

Terraform Cookbook
Second Edition

Provision, run, and scale cloud architecture with real-world examples
using Terraform

Mikael Krief

BIRMINGHAM—MUMBAI

Terraform Cookbook
Second Edition
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Senior Publishing Product Manager: Rahul Nair

Acquisition Editor – Peer Reviews: Saby Dsilva

Project Editor: Parvathy Nair

Content Development Editors: Georgia Daisy van der Post, Matthew Davies

Copy Editor: Safis Editing

Technical Editor: Kushal Sharma

Proofreader: Safis Editing

Indexer: Rekha Nair

Presentation Designer: Ganesh Bhadwalkar

Developer Relations Marketing Executive: Priyadarshini Sharma

First published: October 2020

Second edition: August 2023

Production reference: 1250823

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-80461-642-0

www.packt.com

http://www.packt.com

I would like to dedicate this book to my wife and children, who are my source of happiness.

– Mikael Krief

Foreword

It was 2013 when Mitchell and I first conceived of Terraform, 10 years before the publication of the

second edition of the Terraform Cookbook. At the time, we felt that the growing complexity of cloud

environments required a radically different approach to management, and that Infrastructure

as Code would play a critical enabling role. Since then, Terraform has grown to have a massive

ecosystem of thousands of integrations, tens of thousands of modules, hundreds of thousands

of users, and more than one billion downloads.

When we first built Terraform, we were focused on the workflow and how we wanted it to be

used. It was important that this be consistent and simple, regardless of what types of resource

we were managing, whether public clouds, private clouds, network devices, or SaaS services.

Given the complexity of modern cloud environments, we had to provide confidence to end users

and ensure they were never surprised. We also knew there was an almost infinite surface area of

integration, so it had to be easy to create plugins to extend Terraform.

Terraform today delivers on all those goals. There are multiple ways to author Terraform, whether

with HashiCorp Configuration Language (HCL), JavaScript Object Notation (JSON), or through

programming languages such as TypeScript or Python using the Terraform CDK. Terraform is

easily extensible through providers, which enables thousands of integrations across low-level

hardware, cloud services, and SaaS. The rich ability to plan changes provides operators with the

confidence they need around changes, which is why it’s used by thousands of organizations to

manage their production environments.

I was excited when Mikael Krief wrote the first version of the Terraform Cookbook to provide a

practical guide for new users to learn the tool and apply it in a number of real-world situations.

With the second edition, Mikael is providing an important refresh that covers many of the updates

to the core Terraform product, which has evolved rapidly over the last few years. He also brings

in many of the best practices that have evolved as the community has spent more time figuring

out how to manage infrastructure at scale.

This book starts with a very gentle introduction, including how to download and set up Terra-

form, and is perfect for users who are just getting started. From there, it introduces the basics of

authoring Terraform code and using key features of Terraform. These lessons are brought together

through more complex examples that present real-world use cases to help readers go from the

basics of the tool to the practical usage of it.

For new users just getting started with Terraform or Infrastructure as Code, this book will provide

a valuable way to get started quickly. For users who haven’t used Terraform in a few years, this will

provide an updated view of the new features and patterns that have emerged in the last few years.

I hope you enjoy the book!

Armon Dadgar

CTO and Co-Founder, HashiCorp

Contributors

About the author
Mikael Krief is a DevOps engineer who lives in France. He believes that Infrastructure as Code

is a fundamental practice in DevOps culture. He is therefore interested in HashiCorp products and

specializes in the use of Terraform. Mikael loves to share his passion through various communities,

such as the HashiCorp User Groups. Over the years, he has contributed to many public projects,

written various blog posts, published several books, and spoken at leading conferences. For his

contributions and passion, he has been nominated and selected as a HashiCorp Ambassador since

2019, and he has been awarded the Microsoft Most Valuable Professional (MVP) award for 8 years.

I would like to extend my thanks to my family for accepting that I needed to work long hours on this book

during family time. I would like to thank Meeta Rajani for giving me the opportunity to write this second

edition, which was a very enriching experience. Special thanks to Parvathy Nair, Georgia Daisy van der Post,

and Radek Simko for their valuable input and time reviewing this book and to the entire Packt team for their

support during the course of writing this book.

About the reviewer
Jack Lee is a Microsoft MVP and an Azure Certified Solutions Architect with a passion for soft-

ware development, the cloud, and DevOps innovation. He is an active Microsoft Tech Community

contributor and has presented at various user groups and conferences, including the Global Azure

Bootcamp at Microsoft Canada. Jack is an experienced mentor and judge at hackathons and is also

the president of a user group that focuses on Azure, DevOps, and software development. He is

the co-author of Azure for Architects, Azure Strategy and Implementation Guide, and Cloud Analytics

with Microsoft Azure from Packt Publishing. You can follow Jack on Twitter at @jlee_consulting.

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to

the author, and learn about new releases – follow the QR code below:

https://packt.link/cloudanddevops

https://packt.link/cloudanddevops

Table of Contents

Preface xxxv

Chapter 1: Setting Up the Terraform Environment 1

Technical requirements �� 2

Overviewing Terraform best practices �� 2

Downloading and installing Terraform on Windows manually �� 4

Getting ready • 4

How to do it… • 4

How it works… • 9

Installing Terraform using Chocolatey on Windows �� 11

Getting ready • 11

How to do it… • 12

How it works… • 12

There’s more… • 13

See also • 13

Installing Terraform on Linux using the APT package manager ��� 13

Getting ready • 13

How to do it… • 13

How it works… • 14

See also • 14

Installing Terraform using a script on Linux ��� 14

Getting ready • 14

Table of Contentsx

How to do it… • 15

How it works… • 15

There’s more… • 16

See also • 17

Executing Terraform in a Docker container ��� 17

Getting ready • 17

How to do it… • 18

How it works… • 20

There’s more… • 20

See also • 20

Switching between multiple Terraform versions ��� 21

Getting ready • 22

How to do it… • 22

How it works… • 25

There’s more… • 25

See also • 27

Upgrading Terraform providers �� 27

Getting ready • 27

How to do it… • 28

How it works… • 31

There’s more… • 31

See also • 32

Chapter 2: Writing Terraform Configurations 33

Technical requirements �� 34

Configuring Terraform and the provider version to use �� 34

Getting ready • 35

How to do it… • 37

How it works… • 37

There’s more… • 39

See also • 40

Table of Contents xi

Adding alias to a provider to use multiple instances of the same provider ������������������������ 40

Getting ready • 40

How to do it… • 41

How it works… • 42

See also • 42

Manipulating variables ��� 43

Getting ready • 43

How to do it… • 43

How it works… • 44

There’s more… • 45

See also • 46

Keeping sensitive variables safe �� 47

Getting ready • 47

How to do it… • 47

How it works… • 48

There’s more… • 48

See also • 49

Using local variables for custom functions �� 49

Getting ready • 49

How to do it… • 50

How it works… • 51

There’s more… • 51

See also • 51

Using outputs to expose Terraform provisioned data �� 52

Getting ready • 52

How to do it… • 53

How it works… • 53

There’s more… • 53

See also • 54

Calling Terraform’s built-in functions �� 54

Getting ready • 54

Table of Contentsxii

How to do it… • 55

How it works… • 55

See also • 56

Using YAML files in Terraform configuration �� 57

Getting ready • 57

How to do it… • 57

How it works… • 59

There’s more… • 59

See also • 59

Writing conditional expressions ��� 59

Getting ready • 60

How to do it… • 60

How it works… • 60

There’s more… • 61

See also • 61

Generating passwords with Terraform ��� 61

Getting ready • 62

How to do it… • 62

How it works… • 63

See also • 63

Managing Terraform resource dependencies �� 64

Getting ready • 64

How to do it… • 65

How it works… • 65

There’s more… • 66

See also • 66

Adding custom pre and postconditions ��� 66

Getting ready • 67

How to do it… • 67

How it works… • 68

See also • 70

Table of Contents xiii

Using checks for infrastructure validation �� 70

Getting ready • 70

How to do it… • 71

How it works… • 71

There’s more… • 72

See also • 72

Chapter 3: Scaling Your Infrastructure with Terraform 75

Technical requirements �� 76

Provisioning infrastructure in multiple environments ��� 76

Getting ready • 76

How to do it… • 77

How it works… • 78

See also • 81

Provisioning multiple resources with the count meta-argument �������������������������������������� 81

Getting ready • 81

How to do it… • 82

How it works… • 82

There’s more… • 84

See also • 85

Using maps ��� 85

Getting ready • 86

How to do it… • 86

How it works… • 87

There’s more… • 88

See also • 89

Looping over a map of objects ��� 89

Getting ready • 90

How to do it… • 90

How it works… • 91

There’s more… • 92

Table of Contentsxiv

See also • 93

Generating multiple blocks with the dynamic block ��� 93

Getting ready • 94

How to do it… • 94

How it works… • 96

There’s more… • 97

See also • 97

Filtering maps ��� 97

Getting ready • 98

How to do it… • 98

How it works… • 99

There’s more… • 100

See also • 100

Chapter 4: Using Terraform with External Data 103

Technical requirements �� 104

Obtaining external data with data sources �� 104

Getting ready • 105

How to do it… • 105

How it works… • 105

There’s more… • 106

See also • 107

Querying external data with Terraform ��� 107

Getting ready • 108

How to do it… • 108

How it works… • 109

There’s more… • 111

See also • 111

Manipulating local files with Terraform ��� 111

Getting ready • 112

How to do it… • 112

Table of Contents xv

How it works… • 113

There’s more… • 113

See also • 114

Executing local programs with Terraform ��� 114

Getting ready • 114

How to do it… • 114

How it works… • 115

There’s more… • 116

See also • 117

Executing shell scripts using the Terraform Shell provider �� 117

Getting ready • 117

How to do it… • 117

How it works… • 119

There’s more… • 121

See also • 121

Chapter 5: Managing Terraform State 123

Using the local Terraform state �� 124

Getting ready • 124

How to do it… • 124

How it works… • 125

There’s more… • 125

See also • 127

Managing resources in Terraform state �� 127

Getting ready • 127

How to do it… • 128

Displaying the content of state • 128

Listing Terraform resource names within state • 130

Showing detailed resource properties in state • 130

Deleting resources from state • 131

There’s more… • 132

Table of Contentsxvi

See also • 132

Synchronizing Terraform state �� 132

Getting ready • 133

How to do it… • 134

How it works… • 135

There’s more… • 137

See also • 137

Importing existing resources ��� 137

Getting ready • 138

How to do it… • 139

How it works… • 140

There’s more… • 140

See also • 143

Using external resources from other Terraform state files �� 143

Getting ready • 144

How to do it… • 145

How it works… • 145

There’s more… • 146

See also • 146

Refactoring resources in configuration ��� 146

Getting ready • 147

How to do it… • 149

How it works… • 150

There’s more… • 153

See also • 154

Chapter 6: Applying a Basic Terraform Workflow 157

Technical requirements �� 158

Keeping your Terraform configuration clean �� 158

Getting ready • 159

How to do it… • 159

Table of Contents xvii

How it works… • 159

There’s more… • 160

See also • 162

Validating the code syntax ��� 162

Getting ready • 162

How to do it… • 163

How it works… • 164

There’s more… • 164

See also • 166

Destroying infrastructure resources ��� 166

Getting ready • 166

How to do it… • 167

How it works… • 167

There’s more… • 167

See also • 168

Displaying a list of providers used in a configuration ��� 169

Getting ready • 169

How to do it… • 170

How it works… • 170

There’s more… • 170

See also • 171

Generating one Terraform lock file with Windows and Linux compatibility ������������������� 171

Getting ready • 172

How to do it… • 173

How it works… • 173

See also • 174

Copying a Terraform module configuration ��� 175

Getting ready • 175

How to do it… • 175

How it works… • 175

There’s more… • 176

Table of Contentsxviii

See also • 176

Using workspaces to manage environments �� 177

Getting ready • 177

How to do it… • 177

How it works… • 178

There’s more… • 180

See also • 181

Exporting the output in JSON �� 181

Getting ready • 181

How to do it… • 182

How it works… • 182

There’s more… • 184

See also • 185

Tainting resources ��� 185

Getting ready • 185

How to do it… • 185

How it works… • 186

There’s more… • 187

See also • 188

Generating the dependency graph �� 188

Getting ready • 189

How to do it… • 189

How it works… • 189

See also • 190

Using different Terraform configuration directories ��� 190

Getting ready • 191

How to do it… • 192

How it works… • 192

There’s more… • 192

See also • 193

Table of Contents xix

Testing and evaluating a Terraform expression �� 193

Getting ready • 193

How to do it… • 194

How it works… • 194

There’s more… • 195

See also • 196

Debugging the Terraform execution ��� 196

Getting ready • 196

How to do it… • 196

How it works… • 197

There’s more… • 198

See also • 198

Chapter 7: Sharing Terraform Configuration with Modules 199

Technical requirements ��� 200

Creating a Terraform module and using it locally �� 200

Getting ready • 201

How to do it… • 201

How it works… • 204

There’s more… • 204

See also • 206

Provisioning multiple instances of a Terraform module ��� 206

Getting ready • 206

How to do it… • 207

How it works… • 208

There’s more… • 208

See also • 209

Using modules from the public registry �� 209

Getting ready • 209

How to do it… • 210

How it works… • 211

Table of Contentsxx

There’s more… • 212

See also • 213

Sharing a Terraform module in the public registry using GitHub ������������������������������������� 213

Getting ready • 213

How to do it… • 213

How it works… • 216

There’s more… • 217

See also • 218

Using another file inside a custom module ��� 218

Getting ready • 218

How to do it… • 219

How it works… • 219

There’s more… • 220

See also • 221

Using the Terraform module generator �� 221

Getting ready • 221

How to do it… • 222

How it works… • 222

There’s more… • 224

See also • 224

Generating module documentation �� 225

Getting ready • 225

How to do it… • 226

How it works… • 226

There’s more… • 228

See also • 229

Using a private Git repository for sharing a Terraform module ��������������������������������������� 229

Getting ready • 230

How to do it… • 231

How it works… • 233

There’s more… • 234

Table of Contents xxi

See also • 235

Applying a Terrafile pattern for using modules ��� 235

Getting ready • 236

How to do it… • 236

How it works… • 238

There’s more… • 238

See also • 239

Chapter 8: Provisioning Azure Infrastructure with Terraform 241

Technical requirements �� 242

Using Terraform in Azure Cloud Shell ��� 242

Getting ready • 243

How to do it… • 243

How it works… • 244

There’s more… • 245

See also • 246

Protecting the Azure credential provider �� 246

Getting ready • 247

How to do it… • 247

How it works… • 249

There’s more... • 250

See also • 251

Protecting the state file in the Azure remote backend �� 251

Getting ready • 252

How to do it… • 252

How it works… • 253

There’s more… • 254

See also • 256

Executing ARM templates in Terraform �� 256

Getting ready • 257

How to do it… • 257

Table of Contentsxxii

How it works… • 259

There’s more… • 260

See also • 260

Executing Azure CLI commands in Terraform �� 261

Getting ready • 261

How to do it… • 262

How it works… • 263

There’s more… • 263

See also • 264

Using Azure Key Vault with Terraform to protect secrets �� 265

Getting ready • 265

How to do it… • 266

How it works… • 268

There’s more… • 269

See also • 271

Provisioning and configuring an Azure VM with Terraform ��� 271

Getting ready • 271

How to do it… • 272

How it works… • 275

There’s more… • 276

See also • 277

Building Azure serverless infrastructure with Terraform ��� 277

Getting ready • 277

How to do it… • 278

How it works… • 279

There’s more… • 279

See also • 280

Generating a Terraform configuration for existing Azure infrastructure ������������������������� 280

Getting ready • 281

How to do it… • 283

How it works… • 284

Table of Contents xxiii

There’s more… • 286

See also • 287

Enabling optional Azure features �� 287

Getting ready • 287

How to do it… • 288

How it works… • 288

There’s more… • 288

Estimating Azure cost of infrastructure using Infracost �� 288

Getting ready • 289

How to do it… • 291

How it works… • 293

There’s more… • 293

See also • 294

Using the AzApi Terraform provider ��� 294

Getting ready • 295

How to do it… • 295

How it works… • 297

There’s more… • 298

See also • 299

Chapter 9: Provisioning Simple AWS and GCP
Infrastructure Using Terraform 301

Technical requirements �� 302

Getting started using Terraform for AWS �� 302

Getting ready • 302

How to do it… • 304

How it works… • 305

There’s more… • 306

See also • 307

Using the S3 backend in AWS �� 307

Getting ready • 307

Table of Contentsxxiv

How to do it… • 310

How it works… • 310

There’s more… • 311

See also • 311

Getting started using Terraform for GCP �� 312

Getting ready • 312

How to do it… • 316

How it works… • 317

There’s more… • 319

See also • 319

Using a GCS backend in GCP �� 319

Getting ready • 319

How to do it… • 322

How it works… • 322

See also • 323

Executing Terraform in GCP Cloud Shell ��� 323

Getting ready • 324

How to do it… • 324

How it works… • 327

There’s more… • 327

See also • 328

Chapter 10: Using Terraform for Docker and Kubernetes Deployment 329

Technical requirements �� 330

Creating a Docker container using Terraform �� 331

Getting ready • 331

How to do it… • 331

How it works… • 332

There’s more… • 334

See also • 334

Table of Contents xxv

Deploying Kubernetes resources using Terraform �� 334

Getting ready • 335

How to do it… • 335

How it works… • 338

There’s more… • 339

See also • 340

Deploying a Helm chart in Kubernetes using Terraform ��� 340

Getting ready • 340

How to do it… • 341

How it works… • 342

There’s more… • 343

See also • 344

Using a Kubernetes controller as a Terraform reconciliation loop ����������������������������������� 344

Getting ready • 345

How to do it… • 347

How it works… • 348

There’s more… • 350

See also • 351

Chapter 11: Running Test and Compliance
Security on Terraform Configuration 353

Technical requirements �� 355

Using PowerShell’s Pester framework to perform Terraform testing ������������������������������ 355

Getting ready • 356

How to do it… • 357

How it works… • 360

There’s more… • 361

See also • 362

Testing the Terraform configuration using Python ��� 362

Getting ready • 362

How to do it… • 363

Table of Contentsxxvi

How it works… • 365

There’s more… • 366

See also • 366

Using OPA to check the Terraform configuration �� 366

Getting ready • 367

How to do it… • 369

How it works… • 371

There’s more… • 372

See also • 373

Using tfsec to analyze the compliance of Terraform configuration ��������������������������������� 373

Getting ready • 374

How to do it… • 375

How it works… • 376

There’s more… • 376

See also • 377

Applying Terraform compliance using terraform-compliance ��� 377

Getting ready • 377

How to do it… • 378

How it works… • 380

There’s more… • 382

See also • 382

Testing Terraform module code with Terratest ��� 382

Getting ready • 382

How to do it… • 383

How it works… • 386

There’s more… • 387

See also • 388

Testing the Terraform configuration using Kitchen-Terraform ��������������������������������������� 388

Getting ready • 388

How to do it… • 389

How it works… • 392

Table of Contents xxvii

There’s more… • 394

See also • 394

Using the new integrated Terraform module integration test ��� 395

Getting ready • 395

How to do it… • 396

How it works… • 398

There’s more… • 399

See also • 400

Chapter 12: Deep-Diving into Terraform 401

Technical requirements �� 402

Preventing resources from being destroyed �� 402

Getting ready • 402

How to do it… • 403

How it works… • 404

There’s more… • 404

See also • 406

Ignoring manual changes ��� 406

Getting ready • 407

How to do it… • 408

How it works… • 409

There’s more… • 409

See also • 410

Using Terraform’s templating feature ��� 410

Getting ready • 410

How to do it… • 412

How it works… • 413

There’s more… • 414

See also • 414

Zero-downtime deployment with Terraform ��� 415

Getting ready • 415

Table of Contentsxxviii

How to do it… • 416

How it works… • 417

There’s more… • 417

See also • 418

Managing Terraform configuration dependencies using Terragrunt ������������������������������ 418

