by Julia Evans

obouT this zine

Your browser uses HTTP every time it visits a website. Like a
lot of the tech that runs the internet, understanding HTTP
isn't that hard!

This zine's goal is to take you from:

muy website isn4 workmg righ'\"
becavse of some weird
Cackfng/Cookies/ CORS +hin5

ond I'm not sure Wwhere +o stact

l‘\'o

hmm, T have o cachinﬂ Problem

T can just look at my
request + response headers,
consult the docomentation,
and figure out how to fix it Y

' credits l

Cover art: Vladimir Kasikovié

Editing: Dolly Lanuza, kamal Marhubi

special thanks to Marco Rogers for
suggesting the idea of a HTTP zine

published by wizard industries (https://wizardzines.com)

Table of Contents

reques+s:

anatomy of an HTTP request........
request methods (GET! POST 1) .
reques+ heoders ...
using HTTP AP Lo e,

responses:
anatomy of an HTTP response

response headers

stotus codes (2007 4OUYY)...
how cookies work ...
content delivery networks & coching ..o,
reditect S e

securi-hj'.

HTTPS & certificates
same origin poliaj & CORS
Securi']B headersS .o

exercises & how to learn more ...,

8-9
10
X

A

13

14

16—17

whai's HTTP?

!)
HTTP is the protocol (Iflgper’rexf Transfer Protocol) that's
used when you visit any website in your browser.

HTTP re ues 1_
M
e
(<]
Server
HTTP response

cat.gqif

The exciting thing about HTTP is that even though it's
used for literally every website, HTTP requests and
responses are easy to look at and understand:

— here's an HTTP
i —) response ¥

Secvecr

that response has
the wrong Content-Type
header, that's why the

website isn't
wor kins !

Example of what an HTTP request and response might look like:

v reques'\" response
s
e {GET / HTTP/1.1 status{HTTP/1.1 200 OK
Host: examplecat.com Cache-Control: max-age=604800
headers | User-Agent: curl Content-Type: text/html
Accept: */x Etag: "1541025663+ident”

heoders { Server: ECS (nyb/1D0B)

<!doctype html>
<title>Example Cat</title>

bod:s

All that text is a lot to understand, so let's get started
learning what all of it means!

L|

how URLs work

: . ? =11 9
https.//gxamplecat.com.443<E§£§.color light%20gray#banana
Scheme. domain P°‘”+ pccH’\ querﬂ Sfring _Fmgme,d— id

scheme Protocol to use for the request. Encrypted (https),
https:// insecure (http), or something else entirely (ftp).

domain Where to send the request. For HTTP(s) requests,
examplecat.com the Host header gets set to this (Host: example.com)

p0r+ Defaulte to 80 for HTTP and 443 for HTTPS.
1443

pod'k Path to ask the server for. The path and the
query parameters are combined in the request,

/cats
like: GET /cats?color=light%20gray HTTP/1/1
query Query parameters are usvally used fo ask for
parame’rers a different version of a page ("I want a light

color=light gray Oray cat!’). Example:
hair=short&color=black&name=mr%20darcy

na:ne =value “separated by &

URL URLs aren't allowed to have certain special
encoding characters like spaces, @, etc. So to put them in a
%20 URL you need to percent encode them as

% + hex representation of ASCII valve.
space is %20, % is %25, etc.

‘Fragmen‘i' id This isn't sent to the server at all. It's used either
to jump fo an HTML tag () or by
Javascript on the page.

#banana

5

whot's o header ?

Every HTTP request and response has headers. Headers are a
way for the browser or server to send extra information!

/&ccepi’— Encoding: gz‘.D

X this means
“T understand compressed responses”

Headers have a name and a valve.

