)
)

trap

%
s

4!P' O
o

—

for, loops

2

©N
=
N~

g Za)
) 2
X
shellcheck
\ g LN

’\ v POSIX

2

subshells

e

builtins
)

by Julia’'Evans
_ S oNE
N globs 0
'u:s

hellof we're here because bash is a very Weird programming language-.

[can't use ‘x = 2' to set a variable?
how the heck do quotes work??
wait, if stafements run a PROGRAM 777

Eere's o 1-page comic for each

bash concept you need to know @
ok, that's still very strange;
but I see how it works now!

*most of this zine also applies to other shells, like zsh

Sulia

toble of confents

basics

why 1@ bosh ... 4
POSIX oo 5
shellcheck ... 6
voriables ... Es
env variab\es.... 8
orguments.... 9
builtins ... |0

votes. .. I
QlobS 12
redirects. ... 13

cheat gheets

(inthe middle’)

brocketrs....... Y
non-POS\X
feotures.. 15

O C
bash >
LQ <
$1

3e++in9 fancb
if stafements... ... 16
for 100pS..cooe |7
rea.ding iNPul............. 18
fonctionS. o 19
PIPES.....ooecvvererersineereeee e 20
porameter expansion......2.1
background processes..22
subshells. ..o 23
OO e 24
BITOTS oo ererere 25

debugging 26

\,Jhtjl Q boash 4

it's SO easy to
get started

Here's how:

(DMake a file called
hello.sh and put some
commands in it, like
1s /tmp

@Run it with bash hello.sh

pipes & redirects
are super easy

managing pipes in other
languages is annoying. in
bash, it's jusf:

cmd1 | cmd2

batch file
operations are easy

R |let's convert every
.png to a .jpg

1 was born) (@ @

for this U

bosh

it's surprisingly good
at concurrency

(et's start 12

programs in parallel

& wait for them all
to finish

@ep no probleﬁgﬂ

bash

¢ it doesn't change @

bash is weird and old, but
the basics of how it
works haven't changed in
30 years. If you learn it
now, it'll be the same in
10 years.

bash i GREAT for

some tasks
But it's also EXTREMELY
BAD at a lot of things.
I don't use bash if I need:
- unit tests
- math (bash barely has
numbers!)
- easy-to-read code \'Y

POSIX compoatibility 5

there are lots of
Unix shells

&
oD%

you can find out your user's =) run it the same / — sh
default shell by running: dash bash {way! (mostly &) Zsh [We Keep it simple
Y 9: — / _ &Jusf do what
$ echo $SHELL = POSIX says ~
zsh ksh about POSIX)S fiap| | ksh dash

POSIX ie a standard
that defines how Unix
shells should work

if your script sticks
to POSIX, we'll all

some shells have
extra features
we have extra

features that
aren't in POSIX

on most systems,
/bin/sh only supports
IX features
if your script
has #!/bin/sh at
the top, don't
use bash-only
features in it!

some people write all
their scripts to
follow POSIX

features!

I only vse
POSIX features
I vse lots
of bash-only
me

this zine is about
bash scripting

most things in this
zine will work in
any shell, but some
won't! page 15 lists
some non-POSIX
features

shellcheck

shellcheck finds
problems with your
shell scripts

$ shellcheck my-script.sh

oops, you can' —
use ~= in an
if ... 1

shellcheck

it checks for
hundreds of common
shell scripting errors

hey, that's a bash-
only feature but

your script starts
with #!/bin/sh

shellcheck

every shellcheck
error has a number

(like "sC2013")
and the shellcheck
wiki has a page for

every error, with

examples! I've (earned
a lot from the wiki.

it even tells you about
misused commands

ey, it looks like

you're not using

grep correctly here
wow, I'm

drellcheck \ett fhanks!
C

your text editor
probably has a
shellcheck plugin

1 can check your
shell scripts every
time you save!
u

shellcheck

basically, yov should
probably vse it

It's available for every
operating system!
Try it out at:

\ 7
- https://shellcheck.net N

variables

‘7_

how to set a variable
hY

var=value « (qos?"
value ey,

var =

var =
run the program var
with the arguments
and "value”

value will try to

n_n

A\

how to vse a
variable: "$var"

filename=blah. txt
echo "$filename”

they're case sensitive.
environment variables are
traditionally all-caps, like
$HOME

there are no numbers,
only strings
both of these

are the string
"2"

a=2
a:”2”

technically bash
can do arithmetic
but I avoid it

always use quotes around variables

\
Wons—~

$ cat $filename

fFites Y
ochno?

