps/#_tomcat_adapter

• Keycloak Jetty adapter documentation: https://www.keycloak.org/docs/
latest/securing_apps/#_jetty9_adapter

Desktop applications
The Keycloak desktop adapter is a handy library that leverages Keycloak's capabilities to
authenticate users using a Java desktop application.

It relies on the system's default browser to redirect users to Keycloak to authenticate,
and also allows you to have access to tokens issued by Keycloak once the user has been
successfully authenticated.

By using this adapter, you should be able to authenticate your users using Kerberos tickets,
where Keycloak acts a broker to your existing Kerberos infrastructure.

For more details about this adapter, check out the following Keycloak desktop adapter
documentation:

https://www.keycloak.org/docs/latest/securing_apps/#_
installed_adapter.

In this section, you learned about the different options for integrating and protecting
your Java application with Keycloak. You learned how to leverage some of the capabilities
provided by two common frameworks, Quarkus and Spring Boot, and that Keycloak
provides client implementations for applications running on any of the supported web
containers and application servers, as well as how to integrate Keycloak with desktop
applications.

In the upcoming sections, we are going to look at more integration options when it comes
to using different programming languages.

Integrating with JavaScript applications
You will find different OpenID Connect client implementations for JavaScript that you
can use to integrate Keycloak with your Single-Page Applications (SPA).

In this section, we are going to cover how to use the Keycloak JavaScript adapter, a client
implementation provided by Keycloak that is targeted at JavaScript-based applications
running in a browser, as well as for those using React.JS or React Native.

https://www.keycloak.org/docs/latest/securing_apps/#_jetty9_adapter
https://www.keycloak.org/docs/latest/securing_apps/#_jetty9_adapter

130 Integrating Applications with Keycloak

The code examples for this section are available from the following GitHub repository:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch7/keycloak-js-adapter

In the preceding directory, you will find all the code you'll need to follow and run the
upcoming examples.

The first step to configuring your application with the Keycloak JS adapter is adding the
keycloak.js library to your page:

<script type="text/javascript" src="KC_URL/js/keycloak.js"></
script>

Here, KC_URL is the URL where your Keycloak server is available, such as http://
localhost:8180/auth if you are running it locally.

Tip
By fetching the library from the server as opposed to embedding it in your
application, you are guaranteed to always be using the version of the library
that is compatible with the Keycloak server your application is talking to.

Now that the library is available on your page, you need to create a keycloak object with
the client's information and initialize it when the browser window is loaded:

keycloak = new Keycloak({ realm: 'myrealm', clientId:
'mybrowserapp' });

keycloak.init({onLoad: 'login-required'}).success(function () {

 console.log('User is now authenticated.');

 profile();

}).error(function () {

 window.location.reload();

});

Similarly, to other types of adapters provided by Keycloak, the client information can also
be fetched from a keycloak.json file at the root path of your application.

The init method is responsible for bootstrapping the adapter and returning a promise
that we can use to perform actions, based on whether the user is authenticated or when
an error occurs during this process.

Integrating with JavaScript applications 131

When your page is loaded for the first time, the adapter is going to check whether the user
is already authenticated. If they aren't authenticated yet, the adapter is going to redirect
the user to Keycloak. Once the user is successfully authenticated and returns to your
application, the adapter will run the function defined by the success callback, which,
in turn, is going to show a page with information about the user.

Now, let's start the application by running the following code:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch7/keycloak-js-adapter

$ npm install

$ npm start

Your application should start and be available at http://localhost:8080. Try
accessing that URL and logging into Keycloak using the credentials for the user we
created at the beginning of this chapter.

If the integration is working properly, you should be redirected to Keycloak to
authenticate. After providing the user credentials, you should be redirected back to the
application, now as an authenticated user.

If your application needs to access protected resources in some backend server using a
bearer token, you can easily obtain the access token from the keycloak object and pass
it over when you make HTTP requests:

function sendRequest() {

 var req = new XMLHttpRequest();

 req.onreadystatechange = function() {

 if (req.readyState === 4) {

 output(req.status + '\n\n' + req.responseText);

 }

 }

 req.open('GET', 'https://myservice.url', true);

 req.setRequestHeader('Authorization', 'Bearer ' + keycloak.
token);

 req.send();

}

132 Integrating Applications with Keycloak

The Keycloak JavaScript adapter allows you to quickly integrate with Keycloak. This
library was built due to the lack of good JavaScript libraries for OpenID Connect at the
time it was created, which does not hold true anymore due to the number of libraries
available today. This adapter is actively maintained under the Keycloak umbrella and is
well-documented, but still specific to integrating with Keycloak as opposed to being a
generic and fully compliant OpenID Connect library.

Note
Using OpenID Connect and OAuth2 in browser-based applications is
surrounded by security concerns due to their nature. When it comes to
choosing a good library, you should follow the best practices as per the OAuth2
Security Best Practices for Browser-Based Apps, available at https://
tools.ietf.org/html/draft-ietf-oauth-browser-
based-apps.

We have only scratched the surface here and there is far more you can do with it, such as
obtaining tokens issues from the server, refresh tokens or automatically doing this based
on a certain period of time, and logouts.

For more details about the Keycloak JavaScript adapter, check out the documentation
at https://www.keycloak.org/docs/latest/securing_apps/#_
javascript_adapter.

In the next section, we are going to continue looking at how to integrate with Node.js
applications.

Integrating with Node.js applications
For Node.js applications, Keycloak provides a specific adapter called Keycloak Node.js
Adapter. Like other adapters, it is targeted at integration with Keycloak rather than
a generic OpenID Connect client implementation.

The Keycloak Node.js adapter hides most of the internals from your application through a
simple API that you can use to protect your application resources. The adapter is available
as an npm package and can be installed into your project as follows:

$ npm install keycloak-connect

The code examples for this section are available from the following GitHub repository:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch7/nodejs

https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps
https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps
https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps

Integrating with Node.js applications 133

In the preceding directory, you will find a frontend directory and a backend directory,
which contain all the code you'll need to follow and run the following examples.

Now that you have installed the keycloak-connect dependency on your application,
we are going to look at how to configure your application as a client and as a resource
server.

Creating a Node.js client
Once you've installed the keycloak-connect package, you need to change your
application code so that it creates a keycloak object:

var keycloak = new Keycloak({ store: memoryStore });

Since we are protecting a frontend application, we want to create a local session for our
users so that they are not redirected to Keycloak once they are authenticated. For that,
note that the Keycloak object is created with a memoryStore:

var memoryStore = new session.MemoryStore();

Just like other Keycloak adapters, the configuration is read from a keycloak.json file
containing the client configuration:

{

 "realm": "myrealm",

 "auth-server-url": "${env.KC_URL:http://localhost:8180}",

 "resource": "mywebapp",

 "credentials" : {

 "secret" : CLIENT_SECRET

 }

}

Note
You should change the reference to CLIENT_SECRET in the keycloak.
json file with the secret that was generated by Keycloak for the mywebapp
client. For that, go the mywebapp client details page in Keycloak and click on
the Credentials tab. The client secret should be available from the Secret field
in this tab.

134 Integrating Applications with Keycloak

The next step is to install the adapter as a middleware so that you can use it to protect the
resources in your application:

app.use(keycloak.middleware());

Now that the middleware has been installed, protecting the resources in your application
should be as simple as doing the following:

app.get('/', keycloak.protect(), function (req, res) {

 res.setHeader('content-type', 'text/plain');

 res.send('Welcome!');

});

The keycloak.protect method automatically adds the necessary capabilities to
your endpoints, to check whether users are authenticated yet or not so that they can
be redirected to Keycloak if not. After successful authentication, the middleware will
automatically process the response from Keycloak and establish a local session for the
user based on the tokens issued by the server.

Now, let's start the application:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch7/nodejs/frontend

$ npm install

$ npm start

Your application should start and be available at http://localhost:8080. Try to
access that URL and log into Keycloak using the credentials for the user we created at
the beginning of this chapter.

If the integration is working properly, you should be redirected to Keycloak to
authenticate. After providing the user credentials, you should be redirected back
to the application, now as an authenticated user.

Creating a Node.js resource server
The code examples presented in this server are available from the following GitHub
repository:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch7/nodejs/backend

Integrating with Node.js applications 135

For backend applications, you can create a keycloak object as follows:

var keycloak = new Keycloak({});

Compared to frontend applications, we do not need to track user sessions; instead, we
must rely on bearer tokens to authorize requests.

Similar to the previous example, we also need to update the keycloak.json file with
the client configuration:

{

 "realm": "myrealm",

 "bearer-only": true,

 "auth-server-url": "${env.KC_URL:http://localhost:8180/
auth}",

 "resource": "mybackend"

}

In this configuration, we are explicitly marking this application so that it only accepts
bearer tokens, forcing the adapter to check whether a request can access resources in the
application by performing local validations and introspections on the token.

The next step is to install the adapter as a middleware so that you can use it to protect the
resources in your application:

app.use(keycloak.middleware());

Now that the middleware has been installed, protecting the resources in your application
should be as simple as doing the following:

app.get('/protected', keycloak.protect(), function (req, res) {

 res.setHeader('content-type', 'text/plain');

 res.send('Access granted to protected resource');

});

The keycloak.protect method automatically adds bearer token authorization to your
endpoints so that requests containing an authorization header with a valid token can fetch
the protected resources in your application.

136 Integrating Applications with Keycloak

Now, let's start the application:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch7/nodejs/backend

$ npm install

$ npm start

Your application should start and be available at http://localhost:8080. To access
the resources at the running application, you will need an access token. To obtain one, use
the following command:

$ export access_token=$(\

 curl -X POST http://localhost:8180/auth/realms/myrealm/
protocol/openid-connect/token \

 --user mybackend:CLIENT_SECRET\

 -H 'content-type: application/x-www-form-urlencoded' \

 -d 'username=alice&password=alice&grant_type=password' | jq
--raw-output '.access_token' \

)

Note
You should change the reference to CLIENT_SECRET in the preceding
command with the secret generated by Keycloak for the mybackend client.
For that, go the mybackend client details page in Keycloak and click on the
Credentials tab. The client secret should be available from the Secret field in
this tab.

Once you've run that command, an access token will be saved in an access_token
environment variable, which means you can now access the application:

$ curl -v -X GET \

 http://localhost:8080/protected \

 -H "Authorization: Bearer "$access_token

As a result, you should expect the following output:

$ Access granted to protected resource

Integrating with Python applications 137

Now, if you try to access the application without a Bearer token or use an invalid one,
you should get a 403 status code, indicating that your request was forbidden:

$ curl -v -X GET \

 http://localhost:8080/protected

There is much more you can do with the Keycloak Node.js adapter in terms of
configuration and usage. You should be able to use keycloak.protect to perform
role-based access controls and obtain the tokens representing the authenticated subject.

The Keycloak Node.js adapter is actively maintained under the Keycloak umbrella, but
it's still specific to integrating with Keycloak as opposed to being a generic and fully
compliant OpenID Connect library.

For more details about the Keycloak JavaScript adapter, check out the available
documentation at https://www.keycloak.org/docs/latest/securing_
apps/#_nodejs_adapter.

In this section, you learned how to configure your Node.js application so that you can
integrate with Keycloak using the keycloak-connect library. Next, you will learn
how to integrate Python applications with Keycloak.

Integrating with Python applications
Python applications that use Flask can easily enable OpenID Connect and OAuth2 to
applications through the Flask-OIDC library. It can be used to protect client as well as
resource server applications.

Tip
If you are looking for a library to enable OpenID Connect support for
command-line interfaces, there are different OpenID Connect client
implementations you can use at https://openid.net/developers/
certified/.

To install Flask-OIDC, run the following command:

$ pip install Flask-OIDC

https://www.keycloak.org/docs/latest/securing_apps/#_nodejs_adapter
https://www.keycloak.org/docs/latest/securing_apps/#_nodejs_adapter
https://openid.net/developers/certified/
https://openid.net/developers/certified/

138 Integrating Applications with Keycloak

The code examples for this section are available from the following GitHub repository:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch7/python

In the preceding directory, you will find a frontend directory and a backend directory
containing all the code you will need to follow and run the following examples.

In the next section, we are going to start looking at how to enable a web application in
order to authenticate users using Keycloak.

Creating a Python client
The code examples presented here are available from the following GitHub repository:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch7/python/frontend

To enable authentication to your web application, you will need a configuration file called
oidc-config.json at the root path of your program that contains some metadata
about the endpoints and client information from Keycloak:

{

 "web": {

 "client_id": "mywebapp",

 "client_secret":CLIENT_SECRET,

 "auth_uri": "http://localhost:8180/auth/realms/myrealm/
protocol/openid-connect/auth",

 "token_uri": "http://localhost:8180/auth/realms/myrealm/
protocol/openid-connect/token",

 "issuer": "http://localhost:8180/auth/realms/myrealm",

 "userinfo_uri": "http://localhost:8180/auth/realms/myrealm/
protocol/openid-connect/userinfo",

 "redirect_uris": [

 "http://localhost:8080/oidc/callback"

]

 }

}

Integrating with Python applications 139

Note
You should change the reference to CLIENT_SECRET in the preceding
configuration with the secret generated by Keycloak for the mywebapp client.
For that, go the mywebapp client details page in Keycloak and click on the
Credentials tab. The client secret should be available from the Secret field in
this tab.

Finally, create an application by creating an app.py file with the following content:

from flask import Flask

app = Flask(__name__)

app.secret_key = 'change_me'

app.config['OIDC_CLIENT_SECRETS'] = 'oidc-config.json'

app.config['OIDC_COOKIE_SECURE'] = False

from flask_oidc import OpenIDConnect

oidc = OpenIDConnect(app)

@app.route('/')

@oidc.require_login

def index():

 if oidc.user_loggedin:

 return 'Welcome %s' % oidc.user_getfield('preferred_
username')

 else:

 return 'Not logged in'

To start the application, run Flask and configure it to run on port 8080:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch7/python/frontend

$ flask run -p 8080

Your application should start and be available at http://localhost:8080. Try to
access that URL and log into Keycloak using the credentials for the user we created at the
beginning of this chapter.

If the integration is working properly, you should be redirected to Keycloak to
authenticate. After providing the user credentials, you should be redirected back to the
application, now as an authenticated user.

140 Integrating Applications with Keycloak

Creating a Python resource server
The code examples presented here are available from the following GitHub repository:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch7/nodejs/backend

To protect the resources in your application, you need to annotate your endpoints with @
oidc.accept_token():

import json

from flask import Flask, g

app = Flask(__name__)

app.secret_key = 'change_me'

app.config['OIDC_CLIENT_SECRETS'] = 'oidc-config.json'

app.config['OIDC_RESOURCE_SERVER_ONLY'] = 'true'

from flask_oidc import OpenIDConnect

oidc = OpenIDConnect(app)

@app.route('/, methods=['POST'])

@oidc.accept_token(True)

def api():

 return json.dumps({'hello': 'Welcome %s' % g.oidc_token_
info['preferred_username']})

Create an oidc-config.json file at the root path of your program with some
metadata about the endpoints and client information from Keycloak:

{

 "web": {

 "client_id": "mybackend",

 "client_secret": CLIENT_SECRET,

 "auth_uri": "http://localhost:8180/auth/realms/myrealm/
protocol/openid-connect/auth",

 "token_uri": "http://localhost:8180/auth/realms/myrealm/
protocol/openid-connect/token",

 "issuer": "http://localhost:8180/auth/realms/myrealm",

 "token_introspection_uri": "http://localhost:8180/auth/
realms/myrealm/protocol/openid-connect/token/introspect",

 "redirect_uris": [

Integrating with Python applications 141

 "http://localhost:8080/oidc/callback"

]

 }

}

Note
You should change the reference to CLIENT_SECRET in the preceding
configuration with the secret generated by Keycloak for the mybackend client.
For that, go the mybackend client details page in Keycloak and click on the
Credentials tab. The client secret should be available from the Secret field in
this tab.

To start the application, run flask and configure it to run on port 8080:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch7/python/backend

$ flask run -p 8080

Your application should start and be available at http://localhost:8080. To access
the resources at the running application, you will need an access token. To obtain one, use
the following command:

$ export access_token=$(\

 curl -X POST http://localhost:8180/auth/realms/myrealm/
protocol/openid-connect/token \

 --user mybackend:CLIENT_SECRET\

 -H 'content-type: application/x-www-form-urlencoded' \

 -d 'username=alice&password=alice&grant_type=password' | jq
--raw-output '.access_token' \

)

Note
You should change the reference to CLIENT_SECRET in the preceding
command with the secret generated by Keycloak for the mybackend client.
For that, go the mybackend client details page in Keycloak and click on the
Credentials tab. The client secret should be available from the Secret field in
this tab.

142 Integrating Applications with Keycloak

Once you've run that command, an access token will be saved in an access_token
environment variable, which means you can now access the application:

$ curl -v -X POST -d 'access_token='$access_token \

 -H "Content-Type: application/x-www-form-urlencoded" \

 http://localhost:8080

Now, if you try to access the application without a Bearer token or use an invalid one,
you should get a 401 status code, indicating that your request was forbidden:

$ curl -v -X POST \

 http://localhost:8080

@oidc.accept_token() does not support bearer tokens sent via the Authorization
HTTP header, as per RFC 6750 - Bearer Token Usage, but they can be sent as parameters
when you're making GET and POST requests.

This is not in compliance with the standards and is not the best way to send tokens to
applications, especially if you're using the GET HTTP method.

Flask-OIDC is one of the available options for integrating Python applications with
Keycloak. It provides support for protecting applications acting as clients, as well as
resource servers.

The fact that bearer tokens require HTTP requests to pass the token via parameters is
probably something you want to change. This will help you follow the best practices
surrounding bearer token authorization.

The library also supports methods that are specific to integrating with Keycloak, such as
checking whether a token is carrying a specific client role.

In this section, you learned about the possibility to integrate Python applications with
Keycloak using the Flask-OIDC library. If this library is not part of your technology stack,
you can still leverage any other library or framework for the same purpose, as long it is
compliant with the OpenID Connect specifications.

In the next section, we are going to look an integration option related to the proxied
architectural style, which is useful if none of the options that have been presented so far
are enough to address your requirements.

Using a reverse proxy 143

Using a reverse proxy
By running in front of your application, you can use reverse proxies to add additional
capabilities to your application. The most common proxies provide support for OpenID
Connect where enabling authentication is a matter of changing the proxy configuration.

Whether using a proxy is better than having the integration code and configuration within
your application really depends on the use case and, depending on the circumstances,
it might be your only option or the option that will save you precious time from
implementing your own integration code, even if you have a library available for the
technology stack your application is using.

Nowadays, OpenID Connect and OAuth2 support is a mandatory capability for proxies,
and you find support for these protocols in most of them, regardless of whether they're
open source or proprietary. As an example, two of the most popular proxies, Apache
HTTP Server and Nginx, provide the necessary extensions for these protocols.

In this section, we are going to cover how to set up Apache HTTP Server in front of our
application so that we can integrate it with Keycloak and authenticate users using mod_
auth_oidc. The documentation on how to install it is available at https://github.
com/zmartzone/mod_auth_openidc.

Once the module has been installed, we need to configure the server so that we can
proxy our application and use the module to make sure users are authenticated through
Keycloak:

LoadModule auth_openidc_module modules/mod_auth_openidc.so

ServerName localhost

<VirtualHost *:80>

 ProxyPass / http://localhost:8000/

 ProxyPassReverse / http://localhost:8000/

 OIDCCryptoPassphrase CHANGE_ME

 OIDCProviderMetadataURL http://localhost:8180/auth/realms/
myrealm/.well-known/openid-configuration

 OIDCClientID mywebapp

 OIDCClientSecret CLIENT_SECRET

 OIDCRedirectURI http://localhost/callback

https://github.com/zmartzone/mod_auth_openidc
https://github.com/zmartzone/mod_auth_openidc

144 Integrating Applications with Keycloak

 OIDCCookieDomain localhost

 OIDCCookiePath /

 OIDCCookieSameSite On

 <Location />

 AuthType openid-connect

 Require valid-user

 </Location>

</VirtualHost>

Note
You should change the reference to CLIENT_SECRET in the preceding
configuration with the secret generated by Keycloak for the mywebapp client.
For that, go the mywebapp client details page in Keycloak and click on the
Credentials tab. The client secret should be available from the Secret field in
this tab.

Now, let's start the application:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch7/reverse-proxy/app/

$ npm install

$ npm start

Your application should start and be available at http://localhost. Try to access that
URL and log into Keycloak using the credentials for the user we created at the beginning
of this chapter.

If the integration is working properly, you should be redirected to Keycloak to
authenticate. After providing the user credentials, you should be redirected back to the
application, now as an authenticated user.

Try not to implement your own integration
OAuth2 and OpenID Connect are simple protocols, and their simplicity is, in part,
due to the effort that's been made to make the protocol easier to implement by client
applications. You may feel tempted to write your own code to integrate with Keycloak,
but this is usually a bad choice.

Summary 145

You should rely on well-known and widely used libraries, frameworks, or capabilities
provided by the platform where your application is deployed. By doing that, you can focus
on your business and, most importantly, delegate to people specialized and focused on
these standards to keep their implementations always up to date with the latest versions of
the specifications, as well as with any fixes for security vulnerabilities.

Also, remember that the more people there are using an implementation, the less likely
it is that you will face bugs and security vulnerabilities that can impact not only your
application, but also your organization.

Summary
In this chapter, you learned how to integrate Keycloak with different types of applications,
depending on the technology stack they are using, as well as the platform they are
running. You also learned about the importance of using well-known and established
open standards and what that means in terms of interoperability. This means you are free
to choose the OpenID Connect client implementation that better serves your needs, while
still respecting compliance and keeping your applications up to date with the OAuth2 and
OpenID Connect best practices and security fixes.

Finally, you learned why you should avoid implementing your own integration, as well as
the things you should consider when you're looking for alternatives, if none of the other
options work for you.

In the next chapter, you will learn about the different authorization strategies you can use
to protect your application resources.

Questions
1. What is the best way to integrate with Keycloak?

2. Should I always consider using the Keycloak adapters if they fit into my technology
stack?

3. How should you secure a native or mobile application with Keycloak?

4. What is the best integration option for cloud-native applications?

Further reading
For more information on the topics that were covered in this chapter, please refer to the
following links:

• Certified OpenID Connect Implementations: https://openid.net/
developers/certified

• OAuth 2.0 for Browser-Based Apps: https://tools.ietf.org/html/
draft-ietf-oauth-browser-based-apps-07

• OAuth 2.0 Security Best Current Practice: https://tools.ietf.org/html/
draft-ietf-oauth-security-topics-16

• Keycloak Quickstarts: https://github.com/keycloak/keycloak-
quickstarts

• Securing Applications and Services Guide: https://www.keycloak.org/
docs/latest/securing_apps

https://openid.net/developers/certified
https://openid.net/developers/certified
https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps-07
https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps-07
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-16
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-16
https://github.com/keycloak/keycloak-quickstarts
https://github.com/keycloak/keycloak-quickstarts
https://www.keycloak.org/docs/latest/securing_apps
https://www.keycloak.org/docs/latest/securing_apps

8
Authorization

Strategies
In the previous chapter, you learned about the options for integrating with Keycloak using
different programming languages, frameworks, and libraries. You learned how to obtain
tokens from Keycloak and use these tokens to authenticate users.

This chapter will focus on the different authorization strategies you can choose from and
how to leverage them to enable authorization to your applications using different access
control mechanisms such as role-based access control (RBAC), group-based access
control (GBAC), OAuth2 scopes, and attribute-based access control (ABAC), as well
as learning how to leverage Keycloak as a centralized authorization server to externalize
authorization from your applications. You will also learn about the differences between
these options and how to choose the best strategy for you.

By the end of this chapter, you will have a good understanding of how you can leverage
Keycloak authorization capabilities and choose the right authorization strategy for
your applications.

We will be covering the following topics in this chapter:

• Understanding authorization

• Using RBAC

• Using GBAC

148 Authorization Strategies

• Using OAuth2 scopes

• Using ABAC

• Using Keycloak as a centralized authorization server

Understanding authorization
Any authorization system will try to help you to answer the question of whether a user
can access a resource and perform actions on it.

The answer to this question usually involves questions such as the following:

• Who is the user?

• What data is associated with the user?

• What are the constraints for accessing the resource?

By having the answers to these three questions, we can then decide if access should
be granted based on the data associated with the user, and the constraints that govern
access to the resource.

As an identity provider, Keycloak issues tokens to your applications. As such, applications
should expect authorization data from these tokens. Tokens issued by Keycloak carry
information about the user and the context in which the user was authenticated;
the context may contain information about the client the user is using or any other
information gathered during the authentication process.

The constraints, however, may involve evaluating different types of data, from a single
attribute the user has, to a set of one or more roles, or even data associated with the
current transaction. By relying on the information carried by tokens, applications can
opt for different access control mechanisms, depending on how they interpret the claims
within a token when enforcing access to protected resources.

There are two main authorization patterns for implementing and enforcing the access
constraints imposed on protected resources. The first, and probably the most common,
is to enforce access control at the application level, either declaratively – using some
metadata and configuration – or programmatically. On the other hand, applications can
also delegate access decisions to an external service and enforce access control based on
the decisions taken by this service, a strategy also known as centralized authorization.
These two patterns are not mutually exclusive, though, and it is perfectly fine to use both
in your applications. We are going to cover that in more detail later when understanding
how to use Keycloak as a centralized authorization server.

Using RBAC 149

As we will see in the following sections, Keycloak is very flexible and allows you to
exchange any information you might need to protect resources at the application level
using different access control mechanisms. It also allows you to choose from different
authorization patterns for managing and enforcing access constraints.

In the next sections, we will be looking at how Keycloak can be used to enable different
authorization strategies for your applications.

Using RBAC
Probably one of the most-used access control mechanisms, RBAC allows you to protect
resources depending on whether the user is granted a role. As you learned in previous
chapters, Keycloak has built-in support for managing roles, as well as for propagating
those roles to your applications using tokens.

Roles usually represent a role a user has in either your organization or in the context of
your application. As an example, users can be granted an administrator role to indicate
they act as someone allowed to access and perform actions on any resource in your
application. Or, they can be granted a people-manager role to indicate that they act as
someone allowed to access and perform actions on resources related to their subordinates.

As you learned from previous chapters, Keycloak has two categories of roles: realm and
client roles. Roles defined at the realm level are called realm roles. These roles usually
represent the user's role within an organization, regardless of the different clients that
co-exist in a realm.

On the other hand, client roles are specific to a client, and their meaning depends on the
semantics used by the client.

The decision of when to define a role as a realm or client role depends on the scope the
role has. If it spans multiple clients in a realm while keeping the same meaning, then a
realm role makes sense. Otherwise, if only a specific client is supposed to interpret the
role, having it as a client role makes more sense.

When using roles, you should also avoid role explosion. In other words, too many roles
in your system makes things hard to manage. One way to avoid this is to create roles
very carefully, having in mind the scope they are related to (realm- or client-wide) and
the granularity of the permissions associated with them in your applications. The more
fine-grained the scope of a role is, the more roles you will have in your system. As a rule
of thumb, do not use roles for fine-grained authorization in your system. They are just not
meant for that.

150 Authorization Strategies

In Keycloak, you can grant roles to groups. That is a powerful capability where members
of a group are automatically granted roles for the group they belong to. By leveraging
this capability, you should be able to overcome some of the role management issues by
avoiding granting privileges individually to many users.

Keycloak also provides the concept of composite roles, a special type of role that chains
other roles, where a user granted a composite role is automatically granted any role in
this chain (a regular role or even another composite role). Although it is a powerful and
unique feature that Keycloak has, you should use it carefully to avoid performance issues
– such as when chaining multiple composite roles – as well as manageability issues due to
the proliferation of roles in your system and the granularity of the permissions associated
with them. As a recommendation, if you need to grant multiple roles to your users, you
should consider using groups and assigning roles to these groups. This is a more natural
permission model than using composite roles.

The way you model your system roles also has an impact on the size of tokens issued by
Keycloak. Ideally, tokens should contain the minimum set of roles the client needs to
authorize their users either locally or when accessing another service that consumes
these tokens.

Tip
Keep in mind that the more roles your system has, the more complex it will
become to maintain and manage.

In this topic, you learned about the main concepts when using RBAC in Keycloak. You
also learned about some recommendations and considerations when using roles that
may impact your applications in terms of maintainability and performance.

In the next topic, we will be looking at how Keycloak helps you to implement GBAC
and recommendations when using it in applications.

Using GBAC
Keycloak allows you to manage groups for your realms, where users are put into
groups to represent their relationship with a specific business unit in your organization
(mapping your organization tree) or just group users together according to their role in
your applications, as when you want to have a specific group for users that can perform
administrative operations.

Using GBAC 151

Usually, groups and roles are usually used interchangeably, and this causes some confusion
when defining a permission model. In Keycloak, there is a clear separation between these
two concepts where, different than roles, groups are meant to organize your users and to
grant permissions according to the roles associated with a group.

By allowing assigning roles to groups, Keycloak makes it a lot easier to manage roles for
multiple users without forcing you to grant and revoke roles for each individual user in
your realm.

Groups in Keycloak are hierarchical, and when tokens are issued, you can traverse the
hierarchy by looking at the path of the group. For instance, suppose you have a human
resource group. As a child of this group, you have a manager group. When Keycloak is
including information about groups into tokens, you should expect this information in the
following format: /human resource/manager. This information should be available
for every token issued by the server where the subject (the user) is a member of the group.

Different from roles, group information is not automatically included in tokens. For that,
you should associate a specific protocol mapper with your client (or a client scope with
the same mapper).

In the next sections, you will learn how to include group information about users
into tokens.

Mapping group membership into tokens
Different from roles, there is no default protocol mapper that automatically includes group
information in tokens. To do that, we need to create a protocol mapper to your client.

Tip
Alternatively, you can also create a client scope and assign it to any client in
your realm.

Let's start by creating the myclient client:

• Client ID: myclient

Now, create a user in Keycloak:

• Username : alice

152 Authorization Strategies

Navigate to the myclient settings and click on the Mappers tab. In this tab, click on the
Create button to create a new mapper:

Figure 8.1 – Creating a group membership protocol mapper

On this page, create a new mapper with the following information:

• Name: groups

• Mapper Type: Group Membership

• Token Claim Name: groups

Now, click on the Save button to create the mapper. You should see the following:

Figure 8.2 – Listing the mappers associated with a client

Using GBAC 153

Let's now create a group for this user. For that, click on the Groups link in the left-hand
menu:

Figure 8.3 – Listing groups

To create a new group, click on the New button:

Figure 8.4 – Creating a new group

Let's create a group named Project Management Office. Type this name in the Name field
and then click on the Save button.

Now, let's add the alice user as a member of this group. For that, navigate to the alice user
details page and click on the Groups tab:

Figure 8.5 – Managing group membership for a user

154 Authorization Strategies

From this page, you can look at the group hierarchy created for a realm and select the
group that the user should be a member of. Let's choose the Project Management Office
group from the Available Groups list and then click on the Join button to associate the
user as a member of the group:

Figure 8.6 – Assigning users as a member of a group

The alice user is now a member of Project Management Office.

Let's now go back to the myclient details page and use the evaluation tool to see how
group information will be added to tokens. Click on the Client Scopes tab. In this tab,
click on the Evaluate sub-tab:

Figure 8.7 – Using the evaluation tool to check group information

Using GBAC 155

Search for the alice user in the User field and then click Evaluate; once done, you
should see the following:

Figure 8.8 – Evaluation result

Click on the Generated Access Token tab at the bottom of the page to see if the generated
token includes information about the groups that the user belongs to:

{

 ...

 "groups": [

 "/Project Management Office"

],

 ...

}

As you can see, the generated token now includes a groups claim with a list of groups
the user is a member of. In this case, the user alice is a member of a single Project
Management Office group.

In this section, you learned how to manage groups and how to make a user a member of
a group. You also learned how to use a protocol mapper to include group information into
tokens so that your application can use this information to enforce access control using
the groups that a user belongs to.

In the next section, we are going to look at how your applications can use custom claims
to enforce access to their resources.

156 Authorization Strategies

Using OAuth2 scopes
At its core, Keycloak is an OAuth2 authorization server. In pure OAuth2, there are two
main types of applications: clients and resource servers.

As you learned from previous chapters about OAuth2, access tokens are issued to clients
so that they can act on behalf of a user, where these tokens are limited to a set of scopes
based on the user consent.

On the other hand, resource servers are the consumers of access tokens, which they need
to introspect to decide whether the client can access a protected resource on the resource
server accordingly to the scopes granted by the user.

As you can see, authorization using OAuth2 scopes is solely based on user consent. It
is the best strategy when you want third parties integrating with your APIs so that you
delegate to your users the decision on whether a third-party application can access
their resources. In this strategy, the main point is to protect user information rather
than regular resources at the resource server. There is a fundamental difference between
using OAuth2 scopes and the other authorization strategies you learned so far, mainly in
terms of the entity you are protecting your system from. By using OAuth2 scopes, you
are protecting your system from clients, whereas when using RBAC, for instance, you
are protecting your system from users. In a nutshell, you are basically checking whether
a client is allowed to perform some action or access a resource on behalf of the user, the
usual delegation use case solved by OAuth2.

By default, clients in Keycloak are configured to not ask for user consent. The reason for
that is that Keycloak is usually used in enterprise use cases. Different from the delegation
use case, there is no need for user consent because clients are within the enterprise
boundaries and the resources they need to access do not depend on any consent from
users but on the permissions granted to them by a system administrator. Here, clients are
more interested in authenticating users, where the scope of access is defined according
to the roles, groups, or even specific attributes associated with a user.