Getting ready • 418

How to do it… • 420

How it works… • 420

There’s more… • 421

See also • 421

Using Terragrunt as a wrapper for Terraform ��� 422

Getting ready • 422

How to do it… • 423

How it works… • 424

See also • 424

Generating a self-signed SSL certificate using Terraform �� 425

Getting ready • 425

How to do it… • 425

How it works… • 426

There’s more… • 426

See also • 428

Checking the configuration before committing code using Git hooks ����������������������������� 429

Getting ready • 429

How to do it… • 430

How it works… • 431

There’s more… • 432

See also • 432

Visualizing Terraform resource dependencies with Rover ��� 433

Getting ready • 433

How to do it… • 433

How it works… • 434

See also • 435

Table of Contents xxix

Using the Terraform CDK for developers ��� 435

Getting ready • 436

How to do it… • 437

How it works… • 441

There’s more… • 443

See also • 444

Chapter 13: Automating Terraform Execution in a CI/CD Pipeline 445

Running Terraform in automation mode �� 446

Getting ready • 446

How to do it… • 447

How it works… • 448

There’s more… • 448

See also • 448

Displaying a summary of the execution of terraform plan �� 449

Getting ready • 449

How to do it… • 449

There’s more… • 451

See also • 451

Building CI/CD pipelines to apply Terraform configurations in Azure Pipelines �������������� 451

Getting ready • 452

How to do it… • 454

How it works… • 458

There’s more… • 459

See also • 460

Automating Terraform execution in GitHub Actions ��� 460

Getting ready • 461

How to do it… • 461

How it works… • 463

There’s more… • 463

See also • 465

Table of Contentsxxx

Working with workspaces in CI/CD �� 465

Getting ready • 465

How to do it… • 466

How it works… • 468

There’s more… • 469

See also • 469

Building CI/CD for Terraform modules in Azure Pipelines �� 469

Getting ready • 470

How to do it… • 470

How it works… • 475

There’s more… • 475

See also • 475

Building a workflow for publishing Terraform modules using GitHub Actions �������������� 476

Getting ready • 476

How to do it… • 476

How it works… • 478

There’s more… • 481

See also • 481

Chapter 14: Using Terraform Cloud to Improve Team Collaboration 483

Technical requirements �� 485

Authenticating Terraform to Terraform Cloud • 486

Getting ready • 486

How to do it… • 487

There’s more… • 489

See also • 490

Managing workspaces in Terraform Cloud ��� 490

Getting ready • 491

How to do it… • 491

How it works… • 498

There’s more… • 499

Table of Contents xxxi

See also • 500

Using the remote backend in Terraform Cloud �� 500

Getting ready • 501

How to do it… • 502

How it works… • 505

There’s more… • 506

See also • 506

Migrating Terraform State to Terraform Cloud ��� 506

Getting ready • 507

How to do it… • 508

How it works… • 510

See also • 510

Using Terraform Cloud as a private module registry ��� 510

Getting ready • 511

How to do it… • 513

How it works… • 515

There’s more… • 515

See also • 515

Executing Terraform configuration remotely in Terraform Cloud ����������������������������������� 516

Getting ready • 516

How to do it… • 517

How it works… • 521

There’s more… • 521

See also • 526

Checking the compliance of Terraform configurations using OPA in Terraform Cloud ��� 526

Getting ready • 526

How to do it… • 528

There’s more… • 535

See also • 535

Using integrated cost estimation for cloud resources �� 535

Getting ready • 536

Table of Contentsxxxii

How to do it… • 536

How it works… • 539

There’s more… • 540

See also • 540

Integrating the Infracost run task during the Terraform Cloud run �������������������������������� 540

Getting ready • 541

How to do it… • 543

How it works… • 547

There’s more… • 547

See also • 547

Configuring Terraform Cloud with the Terraform TFE provider ������������������������������������� 547

Getting ready • 548

How to do it… • 549

There’s more… • 551

See also • 552

Chapter 15: Troubleshooting Terraform Errors 553

Fixing interpolation errors �� 554

Getting ready • 554

How to do it… • 555

How it works… • 556

See also • 556

Fixing cycle errors ��� 556

Getting ready • 556

How to do it… • 557

How it works… • 558

There’s more… • 558

Fixing for_each errors ��� 559

Getting ready • 559

How to do it… • 561

There’s more… • 562

Table of Contents xxxiii

Fixing output errors �� 562

Getting ready • 562

How to do it… • 563

How it works… • 564

There’s more… • 564

Appendix A: Terraform Cheat Sheet 565

Basic commands ��� 565

Format Terraform configuration ��� 566

Terraform providers management �� 566

Terraform dependency file �� 566

Basic workflow commands ��� 567

Backend configuration �� 567

Validate configuration ��� 568

Get outputs ��� 568

Import resources ��� 568

Terraform workspaces �� 568

Terraform debug ��� 569

State management �� 569

Display Terraform graph dependencies �� 570

Taint/untaint resources �� 570

Terraform Cloud/Enterprise ��� 570

Appendix B: Terraform Resources 571

Terraform official resources ��� 571

Documentation • 571

Registry • 571

Providers development • 571

Terraform community resources ��� 572

Terraform news feed ��� 572

Table of Contentsxxxiv

Terraform certifications and certification preparation ��� 572

Terraform certification program pages • 572

Terraform certification preparation • 572

Other Books You May Enjoy 575

Index 579

Preface

Infrastructure as Code, more commonly known as IaC, is a practice that is a pillar of DevOps culture.

IaC entails writing your desired architecture configuration in code. Among other advantages, IaC

allows the automation of infrastructure deployments, which reduces or eliminates the need for

manual intervention, and thus the risk of configuration errors, and the need to create templates

and standardize infrastructure with modular and scalable code.

Among all the DevOps tools, there are many that allow IaC. One of them is Terraform, from

HashiCorp, which is very popular today because, in addition to being open source and multi-plat-

form, it has the following advantages:

• It allows you to preview the changes that will be applied to your infrastructure.

• It allows the parallelization of operations, considering the management of dependencies.

• It has a multitude of providers.

In this book dedicated to Terraform, we will first discuss the installation of Terraform, the writing

of Terraform configurations, how to apply the Terraform workflow using the command-line

interface (CLI), and how use Terraform modules.

Once configuration writing and commands in Terraform are understood, we will discuss Ter-

raform’s practical use for building infrastructure with the three leading cloud providers: Azure,

AWS, and GCP. We will also explore how to use Terraform for Kubernetes in a chapter dedicated

to this topic.

Finally, we will finish this book by looking at advanced uses of Terraform, including Terraform testing,

integrating Terraform into a continuous integration/continuous deployment (CI/CD) pipeline,

and using Terraform Cloud, which is Terraform’s collaboration platform for teams and companies.

This book will guide you through several recipes on best practices for writing Terraform configu-

rations and commands, and it will also cover recipes on Terraform’s integration with other tools

such as Terragrunt, kitchen-terraform, Tfsec, and Azure Pipelines.

Prefacexxxvi

Most of the Terraform configurations described in this book are based on the Azure provider, for

illustration, but you can apply these recipes to all other Terraform providers.

In this second edition, the chapters have been completely redesigned, with over 50 new recipes

and two brand new chapters: one on using Terraform with AWS and GCP, and another on Ter-

raform and Kubernetes.

In writing this cookbook, I wanted to share my experience of real and practical Terraform-based

scenarios that I have encountered while working with customers and companies over the years.

Who this book is for
This book is for developers, operators, and DevOps engineers looking to improve their workflow

and use Infrastructure as Code. Experience with Microsoft Azure, Jenkins, shell scripting, and

DevOps practices is required to get the most out of this Terraform book.

What this book covers
Chapter 1, Setting Up the Terraform Environment, details the different ways of installing Terraform

manually, with scripts, or by using a Docker container, and it also details the Terraform migration

configuration process.

Chapter 2, Writing Terraform Configurations, concerns the writing of Terraform configurations for

a provider, variables, outputs, built-in functions, condition expressions, YAML file manipulation,

and pre-and post-conditions.

Chapter 3, Scaling Your Infrastructure with Terraform, shows you how to build dynamic environ-

ments by going further with Terraform configuration writing using loops, maps, and collections.

Chapter 4, Using Terraform with External Data, explores how to use Terraform with external data

and local files, and how to execute local programs and scripts with Terraform.

Chapter 5, Managing Terraform State, explains Terraform state management, including reading,

moving, deleting, and importing resources into the Terraform state.

Chapter 6, Applying a Basic Terraform Workflow, explains the use of Terraform’s CLI to validate the

configuration, use outputs, destroy resources provisioned by Terraform, use workspaces, generate

dependency graphs, and debug the execution of Terraform.

Chapter 7, Sharing Terraform Configuration with Modules, covers the creation, use, and sharing of

Terraform modules, and shows testing module practices.

Preface xxxvii

Chapter 8, Provisioning Azure Infrastructure with Terraform, illustrates the use of Terraform in a

practical scenario with the cloud service provider Azure. It covers topics such as authentication,

remote backends, ARM templates, Azure CLI execution, and Terraform configuration generation

for an existing infrastructure.

Chapter 9, Getting Starting to Provisioning AWS and GCP Infrastructure Using Terraform, provides a

starting point for provisioning AWS and GCP infrastructure using Terraform, and includes details

on these providers, authentication, and remote backend storage.

Chapter 10, Using Terraform for Docker and Kubernetes Deployment, explains how to use Terraform

to create Docker containers and deploy Kubernetes resources.

Chapter 11, Running Test and Compliance Security on Terraform Configuration, details Terraform

configuration testing practices using several tools, including Tfsec, OPA, terraform-compliance,

and Pester.

Chapter 12, Deep-Diving into Terraform, discusses topics that go further with Terraform, such as the

execution of Terraform configuration tests, zero-downtime deployment, Terraform wrappers with

Terragrunt, checking configuration using Git-Hook, and using the Terraform CDK as a developer.

Chapter 13, Automating Terraform Execution in a CI/CD Pipeline, explores local Terraform automation

processes and implementing a CI/CD pipeline to apply Terraform configuration automatically.

Chapter 14, Using Terraform Cloud to Improve Team Collaboration, explains how to use Terraform

Cloud to run Terraform in a team with the sharing of Terraform modules in a private registry,

the use of remote backends for Terraform state, migrating Terraform state, running Terraform

remotely, and integrating cost estimation.

Chapter 15, Troubleshooting Terraform Errors, lists several Terraform errors and explains how to

resolve them.

The Appendix A and B, contains a Terraform CLI cheat sheet and Terraform resources list.

To get the most out of this book
The following is the list of software/hardware prerequisites for this book:

Prefacexxxviii

Software OS requirements

Terraform Cli , version ≥1.5 Any OS

Terraform Cloud NA (Browser)

Azure Any Browser

Python version ≥ 3.11 Any OS

PowerShell scripting Any OS

Shell scripting Linux / WSL / MacOS

Golang Version ≥1.20 Any OS

Azure CLI Any OS

Azure DevOps Any Browser

GitHub Any Browser

Git Any OS

Ruby version ≥ 3.0.0 Any OS

Docker Any OS

Terragrunt Any OS

Jq Any OS

Infracost Any OS

kubectl / Helm Any OS

Node.js Any OS

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition. We also have other code bundles from our rich catalog

of books and videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.

You can download it here: https://packt.link/P7a3G.

Conventions used
There are a number of text conventions used throughout this book.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition
https://github.com/PacktPublishing/
https://packt.link/P7a3G.

Preface xxxix

CodeInText: Indicates code words in text, database table names, folder names, filenames, file

extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “Execute

the terraform graph command:”

A block of code is set as follows:

resource "azurerm_resource_group" "rg-app" {

 name = "RG-APP-${terraform.workspace}"

 location = "westeurope"

When we wish to draw your attention to a particular part of a code block, the relevant lines or

items are set in bold:

terraform {

 backend "azurerm" {

 resource_group_name = "RG-TFBACKEND"

 storage_account_name = "storagetfbackend"

 container_name = "tfstate"

 key = "myapp.tfstate"

 access_key = xxxxxx-xxxxx-xxx-xxxxx

 }

}

Any command-line input or output is written as follows:

terraform init

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,

words in menus or dialog boxes appear in the text like this. For example: “Select System info from

the Administration panel.”

Warnings or important notes appear like this.

Tips and tricks appear like this.

Prefacexl

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book, we would be grateful if you reported this to us.

Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com.

Share your thoughts
Once you’ve read Terraform Cookbook, Second Edition, we’d love to hear your thoughts! Please

click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://authors.packtpub.com
https://www.packtpub.com/

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804616420

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804616420

1
Setting Up the Terraform
Environment

Before you start writing the Terraform configuration, it’s necessary to understand the best prac-

tices to write configuration for Infrastructure as Code (IaC). Then, we can install and configure

a local development environment. This development environment will allow us to write the

Terraform configurations file and apply changes with Terraform.

In the recipes in this chapter, we will start to learn some of the most important IaC and Terraform

best practices, then we will learn how to download and install Terraform manually on a Windows

machine, as well as how to install it using a script on Windows and Linux. We will also learn

how to use Terraform in a Docker container before learning how to upgrade Terraform providers.

In this chapter, we’ll cover the following recipes:

• Overviewing Terraform best practices

• Downloading and installing Terraform on Windows manually

• Installing Terraform using Chocolatey on Windows

• Installing Terraform on Linux using the APT package manager

• Installing Terraform using a script on Linux

• Executing Terraform in a Docker container

• Writing Terraform configuration in Visual Studio Code

• Switching between multiple Terraform versions

• Upgrading Terraform providers

Let’s get started!

Setting Up the Terraform Environment2

Technical requirements
This chapter does not require that you have any specific technical knowledge. We will mainly use

graphical user interfaces (GUIs) and simple Linux or Windows scripts executed in a terminal

console. However, knowledge of Docker is recommended so that you can complete the Executing

Terraform in a Docker container recipe.

Finally, for the Integrated Development Environment (IDE), which is the software we use to

write the Terraform configuration, we will use Visual Studio Code, which is available for free at

https://code.visualstudio.com/.

The source code for this chapter is available at https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP01.

Overviewing Terraform best practices
Before starting to learn how to install Terraform through the recipes presented in this chapter,

it’s necessary to understand the most common best practices of IaC with Terraform.

The first group of best practices is about IaC and are best practices for development in general:

• Store all Terraform configuration files and source code using a version control system

such as GitHub, Azure DevOps, or Bitbucket.

• When the code is in Git, apply all good Git practices using branches, tags, commits, com-

ments, and pull requests.

• Decouple your code file with multiple components; having a big monolithic code structure

will make maintenance and deployment more difficult.

• Modularize and share common code for better reusability. For example, do not repeat the

same code (as per the Don’t Repeat Yourself (DRY) principle) and share the same busi-

ness logic between components. We will learn about Terraform module implementation

in Chapter 7, Sharing Terraform Configuration with Modules.

• Automate your infrastructure changes using the CI/CD pipeline that we explore in detail

in Chapter 13, Automating Terraform Execution in a CI/CD Pipeline.

Then, we have best practices that are specific to Terraform:

• Write the required version of the Terraform binary explicitly in Terraform configuration

and list all required providers with their required versions.

https://code.visualstudio.com/
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP01
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP01

Chapter 1 3

• Use remote backends to store and share the Terraform state file. We will learn how to do

this in several recipes in Chapter 8, Provisioning Azure Infrastructure with Terraform, and

in Chapter 9, Getting Started with Provisioning AWS and GCP Infrastructure Using Terraform.

• Don’t use hard-coded values in configuration; use variables. We will learn more about

this in Chapter 2, Writing Terraform Configurations.

• Add a description property in variables to communicate the role of the variable.

• Structure your Terraform project using these file-naming and organization conventions:

main.tf, version.tf, output.tf, and variables.tf.

• Keep safe, sensitive data in code. We will learn more about this in Chapter 2, Writing

Terraform Configurations.

• Protect the provider’s authentication credentials. We will learn how to do this for Azure

credentials in Chapter 8, Provisioning Azure Infrastructure with Terraform.

• Use naming conventions for all Terraform objects (resource, variable, output, and so on).

For example, use an underscore to separate words in a resource’s name.

• Have a Terraform well-formatted configuration using good indentation to make the code

easy to read.

• Validate the code syntax with CLI commands and linters.

• Ensure Terraform providers are up to date to get all the fixes and new features.

• Test the configuration code with static code analysis and integration tests, which we will

learn about in Chapter 11, Running Test and Compliance Security on Terraform Configuration.

• Always run the Terraform workflow with the dry run command to preview the changes

that will be applied.

This is the main list of IaC and Terraform best practices and there are, of course, others that have

not been mentioned. We will see them all in detail throughout the chapters and recipes in this book.

To learn more about Terraform best practices, I invite you to read these articles:

• Terraform recommended practices from HashiCorp: https://www.terraform.io/cloud-

docs/recommended-practices

• Terraform best practice from Google Cloud: https://cloud.google.com/docs/terraform/

best-practices-for-terraform

• Terraform best practices website: https://www.terraform-best-practices.com/

• Terraform best practices from Brainboard: https://docs.brainboard.co/start/cloud-
best-practices

Now you are ready to install Terraform.

https://www.terraform.io/cloud-docs/recommended-practices
https://www.terraform.io/cloud-docs/recommended-practices
https://cloud.google.com/docs/terraform/best-practices-for-terraform
https://cloud.google.com/docs/terraform/best-practices-for-terraform
https://www.terraform-best-practices.com/
https://docs.brainboard.co/start/cloud-best-practices
https://docs.brainboard.co/start/cloud-best-practices

Setting Up the Terraform Environment4

Downloading and installing Terraform on Windows
manually
In this recipe, we will learn how to download and install Terraform on a local machine running

a Windows operating system.

Getting ready
To complete this recipe, the only prerequisite is that you’re on a Windows operating system.

How to do it…
Perform the following steps:

1. Open Windows File Explorer. Choose a location and create a folder called Terraform. We

will use this to store the Terraform binary; for example, C:\Terraform.

2. Launch a web browser and go to https://developer.hashicorp.com/terraform/

downloads.

3. Click on the Windows tab and then click on the Amd64 link, which targets the Terraform

ZIP package for the Windows 64-bit operating system. The ZIP package will be down-

loaded locally.

https://developer.hashicorp.com/terraform/downloads
https://developer.hashicorp.com/terraform/downloads

Chapter 1 5

Figure 1.1: Download Windows Terraform binary

Setting Up the Terraform Environment6

4. Unzip the content of the downloaded ZIP file into the Terraform folder that we created

in Step 1:

Figure 1.2: Copy Windows Terraform binary

The last thing we need to do to install Terraform is configure the Path environment variable by

adding the path of the Terraform binary folder.

Chapter 1 7

To complete this Path environment variable, follow these steps:

1. In File Explorer, right-click on the This PC menu and choose Properties:

Figure 1.3: Open Windows properties

Setting Up the Terraform Environment8

2. Click on the Advanced system settings link, then click on the Advanced tab and click the

Environment variables button in the newly opened window:

Figure 1.4: Open environment variables options

3. When provided with a list of environments, select User variables for User or System

variables (choose this option to apply the environment variable to all users of the work-

station), and select the Path variable. Then, click on the Edit button and, in the newly

opened window, click the New button:

Figure 1.5: Select the Path environment variable

Chapter 1 9

4. From the list of paths, add the folder we created, that is, C:\Terraform\:

Figure 1.6: Complete the Path environment variable with Terraform CLI path

Finally, we validate all the open windows by clicking on the OK button, which is at the bottom

of every open window.

How it works…
Downloading and installing Terraform is simple and adding the path of the Terraform binary to

the PATH environment variable makes it possible to execute the Terraform command line from

any terminal location.

After completing all these steps, we can check that Terraform is working properly by opening a

command-line terminal or PowerShell and executing the following command:

terraform --help

Setting Up the Terraform Environment10

The result of executing the preceding command is shown in the following screenshot:

Figure 1.7: Terraform commands list

This list of commands proves that Terraform has been installed correctly and that the Terraform

command line can be accessed from any terminal location.

Chapter 1 11

Installing Terraform using Chocolatey on Windows
In this recipe, we will learn how to install Terraform on a Windows machine using a script that

uses the Chocolatey software package manager.

Getting ready
To complete this recipe, you’ll need to be using a Windows operating system and have Chocolatey

(https://chocolatey.org/) installed, which is a Windows software package manager.

