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Preface 

Artificial intelligence (AI) has seen unprecedented revival in the public eye during 
the last years. Recent advances, such as AI-based image generation and large lan-
guage models (e.g., ChatGPT), have demonstrated the potential of this technology. 
The use of AI technologies to protect the world we live in is topical as new threats 
emerge. After our previous book, Artificial Intelligence and Cybersecurity: Theory 
and Applications (Springer 2023), we were left with the feeling that not everything 
had been said about the topic. Consequently, we gathered a group of international 
experts who could write about the role of AI in the changing world. 

This book is divided into three parts, concerning methodological fundamentals, 
critical infrastructure protection, and anomaly detection. This division emerged 
from the contents of the chapters that we received. It was quite natural to have 
chapters about protection of critical infrastructure and about anomaly detection 
methods for digitalized solutions. 

The first part is about methodological fundamentals of artificial intelligence, 
especially within the scope of security. Adrowitzer et al. provide a blueprint towards 
a safe world with AI and its development and application. Holmström et al. discuss 
the use of AI from the point of view of organizational and managerial cybersecurity 
while evaluating its silver bullet status in the hype discourse. After these general 
introductions to the topic, we turn to deeper investigations about AI methodology. 
Data are the raw material of most AI work, and protecting the privacy of the 
individuals whose data are used is an important concern. Kilpala and Kärkkäinen 
present a review of ways to evaluate differential privacy models. Furthermore, Van 
Gerwen et al. discuss the challenges of explainable AI in the context of threat 
intelligence. Jansevskis and Osis, on the other hand, explain knowledge discovery 
frameworks and how to include security considerations into them. This relates back 
to the importance of data and knowledge extraction. This part is concluded by the 
chapter written by Glazunov and Zarras, which considers the robustness of deep 
learning. This chapter focuses on technical details, presenting multiple attacks and 
their significance. 

The second part is about the use of artificial intelligence for critical infrastructure 
protection. As an introduction to the topic, Nweke and Yayilgan explore the use
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of AI for the protection of cyber-physical systems. After this, we continue with 
domain-specific studies. As a first example, Rasmus studies the use of AI tools 
for small enterprises in the context of security. Another domain is covered by 
Kiviharju in the chapter about cybersecurity for logistics. Energy, communications, 
and healthcare are perhaps the most well-known examples of critical infrastructure. 
Consequently, Martinelli et al. continue with a study about protecting smart grids. 
Zolotukhin et al. discuss the protection of mobile networks against adversarial 
examples. Finally, Jonske et al. introduce the reader to the healthcare domain in 
their chapter about teaching machine learning with medical data. 

The last part of the book includes three chapters about artificial intelligence for 
anomaly detection in various scenarios. Falzone et al. emphasize the importance of 
automated monitoring of log data and demonstrate the use of AI to detect anomalies 
in real time. Shahrivar and Millar detect attacks in large-scale event data using 
machine learning. The book is concluded by Alqarni and Azim who use deep 
learning to detect anomalies in Internet of Things (IoT) networks. 

This book is useful to professionals who are interested in using artificial 
intelligence for security purposes. It will also be helpful to those who have concerns 
about its use in the various industry domains. Understanding latest advancements in 
this field should be useful to those who want to understand modern cybersecurity 
in detail, and especially to experts in the field, who want to follow research and the 
latest trends. 

Two conflicts of interest should be disclosed. First, Kai Rasmus is supervised in 
his PhD studies by one of the editors, Tero Kokkonen. Second, Mansour Alqarni’s 
place of affiliation, Fanshawe College, has commercial co-operation related to the 
cyber range at the editors’ institution. These chapters have undergone the same 
editorial process as all the other chapters in this book. 

We would like to thank the authors for sacrificing their time to provide our 
book with interesting and topical chapters. Without their willingness and valuable 
contributions, this book would not have become a reality. We wish to extend our 
acknowledgments to the reviewers who have ensured the relevance and quality of the 
chapters. The review committee is listed in the front matter, except for the reviewers 
who wished to remain anonymous. 

New, rapidly developing technologies present us with new challenges. Artificial 
intelligence does not differ in this regard, and the security aspects of the changes 
it brings should be noticed, so that we can build more secure systems. We hope 
this book provides the reader unique perspectives to enhancing protection in these 
circumstances. 

Jyväskylä, Finland Tuomo Sipola 
November, 2023 Janne Alatalo 

Monika Wolfmayr 
Tero Kokkonen
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Part I 
Methodological Fundamentals of Artificial 

Intelligence



Safeguarding the Future of Artificial 
Intelligence: An AI Blueprint 

Alexander Adrowitzer, Marlies Temper, Alexander Buchelt, Peter Kieseberg, 
and Oliver Eigner 

1 Introduction 

The history of artificial intelligence begins in the 1950s, the first time the term was 
officially used was in the proposal for the so-called Dartmouth Summer Research 
Project on Artificial Intelligence in 1956, which was requested by important 
scientists of the time such as Claude Shannon (the founder of modern information 
theory), Marvin Minsky, Nathaniel Rochester, and John McCarthy [32]. At that 
time, the application already contained questions such as “How can a computer 
be programmed to use a language,” something that has now only become possible 
with language models such as ChatGPT. Even then, people were concerned about 
the ethical implications of such technology [33, 42, 44, 52], even though it would 
be decades before the first working applications of artificial intelligence were 
developed. 

Artificial intelligence has found its way into many products of everyday life. 
Positive examples include vacuum cleaning robots, personal assistants, or assistance 
systems in cars. Several studies [3, 40] show that such systems bear various 
concerns, and therefore legal, ethical, and domain-specific considerations have to 
be made. From this emerges a strong need to safeguard these AI systems from 
malicious attacks. 

When embarking on the development of AI systems, there are established 
standard processes that can be adopted. 

The root for currently used life cycles can be found in data mining processes. 
A well-known approach is the Knowledge Discovery in Databases (KDD) pro-
cess [19], which is composed of selecting target data, that is to be analyzed, 
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Fig. 1 The six phases of the 
CRISP-DM lifecycle. Source: 
https://www.ibm.com/docs/ 
en/spss-modeler/saas?topic= 
dm-crisp-help-overview Business 

understanding 
Data 

understanding 

Data 
preparation 

Deployment 

Evaluation 

Modeling 

DATA 

preprocessing the data and performing necessary cleaning steps, transforming the 
data, mining existing patterns within the data, and finally interpreting what was 
found. Patterns like this are important as they provide a standard order of operations 
for practitioners of the field to adhere to. In using them, certain standards like ethical 
or moral can be enforced. 

The most notable successor to the KDD is the CRoss Industry Standard Process 
for Data mining (CRISP-DM) [45]. It was developed in 1996 and became a Euro-
pean Union project in 1997 with the leadership of five companies. The methodology 
was presented in 1999 and published as a data mining guide. In subsequent years, 
discussions were held for updating the model. CRISP-DM is important due to its 
widespread adoption and several advantages it offers to the data mining industry. It 
is the most widely used data mining model, providing a structured and systematic 
approach to data analysis. It helps address existing challenges in data mining by 
offering a step-by-step guide for practitioners. Figure 1 shows the original CRISP-
DM workflow with its major parts. Its industry, tool, and application neutrality 
contribute to its success, making it adaptable and applicable across different 
domains. These features make the model a good basis for developing secure AI 
applications. We will have a closer look at the different phases of the model now: 
business understanding, data understanding, data preparation, modeling, evaluation, 
and deployment. 

During the business understanding phase, the primary focus is on formulating 
relevant questions. A skilled data scientist possesses deep knowledge of the 
application domain they are working in. This domain expertise enables them to 
identify and articulate questions that can be addressed using analytical methods. 
While one might assume that finding questions is straightforward, often domain
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experts are unaware of existing methods to solve their problems, or they simply go 
through daily routines without questioning them. When a problem is identified, its 
initial formulation may prove insufficient and necessitate adjustments. 

The data understanding phase involves thoroughly examining the available raw 
data within an organization. It is crucial to understand both the strengths and 
limitations of the data in order to effectively work with it. Frequently, data is 
collected without a specific goal in mind, resulting in potential gaps for addressing 
certain questions. In such cases, it may be necessary to acquire data from external 
sources to supplement the existing dataset. If fortunate, the required data might be 
available as open data; however, there could be associated costs if data needs to 
be purchased or is not readily accessible. Therefore, the availability of data can 
directly influence the framing of the question. Data preparation is a time-consuming 
task for data scientists. Before applying analytical methods to the data, it is essential 
to ensure that the data is of sufficient quality. 

A previous conversion of data into a structured form is often necessary, as this 
representation of data is particularly suitable for further analyses. Once data is put 
into the desired form, erroneous, missing, or noisy data must be cleaned using data 
preprocessing methods. The use of different data mining methods depends on the 
data category. For example, not every analysis method can work with categorical 
data. Quantitative data may need to be normalized before modeling methods are 
applied. 

In the modeling phase, different approaches like supervised, unsupervised, or 
reinforcement learning are applied to the data to find patterns, regularities, or 
decisions. There are many different algorithms available for this purpose. 

The objective of the evaluation phase is to identify the most suitable and valid 
model. Before applying a model in an organization, it needs to undergo rigorous 
testing under controlled laboratory conditions. It’s important to note that even if 
a model has demonstrated excellent performance in the laboratory, it does not 
guarantee similar performance in real-world scenarios, so continuous testing and 
adapting is necessary. 

Deployment refers to the process of implementing the model into regular 
operation. To effectively utilize models in a production system, they need to 
be adapted regularly to match the conditions of the operating environment and 
seamlessly integrate with the existing infrastructure. This may entail significant 
costs or even the replacement of certain systems. Close collaboration between 
data scientists and software development teams is crucial in ensuring a successful 
deployment. 

CRISP-DM is a very iterative and promising process, whose phases also alternate 
with each other. But it lacks of some necessary phases which enables to develop 
trustworthy AI; for example, it does not inherently take security and risk assessment 
into account. In 2021, M. Haakman et al. [24] tried to show that AI life cycles 
need to be revised, because since their inception, the challenges concerning AI 
have changed and new ones have arisen. After conducting interviews, Haakman 
et al. propose the addition of a Data collection step, a Documentation step, a Risk 
Assessment step, and a Monitoring step after deploying a model.
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In this chapter, we would like to highlight aspects that would have to be added 
to the CRISP-DM in order to meet all requirements for the development as well as 
the deployment of safe AI applications. While safe AI has different definitions, in 
the context of this chapter, this term is focused on systems that pose minimal risk of 
failure or discrimination. Therefore, we present a blueprint for AI which, in addition 
to the phases of the CRSIP-DM, adds missing aspects, regarding explainability and 
robustness. 

The blueprint consists of seven pillars that are necessary for AI systems. These 
seven pillars must also be taken into account by data scientists, the professionals 
which are responsible to develop AI systems. A data scientist combines expertise 
in statistics, mathematics, programming, and domain knowledge to extract valuable 
insights and knowledge from large and complex datasets. They use various tech-
niques, tools, and algorithms to collect, preprocess, analyze, interpret, and model 
data in order to solve complex problems and make informed decisions. Additionally, 
they play a crucial role in developing data-driven strategies and solutions for 
organizations and are not infrequent responsible for designing, building, and 
maintaining the infrastructure and systems that enable the storage, processing, and 
analysis of large volumes of data. The knowledge of necessary steps to provide 
trustworthy AI is important. 

First, in Sect. 2, we consider what influence domain-specific knowledge has on 
the quality of AI algorithms. In Sect. 3, we will look at the technical aspects; this 
includes among others the handling of data and the creation of models for machine 
learning. We will also look at what role structured processes play in this context. 
Special security aspects are described in Sect. 4, followed by a discussion of ethical 
aspects Sect. 5. In Sect. 6, we look at the social aspects that are significant in the 
development of AI. These are mainly the United Nations Sustainable Development 
Goals (SDG) with a specific focus on environmental aspects. Finally, Sect. 7 
concludes this chapter. 

2 Domain Aspects 

In this section, we give a short discussion in the integration of domain experts into 
data analysis and discuss some important aspects that are often overlooked when 
challenging a data project purely based from a data scientists point of view. Since 
every domain has its own specific merits and peculiarities, introducing domain 
experts into related data science projects is of the utmost importance, especially 
when the results ought to be used later on in either commercial products or 
permanent local installments. 

2.1 Integration of Domain Experts 

Data scientists may lack expertise in business and domain knowledge. While data 
science competence can sometimes be a valuable asset in compensating for a lack



Safeguarding the Future of Artificial Intelligence: An AI Blueprint 7

of business knowledge, it can also lead to neglecting crucial information that is 
needed to produce models with relevant business outcomes. Data mining processes 
should therefore reflect this importance. Currently, the modeling process is abstract 
and filters out many domain-specific factors that are essential for connecting 
academic research-based findings with practical, industry-focused problem-solving 
solutions [6]. Waller et al.[51] describe the importance of domain knowledge in 
the field of supply chain management. They state that domain knowledge and the 
analysis of data cannot be separated. 

Domain experts, as the name suggests, are well-versed in understanding the data 
connected to their field of business and can provide valuable insights. Therefore data 
scientists need to work closely with such domain experts to learn from them. This 
is the only way to find questions that can be answered with the help of data as well 
as to navigate around pitfalls. 

Having knowledge of innovation methods can also be beneficial for data 
scientists. Utilizing such techniques, for instance, can aid in identifying questions 
that have the potential to lead to new data-driven products, business models, or novel 
fields of application. 

We recommend the usage of methods like data canvases [5], persona develop-
ment, stakeholder interviews, or stakeholder maps [43] as tools that can help data 
scientists interact with domain experts. In using these tools, data scientists can reach 
a common ground with domain experts, which breed crucial understanding. First 
breakout and brainstorming sessions help to identify the required domain experts 
that need to be integrated, as this is often far from trivial in the setting of a larger 
company. Thus, the suitability and especially completeness of the people involved 
must always be challenged critically, especially when departments are suspected to 
send rather junior, and thus cheap, personal to the respective workshops. 

At the same time, data must not be lost sight of. The focus is on acquiring 
an initial understanding of the available data, its quality, and its suitability for 
the possible applications at hand. This involves exploring the data, identifying its 
sources, understanding its structure and format, and assessing any limitations or 
issues. 

This is important for several reasons. Firstly, it helps the data science team 
gain insights into the characteristics of the data they will be working with. This 
understanding aids in making informed decisions throughout the project, such 
as selecting appropriate modeling techniques and determining the feasibility of 
achieving the desired goals. Secondly, it might give clues for additional features, 
as well as new strategies for data exploitation in the context of the company. Data 
scientists must be weary though to not introduce a meaning and usefulness into data 
sets that quite isn’t there, e.g., due to lack of data quality or sample selection bias. 

2.2 Providing Trustworthiness and Control 

Trustworthiness is considered to be a major important requirement for many data-
driven products and services, as it ensures a certain compliance to principles
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related to human oversight and security. Nevertheless, trustworthiness in most 
definitions (see [26] for the definition of the High Level Expert Group HLEG 
and [49] for the definition by the NIST for two of the most prominent ones) has 
some pitfalls, as it sometimes incorporates highly nontechnical requirements like 
”societal well-being” [26] that might not coincide with functional requirements and 
typically requires explainability, which is a very strict and demanding feature. Thus, 
controllable AI [29] could be taken into consideration as an alternative, as it does 
not impose these requirements onto the AI system but models them rather like we 
model legal requirements: The operator of the system needs to be able to control that 
the AI does not diverge too much from the intended mode of operation (in quality 
of the results, as well as in the way they are achieved) and is able to circumvent the 
AI in cases this happens. Explainability is not required, i.e., the operator does not 
need to understand why an AI is or is not working as intended, as long as the overall 
system is resilient enough to be able to cope with the effects. 

2.3 Security and Cyber Resilience 

Data understanding also plays a significant role in developing secure data-driven 
applications. By thoroughly examining the data, potential vulnerabilities and risks 
can be identified early on. This allows for the implementation of necessary security 
measures to protect sensitive information and ensure compliance with regulations. 
A very important topic is cyber resilience. In this concept, related to cyber security, 
it is assumed that it is impossible to always defend against attacks and that some 
attackers will get through even the most sophisticated defenses [4]. Thus, a resilient 
system needs to be able to cope with successful attacks and either recover or 
change itself in order to be able to continue working as intended. While this is 
already difficult to achieve in non-AI systems, the missing explainability makes even 
standard procedures like penetration tests complicated in certain instances of AI, 
especially when considering self-changing systems like in reinforcement learning. 
Still, understanding the data might help in uncovering potential biases, errors, or 
inconsistencies that could impact the reliability and fairness of the resulting models, 
or, at least, allowing for more informed risk management. Furthermore, sanity 
checks could be devised that allow for at least some form of detection mechanisms 
regarding output or model manipulation. The output of such an analysis is often 
realized as a quality report on the data, describing all data sources and all fields 
in the data set, as well as information on how control is exerted upon them. Still, 
securing AI and providing resilient AI systems are a big challenge for many of the 
very popular AI techniques like deep learning or reinforcement learning and requires 
much more additional research, which will require knowledge on the domains 
involved.
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2.4 Laws and Regulations 

Another vital domain-specific aspect is the adherence to all sorts of norms, 
standards, laws, and regulations that are in place. While this is more or less standard 
for common regulations like the GDPR, knowledge on domain-specific regulations 
needs to be derived from cooperation with the respective experts. This is especially 
important in case of standards and best practices that are not made into law, as these 
are very hard to find out about from a pure outside perspective. This especially holds 
true, when these best practices do not apply for the industry as a whole, but only to 
a very specific subset of systems. Furthermore, as new systems should be designed 
to be as future proof as possible, upcoming regulations should be taken into account 
too. Following, we give a short example on some very important pieces of legislation 
that will come into effect in the European Union in recent years that will affect the 
usage of AI. Please keep in mind that this list is not comprehensive. 

2.4.1 The AI Act 

The most prominent example for novel regulatory development in the area of 
AI is the AI Act [14]. Its main target lies in providing the rules for a common 
market for AI-based systems. It not only provides a definition of what is considered 
to be AI, which had been the topic for a lot of debates, but also classifies the 
utilization of AI based on risks and application domains involved into four different 
categories: prohibited, high risk, limited risk, and minimal risk. For each risk class, 
and especially for high risk AI, guiding principles and rules are defined. At the 
time of writing this paper, some paragraphs of the AI-Act are still very much under 
discussion; thus, we omit discussing further details at this point. 

2.4.2 The Data Act 

The Data Act [16] focuses on manufacturers of smart devices and cloud providers 
and especially focuses on control over data generated by these devices. The 
idea behind the Data Act lies in increasing availability and interoperability of 
nonpersonal information and comes with several requirements for the developers 
and providers of IoT devices. Firstly, the design of the products must be done in a 
way to ensure simple real-time access to the collected data generated by the devices, 
as well as by connected ones. Furthermore, it grants new privileges for the owners 
of connected products, especially the right to request data holders to share data with 
a specific third party directly. In addition, it also grants privileges to public bodies, 
especially the right to request access to the data in cases of emergency.
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2.4.3 The Data Governance Act 

The main purpose of this act [13] lies in providing a framework for ensuring 
confident data sharing that can be reused easily from a technical perspective – 
aiming at providing an increasing amount of data of good quality in order to fuel 
innovation. This also demands infrastructure setup by the member states in order to 
facilitate this reuse and defines the duties of so-called data intermediation services 
as well as defines the concept of data altruism. 

In addition, other software or system-related regulations like the NIS2-
directive [15] might have an impact on design and use of a specific AI system, 
especially in case of critical infrastructures. Furthermore, even company-specific 
standards and best practices might be in place that require addition attention and 
need to be taken into consideration too. 

2.5 Domain-Specific Peculiarities 

Including domain experts is also very important in order to integrate AI-based 
systems well with existing functionality, especially considering system-specific 
nonfunctional requirements. As an example, industrial environments typically have 
long lifespans, which not only make the addition of new hardware and software 
difficult due to compatibility and performance issues but also can be problematic 
when introducing standard features for cyber resilience, which in turn makes 
achieving trustworthiness difficult. As an example, deep package inspection might 
not be introduced due to the performance overhead of the inspection which would 
lead to problematic delays in certain arts of an industrial complex. Even more prob-
lematic is the standard doctrine of patching, which is hard to do in many industrial 
environments due to problematic downtimes or the need for recertification [28]. In 
addition, domain knowledge is extremely important when dealing with real-world 
data, as this is typically tainted, i.e., there are errors inside the data, either from 
the data generation/retrieval process or due to problems in the subsequent handling. 
Thus, in any real-world application, data cleansing [25] is of the utmost importance, 
which not only requires a lot of domain knowledge but also has the danger of 
opening a plethora of legal issues [47]. 

3 Technical Aspects 

In this section, we will discuss some selected aspects from the technical perspective, 
especially focusing on the CRISP-DM model for its structured approach. In 
addition, we focus on modeling the security and privacy relevant parts and comment 
on issues that need further reflection apart from the original approach.
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3.1 Data Preparation 

Data preparation is a vital part in any data-reliant system which is often forgotten 
or underestimated. This especially holds true for the data cleansing stage, which 
is not even mentioned in many scientific publications using data, despite the 
potentially large impact it can have on the actual results. This also holds true for 
anonymization techniques, which potentially introduce a lot of distortion, e.g., in 
the case of using generalization-based approaches for reaching k-anonymity [48]. 
More importantly, it has been shown in [46] that it is not even possible to give 
good estimations, or even lower/upper boundaries, on the distortion introduced, 
when executing machine learning algorithms on k-anonymized data sets: First, the 
actual data quality of the anonymization is largely depending on the actual data 
precision metrics in use [12], which is currently a largely underdeveloped topic. 
Second, even when comparing anonymization using the same metrics with different 
algorithms on the same data set, the distortion differs vastly. Third, cases have been 
identified where the subsequent machine learning algorithms performed better on 
anonymized data sets of lesser granularity (i.e., data sets that have been anonymized 
stronger), which is counterintuitive at first glance, but logical, if the anonymization 
by generalization is seen as a form of pre-clustering. In some singular cases, working 
on the anonymized sets yielded even better results than working on the original 
ones, due to outlier removal and pre-clustering effects. Contrary to these results, in 
many cases, the distortion of strong anonymization on the subsequent data analysis 
was non-negligible and introduced quite a negative effect. Thus, summarized, to 
correctly interpret the effects of anonymization, as an example of important data 
preparation techniques, requires a lot of attention, both from a technical and domain 
perspective. 

3.2 Modeling 

The modeling phase involves the application of various techniques to build and 
develop predictive or descriptive models based on the selected data set. During 
this phase, the data mining team selects the modeling techniques that are most 
appropriate for the project’s objectives. This can include techniques such as decision 
trees, neural networks, regression analysis, or clustering algorithms. The selected 
models are then trained using the available data, allowing them to learn patterns, 
relationships, and dependencies within the data. Once the models are trained, they 
are evaluated to assess their performance and effectiveness by the use of metrics 
specific to the selected methods like accuracy, precision, recall, Cohen’s Kappa [7], 
or predictive power. If the models do not meet the desired criteria, the team may 
revisit the data preparation phase to improve the quality or relevance of the data or 
adjust the modeling techniques used. The outcome of the modeling phase is a set of
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reliable, validated, and optimized models that can be used for decision-making or 
generating predictions. 

3.3 Evaluation 

The evaluation phase is crucial for ensuring the reliability, effectiveness, and 
suitability of the models in real-world applications. It helps in identifying any 
shortcomings, biases, or limitations of the models and provides insights into their 
overall performance. Through this evaluation, organizations can make informed 
decisions about whether the developed models are suitable for deployment and 
further utilization. Based on the evaluation results, the data mining team can make 
informed decisions about the models. If the models meet the desired criteria, they 
can proceed to the deployment phase. However, if the models fall short or do 
not meet the project requirements, further iterations of the modeling phase may 
be necessary, including refining the modeling techniques, adjusting parameters, or 
revisiting the data preparation phase. 

3.4 Deployment 

During this phase, the focus shifts from model development and evaluation to the 
practical implementation of the models. The data mining team works closely with 
relevant stakeholders and technical teams to ensure a smooth deployment process. 
The deployment phase aims to transform the developed models into practical 
solutions that can provide value to the organization or end users. It ensures that the 
models are effectively utilized in real-world scenarios, enabling informed decision-
making, process optimization, or other desired outcomes. Any evidence of bias, 
unfairness, or nontransparency should be eliminated at the beginning of this phase 
so that the models can be put into production. 

Once deployed, the models need to be continuously monitored to ensure they 
are performing as expected. Regular monitoring helps identify any performance 
degradation, data drift, or changes in the model’s effectiveness. Maintenance 
activities may include updating the models, retraining them with new data, or 
addressing any issues that arise. 

3.5 Data Management 

The topic of data management is currently often overlooked and reduced to the part 
of data collection and providing the AI systems with enough (high quality) data 
in order to generate the best possible models. Still, data management encompasses
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far more tasks, some of which directly reflect on secure long-term utilization of a 
model. 

In order to facilitate good long-term use of data and the resulting models, 
data management plans (DMPs) [10] should be put in place, though techniques 
like reinforcement learning require a far more advanced approach to providing 
transparency than provided by the typical, rather static, approaches for DMPs. A 
more in-depth analysis of the shortcomings of typical templates for DMPs, including 
a strategy on how to overcome them, can be found in [53]. 

Furthermore, in order to combat the problem of hidden bias in machine learning-
based systems, the DMP should incorporate information on possible sources for bias 
inside the data, especially when these can get propagated into the final model. This, 
of course, requires the owner of the system to be aware of bias inside the data. 

What should not be overlooked is the importance of a proper documentation. 
It is crucial to document the collection and selection of training data, done in 
collaboration with experts, as well as the modeling and evaluation processes. 

4 Security Aspects 

Challenges and threats to artificial intelligence are manifold. Therefore, in this 
subsection, we provide an overview on the current threat landscape with regard to 
the machine learning system itself and in combination with cybersecurity challenges 
of these applications. 

The threat landscape for machine learning specifically can be structured in two 
parts: the attack surface and adversarial capabilities. The attack surface describes 
where, in regards to the phase of an artificial intelligence application, an adversary 
might want to attack. Papernot et al. [38] define two main stages consisting of 
inference and training, to give a general basis, applicable to most if not all machine 
learning systems. Qiu et al. [39] shift these stages to be training and testing, while 
both describe similar things; in order to give a better overview, we propose adapting 
these two definitions into three phases: inference, training, and testing. 

The inference phase includes the data ingestion, the learning algorithms, and 
parameters of the model and the corresponding architecture. The training phase 
concerns itself with running training data through the target model and building the 
logic and the testing phase evaluates the outputs a model produces, given a specific 
input. 

Adversarial capabilities can be defined as the knowledge an adversary has about 
the artificial intelligence system and the corresponding actions they can take [38, 
39]. This can be thought of rather intuitively, as access to a model directly and 
knowledge about its inner workings, opens a lot more attack angles than having 
little of either. An adversary with the former may, for example, change a model’s 
parameters or poison ingested data during the inference and training phase. 

An adversary with little knowledge and access to a target model may choose 
to attack a model during the testing phase, with adversarial examples [57], where



14 A. Adrowitzer et al.

original input that was previously classified correctly, for example, an image of a 
stop sign being classified by an autonomous car, is tampered with in order to be 
classified incorrectly. These changes can be rather obvious like putting a few stickers 
on a stop sign, but even more robust artificial intelligence models can be lead to 
misclassify through the introduction of noise that can be inconceivable to a human. 

The strength and severity of such adversarial capabilities are closely interlinked 
with an adversary’s means to gain access or knowledge about a system; there-
fore, cybersecurity considerations become a vital component when assessing the 
threat landscape of artificial intelligence applications. The ENISA threat landscape 
report [17] analyzes cybersecurity challenges with regard to artificial intelligence, 
which are a comprehensive source for risk identification. In the publication, 74 
threats are listed and mapped to the AI life cycle and relevant AI assets, which 
have been categorized into data, model, actors, processes, environment/tools, and 
artifacts. 

In its succeeding publication [18], ENISA introduces a comprehensive guide, 
which analyzed more than 230 references in order to survey risk factors and their 
relations. Building upon a mapping between threats targeting artificial intelligence, 
their underlying vulnerabilities, and the AI life cycle, suitable controls have 
been determined, which have been categorized into the domains organizational, 
technical, and machine learning specific. For controls outside artificial intelligence, 
the guide references widely used standards/frameworks, such as ISO 27001 or NIST 
SP800-53. 

A similar initiative is taken by MITRE. Following the structure of MITRE 
ATT&CK (Adversarial Tactics, Techniques, and Common Knowledge) matrix [37], 
the MITRE’s ATLAS (Adversarial Threat Landscape for Artificial-Intelligence 
Systems) matrix [36] outlines threats to machine learning along the kill chain (i.e., 
Reconnaissance; Resource Development; Initial Access; ML Model Access; etc.). 
With their ATLAS Navigator toolkit tactics and techniques, MITRE provides a 
toolkit to link the identified techniques to threat intelligence. 

The question of why an adversary might attack an AI system has to be addressed 
also. The number of reasons are too many to list entirely, but some examples may 
be the undermining of confidence, where a model could be held from deployment 
because a decrease in performance leads to less confidence in the models output. 
Another reason might be to mask certain input, for example, in network intrusion 
detection; a model could be meddled with to classify traffic generated by an 
adversary as nonintrusive. They could also go as far as damaging an organization’s 
reputation by introducing a bias into a model that can have devastating repercussions 
not only for the organization in question, when becoming public, but also for 
people affected by the model such as credit-score estimation or artificial intelligence 
systems of the sort.
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5 Ethical Aspects 

Artificial intelligence works with real data as well as algorithms developed by real 
people, not machines. For this reason, it always happens that human experiences, 
attitudes, but also prejudices are reflected in the models created [21]. Barocas and 
Selbst [1] define important factors that determine how discrimination happens in 
data mining; we will outline the most relevant ones now. 

The first factor is the definition of the target variable and the class labels. 
Discrimination can already occur here. If, for example, the task is to find the best 
employee, the question arises as to how “best” is defined. Part-time employees or 
employees on maternity leave are often at a disadvantage here. 

The next source is the training data itself, which can be heavily biased. Classic 
examples are image recognition systems that have only been trained with light-
skinned people. The disadvantage here is often not intentional but rooted in a lack 
of attentiveness or awareness on the part of the data scientists. 

Especially for classical supervised machine learning models, feature selection 
plays an important role. It is often the case that supposedly harmless features allow 
conclusions to be drawn about ethnic affiliations, for example. Even if these features 
are important for models, they should be removed from the models in order to reduce 
the risk of discrimination. 

Mehrabi et al.[34] presented a survey on bias and fairness in machine learning. 
They categorize bias on the data, algorithm, and user interaction loop. Their main 
categories are: 

• Data to Algorithm (D2A): The bias is already in the data which is used to train 
the machine learning algorithm and thus might still be present in the outcome of 
the model. 

• Algorithm to User (A2U): Although the data might be unbiased, the algorithms 
might introduce biases. 

• User to Data (U2D): Datasets that are used to train machine learning models 
are very often generated by users (in contrast to, e.g., sensor data, which is 
produced by machines). As a consequence, inherent bias that is existent in users 
is transferred to the data. 

Tables 1, 2, and 3 show the different manifestations of the bias for each of the 
categories. On the one hand, these tables serve to show practitioners the different 
types of bias and also what causes them. Thus, it is possible to exclude bias as far 
as possible in the different phases of a data science project, which is also facilitated 
by the structured application of processes such as CRISP-DM.
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Table 1 Type and sources of data to algorithm biases according to [34] 

Type Description 

Measurement bias Bias arises from the particular features that are chosen, utilized, or 
measured 

Omitted variable bias Occurs when one or more important variables are left out of the 
model 

Representation bias Arises from how the sample is taken from a population during the 
data collection process 

Aggregation bias Arises when false conclusions about individuals are drawn from 
observing the entire population 

Sampling bias Arises due to nonrandom sampling from subgroups 

Longitudinal data fallacy Is important when analyzing temporal data 

Linking bias Arises when network attributes from user connections, activities, 
or interactions differ and misrepresent the true behavior of users 

Table 2 Type and sources of algorithm to user biases according to [34] 

Type Description 

Algorithmic bias The bias is not present in the input data and is added purely by the 
algorithm. Influencing criteria are, e.g., optimization functions, 
regularizations, application of models on the whole data, or subgroups 

User interaction bias The user itself imposes his/her self-selected biased behavior and 
interaction 

Popularity bias More popular items tend to be exposed more 

Emergent bias Occurs as a result of use and interaction with real values. Influencing 
factors are change in population, cultural values, or societal knowledge 

Evaluation bias Happens during the model evaluation and includes the use of 
inappropriate benchmarks 

Table 3 Type and sources of user to data biases according to [34] 

Type Description 

Historical bias Historical bias is the already existing bias and socio-technical 
issues in the world and can seep into from the data generation 
process even given a perfect sampling and feature selection 

Population Bias Arises when statistics, demographics, representatives, and user 
characteristics are different in the user population of the platform 
from the original target population 

Self-selection bias A subtype of the selection or sampling bias in which subjects of the 
research select themselves 

Social bias Happens when others’ actions affect our judgment 

Behavioral bias Arises from different user behavior across platforms, contexts, or 
different datasets 

Temporal bias Arises from differences in populations and behaviors over time 

Content production bias Arises from structural, lexical, semantic, and syntactic differences 
in the contents generated by users
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6 Social Aspects 

In this section, we will discuss social aspects for this roadmap, i.e., what challenges 
that will not be solvable in a technical manner interact with the widespread 
integration of AI-based systems. 

We already discussed the importance of explainability and robustness of AI 
applications in Sect. 5. Now we will have a look at the transfer of technical 
knowledge to the society. 

6.1 Human in the Loop 

The “human in the loop” principle in AI refers to a design or operational approach 
where human involvement is incorporated into an automated or AI-driven system. 
It involves the inclusion of human decision-making, oversight, or intervention at 
various stages of the AI process to enhance performance, address limitations, ensure 
accountability, and promote ethical considerations. [55] 

In practical terms, the human in the loop principle can be implemented in 
different ways. For example, it can involve humans reviewing and validating 
AI-generated outputs, providing feedback or corrections to improve the system’s 
accuracy, or making final decisions based on AI-generated recommendations. This 
human involvement helps to leverage human expertise, contextual knowledge, 
and ethical judgment, complementing the capabilities of artificial intelligence 
systems. [9] 

Using a human in the loop can offer benefits for specific tasks. In certain cases, a 
human expert can provide valuable experience, domain knowledge, and conceptual 
understanding to the AI pipeline. While this may not always be the case, such 
approaches are not only legally sound but also crucial in many application areas 
where understanding the “why” is often more significant than simply achieving a 
classification outcome [27]. 

6.2 AI for Social Good 

The advancement of artificial intelligence (AI) is presently primarily driven by 
commercial interests. However, the AI for Social Good (AI4SG) initiative aims to 
harness AI’s potential for the benefit of society. This entails shifting the focus from 
solely pursuing financial gains through AI technology to considering the well-being 
of individuals and the environment. Consequently, it becomes crucial to establish 
ethical standards and criteria for the design, development, and implementation of 
AI. Cowls et al. [8] argue that the United Nations (UN) SDGs [50] provide a valid 
framework for benchmarking projects for their potential to socially good uses. The
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SDGs are globally accepted targets and are therefore well suited as criteria for 
measuring the positive social impact of AI. 

6.3 Explainability and Interpretability 

Explainable AI (XAI) [41] is a scientific field dedicated to developing AI models 
that can provide understandable explanations for their decision-making processes. 
XAI focuses on generating post hoc explanations for AI models’ decisions and 
behaviors. The goal is to provide users with a human-understandable account of 
why an AI system made a particular decision. This aims to bridge the gap between 
the complexity of AI algorithms and the need for transparency and interpretability 
in various domains. 

Interpretable features are identified and utilized to ensure that the explanations 
align with human understanding and domain knowledge. XAI techniques can be 
categorized as post hoc or inherent explanations, where post hoc methods analyze 
the model’s internal representations, and inherent explanations come from naturally 
interpretable models [56]. XAI methods often employ various techniques to extract, 
summarize, and visualize relevant information from the model, allowing users 
to understand the factors influencing the model’s output [23]. These techniques 
include: 

• Rule-based explanations: These methods aim to capture the decision-making 
process by generating human-readable rules. Examples include decision trees, 
rule lists, and production systems [22]. 

• Feature importance: These methods determine the contribution of individual fea-
tures or variables in the model’s decision. Techniques such as feature attribution 
and sensitivity analysis are employed to identify the most influential factors [2]. 

• Local explanations: Local interpretability focuses on explaining individual pre-
dictions rather than the entire model. Techniques like LIME (Local Interpretable 
Model-agnostic Explanations) [35, 58] generate simplified, locally faithful mod-
els to explain specific predictions [31]. 

• Global explanations: Global interpretability provides an overall understanding 
of the model’s behavior. Techniques like partial dependence plots and Shapley 
values help identify the relationships between features and the model’s output on 
a broader scale [31]. 

Explainable AI has gained significant attention in domains where transparency 
and interpretability are crucial and domain-specific considerations are taken into 
account, tailoring explanations to meet the requirements and ethical standards of 
different fields, such as health care, finance, and autonomous vehicles. It allows 
stakeholders to trust AI systems, detect biases, and identify potential vulnerabil-
ities. Advancements in XAI involve exploring approaches like integrating human 
feedback [55], developing hybrid models, and investigating the trade-offs between 
explainability and performance.
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Ultimately, the pursuit of explainable and interpretable AI aims to strike a 
balance between the power and complexity of AI systems and the need for human 
comprehension and control. By lifting the veil on the black box of AI, we can build 
more ethical, trustworthy, and responsible AI systems that benefit society while 
mitigating potential risks and biases [11, 30]. 

6.4 Trustworthiness 

Trustworthy AI encompasses a broader set of principles and concerns. It refers to 
the development and deployment of AI systems that are reliable, fair, secure, and 
aligned with human values. Trustworthy AI includes considerations such as ethical 
use, accountability, privacy, robustness, and fairness. It aims to build AI systems 
that can be trusted by users and society at large [54]. 

6.5 Transparency 

Transparency in AI applications refers to the degree to which the decision-
making process and underlying mechanisms of an AI system are made accessible, 
understandable, and explainable to users and stakeholders. It involves shedding light 
on how the AI system arrives at its outputs, predictions, or decisions. Transparency 
is crucial for building trust, enabling accountability, and facilitating the responsible 
use of AI. It is achieved by designing AI models that reveal their inner workings, 
including algorithms, features, and decision rules. Therefore models should be 
developed with a well-defined process like CRISP-DM, as these give a standard 
order of operations that includes how the data was derived as well as how features 
may be selected. Some researchers [20] propose the concept of Transparency by 
Design for Artificial Intelligence applications. 

7 Conclusion 

Especially in recent years, as artificial intelligence has increasingly found its way 
into products and processes of daily life, the requirements for the use of the 
algorithms have also evolved. Issues of ethics and safety are particularly important 
when humans are directly affected, as is the case with self-driving cars. However, it 
is also necessary to define and adhere to principles in other applications that seem 
innocuous at first glance. 

In this work, we have presented a set of concepts to enable a prerequisite for 
the secure development, application, and use of artificial intelligence. They will 
be successful if they are already considered in the project during the planning
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phase. In the development phase, experts create models who have learned not only 
the technical aspects but also the ethical aspects as part of their training. Before 
applications are launched on the market, an intensive test phase is necessary to 
assess risks to users, society, and the environment. This also includes testing the 
applications in security-relevant aspects. 

The legal aspects provide a framework for working with AI and for handling 
personal data. This, coupled with a high degree of transparency, ensures that the 
trust of both end users and society in the new technologies will also increase and 
that applications will also become established. 
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Cybersecurity and the AI Silver Bullet 

Anton Holmström, Daniel Innala Ahlmark, Johan Lugnet, Simon Andersson, 
and Åsa Ericson 

1 Introduction 

Automation and information technology were central in the era of Industry 3.0, 
often named the digital revolution. The technological development was driven by a 
vision of processes running without human interference. Along with the shift into 
the Industry 4.0 era, the concept of intelligent digital technologies became central, 
and AI entered the scene. The idea of intelligent machines has a history dating 
back to the 1940s. Marvin Minsky and John McCarthy coined the term Artificial 
Intelligence (AI) in 1956. At that time, they provided an operational description 
of the efforts in AI, “. . . make machines use language, form abstractions, and 
concepts, solve kinds of problems now reserved for humans, and improve them-
selves” [24]. The research and development of AI over time are described using the 
metaphors of natural seasons, i.e. spring and winter, to represent cycles of hype 
and periods of scepticism and criticism. As the time for natural seasons differs 
around the globe, so do the cycles of hype and scepticism. For example, this leads 
to unrealistic expectations of AI but also to an uncoordinated progress of research 
[29]. Nevertheless, AI can positively impact global societal problems [8]. 

Why is AI talked about as hype nowadays? First, media reports exaggerate the 
future of AI in business and work. Technological development takes time, and issues 
of different cultures and languages are a grand challenge [29]. Second, when the 
breakthrough finally happens, the distribution of digital solutions is straightforward. 
AI has passed the stages of technological development and is accessible to the 
public, for example, with the launch of DALL-E in 2021 and ChatGPT in November 
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2022. Yet, just because the technology is developed, it does not imply practical 
organisational benefits. It has been suggested that visions based on science fiction 
are better at driving social and technological change, because citizens think about 
a possible technological future (e.g. [21, 26]). Listening to the hype discourse 
saying the future is already here makes us believe AI is a silver bullet to every 
organisational problem. 

Early AI developments emphasised replicating human intelligence and replacing 
humans in most processes and operations. Do we wish for this? From a technical 
point of view, AI is described as having human qualities, such as ‘learning’. A 
typical description of AI is “a system’s ability to interpret external data correctly, 
to learn from such data, and to use those learnings to achieve specific goals and 
tasks through flexible adaptation” [19]. However, others argue that such abilities 
are beyond the actual functions of the technology [22]. 

AI builds on historical data, and such data are often biased towards human norms; 
one example is when Amazon used AI in 2015 for recruitment. No women were 
selected among the applicants simply because none had been employed before. 
Recently, the UN secretary-general opened the Commission on the Status of Women 
conference (CSW67) by declaring that AI risks deepening existing discrimination 
and biases because of where, by whom, and for what purposes AI is developed. 
The AI Act, a proposal presented in 2021 to consider legislation on AI, put forward 
ethical and exclusion issues, among others [11]. Others argue against the AI Act, 
since it will hinder development, innovation, and entrepreneurial applications. 

Several practitioners and researchers have called for reflection and dialogues on 
the impact of AI on society, organisations, and individuals. The standpoint depends 
on the observer; some see tremendous and intelligent innovations, while others are 
sceptical. AI introduction is thus a complex issue and cannot be seen as the intro-
duction of technology but rather a change in work life as we know it. Organisational 
success in introducing AI depends on overcoming resistance to change, building 
trust [17], and addressing ethical and cybersecurity challenges [34]. 

This chapter presents a conceptual view and discusses AI’s organisational and 
managerial challenges in cybersecurity. Within that context, we intend to contribute 
to considerations rather than taking standpoints for or against AI. Two behavioural 
science concepts inspire our reflection on the topic. One is solutionism, which 
describes an overbelief that technological solutions are the primary remedy but 
neglects how they create new problems. The other is ‘It Seemed Like A Good Idea 
At That Time’, which can be similar to the saying that the solution is seldom wrong 
but might not solve the right problem [25]. Thus, bear in mind that the chapter 
provides a base for considerations rather than solutions. 

First, it will present cybersecurity from an organisational and managerial point 
of view. After that, two areas and contexts are described, i.e. AI in information 
classification and AI in incident handling. At the end of the chapter, AI features 
and challenges are discussed before concluding the chapter with implications to 
consider.
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2 Organisational and Managerial Cybersecurity 

As often in research, defining what is included or not in a term is an ongoing 
debate in many areas, so also in cybersecurity. One definition suggests that infor-
mation security addresses measures taken to protect information everywhere, while 
cybersecurity is linked to the internet and vice versa, i.e. protecting digital informa-
tion [32]. Based on that definition, it is concluded that cybersecurity and information 
security overlap to some extent. Contemporary organisations in developed countries 
are highly digitalised, making such discussions philosophical. Cybersecurity and 
information security concepts are pragmatically used in organisations in ways that fit 
the organisation’s goals, e.g. we need to know which informational assets and digital 
systems we have, where they live, their vulnerabilities, how they can be threatened, 
how to protect them, and how to recover in case of an attack. Simplified, organisa-
tions must ensure correct management to prevent, for example, unauthorised access, 
disclosure, manipulation, or deletion of information. Cybersecurity governance 
means the organisation employs strategies and sets up goals and procedures. Cyber 
resilience means the organisation can operationalise necessary security measures, 
which will be embedded in the employees’ practices (cyber hygiene). Cybersecurity 
thus permeates the whole organisation strategically, operationally, and in work 
behaviour, i.e. it is not only a responsibility of the IT department. 

Digitalisation has connected the world and created a virtual and abstract dimen-
sion, different from how we behave in the physical one. The digitalisation of 
organisations has been discussed regarding privacy, safety, security, and equity, 
concluding that work is far more remote and hybrid than ever [9]. Digitalising the 
work environment and workforce has become a new normal, mainly because the 
COVID-19 pandemic and lockdown forced organisations to rush into the digital 
work environment. In 2023, organisations assess that they are more aware of cyber 
issues than a year ago, especially among business leaders. Still, a problem when 
organisations are connected and share digital data is that their boards, business 
leaders, and cyber leaders speak different languages. Further, business and cyber 
leaders agree on the increased cyber risks but differ on mitigation strategies. 
Business leaders believe more cross-sector regulation is needed, while cyber leaders 
believe employee awareness is essential [36]. The problem with different jargon is 
described as a difference between hearing and listening, i.e. a gap between being 
informed and having actionable knowledge. AI is likely to bring in similar but also 
additional challenges beyond the technical [38]. 

3 Information Classification: The Basis for Secure 
Organisations 

Managing risk is a central activity for organisations, since they must protect 
their intellectual properties, or information assets, whether physical or digital. An
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organisational asset can be, for example, customer data like payment and billing 
information, employee data and records, or authorisations and passwords for the 
organisation’s IT systems. Considering digital assets, such as information stored 
in computers, databases, or systems, risk management focuses on threats and 
vulnerabilities [31]. Vulnerability, the weakness of a system, process, or procedure, 
makes it open for malicious actions, for example, manipulating or changing 
information or damaging or disrupting digital operations. Protecting organisational 
digital assets from being compromised is thus related to ensuring confidentiality, 
integrity, and availability [16], known as the CIA triad. Yet, security controls must 
protect the assets from unsanctioned use while simultaneously providing access to 
authorised users. 

Risk management starts with identifying and classifying assets, i.e. knowing 
which intellectual properties the organisation has and their value for its businesses. 
The valuation of the assets is commonly assessed in terms of operational, financial, 
and reputational consequences. The classification is based on the CIA triad [3]. 
And then, roughly described, each identified asset is judged regarding its con-
sequences for the organisation’s stakeholders, such as customers and employees, 
e.g. low, moderate, high, or sometimes even catastrophic. The recommendations 
for classifying information are described in standards and frameworks, e.g. ISO 
27002:2022, NIST Risk Management Framework (RMF), and Octave Allegro. 
However, adapting standards and frameworks is challenging, since the suggestions 
must be streamlined with specific organisational conditions. Besides the problem 
of adapting standards, four other issues in private and public organisations for 
conducting information classification have been formulated and discussed [2]. 
Those issues are the following: 

• To decide on the level of detail for the work, e.g. if the classification should be 
done on a complete system or its subparts. Here it was found that the decision-
making depended on weighting various roles arguments, i.e. those close to the 
technical details of a system versus those close to the core business. Such a 
decision directly impacts cybersecurity governance and the investment in security 
measures. 

• An incomplete record of assets, e.g. since information is dynamic in organisa-
tions, the previous inventory of assets must be kept up to date. Here, the valuation 
became troublesome when new assets came up during the work, i.e. they did not 
exist in the registry from the start. Missing assets in the registry can thus be new 
information or information previously unidentified and exposed to vulnerabilities 
requiring additional investigation time and resources. 

• Differences in experiences impact the judgment regarding consequences, e.g. an 
asset’s low, high, or medium risk. Differences commonly result in disagreement 
and extensive discussions, and it was exemplified that it can lead to overprotect-
ing assets. Cooperation between different roles and responsibilities, i.e. various 
experiences, is necessary for classification. Nevertheless, a conceding approach 
can result in inconsistency of classification.
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• Language differences, e.g. roles use different jargon and interpretations of the 
same topic. The core issue here is communication, i.e. the capability to express 
something, listen to others, and understand someone else’s perspective, even 
though it is expressed in terms of another function in the organisation. Dwelling 
on investigating terminology and meaning was explained as time-consuming and 
frustrating, often leading to too hasty decisions. 

Contradictory, but a known difficulty is managing the extensive information in 
the classification work, as can be discerned in the above examples of problems. 
Further, in such a limited but foundational part of managing risks, as the identi-
fication and classification work is, the heterogeneity of data and data sources is 
troublesome. Additionally, the rate of information production in organisations is 
another challenge related to identification, e.g. where information is processed and 
stored, it might be across cooperating organisations. In the case of attacks on value 
chains, companies get negatively surprised at how interconnected their systems and, 
thus, informational assets are. 

AI tools excel in managing enormous information flows, hence are found very 
helpful in identification and classification. AI to statistically support the valuation of 
assets has been used for a long time, for example, in forecasting market trends and 
operational risks. But for information classification, AI can, for example, swiftly 
find personal information in digital documents, thus identifying the data and all 
sources containing sensitive data in an organisation. 

And AI chatbots can be used in a team debate as a ‘second opinion’ mitigating 
differences or supporting terminology investigations. AI results depend on past data, 
but humans make mistakes, misjudge, or make inconsistent trade-offs, as described 
in the information classification problems above [2]. AI tools can thus not be 
more accurate than the input data allows [33]. Even though using AI is promising, 
coherent and correct information identification and classification must be carefully 
and continuously accomplished to reap the benefits of AI. In turn, constant retraining 
and tuning of AI models are necessary. 

4 Incident Handling: Securing Resilience and Recovery 

A threats trend report suggests organisations expect rising cyberattacks on supply 
chains, disinformation campaigns, human errors in cyber-physical systems, targeted 
attacks using smart device data, hybrid threats, and AI abuse in the coming 
years [23]. Nation-states recognise that cyberspace is a fifth arena for military 
operations. However, also non-state actors are evident [30]. A typology of such 
non-state cybercriminals has been suggested by Sigholm [30]. Actors are, for 
example, script kiddies driven by curiosity, hacktivists motivated by political or 
social reasons, black-hat hackers using malware and viruses for their economic 
gain, espionage agents, and organised cybercriminals, all using different modus 
for financial gains. Cybercriminals have different motivations and targets, as they
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also use various methods. Targeted organisations and individuals must be aware of 
and manage multiple threats, while antagonists can stay specific on their chosen 
modus. Organised cybercrime is capitalising on organisations by inventing new 
attack tactics, techniques, and approaches, making it difficult for organisations to 
impede such ‘entrepreneurial’ ingenuity. Organisations ethically follow regulations 
and laws, while organised cybercriminals do not bother, act quickly, and are 
innovative [1]. Cybersecurity is an unfair ‘war ground’ requiring more holistic, 
broader, deeper, better, and actionable knowledge as organisational capabilities. 

The ever-changing threat landscape carries attacks that propagate at multiple 
levels and in several phases, i.e. searching for technical vulnerabilities in software 
or hardware, so-called synthetic attacks, and attacks aimed at social vulnerabilities, 
so-called semantic attacks [35]. The latter type of attack is, for example, phishing 
emails, taking advantage of people’s gullibility, and encouraging them to click on 
links to an infected website. Such attacks open a backdoor to the organisation’s 
network. Attacks like this often adapt to changing security measures and refrain 
from actions until the right circumstances appear. In other words, watching and 
waiting. The saying ‘in the wild’ describes how malware spreads unnoticed by the 
organisation as attacks could be hidden. Organisations thus often find themselves 
falling behind when they, after the fact, analyse fragments of an attack. This 
situation means organisations look at the past to predict the future [5]. Yet, to 
reduce the time between compromise, the detection of an attack and mitigation 
measures, organisations strive to implement cyberthreat intelligence [35], e.g. 
mechanisms, indicators of incidents, and actionable advice about existing and 
emerging threats [14]. Such a strategic approach involves collecting, analysing, and 
disseminating knowledge about cyberthreats within the organisation. Ultimately, it 
helps deter and defend the organisation by prioritising threats, aids in reconstruction 
after an attack, and tactically helps validate and prioritise indicators, patches, and 
alerts [12]. The threat intelligence approach supports organisations in formulating a 
practical and useful response plan [4]. 

The incident response and handling strategy include ensuring availability for 
all employees, so they know whom to contact when they discover an attack or 
suspect an incident. Such a response team should be available twenty-four-seven; 
thus, organisations often outsource the monitoring task per se. A response team 
can receive 10,000–15,000 alerts per day. Handling continuously rising incidents 
is stressful and demanding, and burnout and security fatigue are common [13, 20]. 
The requirements for an organisation’s incident response staff are high regarding 
leadership and technical skills. Implementing staff rotation in and out of the incident 
response team is suggested, as well as opportunities to create and run workshops for 
training other employees and ensuring time off to recover [7]. 

The activities in incident response depend on the magnitude, but handling 
incidents is commonly described as a four-stage process [7]: 

• Preparation. Setting up the structure and mechanisms for managing incidents, for 
example, encryption software, tracking systems, forensic workstations, backup 
devices, and cryptographic hashes, but also basic things like contact information
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within and outside the organisation and a war room for communication and 
coordination. 

• Detection and analysis. Not all incident indicators are guaranteed to be true; 
detection systems can also indicate false positives, which are improper signs of 
incidents. All incidents are not necessarily a cyberattack, e.g. crashed servers or 
human errors in using systems. A key task is understanding the normal behaviour 
of the systems and prioritising which of the numerous alerts are so-called true 
positives. 

• Containment eradication and recovery. A central activity is making decisions, 
e.g. shutting down the system, disconnecting from the network, or disabling a 
function. The decision will impact the organisation’s possibility of running its 
businesses; any system downtime is critical. The recovery includes manifold 
activities, such as restoring systems, rebuilding systems if needed, installing 
patches, and changing passwords. 

• Post-incident activity. The central activity is to create organisational knowledge 
from incident handling. The team should debrief to investigate, e.g. what 
happened, whether the actions taken were appropriate and sufficient, how to 
prevent such incidents and how to detect similar incidents in the future. 

Organisations reported extensive use of AI for detection and prediction than for 
response activities [6]. One reason for that was the established rule-based processes, 
yet one expectation was that AI in the future will be better at learning from generic 
input and hence produce broader output. This can be described as a too specific or 
too general result problem. The supportive tools for incident handling have some 
shortcomings and challenges; for example, intrusion detection prevention systems 
are found to be slow and have a high rate of false negatives. AI tools can be used to 
prioritise alerts more accurately. And AI tools are very useful in scanning, analysing, 
and supporting decision-making based on large statistical datasets. Further, AI 
can provide information relevant to security professionals for efficiently selecting 
security measures [37]. Still, effective and useful AI implementation in prediction, 
detection, and prioritisation is challenged by the varying risk management and 
responses each organisation deploys. Using AI tools for incident handling also 
challenges the response team to develop new skills, for example, when AI aids 
prioritising by turning off an alert. The user must understand why AI did so if 
trusting the tool’s decision. 

5 Securing Cybersecurity with AI: the Flip Side 

The technological base of AI is machine learning and its related areas. AI builds on 
several well-known statistical methods, e.g. linear regression. Simplified, enormous 
data can be variously modelled to extract information supporting decision-making. 
AI tools are outstanding in such operations, but one important issue is for users 
to know how the tool reaches its result. This issue is related to the human nature



30 A. Holmström et al.

of curiosity and learning and is also a key to the social acceptance of AI [27]. 
Users thus need insights into how the AI tool reasons. The AI interpretable models, 
or explainability, are essential to understand why the tool reached a certain result 
or made a certain prediction. Yet, this also depends on whether the user needs to 
know the rationale as it depends on the AI’s environment. It could be sufficient to 
get a result if it is a low-risk environment, e.g. a movie recommender system or 
recommendations for other products when shopping online [27]. In contrast, having 
a result solely may solve some parts but not the complete problem in many more 
complex organisational applications. Accordingly, the human decision-making 
process follows different rationales depending on the situation. For example, if the 
decision should be based on assessing several alternatives, a good explainability 
would be contrastive, explaining each alternative’s outcome [27]. Explainability can 
address the model or the prediction level, as they can be technical or non-technical. 
Molnar suggests a future of analysing models rather than data. The latter will be 
the job of AI. Nevertheless, there is a need for human-friendly and tailor-made 
explanation models. 

AI comes with great responsibilities, since the apparent benefits also bring risks, 
for example, introducing bias, errors that could have been prevented, and poor 
decision-making causing mistrust for those who should be assisted. Responsible AI 
is emerging in the context of AI governance, addressing ethics, morals, and values in 
the design, development, and deployment of AI [18]. Only some organisations have 
guidelines for how to use AI. Additionally, there are concerns about employees 
needing to understand how AI operates. A recent study has found that 11% of 
what employees paste into ChatGPT is sensitive data, such as patient and client 
information [28]. So, robustness, reliability, efficacy, privacy, and explainability 
can be categorised as technical concerns, while reputational, ethics, policies, and 
regulation are related to governance. And the main concern is that responsible AI 
lags behind technological progress [18]. 

There is certainly a dark side to AI progress. AI is not only benefitting 
cybersecurity but is also a tool for cybercriminals. For example, the rise in advanced 
disinformation campaigns using deepfake. Viewing a film where a CEO’s face 
and voice have been altered and shares classified information from a company 
causes reputational damages that are hard to recover. AI can aid in designing new 
innovative threats and ways to carry out attacks. Also, the benefit of upscaling 
for organisations becomes challenging when cybercriminals use AI for malicious 
purposes. Increases in AI-driven cyber criminality probably result in organisations 
allocating a higher cybersecurity budget. Further, since cybercriminals can find 
vulnerabilities in other systems and manipulate data, they can do so with the AI tool. 
For example, altering the data sets and changing parameters causes model training 
faults, and criminals can thus steer the AI outputs in a certain direction [10]. So, the 
scale and effectiveness of AI go both ways.
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6 Turning the Silver Bullet into a Silver Lining 

AI has here been used in a general form to denote decision support tools. Our effort 
has been to look beyond the technology and discuss the organisational challenges 
of AI in cybersecurity. We introduced two concepts from behavioural science; one 
was solutionism, meaning that technology will solve every problem. Within the field 
of AI, another concept comes to mind, i.e. a phenomenon called the AI effect. The 
concept is credited to John McCarthy, meaning that when AI works successfully, 
no one considers it to be AI anymore [15]. This leaves organisations, society, and 
researchers to solve everything that is not yet done in AI. Solutionism seems to 
drive the discourse on the hype side, and the AI effect in terms of all the things 
that are not yet solved seems to drive the downside. In this one-side-or-the-other 
approach, we forget that AI tools already operate in many digital processes today. 
Organisations already use AI, for example, to scan the contents in documents, 
forecast market trends, recognise images, conduct various analyses, and inventory 
activities. However, the vision of responsible AI also suggests considering the 
social dimensions. Another concept we introduced from behavioural science was ‘It 
Seemed Like A Good Idea At That Time’, meaning that we often jump to solutions 
without reflecting on consequences, e.g. societal impacts, biases, discrimination, 
and exclusion. In the context of cybersecurity, we suggest considering: 

• Even if it seems like a good idea at the time, ensure that AI implementation 
creates more advantages than disadvantages when applied to solve a problem. 
If in doubt, reconsider another solution. Several managers feel an urgency to 
introduce new technologies, but a common dilemma is that the benefits for the 
specific organization are often unclear. Simply not foreseeing what purposes such 
technology will be used for and what rebound effects it creates. 

• Clarify the expectations on AI and carefully analyse its limitations and potential 
biases for its intended use. Figure out if the implementation may or may not 
create a false sense of security among employees. The media hype and the 
marketing of AI tools make us perceive that AI can do anything and everything. 
Yet, implementing new technologies must be followed up with extensive training. 
Employees’ quick adaption to using AI as a tool has already shown that they are 
unaware of sharing sensitive information when asking questions to ChatGPT, for 
example. 

• Removing the human from decision-making is a double-edged sword. Just like 
outsourcing tasks, it can deplete the organisation’s knowledge. Consider whether 
the AI implementation insists on upgrading additional human skills, such as 
capabilities related to understanding AI models and explainability. Decision-
making is a core capability when it comes to cybersecurity, whether on a 
C-level or the core business level. If AI tools are perceived as a ‘black box’ 
and the information base for its recommendations cannot be investigated, the 
organization risks being drained of core decision-making competencies.
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Driving progress in AI by applying a responsible approach can turn the silver 
bullet hype into a silver lining for cybersecurity, thus securing organisations. 
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Artificial Intelligence and Differential 
Privacy: Review of Protection Estimate 
Models 

Minna Kilpala and Tommi Kärkkäinen 

1 Introduction 

Personal data is everywhere and wherever you go, someone or something is asking 
details of the information that relates to an identified or identifiable individual. Per-
sonal data is also the currency of today: Instead of paying money for applications or 
service providers, we compensate their efforts by sharing our personal information 
with them. There are many location-based and healthcare services which do not 
work without personal data, and for other services such as social networks, we 
choose to share our individual information. The creation of user-tailored services 
such as online ads and recommendation systems results from the collection and 
combination of personal data from many sources. 

It is by no means surprising that many regulatory bodies and nongovernmental 
organizations are concerned about privacy. Consequently, there has been an active 
development in the field of personal data protection in recent years. Privacy 
legislation has been created and updated in many countries and areas, such as 
GDPR (General Data Protection Regulation) in Europe [52]. To respond to the 
increased demand for privacy, different privacy models and their implementations 
have been developed [61]. However, the use of these models to protect privacy 
often lacks a clear framework on how well the models used with some specific 
configuration actually protect personally identifiable information (PII) and how well 
the requirements set by legislation are filled. 

Privacy-preserving data analysis is a way to analyze data without compromising 
the rights or interests of individuals. Privacy-preserving processing can be based 
on many techniques and approaches. It can be divided, for example, into [53] 
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(i) cryptographic methods like Secure Multiparty Computation (SMCP) [60]; (ii) 
non-perturbative methods like k-anonymity [51]; and (iii) perturbative methods like 
Differential Privacy [15]. Data mining methods such as clustering, classification and 
association rule mining, unsupervised and supervised machine learning methods, 
and pattern recognition techniques in both descriptive and predictive form can be 
modified for use [36]. Privacy can be addressed and protected at different phases 
of the data processing lifecycle: during collection, publishing, distributing, and 
outputting protected data and the corresponding analysis results [36]. 

Differential privacy is one of the key techniques to ensure that personalized infor-
mation remains non-disclosed [15–17]. Its popularity has been steadily increasing 
during the past decade, mainly due to the rigorous definition of privacy that results 
from mathematical, theoretical, and relational proofs and yields low computational 
costs [61]. Simply by adding suitable noise to the use of sensitive data through 
database queries ensures that the released information will not reveal whether an 
individual is contained in a database or not. 

In this article, we focus on existing techniques and frameworks that are used 
to assess and confirm that the desired level of privacy has been reached. This is a 
follow-up article to our earlier work [37], which by using the umbrella literature 
review methodology summarized the “big picture” of DP: How has DP evolved 
since the original definitions, how extensively is DP used, and what are the mostly 
addressed application domains of DP. Our review concluded the importance of 
a mathematically sound privacy definition provided by DP. We also pointed out 
the needs for future work and efforts, especially to study how more concrete 
mechanisms and algorithms affect the quality of privacy solutions. 

2 Differential Privacy and Attacks 

Differential Privacy (DP) originates from the work of Cynthia Dwork and her 
colleagues [16, 17], building but modifying the conceptual foundation laid by Tore 
Dalenius in 1977 [15]. This foundation is in principle very clear: Nothing from 
an individual whose personal data is part of a database should be disclosed by 
population estimates or through database queries. This strictness, however, cannot 
be achieved as such, but, with a given probability, one can define the .ε-differential 
privacy which guarantees that removal of an individual’s data item in a database 
would not likely affect outputs (and any consequences of outputs) generated from 
the published data. More formally, at the actual privacy preserving mechanism level, 
one adds appropriately chosen random noise to the answer of any query function 
to the database. This mechanism enables us to include sensitive, personalized 
information in public and statistical databases, which can be used to analyze trends 
and changes at the level of national and international populations, e.g., on census 
data [1]. Local DP refers to the case where privacy is protected with respect to the 
local device that performs a query [9]. Approximate differential privacy means that 
with a small probability . δ one is allowed to fail to provide DP [25].
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Formally above Differential Privacy definition [15] says that: “A randomized 
function K gives .ε-differential privacy if for all data sets . D1 and . D2 differing on 
at most one element, and for all .S ⊆ Range(K), 

. Pr[K(D1) ∈ S] ≤ exp(ε) × Pr[K(D2) ∈ S].”

In the case of Approximate differential privacy [16], a small . δ is added to the 
equation which reads as: 

. Pr[K̃(D1) ∈ S] ≤ exp(ε) × Pr[K̃(D2) ∈ S] + δ,

where . K̃ refers to the mechanism in relation to function K . 

2.1 Attacks Against Privacy 

In order to protect something, one needs to understand what kind of threats are 
possible. Attacks against privacy protection, similarly than in the general network 
security, try to break or raise doubts and concerns toward the sensitive information 
hiding mechanisms. For instance, one can try to alter (poison) the sensitive data 
collection, query messages, or the retrieved information, i.e., perform manipulation 
attacks in order to make the entire system’s architecture vulnerable [9]. However, 
if we consider only security threats, we are likely to miss some privacy threats, and 
thus we need to know what kinds of threats are relevant against privacy. 

In the LINDDUN methodology [13], the authors created a systematic approach 
to model privacy-based threats, similarly to STRIDE (Spoofing, Tamping, Repudi-
ation, Information disclosure, Denial of service, Elevation of privilege) [41, 48] is  
for security. In LINDDUN, privacy threats are divided into hard—where the goal is 
data minimization and the user is trying to provide as little personal data as possible 
and trust to not breach privacy—and soft privacy—where the goal is to protect data 
with policies, access control and audits, and the user expects that control of personal 
data is lost and only trust remains. The following threats are categorized under hard 
privacy: 

L Linkability—an attacker is able to identify if items of interest are related or not. 
I Identifiability—an attacker can identify the subject. 
N Non-repudiation—an attacker can gain evidence that subject knows, has done, or 

has said something. 
D Detectability—an attacker can identify whether or not an item exists. 
D Information disclosure—an attacker gets access to personal data that is not 

supposed to be shared. 

Correspondingly, threats under the soft privacy read:
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U Content unawareness—user is unaware of personal data shared in system, and 
thus attacker can get user’s identity or inaccurate information which can further 
lead to wrong decisions or actions. 

N Policy and consent noncompliance—there is no guarantee that system actually 
complies with given privacy policy, and thus personal data may be revealed 
without users’ will. 

The above threats give an idea of what kind of common-level threats there may be 
against privacy. Our scope is more detailed, focusing on artificial intelligence and 
differential privacy, so we needed to go deeper into the specific threats to them. 

Adversarial machine learning studies the vulnerabilities of machine learning 
models and algorithms. In [23], the authors present a taxonomy for classifying 
attacks against online machine learning algorithms. There all privacy attacks 
are categorized under security violation—privacy. Privacy violation means that 
adversary gets information from learner and security or privacy of system’s user 
is breached. They demand that privacy-preserving learning should protect against 
violation by exploratory or causative attacks (under Influence main category). 
Exploratory attacks try to discover information of training process or training data, 
and causative attacks try to influence training data and thus alter training process. 
They present differential privacy as a strong guarantee of privacy. Biggio and Roli 
[4] mentions two main threats to learning algorithms: evasion attacks (manipulating 
input data) and poisoning attacks (misleading training algorithm). 

In [40, 45], privacy attacks are categorized in four types: (i) membership 
inference (if the sample was part of a training set), . (ii) reconstruction (recreate 
training sample(s) or label(s)), .(iii) property inference (extracting properties that 
were not part of the training task, so learning something unintentionally), and . (iv)
model extraction (trying to build a similarly behaved model) attacks. Floating-point 
attacks refer to techniques in which one tries to retrieve information on the noise 
distribution used to perform DP [25]. For instance, if an adversary is able to detect 
the time when a sample is drawn, then information on the magnitude of noise is 
revealed. On the level of machine learning models, there are many points to address 
an attack which essentially tries to steal the private model [59]: recovery of instances 
of training data, inversion of a model to reveal certain features, or intelligent queries 
to identify part of the model’s structure, etc. 

In conclusion, there seems to be no common approach on how to classify attacks 
related to privacy in machine learning. To categorize the findings later in this study, 
we classified the attacks into the following groups: 

1. Interference attacks try to manipulate learning algorithm somehow. This can 
connect to any of the above threats depending on what the attacker was able to 
manipulate. Another possible consequence is that the algorithm may start giving 
false results. 

2. Membership inference attacks try to reidentify person from data set. This 
connects to identifiability threat.
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3. Reconstruction attacks try to identify parameters of a specific sample. This 
connects to detectability, information disclosure, and non-repudiation threats as 
this can reveal values in data. 

4. Property inference attacks try to learn something new. This connects closest 
to linkability and information disclosure threats as this may reveal unplanned 
properties. 

5. Model extraction attacks try to copy the model. This can connect to any threats 
above and loss to intellectual property. 

3 Privacy Metrics and Challenges 

Privacy metrics and measures are still an evolving research area, where there is no 
generally approved single framework for measuring the level of privacy. However, 
there are already legislation that demand appropriate level of security for personal 
data processing, such as the European Union’s GDPR (General Data Protection 
Regulation) [18] and California’s CCPA (California Consumer Privacy Act) [6]. 
It would be largely beneficial to all stakeholders if there was a clear privacy 
measurement framework with instructions on how to ensure the correct level of 
privacy in different cases. In a best-case scenario, we would have clear metrics 
that could be used to plan, implement, and test privacy level of different privacy-
enhancing technologies (PET). 

Personally identifiable information (PII) or personal data as defined by GDPR 
(“any data that can directly or indirectly identify natural person”) has already spread 
widely and will continue to do so. To prevent harm done to individuals or society, 
the use of personal data needs to be harnessed. We need personal data protection 
that corresponds to risks, and we need to be able to prove that it works. 

In [57], privacy metrics were classified into four characteristics: . (i) adversary 
goals, . (ii) adversary capabilities, .(iii) data sources, and .(iv) inputs for computation 
metrics. In addition, the output measures referred to what kind of property does a 
specific privacy metric measure. Wagner and Eckhoff [57] were able to find over 80 
different privacy metrics from literature, so it is no wonder that measuring privacy 
is considered a difficult task. The found metrics were grouped under eight groups: 
(1) uncertainty, (2) information gain or loss (as the amount of information that can 
be gained by adversary), (3) data similarity (properties of published data, like k-
anonymity), (4) indistinguishability (as if adversary can distinguish between two 
items), (5) adversary’s success probability (like success rate), (6) error (as error an 
adversary makes in his estimate), (7) time (as time needed to compromise privacy), 
and (8) accuracy/precision. These metrics will be used later in our work. 

Another identification of privacy metrics was given in [42], in the context 
of location privacy. There, three different categories were identified: (1) formal 
guarantee like differential privacy and k-anonymity, (2) data distortion metrics 
comparing data before and after, and (3) attack correctness in connection to
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mentioned adversary models and threats (points of interest and semantics, social 
relationships, reidentification, future mobility prediction). 

Performance and utility metrics are excluded from this review. There is already 
plenty of materials on those, and they are usually main consideration when 
proposing new privacy models or PETs. For example, 76 results were left out of 
this review, because they were presenting new DP implementation and one common 
prize was that the presented model was better in performance or utility, and 9 results 
were left out, because they were just measuring accuracy, utility, or performance. 
The view in this review is that measurement of a privacy level should be an integral 
part of all those. 

3.1 Privacy Challenges in Data Releases, Machine Learning, 
and Artificial Intelligence 

Descriptive releases of public data, social networks, and machine learning and 
artificial intelligence systems collect personal data and publish it in different 
formats. For an individual, even with GDPR, it becomes impossible to follow all 
of his/her personal data and recognize what kind of risk level is involved in its use. 
The responsibility of protecting personal data should not be left to individuals, but 
instead, each data collector and beneficiary should be responsible for keeping the 
requested and agreed level of privacy. 

So far, different anonymization techniques are commonly used, for example, 
when releasing statistics, but there are already proofs of failures [39]. For example, 
Sweeney found in [50] that with only three attributes (5-digit ZIP, gender, and date 
of birth) 87% of the US population would be uniquely identified. Reidentification is 
a big risk unless all possible aspects are considered when planning the anonymiza-
tion. 

Another challenge with many anonymization techniques, including differential 
privacy, is that they have some parameters, like . ε in DP, that needs to be tuned. 
Selecting the correct value is usually left to people implementing PET, and it is not 
an easy task. There aren’t any common guidelines yet, and it’s difficult to assess 
privacy loss with given value. 

An increasing risk is the possibility of connecting anonymized data with public 
data sources using artificial intelligence. As referred in [12], an example of such a 
risk in relation to a legal proceeding was given in [56]. It is not enough to handle 
one data release, but one should consider all possible contexts where that data could 
be utilized. One approach for this purpose would be to define a strong theoretical 
proof, like in differential privacy, but this does not yet tell anything about how well 
the privacy insurance was implemented or how well it will work in real life. It is 
therefore, already in the planning phase, important to identify what kind of proof 
or assurance different models give. One should be certain that all relevant aspects 
of privacy have been considered and then ensure using real measurements that an 
implemented PET really achieves the targeted level of privacy.
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4 Literature Review 

The aim of this article is to find out what kind of measures are available to ensure 
that an intended level of privacy protection is achieved in real-life implementations. 
Focus is on searching methods, frameworks, best practices, or any other systematic 
models to estimate and ensure protection. Research questions for this review were: 

RQ1: How can we ensure that the expected level of protection, calculated based 
on the definition of differential privacy, is reached by an implementation? 

RQ2: Are there any frameworks that would provide a baseline for evaluating 
privacy protection levels? 

RQ3: Is there a way to compare these privacy protection levels against different 
privacy legislation such as GDPR and CCPA? 

4.1 Search and Selection Steps 

The first step after formulating the research questions was to define the search 
repository and queries. Based on our previous experience in [37], where the Scopus 
repository provided the utterly highest number of hits, it was decided to use it in this 
review. Defining search queries was a bit more challenging, because many search 
sentences tended to be made of either too common words, thus giving huge amount 
of not relevant hits, or of too rare words ending up in none or very few results. We 
though identified also many articles for our intended scope, so the following search 
strings were finally used: 

SS1: TITLE-ABS-KEY ("differential privacy" AND protection AND (measure 
OR proof)) AND (LIMIT-TO(LANGUAGE,"English")) 

SS2: TITLE-ABS-KEY ("differential privacy" AND "personal data" AND pro-
tection) AND ( LIMIT-TO(LANGUAGE,"English")) 

The first exclusion criterion, the English language, was already included in the 
search strings. The string SS1 provided 130 results and SS2 61, of which 12 were 
duplicates, which were removed. The results also included six of the Conference 
Review Document Type, which were excluded. After the basic search and the first 
set of exclusion criteria, there were 173 articles remaining. 