In this topic, you learned about the concepts of authorizing access using OAuth2 scopes.
You also learned that this authorization strategy is more suitable for allowing access from
third parties to information about your users through your APIs.

In the next topic, we will look at how to authorize access based on claims mapped
to tokens.

Using ABAC 157

Using ABAC
When users authenticate through Keycloak, tokens issued by the server contain important
information about the authentication context. Tokens contain information about the
authenticated user and the client to which tokens were issued, as well as any other
information that can be gathered during the authentication process. With that in mind,
any information carried by a token can be used to authorize access to your applications.
They are just claims mapped to tokens.

ABAC involves using the different attributes associated with an identity (represented by
a token), as well as information about the authentication context, to enforce access to
resources. It is probably the most flexible access control mechanism you can choose, with
natural support for fine-grained authorization. Together with token-based authorization,
applications using Keycloak can easily enable ABAC to protect their resources.

Token-based authorization is based on introspecting tokens and using the information
there to decide whether access should be granted. This information is represented as
a set of attributes, or claims, where their values can be used to enforce access.

Let's take as an example how roles are used to enforce access in your application. As you
learned from the previous chapters and topics, roles are mapped to tokens using a specific
set of claims. To enforce access using roles, your application only needs to use these claims
to calculate what roles were granted to the user and then decide whether access should be
granted to a particular resource.

This is no different from any other claim within a token, where your applications can use
any claim and use it to enforce access. For each client, you can tailor what claims and
assertions are stored in tokens. For that, Keycloak provides a functionality called protocol
mappers. For more details, check out the Keycloak documentation at https://www.
keycloak.org/docs/latest/server_admin/#_protocol-mappers.

In this topic, you learned about how to leverage claims mapped into tokens to perform
ABAC. You also learned that Keycloak allows you to map any information you want
to tokens so that they can be used to enforce access at the application level. Although
ABAC is flexible enough to support multiple access control mechanisms, it is not easy
to implement and manage.

In the next topic, we are going to look at how to leverage ABAC using Keycloak as a
centralized authorization server.

https://www.keycloak.org/docs/latest/server_admin/#_protocol-mappers
https://www.keycloak.org/docs/latest/server_admin/#_protocol-mappers

158 Authorization Strategies

Using Keycloak as a centralized authorization
server
So far, you have been presented with authorization strategies that rely on a specific access
control mechanism. Except for ABAC, these strategies rely on a specific set of data about
the user to enforce access in applications. In addition to that, those strategies are tightly
coupled with your applications, where changes to your security requirements would
require changes in your application code.

As an example, suppose you have the following pseudo-code in your application:

If (User.hasRole("manager") {

 // can access the protected resource

}

In the preceding code, we have a quite simple check using RBAC where only users granted
a manager role can access a protected resource. What would happen if your requirements
changed and you also needed to give access to that same resource to a specific user?
Or even grant access to that resource for users granted some other role? Or perhaps
leverage ABAC to look at the different information about the context where a resource
is being accessed?

At the very least, you would need to change your code and re-deploy your application,
not to mention going through your continuous integration and delivery process to make
sure the change is ready for production.

Centralized authorization allows you to externalize access management and decisions
from your applications using an external authorization service. It allows you to use
multiple access control mechanisms without coupling your application to them, and
enforce access using the same semantics used by your applications to refer to the different
resources that should be protected.

Let's take a look at the following code, which provides the same access check as the
previous example:

If (User.canAccess("Manager Resource") {

 // can access the protected resource

}

Using Keycloak as a centralized authorization server 159

As you can see from the preceding code snippet, there is no reference to a specific access
control mechanism; access control is based on the resource you are protecting, and your
application is only concerned with the permissions granted by an external authorization
service. Changes to how Manager Resource can be accessed should not impact your
application code, but changing the policies that govern access to that resource through
the authorization service should.

Keycloak can act as a centralized authorization service through a functionality called
Authorization Services. This functionality is based on a set of policies representing
different access control mechanisms that you associate with the resources you want to
protect. All this is managed through the Keycloak administration console and REST API.

The Keycloak Authorization Services functionality leverages ABAC to enable fine-grained
authorization to your applications. By default, a set of policies representing different access
control mechanisms are provided out of the box, with the possibility to aggregate these
policies to easily support multiple authorization strategies when protecting resources. The
Keycloak Authorization Services functionality also allows you to control access to specific
actions and attributes associated with the resources you are protecting.

A common issue when using a centralized authorization server is the need for additional
round trips to obtain access decisions. By leveraging token-based authorization, the
Keycloak Authorization Services functionality allows you to overcome this issue by issuing
tokens with all the permissions granted by the server, so that applications consuming
these tokens do not need to perform additional network calls but introspect the token
locally. It also supports incremental authorization, where tokens are issued a narrow set
of permissions with the possibility to obtain new permissions as needed.

For more details about Keycloak Authorization Services, check the documentation at
https://www.keycloak.org/docs/latest/authorization_services/.

In this section, you learned about centralized authorization and that Keycloak
Authorization Services can be used to implement this form of authorization. You also
learned that together with token-based authorization, Keycloak Authorization Services
helps applications to enable fine-grained authorization to applications.

https://www.keycloak.org/docs/latest/authorization_services/

160 Authorization Strategies

Summary
In this chapter, you learned about the different strategies you can choose from to
authorize access to protected resources in your applications. By leveraging token-based
authorization, applications should be able to introspect tokens – either locally or through
the introspection endpoint – and use their claims to support different access control
mechanisms such as RBAC, GBAC, and ABAC, or use the scopes granted by users to the
client application acting on their behalf. You also learned that Keycloak can be used as
a centralized authorization service to decouple authorization from applications, where
access decisions are taken by Keycloak based on the resources and policies managed
through the server.

In the next chapter, we are going to look at the main steps for running Keycloak in
production.

Questions
1. How do you prevent tokens from becoming too big while still providing the

necessary data to enforce access to resources at the application level?

2. How do you decide whether a role should be a realm or client role?

3. Is it possible to enforce access based on information gathered during authentication?

4. Is it possible to change how Keycloak maps roles into tokens?

5. Are those strategies mutually exclusive?

Further reading
For more information on the topics covered in this chapter, refer to the following links:

• Keycloak roles: https://www.keycloak.org/docs/latest/server_
admin/#roles

• Keycloak groups: https://www.keycloak.org/docs/latest/server_
admin/#groups

• Keycloak protocol mappers: https://www.keycloak.org/docs/latest/
server_admin/#_protocol-mappers

• Keycloak client scopes: https://www.keycloak.org/docs/latest/
server_admin/#_client_scopes

• Keycloak Authorization Services: https://www.keycloak.org/docs/
latest/authorization_services

https://www.keycloak.org/docs/latest/server_admin/#roles
https://www.keycloak.org/docs/latest/server_admin/#roles
https://www.keycloak.org/docs/latest/server_admin/#groups
https://www.keycloak.org/docs/latest/server_admin/#groups
https://www.keycloak.org/docs/latest/server_admin/#_protocol-mappers
https://www.keycloak.org/docs/latest/server_admin/#_protocol-mappers
https://www.keycloak.org/docs/latest/server_admin/#_client_scopes
https://www.keycloak.org/docs/latest/server_admin/#_client_scopes
https://www.keycloak.org/docs/latest/authorization_services
https://www.keycloak.org/docs/latest/authorization_services

Section 3:
Configuring and

Managing Keycloak

In this section, you will understand how to configure Keycloak, making it ready for
production use. A range of common use cases are covered, along with an explanation of
how to achieve them with Keycloak.

This section comprises the following chapters:

• Chapter 9, Configuring Keycloak for Production

• Chapter 10, Managing Users

• Chapter 11, Authenticating Users

• Chapter 12, Managing Tokens and Sessions

• Chapter 13, Extending Keycloak

9
Configuring

Keycloak for
Production

So far, you have learned how to use Keycloak, the key concepts, and how to start using
it to secure your applications. In this chapter, you will be creating a pre-production
Keycloak cluster to understand all the different aspects and steps when configuring it for
production, such as if you were deploying it in bare metal or in a VM.

You should consider the same configuration aspects when running Keycloak as a
container. Although, in this case, most of the configuration is done transparently by
the container image, the concepts from this chapter are still useful to understand how
containers are configured and what you should consider when deploying Keycloak on
OpenShift or Kubernetes.

In the next sections, you will be introduced to each of these aspects and how they fit into a
real production deployment of Keycloak. At the end of this chapter, you should be able to
apply the same steps and recommendations provided herein to deploy Keycloak into your
own production environment using a high-availability profile, and considering different
non-functional aspects such as availability, performance, and failover.

164 Configuring Keycloak for Production

For that, we will be covering the following topics:

• Setting the hostname for Keycloak

• Enabling TLS

• Configuring a database

• Enabling clustering

• Configuring a reverse proxy

• Testing your environment

Technical requirements
For this chapter, you need to have a local copy of the GitHub repository associated with
the book. If you have Git installed, you can clone the repository by running this command
in a terminal:

$ cd $KC_HOME

$ git clone https://github.com/PacktPublishing/Keycloak-
Identity-and-Access-Management-for-Modern-Applications.git

Alternatively, you can download a ZIP of the repository from the following URL:

https://github.com/PacktPublishing/Keycloak-Identity-and-
Access-Management-for-Modern-Applications/archive/master.zip

Note
Make sure to either clone or extract the repository into the Keycloak
distribution directory.

To configure a reverse proxy, we are going to use a local domain name other than
localhost. This domain name will be used as the public domain name where Keycloak
is exposed for your users and applications.

If you are using Linux, you should be able to do that by changing your /etc/hosts file
and including the following line:

127.0.0.1 mykeycloak

https://github.com/PacktPublishing/Keycloak-IAM-for-Modern-Applications/archive/master.zip

Setting the hostname for Keycloak 165

We are also going to need to run some CLI scripts to configure the server. For that, we are
going to run the jboss-cli.sh script. This script is located in the bin directory of the
Keycloak installation and can be executed as follows:

$ cd $KC_HOME

$ bin/jboss-cli.sh

Lastly, we are going to use HAProxy as a reverse proxy in front of multiple Keycloak
instances. If you are using CentOS or Fedora Linux, you should be able to install HAProxy
as follows:

$ sudo dnf -y install haproxy

Check out the following link to see the Code in Action video:

https://bit.ly/3b5W1gM

Setting the hostname for Keycloak
Keycloak exposes different endpoints to talk with applications as well as to allow
managing the server itself. These endpoints can be categorized into three main groups:

• Frontend

• Backend

• Administration

The base URL for each group has an important impact on how tokens are issued and
validated, on how links are created for actions that require the user to be redirected
to Keycloak (for example, when resetting passwords through email links), and, most
importantly, how applications will discover these endpoints when fetching the OpenID
Connect Discovery document from /auth/realms/{realm-name}/.well-
known/openid-configuration.

In the next topics, we will be looking into each of these groups, how to define a base URL
for each one, and the impact it has on users and applications using Keycloak.

Setting the frontend URL
The frontend URL is used to infer the URL used by users and applications to access
Keycloak, where the main goal is to logically group all instances of Keycloak in a cluster
under a single domain and issuer using a public domain name.

https://bit.ly/3b5W1gM

166 Configuring Keycloak for Production

Examples of endpoints in the frontend group include the following:

• An authorization endpoint

• A logout endpoint and others related to session management

By default, Keycloak infers the frontend URL from incoming requests. For example, if
you have two Keycloak instances, each one listening on http://10.0.0.5/auth and
http://10.0.0.6/auth, Keycloak is going to issue tokens and create links for actions
depending on the URL of the instance that is processing the request.

There are several reasons why this default behavior does not work in a production
environment.

The most important one is related to the issuer claim in tokens and documents issued
by Keycloak. The different instances should be grouped under a single issuer name,
otherwise, users and clients will not be able to use them interchangeably because tokens
and cookies set by Keycloak will be only valid on the instance where they were created.

Another important aspect is that instances are usually running in a private network.
Without setting the frontend URL to match the public domain where Keycloak is exposed,
links that redirect users back to Keycloak will be broken, and clients might not be able to
make requests based on the endpoints exposed through the OpenID discovery document.

Last but not least, without a frontend URL set, all the benefits you will get from a reverse
proxy and clustering are lost.

The expected behavior, however, is that regardless of the node processing the request, the
base URL should be the same and aligned with the public domain name where Keycloak is
being exposed. By doing that, instances are going to work as if they were one so that users
and applications can benefit from all the improvements we will cover later to the general
availability, performance, scalability, and failover aspects of Keycloak.

Let's set a frontend URL by running the following CLI script available from the GitHub
repository of the book at Keycloak-Identity-and-Access-Management-for-
Modern-Applications/ch9/configure-hostname.cli:

embed-server --server-config=standalone-ha.xml --std-
out=discard

/subsystem=keycloak-server/spi=hostname/provider=default:write-
attribute(name=properties.frontendUrl,value=https://mykeycloak/
auth)

stop-embedded-server

Setting the hostname for Keycloak 167

To run the script execute the following command:

$ cd $KC_HOME

$ bin/jboss-cli.sh --file=./Keycloak-Identity-and-Access-
Management-for-Modern-Applications/ch9/configure-hostname.cli

By setting the frontendUrl property, as shown previously, you are explicitly saying
that any Keycloak instance should advertise its endpoints and issue tokens using the
https://mykeycloak/auth base URL.

In this section, you learned that setting frontendUrl allows you to define the base URL
where Keycloak is publicly accessible. You also learned that setting this configuration is
crucial to group all instances of Keycloak under a single and logical domain and issuer.

In the next topic, we will be looking at how to configure the URL for backend endpoints.

Setting the backend URL
The backend endpoints are those related to direct communication between Keycloak and
applications.

Examples of endpoints in the backend group include the following:

• Token introspection

• User info

• Token endpoint

• JWKS

By default, the backend base URL is also calculated based on the request URL. Usually,
you want this URL to be based on a public domain name, so that applications can reach
Keycloak from outside its internal network. For that, we configure Keycloak to use the
frontend URL as the base URL for backend endpoints.

If you look at the Keycloak-Identity-and-Access-Management-for-
Modern-Applications/ch9/configure-hostname.cli file, you should
see the following configuration:

/subsystem=keycloak-server/spi=hostname/provider=default:write-
attribute(name=properties.forceBackendUrlToFrontendUrl,
value=true)

168 Configuring Keycloak for Production

When the forceBackendUrlToFrontendUrl property is set, Keycloak will
advertise backend endpoints using whatever you defined as a frontend URL, thus giving
applications an accessible URL and not something else based on the internal hostname
used by Keycloak.

In this topic, you learned how to configure the base URL for backend endpoints and how
they influence applications when they need to talk directly to Keycloak using the backend
endpoints.

In the next topic, you will learn how to set the base URL for the administration endpoints.

Setting the admin URL
You usually do not want to make the Keycloak Administration Console publicly available.
For that, you can set the adminUrl property to force Keycloak to use a specific, private
URL:

/subsystem=keycloak-server/spi=hostname/provider=default:write-
attribute(name=properties.adminUrl, value=https://
myprivatekeycloak/auth)

By setting the adminUrl property, any URL used by the Admin Console will be based
on the value you provided. That said, links and static resources used to render the console
will only be accessible using the URL you defined.

Although it makes it difficult to access the console from a network that cannot resolve the
domain name or reach the server, you still want to enforce specific rules in your reverse
proxy so that the /auth/admin path is fully protected.

In the next topic, we will be looking at how to enable TLS so that Keycloak is only
accessible through a secure channel.

Enabling TLS
Any request to and from Keycloak should be done through a secure channel. For that,
you must enable HTTP over TLS, also known as HTTPS. In a nutshell, you should never
expose Keycloak endpoints through HTTP.

Keycloak exchanges sensitive data all the time with user agents and applications. Enabling
HTTPS is crucial to prevent several forms of attacks, as well as to benefit from different
forms of authentication that rely on a TLS session established with the server.

Enabling TLS 169

Tip
The current best practice is to select a key size of at least 2,048 bits. In terms
of protocol, Keycloak advertises the most secure protocols, such as TLS v1.2
and TLS v1.3. You should also be able to restrict the list of protocols to only
advertise those you want.

The first step to enable HTTPS is to create or reuse a Java KeyStore where the server's
private key and certificates are stored. If you are planning to deploy Keycloak in
production, you probably have all the key material to enable TLS, as well as your
certificates signed by a trusted Certificate Authority (CA).

The next step is to configure the HTTPS listener to use the key material from your Java
KeyStore. For that, look at the following script available from the GitHub repository of
the book at Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch9/configure-https.cli:

embed-server --server-config=standalone-ha.xml --std-
out=discard

/subsystem=elytron/key-store=kcKeyStore:add(path=${jboss.
home.dir}/Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch9/mykeycloak.keystore,type=JKS,credential-
reference={clear-text=password})

/subsystem=elytron/key-manager=kcKeyManager:add(key-
store=kcKeyStore,credential-reference={clear-text=password})

/subsystem=elytron/server-ssl-context=kcSSLContext:add(key-
manager=kcKeyManager)

batch

/subsystem=undertow/server=default-server/https-
listener=https:undefine-attribute(name=security-realm)

/subsystem=undertow/server=default-server/
https-listener=https:write-attribute(name=ssl-
context,value=kcSSLContext)

run-batch

stop-embedded-server

In this file, we are using a Java KeyStore available from the GitHub repository of the book
at $KC_HOME/Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch9/mykeycloak.keystore. This KeyStore was built for example
purposes using a self-signed certificate and you should not use it in production. Instead,
you should replace it with a KeyStore using your own private key and certificate.

170 Configuring Keycloak for Production

Then run the jboss-cli.sh tool to apply the configuration:

$ cd $KC_HOME

$ bin/jboss-cli.sh --file=./Keycloak-Identity-and-Access-
Management-for-Modern-Applications/ch9/configure-https.cli

Now, let's start Keycloak by running the following command:

$ cd $KC_HOME

bin/standalone.sh -c standalone-ha.xml

If everything is OK, you should be able to access Keycloak at https://
localhost:8443, and you should be able to see that the certificate being used comes
from your Java KeyStore.

In addition to enabling HTTPS, Keycloak also allows you to define TLS constraints on a
per-realm basis. Basically, for each realm, you can set whether Keycloak should require
HTTPS for incoming requests:

Figure 9.1 – Enforcing HTTPS on a per-realm basis

By default, Keycloak is going to enforce TLS for any external requests. That means clients
using the public network can only access Keycloak through HTTPS.

Ideally, you should set the Require SSL setting to all requests, so that any request to
Keycloak is guaranteed to be using a secure protocol.

Configuring a database 171

In this topic, you learned how to enable HTTPS and the importance of doing so. You also
learned that Keycloak allows you to define HTTPS constraints on a per-realm basis.

In the next topic, we will be looking at how to configure a production-grade database.

Configuring a database
Keycloak relies on a single database to store all its data. Even when running multiple
instances of Keycloak, all of them will be talking to the same database. A database is
crucial for the overall performance, availability, scalability, reliability, and integrity of
Keycloak. Although Keycloak provides a cache layer to avoid database hits as much as
possible, a good database will help to make the system behave better when data needs to
be loaded from the database.

By default, Keycloak is configured with a very simple H2 database that should not be used
in production, by any means. Instead, you should configure a more robust database such
as the following:

• MariaDB 10.1.19

• MariaDB Galera 10.1.19

• MySQL 8.0

• Oracle 19c RAC

• Microsoft SQL Server 2017

• PostgreSQL 11.5

The preceding list is the official list of supported databases and their versions.

Note
At the time this book was written, the Keycloak version was 13.0.0. The list of
supported databases might change in future versions.

In this topic, you are going to configure a PostgreSQL database. The same steps should
work for any other database you choose.

172 Configuring Keycloak for Production

To configure a database, a few steps are needed:

• Installing a module on the Keycloak server with the Java Database Connectivity
(JDBC) driver for the database

• Configuring the JDBC driver so that it can be used by Keycloak

• Configuring Keycloak to connect to the database using a valid URL, username, and
password

We are going to perform all the preceding steps using the following script available
from the GitHub repository of the book at Keycloak-Identity-and-Access-
Management-for-Modern-Applications/ch9/configure-database.cli:

embed-server --server-config=standalone-ha.xml --std-
out=discard

module add --name=org.postgres --resources=<PATH_TO_JDBC_
DRIVER_JAR> --dependencies=javax.api,javax.transaction.api

/subsystem=datasources/jdbc-driver=postgres:add(driver-
name=postgres, driver-module-name=org.postgres, xa-datasource-
class=org.postgresql.xa.PGXADataSource)

/subsystem=datasources/data-source=KeycloakDS:write-
attribute(name=connection-url,value=<JDBC_URL>)

/subsystem=datasources/data-source=KeycloakDS:write-
attribute(name=driver-name, value=postgres)

/subsystem=datasources/data-source=KeycloakDS:write-
attribute(name=user-name, value=<USERNAME>)

/subsystem=datasources/data-source=KeycloakDS:write-attribute(n
ame=password,value=<PASSWORD>)

stop-embedded-server

In this file, you should replace the following references with their real values:

• PATH_TO_JDBC_DRIVER_JAR should be replaced with the absolute path where
the JDBC driver JAR file is located.

• JDBC_URL should be replaced with the URL that should be used to connect to the
database. For instance, jdbc:postgresql://mypostgresql/keycloak.

• USERNAME should be replaced with the username that will be used to connect to
the database.

• PASSWORD should be replaced with the password of the user connecting to the
database.

Enabling clustering 173

Then run the jboss-cli.sh tool to apply the configuration:

$ cd $KC_HOME

$ bin/jboss-cli.sh --file=./Keycloak-Identity-and-Access-
Management-for-Modern-Applications/ch9/configure-database.cli

If everything is OK, the next time you start the server you should connect to the database
you have configured.

In addition to these basic settings to connect to an external database, there are other
settings you should consider before going to production. Probably one of the most
important ones, the size of the connection pool should be sized according to the load you
expect in your system, and how many concurrent requests should be allowed at a given
point in time.

By default, the pool is configured with a max of 20 connections. This value should be
enough for most deployments, but if you are facing errors in logs due to connections not
available in the pool when under an unexpected load, you may change the pool size by
running the following CLI command:

/subsystem=datasources/data-source=KeycloakDS:write-
attribute(name=max-pool-size, value=30)

/subsystem=datasources/data-source=KeycloakDS:write-
attribute(name=min-pool-size, value=30)

In the preceding example, we are increasing the pool size to a maximum (max-pool-
size) of 30 connections. We are also defining the minimum size (min-pool-size)
with the same value. The reason for that is that creating new connections is expensive and
keeping a minimum value of 30 connections helps to make sure connections are always
available during the server's lifetime.

In this section, you learned about the basic steps to configure a production-grade database
in Keycloak. You also learned about the different databases you can use based on the list of
supported databases.

In the next section, you will learn about how to configure Keycloak for high availability,
starting with the necessary configuration to configure a reverse proxy or load balancer.

Enabling clustering
Most of the time, you will be running a Keycloak cluster when going for production. To
respect some key non-functional aspects, as well as the Service-Level Agreements (SLAs)
defined for your services, enabling clustering is crucial.

174 Configuring Keycloak for Production

In terms of availability, clustering allows you to run multiple Keycloak instances, possibly
in different availability zones, so that uptime is not impacted if nodes go down.

From a scalability perspective, clustering allows you to scale your nodes up and down
according to the load on your system, helping to keep a consistent response time and
throughput.

In terms of failover, a cluster helps you to survive failures when nodes are failing, therefore
preventing data loss (mainly that kept in caches) as well as avoiding impacts on general
availability.

Keycloak is designed for high availability, where, in addition to the persistent data kept
in the database, it also uses a cache layer to replicate and keep state in-memory for fast
data access. This cache layer is built on top of Infinispan, a high-performance key-value
in-memory data store.

To enable clustering and full high availability, you should do the following:

• Run the server using a high-availability configuration profile.

• Make sure the reverse proxy is configured to distribute load across the different
instances.

Let's start by understanding the different configuration profiles that Keycloak provides.
Consider that you run the server as follows:

$ cd $KC_HOME

$ bin/standalone.sh

Keycloak is going to run using a specific configuration profile defined in the $KC_
HOME/standalone/conf/standalone.xml file. The standalone.xml file is a
configuration profile that is targeted for running a single Keycloak instance. Useful for
testing and development purposes, but not for production.

On the other hand, there is an additional configuration profile defined in the $KC_HOME/
standalone/conf/standalone-ha.xml file. This file is targeted for running
Keycloak for high availability, where clustering is enabled by default.

To run multiple Keycloak instances and build a cluster, you basically need to run the
server as follows:

$ cd $KC_HOME

$ bin/standalone.sh -c standalone-ha.xml -Djboss.node.name=kc1

Enabling clustering 175

Note
Note that we are also setting the jboss.node.name system property. This
property sets the name of the instance in the cluster and it must be unique
across all instances. If not set, the name will be inferred from the host where
the instance is running. As we are going to run multiple instances within the
same host, we must set this property for each instance.

This command will start the first instance in our cluster. The server will be listening on the
default ports and you should be able to access it at http://localhost:8443.

Let's now start a second instance by specifying a different port offset using the jboss.
socket.binding.port-offset system property. This property is going to allow us
to run the second instance within the same host without conflicting with the first instance
that is listening on the default ports. This is achieved by increasing by 100 the number of
each port used by Keycloak so that instead of listening on the default HTTPS 8443 port,
the server will be available at http://localhost:8543/auth:

$ cd $KC_HOME

$ bin/standalone.sh -Djboss.socket.binding.port-offset=100 -c
standalone-ha.xml -Djboss.node.name=kc2

Now, perform the same steps to start the third node as follows:

$ cd $KC_HOME

$ bin/standalone.sh -Djboss.socket.binding.port-offset=200 -c
standalone-ha.xml -Djboss.node.name=kc3

After executing this last command, you should now have three Keycloak instances
running on ports 8443, 8543, and 8643, respectively.

Note
In production, you do not need to use the jboss.socket.binding.
port-offset system property because instances will run either on different
hosts or, if using containers, in separate containers.

Keycloak relies on specific caches for failover where state is shared across the different
nodes in the cluster. One important configuration you should consider when enabling
clustering is to configure how many replicas you need in your cluster and adjust it
according to your failover requirements.

176 Configuring Keycloak for Production

By looking at the $KC_HOME/standalone/configuration/standalone-ha.
xml file, you should see the following cache definitions:

<distributed-cache name="sessions" owners="1"/>

<distributed-cache name="authenticationSessions" owners="1"/>

<distributed-cache name="clientSessions" owners="1"/>

<distributed-cache name="actionTokens" owners="2">

 <object-memory size="-1"/>

 <expiration interval="300000" max-idle="-1"/>

</distributed-cache>

Depending on your availability and failover requirements, you might want to increase
the number of owners – the nodes where state is replicated – to at least 2 so that state is
replicated to 2 nodes in the cluster. By increasing the number of owners, Keycloak can
survive up to 1 node failure without losing any state.

Let's change the number of owners for each of those caches by running the
configure-caches.cli script available from the GitHub repository of the book at
$KC_HOME/Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch9/configure-caches.cli:

$ cd $KC_HOME

$ bin/jboss-cli.sh --file=./Keycloak-Identity-and-Access-
Management-for-Modern-Applications/ch9/configure-caches.cli

Tip
The number of owners has a direct impact on the overall performance of
Keycloak in terms of network and CPU. As you add more owners, you should
expect additional overhead to replicate state across nodes. You should take
this into account when defining the number of owners to balance both
performance and failover aspects of your deployment.

Another important characteristic of clustering is how Keycloak caches realms data to avoid
unnecessary roundtrips to the database, therefore increasing the overall performance
of the server. By looking at the $KC_HOME/standalone/configuration/
standalone-ha.xml file, you should see the following cache definitions:

<local-cache name="realms">

 <heap-memory size="10000"/>

</local-cache>

<local-cache name="users">

Configuring a reverse proxy 177

 <heap-memory size="10000"/>

</local-cache>

Differently than the previous caches, the realms and users caches are local caches and
their entries are not replicated but only kept in-memory on each node in the cluster. The
realms cache is responsible for caching any kind of realm data such as clients, groups,
roles, identity providers, and authentication flows. On the other hand, the users cache is
responsible for caching any kind of user data such as credentials, attributes, and role and
group mappings.

By default, Keycloak defines a maximum size of 10,000 entries for both caches. For most
deployments, this limit should be enough to completely avoid roundtrips to the database
when caches are hot without allocating too much memory. But depending on how much
data you have in Keycloak, you might want to adjust this limit accordingly.

For more details about the cache configuration, look the Server Cache Configuration
documentation available at https://www.keycloak.org/docs/latest/
server_installation/#cache-configuration.

In this topic, you learned about the basic steps to enable clustering, where these instances
will communicate with each other to share state and work together as if you were
running a single instance. You also learned about the importance of clustering in terms of
availability and scalability.

In the next topic, you will learn about the main configuration aspects when setting up
a reverse proxy in front of a Keycloak cluster so that users can access your cluster through
a public domain name.

Configuring a reverse proxy
When running in production, a reverse proxy is a key component to enable high
availability. A reverse proxy provides a single and public access point for the different
Keycloak instances, distributing the load across them using a set of policies. These
instances are usually running in a private network so that they are only reachable through
the proxy.

By distributing the load across instances, a reverse proxy helps you to scale your
deployment by adding or removing more instances as needed, as well as helping to survive
failures when specific nodes are failing to serve requests.

Keycloak can be used with any reverse proxy implementation so you are free to use
whatever you are comfortable with. Examples of widely used reverse proxies are Apache
HTTP Server, Nginx, F5, and HAProxy.

https://www.keycloak.org/docs/latest/server_installation/#cache-configuration
https://www.keycloak.org/docs/latest/server_installation/#cache-configuration

178 Configuring Keycloak for Production

Regardless of your preference, there is a set of basic requirements that you should be
aware of to use your choice with Keycloak:

• TLS termination and re-encryption

• Load balancing

• Session affinity

• Forwarding headers

Some of these requirements are intrinsic to the concept of a reverse proxy and are
supported by the different implementations.

Before moving on to the next topics, make sure to update your HAProxy installation with
the haproxy.cfg file available from your local copy of the GitHub repository associated
with the book at $KC_HOME/Keycloak-Identity-and-Access-Management-
for-Modern-Applications/ch9/haproxy.cfg:

$ cd $KC_HOME

$ sudo cp Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch9/haproxy.cfg /etc/haproxy/haproxy.cfg

$ sudo cp Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch9/haproxy.crt.pem /etc/haproxy

In the next topics, we will be looking at each of the requirements mentioned herein and
how to address them using HAProxy.

Distributing the load across nodes
One of the first things you usually do when configuring a reverse proxy is to configure
the backend nodes that are going to serve requests from clients. That is one of the main
problems solved by reverse proxies. Despite the implementation you choose, you should
be able to configure load balancing so that requests are distributed across these nodes
using a specific algorithm for optimal throughput, response time, and failover.

Load balancing does not require any specific configuration on the Keycloak side. But here
are some things to keep in mind when configuring it:

• The number of backend nodes should respect the expected load, availability, and
failover scenarios.

Configuring a reverse proxy 179

• There are several algorithms that you can choose from to distribute the load across
nodes. You should choose what works best for you after running some load tests
to make sure you can achieve the desired goals in terms of response time and
throughput.

In our HAProxy configuration, the configuration related to load balancing is the
following:

balance roundrobin

server kc1 127.0.0.1:8443 check ssl verify none cookie kc1

server kc2 127.0.0.1:8543 check ssl verify none cookie kc2

server kc3 127.0.0.1:8643 check ssl verify none cookie kc3

In this configuration, we are defining three Keycloak instances as backend nodes as well
as using roundrobin to distribute the requests across these nodes. We are also using
HAProxy to re-encrypt connections to the backend nodes.

Note
You might want to configure your proxy for TLS termination, in this case the
communication with Keycloak does not need to be re-encrypted but in plain
text using HTTP. While this might be useful to offload the task of performing
TLS encryption from Keycloak and save some CPU, or perhaps for real-time
analysis of the traffic to Keycloak, depending on your requirements you might
need end-to-end encryption as well as have a different certificate for clients
accessing the proxy. Keycloak can work with any TLS configuration you set to
your proxy.

In this topic, you learned about the importance of load balancing and how it affects your
deployment in terms of performance, availability, and failover.

In the next topic, we will be looking at how to configure your proxy to forward
information about clients connecting to Keycloak.

Forwarding client information
When running behind a reverse proxy, Keycloak does not talk directly to the client that
originated the request, but rather to the reverse proxy itself. This fact has an important
consequence for how Keycloak obtains information about the client, such as the IP
address.

180 Configuring Keycloak for Production

To overcome this limitation, reverse proxies should be able to forward specific headers
to provide Keycloak information about the client where the request originated from. The
main headers Keycloak requires from proxies are the following:

• X-Forward-For: A header indicating the address of the client where the request
originated from

• X-Forward-Proto: A header indicating the protocol (for example, HTTPS) that the
client is using to communicate with the proxy

• Host: A header indicating the host and port number of the proxy

Tip
Special care should be taken when making sure the proxy is setting all these
headers properly, and not just forwarding these headers to Keycloak if they are
sent by clients.