If you don’t have Chocolatey installed, you can easily install it by following these steps:

1. Open a PowerShell terminal in administrator mode, as shown in the following screenshot:

Figure 1.8: Running PowerShell as administrator

2. Then, execute the following script in the terminal:

Set-ExecutionPolicy Bypass -Scope Process -Force; [System.
Net.ServicePointManager]::SecurityProtocol = [System.Net.
ServicePointManager]::SecurityProtocol -bor 3072; iex ((New-Object
System.Net.WebClient).DownloadString('https://chocolatey.org/
install.ps1'))

https://chocolatey.org/

Setting Up the Terraform Environment12

How to do it…
Perform the following steps:

1. Open a PowerShell command-line terminal in administrator mode.

2. Execute the following command:

choco install –y terraform

The following screenshot shows the execution of this command:

Figure 1.9: Chocolatey install Terraform

The -y option is optional. It allows us to accept the license agreement automatically without

user interaction.

How it works…
When Chocolatey installs the Terraform package, it executes the scripts in the package source code,

available at https://github.com/jamestoyer/chocolatey-packages/tree/master/terraform.

Then, by executing the script available at https://github.com/jamestoyer/chocolatey-

packages/blob/master/terraform/tools/chocolateyInstall.ps1, Chocolatey downloads the

Terraform ZIP file into the binary directory of Chocolatey’s packages, which is already included

in the PATH environment variable.

The complete installation documentation for Chocolatey is available at

https://chocolatey.org/install.

https://github.com/jamestoyer/chocolatey-packages/tree/master/terraform
https://github.com/jamestoyer/chocolatey-packages/blob/master/terraform/tools/chocolateyInstall.ps1
https://github.com/jamestoyer/chocolatey-packages/blob/master/terraform/tools/chocolateyInstall.ps1
https://chocolatey.org/install

Chapter 1 13

There’s more…
When upgrading Terraform, it is possible to upgrade it directly with Chocolatey by executing the

choco upgrade -y terraform command.

By default, the choco install command installs the latest version of the mentioned package. It

is also possible to specify the version by adding the --version option to the command, which in

our case would give us the following:

choco install -y terraform --version "1.2.5"

In this example, we have specified that we want to install version 1.2.5 of Terraform and not the

latest version.

See also
To learn about all the commands provided by Chocolatey, I suggest reading the following docu-

mentation: https://chocolatey.org/docs/commands-reference#commands.

Installing Terraform on Linux using the APT package
manager
In the previous recipe, we learned how to install Terraform on Linux using a script. In this recipe,

we will install Terraform on Linux using the Advanced Package Tool (APT) package manager,

which is a common native package manager.

Note that in this recipe we will install Terraform on Ubuntu/Debian. To learn how to install

Terraform on other Linux distributions, read the documentation here https://www.hashicorp.

com/official-packaging-guide.

Getting ready
For this recipe, we need to have a Linux workstation and a terminal console.

How to do it…
To install Terraform on Linux using the package manager, execute the following script in the

terminal console:

sudo apt update && sudo apt install gpg

wget -O- https://apt.releases.hashicorp.com/gpg | gpg --dearmor | \

sudo tee /usr/share/keyrings/hashicorp-archive-keyring.gpg

gpg --no-default-keyring \

https://chocolatey.org/docs/commands-reference#commands.
https://www.hashicorp.com/official-packaging-guide
https://www.hashicorp.com/official-packaging-guide

Setting Up the Terraform Environment14

--keyring /usr/share/keyrings/hashicorp-archive-keyring.gpg \

--fingerprint

echo "deb [signed-by=/usr/share/keyrings/hashicorp-archive-keyring.gpg] \

https://apt.releases.hashicorp.com $(lsb_release -cs) main" | \

sudo tee /etc/apt/sources.list.d/hashicorp.list

sudo apt update

sudo apt-get install terraform

How it works…
In this script, the first command updates the packages index and installs the gpg tools. The script

also downloads the GPG key and checks the fingerprint key.

Then the script registers the HashiCorp repository and updates the index of packages.

Finally, the script downloads and installs the Terraform package.

See also
• The documentation of the Terraform Official Packaging guide is available at https://www.

hashicorp.com/official-packaging-guide

• The learning documentation of the installation of Terraform using package manager is

available at https://learn.hashicorp.com/tutorials/terraform/install-cli

Installing Terraform using a script on Linux
In this recipe, we will learn how to install Terraform on a Linux machine using a script.

Getting ready
To complete this recipe, the only prerequisites are that you are running a Linux operating system

and that you have an unzip utility installed. The jq utility must be also installed, and you can

install it by using the following command:

apt update && apt install jq

The source code for this script is also available in this book’s GitHub reposito-

ry: https://github.com/PacktPublishing/Terraform-Cookbook-Second-

Edition/blob/main/CHAP01/install_terraform_package.sh.

https://www.hashicorp.com/official-packaging-guide
https://www.hashicorp.com/official-packaging-guide
https://learn.hashicorp.com/tutorials/terraform/install-cli
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP01/install_terraform_package.sh
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP01/install_terraform_package.sh

Chapter 1 15

How to do it…
Perform the following steps:

1. Open a command-line terminal and execute the following script:

TERRAFORM_VERSION="1.3.2"

RES=$(curl -sS https://api.releases.hashicorp.com/v1/releases/
terraform/${TERRAFORM_VERSION})

BINARY_URL=$(echo $RES | jq -r '.builds[] | select (.os == "linux"
and .arch == "amd64") | .url')

wget $ BINARY_URL

unzip -o terraform_${TERRAFORM_VERSION}_linux_amd64.zip -d /usr/
local/bin

2. After executing this script, we can verify the installation of Terraform by executing the

following command:

terraform --help

This command displays all the available commands of the Terraform CLI.

How it works…
In this script, in the first line, the TERRAFORM_VERSION variable is filled in with the Terraform

version that we want to install. This variable is only mentioned here since we don’t want to keep

repeating the version of Terraform we’re using throughout the script.

jq is a tool used to perform queries on any JSON content, the documentation is

available at https://stedolan.github.io/jq/manual/.

The source code for this script is also available in this book’s GitHub repos-

itory: https://github.com/PacktPublishing/Terraform-Cookbook-

Second-Edition/blob/main/CHAP01/install_terraform_linux.sh.

In this recipe, version 1.2.5 of Terraform is used, but we are free to modify this. But

before changing the version, we recommend reading the Terraform changelog avail-

able at https://github.com/hashicorp/terraform/blob/main/CHANGELOG.md

to see all changes.

https://stedolan.github.io/jq/manual/
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP01/install_terraform_linux.sh
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP01/install_terraform_linux.sh
https://github.com/hashicorp/terraform/blob/main/CHANGELOG.md

Setting Up the Terraform Environment16

In line 2 of this script, we get the content of the HashiCorp Releases API for the release of the spec-

ified Terraform version (detailed here: https://www.hashicorp.com/blog/announcing-the-

hashicorp-releases-api). Then, using jq, the script filters the returned JSON array to get only

the Linux and amd64 release and returns the corresponding URL of the release.

Finally, the script downloads the package using wget and unzips the package into the /usr/local/

bin folder, which is included by default in the PATH environment variable.

You can check that the version of Terraform you have installed corresponds to the one mentioned

in the script by executing the following command:

terraform --version

This command displays all commands of Terraform, as shown in the following screenshot:

Figure 1.10: Display the terraform help commands

As we can see here, Terraform is installed and operational.

There’s more…
In this Terraform installation script, we have specified the version number of Terraform to be

installed.

If you want to install the latest Terraform version without having to know the version number,

it is also possible to dynamically retrieve the latest version number by changing the API in the

above script by using the Releases API URI https://api.releases.hashicorp.com/v1/releases/

terraform/latest. This API returns information about the latest version of Terraform.

This script studied in this recipe uses a basic workflow, we can use a more advanced script that

downloads the Terraform binary, but also will check the integrity of the package.

This script is available at https://github.com/PacktPublishing/Terraform-Cookbook-Second-

Edition/blob/main/CHAP01/install_terraform_linux_v2.sh, and for more details about

checking the package, read the documentation at https://learn.hashicorp.com/tutorials/

terraform/verify-archive?in=terraform/cli.

https://www.hashicorp.com/blog/announcing-the-hashicorp-releases-api
https://www.hashicorp.com/blog/announcing-the-hashicorp-releases-api
https://api.releases.hashicorp.com/v1/releases/terraform/latest
https://api.releases.hashicorp.com/v1/releases/terraform/latest
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP01/install_terraform_linux_v2.sh
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP01/install_terraform_linux_v2.sh
https://learn.hashicorp.com/tutorials/terraform/verify-archive?in=terraform/cli
https://learn.hashicorp.com/tutorials/terraform/verify-archive?in=terraform/cli

Chapter 1 17

In this recipe, we learned how to install Terraform on Linux using a script. In the next recipe, we

will learn how to install Terraform using a Linux package manager.

See also
For more information on verifying the downloaded package, you can consult the HashiCorp

documentation at https://www.hashicorp.com/security.html.

Executing Terraform in a Docker container
In the previous recipes of this chapter, we discussed how to install Terraform locally, either man-

ually or via a script, for Windows and Linux.

In this recipe, we will learn how to run Terraform in a Docker container, which will allow us to

enjoy the following benefits:

• There is no need to install Terraform locally

• We can have a Terraform runtime environment that’s independent of the local operating

system

• We can test our Terraform configuration with different versions of Terraform

Let’s get started!

Getting ready
To complete this recipe, you’ll need to know about Docker and its commands, as well as how

to write Dockerfiles. To learn basic expressions of Dockerfiles, please read the documentation:

https://docs.docker.com/get-started/overview/.

On our local computer, we installed Docker using a tool called Docker Desktop for Windows.

We have already written a Terraform configuration file, which will not be detailed here. The

source code is available at https://github.com/PacktPublishing/Terraform-Cookbook-

Second-Edition/blob/main/CHAP01/terraform-docker/main.tf. This will be executed in our

Docker container.

For Docker installation guides for other operating systems, please read the Docker

installation documentation at https://docs.docker.com/get-docker/.

https://www.hashicorp.com/security.html
https://docs.docker.com/get-started/overview/
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP01/terraform-docker/main.tf
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP01/terraform-docker/main.tf
https://docs.docker.com/get-docker/

Setting Up the Terraform Environment18

You will also need the init, plan, and apply Terraform commands, which will not be explained

in the context of this recipe.

How to do it…
Perform the following steps:

1. At the root of the folder that contains the Terraform configuration, we need to create a

Dockerfile that contains the following code:

FROM golang:latest

ENV TERRAFORM_VERSION=1.2.5

RUN apt-get update && apt-get install unzip \

 && curl -Os https://releases.hashicorp.com/
terraform/${TERRAFORM_VERSION}/terraform_${TERRAFORM_VERSION}_linux_
amd64.zip \

 && curl -Os https://releases.hashicorp.com/
terraform/${TERRAFORM_VERSION}/terraform_${TERRAFORM_VERSION}_
SHA256SUMS \

 && curl https://keybase.io/hashicorp/pgp_keys.asc | gpg
--import \ && curl -Os https://releases.hashicorp.com/
terraform/${TERRAFORM_VERSION}/terraform_${TERRAFORM_VERSION}_
SHA256SUMS.sig \

 && gpg --verify terraform_${TERRAFORM_VERSION}_SHA256SUMS.sig
terraform_${TERRAFORM_VERSION}_SHA256SUMS \

 && shasum -a 256 -c terraform_${TERRAFORM_VERSION}_SHA256SUMS
2>&1 | grep "${TERRAFORM_VERSION}_linux_amd64.zip:\sOK" \

 && unzip -o terraform_${TERRAFORM_VERSION}_linux_amd64.zip -d /
usr/bin

RUN mkdir /tfcode

COPY . /tfcode

WORKDIR /tfcode

For this script, we use the Linux script we learned in the Installing Terraform

on Linux using a script recipe to install Terraform. We can also use another

method to install Terraform using a package manager, as we learned in the

Installing Terraform using the package manager recipe.

This source code is also available at https://github.com/
PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/

CHAP01/terraform-docker/Dockerfile.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP01/terraform-docker/Dockerfile
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP01/terraform-docker/Dockerfile
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP01/terraform-docker/Dockerfile

Chapter 1 19

2. Next, we need to create a new Docker image by executing the docker build command

in a terminal:

docker build -t terraform-code:v1.0

3. Then, we need to instantiate a new container of this image. To do this, we will execute

the docker run command:

docker run -it -d --name tfapp terraform-code:v1.0 /bin/bash

4. Now, we can execute the Terraform commands in our container by using the following

commands:

docker exec tfapp terraform init

docker exec tfapp terraform plan

docker exec tfapp terraform apply --auto-approve

The following screenshot shows a part of the output of executing these commands

(terraform plan):

Figure 1.11: Run Terraform in Docker container

Setting Up the Terraform Environment20

In this command execution, we can see the terraform plan command that has been executed,

with a preview of the changes.

How it works…
In Step 1, we write the composition of the Docker image in the Dockerfile. We do this as follows:

1. We use a Golang base image.

2. We initialize the TERRAFORM_VERSION variable with the version of Terraform to be installed.

3. We write the same Terraform installation script we wrote in the Installing Terraform using

a script on Linux recipe.

4. We copy the Terraform configuration from our local file into a new folder located in the

image.

5. We specify that our workspace will be our new folder.

Then, in Steps 2 and 3, we create a Docker terraform-code image with a v1.0 tag. This tag is used

to version our Terraform configuration. Then, we create a tfapp instance of this image, which

runs with the Bash tool.

Finally, in Step 4, in the tfapp instance, we execute the Terraform commands in our container

workspace.

There’s more…
In this recipe, we studied how to write, build, and use a Docker image that contains the Terraform

binary. With this, it is possible to complete this image with other tools, such as Terragrunt, that

are also used to develop the Terraform configuration file.

If you just want to use Terraform, you can use the official image provided by HashiCorp. This is

public and available on Docker Hub at https://hub.docker.com/r/hashicorp/terraform/. If

you need more tools, you can use this official image as your base FROM image in your Dockerfile.

See also
• The full Docker commands documentation at https://docs.docker.com/engine/

reference/run/

• For an introduction to Docker, please refer to the book Learning DevOps Second Edition, which

is available at https://www.packtpub.com/product/learning-devops/9781801818964

https://hub.docker.com/r/hashicorp/terraform/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://www.packtpub.com/product/learning-devops/9781801818964

Chapter 1 21

Switching between multiple Terraform versions
In the previous recipes, we learned how to install one specific version of Terraform manually or

by script.

In some scenarios, we need to have different Terraform versions installed on the same workstation:

• When we work on multiple Terraform configuration projects, it’s often required to have

different versions of Terraform binary used by each of these projects

• When we want to test new versions of the Terraform binary

All previously described methods of installation only allow us to use one Terraform version at a

time.

To solve this problem, we have different solutions:

• To rename the Terraform binary by including the Terraform version at the end of the binary.

For example, for Terraform version 1.0.5, download the corresponding binary and extract it

as shown in the Downloading and installing Terraform on Windows manually recipe. Rename

the target file terraform1.0.5.exe. Then run all commands as terraform1.0.5.exe

<command>.

• The second solution is to execute Terraform in a Docker container, as we learned in the

Executing Terraform in a Docker container recipe.

• Another solution that will learn in detail in this recipe is to use a tool named tfenv.

tfenv is an open-source project that acts as a Terraform version manager. It allows us to list,

install, and use multiple versions of the Terraform binary on the same workstation.

In this recipe, we will learn how to use tfenv for the following operations:

• The installation of tfenv

• The download of multiple versions of Terraform with tfenv

• Finally, the configuration of Terraform to use one of the downloaded versions of Terraform

So, by following this recipe, we will learn how is it possible for one workstation to work on dif-

ferent projects using different versions of Terraform.

Let’s get started!

Setting Up the Terraform Environment22

Getting ready
As mentioned in the tfenv documentation at https://github.com/tfutils/tfenv, it’s compat-

ible only with macOS, Linux, and WSL for Windows users. In this recipe, we will use tfenv on

WSL, which is the same procedure as Linux.

To complete this recipe, you need to be on a Linux OS (like WSL) and to have Git installed.

How to do it…
To install tfenv, perform the following steps in your Linux terminal:

1. Run the following command:

git clone --depth=1 https://github.com/tfutils/tfenv.git ~/.tfenv

The following screenshot shows this git clone execution:

Figure 1.12: Install Tfenv with git clone

2. Then run this command:

echo 'export PATH="$HOME/.tfenv/bin:$PATH"' >> ~/.bashrc

tfenv is now installed and can be run from any folder in the workstation.

3. To check that the installation is running, use this command:

tfenv ––help

https://github.com/tfutils/tfenv

Chapter 1 23

The following screenshot shows the execution of the tfenv –help command:

Figure 1.13: tfenv help command

This command displays the list of the available tfenv commands.

Then, in the second step, we will install multiple versions of Terraform with tfenv using the

tfenv install <version> command. For example, to install version 1.1.9 of Terraform, we run

the following:

tfenv install 1.1.9

The following screenshot shows the execution of the tfenv install command:

Figure 1.14: tfenv install Terraform version

For the lab in this recipe, we will install another Terraform version, 1.2.5. To do this, we run the

tfenv install 1.2.5 command.

To check the installed version, run the following command:

tfenv list

Setting Up the Terraform Environment24

The following screenshot shows the execution of the tfenv list command:

Figure 1.15: tfenv list Terraform version

We can see the two installed versions are 1.2.5 and 1.1.9.

Now, in the last step, we will learn how to use one of the specific Terraform versions installed

by tfenv.

To do this, we have two possibilities: choose one Terraform version that will be used all Terraform

configurations in the same workstation, or choose a different Terraform version for each Terraform

configuration in the same workstation.

To select one version of Terraform for all Terraform configurations on your workstation, run the

following command:

tfenv use 1.2.5

The following screenshot shows the execution of the tfenv use command:

Figure 1.16: tfenv use Terraform version

To select one specific Terraform version for one Terraform configuration, follow these steps:

1. In the root of the Terraform configuration, create a new file called .terraform-version.

2. In this file, write the version of Terraform to use for this Terraform configuration, for

example, 1.1.9.

3. In this folder, in the console, run the command to display the version of Terraform for

this configuration:

terraform version

Chapter 1 25

Figure 1.17: tfenv Terraform version

We can see in the output that in this folder, the version of Terraform that will be used is 1.1.9.

Although the version used here is 1.1.9, we could also still use version 1.2.5 for a different project.

How it works…
In the first part of the recipe, we installed tfenv from the GitHub repository and ran the git clone

command to import the source code locally inside the .tfenv folder.

To complete the installation, using the export command, we added the PATH environment vari-

ables of the folder path of the tfenv binary (also added in the .bashrc file to be available in any

session).

Then, in the second part, we used tfenv to install two different versions of the Terraform binary

using the tfenv install command, and we displayed the list of two installed versions using

the tfenv list command.

Finally, we learned how to use installed Terraform versions either by using the command line

with the tfenv use command, or by using a.terraform-version file that we put in a folder

containing a Terraform configuration.

There’s more…
To specify a version of Terraform to use, we can also use a variable environment called TFENV_
TERRAFORM_VERSION that allows the user to provide Terraform dynamically, for example, in a CI/
CD pipeline.

Setting Up the Terraform Environment26

Be careful: using different versions of the Terraform binary on the same Terraform configuration
can have an impact on the compatibility of the Terraform state file. However, it is worth noting
that all recent versions of Terraform (perhaps even back to 0.12 or 0.13, but certainly the v1 series)
have built-in safety mechanisms that will prevent you from using an older version of Terraform
if the state was modified using a later version, hence preventing conflicts between versions, so
this should no longer be a worry for end-users.

There are other useful tfenv commands.

To list all available Terraform versions that can be installed with tfenv, we can use the tfenv

list-remote command.

Here is an extract of the output of this command:

Figure 1.18: tfenv list all Terraform versions

To uninstall an installed version of the Terraform binary with tfenv, we can use the tfenv

uninstall <version> command:

Figure 1.19: tfenv uninstall

Now the tfenv list command returns only version 1.1.9.

