NN N N N N N\ | | J [/ [[[S 7

3

Hl INTE "
— By Yulia]EVans —
g @@ﬁps . N e nam@p@?%ﬂ

o N
0f
Z I 8

N N N\

VLN N\ N

w\\g) this zine ?

When 1 started using containers 1 was SO CONFUSED.

is this a... process? a virtual
machine? what is HAPPENING on
my computer right now?

So 1 decided to learn how they work under the hood!

**°(oh, a container image is
Just a tarball with a lot of
files in it! that's simple!!

Now 1 feel confident that I can solve basically any problem with
containers because 1 understand how they work.
I hope that after reading this zine, you'll feel like that too.

containers use Linux
kernel features, so
you'll be seeing a LOT
of this guy:

X

there are only
about 10 main ideas!
let's go learn them!

Linux

toble of contents

wh5 confainersy.....rrn CQTOUPS.....eoese e o L. 9
the bigidea.: include namespacesooooooooo0Ad

EVERY depend ency......cccovm 5 how fo make o namespace.. .15
containers arent magic......6 PID namespaces............ 16

containers = processes....... ‘? user namespoces................1?
container kernel features... 8 network namespaces..nn 13
pivot_root.....ore. 4 container IP addresses......... 19
LOY @I S s 10 capabilities. e 20
overlay filesystems........ 11 seccomp-BPF...on 21
confainer registries......... 12 configuration options ... 22

why containers?

there's a lot of
container ’hgpe;

econtainers @ 0

Here are 2 problems they solve...

problem: building software
iS annoying

$./configure
$ make all
ERROR: you have version

2.1.1 and you need
at least 2.2.4

solution: package all
dependencies in a
% container %

I ran the container
and the build worked
RIGHT AWAY??

is that allowed??

Many CI systems use containers.

containers have
their own filesystem

This is the big reason containers
are great.

o0 $1'm running Ubuntu 19.04

o
o

3k I'm running an old %o
e Cent0S distribution) [~ -
host 0S from 2014! gt

container

problem: deploying
software is annoying too

ugh my website is \
broken becavse 1 used
a Python 3.6 feature
and the server only
has Python 3.5

solution: deploy a
container

1 have the exact same
version of everything as
in development! no more

yay! 1 can get
back to writing

the big idea.: include EVERY dependencg

containers package EVERY
dependency together

to make sure this
program will run on

your laptop, I'm going
to send you every single
file you need

a container image is a tarball of a filesystem

Here's what's in a typical Rails app's container:

Sour apps libc + other
o de system libraries Ubunto
base 0S

Ruby interpreter Rubg gems

how images are built

. start with a base 0S
. install program + dependencies
. configure it how you want

. make a tarball of the
WHOLE FILESYSTEM

this is what
‘docker build' does!

W N~ O

running an image images let you "install"

rograms really easil
1. download the tarball prod J J

2. unpack it into a directory

3. run a program and pretend
that directory is its
whole filesystem

I can set up a Postgres
test database in like
5 seconds! wow!

conTainers arent mo.gic

These 15 lines of bash will start a container running the fish shell. Try it!
(download this script at bit.ly/containers-arent-magic)

It only runs on Linux becauvse these features are all Linux-only.

wget bit.ly/fish-container -0 fish.tar
mkdir container-root; cd container-root
tar -xf ../fish.tar
cgroup_id="cgroup_$(shuf -i 1000-2000 -n 1)"
cgcreate -g "cpu,cpuacct,memory:$cgroup_id”
cgset -r cpu.shares=512 "$cgroup_id"
cgset -r memory.limit_in_bytes=1000000000 \
"$cgroup_id"
cgexec -g "cpu,cpuacct,memory:$cgroup_id" \
unshare -fmuipn --mount-proc \
chroot "$PWD" \
/bin/sh -c "
/bin/mount -t proc proc /proc &&
hostname container-fun-times &&
/usr/bin/fish”

containers = processes ?

a container is a group

of LinUx processes I started “top™ in a container.
' P Here's what that looks like in ps:

on a Mac, all your
containers are

actually running in a outside the container inside the container
Linux virtual machine $ ps aux | grep top $ ps aux | grep top
USER PID START COMMAND USER PID START COMMAND

(root 23540 20:55 top) oot 25 20:55 top D)
bork 23546 20:57 top N
these two are the same process!

container proc'esses ... but vsvally they have the restrictions are
can do anything a @ restrictions & enforced by the
normal process can ... Linux Kernel

different PID

't
1 want my container _ NAMESPACE ¢group memory NO, you can 'have
different i . more memory!
todo XY ZW! root ~g «~ limit
on the next page we'll list

directory w | *—_ limited
all the kernel features

sure! your computer, T capabilities
your rules! not allowed to run that make this work!
some system calls

(.Oﬂ"'&'m&F kerne\ ‘Feocl'u res

containers vse these
Linux Kernel features

"container" doesn't have a
clear definition, but Docker
containers vse all of
these features.

