

what's this

slmansitreset

omaybegitreseH.fm
gactual 0

man page eviesnthnisglish

Tien oes
t tn nKatie Julia

In the first and second
form, copy entries from
<tree-ish> to the index. In
the third form, set the
current branch head (HEAD)
to <commit>, optionally
modifying index and
working tree to match. The
<tree-ish>/<commit>
defaults to HEAD in all
forms.

By Katie Sylor-Miller & Julia Evans
Website: https://ohshitgit.com
Cover art by Deise Lino

This zine explains some git fundamentals in plain
English, and how to fix a lot of common git mistakes.

If you find git confusing, don't worry! You're not alone.
People who've been using it every day for years still
make mistakes and aren't sure how to fix them.
A lot of git commands are confusingly named (why do
you create new branches with git checkout?) and
there are 20 million different ways to do everything.

Table of contents

git fundamentals
a SHA is always the same code 4
everycommit has a parent commit 5
a branch is a reference to a commit 6
HEAD is the commit you have checked out 7
mistakes you can't fix 8

biooh shit mistakes how to fix them

I need to changethe message on my last commit 9
I committed but I need tomake one smallchange 10
I accidentally committed to the wrong branch It 12
I tried to run a diff but nothing happened 13
I have a merge conflict 9 14
I committed a file that should be ignored 15
I rebasedand now I have 1,000 conflicts to fix 16
I want to splitmycommit into 2 commits9 17
I want to undosomething from 5 commits ago I8
I did somethingterriblywrong does g it have a
magic time machine I9

ASHA always refers
to the same code

D therewith

000

Emmet
SHAs are long
but you can
just use the
first 6chars

IIOamJ 1lam

qgoeothnietisaii.mzitsmhaEiIioTg.e

4

git checkout 3f29ab

This makes it way easier to recover from mistakes!

No matter how many weird things you do with git, checking
out a SHA will always give you the exact same code. It's
like saving your game so that you can go back if you die
You can check out a commit like this:

Let's start with some fundamentals! If you understand
the basics about how git works, it's WAY easier to fix
mistakes. So let's explain what a git commit is!

Every git commit has an id like 3f29abcd233fa, also called
a SHA ("Secure Hash Algorithm"). A SHA refers to both:

the changes that were made in that commit
a snapshot of the code after that commit was made

A branch is a pointer
to a commit

master 2e9 fab
awesome feature 3 bafe a
fix typo 9 a9 a 9 a

t
this is just a text file
with the comimitSHAmaster
points at B

As
Hot

as

5

A branch in git is a pointer to a commit SHA

Here's some proof! In your favourite git repo, run
this command:

$ cat .git/refs/heads/master

3 main ways to change the commit a branch points to:

Understanding what a branch is will make it WAY EASIER
to fix your branches when they're broken: you just need
to figure out how to get your branch to point at the right
commit again!

git commit will point the branch at the new commit
git pull will point the branch at the same commit as
the remote branch
git reset COMMIT_SHA will point the branch at
COMMIT_SHA

HEAD is the commit

you have checked out

HEAD 16means
16commitsago

Rebasing a branchagainst itself 8commits
agolets yousquashcommitstogether9

6 use fixup

In git you always have some commit checked out. HEAD is a
pointer to that commit and you'll see HEAD used a lot in
this zine. Like a branch, HEAD is just a text file.
Run cat git/HEAD to see the current HEAD.

Here are a couple of examples of how to use HEAD:

git rebase -i HEAD~8

git show HEAD

show the diff for the current commit:

squash a bunch of commits together

git reset --hard HEAD~16

git diff HEAD~6

UNDO UNDO UNDO UNDO: reset branch to 16 commits ago

show what's changed since 6 commits ago:

every commit
has a parent

EITnenm.tt 2abcdeJ HEAD make cats blue
to

parent Tfeefffe HEAD add cats
f

Grapnadrent la9J2eab HEAD fix typo

Tfb29aff initial commit

7

git checkout HEAD^

Every commit (except the first one!) has a parent commit!
You can think of your git history as looking like this:

git log shows you all the ancestors of the current
commit, all the way back to the initial commit

HEAD always refers to the current commit you have
checked out, and HEAD^ is its parent. So if you want to go
look at the code from the previous commit, you can run

mistakes you can't fix

a

ordirectory

8

Replaces FILE with the version from BRANCH.
Will overwrite uncommitted changes.

Deletes files that aren't tracked by Git.

Very useful, but be careful to commit first if
you don't want to lose your changes

git checkout BRANCH FILE

git clean

git reset --hard COMMIT

Most mistakes you make with git can be fixed. If
you've ever committed your code, you can get it
back. That's what the rest of this zine is about!

Here are the dangerous git commands: the ones
that throw away uncommitted work.

