BECOME
S ELECTSTXR

BY JULTA EVANS

abovt this zine

SQL isn't like most programming (anﬁuaﬂes.

2 7 T

? owner, count(x) 2
. FROM cats . 0

what order does +his
even happen in?

WHERE owner != 3
GROUP BY owner
HAVING COUNT(*) = 2
ORDER BY owner DESC
?
- ?
R

and it has quﬁ'e a few weird 3o+chas:

ok > (O)

but Knowing it lets you use really powerful database
software to answer quesﬂons FAST:
.. |0 seconds later--

</

Your comPamj'S
ana\g-? 1cs
database

. aﬂd X= NUL(-
won't WO(k/ you
hove to write

x 1S NULL instead .-

he‘j can you take 100 billion
rows of data and give me
Q mon'\'N3 cepoct abouT
this ‘Hr\ing?

X

This zine will Sef You started with SELECT queries so Yyou can
Se’r the answers to any c‘uesﬂon You want about your dafa.'
You can run any quer:j from the zine here:

https://sqgl-playground.wizardzines.com

Toble of Confents

anatomy of a. SELECT query
getting started with SELECT.
SELECT queries start with FROM . .
HAVING.. .
SOINs...

much ado about NULL
NULL : unknown or missing
NULL surprises . .
handle NULLs with COALESCE
CASE e

ways Yo count TOWS

SUDQUETIRS e
tip: single quote sTrmgS

how indexes make your queries fas+
EXPLAIN your slow queries. ...,

que stions fo ask about your data.......oe
thanks forreading @ . ..,

geH'ing started with SELECT

A SQL database contains a bunch of tables

soles clients cots

client|item i0 [name ()wner‘ name
/

I~ ~—
—~ —~ —~ ~o ~—— —~_/
~~— A~— — — —~—~ T~—
~ | ~ — |~ ~— T
—~ —_~ —— —~ ~—
~ P —~ | ~ /\/ —

Every SELECT query takes data from those tables and
outputs a table of results.

cots

query
owner | name CETECT + T query °U+PUT
1 daisy : ! owner | name
1 dragonsnap —’1FROM cats = daisy
3 butterCUp :\\WHERE owner = 1 ’: 1 dragonsnap
4 rose | TTTTTTTTTTTTT T

A few basic facts to start ovt:

—» SELECT queries have to be written in the order:

. FROM ... WHERE ... GROUP BY .. HAVING ...
ORDER BY ... LIMIT

-+ SQL isn't case sensitive: select * from table is fine too.
This zine will use ALL CAPS for SQL Kejwords like FROM.

@ there are other kinds of
queries like TNSERT/UPDATE/ DELETE

but this 2ine is just about SELECT

SELECT queries start with FROM

Conceptually, every step (like "WHERE") of a query fransforms
its input, like this:

——— e ———

cats 1 WHERE owner = 1 i~

owner | name owner | name
1 daisy 1 daisy
1 dragonsnap 1 dragonsnap
3 buttercup
4 rose

The query's steps don't happen in the order they're written:

T~ FROM + s0IN
\\ l
FROM + soIN \ WHERE
\
_ . i
WHERE ... , GRouP BY
\ $
GRouP RY .. v HAVING
N |
HAVING ... g
{
ORDER BY ORDER BY
LM T LIM\T

(In reality query execution is much more complicated than this.
There are a lot of optimizations.) 5

SELECT is where you pick the final columns that appear in the
table the query outputs. Here's the syntax:

expression_1 [AS alias],
expression_2 [AS alias?],
FROM ...

Some vseful fhings You can do in a SELECT:

% Combine many columns with SQL expressions
A few examples:
CONCAT(first_name, ' ', last_name)
DATE_TRUNC('month’, created)e— this is Postgre SQL syntox for

roundmg a date, other SQL
dialects have different syntax

¥ Alias an expression with AS
I\ isa concol

Yenotion operation
first_name || ' ' || last_name is a mouthfull If you alias
an expression with AS, you can use the alias elsewhere in
the query to refer to that expression.

! !

first_name || || last_name AS full_name

FROM people

ORDER BY (Full_name)DESC

cefers to Firstname || * || lost.name
% Select all columns with SELECT *

When I'm s+ar1’in3 to fi\gure out a query, I'll often write
some’rhinﬁ like

* FROM some_table LIMIT 10
jusf to c‘uickl:] see what the columns in the table ook like.