On Keycloak, the configuration you need to integrate with a proxy is quite simple.
Basically, you need to tell Keycloak that it should infer client and request information
based on the headers we just discussed. For that, look at the configure-proxy.cli
file available from your local copy of the GitHub repository associated with the book at
$KC_HOME/Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch9/configure-proxy.cli:

embed-server --server-config=standalone-ha.xml --std-
out=discard

/subsystem=undertow/server=default-server/https-listener=https:
write-attribute(name=proxy-address-forwarding, value=true)

stop-embedded-server

Then run the jboss-cli.sh tool to apply the configuration:

$ cd $KC_HOME

$ bin/jboss-cli.sh --file=./Keycloak-Identity-and-Access-
Management-for-Modern-Applications/ch9/configure-proxy.cli

After running the preceding CLI command, Keycloak is ready to respect the information
provided by the proxy through the mentioned headers.

Configuring a reverse proxy 181

On the reverse proxy side, we have the following configuration defined:

option forwardfor

http-request add-header X-Forwarded-Proto https

http-request add-header X-Forwarded-Port 443

This configuration will make sure that HAProxy sets the mentioned headers so that
Keycloak can obtain information about clients making the requests.

In this section, you learned about the importance of configuring your proxy to forward
client information to Keycloak through specific HTTP headers. You also learned how to
configure Keycloak to respect these headers and use this information when processing
requests.

In the next section, we will be looking at the importance of session affinity and its impact
on the overall performance of Keycloak.

Keeping session affinity
Another important configuration you should consider is how the proxy is going to respect
session affinity. Session affinity is about the proxy using the same backend node to serve
requests to a particular client. This capability is especially useful when clients are using
flows that require multiple interactions with Keycloak, such as when using the user agent
to authenticate users through the authentication code flow.

As you learned in the Enabling clustering section, Keycloak tracks state about user and
client interactions with the server. This state is kept in in-memory caches and shared
across different nodes in the cluster. Session affinity helps to minimize the time taken by
Keycloak to look up data on these caches, where clients connecting to these nodes do not
need to look up data on other nodes in the cluster.

To configure session affinity, look at the configure-session-affinity.cli
file available from your local copy of the GitHub repository associated with the book at
$KC_HOME/Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch9/configure-session-affinity.cli:

embed-server --server-config=standalone-ha.xml
--std-out=discard

/subsystem=keycloak-server/spi=stickySessionEncoder:add

/subsystem=keycloak-server/spi=stickySessionEncoder/
provider=infinispan:add(enabled=true,
properties={shouldAttachRoute=false})

stop-embedded-server

182 Configuring Keycloak for Production

Then run the jboss-cli.sh tool to apply the configuration:

$ cd $KC_HOME

$ bin/jboss-cli.sh --file=./Keycloak-Identity-and-Access-
Management-for-Modern-Applications/ch9/configure-session-
affinity.cli

By doing that, Keycloak is going to rely on the proxy to keep session affinity between
clients and backend nodes.

Note
By default, Keycloak uses a different strategy for session affinity, indicating to
the proxy the node to which a client should be tied. We recommend, though,
to always rely on the session affinity provided by your proxy and set the
shouldAttachRoute property to false.

Session affinity has a direct impact on the overall performance. As mentioned before,
state is shared across the different nodes in the cluster, so keeping a client connected to a
specific backend node is crucial to avoid additional network and CPU overhead.

Now, on the reverse proxy side, we have the following configuration to guarantee that
clients are tied to a specific node:

cookie KC_ROUTE insert indirect nocache

With the preceding configuration, HAProxy is going to set a KC_ROUTE cookie where its
value is the first node that the client made the request to. Subsequent requests from the
same client will always be served by the same node.

In this topic, you learned about session affinity and the importance of configuring it
properly in your proxy as well as in Keycloak.

In the next section, we are going to run some basic tests to make sure the configuration
we've done so far is working as expected.

Testing your environment
If you are here, you should have a local environment very close to what will become your
production environment.

Testing your environment 183

In the previous topics in this chapter, we have covered the following:

• Setting up Keycloak to use a public domain name for frontend and backend
endpoints, as well as logically grouping the different Keycloak instances under a
single issuer

• Setting up Keycloak to listen on HTTPS so that all traffic to and from Keycloak is
secure

• Setting up Keycloak to use a production-grade database using PostgreSQL

• Setting up clustering so that multiple instances of Keycloak can share the state kept
by their caches

• Setting up a reverse proxy, using HAProxy, so that we can finally access all Keycloak
instances through a single public domain name

In the following topics, you are going to perform some basic tests on the environment to
make sure everything is working as expected.

Before we begin, make sure HAProxy is started by running the following command:

$ sudo systemctl restart haproxy

Testing load balancing and failover
Firstly, try to access Keycloak at https://mykeycloak and log in to the
administration console.

Depending on the browser you are using, you should be able to see which backend node
is serving your requests. In Firefox, you can open the development tools and look at the
cookies sent by your browser when making requests to Keycloak:

Figure 9.3 – Looking at the cookies sent by the browser

184 Configuring Keycloak for Production

Your browser should be sending a KC_ROUTE cookie where its value is the node chosen
by the reverse proxy to indicate which Keycloak instance should be serving that request.
From the preceding screenshot, requests should be forwarded to kc1.

Now, try to shut down the Keycloak instance that was started using the jboss.node.
name system property set to kc1. If you see a different value for the KC_ROUTE cookie,
you need to shut down the corresponding node.

After shutting down the node, try to refresh the administration console page. If everything
is properly configured, you should still be able to access the administration console
without having to authenticate again. That is only possible due to teamwork between
both the reverse proxy and Keycloak, where Keycloak makes sure data is replicated across
instances, and the reverse proxy is able to transparently forward requests to another node.

Testing the frontend and backchannel URLs
Lastly, let's check the OpenID Discovery document and look at how Keycloak is exposing
its endpoints. For that, open Keycloak at https://mykeycloak/auth/realms/
master/.well-known/openid-configuration. As a result, you get a JSON
document as follows:

Figure 9.4 – The OpenID Discovery document

If everything is set correctly, you should see that, regardless of the node serving the
request, Keycloak will advertise all its endpoints using the https://mykeycloak/
auth base URL.

https://mykeycloak/auth
https://mykeycloak/auth

Summary 185

Summary
In this chapter, we covered the main steps to configure Keycloak for production. With
the information provided herein, you should now be aware of the main steps and
configuration to successfully deploy Keycloak for high availability. You learned that
when deploying Keycloak in production, you should always use a secure channel using
HTTPS, as well as the importance of setting up the hostname provider to configure how
Keycloak issues tokens and exposes its endpoints through the OpenID Connect Discovery
document. You also learned about the importance of using a production-grade database
and its impact on the overall performance and availability of Keycloak, as well as on data
consistency and integrity. Lastly, you learned how to configure and run a cluster with
multiple Keycloak instances and how to use a reverse proxy to distribute load across
these instances.

In the next chapter, you will learn how to manage users in Keycloak, as well as integrating
Keycloak with different identity stores.

Questions
1. Is the database a single point of failure?

2. Does the default clustering configuration work in whatever platform I choose to
deploy Keycloak?

3. What is the best way to deploy Keycloak in Kubernetes or OpenShift?

4. How secure is the communication between nodes in a cluster?

5. Do I need HTTPS when making requests from the reverse proxy?

6. Keycloak nodes have a high CPU usage, is that normal?

7. How much memory does Keycloak need?

8. Is there a tool to perform load tests?

186 Configuring Keycloak for Production

Further reading
For more information on the topics covered in this chapter, refer to the following links:

• Keycloak clustering documentation: https://www.keycloak.org/docs/
latest/server_installation/#_clustering

• Keycloak proxy configuration: https://www.keycloak.org/docs/latest/
server_installation/#_setting-up-a-load-balancer-or-proxy

• HAProxy documentation: https://www.haproxy.org/

• Keycloak Hostname documentation: https://www.keycloak.org/docs/
latest/server_installation/#_hostname

• Keycloak Network documentation: https://www.keycloak.org/docs/
latest/server_installation/#_network

• Keycloak Database documentation: https://www.keycloak.org/docs/
latest/server_installation/#_database

• Keycloak Operator documentation: https://www.keycloak.org/docs/
latest/server_installation/#_operator

• WildFly SSL/TLS documentation: https://docs.wildfly.org/22/
WildFly_Elytron_Security.html#configure-ssltls

https://www.keycloak.org/docs/latest/server_installation/#_clustering
https://www.keycloak.org/docs/latest/server_installation/#_clustering
https://www.keycloak.org/docs/latest/server_installation/#_setting-up-a-load-balancer-or-proxy
https://www.keycloak.org/docs/latest/server_installation/#_setting-up-a-load-balancer-or-proxy
https://www.haproxy.org/
https://docs.wildfly.org/22/WildFly_Elytron_Security.html#configure-ssltls
https://docs.wildfly.org/22/WildFly_Elytron_Security.html#configure-ssltls

10
Managing Users

In the previous chapters, you learned how to deploy, run, and use Keycloak to authenticate
and authorize users in your applications. You also learned how to manage users in
Keycloak to run some of the examples in this book.

In this chapter, we are going to take a closer look at the capabilities provided by Keycloak
that are related to identity management and federation, such as how users are created and
managed, how users can manage their own accounts, how to manage credentials, and
how to integrate with different identity stores and identity providers to authenticate users
and fetch their information through open protocols such as OpenID Connect, Security
Assertion Markup Language (SAML), and Lightweight Directory Access Protocol
(LDAP).

In this chapter, we will cover the following topics:

• Managing local users

• Integrating with LDAP and Active Directory

• Integrating with social identity providers

• Integrating with third-party identity providers

• Allowing users to manage their data

By the end of this chapter, you will be able to leverage these capabilities to effectively
manage your users, as well as understand how they can be used to solve common
problems related to identity management and federation.

188 Managing Users

Technical requirements
Check out the following link to see the Code in Action video:

https://bit.ly/3vIOf4i

Managing local users
In the previous chapters, you had to create users in Keycloak to run some of the examples
provided in this book. In this section, we are going to deep dive into some key capabilities
provided by Keycloak to manage your users once they are stored in Keycloak's internal
database. For now on, whenever you read about a local user, you will think about a user
stored in a Keycloak database.

As an identity management solution, Keycloak gives you several capabilities to manage
user identities. In this section, we will look at the following topics:

• How to create users

• How to manage user credentials

• How to obtain and validate user information

• How to enable user self-registration

• How to extend user information using attributes

In the next section, we are going to start our journey by looking at how to create a local
user in Keycloak.

Creating a local user
To create a new user in Keycloak, click on the Users link on the left-hand side panel. Once
you've done that, you will be presented with a list showing all the users that are available
in the realm. At the top right of that list, you have an Add user button. By clicking on this
button, you will be presented with the user creation page.

When creating a new user, you are only asked for a few pieces of information. In fact,
you should be able to create a new user by providing only a username. Let's create a user
whose username is set to alice:

https://bit.ly/3vIOf4i

Managing local users 189

Figure 10.1 – Creating a new user

Click on Save to create the user.

Creating a user is a trivial task. Keycloak depends on a few pieces of basic information
about users while still allowing you to decorate them with additional information, as we
will see later. This basic set of information is what Keycloak needs to identify a user, to
correlate the user with other functionalities, and to issue tokens after authenticating users.

Note
When you create a new user, that user belongs to the realm you are managing.
Users created in a realm can only authenticate through the realm they belong
to.

190 Managing Users

Creating a user using the administration console is useful when the administrator has all
the information about a user beforehand. However, depending on the use case, that is not
always the case, so you may want to either allow your users to self-register in your realm
or ask them for their information as part of the authentication process.

In this section, you learned about how to create a user in Keycloak. You also learned that
Keycloak depends on a few pieces of information about users so that they can authenticate
in a realm. You also learned that Keycloak allows you to decorate your users with
additional information and that once they are created, they can only authenticate
through the realm they belong to.

In the next section, we will look at how to manage user credentials.

Managing user credentials
After creating users, they should be able to authenticate in the realm. For that, we need to
set up credentials for the user. Keycloak supports different forms of authentication using
different types of credentials. As we will see in Chapter 11, Authenticating Users, users can
authenticate in different ways, such as by using passwords, one-time keys, security devices,
X.509 certificates, and so forth.

To manage user credentials, click on the Credentials tab after selecting a user from the
users list. In this tab, you should be able to see all the credentials associated with a user,
as well as perform specific actions such as delete or modify credentials. You will also be
provided with shortcuts to easily set a password (the simplest form of authentication,
although not the strongest) for a user.

Note
Keycloak does not expose sensitive data associated with credentials, only the
basic and non-sensitive data associated with them. Depending on your security
requirements, you may also want to encrypt data at rest in the database.

Managing local users 191

We are going to look at other types of credentials in the next chapter, but for now, let's
create a password for the alice user that we just created. For that, fill in the Password
and Password Confirmation fields with any password you want, and turn off the
Temporary setting. Do not worry about this setting for now as we are going to talk about
it in the next chapter. Just keep in mind that by disabling it, we are creating a definitive
password for the user. Click on the Set Password button to set the user's password:

Figure 10.2 – Setting a new password for a user

After setting the password, you will see that the list of credentials has been updated with
the new password we just set for the user. From that list, you can view information about
any credential associated with a user – non-sensitive information – as well as delete it.

Now, let's test whether the user can authenticate in our realm. For that, we are going to
try to access the account console, an application provided by Keycloak where users can
manage their own information. We are going to discuss it in the following sections, but
for now, just open your browser at http://localhost:8080/auth/realms/
myrealm/account. You should be redirected to the myrealm login page.

192 Managing Users

Type in the username and password for the user alice and click on the Login button.
If everything is working properly, you should be able to access the account console as the
user alice:

Figure 10.3 – Authenticating as the newly created user

In this section, you learned how to manage user credentials through the administration
console. You also learned that Keycloak allows you to manage different types of
credentials, with shortcuts for managing the user password. You also learned that, once
created, all the credentials associated with a user – not only passwords – can be managed
through the Credentials tab.

In the next section, we are going to look at how to interact with users during the
authentication process to gather more information about them.

Obtaining and validating user information
In the previous sections, we created the user alice by providing only a username. We
also set a password for this user to authenticate in the realm. As you may have noticed,
we are missing some important information about alice, and we want her to fill in that
information to create her account.

Managing local users 193

Keycloak allows you to interact with users during the authentication process using
a functionality called Required User Actions. This setting is related to the actions that the
user should perform prior to authenticating to a realm. Keycloak provides a good set
of common actions covering different scenarios, such as the following:

• Verify Email: Send an email to the user – if one was set – to confirm it belongs
to that user.

• Update Password: Ask the user to update their password.

• Update Profile: Ask the user to update their profile by providing their first name,
last name, and email.

There are other options, but the preceding actions should give you an idea of how powerful
this setting is and how you can interact with your users when they are authenticating.

Let's configure the Update Profile action for alice and obtain the information we are
missing about her account. For that, select alice from the users list and select Update
Profile from the list of available actions in the Required User Actions field. Then, click on
the Save button:

Figure 10.4 – Forcing users to update their profile while logging in to update
missing account information

194 Managing Users

Now, let's try to access the account console as alice. For that, open your browser
at http://localhost:8080/auth/realms/myrealm/account. You should
now be redirected to the myrealm login page.

Type in the username and password for alice and click on the Login button. If everything
is working properly, you should be redirected to a page asking for the information we are
missing from that user. Fill in all the fields and click on the Submit button:

Figure 10.5 – Asking a user to update their account information

Once you submit the information, Keycloak is going to update the user with the information
provided. The updated information should now be available when you access the account
console.

The same idea applies to any other required action you set for a user, where each is related
to specific steps that the user is required to complete before authenticating to a realm. For
instance, if you set the Update Password action, the user is going to be asked to reset their
password, whereas the Verify Email action is going to make sure the email associated with
the user is valid through an email verification process.

Managing local users 195

In this section, you learned how Keycloak allows you, as an administrator, to interact
with your users to obtain and validate information about their accounts.

In the next section, we are going to look at how to allow users to self-register their accounts.

Enabling self-registration
Depending on your requirements, you might want to allow users to self-register in
a realm and delegate them the responsibility of filling in their information. Compared to
manually creating a user, Keycloak is going to provide a link on the login page for user
self-registration.

For that, click on Realm Settings in the left-hand side menu and then click on the Login
tab. In this tab, enable the User registration option.

Now, let's create a new user by going through the self-registration process. Open your
browser at http://localhost:8080/auth/realms/myrealm/account. At the
login page, click on the Register link:

Figure 10.6 – Allowing users to sign up to a realm

Once you've done that, you should be presented with a registration page, asking you
to provide the same information that you did when you created users through the
administration console. Fill in the fields with any information you want and click
on the Register button to create the new user.

196 Managing Users

Now, go back to the Keycloak administration console and check whether the user you just
created is shown in the users list. If everything is correct, you should be able to see the
user you just created in that list.

Self-registration is a powerful feature and a must-have for certain use cases where users
should be allowed to sign up to a realm. It also provides the necessary level of flexibility so
that you can customize the registration page to obtain additional information about users,
such as their mobile number or address, according to your needs. We are going to talk
about customization in Chapter 13, Extending Keycloak.

In this section, you learned how to enable self-registration for a realm so that users can
create their own account in a realm without any intervention from an administrator.

In the next section, we will look at how to manage additional information about users.

Managing user attributes
Keycloak allows you to manage additional metadata about users using attributes. As you
learned in the previous sections, Keycloak relies on a basic set of information to identify
and authenticate users. This information is also made available when you're introspecting
tokens or accessing a user's profile. To manage the attributes of a user, select the respective
user from the users list and click on the Attributes tab. Each attribute has a key – the
name of the attribute – and a text value.

User attributes can solve different types of problems, from passing additional information
about users to applications, to enabling different forms of authorization, such as
Attribute-Based Access Control (ABAC).

When using attributes, you are probably going to need to create protocol mappers so
that they can be mapped to tokens to make them available to applications, or even when
querying the introspection token and userinfo endpoints.

When extending Keycloak, as we are going to see in Chapter 13, Extending Keycloak,
you should also be able to extend the account console to populate user accounts with
additional information using attributes. The same goes for customizing the update profile
page, which is shown to users during the authentication process, as we learned in the
previous sections. Here, you can store custom information that was gathered during this
step using attributes.

In this section, you learned how to extend Keycloak's user model by using user attributes.
You also learned that by leveraging user attributes, you can extend different parts of
Keycloak to obtain additional information from users and store it as user attributes. You
also learned that user attributes are commonly used to pass additional information about
users to applications using protocol mappers.

Integrating with LDAP and Active Directory 197

In the upcoming sections, we are going to look at how to integrate with third-party
identity providers and identity stores to manage users from sources other than a Keycloak
database. We will start by learning how to fetch user information from LDAP directories.

Integrating with LDAP and Active Directory
Many organizations still use an LDAP directory as their single source of truth for digital
identities. Keycloak allows you to integrate with different LDAP server implementations
so that you can leverage your existing security infrastructure and use all the authentication
and authorization capabilities provided by Keycloak.

Keycloak can integrate using LDAP in different ways; it can act as a stateful broker where
data from your LDAP directory is imported into the Keycloak database, as well as kept
in sync with your LDAP directory, or it can act as a stateless broker delegating credential
verification to your LDAP directory. You should also be able to set up multiple LDAP
directories within a single realm and configure a priority order that Keycloak should
respect when authenticating users.

In Keycloak, the term "user federation" refers to the capability of integrating with external
identity stores. LDAP is a form of user federation and, as such, can be configured by clicking
on the User Federation link on the left-hand side menu of the administration console.

To configure a new LDAP server, select ldap from the list of available providers:

Figure 10.7 – Creating a new LDAP user federation provider

198 Managing Users

After selecting the provider, you will be presented with a page containing all the settings
you'll need to integrate with an LDAP directory. Keycloak supports the most common
LDAP vendors, including Active Directory. The Vendor field allows you to choose one
of these vendors and Keycloak does its best to find the best default setting for the vendor
you choose.

If you are interested in integrating Keycloak using LDAP, you should become familiar
with most of the settings on this page, mainly those related to connection settings and the
structure of the LDAP directory. Here, we will focus on the additional settings provided
by Keycloak to customize the integration, starting with the Import Users setting.

The Import Users setting allows you to define whether Keycloak should import data from
your LDAP server into the database. By default, this setting is enabled so that whenever
users authenticate through an LDAP provider, the information about that user is persisted
into the database. One of the main reasons this setting is enabled by default is that if it
wasn't, you wouldn't be able to leverage all of Keycloak's capabilities – you would only be
able to use it as a broker to authenticate your users using the LDAP directory.

Basically, when a user tries to authenticate, Keycloak will check whether the user is
available from its database. If no user is found, Keycloak will try to look up the user in
your LDAP directory. If the user trying to authenticate is there, Keycloak will authenticate
the user using the LDAP protocol and, if successful, import the user into the database.
Once imported, the user is considered a federated user and a link is created between the
user and the LDAP provider.

This link between the user and the LDAP provider is a key aspect of user federation.
By looking at the link the user has to a specific user federation provider, such as LDAP,
Keycloak is able to differentiate whether a user is a local user or a federated user. In this
context, the term "federated" refers to the trust that's created between Keycloak and an
external identity store – in this case, the LDAP directory – so that both can share identity
and access management data.

Keycloak provides some key synchronization settings for managing how data is read and
written back to an LDAP directory. Before you do anything else, you should decide which
synchronization strategy you want through the Edit Mode setting. You can choose from
three different strategies: READ_ONLY, WRITABLE, and UNSYNCED.

The READ_ONLY strategy allows you to use your LDAP directory in read-only mode,
where changes to federated users are not replicated back to the LDAP directory. On the
other hand, the WRITABLE strategy is a powerful strategy that allows you to replicate
any change that's made to federated users back to the LDAP directory.

Integrating with LDAP and Active Directory 199

Whether you should use a read-only or writable strategy depends on your use case. Under
some circumstances, LDAP is the single source of truth for identities in the organization
that you do not have much control over. If you are using Keycloak to modernize your
security infrastructure while still centralizing identity management in your LDAP
directory, then the READ_ONLY strategy makes sense.

However, if you have plans to migrate from LDAP and want to centralize identity
management through Keycloak, then the writable strategy should help you during that
journey. It should also allow you to keep your LDAP active and in sync with the changes
that are made through Keycloak.

Once you've decided which strategy works best for you, you can look at additional settings
provided by Keycloak to control how synchronization should happen. Keycloak allows
you to synchronize user information by manually triggering the synchronization process
through the administration console, or by scheduling a time when synchronization should
happen automatically.

To trigger a manual synchronization for user information, you should click on the
Synchronize All Users button, which becomes available once you've created your LDAP
provider. In fact, it is a good practice to run a full synchronization right after creating
your provider. The reason for this is that this step is going to help you avoid importing
users when they authenticate for the very first time. You are also provided other
actions to perform, including synchronizing local users that have changed after the last
synchronization, removing users that have been imported from the LDAP provider, and
removing the link between users and an LDAP provider, effectively changing the user to a
regular local user.

Once your users have been imported, you can schedule periodic synchronization
according to your needs. Synchronization can be scheduled for a full or partial sync.

A full sync means that Keycloak is going to check the LDAP tree for changes that need
to be replicated to the database, so that new users that are created in LDAP, as well as
updated information about those users, are kept in sync.

A partial sync means that Keycloak is going to look up new users and make changes
to existing users after the last synchronization happened, hence helping keep Keycloak
updated using a more efficient strategy.

In this section, you learned about user federation and how Keycloak can integrate with
existing LDAP servers to authenticate users and synchronize information.

In the next section, you will learn about LDAP mappers and their importance in terms
of fetching additional information from an LDAP directory, as well as the behavior of
the integration.

200 Managing Users

Understanding LDAP mappers
Just like users, Keycloak can also fetch other types of information from LDAP. Different
to how you fetch users from LDAP – which is part of the core functionality of an LDAP
provider – this information is fetched using mappers.

An LDAP mapper is a special, and powerful, functionality in Keycloak for mapping
information from LDAP into Keycloak and vice versa. It provides another extension point
to LDAP's integration and fine-grained control over how to read and write LDAP data
for users, groups, roles, certificates, or even information that is only available when you're
using a specific LDAP vendor, such as Active Directory. Whenever you need to map a
specific set of data from LDAP, you should go through the list of supported mappers and
find one that suits your needs.

When creating a new provider, Keycloak automatically configures a set of mappers,
depending on the configuration of the provider. For instance, depending on the import
mode or the edit mode, a different set of mappers is created. That is why deciding on these
two settings is important prior to creating the provider. Otherwise, you would need to
change mappers accordingly when changing these settings once a provider has been created.

To manage the mappers associated with an LDAP provider, click on the Mappers tab
of the provider you are managing. On this tab, you are presented with a list of all the
mappers that are currently active for the provider. From this page, you can also associate
new mappers with your provider. You can do this by clicking on the Create button in the
top-right corner of the list.

There are several types of mappers that you can use, with each being specific to a
particular task. In the next few sections, we are going to look at how to create mappers
to manage group and role data from LDAP.

Synchronizing groups
To manage group data from LDAP, click on the Create button in the top-right corner
of the mappers list.

Type in a name for the new mapper and select group-ldap-mapper from the
Mapper Type field.

Some of the settings on this page are specific to how groups are organized in the LDAP
tree. For instance, you must provide the Distinguished Name (DN) of where your
groups are located, the attribute that will be used to fetch the group name, as well as how
membership information is defined in your LDAP tree so that Keycloak can automatically
discover the groups that users belong to.

Integrating with LDAP and Active Directory 201

The group-ldap-mapper type gives you several settings to configure how groups
should be fetched from LDAP and how data synchronization should work. Some of the
settings are specific to how groups are organized in the LDAP tree.

The first step when creating this mapper is to set the location of the groups in your LDAP
tree. For that, you should fill in the LDAP Groups DN field with the base DN where all
your groups are located. You should also be able to provide an additional filter if you have
a more complex LDAP tree, where groups should be fetched based on some criteria. For
that, you can set a filter using the LDAP Filter field.

Keycloak is going to look up group entries from the base DN based on the object classes
you've defined for group entries. You can set the object classes using the Group Object
Classes field.

The next step is to configure how Keycloak should map information from group entries
to Keycloak.

The name of a group can be mapped from these entries using the Group Name LDAP
Attribute field. You can change this field to whatever LDAP attribute you are using to store
the group's name. Usually, the Common Name (CN) attribute is used for this purpose.

Now that you understand how to look up groups from LDAP and map their information
to Keycloak, it is time to understand how to map group hierarchy and user membership.

In LDAP, groups are usually organized in a hierarchy to represent your organizational tree.
Keycloak allows you to map and preserve the group hierarchy by automatically creating
it when you're fetching groups from LDAP. The first step is to set the attribute that was
used to infer the relationship between the groups in the hierarchy using the Membership
LDAP Attribute field. Keycloak is going to look up the children of a group by looking
at the value of this attribute. Its format is usually the Fully Qualified Name (FQN) of
another group entry.

Tip
You should still be able to set a different format for the membership attribute if
you are still relying on memberUid to reference another group in the LDAP
tree. For that, choose UID in the Membership Attribute Type field.

Keycloak also allows you to map user membership from LDAP so that when you're
importing users, they are automatically assigned to the groups they belong to. For that,
you can set different strategies for how this relationship is obtained from LDAP. The User
Groups Retrieve Strategy field allows you to choose whether user membership should
be fetched based on the member attribute of groups – similar to when fetching the group
hierarchy – or whether membership should be fetched based on the presence of another
attribute within the user entry in LDAP – usually, this is the memberOf attribute.

202 Managing Users

Regarding synchronization, the mapper allows you to have fine-grained control over how
group information is kept in sync with your LDAP directory, as well as how groups should
be imported into Keycloak.

If you are using a writable LDAP provider, the mapper defaults to writing back any
changes you make to groups that have been imported from LDAP, including user
membership. This behavior is managed through the Mode field, which provides different
strategies on how group information should be imported and synced back to LDAP.

By default, groups that have been imported from LDAP are created as top-level groups
in Keycloak. Sometimes, it might be useful to import groups into a specific group in
Keycloak to differentiate them from local groups. For that, you can set the Groups
Path field to any existing group you have in Keycloak.

In this section, you learned how to map group information using the group-ldap-
mapper mapper. You also learned that Keycloak is very flexible regarding how this
data is fetched and kept in sync with LDAP.

In the next section, we will be looking at how to map roles from LDAP.

Synchronizing roles
Like groups, roles are also mapped from LDAP using a specific mapper. To import role
data, click on the Create button in the top-right corner of the mappers list.

Type in a name for the new mapper and select role-ldap-mapper from the Mapper
Type field.

As you can see, the core settings for role mapping are pretty much the same ones that
you learned about in the previous section. Mainly, they are related to configuring how
Keycloak is going to look up entries in your LDAP tree.

In this section, we are going to focus on the behavior and the specific properties related
to how Keycloak maps role information from LDAP.

Roles are automatically imported from Keycloak whenever the user authenticates in
Keycloak. Keycloak also allows you to manually trigger a synchronization once you've
created the mapper.

When importing roles, Keycloak defaults to creating these roles as realm roles, where
users are automatically granted their roles in LDAP. This behavior is controlled by the
Use Realm Roles Mapping field, which can also be disabled so that imported roles are
created as client roles for a specific client in Keycloak.

Integrating with third-party identity providers 203

In this section, you learned how to integrate Keycloak with LDAP and how users,
groups, and role information can be obtained from it. You also learned that Keycloak
is very flexible regarding mapping different types of information from LDAP through
a functionality called LDAP mappers. Lastly, you learned that Keycloak gives you fine-
grained control over how data is imported, as well as how data is replicated back to LDAP
whenever you make changes to the information that's imported from LDAP.

In the next section, we are going to look at how to integrate with third-party identity
providers by leveraging Keycloak as an identity broker to authenticate and replicate
their users.

Integrating with third-party identity providers
Keycloak can integrate with third-party identity providers using a set of open standard
protocols.

In the previous section, you learned about user federation and how to easily integrate with
LDAP. Identity providers leverage user federation to create cross-domain trust between
Keycloak and an identity provider, where the identity data about users is shared and used
by Keycloak to create, authenticate, and authorize users.

Integration with third-party identity providers is possible by using Keycloak as an identity
broker, where Keycloak acts as an intermediary service for authenticating and replicating
users from a targeted identity provider.

Identity brokering can solve different types of problems. As we will see in the next section,
it can be used to integrate with social providers, as an integration point to a legacy identity
and access management system, or to share identity data between a business partner and
your organization.

In Keycloak, you can integrate with two main types of identity providers, depending on
the security protocol they support:

• SAML v2

• OpenID Connect v1.0

Through identity brokering, you can provide a much better experience for users, where
they can leverage an existing account to authenticate and sign up in your realm. Once
these users have been created and their information has been imported from the third-
party provider, they become users of your realm and can enjoy all the features provided
by Keycloak and respect the security constraints imposed by your realm.

204 Managing Users

In this section, we are going to look at how to create an OpenID Connect v1.0 identity
provider. For simplicity, we are going to use another realm in the same Keycloak server
to represent the third-party identity provider we are trying to integrate with. However,
the same concepts and steps you are about to learn should be valid for any other OpenID
Connect-compliant identity provider.

Creating a OpenID Connect identity provider
Firstly, create a realm in Keycloak called third-party-provider. In this realm,
create a client with the following settings:

• Client ID: broker-app

• Root URL: http://localhost:8080/auth/realms/myrealm/broker/
oidc/endpoint

After creating the broker-app client in Keycloak, change the Access Type settings on
the client details page to Confidential.

Make sure to keep a note of the client secret that's generated as we are going to use it later
when we configure the identity provider.

Now, create a user called third-party-user in the third-party-provider realm
and make sure to set a password for them.

Now, let's create a new identity provider in the myrealm realm. For that, click on the
Identity Providers link in the left-hand side menu:

Figure 10.8 – Creating a new identity provider

Integrating with third-party identity providers 205

The Identity Providers page allows you to either create a new provider or list all the
providers that have been configured for a realm. If the realm does not have a provider yet,
you will be prompted to select the type of the provider to create a new one.

Let's select OpenID Connect v1.0 from the list of providers. After that, you should be
redirected to the provider settings page.

Note
On this page, you have a read-only Redirect URI field, whose value is the URL
we set for the broker-app client as a root URL. This URL is the location
where users are going to be redirected to once they've authenticated through
the identity provider. In our case, users are going to be redirected back to the
myrealm realm after successfully authenticating through the identity provider.

As you learned in Chapter 4, Authenticating Users with OpenID Connect, an OpenID
Connect Provider (OP) advertises the endpoints that can be used to interact with them
through a document available from a specific endpoint. By using this endpoint, we
can quickly configure our identity provider, since most of the settings on the Provider
settings page are going to be filled in automatically with the information from the OP you
are integrating with.

At the bottom of the Provider settings page, there is an Import from URL field that you
should set with the location where the OP is exposing its discovery document. In our case,
this document is located at http://localhost:8080/auth/realms/third-
party-provider/.well-known/openid-configuration.

After setting the URL, click on the Import button. Once you've done that, you should
see that some of the other fields on this page were automatically populated with the
information from the discovery document.

Now, let's fill in some additional information to finish configuring the provider. For that,
fill in the following fields:

• Display Name: My Third-Party Provider

• Client Authentication: Client secret sent as post

• Client ID: broker-app

• Client Secret: <CLIENT_SECRET>

206 Managing Users

Finally, click on Save to create the identity provider.

Note
Note that both the Client ID and Client Secret fields refer to the broker-
app client in the third-party-provider realm. This is the client used
by the identity provider to authenticate users in that realm.