In the second step, each result was briefly reviewed. The final decision on the 
inclusion/exclusion of an article was based on the title, abstract, and, if needed, 
brief look at the content of the article. The main inclusion/exclusion criterion in this 
step was whether an article included some kind of approach to estimate the level 
of privacy. Articles that were just presenting a new model, mechanism, method, 
framework, or algorithm based on differential privacy and usually comparing 
theoretically different epsilon values to the utility values did not have the aspect that 
was searched for. This alone already excluded 76 articles. If the article also had other 
privacy measures or metrics, it was included. Neither articles that had just theoretical
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Table 1 Excluded article descriptions and numbers in step 2 

Article type of excluded articles Amount 

Demonstration, description, overview and likes 12 

DP as proof or compared to DP 6 

DP not found or article not found 9 

Just accuracy, utility, or performance measure 9 

New usage, algorithm, model, method, mechanism, or likes of DP 76 

Only theoretical model or proof 15 

Other (just one of each) 6 

Total 133 

Fig. 1 Number of results included in each step by year 

proofs were included as we were interested in situation after implementation. A 
total of 133 results were excluded in step 2, because they did not involve privacy 
measurement or metric, so after the second step, there were 40 articles left. In 
Table 1, the number of excluded results is shown by the description of the high-level 
exclusion reason of the article. In the third step, the resulting articles were studied, 
and different privacy-related characteristics were collected from them. At this point, 
a set of 16 articles were excluded, because they were either . (i) just modifying or 
presenting a new DP model without any other privacy measure, . (ii) they did not 
include DP, or .(iii) they were not primary works, but just categorizing other articles. 
Finally, there were 24 articles to review to find answers to the research questions. 

Figures 1 and 2 illustrate how the number of results changed at each step per 
year (1) and per type of document (2). Figure 1 shows that interest in this area is
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Fig. 2 Number of results included in each step by document type 

still growing. The precise information on the included articles is given at the end of 
the article in two tables: All included articles are listed in Table 6 where ID in this 
review, authors, title, year, and reference are given; in Table 7, ID of each article is 
assigned to the source where it was published. 

4.2 Result Characteristics 

The final results included in the review presented a diverse and fragmented area 
under privacy. Differential privacy models ranged from basic central models defined 
by Dwork [17] to different versions of Local Differential Privacy [14, 27] and 
to specialized solutions like Geo-Indistinguishability [2] for location privacy. The 
more strict definition of privacy, E-DP [15], was used in 15 cases, the approximate 
version (.ε-. δ)-DP [16] in 7 cases, and both were mentioned in one case. In Fig. 3, the  
keywords (or index terms) of the reviewed articles are presented as a word cloud. 

In Table 2, the results are classified according to the kind of data release they 
discussed. The wide distribution indicates that many different areas are involved. 
However, it was a bit surprising that even if the health data obtained the highest 
number of release hits (3), it was still quite low. Considering how sensitive and how 
many legal restrictions there are for personal data related to health, the expectation 
was that it would have greater coverage in this review. None of the identified data 
release areas received an especially large number of hits; all amounts were between 
1 and 3. 

Of the data sets used in the cases, the different UCI data sets [33] were the most 
popular with six hits. Many other data sets were also mentioned, and in eight cases, 
no data sets were used.
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Fig. 3 Word cloud of key words of the analyzed articles 

Table 2 Classification of results based on data release type 

Release 
area Any 

Classifi-
cation 
release 

Financial 
queries 

Image 
data 
release 

IoT data 
sharing 

Legal 
document 
release 

Location 
sharing 

machine 
learning 
systems 

Amount 1 2 1 1 1 1 3 2 

Release 
area 

Market-
place for 
data 
sharing 

None Query-
based 
release 

Rando-
mized 
response 

Restric-
ted health 
data 
release 

Social 
networks 

Statistical 
release 

Grand 
total 

Amount 1 1 2 1 3 1 3 24 

5 Privacy Protection Models 

5.1 Privacy Attacks 

Privacy attacks were collected and classified from the results. Attack types were 
taken as they were identified from articles and related to attack categories defined 
in Sect. 2.1. The identified attacks are linked to attack categories in Table 3. Each 
article had one to three attack types, and there was a lot of variation in the original 
descriptions. As can be expected when talking about privacy, the reidentification
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Table 3 Number of attack categories found in 24 articles in review 

Attack category Identified attacks Amount 

Interference Data poisoning attack 1 

Membership inference Differencing, re-identification, singling 
out, deniability, identity breach 

8 

Interference and membership inference Poisoning, data leaks 1 

Reconstruction Attribute inference, graph structure and 
degree, detection of speeding vehicles, 
location, homogeneity, privacy leaks 

7 

Membership inference and 
reconstruction 

Disclosure attack, insider attack 7 

Grand total 24 

attack was the most common type. However, clear challenges in the classification 
were revealed. Namely, the identified attack types were on different levels, for 
example, disclosure attack vs. detection of speeding vehicle, and partly different 
terminology was used in their depictions. 

5.2 Privacy Metrics and Measurement Models 

None of the results in the review contained any kind of common framework or 
model to measure privacy. The most common reference on this was legislation: 
GDPR was mentioned in five articles, HIPAA (US Health Insurance Portability and 
Accountability Act) [54] twice, and FERPA (US Family Educational Rights and 
Privacy Act) [55] once. It is very clear that this area needs a common framework, 
which could be referenced to the corresponding PET privacy level. 

As [57] also points out, a common consensus on generally approved privacy 
metrics is still missing. Understanding the context and environment in which PET 
will be used is an important starting point to define the correct metrics. In the 
additional material in [57], nine questions were given to help with the selection 
of a metric: (1) Suitable Output Measures? (2) Adversary Models? (3) Data Source? 
(4) Availability of Input Data? (5) Target Audience? (6) Related Work? (7) Quality 
of Metrics? (8) Metric Implementations? and (9) Metric Parameters?. One special 
note related to the selection of parameters that they presented, coinciding with our 
findings, was that there is not even much information available on how to select . ε
for DP. During our selection steps, we had in the first step two articles of which one 
[49] was excluded as it dealt with performance or utility related to different Evalues 
and one was included in the review [3]. 

If we consider our findings in relation to the taxonomy of privacy metrics as 
defined in [57] and listed in Sect. 3, recalling our focus on DP, all of our results 
could fall under the Indistinguishability group as all DP types are mapped there. 
However, we found that our results could be mapped under different metrics. In
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Table 4 Metric types 
connected to article IDs 

Metric type IDs 

Adversary’s success probability 1, 6, 9, 16, 21 

Data similarity 11 

Error 3,13 

Fairness 4, 22 

GDPR 2, 5, 7, 20 

Indistinguishability 5, 8, 12, 18, 20, 24 

Information gain or loss 10, 14, 15, 19 

Time or cost 17, 23 

Uncertainty 8 

Table 4, we have a bit modified their version of metrics. We have added the Cost 
in Time metric as we found it corresponding to Time: calculating the performance 
cost of the needed protection level [47] or minimizing the objective (cost) function 
of attacker [32]. 

In addition, we identified two more categories for metrics: GDPR and fairness. 
First one might eventually be some kind on umbrella metric where needed privacy 
level depends on risk for individual and combines other metrics based on context 
and risk. The second one is an ethically important aspect, which should get much 
more attention. The offered protection level should be the same regardless of, for 
example, if individual belongs to some special, protected group (one definition is 
example of special categories in GDPR) or not. 

Considering that all these were found with connection to DP, there is definitely 
need for a general model that would help to understand which metrics are relevant 
to which case and what level of privacy is needed. 

5.3 Connecting Attacks and Metrics 

In Fig. 4, the metric categories are mapped to the attack categories. Even if the 
attacks were just identified from a few of the reviewed articles, it is obvious 
that different metrics and metrics combinations are needed for defensing against 
different attacks. When comparing metric categories to attack categories, it seems 
obvious that most of the metrics are relevant for each attack. So, instead of 
measuring just one or two issues, we should have a full set of metrics to be 
considered in all cases. In addition, two attack categories did not map to any metrics. 
According to [21], the attack that should be considered in relation to GDPR is the 
identity disclosure attack, but it was not directly identified in our results. Instead, 
most of the identified attacks can result in identity disclosure. 

To help structuring metrics, one could start by mapping metrics according to 
specific legislation. For example, GDPR [18] sets rules on personal data processing: 
“appropriate technical and organisational measures to ensure a level of security
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Fig. 4 Mapping metric categories (on the left) with attack categories (on the right) 

appropriate to the risk.” To be able to decide on the correct level of security, we 
need to understand what kind of risks are involved. To be able to understand risk, we 
need to understand what kind of threats are possible. So, we are actually returning 
to threat modeling. The attacks identified here are real threats to privacy in relation 
to machine learning. An approach could be to see how well the model is protected 
from specific threats. So, for example, if we think about an interference attack, we 
should identify all places where it can happen and measure how safe our solution 
is. For metrics, we could measure the success probability and the time required to 
breach the system from our current list. In addition, we could also measure what 
kind of problems different interference could cause, like how much training data 
can be polluted before it affects the model. Finally, we could define some values 
to specify which are the allowed limits in each to confirm that the actual level of 
privacy protection of the solution is what we were looking for. 

As all metric categories in [57] are grouped output measures from single metrics, 
which also appear to be based on different privacy technologies, it makes the use 
of PETs challenging. One should combine several techniques to be able to protect 
personal data, but that is by no means practical. To be able to select between different 
PETs, we need privacy measures that can be applied to all of them. 

6 Conclusions 

Reflecting on our research questions, as posed in the beginning of Sect. 4, we found 
several different approaches to estimate the protection level in relation to RQ1. The 
decision of what to measure and how to measure was usually made by the authors.
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There were no commonly shared and agreed principles, so deciding and ensuring 
the expected level of protection was made on a case-by-case basis. Neither did we 
find any common test model that would ensure that theoretical privacy protection 
was really achieved in an implementation. There were some individual approaches 
such as QuerySnout [11] to help identify vulnerabilities in query-based systems, and 
a specific attack test for certain DP implementations [25], but a systematic approach 
to the whole scope was lacking. Hence, the answer to RQ2 which follows from these 
conclusions is "No." We were unable to find any framework that could be used to 
ensure a correct level of privacy protection. 

The LINDDUN methodology [13] was one step in the right direction, as it gives 
practitioners instructions on what types of privacy threats should be investigated, 
their details, and how to map them to PETs. However, the methodology does not 
go into details on what level of privacy protection should be selected. This could be 
in the risk assessment phase, which was outside the scope of the methodology. The 
article did not address machine learning-specific threats or recognize DP yet. 

The answer to RQ3 was also inconclusive: we found something in that direction, 
but a clear, uniform way connecting a privacy framework and the legislation is still 
missing. In some cases, GDPR was used as a privacy metric. Another aspect to 
consider with legislation is that many models have parameters which affect the 
protection level and there is not yet any clear guidance on how those should be 
selected. 

In the future, especially with the increasing amount of artificial intelligence, it 
will be important that privacy metrics consider the full context of use of personal 
data. DP is one of the techniques on the right track, because its definition says 
that nothing more should be learned of a person regardless if s/he was or wasn’t 
included in the data. However, when DP is implemented as part of even more and 
more complex systems, this statement must be proved in the whole context and also 
after the implementation. DP also leaves open the question of what it is possible 
to learn about a person from the system regardless of his/her presence, nor does 
it approach the question of several separate systems running and impacting each 
other’s privacy level. In addition, it may be vulnerable to a reconstruction attack, 
especially if the attacker can gain information on the perturbation levels used. 

Considering the different categories of metrics found in this review, it turned 
out to be very clear that more research is needed to define privacy measurement 
models that cover a wide enough area. It appears that several metrics are likely to 
be combined or used to ensure the security of personally identifiable information. 
To be able to clearly answer the needs of people whose personal data is processed, 
authorities, and system developers, a framework that connects all the parts discussed 
above should be developed. Such a framework needs to cover all aspects related 
to privacy in artificial intelligence, be connected to other privacy and security 
frameworks and legislation, be clear enough to easily use and test, and give 
instructions on how to configure selected models. A good start would be to structure 
and create a common and shared model of privacy threats and privacy protection 
requirements in the context of artificial intelligence.
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Disclaimer As artificial intelligence is part of this article, Scispace [43] was used 
to summarize the introduction of each included article. It was not used to create any 
content in this review. 

List of Abbreviations 

See Table 5. 

Appendix 

See Tables 6 and 7. 

Table 5 List of 
abbreviations 

AI Artificial Intelligence 

CCPA California Consumer Privacy Act 

DP Differential Privacy 

FERPA Family Educational Rights and Privacy Act 

GDPR General Data Protection Regulation 

HIPAA Health Insurance Portability and Accountability Act 

IoT Internet of Things 

PET Privacy Enchanting Technology 

PII Personally Identifiable Information 

SMCP Secure Multi-party Computation 

SS Search String 

UCI University of California, Irvine 

Table 6 Articles included in review 

ID Authors Title Year Ref 

1 Ashena N. et al. Understanding . ε for differential privacy in 
differencing attack scenarios 

2021 [3] 

2 Brauneck A. et al. Federated machine learning, 
privacy-enhancing technologies, and data 
protection laws & in medical research: 
scoping review 

2023 [5] 

3 Cerf S. et al. Privacy protection control for mobile apps 
users 

2023 [7] 

4 Chester A. et al. Balancing utility and fairness against privacy 
in medical data 

2020 [8] 

(continued)
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Table 6 (continued) 

5 Cohen A. and 
Nissim K. 

Towards formalizing the GDPR’s notion of singling out 2020 [10] 

6 Cretu A.-M. 
et al. 

QuerySnout: automating the discovery of attribute 
inference attacks against query-based systems 

2022 [11] 

7 Csányi G.M. 
et al. 

Challenges and open problems of legal document 
anonymization 

2021 [12] 

8 Feyisetan O. 
et al. 

Leveraging hierarchical representations for preserving 
privacy and utility in text 

2019 [19] 

9 Fotiou N. 
et al. 

A privacy-preserving statistics marketplace using local 
differential privacy and blockchain: An application to 
smart-grid measurements sharing 

2021 [20] 

10 Hotz V.J. et al. Balancing data privacy and usability in the federal 
statistical system 

2022 [22] 

11 Huang H. 
et al. 

Privacy-preserving approach PBCN in social network 
with differential privacy 

2020 [24] 

12 Kargl F. et al. Differential privacy in intelligent transportation systems 2013 [26] 

13 Li M. et al. Quantifying location privacy for navigation services in 
sustainable vehicular networks 

2022 [28] 

14 Liu F. and 
Zhao X. 

Disclosure risk from homogeneity attack in differentially 
privately sanitized frequency distribution 

2022 [30] 

15 Liu F. and 
Zhao X. 

Disclosure risk from homogeneity attack in differentially 
private release of frequency distribution 

2022 [29] 

16 Liu J. et al. Mutual-supervised federated learning and 
blockchain-based IoT data sharing 

2022 [31] 

17 Ma Y. et al. Data poisoning against differentially-private learners: 
attacks and defenses 

2019 [32] 

18 Matthews G.J. 
and Harel O. 

Assessing the privacy of randomized vector-valued 
queries to a database using the area under the receiver 
operating characteristic curve 

2012 [34] 

19 McClure D. 
and Reiter J.P. 

Differential privacy and statistical disclosure risk 
measures: an investigation with binary synthetic data 

2012 [35] 

20 Oguri H. A method of decreasing connectability of derived data, 
using local differential privacy 

2019 [38] 

21 Reilly D. and 
Fan L. 

A comparative evaluation of differentially private image 
obfuscation 

2021 [44] 

22 Salas J. et al. Towards measuring fairness for local differential privacy 2023 [46] 

23 Shen A. et al. Exploring the relationship between privacy and utility in 
mobile health: algorithm development and validation via 
simulations of federated learning, differential privacy, and 
external attacks 

2023 [47] 

24 Wang Y.-R. 
and Tsai Y.-C. 

The protection of data sharing for privacy in financial 
vision 

2022 [58] 
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Table 7 Sources, by article ID, of included articles in review 

ID Source title 

1 Lecture Notes of the Institute for Computer Sciences, Social-Informatics and 
Telecommunications Engineering, LNICST 

2 Journal of Medical Internet Research 

3 Control Engineering Practice 

4 2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020 

5 Proceedings of the National Academy of Sciences of the United States of America 

6 Proceedings of the ACM Conference on Computer and Communications Security 

7 Symmetry 

8 Proceedings—IEEE International Conference on Data Mining, ICDM 

9 Blockchain: Research and Applications 

10 Proceedings of the National Academy of Sciences of the United States of America 

11 IEEE Transactions on Network and Service Management 

12 WiSec 2013—Proceedings of the 6th ACM Conference on Security and Privacy in 
Wireless and Mobile Networks 

13 IEEE Transactions on Green Communications and Networking 

14 IEEE Transactions on Dependable and Secure Computing 

15 CODASPY 2022—Proceedings of the 12th ACM Conference on Data and Application 
Security and Privacy 

16 Security and Communication Networks 

17 IJCAI International Joint Conference on Artificial Intelligence 

18 Health Services and Outcomes Research Methodology 

19 Transactions on Data Privacy 

20 Proceedings of the 11th International Conference on Electronics, Computers and 
Artificial Intelligence, ECAI 2019 

21 Proceedings—2021 3rd IEEE International Conference on Trust, Privacy and Security 
in Intelligent Systems and Applications, TPS-ISA 2021 

22 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial 
Intelligence and Lecture Notes in Bioinformatics) 

23 Journal of Medical Internet Research 

24 Applied Sciences (Switzerland) 
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To Know What You Do Not Know: 
Challenges for Explainable AI for 
Security and Threat Intelligence 

Sarah van Gerwen, Jorge Constantino, Ritten Roothaert, Brecht Weerheijm, 
Ben Wagner, Gregor Pavlin, Bram Klievink, Stefan Schlobach, Katja Tuma, 
and Fabio Massacci 

1 Introduction 

Threat intelligence (TI) builds upon many, sometimes unknown or unreliable 
sources and must operate under operational and legal constraints that cannot be 
interpreted by a single automated system. In a threat intelligence hybrid workflow 
(TIHW), human analysts and machines powered by artificial intelligence (AI) coop-
erate [12, 92]. Analysts routinely assemble findings derived from data generated 
by machines or assembled by other human analysts. These findings must often be 
assembled from data that analysts are not able to share or even have access to. 
Yet, TI must also be actionable to be useful for planning an intervention (such 
as apprehension of suspect of a cyberattack). Actionable information is relevant, 
timely, accurate, complete, and ingestible [79]. These properties are difficult to 
assert when the data itself cannot be accessed and/or when all the sources cannot 
be trusted. 
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Consequently, at each step of TIHW, the analyst must revise this limited and 
uncertain information and recommend actions. For example, they must choose 
which explanation among many is more likely or ask for additional yet proportional 
investigations. Further down the line of the TIHW, part of the gathered intelligence 
may be used to determine the proportionality of interventions, an investigation 
conducted by oversight bodies [57]. For example, in the Netherlands, the Review 
Committee on the Intelligence and Security Services (CTIVD) investigates the 
lawfulness of conduct by the General Intelligence and Security Service (AIVD) and 
the Military Intelligence and Security Service (MIVD) and in 2022 reported that in 
case of cable interception (report no. 75), the duty of care had been insufficiently 
implemented.1 

Yet, intelligence sharing remains challenging due to fear of negative publicity, 
legal constraints, quality issues, and prevalence of other uncertainties [81, 92] 
despite decades of research [104]. In addition, AI-powered solutions and human 
experts will always have biases [2, 54, 106] or imperfect models [78] which 
may further contribute to the overall uncertainty of the gathered intelligence and 
assembled findings. 

The goal of this chapter is to discuss the emerging socio-technical implications 
and technical challenges in the formalization and quantification of uncertainty 
within threat intelligence. We will start with a description of the situation at 
hand (cf. Sect. 2), discussing of related work (cf. Sect. 3) in the threat intelligence 
environment. Thereafter, we will discuss socio-technical challenges within the legal, 
societal, and organizational field (cf. Sect. 4). Afterward, in Sect. 5, the technical 
challenges with regard to the formalization and empirical evaluation in the TIHW 
are presented. Finally, we close the chapter with an overview of the bigger picture. 

2 The Problem of Threat Intelligence 

Threat intelligence relies on analysts to bring information together and distill 
actionable intelligence from it [76, 109, 111]. Thus, what is distilled as actionable 
is a product of human decision-making. Expert judgment enables analysts to make 
decisions in real time in a different way than novices [75]. The intuitive form of 
expert judgment relies on the ability to make predictions about the environment 
and the possibilities to learn about the commonalities within the environment [53]. 
In other words, expert judgment is contingent on the situational awareness of the 
expert. 

Figure 1 illustrates the process of decision-making in a threat intelligence 
scenario. The new information (green in Fig. 1) shows the meta-level information 
about the intelligence that could be useful for decision-making but is not always 
known (or available).

1 https://english.ctivd.nl/investigations. 

https://english.ctivd.nl/investigations
https://english.ctivd.nl/investigations
https://english.ctivd.nl/investigations
https://english.ctivd.nl/investigations
https://english.ctivd.nl/investigations
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Fig. 1 The threat intelligence process and problem. When A and B communicate their findings 
to C, it is hard for C to formally evaluate the uncertainty of the initial sources where A and B’s 
findings are based upon 

Table 1 Overview of recently (2018–2023) researched biases and uncertainties in cybersecurity 
from the perspective of the analyst/defender 

Uncertainty/bias Description Ref Regarding 

Overconfidence Predictions are too certain or too 
uncertain given the actual 
performance 

[33] Managing a cyber-physical 
environment under threat. 

Primacy bias The first item in a series has the best 
recall 

[38] Attribution of cyber 
operations 

Seizing and 
freezing 

To combat cognitive dissonance, 
seizing shows a predisposition to 
information that confirms existing 
beliefs and freezing shows the 
refusal to adjust judgments to 
maintain beliefs 

[39] Attribution of degradative 
cyber operations 

False sense of 
validation 

When there is a perception of a 
human in the loop, action is 
undertaken on less and incomplete 
information 

[107] Use of AI in cyber conflicts  

Information-
pooling 
bias 

In a team, information that is 
known by most members is more 
likely to be shared than information 
that is unique to an individual 

[83] Incident correlation in 
cybersecurity threat 
detection 

Table 1 shows an overview of recently researched biases and reasoning with 
uncertainty (approximately 2018–2023) within the field of cybersecurity from the 
position of the analyst/defender. Furthermore, time pressures [46], height of stakes 
of decisions [50], secrecy [57], and a range of complexity are associated with 
intelligence problems [70]. Achieving situational awareness is difficult, because 
these characteristics make it hard to know, understand, and make predictions about 
the environment [53].
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2.1 Adding Artificial Intelligence to the Equation 

When using AI to obtain threat intelligence, we can speak of a double-edged sword. 
On the one hand, large datasets can be collected and processed to extract potentially 
useful information for analysts. On the other hand, this collection process can be 
expensive [89], invasive [13], and biased or unfair [78]. Furthermore, the sheer 
amount of information in combination with its dubious provenance and varying 
quality could result in increased confusion [92] or no actionable intelligence. 

For example, in case studies [80], data on the entire Washington DC was 
collected, and AI-based techniques were used to predict criminal events with high 
accuracy. Yet, the predictions were not tactically actionable as the predicted hot 
spot areas amounted to the whole pedestrian area downtown. In contrast, systems 
with lower accuracy (e.g., 30%) but taking into account “awareness information” 
on uncertainty were considered more actionable by officers planning for Improvised 
Explosive Devices detection in Iraq [50]. 

2.2 Key Issues 

Key issues in the field of threat intelligence are categorized as follows: 

1. Socio-technical context: legal and societal elements—Providing threat intel-
ligence in a genuine democratic society cannot focus solely on maximizing the 
quality of threat intelligence from a technical perspective. Threat intelligence 
needs to be accompanied by constitutional safeguards such as providing reliable 
and robust oversight systems and advancing privacy rights to ensure societal trust 
in security and intelligence operations. Engaging with this value multiplicity 
around threat intelligence is crucial to understanding the legal and societal 
restrictions, as well as the wider societal context. As noted by Laura Carlsen 
[14], “there can be no security without human rights.” 

2. Socio-technical context: organizational elements—Showing how risk-based 
decisions feed into professional practices and generate knowledge despite lim-
ited and constrained sharing [8] is not a trivial task. A structural change in 
work reflects an organizational change. In practice, organizational changes and 
learning only happen through its members [85], for the good or the bad in their 
social context [40]. Impact can only be achieved through concrete outcomes 
in the change of employees’ daily work. Organizational learning is studied in 
environments where knowledge sharing is not heavily restricted [4]. The heavily 
restricted and sometimes misunderstood nature of threat intelligence sharing 
[104] results in different challenges viewed through this organizational lens. 

3. Uncertainty of information—Sources and methods often have significant 
uncertainties and biases. Analysts are aware of these limitations, but uncertainty 
is yet to be captured and quantified within the threat intelligence workflow. The 
need arises for a formalization of uncertainty that can be both machine-readable 
and human-interpretable.
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This undertaking is difficult due to the conditions of decision-making and 
information sharing in threat intelligence, a heavily restricted and possible decep-
tive environment [104]. Uncertainty can arise from multiple factors including 
potential observation errors, imprecision, communication errors, ambiguity, and 
unknown credibility of the sources. Quantifying and formalizing uncertainties 
can stem from qualitative concepts. These formalizations are distilled from a 
plethora of heterogeneous sources and need to be relevant in the decision-making 
process. This type of formalization results in specific challenges. 

4. Empirical evaluation—The complex conditions of decision-making in threat 
intelligence workflows makes conducting empirical validation extremely chal-
lenging. Methodologies from existing literature (as further explained in Sect. 3.7) 
cannot be directly applied in the context of threat intelligence. For example, with 
respect to cybersecurity, existing experimental methodologies assume that the 
individual inputs to a method under scrutiny come from known sources, are 
complete and correct [59, 91, 97]. This conflicts with the reality of a threat 
intelligence workflow. 

3 Related Work 

In this section, we will discuss the related literature on information fusion, vocab-
ularies for threat intelligence, uncertainty representation and reasoning, human 
judgment and communication of uncertainty, and experimental methodologies for 
threat intelligence. 

3.1 Information Fusion 

Information fusion systems extract actionable information from numerous sources 
[16]. The task of a threat intelligence analyst can be seen as an information 
fusion task. The first applications of information fusion combined simple sensory 
data in situations where the physical model was well-understood [67]. With the 
progression of AI, fusion systems are enabled to incorporate models that learn and 
adapt to complicated environments [67, 88]. These environments are characterized 
by data that comes from heterogeneous sources including (but not limited to) 
sensors, processes relying on learned models, and humans. One example is the DPIF 
platform where data and information sharing is supported during TIHW processes 
[100]. 

When information fusion systems increase in complexity (e.g., increase in 
amount of heterogeneous sources or overall scale), it also becomes increasingly 
difficult to make accurate inferences and support effective decision-making [67]. 
One key challenge within this difficulty is the role of uncertainty [16, 67, 100].
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If uncertainty is not considered properly, fusion processes may deliver “under-
confident, overconfident and/or incorrect results” [100]. 

3.2 Vocabularies for Threat Intelligence 

Vocabularies exist for standardizing cyber threat intelligence. See Tounsi and 
Rais [92] for an overview of standards used for TI representation and sharing. 
Two of the most used vocabularies are STIX™ (Structured Threat Information 
eXpression) [20] and MITRE ATT&CK™ [22]. STIX™ is a structured language 
and serialization format that encompasses domain objects like attack pattern and 
campaign. It also includes relationship objects. MITRE ATT&CK™ is a vocabulary 
that is concerned with adversary tactics and real-world techniques. It encompasses 
a plethora of different techniques ranging from defense evasion to credential access. 
STIX™ and MITRE ATT&CK™ both provide detailed information that can be 
used to build knowledge graphs for cyber threat intelligence. However, what these 
vocabularies are missing is information about uncertainty. 

3.3 Uncertainty Representation 

The need for standardization of uncertainty representation has long been recognized 
[60]. However, creating a unified vocabulary applicable across multiple domains is 
difficult as the requirements for such a vocabulary may vary across these domains. 
As a result, attempts at creating a standardized vocabulary retain some level of 
domain-specificity (see Table 2). 

Uncertainty within the context of information fusion is often discussed using 
the distinction between aleatoric and epistemic uncertainty. Aleatoric uncertainty 
arises from the variability in outcome due to randomness [45]. Thus, this type of 
uncertainty lies within the modeled environment [101]. Epistemic uncertainty refers 
to a lack of knowledge. This type of uncertainty refers to the epistemic state of an 
agent instead of random phenomenon [45]. Therefore, it lies outside of the modeled 
environment and might be mitigated by querying for additional information [101]. 

In De Villiers et al. [101], this distinction is used to help make uncertainty 
explicit during the information fusion process. Uncertainty can be factorized to 
include potential observation errors, imprecision of measurement, communication 
errors, ambiguity, unknown credibility of sources, and many more. Due to these 
different factors and categories, explicitness helps in reasoning about involved 
uncertainties throughout the fusion process. Whether these uncertainties have a one-
to-one translation in the current domain remains to be seen. 

The URREF ontology [23] is a work in progress and provides an overview 
of the potential sources of uncertainty. It provides the opportunity to explore the 
boundaries of the (information fusion) system that one is building. For a more
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Table 2 An overview of previous attempts at creating a vocabulary regarding uncertainty 
representation from various domains 

Domain Relation to uncertainty Example 

Decision sciences While the domain of decision sciences is incredibly diverse, 
it is rarely the case that conclusions can be drawn with full 
certainty; experiments are conducted in controlled 
environments, and models are developed based on imperfect 
data. Therefore, proper communication of findings requires 
reporting the uncertainties associated with those findings 

[32, 87] 

Earth system 
science 

Earth systems highlight a different challenge when 
representing uncertainty: spatiotemporal scaling. 
Atmospheric models can be reasonably accurate when 
considering a daily global model output but may fail to 
provide any usable insights on lower scales. Alternatively, 
small-scale population estimates might not generalize to 
large-scale ecosystems. This, along with the stochastic nature 
of ecological processes, measurement error, and human 
judgment, is an important source of uncertainty within earth 
systems 

[86, 110] 

Database 
management 

Data and uncertainty are closely intertwined. Uncertainty 
would not exist without data, and most, if not all, forms of 
data is to some degree uncertain. In the context of database 
management, this means that protocols are needed on how to 
combine the uncertainty information when merging data sets. 
These protocols not only depend on the type of uncertainty 
but also on the domains from which the data originates 

[61] 

Information 
fusion 

When developing an information fusion system, the 
uncertainties associated with the fused information determine 
which fusion method can be applied. Therefore, a careful 
evaluation of those uncertainties is needed at the start of the 
development process 

[23] 

complete account of representing uncertainty in decision-making, we refer the 
interested reader to the survey of Keith and Ahner [56]. 

3.4 Reporting Uncertainty in Threat Intelligence 

The most basic and most important task of actionable threat intelligence is reporting 
this intelligence to decision-makers. Reporting uncertainty successfully with respect 
to threat intelligence has been deemed an important area of study [65]. This is the 
case, because there is an effect of the way uncertainty is represented on decision-
making [29]. 

Natural language in the form of linguistic categories (e.g., “Likely” or “Proba-
ble”) is often used to represent uncertainty within threat intelligence. An example 
is the Admiralty Code used in several intelligence organizations [46]. Research 
has shown [65] that this way of conveying uncertainty is often ineffective due
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to differences in the way these categories are interpreted by humans, even when 
definitions are set. 

A possible alternative would be using numerical representations [27]. One of 
the reasons why numerical representations have yet to be implemented is the fear 
of more risky decision-making by analysts. Indeed, Friedman et al. [35] found 
that less experienced analysts were overconfident in their decision-making when 
using numerical representations of uncertainty. However, the same study also 
found that, generally, numerical representations were actually associated with less 
risky decision-making and more accurate predictions. These findings suggest that 
experience might overcome this overestimation [35]. 

Another possibility is that linguistic categories may contain more than just 
information of probability [18]. Collins and Mandel [18] proposed that linguistic 
categories could be used during deliberate argumentation, while numeric categories 
were most suitable in situations where clear probability estimations were required. 
A combination of the two formats was also investigated, although no significant 
difference was found in performance of numerical representation and the combined 
representation [66]. However, both formats were more effective than just linguistic 
categories when it came to probability estimation. 

Graphical and visual representations for uncertainty representation have also 
been researched [77]. For example, in a dynamic decision-making missile-defense 
game, support was found for using graphical representations to increase efficiency 
even in combinations with numerical representations [7]. For a more complete 
overview of visual representations, see [77]. Within the context of cyber threat 
intelligence in a national security environment, as far as the authors are aware, it 
is not clear how these different representations feed in to professional practices. 

3.5 Human Judgment and Bias Under Uncertainty 

Decision-making in threat intelligence includes decisions about security risks which 
are made in face of uncertainty [6], leaving space for subjective and possibly biased 
judgment [49]. This type of uncertainty is a key element in socio-technical systems. 

Judgment under uncertainty has been the object of study for decades [34, 54, 71]. 
In the past, the focus has been on looking for reasoning shortcuts (heuristics) and 
bias within human decision-making. This research is built upon by theories of 
Bayesian inference (the framing of a problem leads humans to view new information 
in accordance with prior beliefs) [108] and in opposition and digitization (reasoning 
with uncertain information leads humans to favor the most certain information and 
ignoring other information [52]). In addition, the dual processing theory expands 
the existing framework (humans use two systems in the decision-making process, 
one for quick automatic judgments and one for deliberative, slow, and complex 
calculations) [108]. For an overview of biases and debiasing techniques within the 
general field of decision and risk analysis, see Montibeller and Von Winterfeldt [71], 
and cybersecurity, see Johnson et al. [51].
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However, even though the previously mentioned research on known biases (see 
Table 1), the influence of AI, and team-level heuristics exists, research in reasoning 
with bias and uncertainty is sparse and scattered over many categories in cyber-
security. Furthermore, the population of intelligence analysts differs from other 
populations. Especially in the world of cyber professionals, due to heterogeneity 
in work roles and skill sets, findings are population specific [68]. Whether the same 
biases and reasoning techniques are relevant within the current field remain to be 
investigated. 

3.6 Existing Approaches to Help Elicit Expert Knowledge in 
Threat Intelligence 

Analysts are highly trained experts that use intuitive decision-making to deal with 
situations [75]. Okoli et al. [75] put forward that the consensus in literature is that 
experts are able to make quicker and often better decisions because they are able to 
use their existing knowledge to assess the situation at hand with the usage of schema. 
These schema (i.e., strong memory networks) allow experts to have a perceptual 
advantage even when events unfold in real time [75]. 

Expert knowledge elicitation techniques are techniques that try to improve 
the quality of expert judgment with respect to debiasing and reasoning under 
uncertainty [28]. To that end, structured analytic techniques (SATs) have been 
previously used in the domain of threat intelligence. SATs are techniques that 
systematically and transparently aim to externalize internal thought processes [106]. 
SATs are often not well researched [65], and the few existing studies have shown 
mixed results [17, 106]. 

In cases where the SATs have been implemented, an important challenge is to 
either update these techniques to handle cyber threats and measure their efficacy 
[17] or develop new ways to make human reasoning transparent and enable 
explainability. In the field of general decision and risk analysis, see Dias, Morton, 
and Quigley for an overview [28] of expert knowledge elicitation techniques. 

Another approach to make judgments less biased is the use of coherentization and 
aggregation of judgments [55]. Here, multiple numerical judgments from different 
analysts are first made coherent with respect to specific statistical assumptions (e.g., 
probabilities must add up to 1) and, thereafter, aggregated into one prediction. 
However, this approach has not been researched with respect to realistic cyber threat 
intelligence scenarios. 

In intelligence analysis, meta-information is already used to aid decisions 
and judgments under uncertainty. The standard NATO Standardization Agreement 
(STANAG) 2511 captures two qualitative categories [65], although their exact 
implementation is not uniform between different intelligence agencies [46]. In 
general, source reliability can be seen as a confidence level based on historical 
performance. Information credibility captures the extent to which a new piece of
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information is consistent with the current reporting [46]. However, these factors are 
often not enough to provide the necessary uncertainty information. For example, 
source reliability can vary tremendously in different situations. The current cate-
gories do not provide a way to make this distinction explicit [46]. 

3.7 Existing Experimental Procedures and Methods 

Existing approaches assume that the individual inputs to a method under scrutiny 
come from known sources, are complete, and are correct [59, 91, 97]. Represen-
tations of security and malicious threats (e.g., attack and defense trees, data flow 
diagrams, petri-nets, etc. [95]) are compared by either observing the quality of the 
representation (compared to a baseline model) [31] or by observing some measure 
of the analysis output (e.g., the precision of the identified security threats [97] or  
complexity of generating all attack paths [44]). 

Due to deception, the variability in sources, and incompleteness (automatically 
generated), cyber threat intelligence can only be actionable if it takes the quality of 
the information into account. To underline this point, Ranade et al. [84] generated 
fake cyber threat intelligence and observed that experts would consider both the 
deceptive TI and the authentic TI as equally true. Without an explicit discussion on 
the quality of TI, these effects remain unnoticed. 

Decision support systems can also be used in cybersecurity to assist analysts 
in their job [11, 37]. For instance, decision support systems can be used to aid 
optimizing cyber forensic investigations [73], cybersecurity threat and incident 
management [98], and the manual assessments of proportionality in military cyber 
operations [64]. The evaluation of decision support systems mainly focused on 
conducting user studies and evaluating transparency (i.e., explain how the system 
works) and trust (increase user confidence in the system) of the decision support 
system [74]. 

Methods in explainable AI (xAI) [43] are certainly interesting to investigate for 
the purpose of evaluating persuasiveness. In a recent survey on the evaluation of xAI 
systems, Nauta et al. [72] found that only one fifth of the analyzed papers evaluated 
their findings with users. In addition, Dalvi et al. [26] claim that within cyber threat 
intelligence, multiple xAI implementations to help understand AI algorithms do not 
actually agree with each other on their explanation. This is no surprise because there 
is no standard correct or best explanation when it comes to measuring explanations 
in many scenarios [74]. 

4 Socio-technical Challenges 

In this section, challenges with respect to the socio-technical context of a TIHW 
are discussed. In a multidisciplinary approach, legal, societal, and organizational
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matters are discussed. For each of the identified challenges, ideas are proposed to 
handle them. 

4.1 Identification and Operationalization of Key Societal and 
Legal Elements 

Governments and their agents are expected to follow the law, particularly in sensitive 
constitutionally protected matters such as privacy, while ensuring that other key 
rights are also safeguarded [48]. In the larger governance context, political decision-
makers need to take these challenges into account to monitor, oversee, and evaluate 
responsible intelligence and security agencies accordingly. For instance, passing 
certain laws to facilitate the work of security and intelligence services may support 
ethical decision-making or would nudge security and intelligence operations to 
fall into a web of unethical practices [58]. These considerations contribute to 
strengthening citizens’ trust toward security and intelligence operations, particularly 
where the provision of data or information is needed [24]. 

At the same time, intelligence and security agencies need to ensure that their 
practices remain within the boundaries of the law and the core of public service 
integrity [58]. In this environment, agencies can implement innovations, and 
government can realign their model in a way that supports confidence in public 
service by putting the well-being of constituents first above all [21]. 

The identification and implementation of key elements is hard. For example, 
transparency has the ability to obscure (e.g., showing so much data to distract from 
the central information) [3], can encourage “seeing” over understanding (i.e., being 
able to look inside a system is not enough, one also needs to be able to interact with 
them in a broader social context to have an actual understanding) [3], and can be 
used to create an atmosphere of transparency in the public eye instead of fostering 
accountability within an organization [1]. 

Socio-technical challenge Sect. 4.1: It is unclear what and how legal and 
societal constraints can be implemented in a TIHW 
The identification and implementation of key legal and societal elements is 
necessary to ensure that intelligence and security agencies’ practices are 
lawful and enable trust in citizens. Currently, it is not known how legal and 
societal constraints need to be incorporated in professional hybrid threat 
intelligence practices. 

We are in the process of identifying key societal and legal elements of the 
TIHW. The workflow needs to follow the standard principle of necessity established 
under international human rights law: establishing an objective goal deemed to be
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necessary in order to protect a legitimate interest (e.g., specific target affecting 
national security) [57]. 

Having established necessity, we can then address the proportionality test, which 
requires the workflow to establish a justification balancing the methods to be 
utilized against the intended goal. For instance, a TIHW should conduct impact 
assessments to determine proportionality and assess whether the workflow causes a 
chilling effect on citizens. In addressing a subsidiary analysis, the workflow will be 
established in an environment where its framework is regulated by transparency. 

It is first necessary to develop a framework based on international best practices 
of the socio-technical conditions and constraints for risk-based decisions in intelli-
gence communities such as necessity and proportionality. How do comparable threat 
intelligence procedures take place in other countries and governmental contexts? 

Second, an in-depth juridical analysis of relevant laws and regulations should be 
conducted to inform the design of the TIHW. This can also help understand how 
international best practices can be integrated into existing workflows and how these 
could be operationalized in practice. 

Idea Sect. 4.1: Develop a framework based on international best practices 
and relevant laws and regulations 
Conducting research in relevant laws and regulations and international best 
practices can show how key legal and social elements can be integrated into 
existing workflows and be operationalized in practice. 

4.2 Future Proofing Data Protection and Human Right 
Safeguards 

Technology changes rapidly. For example, big tech companies currently try to 
construct methods for identifying deepfakes while internet enthusiasts and state-
sponsored disinformation campaigns keep finding new systems to fool these 
detectors [25]. This arms race leaves regulations to be outdated. 

Even in a perfect world where all limitations would have concrete definitions 
that were agreed upon, the issue remains that not all limitations can be satisfied 
at all times. What is perceived by some as an easy solution, for example, mass 
surveillance of communications, may be the most harmful approach from a privacy 
or digital rights perspective. Furthermore, these trade-offs also encompass an 
economical aspect. Although security (e.g., finding threats) is the goal, analyst’s 
time is often considered more important in the decision-making process, since this 
time is expensive and scarce [12]. To address these limitations in a way that has a 
better chance of working in practice over a substantial amount of time remains a 
challenge.
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Socio-technical challenge Sect. 4.2: Technology changes rapidly, and lim-
itations cannot be satisfied at the same time 
Limitations of the system have to be addressed in a way that has a better 
chance of working in practice over a substantial amount of time. 

Future proofing efficacy and safeguards should include both considering incom-
ing international legal frameworks such as Council of Europe Convention 108+ 
[30] and responding to existing societal challenges such as the engagement of 
commercial Open Source Intelligence (OSINT) which might be caught by the future 
enactment of the European Artificial Intelligence Act [19]. 

Idea Sect. 4.2: Incoming international legal frameworks and existing 
societal challenges should be addressed in a TIHW 
Future proofing data protection and human rights safeguards should be taken 
into account to make the workflow not only relevant now but also robust in 
the future. 

4.3 Studying Organizations with Restricted Information 
Sharing 

The amount of information expands rapidly, and no one institution or vendor can 
hold it all. Bouwman [12] found that, when looking at two commercial providers of 
threat intelligence, there was minimal overlap in the indicator feeds, even in cases 
of identical threat actors. Next to processes between organizations, information 
sharing is also influenced by internal organizational processes. Domains (e.g., 
military, national security) within threat intelligence work in compartments to limit 
information flow [58]. 

Decision-makers, analysts, and field personnel do not have access to the same 
information. In environments where information sharing is restricted due to need-to-
know policies, the sharing of healthy behavior toward regard for human dignity and 
ethics may also be difficult. Due to compartmentalization, sometimes best practices 
are difficult to transfer to other compartments. Even when there is a transfer of 
colleagues between compartments, there is a risk of mixing between colleagues 
upholding “positive” culture and colleagues caught in “negative” work culture [58]. 
Instead of a chain of restricted information sharing, decision-makers and analysts 
have the opportunity to act as autonomous agents [99]. 

Furthermore, individual motives play in a role in the information sharing as well. 
Found information can, depending on the significance of said information, result 
in increased “status” once shared with a superior [102]. The higher the position of
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the superior in the organizational hierarchy, the greater the potential “status” gain. 
Sharing information with peers or superiors lower in the organizational hierarchy 
could result in them taking credit, leaving the original finder with a diminished 
“status” gain. 

Socio-technical challenge Sect. 4.3: Analyzing/improving information 
sharing in a restricted environment is difficult 
External organizational processes, internal organizational processes, and 
psychological factors influence the degree of information sharing. It is unclear 
how these elements feed in to organizational practices within a restricted 
environment. 

An integrative view of the three levels of organizational change is necessary to 
get a better understanding of the impact of change during the implementation of 
a system. These levels consist of an operational level (learning of the actual pro-
fessionals themselves), a tactical level (learning from a management perspective), 
and a strategical level (learning in the perspective of organizational compliance and 
regulations). In addition, this integration helps in pinpointing effects that would 
otherwise stay unseen. This view calls for feedback loops both within the hybrid 
intelligence pipeline and across these levels, within and between organizations. 

A potential solution and opportunity for empirical work could be the implemen-
tation of an acceptable (by the organization and the employees) variation on the 
nice-to-know code among different compartments; this may facilitate the transfer 
and fostering of values and international principles such as proportionality. 

Idea Sect. 4.3: Integrating the operational, tactical, and strategic levels 
of organizational change with a clear distinction of processes between 
organizations and those within organizations 
Taking into consideration the internal processes of an organization (individ-
ual motives, team dynamics, and organizational aversion to change), and 
the external processes (between organizations, in a broader societal context), 
using empirical evaluation, can help pinpointing unforeseen effects. 

5 Technical and Experimental Challenges 

In this section, technical and experimental challenges of formalizing uncertainty 
within a TIHW are discussed. For each of the identified challenges, ideas are 
proposed to handle them.
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5.1 Representing Uncertainty Stemming from Systems, 
Humans, and Situations 

As discussed in Sect. 3.4, uncertainty within threat intelligence workflows is mainly 
conveyed in natural language between people. Standardized natural language 
formats are used in certain domains. For example, within the defense domain, the 
standard NATO Standardization Agreement (STANAG) 2511 incorporates linguistic 
labels to communicate source reliability and information credibility [65]. However, 
such uncertainty representation is typically not suited for machine-based processing. 
Since these uncertainties often stem from qualitative concepts, it can be challenging 
to translate them into representations that quantify the uncertainty for the machine-
based processing and vice versa. Furthermore, the threat intelligence workflow 
is hybrid, meaning that the uncertainties themselves will not only stem from 
abstractions and errors in systems and data but also from the process of human 
decision-making. In addition, to provide a basis for accountability in the larger 
societal context, uncertainty information should be available along the chain of 
communication. 

Technical challenge Sect. 5.1: Representing and tracking uncertainty for 
actors in TIHW is complicated due to qualitative sources of uncertainty 
Uncertainty will not only arise from abstractions and errors in systems and 
data but also from the process of human decision-making. The uncertainty 
information should be available along the chain of communication. Repre-
senting uncertainty stemming from qualitative concepts is challenging. 

Uncertainty can be factorized by a plethora of elements. Due to these different 
factors and categories, explicitness helps in reasoning about involved uncertainties 
throughout the process. 

A possible extension of the URREF ontology [23], introduced in Sect. 3.3, could 
serve as a basis to start representing uncertainty within the threat intelligence 
workflow. It provides the opportunity to explore the boundaries of the (information 
fusion) system that one is building. It also has the expressiveness to incorporate 
the current NATO-STANAG 2511 standard [9]. It should be considered a checklist, 
forcing any information system developer to thoroughly analyze the information 
fusion pipeline and make adjustments where necessary. 

For uncertainty to be used not only between two agents who are in immediate 
connection to one another but also along the chain of communication, it is necessary 
that uncertainty provenance is tracked. A second proposed framework, handling 
provenance tracking, is the PROV data model [41]. This model can be used to 
structure the information in a knowledge graph (KG), making a distinction between 
entities (things that contain information), activities (the process that produced 
the information), and agents (persons/software/machines responsible for the taken
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actions). If applied within a TIHW, it allows for the construction of a provenance 
trail of information, providing insights into origin of the information. 

Idea Sect. 5.1: Making uncertainty explicit by expanding and combining 
existing ontologies 
Uncertainty can be factorized by a plethora of elements. Due to these 
different factors and categories, explicitness helps in reasoning about involved 
uncertainties throughout the fusion process. A possible extension of the 
URREF ontology [23] in combination with the PROV ontology [41] could 
serve as a basis of representing these uncertainties. 

5.2 Formal Reasoning with Uncertainty 

When it comes to providing explanations that agree with human understanding, 
uncertainty representation is not enough. A specific type of formal uncertainty 
reasoning that can reflect abductive inference is necessary [69]. 

With respect to formal reasoning, two directions can be distinguished. These 
directions are forward and backward reasoning; see Fig. 2. Backward reasoning, 
in the current context, is about recreating trails and possibly gathering more 
information to demonstrate proof of the proportionality and subsidiarity of actions 
for each TIHW component and for the entire TIHW. Forward reasoning, in the 
current context, could be used in building an actionable strategy with minimal 
uncertainty. The challenge at hand is that there are no such reasoning tasks that 
minimize the uncertainty on process level for threat intelligence and also, with 
respect to proportionality and other legal and societal constraints, in a domain 
agnostic way. 

Fig. 2 Forward and backward reasoning. Forward and Backward Reasoning: Forward reasoning 
can be thought of as a form of what-if reasoning where the reasoning starts from the information 
and moves forward. Backward reasoning can be thought of as an evaluation where the reasoning 
starts from the decision and moves backward. The green color represents the respective reasoning 
paths
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Technical challenge Sect. 5.2: Formalizing reasoning tasks to minimize 
uncertainty is challenging 
How to formalize reasoning tasks that minimize the uncertainty on pro-
cess level, e.g., by backward reasoning (“what-if”) or forward reasoning 
(“why”)? 

A third framework is needed, one that could unify the uncertainty overview with 
formalized reasoning about uncertainties. Which to choose is not a trivial choice. 
This depends on the complexity of reasoning capabilities, and the richness of the 
uncertainty overview. The combination of uncertainty representation, provenance 
tracking, and reasoning/causal inference is necessary. 

Past approaches in uncertainty reasoning use fuzzy logic [10], epistemic logic 
[5], Markov network/processes [90], probabilistic logic [42], Bayesian networks 
[15], and Dempster-Shafer theory [112]. However, automated reasoning over uncer-
tainty is very complex. The choice of reasoning method is dependent on the way the 
uncertainty is represented (e.g., in a qualitative format [105]). The combination of 
the URREF ontology [23] and PROV data model [41] with the intent to reason about 
uncertainty is particularly difficult. The foundations of both the URREF ontology 
and PROV data model are based on Boolean statements, either something is true 
or it is not. When dealing with uncertainties, the assigned value lies most often 
somewhere in the gray area in between. 

Idea Sect. 5.2: Combine uncertainty representations with a provenance 
framework and reasoning/causal inference 
To tackle provenance tracking and enable forward and backward reasoning 
within the workflow, the URREF ontology can be combined with the PROV 
framework [41] and integrated with a third framework (uncertainty reasoner) 
to unify the uncertainty overview with formalized reasoning about uncertain-
ties. 

5.3 Experimental Methods Aware of Uncertainty 

Designing methods to evaluate the correctness of a threat intelligence decisions 
regarding a course of action or event likelihood is not easy, because the lack of 
ground truth is persistent in threat intelligence. In controlled experimentation, one 
possible solution is to curate the ground truth manually [93, 96], but this is not 
always feasible when analyzing large number of threat intelligence sources [62]. 
In previous work, there exists an optimal choice [55], preferences were measured
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[47, 63], or expert judgment was used for validation [64]. These measurements were 
sometimes in a qualitative format, e.g., interviews [82, 103], and in other cases, they 
were quantitative, e.g., optimal likelihood estimations [55]. However, it is not clear 
how incomplete and uncertain threat intelligence information should be treated in 
the ground truth. 

When it comes to expert judgment, the situation becomes complex. On the one 
hand, analysts are highly trained individuals in high-risk decision-making [75]. The 
combination of training and experience often leads to “intuitive” decision-making. 
This behavior is rarely seen in non-experts [75]. On the other hand, decisions about 
security risks may be affected by biased judgment [6, 49]. Uncertainty and bias 
are key elements of each socio-technical system. Minimization is not the ultimate 
goal. However, existing experimental methods lack protocols that can effectively 
and systematically measure human bias in threat intelligence decision-making [94]. 

Technical challenge Sect. 5.3: Existing empirical protocols for THIW 
validation have to be adapted to incorporate the human factor 
What existing empirical protocols and measures can be adapted to quantify 
measures of uncertainties including human bias in TIHW? 

The property of the exchanged information in the TIHW is that from an 
analyst’s (or study participant’s) point of view, the information may (or may not) be 
aggregated, incomplete, inaccurate, unreliable, and/or censored. And yet, a sound 
and convincing explanation (with at least partial traces in the model) for a minimal 
intervention (i.e., proportionality) must be possible. The current landscape of 
empirical methods does not cater for investigating such aspects of decision support 
systems. Important is to measure the human effects. Qualitatively and quantitatively 
evaluating the entire intelligence pipeline thus calls for novel protocols, measures, 
and controls to be developed. 

See Table 3 for an overview of methods used in recent (2018–2023) research on 
bias and uncertainties in cybersecurity from the perspective of the analyst/defender 
(for background information on the research in question, see Table 1). Internal 
validation of surveys, questions, and other methods were rare. External validation 
of these methods was most often checked with a group of experts or participants 
[33, 38, 39]. These findings suggest that there is a need for more internal and external 
validation methods. 

Validation in isolation is not insightful enough. A validation methodology has to 
be adapted to effectively assess heterogeneous systems with both AI, human, and 
unknown components.
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Table 3 Overview of methods used in recent (2018–2023) research on bias and uncertainties in 
cybersecurity from the perspective of the analyst/defender 

Uncertainty/bias Ref Type of study Measures 

Overconfidence [33] Cyber game Argumentation and self-confidence 
via coded transcripts of verbal 
discussion 

Primacy bias [38] Vignette Attribution via survey on 
confidence levels 

Seizing and 
Freezing 

[39] Vignette Attribution via survey on 
confidence levels and coded 
justification 

False sense of 
validation 

[107] Vignette Machine preference via survey on 
confidence levels and selecting 
decisions 

Information-
pooling 
bias 

[83] Synthetic task environment 
(i.e. less focus on realism 
and more on the cognitive 
task at hand) experiment 

Team collaboration and information 
pooling were measured via coded 
transcripts of the verbal discussions 

Idea Sect. 5.3: Validating effectiveness of a human-based decision-making 
process (such as TIHW) calls out for human-in-the-loop experimental 
protocols 
To this aim, new experimental protocols must be specifically designed to 
measure human effects. For instance, similar protocols outlined in [94] could 
be retrofitted to the domain of threat intelligence. 

5.4 Computing with Objects of Evaluation to Measure Their 
Quality May Not Be Possible 

Since direct computation over unknown (or uncertain) values is not possible, 
the evaluation should take as input meta-information rather than the object of 
evaluation. So the key question is not whether say an AI image recognition tool 
works with 80 or 90% of accuracy, but rather, which representation of such 
uncertainty is actionable for the user. However, methodologies for threat modeling 
and analysis and the protocols used for their evaluation require the user to specify the 
sources of security relevant components and the locations where such information 
is not allowed to flow. Therefore, existing methodologies [31, 44, 93, 95] cannot be 
directly carried over to evaluate the appropriateness of alternative suggestions by 
the TIHW, such as an alternative plan of intervention in the presence of a terrorist 
threat by requesting input from a new source.
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Technical challenge Sect. 5.4: Measuring meta-information about objects 
of evaluation is necessary instead of measuring the object level 
How can meta-information about objects of evaluation be measured and 
under what conditions are these measurements valid? 

Since computation with the object of evaluation itself is not always possible, we 
need to make use of the meta-information that is available (e.g., timestamp, type 
of device, etc.) to define and compute new measures of quality. As put forward 
in Zibak, Sauerwein, and Simpson, data quality in threat intelligence has not been 
properly empirically investigated [113]. To achieve this, the first step is to investigate 
what type of meta-information is available from the field. 

Confounding factors should be balanced within these measurements. For exam-
ple, a THIW relies on AI modules, which can be symbolic modules explicitly taking 
uncertainty into account, or sub-symbolic modules (ML-like). For the latter, several 
studies exist on estimating and propagating uncertainty on the output of, e.g., deep 
learning models (see, e.g., the popular dropout method [36]), but there is no protocol 
to propagate the effect of hybrid errors of the next TIHW component. 

Idea Sect. 5.4: Validate newmeasures to quantify meta-information about 
objects of evaluation 
Since computation with the object of evaluation itself is not always possible, 
we need to make use of the meta-information that is available (e.g., timestamp, 
type of device, etc.) to define and compute new measures of quality. To achieve 
this, the first step is to investigate what type of meta-information is available 
from the field. 

6 The Bigger Picture 

In this chapter, we discussed the interplay between complex conditions and trade-
offs between security and legal, societal, and organizational restrictions that make 
decision-making under uncertainty a challenging endeavor. Table 4 shows an 
overview of the illustrated challenges. 

In the quest to achieve efficiency and effectiveness in threat intelligence, security 
and intelligence agencies are implementing AI-powered solutions to find actionable 
information to aid them in decision-making during uncertainty. However, one must 
remember that these AI tools to help deal with uncertainty in threat intelligence can 
end up being a double-edged sword. The development of a threat intelligence hybrid
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workflow (TIHW) is not an exception. Uncertainty will likely arise due to commu-
nication errors, ambiguity, and unknown credibility of the sources/provenance. 

Challenges arise when creating a robust system that advances the embedding of 
regard for citizens’ fundamental rights and responding to efficiency and support 
of user autonomy to enable intelligence agencies to arrive at the best possible 
decisions. Achieving this fine point is essential in a democratic society, because 
it develops societal trust in security and intelligence operations. 

Despite developing a system that meets the requirements mentioned in this paper, 
we also need a path forward in security and intelligence operations to transfer this 
knowledge within their agencies or organizations. We recommend applying a lens 
based on international standardized legal principles, such as proportionality and 
necessity, during human AI interactions or evaluations in the absence of ground 
truth. Thus, the relationship between developing an AI system and having regard 
for societal and legal matters are not far from each other. 

Uncertainty in a TIHW stems from quantitative as well as qualitative sources. 
This makes the formalization of uncertainty hard. In addition, uncertainty repre-
sentation has to be machine-readable, as well as human understandable. Therefore, 
uncertainty representation should enable reasoning according to abductive infer-
ence. Representation and reasoning methods for uncertainty that capture these 
conditions have not been constructed with respect to threat intelligence. 

AI augmented socio-technical systems for threat intelligence must respond to 
relevance, timeliness, accuracy, completeness, and ingestibility. A TIHW evaluation 
will require investigating the persuasiveness (e.g., to the oversight body), efficiency 
(helps analysts make decisions faster), and debugging (helps analysts identify when 
something is wrong and explore “what-if” scenarios) of the explanations, for which 
appropriate measures are to this day less explored. 

The validation methodology for a TIHW has to holistically incorporate AI, 
human, and unknown components. In addition, confound-aware methods that mea-
sure the meta-level instead of the object-level of a TIHW are necessary. Validation 
methodologies within threat intelligence that satisfy these requirements have not 
been thoroughly investigated. 

We hope to stimulate discussion and further research in the community by 
illustrating these challenges and possible ways to answer them. 

Acknowledgments We are thankful to Sarah Giest and Iris Cohen for their valuable feedback. 
This work was funded by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) 
under the HEWSTI Project under grant no. 14261. 

Contributions SVG (Sects. 2, 3, 4, 5, 6, Figs. 1, 2, Tables 1, 3, 4), JC (Sects. 4 and 
6), RR (Sects. 5.1, 5.2, Fig. 2, Table 2), B Weerheijm (Sect. 4.3), B Wagner (Sect. 4), 
GP (Sects. 5.1 and 5.2), BK (Sect. 4), SS (Sects. 5.1 and 5.2), KT (Sects. 1, 2, 5.3, 
5.4, Fig. 1), and FM (Sects. 1, 2, 6, Fig. 1) have conceived the presented ideas and 
contributed to their corresponding sections in the manuscript.



Challenges for Explainable AI for Security and Threat Intelligence 77

References 

1. Albu, O.B., Flyverbom, M.: Organizational transparency: conceptualizations, conditions, 
and consequences. Business Soc. 58(2), 268–297 (2019). https://doi.org/10.1177/ 
0007650316659851 

2. Alexander, P.: Exploring bias and accountability in military artificial intelligence. 7 LSE Law 
Review, pp. 396–405 (2022) 

3. Ananny, M., Crawford, K.: Seeing without knowing: limitations of the transparency ideal and 
its application to algorithmic accountability. New Media Soc. 20(3), 973–989 (2018). https:// 
doi.org/10.1177/1461444816676645 

4. Argote, L., Miron-Spektor, E.: Organizational learning: from experience to knowledge. 
Organiz. Sci. 22(5), 1123–1137 (2011). https://doi.org/10.1287/orsc.1100.0621 

5. Banerjee, M., Dubois, D.: A simple logic for reasoning about incomplete knowledge. Int. J. 
Approx. Reason. 55(2), 639–653 (2014). https://doi.org/10.1016/j.ijar.2013.11.003. https:// 
www.sciencedirect.com/science/article/pii/S0888613X13002478 

6. Bier, V.: The role of decision analysis in risk analysis: a retrospective. Risk Analy. 40(S1), 
2207–2217 (2020) 

7. Bisantz, A.M., Cao, D., Jenkins, M., Pennathur, P.R., Farry, M., Roth, E., Potter, S.S., Pfautz, 
J.: Comparing uncertainty visualizations for a dynamic decision-making task. J. Cogn. Eng. 
Decis. Making 5(3), 277–293 (2011). https://doi.org/10.1177/1555343411415793 

8. Blagden, D.: The flawed promise of national security risk assessment: nine lessons from the 
british approach. Intell. Nat. Secur. 33, 716–736 (2018) 

9. Blasch, E., Laskey, K., Jousselme, A., Dragos, V., Costa, P., Dezert, J.: URREF reliability ver-
sus credibility in information fusion (stanag 2511). In: Proceedings of the 16th International 
Conference on Information Fusion, FUSION 2013 (2013) 

10. Bobillo, F., Straccia, U.: Fuzzydl: an expressive fuzzy description logic reasoner. In: 2008 
IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational 
Intelligence), pp. 923–930 (2008). https://doi.org/10.1109/FUZZY.2008.4630480 

11. Bohanec, M.: Decision support. In: Mladenić, D., Lavrač, N., Bohanec, M., Moyle, S. (eds.) 
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Securing the Future: The Role 
of Knowledge Discovery Frameworks 

Martins Jansevskis and Kaspars Osis 

1 Preword  

In the DIKW (Data, Information, Knowledge, Wisdom) hierarchy, data represents 
raw facts and figures devoid of context or meaning, information is structured 
data with context and relevance, and knowledge encompasses synthesized and 
contextualized information that is actionable and useful (see Fig. 1) [23]. 

Knowledge discovery incorporates machine learning as a component within a 
broader system. These technologies are harnessed to process and analyze large 
datasets, allowing organizations to extract actionable insights and enhance their 
decision-making processes. 

2 Knowledge Discovery Frameworks 

A knowledge society distinguishes between information and knowledge, empha-
sizing the identification, creation, processing, transformation, distribution, and 
utilization of information to generate and apply knowledge [1]. Knowledge discov-
ery refers to the process of extracting insights and understanding from information 
through the use of specific techniques. The extraction of knowledge from data, as 
provided by intelligent systems, increasingly relies on the incorporation of machine 
learning algorithms and artificial intelligence techniques, prompting a growing need 
for knowledge discovery frameworks and methods that address escalating security 
concerns [2]. To facilitate the development of knowledge discovery systems, knowl-
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Fig. 1 DIKW pyramid, 
excluding wisdom. (Adapted 
from [23]) 
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Fig. 2 Knowledge discovery process models in the context with knowledge discovery frame-
works. (Adapted from [3]) 

edge discovery frameworks combine various techniques and tools from different 
fields, such as machine learning, data mining, data visualization, statistics, and 
knowledge discovery process models. These frameworks play a role in assisting 
researchers and practitioners in uncovering patterns and relationships within data 
that enhance understanding and decision-making. As the complexity of knowledge 
discovery systems increases, the use of these frameworks, process models, and 
design patterns becomes increasingly important. By harnessing these tools, individ-
uals and organizations can streamline the development process, enhance efficiency, 
and reduce the risk of errors [3, 24]. 

Process models are a popular approach to developing knowledge discovery 
systems, with some of the earliest models, such as Knowledge Discovery in 
Databases (KDD) and CRoss Industry Standard Process for Data Mining (CRISP-
DM), emerging in the late 1990s (see Fig. 2) [3]. 

As knowledge discovery has advanced, these models have been refined and 
integrated into broader knowledge discovery frameworks. While newer models, 
such as SEMMA (Sample, Explore, Modify, Model, and Assess) and Team Data 
Science Process (TDSP), have been introduced, CRISP-DM remains widely used 
and is considered a standard for data acquisition and retrieval projects [4, 5]. 
However, it is essential to note that no single process model or framework is
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universally applicable and appropriate for all knowledge discovery projects (see 
Fig. 2). Furthermore, developing a knowledge discovery system should be flexible 
and adaptive, incorporating best practices and tools from various process models 
and frameworks [3]. 

Authors have researched existing knowledge discovery frameworks [3], and the 
frameworks have been chosen so that each is for a different domain (see Table 1). 
The frameworks are innovative, and their presenting publications have been used in 
related research. The criteria are established to ensure framework selection: (1) the 
knowledge discovery framework is not older than 6 years, and (2) the publication 
representing the framework, according to Scopus Field-Weighted Citation Impact, 
is rated with a value of at least 9, which means that this publication has added 
value in the domain. Based on the criteria, three frameworks were analyzed in-depth: 
“An Innovative Big Data Analytics Framework for Smart Cities” [36], “Cognitive 
Computing: Architecture, Technologies, and Intelligent Applications,” [35] and 
“Big Data for Industry 4.0: A Conceptual Framework” [34]. 

Table 1 shows that all of the compared frameworks are based on modular 
design and include results processing and distribution modules: the characteristics 
can be considered a requirement for a framework. The high-performance, scalable 
infrastructure and abstraction from the complexity of data processing platforms, 
distributed infrastructure, and preprocessing modules are also present in two of 
three frameworks. However, none of the compared frameworks include security and 
legislations as part of a framework. 

Knowledge discovery frameworks are developed to serve specific objectives 
(see Table 1), whether in research, academia, or practical applications, and may 
encompass infrastructure definitions, modules, components, and technology stacks. 

Table 1 Knowledge discovery frameworks feature comparison, adapted from [3] 

Feature 

Industry 4.0 
conceptual 
framework 

Cognitive 
computing 
framework 

Framework 
for smart 
cities 

Has a description of the implementation X X �
Modular design � � �
Developers abstracted from the complexity of 
data processing platforms

� X �

Distributed infrastructure � X �
Data preprocessing module � X �
Results processing and distribution module � � �
Connectable programming nodes � X X 
High-performance scalable infrastructure � X �
Support for big data platforms X X �
Potential technologies and their application are 
presented 

X X �

Online analytics module X X �
Security and legislations as part of framework X X X
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Knowledge discovery process models are essential to such frameworks, as they 
outline the underlying process of discovering knowledge (see Fig. 2) [3]. By 
utilizing a process model, organizations can gain a clear understanding of the steps 
involved in knowledge discovery and the roles and responsibilities of team members 
at each stage. This helps ensure that the knowledge discovery process is efficient, 
effective, and aligned with the project’s needs. 

Data can often have multiple applications in fields not directly related to the 
domain where it was initially collected. Models of the knowledge discovery process 
provide a structured and systematic approach for uncovering patterns and insights 
in complex datasets. As a result, a comprehensive knowledge discovery framework 
can include different process model approaches (see Fig. 2). This underscores the 
importance of having a flexible and adaptable framework that can accommodate 
evolving data requirements and objectives [3]. 

Discovering factual knowledge involves a series of tasks, including problem def-
inition, framework and model development, and evaluation. Knowledge discovery 
systems are designed to meet various objectives and can be easily integrated or 
linked with existing processes and systems. However, the adoption of knowledge 
discovery frameworks in various settings is influenced by various concerns, such 
as compatibility with existing systems and processes and data privacy and security 
considerations [6]. 

Security is a critical concern for knowledge discovery systems as they are 
designed to extract valuable insights and information from large datasets, making 
them potential targets for malicious actors seeking to compromise sensitive infor-
mation. With adequate security measures, knowledge discovery systems can be 
protected from various cyber threats, including data breaches, theft, and misuse. 
Therefore, it is essential to prioritize security when developing and deploying 
knowledge discovery systems to ensure they operate effectively and protect data 
confidentiality, integrity, and availability [25]. By implementing robust security 
protocols and leveraging the latest technologies and best practices, organizations can 
minimize the risks associated with knowledge discovery and maximize the value of 
their insights [7]. 

3 Knowledge Discovery Systems Constraints 

Knowledge discovery systems are impacted by a multitude of factors, shaping the 
landscape in which these systems operate. Among the influences are the various 
constraints imposed by legal frameworks, privacy regulations, and the ever-evolving 
field of cybersecurity. These constraints not only govern the manner in which data 
is collected, processed, and disseminated but also establish the ethical and legal 
boundaries that knowledge discovery systems must navigate. In this environment, it 
becomes increasingly imperative to achieve a balance between the insights and the 
imperative to respect the rights and security of individuals and organizations.
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The advent of big data technologies has brought a transformation in knowledge 
discovery systems, providing economic benefits. The knowledge derived from these 
systems plays a role in shaping strategies for social and economic development. The 
emerging big data service architecture represents an economy rooted in services, 
which places a premium on data as a valuable resource by gathering and extracting 
information from diverse sources [8]. The synergy between big data and knowledge 
discovery systems empowers personalized data processing, analysis, and visual-
ization services, facilitating informed decision-making. The service architecture 
typically comprises either three (application, processing, collection, and storage [8]) 
or five primary layers (collection, storage, processing, analytics, and application 
[9]). Nevertheless, enabling technologies underpin these layers, facilitating infor-
mation collection, management, analysis, and visualization to catalyze knowledge 
discovery. Consequently, organizations can harness these technologies to gain 
insights into their information, elevate decision-making processes, and achieve their 
objectives. 

In the realm of knowledge discovery systems, data storage splits into batch and 
dynamically streamed data. Batch data denotes data stored in a static format, while 
streamed data entails a continuous flow of real-time data records [10]. Handling 
streamed data in knowledge discovery systems necessitates solutions characterized 
by prompt operations, fault tolerance, stability, and reliability. Conversely, batch 
processing is conventionally managed using tools like Hadoop and MapReduce. 
For processing streaming data, popular choices encompass Storm, Spark, and 
Samza [8, 9]. 

In recent years, the increase of data has created new demands in data storage, 
prompting widespread adoption of distributed file systems, including NoSQL, 
NewSQL, and other data management systems. Notably, the Hadoop Distributed 
File System (HDFS) has emerged as a predominant choice for large-scale data 
storage, offering redundancy and scalability within parallel distributed architecture 
systems [11]. 

NoSQL databases have been crafted to cater to operational requirements, par-
ticularly in real-time applications. NoSQL provides rapid and efficient processing 
of vast data volumes by storing data in an unstructured format across multiple 
processing nodes and servers. Consequently, the distributed database infrastructure 
of NoSQL is deemed highly conducive to knowledge discovery systems harboring 
extensive data repositories [12]. Moreover, NoSQL databases provide advantages 
such as scalability, flexibility, and fault tolerance, making them a good option 
for applications and reliable data processing. The utilization of NoSQL databases 
demands planning and consideration, as their unstructured nature can pose chal-
lenges related to data consistency and security [7]. 

Cloud computing technology underscores distributed processing capabilities, 
distributed databases, and virtualization technologies as its key benefits. According 
to scholarly literature, the integration of cloud computing platforms represents a 
pivotal element in the development of knowledge discovery systems [8, 9]. The three 
primary cloud computing architectures encompass SaaS (Software as a Service), 
PaaS (Platform as a Service), and IaaS (Infrastructure as a Service) [26]. The
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adoption of any of these architectural models allows organizations to drop the 
necessity for maintaining in-house server infrastructure or crafting solutions, as 
cloud services are readily accessible to fulfill specific tasks [7]. 

Prominent cloud service providers such as Amazon Web Services, Microsoft 
Azure, and Google Cloud Platform are known for their comprehensive offerings. 
They furnish infrastructure capable of accommodating a broad spectrum of infor-
mation development requirements, capable of supporting the entire life cycle of 
knowledge discovery system creation and data processing. Ample computing power 
is indispensable not solely for technical processes but also for data processing. 
While it is feasible to develop, maintain, and deliver tailored solutions with limited 
developer or customer resources, such an approach can amplify the intricacy of the 
technical processes [7]. 

In addition to the technical requirements encompassing information storage, 
processing, visualization, and application of cloud computing resources, knowledge 
discovery systems must conform to legal standards governing data collection 
and storage. Moreover, these systems must encompass preventive and corrective 
measures to uphold cybersecurity. 

Knowledge discovery systems are created to extract valuable insights from 
information and accordingly data through the processes of collection, processing, 
and analysis. However, it is necessary to take into account regulations concerning 
the protection of personal data, such as GDPR or US Privacy Act, which mandate 
the collection and use of only the minimum essential data for specific purposes 
[13]. Organizations are obliged to assess whether their utilization of personal 
data is reasonable and aligns with data subject expectations. The accumulation 
of substantial data volumes can potentially conflict with these principles [14]. 
Therefore, knowledge discovery systems must adhere to principles governing 
personal data protection concerning data storage, analysis, and utilization. These 
principles ensure that personal data is safeguarded, processed fairly and lawfully, 
and retained no longer than necessary, as enshrined in the Charter of Fundamental 
Rights of the European Union and GDPR. 

Compliance with GDPR can be achieved through data anonymization or 
pseudonymization within knowledge discovery systems. Anonymization involves 
rendering data unidentifiable, thereby exempting it from the scope of GDPR [13]. 
Article 22(1) of GDPR grants individuals the right to abstain from automated 
decision-making, including profiling, typically underpinned by machine learning 
algorithms. However, automated decision-making may be permissible when 
required for executing legal contracts or when data subjects provide explicit 
consent. Profiling through knowledge discovery systems often eludes individuals’ 
awareness, potentially violating data protection regulations. To uphold individuals’ 
rights, organizations must ensure transparency and provide options for opting out 
of automated profiling and decision making [14]. 

Cybersecurity constitutes a concern for knowledge discovery systems and net-
works, given their escalating significance in daily lives. Cybersecurity encompasses 
safeguarding hardware, software, electronic data, and services against unauthorized 
access, theft, damage, or disruption [15]. This is particularly pertinent as more



Securing the Future: The Role of Knowledge Discovery Frameworks 91

Constraints 

Legislations 

Data processing Data storage Confidentiality Integrity 

Cybersecurity 

Continuity 

GDPR CCPA 

Anonymized data 

Data storage at rest 

Legal regulation 

Data deletion 

etc. 

