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Preface 

The book focuses on a very important area of Smart Grids—Cyber-Security. It 
deals in particular with the tools and techniques for cyber-security analysis of the 
Smart Grid Control systems. This includes the standards and guidelines, detailed 
vulnerability assessment framework, attack detection strategies, and attack mitigation 
methods. 

The book is divided into three parts. The smart grid cyber-physical system is 
discussed in Part I. Part II introduces the attacks in the grid system and a vulnerability 
assessment framework followed by a tool that can be used to analyze the grid control 
systems using existing cyber-security standards. In Part III different forms of attack 
detection methods are discussed along with Python-based implementations for the 
same. Finally, attack mitigation methods are discussed with implementation. 

Detailed illustrations and tables are provided in each part. The book also includes 
case studies based on standard test systems thus helping students to implement the 
discussed methods. The case studies are based on MATLAB and Python implemen-
tations thus catering to a wide range of audience. Outputs and programs are included 
so students can compare their results and improve upon the discussed methods. 

The book can be useful to a wide variety of audiences. The primary audience will 
be students and researchers in Smart Grids. Students can gain in-depth knowledge 
about various areas of smart grid cyber-security and use the tools and methods to 
build secure cyber systems. They can also use the program and methods as a base 
to build upon their research. In addition to students, power system operators can 
use the book as a reference guide for analyzing the security of their systems using 
the discussed vulnerability assessment tools and methods. Device manufacturers 
can use the detection methods to build devices with cyber-security capabilities. The 
suggested mitigation and response can be used to build a framework for the systems 
to recover back to normal state in the event of an attack. 

Manhattan, USA 
Chennai, India 

Amulya Sreejith 
K. Shanti Swarup
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Cyber-Physical Smart Grid Systems



Chapter 1 
Smart Grid Cyber-Physical System: An 
Overview 

Abstract This chapter gives an introduction to the Smart Grid cyber-physical sys-
tem and the various attacks that can be injected into the grid at various levels. The 
introduction of automation and control improves the grid stability and performance 
but also gives rise to various attack points. The power system is built to transmit 
data at a very fast rate and due to this speed requirement the security features such 
as encryption and key management are often not available for grid protocols such as 
DNP3, MODBUS, and IEC-61850. 

Keywords Cyber Physical Power Systems (CPPS) · Defense in depth · Smart 
grids · SCADA 

1.1 Introduction 

The electrical power system came into existence around the early 1900s, and automa-
tion has been in the grid system since the late 1960s. There has been a constant 
increase in the demand for energy and electricity, mainly due to the rise in industries 
and ever-changing lifestyles. Energy Management Systems (EMS) are used to man-
age the daily operations of the grid. In the late 1960s, digital computers and software 
were developed to replace the analog EMS thus giving rise to today’s digital grids. 
The digital grids differ from traditional Supervisory Control and Data Acquisition 
(SCADA) EMS or Demand Management Systems (DMS). For example, we have the 
process bus in digital substations, connecting directly to the primary equipment like 
the optic CTs and the merging unit. Some other digital concepts getting into the grid 
are centrally located disturbance recorders, intelligent digital assets, and analytical 
and machine learning (ML) tools for asset management, demand forecasting, and 
generation scheduling. Thus, we see that today’s power system involves many data 
exchanges between different systems, and all these systems are widely distributed. 
There is also significant Information Technology-Operations Technology (IT-OT) 
convergence in the present day’s power grid wherein the control system environment 
is exposed to the consumer’s IT system environment. 
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Hence, the considerable development in the grid and the overlay of IT systems 
over OT systems have created more access points, leading to an explosion in the 
number of attack points. According to the French think tank Institut Français des 
Relations Internationals (IFRI), the power sector has become a prime target for 
cybercriminals in the last decade, with cyber attacks surging by 380% during 2014– 
15. The various motives behind these include geopolitics, sabotage, and financial 
reasons. Thus, for efficient and undisrupted grid operation, addressing the effects of 
these cyber-vulnerabilities becomes critical. 

1.2 Smart Grid Cyber-Physical System 

1.2.1 Smart Power Grids 

The conventional grid systems have undergone tremendous changes and have moved 
into a more intelligent paradigm where it uses state-of-the-art technologies to drive 
the grid system. This intelligence built into the power system gives rise to the term 
Smart Grids. The U.S. Department of Energy (DoE) had established a Federal Smart 
Grid Task Force in 2007 which involved a vision-2030 to construct a self-sufficient 
and smart electric system to provide affordable, clean, efficient, and reliable elec-
tric power. In addition to improving the reliability and quality, the introduction of 
renewables is also taken up as a major objective. 

The traditional grid systems only consisted of generators, transmission lines, var-
ious loads, and transformers along with controllers that coordinated between these 
components. On the other hand, the smart grid paradigm introduces new technologies 
such as wide-area monitoring and control, grid optimization, and real-time protection. 
These technologies can be termed as the cyber system of the smart grid. The smart 
grid evolves through various interactions among its components. These interactions 
can be divided mainly into the following three levels: 

1. Level 1: Interaction between power system components (generator, transmission 
lines, loads, transformers) and the grid controller. The controller gets grid data, 
calculates the actuator signals, and sends them back to the grid to maintain grid 
operation. 

2. Level 2: Interaction between power system controller and communication. Com-
munication provides a link between different subsystems and coordinates the 
EMS functions. 

3. Level 3: Interaction between communication and cyber system. 

To ensure an efficient and secure power grid operation, both power flow and 
information flow play an equal role. Information and Communication Technology 
(ICT) is introduced in the system for the safe and secure operation of the power grid. 
However, failure or maloperation of the ICT system has also been a major reason for 
grid blackouts.
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Fig. 1.1 Cyber-physical power system 

1.2.2 Cyber-Physical Systems 

In today’s digital world, most devices have some computing capabilities within them. 
The electrical grid system is also a combination of physical devices with various 
control and computing capabilities. This combination of the physical and computing 
layers is called a Cyber-Physical system. 

The electrical grid is one of the most complicated and wide-area cyber-physical 
systems. It consists of various control systems to maintain stability and load demand. 
Automation and control are implemented at all stages of the power system, including 
generation, transmission, and distribution. This combination of physical grid equip-
ment with cyber and control systems gives rise to what is called a Cyber-Physical 
Power System (CPSS) (Yohanandhan et al. 2020). 

The Cyber layer is typically a combination of computation and control with com-
munication. The physical layer is made up of interconnected electrical equipment 
that operate on the principles of physics. The cyber layer consists of software and 
programs that guide the physical system operations. The two layers interact with 
each other using a Communication layer. Figure 1.1 shows the schematic of the two 
layers and their interaction. The various domains and the interactions between them 
are from the NIST Smart Grid Framework, (Greer et al. 2014). 

The various equipment and tasks involved in each layer are given below. 

1.2.2.1 Physical Layer 

The physical layer involves the conventional smart grid components such as genera-
tors, transmission lines, transformers, and loads. Physical sensors and actuators are
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used for controls and form a part of the physical layer. The merging unit usually picks 
these analog signals and converts them to digital for data transmission. Actuators are 
used to send back control signals to the equipment so as to operate them. 

1.2.2.2 Communication Layer 

The communication layer involves various data transmission media like cables, 
switches, and routers. The communication protocols commonly used in power sys-
tems are IEC-61850, MODBUS, DNP3, and IEC-60870-5. These protocols are par-
ticularly designed for efficient and fast data exchange and therefore usually lack the 
security features like encryption. 

1.2.2.3 Cyber Layer 

The cyber layer involves the programs used to maintain efficient and reliable grid 
operation. State estimation, Volt-VAr controls, demand response programs, and other 
control systems are a part of the cyber layer. The cyber layer processes the data 
obtained from the physical layer and sends back the signal to the physical layer. This 
completes the loop in the smart grid cyber-physical system operation. 

1.3 Issues in Smart Grid Cyber-Physical Systems 

The introduction of control and automation into the grid has several benefits as 
discussed in the previous sections. However, the introduction of Smart Grid Cyber-
Physical System (SG-CPS) also has several challenges that are yet to be resolved. 
Some of the most significant challenges of a cyber-physical power system are as 
follows: 

1. The available cyber-physical technologies have to be tailored to suit the power 
system and thus cannot be directly fitted on to an existing system. 

2. Distributed control faces several issues such as time delays, packet drops, and 
errors. 

3. The messages in the smart grid are time-critical which means that the cyber-
physical system and protocols should have low latency. 

4. Smart grid is a market-driven supply-demand system. This gives rise to compe-
tition and game-based transfer between various market participants resulting in 
severe network congestion. 

5. The communication channel should be improved for application to real-time 
dynamic situations. 

6. Smart grid involves several uncertainties due to the introduction of renewables. 
The CPS algorithms should be adaptive to such uncertainties.
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Fig. 1.2 Smart grid cyber-physical system with attack surface 

7. Smart Grid is not a standalone system since it affects other critical systems. 
Thus, it has to be analyzed in conjunction with other environmental and social 
systems. 

8. Since the availability of data is more important than the security of the data to 
maintain operations, the smart grid CPS is prone to cyber attacks. 

Many of the above challenges have been discussed in the literature and industry 
and solutions are still being formulated for most of the issues. The security of power 
system was not an important concern until recent years. However, over the past few 
years, it has gained importance due to the multiple demonstrated attacks on the power 
system. 

Figure 1.2 shows the different layers of the SG-CPS. It also illustrates the various 
attacks at each of these layers which will be discussed in the next section. 

1.4 Attacks on Smart Grid Systems 

Increased ICT integration exposes the system to the risk of cyber-vulnerabilities. 
Consequently, resolving these vulnerabilities is essential for enhancing grid effi-
ciency. Figure 1.2 depicts the possible attacks at various Smart Grid control system 
tiers and can be explained as follows:
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1. Physical Layer: The attack targets equipment at the process level where physical 
settings can be adjusted (Physical Attack) or measurements can be inserted into 
different devices in the field (False Data Injection Attack (FDIA)/Data tamper-
ing). 

2. Communication Layer: An attack enters the telecommunication channel. The 
channel may be saturated with incorrect data to disrupt data flow (FDIA), or 
the communication path may be stopped (Denial of Service (DoS)). The proto-
cols like MODBUS and DNP3 lack security features such as encryption as the 
importance is on the availability and speed of data transmission. 

3. Cyber layer: An attack is launched into the power grid control system to interrupt 
overall system processing. The settings of relays or algorithms can be altered 
(Forged control commands), or malicious codes may be introduced into the 
control systems to disrupt the normal course of action. 

An attacker can have a variety of objectives and effects while launching an attack. 
These can be divided into the following two broad categories: 

1. Economic impact: This may result in monetary losses for the grid system oper-
ators and the utility, while the hacker may profit monetarily from the attack. 

2. Stability impact: These attacks can cause frequency variations, generation-load 
imbalances, and sequential outages. 

Until recent years, the Operational Technology systems, especially the power grid, 
were considered immune to attacks due to the existence of dedicated communication 
channels. However, the cyber-attack events over the past few years have revealed 
that the power system is also highly prone to attacks. A few sample attacks on power 
systems are described in Table 1.1. 

There is extensive research in the area of cyber attacks on power systems. These 
researches mainly focused on State Estimation (Liu et al. 2009). Such research is 
necessary because even a minor attack can traverse the grid system and create consid-
erable consequences that lead to blackouts. Stability attacks can result in substantial 
system damage. As they are intended to maintain the grid’s stability, Grid control 
systems might be attractive attack targets. High excursions in grid parameters can 
cause generators to lose synchronization, resulting in disastrous results. 

1.5 Defense in Depth Security Approach 

Defense in Depth (DiD) is an approach involving multiple layers of security counter-
measures to protect the integrity of the information or operation network as shown 
in Fig. 1.3. DiD reduces the probability of an intruder succeeding in penetrating 
the system. It can also be used to identify attackers attempting to tamper with the 
system. Hence, if an attacker gains access to a system, the DiD security approach 
can considerably delay the intended harm and give system operators enough time to 
employ countermeasures. This will help in either preventing or at least minimizing 
the impact of attacks (David and Mark 2006; Smith et al. 2018).
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Table 1.1 History of attacks on power systems 

Incident Attack type Details Impact 

Iran Nuclear plant 
(Kushner 2013) 

Stuxnet Initiated by a worker’s 
USB drive. Stuxnet 
worm targeted the 
PLC systems in Iran’s 
nuclear program, 
causing centrifuges to 
spin out of control 
without triggering 
alarms 

Destroyed 984 
uranium enriching 
centrifuges 

Elexon (Winder 2020) Ransomware Attack on IT system. 
Since Elexon is a 
power administrator, 
the attack did not 
impact the power 
supply 

Has potential to 
damage if it penetrates 
to power lines 

Ukraine Grid attack 
(Liang et al. 2017) 

BlackEnergy 
(Spear-phishing) 

Spear-phishing emails 
with BlackEnergy 
malware. SCADA  
signaling and remotely 
switching off 
substations. Disabling 
infrastructure 
components. File 
destruction KillDisk 
malware. 
Denial-of-Service 
attack on call-center 

230000 people went 
without electricity for 
6 h  

US Power Grid attack 
(INL 2016) 

Dragonfly Trojan Operators at a power 
control center started 
losing communication 
with “multiple remote 
power generation 
sites” for minutes at a 
time 

Immediately detected 
and hence no losses 

Enel, Italian Energy 
Company 

EKANS Ransomware 
attack 

Attack on ICS kill all 
processes and encrypt 
all files. It is a new 
strain from 
MEGACORTEX 

Not disclosed
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Fig. 1.3 Defense in depth planning 

Table 1.2 Comparison of IT, OT, and electrical systems 

Parameter IT system OT system Electrical system 

Primary risk Information and 
finance 

Safety and health Safety and life 

Acceptable downtime 
(per year) 

18.− 4 days 9 h.− 5 mis 30.− 5 min  

Asset lifespan (years) 3–5 15–30 10–20 

Problem response Offline 
rebooting/patch 
management 

Online recovery Online 
recovery/replacement 

To effectively apply DiD security to any system, it is essential to identify the rela-
tionship between attackers (threats) and system vulnerabilities. This analysis helps 
to design suitable standards and employ countermeasures to protect the operations, 
personnel, and technologies that make up an OT system. Additionally, security coun-
termeasures must be constantly refined to ensure protection against new attacks also 
called as zero-day attacks. 

The IT and OT systems are quite different from each other in the cyber-security 
aspect, as explained in Table 1.2. 

The bulk transmission system is a type of OT system but it is more critical com-
pared to most of the other OT systems. Any outage in the electrical facilities impacts 
multiple other systems and can be hazardous to life and safety. All voltage security 
violations are usually given a resolution time of 30 min, which is shown as the allow-
able downtime. However, for critical systems, the downtime allowed is further low. 
Most of the equipment in the power sector are costly due to which replacement is not 
an option leading to the use of old equipment. In the event of a vulnerability being 
found, the resolution has to be done online or equipment replacement is required due 
to which it is often ignored leading to a larger attack surface.
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Thus, it is important to devise tailor-made approaches specific to each system, 
considering the time of response of an entire process. As shown in Fig. 1.3, several 
layers of defense need to be established. 

1. Policy and Procedure: This involves that the system, organization, and person-
nel follow certain rules set forth using cyber-security standards and protocols. 
Table 1.3 compares various cyber-security standards dealing with the power sys-
tem. 

2. Physical Security: Role-based access passwords and physical zone separation 
can be used for protecting physical field devices. 

Table 1.3 SAS relevant cyber-security documents 

Authority Document/tool Domain Details 

National Institute of 
Standards and 
Technology (NIST) 

NIST-special 
publication-800-30 
guide for conducting 
risk assessments 
(Division 2012) 

Critical infrastructure Risk assessments of 
federal information 
systems and 
organizations 

NIST-Special 
Publication-800-82 
Guide to Operational 
Technology (OT) 
Security (Stouffer 
et al. 2022) 

OT Industrial control 
systems (ICS; risk 
management; security 
controls; SCADA 
systems 

North American 
Electric Reliability 
Corporation (NERC) 

NERC-critical 
infrastructure 
protection 
(NERC-CIP) CIP-002 
to CIP-014 

Bulk electric systems Set of cyber-security 
standards to reduce the 
risk of compromise to 
electrical resources 

Cyber-security and 
Infrastructure Security 
Agency (CISA) 

CISA Cyber-Security 
Evaluation Tool 
(CSET) CISA ICS 
alerts, advisories, and 
reports 

ICS, OT Tools and reports for 
vulnerability and 
security assessments. 

MITRE ATT&CK for ICS 
(Alexander et al. 2020) 

ICS Threat modeling tool 

Electric Power 
Research Institute 
(EPRI) 

National Electric 
Sector Cyber-security 
Resource (NESCOR) 
(NESCOR 2015; 
Searle et al. 2016) 

Electric sector Tools and guidelines 
for electric sector 
Penetration testing 
guidelines, attack, 
failure scenarios and 
mitigation for electric 
sector 

International 
electrotechnical 
commission 

IEC TS 62443-1 to 
62443-4 (IEC 2019) 

Industrial automation 
systems 

Secure industrial 
automation and 
control systems 
(IACS) throughout 
their lifecycle
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3. Network Security: This can be ensured using logical segmentation using demil-
itarized zones, deception technology to hide actual network, and network mon-
itoring tools. Firewalls can also protect against external attacks. 

4. Host Security: Host can be protected using application dynamic safelists, mem-
ory protection, and read/write protection. 

5. Application Security: Application security can be ensured using Intrusion Detec-
tion System (IDS) and cryptographic techniques. 

Figure 1.4 shows the different layers of a grid system with the implementation of 
DiD security measures. 

The increased number of attacks over the past few years has shown that the 
attackers are highly sophisticated and technologically advanced. Thus, the operators 
and the grid system should also handle such attacks and be prepared to respond and 
recover fast enough to combat these sophisticated attacks. Several standards have 
been developed to deal with the cyber-security issues in the power system, which 
can effectively build a defense in depth approach to system cyber-security. However, 
the attackers’ capabilities are also improving. Thus, it is necessary to have detection 
techniques at the application level. Application level detection can handle situations 
where an attack can bypass undetected through the various defense levels.

- Hard wired
- Ethernet
- Firewall

- Intrusion Detection 
System 

LEVEL 5 
External 
Comm 

Enterprise HMI Servers (Web, Bussiness etc.) 

CC HMI Servers (App.,I/O etc.) Workstation 

Fig. 1.4 Defense in depth security of grid system
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1.6 Cyber-Security in Smart Grid Control 

There are a number of control systems built into the grid system in order to maintain 
the stability and power requirements of the grid. Additionally, protection equipment 
are also used to protect the system in case of high excursions of voltage, line flow, 
frequency, etc. While these control systems help in the fast recovery of the grid, they 
can also be attractive targets for attackers. 

Security controls have been built into the control grid systems at various levels 
based on standards and guidelines proposed by standard organizations. In many cases, 
guidelines published by an organization are considered comparable in significance 
to published standards and these are used by utilities to secure their control systems. 

The power grid is made up of various control systems such as voltage control, 
frequency control, reactive power control, and protection systems. Since the analysis 
of all the control systems is not feasible, the thesis focuses on one of the control 
systems, the Load Frequency Control (LFC). LFC is used as the representative control 
system as any attack into this control system affects the stability of the entire power 
grid and could also lead to blackouts. Therefore, it can be a suitable target for the 
attackers. The results presented in the thesis can also be extended to other control 
systems. 
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Chapter 2 
Smart Grid Control 

Abstract This chapter offers a comprehensive overview of the progressive devel-
opments in power system control within the dynamic landscape of smart grids. It 
discusses in detail the various control systems present in a power system and the 
importance of frequency control. Load Frequency Control (LFC) is used as the rep-
resentative control system to analyze the various proposed algorithms. A detailed 
analysis of the Multi-Area LFC system model is derived based on the machine and 
system equations, and a state-space model is developed to represent the MA-LFC 
system. Since the system is a linearized one, we also introduce the nonlinearities. 
The model derived in this chapter will further be used as a representative system to 
build and analyze various algorithms in future chapters. 

Keywords Power system control · Load frequency control · Power system 
modelling · MODBUS · ICCP 

2.1 Introduction 

A grid system consists of various control systems to maintain stability and demand. 
This combination of physical grid equipment with cyber and control systems gives 
rise to a Cyber-Physical Power System (CPSS) (Yohanandhan et al. 2020). A grid 
system consists of physical and cyber layers that interact using a Communication 
layer. Some of the primary control systems are as follows: 

1. Frequency Control: Imbalance between the generation and load directly affects 
the electric oscillation frequency of the grid. 

2. Voltage Control: Voltage Control is indirectly affected by the reactive power 
in the grid. The automatic voltage regulator (AVR) controls the voltage at the 
generators. 

3. Protection Control: Protective relays and protection controls prevent system 
damages and other incidents while considering shorter time scales to preserve 
system stability. 
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4. Demand Response Control: Demand response is effective when there is insuffi-
cient power to meet demand or in special cases where it is economically imprac-
tical to generate more energy. 

5. Microgrid Control: It refers to the control component that responds to concerns 
other than those listed previously. Traditional decentralized controls are ineffec-
tive in Microgrids. 

All of the above control systems depend on each other and work in unison at 
different time scales in order to maintain the stability of the power system. 

This chapter discusses the grid control systems and the motivation for choosing 
Load Frequency Control (LFC) as the case study for research. A detailed analysis of 
the Multi-Area LFC (MA-LFC) will be discussed. 

2.2 Smart Grid Control and Cyber-Security 

Stability is that aspect of a system that helps it to reach or maintain the desired 
value despite disturbances. Consequently, power system stability can be defined as 
the capacity of a power system to reestablish operating balance following a physical 
disruption. Depending on the variables to be monitored and the type of disruption, 
various definitions of stability exist, such as transient stability, small signal stability, 
and voltage collapse. Cyber attacks that target these aspects can lead to instability or 
even the collapse of an entire grid system. 

2.2.1 Smart Grid Control 

Different control algorithms are implemented in the power system at different time 
scales for maintaining performance and stability, as shown in Fig. 2.1. 

In addition to these control systems, there exist other controls for market operation, 
Distributed control, Wide Area Control, and Cyber-Physical security and control 
(Annaswamy and Amin 2013). 

Under Frequency/Under Voltage Load Shedding 

Load Frequency Control 

Automatic Voltage Control Secondary Voltage Control 

Protective Relaying: Fast Protective Relaying: Slow 

Milliseconds Seconds Minutes 

TIMELINE 

C
O

N
T

R
O
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Fig. 2.1 Smart grid controls and timescales
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Most continuous control loops, such as prime mover and excitation controls, are 
installed within power plants and act locally on the generating unit. The continuous 
online controls consist of generator excitation controls (Power System Stabilizer-
PSS and automatic voltage regulator-AVR), prime mover controls, reactive power 
controls, and HVDC controls. Typically, each control is linear, constantly operational, 
and employs localized sensors. 

Excitation control regulates the governor voltage and reactive power output in a 
power plant, while prime mover controls manage energy supply system characteris-
tics and speed. Automatic generation control (AGC) balances total generation and 
load (including losses) to achieve the nominal grid frequency and the planned power 
exchange with adjoining networks. 

The discontinuous controls stabilize the system whenever there are significant 
disturbances and are appropriate under high-stress conditions. They execute gen-
erator and load tripping, capacitor and reactor switching, and additional protection 
strategies. Such electric grid controls may be localized at power plants and substa-
tions, or they may span a large geographical area. Typically, these controls guaran-
tee a post-disturbance balance with an adequate region of attraction. Discontinuous 
controls give rise to additional controls, precise stability controls, and emergency 
control/protection schemes. 

2.2.2 Cyber-Security in Smart Grid Control 

Smart Grid Control system can be attractive choice for the attackers as it tampers 
the system operational security. Distributed control systems operate based on the 
data from each individual controller and also neighboring control centers. This data 
transfer makes these systems vulnerable to cyber attacks. 

In voltage controllers, the attacker can change the voltage measurement causing 
the tap settings to change inadvertently. If the voltage is higher than usual, the system 
operates at a higher voltage which is unnecessary. Voltage drops could also cause 
voltage collapse in the system. 

Other types of attacks could change the voltage and reactive power values sent 
to the Volt-VAr controllers. This could lead to wrong commands to the FACTS and 
other controlled reactors. Such attacks could lead the system to function at very low 
power factors and also could impact the ancillary service actions in the system. 

Attacks to the load frequency control and automatic generation control impact 
the grid frequency and also the generation-load balances in the system. It can also 
impact the economy due to wrong generation schedules. 

The frequency control system is usually centrally controlled. Any disturbance in 
one part of the control system can propagate through the entire grid system and cause 
widespread impacts, including blackouts. In this work, we use the Load Frequency 
Control as the representative control system to build and analyze our algorithm.
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2.3 Frequency Control 

Severe network stress resulting in inequality among sources and loads significantly 
impairs the stability of any power system. Such a form of a typically slow phe-
nomenon is to be studied in relation to frequency control issues in the power system. 