Chapter 1 27

See also
• The official GitHub repository and complete documentation of tfenv: https://github.

com/tfutils/tfenv

• To use tfenv in a Docker container, here is a list of Docker images with tfenv pre-installed:

https://github.com/DockerToolbox/tfenv

Upgrading Terraform providers
One of the best practices of Terraform is to ensure the Terraform configuration is up to date with

the most recent version of Terraform providers used in the configuration.

If you encounter a problem with the Terraform init command, try updating your Terraform

provider. We will show you how to do this in this section.

In this recipe, we will see how to update a provider in your Terraform configuration.

Let’s get started!

Getting ready
To complete this recipe, you’ll need to have Terraform installed, and we start with the existing

following basic Terraform configuration written in main.tf:

terraform {

 required_version = ">= 1.0.0"

 required_providers {

 azurerm = {

 source = "hashicorp/azurerm"

 version = "~> 2.67.0"

 }

 }

}

In this configuration, we explicitly mention that we use the azurerm provider with version 2.67.0.

For information, init is the first step in the Terraform workflow. For more details on

init, see the documentation here: https://www.terraform.io/cli/commands/

init.

https://github.com/tfutils/tfenv
https://github.com/tfutils/tfenv
https://github.com/DockerToolbox/tfenv
https://www.terraform.io/cli/commands/init
https://www.terraform.io/cli/commands/init

Setting Up the Terraform Environment28

How to do it…
As the first step, inside the folder that contains the main.tf file, run the init command as follows:

terraform init

The following screenshot shows the output of this command:

Figure 1.20: terraform init command

So far, everything is OK: we get the expected result. At the end of the execution of this command,

we can see that Terraform has created a new file named .terraform.lock.hcl that contains

hashes and versions of the Terraform providers.

Chapter 1 29

The following screenshot shows this file, .terraform.lock.hcl:

Figure 1.21: terraform.lock.hcl file

This file contains Terraform provider version information.

The terraform init command also downloads the binary of the provider inside the .terraform

folder.

The second step is to upgrade the azurerm provider by updating the version number to 3.0.0 with

the following configuration:

terraform {

 required_version = ">= 1.0.0"

 required_providers {

 azurerm = {

 source = "hashicorp/azurerm"

 version = "~> 3.0.0"

 }

 }

}

Setting Up the Terraform Environment30

Then, if we re-run the simple init command, terraform init, the output of the command

returns the following error:

Figure 1.22: terraform init command with a provider error

Finally, to fix this error and make the configuration work properly, run the following terraform

init command:

terraform init –upgrade

The following screenshot shows the execution of the terraform init –upgrade command:

Figure 1.23: terraform init with upgrade option

Our configuration is now updated with the most recent provider.

Chapter 1 31

It is recommended to maintain the lock file in your VCS (such as Git) to ensure that the same

configuration can be consistently applied using the exact same provider version and also to add

an extra security layer, preventing possible Man in the Middle (MITM) attacks between your

computer and HashiCorp’s distribution channel.

However, bear in mind that terraform init by default stores only hashes for the platform on

which it is running (e.g. only for Windows). If you expect the configuration to be used on other

platforms, you can use the terraform providers lock command that we will learn more about

in the Generating one Terraform lock file with Windows and Linux compatibility recipe in Chapter 6,

Applying a Basic Terraform Workflow.

How it works…
In the first step, we run the terraform init command, which does the following:

• Downloads the specified version of the azurerm provider

• Creates a new file, .terraform.lock.hcl, that contains the installed provider version

and hashes

Then we upgrade the version of the azurerm provider to version 3.0.0 and re-run the init com-

mand, which compares the new version hashed with the hashes written in .terraform.lock.hcl.

Due to the different version hashes, the terraform init command output (show in Figure 1.27)

displays a version incompatibility error message that indicates how to upgrade.

Finally, to fix this error, we run the terraform init –upgrade command, which upgrades

terraform.lock.hcl with the new version’s hashes.

There’s more…
The main concept in this recipe is the .terraform.lock.hcl file, also called the dependency

file, that contains all the information about the provider versions. It allows you to have the same

provider versions on all workstations or CI/CD pipelines that apply this Terraform configuration.

There is another important consideration during the process of upgrading providers: before

upgrading the provider, fix all deprecated Terraform resources that are upgraded with the new

version of the provider.

Setting Up the Terraform Environment32

Here is an example of deprecated attributes with the random provider:

Figure 1.24: Terraform validate command with depreciation

After fixing this deprecated attribute, the Terraform configuration will be fully valid.

See also
• The complete documentation about the Terraform dependency lock file is here: https://

www.terraform.io/language/files/dependency-lock

• The official documentation about the Terraform provider upgrade is here: https://learn.

hashicorp.com/tutorials/terraform/provider-versioning

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to

the author, and learn about new releases – follow the QR code below:

https://packt.link/cloudanddevops

https://www.terraform.io/language/files/dependency-lock
https://www.terraform.io/language/files/dependency-lock
https://learn.hashicorp.com/tutorials/terraform/provider-versioning
https://learn.hashicorp.com/tutorials/terraform/provider-versioning
https://packt.link/cloudanddevops

2
Writing Terraform Configurations

When you start writing Terraform configurations, you will notice very quickly that the language

provided by Terraform is very rich and allows for a lot of manipulation.

In the recipes in this chapter, you will learn how to use the Terraform language effectively to

apply it to real-life business scenarios. We will discuss how to use providers by specifying their

version, and adding aliases to use multiple instances of the same provider. Then we will discuss

how to make the code more dynamic with variables and outputs, and we will consider the use

of built-in functions and conditions.

Finally, we will learn how to add dependencies between resources, add custom checks with pre-

and postconditions, and check the provisioned infrastructure.

In this chapter, we will cover the following recipes:

• Configuring Terraform and the provider version to use

• Adding alias to a provider to use multiple instances of the same provider

• Manipulating variables

All the code examples explained in this book are for illustrative purposes only. Their

purpose is to provision cloud infrastructure resources, which may have a cost de-

pending on the cloud used. I strongly suggest that you delete these resources either

manually or via the terraform destroy command, which we’ll look at in detail in the

recipe Destroying infrastructure resources in Chapter 6, Applying a Basic Terraform

Workflow. Additionally, in a lot of the code on the GitHub repository of this chapter,

you’ll see the use of random resources, which allow you to have unique resources.

Writing Terraform Configurations34

• Keeping sensitive variables safe

• Using local variables for custom functions

• Using outputs to expose Terraform provisioned data

• Calling Terraform’s built-in functions

• Using YAML files in Terraform configuration

• Writing conditional expressions

• Generating passwords with Terraform

• Managing Terraform resource dependencies

• Adding custom pre- and postconditions

• Using checks for infrastructure validation

Let’s get started!

Technical requirements
For this chapter, you need to have the Terraform binary installed on your computer. The source code

for this chapter is available at https://github.com/PacktPublishing/Terraform-Cookbook-

Second-Edition/tree/main/CHAP02.

Configuring Terraform and the provider version to
use
The default behavior of Terraform is that, when executing the terraform init command, the

version of the Terraform binary (also called the Command-Line Interface (CLI)) used is the one

installed on the local workstation. In addition, this command downloads the latest version of

the providers used in the code.

Also, as we learned in Chapter 1, Setting Up the Terraform Environment, in the Upgrading Terraform

providers recipe, this command creates the Terraform dependencies file, .terraform.lock.hcl�

However, for compatibility reasons, it is always advisable to avoid surprises so that you can

specify which version of the Terraform binary is going to be used in the Terraform configuration.

The following are some examples:

• A Terraform configuration that uses language constructs introduced in version 0.12 must

be executed with that or a greater version

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02

Chapter 2 35

• A Terraform configuration that contains new features, such as count and for_each, in

modules must be executed with Terraform version 0.13 or greater

In the same way and for the same reasons of compatibility, we may want to specify the provider

version to be used.

In this recipe, we will learn how to specify the Terraform version, as well as the provider version,

that will be used.

Getting ready
To start this recipe, we will write a basic Terraform configuration file that contains the following

code:

variable "resource_group_name" {

 default = "rg_test"

}

resource "azurerm_resource_group" "rg" {

 name = var.resource_group_name

 location = "westeurope"

}

resource "azurerm_public_ip" "pip" {

 name = "bookip"

 location = "westeurope"

 resource_group_name = azurerm_resource_group.rg.name

 public_ip_address_allocation = "Dynamic"

 domain_name_label = "bookdevops"

}

The source code of this Terraform configuration is available at https://github.com/
PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP02/version/

specific-version.tf.

This example code provides resources in Azure (a resource group and a public IP address).

For more details about the HCL syntax, read the documentation at https://www.

terraform.io/docs/configuration/syntax.html.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP02/version/specific-version.tf
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP02/version/specific-version.tf
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP02/version/specific-version.tf
https://www.terraform.io/docs/configuration/syntax.html
https://www.terraform.io/docs/configuration/syntax.html

Writing Terraform Configurations36

This Terraform configuration contains the improvements that were made to the HCL 2.0 language

since Terraform 0.12 using the new interpolation syntax.

Finally, when executing the terraform plan command with this configuration, we get the fol-

lowing error messages:

Figure 2.1: A Terraform plan without a specified version

This means that, currently, this Terraform configuration is not compatible with the latest version

of the provider (version 2.56).

Now, we need to be aware of the following compliances:

• This configuration can only be executed if Terraform 0.13 (or higher) is installed on the

local workstation.

• Our current configuration can be executed even if the azurerm provider evolves with

breaking changes.

For more details about the Terraform azurerm provider, read the following docu-

mentation: https://registry.terraform.io/providers/hashicorp/azurerm.

For more details about these HCL enhancements, go to https://www.slideshare.
net/mitchp/terraform-012-deep-dive-hcl-20-for-infrastructure-as-

code-remote-plan-apply-125837028.

https://registry.terraform.io/providers/hashicorp/azurerm
https://www.slideshare.net/mitchp/terraform-012-deep-dive-hcl-20-for-infrastructure-as-code-remote-plan-apply-125837028
https://www.slideshare.net/mitchp/terraform-012-deep-dive-hcl-20-for-infrastructure-as-code-remote-plan-apply-125837028
https://www.slideshare.net/mitchp/terraform-012-deep-dive-hcl-20-for-infrastructure-as-code-remote-plan-apply-125837028

Chapter 2 37

The source code of this recipe is available at https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/tree/main/CHAP02/version.

How to do it…
First, we specify the Terraform version to be installed on the local workstation:

1. In the Terraform configuration, add the following block:

terraform {

 required_version = ">= 0.13,<=1"

}

2. To specify the provider source and version to use, we need to add the required_provider

block inside the same terraform block configuration:

terraform {

 ...

 required_providers {

 azurerm = {

 version = "2.10.0"

 }

 }

}

How it works…
When executing the terraform init command, Terraform will check that the version of the in-

stalled Terraform binary that executes the Terraform configuration corresponds to the version

specified in the required_version property of the terraform block.

Regarding the new features provided by Terraform 0.13, read the change log at

https://github.com/hashicorp/terraform/blob/master/CHANGELOG.md and

the upgrade guide at https://developer.hashicorp.com/terraform/language/

v1.1.x/upgrade-guides/0-13.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/version
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/version
https://github.com/hashicorp/terraform/blob/master/CHANGELOG.md
https://developer.hashicorp.com/terraform/language/v1.1.x/upgrade-guides/0-13
https://developer.hashicorp.com/terraform/language/v1.1.x/upgrade-guides/0-13

Writing Terraform Configurations38

If it matches, it won’t throw an error as it is greater than version 0.13. Otherwise, it will throw

an error:

Figure 2.2: Terraform version incompatibility

Regarding the specification of the provider version, when executing the terraform init command,

if no version is specified, Terraform downloads the latest version of the provider. Otherwise, it

downloads the specified version, as shown in the following two screenshots.

The following screenshot shows the provider plugin that will be downloaded from the specified

source without us specifying the required version (at the time of writing, the latest version of

the provider is 3.17.0):

Figure 2.3: Terraform init downloads the latest version of the provider

As we can see, the specific version of the azurerm provider (3.17.0) has been downloaded.

In addition, the following screenshot shows the azurerm provider plugin that will be downloaded

when we specify the required version (2.10.0):

Chapter 2 39

Figure 2.4: Terraform init downloads the specified provider version

As we can see, the specified version of the azurerm provider (2.10.0) has been downloaded.

There’s more…
In this recipe, we learned how Terraform downloads the azurerm provider in several ways. What

we did here applies to all providers you may wish to download.

It is also important to mention that the version of the Terraform binary that will be used is speci-

fied in the Terraform state file. This is to ensure that nobody applies this Terraform configuration

with a lower version of the Terraform binary, thus ensuring that the format of the Terraform state

file conforms with the correct version of the Terraform binary.

For more details about the required_version block and provider versions,

go to https://www.terraform.io/docs/configuration/terraform.

html#specifying-required-provider-versions.

In the required_version block, we also add the source property, which was intro-

duced in version 0.13 of Terraform and is documented at https://www.terraform.

io/language/upgrade-guides/0-13#explicit-provider-source-locations.

https://www.terraform.io/docs/configuration/terraform.html#specifying-required-provider-versions
https://www.terraform.io/docs/configuration/terraform.html#specifying-required-provider-versions
https://www.terraform. io/language/upgrade-guides/0-13#explicit-provider-source-locations
https://www.terraform. io/language/upgrade-guides/0-13#explicit-provider-source-locations

Writing Terraform Configurations40

In the next recipe, we will implement a provider alias to use multiple instances of the same provider.

See also
• For more information about the properties of the Terraform block, go to https://www.

terraform.io/language/settings.

• For more information about the properties of the providers, go to https://www.terraform.

io/language/providers/configuration.

• More information about Terraform binary versioning is documented at https://www.

terraform.io/plugin/sdkv2/best-practices/versioning.

Adding alias to a provider to use multiple instances
of the same provider
When we write Terraform configuration, some providers contain properties for resource access

and authentication such as a URL, authentication token, username, or password.

If we want to use multiple different configurations of the same provider in one Terraform con-

figuration, for example, to provision resources in multiple Azure subscriptions in the same con-

figuration, we can use the alias provider property.

Let’s get started!

Getting ready
First, apply this basic Terraform code to create resources on Azure:

provider "azurerm" {

 subscription_id = "xxxx-xxx-xxx-xxxxxx"

 features {}

}

resource "azurerm_resource_group" "rg" {

 name = "rg-sub1"

 location = "westeurope"

}

resource "azurerm_resource_group" "rg2" {

 name = "rg-sub2"

 location = westeurope"

}

https://www.terraform.io/language/settings
https://www.terraform.io/language/settings
https://www.terraform.io/language/providers/configuration
https://www.terraform.io/language/providers/configuration
https://www.terraform.io/plugin/sdkv2/best-practices/versioning
https://www.terraform.io/plugin/sdkv2/best-practices/versioning

Chapter 2 41

This Terraform configuration will create two Azure resource groups on the subscription that is

configured by the provider (or in the default subscription on your Azure account).

In order to create an Azure resource group in another subscription, we need to use the alias

property.

In this recipe, we will use the alias provider property, and to illustrate it we will provision two

Azure resource groups in two different subscriptions in one Terraform configuration.

The requirement for this recipe is to have an Azure account, which you can get for free here:

https://azure.microsoft.com/en-us/free/

We will also use the azurerm provider with basic configuration.

You can find your available active subscriptions (subscription IDs) at https://portal.azure.

com/#view/Microsoft_Azure_Billing/SubscriptionsBlade.

The source code of this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP02/alias

How to do it…
Perform the following steps to use multiple instances from one provider:

1. In main.tf, update the initial Terraform configuration in the provider section:

provider "azurerm" {

 subscription_id = "xxxx-xxx-xxxxx-xxxxxx"

 alias = "sub1"

 features {}

}

provider "azurerm" {

 subscription_id = "yyyy-yyyyy-yyyy-yyyyy"

 alias = "sub2"

 features {}

}

2. Then update the two existing azurerm_resource_group resources:

resource "azurerm_resource_group" "example1" {

 provider = azurerm.sub1

 name = "rg-sub1"

https://azure.microsoft.com/en-us/free/
https://portal.azure.com/#view/Microsoft_Azure_Billing/SubscriptionsBlade
https://portal.azure.com/#view/Microsoft_Azure_Billing/SubscriptionsBlade
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/alias
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/alias

Writing Terraform Configurations42

 location = "westeurope"

}

resource "azurerm_resource_group" "example2" {

 provider = azurerm.sub2

 name = "rg-sub2"

 location = "westeurope"

}

3. Finally, to apply the changes, run the Terraform workflow with the init, plan, and apply

commands.

How it works…
In Step 1, we duplicate the provider (azurerm) block and, on each provider, we add the alias

property with an identification name. The first is sub1 and the second is sub2.

Then we add the different subscription_id properties to specify the subscription where the

resource will be created.

In Step 2, in each azurerm_resource_group resource, we add the provider property with a value

that corresponds to that of the alias of the desired provider.

Each azurerm_resource_group resource targets the subscription using the provider’s alias.

Finally, we run the terraform init, plan and apply commands. The screenshot below shows

the terraform apply command:

Figure 2.5: Running the apply command

We can see the two different subscriptions where the Azure resource group will be created.

See also
• The documentation of the provider alias is available at https://www.terraform.io/

language/providers/configuration#alias-multiple-provider-configurations.

https://www.terraform.io/language/providers/configuration#alias-multiple-provider-configurations
https://www.terraform.io/language/providers/configuration#alias-multiple-provider-configurations

Chapter 2 43

• Here’s a great article on using the provider alias: https://build5nines.com/terraform-

deploy-to-multiple-azure-subscriptions-in-single-project/.

Manipulating variables
When you write a Terraform configuration where all the properties are hardcoded in the code,

you often find yourself faced with the problem of having to duplicate it to reuse it.

In this recipe, we’ll learn how to make the Terraform configuration more dynamic by using vari-

ables.

Getting ready
To begin, we are going to work on the main.tf file, which contains a basic Terraform configuration:

resource "azurerm_resource_group" "rg" {

 name = "My-RG"

 location = "West Europe"

}

As we can see, the name and location properties have values statically written in the code.

Let’s learn how to make them dynamic using variables.

The source code of this recipe is available at https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/tree/main/CHAP02/variables.

How to do it…
Perform the following steps:

1. In the same main.tf file, add the following variable declarations:

variable "resource_group_name" {

 description ="The name of the resource group"

}

variable "location" {

 description ="The name of the Azure region"

 default ="westeurope"

}

https://build5nines.com/terraform-deploy-to-multiple-azure-subscriptions-in-single-project/
https://build5nines.com/terraform-deploy-to-multiple-azure-subscriptions-in-single-project/
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/variables
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/variables

Writing Terraform Configurations44

2. Then, modify the Terraform configuration we had at the beginning of this recipe so that

it refers to our new variables, as follows:

resource "azurerm_resource_group" "rg" {

 name = var.resource_group_name

 location = var.location

}

3. Finally, in the same folder that contains the main.tf file, create a new file called terraform.

tfvars and add the following content:

resource_group_name = "My-RG"

location = "westeurope"

How it works…
In Step 1, we wrote the declaration of the two variables, which consists of the following elements:

• A variable name: This must be unique to this Terraform configuration and must be explicit

enough to be understood by all the contributors of the code.

• A description of what this variable represents: This description is optional but is rec-

ommended because it can be displayed by the CLI and can also be integrated into the

documentation, which is automatically generated.

• A default value: This is optional. Not setting a default value makes it mandatory to enter

a value.

Then, in Step 2, we modified the Terraform configuration to use these two variables. We did this

using the var.<name of the variable> syntax.

Finally, in Step 3, we set values for the variables in the terraform.tfvars file, which is used

natively by Terraform.

The result of executing this Terraform configuration is shown in the following screenshot:

Chapter 2 45

Figure 2.6: Using the terraform.tfvars file

There’s more…
Setting a value for the variable is optional in the terraform.tfvars file since we have set a default

value for the variable.

Apart from this terraform.tfvars file, it is possible to give a variable a value using the -var option

of the terraform plan and terraform apply commands, as shown in the following command:

terraform plan -var "location=westus"

So, with this command, the location variable declared in our code will have a value of westus

instead of westeurope.