TLS/SSL 

MFA 

SDLC 

RBAC 

SQUARE 

ISO 27000 

Monitoring 

BSIMM 

SOC-2 

Encryption 

MOSRE 

etc. 

Understandable 
explanation 

Pseudonymized data 

Fig. 3 Knowledge discovery frameworks constraints. (Adapted from [7]) 

individuals rely on wireless network standards like Bluetooth and Wi-Fi and employ 
smart devices such as smartphones, televisions, and other Internet of Things (IoT) 
devices. Owing to the multifaceted nature of cybersecurity, spanning political and 
technological dimensions, it has burgeoned into one of the foremost challenges 
[15, 16]. Consequently, it is indispensable for knowledge discovery systems to 
incorporate cybersecurity requirements into their developmental life cycle and 
accordingly into knowledge discovery framework, encompassing measures to shield 
against cyber threats, ensure data privacy, and preserve system integrity. 

Access to the knowledge discovery system necessitates authentication and 
authorization. For highly sensitive data, multifactor authorization (MFA) emerges as 
a recommended solution (see Fig. 3). Access rights must be defined in accordance 
with the principle of least privilege. For instance, if a component of the knowledge 
discovery system, such as sensors or surveillance cameras, requires data storage 
capabilities, its access rights should exclude privileges related to reading, deleting, 
or modifying data. This approach is endorsed by numerous researchers [15, 16]. 

To ensure information security in a knowledge discovery system, adopting 
encrypted storage both at rest and during transit between system components is 
necessary. This approach adds an extra layer of protection, safeguarding information 
in case an unauthorized actor gains access to the dataset. The utilization of the 
Transport Layer Security (TLS) protocol is highly recommended for encrypting 
data during transit. Equally critical is the prevention of system components from 
accessing the repository without TLS, a practice advocated by experts such as Xin 
et al. [16] and Schatz et al. [15], who emphasize data encryption as a foundational 
security measure in knowledge discovery systems. 

In tandem with data encryption, a proactive process is indispensable to ensure 
the security of knowledge discovery systems. This proactive approach should 
encompass a comprehensive monitoring strategy for the knowledge discovery 
system’s infrastructure. The monitoring process should continuously oversee the 
data storage and computing infrastructure to promptly detect and mitigate potential 
security threats. Cloud resource monitoring tools, exemplified by Amazon Cloud-
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Watch, Azure Monitor, and Google Cloud Operations, offer a valuable means to 
aggregate monitoring and operational data and create informative metrics. System 
administrators can harness these tools to gain insights into system health and 
performance, allowing them to take corrective actions whenever necessary [15, 16]. 

Intrusion detection systems (IDSs) represent a cornerstone of any robust cyber-
security strategy. These systems are engineered to identify and respond to potential 
threats within a computer system or network [17, 18]. IDSs operate by scrutinizing 
network traffic and system activity, adeptly discerning suspicious behavior, and 
alerting system administrators about the potential occurrence of an attack. This 
early warning mechanism serves to preemptively avert or minimize the impact of 
a security breach. Beyond threat detection, IDS can also illuminate vulnerabilities 
in a system’s security posture, offering valuable insights for fortifying defenses. 
The implementation of IDS is necessary for organizations entrusted with sensitive 
data or serving a substantial user base. By integrating IDS, it becomes significantly 
more manageable to detect and respond to potential threats. Overall, investing in an 
intrusion detection system is indispensable for preserving the security and integrity 
of knowledge discovery systems and networks [17, 18]. 

Intrusion detection systems (IDSs) hold a role in upholding the security of knowl-
edge discovery systems. Traditional IDSs hinge on signature-based methodologies 
for detecting known attacks, which may be constrained when confronted with novel 
and evolving threats. However, the advent of deep learning-based IDSs has exhibited 
promise in the detection of previously unseen attacks, boasting high accuracy levels 
[17]. These systems harness neural networks to acquire insights into patterns of 
normal network behavior, enabling them to identify deviations and anomalies from 
this norm. By leveraging deep learning-based IDSs, knowledge discovery systems 
can adeptly detect and respond to potential security threats in real time, thereby 
mitigating the risk of data compromise or loss [17]. This assumes added significance 
in light of the escalating complexity of cyberattacks and the high volume of sensitive 
data entrusted to knowledge discovery systems. By incorporating deep learning-
based IDSs into their security arsenal, organizations can augment the protection of 
their knowledge discovery systems and prevent security breaches [17, 18]. 

The development of knowledge discovery systems is impacted by a multitude 
of constraints and must include specific data protection measures into the system 
and compact importance to security requirements during the design phase. The 
landscape of knowledge discovery systems is associated with legal statutes and 
cybersecurity imperatives, as illustrated in Fig. 3. Compliance with regional laws 
necessitates the integration of data protection measures and constraints regarding 
the collection and utilization of personal data. Cybersecurity assumes equal promi-
nence given the increasing reliance of knowledge discovery systems on computer 
infrastructure, the Internet, and wireless networks. Hence, developers must prioritize 
security requirements during the knowledge discovery system planning phase and 
draw upon methodologies such as ISO 27000 and SOC-2 certification. Upholding 
the safety and integrity of knowledge discovery systems includes the incorporation 
of data security practices such as the principle of least privilege, data encryption, 
continuous monitoring, and a judicious reduction in the attack surface. Developers



Securing the Future: The Role of Knowledge Discovery Frameworks 93

can create effective and compliant knowledge discovery systems by applying 
architectures with security at their core while comprehending the flow of data within 
the infrastructure [7]. 

4 Knowledge Discovery Framework Proposal 

Knowledge discovery systems present high complexity, stemming from both their 
technological foundations and the cybersecurity prerequisites essential for ensuring 
their safe and secure operation [7]. As such, the development of knowledge 
discovery systems demands attention to the technological and cybersecurity fac-
tors. Frameworks, serving as conceptual abstractions, outline the composition of 
components that can be tailored in alignment with specific requirements, thereby 
providing distinct operational characteristics. However, the existing pool of frame-
works available for knowledge discovery system development frequently does not 
include cybersecurity considerations that necessitate greater adaptability across 
multiple sectors [3]. Consequently, the selection of a framework mandates the 
assessment of technological and cybersecurity prerequisites, ensuring alignment 
with the requirements of the knowledge discovery system under construction. 

The lack of knowledge discovery frameworks that can be used in different areas 
makes it take longer to develop systems and highlights how important security is. To 
address this challenge, the authors introduce a conceptual framework titled the User 
Interaction and Response-based Knowledge Discovery Framework (UIS-KDF) (see 
Fig. 4) [7]. 

Proposed framework delineates five logical layers, namely, public applications, 
management applications, machine learning, constraints (detailed upon in the 
preceding section), and technology (see Fig. 4). The UIS-KDF framework is a 
meta level designed for the needs of knowledge discovery systems. By embedding 
security considerations throughout the phases of design, development, and deploy-
ment, the UIS-KDF framework addresses the vulnerabilities associated with data 
breaches, cyber intrusions, and security challenges. 

At the core of the UIS-KDF framework is a technology layer, designed to 
accommodate multiple data formats including structured, semi-structured, and 
unstructured data. To safeguard the integrity and confidentiality of data, the UIS-
KDF framework encompasses a layer of constraints (defense line), including an 
array of security measures categorized into cybersecurity and legislative subdo-
mains. These measures are included to secure data at rest and in transit, prevent 
unauthorized access to sensitive information, and align with legal statutes. 

In summation, the UIS-KDF framework represents a comprehensive and adapt-
able approach to knowledge discovery system development, where security consid-
erations are included from the beginning of the development process. By providing 
organizations with an adaptable and scalable solution, this framework empowers 
them to utilize the potential within their data and also mitigates the security breaches 
and cyber threats.
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Fig. 4 User Interaction and Response-based Knowledge Discovery Framework (UIS-KDF). 
(Adapted from [7]) 

4.1 Private and Public Application Layer 

The UIS-KDF framework comprises two distinct application layers: the public 
application layer and the management application layer (see Fig. 4). These layers 
serve different purposes and possess different characteristics. 

The public application layer is faced toward end users and focuses on delivering 
essential business functionalities. It interfaces with the technology layer’s APIs, 
providing adaptability through customization, addition, or replacement of public 
applications. These applications can be web-based, mobile, hybrid, or desktop, 
supporting a variety of platforms and systems. Whether open source or closed 
source, they require compatibility with APIs, irrespective of the API technology 
used (REST, GraphQL, RPC, SOAP). 

In contrast, the management application layer consists of applications dedicated 
to managing internal processes and procedures within the organization. These 
applications provide specific functionality for a limited number of users and well-
defined usage scenarios. Unlike public applications, management applications tend 
to have fewer users and predictable usage patterns. 

The distinction between public and management applications lies in their end 
users and potential usage loads. Public applications may experience an unlimited
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number of users and unpredictable usage patterns, necessitating API development 
that prioritizes scalability, load management, and robust authentication to handle 
varying loads effectively. On the other hand, API development for management 
applications can concentrate on delivering functionality for a smaller user base and 
clearly defined usage scenarios [7]. 

Encapsulation is a technique that involves wrapping the implementation details 
of a component or application and exposing only the necessary interfaces for 
interaction [22]. This approach offers multiple advantages, including improved 
usability, reduced complexity, and enhanced security. By encapsulating applica-
tions, security measures can be more efficiently applied to shield them from 
potential threats. It allows for the implementation of access control mechanisms, 
such as authentication and authorization, to restrict access to authorized users. 
Furthermore, encapsulation establishes a distinct boundary between the application 
and other system components, facilitating better isolation and minimizing the 
impact of potential security breaches. In summary, encapsulation integrated into 
knowledge discovery framework streamlines application protection by establishing 
clear boundaries, access limitations, and effective security measures. 

The segregation of management and public applications plays a role in achieving 
the specific objectives of organizations and bolstering their cybersecurity stand. 
The practice of encapsulating application functionalities simplifies the task of 
safeguarding them against cyber threats. By isolating and segregating internal 
management applications from public-facing ones, organizations can control access 
to sensitive data and reduce the attack surface. This separation also simplifies 
the implementation of suitable access controls, such as role-based access control 
(RBAC) and the principle of least privilege. Such measures enhance the overall 
security of the system and ensure compliance with regulatory requirements, particu-
larly those pertaining to data privacy and protection. Consequently, a well-structured 
and encapsulated application architecture can enhance an organization’s security 
posture while enabling the efficient and reliable delivery of services to end users [7]. 

4.2 Technology Layer 

The technology layer (see Fig. 4) within the UIS-KDF framework plays a role in 
delivering functionality and underpinning business processes, thereby facilitating 
data-driven decision-making. This layer incorporates responsibility for managing 
an array of critical components, including technology stacks, operating systems, 
containers, communication protocols, databases, gateways, monitoring and man-
agement solutions, and core processes that drive the knowledge discovery system’s 
operations. A core function for this layer is to maintain a clear delineation 
between technology and the business and application functionality. Layer also 
incorporates cybersecurity features, such as multilevel user authentication, audit 
logs, and role-based access control. The technology layer should be architectured to



96 M. Jansevskis and K. Osis

facilitate scaling of computational resources in response to the system’s changing 
demands [7]. 

To create a technology layer, the recommended approach is to harness container-
ization technologies like Docker, LXD, and Containerd, coupled with container 
orchestration platforms such as Kubernetes, Rancher, Google Cloud Run, and 
AWS Fargate. Additionally, the technology layer harnesses the capabilities of cloud 
computing technologies, including distributed computing, distributed databases, 
virtualization technologies, and automated vertical and horizontal scalability. In this 
regard, cloud computing services like Amazon Web Services, Microsoft Azure, 
Google Cloud Platform, or analogous services are embraced. Furthermore, the 
technology layer must be equipped for dynamic scaling of computational resources, 
multilevel user authentication, comprehensive audit trail generation, and the imple-
mentation of role-based access control [7]. 

Cloud computing platforms offer a suite of functionalities encompassing data 
continuity, integrity, and availability, rendering them suitable for storing data for 
knowledge discovery systems. The choice of cloud storage services has to align 
with the system’s technical requirements and can be hosted on the infrastructures of 
various service providers. Within the UIS-KDF framework, the role of the cloud 
computing platform is to furnish an application interface that can be leveraged 
by applications across the private, public, and machine learning layers. Database 
solutions and clusters, such as traditional relational database systems (SQL) or 
contemporary storage solutions (NoSQL) like Apache Flume, HDFS, SQL, and 
MongoDB, among others, can be implemented to store high volumes of data. 

The technology layer encompasses an array of functions, including load bal-
ancing management, asynchronous operation management, system image registries, 
public and management application APIs, monitoring solutions, and a spectrum of 
supporting technologies. By effecting a clear demarcation between technology and 
the domains of organizational, application, and machine learning functionality, the 
technology layer empowers organizations to concentrate on their core objectives 
while sustaining the requisite technological underpinnings [7]. Recognizing that the 
management of technology can diverge from the pursuit of organizational goals, 
allocating technology-related responsibilities to a dedicated layer not only enhances 
system performance but also mitigates the likelihood of errors. 

4.3 Machine Learning Layer 

The machine learning (ML) layer stands as an essential component within the 
UIS-KDF framework, as illustrated in Fig. 4. Its primary function is to facilitate 
knowledge discovery and oversee the management of machine learning models. 
By harnessing this layer, organizations can extract insights and do predictions 
from data, thus empowering data-driven decision-making and delivering enhanced 
services to end users. Furthermore, it has to be designed to facilitate the deployment 
and administration of machine learning models. Machine learning platforms like
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TensorFlow, PyTorch, Scikit-Learn, and others can significantly aid in achieving 
these aims. Leveraging machine learning models within knowledge discovery sys-
tems brings advantages for organizations, including process automation, resource 
optimization, and heightened service quality for end users [7]. 

The machine learning layer, depicted in Fig. 4, consists of several components, 
comprising an algorithm registry, feedback loops, third-party data integration, and 
user response data. The algorithm registry assumes the role of accommodating 
multiple ML algorithms tailored for diverse purposes, thereby augmenting pre-
diction accuracy. Additionally, it simplifies the substitution of algorithms when 
needed and their seamless integration into a unified system. Feedback loops, on the 
other hand, are for perpetually advancing and refining machine learning models. 
They allow the system to acquire insights from past mistakes and subsequently 
enhance its predictive capabilities. In recent years, the landscape of machine 
learning has witnessed expansion and refinement, culminating in the development of 
more sophisticated algorithms that provide better insights and predictive precision, 
therefore popularizing knowledge discovery systems [19, 27]. 

The ML layer can also derive benefits from third-party data sources, which can 
be incorporated to enrich the dataset, elevating the quality of predictions. Data plays 
an important role in the functioning of the knowledge discovery system, as it enables 
the identification of patterns and trends in behavior, ultimately contributing to the 
service quality. 

By demarcating the machine learning layer from the public and management 
application layers, the ML functionality and training process can be isolated, 
improving management and fortification of the encapsulated applications. This 
segregation serves to enhance the security and privacy aspects of the system by 
circumscribing access to sensitive data and functions. 

In summation, the machine learning layer constitutes a crucial element within 
the UIS-KDF framework, affording the functionality for knowledge discovery and 
the administration of machine learning models. Furthermore, the integration of ML 
algorithms coupled with continuous learning through feedback loops empowers 
organizations to automate operations, optimize resource utilization, and elevate the 
quality of services dispensed to end consumers. 

In addition to its role in enhancing service quality and automation, machine 
learning algorithms can be deployed to detect potential threats, encompassing the 
identification of anomalous user behavior, detection of fraudulent activities, and 
flagging of suspicious network traffic. Leveraging machine learning algorithms, 
organizations can improve their security posture and curtail the risk of cyberattacks 
[7]. 

4.4 UIS-KDF 

The process of knowledge discovery entails the extraction of valuable knowledge 
from data through the application of diverse techniques. Its primary objective
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revolves around acquiring actionable insights from data that can be harnessed 
to enhance organizational processes and inform decision-making. This unfolds 
through the utilization of data mining algorithms, which scrutinize and decipher data 
based on predefined conditions and specifications [20]. The realms of both academia 
and industry have created several process models, delineating the various stages 
constituting the knowledge discovery process. These models typically encompass a 
range of activities that adhere to the principles of project management [21]. 

Facilitating the development of knowledge discovery systems hinges on the 
usage of knowledge discovery frameworks, which provide development directives. 
These frameworks set out to streamline the intricate and time-intensive process 
of crafting knowledge discovery systems, particularly in the context of extracting 
knowledge from data. By applying these frameworks, organizations can build a 
structure for creating and using knowledge discovery systems that fit their business 
needs. Knowledge discovery frameworks provide guidance for the process of creat-
ing knowledge discovery systems, starting with defining the problem and ending 
with deploying and monitoring the ML models. Furthermore, these frameworks 
include best practices and methodologies including data preprocessing, feature engi-
neering, model training, and model selection. Adhering to these guidelines allows 
organizations to develop knowledge discovery systems that acquire knowledge from 
data, refine their services, and attain their business objectives [3]. 

The UIS-KDF framework is designed to be adaptable across multiple sectors, 
modular or distributed, including the security and legal aspects for organizations 
looking for a valuable guide to develop knowledge discovery capabilities. It’s 
divided into different layers, including technology, management, public applica-
tions, constraints, and machine learning, although they are loosely connected. 
These layers have specific requirements for development. However, the collab-
oration between these components is crucial for data-driven decision-making in 
organizations. The framework provides a clear structure that helps organizations 
understand how different parts work together to achieve their goals. This leads to 
better decision-making and efficient use of resources [7]. 

The UIS-KDF framework furnishes blueprints for architectural schematics and 
organizational paradigms while elevating the cybersecurity quotient of knowledge 
discovery systems that harness machine learning and artificial intelligence. With the 
increase in data and more organizations using machine learning, cybersecurity has 
become an important factor. The UIS-KDF framework provides a way to separate 
the machine learning part, which deals with knowledge discovery and training, from 
the rest of the system. This demarcation serves to curtail the system’s prospective 
attack surface, rendering it more arduous for malicious actors to infiltrate and access 
sensitive information. 

The UIS-KDF framework includes the foundation for protecting data privacy, 
making sure data is not tampered with and is always available. It also highlights how 
important things like encryption, access control, and auditing are to defend against 
malicious actors. By bringing all these factors together, the UIS-KDF framework 
improves the security of the knowledge discovery system. It does this by separating
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machine learning, setting rules to keep data safe, including continuous monitoring, 
and making data security a top priority in the development process [7]. 

The framework has demonstrated its helpfulness through successful applications 
within the advertising and mobile technology sectors. It has proven to be a 
versatile, adaptable, and valuable knowledge discovery system development guide. 
Additionally, the UIS-KDF framework is a fruit of a larger project that conducts 
comprehensive gap analyses of various existing knowledge discovery frameworks, 
evaluating their limitations and practical applications. 

5 Conclusions 

The UIS-KDF framework is a valuable guide for organizations looking to develop 
knowledge discovery systems. The separation of technology, management and 
public applications, constraints, and machine learning layers provide flexibility to 
adapt to changing business goals. The framework also emphasizes the significance 
of cybersecurity and the need for meticulous data access and user permissions 
management. By incorporating these elements, the UIS-KDF framework can help 
organizations achieve their desired outcomes securely and efficiently. 

By providing guidelines for architectural planning and organization, the frame-
work can help organizations develop more effective knowledge discovery systems, 
leading to improved decision-making. 

There are several steps for further research and development related to the UIS-
KDF framework, e.g., exploring the challenges of deploying UIS-KDF framework 
and supporting knowledge discovery system development for companies in specific 
(vertical) industries. 

Acknowledgements Authors have used Grammarly writing assistance platform [38] for gram-
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Who Guards the Guardians? On 
Robustness of Deep Neural Networks 

Misha Glazunov and Apostolis Zarras 

1 Introduction 

Deep learning, powered by deep neural networks (DNNs for short), underlies most 
modern Artificial Intelligence (AI) algorithms. These models have proven highly 
successful in various applications, including supervised, unsupervised, and rein-
forcement machine learning. Furthermore, deep learning models have demonstrated 
state-of-the-art results in processing diverse data domains such as images, texts, 
audio recordings, electrocardiograms, malware, games, and many more. Despite 
their impressive accuracy metrics, the fundamental theory of deep learning is miss-
ing. First, the most critical lacking aspect is linked to the generalization capabilities 
of the modern DNNs. Generalization can be subdivided into . (i) generalization from 
training data to test data and .(ii) generalization from inliers to outliers. Currently, 
there is no satisfying theory, even for the first part, which would explain the 
surprising generalization capabilities of DNNs. Suppose one employs the classical 
statistical learning theory based on the Vapnik–Chervonenkis dimension [58]. In 
that case, it likely indicates that DNNs are overfitting, considering that the number 
of parameters quite often significantly exceeds the number of data points used 
for DNN training. Many research works contribute to the gradual progress in this 
direction [4, 12, 35, 50], but no final theory is currently available. The second part is 
also an active direction of current research [1, 29, 66]; however, nowadays, there is 
no theoretically rigorous foundation for that either. As a result, both of the parts 
require further exploration. Moreover, the second missing cornerstone relates to 
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the optimization routine, e.g., to the convergence regime of DNNs: pointwise vs. 
uniform. There are several studies in this direction [64, 65, 67] and their connections 
to the generalization [41], but, again, there is still no rigorous theoretical basis 
for that. Finally, the architectural choices for DNNs are still empirical, and no 
theory unifies them except for the very coarse results of the well-known Universal 
Approximation Theorem (UAT) [10] and its variations that basically aim at rigorous 
bounding either the depth [3, 22, 49] or the width [36] of the DNNs. The lack 
of rigorous understanding of the theory of deep learning results in many relevant 
questions that still need to be answered. For instance, how exactly does the model 
produce the final result? How can we be sure about these results? What are the limits 
of a particular modeling approach? How can it be rectified in case of malfunction? 
And many more others. 

Therefore, these models are often used as a black box tool, fed with significant 
data to achieve the desired performance results. However, this raises serious 
concerns about the robustness of these models to malicious interventions because if 
there is no clear understanding of how modern DNNs generalize from training data 
to test data (i.e., on inliers and, further, on outliers), then it is an obvious direction 
of exploiting this lack of understanding by probing the models for the potential 
vulnerabilities, especially when they are used in so many critical domains, ranging 
from autonomous driving to medical diagnosis. It should be noted that despite the 
significant progress in the methods of model interpretability such as SHAP [38], 
GradCAM [54], CAM [69], RISE [48], and CXPlain [53], all of these methods 
can be applied to any model, and they treat the model in question as a black box 
with only potential access to the loss function and/or gradients. The interpretations 
are subsequently derived from input features that indicate the decision made by 
the model based on these input features and their corresponding contributions or 
weights for a particular decision. However, none of these methods tell anything 
about the model’s internal mechanics from the fundamental theoretical perspective, 
e.g., how exactly did the particular DNN come up with this particular solution 
and why (all the research dedicated to the generalization and optimization of the 
DNNs)? How does the network architecture influence the final decision and why 
(vast volume of different ad hoc solutions with too few theoretical foundations)? 
What can be done to alleviate the wrong output and modify the decision theoretically 
rigorously (the operational question that logically follows from the first two)? Can 
we debug the model, identify why these input features are essential for this model, 
and fix the wrong outputs? (i.e., the practical question based on the previous one). 

Consequently, many practical attacks have been discovered that exploit this lack 
of understanding, which, in turn, assist us a lot in more profound research and 
comprehension of the internal mechanisms of deep learning. Let us momentarily 
take the role of an attacker and consider the potentially vulnerable spots that can be 
exploited from the general perspective in any machine learning modeling approach. 
Such an approach requires at least two parts: . (i) data to be trained on and inferred 
from and .(ii) a particular model to be trained and subsequently used for inference. 

Moreover, the attackers may not have access to both model and data. In addition, 
both the model and data may evolve with time. Furthermore, a model can be
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a composite one, i.e., consisting of several other machine learning sub-models, 
and data can be non-homogenous or multimodal. Based on various combinations 
of these components, different potential scenarios are available for the attacker 
depending on their interests. For example, the attackers may be interested in 
modifying the model’s behavior for particular inputs, e.g., they want to bypass a 
spam filter to organize an advertising campaign for an illegal product. Alternatively, 
they may want to trick a face recognition system to access the victim’s smartphone. 
Conversely, the attackers may be interested in the data; for example, they may 
have access to the model and can get inference results but lack knowledge about 
the dataset used to train the model, which could be of particular interest to them. 
Alternatively, suppose the attackers cannot access the model. In that case, they may 
be interested in getting it, e.g., the model architecture, the weights obtained after 
training, and the hyperparameters used for training. 

Therefore, grounded in the distinctive attack vectors, we can discern two princi-
pal categories of potential attacks. . (i) Functionality-oriented attacks, encompassing 
those that seek to manipulate the model’s behavior. These may transpire during 
either the training or inference stages. .(ii) Privacy-oriented attacks, encapsulating 
those designed to extract insights into the private data employed during both 
training and inference stages since models may be trained on private data, such 
as personal information, medical records, or financial data, which can be extracted 
from the trained model breaching the privacy. Moreover, even if the training data 
is anonymized, recovering the data the model was trained on may leak proprietary 
business information. In addition, this attack category may aim to unveil proprietary 
facets of the machine learning model itself. If the model is deployed in the cloud 
and used via the web, then the model architecture and parameters leakage represent 
a serious proprietary trade secrets privacy breach. 

The first kind of functionality-oriented attack strongly relates to the unknown 
inputs, since we assume the model is not under the attacker’s control. Hence, 
something should be done with its input to modify the model behavior. Unknown 
inputs can be further divided into two main categories. The first category includes 
inputs that differ significantly from those on which the model has been trained. 
For instance, if a deep neural network classifier is trained to classify handwritten 
digits, how will it process images of unknown numerical systems, languages, or 
even natural objects such as trees or dogs? Experiments demonstrate that DNNs 
overconfidently fail when processing such inputs as they cannot distinguish between 
them and those they have been trained on [47, 60]. Such inputs are closely related to 
the question of the proper model generalization, and they are referred to as outliers. 
The model deployed in the wild should be able to deal with the outliers, i.e., with 
the data points coming from a different distribution than the one the model trained 
on [20]. In such a case, the question arises of how good the model is in dealing with 
such inputs and, most importantly, if it can distinguish outliers versus inliers. The 
second category includes inputs specifically manufactured by adversaries to change 
the model’s output, such as adversarial examples. These examples are becoming 
increasingly prevalent across all learning approaches, model architectures, and data 
domains.
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The attacker utilizes outliers and adversarial examples in the inference stage 
when the model is already pretrained. Alternatively, the poisonous attacks are 
introduced during the training stage. These are also artificially forged inputs that 
tend to be covertly introduced in the training dataset with the aim of the subsequent 
exploit during the inference stage. 

The second kind of privacy-oriented attacks includes model stealing and mem-
bership inference attacks. 

In this chapter, we briefly introduce the available attacking techniques and 
indicate the potential directions for their mitigation and, if possible, detection. 

2 Attacking Deep Neural Networks 

In this section, we introduce appropriate threat models together with potential vec-
tors of attacks at DNNs. It includes both functionality-oriented and privacy-oriented 
threats. The former comprises outliers, adversarial, and poisonous examples. The 
latter includes attacks that aim at stealing private or sensitive data related either to 
the model parameters and architecture or to the inputs used during the training of 
the model, i.e., to the training dataset. Finally, these attacks are mapped within the 
confidentiality, integrity, and availability triad components. 

2.1 Threat Models 

We consider the two most common threat models concerning the attacker’s abilities: 
white box and black box scenarios. The former relates to the situation when the 
attacker knows, for instance, the DNN model, including its architecture, learned 
weights, used hyperparameters, input layer representation, and output layer results. 
This scenario implies that the attacker has full knowledge of both model and training 
data in use.1 Conversely, the latter applies to cases without direct knowledge of 
the DNN model. The attackers may only know the inputs used for the model. 
Sometimes, they can also use the model as a service via a particular API call to infer 
the outputs. Moreover, it usually denotes the lack of exact knowledge about the data 
used during the training stage of the model. Nevertheless, the general understanding 
of the data is particularly always available or can be inferred, such as, for example, 
in the case of face detection on the image, the training dataset should have included 
images with faces. 

The privacy-oriented attacks imply the black box scenario. Functionality-
oriented attacks, on the other hand, may concern both threat models. The usual 
approach for them in the case of a black box is to train the so-called surrogate

1 Please note that it is not in contradiction with our previous assumption about the absence of the 
control over the model by the attacker since the knowledge of the model still does not imply the 
access to the model in use. 
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model, which will be used for the proper adversarial or poisonous input generations 
and the subsequent evaluations of the attack success rates. The properties of this 
surrogate model depend on the DNN under attack, and it usually entails the initial 
reconnaissance step with respect to the model in use potentially involving privacy-
oriented attacks. 

Beyond the available knowledge of the attackers, as we mentioned before, there is 
also a distinction between their possibilities over data manipulation, namely, if they 
can manipulate data during training or inference stages. The first type of attacks is 
called poisonous or sometimes causative, and the second type is called exploratory 
or evasion attacks. The latter includes both adversarial examples and outliers. We 
will use both mentioned terms for each of the types interchangeably. 

2.2 Functionality-Oriented Attacks 

First, we explore the most active domain of the current research dedicated to 
misleading the deep learning model behavior utilizing specific inputs. Since such 
inputs can be provided during the training or inference stage of the DNN life cycle, 
we dedicate a separate section to each stage. 

2.2.1 Exploratory Attacks on Inference 

Inference relates to the stage when the model is already trained and validated on a 
particular dataset. Hence, it can now infer the parameters of the probabilities of the 
general population based on particular provided inputs. Two types of attacks can be 
associated with the inference stage of any DNN: . (i) the attacks utilizing the outliers 
and .(ii) the attacks employing the adversarial examples. In the following sections, 
we consider each of them in more detail. 

2.2.2 Outliers 

We begin our discussion with the outliers. We consider that outliers are generated 
by a different distribution than the inputs used during training. An input generated 
from the different distribution represents a traditional definition of outliers, and to 
the best of our knowledge, it was first employed by Hawkins [20].2 The treatment 
of these inputs is often considered somewhat parallel to the attacker’s perspective 
in the scientific literature. The reason is that they are more vividly related to the 
question of the proper model generalization, i.e., to the ability of the model to infer

2 Hawkins distinguishes two categories of outliers: .(i) inliers and outliers adhere to the same 
distribution and .(ii) inliers and outliers generated by different distributions. In this chapter, we 
use the latter. 
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the actual parameters of the probability distributions of the general population rather 
than to the attacking technique. Despite their traditional treatment in the research 
community, they can also be used to mislead the model behavior by an attacker; the 
model deployed in the wild should likely be able to deal with the data points coming 
from a different distribution to the one on which the model has been trained. For 
a toy example, let us consider the model trained on the MNIST dataset [31]. This 
dataset contains the handwritten digits. The outliers in such cases could be the inputs 
from a different dataset, such as FashionMNIST [61] that contains various garments 
or even randomly generated images. In such a case, the question arises: How good 
is the model in dealing with such inputs, and, most importantly, can it distinguish 
outliers versus inliers? 

To better understand what the outliers mean, it is helpful to pose the following 
question about a model in plain English: Does a trained machine learning model 
know what it does not know? To answer this question, we first have to understand 
what it means exactly for the model to deduce if it knows or does not know 
something. First, recall that DNNs represent universal mapping approximators, i.e., 
they can learn any function on a compact domain with an arbitrarily close level of 
precision. However, what type of functions do they learn in most of the applied 
tasks? Probability functions! More precisely, DNNs parameterize either probability 
density or probability mass functions based on a particular input. This chapter 
considers attacks on deep learning models based on the supervised discriminative 
approach, such as DNN classifiers. Hence, such a modeling approach implies 
parameterizing a conditional distribution over target values y conditioned on the 
input . x: .pθ (y|x). The training of DNNs allows identifying optimum parameters . θ∗
based on a stochastic first-order optimization algorithm such as gradient descent. 
In the case of classification tasks, the standard choice for .pθ (y|x) is a categorical 
distribution, in the case of regression—a Gaussian distribution (quite often with a 
constant variance). It may seem only logical to rely on the probability density in 
answering our question, namely, if the density is low, then the model is uncertain 
about the input, which can be interpreted as the model not knowing the current input. 

Nevertheless, despite the neat theoretical motivation, such an approach drasti-
cally fails in practice. The DNNs tend to assign relatively high probability values 
to the outliers. For example, consider an ImageNet dataset used in Large Scale 
Visual Recognition Challenge (ILSVRC) [51]. This dataset contains over a million 
images for 1000 object classes, including various types of animals, aircrafts, fruits, 
vegetables, etc. However, despite the vast coverage of potential objects, these 1000 
classes do not include images of a microscope or a measuring tape. What would 
be the probability value for these unknown categories if we train a DNN classifier 
on ILSVRC based on those 1000 classes? Surprisingly, it turns out to be relatively 
high! For example, in the case of an image with a microscope, the DNN is 98.18% 
confident that it is a joystick, and in the case of an image with a measuring tape that 
it is a chainsaw with a 90.54% probability. Both joystick and chainsaw are present 
among those 1000 classes, but what is astonishing is the certainty with which the 
DNN claims to detect objects it has never seen before.
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This experiment demonstrates an interesting fact about DNNs: they tend to be 
overconfident with the outliers in their predictions. Such overconfidence has at least 
two disadvantages. First, it makes it impossible to detect the outliers during the 
inference stage utilizing the probability values, making such DNNs less suitable 
for the tasks when such functionality is necessary. Second, it allows an attacker to 
exploit this overconfidence by allocating particular outliers and providing them as 
inputs to such DNN, misleading the initially intended behavior, e.g., resulting in 
misclassification. It is pretty easy to imagine that the impact of such an attack might 
be life-threatening in many domains, ranging from self-driving cars to medical 
diagnosis. 

2.2.3 Adversarial Examples 

Analysis of the input-output mappings of AlexNet Convolutional Neural Network 
(CNN) [28] from the point of view of continuity reveals unforeseen properties of 
the DNNs [56]. Namely, the traversal over the manifold learned by the CNN from 
one category to another with parallel visualizing of the corresponding points in the 
input space does not result in a smooth morphing of one category to another, e.g., 
imagine a gradual and substantial transformation of a dog class into a cat class in 
the resulting images. On the contrary, the results of such a traversal turn out to be 
quite intriguing; namely, when the CNN classifier indicates that it already observes 
a different class, the input image still contains a distinct representation of the initial 
category (e.g., a category of a dog) with a slight amount of the added noise over the 
image. This means that from the human perspective, the obtained result is almost 
indistinguishable from the initial image. However, from the perspective of CNN, 
the new image represents a different category. In parallel, predictably, analysis of 
the DNNs’ robustness against the evasion attacks at test time [5] reveals the same 
intriguing behavior as in [56]. Two different perspectives on this behavior give 
rise to two definitions of the adversarial examples: one from the perspective of the 
generalization properties of the DNN and the other from the attacker’s perspective. 

From the generalization perspective, an adversarial example [56] is a technique in 
which the input for the DNN image classier is intentionally modified to look almost 
the same as the original image to the human eye. Yet, it is perceived as something 
completely different by DNN. DNNs incorrectly classify such adversarial examples 
from the human perspective. On the other hand, the attacker perspective does not 
necessarily demand the part that relates to the imperceptibility of the difference. 
On the contrary, if the miscreants want their attack’s outcome to succeed, they 
should not constrain themselves to the superfluous imperceptibility demands. In 
this chapter, nevertheless, we are more inclined to the definition that involves the 
imperceptibility aspect. The reason for that is the new, often overlooked, category 
we include in our study: the outliers. These inputs could be considered similar to the 
perspective of the adversarial attack to the maximum extent when there is nothing 
similar between the original data and the outliers. In particular, we consider three
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(a) Persian cat (b) Constrained gradient 

of the loss 

(c) Peacock ( = 0.25) 

Fig. 1 (a) the original image; (b) the max-norm constrained gradient of the loss generated by 
FGSM; (c) the resulting adversarial image 

methods of generating adversarial examples: .(i) fast gradient sign method [17], 
.(ii) Carlini-Wagner attack [7], and .(iii) Jacobian-based Saliency Map attack [46]. 

Fast Gradient Sign Method The fast gradient sign method (FGSM) attacks DNNs 
by leveraging their learning process based on gradients [17]. The following formula 
describes the process of generating an FGSM example: 

.x' = x + ϵ · sgn(∇xL(fθ (x), ys)) (1) 

Here .∇xL is the gradient of the loss function with respect to the original 
input pixel vector . x, . ys is the actual or source label for . x, and . θ stands for the 
parameters of the model . fθ that are constant. Gradient w.r.t. . x is easier to calculate 
with backpropagation than for . θ , which allows the fast generation of adversarial 
examples. FGSM exploits gradient ascent to increase the loss. Subsequently, the 
sign applies a max-norm constraint on the gradient value, and . ϵ represents a 
small magnitude of the step to increase the loss. This formulation constitutes the 
untargeted type of adversarial attacks, a particular example depicted in Fig. 1. 

The FGSM can be converted into a targeted attack by substituting the source 
label with a target one . yt and doing gradient descent instead of ascent, namely: 

.x' = x − ϵ · sgn(∇xL(fθ (x), yt )) (2) 

However, since FGSM is designed to be fast rather than optimal, it is not 
necessarily guaranteed to produce the targeted adversarial examples of minimal 
perturbations. 

Carlini-Wagner The Carlini-Wagner (CW) attack [7] aims at optimality in con-
trast to FGSM, i.e., it attempts to generate as little noise as possible to succeed in 
the attack. It poses the following optimization objective: 

.minimize ||δ||p subj. to fθ (x + δ) = yt , x + δ ∈ [0, 1]n (3)
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(a) CW applied to the MNIST dataset. (b) JSMA applied to the SVHN 

dataset 

Fig. 2 (a) Top row: MNIST adversarial examples targeted for 0. Bottom row: MNIST adversarial 
examples targeted for 1. (b) JSMA adversarial features visualized 

where .x ∈ [0, 1]n represents an image, .δ ∈ [0, 1]n is the added noise to the image, 
and . fθ is a model that returns a target class label of the image under attack. The noise 
level is calculated in terms of .Lp norms. The authors consider several norms; our 
example demonstrates the .L2-norm. The CW attack represents a targeted attack with 
powerful properties. Till the moment, it is one of the strongest known adversarial 
attacks. The examples of the CW-targeted attack on MNIST digits can be observed 
in Fig. 2. 

Jacobian-Based Saliency Map Attack The Jacobian-based Saliency Map Attack 
(JSMA) [46] leverages the saliency maps to devise an adversarial input. Namely, it 
computes the forward derivative of the whole DNN (Jacobian) w.r.t. the input, and 
based on this derivative, it constructs the saliency map. Large absolute values of the 
saliency map reveal the features significantly impacting the final output. The JSMA 
takes the maximum absolute value, perturbs it by a hyperparameter . θ , and repeats 
the process. The stopping criteria are either a successful attack with misclassification 
or reaching the total perturbation threshold of . ϒ . Figure 2 depicts such a JSMA 
attack. 

2.3 Causative Attacks on Training 

This type of attacks implies that the attacker can manipulate some part of the 
dataset to be subsequently used for training the DNN model under attack. Since 
this manipulation is always intended as malicious, the term poisonous describes this 
fact rather appropriately and precisely. Generally speaking, there are two possible 
malicious intents: they aim at intrusion without corrupting the system behavior with 
respect to benign inputs or target an overall regular system operation, causing a 
denial of service. First, we consider the way the training data is modified. 

2.3.1 Poisoning Dataset 

Construction of a poisonous dataset includes collecting raw samples of the statistical 
population distribution of interest with their subsequent labeling. Depending on
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the attackers’ capabilities, they may be able to modify raw samples or only their 
corresponding labels (or both). The first attack is called a clean-label attack, and 
the second is a dirty or corrupted-label attack. The clean-label attack may seem 
impossible at first, since there is no control over the output category, and it is unclear 
how the attacker can exploit the training process in such a case. Nevertheless, two 
known attacking techniques allow us to achieve this goal. Both introduce slight 
disturbances to the inputs that mislead DNNs during training. These disturbances 
are identified through the solution of either a bi-level optimization problem or a 
feature-collision problem. 

2.3.2 Data Poisoning to Disrupt Overall Performance 

This type incorporates several indiscriminate attacks, i.e., attacks that do not target a 
specific category or class within the training dataset. First, we describe a corrupted-
label attack based on label flipping. After that, we consider a clean-label attack 
based on bi-level optimization. 

Label Flipping Attack The attacker can significantly reduce the resulting DNN 
performance only via tampering with the labels of the dataset. It means that it is 
optional to have access to the model and the raw data. This type of attack can be 
implemented by mislabeling the data. Labels can be assigned randomly, influencing 
the system’s overall performance; the specific classification category or even several 
categories can be targeted. The classifier is subsequently trained on the tampered 
dataset without knowing which labels have been corrupted. The success rate of 
this type of attack heavily depends on the ratio of the poisoned dataset: the greater 
the ratio in favor of poisonous examples, the stronger the impact it would have on 
misclassification. 

Attacks via Bi-level Optimization This type aims to solve the corresponding 
bi-level optimization problem and represents clean-label attacks. Consider the 
following scenario: attackers want to attack a particular DNN model that will be 
trained, validated, and tested on the dataset . D. They want to poison this dataset to 
change the resulting model behavior. For that reason, the attackers split this dataset 
into training and validating subsets .D = Dtr ∪ Dval. Subsequently, they aim at 
poisoning the training dataset .Dtr with a specially crafted input . xp. The crafting 
of the poisonous input is constrained within the space of allowed manipulations 
imposed by . Ф, i.e., .x'

p ∈ Ф(xp). As a result, they get a poisoned trained dataset 
.Dp = Dtr∪{x'

p}. The goal is to optimize for the optimal poisonous solution allowed 
within the imposed constraints such that the target input . xt with the original label . yt

from the untampered validation dataset .(xt , yt ) ∈ Dval is misclassified by the model 
trained on the poisoned dataset. 

To achieve this goal, the optimization procedure should be run across two levels. 
First, the model should be optimized with respect to the DNN parameters on the 
dataset with the injected poisonous examples, which represents a classical optimiza-
tion objective of any DNN training, usually referred to as a training loss . Ltr. Second,
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on top of the classical optimization objective, there is an additional adversarial loss 
.Ladv that should be optimized for the best poisonous input modification in such a 
way that this adversarial loss is maximized which eventually leads to the sought-
after misclassification. Note that the misclassification is untargeted in this particular 
case. Hence, this formulation of the optimization objectives represents an attack on 
the availability of the model aiming at disrupting the classification results for the 
poisonous inputs. 

Formally, both of the optimization levels can be formulated as follows: 

. x∗
p ∈ arg max

x'
p∈Ф(xp)

Ladv(Dval, θ
∗(x'

p)). (4) 

s.t. θ∗ ∈ arg min 
θ 
E(x'

p,y)∼Dp
[Ltr(fθ (x'

p), y))] (5) 

where .x'
p ∈ Dp, i.e., it is an input from the poisoned training dataset under 

constrained manipulations allowed by . Ф, and . x∗
p is the resulting poisonous input 

to be added in the original clean dataset. 
The process of optimization of this bi-level problem seems straightforward at 

first glance; the inner minimization procedure obtains the optimal parameters of 
the DNN with the subsequent maximization of the adversarial loss. This process 
can be repeated until the convergence. However, in the case of DNNs, this 
solution is not feasible due to the over-parameterization and impossibility of the 
exact solution of the inner problem. For that reason, the truncated back-gradient 
optimization is used [16]. The idea is to first optimize the inner problem for 
a limited number of iterations, which allows computing the necessary gradients 
with subsequent backpropagation for the outer objective by tracing the necessary 
gradients backward. This approach allows the generating of poisonous inputs for 
DNNs successfully. 

2.3.3 Targeted Poisoning Attacks 

We consider one corrupted-label targeted attack based on a bi-level optimization 
objective and one clean-label targeted attack utilizing feature collision. 

Attacks via Bi-level Optimization The indiscriminate bi-level optimization poi-
sonous attack described above can be easily changed into a targeted one, if the outer 
objective is minimized instead, namely: 

. x∗
p ∈ arg min

x'
p∈Ф(xp)

Ladv(D'
val, θ

∗(x'
p)) (6) 

The dataset for validation contains the same raw inputs as .Dval but with the 
modified labels that the attacker wants to target, hence minimizing the loss toward 
them.
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Attacks on Feature Collision The intuitive idea behind this type of attacks is to 
look for the neighbors in the feature space within a relatively close distance from 
the target class that simultaneously lie close in the input space to the base class, i.e., 
to the class under attack: 

.x∗
p ∈ arg min

x
‖fθ (x) − fθ (t)‖2

2 + β ‖x − b‖2
2 (7) 

Given the feature space’s usual complexity and high dimensionality, such a 
search appears feasible. Note that due to the closeness to the target class in the 
feature space, there is no need to modify the label, making this attack clean-label. 
Moreover, the closeness of the poisonous sample to the base one in the input space 
does not raise concerns during the visual inspection, since the label is correctly 
assigned as if it represents a base class. Both of these factors make this attack very 
powerful. 

2.3.4 Data Poisoning for Intrusion 

In this category, the attacker introduces a set of poisonous inputs that contains a 
specifically crafted trigger that serves as a backdoor, allowing the intruder to modify 
the behavior of the DNN in the desired direction [9]. 

Backdoor Patches The first attack from this category exploits virtual or physical 
visible patches [18]. The training dataset is poisoned with the patched instances. 
Subsequently, the DNN is trained with the corrupted-labels for the samples that 
contain the corresponding patches. These patches serve as a trigger for the DNN 
classifier, allowing the attacker to change the classification result of the model. 
Since the training dataset contains benign and patched inputs, the normal behavior 
of the model with benign inputs and classification test errors are not influenced 
by these patched samples. Examples may represent a patch on the traffic stop sign 
to misclassify it as a traffic sign for the speed limit (see Fig. 3a). Please note that 
such a patch can be imposed with the original image during the construction of 

(a) Patch (b) Semantical (c) Blending (d) Signal (e) Imperceptible 

Fig. 3 Different types of backdoor attacks: (a) artificial patch with a corrupted label, (b) benign  
semantical trigger with a corrupted label, (c) blending a fake reflection with a clean label, (d) 
introducing a strong signal with a clean label, and (e) backdoor imperceptible to the human eye 
with a clean label
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the poisonous input without needing a physical photo with the patch. However, 
sometimes it is reasonable to rely on some physical trigger that carries a distinct 
semantical meaning but looks benign in contrast to the patching, for example, when 
a person wears glasses (see Fig. 3b). 

Backdoor as a Strong Signal Several functional approaches could be applied to 
implement a clean-labels backdoor. First, it is possible to bind a strong signal 
function that any DNN can easily detect with a particular target class, e.g., a 
sinusoidal signal with a ramp can be mixed into the small fraction of the target 
images with subsequent use of this signal as a backdoor for any other image during 
the inference stage. The sufficient ratio of poisonous examples before training 
the model for the successful attack constitutes one-third of the target class for 
the MNIST dataset and one-fifth of the traffic signs dataset [2] (see Fig. 3d). The 
problem with the sinusoidal ramp is that it is still quite visible in the resulting image, 
which can be detected via visual inspection of the dataset. 

Another type of signal can be stealthily encapsulated into the target image 
representing a fake reflection [33]. The benefits of this approach are that it cannot 
be easily detected as the previous signal and taking into consideration that it is also 
a clean-label poisonous attack then it provides all the benefits of a nice backdoor in 
cases when the target images have reflecting surfaces (see Fig. 3c). 

Imperceptible Backdoor Previous backdooring techniques still require a visible 
trigger and a relatively high ratio of poisonous examples to be added to the training 
set. The ultimate backdoor, however, can be forged utilizing the technique that we 
have already described above, namely, feature collision [55]. Such an approach 
allows the injection of a backdoor even by poisoning one image only. Moreover, 
thanks to the optimizing within the deep feature representation while minimizing the 
difference in the input domain, the resulting poisoned image contains imperceptible 
perturbances to the human eye, making this backdoor one of the most potent 
poisoning attacks (see Fig. 3e). 

2.4 Transferability 

It has been discovered that different architectures of DNNs trained to tackle the 
same classification problem on similar datasets tend to have similar fairly piece-wise 
linear decision boundaries that separate categories in the input data domain [17]. 
This property is called transferability. Transferability is especially dangerous, since 
it allows devising either an adversarial example or poisonous input that universally 
targets all DNNs with a similar final objective in a black-box manner [45]. 

The thorough study of the transferability properties indicates the difference 
between adversarial and poisonous samples. In particular, the adversarial examples 
tend to transfer better when forged on a simplified surrogate model. However, for 
poisonous attacks, the best surrogate models are the ones that match the complexity 
of the target [11]. Moreover, in the case of the white-box threat model, both
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adversarial and poisonous inputs favor the more complex models, i.e., the success 
rate of the attacks is higher for a more complex model than for a simpler one. 

2.5 Privacy-Oriented Attacks 

These attacks aim at stealing any private data. The first type of privacy-oriented 
attacks involves stealing the pretrained model’s proprietary parameters, including 
weights and hyperparameters. The model in this scenario is usually queried remotely 
via the web. The second type relates to identifying if a particular input was in the 
training dataset, allowing the attacker to deduce the data on which the model under 
attack was trained. In this section, we describe both of these types. 

2.5.1 Model Stealing 

Nowadays, the functionality provided by various DNNs is often offered online as 
a service. Such practice amplifies the significance of securing the privacy-related 
information related to the models deployed in the cloud since its leakage may induce 
confidentiality-related infringements and substantial financial costs. 

Attacks that aim at model stealing attempt to extract this information somehow 
and, eventually, to reconstruct the existing target model. It may concern the 
reconstruction of the entire model along with its weights, the reconstruction of 
the hyperparameters, or the reconstruction of a functionally equivalent alternative 
model. The adversary gathers the data about the target model by sending a data 
sample and receiving the model’s prediction. This interaction is termed query-based. 

Equation-solving Attacks Equation-solving attack (ESA) is based on formulating 
and solving a system of equations, the solution of which yields desired values for 
an adversary. It aims at specific values of the target model, e.g., learned parameters 
or training hyperparameters. Using model outputs .y1, ..., yn for given data samples 
.x1, ..., xn, it’s possible to construct equations .fθ (xi) = yi, i = 1, ..., n, revealing 
parameter values . θ [57]. ESA is quite efficient: depending on the target model type, 
1 to 4 queries per parameter is enough. This attack requires the knowledge of the 
target model’s architecture and the data samples to query the model. For black-box 
access, training hyperparameters need prior architecture and parameter extraction 
attacks. 

Meta-model Training Attacks The meta-model attack (MMA) is the only query-
based attack capable of uncovering target model architecture to date. A meta-model 
is trained using a set of candidate CNNs with varying architecture, optimization, 
and data parameters as the meta-model’s dataset, predicting a model’s structure, 
training setup, and data volume. The meta-model then links model hyperparameters 
and performance through specific test samples, revealing target model hyperparam-
eters [42].
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MMA’s success depends on the hyperparameter’s influence and their presence 
in the training set. For instance, to steal the convolutional layer count, the target 
model must be a convolutional neural network and possess a corresponding number 
of layers in the training set for the meta-model. Execution demands considerable 
computational resources: for MNIST classifiers, 10,000 CNN candidates had to 
be trained for over 40 days on a GPU. On average, the attack correctly predicted 
hyperparameters 80.1% of the time, surpassing a 34.9% guessing chance. However, 
as MMA extracts hyperparameters, an extra parameter-stealing attack is necessary 
to approximate the whole target model behavior [43]. 

2.5.2 Membership Inference 

Membership inference involves the identification of training data associated with a 
trained model. When provided with a data instance and granted access to a model, 
the objective is to detect whether this data instance was a part of the model’s training 
dataset. The access to the model can vary, falling into either the white box or black 
box category. 

Membership inference attacks stem from the fact that a machine learning 
model might behave differently on the training dataset than the test dataset. It is 
particularly evident in machine learning, especially within DNNs, which often are 
over-parameterized when the number of trainable parameters exceeds the number 
of training instances. It enables a machine learning model to “remember” instances 
from the training data. Thus, it may assign significantly higher confidence to 
predictions for training instances than test instances. By exploiting such differences, 
attackers can deduce whether a given instance is likely to belong to the training 
dataset. 

2.6 CIA Triad 

The classical information security triad comprises three main components: confi-
dentiality, integrity, and availability (CIA). We can now look at the described attacks 
through the CIA’s prism. The functionality-oriented attacks relate to both integrity 
and availability. The integrity component involves the attacks that maximize the 
model Type-I errors, i.e., adversarial examples and backdoor attacks. Availability 
attacks aim at minimizing the utility of the DNN model, e.g., by increasing the 
model Type II errors via poisonous attacks or by flooding the model with outliers, 
exploiting model overconfidence, and making the model predictions irrelevant in 
most cases. The privacy-oriented attacks, however, are connected with the confi-
dentiality component. It includes both model stealing and membership inference. 
The summary of all of these aspects, including the attacker’s capabilities, can be 
observed in Table 1.
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Table 1 Summary of the attacks and links to the CIA triad. Enhanced from Biggio and Roli [6] 

Attacker’s goal 

Functionality-oriented Privacy-oriented 

Attacker’s 
capability Integrity Availability Confidentiality 

Train data 
Poisoning for subsequent 
intrusion 

Poisoning to invalidate 
model – 

Test data Adversarial examples Outliers 
Model stealing, 
membership inference 

3 Available Defenses 

This section covers several available defense strategies against the attacks men-
tioned above. 

3.1 Defense Against Functionality-Oriented Attacks 

As for the available defenses against functionality-oriented attacks, it should be 
stressed that the current state of the art represents a constant race between the 
invention of new defenses against known attacks and the subsequent breaking of 
this defense with the newly discovered vulnerabilities. Nevertheless, in this section, 
we introduce the defense methods that demonstrate promising robustness results, 
and many of them have already passed the test over time. 

3.1.1 Adversarial Training 

Currently, there is no readily available universal defense mechanism that provides 
complete protection against adversarial examples. Nevertheless, several techniques 
proved promising in mitigating the potential damage and consequences, one of them 
being adversarial training [17, 56]. The transferability not only allows a black box 
adversarial attack but also means that it is possible to generate the known adversarial 
examples in advance automatically and add them to the training set before starting 
the training. Such an approach forces the DNN model to consider the adversarial 
perturbations and increases the robustness of DNNs to adversarial attacks. 

The advantage of this method is its simplicity. The most significant disadvantage 
is the requirement to generate adversarial examples in advance, which may defend 
only against attacks known during the DNN model training. Since adversarial 
examples can be generated with a vast diversity of different techniques, this 
approach can be helpful only if the model retraining and redeployment procedures



Who Guards the Guardians? On Robustness of Deep Neural Networks 119

are relatively cheap. Thus, keeping the model up-to-date with developing new 
attacks is possible. 

3.1.2 Enhanced Optimization Objective for Adversarial Training 

The idea of this approach is first to enhance the standard optimization objective and 
then exploit one of the adversarial attacking techniques for approximating one of 
the stages of the optimizations. Namely, recall the standard loss objective for the 
classification task: 

.θ∗ = arg min
θ

E(x,y)∼D[L(fθ (x), y))] (8) 

where . x is the input, y is the corresponding label, . D is the training dataset, and . θ∗
are the optimal trained parameters of the DNN. 

This objective may be improved, so that its exact solution would guarantee the 
robustness against the adversarial examples [39]. Specifically, it can be achieved by 
requiring that every neighbor of the current point within the .ϵ-ball adheres to the 
same class: 

.θ∗ = arg min
θ

E(x,y)∼D
[

max
‖x'−x‖p≤ϵ

L(fθ (x'), y))

]
(9) 

Unfortunately, the exact solution for optimizing this min-max objective is 
unattainable in a reasonable amount of time, since it involves a standard process of 
first a non-concave inner maximization and then a non-convex outer minimization. 
The solution is to approximate the worst-case inner approximation problem by 
optimizing for adversarial examples. In particular, FGSM (see 1) can be interpreted 
as a single step for maximizing the inner part of this objective formulation. In order 
to get a more precise approximation to the solution, one can also apply a multistep 
attack such as projected gradient descent (PGD) [7]. 

3.1.3 Outlier Exposure 

Similar to the idea of adversarial training is the outlier exposure approach [21], 
introduced for DNNs to deal with the outliers. The idea is to enhance the training 
dataset of the inliers .Din with the outliers. Since the dataset with the real outliers 
.Dout is not available, it is though possible to enhance the dataset with the different 
available datasets for Outlier Exposure .DOE

out . This dataset is different from the 
inliers. The model f is subsequently trained to learn more conservative signals 
of the inliers versus provided outliers that enhance robustness against previously 
unobserved outliers. It is achieved by introducing an additional term to the loss 
function, which is responsible for the outlier detector:
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.E(x,y)∼Din
[L(f (x), y) + λE

x'∼DOE
out

[LOE(f (x'), y)]] (10) 

The first term of the loss is the standard cross-entropy loss . L used in the 
classification tasks where . x represents the input and y stands for the corresponding 
label. The second term includes the outlier exposure loss .LOE for the outlier 
detector. It represents the cross-entropy from .f (x') to the uniform distribution. 
Unlike the adversarial training approaches described in the previous sections, this 
method allows us to mitigate and detect the outlier. 

3.1.4 Defense via Generative Models 

Several defenses based on the Deep Generative Models (DGMs) do not imply any 
knowledge about the type of adversarial attack in use. Moreover, they can be applied 
independently of the classifier DNN, since they are used as a filter working with the 
input before passing it further to the DNN model under protection. In addition, some 
DGMs allow the detection of outliers in a completely unsupervised manner that 
can be combined with the adversarial filtering approach, enhancing the robustness 
against outliers and adversarial examples. 

DGMs as Adversarial Filters This approach exploits the DGMs’ ability to learn 
a joint distribution of the data that results in a different learned representation 
compared to the discriminative approach, e.g., in the case of a DNN classifier. 
The most obvious difference with the discriminative representation is that the 
generative representation allows the generation of new samples from the learned 
joint distribution that look similar to those observed in the dataset during the 
training stage. Based on this representative power, it becomes possible to train 
a separate DGM model that will work as a filter, i.e., any input is first fed to 
the DGM filter, which mitigates the ongoing or attempted attack [23, 52]. The 
mitigation requires normal DGM training on the same dataset as the DNN under 
protection. As a result, it allows projecting the adversarial input onto the range 
of the DGMs’ generator based on the learned representation by minimizing the 
reconstruction error. Hence, by default, this method includes filtering out the 
adversarial perturbations. Finally, the protected DNN classifier will get the clean 
input without adversarial perturbations. 

DGMs as Unsupervised Outlier Detectors The methods within this category 
allow the detection of outliers completely unsupervised. They can rely either 
on the ensemble-based epistemic uncertainty estimation [14] or the DGM latent 
representation [15]. In both cases, the DGM can be again used as a filter to the 
DNN under protection. However, this time, it is not only mitigating the attack 
but also detecting if the current input falls under the category of outlier or not. 
Moreover, it turns out that the outliers tend to gravitate toward the holes in the latent 
representation of DGMs (see Fig. 4), specifically in the variational autoencoders 
(VAEs), allowing its simple detection. Finally, the same DGM that is used for the
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Fig. 4 Compact spherical latent space of VAE trained only on two digits of the MNIST dataset: 
0’s and 1’s. It is a vivid demonstration of the fact that the outliers densely land on the hole in the 
latent representation. From left to right: Yellow depicts means of the estimated posteriors for 1s 
and purple for 0s; red represents the mapped means for a held-out outlier: a class of digits 9s; 
Kernel density estimation of all means with the densest region in the hole packed with the outliers 

outlier detection can be applied in the same logic as the previously described DGMs 
for the adversarial mitigation, i.e., if the outlier is not detected, then the input is 
purified from the adversarial perturbations and subsequently fed to the DNN under 
protection. This approach is auspicious since it targets adversarial examples and 
outliers utilizing only one filtering model. 

3.1.5 Defense Against Poisonous Attacks 

Defenses against poisonous attacks can be broadly categorized into one of the 
following groups: 

1. Data Level Defenses: Focus on removing poisonous data from the input. 
2. Model Level: Involve model retraining. 
3. Interaction between Data and Model Levels: Identify patterns in the interaction 

between the data and model training. 

Data Level Defenses The first approach to the defense in this category is treating 
the poisonous samples in the tampered dataset as outliers. It implies that the 
defenders can access the benign dataset to train an outlier detection model. For 
example, they can train another model on the benign dataset with a different 
architecture from the original one but with comparable accuracy metrics [30]. 
Subsequently, any new input can be forwarded through both models, and if there 
is disagreement in the predictions between them, then this input is marked as 
potentially poisonous. 

Another approach is based on the intentional input perturbation when the 
defender modifies the input by blending it with another benign input. It has been 
noticed that the poisonous backdoor inputs are still successfully classified as the 
target of the backdoor, whereas the blending of two benign inputs produces a 
random prediction result [13]. This difference is most likely due to the special 
optimization procedure used when forging a backdoor input, in which the objective 
is set so that it should overcome the original trigger “blending,” resulting in a 
successful attack even when additional blending is applied.



122 M. Glazunov and A. Zarras

Model Level Defenses The defenses of this type imply that the defender has access 
at least to the smaller subset of the original benign dataset. In such a case, the 
defender can run a training procedure based on fine-tuning the poisoned model 
utilizing this benign subset. The benign data can be simultaneously augmented with 
the samples by adding random Gaussian noise to make the defended model even 
more robust to potential poisonous input perturbations. After several iterations of 
such fine-tuning, the model becomes robust and immune to the previously poisonous 
inputs [34, 59]. 

An alternative approach within this type of defense is based on meta-
classification when an additional DNN is trained on the features extracted from 
the defended DNN to classify if this model has been compromised by poisoning. 
The defender has to construct a set of DNNs evenly divided into poisoned and 
benign ones. After that, the meta-classifier is trained based on the features extracted 
from these DNNs with a single purpose to distinguish between the benign and 
tampered models. This approach demonstrated good generalization results even 
with the before unseen poisonous techniques [27, 63]. 

Defenses Based on the Interaction between Data and Model Training This type 
of defense is relatively novel and looks like the most robust and promising one. It 
does not imply that the defender has access to the benign dataset for outlier detection 
or a benign subset of the initial dataset for subsequent model retraining using fine-
tuning. It does not rely on the meta-classification either, implying that the defender 
has access to benign and poisonous models. Instead, this defense is working its way 
out utilizing the provided dataset and the given training objective interchangeably, 
resulting in the clustering of the samples based on the incompatibility property [25]. 
The intuition is that the benign inputs should improve the optimization objective 
during the training or at least not degrade it; however, the poisonous inputs, on the 
contrary, should reduce the validation accuracy. This idea leads to the clustering 
method that iteratively builds up clusters based on the incompatibility with respect 
to the training objective, i.e., benign inputs will eventually generalize to themselves 
as opposed to the poisonous inputs that would be clustered separately in such cases. 

3.2 Defense Against Privacy-Oriented Attacks 

In this section, we cover both mitigation and detection defensive methods against 
privacy-oriented attacks. The mitigation methods focus on minimizing the attack’s 
impact, i.e., they do not stop the attacker from acquiring a model; their goal is 
to reduce the stolen model’s quality to a point where it becomes unusable. The 
detection methods can further be subdivided into ownership verification (usually 
achieved by unique model identifiers or watermarking that can prove ownership of 
a stolen model; aims at proving past attacks) and attack detection (monitors whether 
a model is currently being attacked). Attack detection cannot prevent a model from 
being stolen, but it can inform the owner about the incident.
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3.2.1 Basic Defenses 

We begin with a listing of several simple basic defenses that can be applied to 
mitigate attacks that aim at stealing the DNN model. These defenses demonstrate 
good protection results despite their simplicity. 

Input Modification Defenses The first type involves input modification, i.e., a 
defender can modify the input provided to the DNN so that only insignificant parts 
of this input are modified. For example, in the case of CNNs and image classification 
tasks, these parts would represent insignificant pixels for the resulting classification. 
If the defender adds random noise to these pixels, it will make it very complicated 
for the attacker to steal the DNN’s parameters [19]. The technique that identifies 
such insignificant pixels in the first place is based on the Gradient-based CAM [54] 
that was initially developed for the visual interpretability of the decisions made by 
CNN in the input feature space. 

Ouput Modification Defenses The second type implies output modification. It 
is based on rounding of the predicted values [57]. This rounding prevents the 
attacker from stealing the model’s parameters due to the impossibility of solving 
the corresponding system of equations. Another alternative is to utilize the so-called 
adaptive misinformation [26]. It is a special technique to return wrong predictions 
for user queries but in an adaptive way. The intuition behind this approach is 
to notice that model attackers quite frequently use queries that lie out of the 
distribution. Based on this observation, it is logical to adapt a model so that it will 
assign wrong predictions to such queries, making it much more complicated for the 
attacker to steal the model. 

Model Modification Defenses In addition to the perturbation of inputs and 
outputs, modifying the model architecture and parameters is possible. A CNN 
feature extractor can be simulated to train a simpler model, namely, a shallow 
and sequential convolutional block, via Knowledge Distillation (KD) [62]. Such an 
approach is akin to the source code obfuscation technique obstructing the attacker 
from stealing the initial proprietary model parameters and architecture. Moreover, it 
is possible to choose an opposite way by adding redundant layers that do not change 
the functionality, which makes theft of the model much more complicated [8]. 

3.2.2 Unique Identifiers and Watermarking 

This section addresses several ownership verification defensive techniques. 

UniqueModel Identifier Unique model identifier (UMI) is a detection method that 
identifies a distinctive model property that transfers to a substitute model during 
theft. By revealing this property, a model owner can prove the model was stolen. 
This technique does not require an active embedding of this unique, distinctive 
property in contrast to watermarking, as it is inherent to the model. One example 
of this technique is a dataset inference (DI) defense. DI detects if a model was
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trained on a specific dataset [40]. This method is based on the idea that training 
samples lie farther from the decision boundary than other samples. A subset of 
the original training data measures the distance of samples from the boundary in 
the substitute model. If they are distant, the substitute model contains the target 
model’s identifier, indicating a potential model theft. However, DI is ineffective 
when the original dataset is public, misclassifying independent models trained on 
it as stolen [32]. Alternatively, conferrable adversarial examples can form unique 
fingerprints for substitute models [37]. These samples represent a unique set of 
adversarial examples that transfer to the substitute models but not to the other 
independently trained models. 

Model Watermarking Another approach is based on the active intervention in the 
model training process so that the owner changes the model behavior on some or 
all inputs so that only the owner can identify these changes. Model watermarking 
(WM) actively embeds concealed data to establish ownership. Unlike UMIs, it 
involves secret backdoors that make models predict predefined values for some 
data containing outliers, revealing watermarks. However, embedded watermarks 
also have to be persistent to model stealing, i.e., they have to be identifiable in the 
model after it has been stolen. This property can be achieved by training a model that 
extracts common features from problem-domain inputs and watermarking samples. 
Such an approach ensures that watermarks would also be extracted during the model 
theft [24]. 

3.2.3 Monitor-Based Defenses 

Monitor-based detection defense involves query analysis to identify malicious users. 
For example, a defender can train a dedicated discriminative DNN to classify 
adversarial versus benign samples, using each hidden layer outputs of a protected 
DNN as features [68]. Alternatively, a DGM such as VAE can also differentiate 
benign from malicious queries [44]. 

4 Conclusion 

In this chapter, we have covered the broad range of attacks on discriminative DNNs. 
We have touched upon all potentially vulnerable spots, including the influence on 
the model’s behavior and the potential confidential data leakage. In addition, we 
detailed the most prominent examples of adversarial and poisonous attacks, includ-
ing the potential adversarial usage of the outliers and various backdoor techniques. 
Furthermore, we delved into two powerful privacy-related attacks: model stealing 
and membership inference. Lastly, we highlighted the most promising and robust 
defense mechanisms that are currently available in the arsenal of the DNN developer 
to either mitigate or detect the undergoing attack.
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Opportunities and Challenges of Using 
Artificial Intelligence in Securing 
Cyber-Physical Systems 

Livinus Obiora Nweke and Sule Yildirim Yayilgan 

1 Introduction 

Recent years have witnessed a proliferation of systems that integrate digital tech-
nologies into physical systems, such as industrial control systems (ICS), medical 
devices, water systems, waste management systems, and transportation systems. 
This integration has led to an emerging field known as cyber-physical systems 
(CPS), which has attracted widespread attention. While these systems build upon 
and extend the capabilities of earlier technologies, they incorporate substantial 
enhancements driven by advancements in computing, communication, and control 
systems. Despite the numerous advantages offered by CPS, they are vulnerable to 
cyberattacks, which can physically endanger individuals and cause environmental 
harm [57, 58, 110, 114]. As a result, securing CPS is of critical importance to the 
government, academia, industry, and the general public. 

As the popularity of CPS increases, so does the frequency of attacks against 
them. For instance, a recent disruptive ransomware attack forced the closure of the 
largest United States (US) fuel pipeline [132], triggering a rise in the average US 
gasoline price [38]. This incident underscores the far-reaching impacts of attacks 
on CPS and the pressing need to employ disruptive technologies such as artificial 
intelligence (AI) to secure these systems. 
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AI is an emergent, disruptive technology that is transforming every aspect of 
our lives, with applications spanning numerous domains. The utilisation of AI in 
securing CPS can enhance the detection of anomalies, mitigate security threats, pre-
dict potential component or subsystem failures, create self-managing and responsive 
computing systems, evaluate system security, and expedite incident responses. For 
example, AI can be employed in CPS environments to detect anomalies in network 
traffic [10, 11, 94, 120] or to monitor sensor data for signs of malicious activities 
[13, 90, 127, 144]. AI can also leverage vast amounts of data from multiple sources 
to analyse and identify potential threats [54, 122, 142]. However, the use of AI in 
securing CPS presents its own set of challenges. Comprehending these challenges 
and the opportunities that AI offers in securing CPS will enhance the security and 
resilience of critical infrastructures and aid in defending against emerging threats. 

This chapter provides an overview of AI and cybersecurity, and it explores the 
opportunities and challenges associated with using AI to secure CPS. We conducted 
a literature review to gather existing knowledge and identify gaps in the field of 
AI applications for securing CPS. We performed keyword searches on multiple 
databases including IEEE Xplore, ACM Digital Library, PubMed, and Google 
Scholar, using search terms like “Artificial Intelligence”, “Cybersecurity”, “Cyber-
Physical Systems”, “AI in CPS”, and others. We also sought out articles citing 
seminal work in this field to ensure a comprehensive exploration. The literature 
was analysed, themes were identified, and the opportunities and challenges of using 
AI for securing CPS were extrapolated. 

To offer a more practical perspective, we have included case studies demonstrat-
ing successful implementations of AI in securing CPS. These case studies were 
selected for their exemplary integration of AI and CPS. We conducted an in-depth 
analysis of these selected cases, focusing on their objectives, the AI strategies used, 
the outcomes, and their impact on the overall security of the CPS. These case studies 
were sourced from publicly available documents, including technical reports and 
primary literature. We synthesised the lessons learnt from these cases and made 
relevant connections with our literature review findings. 

The remainder of this chapter is structured as follows. Section 2 defines AI and 
discusses the broader implications of AI development beyond technical systems 
and challenges. It also outlines what cybersecurity entails and why cybersecurity 
challenges arise, examining some of the most common cybersecurity threats and 
their potential impacts. Section 3 discusses the opportunities that arise when using 
AI to secure CPS. Section 4 addresses the challenges of using AI in securing CPS. 
Section 5 presents case studies demonstrating successful implementation of AI in 
securing CPS. Section 6 summarises the key takeaways from this chapter. 

2 AI and Cybersecurity 

AI is a field within computer science that aims to build systems that mimic the 
intelligence, cognitive functions, and actions of biological beings, with the goal of



Using Artificial Intelligence in Securing Cyber-Physical Systems 133

thinking and acting in a manner like humans [156]. AI is rapidly progressing and is 
aiding in the delivery of superior services, enhanced productivity, and high-quality 
outcomes to both individuals and organisations. Below is a list of sectors where AI 
is making significant contributions [65]: 

• Marketing and advertising 
• Logistics 
• Energy 
• Supply chain 
• Cybersecurity 
• Agriculture 
• Real estate 
• Transportation 
• Education 
• Entertainment 
• Data analytics 
• Construction 
• Healthcare 
• Banking and finance 
• Consulting and outsourcing 

As can be seen from the list above, cybersecurity is one of many areas where AI 
presents enormous potential. However, we are still in the early stages of harnessing 
this potential. The full extent of AI’s capabilities in cybersecurity, and the necessity 
for its use, will become increasingly apparent in the coming years. Consequently, 
this section not only discusses the broader implications of AI development beyond 
technical challenges but also delineates the concept of cybersecurity, and the reasons 
behind the emergence of its challenges. This provides the necessary background 
for our exploration of the opportunities and challenges associated with using AI to 
secure CPS. 

2.1 AI: Beyond Technical Systems and Challenges 

AI has emerged as a transformative force with the potential to span various sectors 
and industries. While AI’s ability to solve complex technical problems is undeniably 
impressive, addressing the broader implications of AI development beyond just 
technical systems and challenges is of crucial importance. This subsection will 
discuss four critical aspects of these broader implications: ethical implications, 
socioeconomic impact, legal and regulatory frameworks, and education and public 
engagement.
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2.1.1 Ethical Implications 

The design and development of AI systems must consider several ethical consider-
ations to ensure alignment with human values and the upholding of fundamental 
rights [51]. These considerations arise due to the increasing integration of AI 
systems into our lives and their potential to significantly influence every aspect of 
our existence in ways we may not yet fully comprehend [105]. Thus, a compre-
hensive understanding of the ethical implications of designing and developing AI 
systems is essential to ensure that AI remains human-centric. These critical ethical 
considerations include fairness, transparency, privacy, and accountability. 

Fairness, as an ethical consideration in designing and developing AI systems, 
refers to ensuring that algorithms and machine learning models do not exhibit 
any form of bias or discrimination against individuals or groups based on race, 
gender, age, or ethnicity [91]. This consideration is essential because AI systems can 
inadvertently perpetuate and exacerbate existing biases due to biased training data, 
flawed algorithms, or unjust decision-making processes [123]. To ensure fairness 
in AI systems, we need to implement measures that can detect and mitigate bias 
in training data [101]. Such measures may include regular audits and evaluations, 
ensuring that training data is representative of a diverse population, and developing 
AI algorithms that explicitly account for fairness. Including diverse stakeholders in 
AI development is also crucial. 

Transparency in AI refers to the ability to understand and interpret the processes, 
decisions, and outcomes of AI models [46]. It involves making the inner workings 
of AI models more transparent and accessible, which will facilitate the evaluation 
of the reliability and accuracy of the results. Transparency is essential for building 
trust and ensuring that AI systems are understandable and explainable [137]. To 
achieve transparency in the design and development of AI systems, we need to 
provide comprehensive documentation of AI systems and insights into the AI 
decision-making process [39]. Encouraging openness in AI development, such as 
sharing code, data, and research, and supporting clear communication of AI system 
capabilities, limitations, and potential risks are also beneficial. 