WHERE

WHERE filters the table you start with. For example, let's break
down this query that finde all owners with cats named "daisg“.

o e e —— — —— —— — —— — — ——

4

~

i owner i
i FROM cats :
+ WHERE name = 'daisy''!
“FROM cats; \WHERE name ='daisy’ &
\ Cod'S / \ / \
— owner name owner
dotobase owner | name :
ia"'sa * p:ople 1 daisy ! daisy L
o = 1 dragonsnap
™ o Sl 3 buttercup
il B ~|~ 4 rose

What you can put in a WHERE:

Check if a s+rin3
contains a subsfrins!

WHERE name LIKE '%darcy%’

% is a.wildcard
like % in your shel\

Check if an expression is
in a list of values
WHERE name IN ('bella’, ’'simba’)

SDRES

You can AND ’rosefher as many

I‘F Ilm Usins lots (
of ANDs T like to AND (

SIBIRES,

These work the way
You'd guess, except
when NULL is involved.

WHERE revenue - costs >= 0

more about NULL on
pages 15-1%

conditions as You want

) — putall the ORs

,,,,,) in the parentheses

.....) F

GROUP RY

GROUP BY combines multiple rows into one row. Here's how it
works for this table & query:

—— —— ——— — — —— — — ————— ——— — — — — —

7 item, COUNT(*), MAX(price)
| FROM sales —
_GROUP BY item)

sales / \ query out pu'l"

|
|
|
'

aggregaﬁ€5

1tem |price item COUNT (%) [MAX(price)
catnip 5 catnip 1 5
laser 8 laser 1 8

tuna 4 tuna 2 4

tuna 3

(D Split the table into groups for each valve that you grouped by:

item="catnip’ item ="laser’ item = ‘tuna’

item price item price item price

catnip | 5 laser 8 tuna 4
tuna 3

@Ca(culafe the aggregates from the query for each group:

item price item price item price
catnip | 5 laser 8 tuna 4
tuna 3
COUNT (%) = 1 COUNT(*) = 1 COUNT (%) = 2
MAX (price) = S MAX (price) = @ MAX (price) =Yy

(@ Create a result set with 1 row for each group

item COUNT (%) | MAX(price)

catnip 1 5
laser 1 8
tuna 2 4

HAVIN G

every user has

o different
emaﬂr@hf?

1 query loter. ..

This query uses HAVING to find all emails that are shared by

more than one vser:

FROM users
GROUP BY email

pm———— e — =

email, COUNT (%) ™\

bob@builder. com

asdf@fake.com

2

users
id |email very ovtput
1 asdf@fake. com - query
5 email COUNT (*)
3

asdf@fake.com

HAVING is like WHERE, but with 1 difference: HavING filters
rows AFTER grouping and wWHERE filters rows BEFORE grouping.

Because of this, you can use a%rega’res (like COUNT (*)) in a

HAVING clavse but not with WHERE.

Here's another HAVING example that finds months with

more than $6.00 in income:

f month
' FROM sales
| GROUP BY month
///// L\HAVING SUM(price) > 6
sales
month | item |price
Jan catnip| 5

Feb laser 8
March | food 4
March | food 3

&
q
®

My rules for Simp\e ’SOll\l5:°

Joins in SQL let You take 2 tables and combine them into one.

o

~

bl dix|y (=

b C

C

~ ~|~\~

~ ~

~]

2
TNNER SO N :ﬁé\z =S

|

~
land
~

~ P

~

~r'

~ A==

~l~l~l~|—~1—

YRR

Joins can gef really complicated, so we'll start with the simplest
way to join. Here are the rules 1 use for 40% of my joins:

Rule 1: on(\J use LEFT JOIN and INNER JOIN
There are other Kinds of joins (RIGHT JOIN, CROSS JOIN,
FULL OUTER JOIN), but 45% of the time 1 only use
LEFT JOIN and INNER JOIN.
Rule 2: refer to columns as table name.column_name
You can leave out the table name if there's jus’r one
column with that name, but it can Se’r confusin3
Rule 3: On(3 include 1 condition in your join
Here's the 33n+ax for a LEFT JOIN:
tablel LEFT JOIN table2 ON <any boolean condition>
I vsually stick to a very simple condition, like this:
tablel LEFT JOIN table2
ON tablel.some_column = table2.other_column
Rule 4: One of the J‘oined columns should have unique valves
If neither of the columns is unic‘ue, you'll 361’
sfranﬁe results like this:
owners_bad INNER JOIN cats_bad
ouners_bad ca‘\'s_bad ON owners_bad.name = cats_bad.owner
name age owner name owner name age
maher | 16 INNER maher | daisy __> maher | daisy 16
maher | 32 JolN maher | dragonsnap| ~ maher | dragonsnap | 16
rishi | 21 rishi| buttercup maher [daisy 32
(these are "bad” versions of +he ouwners and cats m?hﬁ{’ gri%ms”ap gi
10 tables that don’t TOIV well) F1shi| burercup

INNER SOIN and LEFT SOIN

Here are examples of how INNER JOIN and LEFT JOIN work:

INNER JOIN ontj includes rows that match the ON condition.
This query combines the cats and owners tables:

| FROM owners INNER JOIN cats !
\ ON cats.owner = owners.id /‘\

(o] r
_ \.:]r;renes cats query ou+pu‘|‘
1 owner| name
- cats.owner | owners.name | cats.name
1 mghelj 1 daisy 1 maher daisy
2| rishi 1 dragonsnap 1 maher dragonsnap
chandra
i buttercup 3 chandra buttercup
(/ rose)

these 2 rows don't have
matches so they're not

in the ou+pu+-
LEFT JOIN includes every row from the left table (owners in
this example), even if if's not in the right table. Rows not in
the righf table will be set tfo NULL.

/ * >

FROM owners LEFT JOIN cats !
}

|
|
/'\\ ON cats.owner = owners.id

owners cats query ov+put
id | name owner| name cats.owner | owners.name| cats.name
1 | maher 1 daisy 1 maher daisy
2 | rishi 1 dragonsnap 1 maher dragonsnap
3 | chandra 3 buttercup 2 rishi (ﬂggé
4 rose 3 chandra rbuttercup

\
Rishi has no cats W

This is a classic example of a join that follows my 4 Suide(ines

from the previous page:

1) it's an INNER JOIN / LEFT JOIN
2)

3) the condition ON cats.owner = owners.id is simple
4) it joins on a unique column (the id column in the owners table)

11

it includes the table name in cats.owner and owners.id

example - LEFT SOW + GROULP RY

This c‘uerj counts how many items every client boughf
(inc(udinﬂ clients who didn't buy anjfhing):

,—_——————’——————————————'——N

/ name, COUNT(item) AS items_bought \\
| FROM owners LEFT JOIN sales |
| ON owners.id = sales.client |
\ GROUP BY name !
N __ORDER BY items_boughE_DESC L 7

FROM owners LEFT J0IN sales...

owners sales
id [name item client

1 | maher catnip 1

2 | rishi 1
aser 1

3 | chandra
tuna 1
tuna 2

ON ouners.id = sales.client GROUP BY name

id | name 1tem id | name item
1 | maher catnip /1 | maher catnip
1 maher laser 1 maher laser
1 maher tuna 1 maher tuna
2 |rishi tuna 2 |rishi tuna)
3 chandra | NULL 3 chandra | NULL
SELECT name, COUNT (item) ORDER &Y
AS '\'\ems-boush'\' items_ boug\n‘l' DESC

name items_bought name items_bought

rishi 1 maher 3

chandra @/“COUNT(i’rem\ rishi 1

maher 3 doesnt count chandra 0

NULL s

12

ORDER BY and LMIT

ORDER BY and LIMIT happen at the end and affect the
final output of the query.