Frequency deviation is a direct outcome of an imbalance between the electrical 
load and the power supplied by the linked generators; therefore, it serves as a helpful 
indicator of the imbalance between generation and load. Prolonged frequency devi-
ations can impact a power system’s operation, security, dependability, and efficiency 
by causing equipment damage, reducing load performance, overloading transmission 
lines, and triggering protection devices. 

Frequency Deviation has the following effects on the system operation: 

1. Since frequency is a function of the generator rotational speed, frequency control 
is indirectly a generator-turbine speed-control problem. 

2. Large deviations in frequency can degrade load performance, damage equipment, 
and impair protection mechanisms. 

3. The overall system stability is affected. 

Since frequency deviations have multiple effects, there are multiple frequency 
control loops in the system, as shown in Fig. 2.2. 

Fig. 2.2 Power system frequency control loops
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Minor deviations in frequency can be adjusted by adjusting the turbine input using 
the governor droop control called the Primary Control. The  Secondary Control comes 
into the picture when the generation is adjusted for an entire control area based on 
the available reserve. The secondary control, called the Load Frequency Control, 
maintains the frequency and power exchanges at rated values. The tertiary control is 
at the system operator level and includes the market variables to adjust the generator 
setpoints, participation factor, and dispatches. Tertiary controls are also activated in 
case of large frequency deviations that the LFC cannot handle. Emergency Controls 
such as generator tripping or Underfrequency Load Shedding (UFLS) are introduced 
when there is a substantial frequency deviation due to faults in the system. Such 
emergency controls prevent the system from moving into a state of blackout. 

The primary and secondary controls are the fundamental frequency control sys-
tems, which can be modeled using the system and machine parameters. Such a 
detailed model can be further used to analyze the system dynamics and effects of 
attacks in these systems. 

2.4 Load Frequency Control Modeling 

The LFC model is developed in the below section with reference to Bevrani (2014), 
Wood et al. (2013). As discussed in the previous sections, the generation (.Pm)-load 
(. Pl) imbalance (.∆Pm(t) − ∆Pl(t)) has a direct impact on the frequency, 

.∆Pm(t) − ∆Pl(t) = 2H
d∆ f (t)

dt
+ D∆ f (t) (2.1) 

Since only positive time values are considered and the deviations have an initial value 
of zero, a unilateral Laplace transform of (2.1) can be obtained as shown below, 

.∆Pm(s) − ∆Pl(s) = 2Hs∆ f (s) + D∆ f (s) (2.2) 

where .H is the inertia constant, .D is the load damping coefficient, and .∆ f is the 
frequency deviation from nominal value. According to Laplace transform notations, 
.L { f (t)} = F(s). However, to avoid inconsistencies with power system notations, 
the Laplace transformed signals are also considered with the same notations as the 
time domain signal. 

From (2.1), the transfer function between the generation-load imbalance and fre-
quency is obtained as 

.
∆ f (s)

∆Pm(s) − ∆Pl(s)
= 1

2H + D
(2.3) 

There are usually multiple generating units within a balancing area, and the load 
generation characteristic can be lumped together to represent a single block for the 
area.
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Fig. 2.3 Steam reheat 
governor-turbine model 

The turbine and generator dynamics are different for each machine type like a 
steam turbine, hydro-turbine, etc. Other generating units like batteries and distributed 
generators are also encapsulated using different types of turbine generator transfer 
functions. An example block diagram for a steam reheat governor-turbine set is 
shown in Fig. 2.3. 

The above blocks constitute the primary frequency control. 
For secondary frequency control, the change in tie-line flows also comes into the 

picture. A combination of the frequency deviation and the tie-line deviation called 
the Area Control Error is used in the MA-LFC. 

The power flow between two areas is obtained as 

.Ptie, i j = ViVj

Xi j
sin(δi − δ j ) (2.4) 

Let .Ti j = |Vi ||Vj |
Xi j

cos(δ0i − δ0j ) be the synchronizing torque coefficient, then (2.4) 

can be linearized about an equilibrium point .(δ0i , δ0j ) as 

.Ptie, i j = Ti j (δi − δ j ) (2.5) 

Power angle and frequency are related as.δ = 2π
ʃ

∆ f . Thus, (2.5) may be written 
in terms of frequency deviation as 

.

Ptie,i j (t) = 2πTi j

(ʃ
∆ fi (t) −

ʃ
∆ f j (t)

)

Ptie,i j (s) = 2π

s
Ti j (∆ fi (s) − ∆ f j (s))

(2.6) 

Net tie-line flow considering all .N areas would then be
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.Ptie,i = 2π

s

⎡

⎢
⎢
⎣

N∑

j=1
j /=i

Ti j∆ fi (s) −
N∑

j=1
j /=i

Ti j∆ f j (s)

⎤

⎥
⎥
⎦ (2.7) 

Using the frequency deviation and the tie-line power deviation, the Area Control 
Error (.ACE) may be calculated as 

.ACEi = ∆Ptie,i (s) + βi∆ fi (s) (2.8) 

where .βi = 1
Ri

+ Di is called the bias factor. 
The ACE is finally sent to a PI controller that sends the necessary generation 

changes to the generating units based on the value received. The PI controller may 
be further modified to include advanced and robust control algorithms like H-inf 
control, sliding mode control, etc. 

2.5 State-Space Representations 

The overall state-space representation for the MA-LFC can be derived using the 
above equations. 

The linearized state-space model of the LFC system is given by (2.9), 

.
ẋ = Ax + Bu + Fd

y = Cx
(2.9) 

where 

. 

x ∈ R
5na = State vector = [x1...xi ...xn]

u ∈ R
na = Controlled Input = [∆Pc1 ... ∆Pcn ]

d ∈ R
na = Disturbance Input = [∆Pl1 ...∆Pln ]

y ∈ R
na = Output Vector = [ACE1...ACEn]
xi = [∆ fi ∆Ptie,i ∆Pmi ∆Pgi ]

The frequency and tie-line power are transmitted to the central or area control 
center, which executes the LFC procedure and returns the change in generation 
scheduling to the generating units based on the Area Control Error (ACE) calculation. 

The linearized system matrices for each area are 

.Ai =

⎡

⎢
⎢
⎢
⎣

−Di
2Hi

−1
2Hi

1
2Hi

0
2π

∑
Ti j 0 0 0

0 0 −1
Tti

1
Tti−1

Tgi Ri
0 0 1

Tgi

⎤

⎥
⎥
⎥
⎦
Bi =

⎡

⎢
⎢
⎣

0
0
0
p fi
Tgi

⎤

⎥
⎥
⎦
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. Fi =

⎡

⎢
⎢
⎣

−1
2Hi

0
0
0

⎤

⎥
⎥
⎦Ci = [

βi 1 0 0
]

2.5.1 Nonlinearities Modeling in MA-LFC 

A linearized model of the MA-LFC system is given in (2.9). However, a practical 
LFC system consists of several nonlinearities. An important physical constraint is 
the power generation rate change due to the limitation of thermal and mechanical 
movements. This rate is termed a generation rate constraint (GRC). Effects of GRC 
on the performance of secondary systems are reported in Nanda et al. (1983). 

Speed governor dead band is another important issue affecting LFC performance. 
The speed governor may not immediately react by changing the input signal until the 
input reaches a specified value. The effect of the governor dead band is to increase 
the apparent steady-state speed regulation (Concordia et al. 1957). 

Communication delays introduce another significant challenge in the LFC syn-
thesis due to the restructuring, expanding of functionality, and increased complexity 
of power systems. In the control systems, time delays can degrade the system’s 
performance and even causes system instability (Bhowmik et al. 2004). 

Thus these nonlinearities must be considered during the design of attacks, detec-
tion, and mitigation mechanisms. 

The detailed nonlinear model of the LFC governor-turbine set is as shown in 
Fig. 2.4 (Bevrani 2014). 

The nonlinear model with time delays can be written as below 

Fig. 2.4 Detailed model of generator
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.

x(k + 1) =F(x(k), x(t − δ), d(k), d(k − γ ) + M

[
w(k)
ν(k)

]

y(k) =G(x(k), d(k)) + L

[
w(k)
ν(k)

] (2.10) 

Here, .F and.G are nonlinear functions representing the system dynamics, and . w

and . v are process and measurement zero-mean Gaussian white noise, respectively. 
. δ and . γ are the time delays in state and input, respectively. 

2.6 Load Frequency Control Cyber-Physical System 

The mathematical modeling of the load frequency control has been discussed in the 
previous section and this section explains in detail the implementation of the LFC 
system including all the communication media and the protocols that are in place. 

In a typical grid system with LFC, dedicated communication lines are used to 
send the tie-line and frequency values from the control area to the LFC control 
center using the Inter Control Center Protocol (ICCP). The SCADA/EMS system at 
the control center transmits this real-time data to the LFC control unit. The set-point 
values are then communicated by the control center to the communication equipment/ 
substation which is nearest to the generating plants using IEC 104 or DNP3 protocol. 
This communication is two way. Finally, the set-point is sent to individual generating 
units using Open Platform Communications (OPC) or MODBUS protocol. 

The detailed cyber-physical model of the LFC system with communication media 
and protocols used is as shown in Fig. 2.5. The model has been adopted from the 
proposed AGC pilot project by the Power System Operation Corporation (POSOCO). 
The frequency and tie-line data of each area is communicated to the Regional Load 
Dispatch Center (RLDC) and then to the National Load Dispatch Center (NLDC) 
where the LFC is located. 

The LFC system communications of other large systems such as PJM, ERCOT, 
MISO, and Japan are also similar with small changes. Though firewall is in place 
at the control center, it is still possible for an attacker to spoof the measurements 
by attacking either the sensors or the communication channel. The protocols used, 
ICCP, DNP3, and MODBUS, are known to be vulnerable to cyber attacks (East et al. 
2009). The data is routed at various points which could also be suitable attack points. 

2.7 Summary 

This chapter discusses in detail the various control systems present in a power system 
and the importance of frequency control. Frequency Control is important due to the 
following reasons:
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Fig. 2.5 Load frequency control cyber-physical system 

1. Frequency is a direct measure of generation-load imbalance in an entire area. 
This balance ensures the stability of the complete grid system. 

2. Severe frequency deviations can trigger UFLS and generator trips. 
3. Thus, any attack on one part of the frequency control system can propagate 

through the entire grid and cause stability issues, ultimately leading to blackouts. 

The MA-LFC system model is derived based on the machine and system equa-
tions, and a state-space model is developed to represent the MA-LFC system. Since 
the system is a linearized one, we also introduce the nonlinearities. Analysis of 
the nonlinearities and including them in the model is essential in our study since 
any attack detection algorithm may fail to operate or may give false alarms if it is 
subjected to nonlinearities and noises. 

The model derived in this chapter will further be used as the representative system 
to analyze the various proposed algorithms.
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Chapter 3 
Attack Modeling for Smart Grid Control 

Abstract This chapter provides a comprehensive examination of Smart Grid Attack 
Modeling, offering insights into the intricacies of Multi-Area LFC (MA-LFC), var-
ious attack scenarios, and their potential impacts. It serves as a critical resource for 
researchers, practitioners, and policymakers seeking to enhance the resilience and 
security of smart grid systems. The chapter commences with an introduction, set-
ting the stage for an in-depth exploration of the subject matter. It then transitions 
into the details of MA-LFC, highlighting the critical role it plays in grid stability. A 
significant portion of the chapter is devoted to Attack Modeling, shedding light on 
potential threats and adversarial strategies compromising the integrity of smart grid. 
The discussion extends to Stealth/Undetectable Attacks, emphasizing the importance 
of these subtle threats in real-world scenarios. The chapter also introduces the concept 
of Multiple-Attack Models, encompassing a variety of attack vectors such as Scaling, 
Ramp, False Data Injection (FDI), and Zero-Day Attacks. These models serve as a 
foundation for understanding and evaluating the challenges that the smart grid may 
face. Lastly, the chapter explores Attack Impact Analysis through a practical case 
study. 

Keywords Cyber attacks · False Data Injection Attacks (FDIA) · Data Integrity 
Attacks (DIA) · Stealth attacks · Smart grid security 

3.1 Introduction 

A cyber-physical system security model used for analyzing the system security is a 
combination of the system model and the attacks that could be introduced into the 
system. Detailed modeling of the control system can enable better system dynamics 
analysis under various attacks. The designed methods are likely to fail in real grid 
conditions if an incorrect model is chosen for designing and testing an algorithm in 
a simulation environment. As discussed in Chap. 2, we focus on Load Frequency 
Control as a case study for analyzing various models, detection, and mitigation. 

LFC is an important control system since it is responsible for maintaining grid fre-
quency and area power exchanges (Wood et al. 2013; Kundur 1994). It is a distributed 
control system, and any attack on one part of the LFC can propagate throughout and 
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cause widespread damage. The linearised system model described by Wood et al. 
(2013) gives a good representation of the LFC. However, to improve the model 
(Nanda 1983; Concordia et al. 1957; Bhowmik et al. 2004) have introduced the gen-
erator rate constraint, governor dead band, and communication delay nonlinearities, 
respectively. These improvements help in analyzing better the effect of detection and 
response of the system because certain detection strategies may fail when nonlinear-
ities are taken into consideration. 

Attack modeling is also significant in studying system security. Data Integrity 
Attacks (DIA) can be defined as those which directly modify or append the sen-
sor, and actuator measurements (Sridhar and Manimaran 2010; Wu et al. 2018a). 
The most famous cyber incident on the grid system, the Ukraine Cyber Attack, was 
primarily a False Data Injection Attack (Che et al. 2019). The attack surface usu-
ally includes Measuring units, communication networks, and control devices (Liang 
et al. 2017). While designing the attacks, one must consider the amount of system 
information available to an attacker. Chen et al. (2018a) have considered the realistic 
assumption of reduced network information. The attack vector has been modeled 
using an optimization algorithm to maximize the state deviation and minimize the 
attack cost. Mohajerin Esfahani et al. (2010) have developed methods for robust 
destabilization of a two-area power system using reachability-based data injection 
attack. In FDI attacks, attackers can inject erroneous data into meter measurements 
while maintaining the residual measurement. In generalized FDI attacks (Zhao et al. 
2018), the attacker uses the standard measurement error tolerance of state estimate 
techniques and remains undetected and stealthy. 

This chapter provides a detailed description of the LFC system hierarchy and a 
unified LFC and attack model. Further, we define monitors for detecting attacks using 
residuals and derive a condition for stealth attacks with reduced system knowledge. 

3.2 Smart Grid Attack Modeling Overview 

The attacks on the grid control systems can be broadly classified into Denial-of-
Service Attacks (DoS) and Data Integrity Attacks. These attacks are as explained as 
follows: 

1. Denial-of-Service Attack (DoS): The attacker floods the communication chan-
nels with data to prevent actual data from being unavailable to the LFC system. 

a. Distributed DoS (DDoS): Coordinated DoS over multiple distributed equip-
ment/locations. 

2. Data Integrity Attacks: Here, the attackers directly modify or append the sensor 
and actuator measurements. 

a. Resonance Attack: Data Modification is performed in accordance with the 
changes in measurement. 

b. Stealth Attack: Attacks that can surpass bad data detectors or simple detection 
techniques.
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The above attacks can be injected into the system at various layers of the power 
system using different methods. Table 3.1 gives an overview of the different types 
of attacks and how they are implemented in each layer. 

As seen from the table, the various attacks can happen at different layers of the 
system by using different techniques. It is therefore important to devise methods for 
not only detecting them at various levels but also analyzing them. 

The DoS attacks cause interference to the flow of data. These attacks weakly 
influence the dynamics if they are launched after the system dynamics converge and 
the effects will be worse if the attackers launch the DoS before system convergence. 

Table 3.1 Power system attack techniques 

Sl. no. Attack type Process/physical 
layer 

Application/control 
layer 

Communication 
layer 

References 

1 DoS Node 
Destruction/ 
Interference 

API Attacks, 
Volumetric 
Attacks 

Flooding, 
Wormhole 

Liu et al. (2013, 
2019), Cheng 
et al. (2020), Wu 
et al. (2019), 
Shen et al. 
(2017), Peng 
et al. (2017) 

2 DDoS Attack Sensor 
Overload, Path 
based 

API, Volumetric 
Attacks 

Resource 
Exhaustion 

Wang et al. 
(2019), Girma 
et al. (2015) 

3 FDIA Manipulate IED 
SCD files 
through 
password 
cracking, GPS 
spoofing 

Controller access, 
supply-chain 
compromise, 
attack on 
controller HMI 

Data Network 
Manipulation, 
Attack on 
switches 

Sridhar and 
Manimaran 
(2010), Liu et al. 
(2009), Tan 
et al. (2017), Bi 
et al. (2019c), 
Chen et al. 
(2018a), Bi 
et al. (2019a), 
Mohajerin 
Esfahani et al. 
(2010), Bi et al. 
(2019b), Chen 
et al. (2018b), 
Sarangan et al. 
(2018) 

4 Resonance 
Attack 

Load 
Manipulation, 
Direct switching 

– Data network 
manipulation 

Wu et al. 
(2018b) 

5 Stealth Attacks Frequency and 
tie-line 
channels, direct 
sensor attacks 

Complete system 
knowledge 

Data network 
infiltration, 
sensor physical 
access/ SCD file 
corruption 

Sridhar and 
Manimaran 
(2010)
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The DDoS can cause an even faster impact on the system due to the distributed and 
coordinated behavior. The FDIA can be tactically modeled by an attacker to bypass 
the bad data detection algorithms and stay undetected until it causes some impact 
on the system dynamics. Thus, these types of attacks, also called as stealth attacks, 
can cause severe impacts on the grid operation and stability. Stealth attack modeling 
however assumes the complete knowledge of the system to the attacker which is not 
a practical assumption. Thus, if an attacker has only publicly available knowledge of 
the system and yet launches a successful full stealth attack then the system is under 
a severe threat. 

Analysis of the literature shows that the attacks can be modeled to remain unde-
tected and also cause widespread impacts on the system in a very short duration of 
time. Thus it is important to devise fast detection and mitigation to safeguard the 
system from these attacks. 

3.3 Multi-area Load Frequency Control (MA-LFC) 

Figure 3.1 depicts the LFC control of one Balancing Area and the attack surface. 
The Multi-Area Load Frequency Control (MA-LFC) is responsible for main-

taining the frequency and tie-line flows at scheduled values. The frequency and 
tie-line sensors measure the physical properties and communicate these to the LFC 

Fig. 3.1 Load frequency control of one area of a multi-area system
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controller, which, based on the control algorithm, commands the generation units 
that directly adjust the generation output based on the received Area Control Error 
(ACE). This cycle takes place every . 2–. 5 s. 

3.3.1 MA-LFC Modeling 

Figure 3.1 shows the detailed system model of one balancing area of a multi-area 
power system, including the attack surface (Wood et al. 2013). The frequency (. fi ) 
and tie-line flows between areas. i and. j (.Ptie,i j ) are sent to the LFC control center of 
each area. At the control center, these values are compared with the reference values 
. fref and ‘Scheduled net interchanges’ to get the net change in frequency (.∆ fi ) and 
tie-line flow (.∆Ptie,i ). Based on these values, an ACE is calculated based on which 
the generators increase or decrease their generation values. It is assumed that the 
attack happens at the communication layer. Thus the sensor values to the control 
center and the ACE value to the generators are represented as red-dashed arrows in 
Fig. 3.1. 

The state-space model of .i th balancing area of the LFC system is given by (3.1), 

.

xi (k + 1) =Ai xi (k) + Bidi (k) + W

┌
ω(k)
ν(k)

┐

yi (k) =Ci xi (k) + V

┌
ω(k)
ν(k)

┐ (3.1) 

where 

. 

xi ∈ R
5 = State vector = [∆ fi ∆Pmi ∆Pgi ∆Ptie,i ∆Pci ]'

di ∈ R = Input Vector = ∆Pli
yi ∈ R = Output Vector = ACEi

∀i ∈ 1, 2, ..., number of areas (na)

The system input (. d) is the net change in the balancing area load (.∆Pli ) and the 
system output (. y) is the ACE of each balancing area. The state vector (. x) is a five-
element vector that consists of change in frequency (.∆ fi ), governor output (.∆Pmi ), 
turbine output (.∆Pgi )), tie-line power (.∆Ptie,i ), and generation (.∆Pci ). Here, . ω
and . ν are process and measurement zero-mean Gaussian white noise, respectively. 
Matrices.Ai ∈ R

5×5, .Bi ∈ R
5×1, and.Ci ∈ R

1×5 are the state-space matrices. .W and 
.V are matrices used to mathematically denote the process and measurement noise 
addition into. x and. y, respectively. A white Gaussian noise term is added to the state 
and output variables used during the simulation. The noise is assumed to have a 
standard deviation equal to the accuracy of the corresponding measurement and a 
zero mean. 

The frequency and power measurements are obtained based on voltage and current 
measurements obtained from instrument transformers in the field. The measurement 
errors of instrument transformers are limited by their accuracy class. The accuracy
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is in the range of .±0.1% to .±0.3% for the measurement of voltage and current 
magnitudes using modern Current Transformers (CTs) and Potential Transformers 
(PTs) as specified in IEC 60044 and IEEE C57.13. Thus, noises in the generated 
measurements were assumed to have a standard deviation of .0.1% (or.10−3 p.u.) for 
magnitude and .10−4 rad for phase/frequency (Singh and Pal 2019). 

The generator nonlinearities are included in the generator-turbine-governor model 
by adding a limiter and saturation to the governor-turbine system model. The detailed 
governor-turbine model and physical meanings of the matrices in (3.1) are  given in  
Appendix A. (3.1) is a simplified linearized model for the nonlinear LFC system 
that is used to generate the data for training and to test the algorithm. However, if 
available, historical frequency and tie-line power data can be effectively used in the 
proposed algorithm to get an exact representation of the system dynamics. 

3.4 Attack Modeling for MA-LFC 

Considering a worst-case attack scenario to study the proposed algorithm’s effec-
tiveness, we assume that the attacker can effectively obtain sufficient system knowl-
edge to launch a stealth attack. This system knowledge can be obtained using an 
Eavesdropping Attack (EDA) to obtain the sensor data over time and use system 
identification methods to obtain system parameters. Additive inputs can model the 
FDIA attacks on sensor or actuator measurements to alter the dynamic equation. An 
attacker can launch such attacks on the physical, cyber, or both. 

The system model with attack input .ua(k) is given by (3.2) 

.

xa,i (k + 1) =Ai xa(k) + Bidi (k) + Baua(k) + W

┌
ω(k)
ν(k)

┐

ya,i (k) =Ci xa(k) + Daua(k) + V

┌
ω(k)
ν(k)

┐ (3.2) 

where .Ba,i ∈ R
5×3 and .Da,i ∈ R

1×3 are the matrices which characterize the attack 
input and .ua ∈ R

3 is a vector of attack inputs. .ua ∈ R
3 since attack input is the 

frequency, tie-line, and ACE and is given by (3.3) 

.ua = [ fattack Ptieattack ACEattack]' (3.3) 

The values in each row of .ua will evolve according to the type of attack considered. 
For a step attack, the structure of .ua is 

.ua =
⎡
⎣0 0 0 ... 0 d f d f d f d f

0 0 0 ... 0 dPt dPt dPt dPt
0 0 0 ... 0 dACE dACE dACE dACE

⎤
⎦ (3.4)
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where .d f , dPt , and .dACE are the step attack values for frequency, tie-line flow, and 
ACE, respectively. The instant of attack and value of attack can be varied according 
to the attacker’s intent. 

For random and stealth attacks, the values of.d f , dPt , and.dACE in the above matrix 
at each instant will be different. 

The matrices .Ba, Da are given by 

. Ba =

⎡
⎢⎢⎢⎢⎣

0 −1 0
0 0 0
0 0 0∑
Pi j 0 0
0 0 −Ki

⎤
⎥⎥⎥⎥⎦ Da = ┌

0 0 1
┐

1. For a fixed attack, .Baua and .Daua remain constant. 
2. For variable attacks, .Baua and .Daua change for every time instant . k. These 

attacks can vary randomly, or an attacker with system information can generate 
variable attacks synchronous to the system dynamics, as explained in the next 
section. 

3.5 Stealth/Undetectable Attacks 

Stealth Attacks are a type of FDIA attack with the additional capability of not being 
detected by conventional bad data detection strategies. Such attacks are designed 
using available system information and injected into the system such that the system 
equations are satisfied. This subsection defines monitors used for bad data detection 
and derives a condition for the attacks to surpass these monitors. 