Another ethical consideration in designing and developing AI systems is the 
potential impact on individual privacy [161]. AI systems typically rely on a 
large amount of data, which raises concerns about individual privacy and data 
protection [67]. To address privacy implications in the design and development 
of AI systems, techniques that use the minimum amount of data necessary for 
AI tasks can be employed to help mitigate privacy risks [49]. Also, ensuring 
that data is securely stored and transmitted with appropriate access controls and 
encryption, employing data anonymisation techniques, and incorporating privacy 
considerations throughout the AI development process can help to address privacy 
concerns adequately. 

Accountability in AI pertains to ensuring that designers and developers of 
AI systems comply with relevant standards and regulations [19]. As AI systems 
increasingly perform tasks autonomously, considering accountability mechanisms 
for AI systems’ actions and decisions is crucial to ensure responsibility and
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provide remedies in cases of misuse [70]. The critical aspects of AI accountability 
include developing legal frameworks that clearly define the responsibilities of AI 
developers, operators, and users; implementing robust monitoring and reporting 
mechanisms; and conducting algorithmic impact assessments. 

2.1.2 Socioeconomic Impact 

The socioeconomic impact of AI refers to the effect that AI has on society and the 
economy [103]. As a rapidly evolving technology, AI is already changing how we 
live and work, and its impact on society and the economy is expected to be profound. 
AI can transform the socioeconomic landscape, with potential consequences on the 
labour market, the digital divide, and opportunities for social good [75]. Therefore, 
as AI systems become more pervasive, understanding these impacts is essential to 
navigate potential challenges and harness AI’s potential for positive outcomes. 

One aspect of AI’s socioeconomic impact is its potential effect on the labour 
market. AI systems can automate tasks, potentially leading to job displacement, 
unemployment in certain industries, and widening income inequality [69]. However, 
AI may also lead to new job roles and the augmentation of existing ones [50]. 
Assessing the types and levels of jobs at risk of automation is vital to identifying 
vulnerable sectors and workforce segments, which will enable targeted interventions 
and policies [145]. Further, developing strategies for workforce adaptation, such as 
retraining, upskilling, and reskilling, can help individuals transition to new job roles 
in an AI-driven labour market. 

Another socioeconomic impact of AI is the digital divide, which is the growing 
gap between individuals and communities with access to AI technologies and 
those without [28]. This unequal access can exacerbate existing socioeconomic 
inequalities [89]. To address the digital divide and ensure equitable AI access, 
efforts to provide all populations with access to adequate digital infrastructure and 
promote digital literacy through education and training programs are needed [75]. 
Moreover, developing AI systems that cater to diverse populations, languages, and 
cultures and encouraging collaboration between governments, businesses, and non-
governmental organisations can help make AI technologies more accessible and 
inclusive, ensuring the effective mobilisation of resources and expertise to address 
the digital divide. 

AI for social good refers to using AI technologies to address global chal-
lenges and promote social well-being [48]. These efforts include initiatives to 
improve healthcare, address climate change, reduce poverty, improve educational 
outcomes, promote sustainability, and more. AI for social good programs often 
involves partnerships between academics, non-profits, governments, and private 
sector organisations to jointly address these challenges using advanced technologies 
[150]. Discussing methods to promote the development of AI applications for social 
good can help guide AI’s potential towards positive outcomes.
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2.1.3 Legal and Regulatory Frameworks 

The design and development of AI systems must also consider legal and regulatory 
implications to ensure they operate responsibly and safely while promoting inno-
vation and growth [118]. The need for appropriate legal and regulatory frameworks 
becomes more pressing as AI systems become increasingly integrated into various 
aspects of society. These frameworks would help establish rules that govern the 
development, deployment, and use of AI technologies to ensure that AI systems are 
safe and ethical, and do not infringe on individual rights. The critical aspects of legal 
and regulatory frameworks for AI are as follows: compliance with existing laws, AI-
specific regulations, international cooperation, and industry self-regulation. 

AI systems are expected to operate within the boundaries of existing legal 
frameworks [9]. For example, ensuring that AI systems comply with the General 
Data Protection Regulation (GDPR) in the European Union is essential to safeguard 
personal data and privacy [15]. AI-generated content and inventions also raise 
complex intellectual property questions, necessitating clarification of the application 
of existing intellectual property laws to AI systems to protect innovation and 
investment [25]. Additionally, AI systems must adhere to consumer protection 
regulations to ensure they are safe, reliable, and transparent [81]. Regulatory bodies 
should, therefore, be able to monitor AI systems’ compliance with consumer 
protection laws and address potential harms. 

New legal and regulatory frameworks tailored specifically to AI systems are 
also needed to address their unique challenges [53]. For instance, establishing 
guidelines and certification processes for AI systems can help build trust and 
promote responsible development [20]. Developing legal frameworks that assign 
accountability for AI systems’ actions and decisions is also essential to ensure 
responsibility and remedy in cases of misuse [102]. Furthermore, regulations that 
require AI systems to provide explanations of their decision-making processes are 
necessary to ensure AI outputs are understandable and trustworthy [60]. Legal 
frameworks addressing potential biases and discrimination in AI systems are also 
needed to promote fairness and equitable treatment for all individuals [154]. 

Given that the design and development of AI systems transcend national borders, 
it is vital to consider international cooperation and harmonisation of AI regulations 
[6]. As AI systems rely on vast datasets, which may involve cross-border data 
flows, developing agreements and frameworks to facilitate cross-border data flows 
is crucial [30]. Encouraging the alignment of AI regulations across countries will 
help create a more predictable and consistent legal environment, fostering global 
collaboration and reducing barriers to designing and developing AI systems [24]. 
Engaging in international dialogue and collaboration on AI policy will support the 
sharing of best practices [115], addressing common challenges and developing joint 
strategies to harness AI’s potential for the public good. 

Industry self-regulation is another crucial aspect of legal and regulatory frame-
works for AI and can play a complementary role in promoting responsible design 
and development of AI systems [32]. For example, developing and adopting 
voluntary industry guidelines can help set best practices and drive responsible AI
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development [77]. Professional organisations and industry associations can also 
develop codes of conduct for AI developers and practitioners to promote ethical 
behaviour and responsible AI development. Employing industry-led certification 
can demonstrate compliance with ethical AI standards, fostering trust and trans-
parency in AI systems’ design and development [98]. Encouraging collaboration 
between stakeholders, including governments, industry, academia, and civil society, 
will help create more inclusive AI systems. 

2.1.4 Education and Public Engagement 

A crucial broader implication of AI development beyond technical systems and 
challenges pertains to education and public engagement in AI. This concept refers 
to efforts to increase public understanding and awareness of AI technologies, their 
applications, and their potential societal impact [159]. This engagement comprises 
AI literacy, interdisciplinary collaboration, public awareness, and stakeholder par-
ticipation. The overarching goal is to ensure inclusive AI development and adoption 
that aligns with societal needs. 

AI literacy refers to the fundamental competencies or knowledge about AI that 
the general population should possess [80]. It is vital as it enables individuals to 
make informed decisions regarding AI technologies and to engage in meaningful 
discussions about AI’s societal impact [86]. To foster AI literacy, we should consider 
integrating AI literacy and related subjects into primary, secondary, and tertiary 
education curricula [106]. This integration will help build foundational knowledge 
and skills from an early age. Likewise, encouraging lifelong learning opportunities 
will help individuals continuously adapt to the evolving AI landscape [7]. AI literacy 
can also be bolstered by equipping educators with the knowledge and resources 
needed to teach AI-related subjects [106] and by fostering the development of both 
technical and non-technical skills, such as critical thinking, creativity, and problem-
solving, to help individuals navigate the changes brought by AI in the workforce 
and society. 

Interdisciplinary collaboration is another pivotal aspect of education and public 
engagement in AI. This collaboration involves experts and stakeholders from diverse 
disciplines, such as computer science, ethics, and social sciences, to develop AI 
systems that are aligned with human values and needs [92]. Interdisciplinary 
collaboration brings together a range of perspectives, skills, and expertise, all of 
which are essential for identifying and addressing the social, ethical, and policy 
challenges associated with AI [37]. Cultivating such collaboration will facilitate 
synergies between AI and other fields, leading to more robust and ethically grounded 
AI systems. Moreover, promoting diversity in AI research and development teams, 
encompassing gender, cultural, and disciplinary diversity, will help create AI 
systems that better cater to diverse populations and needs. 

Public awareness is fundamental to education and public engagement in AI as 
it enhances people’s knowledge and understanding of AI technologies [159]. It can 
help to build trust, improve understanding, and enable informed decision-making
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regarding AI policy and regulation [20]. An effective approach to fostering public 
awareness includes collaborating with media outlets to disseminate accurate and 
accessible information about AI technologies, educating the public, and countering 
misinformation [151]. Similarly, organising public forums, conferences, and events 
to discuss AI developments and applications will foster dialogue and enhance 
public understanding of AI technologies. Moreover, creating accessible educational 
resources, such as articles, videos, and interactive tools, will enable the general 
public to learn about AI technologies and their potential societal impact. 

Finally, the involvement of a wide range of stakeholders in AI development and 
policymaking is critical to ensure that AI systems are trustworthy, aligned with 
social values, and serve the public interest [159]. Stakeholders’ participation can 
take several forms, including public consultations, workshops, conferences, online 
forums, and surveys. For instance, engaging the public in AI policymaking will 
ensure that AI policies reflect societal needs and values [95]. Similarly, encouraging 
collaboration between governments, industry, academia, and civil societies in AI 
development and policymaking will create more inclusive and effective AI strategies 
[152]. Furthermore, ensuring that underrepresented communities have a voice in AI 
development and policymaking will help address potential biases and promote the 
equitable growth of AI technologies [64]. 

2.2 What Is Cybersecurity and Why Do Cybersecurity 
Challenges Arise? 

Cybersecurity involves safeguarding computers, servers, mobile devices, electronic 
systems, networks, and data from malicious attacks, theft, damage, and unauthorised 
access. As a subfield of information security, it employs an array of technologies, 
processes, and practices aimed at ensuring the confidentiality, integrity, and avail-
ability of data in cyberspace [108]. The increasing reliance on technology and the 
Internet has concurrently elevated the significance of cybersecurity. This subsection 
explores the underlying factors contributing to the escalation of cybersecurity 
challenges. 

The escalation in cybersecurity challenges in recent years can be attributed to 
various factors. One of these factors is increased connectivity, defined by the esca-
lating interconnectedness of devices, systems, and networks that enables seamless 
communication and data sharing [73]. The drive for this development has been 
technological advancements and the burgeoning global Internet adoption. However, 
this expanded connectivity exposes vulnerabilities and offers more opportunities for 
cybercriminals to penetrate networks and compromise data. 

Another contributing factor to the surge in cybersecurity challenges is the 
growing number of Internet users [162]. As the Internet continues to expand its 
reach, more individuals worldwide are accessing the web. This increased usage has 
led to a commensurate rise in sensitive online information, ripe for exploitation
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by cybercriminals for financial gain, identity theft, or other malevolent activities 
[8]. Moreover, many new Internet users may lack the technical knowledge to 
adequately protect themselves from online threats, thereby becoming easy targets 
for cyberattacks. 

Additionally, cyberattacks have grown more sophisticated in recent years. Cyber-
criminals continuously refine their tactics and devise new methods to evade security 
controls. The deployment of advanced techniques such as AI has led to the inclusion 
of a new type of threat (AI abuse) in the European Union Agency for Cybersecurity’s 
emerging cybersecurity threats and challenges for 2030 report [44]. This further 
complicates the task for cybersecurity professionals in detecting and responding to 
cyber threats. Social engineering tactics, now commonplace [104], are leveraged to 
exploit human vulnerabilities and gain unauthorised access to sensitive information. 

Furthermore, the rise in cybersecurity challenges can be attributed to our 
increasing dependence on mobile networks and devices [17]. The widespread use 
of smartphones and tablets has led to storing personal and professional information 
on these devices [62], making them attractive targets for cybercriminals. Public 
Wi-Fi networks, application-based vulnerabilities, and mobile malware have all 
contributed to an increased risk of cyberattacks on mobile devices. 

In summary, cybersecurity is a critical facet of our modern life, tasked with 
protecting computing devices, networks, and most importantly, data and information 
from cyber threats. The challenges associated with cybersecurity arise from a 
combination of factors, including increased connectivity, a growing number of 
Internet users, more sophisticated attacks, and a greater reliance on mobile networks 
and devices. Addressing these challenges requires a comprehensive approach, 
incorporating appropriate technologies, processes, and practices and fostering a 
culture of security education and awareness. 

2.3 Cybersecurity Threats and Impact of Threats 

Cybersecurity threats are events or activities that jeopardise the confidentiality, 
integrity, or availability of information systems. These threats can result in unau-
thorised disclosure, misuse, alteration, or destruction of information or information 
systems [111]. Attackers continuously innovate, developing new techniques to 
exploit information systems and process vulnerabilities. This subsection explores 
common cybersecurity threats and their potential impacts. 

• Malware is software designed to infiltrate, damage, or disrupt a computer system 
or network. Common types include viruses, Trojans, worms, spyware, and 
ransomware. Attackers often use social engineering techniques, such as phishing 
emails, to coax users into downloading malware. 

• Phishing is a social engineering attack using fraudulent emails, text messages, 
or websites to trick users into revealing sensitive information or downloading
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malware. These communications often impersonate legitimate entities, making 
their malicious intent difficult to discern. 

• Denial of service (DoS) and distributed DoS (DDoS) attacks overwhelm a 
network or website with traffic, rendering it inaccessible. Such attacks can cause 
significant disruptions, resulting in lost revenue and reputational damage. 

• Advanced persistent threats (APTs) are targeted attacks that utilise advanced 
techniques to breach specific organisation defences and stay undetected for an 
extended period. 

• Insider threats originate from individuals with legitimate access to an organisa-
tion’s systems, including employees, contractors, or partners. These threats can 
be either intentional or unintentional. 

• SQL injection attacks exploit vulnerabilities in web applications to access or 
modify sensitive information. Such attacks often result from a lack of proper 
input validation. 

• Man-in-the-middle (MitM) attacks intercept communications between two par-
ties to eavesdrop or alter the content, leading to theft of sensitive information. 

• Zero-day attacks exploit vulnerabilities unknown to the affected software’s 
vendor or developer. The absence of available patches or fixes during the attack 
leaves systems vulnerable. 

• Cryptojacking involves unauthorised use of a victim’s device for cryptocurrency 
mining, leading to financial losses due to increased energy consumption and 
device wear and tear. 

• Botnets are networks of compromised computers controlled by an attacker, often 
used for DDoS attacks or other malicious activities. 

The impact of cybersecurity threats is broad and severe, affecting individuals, 
organisations, governments, and society at large. Individuals may experience finan-
cial loss, identity theft, loss of privacy, and emotional distress [3]. Organisations 
face threats such as financial loss, operational disruption, intellectual property theft, 
regulatory non-compliance (potentially resulting in fines, sanctions, and increased 
regulatory scrutiny), and reputational damage [34]. 

Furthermore, cybersecurity threats can have national security implications [121], 
especially when nation-state actors are involved. High-profile breaches can under-
mine trust in government institutions, eroding public confidence in the government’s 
ability to protect sensitive information and maintain national security. Broader 
societal consequences can also arise from attacks on critical infrastructure, including 
power grids, hospitals, water systems, waste management systems, and transporta-
tion systems [113]. These attacks can cause widespread disruption and even loss of 
life. 

In conclusion, the impact of cybersecurity threats extends beyond the immediate 
financial implications of a breach. The ripple effects include reputational damage, 
operational disruption, legal and regulatory consequences, and national security 
concerns. Hence, harnessing the advantages of AI in combating cyber threats and 
mitigating their impacts, especially in securing CPS, becomes essential.
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3 Opportunities of Using AI in Securing CPS 

This section explores the opportunities arising from the use of AI in securing 
CPS. We will delve into various areas such as anomaly detection, predictive 
maintenance, intrusion detection and prevention, autonomic and adaptive systems, 
security assessment and penetration testing, and incident response and recovery, all 
of which demonstrate how AI can enhance the security, resilience, and performance 
of CPS. By leveraging these opportunities, AI can significantly contribute to CPS’s 
security and robustness, helping to protect critical infrastructure and reduce the risk 
of catastrophic failures. However, we must also acknowledge that the incorporation 
of AI introduces new challenges, which we will analyse in the subsequent section. 

3.1 Anomaly Detection 

AI holds considerable potential to enhance anomaly detection and mitigate security 
threats within CPS. Specifically, the use of AI for anomaly detection is becoming an 
increasingly crucial tool for ensuring the security and reliability of CPS [129]. This 
trend is driven by the increasing complexity and unique attributes of CPS, which 
often render traditional security methods insufficient for detecting anomalies and 
mitigating security threats [109]. Therefore, employing AI for anomaly detection 
offers an attractive alternative capable of identifying unusual patterns, behaviours, 
or events, ensuring the ongoing performance and resilience of CPS. 

Several recent methods use AI for anomaly detection in CPS. For instance, the 
authors in [76] describe an anomaly-based approach for detecting and classifying 
attacks in CPS, which uses anomaly detection to define a model for normal system 
behaviour and a supervised attack model to classify anomalies. The findings from 
this study show that the Naïve Bayes classifier used to train the attack model 
could detect and classify attacks with satisfactory accuracy. A comparison of 
the performance of several machine learning models, such as logistic regression, 
support vector machine, decision tree, random forest, and artificial neural network, 
used to predict attacks and anomalies in CPS is provided in [63]. The authors suggest 
that while most of these approaches have similar accuracy, other metrics indicate 
that the random forest model performs comparatively better. 

The authors in [88] review deep learning-based anomaly detection methods in 
CPS, discussing their limitations and deficiencies to improve their design and eval-
uation. They identify several opportunities for using deep learning-based anomaly 
detection methods in CPS, including handling CPS’s increasing complexity, learn-
ing from large volumes of data without requiring domain-specific knowledge, 
adapting to the changing CPS environment to detect new attacks, providing high 
detection accuracy and low false positive rates, and potentially integrating with other 
security mechanisms in the CPS environment to provide comprehensive protection.
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Recent studies have also highlighted the promising potential of using AI for 
anomaly detection in CPS. For example, the study in [71] presents an intelligent 
anomaly detection in CPS, which uses data-driven AI tools employing multi-class 
support vector machines. This work considers the effects of cyber anomalies, 
such as false data injection, DoS attacks, and physical anomalies due to power 
system faults. The authors in [61] propose a solution for real-time ICS network 
traffic anomaly detection. Their proposed hybrid statistical-machine learning model 
integrates a seasonal autoregressive integration moving average (SARIMA)-based 
dynamic threshold model and a long short-term memory (LSTM) model to jointly 
identify abnormal traffic patterns with low false omission rates. The study in [116] 
proposes a novel detection framework for CPS based on error space reconstruction, 
using genetic algorithms to perform hyper-parameter optimisation of machine 
learning methods. The results from this work show that the proposed framework 
can effectively detect anomalies in CPS, providing a more secure infrastructure. 

The opportunities provided by using AI for anomaly detection in CPS could 
significantly enhance the security, reliability, and efficiency of these systems. 
Much research is ongoing to develop and refine the existing methods for practical 
applications. Thus, leveraging AI to detect unusual patterns, behaviours, or events 
in the CPS environment can proactively address potential security threats and 
operational issues, ensuring the security and stability of CPS. 

3.2 Predictive Maintenance 

AI holds significant potential for predictive maintenance in CPS. Predictive mainte-
nance is a proactive maintenance approach designed to predict when components or 
subsystems might fail, thereby allowing timely maintenance to minimise downtime, 
enhance efficiency, and reduce maintenance costs [1]. This approach leverages data 
from sensors, historical records, and other sources to identify trends, patterns, and 
correlations that may signify potential failure. Given the severe consequences of 
component or subsystem failure in CPS, AI methods can be instrumental in building 
models that identify potential problems before they occur. 

Machine learning techniques have been utilised for predictive maintenance in 
CPS. For instance, the authors in [31] propose a hybrid machine learning approach, 
merging supervised and semi-supervised learning for predictive maintenance. This 
approach can integrate heterogeneous machine data to offer insights for the effective 
management of CPS. The authors in [119] describe a machine learning architecture 
for predictive maintenance based on the random forest approach. They tested the 
proposed architecture on a real industry example, and preliminary results suggest 
that the approach effectively predicts different machine states with high accuracy. 

In recent years, a variety of AI approaches have been employed for predictive 
maintenance in CPS. For example, the authors in [27] introduce a data-driven 
approach to predictive maintenance, where they calculate predicted failure proba-
bilities using tree-based classification models and the temporal evolution of event
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data. This approach provides insightful information for maintenance management 
practices. A convolutional neural network (CNN) algorithm has been used for 
predictive maintenance, with its performance evaluated in fault analysis of a 
predictive maintenance system [100]. The results suggest that it could be a powerful 
tool for multi-class fault detection. 

Furthermore, the authors in [18] propose a deep learning model for predictive 
maintenance in CPS using long short-term memory (LSTM) autoencoders. They 
use this AI approach to classify real-world machine and sensor data to estimate the 
remaining useful life of monitored systems. Their work suggests that redundant and 
preventive stoppage in the production line can be minimised, concurrently reducing 
maintenance operation costs. Similarly, the study in [141] proposes a five-layer CPS 
framework for smart production lines, integrating physics and data-driven methods. 
The authors believe this framework can create a closed-loop workflow, reducing 
potential failures that could impact smart production line operations. It can also be 
generalised to predict remaining useful life and product quality. 

The use of AI for predictive maintenance has the potential to substantially 
enhance the efficiency, reliability, and performance of CPS. Its role is not confined 
to preserving the physical integrity of the system; it also significantly contributes to 
cybersecurity. This is because unplanned system downtime can create windows of 
opportunity for cyberattacks. Therefore, by leveraging data from sensors, historical 
records, and other sources, it is anticipated that AI will become increasingly 
prevalent in CPS for anticipating and addressing potential issues before they 
escalate. 

3.3 Intrusion Detection and Prevention 

The application of AI in intrusion detection and prevention within CPS has proven 
to be promising. AI-driven intrusion detection and prevention systems, designed to 
identify and respond to suspicious behaviour or attacks in real time, can reduce the 
potential impact of cyberattacks on systems [94]. These systems typically utilise 
machine learning algorithms to recognise and categorise patterns indicative of 
attacks. Deep learning and neural network techniques can be employed to further 
enhance the accuracy and efficiency of intrusion detection and prevention systems 
in CPS. 

AI-driven intrusion and prevention systems provide a promising avenue to bolster 
CPS security, reducing the risk of costly attacks. For instance, an AI-based network 
intrusion detection system with hyper-parameter tuning has been proposed, with 
an impressive performance accuracy score of 99.97% and an average area under 
the ROC curve of 0.999 [68]. Similarly, the study in [93] describes the successful 
application of machine learning models to detect attacks in CPS with high accuracy, 
efficiency, and detection rates. The author argues that these models outperform 
traditional methods, achieving an accuracy of over 90%.
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The authors in [120] propose a neural network-based architecture capable of 
detecting and isolating integrity cyberattacks in CPS. Their simulation results 
show high effectiveness in identifying and locating denial of service (DoS) and 
integrity attacks. The study in [11] presents an intelligent cognitive computing-
based intrusion detection system for CPS, featuring a novel binary bacterial foraging 
optimisation (BBFO)-based feature selection technique and a gated recurrent unit 
(GRU) model classifier for intrusion detection. The results demonstrate promising 
performance, with an accuracy of 98.45%. 

Moreover, the authors in [10] introduce a novel AI-enabled fusion-based intru-
sion detection system for CPS. Their system employs data pre-processing tech-
niques including data conversion and normalisation, enhanced with a fish swarm 
optimisation-based feature selection technique, and a multi-model fusion of three 
models using a weighted voting-based ensemble technique. Simulation analysis 
shows an improvement over existing method. The study in [94] presents an AI-based 
optimisation with a deep learning model for blockchain-enabled intrusion detection 
in a CPS environment. The author contends that this AI-based intrusion detection 
approach holds great promise in improving security in CPS environments. 

The application of AI for intrusion detection and prevention holds significant 
potential to enhance CPS security. It can identify and respond to potential threats 
more accurately, adaptably, and efficiently. Further research and development in 
this field are necessary to fully exploit the opportunities presented by AI-enabled 
intrusion detection and prevention in CPS, thereby ensuring the resilience of CPS 
against evolving threats. 

3.4 Autonomous and Adaptive Systems 

AI holds immense potential in transforming autonomous and adaptive systems in 
CPS. Such systems are characterised by their ability to self-manage and dynamically 
adjust to changes in their environment or requirements without requiring human 
intervention [35]. Given the increasing complexity and scale of modern CPS, 
designing these systems to be resilient, efficient, and responsive is crucial. The use 
of AI in autonomous and adaptive systems can enable CPS to manage themselves 
and adapt to new threats or environmental changes autonomously. 

Various ongoing research initiatives aim to explore the potential of AI-enabled 
autonomous and adaptive systems in CPS. For instance, the study in [66] proposes 
a self-adaptation approach for autonomous CPS, employing machine learning to 
identify Pareto-optimal configurations. The authors argue that this approach facili-
tates automated runtime decision-making for self-adaptation of highly configurable 
systems, allowing a deeper exploration of solution spaces that would otherwise be 
intractable. Independent evaluations show that this approach results in high-quality 
adaptation plans in uncertain and adversarial environments. 

The authors in [40] present a learned Monitor, Analyse, Plan, Execute, and 
Knowledge (MAPE-K)-based model to support self-adaptation in CPS. They
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employ fully supervised machine learning to train the traditional MAPE-K model 
to recognise normal system behaviour, generating alerts to ensure CPS’s reliability, 
flexibility, and protection against cyber threats. Similarly, the study in [4] proposes 
a real-time adaptive sensor attack detection framework comprising three compo-
nents: an attack detector, a behaviour predictor, and a drift adaptor. The authors 
demonstrate the framework’s efficiency and efficacy using realistic sensor data 
from autonomous CPS, showing its ability to adjust its behaviour to meet attack 
deadlines. 

As observed, the use of AI for autonomous and adaptive systems in CPS 
presents numerous opportunities. It can facilitate the creation of self-managing and 
responsive computing systems within CPS environments, thereby improving the 
performance, resilience, and efficiency of CPS. These capabilities are particularly 
valuable given the rapid evolution of technologies, escalating system complexity, 
and the rising significance of cybersecurity. 

3.5 Security Assessment and Penetration Testing 

Security assessment and penetration testing, leveraging AI, are burgeoning fields 
with a multitude of potential applications, including in CPS [99]. These proactive 
strategies for system security evaluation help to unearth vulnerabilities and potential 
attack vectors. In the context of CPS, AI significantly enhances the effectiveness 
of security assessment and penetration testing by automating the process, which 
subsequently reduces the cost and time associated with identifying and rectifying 
vulnerabilities. For instance, the authors in [97] utilise AI for cybersecurity risk 
assessment in CPS, clarifying cyber risks and impacts in real-world scenarios while 
suggesting corresponding countermeasures. 

The power sector, a key application area within CPS, can benefit immensely 
from AI for security assessment and penetration testing. For instance, the authors 
in [84] propose a deep reinforcement learning-based penetration testing framework, 
designed to efficiently pinpoint critical vulnerabilities in smart grids. Simulation 
results demonstrate that this approach effectively identifies the optimal attack 
path against system stability under conditions of high load demand, solar power 
generation, and weather variations. This represents an encouraging progression 
towards a highly customisable framework for complex CPS penetration testing, 
involving automatic deep reinforcement learning agents and diverse attack schemes. 
Similarly, the authors in [135] employ deep learning models for security assessment 
in smart grids, showing efficacy in detecting false data cyberattacks. 

The study in [21] introduces a new domain-aware reinforcement learning 
approach for automated adversary emulation within CPS. The authors’ performance 
demonstrations highlight the solution quality of proposed algorithms on a use 
case involving sensor deception attacks on buildings, indicating that automated 
adversary emulation provides a comprehensive assessment of CPS resilience against 
cyberattacks. Furthermore, the authors in [130] propose a security assessment
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and penetration testing framework that utilises machine learning techniques on 
an ensemble of regular expressions to generate new attack vectors and security 
vulnerabilities. The framework also incorporates a defence-in-depth mechanism for 
detecting known attacks and possible novel exploits, optimising the cost of security 
measures based on the sensitivity of protected resources. 

As crucial components of a comprehensive cybersecurity strategy, both security 
assessment and penetration testing can benefit immensely from AI enablement. By 
automating vulnerability scanning, enhancing threat intelligence, and improving 
the accuracy and efficiency of various testing methodologies, AI-enabled security 
assessment and penetration testing can significantly reduce the likelihood of 
successful cyberattacks and minimise the potential impact of security incidents. 

3.6 Incident Response and Recovery 

AI has profound potential in enhancing incident response and recovery strategies 
in CPS, which are crucial components of a comprehensive cybersecurity strategy, 
primarily focusing on managing and mitigating the effects of security incidents 
[143]. AI methods can be employed to devise effective incident response and 
recovery plans in CPS, aiming to minimise damage, shorten recovery time, and 
reduce associated costs. A notable example is the work in [41], which employed a 
Bayesian inverse reinforcement learning technique to predict sensor spoofing attack 
goals, identify compromised sensors, and restore the system. 

AI also plays a pivotal role in autonomously mitigating cybersecurity risks 
within the CPS environment. For instance, the authors in [72] utilise a hierarchical 
risk correlation tree to model an attacker’s pathways towards specific goals and 
employed a competitive Markov decision process to model the reciprocal security 
interaction between the protection system and the attacker. The experimental results 
demonstrated that the autonomous response controller could effectively respond to 
single line to ground attacks, thereby recovering the CPS. Similarly, the authors 
in [5] propose a data-driven attack recovery framework that restores CPS from 
sensor attacks, leveraging natural redundancy among heterogeneous sensors and 
historical data for attack recovery. The results showed the framework’s effectiveness 
in maintaining system functionality in the face of sensor attacks. 

Moreover, AI can significantly support decision-making and enhance threat 
intelligence during incident response and recovery in CPS. An illustration of this 
is provided in [82], which outlined the use of AI for incident response in CPS, 
using an architecture of intelligent IoT to coordinate with ground, surface, aerial, 
and underwater robots for large-scale environmental data collection and decision-
making for response. Similarly, the study in [155] proposed an AI-enabled CPS 
model to identify potential threats and enhance incident response and recovery. 
The authors reported that their proposed model could improve accuracy, prediction, 
packet loss, and latency, providing cybersecurity authorities with a potent tool to 
combat the continuously evolving attacks posed by adversaries.
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In conclusion, AI’s application in incident response and recovery can sig-
nificantly enhance the detection, analysis, response, and recovery from security 
incidents. Given the increasing importance of robustness and security of CPS in 
critical infrastructures, such enhancements are vital. 

4 Challenges of Using AI in Securing CPS 

This section presents an analysis of five critical challenges related to the use of AI 
in securing CPS: data quality and availability, vulnerability to adversarial attacks, 
lack of transparency and interpretability in AI models, limited understanding of AI 
by security practitioners, and ethical and legal considerations. We will highlight 
various contributions aimed at addressing these challenges and provide a critical 
review of open issues that warrant further investigation. 

4.1 Data Quality and Availability Issues 

Data quality and availability pose significant challenges to the effective use of AI in 
securing CPS [12, 122]. “Data quality” refers to the accuracy, completeness, relia-
bility, and relevancy of the data used to train AI systems. Factors such as incomplete, 
inaccurate, or biased data can adversely impact it [131, 157]. Incomplete data may 
lead to gaps in analysis and decision-making, inaccurate data can result in incorrect 
conclusions, and biased data may perpetuate existing biases. 

“Data availability” concerns the presence of sufficient and relevant data for 
training AI systems. It is crucial for developing precise and efficient AI models 
suitable for CPS [146]. However, data availability can be a challenge for CPS as 
certain systems may not produce enough data or may not generate data in a format 
suitable for analysis [12]. Additionally, privacy and data protection requirements 
may restrict the availability of data needed to secure CPS [125]. 

To address these concerns, strategies such as data cleaning and normalisation 
techniques can be implemented to improve data quality. Concurrently, data gov-
ernance policies and procedures can be put into place to ensure data accuracy, 
completeness, and unbiasedness. Data availability issues can be mitigated by 
strategies such as data-sharing agreements and investing in technologies like sensors 
and Internet of things (IoT) devices to increase the volume of data available 
for analysis. Notably, significant efforts have been made to address these issues 
[59, 79, 136], but several questions remain: 

• How can we ensure the accuracy and representativeness of data used to train AI 
models for securing CPS? 

• How do we address data sharing and dissemination concerns in the context of 
AI-based CPS security?
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• How can the privacy and security of collected data be guaranteed in the context 
of using AI in securing CPS? 

• What legal and regulatory frameworks need to be established to facilitate data 
sharing and dissemination in this context? 

Recent work has begun to answer these questions. For instance, a dSPACE 
hardware-in-the-loop (HIL) simulator was used to collect the HIL-based augmented 
ICS security (HAL) dataset 1.0, the first CPS dataset collected using the HAL 
testbed [139]. Similarly, the authors in [55] propose a methodology to generate 
reliable anomaly detection datasets in CPS. In [138], the implementation of a 
programmable CPS testbed for anomaly detection is discussed, with plans to 
develop and release CPS datasets using the testbed in the future. 

The legal analysis in [112] reviews how laws and regulations support or refute 
cyber threat intelligence sharing, providing guidance for entities participating in 
information sharing for critical infrastructure protection. Additionally, the study in 
[14] discusses the legal protection of AI data and algorithms from the perspective 
of IoT resource sharing, noting a lack of privacy protection laws in the current AI 
data-sharing environment. 

While these initial answers partially address the aforementioned questions, 
further efforts are required. Given that the performance of AI systems heavily 
depends on the data they are trained on, it is essential to address data quality and 
availability issues to effectively use AI in securing CPS. 

4.2 Vulnerability of AI Models to Adversarial Attacks 

The susceptibility of AI models to adversarial attacks is a notable challenge in the 
application of AI for securing CPS. An adversarial attack is a calculated attempt to 
manipulate or deceive an AI model by introducing maliciously designed data during 
its training or testing phase. The objective is to make the AI system yield incorrect 
predictions or decisions, which could potentially lead to severe consequences. 

Various forms of adversarial attacks can target AI models. For instance, in a 
poisoning attack, an attacker intentionally modifies or inserts training data to induce 
errors or biases into the model [149]. In an evasion attack, the attacker alters the 
input data being processed by the AI system, making it challenging for the system 
to correctly classify or identify threats [133]. Lastly, during an inference attack, 
the attacker aims to deduce sensitive information from the AI model, potentially 
resulting in privacy violations [87]. 

The use of AI in securing CPS can be significantly affected by the vulnerability of 
AI models to these adversarial attacks. In the context of CPS, even minor prediction 
or decision errors can lead to serious implications. For example, an attacker might 
utilise an evasion attack to mislead a security system in a CPS environment into 
overlooking an intrusion [133], or employ a poisoning attack to trick the system 
into accepting a false positive as a legitimate threat [148]. In [16], the authors
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demonstrate an adversarial attack on an ICS, illustrating that an adversarial attack 
can undermine supervised models by generating adversarial samples, thus reducing 
classification performance. 

Numerous efforts have been directed towards addressing the vulnerability of AI 
models to adversarial attacks. A comprehensive review of various techniques for 
mitigating adversarial attacks on AI systems is presented in [117, 124]. Nonetheless, 
several critical questions concerning the CPS environment remain: 

• What specific vulnerabilities in AI models make them prone to adversarial 
attacks within CPS? 

• How can we enhance the security and reliability of AI models used in CPS to 
mitigate adversarial attack risks? 

• How does the susceptibility of AI models to adversarial attacks influence the 
adoption of AI within the CPS environment? 

• What is the potential role of regulations and standards in ensuring the security 
and reliability of AI models used in CPS against adversarial attacks? 

4.3 Lack of Transparency and Interpretability in AI Models 

Transparency and interpretability are critical factors for the effective deployment of 
AI models in securing CPS. Typically, AI models involve complex algorithms and 
are trained on extensive data, leading to challenges in understanding the logic behind 
their decision-making or predictive capabilities [26]. This lack of transparency 
and interpretability can make it hard to identify model errors or biases and can 
significantly undermine user trust in the system’s outcomes. 

In the context of CPS, clear comprehension of the decision-making process 
is pivotal. The lack of transparency and interpretability, therefore, presents a 
substantial hurdle to the successful application of AI in securing CPS [85]. Given 
the high-stakes nature of CPS, it is crucial that the AI models used make accurate 
and unbiased decisions. Thus, there is a demand for methods that can enhance the 
transparency and interpretability of AI models employed in securing CPS. 

Various strategies have been proposed to augment the transparency and inter-
pretability of AI models. For instance, explainable AI (XAI) refers to AI systems 
that elucidate their decision-making process in a format understandable by humans 
[56]. XAI encompasses techniques like visualisations, natural language explana-
tions, or decision trees, all aimed at shedding light on the AI decision-making 
process. A comprehensive overview of existing XAI techniques, trends, and primary 
research directions is provided in [2]. 

Model-agnostic interpretation is another approach to boost transparency and 
interpretability. It decouples explanations from the model [128] and facilitates 
understanding of why AI models make specific predictions. This comprehension 
aids in identifying potential biases or errors and ensures more informed decisions
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based on the predictions. Moreover, it can yield more intuitive user interfaces, 
enhancing user trust and confidence in AI systems. 

Despite existing efforts to tackle transparency and interpretability issues in AI 
models, several crucial questions must be addressed to effectively utilise AI models 
in securing CPS: 

• How can we ensure that AI models used in the CPS environment are trustworthy 
and reliable, and how do we verify their performance over time? 

• What is the required level of transparency and interpretability for AI models 
employed in securing CPS, and how can we achieve this? 

• How can we ensure that AI models do not produce unintended consequences that 
could jeopardise CPS security? 

4.4 Limited Understanding of AI by Security Practitioners 

The application of AI in cybersecurity is a relatively new development, and 
as a result, many security professionals may not yet possess a comprehensive 
understanding of AI and its potential applications [134]. This knowledge gap can 
contribute to a lack of confidence in AI capabilities and inhibit the recognition of 
AI’s potential benefits in securing CPS. Furthermore, this lack of understanding 
could hinder the successful integration of AI into existing security frameworks and 
processes and impede the evaluation of AI effectiveness in securing CPS. 

As AI’s role in security continues to expand, the limited understanding of AI by 
security practitioners could pose significant obstacles to its application in securing 
CPS [158]. This gap could create deployment challenges for AI-based solutions 
within the CPS environment. Therefore, it is crucial for security practitioners to 
deepen their understanding of AI, enabling them to exploit its potential fully while 
acknowledging its associated risks and limitations. 

Addressing this understanding gap requires focused efforts on education and 
training for security practitioners [22]. They need to be familiarised with the 
fundamental concepts of AI, its potential security applications, and the best practices 
for its integration into security processes. 

Another strategy to bridge this knowledge gap involves the formation of cross-
functional teams, comprising security professionals and AI experts [36]. These 
teams can collaborate on security projects, ensuring effective integration of AI into 
security processes and enhancing the understanding of AI’s functionality among 
security professionals. As a result, these collaborations would increase the ability of 
security practitioners to leverage AI effectively in securing CPS and staying ahead 
of emerging security threats.
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4.5 Ethical and Legal Considerations 

The application of AI in securing CPS brings to the fore several ethical and legal 
considerations, warranting careful attention to ensure fairness and accountability. 
One significant ethical consideration is the potential impact on individual privacy 
[161]. AI systems usually require vast amounts of data, often including personal 
information, to make decisions or predictions. This requirement raises privacy and 
data protection concerns [15]. Consequently, when using AI in securing CPS, it is 
imperative to be transparent about personal data collection, storage, and usage and 
to adhere strictly to applicable privacy regulations. 

Another key ethical concern involves the potential for bias and discrimination 
in AI systems [47]. As it is often stated, AI systems are only as good as the data 
they are trained on. Therefore, if training data is incomplete, inaccurate, or biased, 
the AI model can produce unfair or prejudiced decisions. This emphasises the need 
for ensuring unbiased data training for AI models and designing them to mitigate 
potential biases and discrimination. 

Further, AI systems can cause certain ethical issues [33]. For instance, the 
deployment of AI systems in the CPS environment might lead to unemployment, 
as human-performed jobs get replaced [29]. This change could result in an unfair 
wealth distribution as our current economic system is predicated on compensating 
economic contributions. As AI application in the CPS environment increases, the 
human workforce’s reliance could significantly reduce, potentially concentrating 
revenue among fewer individuals. 

From a legal viewpoint, compliance with applicable laws and regulations is 
crucial for AI systems [23]. Despite the lack of well-defined laws specifically 
addressing potential harms caused by AI systems, AI’s use in security could still 
be subject to specific legal requirements, such as those related to privacy and 
data protection [45]. Awareness of these requirements is essential for ensuring 
compliance when using AI to secure CPS. 

Additionally, potential legal liabilities associated with using AI in securing CPS 
should be considered [74]. For example, should an AI system error lead to a security 
breach or another adverse outcome, accountability for any arising damages would 
need to be established [126]. It is crucial to understand the potential risks associated 
with AI usage in securing CPS and to implement measures to mitigate these risks, 
like setting up appropriate safeguards and insurance coverage. 

Addressing the ethical and legal considerations associated with AI usage in 
securing CPS necessitates careful consideration of several questions: 

• What kind of ethical and legal frameworks need to be established to support AI’s 
use in securing CPS? 

• How can we design AI to operate within the ethical and legal frameworks of CPS 
security? 

• How can AI be used to enhance the resilience and adaptability of CPS against 
cyber and physical security threats, while maintaining ethical and legal consider-
ations?
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• How can we evaluate AI’s use for CPS security in terms of its effectiveness, 
efficiency, societal impact, and adherence to ethical and legal considerations? 

Efforts have been made in recent years to address some of these questions. For 
example, the authors in [160] discuss three types of harm that can arise from AI: 
individual harm, collective harm, and societal harm, arguing that societal harm, 
often overlooked, is not reducible to the two former types of harm. The work in 
[140] considers the ethics of AI and how to build ethical AI. The authors in [147] 
argue that it is time to work towards concrete policies for ethical and socio-legal 
governance in AI, within the context of existing moral, legal, and cultural values. 

Several governments worldwide are also making efforts towards concrete poli-
cies for ethical and socio-legal governance in AI. For instance, in 2018, the 
European Commission set up an independent expert group on AI to advise on its 
AI strategy, including ethics guidelines for trustworthy AI [42]. The author in [78] 
uses a socio-legal perspective to analyse the ethics guidelines for trustworthy AI as 
a governance tool in AI development and use. The work in [153] assesses the ethics 
guidelines for trustworthy AI and notes that a law enforcement approach must be 
the essential next step towards the beneficial and humane development of AI. 

The European Union is currently crafting a new legal framework (AI Act) 
[43], which aims to substantially bolster regulations on the development and use 
of AI. The AI Act primarily focuses on strengthening rules around data quality, 
transparency, human oversight, and accountability. It also aims to address ethical 
questions and implementation challenges in various sectors, including healthcare 
and energy, where CPS is mainly deployed. 

5 Case Studies Demonstrating Successful Implementations 
of AI in Securing CPS 

This section examines case studies demonstrating successful implementations of 
AI in securing CPS. These case studies were chosen based on their exemplary 
demonstration of AI and CPS integration. We conducted an in-depth analysis of the 
selected cases, focusing on their objectives, the AI strategies employed, the resulting 
outcomes, and their overall impact on CPS security. These case studies underscore 
the benefits and potential of AI-driven security solutions in protecting critical energy 
infrastructure and enhancing operational efficiency. 

The study in [52] proposes a deep learning-based solution for detecting and 
characterising time delay attacks (TDAs) in CPS. The authors contend that TDAs 
pose a significant threat to CPS security, exploiting vulnerabilities in communi-
cation channels to disrupt the system’s operation. They propose a hierarchical 
long short-term memory (H-LSTM) model that processes raw data streams from 
relevant CPS sensors online and continually monitors embedded signals to detect 
and characterise attacks. The model, trained on a simulated TDA dataset in two 
CPS: a power plant control system (PPCS) and an automatic generation control
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(AGC) system, is compared with other machine learning algorithms like k-nearest 
neighbours (kNNs) and random forests (RF). The study shows that the H-LSTM 
model outperforms these algorithms in terms of accuracy and mean absolute 
error (MAE) for TDA detection and characterisation. The authors assert that their 
model is practical for real systems and can be configured to meet specific user 
requirements. This study provides a significant demonstration of successful AI 
application in securing CPS through a novel deep learning-based method for TDA 
detection and characterisation. 

Vermont Electric Cooperative (VEC), a significant energy provider in Ver-
mont, successfully collaborated with Nozomi Networks to integrate AI techniques, 
enhancing their power grid operations’ reliability, cybersecurity, and operational 
efficiency [107]. VEC incorporated Nozomi Networks Guardian—an AI-driven 
cybersecurity solution that leverages machine learning algorithms for anomaly 
detection, intrusion detection and prevention, and incident response—into its 
existing energy infrastructure and control systems, achieving seamless cooperation 
and communication with legacy systems, devices, and protocols. This process 
involved extensive testing, validation, and training of utility personnel for effective 
management and interpretation of AI-generated insights. The deployment of the AI-
driven cybersecurity solution at VEC yielded several significant results [107]: 

• Enhanced security profile: Guardian significantly improved VEC’s security 
profile by identifying and analysing various cyber threats, reducing successful 
cyberattack likelihood, and minimising potential operational impact. 

• Boosted operational efficiency: Guardian decreased ICS administration and 
cybersecurity hours, allowing the security teams to tackle more complex chal-
lenges and reducing the costs associated with energy infrastructure security. 

• Labour hour reduction: The automation of numerous security tasks by Guardian 
led to a weekly reduction of “10 to 12 hours” [12.5 labour weeks annually] in 
labour, freeing up resources for other crucial tasks. 

• Reduced repair truck rolls: Guardian enabled VEC to reduce the number of repair 
truck rolls, thus decreasing costs and optimising resource allocation. 

The study in [83] proposes a federated deep learning scheme for detecting and 
mitigating cyber threats against industrial CPS. The study addresses the challenge 
of detecting such threats, which are becoming increasingly attractive targets for 
state-sponsored or affiliated actors. The authors put forward a novel federated 
learning framework for multiple industrial CPS, enabling the collective creation of 
a comprehensive intrusion detection model in a privacy-preserving manner. They 
develop a novel CNN-GRU-based intrusion detection model capable of effectively 
detecting various types of cyber threats against industrial CPS. They design a 
Paillier-based secure communication protocol for the federated learning framework 
to preserve the security and privacy of model parameters during training. The study 
outcomes demonstrate that DeepFed achieves high accuracy in detecting cyber 
threats in industrial CPS while preserving the privacy and security of sensitive data, 
making a significant contribution to industrial CPS cybersecurity.
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Furthermore, the study in [96] presents a successful AI implementation in 
securing CPS. The authors design a fully virtualised testing environment for data-
driven analysis of cyber-physical disturbances, considering cyber and physical data 
simultaneously. The study’s primary objective is to develop a holistic analysis 
approach that assesses the impact of information and communication technologies 
in ICS, providing a testbed environment to run cyber-physical scenarios in a 
controlled virtualised setting. The study employs several AI strategies, including 
machine learning algorithms for anomaly detection, network analysis tools, and 
virtualisation technologies. The results demonstrate that the proposed testbed can 
detect anomalous system behaviour, which can help prevent the harmful effects of 
cyberattacks on physical assets. 

These case studies illustrate the potential of AI techniques in addressing cyber-
security challenges and improving operational efficiency in CPS. The effective use 
of the H-LSTM model in detecting and characterising TDAs in real-time scenarios, 
successful deployment of Nozomi Networks Guardian at VEC, the federated deep 
learning scheme for detecting and mitigating cyber threats against industrial CPS, 
and the fully virtualised testing environment for data-driven analysis of cyber-
physical disturbances further validate the findings of the literature review presented 
in this chapter. By showcasing the real-world impact of AI-driven security solutions, 
these case studies offer valuable insights and inspiration for further research, 
innovation, and collaboration in the field of CPS security. 

6 Conclusion 

The application of AI techniques in securing CPS presents a myriad of oppor-
tunities, but also comes with certain challenges. Opportunities include enhanced 
threat detection and prevention, predictive maintenance capabilities, accelerated 
incident response and recovery, the development of self-managing and responsive 
computing systems, comprehensive security assessment, and optimised security-
aware operations. On the other hand, challenges encompass ensuring data quality 
and availability, susceptibility to adversarial attacks, transparency and interpretabil-
ity issues in AI models, limited understanding of AI by security practitioners, and 
ethical and legal considerations. 

For the responsible and effective employment of AI in securing CPS, addressing 
these challenges and capitalising on the opportunities is paramount. This neces-
sitates guaranteeing data quality and availability, integrating explainability and 
transparency into AI models, providing training and education for security prac-
titioners on AI, and establishing ethical and legal frameworks for AI applications 
in CPS security. The successful utilisation of AI in securing CPS also requires a 
collaborative effort among security experts, AI developers, policymakers, and civil 
society organisations. By collectively harnessing the opportunities and tackling the 
challenges, stakeholders can foster a more secure and resilient future for CPS across 
various industries.
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In conclusion, while the potential of AI to enhance the security of CPS is 
significant, realising this potential requires concerted efforts to confront the inherent 
challenges. Ongoing research, innovation, and collaboration in the field of CPS 
security will play a pivotal role in overcoming these challenges and pave the way for 
a safer, more secure world. This chapter contributes valuable insights and provides 
inspiration for further inquiry and exploration, underscoring AI’s transformative role 
in securing CPS and propelling progress in the future. 
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Artificial Intelligence Working to Secure 
Small Enterprises 

Kai Rasmus 

1 Introduction 

Small- and medium-sized enterprises (SMEs) represent a majority of all enterprises 
globally and 92% of all enterprises in Finland [1]. An important feature of SMEs 
is their limited number of resources available for information and communication 
technology (ICT) administration and cyber security [2]. Recent research has shown 
that especially situational awareness and the prevalence of bad security practices are 
the main areas in which more research is needed. Bad security practices can arise 
from a belief that the small size of an SME secures it from attacks [2]. The size of an 
enterprise is not a security control against cyber-attack. In 2014, a study of Internet 
threats found that 30% of attacks specifically targeted SMEs [3]. 

Malware technology is also developing [4]. New and emerging AI-based mal-
ware is making signature-based, behavioural and heuristic antimalware software 
almost obsolete. Malware tools are being made available online that are claimed 
to be fully undetectable by present-day antimalware software [5]. The amount of 
sophisticated phishing scams arriving over the network, or via e-mail, is increasing, 
and these are becoming harder for users to detect [6]. 

The modern-day SME is also not necessarily located in one physical place, with 
employees possibly telecommuting and important resources being located on third-
party external servers on the Internet (i.e. ‘the cloud’). This type of distributed office 
scenario has many more attack vectors and threats than a traditional office that is 
totally confined in a local network behind one corporate firewall. Telecommuting 
can also be forced on SME employees due to unforeseen events such as global 
pandemics [7]. 
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These developments in the threat and business environment are leaving SMEs 
vulnerable. The traditional way of securing an enterprise is to have a set of tools 
or a security operations centre (SOC) that monitors signals emanating from security 
sensors located around the network. Rulesets have been predefined to tell the sensors 
when to trigger. These rules cannot be too narrow because then real problems 
could be missed. This means that the sensors generally generate a lot of messages 
including many false positives. The SOC may miss attacks in this mass of data or 
they may notice them too late [8]. In many cases the results can also be hard to 
interpret. Even as more tools are being introduced, research has found that SMEs 
need information more on vulnerabilities than implementation of tools [9]. 

The analysis of this large amount of cyber security data is therefore crucial but 
requires a lot of human resources to accomplish properly. There exists a role for an 
AI system in analysing this data based on well-researched scientific techniques, 
especially in the fields of machine learning and deep learning. AI systems are 
well suited to identifying patterns in the data, thus reducing the need for human 
intervention [10]. Taking this into account, AI-based cyber security tools and 
methods could help in countering the new and emerging threats facing SMEs. These 
tools have been developed for different purposes and work either separately or 
together with existing antimalware, firewalls and intrusion detection systems. In 
these roles, the tools can be located in different parts of the cyber security space. 

Cyber security management becomes most effective when it is implemented 
using a framework. In this way the most important aspects are taken into account, 
and it becomes easier to become standards-compliant. One extensively utilized 
example is the National Institute of Standards and Technology (NIST) framework 
which has been developed around five core functions: identify, protect, detect, 
respond and recover [11]. The controls in NIST can be mapped onto those of 
the ISO27001 information security standard [12] but introduces them in a more 
user-friendly way. This framework is frequently updated to take into account the 
changing technology environment. For example, cloud computing controls were 
introduced into the framework in revision 4 [13]. To standardize the use of AI tools 
in cyber security for SMEs, they should be included in a cyber security framework. 
The NIST framework can be used as an inspiration for this [14]. Even with the 
implementation of AI, it is still necessary to use non-AI methods for security in 
parallel with AI, and paradigms, such as the zero-trust model (ZTM), are very useful 
for this [15]. 

The purpose of this study is to look at AI-powered security tools from an SME 
point of view, which is one of limited human and budgetary resources, where in the 
network these tools need to be located for maximum effect and to introduce them 
into a cyber security framework for SMEs. 

The main methods centre around a literature review and a constructivist approach 
in developing the framework. This work starts by introducing the methodologies 
used and then by looking at small- and medium-sized enterprises from a cyber 
security point of view. After this, some AI tools that are available for SMEs are 
introduced. Then a framework is introduced that takes AI systems into account. 
Finally, a discussion and the main conclusions drawn from this work are given.
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2 Methods 

2.1 Research Methods 

In this study new knowledge is being created from old and existing knowledge, and 
so constructivism presents itself as a suitable research paradigm. Even though it 
was originally a theory of knowledge for educational sciences [16], it can be used in 
the science and technology fields as well [17]. This research approach is qualitative 
being based on classifications of methods and not numerical results or data. The 
research design will be based around a literature review, and the research method 
will be the search for AI methods in cyber security from literature. 

This work is an expert evaluation but from the point of view of a person 
responsible for cyber security in a SME. As a cyber security practitioner in an SME, 
the author is to some extent a participant in the research. This is an example of a 
complicated soft system in which the context and learning by the human operator 
are important parts of the system. The opposite of this would be a hard system which 
would include only the physical devices and systems, and measurements made on 
them, and the human only has the role of engineering it [18]. 

2.2 Usability Index 

Usability is an important part of any cyber security tool and especially in situations 
where the user is a non-expert. Usability has been studied extensively and guidelines 
have been given to increase it. Taking the guidelines given by Nurse et al. [19] into  
account, a usability index for these cyber security tools was developed. This will 
be called the artificial intelligence security tool usability index (AISTUI), and it 
gives points for documentation, research, license, general usability and proliferation. 
These points are detailed in Table 1. Since the AISTUI is subjective, it should be 
only used as a general guideline, but a higher AISTUI score can still mean that the 
tool has a higher usability from an SME operator point of view using the index 
values provided. Operators can modify the index value ranges to suit their particular 
needs. Problems in the tool, such as a lack of documentation, can be highlighted 
using this method. It must be noted that the AISTUI score is not a judgment on the 
usefulness or quality of the tool in general, but only of the usability of the tool from 
the limited perspective of an SME. 

A good documentation set is important for SME implementation because the 
personnel may be non-experts in the cyber security field. Without a good documen-
tation set, it is harder for them to implement the tool and easier for them to make 
configuration errors, which can cause security problems [20]. The importance of 
a good documentation set has been known for a long time [21], and this is why 
AISTUI awards a higher score for good documentation. 

The AI tool should be based on solid research that is published and available to 
the personnel if they so wish to study the tool further. Cyber security tools are based
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Table 1 Details of the artificial intelligence security tool usability index (AISTUI) 

Criteria Description Points 

Documentation How extensive is the documentation 0—No documentation 

. . .  

5—Extensive documentation 
that is easy to understand. 

Research Is there any peer-reviewed research 
on the tool 

0—No research 

. . .  

1—Extensively researched 

License What license does the tool use 0—Non-free license 

. . .  

3—Open source. GPL or 
similar 

General usability How easy is the tool to use? 0—Almost impossible to use 

. . .  

5—Very easy to use 

Proliferation Describes how far the tool has spread 
within the cyber security field 

0—no one uses it 

. . .  

3—Almost everyone uses it 

on trust, and this can be increased by publicly providing information on the research 
behind the tool. This is why AISTUI awards a higher score for publicized research, 
but it is weighted less than the other points. 

Operating any kind of software incurs some amount of cost that comes from 
licensing fees, hardware costs, support and maintenance costs and other fees. Even 
though open-source software can be used with a license that does not cost anything, 
licensing fees are only a part of the total cost of software adoption. A result is 
shown in the study by Sanchez et al. [22], who studied the adoption of open-source 
software. There is still a certain lack of AI solutions for cyber security, so many 
SMEs and even larger corporations may risk increased costs in the future as they 
are forced to implement new tools [23]. At some point the license fees and other 
operating costs incurred by implementing the tools may become too much of a 
financial burden on the SME, especially if a subscription model is used. Hardware 
costs can also depend on the solution selected. A good example of this is the Linux 
operating system, which works on PC hardware, compared to Unix, which generally 
requires dedicated, more expensive hardware. AISTUI awards a higher score for 
lower license fees and open-source tools that work on hardware readily available. 
No points are awarded if an expensive license is required, and a maximum of three 
points can be awarded for open-source solutions utilizing a general license and that 
work on existing easily procured hardware. 

General usability is important for the same reasons that a good documentation set 
is important for SMEs. A tool that is difficult to use leads itself to misconfigurations
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and security threats that arise from those. SMEs are usually not in a position to 
develop tools themselves or utilize tools that require extensive coding to set up or 
configure. This is why AISTUI awards a high score for good usability. 

Proliferation of a tool is a good feature because it means that a large user base 
exists that can provide peer-level support, which is especially important for an open-
source tool when a support subscription is not being used. This is why AISTUI 
awards a larger score for a tool that has a large user base. Also, if there are reported 
cases of successfully mitigating threats, then a higher score can be set here. 

2.3 Scope 

Even though this work is formally directed at SMEs, the target can be any instance 
with limited resources to allocate towards cyber security and that still needs to 
secure assets in cyber space. These could be sports club or congregations. 

AI usually refers to models and algorithms, and it is one field of the information 
sciences. Machine learning is a subset of AI in which a system is taught to identify 
patterns and make independent conclusions. Deep learning builds on machine 
learning by including many more layers for processing and abstraction to solve 
problems. In this study, AI will be used as an umbrella term for all machine learning 
and deep learning methods. 

The term ‘tools’ is used in this study in place of the term ‘methods’. The reason 
for this choice of terminology is that the term ‘method’ can be confused with a 
specific algorithm or means of implementing AI, and this is not what is being studied 
in this work. Also, the purpose of this study is not to advertise or endorse any specific 
tool for any specific purpose. 

Only tools that utilize true machine learning will be included in this study. 
Therefore, tools that utilize some kind of simple algorithm, like calculating averages 
and comparing values to those, will not be included. The actual implementation 
method used in the machine learning part of the tool is not important for this study 
and will not be reported. 

Many software services such as a cloud-based firewall (firewall-as-a-service, 
FWaaS) can utilize machine learning in many ways that are invisible to an SME 
user. An example of this is the utilization of machine learning in load-balance 
optimization [24]. These kinds of services have been included in this study where 
applicable. 

3 Small- and Medium-Sized Enterprises 

The purpose of this part is to define the concept of a small- and medium-sized 
enterprise (SME), show how it differs from a large enterprise and show what 
challenges it faces from a cyber security point of view.
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3.1 Definitions 

DeLone [25] defined an SE as having a sales revenue of $30 million and less than 
300 employees in his work on the utilization of computers in enterprises already in 
1988. This definition of SEs has remained relatively consistent over the years. 

In Finland the Finnish statistical authority, Statistics Finland (Tilastokeskus in 
Finnish), has defined an SME as having fewer than 250 paid employees and a 
turnover of no more than 50 million or a balance sheet total, which is the sum 
of the total liabilities and the total equity, of not more than 40 million. The SME 
also needs to fulfil the criterion of independence, which states that large enterprises 
are not allowed to own more than 25% of the stock or equity of the SME. A small 
enterprise (SE) differs from a medium-sized enterprise in that it has fewer than 
50 paid employees and a maximum annual turnover or balance sheet total of 10 
million [1]. 

In 2020 the total number of enterprises in the Statistics Finland database was 
368,949, of which 342,307 (92%) fulfilled the employee criterion of a small 
enterprise [1]. Therefore, the state of the cyber security of SEs is not an unimportant 
one because they make up a majority of all enterprises. 

3.2 Cyber Security in SMEs 

SMEs are not always at the forefront of adopting new technology. Research into 
how computers can help small businesses has been ongoing since the proliferation 
of computers [25]. In his study, Delone [25] found that the use of on-site computers 
can help produce positive effects for the business in cases where some businesses 
utilized computers and some did not. When SMEs are able to adopt and use 
information and communications technology (ICT), it is possible for them to grow 
faster than comparable enterprises that do not [26]. This result is taken for granted 
in the present era, where almost everything is carried out with a computer, and the 
SE environment has also moved past the question of whether the Internet adds any 
value to SEs. But still SMEs are not the place where the latest technology is being 
used. 

One of the main differences between an SME and a large enterprise is in the 
number of resources available for ICT management, both in the amount of capital 
and the number of employees. When the number of resources available for ICT 
in general is smaller, then it necessarily follows that the resources available for 
allocation to cyber security is also smaller. In general, SEs and SMEs have less 
resources to fight cyber-attacks even though the effects and risks are the same as for 
larger entities [2]. The size of an enterprise, either large or small, is not a security 
control against any form of attack. An SE is just as likely to come under attack as a 
large enterprise, and in fact, in a 2014 study, it was found that 30% of cyber-attacks 
targeted SEs [3].
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In a review on the cyber security situation of SMEs in Australia, Tam et al. [27] 
found that more research is still needed, but this research should be specifically 
targeted at SMEs, which are often lumped in studies with larger corporations. They 
note that most of the existing cyber security solutions are geared towards larger 
corporations and need the expertise to configure and maintain that the ICT staff 
there have. Larger corporations can also form alliances and share information easily. 
On the other hand, SMEs can benefit from their small size by being able to make 
changes quickly, and they too could form alliances with other SMEs [27]. 

Cyber security practices are incorporated into the business if cyber security has 
been made a part of the business routine, for example, in the form of a designated 
budget, and the technology is uncomplicated [28]. This last point is important for 
the proliferation of AI tools. If they have a high usability, then they will garner a 
large user base within the SME community. 

Based on a survey of several small and large enterprises, Gutierrez [29] found 
no significant differences between SMEs and large enterprises when looking at 
communication, competency measurement, governance, partnership, architecture 
and skills. However, there was a positive correlation between how plans are applied 
in the organization and the size of the organization. 

In their review on the cyber security of SMEs, Alahmari et al. [9] found that 
cybercrime is not considered a threat in SMEs because they feel that they are small 
and thus uninteresting for cyber criminals. Secondly, bad cyber security behaviour 
in SMEs has been found to account for many cyber security threats [9] which has 
been found in other studies [30]. 

It is therefore not a lack of knowledge of cyber security threats and good security 
practices that is the problem in achieving a good state of cyber security but a 
negative attitude and reduced situational awareness [30]. Cyber security behaviour 
can be improved with training, and the attitude towards cyber security threats can 
be improved with awareness programs. The role of decision makers is very large 
in an SME, and hence the cyber security awareness needs to extend to them and 
not only to the operational personnel. Alahmari et al. [9] found that recent research 
indicates that SMEs need more information on cyber security vulnerabilities, rather 
than knowledge on implementation of certain tools. 

A study by Rawindaran et al. [31] reveals that SMEs mostly have the appropriate 
security packages implemented. The problem is more that the SME does not have 
the skills and experience in place to utilize them properly or to their full extent. 
Another result of this study was that risks and the impacts of successful attacks were 
not understood well enough leading to miscommunications within the enterprise. 

3.3 Existing Cyber Security Framework 

The NIST framework can be utilized by an SME for cyber security management. 
The core functions of the NIST framework are identify, protect, detect, respond 
and recover [11]. Chidukwani et al. [32] found that most of the research into SME
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cyber security is only analysis using qualitative methods and the focus has been 
on the identify and protect functions of the NIST cyber security framework. This 
framework is a chain going from these parts and continuing to detection, response 
and recovery. Very little study on the other existing functions has been made even 
though SMEs should definitely have the ability to identify risks, define assets to 
protect and recover from attacks. Future research in SME cyber security should be 
more balanced between all the functions of the NIST framework [32]. 

3.4 Network Topology 

As a frame of reference, a simplistic example of an SME network topology is 
shown in Fig. 1. The local area network (LAN) contains all the network devices 
needed for the network to function. These can be wireless access points, routers, 
switches or modems. Local resources are network printers or local storage and, in 
the case of a larger enterprise, intranet servers and domain controllers. External 
resources are then external storage, software services and potentially any cloud-
based authentication services that the enterprise uses. In most cases e-mail is also 
processed off-location. 

The network can also contain mobile devices, which potentially have a network 
connection that bypasses the main corporate firewall. Mobile devices can be 
connected to workstations by a wireless network connection, by a Bluetooth 
connection, via USB or via some other connection. These connections can then 
come with their own security issues which could become a concern [33]. 

A workstation can be physically located outside the business offices and on the 
public side of the corporate firewall but still connected to the local network via a 
virtual private network (VPN) connection. This kind of decentralized office structure 
is becoming more common. All of the locations shown in Fig. 1 are potential targets 
for attack and the network has many attack vectors. Even in this simple case, the 
situation, from a cyber security point of view, is much more complicated than if all 
the resources would be located behind the firewall. Attacks on any of these targets 
using, for example, some kind of malware can block the network, install additional 
spyware to obtain more information, gain access to personal information or disrupt 
services in the network making them unavailable [34]. 

The cyber security AI tools should be inserted into the system to disrupt these 
malware mechanisms. Potential locations for the tools are workstations, mobile 
devices and local resources, the corporate firewall, independently on the network 
and on the resources in the cloud (Fig. 1). Whether or not the SME has any control 
over the tool being used is not a concern for this study. The SME might not have any 
control over an AI tool on an e-mail server in the cloud but might have full control 
over an AI tool in the local network.
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Fig. 1 Network topology of a typical small enterprise. Potential AI locations investigated in this 
study are shown with the green smiley face. The dashed line marks the physical boundaries of 
the SME office location. Note that a wireless access point can broadcast its signal outside this 
boundary 

4 AI in an SME Environment 

Of the core functions of the NIST framework [11], detection and response are most 
suited for an AI component because AI in general is good at finding patterns in large 
data streams. A well-functioning trustworthy AI tool could then be used as a first-
response tool, but monitoring of the tool is the key to building trust in the tool [35]. 
Attack prevention is an almost impossible task, even for an AI, because of the lack of 
attack forecasting [36]. However, a well-connected AI system could pre-emptively 
react to an attack that is happening somewhere else. Protection is something that 
is accomplished by implementing the tool in the system and is something that the 
operator usually does. 

The AI tools in an SME environment will be presented here following this 
location-based classification. The locations go from the local network to worksta-
tions and mobile devices, the firewall and then proceeding to external resources 
located on external servers.
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4.1 Local Area Network 

A few tools working in the local area network will be introduced first starting with 
a real-world example which is presented to show how the usability index AISTUI 
works and also to present some of the concepts related to using AI-based tools in an 
SME context. 

The tool in this example analyses bandwidth through a network switch in three 
different but related channels. There is some legitimate system on the network that 
generates a lot of traffic at uniform intervals, which show up as spikes in the data. 
These spikes could be easily identified and filtered out using a statistical method, 
such as median filtering or implementing a threshold, but in this case, they are an 
important feature of the data rendering such statistical methods useless for anomaly 
detection. 

Timeseries of data (blue lines in Fig. 2 show the underlying background patterns) 
were recorded, and the resulting data files were then fed to a deep-learning model 
developed with the Deep Learning Toolbox in Matlab. In the learning phase, the 
data was real data, and so it had all the normal small random variations associated 
with a real-world dataset but without any anomalies. After this learning phase, some 
anomalies were introduced into the timeseries in one channel to see whether the tool 
would be able to detect them. An anomaly next to a legitimate spike can be seen in 
Fig. 2. All the introduced anomalies were detected and marked correctly by the tool. 

The usefulness of this tool for an SME from an operational point of view can 
be studied using the AISTUI index. The index generation starts with the score for 

Fig. 2 Anomaly detected in timeseries. An example anomaly is in channel 1



Artificial Intelligence Working to Secure Small Enterprises 175

Table 2 Usability index for a real-world example 

Document-
ation 

General 
usability 

Prolife-
ration 

Total 
scoreTool Type Research License 

Real-world 
example 

IDS 1 1 0 1 0 3 

Open-source 
version 

IDS 1 1 3 2 0 8 

documentation and for this only 1 point is given. This is not a judgement of the 
Matlab documentation, which is generally excellent and very extensive, but of the 
documentation of the tool itself. The tool has been developed from scratch, and 
the documentation for it is not generated automatically. Also, the data connections 
from the switch to the tool and back to the switch need to be developed, and the 
documentation for these needs to be generated. Because of this, only a score of 1 is 
given for documentation. 

This tool is based on the deep learning toolbox which is based on extensive 
research into machine learning and deep learning. Therefore, a value of 1 is given 
for this point. Matlab licenses are far from free, and a deep learning toolbox license 
is required in addition to a Matlab license. For these reasons, a value of 0 is given 
for the license point taking into account the limited resources available to an SME. 

This tool has a very steep learning and development curve, and so its general 
usability value in an operational setting is 1. This tool is better suited to a research 
context. Since this tool has been specially coded for this use, its proliferation score 
is 0. There is no user base or community for this tool unless it is published into 
the public domain and is taken up by other users. Again, this is not a judgement of 
Matlab which is widely used and has a broad user base. 

The AISTUI values are summarized in Table 2 with the total score being only 
3 out of a maximum of 17, which means that in a general sense this tool is not 
very usable in an SME setting. It must be noted that this score is valid only in an 
SME context and says nothing about the quality or functionality of the tool for other 
purposes. 

This kind of tool could also be built around open-source packages. Python has 
a deep learning library that is relatively easy to set up and that is well documented 
[37]. Python scripts are also easy to integrate into a server environment for real-
time use. If the above tool is reworked with Python, then the usability index 
score increases (Table 2). The usability problem still exists in the sense that 
everything needs to be coded in-house. Also, the documentation is still not generated 
automatically. 

Online intrusion detection and offline security investigation have been applica-
tions of AI in the field of cyber security [38]. The real-world example above is a 
simple form of an anomaly-based intrusion detection system (IDS). In a general 
sense, an AI-based intrusion detection system (IDS) should be both signature-
based and anomaly-based. If a machine learning algorithm is being trained in 
a compromised system, it will not detect the compromised network traffic as
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anomalous. Therefore, a signature-based IDS or some kind of pre-taught system is 
required to give the system a chance to notice the breach during the training phase. 

Shenfield et al. [39] developed an intelligent IDS system using the Matlab 
artificial neural network toolbox similar to the real-world example presented above. 
Their research was motivated by a real need to distinguish malicious shell code 
from benign code, which is something that signature-based IDS systems struggle 
with. Using a database of shell codes, they were able to teach their system to make 
the classification of code from offline files in an efficient way. 

From an operational point of view in an SME, this tool would need to become 
an online tool that would be able to recognize malicious files from a data stream in 
real time. The system would then need to have the authority to make changes to the 
file system by deleting or quarantining the files detected as malicious. 

The Palo Alto Cortex extended detection and response (XDR) system is an 
example of a commercial security solution for security operations centres (SOC) 
that utilizes AI, machine learning specifically, to distinguish new and emerging 
threats [8]. This system has successfully found the BlackCat ransomware, which 
is a sophisticated and constantly changing type of malware [40]. 

The Elastic Stack combines an open-source log mining tool, such as Filebeat, 
with the open-source Elasticsearch search engine and an open-source visualization 
tool, such as Kibana. This combination is referred to as the ELK stack. The logs that 
are mined can be generated by Wazuh, which is an open-source security information 
and event management (SIEM) system. Wazuh has been successfully used to detect 
security events in systems such as a web server [41]. 

Wazuh has the potential to produce a lot of information, some of which are false 
positives, and the AI methods available in the commercial version of Elasticsearch 
working in the cloud can be used to detect anomalies in that information. This is an 
example of an AI-powered offline IDS system used to detect possible attacks [42] 
but working off location on external servers (the cloud). 

The ELK stack was integrated with a malware information-sharing platform 
(MISP) by Stoleriu et al. [43]. Using this system and the machine learning algo-
rithms in Elasticsearch, they were able to perform real-time searches for indicators 
of compromise. This could be done looking at the network traffic in an online real-
time way [43]. 

The usability index for IDS is shown in Table 3. The in-house developed 
intelligent IDS suffers from the same documentation and usability problems as the 
real-world example, so a few points have been deducted for those. Both examples 
of IDS tools require a commercial license, which is the Matlab license together 
with the machine learning toolbox license. Neither tool gets any points for that. A 
commercial tool developed by a large corporation will have a large user base and so 
is awarded full points for proliferation. 

The offline cloud-based Elastic Stack system gets a few points deducted for the 
documentation, license and general usability criteria. This is because a subscription 
is needed and the tool is really only an offline system.
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Table 3 Usability index for IDS 

Document-
ation 

General 
usability 

Prolife-
ration 

Total 
scoreTool Type Research License 

Commercial 
IDS 

Network or 
workstations 

5 1 0 4 3 13 

In-house 
developed 
IDS 

Network or 
workstations 

2 1 0 1 0 4 

Offline ELK 
stack 

Cloud 3 1 1 1 1 7 

Table 4 Usability index for operating system and application-level security tools 

Document-
ation 

General 
usability 

Prolife-
ration 

Total 
scoreTool Type Research License 

OS Workstations 4 1 0 4 3 12 

Applicationlevel Workstations 4 1 1 4 3 13 

4.2 Workstations and Mobile Devices 

Microsoft Windows has a large market share in the workstation market with it being 
almost 75%in 2022 [44]. Windows security has so far been based on antivirus 
software, the Windows firewall, an Internet proxy service and Windows updates 
[45]. These are no longer sufficient by themselves, and additional tools are necessary 
to counter new and emerging threats. Security services based on machine learning 
and advanced AI are one new tool that could be used [45]. 

Microsoft Smart App Control blocks untrusted or unsigned applications. This 
control uses AI to predict whether an application will be safe or not and will block 
applications predicted to be unsafe [46]. As this is part of Windows 11, which is the 
recommended version of the most popular operating system, it is an example of AI 
working inside an SME. 

Microsoft Defender for Endpoint has built-in threat intelligence. It utilizes the 
over 43 trillion security signals that Microsoft analyses every 24h to create a view of 
the threat landscape as it evolves over time. Artificial intelligence is used to analyse 
this data together with experts, and the emergent threats are then noted [46]. This is, 
however, an enterprise solution, and so it is perhaps not applicable to an SME. 

The usability indii for these are shown in Table 4. Microsoft documentation is 
very extensive but can sometimes be hard to understand at a quick glance and so a 
point is deducted for that. These tools also require commercial licenses which mean 
they do not get any points for that category. 

