BY KATIE SYLOR-MILLER
AND JULTA EVANS

whot!'s this?

If you find Sif confusinﬂ, don't worry! You're not alone.
People who've been using it every day for years still
make mistakes and aren't sure how to fix them.

A lot of Sif commands are confusinglj named (why do
you create new branches with git checkout?) and
there are 20 million different ways to do everjfhinﬂ.

$ man 3\‘\’ rese+

Inthe first and second

form, copy entries from

"'D +he Wrong branch <tree-ish> to the index. In
the third form, set the
current branch head (HEAD)

what do T do?
to <commit>, optionally

o
op R .
™M _), reset? modifying index and
Cl.tsb& 3' eset working tree to match. The
<tree-ish>/<commit>
A defaults to HEAD in alﬁ
actual 7 o s thig

even English?

oh no I committed

mon page

This zine explains some git fundamentals in plain
Enﬂ(ish, and how to fix a lot of common 3if mistakes.

Were here
~
— o helpY

Kaotie Solio
By Katie Sylor-Miller & Julia Evans
Website: hffps://ohshif3i+.com
Cover art b:, Deise Lino

Toble of Contents

X Sr} fundamentals *

a SHA is aluags the same €00 e
every commit has o parent COMMIE e D
a branch is a reference fo o commit........oooe b
HEAD is the commit you have checked out............. 7
mistokes You CONF FiIX oo &

woh shit! mistakes & how to fix theme

T need +o change the messcqe on my last commit+t....q
T commited but T need o make one small changel.........10
1 acciden‘l‘allg committed +o the wrong branch I.....11-12
T +ried 4o run o diff but no'Hm'ng happened T......... 13
T have a merge conflictli ... ——
T committed o file that s\r\ou\d be 18nored' .15
T (ebased and now T have 1,000 conflicts to fixT......16
1 want to split my commit into 2 commi¥s Voo | F
T wont Yo undo some_-ﬂxmﬁ from S commits aso' e 1 8
T did something +err|b|5 wrong, does 9.+ have o

magjic FimE MOChINE T oo serseeseees e ene s eeee | 9

A SHA always refers
to the same code

Let's start with some fundamentals! If you understand
the basics about how 3# works, it's WAY easier to fix
mistakes. So let's explain what a git commit is!

Every 3# commit has an id like 3f29abcd233fa, also called
a SHA ("Secure Hash Algorifhm“). A SHA refers to both:

the changes that were made in that commite eyt

a snapshot of the code after that commit was made

‘gik shows *

No matter how many weird 'rhings You do with ﬂit' checkina
out a SHA will always 3ive You the 'code. It's

like suving your game so that you can 9o back if you died)
You can check out a commit like this: SHAs are long

but you ca

' [_ Y g}
h £ just Use +he

git checkout 3f29ab Fiest 6 chacs

This makes it way easier to recover from mistakes!

ok, letls commit,

Hhat's 029921

T rec\lln screwed
up Fhis file, leds
Go boack to the

version *Frorv‘

a2492b

L

A branch is a pointer
to o commit

A branch in 3i’r is a pointer to a commit SHA

master —> 2e9fab
auwesome - feature — > 3bafea

—ffx—'}'lapo /S qaqo\qq

Here's some proof! In your favourite 3i‘l’ repo, run
this command:

$ cat .git/refs/heads/master

+his is 5us+ o text file
with +he commit SHA master
points at ¥

Undersmndinﬁ what a branch is will make it WAY EASIER
to fix your branches when they're broken: you jusf need
to figure out how to get your branch to point at the righ'r
commit again!

3 main ways fo change the commit a branch points to:

X git commit will point the branch at the new commit

% git pull will point the branch at the same commit as
the remote branch

% git reset COMMIT_SHA will point the branch at
COMMIT_SHA

HEAD is the commit
you hove checked oot

In 3if you always have some commit checked out. HEAD is a
pointer to that commit and you'll see HEAD used a lot in
this zine. Like a branch, HEAD is jus+ a text file.

Run cat git/HEAD to see the current HEAD.