Now, let's test whether new users can authenticate and sign up to our realm using the
newly created provider. For that, open your browser at http://localhost:8080/
auth/realms/myrealm/account to access the account console:

Figure 10.9 – Login page with an option to authenticate using an identity provider

Note that you will be presented with the option to authenticate with My Third-Party
Provider, which is the provider we just created.

Click on the My Third-Party Provider button; you should be redirected to the third-
party-provider realm to authenticate. At the login page, provide the username and
password for the third-party-user user to log in.

Integrating with third-party identity providers 207

If everything is working properly, you should be redirected to a page asking for additional
information about the user. Fill in all the fields and click on the Submit button.

Once the user has been authenticated to the third-party provider, a set of tokens will be
issued to Keycloak. These represent the user's identity and the permissions that have been
granted to the user when authenticating to the third-party-provider realm. By
looking at these tokens, Keycloak is capable of fetching user information and creating or
updating the user in your realm.

Now, if you list the users that are available in the myrealm realm, you should see that the
third-party-user user is among them. This means you can manage them just like
any other user in your realm.

There are several settings you can choose from when configuring a provider. For instance,
Keycloak can be used to store tokens that have been issued by an identity provider, a
useful capability if you need to use these tokens to access APIs protected by the provider.
Once stored, Keycloak allows you to obtain these tokens through another functionality
called token exchange.

Keycloak also allows you to define a specific authentication flow when the user is
authenticating for the first time using an identity provider. This is a powerful feature
that allows you to gather additional information about your users or even force them
to set up credentials.

Depending on your requirements, you can also configure your realm to only allow users
to authenticate and link their accounts with an identity provider through the account
console. This is achieved by turning on the Account Linking Only field. This ensures
that users can't select the identity provider on the login page, only when they're in the
account console.

There are many other settings you can choose from, and you can find them in the
Keycloak documentation at https://www.keycloak.org/docs/latest/
server_admin/#_identity_broker.

In this section, you learned how Keycloak can be used to integrate with third-party
identity providers using open standard protocols. You also learned that Keycloak allows
you to quickly integrate with any identity provider using either the OpenID Connect
or SAML2 protocols. You also learned that this integration is possible since you can use
Keycloak as an identity broker, where users are authenticated and created based on the
information that's returned by these providers.

In the next section, you will learn about how to extend the concepts presented in this
chapter to integrate your realm with different social providers.

https://www.keycloak.org/docs/latest/server_admin/#_identity_broker
https://www.keycloak.org/docs/latest/server_admin/#_identity_broker

208 Managing Users

Integrating with social identity providers
A common requirement for applications that use Keycloak is the possibility to
authenticate users using different social providers, such as Google, GitHub, Instagram,
and Twitter.

Integration with social providers follows the same principles that you learned about in the
previous section, where Keycloak acts as a broker to authenticate and exchange identity
data about users using a well-known and open standard security protocol.

To integrate with a social provider, click on the Identity Providers link in the left-hand
side menu.

Keycloak allows you to select from different social providers. To integrate with them, you
only need to fill in some information that you usually obtain from the social provider you
are integrating with.

Let's configure GitHub as a social provider to allow users to authenticate using their
GitHub account. Firstly, make sure you have a valid GitHub account. If not, you can
create one at https://github.com.

Now, let's create a GitHub social provider in our realm by selecting GitHub from the list
of available providers. Once you've selected GitHub, you should be presented with a page
containing a few settings that you need to fill in to create the provider.

To use GitHub, we need to create an OAuth app at https://github.com/
settings/developers. When creating the application, you will be asked to provide
an authorization callback URL or redirect URL. This URL is the endpoint in Keycloak that
is going to receive the response from GitHub once the user is successfully authenticated
– or when an error occurs. When creating a social provider in Keycloak, you are given a
redirect URI, which you should use to configure the application in GitHub. This URL is
available from the Redirect URI field. Copy and paste the value of this field and use it to
create the app in GitHub.

Depending on the social provider you are integrating with, you are going to be asked for
additional information to make the integration possible. For GitHub, we need a client ID
and client secret, both of which are provided by GitHub once you've created your app. Fill
in both the Client ID and Client Secret fields with the values you got from GitHub.

Now, click on the Save button to create the provider.

Now, let's test whether the users in our realm can authenticate and sign up to our
realm using the newly created provider. For that, open your browser at http://
localhost:8080/auth/realms/myrealm/account to access the account console.

https://github.com
https://github.com/settings/developers
https://github.com/settings/developers

Allowing users to manage their data 209

You should now be at the login page of Keycloak. Note that you will be presented with the
option to authenticate with GitHub, the provider we just created. Click on the GitHub
button to be redirected to GitHub to authenticate.

After authenticating with GitHub, you might be presented with a consent page, asking
you to grant permissions to your realm for accessing information about the user. After
approving the consent, Keycloak is going to create a user based on the information that
was obtained from GitHub. You should be automatically authenticated and redirected to
the account console.

In this section, you learned how Keycloak makes it easier to integrate with different social
providers. By integrating with GitHub, you learned about the basic steps and concepts
around integrating with any other social provider that supports the OpenID Connect or
OAuth2 protocols.

In the next section, we are going to learn about how users can manage their data using the
Keycloak Account Console.

Allowing users to manage their data
In the previous sections, you learned how to manage users through the admin console as
an administrator. You also learned that users can self-register in a realm. However, one
of the main capabilities of Keycloak is to also allow users to manage their own accounts
through a service called Keycloak Account Console.

The Keycloak Account Console is a regular application provided by Keycloak and is where
users can manage their own accounts. They can also do the following:

• Update their user profile

• Update their password

• Enable second-factor authentication

• View applications, including what applications they have authenticated to

• View open sessions, including remotely signing out of other sessions

210 Managing Users

To access the account console, open http://localhost:8080/auth/realms/
myrealm/account/ in a browser. You will be redirected to a welcome page, as follows:

Figure 10.10 – The Keycloak Account Console

To log into the account console, you should either click on any of the links on that page
or click on the Sign In button in the top-right corner of the page. By doing any of these
things, you should be redirected to the login page and, after providing the user credentials,
you should be redirected back to the account console:

Figure 10.11 – Authenticating to the account console

Allowing users to manage their data 211

Once authenticated, users can view and manage different information about their accounts:

• Personal Info: Allows users to manage profile information such as email, first name,
and last name.

• Account Security: Allows users to manage their credentials, as well as set up
two-factor and multi-factor authentication using OTP and security devices,
respectively. In this area, users should also be able to track their account activity.

• Applications: Allows users to manage the applications they have logged in and
logged out from, as well as the permissions that have been granted to applications.

As a regular application, Keycloak automatically creates an account client in your realm
to allow users to authenticate and access their account data. When users are created in a
realm, they are automatically granted a manage-account client role. This role belongs
to the account client and controls whether a user should have access to the account
console. To disable access to the account console for a user, change the role mappings
for the user to remove this role.

Tip
You can also find the URL of the account console through the Keycloak admin
console. In the admin console, click on Clients. From there, you will find the
URL of the account console next to the account client.

As we will see in the following chapters, Keycloak allows you to customize the look and
feel of the account console, as well as how information is presented and managed through
it, allowing you to obtain and store additional information from users.

In this section, you learned how users can manage their accounts through the account
console. You also learned that Keycloak allows you to control what users can view and
manage in their accounts, by either relying on your realm settings or by managing the
roles that have been granted to the user.

212 Managing Users

Summary
In this chapter, you were presented with the main aspects of user management in
Keycloak. You learned that users can be created directly in Keycloak or by integrating
with different third-party identity providers and external identity stores. You also learned
that Keycloak enables these integrations by leveraging open standard protocols such
as OpenID Connect, SAML, and LDAP. You also learned that users are provided with
capabilities to sign up for a realm, either by enabling self-registration to a realm or by
integrating with a third-party provider. Finally, you learned that users can also manage
their accounts through the Keycloak Account Console.

In the next chapter, we are going to look at how users can authenticate using different
credentials, as well as how Keycloak is the perfect fit for strong authentication.

Questions
1. Can I integrate my own user database with Keycloak?

2. Does Keycloak query the LDAP directory every time the user authenticates?

3. How do I differentiate users that have been created using a third-party or social
identity provider?

Further reading
For more information on the topics that were covered in this chapter, you can refer to the
following links:

• Keycloak user management: https://www.keycloak.org/docs/latest/
server_admin/#user-management

• Keycloak user federation: https://www.keycloak.org/docs/latest/
server_admin/#_user-storage-federation

• Keycloak identity brokering: https://www.keycloak.org/docs/latest/
server_admin/#_identity_broker

• Keycloak Account Console: https://www.keycloak.org/docs/latest/
server_admin/#_account-service

https://www.keycloak.org/docs/latest/server_admin/#user-management
https://www.keycloak.org/docs/latest/server_admin/#user-management
https://www.keycloak.org/docs/latest/server_admin/#_user-storage-federation
https://www.keycloak.org/docs/latest/server_admin/#_user-storage-federation
https://www.keycloak.org/docs/latest/server_admin/#_identity_broker
https://www.keycloak.org/docs/latest/server_admin/#_identity_broker
https://www.keycloak.org/docs/latest/server_admin/#_account-service
https://www.keycloak.org/docs/latest/server_admin/#_account-service

11
Authenticating

Users
In the previous chapters, you learned how to manage users. You also walked through
examples that involved users authenticating in Keycloak.

By now, you should be aware of how easy it is to set up Keycloak to promptly authenticate
your users, but there is much more to authentication than just using a login page and
asking users for passwords.

In this chapter, we are going to take a closer look at how authentication works, as well
as the different authentication methods you can use to authenticate users. You will also
be presented with more details about how password-based authentication works and
how Keycloak can be used as a strong authentication system by leveraging two-factor
authentication (2FA) and multi-factor authentication (MFA). For that, you will learn
about the different types of credentials you can choose from to authenticate users and
how they work together to increase the overall security of your system.

In this chapter, we will cover the following topics:

• Understanding authentication flows
• Using passwords
• Using OTPs
• Using Web Authentication (WebAuthn)
• Using strong authentication

214 Authenticating Users

Technical requirements
Before we begin, create a myrealm realm and a user called alice in this realm.

In the next few sections, we will be using the Keycloak account console to authenticate
alice using the different authentication strategies.

Check out the following link to see the Code in Action video:
https://bit.ly/3h58eGh

Understanding authentication flows
In Keycloak, authentication is driven by a set of sequential steps or executions that
are grouped together to define how the identity should be verified, depending on the
authentication flow. Depending on the flow, the authentication requirements, as well as
the steps to verify the identity of the actor trying to authenticate into a realm, changes.

Keycloak has a set of well-defined flows representing how end users and clients – the
actors – can authenticate into a realm. For end users, the authentication flow usually
involves using the browser as an intermediary. The steps for the clients are based on
backchannel requests to the token endpoint.

Keycloak is very flexible in terms of how you can define these flows. By default, realms
are created with built-in definitions that cover the most common requirements to
authenticate end users and clients, which you can change or extend any time to address
your own authentication requirements.

To understand this better, let's look at the available authentication flow definitions
for the myrealm realm. For that, open the administration console and click on the
Authentication link in the left-hand side menu:

Figure 11.1 – Authentication flow definitions

https://bit.ly/3h58eGh

Understanding authentication flows 215

From this page, you can select and see the definition for a given authentication flow, as
well as a list of all the definitions available in the realm. Don't worry about understanding
this page right now – we are going to go over it in the next section.

In the second tab, called Bindings, you have the relationships between the definitions
from the first tab and the authentication flow that they are related to. This is the place
where you choose the definition to be used when you're executing a determined flow to
authenticate end users and clients:

Figure 11.2 – The bindings between authentication flow definitions and the flow

In the context of authentication, you can configure the following flows:

• Browser Flow

• Direct Grant Flow

• Client Authentication

Browser Flow is related to how end users authenticate using a browser. Every time the
end user authenticates in Keycloak, the steps from the definition associated with this
flow are executed. As shown in the preceding screenshot, all the steps from the browser
authentication flow definition are going to be executed when you're authenticating users
through the browser.

The same goes for Direct Grant Flow and Client Authentication. However, these two
flows are related to how clients authenticate in a realm – Client Authentication – or when
clients are authenticating users – Direct Grant Flow – using backchannel requests to
obtain tokens using the token endpoint.

216 Authenticating Users

Note
In the Bindings tab, you will also find the configuration for the user
registration – Registration Flow – and password reset – Reset Credentials –
flows. These two flows also have definitions associated with them so that you
can configure the steps for user self-registration, as well as the steps for when
users need to reset their passwords, respectively.

Configuring an authentication flow
Keycloak allows you to customize any of the authentication flows from the Bindings tab.
To do this, you can change the settings of the authentication flow definition associated
with them or create your own using an existing one as a template.

The easiest – and recommended – way to create a flow is to use an existing definition
as a template by selecting a definition from the Flows tab and clicking on the Copy
button. The reason for this is that you can easily roll back your changes and switch to the
definition you used as a template, in case the flow is broken by your changes.

Let's have a quick look at how to customize Browser Flow and see how it affects end users
authenticating in a realm using a browser. For that, select Browser Flow from the select
box of the Flows tab. Then, click on the Copy button to create a new flow based on it. You
should be prompted to choose a name for the new flow. Let's name it My Browser and
click on the OK button to create a new flow.

An authentication flow is a hierarchical tree containing different authentication executions
– the authentication steps – as well as other authentication flows – also known as
subflows.

Authentication executions are the actual steps that perform some action when you're
authenticating an actor. These actions can be related to obtaining some input from the
actor – such as asking end users for only their username when using the browser – or to
authenticate the actor using a specific authentication mechanism, such as when you're
authenticating clients using different types of credentials.

The elements in an authentication flow are executed sequentially, from top to bottom. The
decision regarding whether the next step in the flow should be executed depends on the
outcome of the current step and its settings. When a step is marked as REQUIRED, it
must complete successfully prior to moving to the next one. If a required step completes
successfully, the flow stops if there are no other required steps in the flow. On the other
hand, when a step is marked as ALTERNATIVE, the flow can continue, even though
the step was not completed successfully, so that other steps have a chance to successfully
perform their actions.

Understanding authentication flows 217

For authentication flows and subflows, the REQUIRED and ALTERNATIVE settings
are related to whether all the required executions or any of the executions within the flow
completed successfully, respectively.

Taking the My Browser flow definition as an example, authentication is defined as follows:

1. First, the Cookie execution tries to seamlessly reauthenticate the user if there is a
cookie in the request that maps to a valid user session. In other words, do not try to
authenticate users if they previously authenticated to the realm. This step is marked
as ALTERNATIVE, indicating that if the user could not be authenticated at this
step, the flow will continue.

2. If Kerberos execution is enabled, try to authenticate the user using any Kerberos
credentials. Note that by default, this execution is disabled.

3. Identity Provider Redirector checks whether the realm has been configured to
automatically redirect the user to a predefined identity provider. It is also marked as
ALTERNATIVE; not completing this step will continue the flow.

4. My Browser Forms is a subflow that groups specific steps to authenticate the
user using password-based authentication and possibly 2FA using a One-Time
Password (OTP). Note that this step is marked as ALTERNATIVE, so if any of
the previous steps completed successfully, it will not be executed. Otherwise, users
would be forced to provide their credentials again, even though they have already
been authenticated.

5. The first step in the subflow is to authenticate the user using a username and
password in a single step using the Username Password Form execution. This is the
login page you saw when you authenticated into a realm. Note that this step must
complete successfully as it is marked as REQUIRED.

6. If the previous step was successful – the user was authenticated initially – then there
is another subflow you can use called My Browser Browser – Conditional OTP to
check whether 2FA using an OTP should be performed. In this subflow, Condition
– User Configured checks whether the user has an OTP credential set and, if so,
performs the OTP Form step to authenticate the user using OTP.

218 Authenticating Users

Now, let's change how users authenticate in the realm by gathering both the username and
password in different steps and from different pages, instead of asking for the credentials
using a single login page. For that, click on the Actions menu on the right-hand side of
the Username Password Form execution and click on the Delete option. At the moment,
your flow should look as follows:

Figure 11.3 – Removing the Username Password Form execution from the flow

Now, let's add two steps to this flow to ask the user for the username and then ask for the
password. For that, click on the Actions menu on the right-hand side of the My Browser
Forms subflow and click on the Add execution button.

Once you've done that, you should be redirected to a page where you can choose the
authentication execution to include as a step of the subflow:

Figure 11.4 – Choosing an authentication execution

On this page, you should be able to select from a vast list of authentication executions.
In our case, we are going to select Username Form from the Provider select box and
click on the Save button to add the execution to the subflow.

Once the execution has been added to the flow, you should see it within the subflow.
By default, executions are added to the bottom of the flow, but in our case, we want this
execution at the top of the subflow so that we can obtain the username first. For that,
click on the up arrow on the left-hand side of Username Form until it becomes the first
execution in the subflow.

Understanding authentication flows 219

Perform the same steps you did previously to add the Password Form authentication
execution to the subflow to obtain the password and authenticate the user. Make sure
Password Form is the second execution in the subflow.

Let's make sure that both the Username Form and Password Form executions are
marked as REQUIRED. For that, click on the REQUIRED setting for each authentication
execution. This is an important step as it forces our end users to provide both pieces of
information when they're logging into the realm.

Now, the My Browser authentication flow should look like this:

Figure 11.5 – The final configuration for the My Browser authentication flow

Finally, click on the Bindings tab and change Browser Flow to associate it with the My
Browser authentication flow definition we just created. At this point, the configuration
in the Bindings tab should look as follows:

Figure 11.6 – Binding the My Browser authentication flow definition to Browser Flow

220 Authenticating Users

Now, let's try to log into the Keycloak account console as alice. For that, open your
browser at http://localhost:8080/auth/realms/myrealm/account and log
in using your user credentials. When authenticating to the realm, you should notice that
the username and password of the user are obtained and validated in multiple steps.

In this section, you learned about the main aspects of authentication flows. You learned
that Keycloak allows you to customize how users and clients authenticate by creating
or changing authentication flow definitions. You also learned that by leveraging
authentication flows, you can adapt Keycloak so that it fits into your authentication
requirements.

In the next few sections, we will look at the different authentication methods supported
by Keycloak.

Using passwords
In the previous chapters, you were basically using passwords to authenticate users. You
were also quickly introduced to how to set up passwords when managing users. In this
section, we are going to look closer at how password-based authentication works and
how passwords are managed.

Note
We are not going to cover how users authenticate using passwords here because
you are already familiar with that, but we will be covering additional details
around this form of authentication.

Password-based authentication is probably one of the most popular methods for
authenticating users. It is easy to implement and is what most end users are used to when
they need to authenticate into a system. However, the simplicity of this credential type has
some disadvantages and weaknesses, all of which we will cover later in this section.

To help us overcome some of the disadvantages of password-based authentication,
Keycloak relies on common best practices to make sure passwords are secure in transit
and at rest. It also allows you to define policies so that you can govern some key aspects of
password management, such as expiry, password format, and reusing previous passwords.

http://localhost:8080/auth/realms/myrealm/account

Using passwords 221

Passwords are the simplest type of credential that you can set for your users and are used
by Keycloak to authenticate users by default. Passwords are managed on a per-user basis,
as you learned in the previous chapter. On the User details page, there is a Credentials
tab, which provides everything you need to reset and delete the user's password:

Figure 11.7 – Managing user passwords

Keycloak uses a strong password hashing algorithm to prevent brute-force attacks, as
well as to securely store passwords. The default hashing algorithm used by Keycloak is
PBKDF2, a well-known and widely used algorithm to keep passwords secure at rest.

Whenever you set a password for a user, its value is going to be combined with a secure
random number, also known as a salt, and later hashed multiple times – the number of
iterations – to create a derived key that is hard to crack. When stored, the password is
never in plain text. Instead, the derived key is stored together with the necessary metadata
to validate the password afterward.

Keycloak is preconfigured for hashing passwords using HMAC-SHA-256 and has an
iteration count of 27,500. You should be able to use a stronger hashing algorithm such as
HMAC-SHA-512 or change the number of iterations when you're configuring password
policies, as we are going to see later.

Tip
The PBKDF2 algorithm is costly in terms of CPU. Depending on the CPU
you have available for Keycloak, it might impact its performance. The default
of 27,500 iterations is what we recommend for most deployments, but you
should be able to either lower or increase this number, depending on your
requirements, to have a balance between performance and security.

222 Authenticating Users

Password-based authentication is not the most secure method of authenticating users,
since there is a long list of weaknesses associated with it. To name a few, passwords are
usually stolen or leaked, they are susceptible to phishing attacks, and some users just do
not care about how strong their passwords are, making your system as secure as how
your users define, keep, and use their passwords. The fact that users usually use the
same password across different systems also makes your system as secure as the weakest
system in this chain. In terms of usability, when using policies to force users to use strong
passwords, they become larger and complicated, which makes them hard to remember or
even type when they're authenticating to a system.

Keycloak helps you improve the overall security of password-based authentication, but
it does not solve all such problems. Passwords, when used alone, are just a single factor
for authenticating users, so you should consider using additional factors to improve
the overall security of your system. As we are going to see in the upcoming sections,
password-based authentication is not the only option you have to authenticate users in
Keycloak, allowing you to employ strong authentication to your system by combining
other forms of authentication or even by removing passwords completely.

In this section, you learned about the key aspects of how passwords are managed in
Keycloak. You also learned that Keycloak relies on common best practices to keep
passwords secure, and that you can also use policies to control different aspects of
password management.

In the next section, you will learn how Keycloak allows you to configure password policies
to employ stronger passwords.

Changing password policies
Keycloak allows you to define different types of policies for passwords. These policies can
be created by clicking on the Authentication link on the left-hand side menu, and then
clicking on the Password Policy tab:

Using passwords 223

Figure 11.8 – Password policies settings

In this tab, you can choose from different policies and manage specific aspects of
password management, such as the following:

• Enforce the number of special characters, digits, and lowercase or uppercase
characters in passwords.

• Define a minimum length.

• Define an expiration time.

• Avoid having the user's username in passwords.

• Define a blacklist dictionary.

• Avoid reusing previous passwords.

224 Authenticating Users

You can easily create any of these policies by clicking on the Add policy select box and
then selecting the policy you want to create.

Tip
For a detailed description of each policy available in Keycloak, look at the
documentation at https://www.keycloak.org/docs/latest/
server_admin/#_password-policies.

By leveraging password policies, you should be able to overcome some of the weaknesses
of password-based authentication by enforcing stronger passwords and controlling the
frequency at which they should be updated. You should be able to easily define rules
for passwords, such as avoiding having their username in passwords, forcing a specific
number of special, lowercase, and uppercase characters, forcing a minimum length, and
so forth.

In this section, you learned that Keycloak allows you to control different aspects of
password management by using different types of policies.

In the next section, we will look at the different options we can use to reset user
passwords.

Resetting user passwords
Keycloak allows you to reset users password using different strategies. As an
administrator, you can use the administration console to choose a password for a user or
force the user to update their password when they log in. Users should also be able to reset
their passwords when they're on the login page or when they're managing their account
through the Keycloak account console.

When you change the password of a user through the administration console, Keycloak
defaults to marking the new password as temporary. A temporary password means that
the next time the user tries to log into a realm, they must provide a new password.

You can control whether a password that's been set by an administrator is temporary by
turning on the Temporary switch when you're on the Credentials tab of the User details
page. If you turn off this setting, the user will not be asked to change their password when
they log in.

https://www.keycloak.org/docs/latest/server_admin/#_password-policies
https://www.keycloak.org/docs/latest/server_admin/#_password-policies

Using passwords 225

A temporary password is nothing but a shortcut for setting a required action for a user to
force them to update their password. The Update Password required action can be set at
any time by an administrator to force a specific user to update their password:

Figure 11.9 – Using the Update Password required action to force users to update their password

From a user's perspective, passwords can be updated either by going to the Keycloak
Account Console or by starting a specific flow on the login page.

226 Authenticating Users

From the account console, users can change their passwords by clicking on the Update
button when they're on the Signing In page:

Figure 11.10 – Updating the password using the Account Console

If the user has forgotten or lost their password, they can start a specific flow to reset their
password on the login page. This flow is disabled by default. To enable it, you click on the
Realm Settings link on the left-hand side menu of the administration console and click
on the Login tab. On this tab, turn on the Forgot password setting. A link will appear on
the login page that users can click on to reset their passwords:

Figure 11.11 – Changing the realm settings to allow users to reset their passwords

Using passwords 227

When this setting is enabled, users should be presented with a Forgot Password? link on
the login page:

Figure 11.12 – The Forgot Password? link on the login page

By clicking on the Forgot Password? link, the users will be asked to provide their
username or email so that they can receive a link by email to reset their password.

Note
Note that this flow is based on email verification, where users should have a
valid email address associated with their accounts. Your realm should also be
configured to send emails using your preferred SMTP server. For more details
on how to set up an SMTP server, look at the documentation at https://
www.keycloak.org/docs/latest/server_admin/#_email.

In this section, we covered the different ways we can manage passwords. You learned that
passwords can be set by an administrator, and that users can be forced to update their
password when they're authenticating to a realm. You also learned that users can change
or reset passwords through the account console or the login page, respectively.

https://www.keycloak.org/docs/latest/server_admin/#_email
https://www.keycloak.org/docs/latest/server_admin/#_email

228 Authenticating Users

You were also presented with more details on how password-based authentication works
in Keycloak. You learned how Keycloak keeps passwords secure at rest, as well as how
Keycloak helps you employ strong passwords and control the different aspects of password
management by leveraging password policies. Finally, you learned that password-based
authentication is only one, and not the most secure, of the available options you can use
to authenticate users.

In the next section, we are going to look at how to authenticate users more securely by
combining passwords and OTPs to enable 2FA.

Using OTPs
As an additional layer of security, Keycloak allows you to use a second factor – or evidence
– when authenticating users. In addition to providing a password – something users know
– users are obligated to provide secondary evidence about their identity – something they
have – which can be a code or a security key in their possession.

OTP is probably one of the most common ways to enable 2FA for user accounts. They are
relatively easy to use and add an additional layer of security when you're authenticating
users.

Although it's a useful method for 2FA, OTP has some disadvantages. It relies on a shared
key between the server and users and does not provide the best usability for end users,
while still open to common attacks such as phishing or scams. As we are going to see later,
Keycloak helps you overcome these limitations by using a security device as a second
factor using WebAuthn.

Note
As we will see in the following sections, 2FA is an important part of MFA.

Keycloak makes it easy to configure and authenticate users using OTP, where realms
are automatically configured to support 2FA using OTP. Users are also allowed to easily
set up 2FA for their accounts by registering their devices to generate OTP codes.

In the next few sections, we will look at how to configure and authenticate using OTP.

Using OTPs 229

Changing OTP policies
Keycloak allows you to define different policies for OTPs. These policies can be changed
by clicking on the Authentication link on the left-hand side menu and then clicking on
the OTP Policy tab:

Figure 11.13 – OTP Policy tab

An OTP is a code based on a secret key – hashed using a specific algorithm – and a
moving factor that can be either the current time or a counter, where this code can only
be used once to authenticate a user. Keycloak can authenticate and allow users to generate
codes using two main algorithms:

• Time-Based One-Time Password (TOTP)

• HMAC-Based One-Time Password (HOTP)

By default, realms created in Keycloak are configured to use TOTP. They are also
configured with only six digits and have a validity window of 30 seconds. You can
change these settings any time, based on your requirements.

Tip
When you change the details in this tab – mainly the OTP type and the hash
algorithm – make sure the apps that are being used by your users to generate
codes support the configuration.

230 Authenticating Users

The difference between the two algorithms is the moving factor that's used to generate the
code and how they are validated. As the name implies, a TOTP is based on time, so the
code is only valid for a certain period – usually 30 seconds. On the other hand, HOTP is
based on a counter. The validity of the code is infinite until the code is validated and the
counter is increased.

The decision of which algorithm to use is use case-specific. However, TOTP provides
better security than HOTP because if the code is lost or leaked, its validity window is
reduced, hence reducing the attack surface when it comes to using OTPs.

Note
Due to TOTP being based on time, you should be aware that the host where
Keycloak is deployed should have the clock in sync with the devices being
used by your users to generate codes. If the clock is not in sync, users might
be unable to authenticate using TOTP. You should be able to define a clock
skew compensation to reduce the difference between clocks. For that, set
Look Ahead Window with the number of seconds to compensate for the time
difference.

From a user's perspective, Keycloak allows users to obtain OTP codes from their own
personal devices – such as their smartphones or tablets – using two main mobile
applications available from the Android and iOS app stores:

• FreeOTP

• Google Authenticator

As you will learn in the next few sections, by using either of these apps, your users can
easily enable 2FA for their accounts and authenticate in a realm using OTP.

In this section, your learned about OTP and how to change its settings. You also learned
that users can use their preferred devices to generate codes using the FreeOTP and Google
Authenticator apps.

Now, let's look at the different strategies we can use to authenticate users using OTPs.

Using OTPs 231

Allowing users to choose whether they want
to use OTP
Once your users have been successfully authenticated using their passwords, Keycloak is
going to check whether they have any OTP credentials associated with their account. If
no OTP credentials have been set, Keycloak authenticates the user and redirects the user
back to the application. That is the behavior you have seen so far when a user has been
authenticating to a realm.

However, if the user has an OTP credential set, Keycloak is going to perform an additional
step during the authentication flow to obtain the OTP from the user and validate it, prior
to authenticating the user.

Let's see how this works by logging into the account console using the user alice. For
that, open your browser at http://localhost:8080/auth/realms/myrealm/
account and log in using the appropriate user credentials. Note that at the moment,
alice is only using her password to authenticate.

In the account console, users can set up 2FA using OTP by clicking on the Set up
Authenticator Application button when they're on the Signing In page:

Figure 11.14 – Configuring 2FA using OTP

232 Authenticating Users

After choosing to set up a new authenticator, your users will be presented with a QR
code representing the shared key that will be used to generate the codes. By using your
smartphone, you should be able to scan this QR code using either the FreeOTP or Google
Authenticator mobile applications:

Figure 11.15 – Configuring a new OTP

After scanning the QR code using any of these applications, they are going to start
generating the codes that we will be using to complete the OTP credential registration
process, as well as to authenticate the user later, once we've finish this step. Note that
codes are generated every 30 seconds since we are using TOTP.

To complete the OTP credential registration process, set the One-time code field with
any code from the mobile application you are using and click on the Submit button.
Optionally, users can also define an alias for the OTP credential they are creating.

Using OTPs 233

Now, let's try to authenticate again as alice. To do that, click on the Sign Out link at
the top-left corner of the page to log out from the account console, and then authenticate
again using the username and password of that user:

Figure 11.16 – User is prompted to provide the code when logging in

Compared to what happened previously, now, you will be presented with a page asking
you to provide a code. Use your smartphone to obtain a code and fill in the One-time
code field. By clicking the Log In button, you should be able to access the account console
if Keycloak was able to successfully validate the code you provided.

In this section, you learned that Keycloak defaults to requiring 2FA, but only if the user
is associated with an OTP credential. You also learned that by leveraging the account
console, users can easily set up 2FA for their accounts.

In the next section, you are going to learn how to force 2FA for all users in a realm.

Forcing users to authenticate using OTP
For some use cases, the decision of whether to authenticate using OTP is not up to users
but based on the security constraints that have been defined for a realm. Keycloak allows
you to change the default behavior of OTP authentication to force users to either set
up an OTP credential prior to authenticating, or to use an existing one to successfully
authenticate to a realm.

234 Authenticating Users

To enable this behavior, click on the Authentication link on the left-hand side menu and
then select Browser from the list of available flows.

On this page, you are going to change the requirements for the Browser - Conditional
OTP step and mark it as REQUIRED:

Figure 11.17 – Enforcing 2FA for a realm

Now, go to the user settings for alice and remove the OTP credential associated with
the account.

Note
Note that similar to passwords, administrators can set a required action to force
users to configure OTP when they are logging in. For OTP, the name of the
required action is Configure OTP.

Now, let's log into the account console using alice. For that, open your browser at
http://localhost:8080/auth/realms/myrealm/account and log in using
the user's credentials.

Compared to what happened previously, the user is now forced to set up an OTP
credential. The steps to do so are the same as when using the account console, as you
learned in the previous section. The main difference here is that users are obligated to set
up an OTP credential if they do not have one. Only after that can they authenticate in
a realm.

In this section, you learned how to use OTP to enable 2FA to a realm. You learned that
2FA provides a stronger authentication than only using passwords to authenticate users.
You also learned that users can easily enable 2FA to their accounts by using the FreeOTP
or Google Authenticator app.

http://localhost:8080/auth/realms/myrealm/account

Using Web Authentication (WebAuthn) 235

We are going to extend the concepts we've presented in this chapter to set up a stronger
authentication using WebAuthn for two-factor and multiple-factor authentication.

Using Web Authentication (WebAuthn)
The WebAuthn protocol aims to improve the security and usability of authenticating
users over the internet. For that, it provides additional capabilities for server and security
devices to communicate with each other – using the browser as an intermediary – to
authenticate users using a cryptography protocol.

WebAuthn is based on asymmetric keys – a private-public key pair – to securely register
users' devices and authenticate them in a system. There is no shared key between devices
and the server, only a public key. By acting as an intermediary between security devices
and the server, WebAuthn makes it possible to use these devices for 2FA, MFA using
biometrics, or to seamlessly authenticate users without any explicit credentials other
than their security devices: a concept also known as username-less and password-less
authentication.

When used for 2FA, WebAuthn is a more secure method than OTP because there is
no shared key between Keycloak and the third-party applications used to generate
codes. Instead, users are granted a security device that relies on strong cryptography to
communicate the second factor without exposing any sensitive data.