2
ok, I'll run "
ODO cat swarl 1.txt ‘;'ve\m%a‘l‘!

1.txt9

um swan and
bosh \ don't exist...

B

co¥

$ filename="swan 1.txt"

cight’
¢

$ cat "$filename”

ok, T'll run
o | cat "swan 1.txt"

o
(=]
n —I t tn °O -t
) swan 1.txt"!
- cot

bosh (That's a file! yay!

${varname}
To add a suffix to a variable
like "2", you have to vuse
${varname}. Here's why:

prints ",
$ zoo=panda zoo2 isn't a
« variable

$ echo "$zo002"

$ echo "${zoo0}2" this prints
"panda2” like
we wanted

envi ronmen“‘ variobles

8

every process has
environment variables

printing out your shell's
environment variables is

easy, just run:

$ env

shell scripts have 2
Kinds of variables

1. environment variables
2. shell variables

unlike in other languages,
in bash you access both of
these in the exact same
way: $VARIABLE

export sets
environment variables

how to set an
environment variable:

export ANIMAL=panda
or turn a shell variable into
an environment variable
ANIMAL=panda
export ANIMAL

child processes inherit
environment variables

this is why the variables
set in your .bashrc are set
in all programs you start
from the fterminal.

They're all child processes
of your bash shell!

shell variables aren't
inherited

var=panda
$var only gets set

in this process, not
in child processes

you can set env vars
when starting a program
2 ways to do it (both good!):
®$ env VAR=panda ./myprogram
ok! T'll set VAR to —
panda and then

start ./myprogram env

® $ VAR=panda ./myprogram

(here bash sets VAR=panda)

argument s

9

get a script's arguments
with $0, $1, $2, etc

$ svg2png old.svg new.png

$2 is
new.png’

$0 is $1 is
”sngpng” "old.svg
(script’s name)

n n !

to PNGs:
#!/bin/bash

I run it like this:

$ svg2png old.svg new.png

arguments are great for making simple scripts

Here's a 1-line svg2png script 1 use to convert SVGs

inkscape "$1" -b white --export-png="$2"

olway S
q\)o'\' e your
vaciobles!

"$e@": all arguments

$e is an array of all the
arguments except $o.

This script passes all its
arguments to 1ls --color:
#!/bin/bash
ls --color "$@"

you can loop over

arguments
for i in "$@"
do in our svg2png
v—_ example, this
done would loop
over old.svg
and new.png

shift removes the
first argument

this prints the
echo $1¢ geript's first
shift argument
echo $1w
this prints the
second argument

builtins

[¢

most bash commands
are programs

You can run which to find
out which binary is being
used for a program:

$ which 1s
/bin/1s

but some commands
are functions inside
the bash program

ooh, echo? T'll call\eo
my builtin function
that does that!

type tells you if a
command is a bviltin

$ type grep

grep is /bin/grep
$ type echo

echo is a builtin
$ type cd

cd is a builtin

examples of builting

g

36

a vseful builtin:
alias

alias lets you set up
shorthand commands, like:

alias gc="git commit”

~/.bashrc runs when bash
starts, put aliases there!

a vseful builtin:
source

bash script.sh runs script.sh
in a subprocess, so you can't
use its variables / functions.

source script.sh is like
pasting the contents of
script.sh

quotes

double quotes expand variables,
single quotes don't

$ echo '"home: $HOME'

home: $HOME

single quotes always
give you exactly what
you typed in

$ echo "home: $HOME"
home: /home/bork

f

$HOME got expanded
to /home/bork

you can quote
multiline strings

$ MESSAGE="Usage:

here's an explanation of
how to use this script!”

how to concatenate
strings

put them next to each other!

$ echo "hi ""there"
hi there
X + y doesn't add strings:
=

$ echo "hi" £ " there”
hi + there

a trick to escape
any string: !:q:p
get bash to do it for you!
$ # He said "that's $5”
$ l:q:p
'# He said "that'\''s $5"'

this only works in bash, not zsh.

! is an "event designator" and
:q:p is a "modifier"

escaping ' and "

here are a few ways
to get a ' or ":

\' and \"

AN
nIrn rna \

and doesn't
$'\""’ work!

"\H n

a\obs 1)

globs are a way tfo
match strings

beware: the * and the ? in a
glob are different than * and
? in a regular expression!!!