In addition, in the 0.13 version of Terraform, we can now create custom validation rules for vari-

ables, which makes it possible for us to verify a value during the terraform plan execution.

In our recipe, we can complete the location variable with a validation rule in the validation

block as shown in the following code:

variable "location" {
 description ="The name of the Azure location"
 default ="westeurope"
 validation {
 condition = contains(["westeurope","westus"], var.location)
error_message = "The location must be westeurope or westus."
 }
}

In the preceding configuration, the rule checks if the value of the location variable is westeurope

or westus.

Writing Terraform Configurations46

If you put in an invalid value for the location variable, such as francecentrale, the validation

rule will display The location must be westeurope or westus:

Figure 2.7: Variable validation

For more information about variable custom rules validation, read the documentation at https://

www.terraform.io/docs/configuration/variables.html#custom-validation-rules.

Finally, there is another alternative to setting a value to a variable, which consists of setting an

environment variable called TF_VAR_<variable name>. In our case, we can create an environment

variable called TF_VAR_location with a value of westus and then execute the terraform plan

command in the classical way.

See also
In this recipe, we looked at the basic use of variables. We will learn how to protect sensitive

variables in the next recipe, and we will examine more advanced uses of these variables when

we learn how to manage environments in Chapter 3, Scaling Your Infrastructure with Terraform, in

the Managing infrastructure in multiple environments recipe.

For more information on Terraform variables, refer to the documentation at https://www.

terraform.io/docs/configuration/variables.html.

Note that using the -var option or the TF_VAR_<name of the variable> envi-

ronment variable doesn’t hardcode these variables’ values inside the Terraform

configuration. Terraform makes it possible for us to give values of variables on the

fly. But be careful – these options can have consequences if the same code is execut-

ed with other values initially provided in parameters and if the plan’s output isn’t

reviewed carefully.

https://www.terraform.io/docs/configuration/variables.html#custom-validation-rules
https://www.terraform.io/docs/configuration/variables.html#custom-validation-rules
https://www.terraform.io/docs/configuration/variables.html
https://www.terraform.io/docs/configuration/variables.html

Chapter 2 47

Keeping sensitive variables safe
In the Manipulating variables recipe in this chapter, we learned how to use variables to make our

Terraform configuration more dynamic. By default, all variables’ values used in the configuration

will be stored in clear text in the Terraform state file, and this value will also be in clear text in

the console output execution.

In this recipe, we will learn how to keep Terraform variable information safe from prying eyes by

not displaying their values in clear text in the console output.

Getting ready
To start with, we will use the Terraform configuration available at https://github.com/

PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/sample-app,

which provisions an Azure Web App with custom app settings.

To illustrate this, we will add a custom application API key, which has a sensitive value, in the

key-value app setting.

The source code of this recipe is available at https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/tree/main/CHAP02/sample-app.

How to do it…
Perform the following steps:

1. In the main.tf file, which contains our Terraform configuration, in azurerm_linux_web_

app we will add an app_settings property that is set with the api_key variable:

resource "azurerm_linux_web_app" "app" {
 name = "${var.app_name}-${var.environment}
-${random_string.random.result}”
 location = azurerm_resource_group.rg-app.location
 resource_group_name = azurerm_resource_group.rg-app.name
 service_plan_id = azurerm_service_plan.plan-app.id

 site_config {}
 app_settings = {
API_KEY = var.api_key
 }
 }

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/sample-app
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/sample-app
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/sample-app
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/sample-app

Writing Terraform Configurations48

2. Then, in variable.tf, declare the custom_app_settings variable:

variable "api_key " {

 description = "Custom application api key"

 sensitive = true

}

3. In terraform.tfvars, we instantiate this variable with these values (as an example for

this book):

api_key = "xxxxxxxxxxxxxxxxx"

4. Finally, we run the terraform plan command. The following screenshot shows a part

of this execution:

Figure 2.8: Terraform doesn’t display the sensitive variable value

5. We can see that the value of the api_key property (which is in uppercase in the Terraform

plan output) in app_settings isn’t displayed in the console output.

How it works…
In the recipe, we add the sensitive flag to the api_key variable, which enables the protection

of the variable. By enabling this flag, the terraform plan command (and the apply command)

doesn’t display the value of the variable in the console output in clear text.

There’s more…
Be careful! The sensitive variable property protects the value of this variable from being displayed

in the console output, but the value of this is still written in clear text in the Terraform state file.

Then, if this Terraform configuration is stored in a source control such as Git, the default value of

this variable or the tfvars file is also readable as clear text in the source code.

Chapter 2 49

So, to protect the value of this variable in source control, we can set the value of this variable by

using Terraform’s environment variable technique with the format TF_VAR_<variable name> as

we learned in the previous recipe, Manipulating variables.

In our scenario, we can set the TF_VAR_api_key = "xxxxxxxxxxx" environment variable just

before the execution of the terraform plan command.

One scenario in which the sensitive variable is effective is when Terraform is executed in a CI/CD

pipeline; then, unauthorized users can’t read the value of the variable.

Finally, one best practice is to use an external secret management solution such as Azure Key Vault

or HashiCorp Vault (https://www.vaultproject.io/) to store your secrets and use Terraform

providers to get these secrets’ values.

See also
• Documentation for sensitive variables is available at https://www.terraform.io/

language/values/variables#suppressing-values-in-cli-output.

• For more information on sensitive variables, read the Terraform tutorial at https://

learn.hashicorp.com/tutorials/terraform/sensitive-variables.

Using local variables for custom functions
In the Manipulating variables recipe in this chapter, we learned how to use variables to dynamize

our Terraform configuration. Sometimes, this can be a bit tedious when it comes to using com-

binations of variables.

In this recipe, we will learn how to implement local variables and use them as custom functions.

Getting ready
To start with, we will use the following Terraform configuration:

variable "application_name" {

 description = "The name of application"

}

variable "environment_name" {

 description = "The name of environment"

}

variable "country_code" {

 description = "The country code (FR-US-...)"

}

https://www.vaultproject.io/
https://www.terraform.io/language/values/variables#suppressing-values-in-cli-output
https://www.terraform.io/language/values/variables#suppressing-values-in-cli-output
https://learn.hashicorp.com/tutorials/terraform/sensitive-variables
https://learn.hashicorp.com/tutorials/terraform/sensitive-variables

Writing Terraform Configurations50

resource "azurerm_resource_group" "rg" {

 name = "XXXX" # VARIABLE TO USE

 location = "West Europe"

}

resource "azurerm_public_ip" "pip" {

 name = "XXXX" # VARIABLE TO USE

 location = "West Europe"

 resource_group_name = azurerm_resource_group.rg.name

 allocation_method = "Dynamic"

 domain_name_label = "mydomain"

}

The goal of this recipe is to consistently render the names of the Azure resources. We must provide

them with the following nomenclature rule:

CodeAzureResource - Name Application - Environment name - Country Code

The source code of this recipe is available at https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/tree/main/CHAP02/localvariables.

How to do it…
Follow these steps:

1. In the main.tf file, which contains our Terraform configuration, we will add a local vari-

able called resource_name, along with the following code:

locals {

 resource_name = "${var.application_name}-${var.environment_name}-
${var.country_code}"

}

2. We then use this local variable in the resources with the following code:

resource "azurerm_resource_group" "rg" {

 name = "RG-${local.resource_name}"

 location = "westeurope"

}

resource "azurerm_public_ip" "pip" {

 name = "IP-${local.resource_name}"

 location = "westeurope"

 resource_group_name = azurerm_resource_group.rg.name

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/localvariables
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/localvariables

Chapter 2 51

 allocation_method = "Dynamic"

 domain_name_label = "mydomain"

}

How it works…
In Step 1, we created a variable called resource_name that is local to our Terraform configuration.

This allows us to create a combination of several Terraform variables (which we will see the result

of in the Using outputs to expose Terraform provisioned data recipe of this chapter).

Then, in Step 2, we used this local variable with the local.<name of the local variable>

expression. Moreover, in the name property, we used it as a concatenation of a variable and static

text, which is why we used the "${}" syntax.

The result of executing this Terraform configuration is as follows:

Figure 2.9: Using the locals variable

In the previous screenshot, we can see the output of executing the terraform plan command

with the name of the resource group that we calculated with the locals variable.

There’s more…
The difference between a local variable and Terraform variable is that the local variable can’t be

redefined in the Terraform variables file (tfvars), with environment variables, or with the -var

CLI argument.

See also
• For more information on local block, look at the following documentation: https://www.

terraform.io/docs/configuration/locals.html.

• The Terraform locals learning lab is available at https://learn.hashicorp.com/

tutorials/terraform/locals.

https://www.terraform.io/docs/configuration/locals.html
https://www.terraform.io/docs/configuration/locals.html
https://learn.hashicorp.com/tutorials/terraform/locals
https://learn.hashicorp.com/tutorials/terraform/locals

Writing Terraform Configurations52

Using outputs to expose Terraform provisioned data
When using Infrastructure as Code tools such as Terraform, it is often necessary to retrieve output

values from the provisioned resources after code execution.

One of the uses of these output values is that they can be used after execution by other Terraform

configurations or external programs. This is often the case when the execution of the Terraform

configuration is integrated into a CI/CD pipeline.

For example, we can use these output values in a CI/CD pipeline that creates an Azure App Service

instance with Terraform and deploys the application to this Azure App Service instance. In this

example, we can have the name of the Azure App Service instance as the output of the Terraform

configuration. These output values are also very useful for transmitting information through

modules, which we will see in detail in Chapter 5, Managing Terraform State.

In this recipe, we will learn how to implement output values in Terraform configuration to get

the name of the provisioned Azure Web App in the output.

Getting ready
To proceed, we are going to add some Terraform configuration that we already have in the ex-

isting main.tf file.

The following is an extract of this existing code, which provides an app service in Azure:

...

resource "azurerm_linux_web_app" "app" {

 name = "${var.app_name}-${var.environment}"

 location = azurerm_resource_group.rg-app.location

 resource_group_name = azurerm_resource_group.rg-app.name

 service_plan_id = azurerm_service_plan.plan-app.id

 site_config {}

}

...

The source code of this recipe is available at https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/tree/main/CHAP02/sample-app.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/sample-app
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/sample-app

Chapter 2 53

How to do it…
To ensure we have an output value, we will just add the following code to the main.tf file:

output "webapp_name" {

 description = "Name of the webapp"

 value = azurerm_linux_web_app.app.name

}

How it works…
The output block of Terraform is defined by a name, webapp_name, and a value, azurerm_linux_

web_app.app.name. These refer to the name of the Azure App Service instance that is provided in

the same Terraform configuration. Optionally, we can add a description property that describes

what the output returns, which can also be very useful for autogenerated documentation.

It is, of course, possible to define more than one output in the same Terraform configuration.

The outputs are stored in the Terraform state file and are displayed when the terraform apply

command is executed, as shown in the following screenshot:

Figure 2.10: Terraform outputs

Here, we see two output values that are displayed at the end of the execution.

There’s more…
There are two ways to retrieve the values of the output to use them:

• By using the terraform output command in the Terraform CLI, which we will see in

Chapter 6, Applying a Basic Terraform Workflow, in the Exporting the output in JSON recipe

• By using the terraform_remote_state data source, which we will discuss in Using external

resources from other state files recipe

Another consideration is that we can also expose an output that contains sensitive values with

the goal of avoiding displaying their values in clear text in the console output. To do this, add

the sensitive = true property to the output. The code below creates the output for the Azure

App Service password:

Writing Terraform Configurations54

output "webapp_password" {

 description = "credential of the webapp"

 value = azurerm_linux_web_app.app.site_credential

 sensitive = true

}

The image below shows the execution of the Terraform configuration that contains this output:

Figure 2.11: Sensitive output

We can see that the value of the webapp_password output isn’t displayed in the console.

Be careful; the output value will still be in clear text in the Terraform state file.

See also
• Documentation on Terraform outputs is available at https://www.terraform.io/docs/

configuration/outputs.html.

Calling Terraform’s built-in functions
When provisioning infrastructure or handling resources with Terraform, it is sometimes necessary

to use transformations or combinations of elements provided in the Terraform configuration.

For this purpose, the language supplied with Terraform includes functions that are built in and

can be used in any Terraform configuration.

In this recipe, we will discuss how to use built-in functions to apply transformations to code.

Getting ready
To complete this recipe, we will start from scratch regarding the Terraform configuration, which

will be used to provision a resource group in Azure. This resource group will be named according

to the following naming convention:

RG-<APP NAME>-<ENVIRONMENT>

https://www.terraform.io/docs/configuration/outputs.html
https://www.terraform.io/docs/configuration/outputs.html

Chapter 2 55

The result of this transformation will return a name that should be entirely in uppercase.

The source code for this recipe is available at https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/tree/main/CHAP02/fct.

How to do it…
Perform the following steps:

1. In a new local folder, create a file called main.tf.

2. In this main.tf file, write the following code:

variable "app_name" {

 description = "Name of application"

}

variable "environement" {

 description = "Environement Name"

}

3. Finally, in this main.tf file, write the following Terraform configuration:

resource "azurerm_resource_group" "rg-app" {

 name = upper(format("RG-%s-%s",var.app-name,var.environement))

 location = "westeurope"

}

How it works…
In Step 3, we defined the property name of the resource with a Terraform format function, which

allows us to format text. In this function, we used the %s verb to indicate that it is a character string

that will be replaced, in order, by the name of the application and the name of the environment.

Furthermore, to capitalize everything inside, we encapsulate the format function in the upper

function, which capitalizes all its contents.

The result of executing these Terraform commands on this code can be seen in the following

screenshot:

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/fct
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/fct

Writing Terraform Configurations56

Figure 2.12: Terraform built-in function to capitalize text

Thus, thanks to these functions, it is possible to control the properties that will be used in the

Terraform configuration. This also allows us to apply transformations automatically, without

having to impose constraints on the user using the Terraform configuration.

See also
There are a multitude of predefined functions in Terraform. The full list can be found at https://

www.terraform.io/docs/configuration/functions.html (navigate with the left menu to see

all built-in functions):

• To read more details about the format function, refer to the documentation at https://

www.terraform.io/language/functions/format.

• To read more details about the upper function, refer to the documentation at https://

www.terraform.io/language/functions/upper.

https://www.terraform.io/docs/configuration/functions.html
https://www.terraform.io/docs/configuration/functions.html
https://www.terraform.io/language/functions/format
https://www.terraform.io/language/functions/format
https://www.terraform.io/language/functions/upper
https://www.terraform.io/language/functions/upper

Chapter 2 57

Using YAML files in Terraform configuration
In the previous recipes, we learned that to set dynamic values inside Terraform configuration,

we can use variables.

In some use cases, we must use an external source for configuration, such as JSON or YAML files,

and we can imagine that these files are provided manually by external teams or generated auto-

matically by external systems, and we can’t rewrite these files in Terraform variables.

The goal of this recipe is to show how to use a YAML file inside a Terraform configuration.

Let’s get started!

Getting ready
To complete this recipe, we have a YAML file named network.yaml with the following content:

vnet: "myvnet"

address_space: "10.0.0.0/16"

subnets:

- name: subnet1

 iprange: "10.0.1.0/24"

- name: subnet2

 iprange: "10.0.2.0/24"

This file contains the configuration of the Azure network with virtual network and subnets con-

figuration, and it’s placed in the same folder as the Terraform configuration.

In our Terraform configuration, we will use this YAML file to provision the Azure virtual network

and subnets.

The source code of this recipe is available at https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/tree/main/CHAP02/yaml.

How to do it…
Perform the following steps:

1. First, in main.tf, create a locals variable called network that calls the built-in yamldecode

Terraform function:

locals {

 network = yamldecode(file("network.yaml"))

}

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/yaml
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/yaml

Writing Terraform Configurations58

2. Then call this local.network variable and its subproperties, which are defined in the

YAML file inside the Terraform resource:

resource "azurerm_virtual_network" "vnet" {
 name = local.network.vnet
 location = azurerm_resource_group.rg.location
 resource_group_name = azurerm_resource_group.rg.name
 address_space = [local.network.address_space]
 dynamic "subnet" {
 for_each = local.network.subnets
 content {
 name = subnet.value.name
 address_prefix = subnet.value.iprange
 }
 }
}

3. Finally, run the Terraform workflow with the init, plan, and apply commands. The

following picture shows the plan execution:

Figure 2.13: Terraform uses the YAML file

Chapter 2 59

4. We can see that the Terraform configuration uses the content configuration of the YAML file.

How it works…
In Step 1, we use the built-in Terraform function yamldecode, which takes on the parameters of

the network.yaml file. This function decodes YAML content to Terraform key-value maps.

The result of this map is stored in a local variable named network.

Then in Step 2, we call this local variable by using local.network and use all the sub-keys as

object notation, defined in the YAML configuration.

That is all for the Terraform configuration. Finally, we run the terraform init, plan, and apply

Terraform commands.

The plan execution shows that Terraform uses YAML for configuration.

There’s more…
In this recipe, we saw how to decode a YAML file, but we can also encode a YAML file, from Ter-
raform to YAML, by using the built-in yamlencode Terraform function (https://www.terraform.
io/language/functions/yamlencode).

We learned an example of decoding a YAML file. With Terraform we can do the same operations
with a JSON file using the built-in jsondecode and jsonencode functions.

However, it is better to use Terraform variables for Terraform variable validation by using the
terraform validate command. Indeed, the YAML file will not be integrated into the validation
of Terraform if it is badly formatted or if some information is missing – in these instances it will

throw an error.

See also
• The documentation of the built-in yamldecode function is available at https://www.

terraform.io/language/functions/yamldecode.

• The built-in jsonencode function documentation is available at https://www.terraform.

io/language/functions/jsonencode.

• The built-in jsondecode function documentation is available at https://www.terraform.

io/language/functions/jsondecode.

Writing conditional expressions
When writing the Terraform configuration, we may need to make the code more dynamic by inte-

grating various conditions. In this recipe, we will discuss an example of a conditional expression.

https://www.terraform.io/language/functions/yamlencode
https://www.terraform.io/language/functions/yamlencode
https://www.terraform.io/language/functions/yamldecode
https://www.terraform.io/language/functions/yamldecode
https://www.terraform.io/language/functions/jsonencode
https://www.terraform.io/language/functions/jsonencode
https://www.terraform.io/language/functions/jsondecode
https://www.terraform.io/language/functions/jsondecode

Writing Terraform Configurations60

Getting ready
For this recipe, we will use the Terraform configuration we wrote in the previous recipe, the code

for which is available at https://github.com/PacktPublishing/Terraform-Cookbook-Second-

Edition/tree/main/CHAP02/fct.

We will complete this code by adding a condition to the name of the resource group. This condi-

tion is as follows: if the name of the environment is equal to Production, then the name of the

resource group will be in the form RG-<APP NAME>; otherwise, the name of the resource group

will be in the form RG-<APP NAME>-<ENVIRONMENT NAME>.

How to do it…
In the Terraform configuration of the main.tf file, modify the code of the resource group as follows:

resource "azurerm_resource_group" "rg-app" {

 name = var.environment == "Production" ? upper(format("RG-%s",var.app-
name)) : upper(format("RG-%s-%s",var.app-name,var.environment))

 location = "westeurope"

}

How it works…
Here, we added the following condition:

condition ? true assert : false assert

The result of executing Terraform commands on this code if the environment variable is equal to

Production can be seen in the following screenshot:

Figure 2.14: Conditional expression first use case

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/fct
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/fct

Chapter 2 61

If the environment variable is not equal to Development, we’ll get the following output:

Figure 2.15: Conditional expression second use case

There’s more…
One of the usual use cases for conditional expressions is to implement a pattern of features flags.

With features flags, we can make the provisioning of resources optional in a dynamic way, as

shown in the following code snippet:

resource "azurerm_application_insights" "appinsight-app" {

 count = var.use_appinsight == true ? 1 : 0

}

In this code, we have indicated to Terraform that if the use_appinsight variable is true, then

the count property is 1, which will allow us to provision one Azure Application Insights resource.

Conversely, where the use_appinsight variable is false, the count property is 0 and in this case,

Terraform does not create an Application Insights resource instance.