For users, WebAuthn improves their experience when they're authenticating into a system
by completely eliminating the need to deal with passwords or OTP codes. Instead, they
can use their devices to seamlessly authenticate themselves.

A security device – or authenticator – can be anything as long as it complies with a set of
requirements from FIDO2. It can be a smartphone with support for fingerprints, a security
key that's attached through a USB, or a Near-Field Communication (NFC) device.

WebAuthn gives you fine-grained control over the different aspects of how users register
and authenticate through these devices. It allows you to control the requirements of how
to verify the identity of the user in possession of a device or whether credentials should be
stored in the device, hence eliminating the need for storing credentials on the server.

236 Authenticating Users

In Keycloak, you can use WebAuthn to solve different use cases:

• Allow users to register devices either during authentication or using the account
console.

• Use security devices for 2FA as a more secure alternative to OTP.

• Use security devices for MFA using any form of biometric authorization supported
by these devices.

• Use security devices for username-less or password-less authentication.

You should also be able to allow your users to choose from multiple authentication
methods when they're on the login page. For instance, you can allow users to choose
whether they want to use password-less authentication using WebAuthn or password-
based authentication with OTP as a second factor.

Tip
For more details about how to use WebAuthn in Keycloak, look at the
documentation available at https://www.keycloak.org/docs/
latest/server_admin/#_webauthn.

In this section, you learned about some of the key concepts surrounding WebAuthn and
how it helps to employ strong authentication. You also learned that WebAuthn improves
user experience when security devices are used as a second factor or by removing the need
to type in any credentials.

In the next section, we are going to learn how to define an authentication flow to
authenticate users using WebAuthn.

Enabling WebAuthn for an authentication flow
To allow users to authenticate using their devices, we are going to need to create an
authentication flow definition that supports WebAuthn.

Based on what you learned in the Understanding authentication flows section, create a new
flow by performing the following steps:

1. Create a new flow by using the My Browser flow – you created it in the first section
– as a template. Name the new flow My WebAuthn.

2. Delete the OTP Form execution from the My WebAuthn My Browser Browser –
Conditional OTP subflow.

Using Web Authentication (WebAuthn) 237

3. Add a new execution to the My WebAuthn My Browser Browser – Conditional
OTP subflow by selecting the WebAuthn Authenticator execution.

4. Mark My WebAuthn My Browser Browser – Conditional OTP as a
CONDITIONAL flow.

At this point, you should have a flow definition that looks as follows:

Figure 11.18 – Creating an authentication flow definition to authenticate using a security device

Finally, associate this authentication flow definition with Browser Flow on the Bindings
tab.

As you may have noticed, we are basically replacing OTP with WebAuthn for 2FA. You
did not have to do much except replace the OTP Form execution with the WebAuthn
Authenticator execution.

If you try to log in, you will still only be able to log in using the password because the user
hasn't been configured with a security device yet.

In the next section, you will learn how users can register security devices using the
account console.

Registering a security device and authenticating
The first step of enabling WebAuthn to a realm is to allow users to register their devices.
Like for passwords and OTP, the registration of a security device relies on a specific
required action.

238 Authenticating Users

For that, click on the Authentication link on the left-hand side menu and then click on the
Required Actions tab. In this tab, we'll register a new required action by clicking on the
Register button on the top-right corner of the list and selecting the Webauthn Register
required action from the list of options. Click on the OK button to finish this step:

Figure 11.19 – Registering the Webauthn Register required action

After registering the Webauthn Register required action, you should be able to use the
account console to register your security device. For that, open your browser at http://
localhost:8080/auth/realms/myrealm/account and log in using the required
user credentials. In the account console, click on the Signing In link on the left-hand
side menu:

Figure 11.20 – List of available devices

http://localhost:8080/auth/realms/myrealm/account
http://localhost:8080/auth/realms/myrealm/account

Using Web Authentication (WebAuthn) 239

On this page, look at the Security Key section and click on Set up Security Key to register
a security device:

Figure 11.21 – Registering the device

To register the new device, click on the Register button. The browser should ask you to
use your security device to complete the registration – such as by touching it – and ask
what you want to name the device. You can use any name you want.

After successfully registering the device, it should be listed among the available options
for 2FA:

Figure 11.22 – Security device successfully registered

240 Authenticating Users

Now, let's try to authenticate again as alice. For that, click on the Sign Out link at the
top-left corner of the page to log out from the account console, and authenticate again
using the username and password of the user:

Figure 11.23 – User is requested to interact with the security device to complete the
authentication process

When authenticating as alice, you should be prompted to interact with the security
device to complete the authentication. Note that this behavior is quite similar to using
OTP as a second factor, but the user does not need to type in any code, nor are they sent
over the wire.

In this section, you learned how to register security devices using the account console.
You also learned how easy it is to use WebAuthn and security devices for 2FA. You then
learned that Keycloak allows you to use WebAuthn for multi-factor authentication by
relying on any biometrics authorization provided by a security device.

In the next section, you will be presented with some key concepts around
strong authentication.

Using strong authentication 241

Using strong authentication
Strong authentication is a term that's widely used nowadays. What it means depends on
the context where it is used. In general, strong authentication is about employing either
two-factor or multiple-factor authentication to authenticate users.

As you learned in the previous sections, Keycloak provides the necessary capabilities to
enable either 2FA or MFA for a realm. If your requirements for strong authentication
only require the use of 2FA, you are good to go with either OTP or a security device
when you're using WebAuthn.

However, MFA is probably the strongest form of authentication you can get, where
biometric authorization is a key aspect of securely identifying and authenticating the user.
In this case, you should consider using WebAuthn and setting up security devices to verify
the identity of the user – using fingerprint scanning, for instance – to make sure the user
using the device is indeed the user trying to authenticate.

Strong authentication can also involve leveraging 2FA or MFA to enable other
authentication factors, such as the history of IP addresses and devices that users are using
to authenticate. In this case, you might want to select the best factor to authenticate a user,
depending on a risk score or based on the user's behavior. Alternatively, you may just wish
to force the user to reauthenticate when they're accessing sensitive data or performing a
critical action on your system.

At the time of writing this book, Keycloak does not provide built-in support for
some common authentication paradigms such as adaptive authentication, risk-based
authentication, or step-up authentication.

However, as you learned in this chapter, Keycloak is very flexible in terms of how you can
configure as well as implement new forms of authentication for a realm. As you will see in
Chapter 13, Extending Keycloak, Keycloak provides a set of Service Provider Interfaces
(SPIs) that developers can use to extend its core capabilities.

In this section, you had a quick overview of strong authentication and how Keycloak can
help you to achieve it. Now, let's take a look at this chapter's summary.

242 Authenticating Users

Summary
In this chapter, you were provided with more details on how to authenticate users in
Keycloak. First, you were introduced to authentication flows and how they play an
important role in defining how users – as well as clients – authenticate in a realm. You
were presented with the main authentication methods supported by Keycloak and how to
configure them to promptly authenticate users, as well as how to combine them to support
2FA and MFA. Finally, you were briefly introduced to strong authentication and how
Keycloak can help you employ secure authentication methods for a realm.

By leveraging the information in this chapter, you should now be able to customize
Keycloak to authenticate users according to your needs and using different authentication
methods.

In the next chapter, you are going to look at session management and how it correlates
with authentication.

Questions
1. How do I change the look and feel of the pages shown in this chapter?

Keycloak allows you to customize its look and feel entirely, not just for the pages
that were presented in this chapter. As we are going to see in Chapter 13, Extending
Keycloak, you should be able to change the look and feel of pages by changing
the different themes provided by Keycloak. You can find more details in the
documentation at https://www.keycloak.org/docs/latest/server_
development/#_themes.

2. I cannot follow the WebAuthn examples and register a security device. What am I
missing?

WebAuthn requires you to use a FIDO - or FIDO2-compliant security device. You
should also consider accessing Keycloak using HTTPS and using a valid domain
name. WebAuthn is strict about domain names and secure connections if the server
is accessed from a different domain than the client. You should also make sure the
browser you are using has support for the WebAuthn API. You should also consider
looking at the demo on the WebAuthn site to check how your security device
works there.

https://www.keycloak.org/docs/latest/server_development/#_themes
https://www.keycloak.org/docs/latest/server_development/#_themes

Further reading 243

Further reading
• Keycloak authentication documentation: https://www.keycloak.org/

docs/latest/server_admin/#authenticationKeycloak

• Keycloak required actions: https://www.keycloak.org/docs/latest/
server_admin/#required-actions

• Keycloak login page settings: https://www.keycloak.org/docs/latest/
server_admin/#login-page-settings

• Keycloak Account Console: https://www.keycloak.org/docs/latest/
server_admin/#_account-service

• WebAuthn: https://webauthn.io/

https://www.keycloak.org/docs/latest/server_admin/#login-page-settings
https://www.keycloak.org/docs/latest/server_admin/#login-page-settings
https://www.keycloak.org/docs/latest/server_admin/#_account-service
https://www.keycloak.org/docs/latest/server_admin/#_account-service
https://webauthn.io/

12
Managing Tokens

and Sessions
In addition to acting as a centralized authentication and authorization service, Keycloak
is, at its core, a session and token management system.

As part of the authentication process, Keycloak may create server-side sessions and
correlate them with tokens. By relying on these sessions, Keycloak is able to keep the state
of the authentication context where sessions originated, track users' and clients' activity,
check the validity of tokens, and decide when users and clients should re-authenticate.

In this chapter, we are going to look at how Keycloak allows you to manage tokens and
their underlying sessions, as well as understanding the different aspects that you should be
aware of when doing so. For that, we are going to cover the following topics:

• Managing sessions

• Managing tokens

246 Managing Tokens and Sessions

Technical requirements
During this chapter, you are going to use the Keycloak administration console to follow
some of the examples herein provided, therefore make sure you have Keycloak up and
running as per what you learned from Chapter 1, Getting Started with Keycloak.

Managing sessions
Session management has a direct impact on some key aspects such as user experience,
security, and performance.

From a user experience perspective, Keycloak relies on sessions to determine whether
users and clients are authenticated, for how long they should be authenticated, and when
it is time to re-authenticate them. This characteristic of sessions is basically what gives
users the single sign-on experience when authenticating to different clients within the
same realm, and what makes a unified authentication experience possible.

From a security perspective, sessions provide a security layer for tracking and controlling
user activity and for making sure that tokens issued to clients are still valid passports to
act on behalf of users. They are also important to limit and control the time users can stay
connected to a realm and its clients, helping to reduce the attack surface when sessions
or tokens are leaked or stolen. As we are going to see later in this topic, sessions can be
invalidated prematurely by administrators, users, and clients as a reaction to or prevention
of unauthorized access from malicious actors.

From a performance perspective, sessions are kept in memory and they have a direct
impact on the overall performance of Keycloak. As you learned from Chapter 9,
Configuring Keycloak for Production, Keycloak stores sessions in shared caches where the
number of active sessions and for how long they are kept alive are key factors that need to
be balanced to optimize memory and CPU resources.

With all that in mind, Keycloak provides you with a flexible session and token
management to balance all three aspects mentioned herein. Administrators should
be able to track the active sessions for users and clients, check which clients users are
authenticated to, force a single or global logout for invalidating sessions, revoke tokens,
and control the different aspects of sessions' and tokens' lifetimes.

In the next topic, we are going to start looking at how to manage sessions' lifetimes.

Managing sessions 247

Managing session lifetimes
One of the first questions you need to answer before going to production with Keycloak
is how often users and clients should re-authenticate. To help you with this question, you
should be aware of how Keycloak creates sessions and how to define their lifetimes.

The session lifetime determines when sessions should expire and be destroyed. Once
expired, the users and clients associated with these sessions are no longer authenticated
and are forced to re-authenticate to establish a new session.

Note
Keycloak expires sessions using a background task that runs from time to time,
checking for expired sessions. By default, the task runs every 15 minutes. You
are free to change this value if you really need to. The default setting should be
enough for most deployments.

Keycloak creates sessions at different levels when authenticating users. Firstly, a user
session is created to track the user activity regardless of the client. This first level is what is
called the Single Sign-on (SSO) session, also referred to as a user session. At the second
level, Keycloak creates a client session to track the user activity for each client the user is
authenticated to in the user session. Client sessions are strictly related to the validity of
tokens and how they are used by applications.

As a top-level session, the SSO session lifetime is a global setting used to control how
often users and clients need to re-authenticate. Keycloak allows you to configure the
maximum time that SSO sessions should be kept alive and the idle period after which to
expire sessions prematurely. When an SSO session expires, all client sessions associated
with it also expire.

Note
The SSO session is like an HTTP session. Both are used to track and keep state
across multiple requests from the same agent.

248 Managing Tokens and Sessions

To configure these settings, you should click on Realm Settings on the left-side panel and
then click on the Tokens tab:

Figure 12.1 – Configuring SSO session lifetime

From this tab, you can set both maximum and idle times for SSO sessions by setting the
SSO Session Max and SSO Session Idle settings, respectively. These two settings together
effectively tell Keycloak that sessions should be kept alive for a certain amount of time and
no longer than that, and that in the meantime Keycloak should check user activity within
a certain period – the idle period – to decide whether sessions should expire prematurely.

Let's understand these two settings by example. By default, Keycloak defines a 10-hour
lifetime for SSO sessions. This time effectively means that sessions can live up to 10 hours
and no longer than that.

However, the idle timeout is set as 30 minutes by default, and that effectively means that
if Keycloak does not see any user activity within a 30-minute period, sessions are going to
be destroyed, regardless of the maximum time set. The idle timeout is bumped every time
users interact with Keycloak, either directly through the authorization endpoint – when
using a browser – or indirectly when tokens are refreshed by clients.

If a user authenticates and moves away from the keyboard and the client does not refresh
its tokens during this period, the user session will be destroyed in 30 minutes. However,
if the user is constantly interacting with Keycloak using the browser, or the client is
constantly refreshing its tokens, the user session can last up to 10 hours.

Managing sessions 249

Like SSO sessions, administrators can set the Client Session Idle and the Client Session
Max settings to set the idle and maximum time for client sessions, respectively:

Figure 12.2 – Configuring client session lifetime

These two settings provide administrators with more fine-grained control over the session
lifetime of clients, making it possible to define hard limits for how long tokens are valid
and force clients to re-authenticate whenever they try to refresh tokens. In other words,
tokens issued to any client in a realm are only valid up to the maximum time you set, with
the possibility to prematurely expire client sessions and invalidate tokens if the client is
not refreshing its tokens within the idle period.

However, and differently than SSO sessions, when a client session is invalidated, users
are not necessarily forced to re-authenticate if their SSO sessions did not expire, but it
will force clients to re-authenticate to obtain a new set of tokens. Note that when a client
session expires, users might be redirected to Keycloak as a consequence of forcing the
client to re-authenticate, potentially causing some impact on the user experience when
users are using a browser.

By default, Keycloak defines the same configuration set for SSO sessions to control the
client session lifetime. By changing the value of the Client Session Idle and the Client
Session Max settings to any other value than 0, you should be able to define a different
lifetime for client sessions.

Note
As you will learn from the next topic, Managing tokens, Keycloak also allows
administrators to override both Client Session Max and Client Session Idle
settings on a per-client basis.

As a rule of thumb, the session lifetime should be as short as possible considering the
security, performance, and user experience aspects. By using a short lifetime, you can
reduce the impact of session hijack attacks or when tokens are leaked or stolen. It also
avoids overloading the server with sessions that do not show any user activity and
therefore helps to save server resources such as memory and CPU. However, a short
session lifetime has a direct impact on user experience and how often users need to
re-authenticate. In a user-first approach, you will probably start with what is the best for
your users and then adjust the session lifetime accordingly to your security requirements
and the constraints you have on resources such as memory and CPU.

250 Managing Tokens and Sessions

In this topic, you learned about how to manage session lifetime and its impact on user
experience, security, and performance. You also learned that during the authentication
and token issuance processes, Keycloak may create an SSO session on a per-user basis
and client sessions for each client the user is authenticated to.

In the next topic, you are going to learn how to track and manage user and client sessions.

Managing active sessions
Keycloak gives administrators great traceability and visibility of sessions at different levels:

• Per realm

• Per client

• Per user

At the realm level, administrators can look at statistics of the number of active sessions on
a per-client basis. For that, click on the Sessions link on the left-side panel:

Figure 12.3 – Managing active sessions in a realm

Managing sessions 251

From this page, you can click on any client to get more details about its active sessions:

Figure 12.4 – Managing active sessions in a client

By selecting a client, you should be redirected to the Sessions tab on the client details
page. From this page, you can click on the Show Sessions button to get the active sessions
in the client on a per-user basis. On this page, you should have access to a few more details
about sessions, such as the IP address of the user and when the session started.

By clicking on any user on this page, you are redirected to the user details page, the third
and the last level of visibility for active sessions:

Figure 12.5 – Managing sessions for a user

On the user details page, you should click on the Sessions tab to look at all active sessions
for the user. On this tab, you are given more details about sessions, such as when the
session started, the last time Keycloak recorded activity from the user, and all clients – and
client sessions – associated with a user session.

252 Managing Tokens and Sessions

Under normal circumstances, you should expect users with a single session and many
clients. This is especially true in a typical SSO scenario when users are using a browser to
authenticate, and the same session is reused to authenticate to different clients. However,
it might happen that users close their browser, clear their cookies, or just use different
devices to authenticate. Under these circumstances, you might have multiple user sessions
for a single user.

In this section, you learned how to get more visibility on the sessions active in a realm.
You also learned that Keycloak gives you different levels of visibility on a per-realm,
per-client, and per-user basis. Finally, you learned that at each level you are given
additional information about sessions.

In the next topic, you are going to look at these different levels of visibility in more detail
and how to expire sessions prematurely by forcing a single or global logout.

Expiring user sessions prematurely
In addition to providing statistics on sessions, Keycloak also provides mechanisms for
expiring sessions prematurely when at the different levels that you learned about in the
previous topic.

When looking at the active sessions at the realm level, you can expire all active sessions in
a realm by clicking on the Logout all button:

Figure 12.6 – Forcing session expiration at the realm level

When clicking on the Logout all button, Keycloak is going to promptly expire all sessions
by iterating over all of them and removing their references. On this page, you should also
be able to reactively revoke tokens on the Revocation tab, as you will learn in the next
section.

Managing sessions 253

When at the user level, you can expire individual sessions by clicking on the Logout
button or simply expire all sessions by clicking on the Log out all sessions button:

Figure 12.7 – Expiring user sessions

Tip
When expiring sessions using any of the options presented here, Keycloak
might send notifications to applications so that they can also invalidate their
local sessions. However, this is a capability only available for applications using
Keycloak adapters. For more details, look at the documentation at https://
www.keycloak.org/docs/latest/server_admin/#oidc-
clients on how to use the Admin URL to receive events from Keycloak.

Note that when using any of the preceding methods to log out all sessions either at the
realm or user level, Keycloak iterates over sessions and expires them one by one. At the
user level, you should not expect many active user sessions but probably many client
sessions depending on the number of clients that users are authenticated to. However,
expiring sessions at the realm level for every user authenticated in a realm might be an
expensive operation.

In this topic, you learned how to prematurely expire user sessions using the Keycloak
administration console. You were also presented with some considerations on how to
expire sessions using the different options herein presented.

In the next section, you are going to look at how Keycloak uses cookies to track user and
client sessions.

https://www.keycloak.org/docs/latest/server_admin/#oidc-clients
https://www.keycloak.org/docs/latest/server_admin/#oidc-clients
https://www.keycloak.org/docs/latest/server_admin/#oidc-clients

254 Managing Tokens and Sessions

Understanding cookies and their relation to sessions
As you know, HTTP is a stateless protocol where cookies are often used to share state
between browsers and servers. Keycloak heavily relies on HTTP cookies to track user
sessions when users are interacting with it using a browser.

After successfully authenticating a user, Keycloak sets a KEYCLOAK_IDENTITY cookie
to correlate a browser session with the corresponding user session on the server. If this
cookie is leaked or stolen, users might have their sessions compromised.

The KEYCLOAK_IDENTITY cookie is set by default as an HttpOnly cookie to prevent
cross-site scripting (XSS) and session hijacking attacks. Its expiration is based on the
value set to the maximum time set to user sessions and its value has enough entropy to
prevent guessing attacks.

Note
If you enabled the remember ne setting in a realm and users marked the
remember me option when logging in, the KEYCLOAK_IDENTITY cookie
is set with a 1-year expiration. In this case, the maximum time set for user
sessions is not considered.

You can add more security barriers to this cookie, and the main one is to make sure
Keycloak is only accessed through a secure channel using HTTP over TLS (HTTPS).
When using HTTPS, the secure attribute is set to the cookie to prevent it from being
transmitted in cleartext, as well as the SameSite=none attribute to make sure the cookie
is only sent in cross-site requests through a secure connection. For more details on how to
enable TLS, check Chapter 9, Configuring Keycloak for Production.

Regarding session expiration, the KEYCLOAK_IDENTITY cookie does not automatically
expire when using any of the methods presented in the previous topic. Therefore,
browsers may still send this cookie, but they are no longer referencing an active session.
Upon receiving an invalid cookie, Keycloak is going to invalidate it and force the user
to re-authenticate.

In this topic, you had a brief introduction to how Keycloak tracks user sessions using
cookies. You also learned that protecting cookies is crucial to keep user sessions secure
and how Keycloak helps to enforce strict policies on them.

Managing tokens 255

In this section, you learned about some key aspects of session management in Keycloak.
You learned that Keycloak is constantly creating server-side sessions to track authenticated
users and the clients they are authenticated to. You also learned about the importance of
properly configuring a session's lifetime and its impact on the user experience, security,
and performance of applications and Keycloak. Lastly, you were presented with different
options to expire sessions through the administration console and how Keycloak leverages
cookies to track sessions when users are using a browser.

In the next section, you are going to look at how to manage tokens and their correlation
with sessions.

Managing tokens
As you learned from the previous section, tokens are usually bound to sessions. Therefore,
the token validity – not necessarily their lifetimes – depends on sessions.

Tokens have their own lifetime and how long they are considered valid depends on how
they are validated. By leveraging JSON Web Token (JWT) as a format for tokens, Keycloak
enables applications to validate and introspect tokens locally without any additional
roundtrip to the server. However, this capability has a consequence where tokens, although
within their lifetime, might not be valid anymore if their sessions have expired.

Without taking this into account, you might end up in a situation where tokens are no
longer valid but are still accepted by applications because they are within their lifetime,
therefore increasing the attack surface if tokens are leaked. As you are going to learn
from this chapter, you should always consider a clear strategy for token expiration
and revocation.

When applications obtain tokens from Keycloak, they are given a set of tokens:

• ID token

• Access token

• Refresh token

As you learned from previous chapters, depending on the authorization grant the client
is using, Keycloak might issue all those tokens or only a subset of them. Each token has
its own lifetime.

256 Managing Tokens and Sessions

Except for refresh tokens, as we are going to see in a moment, the ID token and access
token share the same lifetime. Both tokens are short-lived and commonly used by public
clients (for example, single-page applications) where token storage is not the most
secure. In the case of an access token, it is frequently sent over the wire and susceptible
to interception. Their lifetime and validity are key factors to reduce the impact when they
leak or are revoked.

On the other hand, refresh tokens have a longer lifetime, and their validity depends on
the lifetime set for user and client sessions. This characteristic is what makes it possible to
have short lifetimes for ID tokens and access tokens and what makes it possible to refresh
these tokens when they expire. By living longer, refresh tokens are the perfect target for
attackers, and they also need a clear strategy for expiration and revocation.

Note
As you will see in Chapter 14, Securing Keycloak and Applications, you can use
additional layers of security for protecting tokens from being misused when
they leak, such as key rotation. Yet, token lifetime is crucial to determine the
overall security of your clients and their behavior.

In this section, you were briefly introduced to some basic concepts regarding tokens,
such as their lifetime and validity and how they might impact the overall security of
applications.

In the next topic, you are going to look at how to manage tokens' lifetimes.

Managing ID tokens' and access tokens' lifetimes
Keycloak allows you to set tokens' lifetimes similarly to sessions. For that, click on the
Tokens tab when on the Realm Settings page. On the Tokens tab, you should be able to
limit the lifetime for all three tokens mentioned in the previous topic, with the possibility
to define specific settings for refresh tokens.

For ID tokens and access tokens, their lifetime can be set by changing the Access Token
Lifespan setting to any value you want. By default, Keycloak sets the lifespan for these
tokens to only 5 minutes:

Figure 12.8 – Setting the ID token and access token lifespan

Managing tokens 257

Note
The name is confusing, but behind the scenes, Keycloak uses the Access Token
Lifespan setting to also calculate the lifetime for ID tokens.

Keycloak also allows you to override Access Token Lifespan on a per-client basis. For
that, navigate to the details page of a client and, on the Settings tab, click on the Advanced
Settings section:

Figure 12.9 – Overriding the ID token and access token lifetime on a per-client basis

In the Advanced Settings set the Access Token Lifespan to override the lifetime for ID
tokens and access tokens for a particular client.

The value you set should be as short as possible to reduce the impact when tokens leak,
therefore forcing clients to refresh their tokens. However, a too-short value might also
impact the performance of your application and Keycloak itself as you will have more
frequent refresh token requests. The default value should be enough for most use cases,
but you can adjust the value according to your needs.

This setting is especially important for access tokens as they are frequently transmitted
over the wire as a bearer token to access applications, as per RFC 6750 – Bearer Token
Usage. As mentioned before, tokens issued by Keycloak are based on the JWT format,
enabling applications to validate tokens without an additional round trip to introspect
the token using the token introspection endpoint of Keycloak, but validating the token
signature and some standard claims related to lifetime. Therefore, and depending on
your security requirements, you might not tolerate a situation where the token is within
its lifetime, but the refresh tokens are no longer backed by an active session in Keycloak.
Under this circumstance, you might want the additional overhead of using the token
introspection endpoint in favor of security.

258 Managing Tokens and Sessions

Here, the lifetime also has a direct impact on the user experience and on the complexity
of clients. Short-lived tokens are usually used together with long-lived refresh tokens
to avoid users re-authenticating whenever tokens expire. Clients using refresh tokens
are more complex to implement though due to the additional logic to deal with refresh
tokens. On the other hand, long-lived tokens help to make clients simpler by removing the
need for frequent refreshes with additional risks in case tokens happen to leak. It is up to
you to find the right balance that fits your needs.

In this topic, you learned about how to set the lifetime for ID and access tokens. You
learned that as a best practice, the lifetime should be as short as possible and what the
correlation between short-lived tokens, refresh tokens, client complexity, security, and
performance is. Finally, you learned that the validity of tokens can be out of sync with
the state of their sessions and how you can avoid that by using the token introspection
endpoint instead of performing local validations of tokens.

In the next topic, you will learn how to manage the lifetime of refresh tokens.

Managing refresh tokens' lifetimes
The lifetime of refresh tokens is defined by the same SSO Session Max and Client Session
Max settings that you learned about in the previous section to set the lifetimes of user
sessions and client sessions, respectively.

Firstly, refresh tokens' lifetimes are calculated based on the time set for client sessions,
either by setting the Client Session Max setting at the realm level or overriding the
same setting on a per-client basis. If a lifetime is not explicitly set for client sessions, then
Keycloak will fall back to the value you set for user sessions, through the SSO Session
Max setting.

To override the refresh token lifetime on a per-client basis, navigate to the details page of a
client and on the Settings tab, click on the Advanced Settings section:

Figure 12.10 – Overriding the refresh token lifetime on a per-client basis

Managing tokens 259

In the Advanced Settings, you can override the refresh token lifetime by setting the
Client Session Max and Client Session Idle settings. Note that by default Keycloak does
not define an explicit value for these settings at the client level so that they are implicitly
set with the values set at the realm-level, as you learned in the previous section.

With regards to refresh tokens, you should consider the following:

• Refresh tokens are always bound to a client session after authenticating users
in Keycloak using specific authorization grants such as the authorization code,
resource owner password, or device flow.

• Refresh tokens are considered valid if the user and client sessions they are bound
with have not expired.

• Clients should be able to use refresh tokens to obtain new tokens only if their
respective client sessions are still active.

By taking these three considerations into account you should be able to realize how
refresh tokens are crucial to getting short-lived ID tokens and access tokens, as well as
how much they are critical to the overall security of your applications by allowing you to
define more strict policies in regard to token lifetime on a per-client basis.

Refreshing token lifetime can be adjusted depending on how much clients can keep their
tokens secure. For instance, a confidential client could have refresh tokens that live longer,
whereas for public clients you might want a smaller window. Note however that as soon
as a refresh token expires, users will be forced to re-authenticate to the client, therefore
impacting the user experience, if using a browser.

One of the worst things that might happen is when a refresh token is leaked. It would
enable attackers to obtain tokens from Keycloak and gain access to applications by
impersonating the client to which the tokens were issued. There are different barriers
that you can impose to avoid or reduce the impact when that happens. One of them is
refreshing token rotation.

In this topic, you learned about how to manage refreshing tokens' lifetimes and its
importance for enabling short-lived tokens and the overall security of applications.

In the next section, we are going to look at how to enable refreshing token rotation to
prevent attackers from reusing refresh tokens.

260 Managing Tokens and Sessions

Enabling refreshing token rotation
As a protection measure for when refresh tokens are leaked, Keycloak allows you to enable
refreshing token rotation.

Refreshing token rotation is a strategy to reduce the impact when a refresh token is leaked
by invalidating it prior to issuing a new one when a legitimate client is making refresh
token requests. When enabled, rotation helps to quickly identify when the refresh token
leaked and force either the attacker or the legitimate client to re-authenticate to obtain
a fresh set of tokens, including a new and valid refresh token. Considering that only the
legitimate client is capable of authenticating to the token endpoint, only it will be able to
successfully obtain a new refresh token.

To enable refresh token rotation, navigate to the Tokens tab on the Realm Settings page
and enable the Revoke Refresh Token setting:

Figure 12.11 – Enabling refresh token rotation

By enabling that setting, you are presented with an additional Refresh Token Max Reuse
setting to define how many times a refresh token can be used by a client until a new one is
issued, thus, invalidating the previous refresh token.

By default, the Refresh Token Max Reuse setting is set to 0 and that effectively means
that a refresh token can only be used once. If a client tries to reuse the same refresh token,
Keycloak is going to deny the request and force the client to re-authenticate the user. If
you increase the value by 1, for instance, it will allow clients to use the same refresh token
only twice.

In practice, refreshing token rotation is usually a good practice for reducing the attack
surface when refresh tokens are leaked. It is also useful to quickly identify when that
happens and react to possible exploits. However, it is not the only security measure you
should consider, especially when dealing with public clients.

Managing tokens 261

Public clients are inherently insecure as they do not need to provide any credentials to
authenticate to the token endpoint. As such, you should consider using Mutual TLS
Client Authentication to enforce the usage of sender-constrained tokens where the client
certificate is used to bind the tokens to the client they were issued for, therefore preventing
an attacker from using potentially leaked refresh tokens when presenting them to the
token endpoint. For more details, check Chapter 14, Securing Keycloak and Applications.

In the next topic, you will learn about how to revoke tokens to either simply expire tokens
when they are no longer necessary or as a reaction to possible exploits.

Revoking tokens
Keycloak allows you to revoke tokens using different methods. As you learned from the
previous section, Managing sessions, tokens are bound with sessions and when sessions
expire tokens are no longer considered valid by Keycloak.

One of the easiest ways to globally invalidate tokens, regardless of the user and client, is to
use a not-before-revocation policy to force tokens to expire based on a time.

As you also learned from the previous section, Keycloak allows you to manage the active
sessions in a realm by clicking on the Sessions item in the left-side pane. When on the
Sessions page, you can click on the Revocation tab to revoke tokens created before a
given time:

Figure 12.12 – Expiring sessions using a time-based revocation policy

By clicking on the Set to now button, Keycloak will automatically fill the Not Before field
with the current time and update the realm settings to fail token validation whenever a
token was created before the time set.

262 Managing Tokens and Sessions

Note
Note that when revoking tokens using a not-before policy, applications are
not immediately communicated about the revocation status. For that, you can
click on the Push button to send a notification to clients. However, this is a
capability only available for applications using Keycloak adapters. For more
details, look at the documentation at https://www.keycloak.org/
docs/latest/server_admin/#oidc-clients on how to use the
Admin URL to receive events from Keycloak.

Keycloak also allows you to revoke tokens by either expiring their underlying sessions –
user or client sessions – or by using a revocation endpoint as defined per RFC 7009.

By revoking tokens using session expiration, administrators should be able to leverage
what you learned in the previous section, Managing sessions, to automatically invalidate
any token associated with a session.

On the other hand, Keycloak also allows clients to revoke their tokens using a specific
endpoint, the token revocation endpoint, based on RFC 7009. By using this approach,
clients can help Keycloak to track unused tokens, reduce the time tokens are susceptible to
leaking, and clean up any data associated with them to save memory and CPU resources.
For more details on how to revoke tokens using the token revocation endpoint, look at
the documentation at https://www.keycloak.org/docs/latest/server_
admin/#_oidc-endpoints.

All the methods mentioned herein help to react to the leakage of tokens or to revoke them
as soon as they are no longer used.

Except for a not-before-revocation policy, all other methods imply expiring the user and
client sessions by either expiring all active sessions in a realm or only client sessions when
using the token revocation endpoint. The not-before policy only impacts how tokens are
validated; their corresponding sessions are still kept alive.