ORDER BY lets You sort b3 anjfhina You want!
The syntax is:

ORDER BY [€Xp(ess|on]

stands for

ASC. ascenéin5
ESC

For example, this query sorts cats by fhe (enﬁfh of their name
(shortest first):

Y ——— e — e e —

ya ~N
; * FROM cats)
L ORDER BY LENGTH(name) ASC
cats
owner| name owner| name
1 daisy 4 rose
1 dragonsnap 1 daisy
3 buttercup 3 buttercup
4 rose 1 dragonsnap

LIMIT lets you limit the number of rows output.
The syntax is:

LIMIT [in+e3er]

For example, this is the same as the previous query, but
it limite to on(:, the 2 cats with the shortest names:

! x FROM cats A
I ORDER BY LENGTH(name) ASC
_LIMIT 2)

cats Dttt
owner| name
T daisy owner | name
1 dragonsnap i g°§e
3 buttercup aisy
4

rose

13

refec Yo other rows with
X \.deow functions %

Let's talk about an advance& SQL feature: window functions!

||||||||

Normally sQL express'ons only let you refer to information in
a sing(e row. 1 columns from the same row

. « N
SELECT CONCAT(firstname, ' ', lastname) as full_name

con I refer to other yes, with
rows -l:housh? Like Wwindow X
subtract +he value *‘Func‘\'(ons

in the previous row?

Window functions are SQL expressions that let you reference
values in other rows. The syntax (explained on the next paﬁe!) is

[expression] OVER ([window definitionl])

Example: use LAG() to find how (onﬂ since the last sale

| item, \
| day - LAG(day) OVER (ORDER BY day) |
{\ FROM sales ;

[\

sales query output
1tem‘ day item ?ggDERng(gg; OVER
catnip 2 : 2 NULL
laser 40 catnip NULL «—T
tuna 70 laser 38 1 40-2
tuna 72 tuna 30 <« 70-40
tuna 2 —1 72-70
They're part of SELECT, so they happen after HAVING:

}
@ uir\éow functions
X are here '

14

OVER () assigns every
row o. window

A "window" is a set of rows.

A window can be as big as the whole table (an empty

name |class|grade
juan | 1 93
lucia| 1 98

« & window '

OVER () is the whole table!) or as small as jusf one row.

OVER () is confusin3 at first, so here's an example! Let's run

this query that ranks students in each class bg 3rqde:

name, class, grade,

ROW_NUMBER() OVER (PARTITION BY class
ORDER BY grade DESC)

AS rank_in_class
FROM grades

Step 1: Assign every row a window. OVER (PARTITION BY class)

means that there are 2 windows: one each for class 1 and 2

gra.des

name

class|grade

juan
lucia
raph
chen

1 93
1 98
2 88
2 90

[y

name

class

grade

___””/”,,,____——o lucia

93
98

grade

/—\. name
T raph
\' chen

88
90

Step 2: Run the function. We need to run ROW_NUMBER ()
to find each row's rank in its window:

query output

name |[class|grade | rank_in_class
juan 1 93 2
lucia| 1 98 1
raph 2 88 2
chen 2 90 1

15

example: get the time
between babg -Feedings

This query finds the time since a bab'j's last feedina/diaper
change.

SELECT event, hour,
hour - LAG(hour) OVER(PARTITION BY event ORDER BY hour ASC)
AS time_since_last
FROM baby_log
WHERE event in ('feeding’,
ORDER BY hour ASC

(D FROM baby- log

"diaper’)

(@) \JHERE event IN
(‘dioper’, ‘Feeding')

event hour
feeding 1 event hour
cough 1 feeding | 1
diaper 3 diaper 3
feeding 4 feedi 4
diaper 5 ?e 1ng
diaper 5 diaper 5
feeding 7 diaper 5
cough 7 feeding 7
(® OVER (PARTITION BY event” ORDER BY hour ASC)
event hour event hour K—H\is ORDER BY onlyy
- feeding 1 .
Fe.:edlng 1 feeding . oSfects the wmdow:,
diaper 3 feeding | 7 not ¥he query ouvtpu
feeding 4
diaper 5;>x< event hour
diaper 5 diaper | 3
. — diaper 5
feeding 7 diaper .

&) SELECT +ype, hour,

ORDER BY hour ASC
hour - LAG (hour) ® UrAS

event hour | time_since_last event hour | time_since_last
feeding 1 NULL® LA G Q) feeding 1 NULL
feeding 4 3 is NULL for diaper 3 NULL
feeding | 7 | 3 Iieuiedon| |feeding | 4 | 3
diaper 3 NULL diaper 5 2
diaper 5 2 diaper 5 0
16 |diaper 5 0 feeding 7 3

NULL unknown oY m'\ss'\ng

NULL is a special state in SQL. It's very commonly used as a
placeholder for missing data ("we don't know her address!")