LChes> bear‘/
> bearablev”

bearx*
%
oe@l)/,
"q
f
% Nbugbear x

bash expands globs tfo match filenames

let's find all the .txt
files in this directory...)

o

o
exec(["cat”, "sun.txt", D
"planet.txt"])

bash
cat doesn't o

— sun.txt and
know that you planet.txt, got it
wrote cat *.txt cot

there are jusf 3
special characters
* matches 0+ characters

? matches 1 character
[abc] matches a or b or ¢

I vsually just use
* in my globs

filenames starting
with a dot don't match

.. unless the glob starts
with a dot, like .bashx

use quotes to pass a
literal 'x'to a command

$ egrep 'b.*’' file.txt

the regexp 'b.*' needs to be
quoted so that bash won't
translate it into a list of
files with b. at the start

there's .bees.txt;
but I'm not going
to include that

S redirects <

unix programs have 1 input and 2 outputs

When you run a command from a terminal, they all go to/from the terminal by default.
> redirects stdout

< redirects stdin

$ we < file.txt
$ cat file.txt | wc

these both read
file.txt to wc's stdin

each input/output has a
number (its "file descriptor")

stdin (@. SHerr (2)

terminal program

$ cmd > file.txt

$_ l 2> redirects stderr
$ cmd 2> file.txt

2>&1 redirects
stderr to stdout

$ cmd > file.txt 2>&1

— Eiéggtlilv'GHQIh(V
HM 251

cmd

/dev/null

your operating system ignores
all writes fo /dev/null.

$ cmd > /dev/null

xdook 1) @
;_/;dev/null

awra
et]

cmd

sudo doesn't

affect redirects
your bash shell opens a
file to redirect to it, and
it's running as you. So
$ sudo echo x > /etc/xyz
won't work. do this instead:
$ echo x | sudo tee /etc/xyz

Meockets cheat sheet Y

shell scripts have a (cd ~/music; pwd) VAR=$(cat file.txt)
lot of brackets (...) runs commands in a | |$(COMMAND) is equal to
here's a cheat subshell. COMMAND's stdout
sheet fo help you
identify them alll { cd ~/music; pwd } x=(1 2 3)
we'll cover the
details later. {...} groups commands. x=(...) creates an array

runs in the same process.

x=$((2+2)) if [... 1] <(COMMAND)

$(()) does arithmetic /usr/bin/[is a program "process substitution":
that evalvuates statements an alternative to pipes

a{.png, .svg} if [... 1] ${var//search/replace}

this expands to a.png a.svg [[is bash syntax. it's see page 21 for more
it's called "brace expansion" more powerful than [about ${...}!

non-POSIX Features 15

some bash features
aren't in the POSIX spec

here are some
examples! These
won't work in

[C ... 1]

POSIX alternative:
[...]

a.{png,svg}

you'll have to type
a.png a.svg

diff <(./emd1) <(./cmd2) {1..5}
POSIX shells like o)
dash and sh this is called "process POSIX alternative:
: substitution", you can use ${seq 1 5}
named pipes instead
arrays the local keyword $'\n’

POSIX shells only have one
array: $e for arguments

in POSIX shells, all
variables are global

POSIX alternative:
$(printf "\n")

[L $DIR = /home/* 1]

POSIX alternative:
match strings with grep

for ((i=0; 1 <3; i++))

sh only has for x in ...
loops, not C-style loops

${var//search/replace?}

POSIX alternative: pipe
to sed

if stotements

16

in bash, every command
has an exit status

0 = success
any other __ .
number = “failure

bash puts the exit status
of the last command in a
special variable called 3$?:

why is 0 success?

there's only one way to
succeed, but there are LOTS
of ways to fail. For example

grep THING x.txt

will exit with status:

1 if THING isn't in x.txt
2 if x.txt doesn't exist

bash if statements test
if a command succeeds

if COMMAND; then
do a thing

fi

this:

®runs COMMAND

@) if COMMAND returns O
(success), then do the thing

[ve [I
there are 2 commands often used in if statements: [and [[

if [-e file.txt 1]

/usr/bin/[(aka test) is
a program® that returns
0 if the test you pass it
succeeds

if [[-e file.txt 1]

[[is built into bash. It
treats asterisks differently:
[[$filename = *.png 1]
doesn't expand *.png into
files ending with .png

*in bash, [is a bviltin that acts like /usr/bin/[

true
true is a command that always
succeeds, not a boolean

combine with && and ||
if [-e filel] && [-e file2]

man test for more on [

you can do a lof!

for loo DS

't

for loop syntax

for i in panda swan
do

echo "$i"
done

the semicolons are weird

usually in bash you can always
replace a newline with a
semicolon. But not with for loops!

for i in a b; do ...; done
AN r

you need semicolons before do

and done but it's a syntax error

to put one after do

looping over
files is easy
for i in *.png
do
convert "$i” "${i/png/jpg}”
done

this converts all png files
to jpgs!