Accept- Encoding: gzip
1

T
neme. value
Header names aren't case sensitive:
+o+allﬂ valid/\‘

aCcEPT— eNcOdInﬁ t g2ip

There are a few different kinds of headers:
Describe the bady:
Content-Type: image/png Content-Encoding: gzip
Content-Length: 12345 Content-Language: es-ES Everg Accept-

L. header has a
Ask for o SPQCI‘F'C Kind of response. " corresponding
Accept: image/png Accept-Encoding: gzip Content- header
Range: bytes=1-10 Accept-Language: es-ES

Manage caches:

ETag: "abc123" If-Modified-Since: 3 Aug 2019 13:00:00 GMT
If-None-Match: "abc123"” Last-Modified: 3 Feb 2018 11:00:00 GMT
Vary: Accept-Encoding Expires: 27 Sep 2019 13:07:49 GMT

Cache-Control: public, max-age=300
Saa where the reques‘l’ comes from:

User-Agent: curl Referer: https://examplecat.com
Cookies:

Set-Cookie: name=julia; HttpOnly (servec = client)

Cookie: name=julia (client —»server)

and more "

ana‘l’omg of an
% HTTP request *

HTTP requests always have:

—a domain (like examplecat.com)

—a resource (like /cat.png)

—a method (GET, POST, or something else)

—headers (extra information for the server)
There's an optional request body. GET requests usually don't
have a body, and POST requests usually do.

This is an HTTP 1.1 request for examplecat.com/cat.png.
It's a GET request, which is what happens when you type a
URL in your browser. It doesn't have a body.

me'\\'\oa POST\ resource be'm5 ;
(ysualsy GET of cequested y HTTP version

GET /cat.png HTTP/1.1 4onain being

Host: examplecat.com ¢ requested
headers { User-Agent: Mozilla. ..

Cookie:

Here's an example POST request with a JSON body:

method

NposT /add_cat HTTP/1.1 c:ﬂ*\:ﬂ: tape
Host: examplecat.com or e
heoders§ Content-Type: application/json

Content-Length: 20 request body;

the TSON wetre
{"name": "mr darcy"}«” sending +o

+he server

request methods

Every HTTP request has a method. It's the first thing in the
first line: « this means its oo GET request

GET /cat.png HTTP/1.1
There are 4 methods in the HTTP standard. 80% of the time
you'll only use 2 (GET and POST).

GET When you type an URL into your browser, that's a
GET request.

GET /cat.png
. Host: examplecat.com
i\,/ S

examplecat.com/cat.png 9]

200 OK
Content-Type: image/png -
<)

<the cat picture>

P S When you hit submit on a form, that's (usually) a
OST
POST request.

POST /add_cat 200 OK
Content-Type: application/json| Content-Type: text/html

{"name"”: "mr darcy”} <after sign up page>

-
\—

The big difference between GET and POST is that GETs are
never supposed to change anything on the server.

X POST requests usually have
o request body

Returns the same result as GET, but without

the response body. no image
/ Just headers

— 200 OK IR
Ivh HEAD /cat.png Content-Type: image/w

8

OPTIONS

DELETE

OPTIONS is mostly used for CORS requests.
The CORS page has more about that.
It also tells you which methods are available.

Used in many APlIs (like the Stripe API) to
delete resources.

PUT

PATCH

TRACE

CONNECT

DELETE /v1/customers/cus_12345 @

“ delete this

cuostomer please " “deleted ¥

Used in some APIs (like the S3 API) to create
or update resources. PUT /cat/1234 lets you
GET /cat/1234 later.

Used in some APIs for partial updates to a
resource ("just change this 1 field").

I've never seen a server that supports this,
you probably don't need to know about it.

Different from all the others: instead of making

a request fo a server directly, it asks for a
proxy to open a connection.
If you set the HTTPS_PROXY environment

variable to a proxy server, many HTTP libraries

will use this protocol to proxy your requests.

ok, T'll oped

a connection

CONNECT test.com 0° —
\u 5 g +o test.com
prory fest.com
client T

encry Pfed reques+

q

reques+ headers

These are the most important request headers:

The domain. Name + version website that linked
The on\5 requ-red of your browser oc indoded +he resource
header. ond 0S
Host: examplecat.com User-Agent: curl 7.0.2 Referer: https://examplecat.com
1

yes, itls mnsspellec“

€q a password send cookies the |€+S you continue
or APT token server sent earliec downloads (*get
basebd encoded user: pw keePS You log%&d in. bkj"'es 100 - 200“3
Authorization: Basic YXZ Cookie: user=bork Range: bytes=100-200

“mox - age = 60" Onl send if resource onl send if the

means cached was modified after ETae doesn't match
responses must be 4hic +ime thoce listed
less than 60

seconds old If-Modified-Since: Wed, 21 Oct... If-None-Match: "e7ddac”

Accept-Language

MIME type you set this fo "gzip” set this to "Fr-cA”
want the response and you'll probably get and you might geta
to be O compressed response response in French
Accept: image/png Accept-Encoding: gzip Accept-Language: fr-CA
Coent Eresding
MIME type of will be “gzip" if “close” oc “keep-alive”,
reques\— bodﬁj, eq. the reques‘i’ bOdS Whether to keep the

“O\PP\'\ca‘\"\o(\ /")Son" is gzipped TCP connection open.

10

using HTTP APIs

tlots of services (Twitter! Twilio! Google!) let you use them by
sending them HTTP requests. If an HTTP API doesn't come with
a client library, don't be scared! You can just make the HTTP
requests yourself. Here's what you need to remember:

—+Get the right header
Often you'll be sending a POST request with a body, and that
means you need a content-Type header that matches the body.
The 2 main options are:

+application/json ISON'
same GS \,Jl'\o.ftl
HTML form does

If you don't set the content-Type, your request won't work.

* application/x-www-form-urlencoded «

o. common ecrof s To ‘\‘(5 Yo send
POST data as one confent rype

(like TSON) when it's actually another
(like qpp\icahon/x-uww-‘Form-ur\encoded)

—1dentify yourself

Most HTTP APlIs require a secret API key so they know who you are.
Here's how that looks for the Twilio API:

curl
https://api.twilio.com/2010-04-01/Accounts/ACCOUNT_ID/Messages. json
-H "Content-Type: application/json”
-u ACCOUNT_ID:AUTH_TOKEN

.t -u sends the username /Passworcf
"from": "+15141234567",)
"to": "+15141234567" in the Authorization header

"body"”: "a text message”

}

+his gends o POST reques+

}1

anotomy of an
HTTP response

HTTP responses have:
—» a status code (200 OK! 404 not found!)

—» headers
—» a body (HTML, an image, JSON, etc)
Here's the HTTP response from examplecat.com/cat.txt:

HTTP/1.1 {Z)K\ status } status code
Accept-Ranges: bytes

Cache-Control: public, max-age=0

Content-Length: 33

Content-Type: text/plain; charset=UTF-8

Date: Mon, 09 Sep 2019 01:57:35 GMT headers
Etag: "acbaffa59f554a1440043537ae973790-ss1”
Strict-Transport-Security: max-age=31536000

Age: 0@

Server: Netlify

\ /\

) (e bod
C /7)))
(1

There are a few Kinds of response headers:
when the resource was sent/modified:

Date: Mon, 09 Sep 2019 01:57:35 GMT
Last-Modified: 3 Feb 2017 13:00:00 GMT

about the response body:

AR

Content-Language: en-US Content-Type: text/plain; charset=UTF-8

Content-Length: 33 Content-Encoding: gzip

caching:

ETag: "acbaffa...” Age: 255

Vary: Accept-Encoding Cache-Control: public, max-age=0

security: (see page 25)

X-Frame-Options: DENY Strict-Transport-Security: max-age=31536000
X-XSS-Protection: 1 Content-Security-Policy: default-src https:
and more:

Connection: keep-alive Accept-Ranges: bytes

Via: nginx
Set-Cookie: cat=darcy; HttpOnly; expires=27-Feb-2020 13:18:57 GMT;

12

response headers

how many wheﬂ response when content was
S}e‘;osnges re.sczz:esde, wos sent last modified
en Date: Mon, @9 Sep 2019...