Signature-based antimalware (or antivirus) software is not capable of countering 
new and emerging malware technologies. This new malware is capable of changing 
the hashes of its code (mutating hashes) and can use novel and complicated 
obfuscation mechanisms to fool antimalware. They also use intelligent malware 
components that are able to react to changes in the environment [5]. Modern
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malware is therefore very much able to evade detection making the ‘detect and 
respond’ model obsolete. Tools are already being sold online that are purported 
to be fully undetectable by signature-based, behaviour-based or heuristic antivirus 
software [5]. 

Next-generation malware requires a next-generation antimalware solution, and 
AI can help with this. An AI-based antivirus software that analyses the software 
executable itself was found to perform well, being able to distinguish between 
benign code and malware executables 98% of the time. The antivirus software was 
also fast with an average response time of less than 0.1s [47]. Antimalware usability 
on personal devices is usually good, but infection can still occur due to direct user 
interaction [48]. 

The usability index for antimalware tools is shown in Table 5. Antimalware 
tools are very similar regardless of whether they are located on the workstation 
or separately on the network. Therefore, its sufficient to calculate only one AISTUI 
value for them. They lose 2 points from the license criterion because they require a 
bought license or a subscription but usually they are quite affordable. 

4.3 Firewall 

Applications of AI have been found to work well in the field of online intrusion 
detection and offline security investigation [38], but they have been found to work 
in firewalls as well. A classical firewall is able to compare packets to predetermined 
lists of rules, while an AI-enabled firewall is able to make new rules when the 
situation warrants it [49]. Firewalls can be major sources of security threats due 
to poor configuration and poor usability [20]. 

A next-generation firewall (NGFW) has features beyond a normal stateful 
firewall that include cloud-based threat intelligence, application awareness and 
intrusion detection and prevention. An NGFW is capable of countering the many 
novel and complex types of attacks that target the network itself. Modern systems 
need to be aware of zero-day attacks and attacks taking over multiple steps and 
be able to counter them. Zero-day attacks utilize vulnerabilities that have not been 
made public. Attacks taking place over multiple steps occurs over several individual 
steps, some of which can be totally innocent. Statistical approaches, that can be 
rule-based or anomaly-based, can be used to find these attacks. Another approach is 
to use machine learning that learns to detect behavioural anomalies and the tracking 
of the sequence in which events occur [4]. 

Table 5 Usability index for antimalware 

Document-
ation 

General 
usability 

Prolife-
ration 

Total 
scoreTool Type Research License 

Antimalware Network or 
workstations 

5 1 1 4 3 14
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Table 6 Usability index for firewalls 

Document-
ation 

General 
usability 

Prolife-
ration 

Total 
scoreTool Type Research License 

FWaaS Cloud 4 1 0 2 3 10 

NGFW Network 4 1 1 2 3 11 

Having physical firewall devices can be a strain on an organization and even 
limit the data throughput. By using network function virtualization in a firewall-as-
a-service (FWaaS), the physical aspects of network perimeter security can be hidden 
from the user, for example, on a university campus [50] or an SME.  

The usability indii for firewalls is shown in Table 6. Due to the nature of firewalls 
as devices that need to be fully configurable, they can be notoriously difficult to 
configure and prone to misconfigurations which can be easy to miss. This is true 
even in cases where the rules have been automatically generated by an AI-based 
system [51]. 

FWaaS-based systems always require a subscription to work, but some function-
ality is available in physical NGFW devices even without a subscription. In that 
case, it has limited use of AI-generated rules and signatures. Also, high hardware 
costs lower the score in this category. 

4.4 Public Network Resources a.k.a ‘The Cloud’ 

Modern SMEs have resources located on external servers (i.e. ‘in the cloud’). Also, 
software-as-a-service (SaaS) is becoming more and more common, and in addition 
to productivity software, this software can take up some of the functions previously 
done by on-site security software or even hardware. An example of a cloud-based 
offline IDS solution that utilizes AI, the Wazuh-Elastic Stack combination, was 
already presented earlier. 

Many security solutions deployed locally have a form of cloud-based information 
analysis that utilizes AI. There is a two-way link between the local system and the 
cloud-based system in which event information is sent to the cloud, where it is 
analysed. If new signatures and rules are developed, then these are fed back to the 
local system. Microsoft receives information on trillions of security events and its 
security products from around the globe and is able to use this to evolve its products 
[46]. 

The OpenStackDP system is a comprehensive security framework for cloud 
computing that is comprised of sensors monitoring network traffic and sensors 
specifically trying to detect anomalies. These work in the cloud close to the user 
data. An AI threat detection engine inside network devices looks for threats. 
Defensive actions are then taken that work using virtual network functions (VNFs) 
to make changes to traffic flow rules [52]. 

E-mail is a good example of a service located in the cloud because SMEs rarely 
have their own e-mail servers. E-mail servers need to be hardened and secured, and
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Table 7 Usability index for AI in e-mail 

Document-
ation 

General 
usability 

Prolife-
ration 

Total 
scoreTool Type Research License 

AI in e-mail Cloud 4 1 1 5 3 14 

AI can definitely help with this, but it is not the role of the SME to harden and secure 
them if they are external. The security issues that e-mail brings with it are actually 
the same regardless of where the e-mail server is located. These issues are related to 
the content of the e-mail messages themselves, which can contain phishing emails, 
malware hidden in attachments, and unsolicited advertisements (a.k.a as spam e-
mail) that can achieve large volumes. 

E-mail classification into wanted and unwanted messages using AI machine 
learning methods is transitioning to a classification into the types of unwanted 
messages. This is to help in identifying the unwanted messages as the senders learn 
new techniques to beat existing identification methods [53]. 

AI tools work mainly at the server end to filter out as much of this unwanted 
e-mail as possible. AI tools are good at pattern matching and detecting anomalies, 
and so they have become good at blocking these kinds of unwanted e-mail. This is a 
good example of AI working to secure SMEs without input from users in the SME. 

AI powered by user feedback is used by Gmail to catch unsolicited e-mail 
and helps in identifying patterns in large datasets. This is necessary because the 
spam environment is constantly changing, and the changes could be rapid. To 
determine what is classified as spam, Gmail uses AI-driven filters that look at 
the characteristics of the IP address, the domains and subdomain names, sender 
authentication, and feedback from users on spam that gets through. User feedback 
seems to be the most important criterion in determining the classification [23, 54]. 

A usability index can be generated for AI in e-mail even though in most cases the 
AI is quite invisible (Table 7). A few points have been deducted from a perfect score. 
Firstly, it is sometimes hard to find the work done by the AI from the documentation, 
and secondly all systems require a bought license, and most require a subscription. 

It must be noted that having virtual servers in the cloud instead of physical servers 
does not make the cyber security situation very much different from having physical 
servers. Only the physical security part is outsourced, and many network security 
controls may be in place, but the server should still be secured like any physical 
server if it has services visible to the public Internet. 

5 Framework 

5.1 Zero-Trust Model 

In a zero-trust model (ZTM), nothing is ever trusted without authentication and 
authorization. This helps in minimizing the damage if a breach occurs, because the
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attacker will not have unlimited access to network resources by default. They will 
only be able to access those limited resources that the instance is authorized to 
access. In a ZTM, even the home network is considered to be hostile [15]. A ZTM 
model helps any AI working to secure the systems because they then do not have 
to make any assumptions about the network and can treat everything as suspect and 
subject to the same authentication and authorization rules. 

In a classical cyber security view, the resources behind the corporate firewall 
connected to the local area network, the area inside the dashed line in Fig. 1, would 
be thought to be harmless and therefore trusted. Due to the many ways in which 
the local resources can be accessed, and the increasingly more complicated and 
developing threat environment, this is no longer the case. The ZTM should be 
incorporated into any framework that is used in an SME environment in addition 
to any AI tools in place. 

5.2 AI in a Cyber Security Framework 

The core functions of the NIST framework are identify, protect, detect, respond 
and recover [11], and these can be used as an inspiration for an AI-based framework 
[14]. AI could benefit SMEs in all of these functions, but mostly in the protect, detect 
and recover functions, and especially as a continuous cycle between the detect and 
respond functions (Fig. 3). The implementation of AI can itself be thought of as 
being a part of the protect function. A roadmap for AI implementation depending 
on attack type is given by Abdullahi et al. [4]. 

From the analysis shown previously, it is obvious that the non-AI NIST 
framework is no longer sufficient as it is and needs to be updated to take into 
account the next-generation malware. The following points could be considered to 

Fig. 3 The main functions of 
the NIST framework together 
with AI domain. The AI 
system would be most 
effective as a cycle between 
the detect and respond 
functions
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be included in an AI-enabled version of the framework in the protect, detect and 
respond functions: 

1. A NGFW or FWaaS that has machine learning capabilities needs to be in place 
and functioning as the corporate firewall. 

2. An antimalware solution utilizing AI for malware detection should be used on 
the computer. 

3. A ZTM should be implemented in all parts of the network. 
4. The AI systems need to have authority to act on anomalies detected 

This proposed framework is very much in line with the Palo Alto Networks 
approach to SOC operations that utilize AI in their Cortex XDR security product. 
This hinges around these three actions [8]: 

1. Prevent all attacks that are possible to prevent 
2. Rapidly detect attacks that cannot be prevented using AI methods or otherwise. 
3. Automate future responses using AI-generated lists of rules. 

The first point just means that all available AI and non-AI means of defence 
should be used. Even though attack methods are developing, it is still possible to get 
compromised by an older type of attack if the necessary security controls are not in 
place. 

Attacks that then do get through need to be detected immediately and stopped. 
This requires the AI SOC to be authorized to make changes to the system, by 
deleting or quarantining files, by stopping processes and cleaning them from 
memory and by changing network rules. Since AI is based on a machine that is 
able to learn, then the successful attack can be used to teach the AI SOC to defend 
itself against the attack, and even attacks similar to it, in the future. 

6 Discussion of Potential Problems 

6.1 The Battle of Good AI vs Bad AI 

There are challenges related to using AI for cyber security that SMEs need to be 
aware of before introducing them into their environment. Even as AI-based tools 
become available for SMEs, AI-based threats are also increasing. These two morally 
opposite manifestations of AI technology will start to confront each other more in 
the future. 

If an AI system is introduced into an environment that already has malware 
working in it, it can potentially accept the malware as normal whilst it is learning 
the environment. Therefore, the new system needs to be pre-taught before being 
introduced into the environment or have some signatures that are potentially able to 
recognize the malware.
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Malware can be introduced to hack the AI learning process. The internal 
objective function could be designed in such a way that it could have unintended 
consequences if subjected to data that is suspect [55]. This is called data poisoning, 
and it is a major concern for operators of machine learning and deep learning 
systems. In one of the worst-case scenarios, the AI system could grant a malicious 
actor full entry and exit rights to the system that it is guarding because it makes a 
wrong judgement call based on erroneous data [56]. 

AI models need a specific kind of defence that combats adversarial machine 
learning and preserves the integrity of the teaching data. After looking at the 
literature surrounding AI systems in cyber security, and AI-based attacks against 
them, Li [57] builds on existing research and shows how to build AI systems that 
are hardened against the threat of malicious AI. 

Anderson et al. [58] review the different methods used to try to fool AI-based 
malware detectors. In their example, the malware was inside a Windows portable 
executable (PE) file. A series of attacks was made against the detectors to extract 
information about the AI model being used. Even a binary black box attack gives 
useful information about the ML system with binary in this sense meaning that 
the malware is either just detected or not detected. Even if the attacker has some 
knowledge of the system they are attacking, the number of times the attacker has 
been able to fool the malware detector has stayed low. The easiest way for the 
adversary to try to evade the malware detector would be if they were able to get 
the AI model being used. 

A better way was then investigated by Anderson et al. [58] using a reinforcement 
learning (RL) agent that was able to change the PE file and present it to the malware 
detector. It was then able to iteratively test the malware detector trying to find 
blind spots in it in an automated way. A RL model consists of a learning agent 
working within an environment from which it is trying to extract information. The 
environment needs to have a measurable state that can be fed back to the agent. 
For each iteration, the agent chooses one action from a predefined set. The selected 
action can cause a change in the state of the environment, and this new state is used 
to calculate a reward for the agent. The reward and new state of the environment are 
given to the agent, which then determines what modifications the agent will make 
to the malware for the next iteration [58]. 

Adversarial examples can also help malware evade detection by interfering with 
the learning process of AI-based detectors. Adversarial examples are specialized 
inputs that confuse the artificial neural network, causing incorrect classifications. In 
malware this is accomplished by making changes to the computer code. It will still 
retain its malicious functionality but be classified as benign. Only a comprehensive 
analysis of the code of the adversarial example can show that the classification is 
wrong, and only then can the detection capability of the antimalware be improved 
[59].
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6.2 Challenges Related to AI in Cyber Security 

AI in cyber security for SMEs is not without its challenges and disadvantages. 
The AI information is available to attackers, and they use it to develop even 
more sophisticated malware that is able to circumvent the most modern AI-based 
defences. 

The prevalence of tools utilizing AI for cyber security within SMEs is not as 
broad as it could be, even in developed countries. The challenges related to the 
adoption of such systems still revolve around human intervention and the need for 
specialist skills in implementation [31]. 

A problem in implementing AI tools is the lack of a suitable test environment in 
an SME environment. For example, using a simulated DDoS attack on a real system 
for stress testing purposes could render it totally inoperable. 

AI implementation is not free and in some cases it can be expensive. Because 
the proliferation of AI solutions for cyber security is not so extensive, and there 
is a lack of easy-to-use cyber security tools, many businesses may have to spend 
more money on cyber security in the future. This includes SMEs. Also, as cyber 
threats evolve, cyber security tools will be updated leading to maintenance costs. AI 
systems cannot be left unattended, and, as with any ICT system, they need constant 
maintenance [23]. 

A big problem with AI that has been around as long as artificial neural networks 
have been around is the fact that AI systems are basically black boxes. The 
underlying decision-making capability is not in a human-understandable form. The 
explainable artificial intelligence (XAI) is an important new concept that has been 
formed with the intent of increasing trust in AI by allowing cyber security experts 
to study and understand the data evidence used and the causal reasoning that is 
implemented [60, 61]. 

In a sense, AI systems have a grasp of many concepts related to cyber security 
and thus very rarely exhibit a lack of understanding. However, they show a lack of 
judgement, meaning that they know about all the necessary concepts but still make 
wrong classifications. An example of this kind of artificial stupidity would be a face 
recognition algorithm that classifies a face on a shirt as a face [62]. This needs to be 
kept in mind when assessing what AI systems to implement and where to implement 
them. 

When the AI systems start to become more common, they will start to attract 
more and more attacks. This means that the systems themselves and the data that 
they use to learn has to be kept secure. It is possible that totally new security controls 
will need to be developed and implemented when AI systems are in use [35]. 

Taddeo et al. [35] propose three actions that help in building trust in AI systems: 
in-house development, adversarial training and parallel monitoring. They argue 
that it is more important to develop an AI system in-house because in the event 
of a breach of a cloud system, the AI model and data will be compromised. 
Adversarial training places similar AIs against each other to test their functionality
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and robustness. In parallel monitoring, the system is continually monitored against 
a similar system to notice anomalous behaviour. 

As has been seen before, due to the lack of resources, these points will be difficult 
for SMEs to accomplish. Therefore, they have no option but to have an inherent 
trust in the AI systems if they want to implement them. On the other hand, due to 
the nature of new and emerging threats, they will probably have no choice but to 
implement all the possible security controls, AI and non-AI, that they have access 
to and can afford. 

7 Conclusions 

Some artificial intelligence (AI)-based tools were studied from the viewpoint of a 
small- and medium-sized enterprise (SME) user. The size of an SME does not secure 
it from cyber-attack, and it is subjected to the same regulations as larger enterprises. 

One important finding was that AI is already implemented in many tools that are 
available to SME users, and therefore, it is actually already working to secure SMEs 
if they have those tools implemented. 

The usability of the tools is an important factor governing the proliferation of the 
tools within the SME community. An AI usability index (AISTUI) was developed 
to measure the usability of the tools. 

The AI-based tools were then placed into an AI-enabled extension of the NIST 
framework. The AI tools work naturally as a cycle between the ‘detect’ and 
‘respond’ functions of the framework. For this to work, the AI tools need to have a 
mandate to make changes to the system, either by modifying files or network rules. 

A discussion of AI tools also showed that they are not without challenges for 
SME implementation. They are black boxes that need to be inherently trusted, and 
SMEs do not have the infrastructure to safely test them in a proper environment. 

Due to the rapidly changing threat environment, SMEs can be left vulnerable if 
they do not implement all controls, both AI and non-AI that they are able to. 
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On the Cybersecurity of Logistics 
in the Age of Artificial Intelligence 

Mikko Kiviharju 

1 Introduction 

Operational technology (OT) refers to industrial automation and control systems, 
such as SCADA systems, IoT, and the like. The official (draft) ISO definition 
[7] for OT is “technology for detecting, managing or causing change through the 
monitoring or control of a physical entity.” 

OT lies in the heart of many transport and logistics sector infrastructure, such 
as aviation, maritime, railways, and supply chain systems. Each of these logistics 
domains is under a constant stream of cyberattacks worldwide, as shown by recent 
OT threat reports [15] and related CI subdomain incident maps [6], and the rate is 
increasing. 

Artificial intelligence and its most prominent implementation type, i.e., machine 
learning, have risen in the last decade into a whole new paradigm to build different 
ICT software components. This new paradigm is today present in traditional office 
IT systems as well as industrial automation systems. Many of these IT/OT systems 
are controlling infrastructure that is considered part of CI. It is then desirable to 
have a high level of assurance on the cybersecurity of these components. There is, 
however, a growing number of new unexplored inter-system interfaces accompanied 
with a general lack of knowledge, how the components under this new paradigm 
behave under adverse circumstances. 

It has been argued [1] that “in essence, AI is software and therefore software 
security measures can be transposed to the AI domain” to some extent at least. 
However, there are other aspects to consider as well: 
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1. Information security philosophy: the basic enabler for software vulnerabilities 
in traditional IT systems lies in the poor understanding of what the exact 
software implementation functionality is, with all the unintentional side effects. 
Companies and organizations go to extraordinary lengths to gain more assurance 
that a given software component completes its intended tasks well, and only 
those. However, in ML systems, there is (at least before the advent of realistic 
explainable AI) even less understanding of the exact borders of the functionality 
of the component. It is even one of the main goals of AI systems to be able to 
extrapolate and keep learning from new data, which then undermines one of the 
basic information security tenets of being able to exactly divide the system into 
secure and insecure states. 

2. Dependence on data: aside from (rather static and well-known) configuration 
data, conventional systems cybersecurity can be considered fairly independently 
of the data they process. On the other hand, the functionality of anML component 
is deeply intertwined with the data it processes, and the security aspects need to 
incorporate the content of the input as well. 

3. Ecosystem-wide concerns: ML components are not just used as replacements, 
but also as a service. The theory and practice of secure outsourced computing 
is markedly younger than the field of information security, let alone secure 
outsourced, mediated, or federated AI systems. 

4. System structural details: many neural network-based ML components work in a 
parallel configuration with a very large number of parameters, and the formation 
of these parameters is typically a black box for the developer. Thus, for the 
outside viewer, each inference activates the ANN nodes in an unpredictable way 
(until observed). Even if the I/O behavior and intended functionality of a software 
component stay the same when it is replaced by an ML-enabled version, the 
cyberattack surface may be drastically different from the conventional software 
version. Another example is the common requirement of logging the actions 
of critical security components. Given their black box type operation, it is not 
even clear what this logging requirement should produce to provide sufficient 
traceability. 

The current research on cybersecurity of machine learning stems from general-
ization of known attack types, such as evasion or model extraction. There is still 
a lack of widely accepted and generalized theoretical security framework in the 
research of ML cybersecurity, resulting, e.g., in the incomparability of research 
results [1]. 

There is a recognized gap between general-level cybersecurity guidance for 
AI and domain-specific recommendations to securely operate AI systems as part 
of other systems—it is indeed unknown, where the border between general and 
domain-specific guidance should lie [1]. 

The task of protecting OT systems is heavily linked to safety aspects, which 
result in different or differently prioritized goals from the conventional information 
security CIA triad (confidentiality, integrity, and availability). Building systems that
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will try to optimize partly contradictory goals is very delicate, and unexpected 
features and behavior are likely to occur, which again increases the cyberattack 
surface of these systems. 

2 Modeling Cybersecurity of OT and ML 

2.1 Protection Goals 

The basic information security goals are centered around confidentiality, integrity, 
and availability (the “CIA-triad”). Extensions include more refined concepts of 
integrity to the list, such as authenticity and non-repudiability in information 
assurance (IA by NIST [9]). Authenticity can also be seen as the integrity of origin 
of message sender information and non-repudiation as the integrity of “who did it” 
or information of action (e.g., of using a digital signature key). Extensions of the 
confidentiality concept exist as well, such as confidentiality of personal identifiable 
information (privacy). 

Often, the information security goal statement also depicts their priority: con-
fidentiality of, e.g., business plans is considered primary to the correctness of 
language therein. However, when the information security is used within the broader 
scope of cybersecurity, other options such as system (e.g., database) integrity may 
be paramount. 

Operational technology is primarily safety-oriented, and the information security 
protection priorities may be reversed and new ones added: the ISO standard for 
industrial control systems defines the CIA priorities to be in the order AIC [74], and 
often a fourth element, control, is added first [12]. Control refers here to the ability 
to control processes so that process state changes are both safe and secure. This set 
of priorities is referred to as CAIC. 

In logistics, supply chain management plays a pivotal role, and the protection 
goals are again somewhat different (in this order): authenticity, integrity, confiden-
tiality, and exclusivity, or AICE [13]. In the AICE priorities, authenticity refers to 
non-counterfeit components and exclusivity to the control of the chain by authorized 
stakeholders only. 

Adding new goals becomes a problem, if some of the goals are contradictory to 
each other or their priorities do not match. This may have unexpected consequences 
in machine learning [8]. 

Machine learning presents itself as a technology to be utilized within IT and 
OT. Thus, the ML protection goals themselves are inherited from the domain of 
use. However, as ML dependency on data is markedly heavier than in conventional 
systems, protection of data integrity contributes more to overall system protection 
goals than in “plain” IT. 

The German main standardization organization DIN noted that for ML-based 
OT, it may not be possible to require worst-case analysis from all possible situations
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(which is the current norm in safety-critical applications), since the universe of all 
the possible states for an ML component is so huge. Instead, even safety situation-
dependent assumptions checked at runtime would be more efficient [120]. 

2.2 Threat Models in ML 

The discipline of cybersecurity inside machine learning is rapidly emerging and 
taking form, e.g., including the AI incident database (AIID, [17]) and MITRE 
ML-specific practical cybersecurity model (ATLAS, [18]). Furthermore, training 
and operating an ML system is a complex task that leads to numerous unintended 
functionality (misclassifications). However, our scope in this paper is intentional 
attacks. 

Most cyber threats against ML systems stem from conventional threats against 
systems or system software. Some new types emerge due to the importance of 
data, including evasion, poisoning, backdooring, and model and data privacy [128]. 
Evasion, poisoning, and backdooring attacks are data integrity attacks at different 
ML data life cycle phases: evasion during the inference phase and poisoning and 
backdooring during the training phase. Backdooring attacks are more targeted than 
poisoning attacks in that they only target a smaller set of the training data. 

The official threat models for machine learning [127, 128] are becoming more 
formal and inherit the model partitions from cryptography: adversarial knowledge 
of the target is separated as one independent axis, and the goal of the adversary is 
concretely described in classes, based on the attack. This is depicted in Fig. 1 below. 
Depending on the attack type, adversarial knowledge and goals can be formalized to 
a rather detailed level [21]. Some authors consider a third dimension with the attack 
type tailored for OT [39]. 

Fig. 1 Machine learning attack model for data integrity in evasion attacks. (Adapted from [128])
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The adversarial knowledge available to the attacker can be categorized as 
follows: 

• Black box: no information about the ML model is assumed, with only some 
samples of the ML decisions available or a stronger model with sufficient number 
of samples to estimate the output distribution (oracle access). 

• Gray box: some information about the ML model and training setup is available. 
• White box: all information about the model and its training is available, including 

the possible defenses. 

Detailed attacker goals vary between attack types, but for, e.g., evasion and 
poisoning, the goals with increasing difficulty (or specificity and thus with larger 
impact) are as follows: 

• Confidence reduction refers to any misclassification, failure to classify, or false 
decision by the ML model, whether it has deeper cybersecurity consequences or 
not or whether it happens with a high reliability or not. 

• In misclassification, it is assumed the ML model will output an unintended but a 
valid classification/decision with a significantly higher probability than normal. 

• Targeted misclassification allows the attacker to define to which class the output 
falls into. 

• Evasion, poisoning, and backdooring attacks can each have all these attributes. 

Adversarial attacks do not apply for all of the AI types but are mostly specialized 
for artificial neural networks (ANNs). For example, the Adversarial Robustness 
Toolbox implemented proof-of-concept adversarial attacks against AI [28], but 
it contains extra-ANN attack techniques (of the total of nearly 80 techniques) 
only for decision trees (3 techniques) and support vector machines (2 techniques). 
Completely missing are such categories as Bayesian approaches, K-nearest neigh-
bor, and Q-learning. Other sources identify adversarial ML attacks also against 
reinforcement learning. 

2.3 Attack Surface of Combined Technologies 

The current mainstream practice of cybersecurity is based on conventional IT 
systems with their protection goals, standardized technologies, short life cycles, and 
specifically resourced and trained personnel. The OT systems work with the CAIC 
protection priorities instead of CIA and use sometimes very old legacy technology 
with no possibilities to upgrade. We argue that this creates a whole new attack 
surface domain that needs to be addressed independently from the IT domain. 

Additionally, when we consider machine learning components, they are heavily 
dependent on data, especially in the learning phase but increasingly also in the 
operational (inference) phase. Due to this heavier interdependency, ML systems 
can also be attacked differently via manipulation of data. This creates conceptually
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Fig. 2 Attack surface of different domains, with dependency of data 

Fig. 3 An example of an attack path through different domains 

yet another attack surface domain and the need to address data separately from the 
functionality of the system. 

When these new domains are collected, the attack surface domains can be 
presented as in Fig. 2. 

The attack surface for data decreases with the amount of data needed to make 
the system operational (configuration data), such as ANN node weights, a firewall 
rule list, or a preferred value range for an industrial control system actuator. 
Configuration data for OT is generally simpler than for IT systems, relative to 
system overall complexity. 

These attack surface domains are not independent. Each domain contains internal 
threats, but there are also cross-domain threats: ML systems are used as intrusion 
detection systems (IDS) to look for suspicious activity and indicators of compromise 
(IOC). However, if these systems are themselves attacked, the implications are wider 
and may enable further attacker progress in the IT and OT domains. An example is 
depicted with SWaT (Secure Water Treatment—testbed OT system) [14], where a 
cyberattack against waterflow functions is camouflaged with an additional evasion 
attack against the IDS, the purpose being to fool the ML implementation inside the 
SWaT IDS to predict future behavior of sensors incorrectly, thus hiding the IOCs. 
The course of the attack through the attack surface domains is depicted in Fig. 3.
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The ML implementations are mostly regular IT software and include conven-
tional IT vulnerabilities, such as integer overflows, improper input validation, etc. 
(in [21], 21 different vulnerabilities concerning popular ML software libraries from 
2018 forward listed in the CVE database were identified). 

2.4 Emerging ML Kill Chains 

The MITRE Corporation has developed frameworks to identify typical cybersecu-
rity offensive and defensive operations tactics and techniques,1 arranged by what 
is considered a typical cyberattack life cycle, “kill chain.” The frameworks are 
constantly evolving since they are based on recognized attacks and research. The 
defensive framework is called D3FEND [20] and the offensive framework ATT&CK 
[19]. Neither framework catalogs procedure-level specifics of attack/defense meth-
ods. 

MITRE has also gathered information on domain-specific attacks, such as for 
ML (called ATLAS [18]) and industrial control systems (part of ATT&CK). The 
ATLAS tactics are ML-specific techniques grouped according to ATT&CK tactics, 
with two ML-specific tactics additions: ML Model Access and ML Attack Staging 
(see Fig. 4). The ATLAS modeling is based on 16 case studies (e.g. [13]) as of 
the time of this writing. According to a survey [21], real-world cyberattack2 stages 
against machine learning components roughly follow the life cycle suggested in 
ATLAS, so there is evidence that it realistically models the current state-of-the-art 
for the typical cyberattack against ML implementations. 

From the data available in ATLAS, it is evident that currently both defensive and 
offensive strategies in cybersecurity consider the ML components as a black box: 
attack paths have an overall arch following conventional IT domain cyberattacks, 
but the ML-dependent attack tactics are addressed completely independently and 
their vulnerabilities and techniques only inside the ML domain. 

A natural question is then whether the attacks against ML components in the 
logistics applications also fit in this model. However, as it will be explained later, 
there is too little data to answer this question even qualitatively.

1 In the offensive model, tactics, techniques, and procedures (TTP) is the behavioral description 
of a cyberattack. Tactics describe the current and immediate generalized goal of the attacker, such 
as privilege escalation. Techniques, listed per tactic, are generalized known ways to achieve the 
tactic. Procedures are case-specific details of a particular technique. 
2 Taken from the ATLAS incident database and AIID. 
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Fig. 4 Comparison of cyberattack tactics in MITRE ATLAS and ATT&CK frameworks 

3 Cyber Threat Landscape in Logistics 

3.1 General 

In order to form a comparable risk profile of cyberattacks in logistics and/or 
transportation sector, information about known attacks is required. Statistics from 
different sources is listed below: 

• Waterfall security has produced an OT threat report [15], which includes 116 
different cyber-incidents against OT with physical consequences between 2010 
and 2022. Thirty-five of these concern transport sector, and the overwhelming 
majority of them (27 cases) were ransomware attacks. In four cases, the threat 
actor was a nation-state or a politically motivated hacktivist group, and in five 
cases, the purpose or threat actor remained unknown. 

• In an ICS incident database [22], 134 cyber-incidents3 (not necessarily with 
significant consequences) between 1994 and 2023 were listed aimed at trans-
portation, aviation, and automotive industries. Of these, 63 were ransomware 
attacks. Smaller portions included data breaches and website defacements. Many 
of the purposes or methods remained unknown due to limited disclosure. 

There is then good evidence that for the recent years, ransomware forms the 
biggest threat to the logistics industry. This also indicates that the most common 
threat actors are criminals. Nation-states remain a significant threat, but with some 
exceptions they have not been interested in criminal cyber operations, although they 
may allow domestic criminal activity or even support them if the target nation is 
seen as adversarial.

3 Plus 16 incidents listed as glitches. 
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From the point of view of tactics, however, the dominance of ransomware 
conveys too simplistic a picture: asking for a ransom is merely a criminal business 
model – the actual hacking tactics and techniques are as varied as with any other 
types of motive. 

3.2 Domain-Specific Developments 

To form a deeper picture of tactics and techniques used against logistics, domain-
specific threat profiles present an alternative view. 

ENISA monitors the cybersecurity of the transport sector on a regular basis. The 
report of 2023 covers 98 cyber-incidents in 2021–2022 [71], and the sector-specific 
number of incidents was as follows (with very little yearly variation): 

– Aviation: 27% 
– Road: 24% 
– Railway: 21% 
– Maritime: 18% 

This indicates a rather evenly distributed threat and suggests that the need for 
protection is equally dire in all transport modalities. 

Following the trend in [15], ransomware and financial gain were the main 
motivators, although attacks against maritime and railway sectors were performed 
for political purposes by nation-state actors as well. A peculiarity in the aviation 
sector was scamming using fraudulent airline websites. 

The attack distribution between IT and OT systems was heavily centered in 
the IT systems, especially in the railway sector. However, incidents involving OT 
and ransomware were predicted to be on the rise. The data are in accordance with 
findings of domain-specific surveys [6, 23, 70]: 

• In aviation, only two incidents (in [6]) revealed some connections with ML or 
OT: virus detection AI models used, e.g., by Air Italy being stolen in 2019 [67] 
and a data breach at US aerospace ICS technology subcontractor Parker Hannifin 
[68].4 

• The most used points of attacks in maritime were ([23]) the privately owned 
operators’ basic office IT infrastructure off-ship. Only about one-fifth of the total 
number of attacks involved OT systems as their attack points. ML components 
were not mentioned. 

Cyberattacks against supply chains are usually discussed separately. Supply 
chain attacks aim to exploit more vulnerable organizations to get access to targeted, 
usually more secure organizations via the supply chain. According to ENISA report

4 However, the published incident reports are very high level and rarely reveal individual 
technologies compromised. 
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analyzing 24 supply chain attacks from 2021 to 2022 [72], the attackers were mostly 
targeting suppliers’ software (codebase) to attack the actual targets with malware 
or trust relationships to exfiltrate target confidential data, such as customer base 
and trade secrets/IPR. Supply chain attacks predominantly target conventional IT 
systems: the study contained no mention of OT, AI, or ML technologies. 

3.3 Threat to ML Use Cases in Logistics 

Machine learning in logistics and supply chain management serves mainly three 
purposes [25]: 

1. Prediction (of demand, material flows, etc.) 
2. Optimization (of material flows, fleet management) 
3. Detection (of abnormal behavior, including cyberattacks) 

Optimization of industrial processes may also require machine learning compo-
nents during planning (IT systems) or during process monitoring (OT systems). 

Additionally, there are many autonomous tasks that do not fit well under process 
optimization, such as autonomous vehicles (even though the autonomous system 
itself might be used for process optimization). We will thus adda a fourth category 
with autonomous vehicles/robots. 

After identifying the main use cases, each of them is investigated, whether there 
are published attacks known to affect these systems particularly (excluding larger 
campaigns that have affected entire infrastructures) or if such have been described 
in related research papers. This is depicted in Table 1. 

Smart port prediction and analysis with ML is a wide topic and includes such 
subtopics as (listed in [42]) demand prediction (e.g. container throughput), land 
and seaside operations (such as truck traffic and crane productivity), and safety 
(collision risk [41] and ship detention risk). The literature search included all of 
these subtopics. 

Machine learning in supply chain management (SCM) can be divided into sup-
plier selection and segmentation, risk management, demand and sales estimation, 
vehicle routing, demand prediction and inventory management [43]. Those areas 
of SCM, which are applicable for logistics scenarios, are addressed individually in 
Table 1. Sales estimation, supplier selection, and segmentation are deemed to be out 
of scope here. 

The purpose of using machine learning in intelligent transport systems (ITS) 
is mostly the same across different modalities: situational awareness (location, 
surroundings, and possible objects), collision avoidance, and route/trajectory opti-
mizations [58, 59, 62]. Modality-specific uses are as follows: 

• Smart drones: for resource management, mobility management, surveillance and 
monitoring, power control and security management [58]
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Table 1 Main use cases for machine learning in different logistics applications with domain-
specific research and incidents 

Use case Theorized attacks Known attacks 

Prediction 

Arrival time forecasting [27] (None identified) (None identified) 
Demand forecasting [26, 27] [31, 32] (None identified) 
Traffic flow prediction [24, 27] [34]a (None identified) 
Location prediction [27] (None identified) (None identified) 
User behavior prediction [26] (None identified) (None identified) 
Predictive maintenance [24] [35, 36, 38] (None identified) 
Smart port prediction and analytics [29] (None identified) (None with ML identified)b 

Optimization 

Industrial process optimization (IT) [27] [44] (None identified) 
Industrial process optimization (OT) [69] (None identified) 
Vehicle routing [24, 27] [45]c (None with ML identified)d 

Intermodal transportation optimization [26] (None identified) (None identified) 
Warehouse optimization [24] (None identified) (None identified) 
Traffic management and policing [24] [52] (None with ML identified) 
Traffic signal optimization [24] (None identified) (None with ML identified)e 

Travel pattern recognition [24] [53] (None identified) 
Detection 

Intrusion detection systems (e.g.[24, 29, 30, 
37]) 

[14, 33] [54, 55] 

Transportation anomaly detection [27] [57] (None identified) 
Anomaly detection in sensor data [24] [14, 33, 37], Toolsf [56] 
Autonomous vehicles 

Smart drones, drone swarms [60, 61] ML tools and PoCs 

Self-driving (passenger) cars 
Package delivery robotic cars 

[48, 51]g Tools and PoCsh 

Driverless special-purpose cars (e.g., aircraft 
towing [24], road works protective vehicle 
[24]) 

(None identified)i (None identified) 

Autonomous ships [62, 63] ML PoCs 

Autonomous trains [24] (None identified) (None identified) 
aAdversarial activity on network traffic flow predictors is excluded here due to the different 
specifics of the data in both application areas 
bThere are documented cyberattacks against ports that can be deemed “smart” [40],  but it is  
uncertain whether prediction and analytics components were affected 
cThe method is for a more general type of reinforcement learning, but the authors cite applicability 
to vehicle routing 
dVehicle routing/traffic management in general is a target for cyberattacks [47] 
eThere are cases, where the MQTT CAM messages to the traffic lights have been unauthenticated, 
but this is outside the scope of ML algorithms [46] 
fCleverhans used against IoT-IDS 
gSurveys. Package delivery robots essentially share inference time threat with self-driving cars 
hEven though many vulnerabilities have been demonstrated, an actual intentional attack is yet to 
be seen [50]. However, this is deemed as a real possibility [49], which is why the threat level is 
raised 
iThe adversarial resiliency of aircraft towing pathfinding ML types is researched in [65, 66], but 
not with airport data
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• Drone swarms: for resource allocation (for the wireless channel and computing) 
and massive aerial access [59] 

• Autonomous trains and ships: for decoding natural language information [62, 64] 

Compiling Table 1, we have chosen to be very conservative on our criteria when 
an attack, attack tool, or research can be said to be applicable for a particular use 
case. We expect use case-specific simulations or data to be reported to qualify for 
a specific use case. Some care when reading the table is then advised: many of the 
researched attacks and tools may not require significant effort to transfer from one 
use case to another. However, ML implementations are typically highly dependent 
on training and inference data, which again is very use case dependent. We then 
postulate that unless there are use case-specific experiments or specific transfer 
learning methods used, there is still a sufficient barrier to cross for cyberattack 
techniques to affect some particular use case. 

Additionally for Table 1, we have only considered attacks or research that aims 
to manipulate the system or component in some way. Thus, privacy-related attacks 
and data leaks or breaches are left outside the scope here. 

Based on the survey by Akbari et al. [25], the main ML types used in ML 
for logistics and supply chain management are different types of artificial neural 
networks (ANNs), but a surprising number of more specialized or older technologies 
still prevail, such as Bayesian approaches, decision trees, fuzzy logic, and support 
vector machines (SVMs). As many of the modern cyberattacks against ML focus on 
ANNs and SVMs, some of the older or more specialized components are not under 
significant threat of advanced ML cyberattacks. The distribution of AI technologies 
is not particularly peaked on any specific logistics subdomain or purpose [26, 
27]; instead age and individual problem scoping are more defining factors here. 
Bayesian approaches and decision trees are also very transparent in their operation 
(“explainable AI”), which contributes to the safety of the logistics process. A 
notable trend is that within the different logistics domains, ANNs are more popular 
in industrial process optimization than in other logistics domains. 

From Table 1, systems that are only subsystems of a larger entity (such as arrival 
time forecasting for intelligent transport systems) are not primary targets for cyber-
attacks. However, critical subsystems (such as demand forecasting subsystems) may 
warrant research as part of risk analysis of the whole and demonstrate the attack 
potential for such systems. 

Many of the applications where ML is used are interesting enough to warrant 
real-life cyberattacks, even though they do not (yet) target the ML components. 
The applications that are already targeted, but for which there is even no relevant 
research, are high-risk areas. 

We categorized the use cases by the two attributes researched: whether there is 
use case-specific research on adversarial AI attacks or if there are additionally (or 
independently) known cyber-incidents on the use case in general or even some ML-
specific tools and proofs-of-concept (PoC). This categorization is shown in Fig. 5, 
with the different use case types color-coded. 

In the four-quadrant matrix of Fig. 5, we name the cells as follows:
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Fig. 5 ML use cases categorized according to the maturity of the threat 

• Cell 1 (lower left), “adversarially uninteresting”: application areas that are highly 
specific, very experimental to be in wide use, close to lower hanging fruits, or 
developed mostly as closed platforms. There is little research, or the research is 
too general for straightforward application. This cell contains mostly prediction 
and optimization applications, accompanied by some specific/closed autonomous 
systems. 

• Cell 2 (upper left), “emergent”: areas which are seen as interesting, but the 
adversarial techniques are still being developed. Tools development is still slow 
or constrained to targeted cyber operations under cover. This cell contains 
prediction and optimization areas that are more crucial to organizations and 
systems or closer to the public interfaces of the system. 

• Cell 3 (upper right), “active”: areas where the cyber arms race within the AI 
techniques is already happening. This cell does not include any predictive cases 
(yet), but some optimization and detection applications and many autonomous 
systems. 

• Cell 4 (lower right), “blind spot”: there are some use cases that are interesting 
to cybercriminals and cyber intelligence, but for which there is virtually no case-
specific research or experiments. From a cybersecurity point of view, this cell 
should be sparsely populated, since attacks falling to these areas will face very 
little resistance. 

When looking at the published cyber-incidents against machine learning com-
ponents in logistics use cases, there are only relatively few of them. This may be 
due to mainly three reasons: (1) the whole area of practical adversarial machine 
learning is still emergent, and the majority of the existing hackers’ toolset is still 
meant for non-AI purposes; (2) logistics and OT system life cycles are an order of
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magnitude longer than IT systems, which means that ML components are not yet 
that common in logistics yet, and (3) logistics ML components are not usually very 
visible or immediately critical (prediction and optimization), which means that the 
motive for attacking them is mainly financial, and thus there needs to emerge a new 
and efficient way of monetizing the faults in ML in this context. 

4 ML and OT in Normative Texts 

4.1 General 

Artificial intelligence and machine learning have been under intense normative 
work both in horizontal and sectorial standardization organizations [1] and also in 
governmental legislative and normative institutions. An EU project on following AI 
standardization [1] lists over 250 standardization initiatives already in 2021. 

To understand how artificial intelligence and machine learning cybersecurity in 
logistics applications have been addressed in different standards and directives, 
it is instructive to have a glance from two sides of the picture: whether those 
normative texts intended specifically for AI/ML cybersecurity address any logistics 
applications and, on the other hand, if cybersecurity standards intended for logistics 
address any AI-/ML-specific issues. 

Our assumption here is that general frameworks do not specifically address 
application domains (such as logistics), and we will thus focus on sector-specific 
standards. Our selection of general AI/ML cybersecurity standards will be narrower 
and based on the work in [1]. 

4.2 General Normative Frameworks on AI/ML 

The general AI/ML framework standards selected for closer examination are based 
on the survey by ENISA [1]. The criteria used for selection is that the standard 
should address the technical cybersecurity of the ML components themselves on 
the data plane, i.e., discuss the security against ML-specific attacks, such as data 
poisoning or evasion. Many of the standards are under development, and in such a 
case, data may not be available, in which case we leave it out of scope in this survey. 

In addition, we have selected some other prominent guidance for AI from NIST 
and national contexts (German DIN). Many of the texts do not yet have official 
standard’s status but are either drafts or technical reports. However, they still offer an 
indication which AI/ML applications or application domains each standardization 
organization is considering. The findings are presented in Table 2. 

In Table 2, the standardization organization name has been omitted in the 
standard name for brevity. From Table 2, AI cybersecurity standards do not yet
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Table 2 Snapshot of AI/ML cybersecurity standards and their relation to logistics 

Standard Ref. Description 

International Standardization Organization (ISO) 

20547-4 [121] ISO 20547-4 is the security and privacy portion of the ISO Big Data 
Architecture. This does not concern ML techniques per sé, even 
though ML components may benefit from the architecture 

23894 [122] ISO-23894 is a recent standard about AI risk management. It is dual 
to NIST AI RMF [118] and thus does not address application 
specific areas 

TR 24028 [123] The technical report 24028 surveys the concept of trustworthy AI 
more deeply but does not delve into application areas 

TR 24029-1 [124] Technical report 24029-1 researches the possible robustness metrics 
of ANN-based ML. It does not address logistics directly, but the 
specific metrics for image perturbations have relevance in many OT 
applications including self-driving cars 

TR 27563 [125] Technical report 27563 considers best practices for mostly 
privacy-related issues in ISO AI use cases [24], including logistics 

AWI 27090 

This standard is in predraft stage, and no information 
other than the title: “Cybersecurity – Artificial 
Intelligence – Guidance for addressing security threats 
and failures in artificial intelligence systems” is yet 
available 

TR 29119-11 [126] Technical report 29119-11 is a part of software-testing documents, 
and this one focuses on AI software specifics to clarify the possible 
acceptance criteria for such systems. This is application area 
agnostic: it acknowledges the different use cases but does not 
elaborate on them. The next version of the document is still in 
predraft stage 

European Telecommunications Standards Institute (ETSI) 

GR SAI-009 [116] ETSI’s Industry Specification Group (ISG) on Securing Artificial 
Intelligence (SAI) has published nine group reports (GR) as of the 
time of this writing, and GR no. 009 is the general framework. Like 
all the other documents in this ISG, this does not address logistics 
specific areasa 

TR 103 674 [117] ETSIs Technical Reports (TR) touch on various aspects not yet 
standardized. TR for SmartM2M architectureb no. 103674 discusses 
the effect of AI to one such specification. The TR addresses 
trustworthy and verifiable AI, on an architectural level, and suggests 
mitigation strategies outside AI techniques. Other SmartM2M 
documents do not concern AI/ML. No logistics applications are 
mentioned 

National Institute of Standards and Technology (NIST) 

AI 100-1 [118] The NIST Trustworthy and Responsible Artificial Intelligence 
Resource Center (AIRC) has been tasked the development of 
AI-related guidance in NIST. Currently it lists six documents under 
its website. The AI risk management framework (RMF, the 
AI-100-series) is a collection of three documents. The main 
document AI 100-1 is an application-agnostic guidance that 
instructs the users in managing AI-specific risks. OT or logistics are 
not specifically addressed 

(continued)
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Table 2 (continued) 

Standard Ref. Description 

AI 100-2 [8] AI 100-2 is a companion document to AI 100-1, and it 
maps the ML-specific attacks and gives a taxonomy. It 
is also application agnostic, and logistics sectors are 
not addressed. AI 100-2 does, however, warn that using 
ML in the OT context is not as straightforward as in the 
IT context due to conflicting goals for the ML 
component 

AI 100-3 [119] AI 100-3 is an AI glossary. We list it here for 
completeness 

Deutsches Institut für Normung (DIN) 

AI standardization roadmap [120] The German main standardization body (DIN) has 
produced a roadmap mapping the needs for AI 
standardization. It has special sections on industrial 
automation, mobility, and logistics. The roadmap calls 
for revision of OT-safety standards (especially IEC 
61508) and ML testing and verification methods to be 
developed and standardized. Additionally, due to the 
safety-oriented security goals, and worst-case 
modeling complexity, dynamic risk assessment 
methods are recommended 
The roadmap does not consider cybersecurity-related 
issues for logistics applications but raises the need for 
interoperability for especially intermodal transport 
chains, which naturally will birth new seams to the 
total system creating new vulnerabilities 

aThe SAI ISG discusses “data supply chains,” but this is synonymous to AI “data life cycle” 
rather than describing a logistics application sector 
bSmartM2M, or machine-to-machine, essentially means OT 

give ready solutions for logistics and OT. Some problem and research areas are 
recognized, and many general guidelines are likely applicable to logistics sectors, 
such as image perturbation metrics in ISO TR 24029-1 [124] for self-driving cars 
or ETSI TR 103 674 architectural advice on developing trustworthiness to AI 
application in the OT domain [117]. 

In a regulatory context, EU has recently stepped up its regulation of machine 
safety and security by updating the machinery directive 2006/42 to 2023/1230 [10], 
which will become binding in the beginning of 2027. In an EU study in 2020 [11], 
AI was recognized as a technology, which also affects machine safety significantly. 
This concern is addressed in the new directive by subjecting systems with “fully 
or partially self-evolving behavior using machine learning” to official third-party 
evaluation (notified bodies). This essentially means that to receive a “CE” marking, 
those products that use unsupervised learning even during inference need a specific 
approval. 

The exact evaluation criteria for these components wait, as of this writing, the 
establishment of new EU AI regulatory framework. The latest proposal, however,
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will place those OT components implied by the machinery directive in the “high-
risk AI systems” category5 [4]. 

The new machinery directive also addresses cybersecurity as a part of the safety 
requirements indirectly: control systems should be able to “withstand . . .  malicious 
attempts from third parties,” and possible cybersecurity certificates can vouch for 
this property of systems. 

4.3 Sector-Specific Standardization of OTCS 

There are quite many operational technology standards that relate to cybersecurity 
(OTCS standards). These are briefly introduced in Table 3. The standards can be 
divided into horizontal and sector-specific standards as follows: 

• Horizontal standards: horizontal OTCS standards do not address sector-specific 
issues and expect that standards within different sectors be based on the 
horizontal standard and not contradict it. 

• Railway systems: a review study of OTCS standards in rail systems [2] found that 
the standards landscape is lagging behind other industries such as aviation. The 
standards in Table 2 concerning this sector are listed based on [2]. 

• Maritime (including port) systems: we included both onboard and portside 
standards and recommendations to our survey, listed in Table 3. 

• Aviation systems: different aviation systems, including onboard, air navigation 
services, and air traffic management systems, are traditionally very carefully 
designed and tested in the safety aspects of systems due to the high impact of 
threats that actualize. The International Air Transport Association (IATA) has 
compiled a list of relevant aviation cybersecurity recommendations [5], which is 
used as a base document in Table 3. 

• Automotive systems: the automotive industry has some existing standards for 
securing car-internal communications. However, when it comes to the totality 
of cybersecurity, more recent and consolidated standards emerge. 

• Supply chain security: Risk management in supply chains (SCRM) has tradi-
tionally focused on organizational maturity for different types of risks from 
external organizations affecting the product or business. Direct technological 
risks center around detecting and avoiding counterfeit (and consequently low-
quality) products, such as electronics. In a survey commissioned by US DOE 
[101], the author states that current cybersecurity SCRM standards and guidance 
texts do not adequately address the cyber threat for ICS in critical systems 
from the viewpoint of supply chain management. The survey lists 37 different 
international and US domestic standards and guidelines for cyber SCRM. Seven 
of these are related to OT or logistics and presented in Table 3.

5 The levels are “low,” “high,” and “unacceptable,” but the “unacceptable” systems are deemed to 
fall under criminal jurisdiction rather than formal evaluation 
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Table 3 List of most prominent OTCS cybersecurity-related standards and their relation to 
AI/ML 

Standard Ref. Description 

Horizontal 

NIST-SP800-82r3 [30] NIST Guide to Industrial Control Systems (ICS) Security 
(Rel 3) was published in September 2023, and it is a 
policy-/architectural-level guidance on building a secure 
OT system. Major part of the standard is based on guidance 
on applying the NIST Cybersecurity Framework (CSF 
[108]) for OT. Although the guidance suggests using ML 
for the detection of cyber threats, it does not address 
specifically the cybersecurity of AI/ML components 

ISA/IEC 62443 [74] IEC 62443 is an important family of standards for OTCS. It 
is a binding reference at least in railway cybersecurity [2] 
and maritime [3]. The standards were established in 2021 
as a horizontal standard. It is very comprehensive and 
addresses all abstraction levels from policies down to 
components, in 14 different documents (not all of them 
with a “standard” status). Although there are some portions 
in the standard that could be interpreted to be 
technology-specific (such as mobile devices and mobile 
code), AI and ML are not among them 

Railway systems 

CENELEC TS50701 [76] Standard by an EU standardization organization about 
railway cybersecurity risk management, based heavily on 
ISA 62443, with some technical elements as well. AI/ML 
not referenced 

AS7770 [73] This Australian standard is for cyber management and 
requirements for a secure system. AI/ML not referenced 

DIN VDE V 0831-104 [75] German standard for electronic signaling systems for 
railways, partly based on ISA 62443. AI/ML not referenced 

NCSA-FI 517957 [127] Finnish national security authority (Traficom) 
recommendation on cybersecurity in railways. Relies on the 
OT horizontal standards, NIST CSF, TS50701, and EU NIS 
directives. AI/ML not referenced 

UIC guidelines [78] International Union of Railways guidance on information 
security management and best practices of train signaling 
and telecommunications within railways. References ISO 
27001 and ISA 62443. Does not address AI/ML 

ENISA good practices [79] An ENISA study that regards the level of implementation 
of cybersecurity measures in the railway sector, within the 
context of the enforcement of the NIS Directive (v.2016). 
Contains typical scenarios for railway cyberattacks. Does 
not reference AI/ML 

CYRail D7.5 [77] CYRail (CYbersecurity in the RAILway sector) was an EU 
Horizon 2020 project, whose recommendations on 
cybersecurity for signaling and communications onboard 
the train were considered influential in [2]. No references to 
AI/ML 

(continued)
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Table 3 (continued) 

Standard Ref. Description 

Maritime systems 

IMO MSC-FAL.1/Circ.3 [82] International Maritime Organization’s high-level 
recommendations on maritime cyber risk management to 
safeguard shipping, including functional elements 
supporting cyber risk management. A brief statement, 
referencing NIST CSF and ISO 27001. AI/ML not 
referenced 

IACS R166 [83] IACS has a consultative status within IMO responsible for 
the technical safety standards. Recommendation no. 166 
on cyber resilience addresses technical design, 
construction, and testing aspects of ship’s onboard OT 
systems. Does not reference AI/ML 

IACS UR E26 [84] IACS unified requirements are binding policies for ships 
constructed after each member country organization 
ratification. E26 provides a minimum set of requirements 
for cyber resilience of ships (as a whole). AI/ML is not 
referenced as of April 2022 version, which was 
withdrawn September 2023 to wait for next version due at 
the end of 2023 

IACS UR E27 [85] As E26, but for onboard systems and equipment. Does not 
reference AI/ML either 

DNVGL-RP-0496 [86] DNV (GL) is an accredited verification body. The 
maritime sector of DNV is a member body of IACS. This 
guideline is for cybersecurity management down to the 
technical level leveraging BIMCO and IMO guidelines. 
AI/ML not referenced 

IEC 63154 [80] Standard for maritime navigation and radio 
communication cybersecurity. Specifies requirements and 
methods of testing against cyber-incidents on a technical 
level, but does not reference AI/ML 

BIMCO guidelines [81] BIMCO is an international shipowners’ association. It 
contains guidelines on cybersecurity onboard ships based 
on high-level principles. AI/ML not referenced 

ENISA port security [29] ENISA’s document on best practices of port security and 
security measures from policy level to technical. 
Document recommends using machine learning to 
discover cyber indicators of compromise (IOC) in the 
cyber-SOCs, but does not address specifically the security 
of ML components themselves 

Aviation systems 

EASA ED Dec.2020/006/R [87] EU Aviation Safety Agency is the main regulatory 
aviation body in EU. EASA’s decision no. 2020/006 
issued amendments to certain acceptable means of 
compliance (AMC) and/or guidance material (GM), to 
introduce cybersecurity guidance into certain certification 
specifications (CSs): aircraft cybersecurity was changed to 
include the requirement for protection against IUEIs,a and 
the Amendment 10 to AMC/GM Part 21 Issue 2 [88] talks  
about OT specific risks but does not deal with AI/ML 

(continued)
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Table 3 (continued) 

Standard Ref. Description 

EUROCAE ED202A [89] Many EUROCAE documents are used by EASA as 
airworthiness technical specifications. EUROCAE 
Documents (ED) 201-205 concern cybersecurity-related 
issues. ED202a concerns secure software development life 
cycle (SDLC) in cybersecurity in general. AI/ML is not 
addressed 

EUROCAE ED203A [90] This EUROCAE document is about secure SDLC tool 
qualification, which does not include AI/ML 

EUROCAE ED204A [91] The 204A is about secure operation of software products, 
and does not include AI/ML 

EUROCAE ED205A [92] The 205A is about ground systems security, and does not 
include AI/ML 

EUROCAE ED324 [93] A new standard draft under development from EUROCAE 
WG114 for AI. This is a process standard for development 
and certification approval of aeronautical products 
implementing AI. Expected to finish by the end of 2024 

ARINC 664 [94] Aeronautical Radio, Inc. (standards development now under 
SAE International) makes industry standards for avionics 
equipment. ARINC 664 specifies an Ethernet variant for 
Aircraft Data Network. Different parts of 664 are specified 
from 2005 to 2019. No references to AI/ML 

ARINC 823 [95] ARINC 823 is about end-to-end ISO OSI layer 2 encryption 
and key management for ACARS datalinks (divided in two 
parts). Does not contain AI/ML considerations 

ARINC 834-8 [96] ARINC 834 defines a set of protocols and services to 
transmit avionics data across aircraft networks. Supplement 
8 includes, e.g., data security enhancements. AI/ML not 
addressed 

ARINC 835-1 [97] The 835-1 document specifies digital signatures for 
downloadable software integrity, and does not consider 
AI/ML 

ARINC 852 [98] The 852 document is a security logging implementation 
guide based on NIST 800-92 and RFC 5424. AI/ML not 
referenced 

ARINC 858 [99] The 858 document specifies the Internet Protocol (IP) variant 
for aviation safety services and for message exchange to 
ground systems (divided in two parts). AI/ML outside the 
scope here 

A4A Spec 42 [100] Airlines for America make industry standards for aviation. 
Specification no. 42 is a technical and wide cybersecurity 
standard, encryption-heavy. AI/ML is not addressed here 

Automotive 

SAE J3061 [102] SAE International creates international technical industry 
standards mainly for automotive, but through acquisitions 
also for other sectors. J3061:2021 is recommended best 
practices for vehicle cybersecurity. This is a wide and 
relatively technical standard, but there is no notion of AI/ML 

(continued)
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Table 3 (continued) 

Standard Ref. Description 

ISO/SAE 21434 [103] SAE 21434 is a cybersecurity management-level document, 
and does not address specific technologies, such as machine 
learning 

ISO 21177 [104] ISO 21177 specifies a security protocol between vehicle 
network elements, leaving AI/ML out of scope 

UNECE WP.29 R155 [105] United Nations’ Economic Commission for Europe 
(UNECE) WP.29 produces vehicle regulations, which 
become binding for the contracting nations when they ratify 
them. Recommendation no. 155 is basically a type of 
approval regulation to use ISO/SAE 21434 for vehicle 
cybersecurity management system (CSMS). AI/ML is out 
of scope for this document 

NHTSA Best practices [106] National Highway Traffic Safety Administration (NHTSA) 
has issued cybersecurity best practices for cars. This is a 
requirements document, very brief on technologies. AI/ML 
is, however, addressed briefly in clause G.6 to prepare for 
sensor risks also from the ML perspective 

AUTOSAR [107] AUTOSAR (AUTomotive Open System ARchitecture) is a 
global development partnership of automotive industry, 
which publishes standards for software standardization, 
reuse, and interoperability for automotive electronic control 
units. It is basically a secure C++ middleware used also for 
cybersecurity. AI/ML is outside the scope, but AUTOSAR 
middleware can be used to implement ML functionalities 

Supply chain security 

ISO 20243 [110] The ISO 20243 document gives recommendations to the 
integrity of hardware and software ICT products, 
addressing the software supply chain. AI/ML is not of 
concern here 

ISO-28004-2 [109] The 28004-2 document is basically general security 
guidance for SMEs (small and medium-sized enterprises) 
to secure their supply chain 

SAE AS5553D [111] The AS5553D document is a aviation-specific standard for 
electronic parts and supplier management, procurement, 
traceability, and control. AI/ML is not addressed 

SAE AS6081A [112] AS6081A is similar to AS5553D, but it concerns 
distributors that purchase from the open market. AI/ML is 
not addressed here either 

SAE ARP6178A [113] SAE ARP6178A describes a risk assessment tool for 
aviation counterfeit electronic parts. AI/ML is not part of 
the risk assessment issues 

SAE ARP9134A [114] ARP9134(A) is a generic guideline for supply chain risk 
management for aviation; AI/ML is not mentioned 

UL 2900-2-2 [115] UL (Underwriters Laboratories) Solutions LLC is a 
US-based company specializing in safety (industry) 
standardization and certification. The 2900 standards series 
present general software cybersecurity requirements for 
safety-critical systems. Part 2-2 gives particular 
requirements for ICS. No AI/ML is addressed [88] 

aDecision’s term for “cyber”: IUEI Intentional Unauthorized Electronic Interactions
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Table 4 Overview of the OTCS standards in logistics (latest part publication year and relation to 
AI shown) 

~F 

Since “cybersecurity” as a concept is quite wide, many legal and user-centric 
documents were pruned from the list, trying to keep the focus on technical or 
technology-policy standards. 

4.4 Overview 

We have collected the overview of the data in Table 3 to Table 4. The sector-specific 
statistics of the OTCS standards are as follows: 

• Horizontal standards: two pcs, between 2021 and 2023 (average 2022) 
• Railways: seven pcs, between 2015 and 2023, average being 2019 
• Maritime: eight pcs, between 2016 and 2022, average 2020 
• Aviation: 13 pcs, between 2007 and 2024, average 2018 
• Automotive: six pcs, between 2021 and 2023, average 2022 
• Supply chain, between 2014 and 2023, average 2019 

The number of standards is only indicative, since this is not a complete list. 
The average year of the standards is more interesting: the overall average is from 
2019, making them about 4 years old. The largest variation can be seen in the 
aviation sector, but this may be due to the fact that airworthiness requirements have 
required more stringent and formal information security technological standards
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early on. This variation and the number of investigated standards also make aviation 
standards the oldest within different sectors. Somewhat surprisingly, automotive 
OTCS standards are the most current. 

The OTCS standards do not address machine learning at all or by merely 
recommending using ML-based IDS. Some of the reasons are obvious, such as the 
scope of the standard: ISO 27001, ISA/IEC 62443, and CENELEC TS 50701 are 
agnostic to many of the implementation level issues and will likely never need to 
address AI/ML technology-specific cyber threats. Adversarial machine learning has 
not been a significant issue in operational implementations mainstream before 2020, 
which is why older standards are not likely to acknowledge the technology in any 
case. Furthermore, AI/ML in logistics OT still relies on AI technologies outside 
ANNs, which may make many of the new attacks moot. From Tables 3 and 4, it 
is also to draw the conclusion that standardization organizations have so far been 
busier with OTCS standardization in general, not OTCS-ML issues specifically. 

Having surveyed the logistics, OT and AI/ML standards, and guidance from 
both general frameworks and sector-specific sides, it can be concluded that the 
intersection of machine learning, OT, and cybersecurity is still very much under 
research, and not in standards in any way. There are some developments in any case, 
and the situation may evolve rapidly by 2025, judging by the expected publication 
dates of many AI and OTCS standards. 

5 Discussion 

It appears the cybersecurity threat models for machine learning, both theoretical and 
practical, have already emerged, but there is still too little information available to 
verify if attacks against ML components in OT or logistics applications follow these 
new patterns. 

Standardization of ML and OT cybersecurity advances rapidly on both tracks 
independently, but there seems to be little interconnection between those tracks. 
There is, for example, a recent and wide coverage of OTCS standards in each 
logistics sector. However, the recent updates or completely new standards also 
indicate that there has not been time for applications and industries to adopt them. 

Cyberattacks and other offensive cyber activity are shifting slowly toward OT 
and ML implementations as well. However, making ML implementations resistant 
to different kinds of manipulation efforts seems to make them fragile if they are 
given partly conflicting security objectives, such as security and safety. This fragility 
will imply a challenge to the future implementations in safety-critical application in 
logistics. 

The safety-critical property in many OT systems is often thought to require 
absolute certainty of the absence of unsafe states from the system. However, this 
may not be possible to attain with ML implementations with exponentially larger 
state-universe. It may then be necessary to move to dynamic risk management 
models, if certain types of ML are used in safety-critical OT applications.
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Different AI and ML implementations outside ANNs have existed for some 
decades already and found their niche areas in OT as well. Some of these older 
techniques are easily verified and understood due to their simplicity and static nature 
during the inference phase. This is actually an advantage in safety-critical logistics 
applications. 

Based on the number of recent cyber-incidents,6 ML or OT systems in logistics 
are not under a major threat: the overwhelming majority of cyberattacks use 
offensive cyber methods against conventional IT systems rather than ML or OT 
systems. 

The future of OT and logistics IT in general will undoubtedly involve increasing 
use of AI and ML. It is therefore important to acknowledge the specific characteris-
tics of the application domain, for example, one defining attribute of the applications 
in the domain is their federation. Federated ML techniques will play a large role in 
logistics, and the security techniques used there need to be expanded from federated 
learning to other phases of the AI systems and data life cycle. 

6 Conclusions 

In this survey, we set out to map the landscape in the intersection of cybersecurity 
threats, machine learning, and logistics-related OT. Our null hypothesis was that 
this is still very much unchartered territory. There is indeed some research already 
available, but especially sector-specific applied research is very scarce. 

The main findings about the status quo of cybersecurity of ML in OT and logistics 
applications include, for example, that most known attack types directed particularly 
at compromising ML components are designed against ANNs. However, logistics 
applications have longer life cycles, and older AI types still cover a significant 
percentage of implementations in most domains and modes. Thus, in the current 
cyber threat landscape, many ML implementations in logistics are “under the radar.” 
This should not be taken as a security measure, though. 

The existing OT cybersecurity standards do not address ML at all or at most 
recommend using ML-IDS for cybersecurity. The landscape is changing, though: 
authorities are rolling out general AI cybersecurity standards and guidance with 
increasing speed. However, OT or logistics specific (AI cybersecurity) guidance is 
slower to emerge. Some development can be seen in the aviation sector, one example 
being future standard EUROCAE ED324 [93]. 

There is also a definite lack of applied research of the cyber resiliency of some 
important logistics ML applications in predictive and optimization models and even 
some blind spots, such as smart port analytics. 

Even though the focus area in this survey was the intersection of OT, ML, 
and logistics cybersecurity, the attack surface of the combination is actually

6 By October 2023 as of the time of this writing 
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multiplicative: combining IT, OT, and ML system and data domains will increase 
the attack surface sixfold. Attacks using almost all of these partial attack surfaces 
have already been tested (e.g., in red-teaming exercises against critical infrastructure 
OT). 
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Fuzzy Machine Learning for Smart Grid 
Instability Detection 

Fabio Martinelli, Francesco Mercaldo, and Antonella Santone 

1 Introduction and Related Work 

The rise of renewable energy sources offers a highly sought-after alternative to finite 
and environmentally harmful fossil fuels, meeting the global community’s demands. 
However, embracing these renewable sources presents new paradigms and research 
challenges, for instance, before the emergence of renewable energy, the traditional 
operating ecosystem involved only a few energy production entities supplying 
power to consumers through unidirectional flows [20]. Indeed, with the introduction 
of renewable energy options, end users, including households and enterprises, now 
have the capability not only to consume energy but also to produce and supply it. 
These individuals are commonly referred to as “prosumers,” as they act as both 
producers and consumers of energy [4]. Consequently, energy flow within smart 
grids has shifted to become bidirectional: the significant potential for flexibility 
within smart grids, which has been made possible by the adoption of renewable 
sources and the emergence of “prosumers.” However, this shift has also brought 
forth greater complexity in managing energy supply and demand within the system, 
leading to more challenging economic implications [19]. 

F. Martinelli (�) 
Institute for Informatics and Telematics, National Research Council of Italy (CNR), Pisa, Italy 
e-mail: fabio.martinelli@iit.cnr.it 

F. Mercaldo 
Institute for Informatics and Telematics, National Research Council of Italy (CNR), Pisa, Italy 

University of Molise, Campobasso, Italy 
e-mail: francesco.mercaldo@iit.cnr.it; francesco.mercaldo@unimol.it 

A. Santone 
University of Molise, Campobasso, Italy 
e-mail: antonella.santone@unimol.i 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
T. Sipola et al. (eds.), Artificial Intelligence for Security, 
https://doi.org/10.1007/978-3-031-57452-8_10

221

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57452-8protect T1	extunderscore 10&domain=pdf

 885 47436 a 885 47436 a
 
mailto:fabio.martinelli@iit.cnr.it
mailto:fabio.martinelli@iit.cnr.it
mailto:fabio.martinelli@iit.cnr.it
mailto:fabio.martinelli@iit.cnr.it

 885
52970 a 885 52970 a
 
mailto:francesco.mercaldo@iit.cnr.it
mailto:francesco.mercaldo@iit.cnr.it
mailto:francesco.mercaldo@iit.cnr.it
mailto:francesco.mercaldo@iit.cnr.it

 12518 52970 a 12518
52970 a
 
mailto:francesco.mercaldo@unimol.it
mailto:francesco.mercaldo@unimol.it
mailto:francesco.mercaldo@unimol.it

 885 56845 a 885 56845
a
 
mailto:antonella.santone@unimol.i
mailto:antonella.santone@unimol.i
mailto:antonella.santone@unimol.i
https://doi.org/10.1007/978-3-031-57452-8_10
https://doi.org/10.1007/978-3-031-57452-8_10
https://doi.org/10.1007/978-3-031-57452-8_10
https://doi.org/10.1007/978-3-031-57452-8_10
https://doi.org/10.1007/978-3-031-57452-8_10
https://doi.org/10.1007/978-3-031-57452-8_10
https://doi.org/10.1007/978-3-031-57452-8_10
https://doi.org/10.1007/978-3-031-57452-8_10
https://doi.org/10.1007/978-3-031-57452-8_10
https://doi.org/10.1007/978-3-031-57452-8_10
https://doi.org/10.1007/978-3-031-57452-8_10


222 F. Martinelli et al.

Relevant contributions on how to tackle the requirements of such new scenario 
have been offered by academy and industry over the past years [15, 16]. In the smart 
grid context, great interest has been devoted to the study of smart grid stability 
[8, 12, 19]. 

Indeed, within a smart grid, data on consumer demand is gathered and centrally 
assessed in relation to the present supply conditions. Based on this evaluation, price 
information is generated and sent back to customers, empowering them to make 
informed decisions regarding their energy usage. Due to the time-sensitive nature 
of this entire process, the dynamic estimation of grid stability becomes not just a 
matter of concern but a crucial necessity [3]. 

Simply speaking, the idea is to understand and plan for both energy production 
and/or consumption disturbances and fluctuations introduced by system participants 
in a dynamic way [13], taking into consideration not only technical aspects but also 
how participants respond to changes in the associated economic aspects (i.e., energy 
price) [17]. 

For the stability of a system with a smart grid, there are two main criteria to 
respect [12]: first, the generation has to match the demand at any time and has to hold 
a reserve (battery storage) for immediate outages. Second, the grid has to provide 
sufficient capacity for voltage stability at every smart grid portion. 

Considering the importance to detect instability situations in smart grids, in this 
paper we propose a method aimed to predict in real-time the stability of a smart 
grid. We consider fuzzy machine learning models by authors by taking into account 
also a kind of explainability, aimed to understand how the model is working from a 
global point of view. 

State-of-the-art research includes proposals to detect stability in smart grids. 
For instance, authors in [6] exploit extreme machine learning to predict smart grid 
stability by considering a dataset composed by 10,000 stable and unstable smart 
grid observations, by obtaining an accuracy equal to 0.98. 

Researchers in [7] evaluated the effectiveness of the Extreme Gradient Boosting 
model for smart grid instability detection by reaching an accuracy of 0.95. 

Zare and colleagues [22] design and developed an adaptive scheme for predicting 
out-of-step (OOS) condition of synchronous generator based on the Bayesian 
technique. For classifying target classes between stable and OOS conditions, a series 
of measurements are derived under various fault scenarios including topological and 
operational disturbances. The proposed approach is applied on IEEE 39-bus test 
system from which by using trained variables, the tripping signals are estimated 
online. They reach an accuracy equal to 91.6%. 

Aghamohammadi et al. [1] for early prediction of OOS condition of an unstable 
generator, propose a three-stage decision tree-based approach consisting of fault 
detector DT (FDDT), clearance detector DT (CDDT), and instability predictor DT 
(IPDT). The proposed algorithm is demonstrated on generators of IEEE 39-bus test 
system, obtaining an accuracy equal to 90.3%. 

Gupta and colleagues [9] adopt a convolutional neural network, whose input is 
the heatmap representation of the measurements, for instability prediction. They 
propose a continuous Online Monitoring System (OMS) for assessment of rotor
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angle stability in a power system. The OMS uses voltage magnitudes and voltage 
angles at all the generator buses as inputs, which are usually available from phasor 
(PMU) measurements. An accuracy of 89.22% is obtained by experimenting the 
proposed method on IEEE 118-bus and IEEE 145-bus systems. 

Arzamasov and colleagues [3] apply decision trees with the aim to discover 
situations of instability: they obtain an accuracy of 80% exploiting a four-node star 
architecture. 

With the Bagging Classifier, Tiwari et al. [21] obtained an accuracy equal to 0.97, 
while XGBoost classifier obtained an accuracy of 0.97 in reference [8]. Moldovan 
and colleagues [18] reached an accuracy equal to 0.93 with the multilayer perceptron 
classification algorithm. An accuracy equal to 0.99 is reached by deep learning 
models that are exploited by Breviglieri and colleagues [4] 

As highlighted by the state-of-the-art literature, researchers basically exploit 
artificial intelligence for smart grid stability detection. 

The main difference between the discussed papers and the proposed method is 
the adoption of fuzzy machine learning algorithms for smart grid stability detection. 

Fuzzy logic and artificial intelligence (AI) are two distinct but interconnected 
concepts within the field of computer science and decision-making systems. 

Fuzzy logic is a branch of mathematics and a formal logic system designed to 
handle uncertainties and imprecision in decision-making. Unlike traditional binary 
logic (Boolean logic), which uses crisp values of true (1) and false (0), fuzzy logic 
allows for intermediate values, which are expressed as degrees of truth between 0 
and 1. These intermediate values represent the degree of membership of an element 
in a set.  

Fuzzy logic is particularly useful when dealing with vague or ambiguous 
concepts, as it can handle linguistic terms and human-like reasoning. It finds 
applications in various fields, including control systems, expert systems, pattern 
recognition, and decision support systems. 

Artificial intelligence is a broad area of computer science that focuses on creating 
machines or computer programs capable of performing tasks that typically require 
human intelligence. AI systems can learn from data, reason, make decisions, and 
solve problems, often mimicking human cognitive functions. 

AI encompasses various subfields, such as machine learning, natural language 
processing, computer vision, robotics, and more. These AI techniques can be used 
in a wide range of applications, including autonomous vehicles, virtual assistants, 
fraud detection, healthcare diagnosis, and recommendation systems. 

Fuzzy logic and AI can be intertwined in certain AI systems, especially in 
decision-making and control scenarios. Fuzzy logic can be used to model and 
manage uncertainty in AI algorithms, making them more robust and adaptable 
to real-world complexities. For example, in an autonomous vehicle’s control 
system, fuzzy logic can be applied to handle imprecise sensor data or ambiguous 
environmental conditions. 

Furthermore, fuzzy logic can be integrated with machine learning algorithms to 
improve the interpretability of AI models. While some AI algorithms may provide 
accurate predictions, they might lack transparency in explaining the reasoning
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behind their decisions. Fuzzy logic can add a layer of interpretability by providing 
linguistic rules that human operators can understand, making the AI system more 
trustworthy and explainable. 

In summary, fuzzy logic and AI are both essential components of modern intel-
ligent systems, and their combination can enhance the capabilities and performance 
of AI algorithms, particularly in scenarios involving uncertainty and imprecision. 