Definition 3.1 A monitor is defined as an algorithm .φ : ∧ → ψ, where .∧ is the 
algorithm input that includes measurements and system data, and the output . ψ =
{True,False} is True if the monitor detects an attack. 

Based on the criteria used, monitors can be further classified as static or dynamic. 
In this work, we consider only static monitors which are defined as follows. 

Definition 3.2 A static monitor .φ : ∧ → ψ is defined as 

.
ψ = True, ||y(k) − ŷ(k)|| ≥ τ

= False, otherwise
(3.5) 

with given input .∧ = {C, y(k)∀k ∈ N} and predetermined threshold . τ . 

Here, the estimate .ŷ(k) depends on the measurement equation alone, i.e, . ŷ(k) =
C x(k). In the absence of an attack, the output should ideally be .y(k) = C x(k). 
An attack is detected whenever the difference between the actual and estimated



36 3 Attack Modeling for Smart Grid Control

measurement using the equation is ideally any value greater than zero. We use . τ
instead of 0 to account for the noise. 

Stealth attacks are defined as attacks that monitors cannot detect. In this section, 
we prove the existence of stealth attacks in the presence of a monitor. If an attack is 
such that the residue .r = y(k) − ŷ(k) calculated by the monitor remains the same 
as that without an attack, then the attack will be stealth or undetected. 

Theorem 3.1 For the system defined in (3.2) with static monitor . φ as given in (3.5), 
an attack .ua will be undetected if .Dua(k) ∈ {0, Im(C)}. 

The proof of the above theorem is given in Appendix D. 
Based on Theorem 3.1, any stealth attack .Daua can be represented as .Cδ where 

. δ is any arbitrary vector of size same as the state vector. Thus, the stealth attack is 

.Daua = Cδ (3.6) 

3.6 Multiple-Attack Model 

In the previous section, we have looked at the False Data Injection Attacks and a 
method for building such stealth attacks. In order to analyze a detection algorithm’s 
performance, it is necessary to consider various attacks, their combinations, and 
variations with time. This work considers a random and varying combination of 
Scaling, Pulse, and Ramp attacks in the sensor and actuator measurements. We use 
Bernoulli variables to characterize the attacks. The mathematical model of the attack 
templates is as follows. 

3.6.1 Scaling Attack 

In scaling attacks, the output value is scaled by a factor . λs . The Bernoulli variable 
.βs is used to characterize the attack, 

.
ya1(t) = βs(t)(1 + λs)y(t) + (1 − βs(t))y(t)

ya1(t) = βs(t)λs y(t) + y(t)
(3.7) 

3.6.2 Ramp Attack 

In ramp attacks, the output is increased proportional to the time progression, 

.
ya2(t) = βr (t)(ya1(t) + λr · t) + (1 − βr (t))ya1(t)

ya2(t) = βr (t)λr · t + ya1(t)
(3.8)
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3.6.3 False Data Injection Attack (FDIA) 

In a random FDIA attack, a random value is added to the output measurements, 

.
ya3(t) = βp(t)(ya2(t) + λp) + (1 − βp(t))ya2(t)

ya3(t) = βr (t)λp + ya2(t)
(3.9) 

Thus the overall attack model is given by 

.ya3(t) = βr (t)λp + βr (t)λr · t + βs(t)λs y(t) + y(t) (3.10) 

The model described by (3.10) gives the multiple-attack model. Based on the 
value of the Bernoulli variable, the attack whose . β value is 1 will be injected into 
the system. This gives a good representation to analyze multiple attacks on a system. 
There also exist some attacks that are not mathematically defined. These attacks are 
called zero-day attacks. 

3.6.4 Zero-Day Attacks 

Zero-day attacks are those attacks that a signature-based security software solution 
cannot detect at the time of the malware’s release. Thus, it can evade conventional 
security solutions to cause the intended harm. According to multiple databases and 
researchers, 74% of the threats discovered in the first quarter of 2021 were zero-day 
attacks. It is nearly double the total for 2020 and is higher than in any other year on 
record. 

Identifying such attacks that are not in the security or detection software database 
is crucial so that they can be further analyzed and mitigation steps are suitably 
modified. 

3.7 Attack Impact Analysis for IEEE 39-Bus New England 
Test System LFC 

To analyze the effect of the different attacks discussed in the above sections, the 
attacks were simulated at the MA-LFC portion of a 39-bus 3 area New England test 
system. The attacks are injected into the sensor (frequency and tie-line) and actuator 
(ACE) measurements of balancing area-1 to analyze the impact of the attacks. The 
simulations are carried out on MATLAB R2018a on a core i5 system. Appendix A 
gives the system diagram and parameters.
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3.7.1 Example 3.1: Single Attack Dynamics 

To analyze the effect of the attacks alone, no load changes were introduced into the 
system. Figures 3.2, 3.3, and 3.4 show the effect of different types of attacks on the 
frequency, tie-line, and ACE under no-load variation. Thus, the dynamics correspond 
only to the attack injections. 

In the left figures, the red plots correspond to dynamics under a fixed step attack, 
and the blue plots correspond to variable attacks. The right side plots are obtained 
using stealth attacks. All the attack values are in the noise range. 

It can be seen that in the case of fixed attacks, the impact is a change in the steady-
state. However, variable attacks inject small attack values at various instants of time 
and are thus difficult to detect. These attacks can build up over time, as seen from the 
plots. Thus, any detection strategy should be fast and detect even small attack values 
before building up the dynamic deviations. 
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Fig. 3.2 Change in frequency measurement under random, step, and stealth attacks 
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Fig. 3.3 Change in tie-line measurement under random, step, and stealth attacks
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Fig. 3.4 Change in ACE under random, step, and stealth attacks 

3.7.2 Example 3.2: Multiple-Attack Dynamics 

We next look at the system dynamics in the presence of load change and multiple-
attack models. The simulation is carried out at a sampling frequency of 1 Hz. The 
load variations obtained from the New England ISO website simulate the normal 
system dynamics. The multiple-attack model is then used to inject different attacks 
into the system, and the dynamic variations during the attack and regular data are as 
shown in Fig. 3.5. 

As seen from Fig. 3.5, the dynamic variations in the frequency and tie-line signals 
are not very prominent. Thus, it is not easy for an operator to detect them just by 

Fig. 3.5 Dynamics of multiple-attack on LFC
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observation. Monitors also cannot detect these attacks; thus, such attacks can affect 
the system performance and lead to instability. 

Hence, the multiple-attack model is an effective tool for studying the performance 
of detection algorithms. 

3.8 Future Scope 

A major scope of research in attack detection includes data and models on renewable 
generation. Renewable penetration into the grid can cause varied dynamics which 
could lead to failure of the detection and can lead to a high value of False Alarm Rates. 
Thus, more research is required in this field. Additionally, detection algorithms that 
combine detection and mitigation can work in better harmony and adapt to system 
changes leading to a complete cyber-security solution. 

3.8.1 Research Gap 

• Lack of comprehensive understanding of all potential attack vectors and their 
consequence. 

• Power control systems are large cyber-physical systems and existing methods 
become computationally challenging. 

• Limited research on the cascading effects of multiple simultaneous attacks. 
• Emerging technologies and security risks. 

3.8.2 Research Directions 

• Utilize threat models such as MITRE ATT&CK ICS and National Vulnerability 
Database (NVD) in combination with power system simulations. 

• Natural Language Processing in combination with expert systems can be used to 
extract relevant threats and apply them into control strategies. 

• Inductive learning-based neural network models can be used to transfer knowledge 
from small power systems to large systems for computational efficiency. 

• Impact study of coordinated or composite cyber attacks and the creation of coun-
termeasures for these attacks, taking communication-based aspects into account.
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3.9 Summary 

In this chapter, a detailed system and attack model is discussed. The multi-area LFC 
model used in further chapters is explained in detail. This system model is further 
modified to include the attack model, thus forming a combined system and attack 
model. 

Static monitors are algorithms that can identify anomalies (bad data detection). 
The attack is called stealthy if an attacker can model the attacks based on available 
data and go unnoticed through the monitors. A successful stealth attack condition is 
derived for the attacks to surpass the detection. Thus, we successfully model a stealth 
attack using available partial system information. 

The effect of each type of FDIA is analyzed by injecting these attacks into the 
39-bus 3 area LFC model. It can be found that though the injected attack at each time 
step is minimal, the dynamics develop over time, and the system loses synchronicity. 
Finally, a multiple and time-varying attack model is proposed using Bernoulli vari-
ables. Such an attack model can be used to test the detection strategy’s performance. 
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Chapter 4 
Vulnerability Assessment for Multi-area 
Load Frequency Control 

Abstract This chapter offers a comprehensive exploration of essential aspects 
related to assessing the vulnerability of modern smart grids. Beginning with an intro-
duction, the chapter proceeds to delve into key methodologies and models designed 
to evaluate and enhance grid resilience. The chapter introduces the concept of Data 
Penetration Testing, shedding light on its importance in gauging the robustness of 
grid systems. It then addresses the Cascading Outage Model, a critical component 
in understanding the potential ripple effects of vulnerabilities in load frequency con-
trol across interconnected areas. Central to the chapter is the detailed Vulnerability 
Assessment section, which encompasses the identification of threats and vulnerabil-
ities, quantifying risk, and prioritizing these risks. This methodology serves as the 
cornerstone for strengthening grid security in the face of evolving threats. Further-
more, the chapter explores a comprehensive Detailed Risk Quantification Method-
ology, offering an in-depth approach to assessing and quantifying vulnerabilities 
within multi-area load frequency control systems. The practical application of these 
methodologies is exemplified through two case studies: Vulnerability Assessment 
for the 9-bus System and the 39-bus New England System. 

Keywords Penetration testing · Cascading outage · Vulnerability assessment ·
VAPT · Grid resilience 

4.1 Introduction 

As we have seen in Chap. 3, even a minor attack can penetrate the system and cause 
widespread damage. Thus, to implement efficient detection and mitigation strate-
gies, it is first necessary to identify the impacts of these attacks. Thus, Vulnerability 
Assessment of such attacks is important to protect these critical systems. 

The system operators use Vulnerability Assessment (VA) and Penetration testing 
to identify the system’s vulnerabilities and take necessary steps to mitigate them (Liu 
et al. 2017). IT and OT systems differ from each other from the cyber-security point 
of view. Traditional Vulnerability Assessment provides a detailed and comprehen-
sive assessment of hardware and software assets, identifies their vulnerabilities, and 
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Risk 
Assessment 

Fig. 4.1 Vulnerability analysis steps 

provides a suitable risk score. Nonetheless, it is vital to analyze the effects of these 
attacks on the system level characteristics and offer a risk score that can be clearly 
understood and managed by power system operators. Once the vulnerabilities are 
identified and ranked, the system operator can determine the steps for attack miti-
gation or system protection. The basic Vulnerability Assessment steps are given in 
Fig. 4.1. 

This chapter presents a Vulnerability Assessment framework for a Multi-area 
Load Frequency Control (LFC) system from a power systems engineer’s perspec-
tive. The attack can be imposed on the sensor measurements, the tie-line MegaWatt 
(MW) and frequency measurements, or actuator signals. The first step is Penetration 
testing, which assesses the vulnerabilities that might not be detectable with network 
or system scans using a gray-box approach. We then develop a detailed Vulnerability 
Assessment framework for the system. 

4.2 Data Penetration Testing 

Penetration testing simulates a hacker and is used for assessing the vulnerabilities 
in a system that might not be detectable with network or system scans. However, 
since penetration or injection of attack is not safe in a live system, we introduce a 
mathematical approach for the same. 

There are various approaches to penetration testing wherein the test assumes 
different levels of data available to the attacker: 

1. White box: All the system and network details are available. 
2. Black box: No system or network details are available. 
3. Gray box: Partial information is available. 

In the presented attack problem, the assumption that an attacker can have all the 
system details is not practical. However, since specific power system data are easily 
accessible or available in the public domain, it is best to adopt the gray-box testing 
approach. 

Figure 4.2 gives the detailed representation of the power system with MA-LFC. 
A 3 area system connected by tie-lines is shown at the physical layer. The frequency 
and tie-line data are sent to the SCADA function layer through the measurement layer 
that encapsulates both the sensors and the communication channel. At the function 
layer, the data are first preprocessed and then fed into the control system. The output
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Fig. 4.2 Attack on MW measurements on a grid system with bad data detection 

of the function layer is then sent back to the physical layer through actuators. The 
following assumptions are made in the assessment: 

1. Frequency Measurements: Directly used in the control system. 
2. Tie-line Measurements: Undergo initial processing to detect Bad Data. 
3. Attacker can spoof into the sensor measurements to get the data values. 
4. Attacker does not have knowledge about the topology of the system. 

Thus, penetration testing aims to show that an external entity can hack into the 
system, inject data into the Tie-line sensor measurements and bypass the Bad Data 
Detection (BDD). 

If .zi are the sensor measurements, the tie-line flows can be estimated using state 
estimation as 

.ẑ = H x̂ (4.1) 

BDD using the method of residues identifies an erroneous measurement by com-
paring the measurement residue with a threshold and raises an alarm if the residue 
is greater than the threshold. 

.r = ||z − ẑ||2 > Threshold (4.2)
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If the attack is modeled as .a = Hc, the residue will be as shown 

.ra = ||z + a − H(x̂ + c)||2 = ||z − Hx̂||2 = r (4.3) 

From (4.3), it is evident that the residue in the event of an attack is equal to the 
actual residue. Thus, to model an attack such that bad data detection tests fail, the 
adversary should have complete information about the measurement Jacobian H (Liu 
et al. 2009). This information is virtually unavailable to an external entity. 

However, since the attack here is only on the tie-line measurements, we can 
determine .H using the available measurements alone. 

Let. H̃ be a matrix formed by collecting the rows of. H that correspond to tie-lines. 
Since .a = H̃c, it is evident that ‘. a’ is in the column space of . H̃. From the properties 
of matrices, ‘. a’ can be obtained as a linear combination of the basis vectors of . H̃. 
Let.zi , i = 1, 2, ..., no be the tie-line measurements obtained at various time instants. 
Thus, z can be written as 

.z = [z1 z2 . . . zno ] (4.4) 

Since .z = H̃x, each of these observed measurements will be in the column space 
of . H̃ . Choose .nt measurements (where .nt is the number of tie-lines) from the total 
available measurements, .no such that these measurements are independent of each 
other, i.e., 

.
Rank(z) = nt

where, z = [z1 z2 . . . znt ]
(4.5) 

The above vectors thus form a basis for the matrix. H̃. This condition can be used 
to model the attack vector as 

.a = b1 z1 + b2 z2 + . . . + bnt znt (4.6) 

where .b1, b2, . . . bnt are arbitrary values that depend on attack objective. 
It is evident from the above analysis that a successful attack can be implemented 

on the system with limited system knowledge. 

4.3 Cascading Outage Model 

Before we move on to the Vulnerability Assessment framework, we first discuss the 
cascading analysis model in this section. 

This study uses the Cascading Outage Simulator with Multiprocess Integration 
Capabilities (COSMIC) model (Song et al. 2016). This cascading outage model is 
represented using the following set of equations: 

1. Differential equations: Used to simulate dynamic components in COSMIC, 
including rotating machines, exciters, and governors:
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.
dx
dt

= f(t, x(t), y(t), z(t)). (4.7) 

The vector . x is used to represent continuous state variables such as voltage, 
and rotor angle that change with time according to a set of differential equations. 
These equations include swing equations, exciter equations and rotor angle equa-
tions. 

2. Nonlinear power flow equations: Used to characterize the power flows: 

.g(t, x(t), y(t), z(t)) = 0. (4.8) 

The vector . y represents the set of variables that vary according to algebraic 
relations such as real and reactive powers. 

3. A series of equations that reflect the distance to thresholds that cause discrete 
variations are used to characterize discrete changes (such as component failures 
or load shedding), and load voltage responses are explicitly represented: 

.h(t, x(t), y(t), z(t)) < 0 (4.9) 

For example, if the ‘line flow .> threshold’, then the corresponding entry in . z
changes state. 

4. During an event, COSMIC employs a recursive approach to solve the differential 
algebraic equations (DAEs) while keeping an eye out for discrete events, such 
as those that divide the network into islands. 

In Eqs. 4.7–4.9, . x and . y are the vectors of continuous state variables, and they 
change according to differential equation and algebraic equation, respectively. The 
variable . z takes discrete values and changes state when the constraint . hi (· · · ) < 0
fails. The detailed equations are given in Appendix B. 

Four different types of protective relays are modeled: (1) under-voltage load shed-
ding (UVLS), (2) under-frequency load shedding (UFLS) relays for stress reduction, 
and (3) over-current (OC) and (4) distance (DIST) relays for transmission line pro-
tection. OC relays monitor the instantaneous current flow along each branch. DIST 
relays serve as a Zone 1 relay that keeps track of the transmission line’s apparent 
admittance. The UVLS and UFLS relays operate at 0.9 pu and 0.95 pu, respectively, 
and shed 25% of load. The OC and TEMP relay settings are obtained from the line 
MVA ratings. 

4.4 Vulnerability Assessment 

To perform a Vulnerability Assessment, we summarize the attack and its impact on 
the grid as explained below. 

“False data injected into the sensors, RTUs, or actuators leads to false genera-
tion dispatches. These dispatches are adjusted to create overloads over the system
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Fig. 4.3 Attack propagation flow 

transmission lines. Protective relays disconnect the overloaded lines. These discon-
nections lead to further overloads and outages, thus leaving the system under a state 
of blackout.” 

The above flow is represented in Fig. 4.3. 
The Vulnerability Assessment involves three major steps (Vaiman et al. 2012): 

1. Identifying the threats and vulnerabilities in the system. 
2. Quantifying the risk due to the threats. 
3. Prioritizing the risks. 

4.4.1 Identification of Threats and Vulnerabilities 

Assuming that the threat is external and not internal to the system, the attack surface 
consists of frequency and tie-line sensors and the actuation signal, i.e., the Area 
Control Error. 

4.4.2 Quantifying Risk 

VA defines risk as the product of an attack’s likelihood and severity. This analysis 
assumes that frequency, tie-line, and actuator data are transmitted over a tainted
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channel with an equal probability of being attacked. Since we are concerned with 
the cascading effect of attack on the grid in the shortest possible period, we propose 
two outage indices: 

1. Load Shedding Index (.rLS): Defined as the ratio of Net Load Shedding to Black-
out Time. 

2. Line Outage Index (.rLO ): Defined as the ratio of total line outages to Blackout 
Time. 

The measurements have a different range of values; frequency change is around 
.10−2, and tie-line power change is around .10. We use mean normalization so that 
different attack vectors are updated to the same level for proper comparison. A 
maximum outage index will indicate a higher outage in a lower time. The contingency 
leading to the maximum outage index will be used to determine the risk. 

The worst-case attack scenario would be to cause maximum damage with mini-
mum attack effort or attack input. Thus, the final proposed net risk index is defined 
as a ratio of the outage factor to the normalized attack (. ā): 

.Risk = (rLS + rLO)/ā (4.10) 

4.4.3 Prioritizing the Risk 

After obtaining all risk indices, these vulnerabilities are prioritized based on their 
risk indices. This ranking can also be used to determine the design processes for 
mitigation solutions. 

4.5 Detailed Risk Quantification Methodology 

We evaluate the risk using cascading failure analysis (Baldick et al. 2008; Che et al. 
2019). There are three stages involved in the quantification of risk. 

4.5.1 Stage 1: Initiating Event Identification 

To determine the triggering event, we remove the network’s connections sequentially 
and conduct a dynamic analysis using a differential equation analysis (DEA) algo-
rithm. Each instant an element exceeds its threshold, the dynamic process is paused, 
the associated element is removed from network, and operations are resumed. The 
detailed procedure is depicted in Fig. 4.4.
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Fig. 4.4 Flowchart for initiating event identification 

4.5.2 Stage 2: Determination of Required Change 
in Generation 

The second phase involves determining the change in generation that can lead to 
the overloading of the line obtained in Stage 1. To achieve this, an optimization 
problem is formulated to find the minimum shift in generation from the current value 
that can lead to overloading of the lines. We utilize a Power Transfer Distribution
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Factor (PTDF) matrix that gives the relationship between changes in generation and 
changes in line flows. Assuming that a line ‘. i j’ is obtained as the output of Stage 1, 
we formulate a corresponding optimization problem as given in (4.11): 

.Minimize
∑

dP2
gi , i = 1, ..ng (4.11a) 

.Subject to,
┌
pi j1 pi j2 ... pi jn

┐

⎡

⎢⎢⎢⎢⎣

dPg1
dPg2
.

.

dPgn

⎤

⎥⎥⎥⎥⎦
+ P0

i j ≥ Pi j,max (4.11b) 

.Pgmin ≤ dPgi + P0
g ≤ Pgmax (4.11c) 

where.dPgi is the change in generation for unit. i ..Pgmin and.Pgmax are the generation 
limits which are fixed for a generating unit. .Pi j,max is the line limit for the line . i j
of interest and .

┌
pi j1 pi j2 ... pi jn

┐
is the row of Power Transfer Distribution Factor 

(PTDF) matrix corresponding to line . i j . .Pi j,max is based on the line thermal ratings 
and is constant for a given line. 

The constraint (4.11b) is that the line flow should be greater than the line limit. 
The constraint (4.11c) sets the generator limits. 

4.5.3 Stage 3: Optimal Attack Vector and Risk Calculation 

Using (7.1), the steady-state values of the generation shifts are calculated for a unit 
step change in the attack vectors. The magnitude of the step attack is calculated by 
averaging the maximum and minimum settling values. After determining the values 
for unit step attacks, the best attack vector is determined by solving the algebraic 
equations. 

Finally, the value of risk is calculated using (4.10). 

4.6 Case Study: Vulnerability Assessment for 9-Bus 
and 39-Bus New England Systems 

4.6.1 Example 4.1: VA on 9-Bus System 

We first perform the VA on a 9-bus system with three generators. Each generator is 
assumed to be in one area. The 9-bus system is as shown in Fig. 4.5.



52 4 Vulnerability Assessment for Multi-area Load Frequency Control

Fig. 4.5 IEEE 9-bus system (Anderson and Fouad 2003) 

Table 4.1 Stage 1 Output:.rLS for 9-bus system 

Branch outage in stage 
1 

Time (s) Total load shed (MW) . rLS

4 (7–8) 7.50 22.50 3.000 

6 (2–6) 7.50 31.25 4.167 

8 (2–3) 7.54 25.00 3.315 

4.6.1.1 Stage 1: Initiating Event Identification 

Table 4.1 gives the Stage 1 output. It can be seen from the table that the outage of 
branch 6(2–6) leads to maximum load shedding and .rLS . 

Thus, the line 2–6 outage is taken as the final output of Stage 1 as indicated in 
Fig. 4.6. 

4.6.1.2 Stage 2: Change in Generation 

In the second stage, we find the value of .dPgi for all generators such that line 2–6 
(obtained from Stage 1) exceeds limits.
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Fig. 4.6 Stage 1 output: outage of line 2–6 

Table 4.2 Risk values for 9-bus system 

Attacked measurement Actual attack values Nominal attack values 
(pu) 

Risk 

Tie-line sensor 96.8931 MW 0.5014 3.9128 

13.0005 MW 0.0673 

. −96.3663 MW . −0.4986 

Frequency sensor 1.5254 Hz 0.3374 1.3374 

. −0.3824 Hz . −0.0846 

4.1381 Hz 0.9154 

ACE Actuator 0.0085 0.0244 4.0765 

. −0.1520 . −0.4369 

0.1958 0.5631 

4.6.1.3 Stage 3: Optimal Attack and Risk Calculation 

Finally, the attack vectors to be injected into different sensors to obtain this change 
in the generation are given in Table 4.2. 

From Table 4.2 it is evident that the maximum risk is to the ACE Actuator, i.e., 
a very small attack value is sufficient to create the outage in the system. Since the
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Fig. 4.7 39-bus 3 area New England test system (Bevrani 2014) 

above system is small, the effects of line outages are not very evident. We, therefore, 
perform the VA on a more extensive system in the next section. 

4.6.2 Example 4.2: Vulnerability Assessment for 39-Bus New 
England System 

In this section, we carry out the Vulnerability Assessment described above using the 
39-bus New-England test system with 3 areas. It is the most common test system 
used in LFC analysis and studies (Rerkpreedapong et al. 2003). The load data were 
obtained from the New-England ISO website (England 2024). The bus, branch, and 
line ratings are obtained from the MATPOWER 39-bus data. 