See also
Documentation on conditional expressions in Terraform can be found at https://www.terraform.

io/language/expressions/conditionals.

Generating passwords with Terraform
When provisioning infrastructure with Terraform, there are some resources that require passwords

in their properties, such as account credentials, VMs, and database connection strings.

To ensure better security by not writing passwords as plaintext in the configuration, you can use

a random Terraform provider, which allows you to generate a random string that can be used as

a password.

https://www.terraform.io/language/expressions/conditionals
https://www.terraform.io/language/expressions/conditionals

Writing Terraform Configurations62

In this recipe, we will discuss how to generate a password with Terraform and assign it to a

resource.

Getting ready
In this recipe, we need to provision a VM in Azure that will be provisioned with an administrator

password generated dynamically by Terraform.

To do this, we will use an already existing Terraform configuration that provisions a VM in Azure.

The source code for this recipe is available at https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/tree/main/CHAP02/password.

How to do it…
Perform the following steps:

1. In the Terraform configuration file for the VM, add the following code:

resource "random_password" "password" {

 length = 16

 special = true

 override_special = "_%@"

}

2. Then, in the code of the resource itself, modify the password property with the following

code:

resource "azurerm_linux_virtual_machine" "myterraformvm" {

 name = "myVM"

 location = "westeurope"

 resource_group_name = azurerm_resource_group.myterraformgroup.name

 computer_name = "vmdemo"

 admin_username = "uservm"

 admin_password = random_password.password.result

....

}

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/password
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/password

Chapter 2 63

How it works…
In Step 1, we added the Terraform random_password resource from the random provider, which al-

lows us to generate strings according to the properties provided. These will be sensitive, meaning

that they’re treated as sensitive in the CLI by Terraform, so they will not be displayed to the user.

Then, in Step 2, we used its result (with the result property) in the password property of the VM.

The result of executing the terraform plan command on this code can be seen in the following

screenshot:

Figure 2.16: Generating a password with Terraform

As we can see, the result is (sensitive value).

See also
• To find out more about the random provider, read the following documentation: https://

registry.terraform.io/providers/hashicorp/random/.

Please note that the fact a property is sensitive in Terraform means that it cannot

be displayed when using the Terraform plan and apply commands in the console

output display.

On the other hand, it will be present in clear text in the Terraform state file.

https://registry.terraform.io/providers/hashicorp/random/
https://registry.terraform.io/providers/hashicorp/random/

Writing Terraform Configurations64

• Documentation regarding sensitive data in Terraform state files is available at https://

www.terraform.io/docs/state/sensitive-data.html.

Managing Terraform resource dependencies
One of Terraform’s main features is to allow the parallelization of operations while considering

resource dependencies.

In this recipe, we will learn how to create dependencies between resources. We will do this using

both implicit and explicit dependencies.

Let’s get started!

Getting ready
To start this recipe, we will use the following Terraform configuration to provision an Azure

resource group and, inside it, one Azure virtual network.

Here is the basic configuration:

resource "azurerm_resource_group" "rg" {

 name = "rgdep"

 location = "westeurope"

}

resource "azurerm_virtual_network" "vnet" {

 name = "vnet"

 location = "westeurope"

 resource_group_name = "rgdep"

 address_space = ["10.0.0.0/16"]

}

The problem with the above configuration is that there are no Terraform dependencies between

the resource group and the virtual network. Since Terraform executes its operations according to

its dependency graph calculation, during the apply execution the virtual network can be created

before the resource group. However, this isn’t acceptable because the virtual network must be

created after the resource group.

The goal of this recipe is to learn how to create dependencies between the Azure virtual network

and the Azure resource group.

https://www.terraform.io/docs/state/sensitive-data.html
https://www.terraform.io/docs/state/sensitive-data.html

Chapter 2 65

Find out more about the concept of dependencies at https://www.terraform.io/language/

resources/behavior#resource-dependencies.

The source code of this recipe is available at https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/tree/main/CHAP02/dep.

How to do it…
Perform the following steps:

1. To create implicit dependencies, update the azurerm_virtual_network resource with

the following code:

resource "azurerm_virtual_network" "vnet" {

 name = "vnet"

 location = "westeurope"

 resource_group_name = azurerm_resource_group.rg.name

 address_space = ["10.0.0.0/16"]

}

2. To create explicit dependencies, update the azurerm_virtual_network resource with

the following code:

resource "azurerm_virtual_network" "vnet" {

 name = "vnet"

 location = "westeurope"

 resource_group_name = "rgdep"

 address_space = ["10.0.0.0/16"]

 depends_on = [azurerm_resource_group.rg]

}

How it works…
In the first configuration, we use an implicit dependency. By using the resource_group_name =

azurerm_resource_group.rg.name property, Terraform creates a dependency that is waiting for

the creation of the resource so it can know its name and pass it to the virtual network.

In the second configuration, we use an explicit dependency by using the depends_on meta-ar-

gument, which contains the list of resources that must be created before this current resource.

Here, we explicitly set that the Azure resource group must be created before creating the Azure

virtual network.

https://www.terraform.io/language/resources/behavior#resource-dependencies
https://www.terraform.io/language/resources/behavior#resource-dependencies
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/dep
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/dep

Writing Terraform Configurations66

Finally, we execute the terraform apply command. The following image shows that this exe-

cution has dependencies:

Figure 2.17: Terraform uses implicit and explicit dependency

We can see the order of resource creation: the Azure resource group [1] is created before the Azure

virtual network [2].

And when we run the terraform destroy command, the Azure virtual network is destroyed

before the Azure resource group.

There’s more…
If we have the choice between using an implicit or explicit dependency, it’s recommended to

use an implicit dependency as explained in this documentation: https://www.terraform.io/

language/meta-arguments/depends_on#processing-and-planning-consequences

It is possible to display the Terraform resources graph’s dependencies by using the terraform

graph command, which we will learn about in detail in Chapter 6, Applying a Basic Terraform

Workflow, in the Generating the graph dependencies recipe.

See also
• The Terraform tutorial on dependencies is available at https://learn.hashicorp.com/

tutorials/terraform/dependencies.

• The documentation on the depends_on meta-argument is available at https://www.

terraform.io/language/meta-arguments/depends_on.

Adding custom pre and postconditions
In a previous recipe, Manipulating variables, we learned that it is possible to add condition vali-

dation inside the variable definition.

In Terraform version 1.2 and newer, it’s possible to add custom validation directly in resources,

modules, or data sources with preconditions and postconditions.

https://www.terraform.io/language/meta-arguments/depends_on#processing-and-planning-consequences
https://www.terraform.io/language/meta-arguments/depends_on#processing-and-planning-consequences
https://learn.hashicorp.com/tutorials/terraform/dependencies
https://learn.hashicorp.com/tutorials/terraform/dependencies
https://www.terraform.io/language/meta-arguments/depends_on
https://www.terraform.io/language/meta-arguments/depends_on

Chapter 2 67

These customs validations allow Terraform to set some custom rules during the execution of

terraform plan. The precondition will be checked just before the rendering of the plan and the

postcondition will be checked just after the rendering.

Let’s get started!

Getting ready
To complete this recipe, we will start with this basic Terraform configuration:

resource "azurerm_virtual_network" "vnet" {

 name = "vnet"

 location = azurerm_resource_group.rg.location

 resource_group_name = azurerm_resource_group.rg.name

 address_space = [var.address_space]

}

The above Terraform configuration creates an Azure virtual network.

The first check that we want to perform is to be sure that the address_space variable’s value is

IP mask /16.

The second check is to verify that the region (location) of the virtual network is "westeurope".

The source code of this recipe is available at https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/tree/main/CHAP02/prepostcond.

How to do it…
The following step shows you how to perform the first check, which is the verification of the IP

address range:

1. Update the Terraform configuration of the Azure virtual network with the code below:

resource "azurerm_virtual_network" "vnet" {
…..
 address_space = [var.address_space]
 lifecycle {
 precondition {
 condition = cidrnetmask(var.address_space) == "255.255.0.0"
 error_message = "The IP Range must be /16"
 }
 }
}

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/prepostcond
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/prepostcond

Writing Terraform Configurations68

2. Then, add the second check to verify the location by adding this configuration in the

Azure virtual network:

resource "azurerm_virtual_network" "vnet" {

 name = "vnet"

 location = azurerm_resource_group.rg.location

 resource_group_name = azurerm_resource_group.rg.name

 address_space = [var.address_space]

 lifecycle {

 precondition {

 condition = cidrnetmask(var.address_space) == "255.255.0.0"

 error_message = "The IP Range must be /16"

 }

 postcondition {

 condition = self.location == "westeurope"

 error_message = "Location must be westeurope"

 }

 }

}

3. Finally, run the Terraform workflow and check that no Terraform error is displayed in

the console output.

How it works…
In Step 1, we added the first custom check, which corresponds to the precondition that will be

run just before the plan. The precondition block is new inside the lifecycle block metadata.

Let’s see this precondition in detail:

precondition {

 condition = cidrnetmask(var.address_space) == "255.255.0.0"

 error_message = "The IP Range must be /16"

}

The precondition block contains two properties:

1. The condition, that is, the code for the check. Here, we check that the cidrmask of the value

of the address_mask variable is equal to “255.255.0.0", that is, that the IP range is /16.

2. The error_message, that is, the error message that is displayed in the console output if

the check returns false.

Chapter 2 69

To test this precondition, if we set the value of the address_space variable to "10.0.0.0/24", the

terraform plan execution returns this output:

Figure 2.18: Precondition custom validation error

The error message is displayed and the terraform plan command doesn’t continue.

Then in Step 2, we add the check for testing the region (the data center’s location) of the Azure

virtual network, which must be equal to “westeurope". To do this, we add a postcondition block

inside the lifecycle metadata with the following configuration:

postcondition {
 condition = self.location == "westeurope"
 error_message = "Location must be West Europe"
}

In the configuration above, we set the condition property by using the self keyword to refer to

the current resource (in this case this is the Azure virtual network) and we set the error message.

To test this postcondition, we set the location to "westus" and we get this terraform plan

output:

Figure 2.19: Postcondition custom validation error

Note that the self keyword can be used only on postconditions, at the moment that

all properties are determined, which is only after the terraform plan command

has been run.

Writing Terraform Configurations70

We can see that the error message is displayed.

See also
• The documentation of the pre- and postconditions is available at https://www.terraform.

io/language/meta-arguments/lifecycle#custom-condition-checks.

• Here’s a tutorial on pre- and postconditions on modules: https://learn.hashicorp.com/

tutorials/terraform/custom-conditions.

• Here’s a blog post about pre and postconditions: https://spacelift.io/blog/terraform-

precondition-postcondition.

• Ned Bellavance’s video on pre and postconditions is available here: https://www.youtube.

com/watch?v=55ZLu8tSnvk.

Using checks for infrastructure validation
In the previous recipe, Adding custom pre and postconditions, we learned that it is possible to add

pre- or postcondition validation inside the resource configuration.

In Terraform version 1.5 and newer, it’s possible to add infrastructure validation directly in the

Terraform configuration, which allows us to check that the provisioned infrastructure is working

as intended.

Let’s get started!

Getting ready
In this recipe, we will provision a new Azure App Service instance using a Terraform configuration

and inside this same Terraform configuration, we will check that the provisioned App Service

instance is running and returns an HTTP Status code equal to 200.

So for this recipe, we will start with the Terraform configuration available at https://github.

com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/sample-app,

which we will copy into another folder called check.

Note that in this recipe we will not go into detail about the Terraform configuration

for the Azure App Service. We will only look directly at the availability check of the

App Service.

https://www.terraform.io/language/meta-arguments/lifecycle#custom-condition-checks
https://www.terraform.io/language/meta-arguments/lifecycle#custom-condition-checks
https://learn.hashicorp.com/tutorials/terraform/custom-conditions
https://learn.hashicorp.com/tutorials/terraform/custom-conditions
https://spacelift.io/blog/terraform-precondition-postcondition
https://spacelift.io/blog/terraform-precondition-postcondition
https://www.youtube.com/watch?v=55ZLu8tSnvk
https://www.youtube.com/watch?v=55ZLu8tSnvk
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/sample-app
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/sample-app

Chapter 2 71

In the recipe we will learn how to check the App Service instance’s availability. The source code

of this recipe is available here: https://github.com/PacktPublishing/Terraform-Cookbook-

Second-Edition/tree/main/CHAP02/check.

How to do it…
To check the provisioned infrastructure, perform the following steps:

1. In the main.tf file that is copied into the check folder, add the following Terraform con-

figuration:

check "response" {

 data "http" "webapp" {

 url = "https://${azurerm_linux_web_app.app.default_
hostname}"

insecure=True

 }

 assert {

 condition = data.http.webapp.status_code == 200

 error_message = "Web app response is ${data.http.webapp.status_
code}"

 }

}

2. In this folder, execute the basic Terraform workflow by running the terraform init,

plan, and apply commands.

How it works…
In Step 1, we added the check block, which contains:

• A data HTTP source that performs an HTTP GET on the given URL. Here, we use the

default hostname of the web app in the URL property. For more details about the data

HTTP source block, refer to the documentation here: https://registry.terraform.io/

providers/hashicorp/http/latest/docs/data-sources/http.

• An assert block that evaluates the response of the data source by checking that the HTTP

code is equal to 200 (status code ok). If this evaluation returns false, then the assert

block displays the configured error_message.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/check
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP02/check
https://registry.terraform.io/providers/hashicorp/http/latest/docs/data-sources/http
https://registry.terraform.io/providers/hashicorp/http/latest/docs/data-sources/http

Writing Terraform Configurations72

In Step 2, we run the Terraform workflow to create the Azure web app and check its availability.

The following image shows the output of the terraform apply command:

Figure 2.20: Check infrastructure validation is successful

There’s more…
• Unlike the pre and postconditions, checking with the check block does not block resource

provisioning if the assertion returns false. Instead, just a warning message in the output

is displayed as shown in the following screenshot:

Figure 2.21: Check infrastructure validation on error with warning message

• Additionally, in this recipe, we demonstrated a check sample using a data source. However,

this data source isn’t mandatory and its use will depend on the specific requirements of

your infrastructure checks. For more details about the check block, read the tutorial at
https://developer.hashicorp.com/terraform/tutorials/configuration-language/

checks.

See also
• The check block documentation is available at https://developer.hashicorp.com/

terraform/language/checks.

https://developer.hashicorp.com/terraform/tutorials/configuration-language/checks
https://developer.hashicorp.com/terraform/tutorials/configuration-language/checks
https://developer.hashicorp.com/terraform/language/checks
https://developer.hashicorp.com/terraform/language/checks

Chapter 2 73

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to

the author, and learn about new releases – follow the QR code below:

https://packt.link/cloudanddevops

https://packt.link/cloudanddevops

3
Scaling Your Infrastructure with
Terraform

In the previous chapter, we learned the basics of how to use Terraform language primitives to

provision infrastructure efficiently. One of the advantages of Infrastructure as Code (IaC) is that

it allows you to provision infrastructure on a large scale much faster than manual provisioning.

When writing IaC, it is also important to apply the development and clean code principles that

developers have formulated over the years.

One of these principles is Don’t Repeat Yourself (DRY), which means not duplicating code. The

following link explains the DRY principles in detail: https://thevaluable.dev/dry-principle-

cost-benefit-example/.

In this chapter, we will learn how to use expressions from the Terraform language, such as count,

maps, collections, and array, and the use of the dynamic block.

We will learn that these expressions allow us to write simple Terraform configurations to deploy

infrastructure in multiple environments and provide it with multiple resources, without having

to duplicate code.

In this chapter, we will cover the following recipes:

• Provisioning infrastructure in multiple environments

• Provisioning multiple resources with the count meta-argument

• Using maps

• Looping over a map of objects

https://thevaluable.dev/dry-principle-cost-benefit-example/
https://thevaluable.dev/dry-principle-cost-benefit-example/

Scaling Your Infrastructure with Terraform76

• Generating multiple blocks with the dynamic block

• Filtering maps

Technical requirements
This chapter does not have any technical prerequisites. However, it is advisable to have already

read the previous chapter.

The source code of this chapter is available at https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/tree/main/CHAP03/.

Check out the following video to see the code in action: https://bit.ly/2R5GSBN.

Provisioning infrastructure in multiple environments
In the same way that we deploy an application to several environments (development, QA, and

production), we also need to provision infrastructure in these different environments to support

these applications.

The question that often arises is how to write a maintainable and scalable Terraform configura-

tion that would allow us to provision infrastructure for multiple environments.

To answer this question, it is important to know that there are several solutions for organizing

Terraform configuration topologies that will allow this provisioning.

In this recipe, we will look at two Terraform configuration structure hierarchies that will allow

us to deploy an Azure infrastructure to multiple environments.

Getting ready
To fully understand this recipe, you will need to have a good understanding of the notion of

variables, as discussed in Chapter 2, Writing Terraform Configurations, in the recipe Manipulating

variables.

The goal of the Terraform configuration that we are going to write is to deploy an Azure app

service for a single environment. Its code is distributed in the following files:

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP03/
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP03/
https://bit.ly/2R5GSBN

Chapter 3 77

Figure 3.1: Terraform configuration structure

In the diagram above, we can see the following:

• The main.tf file contains the Terraform configuration of the resources to be provisioned.

• The variables.tf file contains the declaration of the variables.

• The terraform.tfvars file contains the values of the variables.

The Terraform source code for this basic example is available at https://github.com/
PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP03/myApp/simple-

env.

What is important in this recipe is not the content of the configuration, but the folder structure

and the Terraform commands to be executed.

How to do it…
Follow these steps to implement the first Terraform configuration folder hierarchy:

1. In an empty folder, create a separate directory per environment: one for dev, one for QA,

and one for production.

2. Copy the base Terraform configuration into each of these directories identically.

3. Then, in each of these directories, modify the values of the terraform.tfvars file with

the information that is specific to the environment. Here is an extract of each of these

terraform.tfvars files:

resource_group_name = "RG-Appdemo"

service_plan_name = "Plan-App"

environment = "DEV" #name of the environment to change

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP03/myApp/simple-env
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP03/myApp/simple-env
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP03/myApp/simple-env

Scaling Your Infrastructure with Terraform78

4. Finally, to provision each of these environments, inside each of these directories, execute

the basic Terraform execution workflow by running the terraform init, terraform plan

-out="out.tfplan", and terraform apply out.tfplan commands.

Follow these steps to implement the second hierarchy of the Terraform configuration folder:

1. In the folder that contains our basic Terraform configuration, create three subdirecto-

ries: dev, test, and production.

2. Then, in each of these subdirectories, copy only the terraform.tfvars base file, in which

we modify the variables with the correct values of the target environments. The following

is an extract from each terraform.tfvars file:

resource_group_name = "RG-Appdemo"

service_plan_name = "Plan-App"

environment = "DEV" #name of the environment to change

3. Finally, to provision each of these environments, go to the folder of the Terraform config-

uration and execute the following commands:

terraform init

terraform plan -out="out.tfplan"

terraform apply out.tfplan

terraform.tfvars"

How it works…
In the first topology, we duplicate the same Terraform configuration for each environment and

just change the values of the variables in the terraform.tfvars file of each folder.

By doing this, we get the following folder structure:

Chapter 3 79

Figure 3.2: Terraform configuration structure by environment

Terraform is then executed with the basic Terraform commands. This structure can be used if

the infrastructure does not contain the same resources for each environment. This is because

duplicating all the Terraform configurations in each environment folder offers us the advantage

of being able to easily add or remove resources for one environment without affecting the other

environments.

However, this is duplicate code, which implies that this code must be maintained several times

(we must modify the infrastructure for all environments, make changes to the Terraform con-

figuration, and so on).

Scaling Your Infrastructure with Terraform80

In the second topology, we keep the Terraform configuration in the common base for all environ-

ments and have just one terraform.tfvars file per environment, named after the name of the

environment. By doing this, we get the following folder structure:

Figure 3.3: Terraform configuration structure with environment configuration

As for the execution of the Terraform configuration, we have added the -var-file option to

the plan and apply commands. This structure can be used if the infrastructure is the same for

all environments but only the configuration changes.