Age: 355 p (not alwa%s accurate)
Cache -Contro)

Version of VOrious caching request headers
response bod se’rhngs that response will
Etag: "ac5affa..” Cache-Control: max-age=300

vary based on

added bg The response s stale “close” or “keep-alive”
roxg servers and should be re-re_ques’red \Whether o keep +he

Via: nginx ofter this time. TCP connection open

Set- Cookie Access- Control - *

Sets o cookie. Colled CORS headers. These
Set-Cookie: name=value; HttpOnly allow cross—origi'\ reques‘\’s-

.

MIME type of body length of body in bytes
Content-Type: text/plain Content-Length: 33

Content-Language Content ~Encoding

Language of body Whether body is compressed
Content-Language: en-US Content-Encoding: gzip

Accept-Ranges

Whether Range request header
URL to redirect to is supported for this resource
Location: /cat.png ' 3

HTTP stotus codes

Every HTTP response has a kstatus codexk.

browse? request stelosresponse

secrvey”
There are 50ish status codes but these are the
most common ones in real life:

2xx s mean
200 OK [

* succeSsS X

301 Moved Permanently Axx s aGren't

302 Found ercors, just
temporary redirect redicects Yo
304 Not Modified somewhere else

the client already has the latest
version, "redirect" to that

500 Internal Server Error 5xx errors
the server code has an error %enera(lﬂ mean

503 Service Unavailable Séme%u‘ng's Lcang
could mean nginx (or whatever proxy) with the secver.

couldn't connect to the server

504 Gateway Timeout
Y the server was too slow to respond

how cookies work

Cookies are a way for a server to store a little bit of
information in your browser.
They're set with the set-cookie response header, like this:

Siest reques+: secvec sets ol cogkie

cookie op‘hcf\s
GET /FY\\/-C&‘{'S (expirﬂ aoes here)
.. \
—/
200 OK narxe: Valkiﬁ l

Set-Cookie: user = bork; HitpOnly server

browser

4 response body?y

EVQ(S reQUes‘l' after: browser sends the cockie back

GET [my-cats
Cookie : user= bork

. .
—

browser

O

o
oh, this is bOrkY T dont) © sever

need to ask them who
‘H\e% ore then!

Cookies are used by many websites to Keep you logged in.
Instead of user=bork they'll set a cookie like
sessionid=long-incomprehensible-id. This is important
because if they just set a simple cookie like user=bork,
anyone could pretend to be bork by setting that cookie!

Designing a secure login system with cookies is quite
difficult — fo learn more about it, google "OWASP Session
Management Cheat Sheet". |5

content deliverg network &

In 2004, if your website suddenly got popular, often the
webserver wouldn't be able to handle all the requests.

how u.ll
¥ 0 e<m @S
/. $1000 for bandwidth

web host you
A CDN (content delivery network) can make your site
faster and save you money by caching your site and

handling most requesfs itself.
Jjust 1 request

hey send me
20 million reques+5 CDN ha{- cok p.c’rure"

for 1 cute cat pictore

many powerful

Compu+ers server

‘I’odag, there are many free or cheap CDN services
available, which means if your site gets popular
suddenly you can easily Keep it running!

This is great but caching can cause problems too!

Cache - Control

T updated site yesterda
pea my e 3 header

k—
but people are still seeing
the old site ¥

French users are seeing the Je— Var}
English site 717 \/Jh(d7 hell er

Next, we'll explain the HTTP headers your CDN or
browser uses to decide how to do caching.

|6

response header
and

request header

1€ -Modified -Since

is similar o
1 $-None-Match

bu‘" wi-\'\'\
Last-Modified
instead of ETag

caching headers

These 3 headers let the browser avoid

downloading an unchanged
initial reques‘f’

file a second time.
the ne)d'da%

(@

+his page needs ca+s.<::l
let’s reques-" it v

o

e .

200 Ok ,
ETag'ab23 of
<the css file>

o
o
o

browser
° browser

the
content

0K, T'll save version

ab22ef of cats.-css
in case T need it late—

+hat file before. T'(I

a
— GET cats.css . 3
I£-None- Match: ab23ef

o6Xxs.cssV The seen

ask if i4’s changed!