We carry out the Vulnerability Assessment on the 39-bus New England System 
shown in Fig. 4.7.
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Table 4.3 39-bus system outage indices 

Branch outage in 
stage 1 

Time (s) Total load shed 
(MW) 

.rLS . rLO

12 (6–11) 217.969 845.57 3.8793 0.0046 

13 (7–8) 217.969 845.57 3.8793 0.0046 

16 (10–11) 325.985 648.42 1.9891 0.0031 

17 (10–13) 89.510 0 – 0.0112 

18 (13–14) 89.839 714.8 7.9565 0.0111 

23 (16–21) 245.749 265.57 1.0806 0.0040 

27 (21–22) 19.157 150.62 7.8625 0.0522 

29 (23–24) 224.603 396.07 1.7634 0.0045 

37 (6–31) 60.727 316.07 5.2047 – 

38 (10–32) 53.852 566.07 10.5115 – 

43 (25–37) 81.996 316.07 3.8550 – 

4.6.2.1 Stage 1: Initiating Event Identification 

Table 4.3 provides the quantity of load shedding, the duration of its occurrence, and 
the respective outage indices. Due to the failure of line 12 (linking buses 6–11) or 
13 (linking buses 7–8) in the initial stage, the highest load shedding is 848.57MW; 
however, it takes around four minutes to impact. The maximum.rLS is for the line 38 
interruption (linking buses 10–32). In this instance, the net load shed is 566.07MW 
and transpires within less than one minute. Thus, this case advances to stage two. 

4.6.2.2 Stage 2: Change in Generation 

In the second stage, we find the value of .dPgi for all generators such that line 10–32 
(obtained from Stage 1) exceeds limits using (4.11). 

4.6.2.3 Stage 3: Optimal Attack and Risk Calculation 

Based on the generation changes, the optimal attack vector and risk corresponding to 
each attack are calculated. The risk values corresponding to an attack on the sensor 
and actuators are presented in Table 4.4. 

It can be observed from the risk levels that the most significant risk occurs when 
frequency sensors are attacked. It should be noticed that the attacked frequency 
values exceed the acceptable range. This high-frequency deviation may furthermore 
activate frequency relays, resulting in substantial damage. However, it is possible to 
identify such systemic abnormalities accurately.
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Table 4.4 Risk values for 39-bus system 

Attacked measurement Actual attack values Normalized attack 
values 

Risk 

Tie-line sensor 172.1333 0.5591 4.0192 

. −12.0141 . −0.0390 

. −135.7383 . −0.4409 

Frequency sensor 3.1772 . −0.5000 21.7197 

3.6680 0.4840 

3.6760 0.5000 

Actuator 0.2946 . −0.5799 9.0632 

0.5029 0.1598 

0.5761 0.4201 

4.7 Summary 

This chapter describes the proposed cyber-attack Vulnerability Assessment on the 
Multi-Area Load Frequency Control of a power system. The first step is mathematical 
Data Penetration Testing, which shows that it is possible to model an attack that passes 
through the system detection tests unidentified. Thus the system can be affected by 
stealth attacks. 

In the Vulnerability Assessment framework, risk indices are proposed that effec-
tively capture the relation between attacks on the LFC and the cascading outages in 
the grid system. The vulnerability assessment is done on the modified IEEE 9-bus 
system and 39-bus New-England system, and an attack has been identified, lead-
ing the system into a blackout state. Since the frequency deviation is within limits, 
frequency-based actions are not taken. 

The data obtained from the Vulnerability Assessment can further be used to design 
efficient attack identification and mitigation strategies. 
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Chapter 5 
MITRE ATT&CK for Smart Grid 
Cyber-Security 

Abstract The MITRE ATT&CK framework is a recent web-based tool that has 
been widely used in the field of cyber-security. It is popular due to its open-source 
and crowd-sourced nature and comprehensive cataloging of adversary tactics and 
techniques that are used to launch successful attacks. This chapter delves into the 
integration of the MITRE ATT&CK framework into the realm of power systems, 
with a particular focus on smart grids. In this chapter, we discuss in detail the usage 
of MITRE ATT&CK framework for threat analysis in power systems.We begin by 
mapping the Threats in MITRE to Smart Grids which can help in detection and miti-
gation planning. We combine the MITRE framework with a probabilistic approach to 
rank the attack points. A practical illustration for VAPT using MITRE framework is 
provided using the substation automation system as a case study. The approach used 
in the book can be further extended to other power system and industrial control 
system applications for vulnerability assessment and penetration testing. Overall, 
this chapter serves as a comprehensive guide for security practitioners, researchers, 
and stakeholders seeking to fortify power systems against cyber threats, harness-
ing the analytical power of the MITRE ATT&CK framework to safeguard critical 
infrastructure in an increasingly digital landscape. 

Keywords MITRE ATT&CK · Attack tactics · VAPT · Substation Automation 
Systems (SAS) · Industrial control security 

5.1 Introduction 

In this age of digital transformation, the concept of cyber-security has become 
paramount, and innovative tools and strategies are imperative to protect critical infras-
tructure. One of such tools that has gained prominence in the cyber-security landscape 
is the MITRE ATT&CK framework. Originally developed as a knowledge base to 
understand the tactics, techniques, and procedures (TTPs) used by adversaries in the 
realm of IT security, MITRE ATT&CK has transcended its roots to find valuable 
applications in diverse domains, including the protection of smart grids. 
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MITRE ATT&CK, an acronym for Adversarial Tactics, Techniques, and Common 
Knowledge, is a comprehensive framework that meticulously documents the modus 
operandi of cyber adversaries. Its strength lies in its ability to categorize and describe 
the myriad tactics and techniques used by malicious actors during various stages 
of a cyber attack, from initial reconnaissance to data exfiltration. By providing a 
standardized and structured taxonomy of adversarial behaviors, MITRE ATT&CK 
equips cyber-security professionals with a powerful tool to understand, detect, and 
mitigate cyber threats. 

In the context of smart grid cyber-security, the MITRE ATT&CK framework 
takes on a new and indispensable role. Smart grids, which encompass a multitude of 
interconnected devices, communication networks, and software systems, are fertile 
grounds for cyber threats. As the backbone of a nation’s critical infrastructure, the 
smart grid plays a pivotal role in delivering reliable and efficient electricity to con-
sumers. However, the interconnectivity and reliance on digital technologies in these 
systems also expose them to a broad spectrum of cyber-security challenges. 

The vulnerabilities within the smart grid ecosystem underscore the urgent need for 
robust cyber-security measures. Traditional security models are no longer sufficient 
in this dynamic and ever-evolving landscape. Here, MITRE ATT&CK emerges as 
a beacon of insight and resilience. In the following sections of this chapter, we will 
explore how MITRE ATT&CK can be tailored and applied to the unique challenges 
of smart grid cyber-security, offering a structured approach to understanding and 
countering cyber threats in this critical domain. 

5.2 Understanding MITRE ATT&CK 

In the realm of cyber-security, where the landscape is ever-evolving and adversaries 
continuously adapt their tactics, techniques, and procedures (TTPs), understanding 
and countering these threats is an ongoing challenge. 

MITRE ATT&CK is a comprehensive knowledge base developed by the MITRE 
Corporation, a not-for-profit organization with a long-standing history of conducting 
research and development in various technology domains. The framework’s primary 
objective is to codify and categorize the behaviors and methodologies employed by 
cyber adversaries during the various stages of a cyber attack. 

MITRE ATT&CK is structured around two primary components: 

1. Tactics: These are the high-level objectives that adversaries aim to achieve during 
an attack. Examples of tactics include initial access, execution, persistence, and 
exfiltration. Each tactic represents a key phase in the attack lifecycle. 

2. Techniques: Techniques are the specific methods and procedures employed by 
adversaries to accomplish their tactical objectives. Each technique falls under 
one of the tactics and is accompanied by detailed descriptions, examples, and 
potential detection strategies. 

The MITRE ATT&CK framework is not limited to a specific industry or tech-
nology stack. Instead, it provides a common language and taxonomy that enables 
cyber-security professionals to
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• Understand Threat Behaviors: By detailing the tactics and techniques used by 
adversaries, MITRE ATT&CK offers a deep understanding of how cyber attacks 
are orchestrated. 

• Enhance Threat Detection: Organizations can leverage the framework to enhance 
their threat detection capabilities, as it provides guidance on recognizing and coun-
tering specific techniques. 

• Improve Incident Response: When a cyber incident occurs, MITRE ATT&CK 
assists in incident response efforts by helping teams understand the nature of the 
attack and its potential impact. 

5.2.1 Evolution of MITRE ATT&CK 

MITRE ATT&CK was initially developed by MITRE Corporation in 2013 as a 
research project focused on documenting cyber adversary behavior. Over time, it has 
evolved into a globally recognized and widely adopted framework. It is important to 
note that MITRE ATT&CK is continually updated and refined to reflect emerging 
threats and changing adversary tactics. 

The versatility of MITRE ATT&CK is a key reason for its widespread adoption. 
It has found utility across various cyber-security domains, including, but not limited 
to, 

• Threat Intelligence: Security analysts and threat intelligence teams use MITRE 
ATT&CK to map observed adversary behaviors to known tactics and techniques, 
aiding in attribution and identifying patterns. 

• Security Assessment and Red Teaming: Organizations employ MITRE ATT& 
CK to assess their security posture and test defenses by simulating real-world 
attacks, known as red teaming exercises. 

• Security Operations: Security operation centers (SOCs) leverage MITRE ATT& 
CK to enhance monitoring, alerting, and incident response capabilities. 

• Compliance and Frameworks: MITRE ATT&CK is increasingly referenced in 
industry-specific cyber-security regulations and frameworks, making it a valuable 
resource for compliance efforts. 

5.2.2 Relevance of MITRE ATT&CK in Smart Grid 
Cyber-Security 

The smart grid, with its intricate blend of hardware, software, and critical infras-
tructure, introduces a unique set of cyber-security challenges. The application of 
MITRE ATT&CK to smart grid cyber-security allows for a structured and standard-
ized approach to understanding, detecting, and mitigating threats specific to this 
domain.
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Given the critical nature of smart grid operations and the potential consequences 
of cyber attacks on power generation, distribution, and control systems, the rele-
vance of MITRE ATT&CK cannot be overstated. In the following sections, we will 
explore how MITRE ATT&CK can be adapted and customized to address the distinc-
tive challenges faced by smart grid cyber-security professionals, providing a robust 
framework for defending against evolving threats in this critical sector. 

The integration of the MITRE framework in the Smart Grid VAPT design is 
relevent due to several reasons: 

1. MITRE ICS framework is the most comprehensive framework available for 
threat modeling. 

2. The MITRE matrices give a good correlation between tactics, techniques, and 
mitigations. 

3. It is comprehensive and analyzes security properties against each system com-
ponent 

4. It is a widely accepted framework for ICS threat modeling and vulnerability 
assessment. 

5.3 Mapping Threats to Smart Grids 

The different attacker goals used in the MITRE framework are called tactics. The 
various tactics that are used in the Smart Grid attack model are as follows. 

1. Initial Access: The Initial access can be gained into the substation or control 
center either from outside or through an internal device. This step is used to gain 
an initial foothold. 

2. Execution: Once the attacker is inside the substation, he can start executing 
commands to disrupt the actual behavior of the system. 

3. Persistence: The attacker then modifies programs and configurations to continue 
to be in the system and maintain access. 

4. Privilege Escalation: An attacker may not have all the permissions required 
during initial access. Once inside, he can enter more secure and critical data and 
controls of the HMI and IEDs. 

5. Evasion: The attackers can evade various detection and protection methods, such 
as firewalls, by spoofing communication and exploiting software vulnerabilities. 

6. Discovery: Remote discovery can be used to understand the control center topol-
ogy. This discovery can help the proper subsequent movement to reach the 
desired target. 

7. Lateral Movement: Once the attacker has the complete control center data and 
topology, he can devise methods to move from the initial access points to the 
targets. 

8. Collection: At each intrusion point, the attacker collects data that can be used to 
exploit the controls of the control center. 

9. Command and Control: Using the data at hand, the attacker finally implements 
control commands to alter the working of the controls.
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Fig. 5.1 MITRE ATT&CK matrix for substation automation system 

10. Inhibit Response Function: Commands can also be introduced to inhibit safety 
controls and functions that respond during an emergency situation. 

11. Impair Process Control: Finally, the attacker can disable or even damage the 
complete physical process of the control center, leading to an outage of the 
entire system. 

Under each tactic, some subcategories are identified, and the final matrix for the 
Smart Grid will be similar to Fig. 5.1. 

5.3.1 Mapping Attacks to the MITRE Framework 

Let’s examine how real-world cyber attacks on smart grids can be mapped to the 
MITRE ATT&CK framework: 

Stuxnet Worm: Stuxnet is a notorious example of an attack on industrial con-
trol systems (ICS) similar to those used in smart grids. It employed various tech-
niques, such as spear-phishing (a technique categorized under ‘Initial Access’ in 
MITRE ATT&CK) to infect systems. Stuxnet’s payload included zero-day exploits 
(‘Exploitation of Vulnerability’ tactic) to manipulate programmable logic controllers 
(PLCs) and disrupt uranium enrichment facilities. 

Ukraine Power Grid Attack: In December 2015 and 2016, Ukraine experi-
enced multiple power outages due to cyber attacks. These attacks, attributed to APT 
groups, involved techniques like remote access (‘External Remote Services’ tactic) 
and disabling protective relays (‘Impair Process Control’ tactic). These tactics are 
well-documented within MITRE ATT&CK. 

BlackEnergy Malware: The BlackEnergy malware was responsible for a cyber 
attack on Ukraine’s power grid. It utilized spear-phishing (‘Initial Access’ tactic) 
and exploited vulnerabilities (‘Exploitation of Vulnerability’ tactic) to gain access to
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critical systems. It also used a ‘KillDisk’ component to destroy data, falling under 
the ‘Impact’ tactic. 

NotPetya Ransomware: Although NotPetya was initially a ransomware attack, it 
quickly propagated across networks, disrupting systems worldwide. It leveraged cre-
dential theft (‘Credential Access’ tactic) and lateral movement (‘Lateral Movement’ 
tactic) to spread within networks. 

These examples illustrate how real-world cyber attacks on smart grids align with 
the MITRE ATT&CK framework’s tactics and techniques. By mapping such attacks 
to MITRE ATT&CK, smart grid defenders can better understand the adversary’s 
behavior, enhance threat detection and response, and fortify their cyber-security 
measures against evolving threats. This mapping enables a structured approach to 
safeguarding the critical infrastructure of the smart grid and maintaining reliable 
electricity delivery to consumers. 

5.4 Using MITRE ATT&CK for Smart Grid Defense 

After completing the threat identification phase using the MITRE ATT&CK frame-
work, the next crucial step is to use the insights gained to develop effective mitigation 
strategies for the identified vulnerabilities in your smart grid environment. Here’s how 
MITRE ATT&CK can be leveraged for this purpose. 

5.4.1 Tactic/Technique-Based Mitigation 

Tactic/technique-based mitigation can be achieved by tactic mapping in combination 
with the mitigation library: 

Tactic Mapping: MITRE ATT&CK categorizes adversary behaviors into tactics 
and techniques. Review the tactics associated with the identified threats. For instance, 
if you’ve identified a threat under the ‘Execution’ tactic, focus on mitigations related 
to that specific tactic. 

Mitigation Library: MITRE ATT&CK offers a mitigation section that provides 
recommendations for countering each technique. Explore this library to identify 
relevant mitigations that align with the tactics used by potential adversaries. 

5.4.2 Customized Mitigation Strategies 

Once the threats are identified, tailor-made strategies can be implemented to over-
come the identified vulnerabilities: 

Tailor Mitigations: Recognize that not all MITRE ATT&CK-recommended mit-
igations may be applicable or feasible in your specific smart grid context. Customize 
the mitigation strategies to align with the unique characteristics of your grid. 

Prioritization: Assess the criticality and potential impact of each vulnerabil-
ity and prioritize mitigation efforts accordingly. Some vulnerabilities may require 
immediate attention, while others can be addressed over time.
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5.4.3 Incident Response Playbooks 

Develop incident response playbooks based on MITRE ATT&CK insights. These 
playbooks should outline step-by-step procedures to respond to specific tactics and 
techniques. Include details on how to identify, mitigate, and recover from each threat. 

5.4.4 Continuous Monitoring and Testing 

Even after the application of defense strategies, the MITRE framework can be lever-
aged for continuous monitoring. 

Ongoing Assessment: Continuously monitor your smart grid environment for 
emerging threats and vulnerabilities. Regularly revisit the MITRE ATT&CK frame-
work to update your mitigation strategies in response to evolving threats. 

Red Teaming and Testing: Conduct red-teaming exercises that simulate real-
world attacks based on MITRE ATT&CK tactics and techniques. Use the results to 
validate the effectiveness of your mitigation strategies and identify areas for improve-
ment. 

5.4.5 Vendor and Technology Collaboration 

Vendors and product specialists play an important role in the cyber-security of grid 
systems. 

Engage Vendors: Collaborate with technology vendors and solution providers 
to implement security features and updates that align with MITRE ATT&CK-based 
mitigations. 

Security Training: Ensure that staff members are well trained in cyber-security 
best practices and are aware of the MITRE ATT&CK framework to effectively imple-
ment and manage mitigation strategies. 

5.4.6 Documentation and Compliance 

Maintain detailed records of the mitigation strategies implemented in your smart grid 
environment. This documentation is essential for audit purposes and to demonstrate 
compliance with regulatory requirements. 

By systematically applying MITRE ATT&CK-based mitigation strategies, you 
can significantly improve the security posture of your smart grid infrastructure and 
reduce the risk of cyber attacks. Keep in mind that cyber-security is an ongoing pro-
cess, and staying vigilant, adapting to emerging threats, and continuously improving 
your mitigation measures are essential for protecting critical infrastructure.
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5.5 MITRE ATT&CK for Vulnerability Assessment 
and Penetration Testing (VAPT) 

In this section, we present a case study of employing MITRE ATT&CK for enhancing 
the cyber-security of a smart grid infrastructure. This case study has been adopted 
with permission from a cyber-security organization, Gridsentry (gs). 

The case study combines multiple standards in combination with MITRE threat 
modeling for VAPT assessment of a Substation Automation System which is similar 
to the control center. A similar procedure can be adopted by various utilities for the 
VAPT of their substations or control centers. 

The proposed VAPT process for a substation has the following steps: 

1. Map: Map exploits to MITRE threat model for vulnerability assessment. 
2. Analyze: Determine the likelihood, impact, and risk scores using NIST-800-30 

and attack trees. 

5.5.1 Mapping of Exploits to MITRE ATT&CK 

Figure 5.2 gives a high-level flow of how the exploit is executed. 
Each node in the high-level tree can be accomplished using a chain of events 

derived using the ATT&CK matrix. For example, to implement a Denial of Service 
(DoS) exploit at the station bus, the first step is to gain access to the station switch 
or LAN. This step can be mapped to the initial access steps as below. 

. 

(Exploit Remote Services)OR(Internet Accessible Device)

OR(Replication through removable media)

OR(Spearphishing Attachment)

Similarly, the next step can be further mapped to other cells of the matrix to obtain 
the detailed or lower level attack flow. 

5.6 Analyze the Likelihood, Impact, and Risk Scores 

Once attacks are mapped to the threat model to create a cyber kill chain, the next 
step is to analyze the likelihood and impact, leading to the final risk scores for each 
exploit. This process of risk assessment is carried out using the steps below 

1. Create Attack trees using the MITRE mapping (lower levels) and power system 
knowledge (upper levels). 

2. Assign likelihood scores for each node using CVSS and NESCOR-based scoring. 
3. Calculate net likelihood of tree using probability theory.
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AND 

OR 

Fig. 5.2 High-level attack tree 

4. Assign impact scores for the final nodes in each tree. 
5. Combine the impact and likelihood scores to arrive at the final risk value using 

NIST-800 guidelines. 

The most important step in the risk assessment is the designing or construction 
of attack trees. 

5.6.1 Substation Attack Trees 

Various attack trees are built to achieve attacker goals based on the tactics and tech-
niques discussed in previous sections. Attack trees are an efficient way to represent 
the movement of attacks from their initial onset until the final attack impact. For 
example, Fig. 5.2 shows a part of the attack tree that causes a substation disruption. 

Attack tree in Fig. 5.2 shows various paths through which the primary goal of 
disrupting substation can be achieved. Every node in the attack tree can be a part of 
multiple attack trees. To reach each node, there can be further sub-trees. Leaf nodes 
with further sub-branches are indicated with a bold outline as shown for the ‘Gain 
Access to station bus’.
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Table 5.1 Impact scores 

Final node Impact score Color 

Tripping of critical assets like 
feeder, transformer 

Very high Red 

Tripping of non-critical assets High Orange 

Tripping of bay-level devices Moderate Yellow 

Tripping of ancillary 
services/Data collection 

Low Blue 

No impact on physical layer Very low Green 

Each node can now be assigned likelihood values based on NESCOR guidelines. 
These individual scores can be used to determine the net likelihood. The determina-
tion of the net likelihood is discussed in detail in the following subsection. 

5.6.2 Impact Scores 

The impact score is assigned based on the final node of the attack tree that is reachable 
by a penetration testing module. The impact scores are assigned, and the nodes in 
attack trees are colored based on the values in Table 5.1. 

The system impact will be highest if the attack leads to the failure of critical 
devices in the substations, such as a breaker or transformer failure of critical feeders, 
due to which we assign the maximum impact score for these failures. Tripping of 
bay-level devices has a medium impact, and, finally, tripping of ancillary services 
is given a low score. There can also be attacks on the system that do not impact the 
physical system but may impact the IT system to get data. Such attacks fall into the 
very low-impact category. 

It is possible that due to implementation of security features in a substation, the 
penetration testing penetrates only until an intermediate leaf of the attack tree. Thus, 
the impact score of this leaf node will be considered for final risk calculation. 

5.6.3 Likelihood Scores 

The likelihood scores are assigned in different steps. Firstly, likelihood scores are 
given for each leaf node. Then, probability theory calculates a net likelihood score 
for the entire attack tree. The net likelihood score is then designated as High, Low, 
and Medium based on the range in which the values fall. 

The likelihood scores for each leaf node are decided using NESCOR Electric 
Sector Failure Scenarios and Impact Analyses (NESCOR 2015). CVSS scores are 
another means for assigning the scores. Comparing CVSS and NESCOR 2015 shows
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Table 5.2 Likelihood scores 

Criterion Sub-criterion Scores 

Skill required Deep knowledge on domain 
and cyber attacks 

0.3 

Insider knowledge required 0.5 

Basic domain and cyber skills 0.9 

Accessibility High expertise required to gain 
access 

0.3 

Publicly accessible but not 
known commonly 

0.5 

Common knowledge 0.9 

Attack vector Attack knowledge available 
theoretically 

0.3 

Past history of attack but with 
no attack scripts available 

0.5 

Attack scripts/tools directly 
available in public domain 

0.9 

Common vulnerability Isolated occurrence 0.3 

More than one utility 0.5 

More than half of the utilities 0.9 

that all the parameters used are similar, with only name changes. The individual leaf 
likelihood scores are decided based on Table 5.2, which is derived from the NESCOR. 

The NESCOR document scores the likelihoods with discrete values (0, 1, 3, and 9). 
We combine specific categories and further divide the values by a factor of 10 to arrive 
at the values in Table 5.2. The division by ten is used to obtain probability-like values. 
This division helps calculate the net likelihood using the principles of probability 
theory. 

5.6.3.1 Net Likelihood Calculation 

The overall likelihood scores are then generated based on probability theory. It is 
considered that each event or leaf node leading to the attack is independent of the 
other. Thus, the likelihoods of nodes combined using an OR are added together, and 
the likelihoods combined using AND are multiplied to arrive at the net probability 
for each high-level node. The net likelihood is then divided into different categories 
using Table 5.3.
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Table 5.3 Net likelihood scores 

Final net likelihood Likelihood score 

. ≥0.7 Very high 

0.5–0.7 High 

0.3–0.5 Moderate 

0.1–0.3 Low 

. ≤0.1 Very low 

Table 5.4 Risk: combination of likelihood and impact 

Likelihood 
scores/Impact 
scores 

Very high High Moderate Low Very low 

Very high Very high High Moderate Low Very low 

High Very high High Moderate Low Very low 

Moderate High Moderate Moderate Low Very low 

Low Moderate Low Low Low Very low 

Very low Low Low Very low Very low Very low 

5.6.4 Risk Scores 

The risk scores are a combination of the likelihood and the impacts. This is obtained 
using the NIST Guide for Conducting Risk Assessments (NIST-SP-800-30) (Divi-
sion, 2012). The likelihood and impact scores can be combined as shown in Table.5.4 
to obtain the risk scores. 

The final risk scores determine the security levels of the system. These scores will 
change as new security systems are introduced into the system. Thus the VAPT is a 
continuous process. 

5.7 Case Study: MITRE ATT&CK for Substation VA 

In the example case considered here, the aim of the penetration testing is to 
Open/Close the circuit breaker. This is achieved using a data manipulation attack-
based penetration testing. Figure 5.3 shows all the steps involved in the VAPT process. 