Here are a couple of examples of how to use HEAD:

show the diff for the current commit:

git show HEAD
UNDO UNDO UNDO UNDOQ: reset branch to 16 commits qﬂo\'lj

git reset ——-hard HEAD~16
*~ HEAD~ 16 means

16 commits ago
show what's changed since 6 commits age:

git diff HEAD-~6
squash a bunch of commits ’rogefher
git rebase -i HEAD-~8
Rebasing o branch against itself & commits

ago lefs you squash commits fogether?
6 (use " $ixvp™)

evefc3 comm(+'
has o paren)r’

Every commit (except the first onel) has a parent commit!
You can think of your 3i’r history as (ookinﬂ like this:

urr n+ [\ u
comenit HEAD “make cats bloe
i

parent HEAD “add cats”
v
gad HEAD™ “fix Fypo”

b29 aff * ini‘ha\ commH’"

HEAD always refers to the current commit you have
checked out, and HEAD" is its parent. So if you want to 9
look at the code from the previous commit, you can run

git checkout HEAD"

commils Jdon't aluays have
1 pacent: merge commits
aclually have 2 parents ¥

X

git log shows you all the ancestors of the current
commit, all the way back to the initial commit

mistakes uyou cant fix

Most mistakes you make with 3if can be fixed. If
you've ever committed your code, you can 361’ it
back. That's what the rest of this zine is about!

Here are the danﬂerous 3# commands: the ones
that throw away uncommitted work.

&git reset --hard COMMIT

@ Throws away uncommitted chanaes
(@ Points current branch at COMMIT

Very useful, but be careful fo commit first if
Yyou don't want to lose your changes

& git clean

Deletes files that aren't tracked by Git.
oc directoly

& git checkout BRANCH FILE

Replaces FILE with the version from BRANCH.
Will overwrite uncommitted changes.

3

, T need to change the message
on my last commitY

Then edit the commit message & save!

git commit —-amend will replace the old commit
with a new commit with a new SHA, so you can
always 9 back to the old version if you really need
to.

if you run ‘(3."]' commit ' bot change

our mind, you can always absrt bb
deleting +he commit message § savingye quitting,
Or qu‘r\' without saving !

s T committed but I need to

make one small chanje!

O® Make your chanSe
@ Add your files with git add
®Run:

this usua\lfj happens to me when
T wcorge{' to run tests/ linters
before_ comminnS!

You can also add a new commit and use
git rebase -i to squash them but this is
about a million times faster.

’I Qcciden‘l'a“fj 60mmi'H'€A
to the wrong branch Y

(D Check out the correct branch NS

N
concect ’ /: Wrongy

iI
git checkout correct-branch 7

4

’

Pre

c\r\erruypick makes a)/
new commit with the —' &

'~

same changes as *, v
)

|

q

*

r(.ﬁ‘

bot & giffecent paren‘\'
@ Add the commit you wanted to it ’

\
corcect @ %
rre N /

git cherry-pick COMMIT_ID : e

?
use ‘git log wrongy-branch'
to find this

@ Delete the commit from the wron3 branch

2N\
correct @ ¥

git checkout wrong-branch \~I’—'W°-5

Vgit reset ——hard HEAD" i

be caceful when runm‘ng \gﬂ' veset —-hard','
I a\uqss fon '%i\' statous’ first o
make sure there aren't uncomm(”@a

changes and 'git stash’ to save them
if +here are

g % g T committed Someﬂ'\ing to
Y maste that should have been
on o brand new branch ¥

() Make sure you have master checked out

git checkout master

(?) Create the new branch

git branch my-new-branch

@ Remove the unwanted commit from master

git status
V9it reset ——hard HEAD~

cagefol!

(M Check out the new branch!

git checkout my-new-branch

‘3i’r branch' and ‘'git checkout -b’ both
Ccr

eate o new branch. The difference is
‘ait checkoot -b' also checks out +he branch
12

, T1ried to ron a diff
but noHninS \r\appened?

did you know there are
%\ 3 ways 4o diff 134

Suppose you've edited 2 files:

$ git status
On branch master

eS
Changes to be committed: 5+&SQA chang

o« (added WY
modified: staged.txt Vgit add)
Changes not staged for commit:

uns‘\’aﬁeg

modified: unstaged.txt &~ changes

Here are the 3 ways 3i+ can show you a diff for
these changes:

—» git diff: Uns’raged changes
—» git diff --staged: sfaged chanﬂes
— git diff HEAD: sfaSed+uns+a36d chanﬂes

A couple more diff tricks:

—git diff --stat Sives you a summary of
which files were chanﬁed & number of
added/deleted lines

—r git diff --check checks for merge
conflict markers & whitespace errors

T have a
Y merge conflict 71

Suppose you had master checked out and ran
git merge feature-branch.