What NULL means exactly depends on your data. For example,
it's really important to Know if allergies IS NULL means

—'"no allergies" or NULL “should” mean
J \,/ "unknown” but it doesn't

—*!ye don't know if she has a((erﬂies or not" alway

it would be way easier
i NoLL o.\wa\:;s meant
the came '\‘\r\'\ng but it
really depends on

your data ¥

% \Wwhere NULLS come from %
— There were already NULL values in the table
— The window function LAG() can return NULL
— You did a LEFT JOIN and some of the rows on the
(eft didn't have a match for the ON condition

;

* wWays to0 handle NULLs %

ooh, not every cat has
an ouwner SO Sometimes
+he ouner name is NU

—» Leave them in!

oo (T'd rother see a nNuLL
ond know thece's mi ssing dateq
+han Sc"’ mislead ingy cesulks

- Filter them out!
. WHERE first_name IS NOT NULL ...
—» Use COALESCE or CASE to add a default value 17

NULL SUrprises

NULL isn't ec‘ua((or not eciua(!) to anjfhing in SQL (x = NULL and
x 1= NULL are never true for any x). This results in 2 behaviours

that are surprising at first:

SUfpr'(SQY X=NULL doesnt+ work

fish
name | owner “CEIECT % FROM fich
* FROM fish ‘._* name | owner
NULL | bob 'WHERE name = NULL |
nemp | ahmed | < ________________________ /
no results ¥
You need to use x IS NULL instead.

works doesn't work

nome S NULL name =NULL

name 1S NOT NULL name |= NULL

SUFpr‘iSQY nome ! = ‘bett+y’ doesnt match NULLs

fish
name owner ’/—“_—_——;_—F_R_dl‘h—_‘%i—s—h_——§\\| name owner
:gant a?fnzd —*EWHERE name != 'betty' ™[nemo | ahmed

To match NULLs as well, T'll often write somefhinﬁ like
WHERE name != 'betty' OR name IS NULL instead.

more surprising truths
NULL isn't even

More operations with NULL which migh’r be SUrprising: equal to itself ¥
L

NULL = NULL => NULL
2 = NULL => NULL
2 = NULL => NULL

2 + NULL => NULL
NULL * 10 => NULL
CONCAT('hi', NULL) => NULL

18

handle NULLs with COALESCE

COALESCE is a function that returns the first
argumenf You sive it that isn't NULL

COALESCE(NULL, 1, 2) => 1
COALESCE(NULL, NULL, NULL) => NULL
COALESCE(4, NULL, 2) => 4

2 ways you miﬁhf want to use COALESCE in practice:

(M Get a default valve

In this table, a NuLL discount means there's no discount, so
we use COALESCE to set the default to 0:

N
|/ name, \
| price - COALESCE(discount, @) as net_price :
\ FROM products)
~ 7/

PFOAUC"' S que(s ov"pr'\'
name price | discount name net_price
orange | 200 NULL orange | 200
apple 100 23 apple 77
lemon 150 NULL lemon 150

@ Use data from 2 (or more!) different columns

This query 3e’rs the best guess at a customer's state:

Mailing address

i not, try
most accurate

bi Ilms address

as o last resact,
use their IP address

~
customer, \

COALESCE(mailing_state, billing_state, ip_address_state) AS state!

)
)
\ FROM addresses !

customer | mailing_state | billing_state |ip_address_state state
1 Bihar Bihar Bihar Bihar
2 NULL Kerala Kerala Kerala
3 NULL NULL Punjab Punjab
4 Gujarat Punjab Gujarat Gujarat

19

¢ (ASE @

Often I want to cafegorize bg somefhing that isn't a column:

ﬁ\lan“’ to count
children/adults/ teenagers

no prob\em!
but there’s no colomn
foc that ¥

just categorize
people based
on age¥

CASE is how fo write an if statement in SQL. Here's the sgrﬁ'ax:

CASE
WHEN <condition> THEN <result>
WHEN <other-condition> THEN <result>

ELSE <result>
END

* examp\e %k

Here's how fo categorize people info age ranges!

first_name, age, CASE \ het
))) E'\l \,J 5
WHEN age < 13 THEN 'child’ / i . mo.-*che