The advantage of this hierarchy is that we have only one common piece of Terraform resource

code (in the main.tf and variables.tf files), and just one terraform.tfvars file to fill in, so we

will have to make a few changes in case of code evolution or a new environment.

On the other hand, the changes that were made to the Terraform main.tf configuration will apply

to all the environments, which in this case requires more testing and verification.

Be careful though; the simple use of these tfvars files as described in this recipe

implies that no matter the environment, the Terraform State file will be the same,

which may impact your provisioned infrastructure.

It is, therefore, necessary to add the configuration of the Terraform State backend

with a file <env>-backend.tfvars (which will be used as an argument to the

terraform init command) to this file structure. For more information, read the

documentation here: https://developer.hashicorp.com/terraform/cli/

commands/init#backend-initialization.

https://developer.hashicorp.com/terraform/cli/commands/init#backend-initialization
https://developer.hashicorp.com/terraform/cli/commands/init#backend-initialization

Chapter 3 81

See also
• There are other solutions to Terraform configuration folder structure topologies, as we

will discuss in Chapter 7, Sharing Terraform Configuration with Modules.

• Documentation regarding the -var-file option of the plan and apply commands is

available at https://www.terraform.io/docs/commands/plan.html.

• An article explaining the best practices surrounding Terraform configuration can be found

at https://www.terraform-best-practices.com/code-structure.

• The following blog post explains the folder structure for Terraform configuration for

production: https://www.hashicorp.com/blog/structuring-hashicorp-terraform-

configuration-for-production.

Provisioning multiple resources with the count meta-
argument
In many corporate scenarios, there is a need to provide infrastructure and to consider the so-

called horizontal scalability, that is, N identical resources that will reduce the load on individual

resources (such as compute instances) and the application.

The challenges we will have to face are as follows:

• Writing Terraform configuration that does not require duplicate code for each instance

of the identical resources to be provisioned

• Being able to rapidly increase or reduce the number of instances of these resources

We will see in this recipe how Terraform makes it possible to provision N instances of resources

quickly and without the duplication of code.

Getting ready
To begin, we will use a Terraform configuration that allows us to provision one Azure app service,

which is in a main.tf file and of which the following is an extract:

resource "azurerm_linux_web_app" "app" {

 name = "${var.app_name}-${var.environment}"

 location = azurerm_resource_group.rg-app.location

 resource_group_name = azurerm_resource_group.rg-app.name

 app_service_plan_id = azurerm_app_service_plan.plan-app.id

}

https://www.terraform.io/docs/commands/plan.html
https://www.terraform-best-practices.com/code-structure
https://www.hashicorp.com/blog/structuring-hashicorp-terraform-configuration-for-production
https://www.hashicorp.com/blog/structuring-hashicorp-terraform-configuration-for-production

Scaling Your Infrastructure with Terraform82

The purpose of this recipe is to apply and modify this Terraform configuration to provision N

Azure App Service instances identical to the one already described in the base code, with just a

slight difference in the names, which use an incremental index number starting at 1.

The source code of this recipe is available at https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/tree/main/CHAP03/count.

How to do it…
To create multiple identical resources, perform the following steps:

1. In the variables.tf file, we add the following variable:

variable "webapp_count" {

 description = "Number of App to create"

}

2. In the terraform.tfvars file, we give a value for this new variable as follows:

webapp_count = 2

3. In the main.tf file, we modify the resource code of azurerm_linux_web_app in the fol-

lowing way:

resource "azurerm_linux_web_app" "app" {

 count = var.webapp_count

 name = "${var.app_name}-${var.environment}-${random_string.random.
result}-${count.index+1}"

 location = azurerm_resource_group.rg.location

 resource_group_name = azurerm_resource_group.rg.name

 service_plan_id = azurerm_service_plan.plan.id

…

}

4. (Optionally) in a new outputs.tf file, we add the output values with the following code:

output "app_service_names"{

 value = azurerm_linux_web_app.app.*.name

}

How it works…
In Step 1, we add an nb_webapp variable, which will contain the number of Azure App Service

instances to write, which we then instantiate in Step 2 in the terraform.tfvars file.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP03/count
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP03/count

Chapter 3 83

Then in Step 3, in the azurerm_linux_web_app resource, we add the Terraform count meta-argu-

ment (which is available for all resources and data Terraform blocks) , which takes the nb_webapp

variable created previously as a value.

Moreover, in the name of the azurerm_linux_web_app resource, we add the suffix with the current

index of the count that we increment by 1 (starting from 1, and not from 0, i.e., we reflect the fact

that count indexes start from 0), using the Terraform instruction count.index + 1.

Finally, and optionally, in Step 4, we can add an output that will contain the names of the App

Service instances that have been provisioned.

When executing the terraform plan command of this recipe with the nb_webapp variable equal

to 2, we can see that the two App Service instances have been provisioned.

The following screenshots show an extract of this terraform plan command, with the first image

displaying the preview changes for the first Azure App Service:

Figure 3.4: Terraform count index

The following screenshot, which is the continuation of the terraform plan command, displays

the preview changes of the second App Service instance:

Figure 3.5: Second Terraform count index

Scaling Your Infrastructure with Terraform84

Figure 3.6: Terraform output using count

As you can see in the output, we have a list containing the names of the two generated App Ser-

vice instances.

There’s more…
As we discussed in Chapter 2, Writing Terraform Configurations, in the recipe Manipulating vari-

ables, we can also use the -var option of the terraform plan and apply commands to very easily

increase or decrease the number of instances of this resource, without having to modify the

Terraform configuration.

In our case, for example, we could use the following plan and apply commands:

terraform plan -var "webapp_count=5" -out out.tfplan

terraform apply out.tfplan

However, with this option, we lose one of the major benefits of IaC (where everything is written

in code, and thus, you have a history of the changes made to the infrastructure).

Moreover, it should be noted that lowering the webapp_count value removes the last resources

from the index, and it is not possible to remove resources that are in the middle of the index –

therefore, it is best to keep all resource instances with count the same (e.g., don’t use conditional

logic within other attributes based on count.index). This can be addressed using the for_each

expression, which we will see in the Looping over a map of objects recipe in this chapter.

And when the changes are applied, the output is displayed:

Chapter 3 85

In addition, thanks to the count meta-argument we have just seen and the condition expressions

we studied in the Writing conditional operations recipe of Chapter 2, Writing Terraform Configu-

rations, we can make the provisioning of resources optional in a dynamic way, as shown in the

following code snippet:

resource "azurerm_application_insights" "appinsight_app" {

 count = var.use_appinsight == true ? 1 : 0

}

In this code, we have indicated to Terraform that if the use_appinsight variable is true, then

the count meta-argument value is 1, which will allow us to provision one Azure Application

Insights resource. In the opposite case, where the use_appinsight variable is false, the count

meta-argument value is 0, and in this case, Terraform does not provision an Application Insights

resource instance.

And so, Terraform configuration can be used generically for all environments or all applications

and make their provisioning dynamic and conditional, according to variables.

This technique, also called feature flags, is applied in the development world, but we see here

that we can also apply it to IaC by using this technique to provision N identical instances without

duplicate code.

As we have seen in this recipe, the count meta-argument allows you to quickly provision several

resources that are identical in their characteristics.

We will study, in the Looping over object collections recipe of this chapter, how to provision several

resources of the same nature, but with different properties.

See also
For more information on the count meta-argument, refer to the documentation at https://www.

terraform.io/language/meta-arguments/count.

Using maps
So far in this book, we have studied sample code using standard variable types (string, numeric, or

Boolean). However, the Terraform language has other types of variables such as lists, sets, maps,

tuples, and even more complex object variables.

Among these variable types are maps, which are represented by a collection of key-value elements

and are widely used to write dynamic and scalable Terraform configurations.

https://www.terraform.io/language/meta-arguments/count
https://www.terraform.io/language/meta-arguments/count

Scaling Your Infrastructure with Terraform86

Maps can have several uses, which are as follows:

• To put all the properties of a block in a Terraform resource into a single variable

• To have a key-value reference table of elements that will be used in the Terraform con-

figuration

• To declare data for multiple instances of the same resource, which will then iterate over

the map via for_each

In this recipe, we will see a simple and practical case of using a map variable. For this recipe, the

role of map is to dynamically define all the tags of an Azure resource, but it can be applied to any

Terraform resource provider.

Getting ready
For this recipe, we start with a basic Terraform configuration that allows us to provision a resource

group and an App Service instance in Azure.

The source code for this recipe is available at https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/tree/main/CHAP03/map.

In this recipe, we will illustrate the use of maps in two use cases, which are as follows:

• The implementation of the tags of this resource group

• The app settings properties of App Service

How to do it…
Perform the following steps:

1. In the variables.tf file, we add the following variable declarations:

variable "tags" {

 type = map(string)

 description = "Tags"

 default = {}

}

variable "app_settings" {

 type = map(string)

 description = "App settings of the Web App"

 default = {}

}

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP03/map
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP03/map

Chapter 3 87

2. Then, in the terraform.tfvars file, we add this code:

tags = {

 ENV = "DEV1"

 CODE_PROJECT = "DEMO"

}

app_settings = {

 KEY1 = "VAL1"

}

3. Finally, we modify the main.tf file with the following code:

resource "azurerm_resource_group" "rg-app" {

 name = "${var.resource_group_name}-${var.environement}-${random_
string.random.result}"

 location = var.location

 tags = var.tags

}

resource "azurerm_linux_web_app" "app" {

 name = "${var.app_name}-${var.environment}-${random_string.random.
result}"

 location = azurerm_resource_group.rg-app.location

 resource_group_name = azurerm_resource_group.rg-app.name

 service_plan_id = azurerm_service_plan.plan-app.id

 site_config {}

}

How it works…
In Step 1, we have declared two variables for which we have specified their type, which is map

(string). It will be composed of a key, which has a value of type string. Moreover, given that

these variables can be omitted and their values are, therefore, optional, we have assigned them

an empty default value, which is {} for map.

Then, in Step 2, we defined the values of these two variables with the tags for the resources, as

well as the app_settings for App Service.

Scaling Your Infrastructure with Terraform88

Finally, in Step 3, we use these variables in the Terraform configuration that provides the Resource

Group and the App Service.

The following screenshot shows a sample (extract) of the execution of the terraform plan com-

mand in this recipe:

Figure 3.7: Terraform key-value usage

We can see in the previous screenshot that the app_settings and tags properties are populated

with the values of the map variables.

There’s more…
To go further, we can see that it is also possible to merge maps; that is, to merge two maps, we

can use the merge function, which is native to Terraform.

The following steps show how to use this function to merge the app settings properties of App

Service:

1. In the variables.tf file, we create a custom_app_settings variable that will contain the

custom app settings provided by the user:

variable "custom_app_settings" {

 description = "Custom app settings"

 type = map(string)

 default = {}

}

Chapter 3 89

2. In the terraform.tfvars file, we instantiate this variable with a custom map:

custom_app_settings = {

 APP = "1"

}

3. Finally, in the main.tf file, we use a local variable to define the default app settings, and

in the azurerm_linux_web_app resource, we use the merge function to merge the default

app settings with the custom app settings:

resource "azurerm_linux_web_app" "app" {

 name = "${var.app_name}-${var.environement}"

 location = azurerm_resource_group.rg-app.location

 resource_group_name = azurerm_resource_group.rg-app.name

 service_plan_id = azurerm_service_plan.plan-app.id

 site_config {}

}

In the preceding code, we have defined default app settings properties for Azure App Service, and

the user can enrich these settings if needed by adding custom app settings.

In this recipe, we studied the use of maps. But if we want to use more complex data structures

with values of different types, then we will use object variables, as explained in the documentation

at https://www.terraform.io/language/expressions/type-constraints#complex-types.

In the following recipe, we will discuss how to iterate on the list of key-value elements that con-

stitute a map variable.

See also
The documentation relating to the merge function is available at https://www.terraform.io/

docs/configuration/functions/merge.html.

Looping over a map of objects
We have seen in the previous recipes of the chapter the use of the count property, which allows

us to provision N identical resources, as well as the use of map variables, which allow values to

be of type object.

In this recipe, we will discuss how to provision N resources of the same type but with different

properties, using the loop functionalities included in Terraform since version 0.12.

https://www.terraform.io/language/expressions/type-constraints#complex-types
https://www.terraform.io/docs/configuration/functions/merge.html
https://www.terraform.io/docs/configuration/functions/merge.html

Scaling Your Infrastructure with Terraform90

Getting ready
We’ll start with a basic Terraform configuration that allows you to deploy a single App Service

in Azure.

The basic Terraform configuration is as follows:

resource "azurerm_app_service" "app" {

 name = "${var.app_name}-${var.environement}"

 location = azurerm_resource_group.rg-app.location

 resource_group_name = azurerm_resource_group.rg-app.name

 app_service_plan_id = azurerm_app_service_plan.plan-app.id

}

The source code for this recipe is available at https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/tree/main/CHAP03/list_map.

How to do it…
Perform the following steps:

1. In the variables.tf file, we add the following Terraform configuration:

variable "web_apps" {

 description = "List of App Service to create"

 type = map(object({

 name = string

 location = optional(string, "westeurope")

 serverdatabase_name = string

}))

}

2. In the terraform.tfvars file, we add the following configuration:

web_apps = {

 webapp1 = {

 "name" = "webappdemobook1"

 "location" = "westeurope"

 "serverdatabase_name" = "server1"

 },

 webapp2 = {

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP03/list_map
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP03/list_map

Chapter 3 91

 "name" = "webapptestbook2"

 "serverdatabase_name" = "server2"

 }

}

3. In the main.tf file, we modify the code of App Service with the following configuration:

resource "azurerm_linux_web_app" "app" {

 for_each = var.web_apps

 name = each.value["name"]

 location = lookup(each.value, "location", "westeurope")

 resource_group_name = azurerm_resource_group.rg-app.name

 service_plan_id = azurerm_service_plan.plan-app.id

 connection_string {

 name = "DataBase"

 type = "SQLServer"

 value = "Server=${each.value["serverdatabase_name"]};Integrated
Security=SSPI"

 }

}

4. Finally, in the outputs.tf file, we add the following code:

output "app_service_names" {

 value = [for app in azurerm_linux_web_app.app : app.name]

}

How it works…
In Step 1, we declared a new variable that was a map of objects and contained the details of each

map property, including the following:

• The name is type string.

• The location is optional, of type string, and of any value, provided the default value is

westeurope.

• The serverdatabase_name is type string.

Scaling Your Infrastructure with Terraform92

In Step 2, we instantiate this variable with a map of objects that will be the properties of each app

service. In this list, we have two App Service instances in which we specify the properties in the

form of a map with the name, the version of the framework, the Azure region location, and the

name of the database server of the application that will be used in the app service.

In Step 3, in the azurerm_linux_web_app resource, we use the for_each expression, which allows

us to loop on maps.

Then, for each property of the azurerm_linux_web_app resource, we can use the short expres-

sion each.value["<property name>"], or the lookup function integrated into Terraform that

takes in the following parameters:

• The current element of the for_each expression with each.value, thus the line of the list

• The name of the property of the map, which in our sample is location

Then comes the third parameter of this lookup function, which is not mandatory. It allows you

to specify the value to use if the property is not present in the map. In the location property, we

used the Azure West Europe region (westeurope) as the default value.

Finally, in Step 4, we created an output that uses the for expression to iterate on the list of re-

sources that have been provisioned and export their names as output.

The result of this output is shown in the following screenshot:

Figure 3.8: Terraform output of the for expression

In the previous screenshot, we can see the result of the output, which displays the name of the

two provisioned Azure App Service instances in the console.

There’s more…
In this recipe, we have learned expressions and functions from the Terraform language that allow

us to provision resource collections.

Chapter 3 93

I advise you to take a good look at the articles and documentation on the for expression and

for_each meta-argument. The lookup and element functions can be handy. However, whenever

possible, it is recommended to use the native syntax (such as var_name[42] and var_map["key"])

to access elements of a map, list, or set.

It is obvious that in this recipe, we have used simple resources such as Azure App Service, but

these methods can also be applied to more property-rich resources such as virtual machines.

See also
• Documentation on loops with for and for_each is available at https://www.terraform.

io/language/meta-arguments/for_each, and the article on these loops can be found

at https://www.hashicorp.com/blog/hashicorp-terraform-0-12-preview-for-and-

for-each/.

• Read this documentation to see the difference between the count and for_each meta-ar-

guments: https://www.terraform.io/language/meta-arguments/count#when-to-use-

for_each-instead-of-count.

• The documentation on the lookup function is available at https://www.terraform.io/

docs/configuration/functions/lookup.html.

Generating multiple blocks with the dynamic block
Terraform resources are defined by the following elements:

• Properties that are in the form property name = value, which we have seen several

times in this book

• Blocks that represent a grouping of properties, such as the site_config block inside

the azurerm_linux_web_app resource

Depending on the Terraform resource, a block can be present once or even multiple times in the

same resource, such as the security_rule block inside the azurerm_network_security_group re-

source (see the documentation, for example, at https://registry.terraform.io/providers/

hashicorp/azurerm/latest/docs/resources/network_security_group).

One of the great features of Terraform is the dynamic block, which allows us to loop the blocks

in resources.

In this recipe, we will see how to use the dynamic block to provision an azurerm_network_

security_group resource in Azure, which contains a list of security rules.

https://www.terraform.io/language/meta-arguments/for_each
https://www.terraform.io/language/meta-arguments/for_each
https://www.hashicorp.com/blog/hashicorp-terraform-0-12-preview-for-and-for-each/
https://www.hashicorp.com/blog/hashicorp-terraform-0-12-preview-for-and-for-each/
https://www.terraform.io/language/meta-arguments/count#when-to-use-for_each-instead-of-count
https://www.terraform.io/language/meta-arguments/count#when-to-use-for_each-instead-of-count
https://www.terraform.io/docs/configuration/functions/lookup.html
https://www.terraform.io/docs/configuration/functions/lookup.html
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/network_security_group
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/network_security_group

Scaling Your Infrastructure with Terraform94

Getting ready
To get started, we don’t need any basic Terraform configuration. In this recipe, we will use a Ter-

raform file that allows us to create an Azure resource group, in which we will create a network

security group.

The source code for this recipe is available at https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/tree/main/CHAP03/dynamics.

How to do it…
To use the dynamic block, perform the following steps:

1. In the variables.tf file, we add the following code:

variable "nsg_rules" {
 description = "List of NSG rules"
 type = list(object({
 name = string
 priority = number
 direction = string
 access = string
 protocol = string
 source_port_range = string
 destination_port_range = string
 source_address_prefix = string
 destination_address_prefix = string
 }))
}

2. In the terraform.tfvars file, we add the following code:

ngs_rules = [
{
 name = "rule1"
 priority = 100
 direction = "Inbound"
 access = "Allow"
 protocol = "Tcp"
 source_port_range = "*"
 destination_port_range = "80"
 source_address_prefix = "*"

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP03/dynamics
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP03/dynamics

Chapter 3 95

 destination_address_prefix = "*"
},
{
 name = "rule"
 priority = 110
 direction = "Inbound"
 access = "Allow"
 protocol = "Tcp"
 source_port_range = "*"
 destination_port_range = "22"
 source_address_prefix = "*"
 destination_address_prefix = "*"
}
]

3. In the main.tf file, we add the code for the network security group with the following code:

resource "azurerm_network_security_group" "example" {
 name = "acceptanceTestSecurityGroup1"
 location = azurerm_resource_group.rg.location
 resource_group_name = azurerm_resource_group.rg.name

 dynamic "security_rule" {
 for_each = var.ngs_rules
 content {
 name = security_rule.value["name"]
 priority = security_rule.value["priority"]
 direction = security_rule.value["direction"]
 access = security_rule.value["access"]
 protocol = security_rule.value["protocol"]
 source_port_range = security_rule.value["source_port_range"]
 destination_port_range = security_rule.value["destination_
port_range"]
 source_address_prefix = security_rule.value["source_address_
prefix"]
 destination_address_prefix = security_rule.value["destination_
address_prefix"]
 }
 }
}

Scaling Your Infrastructure with Terraform96

How it works…
In Step 1, we create an nsg_rules variable of type any, which will contain the list of rules in the

map format.