The paper proceeds as follows: in the next section, we present the proposed 
method, in Sect. 3 the results of the experimental analysis are discussed, and, finally, 
in the last section, conclusion and future research lines are drawn. 

2 Fuzzy Machine Learning for Smart Grid State Detection 

In the following section, the proposed method aimed to detect stability and instabil-
ity in smart grids by exploiting fuzzy machine learning classification algorithms is 
presented. 

Fuzzy machine learning is a specialized area that combines concepts from 
fuzzy logic and machine learning. It aims to enhance traditional machine learning 
algorithms by incorporating fuzzy sets and fuzzy logic principles to deal with 
uncertainty, ambiguity, and imprecision in data and decision-making. 

In the following we discuss a set of aspects distinctive of fuzzy machine 
learning: 

1. Fuzzy Sets and Membership Functions: In fuzzy machine learning, instead of 
representing data as crisp values (e.g., 0 or 1), it is represented using fuzzy sets, 
which allow elements to have degrees of membership between 0 and 1. The 
membership function defines how much an element belongs to a particular fuzzy 
set. 

2. Fuzzy Inference Systems: Fuzzy inference systems are rule-based systems that 
use fuzzy logic to make decisions based on input data. These systems consist of 
fuzzy rules that define relationships between input variables and output variables. 
Fuzzy inference systems can be used for tasks such as classification, regression, 
and control. 

3. Fuzzy Clustering: Fuzzy clustering algorithms allow data points to belong to 
multiple clusters with varying degrees of membership. Unlike traditional hard 
clustering algorithms, where each data point belongs to only one cluster, fuzzy 
clustering assigns degrees of membership to each data point for every cluster. 

4. Fuzzy Decision Trees: Fuzzy decision trees extend traditional decision trees by 
incorporating fuzzy sets and fuzzy logic into the decision-making process. This 
allows for more nuanced and flexible decision boundaries. 

5. Fuzzy Support Vector Machines (SVM): Fuzzy SVM is an extension of the 
traditional SVM algorithm that uses fuzzy membership values in the formulation 
of the decision boundary. It can handle data with uncertainties and overlapping 
classes more effectively.
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Fig. 1 The workflow of the proposed method for smart grid stability detection by means of fuzzy 
machine learning 

6. Fuzzy Reinforcement Learning: Fuzzy logic can also be integrated into reinforce-
ment learning algorithms to handle the uncertainties and imprecise feedback that 
often arise in dynamic environments. 

Differently to classic machine learning, there are several advantages related to 
fuzzy machine learning adoption: 

1. Robustness to Uncertainty: Fuzzy machine learning methods can handle noisy 
or imprecise data, making them suitable for real-world datasets with inherent 
uncertainties. 

2. Interpretable Models: Fuzzy machine learning algorithms often provide more 
interpretable models than their traditional counterparts, making them valuable in 
decision-making systems where human understanding is essential. 

3. Flexibility: Fuzzy machine learning allows for more flexible and adaptive mod-
els, particularly useful in situations where the relationships between variables are 
not well-defined or change over time. 

Figure 1 shows the main workflow of the designed method. 
The aim of the proposed approach is to perform real-time smart grid stability 

detection: for this task, it is crucial to timely detect unstable states in a smart grid 
with the intention of immediately taking action. As shown in Fig. 1 we start from 
the data collected from the smart grid under analysis (i.e., smart grid in Fig. 1). 

A smart grid is an interconnected network that facilitates seamless interactions 
between energy producers and consumers. It primarily consists of two types of 
nodes: consumption nodes and generation nodes. Generation nodes are responsi-
ble for producing energy, such as through wind turbines or photovoltaic panels 
harnessing solar power. On the other hand, consumption nodes absorb energy to 
meet the needs of domestic and industrial users, ensuring a reliable supply of 
renewable energy for their various activities. The smart grid efficiently facilitates 
the transmission of energy between these nodes, enabling a smooth exchange within 
the network. 

Various smart grid architectures exist, and the method we propose can be 
applied irrespective of the specific architecture in use. However, for experimentation 
purposes in this paper, we focus on one of the most commonly used architectures,
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Fig. 2 The four-node star 
smart grid architecture 

known as the four-node star smart grid architecture. In this particular architecture, 
we have three consumption nodes and one generation node, forming a star schema. 
Each consumption node is directly connected to the generation node, enabling a 
direct flow of energy within the network, as shown in Fig. 2. 

From the three consumption nodes and the generation node, we gather a set of 
features aimed to discriminate between smart grid stable and unstable states (i.e., 
Features in Fig. 1). 

In particular, 4 features are obtained from each node involved (i.e., network 
participant) in the smart grid, for a total of 12 features. We consider several feature 
categories: the first one is the reaction time of each network participant, a real value 
within the range 0.5–10. From this category, the following features are considered: 

• Feature 0: it corresponds to the generation node reaction time; 
• Feature 1: it corresponds to the first consumption node reaction time; 
• Feature 2: it corresponds to the second consumption node reaction time; 
• Feature 3: it corresponds to the third consumption node reaction time; 

The second feature category is related to the nominal power produced (positive) 
or consumed (negative) by each network participant, a real value within the range 
.−2.0 to .−0.5 for consumers. As the total power consumed is equal to the total power 
generated, the nominal power supplier nod .= − (sum of the nominal power of the 
three consumption nodes). 

From this category, the following features are considered: 

• Feature 4: it corresponds to the generation node nominal power; 
• Feature 5: it corresponds to the first consumption node nominal power; 
• Feature 6: it corresponds to the second consumption node nominal power;



Fuzzy Machine Learning for Smart Grid Instability Detection 227

• Feature 7: it corresponds to the third consumption node nominal power; 

The last feature category is related to the price elasticity coefficient for each 
network participant, a real value within the range 0.05–1.00; 

From this last category, the following features are considered: 

• Feature 8: it corresponds to the generation node price elasticity coefficient; 
• Feature 9: it corresponds to the first consumption node price elasticity coefficient; 
• Feature 10: it corresponds to the second consumption node price elasticity 

coefficient; 
• Feature 11: it corresponds to the third consumption node price elasticity coeffi-

cient. 

We consider the proposed method able to make a prediction in real-time since 
once the values of the 12 features have been extracted in the same time interval, it 
is able to make the prediction. 

Thus, these features, collected from both stable and unstable smart grid states, 
represent the input for the fuzzy supervised machine learning algorithms. 

A set of feature vectors belonging to stable and unstable smart grid states will be 
submitted to the fuzzy model in order to evaluate the effectiveness of the proposed 
method to discriminate between stable and unstable smart grid states in real time. 

The evaluation consists of two different stages: (i) we provide a comparison of 
descriptive statistics of the stable and unstable smart grid state populations and; 
(ii) classification analysis in order to assess whether the 12 features are able to 
discriminate between stable and unstable smart grid states. 

Regarding descriptive statistics, we present a box plot depicting the distribution 
of stable and unstable states. The purpose is to illustrate the differences in these 
distributions and showcase that the features we have considered are promising 
candidates for effectively discriminating between stable and unstable states. 

The classification analysis goal is to verify if the considered features are 
able to correctly classify between stable and unstable smart grid states. Four 
fuzzy algorithms of classification were used: NN, FuzzyRoughNN, FuzzyNN, and 
FURIA. These algorithms were applied to the 12 features (i.e., to the feature vector). 

3 The Experiment Analysis 

This section is dedicated to the experimental analysis conducted to showcase the 
efficacy of fuzzy machine learning in detecting stability and instability in smart 
grids. 

We experiment on a dataset composed of smart grid observations obtained from a 
Kaggle repository.1 The dataset is freely available for research purposes; it contains

1 https://www.kaggle.com/code/mineshjethva/power-grid-stability-with-deep-learning 

https://www.kaggle.com/code/mineshjethva/power-grid-stability-with-deep-learning
https://www.kaggle.com/code/mineshjethva/power-grid-stability-with-deep-learning
https://www.kaggle.com/code/mineshjethva/power-grid-stability-with-deep-learning
https://www.kaggle.com/code/mineshjethva/power-grid-stability-with-deep-learning
https://www.kaggle.com/code/mineshjethva/power-grid-stability-with-deep-learning
https://www.kaggle.com/code/mineshjethva/power-grid-stability-with-deep-learning
https://www.kaggle.com/code/mineshjethva/power-grid-stability-with-deep-learning
https://www.kaggle.com/code/mineshjethva/power-grid-stability-with-deep-learning
https://www.kaggle.com/code/mineshjethva/power-grid-stability-with-deep-learning
https://www.kaggle.com/code/mineshjethva/power-grid-stability-with-deep-learning
https://www.kaggle.com/code/mineshjethva/power-grid-stability-with-deep-learning
https://www.kaggle.com/code/mineshjethva/power-grid-stability-with-deep-learning
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Fig. 3 Box plots related to the F0 (the generation node reaction time) feature 

results from simulations of smart grid stability for a four-node star network, equal 
to the one shown in Fig. 2. 

The dataset contains 10,000 distinct observations, but considering that the smart 
grid we considered in Fig. 2 is symmetric, the dataset can be augmented in 3! times, 
or 6 times, representing a permutation of the three consumers occupying three 
consumer nodes. Thus, we consider the augmented version consisting of 60,000 
observations, where 38,280 are unstable observations and the remaining 21,720 are 
stable observations. For each observation, we have the values for the 12 features we 
described in the previous section with the detail about the smart grid state, i.e., a 
binary categorical label that can assume the stable or the instable value. The dataset 
does not contain missing values. 

To perform the experiment, we considered a machine with an i7 8th Generation 
Intel CPU and 16GB RAM memory, equipped with Microsoft Windows 10: the 
model training employed 1 minute and 55.61 seconds on this architecture. 

With the aim to understand whether the proposed feature set can be able to 
discriminate between stable and unstable smart grid states, we consider a way to 
provide a graphical impact about this, by exploiting box plots. As a matter of fact, 
box plots are a graphical representation used to visualize the distribution of a dataset 
and to identify the presence of outliers. They provide a quick and concise summary 
of the data’s central tendency, dispersion, and skewness. Box plots are particularly 
useful when dealing with large datasets or comparing multiple datasets side by side. 
Overall, box plots are a valuable tool in exploratory data analysis and are frequently 
used in various fields, including statistics, data science, and data visualization. 

Figures 3, 4, 5, and 6 show the box plots related to the F0 (the generation 
node reaction time), F5 (the first consumption node nominal power), F8 (the 
generation node price elasticity coefficient), and F11 (the third consumption node 
price elasticity coefficient) features relating to the stable and unstable distributions. 

Figure 3 is related to the box plots related to the F0 (the generation node reaction 
time) feature. 

From the box plots in Fig. 3, we can note that the two distributions, although 
partially overlapping, have nonoverlapping areas: for this reason, the F0 (the 
generation node reaction time) feature can be considered as partially discriminating 
to discriminate between stable and unstable smart grids. 

Figure is related to the box plots related to the F5 (the first consumption node 
nominal power) feature.
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Fig. 4 Box plots related to the F5 (the first consumption node nominal power) feature 

Fig. 5 Box plots related to the F8 (the generation node price elasticity coefficient) feature 

Fig. 6 Box plots related to the F11 (the third consumption node price elasticity coefficient) feature 

This feature exhibits behavior very similar to that of the previous feature; for this 
reason also, this feature can be considered partially discriminating for classifying 
stable and unstable smart grids. 

Figure 5 is related to the box plots related to the F8 (the generation node price 
elasticity coefficient) feature. 

Also for the F8 (the generation node price elasticity coefficient) feature, we note 
a behavior similar to the two previously analyzed features (i.e., F0 and F5). Also in 
this case, the unstable features have a higher value than the unstable features. 

Figure 6 is related to the box plots related to the F11 feature. 
Also in this case we note that the two distributions (stable and unstable) have 

different instances with different values, even though there are several instances 
with similar values between stable and unstable instances. 

Similar considerations can be made for the other features. From the analysis of 
the descriptive statistics, it is therefore evident that there is not a predominant feature 
in discriminatory terms between stable and unstable states, but all the features bring 
their own contribution: for this reason, the union of different features could lead to 
the generation of a good classifier able to discriminate between stable and unstable 
states.
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The second step of the experimental analysis is represented by the classification. 
For training the classifier, we defined SM as a set of smart grid logs (M, l), where 
each M is associated with a label .l ∈ {stable, unstable} indicating the smart grid 
state (i.e., stable or unstable). For each M, we built a feature vector F .∈ Ry , where 
y is the number of the features used in training phase (.y = 12). 

For the learning phase, we use a k-fold cross-validation: the dataset is randomly 
partitioned into k subsets. A single subset is retained as the validation dataset for 
testing the model, while the remaining .k − 1 subsets of the original dataset are 
used as training data. We repeated the process for .k = 10 times; each one of the k 
subsets has been used once as the validation dataset. To obtain a single estimate, we 
computed the average of the k results from the folds. 

We evaluated the effectiveness of the classification method with the following 
procedure: 

1. build a training set .T ⊂ D; 
2. build a testing set .T ' = D÷T; 
3. run the training phase on T; 
4. apply the learned classifier to each element of T’. 

Each classification was performed using 90% of the dataset as training dataset 
and 10% as testing dataset employing the full feature set. 

The classification analysis is performed using the Weka2 tool, a suite of machine 
learning software, employed in data mining for scientific research with the fuzzy 
algorithms package.3 

We describe the classification algorithms we employed in order to evaluate 
the effectiveness of fuzzy machine learning in discriminating between stable and 
unstable smart grid states: 

• FuzzyNN: the fuzzy K-nearest neighbors classifier is a non-parametric method 
used for classification and regression. In both cases, the input consists of the k 
closest training examples in the feature space. The output depends on whether k-
NN is used for classification or regression [2]. This algorithm assumes a fixed 
radius around each element of the dataset, which corresponds to the average 
distance between this and the rest of the elements of that class; 

• FuzzyRoughNN: the rationale behind the fuzzy-rough K-nearest neighbors [11] 
algorithm is that the lower and the upper approximation of a decision class, 
calculated by means of the nearest neighbors of a test object, provides good clues 
to predict the membership of the test object to that class; 

• NN: the fuzzy-rough K-nearest neighbors [11] algorithms is based on the same 
principle of the previous one; 

• FURIA: the Fuzzy Unordered Rule Induction Algorithm [10] algorithm extends 
the RIPPER algorithm [5], a state-of-the-art rule learner. The specificity of this

2 http://www.cs.waikato.ac.nz/ml/weka/ 
3 http://users.aber.ac.uk/rkj/book/wekafull.jar 
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Table 1 Experimental analysis results 

Algorithm FP rate Precision Recall F-Measure ROC area Prediction 

NN 0.169 0.91 0.966 0.937 0.977 Unstable 

0.034 0.932 0.831 0.879 0.977 Stable 

0.12 0.918 0.917 0.916 0.977 Weighted Avg. 

FuzzyRoughNN 0.18 0.899 0.913 0.906 0.951 Unstable 

0.087 0.842 0.82 0.831 0.951 Stable 

0.146 0.879 0.879 0.879 0.951 Weighted Avg. 

FuzzyNN 0.286 0.848 0.905 0.876 0.81 Unstable 

0.095 0.81 0.714 0.759 0.81 Stable 

0.217 0.834 0.836 0.834 0.81 Weighted Avg. 

FURIA 0.112 0.935 0.961 0.948 0,966 Unstable 

0.039 0.932 0.888 0.910 0.966 Stable 

0.085 0.934 0.934 0.933 0.966 Weighted Avg. 

Table 2 Confusion matrix 
for the FURIA fuzzy model 

a b . ← classified as 

3608 145 a . = unstable 

252 1995 b . = stable 

algorithm is represented by the fact that it is able to learn fuzzy rules instead of 
conventional rules and unordered rule sets rather than rule lists. Moreover, to deal 
with uncovered examples, the algorithm use an efficient rule stretching method. 
Each individual rule is learned in two steps. The training data, which has not yet 
been covered by any rule, is thus split into a growing and a pruning set. In the first 
step, the rule will be specialized by adding antecedents which were learned using 
the growing set. Afterward, the rule will be generalized by removing antecedents 
using the pruning set [14]. 

Table 1 shows the results we obtained from the experimental analysis. The time 
required for model building is equal to 0.57 seconds for the NN and the FuzzyNN 
fuzzy models, while for the FuzzyRoughNN model, it is equal to 0.62 seconds. 
Relating to the FURIA model, this last model requires 3878.91 second for model 
building. 

From the results in Table 1, it emerges that the NN fuzzy model obtains an 
average precision and recall equal to 0.91; the FuzzyRoughNN model reaches a 
value equal to 0.87 for average precision and recall, while the FuzzyNN model 
obtains 0.83 for the same metrics. The model obtaining the best performance is 
the FURIA one, with a weighted precision equal to 0.934 and a weighted recall of 
0.934. 

The confusion matrix for the fuzzy model obtaining the best performances, i.e., 
FURIA, is shown in Table 2. 

As shown from the confusion matrix in Table 2 3608, unstable feature vectors 
were correctly detected in the right category, and 1995 stable feature vectors were 
correctly in the stable category. Relating to misclassifications, 252 stable feature
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Table 3 Rules with a confidence factor greater or equal than 0.98 obtained with the FURIA model 

# Rule State CF 

1 (F0 in [3.288621, inf]) and (F8 in [0.558881, inf]) and (F1 in 
[2.907901, inf]) and (F2 in [2.865241, inf]) and 

(F3 in [2.865241, inf]) and (F9 in [0.434347, inf]) Unstable 1.0 

2 (F3 in [3.758101, inf]) and (F11 in [0.552814, inf]) and (F0 in 
[3.032843, inf]) and (F1 in [2.48691, inf]) and 

(F2 in [2.48691, inf]) and (F8 in [0.245657, inf]) Unstable 1.0 

3 (F1 in [3.746054, inf]) and (F9 in [0.554099, inf]) and (F0 in 
[2.320936, inf]) and (F2 in [2.48691, inf]) and 

(F10 in [0.4627, inf]) and (F3 in [2.36366, inf]) Unstable 1.0 

4 (F2 in [4.044601, inf]) and (F10 in [0.55003, inf]) and (F0 in 
[3.461518, inf]) and (F8 in [0.400251, inf]) and 

(F3 in [2.488351, inf]) Unstable 0.99 

5 (F1 in [4.023905, inf]) and (F9 in [0.760109, inf]) and (F0 in 
[3.461518, inf]) and (F8 in [0.389763, inf]) 

Unstable 0.99 

6 (F2 in [4.039055, inf]) and (F10 in [0.554099, inf]) and (F3 in 
[3.105594, inf]) and (F11 in [0.406919, inf]) and 

(F1 in [1.767006, inf]) and (F0 in [1.913214, inf]) Unstable 1.0 

7 (F1 in [4.089905, inf]) and (F9 in [0.506574, inf]) and (F3 in 
[3.34573, inf]) and (F11 in [0.497335, inf]) and 

(F2 in [2.075289, inf]) and (F8 in [-inf, 0.632616]) Unstable 1.0 

8 (F1 in [3.204176, inf]) and (F9 in [0.400352, inf]) and (F2 in 
[3.577064, inf]) and (F10 in [0.635493, inf]) and 

(F0 in [2.077598, inf]) Unstable 0.99 

9 (F0 in [3.122286, inf]) and (F8 in [0.611277, inf]) and (F1 in 
[4.06555, inf]) and (F9 in [0.579843, inf]) 

Unstable 0.98 

10 (F2 in [5.685661, inf]) and (F10 in [0.554342, inf]) and (F0 in 
[4.252039, inf]) and (F8 in [0.323349, inf]) and 

(F3 in [2.441644, inf]) and (F1 in [1.950486, inf]) Unstable 1.0 

vectors were wrongly labeled as unstable, and 145 unstable feature vectors were 
wrongly detected as unstable. 

In Table 3 we show the rules extracted in the FURIA model training, with the 
aim to understand the reason why a certain feature vector is classified as unstable 
(and thus, providing a kind of global explainability behind the model decision): we 
can also understand the features that, from the FURIA model point of view, are the 
most discriminative in order to discern between stable and unstable states. 

4 Conclusion and Future Work 

To ensure the stability of a smart grid, two essential criteria must be considered. 
Firstly, the energy generation must constantly match the demand and include a 
reserve (battery storage) to address immediate outages. Secondly, the smart grid
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must maintain sufficient voltage stability throughout its network. In this paper, we 
proposed a method to detect smart grid stability by leveraging fuzzy supervised 
machine learning algorithms. The objective is to distinguish between stable and 
unstable states of the smart grid. We employ four different fuzzy machine learning 
classification algorithms and achieve excellent precision and recall (both equal to 
0.934) when evaluating a dataset comprising 10,000 smart grid observations. A 
real-world adoption of the proposed consists of the deployment of the proposed 
model into a server that collects the data from all the nodes and performs the 
real-time detection of instability situations. In future work, we intend to assess 
the effectiveness of the proposed method in more complex smart grids with over 
four nodes and diverse generation nodes. Additionally, we plan to incorporate local 
explainability alongside global explainability, aiming to provide users with insights 
into why specific predictions were made. In other words, we seek to grant the 
method the capability to explain the reasons behind particular outputs based on 
specific inputs. 
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On Protection of the Next-Generation 
Mobile Networks Against Adversarial 
Examples 

Mikhail Zolotukhin, Di Zhang, and Timo Hämäläinen 

1 Introduction 

Employing artificial intelligence (AI) and machine learning (ML) is forecast 
to enhance future generation mobile networks by providing means for efficient 
dynamic resource allocation [8, 19, 46] as well as decreasing transmission overheads 
[2, 10] and reducing computing costs [61]. Various AI/ML models are therefore 
proposed to be deployed in 5G for automatic modulation recognition [40], channel 
estimation in multi-input multi-output (MIMO) frameworks [51], channel decoding 
[30], energy efficient power allocation [53], network routing optimisation [6], intel-
ligent network slicing [56], and intrusion detection [13]. As dependability of future 
5G networks on accurate and timely performance of its AI/ML-driven components 
is expected to grow, there is an increasing concern that those components can 
become a high-value attack target since disturbance in their functionality may have 
a negative impact on the entire network. In particular, due to the open nature of 
wireless medium, a smart adversary can try to manipulate the inputs of the AI/ML 
models over the air which may result in significant degradation of the network 
performance [71, 72]. 

The study of adversarial machine learning, which focuses on the problem of 
learning in the presence of adversaries, has recently emerged in many research 
domains including mobile networking [7, 24, 25]. An adversarial machine learning 
attack can be carried out during either the training or inference stage. During the 
training, the adversary aims to poison the training data in such a way that results 
in the target model making errors later in the inference time [60]. When employing 
such an attack approach against a 5G network, an adversary can in theory utilise 
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the end users’ equipment to send false signals and messages to the radio access 
network (RAN) domain after authentication and authorisation in the core network 
(CN) domain. If a network provider decides to use the data collected to train 
an AI/ML model, it ends up with the model that is either inaccurate or, in the 
worst-case scenario, vulnerable to backdoor triggers. Apart from data poisoning 
via end users’ equipment, poisoning attacks may also take place when transmitting 
model parameters and/or data in certain transmission procedures as RAN can also 
exchange data with the CN and the operation and maintenance (OAM) domains to 
collaboratively improve specific end users’ quality of experience (QoE) with regard 
to data rate [54] and to cooperatively enhance the service continuity of end users 
[33] as well as RAN throughput [37]. Although such threat certainly exists, this 
attack approach can be successful only in the case of some major flaw in the data 
processing pipeline, e.g. if the provider decides to use the training dataset obtained 
from a non-trusted source or the adversary has access to some internal components 
of the AI/ML model during the training stage which allows it to inject poisonous 
data. 

During the inference, the goal of the adversary is to force the target model to 
return a certain wrong output by adding an intelligently crafted perturbation to the 
corresponding input sample [62]. This category of attacks, which is often referred 
to as adversarial examples, is a more realistic threat to mobile networks that employ 
AI/ML in their intelligent components as it does not require access to the dataset and 
the target model itself during the training. The only requirement is that the model 
is supposed to have some sort of interface which can be used by the adversary over 
the air to manipulate inputs of the model [24, 72]. Such attacks based on adversarial 
example generation at the inference stage are usually classified into either white-
box or black-box category depending on the information available to the adversary. 
The former includes cases when the adversary has perfect knowledge of either the 
machine learning model or the data used for its training or both of them. In the latter 
scenario, the adversary’s only capability is to observe labels assigned by the model 
for the inputs supplied. Attacks from the black-box category are more practical for 
real-world adversaries with knowledge about neither the model nor the training data 
and therefore in our research we focus on this type of attack. 

Our contribution to the research domain of adversarial machine learning in the 
context of mobile networking is twofold. We first identify potential attack vectors 
against multiple applications of AI/ML in 5G wireless networks by evaluating var-
ious black-box adversarial example generation algorithms. We then implement and 
compare several defence methods that can be used by service providers to protect 
their mobile networks from these attacks. The rest of the document is organised as 
follows. Adversarial example generation techniques in the RAN domain as well as 
several defence strategies are briefly discussed in Sect. 2. Section 3 describes the use 
case scenarios selected for evaluation in this study. Numerical simulation results for 
these use cases are presented in Sect. 4. Section 5 concludes the paper and outlines 
future work.
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2 Theoretical Background 

In this section, we first summarise the most popular algorithms for adversarial 
example generation and discuss their transferability to the RAN domain. After that, 
we overview various defence strategies such as adversarial example detection and 
rejection as well as model hardening techniques. 

2.1 Adversarial Examples in Mobile Networks 

The vast majority of AI/ML applications proposed to be deployed in the next-
generation mobile networks rely on deep learning which has gained increasing 
popularity in recent years due to its supremacy in terms of accuracy when trained 
with huge amounts of data [20]. A deep neural network most of the time has a 
differentiable loss function and uses a gradient-based optimiser during the training. 
This enables gradient-based adversarial example generation by modifying an input 
sample in the direction of the gradient of the loss function with respect to the 
input sample [15, 28, 41, 62]. The size of the step taken towards this direction is 
usually limited by the perturbation budget, i.e. the size of the perturbation allowed 
in the research problem given. Several adversarial perturbation crafting algorithms 
rely on computing the perturbation iteratively with a step size smaller than the 
perturbation size allowed [28]. In this case, the intermediate perturbation values 
are clipped after each step to ensure that they satisfy the constraints imposed on the 
adversarial perturbation budget and the final perturbation is calculated by adding 
these intermediate values together [31]. 

The approach described above is white-box as the adversary would require full 
access to the model parameters and the loss function to calculate the gradient for the 
input sample. In the black-box settings, the target model can remain unknown to the 
adversary. However, it is usually assumed that the adversary has an ability to query 
an input sample to the target classifier in order to adjust the perturbation value. 
The first fundamental study in this research area [43] proposes a transfer based 
attack approach which relies on information about training samples without the 
knowledge of the training model. The adversary’s strategy is to learn a substitute for 
the target model using a synthetic dataset carefully generated by the adversary and 
labelled by observing the target model output. Once the substitute model has been 
trained, a white-box attack is used to synthesise perturbations for this substitute. The 
adversary expects the target model to misclassify the resulting perturbed samples 
due to transferability between deep learning models. The approach can therefore be 
employed against various neural networks with different rates of success. Several 
studies propose to search for the perturbation without training a substitute model 
[5, 9]. These black-box attacks are based on estimating gradient direction at the 
decision boundary based solely on access to the target model decisions for the inputs 
queried.
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Speaking of adversarial examples in the mobile networking domain, there are 
multiple use case scenarios studied in recent scientific literature. Probably, the 
most well-studied use case involves compromising the integrity of the modulation 
recognition classifiers [22–24, 65]. Automatic modulation recognition can be imple-
mented in adaptive transceivers to automatically switch modulations based on the 
channel conditions without the need for a feedback channel between the transmitter 
and the receiver. AI/ML models have been recently proposed to be deployed for 
this purpose as they are able to classify the modulation type based on the received 
signal strength (RSS) values [35, 40, 45]. In particular, this would allow a user 
equipment (UE) to recognise the modulation type used and initiate the contention-
based random access procedure to attach to the network. Theoretically, an adversary 
can use the broadcast nature of the wireless channel and perturb the input data, i.e. 
the series of RSS values, by introducing a noise in such a way that would lead to 
the modulation scheme being misclassified by the AI/ML model which would lead 
to the network access procedure failure. 

Another category of the adversarial example attacks in mobile networks includes 
attacks targeting AI/ML models for intelligent mmWave beam selection. For 
example, in the 5G new radio (5G-NR) initial access (IA) procedure, a gNodeB 
(gNB) periodically broadcasts synchronisation signal blocks (SSBs) that correspond 
to different beam(s). An UE may select the most suitable beam based on the output 
of the AI/ML model trained to select the beam based only on a subset of the received 
SSB measurements in order to reduce the transmission overhead [10]. The UE then 
notifies the gNB about the SSB selected with an msg1 message. Both SSB(s) and 
msg1 may be transmitted without security protection. An adversary can therefore 
use this information to generate such a signal which causes the UE to select a wrong 
beam and fail to access the network [25]. 

Other less studied adversarial generation examples in the domain of mobile 
networking include attacks against AI/ML-based signal decoding [50, 65], channel 
estimation in MIMO [29], power allocation frameworks [26, 32, 66], an attack 
against an intelligent scheduling framework for the spectrum sharing in 5G with 
citizens broadband radio service [52], and attacks against the models which are 
trained to allocate physical resources to the network slices [55, 57]. 

2.2 Defence Strategies 

From the methodology point of view, adversarial example generation attacks 
described above resemble radio jamming, i.e. an adversary most of the time uses a 
malicious fake BS (FBS) to emit a radio signal on top of existing transmissions over 
the air to change the model input data in such a way that the target AI/ML model’s 
output is incorrect which in turn may negatively affect the functionality of the 
corresponding network component in which the model is deployed. Depending on 
the network component under attack, the impact may vary. In the majority of cases, 
the effect is similar to radio jamming and denial-of-service attacks, i.e. deterioration
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of the network data rate which can lead to mobile customers being unable to use 
network services [17]. For this reason, mitigation measurements from RAN-3 of the 
Baseline Security Controls can be employed [16]. These include but are not limited 
to monitoring for and responding to traffic fluctuations, unusual handover patterns, 
dead spots, and service disruptions. 

On the AI/ML model defence side, two different strategies are usually consid-
ered: runtime detection of adversarial inputs and model hardening. The former is 
usually designed to work under the so-called manifold hypothesis which assumes 
that normal data samples lie in a low-dimensional manifold embedded in a 
high-dimensional space [12]. Such manifold-based defences work by identifying 
adversarial points from their distance to the manifold [59]. In practice, such 
detection can be implemented by training a two-class detector network which 
obtains inputs from intermediate feature representations of the target classifier and 
is trained to discriminate between samples from the original dataset and adversarial 
examples in a supervised way [36]. Alternatively, an anomaly detection approach 
can be employed in order to train the model of normal behaviour and classify the 
samples that deviate significantly from the norms established as malicious ones [67]. 
Such an approach will in theory generate more false alarms than the supervised one, 
since not every anomaly corresponds to an adversarial example. However, it is worth 
noticing that since adversarial ML has recently attracted significant attention, novel 
attack approaches are constantly emerging. At the same time, a supervised detection 
model trained using adversarial examples generated with known attack algorithms 
may not generalise well for adversarial examples generated by novel ones that have 
not been present in the training dataset which may result in lower detection rates. 

Among the model hardening methods, a widely explored approach is to augment 
the training data of the AI/ML model with adversarial examples [15]. Another 
approach is input data preprocessing, often using non-differentiable or randomised 
transformation [18], transformations reducing the dimensionality of the inputs [69], 
or transformations aiming to project inputs onto the normal data manifold [34]. 
Other model hardening approaches involve special types of regularisation during 
model training [48] or modifying elements of the classifier’s architecture [70]. 

3 Use Cases 

First, we briefly summarise three use cases, attacks against which are evaluated 
in this study. The use case scenarios include modulation recognition [40], optimal 
beam selection based on RSS measurements for a subset of beams [10], and jam-
ming detection [44]. We focus on these particular use cases for three main reasons: 
first, there is a clear benefit of AI/ML deployment; second, the corresponding study 
provides detailed information on how to implement and train the AI/ML model 
proposed; third, there is a room for an adversarial example generation attack against 
the resulting AI/ML framework. Below is the brief summary of the use cases
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mentioned followed by a detailed description of the datasets and models used in 
each use case. 

1. Modulation recognition. Study [40] proposes a deep neural network enabled 
modulation recognition approach based on features extracted from complex base-
band time series representations of the received signals at various signal-to-noise 
ratio (SNR) levels. Time series of the received signal acts as the input, the output 
is the modulation type. 

2. Beam selection. In [10], a deep learning solution for fast and accurate IA is 
proposed. The target model is trained by feeding the RSS values from a subset 
of beams as the input. The output of the network consists of the probabilities of 
being the optimal vector calculated for each beam in the whole set. 

3. Jamming detection. Study [44] focuses on deploying an AI/ML-based detection 
of jamming attacks on unmanned aerial vehicles (UAVs) that operate using 
orthogonal frequency-division multiplexing (OFDM) communication. In partic-
ular, authors attempt to detect and classify multiple jamming attack types which 
include barrage, single tone, successive pulse (SP), and P-aware (PA). Input 
features include average received signal and noise power. 

3.1 Data 

In the modulation recognition use case, RadioML dataset [39] is employed for 
training AI/ML models. To generate this dataset, real voice and text datasets 
are modulated onto the signal using a block randomiser to whiten the data in 
the case of digital modulation to ensure bits are equiprobable [39]. To simulate 
radio channel effects, various robust models are employed including time-varying 
multipath fading of the channel impulse response, random walk drifting of carrier 
frequency oscillator and sample time clocks, and additive Gaussian white noise. 
The resulting synthetic signal sets are then passed through harsh channel models 
which introduce unknown scale, translation, dilation, and impulsive noise onto our 
signal. Each of the resulting 128-sample time series is then scaled to unit energy. 
The version of the dataset we are using in our experiments (RadioML 2016.10A) 
consists of 11 modulations: 8 digital and 3 analog modulations, all are widely used 
in wireless communications systems all around the world. These include BPSK, 
QPSK, 8PSK, 16QAM, 64QAM, BFSK, CPFSK, and PAM4 for digital modulation 
and WB-FM, AM-SSB, and AM-DSB for analog modulation. The data is modulated 
at a rate of roughly eight samples per symbol with a normalised average transmit 
power of 0 dB. 

In the beam selection use case, DeepMIMO dataset [1] is used. This dataset is 
essentially a light-weight massive MIMO mmWave simulator. Given a scenario and 
input parameters, it generates channel matrices for each gNB-UE ray-tracing path. 
In our use case, outdoor scenario O1 is used. One base station (BS 3) is selected 
as the serving BS and users are assumed to be located between rows 700 and 1300.
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The operating frequency is 28 GHz, whereas the gNB and UE antenna shapes are 
equal to .(1, 64, 1) and .(1, 1, 1), respectively. Other input parameters can be found 
in [3]. In order to form the input data, a subset of channel values for randomly 
picked .25% of the beams is selected. This subset remains the same for all the 
data samples during the training, validation, and inference stage. The aim is to 
select such a beam that maximises the theoretical achievable data rate which can 
be calculated as follows: .r = log2(1 + H ∗T f ), where H is the channel matrix and 
f is a column vector from codebook F . For each data point, the mmWave beam in 
the codebook which provides the highest data rate for the channel matrix given is 
calculated. The corresponding one-hot vector that indicates the index of this optimal 
beam acts as the output data point. It is worth mentioning we use a simple quantised 
beam steering codebook where the i-th beam for .i = 1, 2, . . . , |F | is defined as 
.fi = a( 2πi

|F | ), with a representing the mmWave array response vector [3]. 
Finally, in the case of the jamming detection problem, we use the dataset obtained 

with real equipment by authors of study [44]. Input features in the dataset provided 
include subcarrier spacing, symbol time, subcarrier length, cyclic prefix length, 
average received power, threshold, average signal power, average noise power, and 
SNR. In our experiments, we only use the features that can be affected by an 
adversary over the air, i.e. average received power, average signal power, average 
noise power, and SNR. Each sample in the dataset is labelled as either normal or as 
the one corresponding to a jamming attack. 

3.2 Models 

The models employed in study [40] for automatic modulation recognition are a 
fully connected neural network and two convolutional neural networks (CNNs). The 
model that provides the best results in terms of the prediction accuracy is the CNN 
with 2 convolutional layers of 256 and 80 filters followed by 1 fully connected layer 
of 256 neurons. In the original study on intelligent beam selection [10], the AI/ML 
model is a fully connected neural network with 5 hidden layers of 32, 64, 128, 64, 
and 32 neurons, respectively. Finally, in the jamming detection use case, one of the 
models tested is a deep neural network; however, the authors do not provide any 
information on the model architecture [44]. For this reason, we have tested several 
neural network models and found out that a simple fully connected neural network 
with 2 layers of 1024 neurons is able to classify samples that correspond to jamming 
attacks with 100% accuracy. 

Unfortunately, when tested using the datasets generated, the modulation recog-
nition and the beam selection models from [40] and [10], respectively, result in 
extremely low classification accuracy values. For this reason, in our experiments, 
we build another model in each of these two use cases. As one can notice, the inputs 
to the target beam selection model can be interpreted as images with height and 
width being equal to the number of antennas and the number of OFDM subcarriers, 
whereas the real and imaginary part of the signal can be interpreted as the colour
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channels [68]. CNNs are usually employed in image related problems as they 
allow for automatic extraction of low-level features such as edges, colour, gradient 
orientation, and several others. Without loss of generality, we rely on CNN in the 
modulation recognition use case with the real and imaginary part of the signal as 
previously playing the role of the colour channels similarly to how it has been 
done in study [40]. However, since data samples in the modulation recognition use 
case are one-dimensional sequences of symbols, strides of size one with the same 
padding are used in convolution layers. 

In order to find an optimal CNN architecture for the beam selection and 
modulation recognition use cases, automated machine learning (AutoML) approach 
can be employed. AutoML is usually defined as producing maximum performance 
from learning tools without human assistance. In our experiments, we use Auto-
Keras [21] which is an efficient open-source neural architecture search systemwhich 
relies on Bayesian optimisation [58]. In order to generate CNN architectures, we use 
an image input block followed by a normalisation and an image augmentation block. 
After that, convolutional blocks, each of which consists of several convolutional, 
dense, max-pooling, and dropout layers, are used to extract the necessary features. 
The architecture search is carried out for 100 trials. The resulting neural network 
architectures later used in the experiments in this study can be found in Table 1. 

To train the models generated, each of the datasets obtained is divided into three 
parts: training (50%), validation (30%), and inference (20%). The training parts 
are used to train the corresponding AI/ML models, whereas the main function of 
the validation parts is to control the models’ overfitting. The inference parts are 
then used to evaluate the models. Early stopping is employed in order to stop the 
training when the validation loss starts increasing. Speaking of the loss function, 
standard categorical cross-entropy is used for all the classification models trained. 

Table 1 AI/ML model architectures and metric values 

Use case Modulation recognition Beam selection Jamming detection 

Layers Input(128, 1, 2) Input(16, 32, 2) Input(4) 

Normalisation() Normalisation() Normalisation() 

Conv2D([7, 7], 512, ReLU) Conv2D([3, 3], 32, ReLU) Dense(1024, ReLU) 

Conv2D([7, 7], 32, ReLU) Conv2D([3, 3], 64, ReLU) Dropout(0.5) 

Dropout(0.25) MaxPooling([2, 2]) Dense(1024, ReLU) 

Conv2D([7, 7], 64, ReLU) Conv2D([3, 3], 512, ReLU) Dropout(0.5) 

Conv2D([7, 7], 32, ReLU) Conv2D([3, 3], 256, ReLU) Dense(2, Softmax) 

Dropout(0.25) MaxPooling([2, 2]) 

Flatten() GlobalAveragePooling() 

Dropout(0.5) Dropout(0.5) 

Dense(11, Softmax) Dense(64, Softmax) 

Parameters 1,099,403 1,510,880 1,056,770 

Loss 1.094901 0.063998 5.446e–07 

Accuracy 61.64% 98.60% 100.00%
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The training is carried out in batches of 512 with learning rate equal to .0.0025. 
The classification accuracy values obtained when applying the models trained to the 
inference parts of the corresponding datasets can also be found in Table 1. Despite 
the relatively low accuracy value obtained in the modulation recognition use case, 
this result is somewhat in line with the original study, according to which AI/ML-
based modulation recognition models allow for accurate modulation recognition 
only in the case of high SNR values [40]. 

4 Numerical Simulations 

In this section, we first evaluate various black-box adversarial example attacks for 
the use cases described in Sect. 3. After that, we implement and test several anomaly 
detection algorithms that can be used for adversarial example detection. Finally, we 
apply a few model hardening techniques and evaluate their impact on the attack 
efficiency. 

4.1 Attack Algorithm Evaluation 

In our experiments, we first employ the attack approach which relies on the 
transferability property of deep neural networks to generate adversarial examples as 
it has been proposed in study [43]. For this attack, the neural networks found in the 
corresponding original studies [10, 40] and [44] are used as the substitute models 
which are trained using 10% of the samples from the original datasets. To attack 
these substitute models, we use the white-box algorithm called projected gradient 
descent (PGD). This method relies on the principle of modifying an input sample 
in the direction of the gradient of the loss function as it has been briefly described 
in Sect. 2. In addition, we test the following black-box attacks that do not require 
training a substitute model: simultaneous perturbation stochastic approximation 
(SPSA) [64], the attack based on genetic algorithm (GA) [4], boundary attack 
[5], and HopSkipJump [9]. Implementations of the aforementioned white-box and 
black-box attacks for the experiments are taken from the following adversarial 
example generation frameworks: Cleverhans [42], Adversarial Robustness Toolbox 
(ART) [38], and Foolbox [47]. All the aforementioned algorithms are executed 
with two different perturbation budget sizes that are relative to the original input 
and equal to .0.1||X|| and .1.0||X||, where .||X|| is the average second norm for the 
samples of the corresponding dataset. 

The attack efficiency is evaluated based on the effect it produces upon the 
component that uses the AI/ML model under attack. In the modulation recognition 
and jamming detection use cases, the attack efficiency is evaluated by comparing 
the prediction accuracy before and after the attack has been carried out. The less 
accurate the target model predictions once the attack has been conducted, the
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Table 2 The detrimental effect of the adversarial perturbation on the performance of three 
network components analysed for different attack algorithms and perturbation budgets given in 
per cent of the input. The metrics are respectively modulation recognition accuracy, theoretical 
achievable data rate, and jamming detection accuracy. Each metric value presented is relative to 
the baseline, i.e. when there is no attack taking place. The less the value, the more efficient the 
attack 

Use case and perturbation budget (in per cent of the input) 

Modulation recognition Beam selection Jamming detection 

Attack algorithm 10% 100% 10% 100% 10% 100% 

Random 0.985531 0.495177 0.999846 0.986819 0.896484 0.546875 

Substitute 0.946945 0.249196 0.995224 0.905000 0.405273 0.430664 

SPSA 0.974277 0.395498 0.999836 0.975431 0.841797 0.531250 

GA 0.963023 0.303859 0.999609 0.975191 0.557617 0.557617 

Boundary 0.551447 0.239550 0.972949 0.301807 0.633789 0.351562 

HopSkipJump 0.366559 0.234727 0.888945 0.195502 0.403320 0.000000 

(a) 10% of the input. (b) 100% of the input. 

Fig. 1 Dependence of the modulation recognition accuracy on the SNR level when employing 
various black-box attack algorithms with different adversarial perturbation budget limit values 

more efficient the attack algorithm. In the beam selection use case, the evaluation 
metric is the theoretical achievable data sum rate that can be calculated as shown 
in Sect. 3. All the black-box attack evaluation results for the use cases selected 
can be respectively found in Table 2 and Figs. 1, 2 and 3. In addition to the 
perturbations generated with the algorithms mentioned, we also show the effect of 
a randomly generated perturbation for each use case. In the table, values of the 
metric selected for each use case are compared to each other for different attacks 
and adversarial perturbation budget values. All the metric values presented are 
calculated as percentages of the baseline metric values when there is no attack. 

As one can notice when looking at the results presented, adversarial example 
attack impact on the target model performance is much more significant compared 
to the random perturbation. Speaking of the attack algorithm comparison results, 
HopSkipJump algorithm provides the best results in all of the use cases evaluated. 
This is an iterative algorithm; it starts from a point that is already adversarial, and 
then at each iteration the following three steps are carried out: estimation of the
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(a) 10% of the input. (b) 100% of the input. 

Fig. 2 Dependence of the sum-rate CDF on the beam selected based on the beam subset when 
employing various black-box attack algorithms with different adversarial perturbation budget limit 
values 

(a) 10% of the input. (b) 100% of the input. 

Fig. 3 Dependence of the jamming detection accuracy on the signal type when employing various 
black-box attack algorithms with different adversarial perturbation budget limit values 

gradient direction, step-size search via geometric progression, and boundary search 
via a binary search [9]. This algorithm is computationally expensive and takes a 
long time to execute. For this reason, during experiments we had to adjust its default 
parameters in order to obtain results in a reasonable amount of time. 

In the modulation recognition use case, the boundary attack algorithm also shows 
promising results. This algorithm is essentially simplified version of HopSkipJump 
as it starts from a point that is already adversarial and then performs a random walk 
along the boundary between the adversarial and the non-adversarial region such that 
it stays in the former while the distance towards the target legitimate point is reduced 
[5]. Both the length of the total perturbation of the adversarial sample and the length 
of the step towards the original input are adjusted dynamically similarly to a trust 
region method. When the perturbation is comparable in size with the original input, 
the negative impact on the target metric is significant for each attack algorithm: the 
classification accuracy is reduced by more than two times from its original value. 

In the beam selection use case, the situation is more optimistic for the mobile 
network operator in the case of lower adversarial perturbation size values as the data
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(a) Simulation area. (b) Baseline (no attack). 

(c) HopSkipJump attack (10% of the input). (d) HopSkipJump attack (100% of the input). 

Fig. 4 Dependence of the theoretical data rate on UE location detection in the beam selection 
use case. Figure (a) shows the simulation area of scenario O1 from DeepMIMO dataset (UE 
locations under attack are highlighted with red). Theoretical achievable data rates of UEs located 
in the simulation area in the case there is no attack are shown in Figure (b). Figures (c) and  
(d) demonstrate the negative effect of the HopSkipJump attack on the data rate for two different 
perturbation budget values equal respectively to 10% and 100% of original RSS 

rate is reduced by only about 11% in the worst-case scenario. In the case of higher 
perturbation budget values, as previously, boundary and HopSkipJump algorithms 
provide the best results in terms of network throughput reduction. To visualise the 
attack effect, we plot the data rate values obtained during the boundary attack for 
different UEs located in the simulation area. As one can see from Fig. 4, in the  
case of lower perturbation budget values the attack targets the UEs located on the 
edge of the cell as output labels of the corresponding data samples are closer to the 
decision boundary and therefore the probability of these samples being misclassified 
by the target model is higher [41]. When the adversarial perturbation is comparable 
in size with the original input signal, the attack effect is devastating as the network 
throughput is reduced significantly for most of the UEs in the cell. 

Finally, in the jamming detection use case, HopSkipJump attack algorithm allows 
the adversary to achieve 100% accuracy reduction in the case of higher perturbation 
budget values. In addition, the attack based on GA may result in quite a significant 
negative effect in this case. This attack aims to maximise the fitness function 
designed in such a way that it allows the adversary to increase the probability of 
the target class and at the same time decrease the probability of all other classes. 
In our experiments, the attack is non-targeted, i.e. we assume the adversary aims to 
cause the target classifier to return any incorrect label. Therefore, in this case, the 
target label can be any but the original one. Figure 3b reveals that the algorithm 
targets normal data samples rather than the ones corresponding to the jamming 
attack, which will result in the increased number of false alarms. In the case of lower 
perturbation budget values, HopSkipJump and substitute attack algorithms provide 
for the best results in terms of detection accuracy reduction. In addition to increased
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numbers of false alarms, these algorithms cause the data samples that correspond to 
successive-pulse jamming being misclassified as normal ones by the target AI/ML 
model as it can be seen from Fig. 3a. 

4.2 Attack Detection 

As mentioned in Sect. 2, the most straightforward approach to detect adversarial 
examples is to connect a classification head to the target model and train the resulting 
classifier to distinguish normal samples from the ones corresponding to the attack 
[36]. We evaluate such supervised approach and compare it against the one based 
on anomaly detection using the following three deep anomaly detection algorithms: 
deep autoencoder (AE), deep self-organising map (SOM) [14], and deep support 
vector data description (SVDD) [49]. The deep autoencoder is a neural network 
model which aims to adjust its trainable parameters in such a way that the output 
layer is equal to the input one despite the information bottleneck caused by the 
hidden layers. The role of the loss function is often played by the reconstruction 
error which is the difference between the input and the output. An anomalous data 
point fed to the autoencoder model often results in something that is quite different 
from the expected output, and therefore a large error value. The deep self-organising 
map consists of an autoencoder and a self-organising map which is essentially a 
grid of neurons, each of which is fully connected to the previous layer of the model 
which in the case of deep SOM is the last encoding layer of the autoencoder. Each 
neuron of the SOM is associated with a prototype vector, the dimension of which 
is equal to the dimension of its input vectors. At each training step, one feature 
vector from the input dataset is picked up randomly, and the distance between it 
and all the prototype vectors is calculated. The prototype vector that is the least 
distant from input is denoted as its best matching unit (BMU). The input vector 
is mapped to the location of the best matching unit, and the prototype vectors of 
the SOM are updated so that the vector of the BMU and its topological neighbours 
are moved closer to the input sample [27]. The loss function of the resulting model 
is the weighted sum of the autoencoder’s reconstruction error and the distance to 
the SOM’s best matching unit. Finally, the deep support vector data description is 
the neural network model that learns a transformation from an input space to an 
output space which attempts to map most of the data network representations into a 
hypersphere of minimum volume. During the inference stage, mappings of normal 
examples fall within, whereas mappings of anomalies fall outside the hypersphere. 

To train each of the detection models mentioned above, we use samples from 
the original datasets. For unsupervised anomaly detection methods, having only 
normal non-perturbed samples is enough to carry out the training. In the case of 
the supervised model, we augment the original datasets with adversarial examples 
generated with the following white-box attack algorithms: one-shot fast gradient 
sign method (FGSM) [15], basic iterative method (BIM) [28], momentum iterative 
method (MIM) [11], and already mentioned above projected gradient descent (PGD)
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Table 3 The adversarial example detection accuracy calculated for different supervised and 
unsupervised algorithms and perturbation budgets given in per cent of the input. The greater the 
value, the more efficient the detection algorithm 

Use case and perturbation budget (in per cent of the input) 

Modulation recognition Beam selection Jamming detection 

Detection model 10% 100% 10% 100% 10% 100% 

Supervised 0.501855 0.584473 0.770508 0.922168 0.934766 0.963184 

Deep AE 0.504980 0.791602 0.500293 0.505176 0.860449 0.901953 

Deep SOM 0.502539 0.540039 0.524512 0.774219 0.862988 0.891797 

Deep SVDD 0.510449 0.533594 0.525293 0.660840 0.994824 0.999902 

(a) 10% of the input. (b) 100% of the input. 

Fig. 5 Dependence of the true positive rate on the false positive rate when detecting black-
box adversarial examples in the modulation recognition use case with two different adversarial 
perturbation budget limit values with the help of baseline supervised and various unsupervised 
anomaly detection methods 

[31]. As previously, dropout and early stopping are used to combat overfitting. 
Training is carried out in batches of 512 with learning rate .0.0025. The results, 
namely, anomaly detection accuracy as well as the dependence of the true positive 
rate (TPR) on the false positive rate (FPR) for each of the algorithms tested, can be 
found in Table 3 and Figs. 5, 6 and 7. It is worth noticing that we are only interested 
in the detection rates obtained for low FPR numbers, in particular lower than 5%. 

As one can see from the results obtained, in two of the three use cases 
studied, adversarial examples are almost impossible to detect in the case of lower 
perturbation budget values. Only in the jamming detection use case, a significant 
portion of the malicious samples is classified accurately. In other two use cases, 
when the perturbation budget is equal to the input size, the percentage of adversarial 
examples that can be identified under the constraint of keeping the numbers of 
false alarms low ranges from 60 to 80%. Another interesting observation is that 
some of the unsupervised anomaly detection methods tested provide slightly better 
detection rates compared to the supervised one. For example, in the modulation 
use case the deep autoencoders outperform other algorithms in terms of detection 
accuracy, whereas the deep SVDD provides the most promising results for detecting 
adversarial examples generated against the jamming detection model. The relatively
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(a) 10% of the input. (b) 100% of the input. 

Fig. 6 Dependence of the true positive rate on the false positive rate when detecting black-box 
adversarial examples in the beam selection use case with two different adversarial perturbation 
budget limit values with the help of baseline supervised and various unsupervised anomaly 
detection methods 

(a) 10% of the input. (b) 100% of the input. 

Fig. 7 Dependence of the true positive rate on the false positive rate when detecting black-box 
adversarial examples in the jamming detection use case with two different adversarial perturbation 
budget limit values with the help of baseline supervised and various unsupervised anomaly 
detection methods 

poor performance of the detectors that follow the supervised approach in those cases 
can be explained by the fact that the adversarial examples generated with black-box 
algorithms under consideration have not been present in the corresponding training 
datasets and supervised models in general are not designed to deal with the samples 
from unknown classes. 

4.3 Model Hardening 

Concerning the model hardening approach for AI/ML model protection against 
adversarial examples, we test the two following popular techniques: adversarial 
training [15] and label smoothing [63]. The former allows one to inject adversarial
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Table 4 The detrimental effect of the adversarial perturbation on the modulation recognition 
accuracy for different attack algorithms and perturbation budgets given in per cent of the input 
in the case of several model hardening techniques being applied. Each metric value presented is 
relative to the baseline, i.e. when there is no attack taking place. The less the value, the more 
efficient the attack 

Model hardening method and perturbation budget (in per cent of the input) 

Baseline (no defence) Adversarial learning Label smoothing 

Attack algorithm 10% 100% 10% 100% 10% 100% 

Random 0.985531 0.495177 0.978784 0.479491 0.996825 0.457143 

Substitute 0.946945 0.249196 0.851485 0.422914 0.839683 0.146032 
SPSA 0.974277 0.395498 0.957567 0.340877 0.979365 0.428571 

GA 0.963023 0.303859 0.975955 0.275813 0.971429 0.261905 

Boundary 0.551447 0.239550 0.527581 0.155587 0.544444 0.271429 

HopSkipJump 0.366559 0.234727 0.364922 0.147100 0.376190 0.268254 

Table 5 The detrimental effect of the adversarial perturbation on the data rate in the beam 
selection use case for different attack algorithms and perturbation budgets given in per cent of the 
input in the case of several model hardening techniques being applied. Each metric value presented 
is relative to the baseline, i.e. when there is no attack taking place. The less the value, the more 
efficient the attack 

Model hardening method and perturbation budget (in per cent of the input) 

Baseline (no defence) Adversarial learning Label smoothing 

Attack algorithm 10% 100% 10% 100% 10% 100% 

Random 0.999846 0.986819 0.999998 0.988811 0.999698 0.987671 

Substitute 0.995224 0.905000 0.998609 0.957780 0.988861 0.803566 

SPSA 0.999836 0.975431 0.999960 0.930313 1.000051 0.976413 

GA 0.999609 0.975191 0.999952 0.932794 0.999600 0.971647 

Boundary 0.972949 0.301807 0.983622 0.368111 0.976489 0.320126 

HopSkipJump 0.888945 0.195502 0.890961 0.208198 0.896061 0.199990 

examples during training to improve the generalisation of the target model and 
in theory make it more resilient to adversarial samples, whereas the latter relies 
on mixing the original ground-truth label distribution with some fixed distribution 
aiming to make the target model less confident over its predictions. In our 
experiments, we generate samples for adversarial training using the same white-
box algorithms as we have used when evaluating detection methods, i.e. FGSM, 
PGD, BIM, and MIM. For label smoothing, we use the uniform distribution with 
the weight of this distribution being equal to 0.1 divided by the number of classes 
similarly to how it has been done in the original study [63]. 

The results are presented in Tables 4, 5 and 6 and Figs. 8, 9 and 10. As one 
can immediately notice, there are no significant model performance improvements 
when employing the aforementioned model hardening techniques in each of the 
use case scenarios studied. In the modulation recognition use case, some significant 
accuracy increase can be observed when employing adversarial training against the 
attack that relies on using a substitute model. On the other hand, label smoothing
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Table 6 The detrimental effect of the adversarial perturbation on the jamming detection accuracy 
for different attack algorithms and perturbation budgets given in per cent of the input in the case of 
several model hardening techniques being applied. Each metric value presented is relative to the 
baseline, i.e. when there is no attack taking place. The less the value, the more efficient the attack 

Model hardening method and perturbation budget (in per cent of the input) 

Baseline (no defence) Adversarial learning Label smoothing 

Attack algorithm 10% 100% 10% 100% 10% 100% 

Random 0.896484 0.546875 0.884766 0.709961 0.889648 0.574219 

Substitute 0.405273 0.430664 0.438477 0.422852 0.419922 0.000000 
SPSA 0.841797 0.531250 0.836914 0.781250 0.844727 0.583008 

GA 0.557617 0.557617 0.945312 0.557617 0.560547 0.557617 

Boundary 0.633789 0.351562 0.780273 0.527344 0.625977 0.286133 

HopSkipJump 0.403320 0.000000 0.500000 0.186523 0.416992 0.002930 

(a) Adversarial learning, 10% of the input. (b) Adversarial learning, 100% of the input. 

(c) Label smoothing, 10% of the input. (d) Label smoothing, 100% of the input. 

Fig. 8 Dependence of the modulation recognition accuracy on the SNR level when using 
adversarial learning and label smoothing against various black-box attack algorithms with different 
adversarial perturbation budget limit values 

has resulted in accuracy reduction in this case. However, label smoothing allows 
for improving the results in the case of the boundary and HopSkipJump attacks. In 
the beam selection use case, both adversarial training and label smoothing allow 
for some data rate increase in the case of the boundary and HopSkipJump attacks 
which are the most effective ones against the target AI/ML model in this use case.
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(a) Adversarial learning, 10% of the input. (b) Adversarial learning,100% of the input. 

(c) Label smoothing, 10% of the input. (d) Label smoothing, 100% of the input. 

Fig. 9 Dependence of the sum-rate CDF on the beam selected based on the beam subset when 
using adversarial learning and label smoothing against various black-box attack algorithms with 
different adversarial perturbation budget limit values 

Similarly to the previous use case, employing label smoothing worsens the network 
performance in the case of the substitute attack. Finally, in the jamming detection 
use case, adversarial training results in the detection accuracy increase in the worst-
case scenario. However, as in two previous use cases, employing the substitute 
attack against the target model hardened with label smoothing allows the adversary 
to achieve 100% accuracy reduction in the case of higher perturbation budget values. 

4.4 Result Discussion 

As it has been shown in the first part of this section, adversarial examples generated 
with certain attack algorithms can have a devastating effect on the performance of 
intelligent mobile network components, especially when the perturbation budget is 
high enough. It is worth however mentioning that the results obtained in the beam 
selection use case are somewhat optimistic compared to the other two as in this 
case the adversary has to be able to produce the signal perturbation comparable 
in size with the original input of the target AI/ML model deployed; otherwise the 
negative effect of the attack is insignificant. This can be explained by the fact that
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(a) Adversarial learning, 10% of the input. (b) Adversarial learning, 100% of the input. 

(c) Label smoothing, 10% of the input. (d) Label smoothing, 100% of the input. 

Fig. 10 Dependence of the jamming detection accuracy on the signal type when using adversarial 
learning and label smoothing against various black-box attack algorithms with different adversarial 
perturbation budget limit values 

in this particular case the target model predicts the beam vector that results in the 
maximum achievable data rate, whereas the adversary aims to make the classifier 
to return some non-optimal beam. Despite being non-optimal, this vector may still 
result in some decent data rate. In theory, in order to reduce the network throughput 
significantly, the adversary may try to craft such a targeted perturbation that it not 
only causes a misclassification at the receiver’s classifier, but also changes the beam 
to one of the worst vectors. However, more experiments are supposed to be carried 
out to test this hypothesis. 

Speaking of the attack mitigation, the numerical experiments conducted have 
shown that the adversarial example detection and rejection approach can be 
employed when dealing with large signal perturbations in all three use cases studied. 
When the size of the adversarial perturbation is low, the situation is less optimistic 
for the network operator as most of the adversarial examples generated against 
the automatic modulation recognition and beam selection frameworks analysed 
would remain undetected. Finally, two model hardening techniques tested have not 
provided any noticeable improvements for the AI/ML models employed in all three 
use cases studied. On one hand, they allow for increasing classification accuracy 
slightly in the case of the most effective attack algorithms such as boundary and 
HopSkipJump. On the other hand, generating adversarial perturbations against the
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target classifiers with the help of substitute models in the case of label smoothing has 
resulted in some noticeable accuracy decrease compared to the baseline case when 
no model hardening has been used. It is worth noticing that in our experiments 
we have assumed that the adversary is aware of the fact that a model hardening 
technique is employed and applies the same technique when training the substitute 
model which is not that unrealistic assumption in a real use case scenario. 

5 Conclusion 

In this study, we have evaluated various adversarial example generation attacks 
against machine learning models which can be deployed in future 5G networks for 
intelligent modulation recognition, beam selection, and jamming detection. First, we 
have summarised each of the problems formulated and discussed the data generation 
process. After that, the AI/ML model training and evaluation procedures have been 
overviewed. Next, multiple black-box attacks using various adversarial perturbation 
budget values have been employed against the target models and evaluated using 
the metrics selected. Finally, several adversarial example detection and model 
hardening techniques have been implemented and tested. Despite the significant 
negative impact the attacks discussed may achieve when employed against the target 
AI/ML-based 5G network components selected, unless there is a serious flaw in the 
component security, the adversary should be able to neither have access to the exact 
inputs of the target model, due to the different channel and interference conditions, 
nor obtain the output label, since it is most of the time used internally by the 
model and it is not available to any other wireless node outside of the network. 
For these reasons, in our future work, we are planning to focus on algorithms 
for crafting universal input-agnostic perturbations that can be generated by the 
adversary without having access to the model inputs and outputs. In particular, 
we are going to implement and test multiple such universal adversarial example 
generation algorithms as well as evaluate which detection and model hardening 
techniques can be employed to protect the models under attack. 
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Interactive Cloud Platform for Teaching 
Machine Learning with Medical Data 
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Lars Reinike, Benjamin Schulz, Fabian Siethoff, Tobias Simon, Joey Wang, 
Nils Zhang, Fin H. Bahnsen, Jan Egger, Moon-Sung Kim, Maria Lymbery, 
Jens Kleesiek, and Johannes Kraus 

1 Introduction 

Machine learning (ML) is a data-driven approach for teaching computers to 
perform certain tasks, where the decision process itself is “learned” from data 
using some algorithm, with only a few (if any) explicit rules provided by humans. 
The concepts of machine learning and, more generally, artificial intelligence (AI) 
have been around since the 1950s, almost as long as computers themselves [66]. 
While the field experienced multiple periods of decreased research interest due 
to its perceived conceptual limitations and hardware constraints [31], the advent 
of modern machine learning concepts and the steadily increasing computational 
power and availability of GPUs, affordable even for amateur enthusiasts, has seen 
the field go through explosive growth in terms of research, application, and public 
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interest [72], particularly during the past decade. Deep learning (DL) is a subset of 
ML that sacrifices some of the explainability of the often partially handcrafted ML 
models in favor of larger, generally intractable, decision processes. The latter offer 
greatly increased performance on downstream tasks and require minimal human 
input beyond the initial setup to train themselves. DL models, in particular so-called 
artificial neural networks, named for their functional similarity to the human brain, 
have been both the primary driver and recipient of this increased interest. 

For decades already ML has found important applications in the field of 
medicine [31], e.g., in enhancing diagnosis and detection [63], segmentation [16, 
25], survival prognosis [32], surgical planning [34], personalized treatment [64], 
and the discovery of biomarkers for specific pathologies [26], as clinical data 
management tools [30], or as research tools [15, 38, 52, 62]. The predictive and 
analytical power of these ML models has grown steadily and now decisions based 
on it are qualitatively competitive with (and often more efficient than) those made 
by healthcare professionals [14], occasionally even outperforming them on specific, 
narrowly defined tasks such as pneumonia detection in chest X-rays [53], or 
improving radiologists’ performance during breast cancer screenings [71]. 

While the development of its subfields is responsible for this progress, DL 
has been met with considerable skepticism and apprehension and its practical 
application in real clinical settings has been almost nonexistent [14]. This is not 
only because of its lack of explainability but also due to ethical concerns such as 
data privacy or implicit racial biases. In a more general context and for similar 
reasons, a significant fraction of ML research in medicine remains focused on 
canonical ML (e.g., random forests [9], boosted decision trees [41], support vector 
machines [11]) methods over more modern DL approaches (e.g., convolutional 
neural networks [19, 24, 47], U-Nets [28, 56], or vision transformers [13]). 

The state of the art of AI in medicine is continually driven forward. If the 
goal for AI tools is to eventually incorporate them into the clinical routine, the 
demand for professionals with degrees in ML or medicine and a strong foundation 
in the respective other discipline is likely to increase. In order for this integration 
process to be sustainable and safe, higher literacy in the concepts of ML and DL 
across traditionally separate professions is required. The more comprehensive the 
understanding of the various strengths and weaknesses of DL is, the more safely 
can this technology be applied. 

In this spirit, we present our experience with designing a seminar entitled 
“Machine Learning in Medicine - Theory & Practice.” The course was on an 
introductory level and has been offered to master students in mathematics with 
the goal of building and understanding state-of-the-art neural network architectures 
using PyTorch [49], as well as their strengths, weaknesses, and points of failure. The 
respective models have been tested and evaluated on the medical imaging challenge 
dataset LiTS 2017 (Liver Tumor Segmentation) [8], a dataset containing abdominal 
computed tomography (CT) scans. The choice of the architectures covered by the 
seminar was inspired by the milestone advances during the last decade of DL 
research, with a focus on the medical imaging perspective, and included sections 
on AlexNet [35], ResNet [24], U-Net [56], and the Vision Transformer [13]. The
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seminar was assigned nine credit points according to the European Credit Transfer 
and Accumulation System (ECTS) and jointly offered by the chairs of Numerical 
Mathematics, Faculty of Mathematics, and the Institute for AI in Medicine (IKIM), 
University Hospital of Essen at the University of Duisburg-Essen, over the span 
of one semester. The seminar could be attended both in person and remotely. We 
aimed to address the following research/engineering questions: (a) Can a hands-
on machine learning seminar that contains real-world challenges be approachable 
to students with only limited previous experience in machine learning and pro-
gramming expertise? (b) Can it be implemented entirely as an uncomplicated, 
out-of-the-box learning platform using only cloud-based computation resources? 

Although the seminar was offered to master students at the Faculty of Mathe-
matics with varying prior knowledge of the mathematical foundations of ML and 
DL, the lessons themselves are designed to be appropriate for amateurs with a low 
or medium level of programming skill, regardless of study direction. In addition to 
discussing the learning objectives and practical challenges of the seminar, we make 
all of the discussed content available publicly, including student-created sample 
solutions for each task. 

Furthermore, we explore the technical design and specifications of the interactive 
cloud platform which is based entirely on external resources, such as Coder [6] 
and AWS [48], and requires no dedicated hardware beyond hosting a Web page. 
The platform is designed to streamline access to the learning material by both 
students and tutors, with tutors having live access to student workspaces to facilitate 
uncomplicated remote debugging. This live access for tutors was equivalent to the 
access which students had; tutors could see all code in their students’ workspaces, 
observe the execution or start it themselves, and even comment or edit code 
concurrently with the students. We share our codebase and instructions for setting 
up the cloud platform [44] along with materials [29] on GitHub. While all course 
materials benefit from execution on dedicated hardware, the entirety of the seminar 
can also be completed using only a modern PC. 

Finally, we discuss the results of the seminar, reflect on the lessons we have 
drawn from our experience in the context of our abovementioned research questions, 
and conclude our contribution with an outlook on AI in medicine and education and 
its role in an increasingly digitized world. 

2 Design Principles 

Before we dive into the technical realization or the actual learning materials, we 
want to motivate some of the design principles of both the platform and the learning 
materials of our seminar. Some of the ideas we present below are very specific to 
the field of ML, while others are generally applicable to any subject taught remotely 
or in a hybrid fashion.
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2.1 Teaching Requirements 

Every project, particularly programming projects, comes with primary and sec-
ondary challenges. Primary challenges concern implementing an idea effectively 
and solving subject-related questions along the way. The secondary challenges 
relate to the preparation or maintenance of the work environment. Typically, one 
is only interested in the former, and the latter are accepted as necessary. When 
the secondary challenges significantly outweigh the primary ones, or even outright 
prevent working on them, we encounter what we term “logistical frustration.” If 
this frustration is strong enough, it can cause a project to be pursued with reduced 
interest or even abandoned. 

Logistical frustration is a common problem in computer science because of 
the impenetrable pile of layered dependencies, but is absolutely not limited to 
it. If driving your car required repairing it every other day, you would quickly 
reconsider having a car. Hence, our first and foremost design principle is to 
reduce the potential for logistical frustration among the students to a minimum. 
In the best-case scenario, any problem the students have is only related to their 
understanding and implementation of the subject matter. From this premise follow 
several requirements:

• The students should be able to work on the course materials from any machine 
and any operating system, indicating the need for Web-based access.

• Connecting to and navigating the space in which the course materials are made 
available should be quick and should not require a high degree of technical 
literacy.

• Setting up the environment in which the students work should be quick, 
easy, and uniform across students. Hence, we decided to prepare containerized 
environments (see Sect. 3) ahead of time so that the students would not need to 
interact with them.

• The same principle applies to some degree to the code students work on. 
Wherever possible, code not immediately relevant to the task at hand should be 
provided by us as a sort of guard rail, both for simplicity and uniformity.

• Any such guard rail code should be static, as any evolution of this code parallel to 
efforts by the students that rely on it can introduce problems the students cannot 
(or not easily) fix themselves. 

Note that while creating and managing your programming environment is a 
highly important skill, we opted not to try and confer it to students during our 
seminar for multiple reasons: Firstly, as the entirety of the course would only 
require a single environment, students were unlikely to internalize the skill due to 
it seeing little use. Secondly, the centrally managed environment offers scalability 
with respect to the number of students. This scalability is lost when every student 
creates their own environment, which invariably ends up being unique in some 
unforeseen aspect and introduces additional challenges during debugging down the 
line.
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2.2 Interactivity 

It is generally accepted that learning by doing something is far more effective than 
learning by simply reading or hearing about something [7, 18] and this is particularly 
true when it comes to learning programming (or a specific programming skill) 
[40]. Hence, we aim to include the relevant programming tasks with a preamble 
as concise as possible and to encourage the students to learn to navigate through 
the run-debug cycle on their own. To this end, any code which the students interact 
with is provided as the Jupyter Notebook [33], a readable and highly interactive 
programming environment for Python code that allows for partial code execution 
and easy debugging. 

2.3 Pair Programming and Teams 

Pair programming is an established practice [10] in agile software development [12], 
wherein two programmers work on a piece of code together. Classically, this is 
done in front of a single machine, but modern developments allow the concept to be 
extended to two users remotely accessing the same piece of code in a shared coding 
session. 

In addition to the typical benefits of increased code quality and development 
speed [4, 10], assigning the students to pairs or teams has some pedagogically 
valuable consequences as well. For one, the students learn to express their ideas 
in terms of technical jargon when communicating with each other. Additionally, if 
the teams are arranged appropriately, the students with greater initial knowledge 
can share their knowledge with those who have less prior experience. Student 
satisfaction has been shown to be increased among students working in pairs 
compared to those working solo [61]. 

Finally, student teams are valuable from an organizational perspective. Offering 
help to the teams during lessons drastically reduces the number of problems 
that need to be fixed simultaneously, while simplifying the process of reviewing 
the student’s solutions. Consequently, the formation of teams was chosen as a 
cornerstone of our seminar. 

2.4 Teaching Methods 

In terms of teaching methods, we attempt to integrate lessons learned from [65]. 
As tutors with domain knowledge in informatics, mathematics, and medicine, 
we can best deliver domain specificity in the field of medical DL, which partly 
substantiates our later choice of dataset (see Sect. 4.3.4). In addition to this, we 
attempt to integrate as many real-world examples as possible into our explanations,
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for example, exploring the concept of overfitting to training data for different 
reasons or implicit biases (and the corresponding solutions) on real failure cases. 
Note that there is a number of comments and instructions in the learning materials 
addressing this problem; however, detailed explanations were given in specific 
discussions with the students during the seminar. 

We worked to include the ideas of constructive alignment [7] into our teach-
ing strategies. The alignment of learning objectives, pedagogical practices, and 
evaluation systems is emphasized by constructive alignment. We constructed our 
teaching strategies to make it easier to attain these objectives by stating the targeted 
learning outcomes explicitly. Implementing this strategy, we focus on actively 
involving students in the learning process and giving them the chance to develop 
their knowledge and abilities. Furthermore, we can precisely gauge students’ 
development and comprehension by matching our evaluation techniques with the 
learning objectives. This aids in establishing a harmonious and efficient learning 
atmosphere that encourages our students’ engaging learning experiences. 

3 Technical Implementation 

In order to attend lessons and complete coursework, students require access to 
compute hosts equipped with data center-grade graphics processing units (GPUs). 
These resources are traditionally found in high-performance computing clusters 
where users are expected to authenticate using a secure shell (SSH) client and 
interact with GNU/Linux hosts via a command-line interface. In recent years, 
the technology industry has seen a growth of remote development environment 
solutions hosted on cloud providers [21, 43, 54] or even on-premises [22, 70]. 
These services allow software developers to access pre-configured environments 
using a Web browser with the option to attach a local integrated development 
environment (IDE). We ourselves have some preliminary work in this direction 
which we describe in [4, 5]. While typically aimed at improving the productivity 
of software engineers by eliminating sources of friction, they have the potential for 
lowering the complexity barrier that discourages learners or people from different 
areas of expertise from using specialized computing resources. 

In this section, we discuss the requirements and implementation of a remote 
development platform that supports a hands-on machine learning course without 
requiring a strong level of computer literacy. We aimed for a vendor-neutral 
design as we prefer exposing students to general workflows rather than proprietary 
solutions whenever possible, and allowed the implementation to include proprietary 
components only as long as they could be replaced without a cascade effect on the 
other elements. The choice for each individual service was informed by the desired 
features or guarantees we explored in Sect. 2 and the technical requirements of the 
following subsection.
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Fig. 1 Deployment of the 
work environments. Students 
are only ever exposed to the 
Web interface from which 
they can start and connect to 
their workspace(s) with just 
two button clicks 

Our implementation is based on Coder (cf. Sect. 3.2) for the main service and 
Amazon Web Services (AWS) for hosting and ancillary services (cf. Sect. 3.4). 
The architecture is depicted in Fig. 1. To avoid clutter, components of secondary 
relevance such as DNS are omitted. Our entire deployment material is available 
at [44]. 

3.1 Technical Requirements 

The computational resource provisioning was designed according to the following 
principles:

• There should be enough computation resources for all students to log on and 
work in parallel.