In this section, you learned about some key aspects of token management and how tokens
correlate with session management. Firstly, you were presented with the key concepts and
considerations around token lifetime, as well as about the different settings to configure
it. Then you learned how refresh tokens enable short-lived access tokens and their
importance to the overall security and performance of applications. Lastly, you learned
about how refresh token rotation can help to reduce the attack surface when refresh
tokens are leaked, as well as about the different methods for revoking tokens.

https://www.keycloak.org/docs/latest/server_admin/#oidc-clients
https://www.keycloak.org/docs/latest/server_admin/#oidc-clients
https://www.keycloak.org/docs/latest/server_admin/#_oidc-endpoints
https://www.keycloak.org/docs/latest/server_admin/#_oidc-endpoints

Summary 263

Summary
In this chapter, you were provided with some key aspects around token and session
management. By leveraging what you learned from this chapter, you should be able to
define clear policies for the session expiration and token revocation considering their
impact on security, user experience, and the performance of applications and Keycloak.

In the next chapter, you are going to look at one of the main aspects of Keycloak –
extensibility – and how to extend it to adapt and fill unmet needs.

Questions
1. Does Keycloak store sessions in the database?

2. What is an offline session?

3. How can you prevent Keycloak from losing session state during restarts?

4. In what circumstances are sessions not created?

Further reading
Refer to the following links for more information on topics covered in this chapter:

• Keycloak User and Session Management: https://www.keycloak.org/
docs/latest/server_admin/#user-session-management

• Mutual-TLS Client Authentication: https://www.keycloak.org/docs/
latest/server_admin/#advanced-settings

• Token Revocation Endpoint: https://tools.ietf.org/html/rfc7009

• Keycloak Threat Model Mitigation https://www.keycloak.org/docs/
latest/server_admin/#compromised-access-and-refresh-tokens

• OAuth 2.0 Threat Model and Security Considerations: https://tools.ietf.
org/html/rfc6819

• OAuth 2.0 Security Best Current Practice: https://tools.ietf.org/html/
draft-ietf-oauth-security-topicshttps://www.keycloak.org/
docs/latest/server_admin/#_account-service

https://www.keycloak.org/docs/latest/server_admin/#advanced-settings
https://www.keycloak.org/docs/latest/server_admin/#advanced-settings
https://tools.ietf.org/html/rfc7009
https://www.keycloak.org/docs/latest/server_admin/#compromised-access-and-refresh-tokens
https://www.keycloak.org/docs/latest/server_admin/#compromised-access-and-refresh-tokens
https://www.keycloak.org/docs/latest/server_admin/#_account-service
https://www.keycloak.org/docs/latest/server_admin/#_account-service

13
Extending Keycloak

At this point, you should have a good idea in terms of what Keycloak has to offer as an
Identity and Access Management (IAM) solution. You may also be trying to correlate
what you have learned so far with the use cases you need to solve and how to leverage
Keycloak capabilities to fit into your requirements.

Although Keycloak offers a rich configuration model that allows you to easily adapt its
capabilities according to your needs, it is expected that the configuration is not enough
to sort out all of them.

Among other questions, you are probably asking yourself how to change Keycloak pages
to comply with your own User Interface (UI) and User Experience (UX) patterns. Or
perhaps how Keycloak can leverage and integrate to a legacy database identity store for
fetching identity-related data for existing users. Or maybe – and I promise this is my last
attempt – you want to send audit events to a fraud detection system and integrate with it
for risk-based authentication.

266 Extending Keycloak

In this chapter, you will learn how to go beyond any limitation in configuration by
extending Keycloak to either customize existing capabilities or to add new ones. For that,
you are going to have an overview of the design of Keycloak and why it is the perfect
choice to not only quickly deploy IAM to your ecosystem, but also to easily adapt IAM
to fit into your needs.

For that, we are going to cover the following topics in this chapter:

• Understanding Service Provider Interfaces

• Changing the look and feel

• Customizing authentication flows

• Looking at other customization points

By the end of this chapter, you should be aware of how to leverage customization hooks
to change the look and feel of Keycloak according to your UI and UX requirements,
understand the concept of a Service Provider Interface (SPI) and the role they play
when it comes to customization, and finally look at some references and code examples
regarding how customizations are implemented and installed.

Help Keycloak
As a widely used open source project, Keycloak was designed with extensibility
in mind, where contributions are made daily to extend or add new capabilities.
With the basic learning from this chapter, it is also expected that you can help
us to constantly improve and enrich the set of functionalities of Keycloak.

Technical requirements
During this chapter, you are going to need a development environment with the Java
Development Kit (JDK) 11 specifications.

You also need to have a local copy of the GitHub repository associated with the book.
If you have Git installed, you can clone the repository by running this command in
a terminal:

$ git clone https://github.com/PacktPublishing/Keycloak-
Identity-and-Access-Management-for-Modern-Applications.git

Alternatively, you can download a ZIP of the repository from https://github.com/
PacktPublishing/Keycloak-Identity-and-Access-Management-for-
Modern-Applications/archive/master.zip.

https://github.com/PacktPublishing/Keycloak-IAM-for-Modern-Applications/archive/master.zip

Understanding Service Provider Interfaces 267

The examples you are going to follow along with in this chapter are available from the
following directory within the repository:

$ cd Keycloak-Identity-and-Access-Management-for-Modern-
Applications/ch13

For this chapter, you also need to create a myrealm realm to follow some examples.
You will also need to create an alice user to authenticate to the account console when
running examples.

Let's start our journey by first looking at what an SPI is and why it is a key concept when
looking forward to extending Keycloak.

Check out the following link to see the Code in Action video: https://bit.
ly/3vLWzjL

Understanding Service Provider Interfaces
If you are already familiar with the Java language, you probably know what an SPI is.
If not, think about it as a pluggable mechanism for adding or changing behavior to an
extensible Java application without changing its code base.

Keycloak is built with extensibility in mind where features are implemented using a set of
well-defined interfaces. Features such as the ability to authenticate users using different
authentication mechanisms, auditing, integration with legacy systems for fetching identity
data, map claims into tokens, register new users and update their profiles, and to integrate
with third-party identity providers are all backed by a set of service interfaces and a
corresponding SPI. The same is also true for core features, such as caching, storage, or the
different security protocols supported by Keycloak, although for those, you would hardly
have a need to customize:

Figure 13.1 – Keycloak Service Provider Interface (SPI)

In Keycloak, a feature is defined based on three main interfaces:

• Spi

• ProviderFactory

• Provider

https://bit.ly/3vLWzjL
https://bit.ly/3vLWzjL

268 Extending Keycloak

Note
For simplicity purposes, we are now going to use the term provider
whenever referring to a combination of a ProviderFactory and Provider
implementation, where a custom provider refers to customizations for an
existing SPI or feature.

The SPI – according to Java terminology – is a top-level interface for loading and
describing the different implementations of a feature.

The ProviderFactory is a service factory interface and, as the name suggests, defines
a contract for managing the life cycle of a particular implementation and for creating
Provider instances. A factory is also responsible for defining a unique identifier for itself
in the scope of the SPI to not clash with other provider implementations.

Provider is the actual service interface that you implement to realize a feature. The
following is the main interface you are going to implement to customize existing features
or to add new ones:

Figure 13.2 – Realization of the three main interfaces

By allowing multiple implementations of a feature or Spi, Keycloak allows you to create
your own implementations and enrich it by either adding new features or changing its
behavior. Let's understand how this translates into practice by looking at the list of SPIs
and their respective providers. Open the administration console and click on the user icon
in the top-right corner of the page. Once you click the icon, you are going to be presented
with a sub-menu with an option called Server Info:

Understanding Service Provider Interfaces 269

Figure 13.3 – Accessing server runtime information

After clicking on the Server Info option, you are presented with a page with information
about the server runtime and a second tab called Providers. Click on the Providers tab
to list all the providers installed on the server.

By looking at the list of providers, you can clearly see the realization of the diagrams
presented earlier. As an example, type social in the input box at the top of the list to
filter the results to only those related to integrating with social identity providers:

Figure 13.4 – List of the different implementations of social identity providers

As you can see from that list, the social SPI has different providers for each social
identity provider that you learned from Chapter 10, Managing Users. The same applies for
any other SPI, such as required-action, protocol-mapper, and so forth.

270 Extending Keycloak

In this topic, you had a quick overview of Keycloak design, with a focus on extensibility.
You learned that Keycloak relies on a set of well-defined interfaces to plug additional
features to the server or change their behavior, and how to obtain information about the
available SPIs and their respective providers.

In the next topic, you will be looking at how to package and deploy your custom providers
to the server.

Packaging a custom provider
Keycloak expects custom providers packaged in a Java ARchive (JAR). In addition to
their classes – the ProviderFactory and Provider implementations – you should also
include a service descriptor file to allow Keycloak to discover and initialize your custom
provider at runtime.

The service descriptor is a regular file placed in the META-INF/services directory
within the JAR file, and its name is the fully qualified name of the ProviderFactory type
you are implementing.

Taking as an example the fictitious com.acme.MyProviderFactory factory – yes, we
added a package to make clear the point around using a fully qualified name – used in the
diagram in the previous topic, the JAR file should look like this:

: mycustomprovider.jar

META-INF/services/com.acme.MyProviderFactory

MyFirstProviderFactory.class

MyFirstProvider.class

Here, the META-INF/services/com.acme.MyProviderFactory file should
contain a reference to your implementation of com.acme.MyProviderFactory:

MyFirstProviderFactory

In this topic, you learned how providers are packaged into a JAR and how Keycloak
leverages existing mechanisms from the Java language to discover provider
implementations.

Now that you are aware of the structure of the JAR expected by Keycloak, we can start
looking at the different approaches for installing custom providers.

Understanding Service Provider Interfaces 271

Installing a custom provider
The final step when implementing a custom provider is to install it on Keycloak. For that,
you can choose from a number of different approaches:

• Deploying as a JAR

• Creating a WildFly module

• Deploying as a Java Enterprise Edition (JEE) Enterprise JavaBeans (EJB) JAR

Deploying the JAR file directly to the server is probably the most common and simpler
approach for installing custom providers. It is just a matter of copying the JAR file to the
$KC_HOME/standalone/deployments directory.

When using this approach, Keycloak automatically configures the runtime dependencies
that are necessary to properly deploy your provider.

Tip
You should also be able to deploy the JAR into Enterprise application ARchive
(EAR) or Web application ARchive (WAR) packages. However, Keycloak is
not meant to be used for deploying full applications even though they might
be related to your custom provider capabilities. As much as possible, try using
plain Java classes when writing your providers.

Custom providers can also be deployed by adding a module to the server. If you are not
familiar with the concept of modules, Keycloak is based on the WildFly application server,
which relies on JBoss modules to define and load runtime dependencies. These modules
are located in the $KC_HOME/modules directory.

We are not going to cover this approach in detail. For that, you can look at the Keycloak
documentation at https://www.keycloak.org/docs/latest/server_
development/#register-a-provider-using-modules. However, here are
some considerations in terms of when this approach is applicable:

• It is very handy when you need to deploy multiple providers sharing a common
set of dependencies. In this case, you might want to create modules for each
dependency and just reference them from other modules.

• In production, and potentially for security reasons, you might want to disable the
deployment scanner to prevent unexpected changes at runtime.

• It provides more isolation and control over the provider class loader and its
dependencies.

272 Extending Keycloak

Finally, Keycloak allows you to install providers as an EJB. By using this approach, you
can leverage some key capabilities provided by WildFly and JEE. Usually, you will not
need this approach for implementing or deploying providers because, most of the time,
they are implemented as plain Java types, relying solely on Keycloak APIs and SPIs.
However, depending on the circumstances, you might want to use the Java Persistence
API (JPA) to leverage an existing database or use Java Message Service (JMS) in your
providers, and that is one of the main reasons why you have this option available from
Keycloak. For more details regarding this approach for deploying providers, review
the documentation at https://www.keycloak.org/docs/latest/server_
development/#leveraging-java-ee.

Understanding the KeycloakSessionFactory and
KeycloakSession components
Keycloak relies on two main components to manage providers:
KeycloakSessionFactory and KeycloakSession.

Note
We are not going to dive into detail on this topic about their purposes and how
they are used, but provide you with an introductory topic before understanding
the life cycle of providers and then move to the code examples available in
this chapter.

At its core is KeycloakSessionFactory, which serves as a registry for all providers
installed on the server and responsible for managing their life cycle. When Keycloak is
starting, a KeycloakSessionFactory is created to initialize and register any provider
factory installed on the server. The other way around is also true, where, when Keycloak is
gracefully shutting down, KeycloakSessionFactory gives a last chance to factories
to close any resource created during the initialization phase.

On the other hand, when Keycloak is up and running and processing requests, a
KeycloakSession is created and bound to each request. KeycloakSession
is created from KeycloakSessionFactory and it serves as an entry point for
managing realms, users, clients, sessions, accessing contextual information about the
current realm and the request, and for obtaining provider instances. The provider
instances obtained from a session are created only once and cached during the lifetime
of KeycloakSession. KeycloakSession is the component that you, as a provider
developer, are going to use most when implementing providers.

https://www.keycloak.org/docs/latest/server_development/#leveraging-java-ee
https://www.keycloak.org/docs/latest/server_development/#leveraging-java-ee

Understanding Service Provider Interfaces 273

By understanding these two components and what they are, even superficially, you
should now be able to follow the next topics and sections whenever we mention these
components. Do not worry about trying to understand these components in more detail
right now because that will come naturally when you start implementing your own
providers as well as when looking at how other providers are implemented in Keycloak.

In the next step, you are going to look at the life cycle of providers.

Understanding the life cycle of a provider
Providers have a well-defined life cycle for initialization and deinitialization.

During the installation of providers, Keycloak calls specific methods on the
ProviderFactory implementations for initialization purposes. The same applies when
the server is gracefully shutting down, where method calls are made to release resources
created during the initialization phase.

That said, the life cycle of a ProviderFactory is bound to the server lifetime,
where initialization and deinitialization are performed only once, when
KeycloakSessionFactory is being initialized or closed:

Note
The only exception to this is when you are redeploying providers at runtime. In
this case, initialization and deinitialization might happen multiple times.

Figure 13.5 – Initialization of factories during server startup

274 Extending Keycloak

The following steps occur during the initialization phase of providers:

1. Keycloak loads all the available factories for each SPI.

2. For each factory, the init method is called with the provider configuration.

3. Once all factories have been initialized and registered, the postInit method
is called on each factory to perform additional initialization steps based on
KeycloakSessionFactory.

Note
Regarding deinitialization, the steps are similar, but during this phase, only the
close method is invoked for each factory.

The init method is called early when factories are still being registered to initialize them
based on any configuration set to a particular provider in the $KC_HOME/standalone/
configuration/standalone.xml file. If the factory neither depends on other
factories nor on KeycloakSession to initialize itself, this step should be enough to
initialize a factory.

However, the postInit method is only called once all the factories have been registered,
thereby enabling factories to perform additional steps during initialization using other
providers and KeycloakSession itself.

On the other hand, the life cycle of a provider is bound to a request. As mentioned earlier,
a provider is created from its corresponding ProviderFactory, and that happens only once
during the request life cycle. Regarding deinitialization, the close method on a provider
is called at the end of the request:

Understanding Service Provider Interfaces 275

Figure 13.6 – Creating a provider

In this topic, you learned about the life cycle of providers and how they are initialized
either at server boot time or when deploying a provider. You also learned that at runtime,
provider instances are created at runtime in the scope of a request and bound to a
KeycloakSession.

In the next topic, you are going to look at how to configure a provider using the server
configuration file.

Configuring providers
Providers are usually configured by changing the $KC_HOME/standalone/
configuration/standalone.xml file. Any configuration set to a provider will be
available during the initialization phase.

The configuration is defined within the keycloak-server subsystem as follows:

<subsystem xmlns=''urn:jboss:domain:keycloak-server:1.1''>

 <spi name=''hostname''>

 <default-provider>default</default-provider>

 <provider name=''default'' enabled=''true''>

 <properties>

276 Extending Keycloak

 <property name=''frontendUrl''
value=''https://mykeycloak/auth''/>

 </properties>

 </provider>

 </spi>

 …

</subsystem>

Note
The preceding snippet from the configuration is one of the settings you did in
Chapter 9, Configuring Keycloak for Production.

As you may have noticed, the configuration follows the same principles that you learned
at the beginning of this section. For each SPI, you can define the configuration properties
for its provider implementations. In the preceding snippet, a configuration is being set for
a default provider within the hostname SPI. In this case, the frontendUrl property
is being set and will be available to the factory during the initialization phase.

In addition to setting configuration properties for providers, you should also be able to
define a default provider in case the SPI has multiple provider implementations. This is
achieved by the <default-provider> element in the configuration, whose value is
the identifier of the provider you want to set as the default. If an SPI has a single provider
implementation, this setting is not necessary.

In this topic, you had a quick overview of how to configure providers by setting their
configuration using the server configuration files.

In the next sections, you are going to walk through the steps for choosing a capability
to extend, implementing a provider using an SPI, and installing the provider to the
server. The examples you are about to see are related to the most common types of
customizations that you might need when changing Keycloak to fit into your use cases
and requirements.

Changing the look and feel
One of the main customization hooks – and probably what people use most – is changing
Keycloak built-in themes to fit into your branding and to respect your UI and UX
requirements.

Changing the look and feel 277

Keycloak provides an amazingly simple experience for changing themes and allows you to
change most – if not all – of its UI, from the end user-facing pages to the administration
console itself.

In this topic, you will learn about the basics of theming by going through examples of how
to change the look and feel of the login page. By understanding these basics, you should
then be able to apply the same concepts to any other UI you want to customize.

Note
This is probably one of the most documented features of Keycloak. Consider
looking at the documentation available at https://www.keycloak.
org/docs/latest/server_development/#_themes.

Understanding themes
Just like any other feature in Keycloak, themes are backed by their own SPI. However,
instead of having to implement Java code to change themes, Keycloak offers a simple and
elegant way of doing so solely based on plain CSS classes, JavaScript, and any other HTML
construct. In fact, depending on your needs, changing themes should be just a matter of
defining a new CSS stylesheet.

Another important aspect of themes is internationalization. As a worldwide project,
Keycloak has contributions to support different languages and it is most likely that users
from your country would already benefit from messages in their native language, without
any additional effort from your side.

In Keycloak, the built-in themes are included as part of the distribution in the themes
directory:

$ cd $KC_HOME\themes

$ ls

├── base

├── keycloak

├── keycloak-preview

├── keycloak.v2

Each directory in the themes directory is a built-in theme with all the necessary
configuration and resources to render the pages you have seen so far.

The keycloak theme, for instance, is the default theme if no theme is set to a realm. This
is the theme you have been using in this book when running examples.

https://www.keycloak.org/docs/latest/server_development/#_themes
https://www.keycloak.org/docs/latest/server_development/#_themes

278 Extending Keycloak

Note
The base theme is not really a theme, but a skeleton used by other themes
where page templates, message bundles for internationalization, and common
resources are located. Other themes, such as the keycloak theme, extend the
base theme to define the layout by using specific CSS stylesheets, JavaScript,
images, and so on.

Within each theme directory, you have sub-directories for the different sets of UIs
in Keycloak that are open for customization. Each of these sub-directories represents
a theme type:

$ cd keycloak

$ ls

.

├── account

├── admin

├── common

├── email

├── login

└── welcome

By looking at the different theme types and their names, you should have an idea of what
you can change in a theme. Let's understand what they are:

• account: UI definitions for the account console

• admin: UI definitions for the administration console

• common: Common resources used across theme types

• email: UI definitions for emails

• login: UI definitions for login-related pages, including pages for updating profiles,
resetting passwords, and so on

• welcome: UI definitions for the welcome page

Within each theme type, you have a mandatory file called theme.properties in which
you define the configuration for a given theme type, for instance:

• Inherit the configuration from another theme

• Import resources from another theme

• CSS styles

Changing the look and feel 279

• JavaScript resources

• Map your CSS styles to those used by Keycloak components, such as input boxes
and buttons

One important aspect of the configuration is that you are not forced to create a
configuration from scratch when customizing a theme type, but leverage the configuration
from another theme and change only what you need to. This is very handy if you just want
to make punctual changes to an existing theme.

Now that you know what themes are, where they are located, and how they are structured,
let's understand how you set a theme for a realm and a client.

Let's look first at how to define a theme to a realm. For that, open the administration
console and click on the Realm Settings item on the left-side panel. Once at this page,
click on the Themes tab:

Figure 13.7 – Defining themes for a realm

From the Themes page, you can set a theme for any of the available theme types. The
select box for each theme type is built based on the directory structure of the themes
directory, plus any other theme deployed to the server. Only the themes that define a
particular theme type are available from their corresponding select box.

280 Extending Keycloak

Note
The only exception is the welcome theme type, which is defined differently
because it is neither specific to a realm nor a client. For more details, look at the
documentation at https://www.keycloak.org/docs/latest/
server_development/#configure-theme.

At this page, you also have additional options for managing internationalization. By
enabling the Internationalization Enabled setting, you are presented with additional
options to define which localizations or languages you want to support, as well as a
default localization if none can be inferred from the request or based on the authenticated
user preferences.

Tip
Localization support is feature-rich; you can even define localized messages
via the administration console. By default, they are loaded from properties files
within the messages directory for each theme type. For more details, look at
the base theme directory as well as the documentation at https://www.
keycloak.org/docs/latest/server_admin/#_themes.

Keycloak also allows you to define a theme on a per-client basis, but only for the login-
related pages. By allowing that, you should be able to provide a customized end user
experience depending on the client they are authenticating to. To define a login theme
for a client, select a client and, on the client details page, choose a theme from the Login
Theme setting:

Figure 13.8 – Defining a login theme to a client

https://www.keycloak.org/docs/latest/server_development/#configure-theme
https://www.keycloak.org/docs/latest/server_development/#configure-theme
https://www.keycloak.org/docs/latest/server_admin/#_themes
https://www.keycloak.org/docs/latest/server_admin/#_themes

Changing the look and feel 281

In terms of look and feel, Keycloak gives you several options to adapt it accordingly to
your needs. In this topic, you had an overview about themes, how they are configured, and
how to set a theme for the different theme types so as to change their look and feel.

In the next topic, we are going to create a theme from scratch so that you can quickly start
creating your own themes according to your needs.

Creating and deploying a new theme
Creating a new theme involves creating a directory, configuring the theme using a
theme.properties file, and adding any static resource you may require, including
CSS stylesheets, JavaScript libraries, and message bundles.

For this topic, you should be able to use a pre-defined theme available from the GitHub
repository at the following directory:

$ cd ch13/themes/mytheme/src/main/resources/theme/mytheme

In the mytheme directory, you have the following structure:

login/

├── messages

└── resources

 ├── css

 ├── img

 └── js

The mytheme theme was built to change only the login theme type. In this example, we
are customizing only the login page.

When defining a theme type, you should have a standard directory structure as follows:

• The resources directory is the place from where Keycloak is going to look up
static resources used by your theme.

• The messages directory is the place from where message bundles are going to be
loaded.

Within the resources directory, it is a best practice to have specific directories for
each type of resource you need in your theme, such as CSS stylesheets, JavaScript, and
image files.

282 Extending Keycloak

Note
In our example, the messages directory is empty because you will not need
to define message bundles but rely on those already available from the base
theme.

As mentioned earlier, theme types must have a theme.properties file to define its
configuration. In our example, this file contains only the basic settings to change the login
page using custom CSS styles. Let's understand how this file is defined by opening the
file that is located in the GitHub repository at ch13/themes/mytheme/src/main/
resources/theme/mytheme/login/theme.properties:

Inherit resources and messages from the keycloak theme

parent=keycloak

Define the CSS styles

styles=css/login.css css/bootstrap.min.css css/signin.css

Mapping CSS classes from Keycloak to custom CSS classes

kcHtmlClass=login-page

kcLoginClass=form-signin

From the preceding snippet, you will see that mytheme is extending the keycloak
theme and defining some additional CSS stylesheets. In this file, there is also a mapping
between the Keycloak CSS classes to those defined in a custom CSS stylesheet at ch13/
themes/mytheme/src/main/resources/theme/mytheme/login/css/
signin.css.

Now, let's use this theme when authenticating to the account console. For that, you need
to deploy the theme to the server by building the example project and deploying the JAR:

$ cd ch13/themes/mytheme

$./mvnw clean package

$ cp target/mytheme.jar $KC_HOME/standalone/deployments

After performing these steps, log in to the administration console as the administrator
user. Once you are in the console, select the account-console client from the list of clients
and then, at the client details page, select the mytheme theme from the list of options
for the Login Theme setting. At the end, the account-console client settings should look
as follows:

Changing the look and feel 283

Figure 13.9 – Defining the mytheme theme as the login theme for the account console

Now, log out from the administration console and try to log in to the account console
by opening http://localhost:8080/auth/realms/myrealm/account. If
everything is properly configured, the login page should have a different layout, as follows:

Figure 13.10 – The new layout for the login page when logging in to the account console

284 Extending Keycloak

One important tip for when creating themes is to disable caching so that changes you
are making to your theme are automatically reflected at runtime. By default, Keycloak
caches templates and theme configuration for performance reasons. To disable caching,
change the following settings in the $KC_HOME/standalone/configuration/
standalone.xml file:

<theme>

 <staticMaxAge>-1</staticMaxAge>

 <cacheThemes>false</cacheThemes>

 <cacheTemplates>false</cacheTemplates>

</theme>

In this topic, you learned about how to create and deploy a theme to Keycloak. For that,
you were provided with an example from the GitHub repository that changes the layout
of the login page. You also learned that when creating a new theme, you usually want to
disable caching so that any change you make to a theme is reflected when reloading the
server pages.

In the next topic, you are going to understand how to go even further with your
customizations by changing the built-in page templates.

Extending templates
Sometimes, extending a theme using only CSS styles is not enough and you want to
change the disposal of components in the page templates from the base theme.

Keycloak relies on Apache Freemarker, a well-known and widely used template engine,
to render pages based on templates. By leveraging the templates from the base theme,
you have a powerful tool to drastically change Keycloak pages.

For that, you only need to copy a template from one of the theme types in the base theme
and include it in your own theme type.

However, this flexibility has a cost where any change to the built-in templates between
Keycloak releases should be manually applied to your own custom templates. This
approach for customizing themes is very handy, but it would require a bit more knowledge
from you about how Keycloak defines these templates.

For more details about how to extend a built-in template, look at the documentation at
https://www.keycloak.org/docs/latest/server_development/#html-
templates.

https://www.keycloak.org/docs/latest/server_development/#html-templates
https://www.keycloak.org/docs/latest/server_development/#html-templates

Changing the look and feel 285

Extending theme-related SPIs
Included in this section are code examples for customizing how themes are selected, as
well as how to add custom templates and resources using an SPI.

The code is located at the ch13/themes/mytheme directory in the GitHub repository.
By looking at the following two classes:

• ch13/themes/mytheme/src/main/java/org/keycloak/book/ch13/
theme/MyThemeSelectorProvider

• ch13/themes/mytheme/src/main/java/org/keycloak/book/ch13/
theme/MyThemeResourceProvider

You should be able to see the realization of what you learn from the Understanding Service
Provider Interfaces section, but applied to themes. These two providers are related to the
themeSelector and themeResource SPIs, respectively.

MyThemeSelectorProvider is an example of how to dynamically select a theme
at runtime where, depending on your requirements, you may need to choose a theme
based on information pertaining to the request, the client, or the user authenticating to
Keycloak. This provider has a quite simple logic to select a theme depending on the value
of a request query parameter.

The steps to deploy the provider are the same as when you deployed the mytheme theme:

$ cd ch13/themes/mytheme

$./mvnw clean package

$ cp target/mytheme.jar $KC_HOME/standalone/deployments

To see it in action, remove any theme you have set for the realm or client and then try to
log in to the administration console again.

At the login page, append the &theme=mytheme query parameter to the URL and
reload the page. After doing that, you should be able to see the login page layout from the
mytheme theme, even though no theme was set to the realm or to a client. Also, note that
the theme is applied regardless of the realm.

On the other hand, MyThemeResourceProvider is an example about how to load
additional templates and resources to any theme. For this provider, we do not resolve any
additional templates or resources, but just give you the baseline in case you require this
level of customization. This provider can be handy when you have customizations that
require additional pages, such as when creating custom authenticators or required actions.

286 Extending Keycloak

In this topic, you were provided with some code examples of how to customize theme
selection and how to add additional pages by leveraging the themeSelector and
themeResource SPIs, respectively.

In this section, you learned about Keycloak themes and how to use them to change
the look and feel of the different server pages. For that, you learned about how themes
are created and configured, how they are deployed, and how to go even further with
customizations by changing the built-in page templates. Finally, you were given some
code to demonstrate how to dynamically select themes at runtime as well as how to add
additional pages that can be used from custom authenticators or required actions.

In the next section, you are going to look at an example of how to leverage the
Authentication SPI to customize how users are authenticated using a second factor.

Customizing authentication flows
As you learned from Chapter 11, Authenticating Users, Keycloak allows you to
easily customize user authentication by changing authentication flows through the
administration console. Eventually, the built-in authentication executions might not be
enough to address your authentication requirements, and, in this case, you can leverage
the Authentication SPI to implement your own authentication executions.

We are not going to cover in this section all the details pertaining to the Authentication
SPI, but give you a code example to help you understand the steps and the mechanics
when you are creating your own authenticators. The code example for this topic
is available from the GitHub repository at ch13/simple-risk-based-
authenticator.

The example here is about a quite simple authenticator that relies on a risk score to
determine whether the user should provide a second factor when authenticating. The
risk score is calculated based only on the number of failed login attempts, where, if a
user fails to log in three times in a row, the next time they will be forced to provide a
One-Time Password (OTP) as a second factor. However, you could leverage this example
to something more complex where the risk analysis could also consider other factors,
such as the device the user is using, the location, or even the score from an external fraud
detection system.

To install the custom authenticator, you need to deploy the provider's JAR file as follows:

$ cd ch13/simple-risk-based-authenticator

$./mvnw clean package

$ cp target/simple-risk-based-authenticator.jar

$KC_HOME/standalone/deployments

Customizing authentication flows 287

After deploying the provider, you are going to use what you learned from Chapter 11,
Authenticating Users, to configure a new authentication flow as follows:

1. Create a copy of the Browser flow and name it My Risk-Based Browser Flow.

2. Delete the OTP Form execution from the My Risk-Based Browser Flow Browser -
Conditional OTP sub-flow. Make sure that the sub-flow is marked as REQUIRED.

3. Add the My Simple Risk-Based Authenticator execution to the My Risk-Based
Browser Flow Browser - Conditional OTP sub-flow.

4. Add the Conditional OTP Form execution to the My Risk-Based Browser Flow
Browser - Conditional OTP sub-flow. Make sure that this execution is marked
as REQUIRED.

5. Go to the Bindings tab and associate the My Risk-Based Browser flow with the
Browser flow.

6. Now, click on the Actions link for Conditional OTP Form execution and then click
on the Config option:

Figure 13.11 – Configuring the Conditional OTP form execution

288 Extending Keycloak

At this page, you should provide the following configuration:

• Alias: conditional-otp

• OTP control User Attribute: my.risk.based.auth.2fa.required

• Fallback OTP handling: force

Once you are done, click on the Save button:

Figure 13.12 – Saving settings for the Conditional-otp form execution

Customizing authentication flows 289

At the end, the new My Risk-Based Browser Flow should look like this:

Figure 13.13 – The final configuration for My Risk-Based Browser Flow

290 Extending Keycloak

Finally, let's enable the Brute Force Detection feature to the realm. This feature is
responsible to track failed login attempts and avoid brute force attacks when an attacker
is trying to guess users' passwords. The custom authenticator we just configured relies on
this feature to track the number of failed login attempts. To enable the feature, click on
the Realm Settings item on the left-side panel. Once at this page, click on the Security
Defenses tab and then click on the Brute Force Detection sub-tab. Once at this tab, turn
on the Enabled setting:

Figure 13.14 – Enabling brute force detection to the realm

Tip
For more details about the brute force detection feature, take a look at the
documentation at https://www.keycloak.org/docs/latest/
server_admin/#password-guess-brute-force-attacks.

Let's now log in to the account console using the alice user. For that, open your browser
at http://localhost:8080/auth/realms/myrealm/account and log in using
the user's credentials.

https://www.keycloak.org/docs/latest/server_admin/#password-guess-brute-force-attacks
https://www.keycloak.org/docs/latest/server_admin/#password-guess-brute-force-attacks

Looking at other customization points 291

At this moment, you should be able to authenticate to the account console by providing
only a password.

Now, log out from the account console and, when at the login page, try to log in again but
using an invalid password. Repeat this step three times.

On the fourth occasion, provide the correct password of the user. If everything is correct,
you should now be asked to configure an OTP to then authenticate and access the account
console. Next time you try to authenticate after failing to log in three times, you should
only be asked for the OTP.

The Authentication SPI gives you the main customization hooks for adapting Keycloak to
better fit into your authentication requirements. Based on what you learned from Chapter
11, Authenticating Users, you should be able to add your own authentication executions,
required actions, add additional steps during user authentication, and so on. For more
details, consider looking through the documentation available at https://www.
keycloak.org/docs/latest/server_development/#_auth_spi.

In this section, you were provided with an example of how to leverage the Authentication
SPI to create your own authenticator providers.

In the next section, you are going to be provided with additional references to other
customization points provided by Keycloak.

Looking at other customization points
In the previous sections, you learned about just a subset of the customization points that
you have available in Keycloak. As mentioned earlier, Keycloak is built around the concept
of SPIs and there are many other customization points that you might find useful.