¥ pivot_root @

set a process's root
directory to a directory
with the contents of the
the container image

% cgroups %

limit memory/CPU usage
for a group of processes

only 500 MB of
RAM for you!

Linux

¥ hamespaces @

allow processes to have
their own:

— network - mounts
- PIDs - users
— hosthame + more

% capabilities %

security: give specific
permissions

¥ seccomp-bpf @

security: prevent dangerous
system calls

% overlay filesystems %

this is what makes layers
work! Sharing layers saves
disk space & helps
containers start faster

pivof_ r‘oo‘\'

9

a container image is a
tarball of a filesystem

(or several tarballs: 1 per layer)

if someone sends me
a tarball of their

filesystem, how do
1 vse that though?

chroot: change a process's root directory

If you chroot to /fake/root, when it opens the file
/usr/bin/redis it'll get /fake/root/usr/bin/redis instead.

You can "run" a container just by using chroot, like this:

$ mkdir redis; cd redis

$ tar -xzf redis.tar

$ chroot $PWD /usr/bin/redis
done! redis is running!

programs can break
out of a chroot

all these files are
still there! A root
process can access
them if it wants.

whole
filesystem

redis
container
directory

access it.

redis you can unmount
container [#~the old filesystem
directory | g0 it's impossible to

Containers use pivot_root instead of chroot.

to have a "container" you
need more than pivot_root

pivot_root alone won't let you:

— set CPU/memory limits

— hide other running processes

— use the same port as another process
- restrict dangerous system calls

layers

|0

different images
have similar files

— f(we both vuse —
‘v Ubuntu 18.047(| —

Rails Django
container container
image image

reusing layers
saves disk space

Rails image Django image

‘ Rails app ! i Django app l
|ubuntu:18.04] [ubuntu:18.04]

exact same files on disk!

a layer is a directory

$ 1s 8891378ebx*

bin/ home/ mnt/ run/ tmp/
boot/ lib/ opt sbin/ usr/
dev/ 1ib64/ proc/ srv/ var/
etc/ media/ root/ sys/

files in an
vbuntu:18.04 layer

every layer has an ID
usually the ID is a

sha256 hash of the
layer's contents

example: 8e99fae2. .

if a file is in 2 layers,
you'll see the version
from the top layer

this is the

version you'll
/code/filepy | see in the

merged image
/code/file.py

by default, writes go
to a temporary layer

T these files

K emp layer [~-might be deleted
E———2 after the
—

container exits

To Keep your changes, write
to a directory that's mounted
from outside the container

overlay filesystems I

how layers work:
mount -t overlay

can you combine these 37
layers info one filesystem?

yes! just run
mount -t overlay
with the right

parameters!

Linux

mount -t overlay
has 4 parameters

lowerdir:

list of read-only directories
upperdir:

directory where writes should go
workdir:

empty directory for internal vse
target:

the merged result

upperdir:
where all writes go

when you create, change, or
delete a file, it's recorded in
the upperdir.

usually this starts out empty
and is deleted when the
container exits

lowerdir:
the layers. read only.

you can run
$ mount -t overlay
inside a container to
see all the lowerdirs
that were combined to
create its filesystem!

here's an example!

$ mount -t overlay overlay -o

lowerdir=/lower,upperdir=/upper,workdir=/work /merged

$ 1s /upper

cat.txt dog.txt
$ 1s /lower
dog.txt bird.txt
$ 1s /merged
cat.txt dog.txt

the merged version of dog.txt is

R S)

the one from the upper directory

bird.txt

Coanodner regi <frie s 12

sharing container
images is useful

I made an image
you can vse to run

Redis with jusf
one command!

¥

a registry is a server
that serves images

lik
images have an 1D “leseq 2’

and sometimes a tag

)
like “18.04" or “latest”

registries (et you
download just the
layers you need

I already have the
Ubuntu base image,
I just need ofe223

(heres 0fe223'?
re

3|s+r5

there are public

container registries...

I'm going fo use the
latest official public
Redis image to test
my code!