WHEN age < 20 THEN 'teenager'I

'
[
I
[
1
l
|
|
l

///” ELSE 'adult' END AS age_range

\. FROM people L/
people
first_name | age first_name age |age_range
ahmed 5 ahmed 5 child
marie 17 marie 17 | teenager
akira 60 akira 60 | adult
pablo 15 pablo 15 teenager

20

WaUS to count rows

Here are three ways to count rows:

(D COUNT (*): count all rows

This counts every row, regard(ess of the values in the row.
Often used with a GROuP BY to Se’r common valves, like in
this "most popular names" query:

first_name, COUNT (%)
FROM people
GROUP BY first_name
ORDER BY COUNT (%) DESC
LIMIT 50

(@ COUNT (DISTINCT column): 3e’r the number of distinet values
Really useful when a column has duplicate values.

For example, this query finds out how many species every
plant genus has:

"Grove Y 1" genus, COUNT(DISTINCT species)
means group by FROM plants
GROUP BY 1

the fiest i
i the SELELT " ORDER BY 2 DESC

(3) SUM (CASE WHEN expression THEN 1 ELSE 0 END)
This frick using suM and CASE lets you count how many

— T — — — — — c— — — — —
— — — — — — — — — — — —

owner

*, SUM(CASE WHEN type 'dog’' then 1 else @ end) AS num_dogs
SUM(CASE WHEN type = 'cat' then 1 else @ end) AS num_cats
, SUM(CASE WHEN type NOT IN ('dog', 'cat) then 1 else 0
end) AS num_other

\\FROM pets GROUP BY owner

——— -

—
— — — c— — e
—— — — c— o—

pets B

\

owner | type owner | num_dogs | num_cats | num_other

1 dog 1 1 1)
cat 2 1 Q 1

1
2 dog
2 parakeet

21

Subqueries

Some questions can't be answered with one simple SQL query.

For example, this query finds owners who have named their dogs
popular names: ("boring" owners :3))

0gs
d qUe ﬂé
owner | name 2 owner > output
ken darcy i FROM dogs ' owner
bob darcy ' WHERE name in ((name ' ken
bob | lassie|” "} E;gﬂpdggs 1 —3/bob
ahmed | darcy | hame ' ahmed

HAVING count(x) > 2
sara | floof . ™ {}
sara | lassie - - -

the subquery

evaluates to (‘darcy’)

% common table expressions *

"Common table expressions" (or CTEs) let you name a query so
people reading it can understand what it's for.

Here's the query above rewritten Using a CTE:

WITH popular_dog_names AS (
name
FROM dogs
GROUP BY name
HAVING count(*) > 2

)
owner

FROM dogs INNER JOIN popular_dog_names
ON dogs.name = popular_dog_names.name

* where YOU Con use o subquerg/CTE X

v in a FROM v in & WHERE @
{SELECT ™ {SELECT N
{ FROM (<subqueryor CTE>) | | !
{ GROUP BY)| WHERE name IN (<Subqueryp) |

N e e e e— e e - e - —— —— N e e e e e e e e e - — — ———

tip: single quo+e s+rin35

In some SQL implementations (like PosfﬂreSQL), if you
double quote a string it'll interpret it as a column name:

* FROM cats
WHERE name = "ms piggy";
error: column "ms piggy” @
d t ist
%, ﬁgH, T need +o oes not exis - <
vse single quo%es postgre

Here's a table explaining what different quotes mean in different
SQL databases. "Identifier" means a column name or table name.

Sometimes table names have special characters like spaces in
them so it's useful fo be able fo quote them.

sinﬁle quo’res double quofes backticks

‘ms piggy" "ms piggy” ‘ms piggy"

MysQL sfring s’rrinj or identifier identifier
PosfﬁreSQL sfrinﬁ identifier invalid

SQlite sfring s’rrinﬁ or identifier identifier
SQL server sfrinS s’rring or identifier invalid

T adwags use single
quo+es for S\‘rinss in
SQL queriesY I+ Keeps
me (and others!) from
3eH—ing confused.

23

Now indexes make
Vour queries fast

By default, if You run SELECT % FROM cats WHERE name = 'mr darcy’
the database needs to look at every single row to find matches
~ J

E\

da+abase

30 6B of data

fom disk takes like 60 seconds
)33 i‘i’se['F, you know '.

readin

(at 500 HB/S\
SSD speec.\

Indexes are a tree structure that makes it faster to find rows.
Here's what an index on the 'name' column miﬁhf look like.