Throws away uncommitted changes
Points current branch at COMMIT

f f
I need to change the message

yard
on my last commit.ir

i

I
I

if you run git commit but change
EIIIIifIIinifigffiatingigassibitsalisnstauitting

I
q

No problem! Just run:

git commit --amend

Then edit the commit message & save!

git commit --amend will replace the old commit
with a new commit with a new SHA, so you can
always go back to the old version if you really need
to.

gffsfFL.s
I committed but I neyed to

yard make one small change

i

i

rqgiethisoi.si
oh re s.tsiienJ

before committing9

IO

git commit --amend --no-edit

Make your change
Add your files with git add

Run:

You can also add a new commit and use
git rebase -i to squash them but this is
about a million times faster.

gffffffs
I accidentally committed

yard
to the wrong branch

correct i throng
ri

cherrypickmakes a
new commitwith the
Samechanges as A
but a differentparent

Icorrect
wrong

f
use git logwrongbranch
to find this

correFF

wrong

I

Ie carefulwhenrunning git reset hard

i
I I

Check out the correct branch

Delete the commit from the wrong branch

git cherry-pick COMMIT_ID

Add the commit you wanted to it

git checkout correct-branch

git checkout wrong-branch
git reset --hard HEAD^

I committed something tofFF master that should have been

find on a brand new branch

careful

pine
i iti i enTgit checkout b also checks out thebranch

12

Check out the new branch!

git status
git reset --hard HEAD~

Remove the unwanted commit from master

git branch my-new-branch

git checkout my-new-branch

Create the new branch

Make sure you have master checked out

git checkout master

f f
I tried to run a diff

yard but nothing happened

i ai
I

stagedchanges
addedwith
git add

unstaged
changes

p
B

p

p

13

Suppose you've edited 2 files

$ git status
On branch master
Changes to be committed:

 modified: staged.txt
Changes not staged for commit:

 modified: unstaged.txt

A couple more diff tricks:
git diff --stat gives you a summary of
which files were changed & number of
added/deleted lines
git diff --check checks for merge
conflict markers & whitespace errors

Here are the 3 ways git can show you a diff for
these changes:

git diff: unstaged changes
git diff --staged: staged changes
git diff HEAD: staged+unstaged changes

JIFFIES
I have a

yard merge conflict

code from master

Euterimanan

a E fittirnebueaseif
you'rerebasing

j isIoo
A Meld lmeldmerge.org is agreatchoice

14

Edit the files to fix the conflict
git add the fixed files
git diff --check: check for more conflicts
git commit when you're done

To resolve the conflict:

Suppose you had master checked out and ran
git merge feature-branch.
When that causes a merge conflict, you'll see
something like this in the files with conflicts:

 <<<<<<< HEAD
 if x == 0:
 return false
 =======
 if y == 6:
 return true
 elif x ==0:
 return false
 >>>>>>>> d34367

gfjff.IS
I committed a file that

yard should be ignored 9

15

(optional) Edit your .gitignore so it doesn't
happen again

git commit --amend

This is safe: it won't delete the file

Amend your last commit

git rm --cached FILENAME

Did you accidentally commit a 1.5GB file along
with the files you actually wanted to commit?
We've all done it.

Remove the file from Git's index

f f
I started rebasing and

Tf now I have 10000000
B conflicts to fix

output of
gitmerge base
goeshere

i

This can happen when you're rebasing many
commits at once.

git rebase master

Rebase on master

Squash all the commits in your branch together

Escape the rebase of doom

git rebase --abort

Find the commit where your branch diverged
from master

git merge-base master my-branch

git rebase -i SHA_YOU_FOUND

gffsfFEk.I
want to split my

perf commit into 2 commits

safe this points your branch at the
parentcommit but doesn'tchange any files

i i
17

git reset HEAD^

Undo your most recent commit

Use git add to pick and choose which files you
want to commit and make your new commits!

Get your uncommitted changes back

Stash any uncommitted changes (so they don't
get mixed up with the changes from the commit)

git stash

git stash pop

f fF
I want to undo something

yard from 5 commits ago 9

i

18

git revert SHA

Run:

Enter a commit message for the revert commit

Now all of the changes you made in that commit
are undone!

If you made a mistake but want to keep all of
the commits since then, git revert is your friend!

git revert will create a reverse patch for the
changes in a commit and add it as a new commit.

Find the commit SHA for the commit you
want to undo

I did something terribly wrongfFE does git have a magic

perf time machine

i

2ways to refer
to thatcommit
before the
rebase

19

Yes! It's called git reflog and it logs every single thing
you do with git so that you can always go back.

Suppose you ran these git commands:

245fc8d HEAD@{2} rebase -i (start):
b623930 HEAD@{3} commit:
01d7933 HEAD@{4} checkout:

checkout master
add cool feature
moving from master
to my-cool-branch

 git checkout my-cool-branch
 git commit -am "add cool feature"
 git rebase master

Here's what git reflog's output would look like.
It shows the most recent actions first:

If you really regret that rebase and want to go back,
here's how:

git reset --hard b623930

git reset --hard HEAD@{3}

love this
https ohshitgit.com