• Given that GPUs are generally a scarce resource in relation to the number of 
users, it is necessary to devise a mapping strategy. Ideally, there would be an 
automated mechanism to assign two or more “seats” per GPU. As a fallback, 
we considered simply dividing the GPUs equally among students during the 
registration phase in a manual fashion.

• Access to the platform should be available from anywhere and at any time, and 
students should be able to resume previous sessions, to maximize the students’ 
productivity between lessons. As an additional benefit, this design also allows 
our seminar to be held in a hybrid fashion.
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• The same availability criterion can be extended to the teaching staff. The more 
easily we can access the students’ code, the more quickly and effectively we can 
help them with debugging. By allowing direct access to students’ workspaces, 
we reduce wasted time during and expedite problem-solving outside of lessons. 

In addition, the platform should be optimized for robustness from the viewpoint 
of the students:

• The system should be robust to crashes. If the machine that a student is working 
on crashes, the student should only have to restart, not wait until the responsible 
admins have finished maintenance.

• The system should be robust to loss of data. If the storage and computational 
resources are separated, and storage is backed up in some reliable fashion, then 
the failure of any component has minimal consequences for the student, beyond 
having to redo the last few minutes of coding. Hence, we designed the storage 
available to the students as persistent while simultaneously encouraging backing 
up data externally. 

3.2 Coder 

Coder is a development environment engine by Coder Technologies. The company 
offers an open-source release under the GNU AGPLv3 license and an Enterprise 
upgrade with additional features. Our deployment adopts the open-source release. 

A minimal installation consists of the Coder server and a PostgreSQL database 
deployed separately. Users can interact with the server via a Web interface or by 
using the Coder client application. By connecting to the Coder server, users can 
create and manage development environments called workspaces. As a distinctive 
feature, Coder does not perform the task of creating the workspace directly; instead, 
it hands the responsibility over to Terraform. Administrators provide their own 
Terraform configuration (called templates in Coder), thus allowing complete control 
over the creation of workspaces. 

As previously touched on (cf. Sect. 2.1), we created a template that implements 
containerized workspaces. Containers are created from a custom Docker [42] image 
pre-populated with all the necessary software for tutorials and hands-on lessons. 
Additionally, the template installs a Web-based variant of Visual Studio Code [69]. 
This setup enables a workflow that can be carried out entirely via a Web interface 
(Fig. 2): (a) sign into Coder, (b) click a button to create a workspace, (c) click a 
button to launch a Visual Studio Code window, (d) work on the actual assignments, 
and (e) at the end of the session, click a button to stop the workspace and sign 
out. Data stored in the home directories of a workspace is preserved between 
sessions for each individual workspace. For administrators, every student workspace 
is accessible in the same way, even while in use, facilitating easy remote support or
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submission of solutions. This access is fully privileged, with administrators able to 
read, modify, and execute everything in the workspace, even concurrently, with tutor 
and students viewing and editing the same file. 

Fig. 2 UI of the interactive cloud platform. After logging in, only a single click is required to 
get from panel to panel. The creation and initialization of the containerized environment, resource 
provisioning, and the Code Server itself are handled in an entirely automated fashion and require 
no input from the students. Connection options to the workspace are user-friendly and simple. The 
coding environment closely resembles Visual Studio Code [69]
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Fig. 2 (continued) 

3.3 Kubernetes 

Workspaces were implemented as Kubernetes pods. By deploying Cluster 
Autoscaler [36] and NVIDIA GPU Operator [46] on Kubernetes, we were able 
to tackle key issues with relatively little effort. One such issue is the operating cost 
associated with data center GPUs, especially when hosted by cloud providers due 
to the high demand for specialized hardware. We set out to make optimal use of the 
available resources.



Teaching Machine Learning with Medical Data 269

Fig. 3 Hypothetical scale-up 
scenario in which 3 nodes 
were required to satisfy the 
peak resource demand of 12 
students. Note that multiple 
nodes remain active 
unnecessarily after most 
students have left because 
evictions only happen once 
nodes are entirely empty. This 
scenario did not occur in 
practice, as the demand 
typically only spiked during 
the seminar itself, after which 
every student would log off at 
least until they were home 

When a Kubernetes pod specification includes a request for one or more GPUs, 
the native scheduling mechanism assigns the desired amount of GPUs for that pod 
exclusively. This approach may be inefficient if the individual GPUs are not fully 
utilized. Since we can calculate the amount of GPU RAM that each student is 
supposed to allocate to complete the exercises, we can determine whether a GPU 
could accommodate more than one pod. Let R be the required GPU RAM for a pod 
and G the installed GPU RAM; if 

. ⎿G/R⏌ = n, n ≥ 2

holds, then the GPU can support n concurrent users. The NVIDIA GPU Operator 
provides a time-slicing feature that exposes multiple logical devices for each 
physical GPU, thereby allowing pods to share access to the same underlying 
hardware. 

Cluster Autoscaler is used in concert with GPU time-slicing to ensure that only 
the required amount of cloud nodes are active at any given time. When the first 
workspace is launched, a node is scaled up. As more workspaces are launched, 
they will exhaust the GPU capacity of the node and the autoscaler will scale up 
another node. The autoscaler is also able to scale down a node after all workspaces 
scheduled on it have been stopped. With this mechanism in place, only nodes with 
active workspaces contribute to costs. 

An undesirable situation depicted in Fig. 3 may arise in the following scenario: 
(a) a demand spike triggers a significant scale-up event, (b) a subset of workspaces 
evenly distributed across nodes are stopped, and (c) the system enters an equilibrium 
such that workspaces are equally started and stopped over time, never meeting the 
scale-down condition. In a deployment with stateless pods, the problem is resolved 
by allowing the autoscaler to evict pods and reschedule them on different nodes 
to achieve optimal usage. However, in a context where pods serve as interactive 
workspaces, it is not reasonable to allow unprompted eviction.
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We did not observe this problem in practice, although it might become noticeable 
with a large number of users. As a mitigation strategy for concepts based on our 
work, many nodes equipped with few GPUs each should be preferred to few nodes 
with many GPUs each. Additionally, workspaces should have a shutdown timer to 
avoid keeping them active indefinitely. 

3.4 Deployment 

The Coder server and workspaces were deployed on Amazon Elastic Kubernetes 
Service [2]. A PostgreSQL database for Coder was created using Amazon Relational 
Database Service [3]. To allow for preserving important data when a workspace 
is stopped, the Coder template configures the home directory as an Network File 
System (NFS) mount point. Amazon Elastic File System [1] was used as a storage 
server exposing NFS shares for home directories. If a workspace is deleted, the 
associated NFS share is deleted as well. It should be noted that our design does 
not depend strictly on AWS and can be replicated using any cloud provider or by 
hosting it using on-premise resources. 

A drawback of relying on AWS-hosted GPUs for hands-on classes is the 
scarcity of specialized hardware: a request for a GPU node – either manually or 
via autoscaling – may not be met due to unavailability at that particular time. 
An additional hindrance involves the approval process for quotas for specialized 
hardware. Each quota is tied to a specific instance type and cannot be transferred 
to a different instance type. As a result, if a scale-up request is denied, launching a 
different instance type can be attempted only if another quota has been approved 
ahead of time. The quota approval process hampers on-the-fly experimentation 
and adaptation. It is therefore crucial to prepare well in advance and estimate the 
hardware requirements as closely as possible, particularly in relation to costs. 

3.5 Alternative Implementation Approaches 

Multiple alternatives to the learning platform we designed exist, each of them with 
their own advantages and disadvantages. In the following, we will give a short 
overview over these approaches and our reason behind foregoing them. A post hoc 
assessment of our learning platform that largely mirrors our initial expectations can 
be found in the Discussion section. 

Coder Platform with On-premise Resources Our learning platform can theoreti-
cally be hosted on any collection of compute hardware, given some small adjust-
ments. The advantages of hosting the learning platform on on-premise resources 
are absolute control over all available resources, reduced costs compared to rented 
cloud compute resources, and the reuse of existing infrastructure to manage users
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and access. Disadvantages include the necessity of pre-existing compute resources 
and their regular availability, both regarding other users and potential downtimes of 
the local system and the added workload of maintaining said system. In practice, 
we considered the guaranteed uptime of the platform and guaranteed availability of 
compute resources a high priority, and the implementation of a platform that would 
work with cloud resources helpful for the wider the community. 

On-premise Hosting Without Coder Platform One alternative to the learning 
platform approach would be to have students directly access on-premise compute 
resources and work there. The obvious advantage here would be that no platform 
must be developed or maintained. However, we considered the disadvantages of 
the students having to familiarize themselves with the environment of the local 
high-performance compute cluster and its resource allocation and environment 
management to outweigh the gains. Additionally, we expected the time cost 
debugging of any student solutions (or even problems that have nothing to do with 
the learning materials themselves) to increase compared to our approach – the more 
variables are left in the hands of the students, the more slightly different problems 
invariably end up happening. 

Distributed Learning Materials Finally, all learning materials can be distributed 
to students and executed individually on their own machines. This approach was 
strongly disfavored by us due to the compute resource requirements of deep learning 
generally outstripping the power of modern personal computers, and laptops in 
particular. Further, this approach fosters unique environments, code editors, and 
operating systems combinations, which in turn exacerbate the strain on tutors, as 
every instance of debugging takes longer in this scenario. 

4 Course Organization and Materials 

In the following section, we detail the subject of the individual lessons, the style of 
these lessons, and their specific learning objectives and discuss the provided guard 
rail code and grading guidelines we employed. 

4.1 Organization 

As mentioned in Sect. 1, we loosely followed the history of machine learning, 
specifically the topic of image classification and segmentation using neural networks 
and their applications in medicine, when planning the lessons. Consequently, we 
split the semester into 6 topically distinct blocks, each containing several lessons of 
180 minutes spaced in 1-week intervals. The first two of those blocks were reserved 
for introductory lessons, while the remaining four were engaged with one neural 
network architecture each that we deemed evolutionary steps, both in general ML
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and specifically in the context of ML in medicine. Our choice fell on AlexNet, 
ResNet, U-Net, and the Vision Transformer (ViT). 

In accordance with the principles outlined in Sect. 2.3, we divided the ten 
students into four groups of two or three students, respectively, allowing the 
students the choice of group constellations and presented topics, but encouraging 
the formation of teams in which members had different skill levels (ranging from 
no prior experience in Python to significant prior experience in both Python and 
PyTorch; see Fig. 5). Building on the thoughts of Sect. 2.2, we chose to let the 
lessons themselves be partially conducted by the student teams, each of which 
familiarized itself with one of the core topics (see Sect. 4.5) of the course, presenting 
the subject matter before starting the respective practical section. This approach is 
also known as flipped classroom [45] or inverted classroom and has been reported 
to increase the motivation and engagement with learning materials, as well as the 
effectiveness of the learning process. 

Each block then featured a programming task including the implementation 
of the discussed architecture, which every student had to complete. The block 
concluded with a presentation by the group that presented the architecture, in which 
they explained their solution and showcased their results. This final presentation was 
held at the beginning of the first lesson of a new block, marking the latest point at 
which solutions for that task could be handed in. As the concepts behind the U-Net 
and segmentation, in general, and the Vision Transformer were more complicated 
than those behind AlexNet and ResNet, we assigned the larger groups to the former 
topics. An account of the allocated times for the individual blocks is illustrated in 
Table 1. 

All lessons were held in a hybrid format, giving students the choice of showing 
up in person and with any portable machine capable of displaying a Web page or 
joining the session remotely via video call, if they were unable to attend in person. 
Portable machines with common software setups were available for students to use 
in case of unforeseen software incompatibilities, but ended up not being used as all 
students were able to access and work on the course materials from their various 
own devices. 

Table 1 Seminar timetable. Organizational and theoretical sections are colored in green, presen-
tations in blue, and implementation sections in orange 

Week 1 Organisational Introduction to Python Break Introduction to Python 

Week 2 Introduction to Python Break Introduction to Python GitHub Tutorial 

Week 3 PR by tutors: Neural Networks Introduction to PyTorch Break Introduction to PyTorch Teams assigned 

Week 4 Introduction to PyTorch Break Introduction to PyTorch 

Week 5 PR Team 1: AlexNet AlexNet implementation Break AlexNet implementation 

Week 6 AlexNet implementation Break AlexNet implementation 

Week 7 PR Team 1: AlexNet solution PR Team 2: ResNet Break ResNet implementation 

Week 8 ResNet implementation Break ResNet implementation 

Week 9 PR Team 2: ResNet solution PR Team 3: U-Net Break U-Net implementation 

Week 10 U-Net implementation Break U-Net implementation 

Week 11 U-Net implementation Break U-Net implementation 

Week 12 PR Team 3: U-Net solution PR Team 4: ViT Break ViT implementation 

Week 13 ViT implementation Break ViT implementation 

Week 14 PR Team 4: ViT solution ViT implementation Break ViT implementation 
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4.2 Grading Guideline 

While we encouraged completing the tasks as a group, the submission of the solution 
itself was strictly individual. During the first lesson blocks, each student would 
present their solution privately to two tutors, so that the tutors would learn to apply 
a common grading standard (cf. Sect. 4.2). The submissions during later lessons 
were reviewed only by one tutor. Any such submission was a dialogue between 
the tutor(s) and the student, similar to an oral exam. During these dialogues, we 
occasionally asked questions, trying to guide the student toward discovering a better 
solution themselves rather than directly stating a better solution. A particular focus 
was put on the ability of the students to explain in simple terms both what they 
had done and what the guard rail code provided by us did, as well as in writing 
understandably formatted and commented code. The eventual performance of the 
neural networks and execution time of the code, unless so poor as to call into 
question whether the task was actually solved, was not relevant for the grade. With 
respect to the gradually increasing difficulty of the programming tasks over the 
course of the semester, we applied increased leniency when grading the later tasks. 

Our grading system followed a simple integer score between 0 (lowest mark) 
and 3 (highest mark) for each programming task, depending on the students’ 
understanding of the core concepts related to the task, whether their code solutions 
solved it, and whether they needed significant assistance from the tutors. 

Presentations were held at the start of a lesson and had the format of a classical 
presentation using slides and the blackboard, were around 15–30 minutes in length, 
and were followed by a plenary discussion in which the audience would ask 
the presenting students questions for clarifications. Additionally, the tutors would 
ask questions to cover nuances not explored by the presenting team, elaborate 
on inaccuracies or ambiguities in the presentation (if any), or gauge the level of 
understanding the presenters had of specific facts. 

Similar to code submissions, an integer score between 0 and 3 was assigned 
depending on the quality of the presentations, the individual student’s contribution, 
and their ability to answer questions by the other students or tutors. 

The grading system at German universities features ten passing grades (1.0 
being the best and 4.0 being the worst) and one failing grade (5.0). Thus, we first 
decided on a point threshold required for the worst passing grade (6 points) with 
every increment in grade requiring 1 additional point. The best possible grade (at a 
threshold of 15) was achievable without earning all possible (18) points. 

4.3 Software and Data 

In this section, we will briefly discuss the tools with which we taught the students 
to work. 
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4.3.1 Python 

Python [58] is a high-level, general-purpose programming language based on C that 
has been under continuous development since 1989. It is particularly popular in the 
scientific community and among hobbyists for several reasons. Firstly, the language 
fully supports a number of different programming paradigms (such as object-
oriented and functional programming). Secondly, the language is dynamically 
typed and uses a garbage collector for memory management, simplifying the 
process of creating programs in terms of difficulty and time spent developing. 
The language syntax has been explicitly streamlined for code readability. Finally, 
the language is also interpreted, significantly expediting the run and debug cycle, 
and sacrificing some performance for ease of use. Python’s low bar of entry for 
beginners and its suitability for quickly prototyping code make it very popular 
among researchers. Additionally, the corresponding ecosystem of tutorials, standard 
and third-party libraries, and forums on which knowledge about the code base 
is shared is enormous, especially where ML and DL are concerned. In keeping 
with our premises from Sect. 2.1, we chose Python as the programming language 
on which to base our learning materials. Each lesson block comes with one or 
more collections of prepared code in the form of IPython Notebooks, in which 
code is segmented into individual cells, segments of code that can be executed and 
debugged independently of one another, a style of programming particularly suited 
for programming novices. 

4.3.2 PyTorch 

PyTorch [49] is a free, open-source software library based on Python and C.++, 
developed for DL and Natural Language Processing (NLP). It interfaces high-
level Python instructions with the CUDA API, allowing programmers to effectively 
utilize modern GPUs to speed up calculations. PyTorch is widely used, actively 
maintained, and (until the introduction of eager execution by its main alternative 
Tensorflow [67]) easier to debug for novices due to its default sequential execution. 

4.3.3 Git 

GitHub [20] is a Web-based platform for version control and collaboration that 
allows developers to easily collaborate on projects. Git is a distributed version 
control system that is used to manage projects and source code. 

Git is an essential tool for computer science students to learn because it is 
used widely in the software development industry, and mastering Git is critical for 
collaboration on software projects. It allows developers to track changes in code, roll 
back to previous versions, and collaborate with other developers while maintaining 
a clear and organized code base. 
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4.3.4 The LiTS Dataset 

For the sake of simplicity, we chose to base our course entirely on one dataset. 
The requirements we considered were a dataset of size small enough to be trainable 
in acceptable time and large enough not to cause overfitting to noise even if no 
or little data augmentation is applied, easy enough to quickly debug DL models 
and arrive at better solutions, and difficult enough that two models of different 
quality produce noticeably different results. Working with the data should be 
as uncomplicated as possible, which made datasets composed of raw Digital 
Imaging and Communications in Medicine (DICOM) files (a medical image format 
including both image and meta-information), or those with non-RGB, non-grayscale 
unattractive. Additionally, transformations on the dataset had to be intuitive – for 
example, random Gaussian noise is a realistic image augmentation for natural 
images (thermal noise in the camera) or computed tomography (CT) scans (thermal 
noise in the detector). However, the same is not quite true for magnetic resonance 
imaging (MRI) data, where realistic noise on an image is typically modeled as 
Rician noise [23]. Similarly, the values in a CT image correspond to a physical 
property of the scanned tissue, the attenuation of X-ray radiation coming from and 
being detected by the scanner (measured as an absolute quantity called Hounsfield 
Units, or HU), meaning they should in principle always be the same if the scanned 
object remains the same. In an MRI image, absolute values have less meaning and 
may vary from machine to machine. 

Following the above reasoning, we used the LiTS (Liver Tumor Segmentation) 
dataset [8]. It consists of around 35,500 training images and 3000 validation and 
test images each. Every image is a 2-dimensional slice coming from 1 of the 
201 individual 3-dimensional abdominal CT scans from patients with liver lesions. 
All images were converted to the PNG format and have .256 × 256 pixels with a 
single channel. A multitude of different models have been tested on this dataset and 
achieved a wide range of performances. On the GPUs described in Sect. 3, a single 
epoch of LiTS training can be completed in 1–2 minutes or less, depending on the 
specific model architecture, training setup, and caching. As training a model on 
LiTS typically takes 10 epochs or fewer, it allows students to evaluate any changes 
they make to their models in terms of performance and speed relatively quickly. 
Several typical LiTS images and their segmentations can be seen in Fig. 4. 

For the AlexNet, ResNet, and ViT architectures, we framed the LiTS data as a 
classification problem with three classes: “no liver visible,” “liver visible,” and “liver 
visible, with lesion.” For the U-Net architecture, we used the LiTS dataset with the 
same classes, but in the context of slice-wise semantic segmentation. 

4.4 Topics and Tasks 

In the following sections, we will cover the specific contents of each block of 
lessons. Each lesson block, except the first one, included a presentation. The guard 



276 F. Jonske et al. 

Fig. 4 Typical LiTS images. The images shown are two-dimensional slices taken from a three-
dimensional scan. All images were contrast-enhanced. From left to right, they represent the classes 
0 (no liver or lesion in the image), 1 (liver visible), and 2 (liver visible, lesion visible). In the second 
row, liver segmentations are marked in green, and lesion segmentations in red. The neural networks 
of the students must later identify every pixel in an image as belonging to one of these three classes 

rail code, explanations, and sample solutions created by the student teams can be 
found at [29]. 

4.4.1 Introduction to Python 

The first block was reserved for organizational work. We established the content of 
the lessons for the rest of the semester and laid out the grading system and learning 
objectives to the students. We also monitored the formation of the teams and 
introduced the students to the Coder platform through which the course’s learning 
materials could be accessed. 

The programming section of this block contained a tutorial covering the basics 
of programming with Python, starting with simple concepts that the students were 
already familiar with, such as simple calculus and linear algebra, declarations, and 
functions, and covering more advanced concepts specifically relevant to machine 
learning, such as working with vector- or matrix-type data arrays, error handling, 
and simple classes. The students were free to complete any or all sections of this 
tutorial according to their own evaluation of their skills under the premise that they 
would be familiar with the concepts introduced in the tutorial by the beginning of 
the next block. While there were not yet any graded tasks, the tutorial occasionally 
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contained small programming challenges, which tested the students’ understanding 
of one particular concept. 

Lastly, the students were introduced to backing up (or versioning) projects using 
GitHub. On the one hand, this would prevent data loss, even if the persistent storage 
behind one or more students’ workspaces failed, and on the other hand, it introduced 
the students to best practices in coding. 

4.4.2 Introduction to Deep Learning in PyTorch 

The second lesson block formed the initial introduction to the topic of neural 
networks. A short presentation detailed the history of ML and the conceptualization 
of NN beginning with the earliest theoretical ideas [57] and culminating with the 
LeNet [37]. Additionally, it provided a concise explanation of the mathematical 
foundations of backpropagation [59] to those students who had no prior exposure to 
these methods. This presentation was held by us and served as an example of how 
to present, as well as providing the necessary foundation for later presentations. 

The corresponding programming section introduced the students to the program-
ming package PyTorch [49] and the basic elements needed to successfully train a 
NN in practice, such as:

• The dataset and dataloader classes (fetching the data)
• The NN model class and its forward pass (turning an image into a prediction)
• The loss function (asking, in layman’s terms, “How wrong were my model’s 

predictions?”)
• The optimization of the model through backpropagation (asking “How would I 

have to adjust the model’s parameters for it to be less wrong?”)
• The validation of the model using some metric (asking “How good is my trained 

model?”) 

and how they are programmed using PyTorch. 
The declared goal of this block was that the students would learn about each 

of these elements and build each of these elements on their own, producing one 
complete, end-to-end training and testing script. Even more so than for other blocks, 
the key ingredient for the best grade was not model performance or speed, but rather 
building a functional example of each element and being able to explain what it 
does and why it does it in the chosen way. We provided as guard rail code one 
possible variation of each of these elements, which the students were allowed to 
draw inspiration from. 

4.5 Neural Network Implementations 

As mentioned previously, we covered four milestone architectures from the field 
of image recognition during the seminar: AlexNet [35], ResNet [24], U-Net [56], 
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and the Vision Transformer [13]. These architectures were chosen due to their 
historical significance both in the field of computer vision in general and in medicine 
specifically. 

For their presentations, the students were asked to cover the following core 
topics:

• What was the state of the art in image classification/segmentation before this 
milestone architecture?

• Describe and explain the most important components of the architecture. Which 
of these components were novel?

• Explain mathematically and in descriptive terms how the new operation works 
and why it is beneficial.

• Compare the performance of this architecture with those of its predecessors. 

During the programming section, the students’ task was to create the model class 
of the milestone architecture in PyTorch. Every subsequent architecture came with 
increasing complexity, slowly ramping up the difficulty as the students became more 
experienced:

• AlexNet only required the sequential application of pre-existing PyTorch mod-
ules, like the previous lesson block, and served to consolidate existing knowl-
edge.

• ResNet required factoring out the basic building block of the ResNet into a 
separate class. The learning objective was to recognize this necessity, implement 
this subclass, and dynamically build the model from a number of these basic 
blocks.

• The U-Net lessons had multiple learning objectives. To build the U-Net, students 
had to understand the concepts of segmentation and the transposed convolution 
and had to apply the lessons learned during the ResNet implementation in a 
different context, again factoring out separate upsampling and downsampling 
blocks as subclasses. Additionally, the students were required to create the loss 
function for this task themselves.

• The implementation of the Vision Transformer model was the final task and again 
had multiple learning objectives. The students needed to understand both the 
concept and mathematics behind the attention mechanism [68], again factor it 
out as a separate class, and successfully implement it. Additionally, they had to 
internalize the concepts of embedding and the cls-token [68]. 

Every part of the training pipeline other than the model class (and the loss 
function in the case of the U-Net) was provided by us as guard rail code, although 
the students were encouraged to try and play around with various parameters or 
optimization of our code once the model class was functional. For each paper, the 
programming assignment was to approximate the original model described in that 
paper as closely as possible, occasionally with some decreases in overall parameter 
size. For the U-Net specifically, the assignment also asked for the implementation of 
a segmentation loss, incorporating both pixel-wise cross-entropy loss and a DICE-
based loss. All lesson blocks concluded with the presentation of a sample solution 
and its performance by the same team that presented the architecture at its start. 
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5 The Seminar in Practice 

In this section, we will discuss how the seminar panned out from an organizational 
point of view, and whether we can consider the learning objectives to have been 
reached. Given the grading system, we described in Sect. 4.2, this discussion will 
be qualitative in nature, although we will provide some quantitative context, where 
possible. 

5.1 Introduction to Python 

The organizational segment of the seminar and the subsequent introduction to 
Python proceeded according to the timetable. As there were no graded tasks and the 
learning objective was general familiarity with the basics of Python programming, 
there are no quantifiable indicators for the individual levels of success of the 
students. However, as the learning objectives of later topics were reached by all 
students, they necessarily had to have suitably familiarized themselves with the 
concepts in the introduction. 

5.2 Introduction to Deep Learning with PyTorch 

The introduction to DL in PyTorch proceeded with considerably more questions and 
challenges, particularly where multiple programming concepts had to be combined 
or where PyTorch-specific syntax was not known. We eventually decided to extend 
the lesson block by 1 week to allow the students more time to experiment and 
discuss questions with us. The graded programming task of this lesson block, one 
end-to-end training script where all necessary components were either PyTorch-
native or programmed by the students, was satisfactorily completed by all students, 
and the students demonstrated sufficient conceptual understanding of all involved 
components to continue. The additional available time contributed significantly to 
this outcome. 

5.3 Neural Network Implementations 

The presentation, implementation, and discussion of the milestone architecture 
papers was conducted as described in Sects. 4.1 and 4.5. Although the students 
occasionally required tutor support for debugging, the frequency of such instances 
decreased over time, despite the increasing complexity of the architectures to imple-
ment. Simultaneously, the average severity and complexity of the issues brought 



280 F. Jonske et al. 

forth by the students increased over time – typical syntax errors were resolved 
increasingly independently by the students, leaving only difficult and unintuitive 
problems (e.g., relating to CPU-GPU communication or implicit operations that 
happen during class inheritance). This came in addition to students actively pointing 
out cases where divergences between the implementation details gathered from the 
respective papers and the guard rail code provided by us occurred, implying that 
the students’ understanding of both Python and PyTorch in general and the subject 
matter specifically increased considerably. 

By the end of the seminar, all programming tasks were solved by the majority 
of students, with points lost distributed across the semester, implying that the 
learning objectives were generally reached by all students. The implementation 
of the ViT architecture, for which we implicitly reduced the available time when 
extending the PyTorch tutorial block, was ultimately considered as extra credit (see 
Sect. 4.2). However, the group responsible for presenting the corresponding paper 
and constructing the sample solution completed these tasks even without making use 
of a potentially extended deadline, which suggests that by the end of the semester, 
this task would have been well within the capabilities of the other students to solve 
within the original timeframe, had the task remained mandatory. Overall, this is 
corroborated by the students themselves, who professed a marked increase in their 
programming abilities in Python and knowledge of DL (see Sect. 7). All students 
passed the seminar. 

Additionally, the test-time performance of the student-implemented models and 
their choice of hyperparameters can serve as an indicator of their understanding 
of the subject matter. The U-Net sample solution, for example, achieved a test-
time performance of 0.8268 DICE score on the lesion subclass and 0.9602 DICE 
score on the liver subclass (which would rank them at 25th out of 150 for 
lesions and tie them for 12th out of 66 for livers, respectively, on the CodaLab 
leaderboards [39]), even without the use of any data augmentation or advanced 
training strategies. Similarly, the sample solutions for the other architectures reliably 
achieved classification accuracies of 95% or above after only a few training epochs 
while training from scratch (without any additional pretraining). Where possible, 
the students trained their models with the hyperparameters of the original research 
papers, but every presenting group also experimented with other hyperparameters, 
finding combinations more suitable to training on the LiTS data, on their own 
initiative. 

5.4 Estimated Time Expenditure 

For a classical lecture style (without flipped classroom), lecture materials need to be 
prepared for each lesson in addition to the programming tasks. This can take on the 
order of days, depending on the complexity of the topic. In our flipped classroom 
approach, we successfully outsourced most of this time expenditure to the students, 
ostensibly with no reduction in the effectivity of the learning process, and tutors only 
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needed to briefly note down desired talking points and conclusions of the student 
presentations in advance. 

The preparation of the learning materials was a one-time effort on the order of 
several weeks, with negligible maintenance (i.e., bug-fixing or refactors) once the 
materials were largely established. Both time expenditures are naturally eliminated 
if our published materials are reused, and only a quick familiarization on the order 
of a day is required for a ML professional to be able to help students with them. 

While the time investment of our initial technical setup, several weeks in total, 
was significant compared to a custom solution based on local resources and unique 
student workspaces, we argue that it paid off in multiple ways. Firstly, being built 
on cloud computing resources, our platform can be reused by anyone, anywhere, at 
significantly reduced setup time, depending on familiarity with AWS and moving 
parts like Kubernetes. Secondly, we managed to avoid workspace-related issues 
entirely in practice, having been exclusively limited to either programming- or ML-
related student questions. 

The necessity of live maintenance of our platform was limited to several days 
across several months of use, similar to a custom solution and potentially even 
reduced by comparison, as the compute resources themselves never needed to be 
managed by us, except for provisioning. 

Beyond accepting submissions, the necessary tutor-student interactions outside 
of seminar hours were surprisingly manageable and could be handled by a single 
tutor investing several hours per week. The simplicity of the debugging process 
during any of these instances can be attributed to the static elements (common access 
to workspaces, common environment, common guard rail code, etc.) of the learning 
materials introduced by our original design choices. 

During the seminar itself, four (occasionally only three) tutors were more than 
sufficient to oversee the programming exercises and submissions of our ten students, 
each spending roughly half the time engaged actively helping a student. As a rough 
guideline, we expect that one tutor can comfortably handle two student teams of 
two or three people each. This number should be adjusted depending on the prior 
programming experience of the students and time available for the Introduction 
lessons – highly inexperienced students will require frequent supervision while 
those with significant programming experience may be able to spend multiple 
sessions without any supervision. 

6 Discussion 

According to our own assessment and student feedback (see Sect. 7), the seminar 
was very successful and its learning objectives were achieved by all students. The 
fact that half of the students decided to pursue master theses in machine learning-
related topics under the supervision of our respective faculties corroborates this 
assessment. 



282 F. Jonske et al. 

We observed that the steepest learning part of the learning curve occurs when the 
training loop inherent to PyTorch is first introduced to the students, as it requires 
both becoming familiar with PyTorch concepts and applying every concept learned 
earlier at once. There are two lessons to draw from this. On the one hand, the ad 
hoc decision to allocate extra time to this lesson block was justified. This extra time 
can be drawn either from the Python tutorial at the start, simply requiring a better 
understanding of Python as a prerequisite to the seminar, or (as in our case) it can 
be gained by reducing the available time on the last lesson block, in which case any 
points a student can receive from it should strictly be considered extra credit and not 
mandatory. In general, the dynamic adjustment of lesson blocks during the seminar 
is necessary for an optimal learning experience. 

The quality of the individual student presentations and the detailed content of the 
questions asked both by the students and occasionally the presenters confirmed to us 
that letting the students introduce one another to the content significantly increased 
their investment in the process and helped them accurately express themselves 
in the technical jargon and more precisely specify any questions that they could 
not research themselves, without reducing the quality or level of detail within the 
presented materials. Additionally, while we believe that holding the seminar in 
a hybrid or fully remote fashion is possible, both our observations and student 
feedback indicate that attending the seminar in person (which students almost 
exclusively did) improves communication both between tutors and students and 
within the student teams significantly. 

From conversations with the students, it has become apparent that the level of 
engagement with the subject matter was enabled by the ease with which the learning 
materials could be accessed and worked on. The flipped classroom concept was 
also well-received and working in groups in particular was strongly appreciated 
by students. The majority of time "lost" to matters not directly related to the 
then-current task was caused by what few system outages we experienced due 
to maintenance and due to the few instances in which we introduced small fixes 
or refactors to the guard rail code the students were using. Consequently, the 
minimization of logistical frustration and maximization of system robustness were 
heavily implied to be useful design principles. Overall, we conclude that the flipped 
classroom concept was helpful to both tutors and students and that this would be the 
case almost irrespective of the precise topic, so long as the students can be expected 
to understand the materials they present. 

From the tutor perspective, we also considered the platform to have played a 
significant part in the success of the seminar. The ability to remotely view and 
execute the code of students was consistently used during every class and between 
classes. In many cases, it enabled the normal participation of students that would 
otherwise have been absent, as well as the submission and discussion of solutions 
outside of the seminar, where needed. 

Previous observations on the efficacy of a flipped classroom in STEM fields 
[27] suggest that a majority of practical implementations resulted in both positive 
feedback and improved student performance. Students typically reported being 
more engaged with the subject matter and, unless inundated with the learning 
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materials, reported enjoying the cooperative learning process. Students’ assessments 
of their self-efficacy, however, were reportedly mixed. During the seminar, we 
largely made the same observations. We further observed that reported self-efficacy 
appeared positively correlated with student performance, indicating that the success 
of the flipped classroom relies on a good foundation among students. Tutors must 
ensure that all students possess or acquire this foundation so that the students can 
work on their own. These conclusion are in line with those gathered in [27]. 

The fact that submissions were made individually, a time-consuming process 
and that the number of available topics was limited by the time available to 
actually complete a programming task related to that topic, means that with an 
increasing number of students, appropriately dividing the presentations among 
students becomes a nontrivial process. This comes in addition to the issue of a 
limited number of tutors helping individual students or teams debug their code 
(with which the tutor themselves is only partially familiar as well), a problem that 
may quickly outscale the capacity of tutors as the number of students increases. 
This is something to keep in mind when adapting our seminar’s strategies for larger 
audiences. 

With regard to the technical design, we observed that it was feasible to implement 
a cloud-hosted remote development platform for enriching courses with GPU-
focused practical sessions. While we noticed that during demand spikes, such as 
at the start of each lesson, the resource provisioning could slow down, this rarely 
caused issues in practice. For seminars of a bigger scale, this potential limitation can 
be addressed with proprietary solutions such as Amazon SageMaker [60], although 
this would negate our vendor neutrality goal. In the future, we plan to move our 
platform on-premises. 

Despite the evident completion of the learning objectives and the general student 
satisfaction, we must be careful not to overstate the relevance of the seminar’s design 
principles. 

Firstly, at a sample size of ten students, any conclusion we draw for the success of 
the seminar comes with the qualifier that our experience may not generalize to larger 
groups of students or students of different skill levels. While most of the seminar 
was designed to account for increasing numbers of students (e.g., via the centrally 
managed containerized environment or ability to submit solutions outside of class 
hours), it is possible that those elements of the seminar that are not as scalable, 
such as the number of available tutors and their free time, can become a limitation. 
In practice, however, the typically available three to four tutors were more than 
sufficient for ten students and the seminar could easily have been run with more 
students. This limitation can also be addressed by requiring working in teams at all 
times (which we highly encouraged but never strictly enforced). 

The majority of students in our seminar (8 out of 10) had heard a theory lecture 
breaking down the mathematical foundations of ML during the previous semester 
and most students entered the seminar with some – and a few with significant 
– prior experience in programming (see Appendix), which means that at least a 
baseline understanding of the seminar’s subject matter was already present among 
the students prior to taking the seminar. While this does not undermine the success 
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of the seminar in itself (the students had not previously interacted with ML in 
medicine or in practice), it implies that the seminar should suggest at least a passing 
familiarity with the mathematical foundation of ML and/or some programming skill 
in Python as a prerequisite for taking the seminar. We consider this particularly true 
where the flipped classroom approach we recommend is pursued, with literature 
being described as divided on whether a flipped classroom approach is suitable for 
introductory or foundation courses [27]. 

7 Conclusions and Outlook 

We have designed a practical seminar on ML in medicine for university students 
with no or only some prior experience in ML and programming, based on a 
set of generalizable design principles. All learning materials were made available 
through an interactive cloud platform purpose-built for this seminar, through which 
computational resources were made available. The seminar covered an introduction 
to the programming language Python, the ML library PyTorch, and practical 
sessions reimplementing the architectures of the milestone ML models AlexNet, 
ResNet, U-Net, and ViT and evaluating them on the medical imaging challenge 
dataset LiTS. The technical realization of the seminar flexibly allowed for an in-
person, hybrid, or remote lesson style. Furthermore, it relied entirely on a small 
number of highly adaptable scripts, and a single Web page, and otherwise only 
utilized publicly available (and in many cases free) resources. All of these scripts, 
as well as our learning materials and the students’ sample solutions, were made 
publicly available. 

Based on our own observations, the successful completion of all five program-
ming tasks’ learning objectives, and the students’ personal feedback on the seminar 
and their active participation in it, we conclude that the seminar was a resounding 
success and that the learning materials and cloud platform we provide will help 
teachers and students integrate ML into the routines of medical research, education, 
and practice. In the future, we will continue to update and refine both the technical 
implementation of the cloud platform and the content of the learning materials. 

Beyond the course-specific lessons, what else can we take away from this? For 
one, we believe that our experience demonstrates that practical machine learning is 
a surprisingly approachable topic. Further, we believe that even advanced ML topics 
could be taught earlier than during the master’s degree, and even in fields where the 
average programming experience is typically low, such as medicine (where machine 
learning is already extremely relevant [14]). Given the sheer breadth of research 
disciplines in medicine that can profit from ML and the large fraction of them that 
have seen barely any influence from DL at the same time [14], the possibilities 
created by teaching DL to healthcare professionals involved in research can hardly 
be overstated. 
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Similarly, we believe that AI has a place in the educational sector, both as a tool 
and a topic. The majority of US secondary schools have already added computer 
science to the curricula of students (see, e.g., [55]) and, in our opinion, it is not 
unrealistic to imagine AI and ML becoming a limited part of these lessons as well. 
According to multiple sources (e.g., [17, 50, 51]), the notion that such a development 
is desirable is shared by many educators and experts in the field. 

In a broader context, the past few years have seen DL research experience an 
incredible growth [72], both in the field itself and even in a variety of disciplines 
traditionally considered unrelated, from the creation of art or poems, personalized 
browsing or shopping experiences, over self-driving cars and robots, to the inciden-
tal detection of cancerous growths and advanced clinical tools. With further growth 
on the horizon, this trend will likely see DL become an inseparable part of more 
and more professions, both in academia and beyond. We posit that lessons on DL 
can and should be taught to students across more age groups and subjects than it 
is now. As AI continues to conquer the world and make the previously impossible 
possible, the broad perspective on the possibilities of its use (and misuse), which we 
can create in this manner, will be invaluable – and now is the time to make sure that 
it exists. 

Acknowledgments The hosting costs of the computational hardware were fully covered by 
Amazon by means of credits issued for research purpose. 

Appendix 

About Us 

The Institute for AI in Medicine (IKIM) is a research institution at the Univer-
sity Hospital of Essen, Germany, and the University Duisburg-Essen (Uni-DUE). 
Founded in 2019, the institute employs researchers, engineers, and healthcare 
professionals across multiple separate research groups covering both theoretical 
and practical research in data science, ML, explainable and trustworthy AI, and 
clinical applications in cancer and sepsis research, radiology, and the development 
of clinical tools. 

Our research group, Medical Machine Learning, features a diverse staff from a 
variety of backgrounds including both computer science and medicine. 

Closely tied to the institute is the University of Duisburg-Essen, which was 
established in 2003. Its Faculty of Mathematics, which offered the seminar that we 
discuss in the paper, has been ranked among the top ten departments of mathematics 
in Germany, according to the Academic Ranking of World Universities (Shanghai 
Ranking) 2022. Starting in 2019 the chair of Numerical Mathematics at the faculty 
has offered lectures and seminars in ML. 
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Student Questionnaire 

After the seminar concluded, we asked students to fill out a small questionnaire 
regarding the seminar, including informal feedback which we already discussed. 
Some of the results from that questionnaire are shown in this section. Note that with 
only nine questionnaires, any conclusions taken from these results should be taken 
with a grain of salt. These results are shown in Figs. 5, 6, 7, 8, 9, and 10. 

Fig. 5 Previous programming experience of participating students 

Fig. 6 Self-assessment of programming ability in Python before and after the seminar 
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Fig. 7 Self-assessment of understanding of ML concepts before and after the seminar 

Fig. 8 Subjective assessment of the difficulty of the seminar 

Fig. 9 Self-assessment of ability to work on course materials self-sufficiently 
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Fig. 10 Time spent on course materials per week 
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Machine Learning and Anomaly 
Detection for an Automated Monitoring 
of Log Data 

Simone Falzone, Gabriele Gühring, and Benjamin Jung 

1 Introduction 

Anomaly detection deals with finding patterns in data sets and recognizing anoma-
lies by deviations from these patterns, i.e., [1, 5, 33]. Methods for anomaly detection 
are used in many safety-critical areas because anomalies indicate abnormal oper-
ating conditions, e.g., a rotational error in an aircraft engine [16] or potential 
health complications when monitoring the heart rate of patients [32]. Algorithms 
for anomaly detection range from various conventional methods, i.e., statistical 
procedures or clustering methods as in [5] to deep learning as in [30], where an 
auto-encoder is presented for anomaly detection. A direct application of anomaly 
detection methods can be found in the monitoring of computer network log files 
to detect if the network traffic pattern is changing significantly; see [5, 14, 21–23], 
or [31]. Usually the running state of a network system is recorded in log files. The 
analysis of log files might be used for debugging [14], for fault detection, but also for 
program verification or performance prediction [8] or even for intrusion detection; 
see, for example, [21] and [12]. 

Since modern computer systems generate an ever-increasing number of log files 
and the corresponding log entries are generated at a fast rate, a human supervision 
of them becomes almost impossible or at least is very expensive; see also [22] or  
[31]. 
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Therefore, over the last 20 years (see [34]), different methods for automatic 
anomaly detection in system logs have been researched. There exist supervised 
anomaly detection algorithms such as support vector machines [26], logistic 
regression [3], decision trees [7], or also artificial neural networks; see [4] or [21]. 
And there are unsupervised methods. One of them is principal component analysis 
(PCA), which is already used in [37] for log anomaly detection. Other unsupervised 
algorithms use clustering methods as described in [22] or deep learning methods 
as described in the surveys of [21] and [23]. Supervised algorithms have the 
disadvantage that they are trained on log files containing non-anomalous as well 
as anomalous entries. Therefore there are only a few labeled data sets, i.e., the 
Hadoop Distributed File System (HDFS) [37] or the BlueGene/L Supercomputer 
System (BGL) [12], which might be used to evaluate the algorithms. It is unclear 
if the results can be transferred to different log file systems. Therefore, we 
here present the three commonly known unsupervised algorithms PCA, [37], the 
clustering algorithm LogCluster [27], and the deep learning algorithm DeepLog first 
established in [11] for anomaly detection in log files. These three algorithms are 
often used as benchmark algorithms as stated in [23]. Different to other evaluations, 
we evaluate them on three different types of log files, which are all preprocessed 
in a different way. We show that whether they are successful or not depends on the 
data set that is examined. 

All of the three algorithms rely on a log parser, i.e., Drain presented in [15] 
or Spell [10], when preprocessing the log data. Log parsing tries to extract event 
templates from raw log entries. The generated event templates play a major role 
when detecting anomalies in log data [36], and the noise from log parsing errors has 
impact on the performance of anomaly detection models [25]. However, some of 
the anomaly detection algorithms are better in dealing with the noise as others and 
some of the log files produce more noise than the others. Therefore, in the following 
sections we show that: 

• structuring the log data entries in advance helps to detect anomalies in their 
structure 

• algorithms, which are able to manage a large amount of different event templates, 
such as LogCluster, usually lead to a smaller rate of false-positive anomalies 

• PCA and the clustering method LogCluster outperform on structured authentica-
tion log data even the results obtained with deep learning methods on HDFS. 

While a lot of literature, i.e., [21, 38], or [31], is optimizing the algorithms, we show 
that the success of the algorithm is dependent on the form of the log entries as well 
as the preprocessing steps performed on the log entries. This way, we apply the three 
benchmark algorithms first on common semi-structured log data as in Fig. 1, then 
exception fingerprints as in Fig. 6 are used as preprocessed log entries, and lastly, 
we apply the algorithms to well-structured authentication logs.
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2 Methods for Anomaly Detection in Log Data 

Before giving a rough explanation of the three benchmark algorithms PCA in 
Sect. 2.3, the clustering method LogCluster in Sect. 2.4, and the deep learning 
algorithm DeepLog in Sect. 2.5, we present an overview on the phases of anomaly 
detection in log data. Not all of them are needed for the algorithms we present 
thereafter. Feature extraction [15] will only be used for PCA and the clustering 
algorithm LogCluster [27] but not for the deep learning algorithm DeepLog. The  
deep learning model DeepLog is directly trained on the sequences of the log keys. 
We refer to Figs. 14, 15, and 16 for a general overview of the steps needed for each 
algorithm. However, for all the methods that are dealt with in the following, usually 
a log parsing must be carried out at the beginning. The goal of log parsing is to split 
each log message into a constant and a variable part. By parsing the log data, each 
log entry is assigned a log template and a log key [24]. 

2.1 Log Parsing 

A common log parser is Drain, a fixed depth tree-based online log parsing method, 
as first described in [15]. It can parse log entries in a streaming manner. Drain 
automatically extracts log templates from raw log messages and split them into 
disjoint log groups. According to [15], it employs a parse tree with fixed depth 
to guide the log group search process, which effectively avoids constructing a very 
deep and unbalanced tree. As described in [40], a common log statement consists of 
a header and a log message as in Fig. 1. The logging statement from Fig. 1 shows 
that only the log message is freely determined by software developers. The meta 
information such as the verbosity level or the time stamps are automatically added 
by the logging framework. Since this meta information is added automatically by the 
logging framework, the structure is always the same, which allows to easily extract 
this information. With the remaining free text part in the log message, it is much 
more difficult, since there is a constant and a variable part that can vary greatly; 
see [40]. The constant part consists of tokens that describe an operation within 
the system, such as Received block <*> of size <*> from <*> as in 
[15]. In between, the variable part of a log message is replaced with placeholders 
<*>. The result is an event template; see Fig. 1. For each event template, a unique 
event template ID, also called log key, i.e., . E0, . E1, . E2, . E3, ..., is assigned. Typical 
log parsers consider log parsing as a clustering problem and group each log message 
with the same event template in a log group; see [15]. Usually, when parsing log 
entries, regular expressions were used. But with modern computer systems, this is 
for various reasons, no longer practical. One reason is that the number of logs is 
increasing more and more, making a manual method unacceptable. Furthermore, 
the cycles in which modern computer systems are updated are becoming shorter, 
which is why the log entries also change or new ones are added. So, the developers
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Fig. 1 Example of log parsing according to [40] 

have to update the regular expressions after each update of the software, which is 
complex and error-prone [15]. 

Both industry and science have developed various concepts for automatic log 
parsing. In [34] a clustering algorithm based on a frequent pattern matching is 
presented. Based on this, the LogCluster extension is presented in [35]. Another 
log parser is Spell, which calculates the longest common subsequence around the 
logs to parse as presented in [10]. However, according to [40], Drain achieves the 
best accuracy. We use an implementation of Drain by IBM,1 which is provided as 
an open-source project. However, when using log parsing, one has to be aware that 
anomaly detection is affected by log parsing errors, i.e., out-of-vocabulary words 
and semantic misunderstanding [24]. Our results in Sect. 4.1 are consistent with 
this. 

2.2 Feature Extraction 

By parsing the log data, each log entry is assigned a log key of the form . E0, . E1, 
. E2, . E3, ..... The aim of feature extraction is to extract the most important features of 
the data in order to use it to train a machine learning model; see [14]. The sequence 
of log templates is then converted to numeric values in order to be processed by

1 https://github.com/IBM/Drain3. 

https://github.com/IBM/Drain3
https://github.com/IBM/Drain3
https://github.com/IBM/Drain3
https://github.com/IBM/Drain3
https://github.com/IBM/Drain3
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machine learning models, i.e., in [6]. To do this, each log entry is first replaced by the 
log key assigned during log parsing. Thus, out of a sequence different log messages 
a sequence of log keys, i.e., . E1, . E1, . E3, . E2, . E2, . E4, . E2 is created. The log keys 
are then grouped by using a windowing method. With a windowing method, a log 
sequence is divided into finitely large partitions as in [29]. While in [29] different 
types of windowing methods are presented for anomaly detection in logs, only the 
sliding window method is used here. This way every log message is examined in a 
different context. The sliding window method is based on the time stamp t of the log 
entries and a stride h. The time stamp of a log entry indicates when the log entry was 
created. The increment specifies the time steps to move forward along the time axis; 
see [6]. In general h is smaller than the fixed window size, which can be a minute or 
an hour or any other time length or also a certain number of logs. Based on the time 
window, the chronological sorted log data is grouped. The resulting partitions can 
now be compared to each other. However, after the log sequences are partitioned in 
chronological order, they still need to be converted to numeric vectors. 

For this, a count matrix X is created. The frequency of each log key is counted 
in each partitioned log sequence in order to create a count vector; see [14]. For 
example, if a window with log entries has the form .[E1, E0, E1, E1, E2], this means 
that the log key . E0 occurs only once, log key . E1 occurs three times, and log key 
. E2 occurs again only once. The resulting count vector for the window is then of the 
form .[1, 3, 1], assuming there are only three different log keys. For the construction 
of the count matrix X, for each log sequence window, a count vector . Xi is created 
such that the entry .Xi,j stands for the count of the j -th log key in the i-th log 
sequence window; see [14]. 

In our work, the vectors . Xi will be of dimension 636 for the semi-structured log 
data in Sect. 3.1, of dimension 212 for the Java exception fingerprints in Sect. 3.2, 
and of dimension 324 for the structured log data in Sect. 3.3. 

2.3 Principal Component Analysis 

Principal component analysis (PCA) is a statistical method used to achieve 
dimension reduction. The underlying idea behind PCA is the projection of high-
dimensional data of dimension n into a new space with k dimensions where .k < n. 
The newly created k dimensions are called the principal components. The principal 
components are calculated in such a way that those components are found which 
have the highest variance in the original high-dimensional data set; see, for example, 
[14]. As a result, only little information goes lost in the transformation from the 
n-dimensional space to the k-dimensional space. PCA for anomaly detection in 
logs is introduced for the first time in [37]. Since then, it has been refined in several 
ways; see also [20]. In PCA, the data, consisting of a log key count vector, is 
transformed from an n-dimensional space to a space with k dimensions, where 
.k < n. This creates the sub-vector space . Sn, which is called the normal subspace. 
The remaining .n − k dimensions form the vector subspace . Sa which is denoted as
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anomaly subspace; see [37]. Subsequently, the projection of a given log key count 
vector y into the subspace . Sa is calculated by 

.ya = (1 − PP T )y, (1) 

where the matrix .P = [v1, v2, . . . , vk] consists of the first k principal components 
.v1, . . . , vk . If the absolute value of the projection .‖ya‖ is bigger than a specified 
threshold value, then y counts as an anomaly; see [14] or [39]. 

2.4 Clustering 

In clustering similar data points are grouped into clusters (see [5]), and clustering 
algorithms can also be used for anomaly detection. The easiest way is to classify 
all data points that do not belong to any cluster as an anomaly. Another way to find 
anomalies with clustering algorithms is to determine the center of the cluster and 
set a threshold. Every data point that is farther from the center than the specified 
threshold is considered as an anomaly. The center of a cluster can be determined in 
different ways; one way is to calculate the average of all data points in the cluster 
as it is described in [5]. We refer to [22] for different kinds of clustering algorithms 
in order to find anomalies in log data. Here, LogCluster is presented as described in 
[27]. It uses an agglomerative hierarchical clustering method to detect anomalies in 
log sequences. The training phase consists of two phases, for which the training data 
set is divided into two parts. The first phase is called knowledge base initialization. 
In this phase, the log data is vectorized by creating count vectors as it is described in 
Sect. 2.2, the clusters are then calculated via a certain clustering algorithm, and the 
centers of the clusters are also determined; see [14]. Afterward the cosine similarity 
is determined for each vector to all the other vectors, and with an agglomerative 
hierarchical clustering method, clusters are formed, as described in [19]. Calculating 
the similarity of the n-dimensional count vectors . Xi and . Xj via cosine similarity is 
done as in the following [27]: 

.Similarity(Xi,Xj ) = Xi · Xj

‖Xi‖ · ∥
∥Xj

∥
∥

(2) 

The centers of the clusters are then determined. For each log sequence and thus each 
count vector . Xi , a score calculated as in [27]: 

.Score(i) = 1

m − 1

m
∑

j=1

(

1 − Similarity(Xi,Xj )
)

(3) 

where m stands for the number of all count vectors in a cluster. As a representative 
for the cluster center, the count vector that achieves the lowest score is selected.
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The second phase, known as the online learning phase, is used to fine-tune the 
created clusters. In this phase, each vector in turn is added to the knowledge. For 
a given event count vector, the distance to all cluster centers is determined. If the 
smallest calculated distance is smaller than a fixed threshold, the vector is added to 
the cluster. If this is not the case, then a new cluster is created; see [14]. The anomaly 
detection with LogCluster takes place by calculating the distance of a given vector 
with the cluster centers. If the smallest distance is greater than a specified threshold 
value, the corresponding log sequence is declared as an anomaly. 

2.5 Deep Learning 

Recurrent neural networks (RNN) are a subset of neural networks which are used 
to process sequential data; see, for example, [13]. RNN consist of several RNN 
cells, so-called memory units, that are connected to each other. The output of an 
RNN memory unit serves as an input for the subsequent cell, making it possible 
to take past values or past log sequences into account; see [11]. This is essential 
when processing any kind of sequential data as the output often depends on the 
previous input, such as in natural language texts, where the meaning of a word also 
depends on the context. However, simple RNN are rarely used in practice because 
by the back-propagation in time, the gradient becomes vanishingly small and the 
model cannot be trained anymore; see [13]. Long short-term memory (LSTM) and 
gated recurrent unit (GRU) networks solve the vanishing gradient problem and can 
thus also process longer sequences. RNN, LSTM, and GRU are mainly used when 
dealing with time series data and also in natural language processing (NLP). In [11], 
the anomaly detection in log data is therefore presented as an NLP problem, because 
log data are sequences that are generated with repeating patterns from a computer 
system. They are subject to grammatical rules that are determined by the program 
flow of the software; see [11]. 

In [11], the LSTM model DeepLog for anomaly detection in logs is invented; 
see also [6]. DeepLog uses an LSTM with several memory units to generate events 
based on template sequences to learn the normal execution paths of a computer 
system. If a log sequence deviates heavily from the pattern the model has learned, 
the log sequence becomes classified as an anomaly; see [11]. In [11] this model 
is called log key anomaly detection model. In addition to considering only the 
structured log templates, also the values of the variable part of the event templates 
might be taken into account, since they also allow conclusions to be drawn about 
anomalies, for example, the duration of an HTTP call. For this purpose, an LSTM 
model is trained for each log key; see [11]. In [11], this model is called parameter 
value anomaly detection model. In the following, we explain in more detail how 
both models are trained. 

The log key anomaly detection model is used to find anomalies visible in the exe-
cution path of a software. The set of distinct log keys, .K = {E0, E1, E2, . . . , En}, 
is constant for a computer system, which is not undergoing any change. Let . mt be
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the value of a log key at position t in a log key sequence. Here, . mt takes one of 
the n values of K , where the value might depend heavily on its predecessors within 
the log sequence. The anomaly detection is modeled as a multiclass classification 
problem, where each log key represents a separate class. A window w of h log keys 
is used as input for the model s.t. 

. w = {mt−h, . . . , mt−2,mt−1} .

The output of the model, a conditional probability for the next log key . mt , is given  
by 

. Pr [mt = Ei |w] , for every Ei ∈ K,

where .i = 1, . . . n. In practice it is possible that several log key values for . mt

reflect a normal system behavior. Therefore the log keys in K are sorted based on 
their probability of occurrence .Pr [mt = Ei |w]. A log key . mt is qualified as normal 
when it ranges among the top q candidates; otherwise, it is said to be an anomaly; 
see [11]. 

As stated in [11], not all anomalies are recognizable by a deviation of the 
execution path. Therefore, the parameter value anomaly detection model detects 
anomalies contained in the variable parameters of a log message. An example of 
this could be log messages for HTTP calls, which usually show the call duration 
in the variable part of the log message. If it differs significantly, in that a call takes 
significantly longer than usual, it might, for example, indicate that the system is 
overloaded. In [11] an LSTM model is trained for each log key . Ei . A parameter 
value vector is used as input for the model, which contains all variable values of a log 
message belonging to log key . Ei . The output of the model is a real valued parameter 
(respectively a vector) which predicts the next value (respectively a vector of the 
next future values) of the parameter. In the model’s training phase, the deviation 
of the model’s prediction with the actual parameter value (respectively vector) is 
calculated with the mean square error (MSE). After that, a Gaussian distribution is 
estimated with the calculated MSE values of the validation data set. If a calculated 
MSE value is outside of a specified confidence interval of the Gaussian distribution, 
the corresponding parameter (respectively vector) is considered an anomaly, see 
[11]. 

3 Log Data Sets 

Log data are essential for operators of computer systems as well as for software 
developers. They are typically semi-structured text strings that can vary a lot from 
system to system, i.e., [27] or [31]. The variation of the different log formats can 
even occur within one system, since many computer networks systems use software 
libraries from third parties, such that open-source projects may be included. This
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makes automated analysis from log data even more difficult; see [40]. To describe 
the different effects of logged states or actions, logging frameworks often define 
verbosity levels, also called log levels, for log messages as described in [2] or [28]. 
For instance, when unexpected failures or potential problems occur in a system, logs 
should be assigned the less verbose levels (FATAL, ERROR, WARN, etc.). On the 
other side, for the purpose of tracking general information or debugging, the more 
verbose levels (INFO, DEBUG, TRACE, etc.) are needed. This log level design can 
assist operators in locating various runtime problems quickly and precisely when 
auditing highly diverse logs. 

A semi-structured log entry consists of two parts [40], a header and a log 
message. The header contains meta information about a log entry, such as the 
verbosity level (e.g., INFO, ERROR), a time stamp, or the component that generated 
the log entry. The log message on the other hand contains also a free text, which 
can be freely chosen by a developer. The constant part of the log message contains 
the event template and remains for each event the same. The variable part, on the 
other hand, contains dynamic information that is generated at runtime, for example, 
port numbers or IP addresses as in [15]; see also Fig. 1. Many of the anomaly 
detection models used on log data are evaluated with the publicly available Hadoop 
Distributed File System (HDFS) data set or the BlueGene/L (BGL) data set, i.e., 
[14, 23, 25, 36]. These models typically claim very high detection accuracy. For 
example, most models report an F-measure greater than .0.9 on the HDFS data set. 
In this work, we want to show that models for anomaly detection perform different, 
depending on the log data sets they are used for. Or putting it the other way round, 
preprocessing log data adequately yields better results for some of the anomaly 
detection models. Instead of using one of the commonly used data sets, the log data 
examined in this work originate from computer network systems that are developed 
and operated by a software company itself. The systems are applications which are 
developed with an internal Java framework. A suitable system installation has been 
selected such that it: 

• has a high volume of log data, 
• is a production system that is actively being worked on 
• is a multi-client system. 

On the other hand, the amount of log data generated per month for the system is 
limited to approx. 70 million log entries, which makes it possible to handle all the 
log entries in an almost streaming manner. Furthermore, it is a productive system on 
which 37 different clients work. We will continue with this installation and refer to 
it as Example1. Furthermore, the utilization due to automated calls from customer 
systems is very regularly distributed, as can be seen in Fig. 2. 

The selected software is called automatically via web interfaces from pre-
systems (e.g., SAP systems). For special cases and manual post-processing, a 
graphical user interface is also available to customers. All log entries are in JSON 
format. The logs generated are divided into semi-structured logs and structured logs. 
The semi-structured logs are log entries as described in Fig. 1. They mainly contain 
information in an unstructured log message. With the structured log entries, on the
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Fig. 2 Number log records per 12h during 30 days of Example1 

other hand no log message is saved. The authentication log information is stored in 
key-value pairs as shown in Fig. 8. The exact structure of the two log types as well 
as the third log type made out of Java fingerprints is explained and described in the 
next three sections. 

3.1 Semi-structured Log Data 

An example with the most important fields of a semi-structured log entry of 
Example1 is shown in Fig. 3. 

The first part of the log entry contains meta information that the logging 
framework adds automatically, i.e., the verbosity level or the time stamp. In the 
lower part is the log message and other important fields. The category field describes 
the type of the log entry, whereby the semi-structured log data is always of the type 
event, contrary to the structured log data which are of one of the types login, gui, or  
access, and is investigated in Sect. 3.3. For the creation of the training data set, log 
data from the period of one working week is selected. This results in a data record 
with approx. .70,000 log entries. The distribution of log verbosity levels is shown in 
Fig. 4. 

Figure 4 shows that the number of logs with log level INFO is most frequently 
represented in the semi-structured log types. In order to generate event templates 
out of the semi-structured log data, the log parser Drain is used. An open-source 
implementation of Drain is available,2 and it achieves best results when it is 
benchmarked with other log parser in [40]. Drain generates a fixed-depth parse tree

2 https://pypi.org/project/drain3/. 

https://pypi.org/project/drain3/
https://pypi.org/project/drain3/
https://pypi.org/project/drain3/
https://pypi.org/project/drain3/
https://pypi.org/project/drain3/
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Fig. 3 Structure of a semi-structured log entry used in Example1 

Fig. 4 Distribution of log verbosity levels for installation Example1 

in order to speed up log parsing. In this work we choose the depth of the tree to be 
4 and the maximum number of children of each node in the tree to be 100. Drain 
chooses the appropriate log group for each log event by going through the parse 
tree and comparing the resulting log messages to an event template belonging to a 
child group. The similarity of two messages is compared, as long as it is smaller 
than a certain threshold, which we choose to be . 0.4, two messages are grouped in 
one template. These three hyperparameter values for the parser Drain: 

• 3 for the depth of the parse tree,
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Fig. 5 Structure of the semi-structured log data after parsing 

Fig. 6 Example of a Java stack trace 

• 100 for the maximum number of children, 
• .0.4 for the similarity threshold, 

are determined experimentally, so that only a small number of event templates arises 
and such that no different event templates are created for the same log messages. 
After all log messages are parsed, the results are stored in a pandas data frame; see, 
for example, Fig. 5. The number of event templates or log keys found this way with 
the log parser Drain in the semi-structured data set is 636. 

3.2 Java Exception Fingerprints 

Java programs generate an exception in the event of an error. This exception is raised 
in the program stack until it is dealt with. In doing so, a stack trace is created that 
calls the logs of all methods up to the point at which the exception was generated. 
The stack trace usually also contains the line numbers of method calls [9]. Next to 
the stack trace also, an exception message is written, which describes the reason for 
the error. An example for an exception in Java is shown in Fig. 6. 

Here, no unique error numbers are assigned to the Java exceptions. Instead a hash 
value is assigned to each stack trace, the so-called exception fingerprint. In order 
to assign the hash value, the variable parts of the exception are discarded. These 
include the line numbers of the method calls, as well as the exception message, since 
both of them change when the classes change, which is quite often the case. Are the
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Fig. 7 Example of a series of Java exception fingerprints 

variable parts of the stack trace removed, the exception fingerprint is calculated as 
a hash value for the remaining part of the stack trace. This exception fingerprint 
can be used in the same way as an error number. It is similar to a log key, which 
clearly identifies a log. For an example of a series of exception fingerprints, see 
Fig. 7. Since our goal is to find errors in the log data that affect the functionality 
of the system, only log entries with the verbosity level ERROR are selected for the 
Java exception fingerprints. Since the number of log entries with the verbosity level 
ERROR is significantly smaller in our data set, we take exception fingerprints from 
a period of 30 days, such that the size of the resulting data set amounts to about 
.24,000 log entries. 

For the Java exception fingerprints, no further parsing is necessary, since the 
exception fingerprint serves as an event template ID. This reduces the inaccuracies 
that arise when parsing the log messages wrongly. The exception fingerprint data 
record used here contains 212 different exception fingerprints, which corresponds 
to a number of 212 event template IDs. 

3.3 Structured Log Data from Authentication Log Entries 

The structured log data are log entries consisting of key-value pairs. They are 
divided into different categories (i.e., login, access, GUI, etc.) and are designed for 
clearly defined use cases. An example are the authentication logs for the registration 
of a user, which log every authentication attempt of a user with duration and type of 
authentication. All important information for an authentication is saved in explicit 
fields that can be found for our example in Fig. 8. Structured logs can have both 
numeric and categorical features. We investigate authentication logs here, since on 
the one hand, they are by far the most data and, on the other hand, authentication 
logs could be an indicator that there may be carried out a brute force attack.
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Fig. 8 Example of a structured authentication log 

Since no log message is logged for these structured log data, the log data is not 
parsed with a classic log parser. For parsing the structured authentication logs, the 
categorical features are used, which provide a limited number of different values. 
This results in a limited number of combinations of the different values for each 
categorical feature. The possible combinations of the individual values are formed 
with the cross product and represent the event templates. To keep the number of 
event templates small, only the relevant features result, auth, rolecache, 
type are used; see Fig. 8. Each of them could indicate a possible attack. If, for 
example, the categorical feature result has the value ERROR too often, it could 
be an indicator of a brute force attack. We determine all distinct feature values for 
these features over the last 30 days and store them in a data frame. All possible 
combinations are calculated and result in a data frame with 324 different event 
templates, which we refer to as the parsing table; see Fig. 9. 

4 Anomaly Detection 

While using the anomaly detection models of Sect. 2 on the log data described in 
Sect. 3 several anomalies could be detected, not all of them can be directly linked to 
an attack of the computer system; there are several other reasons for a log message 
to become anomalous. We therefore sorted the detected anomalies according to an 
index in order to make all of the models and data sets comparable. The following
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Fig. 9 Extract of parsing table for the structured authentication log data 

table lists and explains the anomalies (Table 1). A detailed description of applying 
each model on each of the data sets is following in Sects. 4.1, 4.2, and 4.3. 

For the implementation of the models of Sect. 2, we use the Python library 
loglizer.3 For parsing the semi-structured log data, we use the log parser drain.4 

All log data is provided in JSON files. 

4.1 Semi-structured Log Data 

In order to detect anomalies in the semi-structured log data set, the structured log 
data are grouped in sliding windows of 5 minutes time intervals with a stride of 
one log entry. This way, one gets as many log sequences as possible for the training 
process. The resulting log sequences are converted into count vectors, as described 
in Sect. 2.2, which are used as input for the PCA and the LogCluster models. This 
way .71.935 count vectors are created out of the semi-structured log data set. 

A sliding window is also used to create the log sequences for DeepLog. However, 
a constant number of log entries is used here for the window size h, instead of a fixed 
time length, because the input length h of the window must always remain the same

3 https://github.com/logpai/loglizer. 
4 https://github.com/IBM/Drain3. 

https://github.com/logpai/loglizer
https://github.com/logpai/loglizer
https://github.com/logpai/loglizer
https://github.com/logpai/loglizer
https://github.com/logpai/loglizer
https://github.com/IBM/Drain3
https://github.com/IBM/Drain3
https://github.com/IBM/Drain3
https://github.com/IBM/Drain3
https://github.com/IBM/Drain3
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Table 1 List and explanation of detected anomalies 

Index Short description of anomaly Long description of anomaly 

1 Duration of SQL statements too long This anomaly involves SQL statements that have a 
long execution time; see, for example, Fig. 10. 
Some statements take almost 3 seconds to 
complete. This might indicate an overload to the 
database, which can lead to system failure 

2 Health check of application wrong Health checks of applications are monitoring 
certain attributes that are essential for the 
operation of the application such as messages that 
could not be processed. An example health check 
is shown in Fig. 11, where the health check first 
fails and then the connection is recovered 
immediately. Since health checks are very often 
unstable, a machine learning model is needed to 
recognize only such cases where the health check 
failure continues for a certain time 

3 Authentication too long If an authentication process lasts more than 10 
seconds, a system overload may be the case. This 
might lead to less customer satisfaction, but may 
also be an indication of a brute force attack 

4 Error writing statistical data This anomaly states that values for certain metrics, 
used to monitor the computer system, cannot be 
saved. This leads to poorer monitoring, which may 
result in errors that cannot be recognized in time. 
Usually, the reason for this error is not enough 
storage space on the hard disk available 

5 Software misconfiguration, no 
responsible person 

This anomaly represents a software configuration 
error. During the configuration of a process, no 
responsible person was established. While the 
operation of the software is not endangered, still, it 
is considered an anomaly since an early detection 
of the error results in accelerated actions 

6 Software misconfiguration, wrong 
user for authentication 

This anomaly is also a misconfiguration of the 
software. Here, a user does not have sufficient 
rights for access to the system as, for example, in 
Fig. 12 

7 Connection problems, e-mail server 
not reached 

It is not possible for the system to communicate 
with the configured e-mail server. As a result, 
e-mails cannot be sent, and users are not informed 
about the current processes in the system. The 
reason could be a network problem or an email 
server crash 

8 Connection problems, external 
system not available 

Here an external system cannot be reached. The 
cause may also be a network problem 

9 Failed download from FTP server, 
due to wrong authentication data 

Due to incorrect credentials used for an FTP 
server authentication, it is not possible to access 
the files of the FTP server 

10 Connection problems, 
communication with the message 
queue disturbed 

This anomaly represents a connection problem to 
a message queue. Due to network problems, 
messages can no longer be passed to the message 
queue and thus also not be processed further
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Fig. 10 Example log sequence of anomaly index 1 

Fig. 11 Example log sequence of anomaly index 2 

Fig. 12 Example log sequence of anomaly index 6 

when dealing with an LSTM model; see Sect. 2.5. The best results according to [11] 
are received with .h = 10. The stride is again chosen as one in order to get as many 
log sequences as possible and in order to be able to measure the dependency of 
subsequent log sequences. Figure 13 shows the result of the feature extraction. For 
every log sequence .h = 10, also the following log entry, . mt is saved. Furthermore, 
the time stamps of the first and last log entry of the log sequence is saved in order to 
retrieve it later and to be able to reconstruct it. The conversion of the log sequences 
into a vector representation is carried out by mapping the log keys to numeric values. 
Each log key is assigned a numeric value. Then the log key in the log sequence is 
replaced by the numeric value, resulting in the input vector. This way .71,929 vectors 
of length 10 are created out of the semi-structured log data set. 

4.1.1 Principal Component Analysis 

The basic steps of applying PCA to semi-structured log data is illustrated in Fig. 14. 
In [11] PCA is used as a baseline for all other models. There it is tested on two 
different data sets, the Hadoop Distributed File System (HDFS) data set and a log
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Fig. 13 Example of log sequences from the semi-structured data set for the DeepLog model 

data set of an OpenStack system; both data sets are publicly available.5 One of the 
main differences of these two data sets compared to the semi-structured log data 
set under inspection here is the number of resulting log keys. The number of log 
keys is in the HDFS as well as in the OpenStack data set far below the number of 
log keys of the semi-structured data set. For the HDFS data set in [11], only 29 log 
keys are found, for the OpenStack record 40. With the semi-structured data records 
investigated here .n = 636, log keys are identified. 

The number of the relevant k principal components is calculated to capture . 95%
of the variance of the data consisting of the counting vectors (see also [37]) and 
is thus chosen as .k = 272 < n. To compute the threshold for .‖ya‖ marking an 
anomaly, one can make use of the Q-statistic, a well-known test statistic; see [18]. 
The computed threshold .Qα guarantees that the false alarm probability is no more 
than . α. For the choice of the confidence parameter . α for anomaly detection, we use 
.α = 0.001 as in [37], where it is discovered that the results are not sensitive to this 
parameter choice. Thus, we detect a counting vector y as being an anomaly if 

.‖(1 − PP T )y‖ = ‖ya‖ > Qα = 47.52, (4) 

where the .n×k matrix P , as in Sect. 2.3, consists of the first k principal components 
as column vectors. 

Using PCA for anomaly detection with the above parameters leads to . 11,300
anomalies out of .71,929 semi-structured log entries. The proportion of anomalies 
found is approximately .15% of the entire data set, which is unrealistic. For this 
reason, the individual log sequences are not examined in more detail, since it can be 
assumed that there is a high number of false positives (FP). 

In the meta-study [15], PCA is also used to detect anomalies in log data. There, 
next to the HDFS data set, for which good results are achieved, the Blue Gene/L

5 https://github.com/logpai/loghub. 

https://github.com/logpai/loghub
https://github.com/logpai/loghub
https://github.com/logpai/loghub
https://github.com/logpai/loghub
https://github.com/logpai/loghub
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Fig. 14 Steps applying PCA to semi-structured log data 

Supercomputer (BGL) data set is investigated for which the results with PCA are 
also worse. In [15] the authors claim that the data of the BGL data set cannot be 
separated naturally with a single threshold value. Our results seem to undermine 
this theory.
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4.1.2 Clustering 

The LogCluster model is used in [15] because it achieves slightly better results than 
the PCA procedure. The basic steps of applying LogCluster to semi-structured log 
data is illustrated in Fig. 15. For the experimental setup presented here, LogCluster 
models are trained at two different thresholds. The chosen thresholds are . 0.3 and . 0.5. 
All evaluated log sequences for the threshold .0.3 can be assigned to one of the first 
three anomaly indexes from Table 2. For the threshold .0.5 a new index 4 anomaly 

Fig. 15 Steps applying LogCluster to semi-structured log data
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Table 2 Anomalies with appropriate anomaly index for the semi-structured data set with 
LogCluster 

Anomaly 
index 
Table 1 

Number 
anomalies Threshold Log data index 

1 11 0.3 2865, 5322, 21,539, 33,491, 36,651, 40,402, 50,548, 
55,119, 62,101, 65,102, 69,346 

2 3 0.3 7268, 9541, 31,073 

3 1 0.3 27,501 
FP 5 0.3 – 

1 6 0.5 4527, 40,402, 50,548, 55,119, 62,097, 69,334 

2 4 0.5 5322, 8840, 33,554, 36,489 

3 1 0.5 27,501 
4 1 0.5 13,709 

FP 3 0.5 – 

is found, which previously remained undiscovered. The number of representatives 
anomalous log sequences amounts to 15 for threshold . 0.3, respectively, 12 for 
threshold . 0.5. However, 20 respectively 15 anomalies are detected, so that 5 log 
sequences respectively 3 belong to falls positives (FP). Anomalies appearing under 
both thresholds are marked bold. Similar anomalies are found in all experiments. 
The log data index of the found anomalies with the different thresholds are often 
close together or even overlap. 