We perform a network penetration testing at the station bus level. The exploit 
captures the packets, modifies them, and re-injects it into the network to give wrong 
commands for operation. The exploit is mapped to the MITRE ATT&CK to get 
the detailed attack tree as shown in Fig. 5.3. The bold numbers in Fig. 5.3 are the 
likelihood scores assigned to each leaf node.
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0.99 

0.14 
Control Packets 

0.126 

Gain Access to 
LAN/ Station Bus 

2.7 

Network Sniffing 
0.9 

Control Packets 

0.121 

Capture CB 

Standard application 
layer protocol: 0.35 

Spoof Reporting 
Messages: 0.35 

Open/ Close CB 
0.041 

Modify CB 

Replication through removable media: 0.6 

Internet Accessible Device: 0.9 

Exploit Remote Services: 0.7 

Spearphishing Attachment: 0.5 

Scripting: 0.35 

Command Line Interface: 0.4 

Detect Operating Mode: 0.55 

Monitor Process State: 0.55 

Data from information repositories: 0.9 

CREATE EXPLOIT MAP AND ANALYZE EXPLOIT 

Fig. 5.3 VAPT for case 1 

5.7.1 Attack Penetrates to Final Node 

Assuming that the circuit breaker is connected to a critical feeder line, the impact 
score assigned to the final event is ‘Very High’. 

The final likelihood score of 0.041 is obtained using probability theory as shown 
in (5.1) 

.Net Likelihood = 2.7 ∗ 0.128 ∗ 0.121 = 0.041 (5.1) 

The final likelihood is thus ‘Very Low’ and Impact is ‘Very High’. Thus, the final 
risk is obtained from Table 5.4 as ‘Low’. The risk is low since it is a complicated 
attack. 

5.7.2 Attack Stops at Capture Packets 

Let us assume that there are security features in the substation that prevent the spoof-
ing of message packets. This could be achieved using Intrusion Detection Systems 
and Intrusion Protection Systems. In this case, the attack is only able to reach until 
the second stage giving us a net likelihood value of 0.3456 as given in (5.2) 

.Net Likelihood = 2.7 ∗ 0.128 = 0.3456 (5.2)
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The final likelihood is thus ‘Moderate’ and Impact is ‘Low’. Thus, the final risk 
is obtained from Table 5.4 as ‘Low’. The risk is low since the attack does not impact 
any critical devices. 

5.8 Summary 

This chapter underscores the critical role of MITRE ATT&CK in fortifying smart 
grid cyber-security, with several key takeaways: 

1. Enhancing Cyber-Security: MITRE ATT&CK provides a comprehensive frame-
work to identify, categorize, and counteract cyber threats in smart grid systems. 
Its structured approach aids in understanding and addressing vulnerabilities 
effectively. 

2. Threat Mapping: MITRE ATT&CK enables the mapping of specific threats 
and attack vectors to smart grid systems, making it easier to recognize potential 
risks and vulnerabilities unique to the energy sector. 

3. Proactive Defense: By using MITRE ATT&CK, organizations can implement 
proactive threat detection and defense strategies. This approach shifts the focus 
from reactive measures to proactive threat hunting and mitigation. 

4. Adaptive Defense: Smart grids evolve, and so do cyber threats. MITRE ATT& 
CK’s adaptability allows for continuous monitoring and adaptation to emerging 
threats, enhancing the long-term resilience of smart grid systems. 

5. Collaboration and Knowledge Sharing: The framework encourages collab-
oration among organizations and industries, fostering knowledge sharing and 
collective defense against cyber threats. 

For practitioners and policymakers in the smart grid industry, the following 
insights and recommendations are offered: 

1. Implement MITRE ATT&CK: Organizations should consider integrating 
MITRE ATT&CK into their cyber-security strategies. It serves as a powerful 
tool for assessing, planning, and implementing defense mechanisms. 

2. Training and Awareness: Adequate training and awareness programs should 
be conducted to educate personnel about MITRE ATT&CK and its application 
in smart grid security. 

3. Incident Response: Develop and refine incident response plans that incorporate 
MITRE ATT&CK to ensure efficient and effective responses to cyber incidents. 

4. Regulations and Standards: Policymakers should consider incorporating 
MITRE ATT&CK into regulatory frameworks and industry standards to pro-
mote its widespread adoption and ensure a consistent approach to cyber-security 
in the smart grid sector. 

5. Collaboration: Encourage collaboration among utilities, vendors, and govern-
ment agencies to share threat intelligence and best practices, leveraging MITRE 
ATT&CK as a common language for communication.
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6. Continuous Improvement: Recognize that cyber-security is an evolving field. 
Regularly update and adapt strategies based on the evolving threat landscape 
and insights gained from MITRE ATT&CK assessments. 

In conclusion, MITRE ATT&CK offers a powerful framework for strengthen-
ing smart grid cyber-security by enabling threat identification, proactive defense, 
and collaborative efforts. Its integration and adoption can significantly enhance the 
resilience of smart grid systems in the face of evolving cyber threats. 
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Part III 
Attack Detection and Mitigation



Chapter 6 
Signal Processing-Based Attack 
Detection 

Abstract The chapter delves into an innovative approach to improve the security of 
smart grid systems through signal processing techniques. The chapter begins with 
an insightful introduction, highlighting the pressing need for robust attack detection 
mechanisms in the evolving landscape of smart grids. It then unfolds a multi-level 
attack detection strategy, emphasizing the importance of a comprehensive defense 
framework. Singular Spectral Analysis (SSA) emerges as a key player, and its applica-
tion in attack detection is thoroughly explored. Further, the focus extends to multivari-
ate SSA for control center-level detection, showcasing extensions in both training and 
detection phases. The chapter meticulously evaluates the performance of the detec-
tion algorithm, with a dedicated section on performance enhancement strategies. The 
heart of this chapter lies in presenting real-world results of multi-level attack detec-
tion, including at the RTU/IED and control center levels. Hypothesis testing-based 
attack detection, particularly SSA Hoeffding Test, takes the stage, accompanied by 
adaptive threshold selection techniques. The results of adaptive attack detection are 
dissected, including performance under load variations, comparisons with existing 
strategies, and scalability evaluations. 

Keywords Singular spectrum analysis · Adaptive attack detection · Multivariate 
time series analysis · Hypothesis testing 

6.1 Introduction 

Over the past few years, the increased number of attacks on the power system has 
shown that the attackers are highly sophisticated and technologically advanced. The 
grid control systems use the Distributed Network Protocol (DNP3) for their commu-
nication which is also highly vulnerable (East et al. 2009; Darwish et al. 2015). Thus, 
the operators and the grid system should be capable enough to handle such attacks
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and respond and recover faster. Fast detection gives sufficient time to mitigate the 
attacks’ effects by isolating the system or implementing emergency control actions. 

Different types of methods have been proposed in the literature for attack detection 
at various levels of the power system. Kalman filter (Akbarian et al. 2020) and 
Stochastic Unknown Input Estimators (Ameli et al. 2018) can be used to estimate 
LFC states using outputs and initial states. These estimates are further compared with 
measurements to detect attacks. Such model-based detection strategies depend on 
the accuracy of system models used for estimation. Bi et al. (2019a) suggests a game-
theoretic approach to model the detection based on attack patterns. Attack-specific 
detection strategies suggest that analysis of specific attack strategies is necessary 
for detection, and Chen et al. (2018) presents a unified model. Bi et al. (2019b) 
discuss Fixed and Variable attacks and describe the variations in their impacts and 
detection. In (Wang and Govindarasu 2018), the authors derive conformity metrics 
that are used to detect abnormal generation controls induced by cyberattacks using 
a semi-supervised clustering. A set of attack templates are used to train the model. 
It utilizes raw data, and therefore, it is a data-driven algorithm. 

Existing model-based algorithms depend on the model’s accuracy, and changes in 
the system can affect these methods. Detection strategies built using specific attack 
patterns can fail to detect new or zero-day attacks. Thus, it is essential to devise new 
methods that are fast, adaptive, and independent of attack templates. 

This chapter proposes a Spectral Analysis-based approach that utilizes the 
dynamic variations of signals during normal conditions to detect attacks effectively. 
An important attribute that is taken advantage of in the proposed work is that the 
grid control systems have somewhat regular dynamics that can be obtained using 
the massive amount of data that is available through Phasor Measurement Units 
(PMUs). Methods based on spectral analysis assume stationarity. The normal data 
are obtained from an underlying model which brings in the stationarity property to 
the normal data. By definition, attacks on the system are non-stationary, and thus 
any attacks into the system will lead to deviation from the normal characterization 
obtained. This deviation can be utilized to detect attacks. 

The algorithm’s significant advantage is its speed and low computational burden, 
making its practical implementation highly feasible in the Smart Grid environment. 

Different types of methods have been proposed in the literature for attack detection 
at various levels of the power system. These can be broadly classified into model-
based and data-based methods. 

Table 6.1 summarizes the various features of existing attack detection algorithms. 
The computational complexity is evaluated based on the most complex step in 

both the training and detection stages. Kalman filter and SUIE are model-based 
methods and depend on the total number of states and measurements. The data-
based techniques depend on the number of measurements and training samples. To 
compare these different methods, we thus consider ‘. n’ as the number of states and 
measurements combined. 

As seen from Table 6.1, both the data-based and model-based techniques have 
their own advantages and disadvantages. Thus, it is necessary to devise a detection 
method that is fast, accurate, and adaptive.
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Table 6.1 Attack detection techniques (. n: combined number of states & measurements,. nt : Number 
of training data) 
No. Algorithm Complexity Advantages Disadvantages 

Estimation/learn Detection 

Model-Based 

1 Kalman Filter 
(Khalaf et al. 
2019) 

.O
(
n3

)
.O

(
n2

)
Does not use 
attack data. 
Detects zero-day 
attacks 

Fails to detect 
noise level 
attacks. Not 
adaptive to 
system changes. 
Detection at the 
system level. 
Cannot be 
implemented at 
RTU/IED level 

2 Stochastic 
Unknown Input 
Estimator (Ameli 
et al. 2018) 

.O(n3) .O(n2) Fast detection 
with good 
accuracy for 
known attacks 

Model is built 
based on attack 
data and hence 
cannot detect 
zero-day attacks. 
Not adaptive to 
system changes. 
Linear model for 
LFC and cannot 
be used at 
RTU/IED level 

Data-Based 

3 Recurrent Neural 
Network (Ayad 
et al. 2018) 

.O(nt ) .O(n) The model adapts 
to system 
changes and can 
detect attacks 
fast. 

Uses labeled 
attack data during 
training. 
Therefore, fails to 
detect zero-day 
attacks. 

4 GAN-Based (Li 
et al. 2021) 

.O(n2nt ) .O(n2) Fast and adapts to 
system changes. 
Semi-supervised 
can detect 
zero-day attacks 

Fails to detect 
stealth attacks. 
Cannot be 
implemented at 
the RTU/IED 
level 

5 Relation-Based 
dynamic analysis 
(Bi et al. 2019b) 

.O(n2nt ) .O(n2) Does not require 
attack model for 
training, and 
hence can detect 
zero-day attacks. 
Nonlinearities do 
not affect 
detection 

High probability 
of false detection 
due to omission 
of modes in 
normal system 
dynamics
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Fig. 6.1 Multi-level attack detection 

6.2 Multi-level Attack Detection 

In the grid system, the lowest level of data acquisition is at the Remote Terminal 
Units (RTUs) or Intelligent Electronic Devices (IEDs). Thus, an attack detection at 
the lowest level of data acquisition can support local detection at a very high speed. 
If one device is tampered with, the changes will be immediately reflected within the 
other local RTUs. Detection accuracy can be further improved by utilizing various 
signals’ relationships. Multiple signals would be available at the control center and 
certain RTUs and IEDs. In this multi-level detection, we propose a single variable 
detection at the RTU/IED level. A multivariate detection is proposed at the control 
center, where multiple signals are available. The overall architecture is as shown in 
Fig. 6.1 

The measurements of the normal working conditions of a power system are easy 
to obtain. However, obtaining an exhaustive set of the attacked measurements is 
not feasible since the attacking pattern of attackers keeps changing and cannot be 
pre-determined. The proposed method’s significant advantage is that only routine 
condition measurements are necessary for the training phase. We first discuss Singu-
lar Spectrum Analysis (SSA) preliminaries and then discuss the proposed detection 
algorithm for a single variable case. We finally extend the proposed algorithm to a 
multivariate detection algorithm.
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6.3 Singular Spectral Analysis (SSA)-Based Attack 
Detection 

This section proposes a cyber-attack detection framework assuming measurement 
and data to be noisy. The proposed method utilizes the representative behaviors in 
the system’s dynamical changes. 

The Singular Spectrum Analysis (SSA) is a data-based time-series method pri-
marily used for spectral estimation. It decomposes the time series into a sum of 
components, each having a meaningful interpretation. Its advantage is that it does 
not require a defined known model and takes no a priori statistical assumptions on 
the signal (Hossein Hassani 2018). Due to these benefits, SSA is used in a wide range 
of applications. SSA primarily involves two stages to create noise-free data: decom-
position and reconstruction. We use the reconstructed data in the proposed method 
to represent the system’s normal behavior (Malioutov et al. 2005). Singular value 
decomposition (SVD) obtains the dominant eigenvectors corresponding to the signal 
subspace. SVD thus aids in separating noise from data and performs dimensionality 
reduction to improve the real-time computation speed. 

The algorithm can be broken down into the following steps: 

1. Singular Spectrum Analysis (SSA): Used to break down the measurement data 
into components that are representative of the normal behaviors using SVD. Based 
on these components, a projection matrix is obtained. 

2. Normal Data Cluster Analysis: Training data are projected onto signal subspace 
based on the projection matrix. This can be considered as a low-rank approxi-
mation of the signal and helps in eliminating components of the noise that are 
in the noise subspace. These projected data form a cluster in the signal subspace 
characterized by a center. 

3. Detection: New measurements are projected to signal subspace, and their distance 
from the cluster’s center is determined. If the data is far from the cluster, it indicates 
an attack. 

6.4 Process Level Single Variate Attack Detection 

Figure 6.2 gives the overall steps involved in the attack detection process for both 
single and multivariate approaches. The different steps involved in attack detection 
are discussed below. 

6.4.1 Signal Subspace Determination 

Since the measurements are recorded and transmitted over Power line carrier com-
munication channels, they usually contain noise. Thus, the proposed method’s first
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Fig. 6.2 Spectrum analysis-based detection flowchart 

step is determining the Signal subspace from the incoming measurements to separate 
noise components. 

We collect .N samples of each sensor data and embed it in an .L-dimensional 
Euclidean space .RL to form the trajectory matrix .T ∈ RL×k (. L ≤ N/2, k = N −
L + 1). The trajectory matrix of each sensor . i is given by 

.T(i) = T =

⎡
⎢⎢⎢⎢⎣

z(i)
1 z(i)

2 ... z(i)
k

z(i)
2 z(i)

3 ... z(i)
k+1

. . . .

. . . .

z(i)
L z(i)

L+1 ... z(i)
N

⎤
⎥⎥⎥⎥⎦

(6.1) 

This matrix inherits a Hankel structure. 
We then use Singular Value Decomposition(SVD) to obtain the eigenvectors 

.U1,U2, ...UL of the covariance matrix .Cov = TT'. 
Since the dominant eigenvalues correspond to the system dynamics, the next step 

is to decompose the column space into dominant (.U1,U2, . . . ,Us) and non-dominant 
(.Us+1, . . . ,UL ) subspaces. The dominant subspace is referred to as the signal sub-
space, while the non-dominant subspace corresponds to noise. We choose SVD for 
this owing to its computational robustness, and high-resolution discrimination against 
noise contamination (Klema and Laub 1980). Thus, any vector in the signal subspace 
will be a linear combination of .U1,U2, . . . ,Us . If .Ss is the signal subspace, 

.
Ss = Span(U1,U2, . . .Us)

U = [U1U2...Us] (6.2)
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6.4.2 Signal Subspace Projection 

The next step is to project each of the vectors.z j = [
z(i)
1 z(i)

2 ... z(i)
L

]'
(i.e., each column 

of matrix . T) of the trajectory matrix onto the signal subspace to get a mathematical 
representation of the normal process behavior. For this, we find a .p ∈ Ss that is 
nearest to . z,i.e., .||p − z|| is minimum. This is equivalent to finding an orthogonal 
projection matrix . P which projects . z onto . Ss

.P = U(U'U)−1U' (6.3) 

Since columns of U are orthonormal, .U'U = I. 

.P = UU' (6.4) 

Since the signal subspace .Ss represents the system’s normal behavior, all the 
training vectors form a cluster. The centroid of the cluster is given by 

.c = 1

k

k∑
j=1

z j (6.5) 

where.z j is each of the column vectors of. T This centroid is represented in the signal 
subspace as 

.c̃ = Pc (6.6) 

If an attack is injected into the system measurements, the system dynamics 
changes and the attack pushes the incoming measurements away from the cluster 
of normal behavior vectors. 

6.4.3 Detection Phase 

Every incoming measurement sample is added to the trajectory matrix to form a new 
lagged vector of measurements in the detection phase. If .zN+1 is the most recent 
incoming sample, the lagged vector is given by 

.z j = [z(i)
k+1 ...z(i)

N z(i)
N+1]' (6.7) 

The final step is to calculate the squared Euclidean distance of each new lagged 
vector .z j from the centroid in . Ss

.Dj = ||c̃ − Pz j || (6.8)
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An attack is detected if this distance exceeds a certain threshold (.Dn > τ ). The 
calculation of this threshold value will be discussed in detail in this chapter. 

6.4.4 Selection of Parameters 

The two major parameters that need to be selected in the algorithm are the window 
length or the number of rows in the training phase, . L , and the value of the number 
of eigenvalues to determine signal subspace . s. The value of the window length . L
depends on the total number of training samples and is usually taken as .L ≤ N/2. 
There are several methods for choosing the value of . s to separate signal and noise 
effectively. In the given simulation, we use the concept that pure noise series typically 
produces a slowly decreasing sequence of singular values. This can be estimated well 
from a screen plot which is a plot of the logarithm of the singular values. 

6.5 Multivariate SSA for Control Center Level Detection 

SSA is primarily designed for single time-series data. However, the single variable 
SSA can be effectively extended to a multivariate method. All the sensor measure-
ments and actuator signals are available at the control center. These measurements 
have certain relations which define the dynamical system better. Thus, the single 
variable SSA can be extended to include multiple measurements and get a better 
characterization for the LFC process (von Bünau et al. 2009; Hossein Hassani 2018). 

The extension of the proposed method to multivariate cases mainly involves 
changes in two steps, as shown by the orange dashed area in Fig. 6.2, i.e., in the 
formation of the matrix. T and in forming the equivalent test vector during detection. 

6.5.1 Extension in Training Phase 

To include multiple measurement values, we form a stacked matrix using the various 
.T(i) matrices of step 1. The stacking can be horizontal or vertical. It will be shown 
in the subsequent sections that the computational burden depends on the number of 
rows. Thus, Horizontal stacking has the advantage that the number of rows (and the 
computation burden) remains constant irrespective of the number or measurements 
considered. The stacked trajectory matrix for .M sensors is 

.TL×(KM) = [T(1)
L×K T(2)

L×K . . . T(M)
L×K ] (6.9)
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6.5.2 Extension in Detection Phase 

The major challenge in the multivariate algorithm during the detection phase is to find 
a new vector that should be the equivalent of all the lagged measurement vectors. In 
order to obtain the equivalent vector with the new sample, we analyze the covariance 
matrix.Cov. When a new sample is included in the trajectory matrix, the matrix. T is 
appended as 

.T(i)
new =

⎡
⎢⎢⎢⎢⎣

z(i)
1 z(i)

2 ... z(i)
k z(i)

k+1

z(i)
2 z(i)

3 ... z(i)
k+1 zk+2

. . . .

. . . .

z(i)
L z(i)

L+1 ... z(i)
N z(i)

N+1

⎤
⎥⎥⎥⎥⎦

= [T(i) : z(i)
k+1] (6.10) 

The stacked trajectory matrix can now be represented as 

.T = [T(1) : z(1)
k+1 : T(2) : z(2)

k+1 : . . . T(M) : z(M)
k+1] (6.11) 

We then construct the covariance matrix as 

.

Cov = TT'

= T(1)T(1)' + z(1)
k+1z

(1)'
k+1

+ T(2)T(2)' + z(2)
k+1z

(2)'
k+1

+ ... + T(M)T(M)' + z(M)
k+1z(M)

k+1

'

(6.12) 

Thus, the vector . w equivalent to a combination of all measurements is given by 

.wk+1w'
k+1 = z(1)

k+1z
(1)'
k+1 + z(2)

k+1z(2)'
k+1 + ... + z(M)

k+1z
(M)'
k+1 (6.13) 

.w =
√

(z(1))2 + (z(2))2...(z(M))2 (6.14) 

Thus, every incoming sample of data is used to create a new time-lagged vector 
.zk+1 and . w, as obtained in (6.14) is used to create the test vector. 

6.6 Performance Analysis of Detection Algorithm 

Since the LFC is a critical control system operating in real time, it is essential to 
consider the time and computational complexity of the attack detection algorithm. 
The computation burden should be low so that the algorithm can be implemented 
using limited hardware and it does not significantly impact the overall performance
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Table 6.2 Computational complexities for single variate and multivariate detection 

Computation step Single variate Multivariate 

Training phase Covariance matrix 
formation 

.O(L2k) . O(L2kM)

SVD .O(L3) . O(L3)

Total .O(L2k + L3) . O(L2kM + L3)

Detection phase Equivalent vector 
computation 

– . O(M)

Distance (.c̃ − Pw j ) .O(L2s) . O(L2s)

Norm .O(s) . O(s)

Total .O(L2) . O(L2 + M)

Enhanced .O(L) . O(L)

of the LFC system. The computational complexity of each step for both the single 
variate and multivariate algorithms is given in Table 6.2. 

During the training phase, singular value decomposition is the heaviest compu-
tation step. The covariance calculation of the trajectory matrix has a computational 
time proportional to .O(L2k) for the single variate algorithm. It depends further on 
the number of sensors in multivariate case .O(L2kM). For SVD, it is .O(L3) for both 
the cases since the Covariance matrix has the same size (.L × L). Thus, the time 
complexity of the training phase is approximate .O(L2k + L3). However, this value 
does not significantly affect the performance as it is not a real-time operation. 

The detection phase computational burden is the time required to calculate the dis-
tance,.Dj = ||c̃ − Pz j ||. Since.P = UU’, the computational complexity of (.c̃ − Pz j ) 
is.O(L2s) and that for norm calculation is.O(s) which leads to an overall complexity 
of .O(L2s + s). Since .s << L , the computation complexity for the detection phase is 
approximately quadratic in . L or .O(L2). 

In the multivariate case, the computational burden further involves the time 
required to compute the aggregate vector .w j . From (6.14), each element of . w is 

.wi =
/

(z(1)
i )2 + (z(2)

i )2...(z(M)
i )2 (6.15) 

Since other values are available from previous time steps, only the.wi correspond-
ing to the latest incoming sample needs to be calculated, giving a complexity of. O(M)

at this stage. Since.M << L , the net computation complexity for the detection phase, 
.O(L2 + M), is approximately the same as in the single variate case. 

The computational complexity can be further reduced using the analysis that 
follows.
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6.6.1 Performance Enhancement of Detection Algorithm 

The performance of the algorithm can be further improved using the theorem below. 

Theorem 6.1 Let .U ' be a linear transformation from .RL −→ R
r . Then, the norm 

of the projection of any arbitrary vector .z ∈ R
L onto the subspace .Sr is equivalent 

to the norm of the transformed vector .U'z ∈ R
r . 

The proof for the above theorem is given in Appendix D. 
Thus, to find the distance.Dj , it is sufficient to find the.||U'(c − w j )|| without the 

explicit projection of .P(c − w j ). Thus, the computation complexity in the detection 
phase is finally reduced to linear in . L or .O(L). 

Remark: The computational complexity of MSSA detection at the control cen-
ter may be further improved by using parallel computing-based high-performance 
computing devices. 

6.7 Multi-level Attack Detection Results 

6.7.1 Example 6.1: Multi-level Attack Detection on 39-Bus 
System 

The detection algorithm is implemented on the IEEE 39-bus 3 area New England 
Test system. The attack surface consists of the tie-line powers and the frequency. The 
system and the attack surface are shown in Fig. 6.3. The MSSA detection in figure 
is at the control center. For process level detection, the detection module will be at 
the sensor points as shown in Fig. 6.1. 

The unified multi-area frequency control attack model and the detection algorithm 
were carried out in MATLAB. The steps followed to obtain results for attack detection 
are as follows: 

Step 1: The simulation uses load forecast data from the New England ISO website 
for the training phase. The actual load data are then used for the testing phase. 