When that cavses a merge conflict, you'll see
somefhin3 like this in the files with conflicts:

<<<<<<< HEAD

if x==0:
de £ Yer
return false ‘gco & Trom ma

ify==6:
return true

ellf X ==0Q: Code. ’F(OW\
return false feoture -branch

>>>>>>>> d34367
To resolve the conflict:

O Edit the files to fix the conflict
@ git add the fixed files
® git diff —--check: check for more conflicts

M git commit when you're done or gih rebase,

you're rebasing!

You can vse a GUI 4o visually
resolve conflicts with '¢iF mecgetool.
Meld (meldmerge.org\ 15 a gread' choice!

, L committed o file that
should be ianored!

Did Yyou accidenfa(lj commit a 1.5GB file a(onﬁ
with the files You acfual(3 wanted to commit?
We've all done it.

(D Remove the file from Git's index
git rm ——cached FILENAME
This is safe: it won't delete the file
@) Amend your last commit

git commit --amend

@(Opfiona() Edit your gitignore so it doesn't
happen again

now your coworkers wond be stuck

dounloadir\j o HUGE 3."}' commit

LTI started rebas.‘ng and
now I have 100000 0O
conflicds to Fix0

This can happen when you're rebasing many
commits at once.

(D Escape the rebase of doom

git rebase —--abort

@ Find the commit where your branch diverged
from master

git merge-base master my-branch

@ Scluash all the commits in your branch ’rogefher

git rebase -i SHA_YOU_FOUND

R ovkpob of
@ Rebase on master git merge -base
goeshere

git rebase master

olternatively, i you hove 2
banches with many conflicting
coranS/ you can 3us+ merge ¥

, T want +o- spli‘l’ My

commit into 2 commits!

(D Stash any uncommitted changes (so they don't
get mixed up with the chanﬂes from the commit)

git stash

@ Undo your most recent commit

git reset HEAD"

safe: this points your branch ot the
patent commit but doesn'+ change any files

@ Use git add to pick and choose which files you
want to commit and make your new commits!

®Ge+ your uncommitted chanﬂes back
git stash pop

Yoo can use ‘3ﬁ'&dd -p’if
ov want to commit some
changes 1o a Ffile but not
others !

, T want t6 vndo SOMQ‘H’\I'(\S

from 5 commits ago?

If you made a mistake but want fo keep all of
the commits since then, 3i’r revert is your friend!

git revert will create a reverse patch for the
chanﬂes in a commit and add it as a new commit.

(D Find the commit SHA for the commit Yyou
want to undo

@ Run:

git revert SHA

@ Enter a commit message for the revert commit

Now all of the chanses you made in that commit
are undone!

+his is super usefol if yau
PUSL\ a bad commit +o a
shared repasitory and need

10 undos i+!

g T did some‘Hnins +erribl:j wrong,
¢ does SH— have o magic
+ime machine ?

Yes! 1t's called 3i+ reﬂ03 and it (ogs every sinﬁle fhinﬂ
you do with Sif so that you can a(wajs 90 back.

Suppose Yyou ran these si’r commands:

git checkout my-cool-branch @
git commit -am "add cool feature"(®
git rebase master(®

Here's what git reflos’s output would look like.
It shows the most recent actions first:

245fc8d HEAD@{(2) rebase -i (start):®checkout master
0623930 HEAD@{3} commit: @add cool feature
0147933 HEAD@{4} checkout: @movinﬂ from master

to mg-coo(-brunch

If you really regref that rebase and want to 9 back,
here's how:

git reset ——hard b623930
2 ways to refer
git reset -—hard HEAD@{3},/ to that commit
before Yhe
rebase

love Yhis?
https:// ohshit git.com