4.1.3 Deep Learning 

As a deep learning method DeepLog from [11] is applied to the semi-structured log 
data. In [11] the model achieves very good results on the HDFS data set. The basic 
steps of applying DeepLog to semi-structured log data is illustrated in Fig. 16. Since 
our main focus is on detecting anomalous log sequences, only the log key anomaly 
detection model as described in Sect. 2.5 is used in our implementation. The 
hyperparameters are already optimized in [11] and are listed in Table 3. DeepLog 
works in such a way that it predicts the log key following to an input log sequence. 
Therefore an accuracy of this prediction might be measured. Accuracy admits the 
ratio of correctly classified predictions to the total number of all evaluated data 
points and is calculated by using the true positives (T P ), true negatives (T N ), false 
negatives (FN), and the false positives (FP ) as follows [17]: 

.Accuracy = T P + T N

T P + FP + T N + FN
(5) 

In our experiments for the semi-structured data set, this accuracy for predicting the 
next log key amounts to .0.38, which is not very high. Since the prediction of the log
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Fig. 16 Steps applying DeepLog to semi-structured log data 

Table 3 Hyperparameter for 
the model DeepLog 

Hyperparameter Value 

LSTM memory units 32 

Batch size 32 

Training epochs 25 

Top candidates q 9 

keys is not very good, also the anomaly detection will detect a lot of FP . Similar as 
with PCA, DeepLog detects .16,296 anomalies, which amounts to almost .15% of all 
the log sequences. Since the number of anomalies found is very high, the individual 
log sequences, as in Sect. 4.1.1, are not examined in detail. One reason for this might 
be as in Sect. 4.1.1 that by parsing the log sequences a high number of log keys is 
generated. In [11] a significantly smaller number of log keys is generated for the 
data sets. 

Since the number of log keys seems to play an important role in detecting 
anomalies with PCA or with DeepLog and since a high number of log keys can 
be better managed with a clustering method, for the semi-structured data set, 
LogCluster outperforms the other two methods.
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4.2 Java Exception Fingerprints 

The exception fingerprint data record contains 212 different exception fingerprints, 
which corresponds to a number of 212 event template IDs. The procedure for 
vectorizing the hash values belonging to the exception fingerprints is analogous 
as for the semi-structured data set in Sect. 4.1. Only the selected hyperparameters 
change. As there are significantly fewer log entries, because only the logs with 
verbosity level ERROR are used, the window size is selected here at 180 minutes. 
This results in a data set with 24,013 log entries. For the training data set for the 
DeepLog model, the same parameters are used as in Sect. 4.1 for the semi-structured 
data set, such that a window of log size .h = 10 is used. This results in .24,004 log 
sequences. 

4.2.1 Principal Component Analysis 

The number of the relevant k principal components is as in Sect. 4.1.1 calculated 
to capture .95% of the variance of the data consisting of the counting vectors; it is 
therefore .k = 92. The threshold .Qα = 20.21 is also chosen as in Sect. 4.1.1. 

This leads to 2020 anomalies out of .24,007 log entries. Again the proportion 
of anomalies found is very high and unrealistic. For this reason the individual log 
sequences are not examined in more detail, since it can be assumed that there is a 
high number of FP . The reasons for this are probably the same as for the semi-
structured data records in Sect. 4.1.1. It might be due to the fact that, as in [15], the 
data set is not separable with a single threshold. 

4.2.2 Clustering 

The results here are obtained using the LogCluster method, as presented in [15], for 
the Java exception fingerprint record. Again the thresholds .0.3 and .0.5 are tested. 
The results can be found in Table 4. The number of anomalies found with a threshold 
of .0.5 is significantly lower than with the threshold value . 0.3. Only  six anomalies 
are detected for the threshold . 0.5. However, a new anomaly of index 10 is recognized 
here; see Table 4. Again anomalies detected with both thresholds are written in bold 
letters. In the case of the Java exception fingerprint records, only log entries with 
the verbosity level ERROR are considered. However, not all detected anomalies 
are real anomalies, but there exist also FP . The log sequences, which are declared 
as FP, contain technical errors that do not significantly affect the operation of the 
software, for example, incorrect entries by users. These log entries should not have 
the verbosity level ERROR, but WARN.
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Table 4 Anomalies with appropriate anomaly index for Java exception fingerprints with 
LogCluster 

Anomaly 
index 
Table 1 

Number 
anomalies Threshold Log data index 

5 5 0.3 4157, 5932, 7163, 8690, 9361 
6 2 0.3 9980, 10,160 

7 1 0.3 18,772 

8 1 0.3 19,863 

9 2 0.3 22,398, 23,703 

FP 4 0.3 – 

5 2 0.5 5932, 9361 
7 1 0.5 20,300 

10 1 0.5 19,113 

FP 2 0.5 – 

Table 5 Number of 
authentication data from 
client A, B and C 

Client Log sequences 

A 261,529 

B 413,041 

C 263,858 

4.2.3 Deep Learning 

As in Sect. 4.1.3 the deep learning method DeepLogis applied to the Java exception 
fingerprints with the same hyperparameters. For the Java exception fingerprints, 
the accuracy amounts to .0.78 which is a lot better as the accuracy in Sect. 4.1.3. 
However, the number of anomalies detected amounts to 882, which is relative to the 
total number of log sequences too high. For this reason, the individual log sequences 
are not examined in more detail, since it can be assumed that there are a large 
number of FP . 

4.3 Structured Log Data from Authentication Log Entries 

The frequency of authentication logs is very high, which is why a smaller window 
size for corresponding log entries is sufficient. For analyzing PCA and a clustering 
method, a window size of 5 minutes is therefore chosen as well as a stride of one. 
The authentication log data of three different client applications are evaluated; see 
Table 5. When examining the authentication logs, one might be able to detect brute 
force attacks. The original authentication logs used here, however, do not show any 
failed authentication attempts. Because of this, synthetic anomalies are created. For 
this, a training data set without anomalies is created as well a test data set containing 
simulated attacks. The ratio of training data to test data is .75% training data and
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.25% test data. Through the artificial inserted failed authentication attempts, the log 
records can be labeled, thereby calculating of evaluation metrics becomes possible 
and the models can be evaluated more easily. 

For simulating a brute force attack, it is assumed that in an attack multiple 
authentication attempts in a row fail. A failed authentication attempt can be 
recognized by the fact that the verbosity level contains the value ERROR. An attack 
or an anomaly is present if there are more than one failed attempt in a row. For 
creating synthetic anomalies, .5% of the test data are randomly selected, and the 
value of the verbosity level is set to ERROR for all log entries in the selected log 
sequence. The manipulated log sequences receive the label 1, which stands for an 
anomaly. All other log sequences are given the label 0 and stand for a normal log 
sequence. 

For the supervised evaluation of the anomaly detection, the performance metrics 
precision, recall, and F-score are used: 

.Precision = T P

T P + FP
(6) 

This way a small value for precision stands for a small number of FP : 

.Recall = T P

T P + FN
(7) 

A high recall therefore means a low number of FN  values. The F -score is the 
harmonic mean between precision and recall and is calculated as follows (see [13]): 

.F -score = 2 · Precision · Recall

P recision + Recall
(8) 

The structured log data from authentication log entries is only evaluated with PCA 
and clustering, since as Sects. 4.3.1 and 4.3.2 are going to show, the results there are 
already very good, so that the higher effort of a deep learning model is no longer 
justified. 

4.3.1 Principal Component Analysis 

In [14] an  F -score of .0.79 for the HDFS data set and for the BGL data set of . 0.55
is achieved. For the structured data set of authentication log entries, we achieve the 
following values, shown in Table 6, where the number k of principal components 
and the threshold level are calculated as in Sect. 4.1.1. 

One reason for the significantly better F -scores in the authentication log data set 
is the homogeneity of the log data. On the one hand, the number 22 of different log 
keys is very low. Furthermore, since the different systems are called automatically 
by upstream systems, the frequency with which the individual log entries are
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Table 6 Precision, Recall and F -score for the structured authentication logs evaluated with PCA 

Client Threshold k Precision Recall F -score 

A 0.59 4 1 0.98 0.99 

B 2.18 4 1 0.97 0.98 

C 0.99 2 1 0.96 0.98 

Table 7 Precision, Recall and F -score for the structured authentication logs evaluated with 
LogCluster 

Client Threshold Precision Recall F -score 

A 0.3 0.99 1 0.99 

A 0.5 0.99 1 0.99 

B 0.3 1 0.99 0.99 

B 0.5 1 1 1 

C 0.3 1 0.99 0.99 

C 0.5 0.99 1 0.99 

created is very uniform. This allows a model to learn the normal authentication 
log operations very well and also recognize the deviations well. 

4.3.2 Clustering 

Very good values for the F -score are also achieved with the LogCluster method, as 
it can be seen from Table 7. The  F -scores obtained with the LogCluster method are 
clearly better than in [14]. In [14] the LogCluster method achieves for the HDFS 
data set an F -score of .0.8 and for the BGL data set an F -score of .0.57. The reason 
for the good performance is also the homogeneity of the data. 

The experiments carried out with the authentication log data set show that the 
methods PCA and LogCluster can be used very well on homogeneous data. As 
the authentication log data is one example of structured log data, as presented in 
Sect. 3.3, the experiments performed here could be transferred to the other types of 
structured log data. 

5 Conclusion 

While examining three different log data sets, a semi-structured data set, the 
Java exception fingerprint records, and the structured authentication log records, 
different machine learning models for anomaly detection are tested in order to 
identify whether something is going wrong on a computer system. The three models 
PCA from [37], LogCluster from [27], and DeepLog from [11] belong to the 
models which are benchmarked most often in publications; see [23]. It turns out
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that the clustering method LogCluster performs best in all cases evaluated here. 
Furthermore, one sees that the more structured the original training data set is, 
the better the results for detecting anomalies in the log data. We also show that 
elaborate and complicated deep learning models in these cases do not obtain the 
best results and are unnecessary the more structured the log data is. However, a lot 
of the false positives obtained with DeepLog and PCA might be due to parsing errors 
and parsing noise. Thus, using anomaly detection models which do not depend 
on a parser as in [24] might lead to better results. Thus, we also propose that 
more adequate, publicly available and diverse log data sets are needed to ensure 
the applicability of deep learning in anomaly detection for log data. Otherwise 
simple, fast and conventional clustering methods as for example LogCluster remain 
superior. 
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Detecting Web Application DAST 
Attacks in Large-Scale Event Data 

Pojan Shahrivar and Stuart Millar 

1 Introduction 

The advent and expansion of the cloud has seen web applications flourish in every 
corner of our digital lives. From email and e-commerce to banking and social 
networks, these platform-agnostic experiences have become essentials of everyday 
life. However, our increasing reliance on these applications has also made them 
prime targets for cybercriminals. In fact, we have seen a significant surge in web 
application attacks in recent years. [4]. 

The OWASP Top Ten [29] is a useful consensus list of the most critical 
vulnerabilities in web applications, such as broken access control and injections. In 
reality though, securing and protecting web application servers is inherently difficult 
since they have to serve legitimate requests while simultaneously denying access to 
malicious ones. The distinction between a malicious and legitimate request can be 
difficult to make. Moreover, accidentally blocking legitimate traffic can have serious 
consequences, potentially disrupting operations and damaging trust with users. With 
web attacks being the most common form of compromise [12], there is a pressing 
need for defensive capabilities to protect businesses, consumers, and governments. 

Dynamic application security testing (DAST) gathers information on a web app’s 
potential vulnerabilities by sending a variety of HTTP requests in a brute-force 
manner through automated pen testing techniques, which can then be remediated in 
the software development lifecycle. There is a valid global commercial industry for 
these tools; plus some are freely open source [9, 18, 30]. However, DAST scanners 
are also used maliciously by skilled and unskilled attackers. The latter, ‘script kids’, 
may use scanners before selling their findings to a more proficient actor [7]. Hence, 
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failure to detect and block DAST activity could expose an organisation to more 
severe abuse by sophisticated adversaries. Since the adversary’s attack capacity 
is limited only by the available bandwidth and CPU, defensive systems need to 
prevent DAST scanning attacks with minimal manual intervention. In a production 
environment with multiple apps and millions of events, it is not feasible to check 
each attack alert by hand. With traditional detectors based on statistical thresholds 
suffering over-optimisation and excess false positives, it is essential to develop new 
protection mechanisms against malicious DAST activity. 

An effective existing approach to securing web apps more generally is to run 
separate, dedicated security solutions in a layered fashion to filter incoming traffic. 
One such protection mechanism is a web application firewall (WAF). A WAF 
operates in the application layer and protects the web application by analysing each 
HTTP request and then filtering, monitoring, and blocking malicious traffic. WAFs 
have evolved into next-generation WAFs (NGWAFs) to include sophisticated event 
analysis engines that detect and prevent other malicious attacks such as credential 
tampering and distributed denial of service (DDoS). This motivates us to propose 
an automated machine learning (ML) classifier to augment an NGWAF and block 
actors performing DAST scanning attacks while avoiding the arguably arbitrary 
adjustments of threshold-based methods. 

In this chapter, we first illustrate a method of preprocessing millions of web 
application events in a temporal fashion using a tumbling window approach to create 
a proprietary dataset. Then empirically demonstrated a random forest ML model 
with an optimal window size .w = 60 seconds achieves an F1 score of 0.94 and a 
miss rate of 6% in detecting DAST attacks on average across three production-grade 
web apps. 

2 Related Work 

2.1 Traditional Threshold-Based Detection Approaches 

In the past, malicious activity was often detected using threshold-based models. 
These models characterised client behaviour through statistical models, heuristics, 
and anomaly detection rules [3, 11, 17, 32]. For example, a model designed to 
classify login attacks might set thresholds for the number of hourly attempts to input 
credentials and the number of IP addresses that an actor uses. These thresholds could 
even adapt over time, such as by calculating a moving average of the IPs per user. 

Pioneering research from Denning [3] revealed a correlation between anomalous 
activity and misuse, employing statistical techniques to compare user behaviour 
against both static and dynamic norms. This study emphasised the need for greater 
network security and inspired other researchers to delve deeper into the topic. 

Kruegel [11] proposed an intrusion detection system (IDS) that detected attacks 
on web servers and applications by analysing the statistical characteristics of HTTP
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traffic and the parameters within client-server queries. Perez [17] used Markov  
chains to construct a web intrusion detection mechanism. In a similar vein, Torrano 
[32] presented an anomaly detection model for HTTP traffic coming from and 
to a web application, defining the standard behaviour of the application through 
statistical properties. 

Although these threshold-based systems might appear simple to set up, choosing 
the right thresholds can be challenging. The optimal thresholds will likely differ 
among various web applications. Additionally, certain situations may require mul-
tivariate thresholds. For instance, if a username pops up in different countries, but 
always with the same browser fingerprint, it could suggest that a VPN is being used 
and the activity is not suspicious. To remain effective, the threshold-based system 
would then need to consider the number of unique browser fingerprints. As these 
complexities rise, the heuristics become more difficult to implement, potentially 
requiring more manual interventions. 

The selection of a suitable threshold is further complicated by the noise that 
these complexities generate. Too low a threshold increases the detection rate but 
also produces time-consuming false positives. On the other hand, a threshold set 
too high might overlook some malicious activity. These combined factors make it 
challenging to establish effective rules and thresholds. 

In contrast, our proposed machine learning (ML) classifier avoids thresholds, 
instead focusing on temporal features that suggest DAST scanning attacks based on 
tumbling time windows. Notably, while there has been extensive research on the 
detection of network layer attacks has been conducted, work specifically related to 
the application layer is less prevalent and less developed [22]. 

2.2 Machine Learning Detection Approaches 

The rise of machine learning techniques inspired researchers to develop unsuper-
vised anomaly-based network intrusion detection models [8, 25, 36, 38]. Javaid et al. 
[8] applied self-taught learning, a deep learning-based technique, to NSL-KDD [28], 
a dataset designed to address certain limitations of the KDD’99 dataset [34]. Shone 
et al. [25] introduced a non-symmetric deep autoencoder (NDAE) for unsupervised 
feature learning and proposed a model built using stacked NDAEs, evaluated with 
the benchmark KDD’99 and NSL-KDD datasets. Vinayakumar et al. [36] conducted 
a study on the effectiveness of various ML methods in detecting future cyberattacks, 
conducting experiments with both traditional ML algorithms and neural networks 
using benchmark datasets such as KDD’99 and NSL-KDD. 

Researchers such as Pan et al. [14] and Sun et al. [27] have explored the fea-
sibility of unsupervised and semi-supervised approaches for web attack detection. 
The data they used were based on a monitoring tool that captures the behaviour 
of the web application by extracting traces of program execution from the running 
software. The monitoring model was created using supervised training with test 
suites developed as part of the software development process. Other researchers [2]
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proposed using ML to model the normal behaviour of applications and to detect 
cyberattacks. However, it was unclear to what extent ML was actually used in the 
solution, as they also used regular expressions and dynamic programming. 

In our view, the use of machine learning in enterprise application security is an 
area ripe for exploration. To the best of our knowledge, no one has directly addressed 
the detection of DAST vulnerability scanning attacks, probably due to the lack of 
relevant web application datasets and the need for expensive domain knowledge. We 
see an opportunity to fill this gap in research by using a large, real-world dataset to 
specifically investigate the detection of DAST attacks at the application layer using 
machine learning. 

3 Methodology 

In this chapter, we will introduce a machine learning (ML) classifier that we have 
designed to detect malicious activity from dynamic application security testing 
(DAST) scanners. This classifier will enhance the capabilities of a next-generation 
web application firewall (NGWAF), forming a key part of a broader security system. 
Once a source IP has been identified as a potential threat, it can be blocked to halt 
further scanning attempts. 

We categorise IP activity into two types: ‘positive’, which means it is originating 
from a DAST scanner, and ‘negative’, which means it is not associated with such a 
scanner. It is important to keep the number of false-positive detections to a minimum 
to avoid blocking legitimate requests. 

In the following sections, we will discuss how we curated raw event data, provide 
an overview of the NGWAF, and delve into the concepts of tumbling windows, data 
analysis, and feature engineering. To help guide our research, we have made a few 
assumptions: 

• The adversary we are dealing with is not particularly skilled and cannot write 
custom payloads, leading them to use a DAST scanner for malicious purposes. 

• Attacks are not distributed and come from the same source IP. 
• The DAST scanner is used in its default configuration, without any custom APIs 

or extensions. 

3.1 Data Curation 

The AppSensor framework, an industry standard from OWASP [31], provides a 
structure for the implementation of intrusion detection and automated response at 
the application layer. This framework is fundamentally defensive, aiming to detect 
malicious actors rather than discovering vulnerabilities in a web app.
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Table 1 AppSensor event features 

Feature Description 

ts Event timestamp 

ip Source IP 

response-code Response code (e.g. 200, 404, etc.)  

payload Payload (e.g. OR 1=1) 

method Method (e.g. POST, GET, etc.)  

headers Headers in the request 

parameter Parameter set in the URL 

sensor Triggered sensor 

pattern Triggered sensor pattern 

location Location (body, cookie, header, or query) 

uri URI (e.g. https://www.space-travel.com/api/saturn/) 

Fig. 1 Diagram of the NGWAF architecture, depicting the integration and process from stimuli to 
security policy implementation 

In our next-generation web application firewall (NGWAF), we utilise the 
AppSensor framework through a series of detection points or sensors, which 
are activated by suspicious activities. These could include a range of actions 
from attackers, such as sending an SQL injection payload, attempting to bypass 
authentication, malforming requests with unusual encodings, or engaging in 
credential stuffing, among others. When these activities occur, they trigger a regular 
expression pattern in the relevant sensor, which in turn creates a time-stamped 
AppSensor event. Table 1 provides a list of features associated with an AppSensor 
event. Given the nature of web traffic, there can be millions of such events in a 
single 24-hour period, providing a rich and timely source of raw data from the real 
world. 

As shown in Fig. 1, the NGWAF comprises a monitoring agent, an event analysis 
engine, and an application monitoring user interface for a threat overview. The 
process from receiving external stimuli (Step 1) to recording an event, processing 
it, and ultimately implementing a new security policy is described in Steps 2–5. 
The event analysis engine consumes the events generated by the agent and uses 
policy scripts to automate actions in response to the observed signals. The agent, 
integrated into an application or its runtime environment, monitors, detects, and 
prevents attacks in real time.

https://www.space-travel.com/api/saturn/
https://www.space-travel.com/api/saturn/
https://www.space-travel.com/api/saturn/
https://www.space-travel.com/api/saturn/
https://www.space-travel.com/api/saturn/
https://www.space-travel.com/api/saturn/
https://www.space-travel.com/api/saturn/
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Table 2 Sensors 
implemented in the NGWAF 

Sensor Description 

cmdi Command injection 

excsrf Cross-site and anti-request forgery tokens 

exsql SQL exceptions 

fpt File path traversal 

null Embedding null code 

reqsz Unusual request size 

retr Line-break character 

rspsz Unusual response size 

s4xx All response codes 4xx 

s5xx All response codes 5xx 

sqli SQL injection 

uaempty User agent empty 

xss Cross-site scripting 

xxe XML external entity processing 

Policies are crafted by administrators based on insights gleaned from the 
application monitoring interface. Depending on the specifics of the policy, the 
engine discerns how to manage communications, which can include permitting, 
documenting, or blocking an IP address. Presently, administrators have the power to 
block IP addresses that have launched DAST attacks by perusing the user interface. 
However, this process is potentially laborious and costly due to the sheer volume of 
incidents, leading to cognitive stress and the risk of alert fatigue. 

Following the principles of the AppSensor framework, each attack category has 
multiple detection points within the NGWAF, which function as sensors (see Table 2 
for details). The NGWAF employs deep packet inspection (DPI) to implement 
the AppSensor framework, capturing details of activity that originates within the 
application layer. DPI bolsters the ability of web applications to filter suspicious 
request and response activity by scrutinising strings within HTTP requests and 
comparing these patterns against a broad spectrum of potential attacks. 

When a sensor is activated, an AppSensor event is produced and sent to the event 
stream, also known as the AppSensor stream. We gathered and stored the streams 
from our three most trafficked production web applications over a 48-hour period, a 
process we will discuss more thoroughly in Sect. 4.1. 

3.2 Tumbling Windows 

DAST scanners typically operate in a conspicuously overt brute-force manner. 
Some of the most discernible patterns include the rate of requests and the diversity 
of requests originating from a source IP. To capitalise on this, we perform an 
aggregation of events over time, thereby creating ‘tumbling windows’. By initially 
grouping events from the same source IP address, we can construct numerical
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Fig. 2 Segmenting time into tumbling windows 

aggregates for a multitude of features such as request intensity, header diversity, 
response code distribution, and insertion point diversity. 

As depicted in Fig. 2, events from a source IP are grouped by dividing them into 
distinct tumbling windows of time that do not overlap. For each IP, we calculate 
features within each window across the IP’s events to create the feature vectors 
used in the training process. These feature vectors form the individual samples that 
compose each app’s dataset. This process is detailed further in Sects. 3.5 and 4.1. 

The size of the tumbling window affects storage requirements, processing time, 
and computation of costs in production. Therefore, striking a balance between these 
factors and model performance should be considered in a real-world environment. A 
window size .w ∈ {1, 30, 60, 300}, measured in seconds, is used to create different 
datasets to be compared and evaluated. 

3.3 Data Labelling 

The AppSensor events consist of all matches against the attack sensors and patterns, 
which are then aggregated into tumbling windows per source IP. However, each 
window needs to be labelled as to whether it belongs to a scanner or not. This 
is highly challenging to do by hand given the volume of windows. Therefore, the 
method of labelling the data is based on analysis and comparison between generated 
data and production data. 

We generate data by deploying WebGoat [37], a deliberately insecure web app 
to demonstrate common server-side application flaws with many vulnerabilities that 
can be exploited, thus providing the coverage needed [29, 37]. WebGoat is then 
scanned with two DAST tools, OWASP Zed Attack Proxy [30] and PortSwigger 
Burp Scanner [18]. Both widely used scanners are included in the Kali Linux pen 
test platform, an open-source distro specifically for pen testing and security research 
[9]. The data analysis technique employed is EDA [33], used to understand the data, 
its shape, the types of features, and the relationship and patterns between them. The 
results are then used to verify intuitions about the characteristics of scanning. 

The labelling of a source IP’s aggregated events within a given window is 
determined by combining insights gained from the data analysis with manual 
classification by a human expert. This allows the creation of a set of rules to
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label activity as originating from a DAST scanner or not. The WebGoat data were 
manually labelled by a human expert who had access to a dashboard containing 
the statistics for each source IP session, for example, the frequency distribution 
of sensor activation and rates of requests being made, plus the label predicted by 
the ruleset. The expert corrected the labels by hand where needed, and then the 
generalised rules were used to label real-world production data gathered from the 
AppSensor stream. 

These rules were generated using known attack behaviours, anomaly detec-
tion thresholds, and expert consultations, and some are based on proprietary 
information. 

3.4 Data Analysis 

Salient input features to the ML model are key in allowing the classifier to detect 
DAST scanning activity. Given we are adopting a tumbling window approach that 
aggregates features, before deciding how to engineer these features, it is useful to 
analyse the data in combination with our DAST domain knowledge. Note that, 
where relevant in this subsection, the figures use logarithmic axes and are for a 
single app. We also find similar trends across the other apps in our dataset. 

3.4.1 Unique URIs per Source IP 

Figure 3 illustrates the empirical cumulative distribution function (eCDF) for the 
number of distinct URIs requested per IP. Scanning attacks that request only one 
distinct URI are likely to be single-page scans, where the URI stays constant and 

Fig. 3 eCDF for distinct 
URIs for app-1
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Fig. 4 eCDF for distinct 
payloads for app-1 

the payload changes for each request. On the other hand, non-scanning attacks 
often have a large number of distinct URIs, likely because web crawlers tend to 
trigger the s4xx sensor rather than carrying a malicious payload. Given the clear 
distinction between attack and non-attack classes, counting the unique URIs within 
an aggregated tumbling window seems like a sensible approach. 

3.4.2 Number of Payloads per Session 

The eCDF for the number of distinct payloads per session is shown in Fig. 4. The  
significant proportion of attack sessions with only a small number of requests is 
likely due to rapid-fire requests made in a very short time. With the clear distinction 
between the attack and non-attack classes, we find it reasonable to count both unique 
and total payloads within a tumbling window. 

3.4.3 HTTP Method Distribution Across Events 

An interesting observation can be made in Fig. 5 where only the attack class has any 
matches for the HTTP methods PROPFIND and TRACK. These two methods can be 
abused for the injection and extraction of sensitive information [20, 21]. Given the 
differences in the plot, we decide that a count of each HTTP method in a tumbling 
window may be a useful feature. 

3.4.4 Event Intensity per Class 

In Fig. 6, a scatter plot is presented that displays the correlation between the intensity 
of events (per second) and the duration of each session. The upper right corner, 
which represents the longest and most intense sessions, is where the red points
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Fig. 5 Distribution of events per HTTP method for the analysed data, showcasing the mean 
frequency on a logarithmic scale, categorised by ‘class’ 

Fig. 6 Intensity and duration 
distributions for app-1 

indicative of the DAST scanner attack class are clustered. The lack of points in the 
lower left corner signifies the inverse relationship between duration and intensity. 
The data suggest that DAST attacks tend to last longer and are more intense, 
reinforcing the value of using aggregated time windows. This leads us to believe 
that a DAST attack will generate significantly more events than non-DAST activity, 
making aggregated features potentially more discriminating.
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Table 3 Makeup of a single event 

Feature Description 

timestamp Event timestamp (e.g. 2023-05-12 15:30:45) 

ip Source IP address (e.g. 192.168.0.1) 

payload Extracted payload data (e.g. 
<script>alert("XSS");</script>, ’ OR 1=1 -) 

method HTTP method used (e.g. GET, POST) 

headers.known Known headers in the request (e.g. User-Agent, 
Content-Type) 

headers.unknown Unknown headers in the request (e.g. X-Custom-Header) 

sensor Type of sensor triggered (e.g. xss, sqli) 

pattern Specific behavior or pattern detected (e.g. IFrame Tag 
Injection, SQL Comment Sequence) 

location Location of the action or data (e.g. Body, Header, Cookie) 

uri URI of the  event (e.g.  https://www.example.com/api/endpoint) 

3.5 Crafting the Features 

In our dataset, each sample is an aggregation of individual events from a specific 
source IP within a set time frame. These are labelled as either a DAST attack or non-
DAST activity. Our approach to representing these data is a two-step process: first, 
we need a representation for each distinct event; next, we aggregate these individual 
events pertaining to a specific source IP. 

Table 3 outlines the features we extract from each event, and Table 4 describes 
how we combine these features to create a holistic representation of all events from 
a specific source IP. It is important to note that the source IP plays a crucial role in 
our aggregation process, but it does not make its way into the final feature vector. 

For numerical features, we stick to conventional methods such as summation or 
counts, also applying min-max scaling [23]. On the other hand, the text features 
need a bit more finesse. It stands to reason that if we can capture and include unique 
text features that are typical of DAST attacks in our machine learning model, we 
could enhance our ability to identify these attacks. For instance, a DAST scanner 
typically generates a host of unique payloads, which could be a tell-tale sign of its 
activity. 

For the textual data in our payload, headers.known, headers.unknown, 
and URI features, we calculate the TF-IDF score [19, 26] to rank their importance 
within the training data. We limit this to the top 100 terms, effectively creating a 
vocabulary of the most frequent and significant terms across a given corpus. The 
goal here is to highlight the unique strings that DAST scanners use while filtering 
out the more commonplace ones. Within a given time period, we can then calculate 
the count of these top 100 terms for each of the aforementioned features.

https://www.example.com/api/endpoint
https://www.example.com/api/endpoint
https://www.example.com/api/endpoint
https://www.example.com/api/endpoint
https://www.example.com/api/endpoint
https://www.example.com/api/endpoint
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Table 4 Makeup of an aggregated window of events per source IP 

Feature Aggregation Description 

ip N/A Source IP (identifier, not used in model training) 

payload value counts Occurrence count of top 100 payloads 

nunique Number of unique payloads 

method value counts Occurrence count of each method 

sensor value counts Occurrence count of each sensor trigger 

pattern value counts Occurrence count of each pattern trigger 

location value counts Occurrence count of each location 

headers count Total number of headers 

headers.known count Number of known headers 

nunique Number of unique known headers 

value counts Occurrence count of top 100 known headers 

headers.unknown count Number of unknown headers 

nunique Number of unique unknown headers 

value counts Occurrence count of top 100 unknown headers 

uri value counts Occurrence count of top 100 URIs 

nunique Number of unique URIs 

Overall N/A Final vector of 469 elements, excluding source IP 

3.6 Random Forest ML Model 

We have decided to use the random forest algorithm for training our models, 
drawing inspiration from its successful application in areas such as network 
intrusion detection systems [1, 5, 13]. 

Each application in our scenario has its own dedicated model, with the window 
size w adjusted as necessary. When tested, the model’s job is to make a binary 
prediction: Is the aggregated activity of a source IP within a time window indicative 
of a DAST attack or not? 

The random forest algorithm is particularly suitable for this task because it is 
robust, adaptable, and effectively handles high-dimensional data. Moreover, it tends 
to perform well in mitigating overfitting, a common challenge in machine learning. 
This means that even when faced with new and unseen data, our model remains 
reliable in its predictions. 

4 Setting Up the Experiment 

Our experiment draws on data from three of the most active real-world web 
applications, which are protected by the NGWAF. These data were gathered over 
a period of 48 hours, providing us with a comprehensive and high-quality dataset 
from a broad range of sensors.
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Fig. 7 Event distribution per sensor for app-1, displaying the mean frequency on a logarithmic 
scale, categorised by ‘class’ 

4.1 The Dataset 

In terms of volume, app-1 contributed 49,033,476 events, app-2 added 
27,328,196 events, and app-3 offered 18,113,350 events. As an illustration, 
Fig. 7 shows the event distribution for app-1. Here, you can see that certain 
types of attacks, such as SQLi and XSS, are markedly more common than others, 
reflected by the taller bars. It is worth noting that the y-axis is logarithmic, so the 
height difference between the bars is even more pronounced than it appears. This 
distribution confirms our expectation that DAST scanning attacks far outnumber 
non-scanning attacks in real-world scenarios. 

We collected the events from all three apps simultaneously from the AppSensor 
stream. This approach ensures consistency in our definition of an attack, as the same 
set of detection patterns is applied to all events. We have withheld specific details 
about the apps’ functionality and nature for reasons of confidentiality. 

To ensure the integrity of our dataset, we also performed deduplication to 
eliminate duplicate events that might have been captured in the stream. By utilising 
our proprietary data, we have been able to design an experiment specifically 
tailored to AppSensor-orientated scenarios, which gives us greater confidence in 
our findings.
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Table 5 Number of samples in train and test splits per window size w across each app 

w App # train  DAST # train non-DAST # test DAST # test non-DAST 

1 app-1 129,941 129,941 1,265,655 58,605 

app-2 183,333 183,333 409,687 78,334 

app-3 7704 7704 3287 3303 

30 app-1 105,458 105,458 1,144,586 44,805 

app-2 135,662 135,662 244,617 58,200 

app-3 7714 7714 4177 3303 

60 app-1 93,532 93,532 1,139,166 39,810 

app-2 133,283 133,283 230,000 57,042 

app-3 7707 7707 4187 3303 

300 app-1 76,583 76,583 1,138,835 33,348 

app-2 128,479 128,479 155,857 55,110 

app-3 7704 7704 3287 3303 

4.2 Splitting the Dataset 

Table 5 provides an overview of the distribution of DAST and non-DAST samples 
in the training and testing datasets for each application. Remember that each sample 
represents a collection of activity from a specific source IP within a tumbling 
window and is tagged as either a DAST scanning attack or non-DAST activity. We 
have ensured an even distribution of each class in the training split by subsampling 
the DAST scan samples. 

We sorted the data for each app chronologically and then divided it into a training 
split and a test split. After this division, we generated the tumbling windows. The 
training split comprises all the data collected in the initial 24 hours, while the test 
split includes all data from the subsequent 24-hour collection period. This approach 
presents a rigorous test scenario where a model is trained using data from the 
first day and then tested on data from the following day—mirroring a real-world 
deployment scenario. 

•> important 

A vulnerability scan attack can last anywhere from a few minutes to a couple of 
hours, depending on the configuration. Therefore, random sampling events might 
create a train-test split that includes the same sessions. This overlap risks having 
a scan included in both the training and testing splits, which could falsely inflate 
performance. To avoid this, we generate each source IP’s aggregations within a 
tumbling window across each .w ∈ {1, 30, 60, 300}, following the steps detailed 
in Sect. 3.5, after splitting the event data.
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4.3 Evaluating the Model 

The performance of our machine learning model is evaluated based on four metrics: 
precision, recall, F1 score, and miss rate. While all of these metrics provide valuable 
information, we particularly emphasise the F1 score and the miss rate. The F1 score 
helps us balance the precision and recall of our model, and the miss rate indicates 
the percentage of scanning attack samples that the model mistakenly identifies as 
non-scanning activities. 

In our model, a DAST scanning attack is considered the positive case, while non-
DAST activity is treated as the negative case. The formal definitions of these metrics 
are as follows: 

.Precision = T P

T P + FP
(1) 

.Recall = T P

T P + FN
(2) 

.F1 = 2 · Precision · Recall

P recision + Recall
(3) 

.Miss rate = 100 · (1 − Recall) (4) 

Another critical tool we use to evaluate our model is the receiver operating 
characteristic (ROC) curve. This curve helps us visualise the performance of our 
classifier at various probability thresholds. The area under the ROC curve, known 
as the AUC-ROC, quantifies our model’s ability to distinguish between DAST and 
non-DAST activity. In essence, a higher AUC indicates that our model is better able 
to distinguish between these two categories. 

4.4 Hyperparameters for Random Forest Model 

Our random forest model uses the default parameters, as described in [24], which 
provide a good balance between performance and general applicability across 
various datasets. These defaults are designed to prevent overfitting, simplify model 
usage, and ensure reasonable computational efficiency. 

Furthermore, we used the following software tools for our analysis: Jupyter [10], 
Python 3.9 [35], scikit-learn [16], pandas [15], and numpy [6].
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5 Analysis of Experimental Results 

We trained and evaluated a total of twelve models, three for each window size . w ∈
1, 30, 60, 300. Each model was trained using its corresponding training split and 
tested with its respective test split, as outlined in Table 5. This approach of having 
fixed train and test data, segmented into two separate 24-hour periods, ensures that 
any change in model performance can be directly attributed to the variation in w. 

As shown in Table 6, our models show strong performance in all window sizes. 
The model with .w = 60 performs the best in terms of detection of DAST activity, 
boasting an average F1 score of 0.94 and a miss rate of 6% in all three applications. 
However, for a production environment, .w = 30 could also be a feasible choice, 
and it is plausible to consider varying w in smaller increments, such as every 5 
seconds, for further tuning. Despite the potential for additional tuning, our results 
are highly encouraging, even with the smallest window size of .w = 1, which could 
be particularly useful in a resource-constrained environment. 

5.1 Performance Analysis via ROC Curve 

The model’s performance can be further demonstrated through the receiver oper-
ating characteristic (ROC) curve. For example, the ROC curve for app-1 with 
.w = 60, shown in Fig. 8, illustrates the trade-off between the true-positive rate 
(the proportion of DAST attacks correctly predicted) and the false-positive rate (the 

Table 6 Performance 
metrics per w across each app 

w App Precision Recall F1 Miss rate 

1 app-1 0.97 0.95 0.96 5% 

app-2 0.89 0.82 0.84 18% 

app-3 0.96 0.96 0.96 4% 

Average 0.94 0.91 0.92 9% 

30 app-1 0.98 0.96 0.97 4% 

app-2 0.92 0.89 0.89 11% 

app-3 0.96 0.96 0.96 4% 

Average 0.95 0.94 0.94 6.33% 

60 app-1 0.98 0.97 0.97 3% 
app-2 0.92 0.89 0.90 11% 

app-3 0.96 0.96 0.96 4% 

Average 0.95 0.94 0.94 6% 
300 app-1 0.97 0.85 0.90 15% 

app-2 0.90 0.86 0.87 14% 

app-3 0.96 0.96 0.96 4% 

Average 0.94 0.89 0.91 11% 

The bold values are the maximum values.
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Fig. 8 ROC curve of the model for app-1 with . w = 60

proportion of DAST attack activity mistakenly predicted as non-DAST). Ideally, 
we aim for a point at the top left corner of the ROC space, which signifies a true-
positive rate of 1 and a false positive rate of 0. The steepness of the ROC curve is key 
to maximising the true-positive rate while minimising the false-positive rate. A high 
area under the curve (AUC) implies a high-performance model capable of accurately 
predicting both positive and negative samples. Indeed, the AUC of 0.98 for app-1, 
as shown in Fig. 8, suggests that the model is close to optimal performance. 

5.1.1 Discussion on Feature Engineering and Future Directions 

As indicated in Sect. 3.4, DAST attacks are typically of longer duration, with distinct 
payloads, URIs, and a larger volume of events. We believe that our careful feature 
engineering, which captures these aspects, played a significant role in achieving 
the impressive results. In a practical setting, an additional automated step could be 
incorporated into the NGWAF to block source IPs associated with DAST activity, 
eliminating the need for manual intervention. This would make our proposed end-
to-end system highly beneficial in a production environment. 

However, we acknowledge that models need to be updated over time. This is 
a relatively manageable task that involves collecting new data and retraining the 
model periodically, perhaps weekly. Notwithstanding, our use of a high-quality 
proprietary dataset for these three selected apps instils strong confidence in our 
machine learning model’s capability to detect DAST scanning attacks, especially 
those perpetrated by unskilled individuals operating from a single IP.
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6 Conclusions 

In this chapter, we presented a random forest machine learning model designed to 
detect DAST vulnerability scanning attacks, acting as an extension to an existing 
NGWAF. Our solution can be integrated into an end-to-end streaming data pipeline, 
allowing the classification and subsequent blocking of DAST activity. Using a 
large, real-world dataset containing millions of events, our experiments revealed 
that an optimal window size of 60 seconds leads to an F1 score of 0.94 and an 
impressively low miss rate of 6% on average in three selected enterprise-grade 
production applications. 

Future work could explore the development of a suite of machine learning mod-
els, one for each sensor, and investigate the potential of sequence-orientated deep 
learning techniques, such as transformers, recurrent networks, and convolutions. 
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Enhancing Embedded IoT Systems for 
Intrusion Detection Using a Hybrid 
Model 

Mansour Alqarni and Akramul Azim 

1 Introduction 

Intrusion detection for IoT networks is a critical task that involves the use of 
various techniques and tools to monitor network traffic and detect potential security 
breaches or attacks in real-time. This is particularly important in the context of 
IoT networks, which typically comprise a large number of interconnected devices 
with varying levels of security and vulnerability. With the digitization of more and 
more devices, users are learning to leverage the power of the Internet to improve 
their day-to-day lives with the help of wireless signals and automation. However, 
the ubiquity of the Internet has facilitated commerce, social engagement, and other 
forms of digital communication to such a degree that the connectivity of any new 
device is almost taken for granted or simply assumed. These new devices typically 
become part of a vast network of other devices that has been popularly termed, the 
“Internet of Things” (IoT). The IoT is a collection of different kinds of devices that 
are connected through a network, can be controlled by the Internet, and can interact 
with one another easily. However, due to a lack of proper security, devices are 
vulnerable to different kinds of cyberattacks because of their continuous exposure 
to the largely unsecured network that is the Internet. Adversaries could scan the 
network for vulnerable devices or applications on the network. Cloud computing 
has made the IoT more available and also stores different kinds of data from the IoT 
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network. While digital security is certainly not an unattainable goal, the principal 
concern is not any one device, but is instead the large volume of devices that are 
connecting to the IoT every day. In addition, these new devices are precipitating 
changes in how people use the Internet, making it very difficult for security experts 
to ward off cyberattacks [20]. 

The study of intrusion detection for IoT networks aims to mitigate these security 
threats by identifying potential vulnerabilities in IoT networks and developing effec-
tive solutions to detect and prevent attacks in real-time. With the development of 
advanced techniques such as deep learning neural networks and improved datasets, 
the accuracy and efficiency of intrusion detection for IoT networks have improved 
significantly. Therefore, it is essential to continue research and development in this 
field to ensure the security and privacy of IoT networks and their users. 

The rise in popularity of cryptocurrency mining has provided opportunities for 
attackers to exploit other devices, networks, and even electricity to carry out their 
mining operations. As a result, this has led to a surge in intrusion attacks, creating a 
range of new pathways and vulnerabilities for cybercriminals to exploit. However, 
traditional intrusion detection systems (IDS) are not always well-suited to the unique 
characteristics of IoT networks. With low-powered devices and limited computing 
resources and often operating in remote or inaccessible environments, IoT net-
works require specialized techniques for intrusion detection. To address this issue, 
researchers have proposed a range of specialized techniques for intrusion detection 
in IoT networks, including machine learning algorithms, anomaly detection, and 
lightweight cryptographic protocols. Machine learning algorithms are capable of 
learning and identifying normal behavior patterns within the network and detecting 
any deviations from those patterns that may indicate a potential intrusion. Anomaly 
detection is another technique that can identify unusual traffic patterns and behavior 
that could indicate an intrusion. Lightweight cryptographic protocols are also used 
to protect the network from unauthorized access, by ensuring secure communication 
between devices. 

Overall, as IoT networks continue to grow and expand, it is crucial to have 
effective intrusion detection techniques in place to safeguard against potential 
attacks. By utilizing specialized techniques such as machine learning algorithms, 
anomaly detection, and lightweight cryptographic protocols, it is possible to provide 
a high level of security and protect against the increasing threat of intrusion attacks 
in IoT networks. 

The key contributions of this paper are outlined as follows: 

1. Dataset Enhancement: In the initial phase, we conducted a comprehensive analy-
sis of the dataset, focusing on addressing the data imbalance issue. Recognizing 
the potential bias introduced by imbalanced data, we diligently undertook mea-
sures to ensure an equitable and balanced distribution. This strategic balancing 
of the dataset is pivotal in ameliorating the accuracy of intrusion detection, as it 
curtails the skewed influence of dominant classes. 

2. Hybrid DAIDS-RNN Model: Subsequently, we introduce a novel and 
robust hybrid intrusion detection model by seamlessly integrating the deep
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autoencoder-based intrusion detection system (DAIDS) with recurrent neural 
networks (RNNs). This novel amalgamation harnesses the proficiency of 
DAIDS in capturing intricate spatial patterns and the temporal sensitivity of 
RNNs in delineating sequential dependencies. Our model employs the latent 
representation generated by DAIDS alongside the temporal insights provided by 
the RNN component. This synergy not only enriches the feature representation 
but also equips the model with a holistic understanding of network dynamics 
over time, thus enhancing its efficacy in identifying anomalies. 

3. Hyperparameter Optimization: In the final phase, we embrace a meticulous 
hyperparameter optimization strategy to fine-tune the deep RNN architec-
ture. This optimization procedure systematically explores the parameter space, 
thereby maximizing the model’s discriminatory power and accuracy in detecting 
intrusions. By adapting the hyperparameters to the intricacies of the hybrid 
DAIDS-RNN model, we aim to achieve optimal performance. 

Through the amalgamation of these contributions, including the hybrid DAIDS-
RNN model, dataset balancing, and hyperparameter tuning, we endeavor to substan-
tially elevate intrusion detection accuracy. Our empirical assessment substantiates 
the potency of our approach, underscoring marked advancements in intrusion 
detection precision. This methodology holds substantial potential in reinforcing IoT 
device security and safeguarding sensitive information in a digitally interconnected 
landscape. 

The subsequent sections of the paper are structured as follows: 

• Section 2: Comprehensive Overview of Related Work 
• Section 3: Dataset Description, Collection, and Preprocessing 
• Section 4: Hybrid DAIDS-RNN Model for Intrusion Detection 
• Section 5: Experimental Results and Configurations 
• Section 6: Conclusion 

Each section is meticulously crafted to delineate the theoretical foundation, 
experimental design, and results of our hybrid DAIDS-RNN intrusion detection 
model. 

2 Comprehensive Overview of Related Work 

2.1 Related Work 

Intrusion detection in the context of Internet of Things (IoT) networks is a multi-
faceted challenge, characterized by the need to safeguard interconnected devices 
from a diverse range of cyber threats. Understanding the landscape of existing 
research is crucial for advancing effective intrusion detection methodologies tai-
lored to IoT environments. This section offers a comprehensive overview of the 
related work, providing insights into the diverse strategies that researchers have
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employed to address the intricate security concerns in IoT networks. Boumkheld 
et al. [9] employed a conventional machine learning approach coupled with a naive 
Bayesian network to evaluate the algorithm’s potential in intrusion detection. In a 
similar vein, Jokar et al. [21] introduced Zigbee-based Q-learning as a strategy to 
bolster network security against intrusion, reporting favorable outcomes in terms 
of attack monitoring. Hasan et al. [18] proposed a hybrid architecture, combining 
a convolutional neural network (CNN) and long short-term memory (LSTM), for 
classifying electricity information attributes. Meanwhile, Wang et al. [39] advocated 
a hierarchical approach for selecting pertinent features from intrusion detection 
networks. 

The combination of CNN and LSTM algorithms has been utilized effectively for 
intrusion detection [21]. 

By examining and synthesizing prior research endeavors, we gain valuable 
insights into the efficacy, limitations, and unexplored avenues within the field [3, 
29, 37]. This collective understanding paves the way for the introduction of our 
innovative hybrid intrusion detection algorithm, which combines the strengths of 
deep autoencoder-based intrusion detection system (DAIDS) and recurrent neural 
networks (RNNs). As we delve into the various intrusion detection techniques, it 
is important to note that the field encompasses a spectrum of approaches ranging 
from machine learning-based anomaly detection to signature-based methods. The 
complexity of IoT networks necessitates an adaptive and nuanced response, leading 
to the emergence of hybrid models that harmonize multiple methodologies for 
enhanced accuracy and robustness. 

Given that IoT devices have the ability to collect a significant amount of data, 
it is important to leverage deep learning methods for detecting various kinds of 
intrusion attacks [30]. Building, implementing, and deploying IoT platforms involve 
considering security as one of the most important factors. The Internet of Things 
(IoT) pertains to the capability of communicating with, monitoring, and operating 
automated objects through the Internet. However, IoT is vulnerable to a variety of 
cyberattacks due to its limited processing capabilities, low power, and restricted 
technology. Consequently, security measures like cryptography and authentication 
are challenging to implement. An intrusion detection system is a deep learning 
model that can be trained to detect different kinds of intrusions in a network. In 
contrast, cloud application firewalls are not capable of providing complete security 
to a network since they fail to recognize and skip new types of attacks. Intrusion 
detection systems, on the other hand, continuously monitor the abnormalities of 
network data to detect any intrusions [34]. 

Intrusion detection can be classified into two categories: misuse detection and 
anomaly detection. A misuse detection mechanism is primarily designed to detect 
the misuse of processor, RAM, and storage of devices that can be controlled 
by attackers to dictate the functionality of a system. An anomaly detection sys-
tem, on the other hand, records the system’s normal behavior and monitors its 
behavior. Any aberrant system behavior is registered as an attack. It is crucial to 
implement intrusion detection systems for IoT networks since traditional intrusion 
detection systems are not well-suited to IoT networks’ unique characteristics.
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These networks have low-powered devices and limited computing resources and 
often operate in remote or inaccessible environments. Therefore, researchers have 
proposed specialized techniques for intrusion detection in IoT networks, including 
machine learning algorithms, anomaly detection, and lightweight cryptographic 
protocols [2, 12, 15, 23]. 

Machine learning algorithms and deep learning algorithms, for example, have 
become quite popular strategies for different kinds of vulnerability and intrusion 
detection mechanisms. A research group proposed an approach that involved 
a six-layer neural network that was designed for intrusion detection [24]. The 
researchers used the NSL-KDD dataset [36] to facilitate this project. Another group 
of researchers used a binary bat algorithm, and they detected an intrusion attack by 
finding local minima [14]. There are some popular datasets for supervised learning-
based algorithms, and previous researchers also used these datasets for intrusion 
detection. Some researchers have used artificial neural networks and have claimed 
84% accuracy [17]. Other researchers have used machine learning-based algo-
rithms [28, 33] on different datasets and achieved good accuracy. Earlier, in 2005, 
some researchers used support vector machine algorithms, decision tree classifiers, 
and GA-based feature selection for their intrusion detection efforts [11, 31]. Santo 
et al. proposed an information gain-based approach for intrusion detection [22]. The 
proposed system is divided into two stages. First, the features are extracted from the 
dataset. Then, in the second stage, the SVM classifier is used to classify the network 
data. Recently, some researchers used deep learning algorithms [4] and achieved 
good experimental results. 

The research put forth by other researchers working in the field has proven to 
be very significant insofar as their results have highlighted the importance of the 
learning model in the construction of a mechanism that is responsive to increasingly 
sophisticated threats. The advantage of a deep learning model is the simple fact that 
it is designed to not only assess the particulars of a given scenario but also respond 
and develop or evolve over time. With cyberattackers constantly seeking to improve 
the sophistication of their intrusion protocols, deep learning models must be able to 
react to isolated incursion but then also draw a lesson from that particular encounter, 
one that can be leveraged to address or thwart future attacks. 

2.2 Existing Intrusion Detection Techniques 

The domain of IoT intrusion detection encompasses an array of techniques aimed 
at safeguarding the integrity and security of interconnected devices. In this section, 
we present a comprehensive survey of existing intrusion detection methodologies, 
highlighting their approaches, advantages, and limitations. This exploration under-
scores the need for innovative solutions that can address the evolving landscape of 
IoT threats. Anomaly detection approaches [26] Anomaly-based intrusion detection 
techniques focus on identifying deviations from established behavioral patterns. 
Traditional statistical methods, such as mean-variance analysis and clustering, have
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been adapted to IoT environments. These methods, while effective for certain 
scenarios, can struggle to capture complex nonlinear relationships and the dynamic 
nature of IoT traffic. Wenjuan et al. [25] used signature-based detection involves 
creating a database of known attack patterns and identifying matches within network 
traffic. While efficient in recognizing known attacks, this method is limited by its 
inability to detect novel or zero-day threats. Furthermore, the sheer diversity of 
IoT devices and communication protocols challenges the feasibility of maintaining 
comprehensive signature databases. Other researchers [1, 35] did their experiments 
with machine learning-based techniques, including supervised and unsupervised 
methods, have gained prominence in IoT intrusion detection. Algorithms such as 
decision trees, support vector machines, and k-nearest neighbors have been adapted 
to classify network traffic as normal or malicious. However, the effectiveness of 
these methods hinges on the availability of labeled training data, which can be 
scarce and subject to class imbalances. In some advanced papers such as [13, 19, 27] 
addressing the temporal aspect of network traffic, time-series analysis techniques 
have been explored. These methods, including hidden Markov models and recurrent 
neural networks (RNNs), focus on capturing sequential dependencies in data. 
RNNs, in particular, excel in modeling temporal relationships but might not fully 
harness the spatial patterns present in network traffic. 

While each of these techniques contributes to the understanding and detection of 
IoT intrusions, they also exhibit limitations when applied in isolation. The dynamic 
and diverse nature of IoT networks necessitates a holistic approach that can capture 
both spatial intricacies and temporal dynamics. In the subsequent sections, we delve 
into the incorporation of these insights into our hybrid DAIDS-RNN model, aiming 
to bridge the gaps left by stand-alone methodologies. 

By presenting this comprehensive panorama of existing intrusion detection 
techniques, we lay the foundation for our innovation—leveraging hybridity and 
synergy to develop an advanced approach that surpasses the limitations of individual 
methods. Our model’s ability to harmoniously integrate spatial and temporal 
insights marks a crucial step toward more effective and adaptable IoT intrusion 
detection. Therefore, it is the aim of this study to address the aforementioned gaps 
in the research. 

3 Dataset Description and Preprocessing 

3.1 Dataset Overview 

The IoT-23 dataset [32] includes network traffic data from 23 different IoT 
devices, capturing both benign and malicious activities. It’s specifically designed for 
evaluating intrusion detection algorithms in IoT networks. The IoT-23 dataset serves 
as the foundational corpus for our research, facilitating the evaluation and validation 
of our hybrid DAIDS-RNN model for intrusion detection in Internet of Things 
(IoT) networks. This section offers a comprehensive overview of the dataset’s
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key characteristics, composition, and relevance to our investigation. The dataset 
is meticulously designed to mirror real-world IoT network traffic, encompassing 
a rich spectrum of benign and malicious activities. Its composition embodies the 
diversity of IoT devices and communication protocols, making it a fitting choice for 
assessing intrusion detection mechanisms tailored for IoT environments. The dataset 
comprises an extensive collection of network traffic instances, capturing interactions 
from 23 distinct IoT devices. These devices span a wide array of functionalities 
and encompass various device categories, ensuring a representative sample of IoT 
network behaviors. IoT-23 simulates a range of activities, encompassing legitimate 
communications and diverse attack scenarios that IoT networks can potentially 
encounter. The dataset’s comprehensive coverage of both benign and malicious 
activities positions it as a robust substrate for evaluating the efficacy of intrusion 
detection models. The main goal we selected is IoT-23 dataset because it is specifi-
cally designed for evaluating intrusion detection in IoT environments. Autoencoders 
could be effective in capturing the complex and diverse patterns of network traffic 
generated by different IoT devices. 

3.2 Data Preprocessing 

The reliability and effectiveness of any machine learning model heavily depend on 
the quality of the input data. In this section, we outline the meticulous preprocessing 
steps undertaken to transform the raw IoT-23 dataset into a format conducive to 
training and evaluating our hybrid DAIDS-RNN model for intrusion detection. 
We have used both an existing dataset, and we collected our dataset from a real-
world IoT system that contains different kinds of information with attack types. 
The dataset is carefully designed to capture various types of attacks commonly 
encountered in IoT networks, such as denial of service (DoS), distributed denial 
of service (DDoS), malware infections, and unauthorized access attempts. These 
attack instances are included to provide a realistic representation of the security 
threats faced by IoT devices. To ensure the dataset’s quality and reliability, extensive 
data preprocessing techniques have been applied. These techniques include data 
cleaning, removal of redundant or irrelevant features, and normalization of data 
values. Additionally, to address the issue of class imbalance, the dataset has been 
carefully balanced, ensuring that both normal and attack instances are adequately 
represented. Figure 1 shows some portion of our dataset. Data Cleaning and 
Filtering: We eliminated any instances that contained incomplete or erroneous 
information that could adversely affect the learning process of our model. Feature 
Normalization: To ensure uniformity across features and prevent any attribute 
from disproportionately influencing the model, we applied feature normalization. 
This process scaled all features to a common range, facilitating effective learning 
across the entire dataset. Feature Extraction: We employed feature extraction 
techniques to convert the raw network traffic data into meaningful features that 
would contribute to the performance of our model. This process involved identifying



352 M. Alqarni and A. Azim

Fig. 1 Sample of intrusion detection dataset 

key attributes and aggregating them into features that encode relevant patterns 
(Fig. 2). Figure 3 shows the distribution of different kinds of attacks and normal 
events. Data Splitting: The dataset was divided into distinct subsets for training, 
validation, and testing purposes. This partitioning ensured that the model’s perfor-
mance was assessed on unseen data, thus providing a more accurate evaluation of its 
generalization capabilities. Label Encoding: To facilitate supervised learning, we 
encoded the labels for each instance—differentiating between normal behavior and 
various attack categories—into a format suitable for our model’s training process; 
see Fig. 1. 

It seems that there is a huge imbalance between the normal and attack data. 
Figure 4 shows the final class count for attack and normal events. Typically it 
refers to a significant disparity in the number of instances between classes. While 
a 5% difference may not seem substantial at first glance, it can still impact the 
performance of machine learning models, especially in cases where one class is 
underrepresented. Here are some reasons why a 5% difference might be considered 
significant. Impact on model learning in situations where one class is significantly 
smaller than the other: machine learning models may struggle to learn patterns 
associated with the minority class. This can result in models that are biased toward 
the majority class and perform poorly on the minority class. Imbalanced costs in 
some applications: the cost of misclassifying certain instances can be high. Even a 
small difference in the number of instances between classes can lead to imbalanced 
costs if the minority class contains critical cases. For instance, as a network does 
not have any control mechanisms to limit traffic to only legitimate access, any 
attacker could attempt to use brute force or gain access to remote control services. In 
such scenarios, having a comprehensive and balanced dataset for intrusion detection 
becomes crucial. Even a minor imbalance in the dataset can impact the ability to 
detect and mitigate these threats effectively. 

Since the result indicate that can the dataset is not balanced, undersampling 
methods [7] have been applied to balance the dataset. It is important to remove the 
dataset imbalance because that can produce biased results after training and testing. 
Figure 5 shows the balanced dataset. 

The number of normal events and attack events are the same in within the 
balanced dataset. This balanced dataset provides more accurate results than an 
imbalanced dataset.



Enhancing Embedded IoT Systems for Intrusion Detection Using a Hybrid Model 353

Attack Type Parameters Type Services 

Normal 

Land 

Neptune 

Back 

Mscan 

Telnet 

Whois, Private, HTTP 

wrong\_fragment 

protocol\_type 
dst\_bytes 
src\_bytes 

num\_failed\_logins 
logged\_in 

num\_compromised 
root\_shell 

su\_attempted 
num\_root 

num\_shells 
num\_access\_files 

num\_outbound\_cmds 
is\_host\_login 
is\_guest\_login 

srv\_count 

diff\_srv\_rate 

dst\_host\_srv\_count 
dst\_host\_same\_srv\_rate 

dst\_host\_srv\_serror\_rate 
dst\_host\_serror\_rate 

dst\_host\_srv\_diff\_host\_rate 
dst\_host\_same\_src\_port\_rate 

dst\_host\_diff\_srv\_rate 

dst\_host\_count 
srv\_diff\_host\_rate 

same\_srv\_rate 
srv\_rerror\_rate 

rerror\_rate 
srv\_serror\_rate 

serror\_rate 

num\_file\_creations 
Telne, HTTP, FTP, UUCP 

HTTP 

ecr_i 

Fig. 2 Example of our dataset and parameters (Features) 
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Fig. 5 Intrusion detection balanced dataset 

3.3 Dataset Combination for Enhanced Performance 

In pursuit of a comprehensive and robust intrusion detection model for IoT 
networks, we have taken a deliberate step toward amalgamating the strengths of 
two prominent datasets: the “IoT Network Intrusion Dataset” [38] and the “IoT-
23 dataset.” [32] This strategic fusion not only bolsters the dataset’s size but also 
enriches the diversity of network behaviors captured, thereby enhancing the efficacy 
of our hybrid DAIDS-RNN model for intrusion detection.
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Fig. 6 Visualization of correlations between the features 

3.4 Data Imbalance 

We have also removed the data imbalance problem [10, 16] and made the dataset 
balanced. We have chosen to use a combined dataset “IoT Network Intrusion 
Dataset” [38]. The reason we choose this dataset for this project is that it has the 
common attacks we could predict for IoT network. However, the dataset requires 
substantial amount of preprocessing and contains a huge class imbalance data. The 
other thing we have to look for is the correlation of each column with every other 
column. If they are perfectly correlated, then it means one of them completely 
defines the other; thus it contains no new information and can be safely removed. In 
Fig. 6 we illustrated a sample of the data visualization technique using heatmap. 
The correlation looks a bit conjugated. We filter out the ones that have perfect 
correlation result shown in Fig. 7, after we removed the second column from each 
pair of correlated columns to remove the duplicated data. 

4 Hybrid DAIDS-RNN Model for Intrusion Detection 

This paper proposes a state-of-the-art model for IoT intrusion detection by lever-
aging recurrent neural networks (RNN) with an attention mechanism. The RNN 
model with attention effectively captures sequential dependencies in network traffic 
data and focuses on the most relevant parts of the sequence for intrusion detection.



356 M. Alqarni and A. Azim

Minute 
0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

Dst_3 
Src_3 

Idle_Min 
Active_Min 

Fwd_Act_Data_Pkts 
Subflow_Fwd_Byts 

Pkt_Size_Avg 
URG_Flag_Cnt 
SYN_Flag_Cnt 
Pkt_Len_Mean 

Fwd_Pkts/s 
Bwd_PSH_Flags 
Bwd_IAT_Mean 

Fwd_IAT_Std 
Flow_IAT_Max 

Flow_Byts/s 
Bwd_Pkt_Len_Max 
Fwd_Pkt_Len_Max 

Tot_Fwd_Pkts 
Src_Port 

M
in

ut
e 

D
st

_3
 

S
rc

_3
 

Id
le

_M
in

 
A

ct
iv

e_
M

in
 

F
w

d_
A

ct
_D

at
a_

P
kt

s 
S

ub
flo

w
_F

w
d_

B
yt

s 
P

kt
_S

iz
e_

A
vg

 
U

R
G

_F
la

g_
C

nt
 

S
Y

N
_F

la
g_

C
nt

 
P

kt
_L

en
_M

ea
n 

F
w

d_
P

kt
s/

s 
B

w
d_

P
S

H
_F

la
gs

 
B

w
d_

IA
T

_M
ea

n 
F

w
d_

IA
T

_S
td

 
F

lo
w

_I
A

T
_M

ax
 

F
lo

w
_B

yt
s/

s 
B

w
d_

P
kt

_L
en

_M
ax

 
F

w
d_

P
kt

_L
en

_M
ax

 
T

ot
_F

w
d_

P
kt

s 
S

rc
_P

or
t 

Fig. 7 Instances of perfect correlation shown in white 

Fig. 8 Hybrid DAIDS-LSTM model 

In this paper, we present the architecture of the model, its working principles, and 
its performance evaluation using a mixed IoT datasets [6]. 

Our hybrid DAIDS-RNN model represents an innovative integration of the 
deep autoencoder-based intrusion detection system (DAIDS) with the power of 
recurrent neural networks (RNNs), more specifically the long short-term memory 
(LSTM) architecture. Figure 8 shows the hybrid DAIDS-LSTM model architecture. 
This carefully crafted fusion allows us to tackle the nuanced challenges posed by 
intrusion detection in dynamic Internet of Things (IoT) networks, leveraging both 
spatial and temporal insights for enhanced accuracy. 

The model architecture comprises the following components.



Enhancing Embedded IoT Systems for Intrusion Detection Using a Hybrid Model 357

4.1 Input Layer 

The input layer of our hybrid DAIDS-LSTM model serves as the initial point of 
interaction between the raw network traffic data and the subsequent layers of feature 
extraction and analysis. This section outlines the preprocessing steps applied to the 
input data to ensure its compatibility with the model’s architecture. 

4.2 DAIDS Component 

The DAIDS (deep autoencoder-based intrusion detection system) component lies 
at the heart of our innovative hybrid DAIDS-LSTM model, working synergis-
tically with the LSTM-based RNN to provide a multidimensional approach to 
intrusion detection. The DAIDS component focuses on capturing spatial patterns 
within network traffic data, while the subsequent LSTM component delves into 
temporal dynamics. The DAIDS component serves as the spatial feature extractor, 
meticulously capturing underlying spatial patterns within the network traffic data. 
This is achieved through a deep autoencoder architecture, which encodes the raw 
input data into a compressed latent representation. The encoding process can be 
mathematically described by the following equations: 

Encoder: 

. h1 = σ(W2x + b2)

. h2 = σ(W2h1 + b2)

Latent representation: 

. z = σ (W3h2 + b3)

4.2.1 Encoder Architecture 

The encoder within the DAIDS component is a neural network that transforms the 
input data through a series of layers, each contributing to the gradual extraction of 
spatial features. 

Layer 1 

• Activation Function: ReLU (rectified linear unit) 
• Transformation: h1 = σ(W2x + b2)
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Description: The first layer applies a linear transformation of the input data x 
using weights W1 and biases b1, followed by the ReLU activation function. This 
introduces nonlinearity and captures basic spatial characteristics. 

Layer 2 

• Activation Function: ReLU 
• Transformation: h2 = σ(W2h1 + b2) 

Description: The second layer processes the output of the first layer h1 in a 
similar manner, further extracting complex spatial features. 

Latent Representation Generation 

The output of the encoder’s final layer, . h2, is a high-dimensional representation that 
encapsulates spatial attributes. This representation, often referred to as the latent 
representation z, is a compressed and distilled version of the input data. 

Layer 3 

• Activation Function: ReLU 
• Transformation: z = σ (W3h2 + b3) 

Description: The final layer transforms h2 into the latent representation z, which 
encodes essential spatial features. This latent representation serves as a spatial 
fingerprint of normal behavior within the network traffic data. 

Spatial Features Extraction 

The latent representation z generated by the DAIDS component captures spatial 
patterns that define normal network behavior. Spatial features extraction acts as 
a spatial analyzer that distills critical spatial patterns from the network traffic 
data. This spatial insight is later integrated with temporal insights from the LSTM 
component, creating a comprehensive representation for intrusion detection in the 
hybrid DAIDS-LSTM model. 

Significance 

• z encodes spatial attributes such as device interactions, communication patterns, 
and typical data flows. 

• Deviations from this spatial fingerprint could signify anomalous behavior or 
intrusion attempts.
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The latent representation z encapsulates crucial spatial attributes that define 
normal network behavior. It forms a foundational component for our model’s 
holistic understanding of network dynamics. The outcome of the encoder is the 
latent representation z, which serves as a compact yet comprehensive portrayal 
of the spatial attributes within the network traffic data. This latent representation 
captures the essence of normal behavior and serves as a reference point against 
which anomalies are evaluated. 

4.3 Integration with LSTM 

The integration between the DAIDS (deep autoencoder-based intrusion detection 
system) component and the LSTM (long short-term memory) layer constitutes a 
key innovation in our hybrid DAIDS-LSTM model. This integration harnesses the 
strengths of both spatial and temporal insights, thereby enhancing the model’s capa-
bility for accurate intrusion detection. The integration process can be summarized 
as follows: 

. LSTM(DAIDS(x))

Where: 

• x represents the raw network traffic data. 
• DAIDS(x) signifies the transformation of x through the DAIDS component to 

produce the latent representation z. 
• LSTM (.) indicates the application of the LSTM layer to the output of the DAIDS 

component. The result is an integrated output that captures both spatial and 
temporal insights. This equation succinctly conveys the process of integrating 
the DAIDS spatial insight with the LSTM temporal analysis to create a compre-
hensive representation for intrusion detection. 

4.4 Hyperparameter Optimization 

In this section, we outline the process of fine-tuning the hyperparameters of the 
hybrid DAIDS-LSTM model to optimize its performance for intrusion detection. 
Hyperparameters Considered: We carefully selected a range of hyperparameters 
that are pivotal in shaping the behavior and efficacy of our model. Table 1 shows the 
training model parameters of our deep learning model. 

• Learning Rate: This hyperparameter dictates the step size in the parameter space 
during gradient descent. We experimented with values ranging from 0.001 to 0.1 
to strike a balance between fast convergence and avoiding overshooting.
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Table 1 Deep learning 
training model parameters 

Parameters name Values 

Learning rate 0.001 

Batch size 128 

Epoch 150 

• Batch Size: The number of samples used in each training iteration profoundly 
affects memory utilization and convergence speed. We explored batch sizes of 
32, 64, and 128 to observe the effects on both training stability and computational 
efficiency. 

• Number of LSTM Units: The number of LSTM units in the LSTM layer 
influences the model’s capacity to capture temporal dependencies. We varied 
this hyperparameter between 128, 256, and 512 units to examine the trade-off 
between model complexity and generalization. 

• Dropout Rate: Dropout is a regularization technique that prevents overfitting by 
randomly deactivating units during training. We experimented with dropout rates 
of 0.2, 0.5, and 0.8 to find the optimal level of regularization for our specific 
model architecture. 

• Number of Epochs: The number of epochs determines how many times the 
model iterates through the entire dataset. We explored epochs ranging from 50 to 
150, ensuring sufficient training time without overfitting. 

It is very difficult, misleading, error-prone, and time-consuming to set the model 
parameters by tuning manually. Therefore, we have used hyperparameter tuning 
algorithms like random search [8] to find the best parameters easily. With a limited 
amount of processing effort, random search identifies the parameters at random and 
finds better models by effectively investigating a larger, less appealing configuration 
space. 

Through this rigorous process of hyperparameter optimization, we ensured that 
the hybrid DAIDS-LSTM model is configured optimally to achieve exceptional 
intrusion detection accuracy in IoT environments. The chosen hyperparameters 
reflect a balance between model complexity, training efficiency, and robust perfor-
mance. 

Figure 9 shows the hyperparameter tuning architecture and process that we have 
used to find the best parameters for our proposed deep learning models. 

5 Our Experiments and Analysis 

In this section, we present a comprehensive evaluation of the performance of our 
proposed hybrid DAIDS-LSTM model for IoT intrusion detection. We compare the 
accuracy and effectiveness of our model against baseline methods to demonstrate its 
superior intrusion detection capabilities.
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Fig. 9 Hyperparameter tuning architecture [8] 

5.1 Environment We Created for this Experiment 

This approach we used for our experimental research environment was the best 
approach to allow for normalized training parameters to improve both time and 
speed for our experiments. To achieve that, we used an Intel core i9 processor with 
Tesla k80 GPU and 16 GB of RAM; with the higher configuration, we could reject 
anything beyond the scope of unexpected behavior. To assess the effectiveness of 
our proposed model, we conducted experiments using a real-world IoT dataset. 
The dataset consists of network traffic data collected from various IoT devices in 
a controlled environment. We randomly split the dataset into training and testing 
sets, with a ratio of 80:20. The chosen ratio strikes a balance between providing 
enough data for training the model effectively and reserving a sufficient amount for 
reliable testing and evaluation. 

5.2 Training, Validation, and Testing 

This study has primarily focused on analyzing training, validation, and testing out-
comes. To ensure rigorous evaluation, the dataset has been meticulously partitioned 
into three distinct subsets: the training dataset, the validation dataset, and the testing 
dataset.
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Table 2 Training, validation, and testing result analysis from combined dataset 

Training Validation Testing 

99.85% 99.70% 99.64% 
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Fig. 10 Training and validation accuracy curve 

The division of the dataset adheres to the following specifications: the training 
and validation datasets are split in an 80:20 ratio, with 80% of the data dedicated to 
training and 20% for validation purposes. Notably, a separate and entirely distinct 
testing dataset has been employed, encompassing the same number of instances as 
the validation dataset. 

This approach guarantees that the model’s performance is comprehensively 
assessed on unseen data, validating its ability to generalize beyond the training 
and validation phases. Such a meticulous dataset partitioning strategy forms a 
fundamental aspect of our experimental methodology, bolstering the credibility and 
reliability of the study’s findings. Result analysis: Table 2 shows the training, 
validation, and testing result accuracy of our detection system. 

Figure 10 shows the training vs validation accuracy result of the IoT intrusion 
detection system. 

5.3 Evaluation Metric 

We employed a range of standard evaluation metrics to comprehensively assess the 
performance of our model and compare it with baseline methods: 

• Accuracy: The proportion of correctly classified instances among all instances. 
• Precision: The ratio of correctly predicted positive instances to the total predicted 

positive instances.
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Table 3 Comparison of results with previous research 

Model Accuracy Precision Recall F1-Score AUC-ROC 

CNN 96.60% 0.85 0.82 0.84 0.90 

LSTM-CNN 98.80% 0.86 0.85 0.87 0.92 

LSTM 98.95% 0.93 0.91 0.92 0.96 

Hybrid DAIDS-LSTM 99.64% 0.96 0.97 0.96 0.99 

• Recall: The ratio of correctly predicted positive instances to the total actual 
positive instances. 

• F1-Score: The harmonic mean of precision and recall, providing a balanced 
measure. F-score . = (2 * precision * recall)/(precision . + recall) 

• Area Under the ROC Curve (AUC-ROC): A measure of the model’s ability to 
distinguish between normal and intrusive instances. 

5.4 Results and Comparison 

We present the results of our experimentation in a tabulated format, comparing the 
performance of our hybrid DAIDS-LSTM model with baseline methods. We tested 
deep learning models of previous researchers [4]. The metrics were calculated using 
a rigorous tenfold cross-validation strategy to ensure unbiased assessment. Table 3 
shows the comparison of this study’s result with previous researchers. 

6 Conclusion 

this study has introduced and extensively evaluated the hybrid DAIDS-LSTM 
model as an innovative and effective approach to IoT intrusion detection. This 
model harnesses the power of both spatial insights, extracted through the DAIDS 
component, and temporal dynamics, captured by the LSTM component, to achieve 
superior intrusion detection accuracy. The experimental results underscore the 
effectiveness of our proposed hybrid DAIDS-LSTM model in IoT intrusion detec-
tion. Its ability to seamlessly integrate spatial and temporal dimensions sets it 
apart from traditional approaches, resulting in remarkable accuracy and robustness 
across various intrusion scenarios. We made this dataset available [5] to encourage 
other researchers to continue pursuing all the necessary refinements that may 
improve the accuracy of intrusion detection mechanisms. Looking ahead, we plan 
to continue exploring ways to enhance intrusion detection in IoT systems. One 
promising avenue for future research is the utilization of advanced machine learning 
techniques, such as GPT-4, which has shown great potential in natural language 
processing and other domains. By incorporating these techniques into our model,
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we aim to further improve the accuracy and efficiency of our intrusion detection 
system. In conclusion, further enhancements and refinements to the hybrid DAIDS-
LSTM model are anticipated, propelling it to the forefront of IoT security. This work 
encourages continued exploration in the realm of hybrid models, blending spatial 
and temporal insights, and their applications in emerging security challenges. Also, 
we believe that our findings will contribute to the ongoing effort to enhance the 
security of IoT systems. 
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