The best source for querying the available SPIs is the documentation available at
https://www.keycloak.org/docs/latest/server_development. Some
key SPIs are also covered by examples in the Keycloak Quickstart repository available at
https://github.com/keycloak/keycloak-quickstarts/.

From the documentation, you may be interested in looking at the following SPIs:

• User Storage

• Event Listener

https://www.keycloak.org/docs/latest/server_development/#_auth_spi
https://www.keycloak.org/docs/latest/server_development/#_auth_spi
https://www.keycloak.org/docs/latest/server_development
https://github.com/keycloak/keycloak-quickstarts/

292 Extending Keycloak

The User Storage SPI allows you to integrate Keycloak with any external identity store.
A common use case for it is to fetch identity data from an existing database.

• Documentation: https://www.keycloak.org/docs/latest/server_
development/#_user-storage-spi

• Quickstart:

https://github.com/keycloak/keycloak-quickstarts/tree/
latest/user-storage-jpa

https://github.com/keycloak/keycloak-quickstarts/tree/
latest/user-storage-simple

The Event Listener SPI allows you to customize how to handle events fired by Keycloak
so that you can integrate it with your audit or fraud detection systems:

• Documentation: https://www.keycloak.org/docs/latest/server_
development/#_events

• Quickstart:

https://github.com/keycloak/keycloak-quickstarts/tree/
latest/event-listener-sysout

https://github.com/keycloak/keycloak-quickstarts/tree/
latest/event-store-mem

As you learned at the beginning of the chapter, a list of all the available SPIs can be
queried from the administration console on the Server Info page. You should be able to
implement customizations for any SPI listed there.

However, most of them are still considered internal SPIs and they lack documentation.
For these SPIs, the best you can do is look at Keycloak's code base to understand how
they are implemented.

In this section, you were provided with some final references and considerations regarding
other customization points not covered by this chapter.

https://www.keycloak.org/docs/latest/server_development/#_user-storage-spi
https://www.keycloak.org/docs/latest/server_development/#_user-storage-spi
https://github.com/keycloak/keycloak-quickstarts/tree/latest/user-storage-jpa
https://github.com/keycloak/keycloak-quickstarts/tree/latest/user-storage-jpa
https://github.com/keycloak/keycloak-quickstarts/tree/latest/user-storage-simple
https://github.com/keycloak/keycloak-quickstarts/tree/latest/user-storage-simple
https://www.keycloak.org/docs/latest/server_development/#_events
https://www.keycloak.org/docs/latest/server_development/#_events
https://github.com/keycloak/keycloak-quickstarts/tree/latest/event-listener-sysout
https://github.com/keycloak/keycloak-quickstarts/tree/latest/event-listener-sysout
https://github.com/keycloak/keycloak-quickstarts/tree/latest/event-store-mem
https://github.com/keycloak/keycloak-quickstarts/tree/latest/event-store-mem

Summary 293

Summary
In this chapter, you were presented with one of the main aspects of Keycloak: extensibility.
You learned that Keycloak not only helps you to deploy IAM to your ecosystem, but also
to adapt IAM to your needs.

For that, you were provided with the basics of how to change the look and feel of the
server using themes and how to implement custom providers using some of the available
SPIs. Although you were presented with only a few examples about how to extend
Keycloak, you should be able to leverage what you learned from this chapter to extend
Keycloak using any SPI.

In the next chapter, you will be looking at some security best practices and considerations
when using Keyloak.

Questions
1. What is a public and private SPI?

2. Are any more references available regarding how to use the
KeycloakSessionFactory and KeycloakSession APIs?

3. Do I need to be a Java developer in order to extend Keycloak?

Further reading
For more information on the topics covered in this chapter, you can visit the following links:

• Keycloak Server Developer Guide: https://www.keycloak.org/docs/
latest/server_development

• Apache Freemarker: https://freemarker.apache.org/

• Java Service Provider Interface: https://docs.oracle.com/javase/
tutorial/ext/basics/spi.html

• Keycloak GitHub repository: https://github.com/keycloak/keycloak

https://www.keycloak.org/docs/latest/server_development
https://www.keycloak.org/docs/latest/server_development
https://freemarker.apache.org/
https://docs.oracle.com/javase/tutorial/ext/basics/spi.html
https://docs.oracle.com/javase/tutorial/ext/basics/spi.html
https://github.com/keycloak/keycloak

Section 4:
Security

Considerations

For any business, it is important to make life as difficult as possible for hackers. This
section covers some best practices and checklists to get you on your journey toward a
sufficient level of security for your business.

This section comprises the following chapter:

• Chapter 14, Securing Keycloak and Applications

14
Securing Keycloak

and Applications
In this chapter, we will look at how to secure Keycloak for production environments.
Then, we will look at how to secure the database, as well as secure cluster communication
between Keycloak nodes. Finally, we will touch on some topics regarding how you can
protect your own applications against threats.

After reading this chapter, you will have a good understanding of how to securely deploy
Keycloak, including what is required to secure the database. Since this is a book about
Keycloak and not about application security, you won't become an expert on application
security, but if this is a topic that's new to you, you will have a basic understanding and
an idea of how to learn more.

In this chapter, we're going to cover the following main topics:

• Securing Keycloak

• Securing the database

• Securing cluster communication

• Securing applications

298 Securing Keycloak and Applications

Securing Keycloak
In this section, we will look at some important aspects of securing the Keycloak server
itself. We will start by looking at an example of a secure Keycloak deployment, as shown
in the following diagram:

Figure 14.1 – An example of a secure deployment

In this example, Keycloak and its database are isolated from users and applications with
a Web Application Firewall (WAF), all network requests are encrypted, and the database
is also encrypted.

Let's look at this in a bit more detail, starting with why Transport Layer Security (TLS)
is a requirement for any ingoing and outgoing traffic to Keycloak.

Encrypting communication to Keycloak
It is recommended to use end-to-end encryption for all communication to and from
Keycloak. This means always using HTTPS, and never using HTTP. At the time of writing
this book, the most recent security layer in HTTPS is TLS 1.3, so this is what you should
use whenever possible. Most HTTP libraries will support at least TLS 1.2. If they do not
support this, you should consider not using the library since TLS 1.2 has been around
since 2008.

If you're leveraging a load balancer or reverse proxy in front of Keycloak, the most secure
approach is to leverage TLS passthrough, which provides end-to-end encryption between
the client and Keycloak.

In some cases, this may be infeasible, in which case you can use re-encrypt, where the
communication between the proxy and Keycloak is encrypted again with an internal
certificate.

Using unencrypted communication between the proxy and Keycloak should be avoided
and only considered if the network between the proxy and Keycloak can be fully isolated,
such as in cases where the proxy and Keycloak reside on the same machine.

Securing Keycloak 299

In the next section, we'll look at why Keycloak needs to know the URL it will be
exposed on.

Configuring the Keycloak hostname
Keycloak is required to know its hostname for several reasons, such as when you're
sending an email to a user. Out of the box, for convenience, Keycloak infers the
hostname from the request by looking at the Host HTTP header sent by the client.
This configuration should never be used in production deployments as it could allow
an attacker to send requests to Keycloak with a different value for the header.

An example of such an attack is where an attacker uses the recover password capability
in Keycloak and modifies the host header, resulting in the email that's being sent to the
user containing a link to a site controlled by the attacker. Unless the users realize the
URL is not correct, the attacker can intercept the request to update the password. By
intercepting the request, the attacker can either obtain the updated password or set
a different password. In either case, the attacker gains access to the user account.

To prevent this type of attack, you can either configure a fixed hostname for Keycloak, or if
Keycloak has been exposed through a reverse proxy, you can verify the host header at the
reverse proxy. Configuring a fixed hostname for Keycloak is the simplest and most secure
approach. To learn how to do that, read Chapter 9, Configuring Keycloak for Production.

In the next section, we will look at the importance of regular key rotation.

Rotating the signing keys used by Keycloak
Regularly rotating all your signing and encryption keys is highly recommended. You may
want to consider doing so as frequently as once a month.

Luckily, Keycloak allows you to rotate keys in a way that is seamless and non-interrupting.
This is because new keys can be made active, while the old keys are still permitted to
verify tokens for a while.

Rotating keys have several benefits, such as the following:

• Reduces the amount of content that's signed or encrypted with a specific key.

• Reduces the time available to anyone who wants to try and crack your keys.

300 Securing Keycloak and Applications

• Cleans up unused refresh tokens or long expiration access tokens, regardless of user
session timeout settings.

• If an attacker were able to gain access to the keys or – even worse – such a leak was
not discovered, the impact would be reduced.

To rotate the signing keys in Keycloak, open the administration console of Keycloak in
your browser. Select the realm you want to rotate keys for, go to Realm Settings, and click
on Keys.

First, you will see all the active signing keys in the realm, as shown in the following
screenshot:

Figure 14.2 – Active signing keys

The screenshot shows that the realm currently has two signing keys – one for the RS256
algorithm and another for the HS256 algorithm. Keys in Keycloak can have three
different states:

• Active: Active keys are used to sign new tokens, where the highest priority key is
used for a specific algorithm.

• Passive: Passive keys are not used to sign new tokens but are used to verify
previously signed tokens.

• Disabled: Disabled keys are keys that are not currently in use.

To rotate the keys, the first step is to create a new active key. If, after creating a new active
key, the previous key is disabled, all active user sessions and tokens will be invalidated.
This approach should only be taken if you suspect the keys may have been compromised.
Otherwise, it is better to passivate the previous key for a period to allow all user sessions
and tokens to be updated with the new signing keys, before deleting the old key.

Securing Keycloak 301

Creating additional keys is done by configuring additional key providers. Click on the
Providers tab; then, under Add keystore, select rsa-generated. Fill in the form with the
values shown in the following screenshot:

Figure 14.3 – Creating a new signing key

After creating the key, go back to the Active tab. You will notice that there are now two
signing keys for RS256, as shown in the following screenshot:

Figure 14.4 – Multiple signing keys for the same algorithm

Since the new key you created has the highest priority, it will be used to sign new tokens.
Keycloak will automatically re-sign cookies and tokens with the new keys, which will be
transparent to users and applications.

302 Securing Keycloak and Applications

By default, Keycloak stores private keys in the database. Combined with good database
security and regular key rotation, this is usually acceptable.

For additional security, Keycloak supports storing keys in an external store. At the time of
writing this book, Keycloak can load keys from a Java keystore. There is also an extension
mechanism that allows you to implement a custom source for keys. Understanding how to
develop custom providers for Keycloak was covered in Chapter 13, Extending Keycloak.

For the highest level of security, you could also consider using an external service such as
a Hardware Security Module (HSM) for signing tokens. Out of the box, Keycloak does
not currently support any such integrations but does have extension points that allow you
to develop custom providers yourself.

Next, we will look at the importance of regular updates.

Regularly updating Keycloak
Potentially one of the best sources of inspiration for an attacker comes from known
vulnerabilities in unpatched software. If you do not regularly update Keycloak or the
operating system, the list of unpatched known vulnerabilities the attacker can try out
becomes longer and longer.

It is especially important that you have a process in place to be able to discover new
releases and quickly upgrade.

One thing to note here is that Keycloak does not have long-term supported versions.
Instead, it uses a continuous delivery model, or a rolling release. If there are any issues,
then continuously upgrading Keycloak means that there are significantly fewer changes
you need to make, so you are dealing with bite-sized chunks at a time.

Dealing with continuous releases does, in most cases, require automating the upgrade
process, as well as being able to quickly test if an upgrade has any impact on your
production systems.

If you prefer a long-term supported version, Red Hat offers Red Hat Single Sign-On,
which is essentially a long-term supported version of Keycloak. At the time of writing
this book, the most current version of Red Hat Single Sign-On is 7.4, which is essentially
Keycloak 9, and is continuously receiving security and bug patches. You can find more
information about Red Hat Single Sign-On at https://access.redhat.com/
products/red-hat-single-sign-on.

In the next section, we will look at using an external vault to store secrets.

https://access.redhat.com/products/red-hat-single-sign-on
https://access.redhat.com/products/red-hat-single-sign-on

Securing Keycloak 303

Loading secrets into Keycloak from an external vault
There are some use cases where you need to provide Keycloak with credentials to access
external systems, such as connecting to an email server or federating users from a
directory server. By default, Keycloak stores these credentials in the database, but it can
also retrieve these from an external vault.

At the time of writing this book, Keycloak has out of the box support for an Elytron
credential store, which is essentially an encrypted file, and support for leveraging secrets
from Kubernetes.

As we mentioned previously, Keycloak has an extension mechanism that allows you to
integrate it with any external vault. To learn more about extending Keycloak, please refer
to Chapter 13, Extending Keycloak.

For more information on configuring a vault, please refer to the Keycloak server
administration guide, which is available at https://www.keycloak.org/docs/
latest/server_admin/index.html#_vault-administration.

Protecting Keycloak with a firewall and an intrusion
prevention system
At a minimum, it is a good idea to leverage a firewall to control incoming and outgoing
traffic to Keycloak. If possible, you should also consider completely separating Keycloak
and its database from even internal applications.

With regards to incoming traffic, this can include limiting incoming traffic to only
accepting HTTPS. You may also want to consider only allowing access to the Keycloak
admin console and admin REST APIs from an internal network.

For outgoing traffic, it may be a little bit more difficult, depending on your use case. Some
outgoing traffic you may need to permit includes the following:

• Backchannel requests over HTTPS to applications, such as logout requests.

• Connections to user federation providers, such as LDAP.

• Backchannel requests to external identity providers, such as an OpenID token
request.

If you are only securing internal applications with Keycloak, it is most likely simpler
to secure outgoing traffic, but this may be harder if you are also securing third-party
applications that have been deployed outside your network.

https://www.keycloak.org/docs/latest/server_admin/index.html#_vault-administration
https://www.keycloak.org/docs/latest/server_admin/index.html#_vault-administration

304 Securing Keycloak and Applications

It may also be a wise decision to utilize an intrusion prevention (or detection-only)
system. An intrusion prevention system can be a great tool in detecting and preventing
bad traffic, including helping you survive a denial-of-service attack.

For additional security, it can also be a good idea to leverage a web application firewall
(WAF). It is relatively complex to set up a WAF properly and it may need to be updated
regularly, but if this is done correctly, a WAF can provide an extra layer of protection
against attacks.

Next, we will look at arguably one of the most important aspect of securing Keycloak,
which is protecting the database.

Securing the database
Keycloak stores a lot of sensitive data in its database, which makes it especially important
to secure it, thus preventing attackers from accessing or modifying the databases.

Some examples of the data Keycloak stores includes the following:

• Realm configuration

• Users

• Clients

If your database became compromised, we must consider some examples of what could
happen if an attacker were able to read your data:

• An attacker would get access to details about your employees or customers. The
impact of this would depend on how much personal information you store about
your users, but even a list of email addresses is valuable to an attacker.

• An attacker would get access to user credentials. Even though passwords are stored
as one-way salted hashes in the database, the attacker may be able to crack some of
the less secure passwords.

• If you are not using a vault or keystore, an attacker would have access to any secrets
stored in the database, such as LDAP bind credentials, SMPT passwords, and even
the private signing keys used by Keycloak.

These are only a few examples, but attackers are usually highly creative and can come up
with all sorts of ways to exploit your data.

An important point to stress here is that an attacker does not care if they get the data
directly from the database, or if they get it from a backup of the database, which makes
it just as important to secure backups of the database as securing the database itself.

Securing the database 305

It would be potentially even worse if an attacker managed to gain access to write to
the database, as this could give an attacker the ability to access any application secured
by Keycloak – they would be able to alter realm configuration or user credentials to
impersonate users.

It is beyond the scope of this book to cover database security in detail, but we will briefly
look at some best practices, starting with using a firewall.

Protecting the database with a firewall
The first and most obvious thing to do when you're securing your database is protect it
with a firewall. All traffic should be denied by default, and only required access such as
from the Keycloak servers should be permitted.

In addition, you should prevent outbound connections unless there is a strong reason
to permit it.

The next thing you will want to do is enable authentication and access control.

Enabling authentication and access control for the
database
Only the minimum amount of people possible should have access to the database, and
they should have the minimum amount of access needed to do their job. As Keycloak
manages the schema as well as the data in the database, ask yourself if anyone really
needs permanent access to the database at all.

Keycloak, as well as any users accessing the database, should use strong passwords,
and accounts should be locked after failed login attempts. Consider using stronger
authentication mechanisms, such as client certificates.

After limiting access to the database, you will want to secure the data in transit as well as
at rest by enabling encryption.

Encrypting the database
To protect data in transit, all connections to the database should be encrypted by
leveraging TLS.

In the event someone gains access to the server where the database is running, it is also
important to encrypt data at rest. This includes making sure you encrypt any backups
of the database.

306 Securing Keycloak and Applications

There are a lot more steps involved in properly securing a database, and just like you
will want to regularly update Keycloak, you should also regularly update your database. If
your company has its own data center, chances are you already have people that can help
you with this task. If not, you could consider leveraging a relational database service in
the cloud.

In the next section, we will look at how to secure communication between nodes in
a cluster.

Securing cluster communication
Keycloak embeds Infinispan, which is leveraged when you create a cluster of Keycloak
nodes. Unlike the database, Keycloak does not send any very critical information through
the cluster, where most of the sensitive data is kept in a local cache, thus leveraging cluster
communication only for invalidations. It does store information about user sessions in
the cluster, which are distributed across the cluster. Sessions themselves contain some
information such as the session ID, the expiration date, and associated client sessions.
Even if an attacker gains access to this information, they are limited in terms of what they
can do with it, since accessing any session through Keycloak requires a token or cookie
to be signed by Keycloak.

It would still be a good idea to secure cluster communication, at the very least with
a firewall. For additional protection, you can enable authentication and/or encryption
for cluster communication.

Tip
At the time of writing this book, the Keycloak documentation does not
provide instructions on how to secure cluster communication. Neither
does the documentation for the underlying WildFly application server.
On the other hand, the Red Hat Jboss Enterprise Application Platform
documentation, which is the Red Hat supported version of WildFly, provides
great documentation for securing the cluster. You can find this documentation
at https://access.redhat.com/documentation/en-us/
red_hat_jboss_enterprise_application_platform/7.3/
html/configuration_guide/configuring_high_
availability#securing_cluster.

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html/configuration_guide/configuring_high_availability#securing_cluster
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html/configuration_guide/configuring_high_availability#securing_cluster
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html/configuration_guide/configuring_high_availability#securing_cluster
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html/configuration_guide/configuring_high_availability#securing_cluster

Securing cluster communication 307

Enabling cluster authentication
Enabling authentication prevents unauthorized nodes from joining the cluster, but it does
not prevent non-members from communicating with cluster members. For this reason,
there is little value in adding authentication on its own, and this should be combined with
asymmetric encryption.

Encrypting cluster communication
Cluster communication can be encrypted either with symmetric encryption with a shared
key or asymmetric encryption combined with authentication. The simplest approach is
enabling symmetric encryption, so we will look at how you can enable that.

The first step is to create a Java keystore that holds the shared secret. To create the
keystore, run the following command in a Terminal:

$ cd $KC_HOME

$ java -c modules/system/layers/base/org/jgroups/main/
jgroups-*.jar org.jgroups.demos.KeyStoreGenerator --alg AES
--size 256 --storeName defaultStore.keystore --storepass
PASSWORD --alias mykey

This command will create a keystore in the root of your Keycloak home directory,
with a key that can be used for symmetric encryption. You should copy this file to all
Keycloak nodes.

The next step is to open the standalone/configuration/standalone-ha.xml
file in a text editor. Search for pbcast.NAKACK2 to find the correct location to enable
encryption. This text will be repeated twice in the file – once for the UDP transport and
once for the TCP transport. You should configure encryption for both transports or remove
the transport that you are not using. Update the file to add the SYM_ENCRYPT protocol
immediately before the pbcast.NAKACK2 protocol, as shown in the following example:

<protocol type="VERIFY_SUSPECT"/>

<protocol type="SYM_ENCRYPT">

 <property name="provider">SunJCE</property>

 <property name="sym_algorithm">AES</property>

 <property name="encrypt_entire_message">true</property>

 <property name="keystore_name">defaultStore.keystore</
property>

 <property name="store_password">PASSWORD</property>

308 Securing Keycloak and Applications

 <property name="alias">mykey</property>

</protocol>

<protocol type="pbcast.NAKACK2"/>

You should also make sure the changes you made to the standalone-ha.xml file are
made to all Keycloak nodes.

If you want to make sure encryption is enabled, you can try to start one Keycloak node
with encryption enabled and one without, or you can try creating a different keystore
on one node. The following example shows the output from Keycloak when one node is
trying to join the cluster with a different keystore:

21:37:54,763 ERROR [org.jgroups.protocols.SYM_ENCRYPT] (thread-
8,ejb,fedora) fedora: rejected decryption of unicast message
from non-member node2

This message shows that the node was not permitted to join the cluster and will also not
be able to read or send any messages to the cluster.

With that, you have learned how to secure cluster communication. In the next section,
we will look at securing user accounts.

Securing user accounts
With regard to securing user accounts, you will want to protect against an attacker gaining
access to the user account and also protect information about the user, including their
password.

Preventing an attacker from accessing a user account is mostly about enabling strong
authentication, and not just accepting a password as the means of authentication. If your
users are relying on passwords, even in combination with a second factor, it is important
that passwords are protected. Passwords are protected by leveraging a strong password
hashing algorithm, having a good password policy, and enabling brute-force protection
for passwords. It is also important to educate users in terms of what is a strong password
and that they should not reuse passwords with other services.

To configure a password policy, open the Keycloak administration console and select
the realm you want to configure. Then, click on Realm Settings, then Authentication,
and select the Password Policy tab. You can create your password policy by clicking on
Add policy and selecting the policies you want to use. The following screenshot shows
an example policy that requires passwords to have a minimum length of 8 and contain at
least one lowercase letter, one uppercase letter, one special character, and one digit:

Securing user accounts 309

Figure 14.5 – An example password policy

It is also a good idea to enable password brute-force detection. Do this by clicking on
Realm Settings, then Security Defenses, and selecting the Brute Force Detection tab,
as shown in the following screenshot:

Figure 14.6 – Enabling password brute-force detection

310 Securing Keycloak and Applications

Depending on your use case, you may be storing different levels of personal data, or
personally identifiable information, about your users. There are a few steps you can take
to limit your exposure to issues in this regard:

• Limit the information you store about users to only what is absolutely required.

• Limit what user information is exposed to applications.

• Secure the database.

• Understand legislation around personal information in regions where your business
operates.

This topic should not be taken lightly. Personal information is invaluable to an attacker
and is a commodity on its own that can be sold. Leaking such information can result in
large fines and, in worst cases, cause irreparable damage to your business.

In the last section of this chapter, we will look at the steps you should take to increase the
security of applications.

Securing applications
Since more applications are being exposed on the internet, the number of attacks and
data breaches are growing by the day. This means it is important to secure applications
properly.

Up until recently, a common practice was to leverage firewalls and VPNs as the main layer
of defense against attacks. Often, this was combined with questionable security within
the boundaries of the enterprise environment. This is becoming less viable with more
employees working from home or using their personal laptop or phone. More and more
services are also being exposed to partners or the public. This is blurring the line of the
enterprise network. The whole idea of trusting what is on the inside, but not what is on the
outside, was also somewhat questionable as there are often ways for attackers to get inside
the enterprise network, and it also provides less protection against an internal attack.

Essentially, something better is needed than just a firewall. Keycloak is a great tool that
can help increase the security of your applications, but your applications are not secure
simply by using Keycloak.

It is beyond the scope of this book to provide you with all the information you need to
secure your applications. Reading this section will give you some idea of this. We will
start by looking at web application security.

Securing applications 311

Web application security
There are plenty of books and good resources on the internet that can help you learn
how to secure web applications. Some of the steps involved in securing web applications
include the following:

• Authentication: Since you are reading a book about Keycloak, chances are you are
planning to use Keycloak to authenticate users to your applications. Once a user
has been authenticated and a session has been established, it is important that the
session is also secure.

• Authorization: Least privilege access is a great principle to follow. If you limit the
access that's granted to users for them to perform their job, you are reducing the
impact of a compromised account or a rogue employee.

• Understand and protect against common attacks: Make sure your applications
are protected against common vulnerabilities such as injection and cross-site
scripting (XSS).

• Regular updates: Web application security is a continuous effort, and you should
continuously strive to improve the security of your application. You should also
regularly update frameworks, libraries, and any tools you are leveraging.

• Data security: Sensitive data should be encrypted at rest, and all data should be
encrypted in transit. This should also apply to any backup data. Just like the web
application itself, it is important to have good authentication and authorization
in place.

• Logging and monitoring: Without sufficient logging and monitoring, you will not
be able to identify if you have been compromised. Logging and monitoring can also
be a valuable tool to prevent larger impacts due to an ongoing attack.

• Firewall: Firewalls and WAFs add an extra layer of defense to your web
applications. Relying on only a web application firewall for protection is far from
ideal, though – you should build security into the application itself.

One of the best places to start learning more about web application security is the Open
Web Application Security Project (OWASP) Top 10. The OWASP Top 10 is a list of some
of the most critical security risks to web applications. For each risk, it provides easy to
understand details of the vulnerabilities, as well as tips on how to protect your application.

Another great resource is the OWASP Cheat Sheet Series, which provides several cheat
sheets with very concise information on specific areas of application security.

Next, we will look at how to securely leverage OAuth 2.0 and OpenID Connect in your
application.

312 Securing Keycloak and Applications

OAuth 2.0 and OpenID Connect best practice
There are a lot of mistakes that can be made when you're using OAuth 2.0 and OpenID
Connect in your applications. The specifications themselves have a lot of flexibility in
how they are used, and a lot of the mechanisms to protect against common vulnerabilities
are optional.

Consider the following authorization request, for example:

/auth?response_type=code&client_id=public-client&redirect_
uri=https://acme.corp/myclient

In this request, the state parameter is not included. A Proof Key for Code Exchange
(PKCE) is also not being used. Unless the authorization server explicitly requires these
parameters, this is a perfectly valid authorization request, but at the same time, it is open
to several known vulnerabilities.

The same problem applies to the JSON Web Token (JWT) specification. It is relatively
easy to make mistakes here. One example is the none algorithm, which is included in
the specification. A valid token, according to the specification, can simply specify that it
uses no signing algorithm, which obviously makes it easy for an attacker to create their
own tokens.

Chapter 6, Securing Different Application Types, covered a fair portion of what you need
to know to use OAuth 2.0 securely, but it is recommended that you learn more about this
topic through other resources. The OAuth 2.0 website (https://oauth.net/2/)
contains links to several invaluable resources that are all worth reading, including the
following:

• OAuth 2.0 for mobile and native apps

• OAuth 2.0 for browser-based apps

• OAuth 2.0 threat model and security considerations

• OAuth 2.0 security best current practice

https://oauth.net/2/

Securing applications 313

With all the options in OAuth 2.0 and the potential for not following the best practices,
this may be a bit confusing. Luckily, some improvements in this regard are on their way
with the introduction of OAuth 2.1. OAuth 2.1 incorporates several best practices into
the specification itself, making it easier to follow best practices by simply being compliant
with the specification.

Other important work regarding security is happening in the Financial-Grade API
(FAPI) working group. This working group derives from establishing highly secure
profiles of OIDC in order to leverage OIDC for open banking. However, you should not
get too hung up on the name as the work they have produced applies to any use case for
OIDC where additional security is required. The most important work that is coming out
of this is two profiles for OIDC that are providing it with best practices:

• FAPI 1.0 – Part 1: Baseline API Security Profile

• FAPI 1.0 – Part 2: Advanced Security Profile

These profiles allow you to balance the complexity of applying the best practice with the
level of security required so that it fits the use cases you have.

The Keycloak team is also making great progress in making it easier for you to enforce
secure usage of OAuth 2.0 and OpenID Connect in your applications, since a feature
called client policies is being created. Through client policies, it will be easy for you to
enforce the use of best practices for applications, including allowing you to select different
profiles for different applications, depending on the level of security needed.

We will conclude this chapter by looking at various configuration options available in
Keycloak that affect the security of your applications.

Keycloak client configurations
In this section, we will look at some configuration options for an OIDC client in Keycloak
that affect security.

314 Securing Keycloak and Applications

The following screenshot show the basic settings for an OIDC client:

Figure 14.7 – Client settings

Let's review these and consider which are more related to security:

• Consent Required: If this is not enabled, the user will not see what level of
access the application receives. You should enable this option for any third-party
application. You should also enable this option for a native application such as
a CLI.

• Access Type: Setting this to confidential is more secure when the client credentials
can be kept securely on the server side.

• Standard Flow Enabled: Enables the authorization code flow for the client.

• Implicit Flow Enabled: Enables the now deprecated implicit flow. You should only
enable this when it's absolutely required, and plan to update the application so that
this can be disabled.

Securing applications 315

• Direct Access Grants Flow Enabled: Enables the now deprecated resource owner
password flow. You should only enable this when it's absolutely required, and plan
to update the application so this can be disabled.

• Valid Redirect URIs: It is recommended to use an exact match for the redirect URI.
An example of a good redirect URI would be https://acme.corp/myclient/
oauth-callback. Keycloak does support a wildcard in the redirect URI –any
redirect URI, for that matter. You should avoid using a wildcard in the redirect
URIs, but if you do, limit it to only requests that are available to the application,
such as https://acme.corp/myclient/*.

Next, we will look at different signing algorithms that Keycloak supports:

• Rivest–Shamir–Adleman (RSA) signature: This is the default algorithm used by
Keycloak. It is not the most secure option, but it is used as the default as it is the
most widely available.

• Elliptic Curve Digital Signature Algorithm (ECDSA): Considered more secure
than RSA and is also significantly faster.

• Hash-based message authentication code (HMAC): A symmetric signing
algorithm that requires access to a shared secret.

When possible, you should use ECDSA in favor of RSA, even though RSA is still
considered secure. If you want to enforce applications to use the token introspection
endpoint to verify the token, you can use HMAC as the required secret. This is only
available to Keycloak.

You can also choose between different lengths of the signature hash, where longer hashes
provide greater security. With relatively short-lived tokens such as refresh tokens and
access tokens, a 256-bit length is considered more than secure enough for most use cases.

Some other important options include configuring the lifespan of tokens. Keycloak
allows you to override the access token lifespan for individual clients. It also allows
you to override the client session lifespan, which controls the lifespan of refresh tokens.
This allows you to have a long-lived SSO session (which could be days or weeks) with
shorter-lived refresh tokens (which could be less than an hour). Shorter-lived refresh
tokens reduce the impact if any refresh tokens are leaked and shortens the application
HTTP session's lifespan.

https://acme.corp/myclient/oauth-callback
https://acme.corp/myclient/oauth-callback
https://acme.corp/myclient/*

316 Securing Keycloak and Applications

Summary
In this chapter, you learned about several important aspects of deploying Keycloak
securely into production. You learned how important it is to secure the database
that's used by Keycloak, as well as communication between nodes. You also learned
how important it is to protect user accounts from being compromised, as well as how
important it is to keep information about your users secure. Finally, you got some insight
into what it means to secure an application by focusing on web applications, as well as
how to utilize OAuth 2.0 and OpenID Connect to secure your applications.

You should now have a good understanding of how to securely run Keycloak in
production, as well as an idea of where you can start learning more about securing
your applications.

This is the final chapter of this book. We hope you have enjoyed this book and have
gained a good understanding of Keycloak and how you can utilize it to help secure
your applications. While this book has not covered everything you may need to know,
you should now have the knowledge to get started on your journey with Keycloak.
As a next step, you may want to learn more about OAuth 2.0 and OpenID Connect,
or web application security in general.

Questions
1. Why is it important to regularly update Keycloak?

2. Why is it especially important to protect the database that's used by Keycloak?

3. Is it sufficient to use a web application firewall to protect web applications?

Further reading
Please refer to the following links for more information on the topics that were covered in
this chapter:

• OWASP Top 10: https://owasp.org/www-project-top-ten/

• OWASP Cheat Sheet Series: https://cheatsheetseries.owasp.org/
index.html

• OAuth 2.0 for Mobile and Native Apps: https://tools.ietf.org/html/
rfc8252

• OAuth 2.0 for Browser-Based Apps: https://tools.ietf.org/html/
draft-ietf-oauth-browser-based-apps

https://owasp.org/www-project-top-ten/
https://cheatsheetseries.owasp.org/index.html
https://cheatsheetseries.owasp.org/index.html
https://tools.ietf.org/html/rfc8252
https://tools.ietf.org/html/rfc8252
https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps
https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps

Further reading 317

• OAuth 2.0 Threat Model and Security Considerations: https://tools.ietf.
org/html/rfc6819

• OAuth 2.0 Security Best Current Practice: https://tools.ietf.org/html/
draft-ietf-oauth-security-topics

• OAuth 2.1: https://tools.ietf.org/html/draft-parecki-
oauth-v2-1

https://tools.ietf.org/html/rfc6819
https://tools.ietf.org/html/rfc6819
https://tools.ietf.org/html/draft-ietf-oauth-security-topics
https://tools.ietf.org/html/draft-ietf-oauth-security-topics
https://tools.ietf.org/html/draft-parecki-oauth-v2-1
https://tools.ietf.org/html/draft-parecki-oauth-v2-1

Assessments

Chapter 1
1. Yes. Keycloak distributes container images for Docker, which runs on Kubernetes.

There is also a Kubernetes Operator for Keycloak that makes it easier to install and
manage Keycloak on Kubernetes.