. and private
registries

every time we build
our web service, we
upload a new image
to our private registry

developer
at COMPANY

be careful where your
container images
come from

L'll just run this mage
from RANDOM_ PERSON

. 2 months later ..

oh no! RANDOM_PERSON is
mining bitcoin on my server

c;groups

13

processes can use
a lot of memory

I want 10

Pr\;ss GB of memory
(4]

U 4“ me too!)

process &
guys, 1 only
have 16 GB fotal) |inux

a cgroup is a
group of processes

x— cgroup !
every process
in a container
is in the
same cgroup

you three get 500 MB
of RAM to share, okay?

use too much memory:
get OQM Killed

"out of memory"

[G want 1 GB of @

process NOPE your limit
o°am was 500 MB

- you die now! &

process Linux

use too much CPU:
get slowed down

]

process

you hit your quota
for this 100ms period,
you'll have to wait Linux

I want to use
ALL THE CPU!

cgroups track
memory & CPU usage

that cgroup is
using 112.3 MB of
memory right now

Linux

you can see it in
- /sys/fs/cgroup -

nomespo.ces

14

inside a container,
things look different

I only see ¢
processes in
ps aux, that's
weird...

(X<

why things look different:
; namespaces:

I'm in a different
PID namespace so
ps aux shows
different processes!

o

corifainer

there's a default
("host" namespace)

"outside a
container" just

means "using the
default namespace"

processes can have
any combination
of namespaces

I'm vusing the host
network namespace

but my own mount

contames | NAMespacel

every processes has
7 hamespaces

PID

$ Isns —6/273
NS TYPE

4026531835 cgroup
4026531836 pid
4026531837 user
4026531838 uts
4026531839 ipc
4026531840 mnt
4026532009

R nomespace IO

you can also see a
process's namespace with:

$ 1s -1 /proc/273/ns

how t0 make o namespace

1S

processes use their
parent's namespaces
by default

but you can switch
namespaces at any time

I'm starting a
container so it
needs its own
namespaces

command line tools

$ unshare --net COMMAND
run COMMAND in a
new network namespace
$ sudo lsns
list all namespaces

$ nsenter -t PID --all COMMAND

run COMMAND in the same
namespaces as PID

namespace
system calls
% clone %
make a new process
% unshare *
make + use a namespace

* setns %

use an existing namespace

*clonex lets you
create new namespaces
for a child process

@e(. .. CLONE_NEWNET)
S
%0 l!'

child

I have my own
network namespace!

each namespace
type has a
¢ man ‘)Clg)&li'
$ man network_namespaces
A physical network device

can live in exactly one
network namespace.

PT_D n&mespaces

16

the same process has
different PIDs in
different namespaces

PID in host PID in container
23512 (O
23513 4 PID 1 is
23518 12 gpecial

PID namespaces
are in a tree

host PID namespace
(the root)

/

child child child

Often the tree is just 1 level
deep (every child is a container)

you can see processes
in child PID namespaces

aw! look at all those

& containers running!

°
0

Ve
\—

hos+

if PID 1 exits,
everyone gets Killed

(St onet)
A\

I'm Kill -d'ing

PID namespace
IMMEDIATELY

everyone else in this

Linux

Killing PID 1 accidentally
would be bad

container
pmces S

do you WANT everyone
to die? I'm not gonna
let you do that

[4)

Linux

rules for signaling PID 1

from same container:

only works if the process
has set a signal handler

from the host:

only SIGKILL and SIGSTOP
are oK, or if there's a signal
handler

user namespaces |7

user namespaces are
a secvurity feature...

1'd like root in the
container to be
totally unprivileged

you want a user
namespace!

... but not all container
runtimes vse them

same vuser!

root on
host

root in
container

"root" doesn't always
have admin access

I'm root so I can do
ANYTHING right?

actually you have
mited capabilities so
mostly you can just
access files owned
by root!

container li
process

in a user namespace,
UIDs are mapped to

host UIDs
— [I'm running)/ oh, that's =
mapped to

process 12345

The mapping is in

-: /proc/self/uid_map I

unmapped users show
up as "nobody"

create user namespace

$ unshare --user bash
$ 1s -1 /usr/bin
. nobody nogroup apropos

. nobody nogroup apt
these are "actually" owned by root
but we didn't map any users

how fo find out if
you have a separate
user namespace

compare the results of
$ 1s /proc/PID/ns
between a container

process and a host
process.