for loops loop over
words, not lines

for word in $(cat file.txt)

loops over every word in
the file, NOT every line
(see page 18 for how to
change this!)

while loop syntax

while COMMAND
do

done
like an if statement, runs
COMMAND and checks if it
returns 0 (success)

how to loop over a
range of numbers

3 ways:

for i in $(seq 1 5)

for i in {1..5}

for ((i=1; i<6; i+
these two only work
in bash, not sh

reading input

read -r var
reads stdin into
a variable

$ read -r greeting + h
hello there!&—-——'spe ere
$ echo "$greeting” and press
echo "3 € enter
hello there!

you can also read
into multiple variables

$ read -r namel name2
ahmed fatima

$ echo "$name2”
fatima

by default, read
strips whitespace

n a b C n _> Ila b C”
it uses the IFS ("Input

Field Separator") variable
to decide what to strip

set IFS='' to avoid
stripping whitespace
‘.emp'rg string
$ IFS="" read -r greeting
hi there!
$ echo "$greeting”
hi there!

\ the spaces are
still there!

to unset IFS do
when you're
done! done

more IFS uses: loop over every line of a file

by default, for loops will loop over every word of a file
(not every line). Set IFS='"' to loop over every line instead!

IFS=""
don't forgef'///*for line in $(cat file.txt)

echo $line

tonctions

19

defining functions
is easy
say_hello() {
echo "hello!”
3
.. and so is calling them

say_helloe " patentheses !

functions have
exit codes

failing_function() {
return 1
3
0 is success, everything else

is a failure. A program's exit
codes work the same way.

you can't return
a string
you can only

return exit
codes 0 to 255!

say_hello() {

1) | n

re (0]

3

arguments are
$1, $2, $3, etc

say_hello() {
echo "Hello $1!”

}
say_hello "Ahmed”

not say_hello(”Ahmed”)!

the local keyword
declares local variables

say_hello() {
local x
x=$(date) «— local
y=$(date)e— S\Oba\
3

local x=VALUE

suppresses errors

never fails,
local x=%$(asdf)e—cyen if asdf

doesn't exist
local x this one

x=$(asdf) *—ill fail

I have NO IDEA why
it's like this, bash is
weird sometimes

pipes

20

sometimes you want
to send the output
of one process to
the input of another

$ 1s | we -1

53
RKs2 Files?

a pipe is a pair of 2
magical file descriptors

stdout stdin

ls— mmw — WC

file descripfors

when (s does

write(@, "hi™)
wc can read it!
read (@) — "N

Pipes are one way. —
You can't write fo ()

the 0S creates a
buffer for each pipe

dota waiting
IN +o be read ouTt

when the buffer gets full:

write(@, oot

it's full! I'm going
to pause you until
process \there's room again

named pipes

you can create a file that
acts like a pipe with mkfifo

$ mkfifo mypipe
$ 1s > mypipe &)

$ wc < mypipe)this does the|
same thing
as 1ls | wc

you can use pipes in
other languages!

only shell has the syntax
process1l | process2

but you can create pipes
in basically any language!

$(}: “parameter expansion”

2]

${...} is really
powerful

it can do a lot of
string operations!
my favorite is

search/replace.

${var}

see page 7 for when tfo
use this instead of $var

${#var}

length of the string or
array var

${var/bear/panda}
${var//bear/panda}

/ replaces first instance,
// replaces every instance
search & replace example:

$ x="I'm a bearbear!
$ echo {x/bear/panda}
I'm a pandabear!

${var:-$othervar}

vse a default valve like
$othervar if var is unset/null

${var:?some error}

prints "some error” and
exits if var is unset/null

${var#tpattern}
${varxpattern}

remove the prefix/suffix
pattern from var. Example:

$ x=motorcycle.svg
$ echo "${x%.svg}"
motorcycle

${var:offset:length?}

get a substring of var

there are LOTS
more, lookK up

"pash parameter
expansion"!

background processes

172

scripts can run many
processes in parallel

python -m http.server &
curl localhost:8080

& starts python in the
"background", so it kKeeps
running while curl runs

wait waits for all
background processes
to finish
commandl &
command2 &
wait
this waits for both command1
and command2 to finish

concurrency is
easy™ in bash

in other in bash:
languages:
0° thingl &
how do 1 do th%ngz &
that again?y Wwalt

*(if you Keep it very simple)

background processes
sometimes exit when
you close your terminal

you can Keep them running
with nohup or by using
tmux/screen.