Step 2: Attack simulation is conducted by injecting the different attacks mentioned 
in the previous section at a time of.tatt . Attack values are selected such that frequency 
remains within the prescribed limits to maintain the stealthiness of the attack. The 
Frequency control simulation is performed using the load data from the New England 
ISO website, adding white gaussian noise, and the attacks to obtain the study dataset. 
The noise has a variance of .10−8 for frequency and .10−6 for power measurements. 

Step 3: In the detection phase, we first determine the threshold using the data 
till a time .tth such that .0 < tth < tatt (The method for determination of an adaptive 
threshold will be discussed in Chapter 6). 

Step 4: The algorithm raises the alarm if the distance.Dj goes beyond the threshold 
for any incoming measurement.
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Fig. 6.3 Attack surface and detection for IEEE 39-bus system LFC 

Step 5: False positive and false negative values are finally calculated to obtain the 
detection accuracy and to compare the algorithm with existing algorithms. 

The time of detection is defined as the difference between the sample at which 
the attack begins and the sample at which the distance value crosses the threshold. 

The accuracy can be calculated using false positive and false negative values. 
These parameters are determined as follows: 

1. False Positives(FP): number of attacked measurements being detected as normal 
ones 

a. False Positive rate(FPR)=. FP
Ns

, where .Ns=Total samples 

2. False Negatives(FN): number of normal measurements being detected as attacked. 

a. False Negative rate(FNR): . FN
Ns

3. True Positives(TP) and True negatives(TN): Number of attacked measurements 
(TP) and normal measurements(TN) being detected correctly.
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Fig. 6.4 Screen plot 

4. Accuracy of detection 

.Accuracy = T P + T N

Ns
(6.16) 

6.7.2 RTU/IED Level Detection Results 

We consider an attack compromising the frequency and tie-line sensors of balancing 
area-3. The screen plot is first used to choose the value of ‘. s’ which is obtained as 
shown in Fig. 6.4. 

It can be observed that a significant drop in the eigen value occurs around com-
ponent 75, which could be interpreted as the start of the noise floor. Therefore, we 
choose a value of 75 for . s. 

Figures 6.5 and 6.6 depict the detection of stealthy attacks at the frequency and tie-
line sensors of area-2. The top plot shows the actual sensor value and the bottom plot 
shows the distance variation. The horizontal line indicates the detection threshold. 
In the current results, the threshold is taken as the maximum value of distance. An 
adaptive threshold strategy will be proposed in Sect. 6.10. 

The attacks are detected in the frequency sensor within 7 samples and in the 
tie-line sensor within 9 samples as shown in Table 6.3. Since the sampling is at 1 
s interval, the detection time translates to 7–9 s. Therefore, the detection algorithm 
effectively works against different test scenarios with an acceptable time for detec-
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Fig. 6.5 Attack detection at the frequency sensor with N.= 288, L.= 10, s .= 13 

Fig. 6.6 Attack detection at the tie-line sensor with N.= 288, L.= 10, s .= 13
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Fig. 6.7 Multivariate stealth attack detection with N.= 288, L.= 10, s .= 10 

tion. Additionally, attacks in one area can be detected by sensors belonging to other 
areas. This is because the dynamics of the entire system is connected.

6.7.3 Control Center Level Detection Results 

Figure 6.7 shows the detection at the control center using the multivariate algorithm 
with a constant threshold (As shown in the zoomed-in graph, Fig. 6.7b). 

It can be seen that the plots look similar to that of the single variate algorithm. 
However, when we analyze the time of detection and the accuracy levels, it can be 
observed that the multivariate counterpart detects the attacks with better accuracy 
and in less time as indicated in Table 6.3. This improved accuracy is because the 
multivariate algorithm exploits the relation between different signals in addition to 
the dynamic variations existing in a single signal. 

Table 6.3 compares a single variate algorithm and different combinations used 
for the multivariate analysis of an attack on the tie-line sensor of balancing area-1. 
For a better comparison, the values of N and L used in both S-SSA and M-SSA are
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Table 6.3 Effect of signal selection on accuracy and time of detection 

Algorithm Signals used Accuracy (%) Time of detection 
(samples) 

S-SSA Frequency 97.57 7 

Tie-line 98.78 9 

ACE 99.48 6 

M-SSA Frequency, Tie-line, 
ACE 

99.85 2 

Frequency, Tie-line 99.48 3 

Frequency, ACE 99.48 4 

Tie-line, ACE 99.83 3 

kept constant as N .= 288 and L .= 10. The accuracy is calculated using (6.16) for  
the complete range of detection, i.e., with .Ns = 576. 

The S-SSA and M-SSA are implemented at different levels of the grid. For the 
S-SSA, it can be observed that an attack on any sensor measurements is also reflected 
in other sensors with a decent detection time. For M-SSA, it can be observed from 
the Table 6.3 that the accuracy and the detection time are best when a combination 
of frequency, tie-line, and ACE is used. This better accuracy is because the ACE 
is a combination of frequency and tie-line, and thus the relation between them is 
robust. Any deviations will thus be immediately detected. If a grid control system 
has several measurements, these changes will become more evident using various 
combinations. 

6.8 Hypothesis Testing-Based Attack Detection 

The conclusions presented in the above sections are presented asymptotically. Based 
on a measure of distance from the centroid, they define the attacks that can be detected. 
These asymptotic descriptions may be further developed to create statistical tests that 
detect malicious activity with an acceptable false alarm rate in a finite amount of time. 
Various tests may be applied to describe the problem at hand formally. Mehra and 
Peschon (1971), use whiteness, mean, and covariance in the data sequence to detect 
control system faults. The sequential probability ratio test devised by Wald (1945) 
is one of the most popular and widely used tests. This test selects either the null or 
alternate hypothesis or continues testing based on comparison with specific threshold 
values. 

The conventional statistical hypothesis testing methods can fail in the attack detec-
tion method proposed in this thesis for the following reasons: 

1. It is not possible to define a distribution from which the observations would arise 
(the system is under attack). Therefore, it is impossible to define a likelihood
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ratio, which means that the conventional sequential probability ratio test cannot 
be applied. 

2. The sequential probability ratio test should be applied continuously, and the 
threshold established should constantly adapt to the system changes. 

3. No two exact distributions differentiate between the null and alternate hypotheses. 
The problem is to reject the null hypothesis when there is an attack. 

Based on the above observations, we define a new hypothesis test to define our 
problem and determine the parameters of the detection test based on the proposed 
hypothesis testing framework. 

In this chapter, we propose a formal description for the above detection as a 
hypothesis testing framework and propose a method for threshold determination 
based on Information theory. 

6.9 SSA Hoeffding Test-Based Hypothesis Testing 

We will treat the problem of deciding whether a new set of measurements.wi denotes 
an attack or are normal. We treat this as the composite hypothesis testing problem 
between the hypothesis .H0 and the complement of .H0 denoted by .H1. We call 
this test composite since the exact probability distribution of the measurements is 
unknown. 

The space of equivalent measurements .W.= {wl; l = 1, 2, ...} is a Hilbert space 
since the .wi represents a Euclidean norm of measurements .zi derived from a gen-
erative process. We use the principles of Quantum hypothesis testing (Nagaoka and 
Hayashi 2007) to define the test and the threshold parameter. The distance .Dl is a 
measure of distance between a set .Sn generated by a normal system operation and a 
set .Sa generated by an operation under attack. Thus .Dl is equivalent to the relative 
entropy .H(υ|μ), which is the divergence between two probability laws . υ and . μ
(Jaksic et al. 2012). We propose a composite hypothesis test based on the Hoeffding 
inequality (Amir and Ofer 2010). 

Definition 6.1 (SSA Hoeffding Test) The SSA Hoeffding Test is a hypothesis test 
that rejects the hypothesis .H0 when .wl ∈ SSHT where 

.SSHT = {wl |Dl ≥ τ,∀ l = 1, 2, ..., Dl = ||c̃ − Pw||} (6.17) 

It can be shown that the above hypothesis test satisfies the Neyman-Pearson 
lemma, i.e., it is the test with maximum power or minimum detection error. 

Theorem 6.2 The SSA Hoeffding Test satisfies the Neyman-Pearson lemma 

Definition 6.2 (Neyman-Pearson Lemma) Consider a binary hypothesis test and the 
distance measure: 

.d(x) = ||c − Px ||2
H1

≷
H0

τ (6.18)
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with a probability of false alarm given by 

.PFA = P(d(x) ≥ τ |H0) = β (6.19) 

There does not exist another test with .PFA = β and a detection problem larger than 
.P(d(x) ≥ τ |Ho). That is, the SSA-HT is the most powerful test with .PFA = β. 

The proof for Theorem 6.1 is given in Appendix D. 

6.10 Adaptive Threshold Selection 

The false Positive rate is used to select a suitable threshold. τ . The false positive rate 
is the probability that an attack is declared as detected when there is actually none. 
The threshold. τ can be tuned such that the SSA Hoeffding Test has a high detection 
rate and a low false positive rate. The theoretical false positive rate is given by 

.β = PH0 [Dl ≥ τ ] (6.20) 

Since the number of training data is large enough and the probability. β corresponds 
to that of a rare event probability, we can use the large deviation principles and 
Sanov theorem (Amir and Ofer 2010) to approximate the threshold. Large deviation 
principles provide asymptotic estimates for rare events’ probabilities. Sanov theory 
can be used to determine the minimum value of . τ that can bring the false positive 
rate below. β. 

For a given false positive rate . β, an optimal threshold for the SSA Hoeffding test 
is obtained using the Sanov theorem as given in (6.21) 

.τ ≥ −1

N
logβ (6.21) 

As new data come in and are classified as normal, the threshold can be updated 
using (6.21). Thus the detection process becomes adaptive. 

Equation (6.21) can be used to determine the threshold until a certain finite number 
of data points (. N ). As .N keeps increasing, the threshold . τ keeps decreasing, i.e., as 
.N −→ α, τ −→ 0, which is not a realistic assumption. Thus, we can further use the 
large deviation principles and empirical Cumulative Distribution Function (eCDF) 
to approximate the threshold. eCDF can be used to derive a. τ that can bring the false 
positive rate below. β. 

Definition 6.3 (Empirical Cumulative Distribution Function (eCDF)) Let  
.(X1, . . . , Xn) be independent, identically distributed real random variables with the 
common cumulative distribution function.F(t). Then the empirical distribution func-
tion is defined as
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.F̂(τ ) = Number of elements in sample ≤ τ

n
(6.22) 

Thus, if the eCDF of distance is known, we can estimate the. τ using inverse eCDF 
as in Algorithm 6.1. 

Algorithm 6.1: Threshold estimation for the SSA Hoeffding test using Empirical 
Cumulative Distribution Function (eCDF) 

Input: Sample size (n), Target False positive rate (β), Distance (Dl , ∀l = 1, 2, ..n) 
1. Choose the first n samples of the test phase. 
2. Based on the  n samples obtained in Step 1, estimate an empirical CDF of Dl , 
denoted F̂emp(.; n) 
3. Obtain an estimated value for τ using the inverse eCDF, F̂1 

emp(.; n) and (6.23) 

τ = F−1 
emp(1 − β; n) (6.23) 

4. Use the τ in previous step to detect attacks for next n samples. 
5. If next n samples are also normal measurements, include them and determine the 
new τ 
6. Repeat steps 1 to 5 until attack is detected. 

6.11 Adaptive Attack Detection Results 

6.11.1 Example 6.2: Adaptive Attack Detection 

The detection is first analyzed on the 39-bus 3 area test system as shown in Fig. 6.8. 
The complete data for the system are given in Appendix A. The attack is on the 
frequency and tie-line sensors and the detection is carried out at the control center. 

We use MATLAB on a Core i5 processor system to implement the unified multi-
area frequency control attack model and the MSSA detection algorithm. The steps 
followed to obtain results for attack detection are similar to those given in this chapter. 
The threshold, however, is determined adaptively. The steps followed to obtain results 
for attack detection are as follows: 

Step 1: Use load forecast data from New England ISO in the LFC to generate 
.Δ f,ΔPtie, and ACE training data. 

Step 2: Project the data and determine the centroid using the multivariate SSA-
based detection and (6.6).
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Fig. 6.8 IEEE 39-bus 3 area new England test system 

Step 3: Inject attacks and noise into the system at time .tatt to generate the test 
data. 

Step 4: In the detection phase, determine the threshold using the data till time. tth
such that .0 < tth < tatt . 

Step 5: The algorithm raises the alarm if the distance.Dj goes beyond the threshold 
for any incoming measurement. 

Step 6: Use Algorithm 6.1 for each window to change the threshold adaptively. 
A window of 150 samples is chosen to change the threshold adaptively. 

The window for the threshold change is currently selected randomly. In the future, 
the window size selection can also be made optimal using learning algorithms. 

In the detection phase, we first determine the threshold using Algorithm 6.1 with a 
significance value or false positive rate of.10−4. An alarm is triggered if the distance 
.Dj goes beyond the threshold for any measurement and sustains there. 

Figure 6.9 shows the adaptive change in threshold during attack detection. The 
first window for determining . τ considers the samples from 290 to 440. Once the 
next dataset is classified as normal, the threshold value is modified by including
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Fig. 6.9 Adaptive threshold detection 

the following dataset. The threshold keeps changing as more data are classified as 
normal. 

6.11.2 Performance Under Load Variations 

In this section, we show that the proposed method works well even if there are 
sudden load changes compared with forecast loads or faults in the system. These 
are normal operating conditions of the system that can occur even in the absence of 
an attack. Any detection scheme should be able to discriminate between these and 
attack conditions. 

To analyze the effect of high load variations, let us consider that the load in 
balancing area-1 undergoes a load shedding of 500 MW and is restored after 8 h. 
Figure 6.10 shows the actual and forecast load in area-1. Thus, there is a considerable 
difference between the forecast load used for training and the actual load during 
detection. 

The system conditions in Fig. 6.11 are similar to Fig. 6.7; except that, in balancing 
area-1, there is a load drop. 

It can be seen that the distance calculated during the attack state is much higher 
than that in the load shedding state. This distance value proves that the proposed 
scheme works effectively even if the forecast and actual load values are different. The 
detection performance is because the changes in load contribute to normal dynamic 
variations in the system, which are represented by the subspace . Ss . Additionally, 
the above results suggest that MSSA-based detection cannot detect malicious direct 
tripping of loads. 

In the presence of sensor and actuator faults, the control system may make wrong 
decisions leading to system instabilities. Thus, the proposed algorithm considers 
such faults as attacks, so appropriate mitigation steps may be taken. The difference 
between the estimated and actual value historical information is used to identify
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Fig. 6.10 Actual and Forecast Load In Balancing Area-1 

meter offset in the control center. Also, the proposed approach and State Estimation 
can be used to identify sensor faults. 

6.11.3 Comparison with Existing Detection Strategies 

Some of the advantages of the proposed method have been discussed in Chap. 1. 
In this section, we compare the performance of the proposed detection technique 
with three different types of existing techniques concerning the 3 area system above. 
We compare the proposed detection with a model-based, data-based, and a machine 
learning- based algorithm to show its superior performance when compared to various 
types of methods. The different techniques compared are as follows: 

1. Kalman Filter: Model-Based technique (Khalaf et al. 2019) 
2. Dynamic Characteristics Analysis: Data-Based technique (Bi et al. 2019b) 
3. One Class Support Vector Machine (OC-SVM): Machine Learning-Based tech-

nique (Demetriou et al. 2017) 

Table 6.4 gives a comparison between these methods based on FPR, FNR, Accu-
racy of detection, and average cycles of LFC needed for detection. 

The Kalman Filter-based detection cannot detect attacks in the noise region, due 
to which the false negative rate is 100%. The dynamic analysis-based method and
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Fig. 6.11 Attack detection in the event of load sheds 

Table 6.4 Comparison with other detection methods 

Parameter MSSA based 
(Proposed) 

Kalman Filter Dynamic analysis OC-SVM 

False positive 
rate(%) 

2.00 0 15.00 1.70 

False negative 
rate(%) 

0.01 100 18.00 0.78 

Accuracy 98.96 0 98.8 98.79 

Detection time 
(samples) 

3 140 60 3

OC-SVM-based methods give good detection accuracy. However, the computation 
time is high in the Dynamic Analysis method, and OC-SVM is not adaptive to the 
system changes. Thus, the proposed method has better accuracy and computation 
burden than the existing methods from the comparison. 
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Fig. 6.12 Attack Surface and Detection for IEEE 300-Bus system 

6.11.4 Scalability Evaluation 

Practical power systems are very large compared to test systems. It is important to 
study the performance of detection algorithms for large-scale implementations. To 
establish the scalability of the proposed method, the algorithm is implemented on 
the 300-bus system (Demetriou et al. 2017), 1888-bus RTE (Réseau de Transport 
d’Électricité, France) system (RTE 2021). 

Figure 6.12 shows the IEEE 300-bus system. It consists of three areas and thus 
there are three frequency measurements and there are 9 tie-lines. The detailed system 
parameters are given in Appendix A. 

The 1888 RTE system is divided into 5 areas to study the detection algorithm. 
As shown in Fig. 6.13, the attack surface is very large for the 1888-bus system as 
there are more number of tie-lines between the areas and also 5 different frequency 
measurements. 

Thus the above two systems are good candidate systems to evaluate the practical 
applicability of the algorithm. 

It can be observed from Table 6.5 that the time required for the proposed detection 
is less than five cycles which is acceptable in the system. The variation in accuracy 
and number of detection cycles are minimal compared to the change in system size. 
Therefore, the proposed detection strategy applies to attack detection in practical 
power systems.



6.12 Summary 101

Fig. 6.13 Attack surface for 1888 RTE system 

Table 6.5 Scalability analysis 

39-Bus NE (Bevrani 
2014) 

300-Bus (Demetriou 
et al. 2017) 

1888-Bus RTE (RTE 
2021) 

Accuracy (%) 98.96 97.85 97.42 

Detection time 
(samples) 

3 3 4 

The bus and line data are obtained from the MATPOWER database for all the sys-
tems. The machine dynamic data for the 300-bus system is obtained using (Demetriou 
et al. 2017), and the load data is assumed. The machine data, load data, and forecast 
loads for the 1888-bus system are obtained from the RTE website. As the size of the 
system increases, the attack surface also proportionally increases. All the systems’ 
data are given in Appendix A. 

6.12 Summary 

This chapter proposed a spectral analysis-based algorithm at two different system 
levels using S-SSA at the RTU/IED level and M-SSA at the control center level 
to detect attacks with a very low computation burden. The proposed method can 
successfully identify multiple coordinated and stealth attacks using measurements 
with noise with a high accuracy level since it is a data-based algorithm. The method’s
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significant advantages are that it can be implemented on limited hardware, and the 
time taken for attack detection is small such that it is detected before any significant 
impact is caused on the grid. 

Multivariate detection can also be implemented within RTUs or IEDs, which have 
the capabilities of processing multiple signals. It is possible to extend the method to 
other power system applications with minimal hardware. 

From the above results, the proposed algorithm has the following advantages: 

1. The attack is detected within a span of 3 cycles. For an LFC system, the acceptable 
detection time is usually under five cycles, and thus the proposed algorithm can 
be effectively applied for fast attack detection. If the samples are available at 
the control center at a faster rate, the detection becomes faster. Fast detection 
can provide sufficient time to implement mitigation strategies to defend against 
attacks. 

2. The algorithm is not dependent on the exact value of the predicted load, and any 
variations in the system do not degrade the algorithm’s performance. 

3. The proposed algorithm has a better performance than existing detection algo-
rithms used for LFC. 

4. The performance of the proposed algorithm is independent of the size of the 
system and thus is suitable for practical grid systems. 

5. The computation burden is very low; thus it can be implemented even inside an 
existing IED with significantly less hardware requirement. 

6. Power system topology is continuously changing. Algorithm performance is not 
impacted by system topology 

7. Measurements have noise. The algorithm can work well with noisy measurements. 
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Chapter 7 
Machine Learning-Based Attack 
Detection 

Abstract This chapter presents an innovative approach to enhance the cyber-
security of smart grid systems through the utilization of machine learning techniques. 
It commences with a comprehensive introduction and then delves into the pivotal 
role of machine learning in the context of smart grid attack detection. A focal point 
emerges in the form of Support Vector Data Description (SVDD) for online attack 
detection, elucidating its core components. Simulating the application of SVDD, the 
chapter meticulously details the results and engages in insightful discussions. Fur-
thermore, a comparative analysis with other classifiers is presented, shedding light 
on the strengths of the SVDD approach. In summary, this chapter offers a com-
prehensive exploration of machine learning-based attack detection in smart grids, 
featuring practical simulation results and discussions. It underscores the effective-
ness and adaptability of the SVDD methodology while providing valuable insights 
into its application in real-world scenarios. 

Keywords Support vector data description · Machine learning · Attack 
detection · Zero-day attacks 

7.1 Introduction 

The present-day grid control systems can use data from sensors and actuators and 
artificial intelligence algorithms to perform timely qualitative and quantitative analy-
sis to understand the dynamics of the control system under various system operating 
conditions and fault conditions. In the past few years, various algorithms have been 
developed to detect attacks using the known attack semantics and RTU and IED data. 

For attack detection at various levels of the power system, various strategies 
have been presented in the literature. Denial of Service (DoS) has been extensively 
investigated because they are one of the most accessible forms of attack (Liu et al. 
2019; Cheng et al. 2020). However, attack patterns have evolved, and attempts to 
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modify or append the sensor and actuator measurements Sridhar and Manimaran 
(2010) require further investigation because such data integrity attacks can have a 
direct and considerable impact on the system’s economy and stability (Tan et al. 
2017). 

Ideally, every system should have some basic attack-defense capabilities. Attack-
ers attempt to breach these capabilities, and the system defends itself, giving rise to 
a game-theoretic model of cyber attack-defense interaction. The authors of Bi et al. 
(2019a) focus on the limitations of knowledge available to attackers and defend-
ers, and they propose a game-theoretic approach to model attack detection. Attack-
specific detection strategies imply that analysis of attack techniques is required for 
detection. Chen et al. (2018) presents a unified model consisting of detection corre-
sponding to exogenous and scaling attacks on tie-line and frequency measurements, 
as well as discussions of their effects on frequency and tie-line power. Bi et al. (2019b) 
discusses Fixed and Variable attacks, as well as the differences in their impacts and 
detection. 

The Kalman filter (Akbarian et al. 2020) and Stochastic Unknown Input Esti-
mators (Ameli et al. 2018) can be employed to estimate LFC states using out-
puts and initial states. Attack detection is achieved by comparing the estimates with 
the measurements. The accuracy of system models used for the estimate is critical 
for model-based detection tactics. The authors of Wang and Govindarasu (2018) 
derive conformity measures by observing the behavior of generators in the same bal-
ance area. These measurements are then employed with a semi-supervised clustering 
approach called Hierarchical Density-based Spatial Clustering of Application with 
Noise to detect aberrant generation controls caused by cyberattacks (HDBSCAN). 
The model is trained using a series of attack templates. It is a data-based algorithm 
because it uses raw data. 

In this chapter, we discuss the general framework for using machine learning 
methods for smart grids for attack detection. This is followed by a Support Vector 
Data Description (SVDD) based attack detection strategy. An adaptive support vec-
tor data description-based attack detection strategy is developed to detect zero-day 
attacks for fast and reliable real-time attack detection. The detection has two SVDD 
modules: SVDD-A for attack detection and SVDD-Z to classify zero-day attacks 
from known attacks. 

7.2 Machine Learning in Smart Grid Attack Detection 

There are several machine learning and artificial intelligence-based techniques that 
have the required capabilities to be applied to the detection of attacks from smart grids. 
The key steps involved in implementing an attack detection strategy using machine 
learning involve some common steps, such as effectively training models, deploying 
them in a production environment, and continuously monitoring for threats.
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Here are the essential steps in the implementation of such a strategy: 

1. Define Objectives and Scope 

• Clearly define the objectives of your attack detection strategy. What types of 
attacks are you aiming to detect? What is the scope of your detection efforts 
(e.g., network, endpoint, application layer)? 

2. Data Collection and Preprocessing 

• Collect high-quality, labeled data that includes both normal and malicious activ-
ities. Data sources may include logs, network traffic, or endpoint telemetry. 

• Preprocess and clean the data to remove noise, handle missing values, and 
transform it into a suitable format for machine learning algorithms. 

3. Feature Engineering 

• Identify relevant features (attributes or variables) from the data that can aid in 
distinguishing between normal and malicious behavior. 

• Extract, select, or engineer features that capture meaningful information about 
the system’s behavior. 

4. Data Splitting 

• Divide the labeled data into training, validation, and test sets. The training set 
is used to train machine learning models, the validation set helps in hyperpa-
rameter tuning, and the test set evaluates model performance. 