network namespaces &

network namespaces
are Kinda confusing

have 2 interfaces
(+ sometimes more)

—*the loopback interface

inside the namespace)
—ranother interface

(for connections from
outside)

namespaces usually

(127.0.0.1/8, for connections

every server listens
on a port and network
interface(s)

0.0.0.0:3080

means
"port 8080 on every network
interface in my namespace"

127.0.0.1 stays
inside your namespace

I'm listening
on 127.0.0.1

(¢]
o

—\ [that's fine but nobody
outside your network

Server| namespace will be able
to make requests fo you!

card is in the host
network namespace

- — = w——--——

: namespace

9

requests from 7168\ 1 s
other computers | wor'% cal

your physical network

I hos* nefwork 1

|
\
|
|
\
l
\
\

namespace with a bridge

host nefwork I seluilvtvatsiety

\
: namesmc{;/@ﬁ‘i’lt‘f'[‘f[-

other namespaces are
connected to the host

S S

conTainer 1P addresses

19

containers often get
their own IP address

Ooo
I'm running WordPress
N~ at 172.17.2.3:8080!
wordpress

container

I'm vsing ~
172.17.0.49:8080! wordpress
containec 2

containers use

private IP addresses
192.168.%.%

reserved
10.%.% % for private

networks
172.16.%.% (RFC 1418)
-> 172.32.%.%

This is because they're not
directly on the public internet

for a packet to get
to the right place,
it needs a route

—_—

172.16.2.3

packet
router

I don't have any entry
matching 172.16.2.3 in
my route table, sorry!

inside the same
computer, you'll
have the right routes

same computer:

$ curl 172.16.2.3:8080
<html>....

different computer:

$ curl 172.16.2.3:8080
. no reply

distributing the right
rovtes is complicated

a new container
.. started, 10.2.73.4 should
~ go to X computer now

OO ol -
wow these things
change a (ot route

table

cloud providers have
systems to make
container IPs work

In AWS this is called an
"elastic network interface"

copabilities

20

we think of root as
being all-powerful...

edt O™} < hange
fle s rwork config
Spy on any
program's memory

but actually to do
"root things, a process

needs the right

k capabilities %

I want to modify
the route table!
you need &
CAP NET ADMIN!

process

there are dozens

of capabilities

$ man capabilities
explains all of them
but (et's go over 2

important ones!

CAP_SYS_ADMIN

lets you do a LOT of things.
avoid giving this if you can!

CAP_NET_ADMIN

allow changing
network settings

by default
containers have
limited capabilities

can I call
process_vm_readv?

— nope! you'd need
CAP_SYS_PTRACE
process for that!

$ getpcaps PID

print capabilities
that PID has

getcap / setcap

system calls:
get and set capabilities!

seccomp-bpf

21

all programs use
system calls

read 2000 bytes
‘u from this file

P(OS{'OJ’\

Linux

rarely-used system calls
can help an attacker

request_key

read memory from
another process

seccomp-BPF lets you
run a function before
every system call

run this function
before every syscall
that process makes f/—

(a3 Linex

the function decides if
that syscall is allowed

example function:

if name in allowed_list {
return true;

} /—fhis means the

't
return false; iBSCG((' doesn
appen!

Docker blocks dozens
of syscalls by default

most programs
don't need those
system calls so 1
told Linux to block
them for you!

2 ways to block
scary system calls
1. limit the container's

capabilities

2.set a seccomp-bpf
whitelist

You should do both!

configuration options

2]

here are the 6
most important
things you can
configure when
starting a
container!

map a port
to the host

mount directories
from the host

}

1

1

| |
! i
! /src 1
! '
|]
|]

14
~
(@]
(o]
Q
@
~
o
—
[
>

set capabilities

add seccomp-bpf
filters

set memory and
CPU limits

only 200 MB
RAM for you

use the host
network namespace

usvally the default

is to use a new
network namespace!

Q) thank s for reading

I did a bunch of the research for this zine by reading the man pages.
But, much more importantly, 1 experimented -- a (ot!

let's see, what happens if 1 create a
cgroup with a memory (imit of 5MB?

(o}

oh cool, if T try to run a
program that uses 10MB of
memory in the cgroup it gets
Killed! that makes sense!

o
o
o

So, if you have access to a Linux machine, try things out!
Mount an overlay filesystem! Create a namespace! See what happens!

l credits I

Cover art: Vladimir Kagikovié
Editing: Dolly Lanuza, kamal Marhubi

23

@ this?
more ot
* Wizaordzines.com %