$ nohup ./command &

jobs, fg, bg, and

disown let you juggle
many processes in
\ the same terminal,

but T almost always
Just use multiple
terminals instead

list shell's like nohup,

background but after

processes process has
started

fg and bg
move process to
foreground/background

subshells 13

a subshell is a child
shell process

hey, can you
run this bash
code for me?

process

bash

some ways fo create a subshell

@put code in $(...)
var=$(cat file.txt)

runs in‘hsubshel(

C) + lots more

for example, process
substitution <() creates a
subshell

® put code in parentheses (...)

runs in?subshe((

() pipe/redirect to a code block

cat x.txt | while read line.. .,
’

piping fo a loop makes the
loop run in a subshell

cd in a subshell doesn't
cd in the parent shell

(
cd subdir/

mv x.txt y.txt

) I like to do this so 1
don't have to remember

it's easy to create a
subshell and not notice

x=$(some_function)

setting a variable in a
subshell doesn't update
it in the main shell

to cd back at the end!

var=3 I changed directories
_ in some_function, why
(var=2) didn't it work?
echo $var _this prints
3 not 2 it's running in
! a subshell!

trap

24

when your script
exits, sometimes you

need to clean up
%o

oops, the script
created a bunch
of temp files 1
want to delete

trap sets up
callbacks

trap COMMAND EVENT

e
what when to run
command the command
to run

bash runs COMMAND when
EVENT happens

trap "echo 'hi!!!"" INT

<sends SIGINT s:gnab

. ok, time to prnnf
05 °U+ it bash

events you can trap

—r unix signals (INT, TERM, etc)
—the script exiting (EXIT)
—s every line of code (DEBUG)

— function returns (RETURN)

example: Kill all
background processes
when Ctr(+C is pressed

trap Jkill $(jobs -p)' INT
important : single quates!
when you press CTRL+C,
the 0S sends the
script a SIGINT signal

example: cleanup files
when the script exits

function cleanup() {
rm -rf $TEMPDIR
rm $TEMPFILE

3
trap cleanup EXIT

er(ors

25

by default, bash will
continvue after errors

that program's exit status
was 17 who cares, let's

keep running!!! ?

programme r

vh that is NOT
what I wanted

bash

set -e stops the
script on errors

\

o .
set -e YR X
. . gﬁd?g
unzip fle.zip xR
&

this makes your
scripts WAY more
predictable

by default, unset
variables don't error

rm -r "$HOME/$SOMEPTH"

$SOMEPTH doesn't exist?
no problem, i'll just use
an empty string!

Ooo
OH NOOOO that
means rm -rf $HOME
set -u stops the script
on unset variables

set -u
rm -r "$HOME/$SOMEPTH"

bash

I've never heard of
$SOMEPTH!
STOP EVERYTHINGI!

by default, a command
failing doesn't fail the
whole pipeline

curl yxqgzqg.ca | wc

™

bash

curl failed but
wc succeeded so
it's fine! success!

set -o pipefail
makes the pipe fail if
any command fails

you can combine set -e,
set -u, and set -o pipefail
into one command 1 put at
the top of all my scripts:

~jse’c -euo pipefail

debugging

26

our hero: set -x

set -x prints out every line
of a script as it executes,
with all the variables
expanded!

#!/bin/bash 1 USUQ“B

set -X e—__ put set -x
at the top

or bash -x

$ bash -x script.sh
does the same thing as
putting set -x at the
top of script.sh

you can stop
before every line

trap read DEBUG

the DEBUG "signal"
is triggered before
every line of code

a fancy step debugger trick

put this at the start of your script to confirm every

line before it runs:

trap '(read -p "[$BASH_TSOURCE:$LINENO] $BASH_COMMAND") ' DEBUG
‘

read -p prints a script
message, press

enter to continve

filename number

1
line next command
that will run

how to print better
error messages
this die function:
die() { echo $1 >&2; exit 1; }
lets you exit the program
and print a message if a
command fails, like this:

some_command || die "oh no!"

thonks for reading

There's more to learn about bash than what's in this zine, but 1I've written a lot
of bash scripts and this is all I've needed so far. If the task is too complicated
for my bash skills, 1 just use a different language.

two pieces of parting advice:

@ when your bash script does something you ok, Yhis is ™Y odvice Y
don't understand, figure out why! for Vreraly o\ \,msmmm\n%

@ vse shellcheck! And read the shellcheck
wiki when it tells yov about an error :)

’ credits \ |

Cover art: Vladimir kasikovié

Editing: Dolly Lanuza, kamal Marhubi
Copy Editing: Courtney Johnson

and thanks to all 11 beta readers @

@ this?
more ot
* wizardzines.com #