5. Select Machine Learning Algorithms 

• Choose machine learning algorithms suitable for your detection problem. Com-
mon choices include decision trees, random forests, support vector machines, 
neural networks, and anomaly detection methods. 

• Consider ensemble methods for combining multiple models to improve accu-
racy and robustness. 

6. Model Training 

• Train the selected machine learning models on the training dataset. Fine-tune 
hyperparameters to optimize model performance. 

• Experiment with different algorithms and configurations to find the best-
performing models. 

7. Validation and Cross-Validation 

• Validate model performance using the validation dataset. Employ cross-
validation techniques to assess model stability and generalization. 

• Evaluate metrics such as accuracy, precision, recall, F1-score, ROC-AUC, and 
others relevant to your use case.
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8. Model Deployment 

• Deploy the trained models in a production environment where they can monitor 
real-time or near-real-time data for signs of attacks. 

• Ensure scalability, fault tolerance, and low-latency processing in the deploy-
ment infrastructure. 

9. Continuous Monitoring 

• Implement continuous monitoring of model performance in production. Set 
up alerting mechanisms to notify security teams of potential issues or model 
degradation. 

• Regularly retrain models with fresh data to adapt to evolving attack techniques 
and maintain high detection accuracy. 

7.3 Support Vector Data Description Based Online Attack 
Detection 

This section proposes a cyber attack detection framework that utilizes Support Vec-
tor Data Description (SVDD). Figure 7.1 shows the detailed system model of one 
balancing area of a multi-area power system (Wood et al. 2013) along with the attack 
surface and the detection algorithm implementation. 

Fig. 7.1 Load frequency control with attacks and detection
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Fig. 7.2 Intelligent attack detection using SVDD 

SVDD obtains a spherically shaped boundary around a data set. We make the 
spherical boundary more flexible in the proposed strategy by using appropriate kernel 
functions. Thus, it is an efficient tool to detect unknown or zero-day attacks. 

The detection algorithm is to be implemented in real time. The real-time grid 
frequency and tie-line data sent to the LFC control center is first sent to the SVDD-A 
module. This module is trained to differentiate attack data from normal data. Thus 
it is called the attack detection SVDD module. 

Once the attack is detected, it is required to identify the attacks to implement 
suitable mitigation strategies. The data is thus sent to the SVDD-Z module to check 
if the detected attack is a zero-day or known attack. If it is a known attack, the attack 
is identified and then a suitable planned mitigation corresponding to the identified 
attack is implemented. If the attack is classified as a zero-day attack, the immediate 
response is to implement emergency action to safeguard the LFC system. Then 
the SVDD-Z model is trained with the new attack and updated. At the same time, 
appropriate mitigation steps are devised corresponding to the new attack. Attacks
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whose signatures are not available to the defenders can also be detected using the 
proposed method. 

An overview of the steps involved in each SVDD module is shown in Fig. 7.2. 
The detection algorithm is explained in words in Algorithm 7.1. 

Algorithm 7.1: SVDD Based Zero Day Attack Detection 
DATA GENERATION 
Input: Historical Load Data ∆Pl 
Output: ∆ f,∆Ptie  
1. Generate the ∆ f,∆Ptie  using ∆Pl as input to the LFC model. 
2. Fix the βs, βp, βr values and generate data with attack using (3.10). 
3. Divide the data into training and test data. 
TRAINING PHASE 
Input: ∆ f,∆Ptie  training data, Kernel type, Data Labels 
Output: Trained SVDD Model, RSA  and RSZ  

1. Use the training data to find optimal value of P and b f of hypersphere 
(Detailed in 7.3.3). 
2. Using obtained hyperspheres, find the radii RSA  and RSZ  using (7.7) 
DETECTION PHASE 
Input: SVDD Model, RSA  and RSZ  

Output: Attack: Yes or No, Zero Day Attack: Yes or No 
1. Calculate the distance of each test data using (7.6) 
2. If Distance ≥ RSA, attack detected. 
3. If Distance ≥ RSZ  , zero-day attack. 

7.3.1 Normal Data Description in SVDD 

SVDD models a hypersphere, with center ‘. c’ and radius ‘. R’, which includes all the 
training data to produce a description of the normal data. To obtain the parameters 
of the hypersphere, we minimize the volume of the sphere subject to the inclusion 
of all the data points (.y1, y2, ..yi ...), 

.Min F(R, c, εi ) = R2 + P
∑

i

εi (7.1a) 

.Subject to, ||yi − c||2 ≤ R2 + εi , i = 1, 2, ..., n, εi ≥ 0. (7.1b) 

.P and. ε are penalty coefficient and relaxation variables, respectively, that handle 
the possibility of outliers in the training set. By using Lagrange multipliers (.αi , γi ), 
the above equation can be simplified as
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. L = R2 + P
∑

i

εi −
∑

i

αi [R2 + εi − (||yi ||2 − 2c.yi + ||c||2)] −
∑

i

γiεi .

(7.2) 
Since the Lagrange multipliers should be positive and .L should be minimized, 

the dual of Eq. 7.1b is obtained as 

.Max L =
∑

i

αi (yi , yi ) −
∑

i, j

αiα j (xi , x j ) (7.3a) 

.s.t 0 ≤ αi ≤ P, i = 1, ..., n. (7.3b) 

The algorithm is further improved by considering Kernel functions in place of the 
dot products. Thus (7.3b) can be written as, 

.Max L =
∑

i

αi K (yi , yi ) −
∑

i, j

αiα j K (yi , y j ) (7.4a) 

.s.t 0 ≤ αi ≤ P, i = 1, ..., n. (7.4b) 

Several kernel functions can be used. It is observed that the Gaussian kernel function 
gives the best result for our application, and thus we use the Gaussian kernel. 

Using the KKT conditions, solving Eq. 7.4b gives three conditions on the variable 
. αi

.||yi − c||2 < R2 ⇒ αi = 0 (7.5a) 

.||yi − c||2 = R2 ⇒ 0 < αi < P (7.5b) 

.||yi − c||2 > R2 ⇒ αi = P. (7.5c) 

Equation 7.5b represents the data points that are on the hypersphere boundary. 
The center of the sphere is a linear combination of all the data points. However, 
only those data points which satisfy the condition .αi ≥ 0 are required to represent 
the boundary of the training data samples. These particular .yi values are called the 
support vectors. 

7.3.2 Distance Tracking and Detection 

In the detection or testing phase, any test vector that falls within the hypersphere is 
normal. Any measurement that falls out of this boundary will be considered anoma-
lous, and the attack alarm will go off. A test vector .yti will be within sphere if it 
satisfies 

.||yti − c||2 = (yti .yti ) − 2
∑

i

αi (yti .yi ) +
∑

i, j

αiα j (yi .y j ) ≤ R2. (7.6)
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where the radius is the distance of any support vector from the center 

.R2 = (yk .yk) − 2
∑

i

αi (yi .yk) +
∑

i, j

αiα j (yi .y j ). (7.7) 

Each SVDD module will have a different radius which we define as follows: 

1. .RSA = Radius for model SVDD-A. 
2. .RSZ = Radius for model SVDD-Z. 

7.3.3 Optimization-Based Parameter Selection 

The major challenge in the SVDD algorithm is designing the SVDD parameters 
(.P and kernel parameters). The selection of optimal parameters can significantly 
improve the calculation accuracy, simplify the calculation complexity, and improve 
the speed of the detection process. 

If the support vector description rejects an object from the target distribution, it 
is an error. A .P value of 1.0 indicates that all target data should be accepted, which 
is not a reasonable assumption, and thus selection of .P determines the number 
of outliers. The kernel parameter determines the generalization ability. To set the 
kernel parameters (for example, width of the Gaussian kernel), we consider the target 
acceptance rate since as the width increases, the number of target data included in 
the description becomes larger. 

The Particle Swarm Optimization (PSO) chooses the optimal value of the param-
eters. P and width.b f . PSO is selected due to its reduced implementation complexity, 
accuracy, and simplicity in finding optimal solutions. Moreover, PSO has shown 
excellent performance in parameter optimization for various nonlinear and real-
world applications. Thus, the PSO algorithm is a near-ideal option for choosing the 
SVDD parameters since its structure allows the particles to preserve the best previous 
experiences over multiple generations. 

The results in the upcoming sections will show that the algorithm gives a good 
accuracy of classification and can be implemented fast. The limitation of the proposed 
algorithm is that the performance can be affected depending on the choice of Kernel. 
For the given system and data, the Gaussian kernel was shown to give good results. 
However, for a different system, a suitable choice of kernel is highly important.
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Table 7.1 Decision table for the SVDD modules 

Conditions Attack type Output: SVDD-A Output: SVDD-Z 

Normal data – Normal/No Attack – 

Attack data Scaling (SA) Attack Known attack 

Ramp (RA) Attack Known attack 

Denial of service 
(DoS) 

Attack Known attack 

FDIA Attack Zero-day attack 

7.4 Simulation Results and Discussions 

7.4.1 Example 7.1: SVDD Detection for Attacks 

The above algorithm is tested on the frequency control of a 39-bus New England test 
system. Simulations are carried out using MATLAB 2021a on a Core i5 processor 
system. The system consists of 3 areas with multiple tie-lines between the areas as 
shown in Fig. 6.2. 

7.4.2 Data Preparation 

For testing the algorithm, we use load forecast data and actual load data obtained 
from the New England ISO website to simulate the LFC operation under normal 
grid load variations. Different attacks as described in (3.10) are then injected into the 
system. The Bernoulli variables describe the instant of these attacks. To obtain the 
study dataset, noise is added to the signals at different signal-to-noise ratios (SNR). 

The attack types and classification are as shown in Table 7.1. The attack types 
are indicated as N: No attack; SA: Scaling Attack; RA: Ramp Attack; DoS: Denial 
of Service Attack. The random attacks are used as the unknown attack (represented 
by . ∗) to test the algorithm for zero-day attacks. Thus the two modules classify the 
attacks as follows: 

1. SVDD-A: Normal (N) and Attack (SA, RA, DoS,. ∗). 
2. SVDD-Z: Known (SA,RA,DoS), Unknown (. ∗). 

Figure 7.2 shows the plot of the frequency and tie-line signals of balancing area-1 
under normal and attack conditions. It can be observed that the variations in the signal 
are negligible. Thus, it cannot be immediately identified by the operators or by using 
bad data detection and Kalman filter estimations, which establishes the need for a 
more advanced and accurate detection process.
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Table 7.2 Optimal parameter values for SVDD modules 

.P .b f False positive rate Accuracy 

SVDD-A 0.728 0.084 0.041 92.312 

SVDD-Z 0.156 100.180 0.011 97.443 

7.4.3 Particle Swarm Optimization (PSO) Based Parameter 
Selection 

PSO is used to determine the fitness parameters for .P (penalty parameter) and . b f

(Kernel width). The optimal fitness and values of .P and .b f at optimal fitness for 
SVDD-A and SVDD-Z are indicated in Table 7.2. 

7.4.4 Detection Results 

Figure 7.3a shows the results for SVDD-A, and Fig. 7.3b shows the detection results 
for SVDD-Z. In Fig. 7.3a, the attack is detected if the Distance value is greater than 
the red line, i.e., the radius. Similarly, in Fig. 7.3b, the samples with distance values 
greater than the radius indicate a zero-day attack. 

We use the Accuracy, False Positive Rate, and the Area Under ROC Curve to 
evaluate the algorithm’s performance. 

1. Accuracy is a measure of correct predictions for the dataset. A high level of 
accuracy is expected in the grid environment as it is a critical control system. 

2. False positive rate (FPR) is the fraction of normal data that is detected as an attack. 
In the power system environment, the FPR must be very low since detecting 
normal data as an attack could lead to downtime in the system operation, which 
is unacceptable. 

Figure 7.3 is obtained based on the test data from Fig. 7.2. The test data consists 
of scaling attack, FDIA, and normal data, respectively. Figure 7.3a shows the data 
points to be well above the threshold for the attack part and below the threshold for 
the no-attack part. In Fig. 7.3b, since scaling attack is a known attack, the data points 
for scaling attack are also below the threshold and only the FDIA is classified as 
zero-day attack. 

The accuracy and false-positive rates are shown in Table 7.2. It can be observed 
that the proposed algorithm gives a very low FPR for the SVDD-A algorithm, which 
is acceptable. The high accuracy makes the algorithm suitable for implementation 
in smart grid controls.
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Fig. 7.3 Test results for attack detection in SVDD-A and zero-day attack detection in SVDD-Z 

7.4.5 Comparison with Other Classifiers 

In this section, we will evaluate the performance of the proposed SVDD-A, Neu-
ral Network (NN), K-Nearest Neighbor (KNN), and Naive Bayes (NB) Classifier 
and Gaussian Support Vector Machine (SVM) in LFC attack detection. Since some 
methods need both positive and negative values for training, the step attack, which is 
the simplest attack type, will be used to generate the negative training samples. All 
the algorithms are trained on this dataset. 

Table 7.3 gives the results of the classifications, and Fig. 7.4 shows the ROC curves 
for the different methods along with the Area under them.
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Fig. 7.4 Receiver operator characteristics for various algorithms 

Table 7.3 Performance of ML algorithms in attack detection 

ML algorithm False positive rate 
(%) 

Accuracy (%) Training time (s) Testing time (per 
sample) (ms) 

SVDD-A 0.425 97.332 2.000 0.025 

Neural network 7.243 90.762 1.496 0.002 

KNN 6.576 86.212 1.675 0.032 

Gaussian SVM 0.373 76.239 0.780 0.021 

Naive Bayes 6.182 87.814 2.760 0.005 

The accuracy and FPR are dependent on the threshold selected for the algorithm. 
One threshold can give better result than the others, and thus the accuracy and FPR 
cannot be used as good measures for comparing different algorithms. 

The Receiver Operator Characteristic (ROC) is a probability curve that plots the 
TPR against FPR at various threshold values. The Area Under the Curve (AUC) 
measures the ability of a classifier to distinguish between classes. The higher the 
AUC, the better the model’s performance at distinguishing between two classes. 
Thus, the area under the ROC curve gives a better comparison between different 
methods. The higher the AUC, the better the algorithm’s classification performance. 
From Fig. 7.4, it can be observed that the AUC is maximum for the proposed SVDD-A 
method as compared to other existing classifiers in the literature. Thus, the proposed 
algorithm is a better choice for attack classification in grid control systems.
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It is evident from Table 7.3 that the proposed optimized SVDD-A gives much 
better accuracy than other existing binary classifier machine learning algorithms. The 
model’s training is done offline, so the higher training time is acceptable. However, 
the testing time is very low, making the method suitable for grid control systems. 

7.4.6 Summary of Results 

From the obtained results of the algorithm, the following conclusions may be drawn: 

1. The SVDD-A algorithm is able to successfully detect whether there is an attack 
or not for both known and zero-day attacks with good accuracy. 

2. The SVDD-Z algorithm successfully classifies the attacks as known or zero-day 
attack, thus facilitating fast mitigation. 

3. Both the algorithms are found to be computationally efficient and act very fast 
which is highly important in the power grid environment. 

4. The algorithm performs better than most of the existing machine learning algo-
rithms. 

5. The results on the large-scale system show the scalability of the proposed method 
to practical large-scale grid systems. 

In the algorithm, the normal training data is taken over a long period of time; 
thus encapsulating the different contingency states that could occur in the system. 
The algorithm has the limitation that if any new contingency state comes up that is 
not included in the training, these data points could be classified as attacks by the 
SVDD-A algorithm. This can be avoided by retraining the model at regular intervals 
of time by including any new contingency events thus making the algorithm adaptive. 
Since the training is not computationally complex, retraining the algorithm does not 
impose a burden on the system operation. The algorithm is thus re-trained in the 
following events: 

1. At definite time-intervals: To encapsulate the changes in the grid. 
2. When a zero-day attack is detected: To add the new attack type to the category of 

known attacks. 

7.5 Summary 

This chapter proposes a machine learning-based Support Vector Data Description 
(SVDD) model to detect zero-day attacks in Load Frequency Control of a Smart Grid. 
The authors use an LFC model with parametric uncertainties and nonlinearities to 
generate accurate training data. This modeling encapsulates the actual grid conditions 
and thus, improves the training accuracy.
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SVDD has been a promising approach to classifying the data when only one 
class of training data is available. This paper proposes a two-step attack detection, 
namely SVDD-A, to detect attacks, and SVDD-Z to classify zero-day attacks. The 
SVDD-A module classifies normal data from attack data. Once attacks are detected, 
appropriate mitigation steps can be incorporated based on the attack type. In addition, 
an SVDD-Z module is incorporated to classify zero-day attacks from known attacks 
to avoid wrong mitigation steps. 

In order to test the algorithm, a multiple and time varying attack model has been 
used. It accurately classifies the scaling and step attacks and distinguishes them from 
the random FDIA as zero-day attacks. The high accuracy and low false positive rates 
suggest the suitability of the algorithm for smart grid control attack detection. It is 
also compared with various other algorithms and the area under the ROC curve, which 
is better than the existing algorithms. Thus, the proposed algorithm can effectively 
distinguish between normal, known attack, and zero-day attack conditions. 

The proposed detection strategy can be effectively implemented inside the power 
system control centers to detect cyber attacks in power grid control systems. Such 
a fast detection technique gives the system operators sufficient time to implement 
mitigation and response plans to protect the grid from collapse. 
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Chapter 8 
Attack Mitigation and Recovery in Smart 
Grid Control 

Abstract This chapter explores the critical domain of attack mitigation and recovery 
within the context of smart grid control systems. As smart grids become increasingly 
integral to modern energy infrastructure, the need for robust cyber-security measures 
to safeguard against malicious attacks is paramount. The chapter begins by elucidat-
ing various Attack Mitigation methods in Smart Grids. Through a comprehensive 
overview, readers gain insights into the diverse techniques available to protect smart 
grid systems against cyber threats. A focal point of this chapter is the exploration 
of Attack Mitigation for a 39-bus 3-area system, considering both single-step load 
and dynamic load scenarios. Through a detailed examination, readers are presented 
with a basic yet illustrative example of how mitigation strategies can be implemented 
within a complex smart grid control environment. Furthermore, the chapter delves 
into the innovative realm of IoT-based hardware models for enhancing attack mit-
igation and recovery capabilities. We describe the method to build a simple IoT 
model that can be used to launch attacks and implement detection methods using 
Kali Linux, Raspberry Pi and Python programming. Through a blend of theoretical 
frameworks and practical examples, this chapter equips readers with the knowledge 
and tools necessary to bolster the resilience of smart grid control systems against 
cyber threats. 

Keywords Attack mitigation · Adaptive control · Hardware-in-loop · Internet of 
things 

8.1 Introduction 

Once attacks are detected, it is also important for the system to respond immediately 
to the attacks and mitigate them such that they do not cause further damage to the 
grid. Attack mitigation can be done in three different ways: 
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1. Estimation-based: Using estimated signals (Frequency and Tie-line flow) for LFC 
instead of actual measurements. 

2. Attack minimization/elimination: Using control strategies by including the 
detected attack models. 

3. Bypass LFC. 

Each of the above techniques has its own advantages and disadvantages. The most 
commonly followed method to eliminate the effect of attacks on a control system 
is to ignore the spoofed sensors, obtain state estimates for the missing sensors, and 
then use the original controller to respond to the attack. 

However, this method has the following drawbacks: 

1. Using the original controller cannot guarantee system safety under attacks. 
2. For safety-critical systems, recovery time deadlines need to be included in the 

formulation of attack mitigation. 
3. The common assumption that the defender knows the exact physical model of the 

system under attack is rare in practical systems. 

Thus, when attacked, the system should employ a controller that has the ability 
to drive the system back to its normal state. In this chapter, we discuss a simple yet 
effective attack mitigation strategy. 

The attack and the proposed detection strategy is then implemented into an IoT 
based hardware setup to illustrate the effectiveness of the complete framework dis-
cussed in this chapter. 

8.2 Attack Mitigation in Smart Grids 

Attack mitigation can happen in three different ways (Fig. 8.1): 

1. Estimation-based: Using estimated signals (frequency and tie-line flow) for LFC 
instead of actual measurements. 

2. Attack minimization/elimination: Using control strategies by including the 
detected attack models. 

3. Bypass LFC. 

8.2.1 Estimation-Based Mitigation 

In Sridhar and Govindarasu (2014), once attacks are detected, the authors use the load 
forecast data to predict the ACE values which are then used in the LFC operation 
instead of the actual measured values because they are corrupted. The stochastic 
unknown input estimator in Ameli et al. (2018) can also be used to determine the 
states of the system without the need for load forecast data.
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Fig. 8.1 Attack mitigation methods 

8.2.2 Attack Elimination Using Robust Control 

Robust control strategies such as model predictive control (MPC) (Liu et al. 2021), 
distributed event-triggered mechanism (DETM), etc., can be used to determine a 
control strategy in the presence of an attack. In this type of mitigation, a limit is 
placed on the attacks which are then modeled exactly or as uncertainties. Then, a 
controller is designed by including these models. Lyapunov stability margins are 
established to ensure system stability. 

8.2.3 Bypass LFC 

When an attack is detected, the emergency control actions are implemented and 
the generation schedules are adjusted by operators using the results of the economic 
dispatch solution. This method is the easiest and is similar to having a system without 
load frequency control. 

Table 8.1 gives in detail the different methods of attack mitigation. 
As seen from the table above, different types of mitigation algorithms have been 

applied for the attack mitigation in LFC. Table 8.2 gives the advantages and disad-
vantages of different mitigation methods. 

As seen from the table above, even though robust control-based mitigation is most 
effective, its stability criteria depends on the particular attacks and can fail if the type 
of attack is different. Estimation-based algorithms perform well except when there is 
an emergency or contingency condition. Therefore, it is best to choose a combination 
of different methods for different grid conditions.
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Table 8.1 Attack mitigation techniques 

S. No. Method Model Attacks Stability 
criterion 

References 

Estimation-based mitigation 

1 Load forecast 
based ACE 

Linearized 
LFC 

FDIA – Sridhar and 
Govindarasu 
(2014) 

2 Stochastic 
unknown 
input 
estimator 

Linearized 
LFC 

FDIA – Ameli et al.  
(2018) 

Robust control based mitigation 

3 Dynamic 
event-based 
model 
predictive 
control 

Dynamic 
event-
triggered 
(DETM) 
linear LFC 

Deception . H2/H∞
Performance 

Liu et al. 
(2021) 

4 Resilient load 
frequency 
design 

Non-linear 
and uncertain 
model 

DoS Lyapunov-
Krasovski 

Cheng et al. 
(2020) 

5 Resilient 
distributed 
co-ordination 
control 

DETM 
LFC-Virtual 
Inertia Control 

Alternating 
deception and 
DoS 

. H∞
Performance 

Cheng et al. 
(2021) 

Bypass LFC 

6 Use Economic 
Dispatch (ED) 
based 
dispatches 

Power system 
ED 

FDIA, DoS – Bi et al. 
(2019) 

Table 8.2 Comparison of attack mitigation 

Method Advantages Disadvantages 

Estimation-based mitigation Attack models need not be 
considered for estimations. 
High performance estimation 
methods are available 
considering nonlinearities and 
noises 

Events like faults can not be 
considered in the estimation. 
Highly dependant on load 
forecasts 

Robust control-based 
elimination 

Provides efficient control to 
eliminate attacks and use the 
measurements 

Highly dependant on attack 
and system models considered 
during control system 
modeling 

Bypass LFC Easiest mitigation method Slow response. Depends on 
efficiency of ED results
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Fig. 8.2 Attack mitigation/recovery 

8.3 Adaptive Control-Based Attack Mitigation 

Figure 8.2 gives an overview of the attack mitigation/recovery strategy. 
As  shown in Fig.  8.2, while the system is working in normal conditions (no attack 

detected), the controller action is via the PI controller present in the LFC system. 
If an attack is detected, the control shifts from normal operation to a special control 

action that uses the system model to generate the control input or ACE. Thus, the 
control input is independent of the measurements obtained at the control center and 
only depends on the load data and the model. 

Load forecasts are used for generating the control input during an attack. There are 
well-established methods for obtaining them accurately using load data, weather data, 
and user behavior analysis. Thus, load forecast-based control input determination has 
the capability to provide good results for sustaining the grid during an attack. The 
LFC system can be restored once the system is safe from attacks. 

8.4 Attack Mitigation for 39-Bus 3 Area System 

To study the attack mitigation strategy, we use the 39-bus 3 area test system as shown 
in Fig. 8.3. 

For this system, the load forecast and actual data are available from the New 
England ISO website. For better understanding of the attack-resilient LFC, we first 
look at results for a single step load change followed by the actual load variation 
results.
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Fig. 8.3 39-bus 3 area new England test system (Bevrani 2014) 

8.4.1 Example 8.1: Single Step Load Change Results 

The attack-resilient control is implemented on a 3 area system with  only a single  
load change. Figure 8.4 shows the actual load and generation changes in the absence 
of any attack. 