204 Not Modified

Yay I can use The oldone

the page will load faster

Sometimes the same URL can have multiple

versions (spanish, compress

ed or not, etc).

resh'?;‘ji ~ Caches categorize the versions by request header
like this:
Accept -Language Accep+—Encodm5 conteat
en-US - hello
en-US gzip tfuxGqaef .
(compressed grbbertsh)

Cache-Control

reques‘} AND

header

The vary header tells the cache which request
headers should be the columns of this table.

response

Used by both clients and servers to
control caching behaviour. For example:

Cache-Control: max-age=99999999999
from the server asks the CDN or browser

to cache the thing for a long time.

|7

redirecTs

Sometimes you type a URL into your browser:

examplecat.com/dog.png QJ

but end up at a slightly different URL:
ooh, Lhere did +he cot come from?
T didnt type that?
\

8 examplecat.com/c%t.png
« > c

Here's what's going on behind the scenes:

GET /dog.png HTTP/1.1 301 Moved Permanently
Host: examplecat.com - .
Location: /cat.png O
o°° tead e’
kau T'lI + lcot.png insTea serv
browser Vg DG

GET /cat.png HTTP/1.1
Host: examplecat.com

200 OK
<rest of website here>

The header tells the browser what new URL to use.
The new URL doesn't have to be on the same domain:
examplecat.com/panda can redirect to pandas.com.

Setting up redirects is a great thing to do if you move your site
to a new domain!

! \.Jaming',

301 Moved Permanently redirects are PERMANENT: after a browser
sees one once, it'll always vse examplecat.com/cat.png when
someone types examplecat.com/dog.png forever. You can't take it
back and decide to not to redirect. If you're not sure you want to
redirect your site for eternity, use 302 Found to redirect instead.

|8

HTTP/2

HTTP/2 is a new version of HTTP.
Here's what you need to know:

*x A lot isnt changmg
All the methods, status codes, request/response bodies,
and headers mean exactly the same thing in HTTP/2.
before (HTTP/1.1) aftec (HTTP/2)

method: GET one change: method: GET
path: /cat.gif Host heade~ path: /cat.gif

headers: =y au’rhori’ry—vauthority: examplecat.com
- Host: examplecat.com headers:
- User-Agent: curl - User-Agent: curl

X HTTP/2 is faster
Even though the data sent is the same, the way HTTP/2 sends it
is different. The main differences are:

—» It's a binary format (it's harder to tcpdump traffic and debug)
- Headers are compressed
- Multiple requests can be sent on the same connection at a time

before (HTTP/1.T) oftec (HTTP/2)
—» request 1 —» request 1
response 1 & —'reques+ 2 one TCP
—* request 2 out of <resPanse 2 o Connec'h'aq
ocdeC el
response 2 S respons -~

All these changes together mean that HTTP/2 requests often
take less time than the same HTTP/1.1 requests.

X Sometimes you can switch to it easily

A lot of software (CDNs, nginx) let clients connect with
HTTP/2 even if your server still only supports HTTP/1.1.

O HTTP/2 reques+ ® ntTe/tl request
/‘\) —
|con| 2
'_J (

your

OHTTPI2 respanse @ HTTPAL response ¢ ee |G

HTTPS: HTTP + secuore &

Here's what your browser does when it asks for
https://examplecat.com/cat.png:

(O Negotiate an encryption key (AES symmetric Key) to
use for this connection to examplecat.com. The browser and
server will use the same key to encrypt/decrypt content.
Simplified version of how picking the encryption key works:

/;@ T want examplem
here s proo‘F Yhat Tm . \;
o exampleca‘\'. com
° server

)

this protocol for secure
communication is called
TLS (previously SSL) and
you can use it on any

we're going to use AS29FXY2...C
as the encnjphcm keg
@write an HTTP request

GET /cat.png HTTP/1.1
Host: examplecat.com
User-Agent: Mozilla/...