2. The Keycloak admin console provides an extensive console to allow you to
configure and manage Keycloak, including managing applications and users.

3. The Keycloak account console provides a self-service console for end users of your
applications to manage their own accounts, including updating their profile and
changing their password.

Chapter 2
1. The application redirects the user to the login pages provided by Keycloak.

Following authentication, the user is redirected back to the application and
the application obtains an ID token from Keycloak that it can use to discover
information about the authenticated user.

2. For an application to be permitted to authenticate users with Keycloak, it must first
be registered as a client with Keycloak.

3. The application includes an access token in the request, which the backend service
can verify to decide whether access should be granted.

Chapter 3
1. OAuth 2.0 enables an application to obtain an access token that grants access to a set

of resources provided by a different application on behalf of the user.

2. OpenID Connect adds an authentication layer on top of OAuth 2.0.

320 Assessments

3. OAuth 2.0 does not define a standard format for tokens. By leveraging JWT as the
token format, applications are able to directly verify and understand the contents
of the token.

Chapter 4
1. Through the Discovery endpoint, an application can find out a lot of useful

information about an OpenID Provider, which allows it to automatically configure
itself to a specific provider.

2. The application retrieves an ID token, a signed JWT, from the OpenID Provider,
which contains information about the authenticated user.

3. By adding a protocol mapper, or a client scope, to a client you can control exactly
what information is included in the ID token that is made available to an application.

Chapter 5
1. An application can leverage the OAuth 2.0 Authorization Code grant type to obtain

an access token from the authorization server. The application then includes the
access token in the request sent to the REST API.

2. An access token can be limited through the use of the audience, roles, or scopes.

3. A service can either invoke the token introspection endpoint to verify the access
token, or if the token is a JWT, it can verify and read the contents of the token directly.

Chapter 6
1. As an SPA is running in the browser, it cannot use a confidential client directly,

which results in a greater risk if a refresh token is leaked. For this reason, it is more
secure to have a backend running in a web server that can use a confidential client
and store tokens on the server side.

2. No, any type of application can use OAuth 2.0 through an external user agent
to obtain an access token, and many different types of services have support
for bearer tokens.

Chapter 7 321

3. An application should never collect user credentials directly as this increases the
chance of credentials being leaked, and provides the application with full access
to the user account. For this reason, native and mobile applications should use
an external user agent to authenticate with Keycloak.

Chapter 7
1. In this chapter, you were presented with different integration options for different

programming languages and platforms. If the programming language you are using
already supports OpenID Connect, even if this is being done through a library or
framework, you should consider using it.

Alternatively, you can also use a reverse proxy such as Apache HTTP Server.

2. No, the Keycloak adapters were created when there were not many trusted client
libraries. Nowadays, programming languages, and the frameworks built on top
of these languages, already provide support for OpenID Connect.

As a rule of thumb, do the opposite: only consider using any of the Keycloak
adapters if you are left with no other option.

3. If you are using Reactive Native, you might want to look at https://github.
com/FormidableLabs/react-native-app-auth/blob/main/docs/
config-examples/keycloak.md.

There you should find examples on how to use it with Keycloak.

Remember that Keycloak is a fully compliant OpenID Connect Provider
implementation, and you should be able to use any other library too.

4. For applications running on Kubernetes or OpenShift, both integration architecture
styles would fit. Depending on the service mesh you are using (for instance, Istio),
you should be able to leverage its capabilities.

But still, you can use the embedded architectural style. This makes a lot of sense if
you are already familiar with the options you have from the technology stack your
application is using.

https://github.com/FormidableLabs/react-native-app-auth/blob/main/docs/config-examples/keycloak.md
https://github.com/FormidableLabs/react-native-app-auth/blob/main/docs/config-examples/keycloak.md
https://github.com/FormidableLabs/react-native-app-auth/blob/main/docs/config-examples/keycloak.md

322 Assessments

Chapter 8
1. When you put data into tokens, they actually grow disproportionately in size.

One option to help here is to include only the minimum information that your
application needs, and for additional information, to use the token introspection
endpoint. The drawback is that your application will need an additional request
to Keycloak when serving requests.

You should also consider disabling the Full Scope Allowed setting in your client
settings, so that only information relevant to your client is included in tokens.

2. Realm roles should be used to represent the user's role within an organization.
These roles have the same semantics regardless of the clients created in a realm.

3. On the other hand, the semantics for a client role are specific to the client they
belong to.

4. In this chapter, we created a realm role and a client role using the same name:
manager. While the realm role could represent users with the role of manager in an
organization, the manager client role could represent the permissions to manage
resources in the application.

It is up to you to choose what best fits your case; just keep in mind this conceptual
difference so that you do not overuse one or the other.

5. Yes; for that, you would need to customize Keycloak through the Authentication
SPI.

It should be possible to have, for instance, additional pages in your flows to gather
user information, or just use a custom authenticator to push contextual information
as a session note, so that later you can map information from these session notes to
tokens using a protocol mapper.

6. Yes, and this is a common task when your application is expecting to obtain roles
from a claim other than the realm_access or resource_access claims. You
can always change the protocol mappers to better suit your application's needs.

7. No. Applications can use different strategies depending on their security
requirements. It is perfectly fine to use RBAC or groups, for instance, at the same
application, or even to use ABAC or Keycloak Authorization Services, if you need
fine-grained access to protected resources.

Chapter 9 323

Chapter 9
1. Yes. It is recommended that you have an active-passive or active-active database so

that in the event of failures, you can easily switch database instances. Note, however,
that Keycloak keeps as much data as possible in caches, where reads should not be
impacted at all depending on how hot the caches are (how much data is cached).
Writes, however, will fail until the connection is re-established.

Keycloak also supports setting some useful configuration options to improve
failover in the event of network failures. You might want to enable background
validation of connections to make sure available connections are usable, validate
connections prior to obtaining them from the connection pool, or even configure
the pool to fail fast when a connection is terminated to avoid validating and
iterating over all connections in the pool.

2. No. The default configuration by default uses IP multicast to broadcast messages
across nodes and form a cluster. The proper configuration depends on where
Keycloak is being deployed. If you are deploying on bare metal or in a VM,
you should consider using a different JGroups stack using either TCPPING or
JDBC_PING for discovery.

3. Keycloak provides an operator that takes care of setting up most of the things we
discussed in this chapter. We highly recommend using it to run Keycloak on any of
these platforms. In terms of clustering, when running on OpenShift and Kubernetes
DNS_PING is recommended for discovery.

4. By default, there is no security in this communication so that any instance listening
on the same multicast address can join the cluster. To prevent unexpected nodes
from joining a cluster, you can configure your JGroups stack to rely on X.509
certificates to authenticate nodes. You should also be able to enable encryption to
prevent data from being intercepted and transferred in cleartext. For more details,
look at the recommendations from Chapter 14, Securing Keycloak.

5. Ideally, yes. The reason being that, even though your instances are running within
a private network, Keycloak is constantly exchanging sensitive data about users
(privacy) and tokens issued by the server to applications. It is recommended
to use end-to-end encryption.

6. Yes. Keycloak is CPU intensive due password hashing, token issuance, and
verification using signatures and encryption. Depending on your load and how
many concurrent requests you should handle, you might want to allocate two or
more CPUs for each node in the cluster.

324 Assessments

High CPU usage can also be caused by frequent GC runs. Common causes might be
related to a small metaspace size, small young generation size, or the JVM reaching
the overall heap size. You should constantly be monitoring and adjusting GC runs
until you get as few pauses and counts as possible.

Keep in mind that TLS demands CPU. Depending on your requirements you might
want to configure your reverse proxy with TLS termination and save some CPU on
Keycloak nodes.

7. It depends on the use case. You should start small, using the default settings, and
adjust accordingly to your load and performance tests.

8. Yes. Check the Keycloak Benchmark tool at https://github.com/keycloak/
keycloak-benchmark.

Chapter 10
1. Yes. As we will see in the following chapters, Keycloak provides a Service Provider

Interface (SPI) that allows you to integrate not only with databases but with any
other form of identity store.

2. No. In addition to storing information from LDAP in its own database, Keycloak
also caches data for entries that have been imported from LDAP. You have complete
control over how information is cached and when it expires. Here, together with
the synchronization settings, information from the LDAP directory is periodically
updated without it impacting the overall performance of the server.

3. Keycloak allows you to configure mappers for identity providers. Through these
mappers, you can customize how users are created by setting a specific user attribute
or setting a specific role when the user authenticates for the very first time.

Chapter 11
1. Keycloak allows you to customize its look and feel entirely, not just for the pages

that were presented in this chapter. As we are going to see in Chapter 13, Extending
Keycloak, you should be able to change the look and feel of pages by changing
the different themes provided by Keycloak. You can find more details in the
documentation at https://www.keycloak.org/docs/latest/server_
development/#_themes.

https://github.com/keycloak/keycloak-benchmark
https://github.com/keycloak/keycloak-benchmark
https://www.keycloak.org/docs/latest/server_development/#_themes
https://www.keycloak.org/docs/latest/server_development/#_themes

Chapter 12 325

2. WebAuthn requires you to use a FIDO or FIDO2 compliant security device. You
should also consider accessing Keycloak using HTTPS and using a valid domain
name. WebAuthn is strict about domain names and secure connections if the server
is accessed from a different domain than the client. You should also make sure the
browser you are using has support for the WebAuthn API. You should also consider
looking at the demo on the WebAuthn site to check how your security device
works there.

Chapter 12
1. It depends on the type of session. User and client sessions are kept in memory

but there is a special type of session called offline sessions that are stored in the
database.

2. An offline session is a special type of session that solves a specific problem when
using offline tokens, as per the OpenID Connect specification. The purpose
of offline tokens is to allow clients to act on behalf of users even though the
user is offline, such as when performing background tasks to access or process
user information. Some people, though, use offline tokens to work around the
complexities – or possible constraints – when dealing with refresh tokens, as
they never expire under certain circumstances. For more details, look at the
documentation at https://www.keycloak.org/docs/latest/server_
admin/#_offline-access.

3. When running in production, you are probably running multiple Keycloak instances
in a cluster. As such, you should restart nodes sequentially to avoid any data loss.
Session state is distributed across a well-defined number of nodes and if all these
nodes are abruptly killed, then sessions might be lost. Keycloak also allows you to
keep session state outside the cluster by using a separate Infinispan server. However,
this capability was originally designed for enabling clustering across multiple data
centers but can be extended accordingly to support a single data center.

4. Whenever the user is authenticating using a client, a session is created. The only
scenario that sessions are not created is when clients are obtaining tokens on their
own behalf using the client credentials grant. In this case, there is no refresh token
– therefore no user and client session – but the possibility to obtain fresh tokens
through re-authentication.

326 Assessments

Chapter 13
1. In Keycloak's code base, SPIs are organized into two main modules, the

keycloak-server-spi and keycloak-server-spi-private modules.
Public SPIs are located at the keycloak-server-spi module and Keycloak does
its best to keep their interfaces backward compatible between releases. These SPIs
are also usually documented. On the other hand, private SPIs are not supported in
terms of backward compatibility and they usually lack documentation. As a rule of
thumb, consider first looking at the SPIs available from the documentation, as they
are usually what Keycloak expects people to use for extending the server.

2. There is no specific documentation for these two interfaces, just their Javadoc. The
Keycloak team is working to improve this area.

3. This depends on the SPI you need to extend. As you learned from this chapter, in
order to extend Keycloak themes, a basic CSS, JavaScript, and HTML background
is more than enough. Other SPIs allow their capabilities to be customized through
JavaScript. This is especially true for authenticators and protocol mappers. For
further details, review the documentation at https://www.keycloak.org/
docs/latest/server_development/#_script_providers. However,
for other forms of customization, you will require a basic background in Java.

Chapter 14
1. There is no such thing as perfectly secure software, and mistakes are frequently

made. Luckily, both the Keycloak team and its community are continuously looking
for vulnerabilities and are continuously fixing any issues they find. If you don't
update Keycloak, you will not receive these fixes, but anyone wanting to attack
your Keycloak server will.

2. Keycloak stores a lot of sensitive data in the database, which is valuable information
to an attacker. If an attacker gains write access to the database, the attacker can
make changes that could allow the attacker to gain access to any application
secured by Keycloak.

3. No; only relying on a web application firewall is not a good idea. You will want to
enable strong authentication, as well as provide a good level of security within the
application itself.

https://www.keycloak.org/docs/latest/server_development/#_script_providers
https://www.keycloak.org/docs/latest/server_development/#_script_providers

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

328 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interest ed in these other books by Packt:

Okta Administration: Up and Running
Lovisa Stenbäcken Stjernlöf and HenkJan de Vries
ISBN: 978-1-80056-664-4

• Understand different types of users in Okta and how to place them in groups

• Set up SSO and MFA rules to secure your IT environment

• Get to grips with the basics of end-user functionality and customization

• Find out how provisioning and synchronization with applications work

• Explore API management, Access Gateway, and Advanced Server Access

• Become well-versed in the terminology used by IAM professionals

https://www.packtpub.com/product/okta-administration-up-and-running/9781800566644

Other Books You May Enjoy 329

Mastering Identity and Access Management with Microsoft Azure - Second Edition

Jochen Nickel

ISBN: 978-1-78913-230-4

• Apply technical descriptions to your business needs and deployments

• Manage cloud-only, simple, and complex hybrid environments

• Apply correct and efficient monitoring and identity protection strategies

• Design and deploy custom Identity and access management solutions

• Build a complete identity and access management life cycle

• Understand authentication and application publishing mechanisms

• Use and understand the most crucial identity synchronization scenarios

• Implement a suitable information protection strategy

https://www.packtpub.com/product/mastering-identity-and-access-management-with-microsoft-azure-second-edition/9781789132304

330

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we
are recruiting an author for, or submit your own idea.

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

http://authors.packtpub.com
http://authors.packtpub.com

Index

A
access control

enabling, for Keycloak database 305
access granted, limiting to access tokens

about 74
audience, using to 75, 76
roles, using to 76-80
scope, using to 80-82

access token
 about 18, 19, 256
 obtaining 68-71
 validating 83-85

access tokens' lifetime
managing 257, 258

Active Directory
about 5
integrating with 197-199

active sessions
managing 250-252

administrator role 149
admin URL

setting 168
Apache Freemarker 284
Apache HTTP Server 143

application access
authoring, with OAuth 2.0 32

attribute-based access control (ABAC)
 about 157, 196
 using 157

authentication
enabling, for Keycloak database 305

authentication flow
about 214, 215
configuring 216-220
customizing 286, 288, 290, 291
Web Authentication (WebAuthn),

enabling for 236, 237
authentication request 37
authorization 148
authorization code 19, 50
authorization code flow 20, 33
authorization endpoint 34
authorization request 34, 37
Authorization Services

about 159
reference link 159

332 Index

B
backchannel URLs

testing 184
backend REST API

about 18
endpoints 19
secured endpoint, invoking 27

backend URL
setting 167, 168

Bearer Tokens (RFC 6750) 35
browser-based applications 35
Browser Flow 215
brute force detection feature

reference link 290

C
Certificate Authority (CA) 169
Client Authentication 215
Client Credentials flow 32
client roles 149
client scope 56
clustering

enabling 173, 175-177
Common Name (CN) 201
composite roles 150
confidential clients 34
Connect Core specification

Back-Channel Logout 38
Discovery 38
Dynamic Registration 38
Front-Channel Logout 38
Session Management 38

cookies
used, for tracking user sessions 254, 255

Cross-Origin Resource Sharing
(CORS) 24, 96

Cross-Site Request Forgery (CSRF) 116
Cross-Site Scripting (XSS) 98, 254, 311
customization points 291, 292

D
dedicated REST API

single-page application (SPA),
securing with 94, 95

Device flow 33
Direct Grant Flow 215
Discovery endpoint 46, 47
Distinguished Name (DN) 200
Docker

Keycloak, running 6

E
Elliptic Curve Digital Signature

Algorithm (ECDSA) 315
email verification

reference link 227
embedded configuration 128
embedded integration style 111, 112
Enterprise application ARchive

(EAR) 271
Enterprise JavaBeans (EJB) 271
environment

backchannel URLs, testing 184
failover, testing 183
frontend URLs, testing 184
load balancing, testing 183
testing 182

Event Listener SPI 292
external applications 89, 90

Index 333

external REST API
single-page application,

securing with 97, 98

F
failover

testing 183
federated user 198
Financial-grade API (FAPI) 38, 313
firewall

Keycloak database, protecting with 305
Keycloak, protecting with 303

frontend URL
setting 165-167
testing 184

Full Qualified Name (FQN) 201

G
Golang applications

Keycloak, integrating with 113
Golang client

configuring 113-117
group-based access control (GBAC)

group membership, mapping
into tokens 151-155

using 150, 151
group membership

mapping, into tokens 151-155
group synchronization 200-202

H
Hardware Security Module (HSM) 302
Hash-based message authentication

code (HMAC) 315
hashing algorithm 221

HMAC-Based One-Time Password
(HOTP) 229, 230

HMAC-SHA-256 221
HMAC-SHA-512 221
hostname, for Keycloak

admin URL, setting 168
backend URL, setting 167, 168
frontend URL, setting 165-167
setting 165

I
Identity and Access Management tool 4
Identity Broker

reference link 207
ID token

about 18, 19, 52-56, 256
custom property, adding 56-58
roles, adding to 58
user profile, updating 56

ID token, refresh response
key rotation 55
refresh token leak detection 55
session idle 55

ID tokens' lifetime
managing 256, 258

implicit flow 33
Infinispan 174
Integrated Development

Environments (IDEs) 118
integration architecture style

about 110
embedded 111, 112
proxied 111

integration option
selecting 112

334 Index

intermediary REST API
single-page application (SPA),

securing with 96, 97
internal applications 88, 90
intrusion prevention system

Keycloak, protecting with 303

J
Java applications

Keycloak, integrating with 117
Java ARchive (JAR) 270
Java Database Connectivity (JDBC) 172
Java Development Kit (JDK) 266
Java Enterprise Edition (JEE) 271

reference link 272
Java Message Service (JMS) 272
Java Persistence API (JPA) 272
JavaScript 18
JavaScript applications

Keycloak, integrating with 129-132
JavaScript Object Signing and

Encryption (JOSE) specifications
JSON Web Algorithms (JWA,

RFC 7518) 39
JSON Web Encryption (JWE,

RFC 7516) 39
JSON Web Key (JWK, RFC 7517) 39
JSON Web Signature (JWS,

RFC 7515) 39
JSON Web Token (JWT, RFC 7519) 39

JBoss Fuse adapter
reference link 128
using 128

JSON Web Key Set (JWKS) 40
JSON Web Signature (JWS) 21

JSON Web Token (JWT)
about 52, 69, 122, 255, 312
leveraging, for tokens 39, 40

JWT specifications
example vulnerabilities 40

K
Keycloak

about 4, 5, 149, 267
admin account, creating 8, 9
built-in themes, modifying 276
communication, encrypting to 298
download link 8
installing 5, 8
installing, with OpenJDK 7
integrating, with Golang

applications 113
integrating, with Java applications 117
integrating, with JavaScript

applications 129-132
integrating, with Node.js

applications 132, 133
integrating, with Python

applications 137, 138
integrating, with Quarkus 118, 119
integrating, with Spring Boot 122
interfaces 267
microservices, securing with 103-105
mobile application, securing

with 99-102
native application, securing with 99-103
protecting, with firewall 303
protecting, with intrusion

prevention system 303
reference link 184
REST APIs, securing with 103

Index 335

running 5, 6
running, on Docker 6
running, with OpenJDK 7
secrets, loading from external vault 303
securing 298
server-side web applications,

securing with 93, 94
starting 9
templates, extending 284
theme, creating 281-284
theme, deploying 281-284
theme-related SPIs, extending 285, 286
themes 277-280
updating 302
using, as centralized authorization

server 158, 159
web application security 90-92, 311

Keycloak account consoles
about 9
starting with 14

Keycloak adapters
using 127, 128

Keycloak admin consoles
about 9
global role, creating 13
group, creating 13
realm, configuring 11
realm, creating 11
starting with 10
user, creating 11, 12

Keycloak application
about 18-22
executing 22
features 18
login in 23-27

Keycloak application, security
about 310
client configurations 313-315

OAuth 2.0, best practice 312, 313
OpenID Connect (OIDC),

best practice 312, 313
Keycloak application, tokens

access token 19
ID token 19
refresh token 19

Keycloak, cluster authentication
enabling 307

Keycloak, cluster communication
encrypting 307, 308
securing 306

Keycloak, database
access control, enabling for 305
authentication, enabling for 305
encrypting 305, 306
protecting, with firewall 305
securing 304, 305

Keycloak desktop adapter
about 129
reference link 129

Keycloak documentation
reference link 271

Keycloak hostname
configuring 299

Keycloak JavaScript adapter
about 129
reference link 132, 137

Keycloak Jetty Adapter
reference link 129

Keycloak login page 19
Keycloak Node.js adapter 132
Keycloak Quickstarts

reference link 128
Keycloak Securing Apps

reference link 128
Keycloak, server administration guide

reference link 303

336 Index

KeycloakSession components 272, 273
KeycloakSessionFactory

components 272, 273
Keycloak Tomcat Adapter

reference link 129
Keycloak, user accounts

securing 308, 310
Keycloak, web application security steps

authentication 311
authorization 311
common attacks, protecting 311
data security 311
firewalls 311
logging 311
monitoring 311
regular updates 311

L
LDAP mapper 200
LDAP servers 5
Lightweight Directory Protocol (LDAP)

integrating with 197-199
load balancing

testing 183
local user

about 198
attributes, managing 196
creating 188-190
credentials, managing 190-192
information, obtaining 192-194
information, validating 192-194
managing 188
self-registration, enabling 195, 196

M
managed configuration 128
microservices

securing, with Keycloak 103-105
mobile application

securing, with Keycloak 99-103
multi-factor authentication (MFA) 241

N
native application

about 35
securing, with Keycloak 99-103

Near-Field Communication (NFC) 235
Nginx 143
Node.js

URL 22
Node.js applications

Keycloak, integrating with 132, 133
Node.js client

creating 133, 134
Node.js resource server

creating 134-137
non-opaque tokens 21

O
OAuth 2.0

about 20
application access, authoring with 32
URL 312

OAuth 2.0, approaches
claimed HTTPS scheme 101
custom URI scheme 101

Index 337

loopback interface 101
special redirect URI 102

OAuth 2.0 playground
access token, obtaining 68-71
running 66, 67
user consent, requiring 71-74

OAuth 2.0 roles
authorization server 32
client 32
resource owner 32
resource server 32

OAuth2 scopes
using 156

OIDC Clients
reference link 253

one-time password (OTP)
about 228, 286
policies, modifying 229, 230
used, for authenticating users 231-233
users, forcing to authenticate

with 233, 234
using 228

OpenID Connect Core specification 36
OpenID Connect identity providers

creating 204-207
OpenID Connect (OIDC)

about 35, 44
authorization code flow 37
hybrid flow 37
users, authenticating with 36-39

OpenID Connect playground application
executing 44, 45

OpenID Connect Provider (OP) 205
OpenID Connect roles

End-User 36
OpenID Provider (OP) 36
Relying Party (RP) 36

OpenID Provider Metadata 46
OpenJDK

installing 7, 8
Keycloak, installing with 7
Keycloak, running with 7

Open Web Application Security
Project (OWASP) 98, 311

P
password-based authentication 220
password policies

modifying 222, 223
reference link 224

passwords
using 220-222

PBKDF2 algorithm 221
people-manager role 149
production-grade database

configuring 171-173
Proof Key for Code Exchange

(PKCE) 34, 91, 116, 312
protocol mappers

reference link 157
Provider 268
ProviderFactory 268
proxied integration style 111
public clients 34
Python applications

Keycloak, integrating with 137, 138
Python client

creating 138, 139
Python resource server

creating 140-142

338 Index

Q
Quarkus

reference link 118
used, for integrating Keycloak 118, 119

Quarkus client
creating 119, 120

Quarkus resource server
creating 120-122

R
realm roles 149
Red Hat Enterprise Application

Platform (EAP) adapter
using 128

Red Hat Single Sign-On
reference link 302

refresh token
about 19, 256
rotation, enabling 260

refresh tokens' lifetime
managing 258, 259

Resource Owner Password
Credentials flow 33

REST APIs
securing, with Keycloak 103

reverse proxy
client information, forwarding 179-181
configuring 177, 178
load across nodes, distributing 178, 179
session affinity, need for 181, 182
using 143, 144

Rivest-Shamir-Adleman (RSA)
signature 315

role-based access control (RBAC)
about 149, 150
using 149

role synchronization 202, 203

S
salt 221
Security Assertion Markup Language

2.0 (SAML 2.0) 41
server-side web applications

securing, with Keycloak 93, 94
Service-Level Agreements (SLAs) 173
Service Provider Interfaces (SPIs)

about 241, 267-269
custom provider, installing 271, 272
custom provider, packaging 270
KeycloakSession components 272
KeycloakSessionFactory

components 272
life cycle 273, 274
provider, configuring 275, 276

session idle 55
session lifetime

managing 247-249
sessions

managing 246
signing keys, by Keycloak

 active 300
 disabled 300
 passive 300
 rotating 299-302

Simple Authentication and Security
Layer (SASL) 105

Index 339

single-page application (SPA)
about 18, 90, 129
securing, with dedicated

REST API 94, 95
securing, with external REST API 97-99
securing, with intermediary

REST API 96, 97
security techniques 97, 98

Single Sign-on (SSO) 91, 247
social identity providers

integrating with 208, 209
Software as a Service (SaaS) 88
Spring Boot

used, for integrating Keycloak 122
Spring Boot client

creating 123, 124
Spring Boot resource server

creating 125-127
strong authentication

using 241

T
third-party identity providers

integrating with 203, 204
third-party provider 204
third-party provider, settings

client ID 204
root URL 204

Time-Based One-Time Password
(TOTP) 229, 230

token exchange 207
Token Introspection (RFC 7662) 35
token revocation endpoint

reference link 262
Token Revocation (RFC 7009) 35

tokens
managing 255, 256
revoking 261, 262

Transport Layer Security (TLS)
about 298
enabling 168-170

two-factor authentication (2FA) 228

U
user consent

requiring 71-74
user data

managing 209-211
UserInfo endpoint

about 38
invoking 59, 60

user passwords
resetting 224-228

users
authenticating 48-52
authenticating, to select one-time

password (OTP) 231-233
authenticating, with OpenID

Connect (OIDC) 36-39
forcing, to authenticate with one-time

password (OTP) 233, 234
user sessions

expiring, prematurely 252, 253
tracking, with cookies 254

users logout
button, initiating 61
dealing with 61, 63
ID and access token expiration 61
OIDC Back-Channel Logout 62, 63
OIDC Front-Channel Logout 63
OIDC Session Management 62

User Storage SPI 292

340 Index

W
Web application ARchive (WAR) 271
web application firewall (WAF) 298, 304
web applications

securing, with Keycloak 90-92
Web Authentication (WebAuthn)

enabling, for authentication
flow 236, 237

reference link 236
security device, authenticating 237-240
security device, registering 237-240
using 235, 236

web container adapter
using 129

Wildfly adapter
using 128

	Cover
	Title page
	Copyright and Credits
	Contributors
	About the authors
	About the reviewers

	Table of Contents
	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Code in Action
	Download the color images
	Conventions used
	Get in touch
	Reviews

	Section 1:
Getting Started with Keycloak
	Chapter 1: Getting Started
with Keycloak
	Technical requirements
	Introducing Keycloak
	Installing and running Keycloak
	Running Keycloak on Docker
	Installing and running Keycloak with OpenJDK

	Discovering the Keycloak admin and account consoles
	Getting started with the Keycloak admin console
	Getting started with the Keycloak account console

	Summary
	Questions

	Chapter 2: Securing Your
First Application
	Technical requirements
	Understanding the sample application
	Running the application
	Understanding how to log in to the application
	Securely invoking the backend REST API
	Summary
	Questions

	Section 2:
Securing Applications with Keycloak
	Chapter 3: Brief Introduction
to Standards
	Authorizing application access with OAuth 2.0
	Authenticating users with OpenID Connect
	Leveraging JWT for tokens
	Understanding why SAML 2.0 is still relevant
	Summary
	Questions

	Chapter 4: Authenticating Users with OpenID Connect
	Technical requirements
	Running the OpenID Connect playground
	Understanding the Discovery endpoint
	Authenticating a user
	Understanding the ID token
	Updating the user profile
	Adding a custom property
	Adding roles to the ID token

	Invoking the UserInfo endpoint
	Dealing with users logging out
	Initiating the logout
	Leveraging ID and access token expiration
	Leveraging OIDC Session Management
	Leveraging OIDC Back-Channel Logout
	A note on OIDC Front-Channel Logout
	How should you deal with logout?

	Summary
	Questions
	Further reading

	Chapter 5: Authorizing Access with OAuth 2.0
	Technical requirements
	Running the OAuth 2.0 playground
	Obtaining an access token
	Requiring user consent
	Limiting the access granted to access tokens
	Using the audience to limit token access
	Using roles to limit token access
	Using the scope to limit token access

	Validating access tokens
	Summary
	Questions
	Further reading

	Chapter 6: Securing Different Application Types
	Technical requirements
	Understanding internal and external applications
	Securing web applications
	Securing server-side web applications
	Securing a SPA with a dedicated REST API
	Securing a SPA with an intermediary REST API
	Securing a SPA with an external REST API

	Securing native and mobile applications
	Securing REST APIs and services
	Summary
	Questions
	Further reading

	Chapter 7: Integrating Applications with Keycloak
	Technical requirements
	Choosing an integration architecture
	Choosing an integration option
	Integrating with Golang applications
	Configuring a Golang client

	Integrating with Java applications
	Using Quarkus
	Using Spring Boot
	Using Keycloak adapters

	Integrating with JavaScript applications
	Integrating with Node.js applications
	Creating a Node.js resource server

	Integrating with Python applications
	Creating a Python client
	Creating a Python resource server

	Using a reverse proxy
	Try not to implement your own integration
	Summary
	Questions
	Further reading

	Chapter 8: Authorization Strategies
	Understanding authorization
	Using RBAC
	Using GBAC
	Mapping group membership into tokens

	Using OAuth2 scopes
	Using ABAC
	Using Keycloak as a centralized authorization server
	Summary
	Questions
	Further reading

	Section 3:
Configuring and Managing Keycloak
	Chapter 9: Configuring Keycloak for Production
	Technical requirements
	Setting the hostname for Keycloak
	Setting the frontend URL
	Setting the backend URL
	Setting the admin URL

	Enabling TLS
	Configuring a database
	Enabling clustering
	Configuring a reverse proxy
	Distributing the load across nodes
	Forwarding client information
	Keeping session affinity

	Testing your environment
	Testing load balancing and failover
	Testing the frontend and backchannel URLs

	Summary
	Questions
	Further reading

	Chapter 10: Managing Users
	Technical requirements
	Managing local users
	Creating a local user
	Managing user credentials
	Obtaining and validating user information
	Enabling self-registration
	Managing user attributes

	Integrating with LDAP and Active Directory
	Understanding LDAP mappers
	Synchronizing groups
	Synchronizing roles

	Integrating with third-party identity providers
	Creating a OpenID Connect identity provider

	Integrating with social identity providers
	Allowing users to manage their data
	Summary
	Questions
	Further reading

	Chapter 11: Authenticating Users
	Technical requirements
	Understanding authentication flows
	Configuring an authentication flow

	Using passwords
	Changing password policies
	Resetting user passwords

	Using OTPs
	Changing OTP policies
	Allowing users to choose whether they want
to use OTP
	Forcing users to authenticate using OTP

	Using Web Authentication (WebAuthn)
	Enabling WebAuthn for an authentication flow
	Registering a security device and authenticating

	Using strong authentication
	Summary
	Questions
	Further reading

	Chapter 12: Managing Tokens and Sessions
	Technical requirements
	Managing sessions
	Managing session lifetimes
	Managing active sessions
	Expiring user sessions prematurely
	Understanding cookies and their relation to sessions

	Managing tokens
	Managing ID tokens' and access tokens' lifetimes
	Managing refresh tokens' lifetimes
	Enabling refreshing token rotation
	Revoking tokens

	Summary
	Questions
	Further reading

	Chapter 13: Extending Keycloak
	Technical requirements
	Understanding Service Provider Interfaces
	Packaging a custom provider
	Installing a custom provider
	Understanding the KeycloakSessionFactory and KeycloakSession components
	Understanding the life cycle of a provider
	Configuring providers

	Changing the look and feel
	Understanding themes
	Creating and deploying a new theme
	Extending templates
	Extending theme-related SPIs

	Customizing authentication flows
	Looking at other customization points
	Summary
	Questions
	Further reading

	Section 4:
Security Considerations
	Chapter 14: Securing Keycloak and Applications
	Securing Keycloak
	Encrypting communication to Keycloak
	Configuring the Keycloak hostname
	Rotating the signing keys used by Keycloak
	Regularly updating Keycloak
	Loading secrets into Keycloak from an external vault
	Protecting Keycloak with a firewall and an intrusion prevention system

	Securing the database
	Protecting the database with a firewall
	Enabling authentication and access control for the database
	Encrypting the database

	Securing cluster communication
	Enabling cluster authentication
	Encrypting cluster communication

	Securing user accounts
	Securing applications
	Web application security
	OAuth 2.0 and OpenID Connect best practice
	Keycloak client configurations

	Summary
	Questions
	Further reading

	Assessments
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Why subscribe?

	Other Books You May Enjoy
	Packt is searching for authors like you
	Leave a review - let other readers know what you think

	Index