It can be seen that the generation follows the load as expected. We next introduce 
a step attack into the frequency and tie-line as shown in Fig. 8.5. 

As soon as the attack is detected, the attack-resilient control-based ACE values are 
used in the LFC control, and the above values of frequency and tie-line measurements 
are discarded.
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Fig. 8.4 Single step load and generation change without attack 

Fig. 8.5 Attacked frequency and tie-line measurements 

The actual and attack-resilient ACE values are shown in Fig. 8.6 The output of 
the LFC system with and without resilient control is as shown in Fig. 8.7. 

It can be seen that the ACE without resilient control shows a variation when there 
is an attack. When we switch to resilient control, the ACE dies down to zero during 
the attack period and changes again only when there is a load change. 

In Fig. 8.7, the generation follows the load exactly. This is because the forecast 
and actual load values are the same. However, in practical situations, there will be 
some difference in the actual and forecast load. This change will be analyzed in the 
next subsection where we use real load values.
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Fig. 8.6 Actual and resilient ACE values: step load change 

Fig. 8.7 Attack-resilient control for step load change 

8.4.2 Example 8.2: New England ISO Load Data Results 

For simulating actual load data, an error value is added to the actual load that is used 
as the disturbance input. This produces a good model to analyze the actual system 
behavior. Figure 8.8 shows how the generation exactly follows the load when there 
is no attack. 

We analyze the frequency, ACE, and change in generations during an attack with-
out attack-resilient control and with the attack-resilient control. Figure 8.9 shows the 
attacked frequency and tie-line measurements. 

To study the effect of attack-resilient control on real data values, we use the load 
forecast data to obtain the ACE values for attack- resilient control, and actual load 
values are used to test the control algorithm.
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Fig. 8.8 Load and generation change: no attack 

Fig. 8.9 Attacked measurements for real load condition 

As seen in Fig. 8.10, the ACE values are the same with and without control when 
there is no attack. During attack, the actual ACE values are replaced by the load 
forecast-based ACE. 

As seen in Fig. 8.11, the generation values obtained during attack-resilient con-
trol do not exactly follow the load. This is because the forecast values are used to 
determine the ACE and the generations are according to the load forecasts. However, 
the difference between the load and generation is very small, and thus the algorithm 
can be implemented in real systems. 

The above attack-resilient control algorithm could fail to provide necessary control 
action in the event of a fault or a large load variation from the forecast values. Under 
such emergency or contingency conditions, it is a better choice to bypass the LFC 
when an attack is detected.
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Fig. 8.10 ACE values with and without attack-resilient control for real load condition 

Fig. 8.11 Attack-resilient control for real load values 

8.5 IoT-Based Hardware Model 

While cyber-security studies and research for power grid systems are important, 
testing and analysis cannot be performed directly on the system as it could lead 
to considerable downtimes which is not acceptable in OT systems. However, it is 
also not possible to analyze various parameters such as communication, computa-
tion, and physical dynamics by considering only simulation-based results. Hence, 
building cyber-security testbeds becomes essential. While implementation of a real-
time cyber-physical model of a grid system is highly complex, a hardware-in-loop 
simulation model can be used to encapsulate the advantages of both simulation and 
hardware equipment (Tidball 2015; Ashok et al. 2016; Vellaithurai et al. 2017). 

In this section, we build a lab setup using both simulation and hardware as shown 
in Fig. 8.12. The various components of the system are as follows:
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Fig. 8.12 Lab setup for cyber-security analysis of MA-LFC 

Power Grid Simulation 
The simulation of the 39-Bus 3 area New England Test System which encapsulates the 
grid system is built using MATLAB on an i5 processor system. A simulation platform 
is used to model the system since different system models can be implemented and 
the data from these can be used for further processing. The output of the simulation 
is the measurement data (.∆Ptie,∆ f ). 

Python socket programming is then used to send the data over the ethernet. The 
measurements are sent serially over the network by specifying the address of the 
detection module (Raspberry Pi) as the destination. 

Communication System 
The data from the simulation is then sent over the communication channels to the 
attack detection module at the control center. This data transfer is achieved using an 
ethernet network. The ethernet switch is implemented using a Raspberry Pi unit so 
as to make it a programmable switch. Programmable switches are generally used in 
power system network so as to route the data correctly and also to provide whitelisting 
and data security. In the proposed model, the Raspberry Pi is programmed using Open 
Vswitch (OVS). 

The OpenVswitch programming can be performed using Linux scripting. To pro-
gram the OVS, a bridge is first created and the various ports are then added to the 
bridge. Further conditions can be specified to route the messages based on vari-
ous parameters of the message such as source address, destination address, message 
type, etc. More details about the commands used to program an OVS is available on 
(Tutorials 2016–2023). 

Attacker System 
Attacker systems are usually implemented using Kali Linux. Kali Linux is a dedi-
cated linux-based operating system that has built-in tools to analyze the network and 
perform penetration testing. In the proposed lab setup, we use a Kali Linux system as 
a Man-in-the-Middle attack. The attacker has access to all the DNP3 packets flowing 
through the switch.
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During the attack, the attacker modifies the OVS such that the attacker data is 
routed to the control center instead of the actual frequency and tie-line data. Thus, 
the data received at the control center will be false data. 

Attack Detection Module 
The attack detection algorithm is then implemented on a Raspberry Pi unit. The 
Raspberry Pi receives the frequency and tie-line data over Ethernet and performs the 
detection algorithm to give out a signal to the control center if there is an attack. 
Based on the input from the attack detection module, the control center decides on 
the control input and sends it back to the test system. In the proposed lab setup, 
we currently do not consider the control input being sent back to the MATLAB 
simulation. 

The hardware setup is as follows: 

1. Power Grid Simulation: is done on a core i5 Desktop PC running MATLAB 
2020a. 

2. Communication System: Ethernet Communication cables are used for data trans-
fer and the OpenV switch is implemented on a Raspberry Pi-4. 

3. Attacker System: The attacker is simulated on a Kali Linux system on a core i5 
laptop. 

4. Attack Detection Module: The detection algorithm is implemented on a Rasp-
berry Pi module whose output can be viewed on the connected screen. 

All the devices are connected together using the OpenVswitch which is shown in 
detail along with the connections in Fig. 8.13. 

Attacker PC 

Detection 
Module RPi 

Grid Simulator 
PC 

LAN 

Power 

Fig. 8.13 Detailed view of Open Vswitch connections
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The Open Vswitch is connected to the local LAN through the available ethernet 
port on the Raspberry Pi. To connect to other devices, multiple USB to ethernet 
converters are used. Each of these ports is then added to a bridged network within 
the OVS so as to route the data correctly. The attacker modifies the switch in order 
to implement a False Data Injection through a Man-in-the-Middle attack. 

8.6 Research Scope 

A major scope of research in attack detection is by including the data and models on 
renewable generation. Renewable penetration into the grid can cause varied dynamics 
which could lead to failure of the detection and can lead to a high value of False 
Alarm Rates. Thus, more research is required in this field. Additionally, detection 
algorithms that combine detection and mitigation can work in better harmony and 
adapt to system changes leading to a complete cyber-security solution. 

8.6.1 Research Gap 

• Lack of adaptive detection mechanisms in response to evolving cyber threats and 
system changes. 

• Lack of interpretability and localization of detected attacks. 
• Lack of analysis of cyber attacks in LFC under noisy communication networks and 
detection strategies capable of distinguishing between noise and strategic attacks. 

• Knowledge gap between IT experts and power system experts leading to insuffi-
cient exploration of packet level data for attack detection in power system control 
applications. 

8.6.2 Research Directions 

• Develop detection and control applications that can adapt to system changes. 
Event-triggered updates, time-based updates, or planned updates can be applied 
to re-learn the parameters of detection algorithm. 

• A combination of clustering and estimation can be leveraged to identify exact 
locations of the attacks. 

• Interpretable machine learning and neural networks can support in identification 
of attack types and distinguish attacks from system contingencies. 

• Algorithms that combine packet and protocol level data with control system signal 
level data can be used for more accurate attack detection.
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8.7 Summary 

This chapter forms the last part of the cyber-security framework for the MA-LFC 
system. An attack-resilient control that uses ACE values estimated from forecast 
loads is used for attack mitigation. The availability of improved load forecast algo-
rithms makes this control algorithm highly effective for real-time applications. The 
results suggest that the control algorithm can effectively safeguard the grid system 
from cyber-attacks. 

Other control algorithms such as robust control, H-inf control, and model pre-
dictive control can be used to improve the attack-resilient control in the event of 
contingencies, uncertainties, and load drops. 

This chapter also explains the development of a lab hardware-based setup that can 
be used to inject different attacks into the system from an external system, and thus 
emulate an attacker. The detection algorithm is implemented on a system with low 
computation and still it shows very good performance. Thus, the theoretical claims 
that the algorithm has a low computation burden have been practically demonstrated 
using the hardware setup. 

The lab setup can be further enhanced to send back the control signals to the 
simulation platform to implement a complete loop of the system operations. 
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Appendix A 
Test Systems Data 

A.1 IEEE 9-Bus System 

The IEEE 9-Bus Test system is as shown in Fig. A.1. 
The bus and line data are tabulated in Table A.1. 
Machine data is given in Table A.2 

A.2 39-Bus New England Test System 

The one-line diagram of 39-bus New England Test system indicating the 3 areas is 
as shown in Fig. A.2. 

The line data is as given in Table A.3. 
The machine data is given in Table A.4. 

A.3 IEEE 300-Bus System 

The IEEE 300-bus system is as shown in Fig. A.3. 
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Fig. A.1 IEEE 9-bus system 

Table A.1 Line data for 9-bus system 

From bus To bus Resistance 
(pu) 

Reactance 
(pu) 

Susceptance 
(pu) 

Line rating 
(MW) 

1 4 0 0.0576 0 250 

4 5 0.017 0.092 0.158 250 

5 6 0.039 0.170 0.358 150 

3 6 0 0.0586 0 300 

6 7 0.0119 0.1008 0.209 150 

7 8 0.0085 0.072 0.149 250 

8 2 0 0.0625 0 250 

8 9 0.032 0.161 0.306 250 

9 4 0.010 0.085 0.176 250
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Table A.2 Generator parameters for 9-bus system (Bevrani 2014) 

Parameters Generator 

1 2 3 

Rate (MW) 512 270 125 

.βi (pu/Hz) 0.3483 0.3473 0.3180 

.Di (pu) 2 2 2 

.Ri (Hz/pu) 3.00 3.00 3.30 

.2Hi/ f0 (pu.s) 0.105 0.165 0.191 

.T ti (s) 0.48 0.5 0.5 

.Tgi (s) 0.08 0.06 0.07 

p.f 0.4 0.4 0.2 

Ramp rate (MW/min) 8 8 4 

Fig. A.2 39-bus 3 area New England test system



136 Appendix A: Test Systems Data

Table A.3 Line data for 39-bus system 

From bus To bus Resistance 
(pu) 

Reactance 
(pu) 

Susceptance 
(pu) 

Line rating 
(MW) 

1 2 0.0035 0.0411 0.6987 600 

1 39 0.001 0.025 0.75 1000 

2 3 0.0013 0.0151 0.2572 500 

2 25 0.007 0.0086 0.146 500 

2 30 0 0.0181 0 900 

3 4 0.0013 0.0213 0.2214 500 

3 18 0.0011 0.0133 0.2138 500 

4 5 0.0008 0.0128 0.1342 600 

4 14 0.0008 0.0129 0.1382 500 

5 6 0.0002 0.0026 0.0434 1200 

5 8 0.0008 0.0112 0.1476 900 

6 7 0.0006 0.0092 0.113 900 

6 11 0.0007 0.0082 0.1389 480 

6 31 0 0.025 0 1800 

7 8 0.0004 0.0046 0.078 900 

8 9 0.0023 0.0363 0.3804 900 

9 39 0.001 0.025 1.2 900 

10 11 0.0004 0.0043 0.0729 600 

10 13 0.0004 0.0043 0.0729 600 

10 32 0 0.02 0 900 

12 11 0.0016 0.0435 0 500 

12 13 0.0016 0.0435 0 500 

13 14 0.0009 0.0101 0.1723 600 

14 15 0.0018 0.0217 0.366 600 

15 16 0.0009 0.0094 0.171 600 

16 17 0.0007 0.0089 0.1342 600 

16 19 0.0016 0.0195 0.304 600 

16 21 0.0008 0.0135 0.2548 600 

16 24 0.0003 0.0059 0.068 600 

17 18 0.0007 0.0082 0.1319 600 

17 27 0.0013 0.0173 0.3216 600 

(continued)
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Table A.3 (continued) 

From bus To bus Resistance 
(pu) 

Reactance 
(pu) 

Susceptance 
(pu) 

Line rating 
(MW) 

19 20 0.0007 0.0138 0 900 

19 33 0.0007 0.0142 0 900 

20 34 0.0009 0.018 0 900 

21 22 0.0008 0.014 0.2565 900 

22 23 0.0006 0.0096 0.1846 600 

22 35 0 0.0143 0 900 

23 24 0.0022 0.035 0.361 600 

23 36 0.0005 0.0272 0 900 

25 26 0.0032 0.0323 0.531 600 

25 37 0.0006 0.0232 0 900 

26 27 0.0014 0.0147 0.2396 600 

26 28 0.0043 0.0474 0.7802 600 

26 29 0.0057 0.0625 1.029 600 

28 29 0.0014 0.0151 0.249 600 

29 38 0.0008 0.0156 0 1200 

Table A.4 Generator parameters for 39-bus system (Bevrani 2014) 
Parameters Generator 

MVAbase (1,000 MW) 1 2 3 4 5 6 7 8 9 

Rate (MW) 1000 800 1000 1100 900 1200 850 1000 1020 

.βi (pu/Hz) 0.3483 0.3473 0.3180 0.3827 0.3890 0.4140 0.3692 0.3493 0.3550 

.Di (pu MW/Hz) 0.015 0.014 0.015 0.016 0.014 0.014 0.015 0.016 0.015 

.Ri (Hz/pu) 3.00 3.00 3.30 2.7273 2.6667 2.50 2.8235 3.00 2.9412 

.2Hi / f0 (pu.s) 0.1677 0.120 0.200 0.2017 0.150 0.196 0.1247 0.1667 0.187 

.T ti (s) 0.4 0.36 0.42 0.44 0.32 0.40 0.30 0.40 0.41 

.Tgi (s) 0.08 0.06 0.07 0.06 0.06 0.08 0.07 0.07 0.08 

p.f 0.4 0.4 0.2 0.6 0 0.4 0 0.5 0.5 

Ramp rate (MW/min) 8 8 4 12 0 8 0 10 10
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Fig. A.3 IEEE 300-bus system



Appendix B 
Detailed Equations for Cascading Outage Model 

The cascading outage model considers various equations to create the cascading 
model. This appendix gives the equations used in the model. The equations are then 
implemented in MATLAB script and solved using Differential Algebraic Equation 
analysis. 

The Rotor Speed (. ωi )-Swing Equation is given by 

.M
dωi

dt
= Pmi − Pgi − D (ωi − 1) (B.1) 

where.M is a machine inertia constant,. D is a damping constant,.Pmi is the mechanical 
power input, and .Pgi is the generator power output. 

The equation for Rotor Angle . δi is as given below 

.
dδi (t)

dt
= 2π f0 (ωi − 1) (B.2) 

where . f0 is the base frequency. 
If.Xd,i and.X '

d,i are the direct axis generator synchronous and transient reactances, 
respectively, the salient-pole model reactive power outputs are given by the nonlinear 
equations, 

.

Pg,i =
|
|E '

a,i

|
| |Vi |

X '
d,i

sin δm,i + |Vi |2
2

(

1

Xq,i
− 1

X '
d,i

)

sin 2δm,i

Qg,i =
|
|E '

a,i

|
| |Vi |

X '
d,i

cos δm,i + |Vi |2
(

cos2 δm,i

X '
d,i

+ sin2 δm,i

Xq,i

) (B.3) 

For the desired reference voltage.Vref , and actual terminal voltage. Vt , the exciter 
equations are 
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.

d|Efd|
dt

= 1

TE

{

KE · sigm
[(

1 − TA

TB

)

E1

+ TA

TB
(Vref − Vt )

]

− Efd

}

d|E1|
dt

= 1

TB
(Vref − Vt − E1)

(B.4) 

where .TA, .TB , and .KE are the exciter time constants, and sigm(. ·) is a differentiable 
sigmoidal function that acts as a limiter between .Emin and .Emax . 

The Differential Algebraic Equations (DAE) can be solved using trapezoidal 
method. If . t is the current time step, and next step is .t + ∆t , the  . t , . f (t), and . g(t)
can be calculated for a set of variables.x = x(t), y = y(t), z = z(t). The trapezoidal 
solution method solves the following nonlinear system to obtain .x+ = x(t+∆t) and 
.y+ = y(t+∆t): 

.
x+ = x + ∆t

2

[

f(t) + f(t+, x+, y+, z)
]

0 = g(t+, x+, y+, z)
(B.5) 

In the proposed VA, the time step used for solving the DAE is taken as 0.005 s



Appendix C 
Information Theory and Hypothesis Testing 

Information theory is a field of science that establishes a link between two different 
kinds of quantities. The ideal or limiting value of a specific parameter, such as 
the convergence rate of error probabilities, is known as an operational quantity. A 
measure of information such as entropy, divergence, and mutual information is the 
other. It should be noted that the latter’s definition is more ambiguous than the 
former’s, and that the latter’s meaning is typically elucidated by relating it to the 
former. 

The information spectrum method was initially discussed and published by Han 
and Verdu (1993), Han (2003). Information theory can be used to determine the 
relationship between the false positive rate and threshold. This appendix discusses 
the basic definitions used in the Hypothesis testing-based detection in Chap. 6. 

C.1 Hoeffding Test 

Hoeffding test (Hoeffding 1965) is a composite hypothesis test where the test has 
only partial access to the distributions .P and . Q. 

Definition: In the Hoeffding test, the null hypothesis. P is accepted if the Kullback-
Leibler (KL) divergence between the type .tZn (the empirical distribution) of the 
observations .Zn = (Z1,…., Zn) and .P is below some threshold . c. Otherwise, the 
alternative hypothesis is accepted. Mathematically, 

.i f D(tZn ||P) ≤ c, then accept H0; otherwise accept H1 (C.1) 

An improved form of Hoeffding test is proposed in the thesis that can be used for 
the proposed spectral analysis-based detection. 
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C.2 Neyman-Pearson Theorem 

The Neyman-Pearson lemma is a part of the Neyman-Pearson theory of statisti-
cal testing (Neyman and Pearson 1933). Only one hypothesis was proposed by the 
earlier Fisherian theory of significance testing. The Neyman-Pearsonian form of sta-
tistical testing enables examining the two sorts of errors by introducing a competing 
hypothesis (Wald 1942). 

Consider a test with hypotheses .H0 : θ = θ0 and .H1 : θ = θ1, where the proba-
bility density function (or probability mass function) is .ρ(x | θi ) for .i = 0, 1. 

For any hypothesis test with rejection set . R, and any .α ∈ [0, 1], we say that it 
satisfies condition .Pα iff 

1. .α = Prθ0(X ∈ R) . α = Prθ0(X ∈ R)

That is, the test has size . α. 
2. .∃η ≥ 0 such that 

. x ∈R \ A =⇒ ρ(x | θ1) > ηρ(x | θ0)

. x ∈Rc \ A =⇒ ρ(x | θ1) < ηρ(x | θ0)

where . A is a set ignorable in both .θ0 and .θ1 cases: . Prθ0 (X ∈ A) = Prθ1 (X ∈ A) = 0

3. That is, we have a strict likelihood ratio test, except on an ignorable subset. 

For any.α ∈ [0, 1], let the set of level. α tests be the set of all hypothesis tests with 
size at most . α. That is, letting its rejection set be . R, we have .Prθ0(X ∈ R) ≤ α. 

C.2.1 Neyman-Pearson Lemma 

Existence: 

If a hypothesis test satisfies.Pα condition, then it is a uniformly most powerful (UMP) 
test in the set of level . α tests. 

Uniqueness: 

If there exists a hypothesis test .RNP that satisfies .Pα condition, with .η > 0 , then 
every UMP test . R in the set of level . α tests satisfies .Pα condition with the same . η . 
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Appendix D 
Proofs of Theorems 

D.1 Theorem 3.1 

Theorem D.1 For the system (3.2) with static monitor . φ as in (3.5), an attack . ua
will be undetected if .Dua(k) ∈ {0, Im(C)}. 
Proof The residue when there is no attack is given as 

.r = y(k) − Cx(k) = y(k) − CC†y(k) = (I − CC†)y(k) (D.1) 

where .C† is the pseudo-inverse of . C . The residue under an attack is obtained as 

.

ra = ya(k) − Cxa(k) = (I − CC†)ya(k)

= (I − CC†)(y(k) + Daua(k))

= r + (I − CC†)Daua(k)

(D.2) 

The residue .ra = r iff, .(I − CC†)Daua(k) vanishes. This is possible only when 
.Daua(k) ∈ {0, Im(C)}. .Daua(k) = 0 is equivalent to a no attack condition. Thus, 
.Daua ∈ Im(C), i.e., the attack should be in the Image space of . C . 

Thus the proof follows. ◻

D.2 Theorem 6.1 

Theorem D.2 Let .U' be a linear transformation from .RL −→ R
r .Then, the norm 

of the projection of any arbitrary vector .z ∈ R
L onto the subspace .Sr is equivalent 

to the norm of the transformed vector .U'z ∈ R
r . 
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Proof To Prove: . ||Pz||2 = ||U'z||2
.U ' is a linear transformation from. R

L −→ R
r

From (14), .P = UU' Thus, the norm of projection of any vector . z onto the signal 
subspace is given by 

.

||Pz||2 = ||UU'z||2
= (UU'z)'UU'z
= z'(UU')'UU'z

(D.3) 

Since the columns of . U are linearly independent and of unit size . U, 

.U'U = I (D.4) 

On substituting (D.4) in (D.3), 

.

||Pz||2 = z'UU'z
= (U'z)'U'z

= ||U'z||2
(D.5) 

Thus .||Pz||2 = ||U'z||2. Hence the proof follows. ◻

D.3 Theorem 6.2 

Theorem D.3 The SSA Hoeffding Test satisfied the Neyman-Pearson lemma 

Definition D.1 (Neyman-Pearson Lemma) Consider a binary hypothesis test and the 
distance measure: 

.d(x) = ||c − Px || H1

≷
H0

τ (D.6) 

with a probability of false alarm given by 

.PFA = P(d(x) ≥ τ |H0) = β (D.7) 

There does not exist another test with .PFA = β and a detection problem larger than 
.P(d(x) ≥ τ |Ho). That is, the SSA-HT is the most powerful test with .PFA = β. 

Proof The region where the SSA-HT decides .H1 is 

.RSSA = x : ||c − Px || ≥ τ (D.8) 

Let .RT denote the region where some other test describes .H1. Define for any 
region .R
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.Pi (R) =
ʃ

R
Pi (x)dx (D.9) 

which is the probability of .x ∈ R under hypothesis .Hi . By our assumption above, 
both tests have .PFA = β: 

.P0(RSSA) = P0(RT ) = β (D.10) 

The probability regions are such that 

.

Pi (RSSA) = Pi (RSSA

∩

RT ) + Pi (RSSA

∩

R̄T )

Pi (RT ) = Pi (RSSA

∩

RT ) + Pi (RT

∩

R̄SSA)
(D.11) 

From (D.10) and (D.11), 

.P0(RSSA

∩

R̄T ) = P0(RT

∩

R̄SSA) (D.12) 

Now, for the alternate hypothesis, 

.

P1(RSSA

∩

R̄T ) =
ʃ

RSSA
∩ R̄T

||c − Px ||dx

≥ τ

ʃ

RSSA
∩ R̄T

dx

= τ P0(RSSA

∩

R̄T )

= τ P0(RT

∩

R̄SSA)

= τ

ʃ

P0(RT
∩ R̄SSA)

dx

≥
ʃ

P0(RT
∩ R̄SSA)

||c − Px ||dx

= P1(RT

∩

R̄SSA)

(D.13) 

From (D.13), 
.P1(RSSA

∩

R̄T ) ≥ P1(RT

∩

R̄SSA) (D.14) 

Thus, from (D.13) we see that as .τ increases, .RSSA decreases, and hence 
the false detection probability .PFA decreases. In other words, if .τ1 ≥ τ2, then 
.RSSA(τ1)

∩RSSA(τ2), and hence .β1 ≤ β2. ◻
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