®Encrypt the HTTP request with AES & send it to examplecat.com

$AF g bbc a
F.- |
*~335¢ GET /cat.png HTTP/1.1 ° "?
Host: examplecat.com =

server

TCP connection

@Receive encrypted HTTP response

B~ 2

nice, that means:
200 OK
Content-Type: image/png

server

20

cectificates

To establish an HTTPS connection to examplecat.com, the
client needs proof that the server actually is examplecat.com.

he% 1 want exo.mpleco:\' com
here's proo‘F +hat Tm
exampleco.‘\' com
server

browser

.\-H\e proo? is called o cectificate.

A TLS certificate has:
—a set of domains it's valid for (eg examplecat.com)
—a start and end date (example: July 1 2019 to oct 1 2019)
—» a secret private Key which only the server hase_ #his s he only
—a public kKey to use when encrypting secret part, +he

. . restis public
—a cryptographic signature from someone trusted

wizacrdzines.com , _‘é’_
Sul 1-0ct1 2019 Eaceypk

Lpublic key>
The trusted entity that signs the certificate is called a

% Certificate Authority # (CA) and they're responsible for
only signing certificates for a domain for that domain's owner.

l“ Yyou Slsf\ ‘H‘\ls cer+r’hca+e - -
%E {For example cat. com T Q

let's
o\ no I checked encrsp"’
examplecat.com/.well-known/acme-challenge
and you don't own thot domain.

When your browser connects to examplecat.com, it validates
the certificates using a list of trusted CAs installed on your
computer. These CAs are called "root certificate authorities".

)the e€xamplecat.com cert is signed by Letls Encrgp"
2) Lets Encrupl’s cect is signed by IdenTrust+
3) TdenTrust is on my Frusted list
9 +his is okay

000

browser

A

the same origin policy

An origin is the protocol + domain including subdomains + port
example: https:/+abby.examplecat.com:443

The same origin policy is one way browsers protect you from
malicious Javascript code. Here's basically how it works:

— @e make a request to -Hﬁs@ o
evil.com °
Savascrfp'\' let me check my flowchart?

does the origin
nolice +he default
is no, not yes?

maich exac-\'\5? ——>—> allowed
is thig request type allowed [__,
from a different origin?

@,

>4

CORS +ime
\

(SS,<img sccy, and a allowed
few othec ’rkm35 are OK

&

is this o

“simple request ' N
for example o GET
@ reques+ with no bodzj Y
and no extro. headers
make the request 7
do an OPTIONS i
preflight request
00 the response’s (oRS
headers allow this?

00 the response’s (oRS
headers allow this?
[FD

29 DENIED | © ALLOWED |

d
\

w\mj the same origin
po\ic5 motters

Browsers work hard to make sure that evil.com can't make
requests to other-website.com. But evil.com can request
other-website.com from its own server, what's the big deal?

2 reasons it's important to restrict Javascript on websites
from making arbitrary requests from your browser:

Reason 1: cookies

Browsers often send your cookies with HTTP requests. You
don't want evil.com to be able to make requests using your
login cookies. They'd be logged in as you!

evil.com
jowascript

he browser
&j_"\'ua“% will do i¥Y

send o GET request +3
mail.qoogle.com with
their current login cookies

Tl doit, E’g_“_'
You can't see
the response unless
the server says

it's okay

Reason 2: network access

You might be on a private network (for example your company's
corporate network) that evil.com doesn't have access to, but
your computer does.

POST request +o
— Secre+$.corp.compantd.com/ send-m0ne3

evil.com
’Savascripf

No ' Same origin policy?
T'm not even going to make
that request without
checking first

23

some origin

Howchact
—
%g
o

o

0

Q)

If you run api.clothes.com, you can allow clothes.com to make
requests fo it using the Access-Control-Allow-Origin header.