G
.////// NN -
////) NS G O

YZITS AN
(nes Yo
G

60 children

dotabase indexes are

// \ \ b-frees and the nodes
D)] \ \ have lots of children
7w\ /‘C’:\) YZALN AN (\ike 60) instead of just 2

log,, (1,000,000,000) =5.06

This means that if you have 1 billion/names to look ’rhroush,
you'll only need to look at maybe B nodes in the index to find
the name you're (ooKinS for (5 is a lot less than 1 billion!!!).

/ﬂ(& yov saying

indexes can make

my Gueries 1,000, 000
Foster?

\/es‘, ac—hmllj some gqueries

on large tables are basically
impossible lor would +oke weeks)

wi-\hoﬁ’ usinS an index ¥

24

EXPLAIN your slow queries

Sometimes queries run slowly, and EXPLAIN can tell you why!

2 ways you can use EXPLAIN in Pos’rﬁreSQL: (other databases have
different syntax for +his)

(D Before running the query (EXPLAIN ... FROM ...)
This calculates a query plan but doesn't run the query.

T alwa%s ron EXPLAIN oOn a query
§ be’FO(e fUﬂV\lf\g |+ on M(:S ProdUC-l-lon

da+abase T won't risk overload.ng the
da+abase with o slow query ¥

(@ After running the query (EXPLAIN ANALYZE ... FROM ...

Wh5 is my queryy EXPLA\N ANALYZE
s0 slow? runs the querg and
analyzes wh
Wos slow 4

Here are the EXPLAIN ANALYZE results from PosfgrcSQL for the
same query run on two tables of 1,000,000 rows: one table that
has an index and one that doesn't

lEXPLAIN ANALYZE * FROM users WHERE id = 1
unindexed table indexed table
Seq Scan on users Index Only Scan using
Filter: (id = 1) users_id_idx on users
Rows Removed by Filter: 999999 Index Cond: (id = 1)
Planning time: 0.185 ms Heap Fetches: 1
Execution time: 179.412 ms Planning time: (3.411 ms
Execution time:\0.088 ms
) Seq Scan means it's |ookin3 ot

the query runs ,:50: }
times faster with on index 25

each row (slow 1)

QUQS‘\'ior\s To ask
obout your dato

It's really easy to make incorrect assumptions about

the data in a table:
2 hours later...

every hosprl-a | 02

wks is everyone

missing o doctocr 7?7

atient has 4
doctor f«‘gh‘l’?

Some quesfions You mishf want to ask:

Does this column have NULL or @ or empty sfring valves?

Some Pa‘]’?en+ S have NULL

names, +hat's good to
Knows

How many different values does this column have?

oo®°

hoh there are 2000 extra

doctocs in the system who never
Worked ot +hic hosp«"fc\/, T should

'FiHe(‘H'\em out

Are there duplicate values in this column?

Does the id column in table A a(watjs have a match in table B?
°° \,ﬁ\g are thece 213 Odoctor IDs ith
no match in the Jdoctors +able 77
X *

& A lot of these can also be enforced by NOT NULL or
26 UNIQUE or FOREIGN KEY constraints on your tables.

somefimes o doctor has 2
oppointments ot the same Time,

that shouldn't hoppen ...

v thanks for re&ding v

When you're (earnina it's important to experiment!
So you can try out any of the queries in this zine and
run your own in an SQL p(ajﬂround:

& https://sql-playground.wizardzines.com 4

Here are a few more 3rea1’ SQL resovrces:

% Use the index, Luke! (https://use-the-index-luke.com)
is a very in-depth explanation of how to use indexes to
makKe your queries fast.

% There are several visualizers that will help you understand
the output of an EXPLAIN. For example:
https://explain.depesz.com/ for PosfﬁreSQL!

X The official documentation is always GREAT for (earnina
about SQL functions.

’H\&""S SO o
(4id you know there's %0
o percentile function?

docs

* credits &

Cover illustration: Deise Lino
Edifin\g: Dolly Lanuza, Kamal Marhubi, Samuel Wrighf
Reviewers: Anton Dubrav, Arielle Evans

2+

love +his?

more zines at
& wizardzines.com #