Here's what happens:

- POST /buy_thing
! N Pﬁ:\ﬂfff: api.clothes.com
— he%, what requests are allowed 7"

Yoo script
preflight request

on clothes.com

OPTIONS /buy_thing

Host: api.clothes.com

(<]

% 204 No Content —

° Access-Control-Allow-Origin: clothes.com

api.clothes. com

cool, the request is allowed ?

POST /buy_thing

Host: api.clothes.com 200 OK

Referer: clothes.com/checkout

(ORS

Cross-origin resource sharing

Cross-origin requests are not allowed by default:
(becavse of the same origin policy!)

PosST reques'l’ +o
api. clothes. com?

Savascript from

clothes.com

NOPE. opi.clothes.com
is o different origin
from clothes.com

That's cross-origin.
TI'm going to need to
ask api.clothes.com

if +his request is
ollowed.

{"thing_bought"”: true}

This OPTIONS request is called a "preflight" request, and it only
happens for some requests, like we described in the diagram on
the same-origin policy page. Most GET requests will just be sent
by the browser without a preflight request first, but POST
requests that send JSON need a preflight.

24

securijrg heoders

These are headers your server can set. They ask the browser
to protect your users' data against attackers in different ways:

Content -Secorit ’Polfcg often called CSP

Only allow CSS / Javascript from certain domains you choose to
run on your website. Helps protect against cross-site-scripting
(aka XSS) attacks.

Refecrer- Policzj

Control how much information is sent to other sites in Jrhel
spelling is
Referer header. Example: Referrer-Policy: no-referrer. ,-:mns;%sfe,ﬁ

with Referer
S‘\'fiC“"T(OﬂSPO("\"SCCO(ﬂb

Require HTTPS. If you set this the client (browser) will never

header M\
often called HsTS

request a plain HTTP version of your site again. Be careful!

You can't take it back!

Certificate Transparency (CT) is a system that can help find
malicious SSL certificates issved for your site. This header gives
the browser a URL to use to report bad certificates to you.

X-XSS - Protection

Another way to protect against XSS attacks. Not supported by
all browsers, content-Security-Policy is more powerful.

25

HTTP exercises

Making HTTP requests with curl to real internet websites and
trying different headers is my favourite way to play around with
HTTP & learn.

¥ cucl +ips

-i shows the response headers by sending a
-I only shows the response headers*] HEAD request
-H adds a request header

Try the Range header:
curl -i https://examplecat.com/cat.txt -H "Range: bytes=8-17"

Request (and print out!) a compressed response:
curl -i https://examplecat.com
-H "Accept-Encoding: gzip" -- output -
Get a webpage in Spanish:
curl -i https://twitter.com -H "Accept-Language: es-ES"

Get redirected to another URL:
(hint: look at the Location header!)

curl -i http://examplecat.com

Guess what content delivery network Github is using:
(hint: it's in a header starting with x-)
curl -I https://github.githubassets.com

Find out when example.com was last vpdated
(hint: Last-Modified)

curl -I example.com

Get a 404 not found

curl -i examplecat.com/bananas

26

how Yo learn more

¥ Mozilla Developer Network

https://developer.mozilla.org

MON is a fantastic wiki maintained by Mozilla. It has tutorials
and reference documentation for HTML, CSS, HTTP, Javascript.
It's the best place to start for reference documentation.

¥ OWASP

https://cheatsheetseries.owasp.org

OWASP is an organization that publishes security best practices.
If you have a question about web security, they've probably
published a cheat sheet or guide to help you.

¥ httpstatuses.com

Nice little site that explains all the HTTP status codes.

¥ RFCs
https://tools.ietf.org/html/rfcXXXX

vt RFC number here

RFCs are numbered documents (like "RFC 2631"). Every Internet
protocol (like TLS or HTTP) has an RFC. These are where you go
to find the Official Final Answers to technical questions you
have about any internet standard. The HTTP standard is mostly
documented in 6 RFCs numbered 7230 to 7235.

is the Host header
actually requiced?

the final ansua"’
Don't be scared of using an RFC if you want to know for sure!

2’7

Yes, section 54
of RFC 7230

SG.SS so '

like this?
more zines at
Wizardzines.com