Then, in Step 2, we instantiate this nsg_rules variable with the list of rules and their properties.

Finally, in Step 3, in the azurerm_network_security_group resource, we add the dynamic instruc-

tion, which allows us to generate N blocks of security_rule.

In this dynamic Terraform block, we make a for_each loop (as seen in the Looping over a map of

objects recipe earlier in this chapter), which will iterate over the elements of the nsg_rules variable

and map each property of the resource to the maps of the list.

The following screenshot shows the execution of the terraform plan command:

Figure 3.9: Terraform dynamic block

Chapter 3 97

We can see the list of security rules in the preceding output.

There’s more…
If you want to render the presence of a block conditionally, you can also use the conditions in

the dynamic expression, as shown in the following code sample:

resource "azurerm_linux_virtual_machine" "virtual_machine" {

...

 dynamic "boot_diagnostics" {

 for_each = local.use_boot_diagnostics == true ? [1] : []

 content {

 storage_account_uri = "https://storageboot.blob.core.windows.net/"

 }

 }

}

In this example, in the for_each expression of the dynamic expression, we have a conditional

expression that returns a list with one element if the local value, use_boot_diagnostics, is true.

Otherwise, this condition returns an empty list that will not make the boot_diagnostics block ap-

pear in the azurerm_linux_virtual_machine resource.

See also
• Documentation on dynamic expressions is available at https://www.terraform.io/

language/expressions/dynamic-blocks.

• Another example of a Terraform guide on dynamic expressions is available at https://
github.com/hashicorp/terraform-guides/tree/master/infrastructure-as-code/

terraform-0.12-examples/advanced-dynamic-blocks.

Filtering maps
In the previous recipes of this chapter, we learned different use cases for looping over collections

using the for and for_each expressions.

In some scenarios, we may need to create resources from an existing list, but the requirement is

to filter only some elements from this list.

In this recipe, we will learn how to filter a list to provision resources.

Let’s get started!

https://www.terraform.io/language/expressions/dynamic-blocks
https://www.terraform.io/language/expressions/dynamic-blocks
https://github.com/hashicorp/terraform-guides/tree/master/infrastructure-as-code/terraform-0.12-examples/advanced-dynamic-blocks
https://github.com/hashicorp/terraform-guides/tree/master/infrastructure-as-code/terraform-0.12-examples/advanced-dynamic-blocks
https://github.com/hashicorp/terraform-guides/tree/master/infrastructure-as-code/terraform-0.12-examples/advanced-dynamic-blocks

Scaling Your Infrastructure with Terraform98

Getting ready
To complete this recipe, you’ll need to know about looping with the for_each expression, which

was covered in the Looping over object collections recipe of this chapter.

The starting element of this recipe is the following list of objects. This object list contains some

properties of the resources needed for our App Service use cases:

web_apps = [

 webapp1 = {

 "name" = "webapptestbook1"

 "os" = "Linux"

 },

 webapp2 = {

 "name" = "webapptestbook2"

 "os" = "Linux"

 },

 webapp3 = {

 "name" = "webapptestbook3"

 "os" = "Windows"

 }

]

In this list, we have the properties of two Linux app services and one Windows app service.

The goal of this recipe is to filter Linux entries and Windows entries from the above list to create

corresponding app services.

How to do it…
To filter a list, perform the following steps:

1. In the main.tf file, add the following locals values:

locals {

 linux_web_app = toset([for each in var.web_apps : each.name if
each.os == "Linux"])

 windows_web_app = toset([for each in var.web_apps : each.name if
each.os == "Windows"])

}

Chapter 3 99

2. Then, add the azurerm_linux_web_app resource to create Linux app services:

resource "azurerm_linux_web_app" "app" {
 for_each = local.linux_web_app

 name = each.value
 location = "westeurope"
 resource_group_name = azurerm_resource_group.rg-app.name
 service_plan_id = azurerm_service_plan.linux-plan-app.id

 site_config {}
}

3. Also, add the azurerm_windows_web_app resource to create Windows app services:

resource "azurerm_windows_web_app" "app" {

 for_each = local.windows_web_app

 name = each.value

 location = "westeurope"

 resource_group_name = azurerm_resource_group.rg-app.name

 service_plan_id = azurerm_service_plan.windows-plan-app.id

 site_config {}

}

4. Finally, run the Terraform init, plan, and apply commands to provision these three app

services.

How it works…
In Step 1, we instantiate two locals values; the linux_web_app will contain a set of Linux app

services from the main list, web_apps, and the windows_web_app will contain a set of Windows

app services from the same list.

The filter operation is in the locals value, with the following snippet code:

linux_web_app = toset([for each in var.web_apps : each.name if each.
os=="Linux"])

The result of linux_web_app is a set of objects that is selected by looping over web_apps objects,

depending on one condition: if the os value is Linux.

Scaling Your Infrastructure with Terraform100

So the result of this set is webappdemobook1 and webapptestbook2.

We also filter the Windows web app on the web_apps list using the following condition: if the os

is Windows. The result of this set is webapptestbook3.

In Step 2 and Step 3, we use these local values, using for_each to loop over the sets.

To set the value of the web app name, we use the expression each.value, which contains the

current element in the set.

There’s more…
To preview the result of the local variables linux_web_app and windows_web_app before applying

changes with the apply command, we can run the terraform console command before apply.

The following image shows a preview of the locals variables:

Figure 3.10: Terraform console preview of the locals variables

We can see the content of the locals variables linux_app_app and windows_web_app.

See also
• The documentation of the toset function is available here: https://www.terraform.io/

language/functions/toset.

• We can also sort and group a list, as explained in this documentation: https://www.

terraform.io/language/expressions/for#filtering-elements.

https://www.terraform.io/language/functions/toset
https://www.terraform.io/language/functions/toset
https://www.terraform.io/language/expressions/for#filtering-elements
https://www.terraform.io/language/expressions/for#filtering-elements

Chapter 3 101

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to

the author, and learn about new releases – follow the QR code below:

https://packt.link/cloudanddevops

https://packt.link/cloudanddevops

4
Using Terraform with External
Data

When using a Terraform configuration, sometimes we might be required to get information about

existing resources or infrastructures that were not provisioned by Terraform. Moreover, we may

need to interact with the local system by manipulating local files or even running programs that

are installed on the local system.

In this chapter, we will learn how to retrieve data from external systems by using data sources

and querying external resources. We will cover the use of Terraform for local operations, such

as running a local executable and manipulating local files. Finally, we will learn how to use the

Terraform Shell provider to execute shell scripts.

In the past, I have seen some people trying to build their whole infrastructure (en-

tirely managed by Terraform) just using resources and data sources. This is usually

not a good practice.

The reason it’s not a good practice is that it’s comparable to having two different

apps that communicate by accessing each others’ databases, as opposed to public

APIs. We can think of Terraform outputs as explicit public APIs and state as internal

state (akin to a database).

There is also a need for at least read permissions to each relevant resource – just to

consume its state. Some fields may not ever be available via dedicated data sources,

such as database passwords that are only provided upon creation and stored in the

state only.

Using Terraform with External Data104

In this chapter, we will cover the following recipes:

• Obtaining external data with data sources

• Querying external data with Terraform

• Manipulating local files with Terraform

• Executing local programs with Terraform

• Executing shell scripts using the Terraform Shell provider

Let’s get started!

Technical requirements
For this chapter, you will need to have the Terraform binary installed on your computer and some

basic knowledge of scripting with PowerShell or Shell.

The source code for this chapter is available at https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP04.

Obtaining external data with data sources
When infrastructure is provisioned with Terraform, it is sometimes necessary to retrieve infor-

mation about existing resources. Indeed, when deploying resources to a certain infrastructure,

there is often a need to place them in an existing infrastructure or link them to other resources

that have already been provisioned.

In this recipe, we will learn how, in our Terraform configuration, to retrieve information about

resources already present in an infrastructure.

Finally, unlike outputs, data sources are more prone to breaking changes as a result

of provider upgrades.

So use data sources, but with caution.

While data sources provide easy access to any resources, they should be primarily

used for resources managed outside of Terraform. Resources already managed by

Terraform (whether by you or someone else) should instead expose data via outputs,

which can then be consumed using the built-in terraform_remote_state data

source (or tfe_outputs), as opposed to Azure data sources.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP04
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP04

Chapter 4 105

Getting ready
For this recipe, we will use an existing Terraform configuration that provides an Azure App

Service instance in the Azure cloud. This source code is available at https://github.com/

PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP04/data.

This code is incomplete because, for this project, we need to store the App Service instance in an

existing App Service plan. This Service Plan is the one we will use for the entire App Service instance.

So for this recipe, we take into consideration that the App Service Plan app-service-plan is

already provisioned on the resource group rg-service_plan.

How to do it…
To create an App Service instance on an existing App Service Plan, perform the following steps:

1. In the file that contains our Terraform configuration, add the following data block:

data "azurerm_app_service_plan" "myplan" {

 name = "app-service-plan"

 resource_group_name = "rg-service_plan"

}

In the properties block, specify the name and the resource group of the Service Plan to

be used.

2. Then, complete the existing App Service configuration, as follows:

resource "azurerm_linux_web_app" "app" {

 name = "${var.app_name}-${var.environement}"

 location = azurerm_resource_group.rg-app.location

 resource_group_name = azurerm_resource_group.rg-app.name

 service_plan_id = data.azurerm_app_service_plan.myplan.id

}

How it works…
In Step 1, a data block is added to query existing resources. In this data block, we specify the

resource group and the name of the existing Service Plan.

In Step 2, we use the ID of the Service Plan that was retrieved by the data block we added in Step 1.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP04/data
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP04/data

Using Terraform with External Data106

The result of executing this Terraform configuration can be seen in the following screenshot:

Figure 4.1: Terraform data source information

As we can see, we have the ID of the Service Plan that was retrieved by the data block.

There’s more…
What’s interesting about the use of data blocks is that when executing the terraform destroy

command on our Terraform configuration, Terraform does not perform a destroy action on the

resource called by the data block.

Moreover, the use of data blocks is to be preferred to the use of IDs written in clear text in the

code, which can change, because the data block recovers the information dynamically.

Finally, the data block is also called when executing the terraform plan command, so your ex-

ternal resource must be present before you execute the terraform plan and terraform apply

commands.

terraform plan will indeed retrieve data sources and show most of the values, but

one other (perhaps more reliable) way is to use terraform apply and terraform

show afterward.

The main difference is that apply will save the data to the state file and show will

display the data from the state file on demand Users typically use show instead of

plan to inspect the state file. [‘show’ and ‘plan’ would be styled as code].

Chapter 4 107

If this external resource is not already present, we get the following error in the terraform plan

command:

Figure 4.2: Terraform data source error

We will learn how to get resource information from other Terraform state files in the recipe Using

external resources from other Terraform state files in Chapter 5, Managing Terraform State.

See also
For more information about data blocks, see the following documentation: https://www.

terraform.io/docs/configuration/data-sources.html.

Querying external data with Terraform
In the previous recipe, we learned that it is possible to use the data block to retrieve external data.

However, there are scenarios where the data block does not exist in the provider, such as when

we need to talk with an external API or use a local tool and process its output.

To meet this need, the external resource in Terraform that allows you to call an external program

and retrieve its output data so that it can be used in the Terraform configuration.

You need to know which providers to use in your Terraform configuration since not

all providers implement data blocks.

Use of the external provider imposes prerequisites that may not be obvious (for

example, in this case, we expect a particular version of PowerShell) or may be difficult

to communicate other than through README files or documentation. Also, Terraform

is generally designed to work the same cross-platform (operating system/architec-

ture), but this essentially restricts the configuration to platforms that can (and do)

run PowerShell. These requirements apply to both CI and local environments.

https://www.terraform.io/docs/configuration/data-sources.html
https://www.terraform.io/docs/configuration/data-sources.html

Using Terraform with External Data108

In this recipe, we will learn how to call an external program and retrieve its output so that we

can reuse it.

Getting ready
For this recipe, we will use an existing Terraform configuration that allows us to provision a

resource group in Azure.

To perform this recipe, we need to install PowerShell Core. The installation documentation de-

tailing how to do this is available here:

Here, we want a Azure Resource Group to be in a different Azure region (location), depending on

the environment (development or production).

The source code for this recipe is available at https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/tree/main/CHAP04/external.

How to do it…
Perform the following steps:

1. In the directory that contains our main.tf file, create a PowerShell GetLocation.ps1

script that contains the following content:

Read the JSON payload from stdin

$jsonpayload = [Console]::In.ReadLine()

Convert JSON to a string

$json = ConvertFrom-Json $jsonpayload

$environment = $json.environment

if($environment -eq "Production"){

 $location="westeurope"

}else{

 $location="westus"

}

Write output to stdout

Write-Output "{ ""location"" : ""$location""}"

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP04/external
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP04/external

Chapter 4 109

2. In the main.tf file, add the external block, as follows:

data "external" "getlocation" {

 program = ["pwsh", "./GetLocation.ps1"]

 query = {

 environment = "${var.environment_name}"

 }

}

3. Then, modify the code of the resource group to make its location more dynamic, as follows:

resource "azurerm_resource_group" "rg" {

 name = "RG-${local.resource_name}"

 location = data.external.getlocation.result.location

}

4. Finally, we add an output value that has the following configuration:

output "locationname" {

 value = data.external.getlocation.result.location

}

How it works…
In Step 1, we wrote the PowerShell GetLocation.ps1 script, which will be called by Terraform

locally. This script takes in environment as an input parameter in JSON format. Then, this Pow-

erShell script makes a condition on this input environment and returns the right Azure region as

output so that we can use it in our Terraform configuration.

We used the Terraform external resource, which calls this PowerShell script and provides it with

the contents of the environment_name variable as a parameter.

Then we add the return value of this data block with an external data source in the location

property of the resource group.

Using Terraform with External Data110

The following screenshot shows the output of executing terraform plan with the environment_

name variable, which is set to Dev:

Figure 4.3: Terraform external data with the Dev variable

As you can see, the regional location of the resource group is westus.

The following screenshot shows the output executing terraform plan with the environment_name

variable, which is set to Production:

Figure 4.4: Terraform external data with the Production variable

As you can see, the location of the resource group is westeurope.

Finally, in Step 3, we add a Terraform output that exposes this value. This can be displayed upon

executing Terraform. This can also be exploited at other places in the Terraform configuration.

In Chapter 2, Writing Terraform Configurations, in the recipe Manipulating variables,

we used the -var option of the terraform plan command, which allowed us to

assign a value to a variable upon executing the command.

Chapter 4 111

The following screenshot shows the output after running the terraform apply command:

Figure 4.5: Terraform output of external data

As we can see, the terraform output command displays the right locationname value.

There’s more…
In this recipe, we used a PowerShell script, but this script also works with all the other scripting

languages and tools that are installed on your local machine.

The external resource contains specifics about the protocol, the format of the parameters, and its

output. I advise that you read its documentation to learn more: https://registry.terraform.

io/providers/hashicorp/external/latest/docs/data-sources/external.

We will learn another solution to running local scripts using the Terraform Shell provider, in the

Executing shell scripts using the Terraform Shell provider recipe of this chapter.

Additionally, we can also use the TerraCurl Terraform provider to call any REST API, to post/delete

data, and also to get data and use this data in Terraform output. For more information read the ar-

ticle here: https://www.hashicorp.com/blog/writing-terraform-for-unsupported-resources.

See also
The following are a couple of articles with examples of how to use the external Terraform resource:

• https://dzone.com/articles/lets-play-with-terraform-external-provider

Manipulating local files with Terraform
Terraform is very popular due to its infrastructure as code functionality for cloud providers. But

it also has many providers that allow us to manipulate the local system.

https://registry.terraform.io/providers/hashicorp/external/latest/docs/data-sources/external
https://registry.terraform.io/providers/hashicorp/external/latest/docs/data-sources/external
https://www.hashicorp.com/blog/writing-terraform-for-unsupported-resources
https://dzone.com/articles/lets-play-with-terraform-external-provider

Using Terraform with External Data112

In the Querying external data with Terraform recipe of this chapter, we discussed local script exe-

cutions that are performed by Terraform to get data for external data sources.

In this recipe, we will study another type of local operation that involves creating and archiving

local files with Terraform.

Getting ready
For this recipe, we don’t need any prerequisites or base code – we will write the configuration

from scratch.

The source code for this recipe is available at https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP04/files and https://github.com/

PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP04/archive.

How to do it…
Perform the following steps:

1. In a new folder called files, create a main.tf file. Write the following code inside it:

resource "local_file" "myfile" {

 content = "This is my text"

 filename = "../mytextfile.txt"

}

2. In a command-line terminal, navigate to the files directory and execute Terraform’s

workflow commands, which are as follows:

terraform init

terraform plan

terraform apply

3. In a new archive folder, create a main.tf file and write the following Terraform config-

uration inside it:

data "archive_file" "backup" {

 type = "zip"

 source_file = "../mytextfile.txt"

 output_path = "${path.module}/archives/backup.zip"

}

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP04/files
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP04/files
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP04/archive
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP04/archive

Chapter 4 113

4. Then, using the command-line terminal, navigate to the archive directory and execute

the following Terraform commands:

terraform init

terraform plan

How it works…
In Step 1, we wrote part of a Terraform configuration that uses the local provider and the local_

file resource. This resource creates a file called mytextfile.txt and adds This is my text to it.

Then, in Step 2, we executed Terraform on this code. By doing this, we created the mytextfile.

txt file on our local disk.

The result of executing the terraform plan command on this code can be seen in the following

screenshot:

Figure 4.6: Terraform local file provider

After we executed terraform apply, the mytextfile.txt file became available on our local

filesystem.

In the second part of this recipe, in Step 3, we wrote a part of Terraform configuration that uses

the archive provider and the archive_file resource to create a ZIP file that contains the file we

created in Steps 1 and 2.

After we executed terraform apply, the ZIP archive backup.zip file became available on our

local filesystem, in the archives folder.

There’s more…
As we can see, the archive_file resource we used in the second part of this recipe is of the data

block type (which we learned about in the Obtaining external data with data sources recipe of

this chapter) and is therefore based on an element that already existed before we executed the

terraform plan command.

Using Terraform with External Data114

In our case, the file to be included in the archive must already be present on the local disk.

See also
• Documentation on the local_file resource is available at https://registry.terraform.

io/providers/hashicorp/local/latest/docs/resources/file.

• Documentation on the archive_file resource is available at https://registry.

terraform.io/providers/hashicorp/archive/latest/docs/data-sources/file.

Executing local programs with Terraform
As we saw in the previous recipe regarding file manipulation, apart from infrastructure provision-

ing, Terraform also allows you to run programs or scripts that are located on the local workstation

where Terraform has been installed.

In this recipe, we will learn how to execute a local program inside a Terraform configuration.

Getting ready
For this recipe, we will complete the Terraform configuration that we used in the previous recipe

to write a file on the local machine. Our goal will be to execute a PowerShell command with Ter-

raform that will read and display the contents of the file that we have written using Terraform.

The source code for this recipe is available at https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/tree/main/CHAP04/files_local_exec.

How to do it…
Perform the following steps:

1. In the main.tf file, which is in the files directory of the source code from the previous

recipe, complete the Terraform configuration with the following code:

resource "null_resource" "readcontentfile" {

 provisioner "local-exec" {

The technical requirement for this recipe is that we will run this Terraform script on

a Windows operating system. You can of course adapt it to run programs on Linux

or Mac operating systems or use the Terraform Shell provider, which we will learn

about in the next recipe.

https://registry.terraform.io/providers/hashicorp/local/latest/docs/resources/file
https://registry.terraform.io/providers/hashicorp/local/latest/docs/resources/file
https://registry.terraform.io/providers/hashicorp/archive/latest/docs/data-sources/file
https://registry.terraform.io/providers/hashicorp/archive/latest/docs/data-sources/file
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP04/files_local_exec
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP04/files_local_exec

Chapter 4 115

 command = "Get-Content -Path ../mytextfile.txt"

 interpreter = ["pwsh", "-Command"]

 }

}

2. Then, in a command-line terminal, execute the Terraform workflow commands, as follows:

terraform init

terraform plan

terraform apply

How it works…
In this recipe, we used null_resource, which is a null provider resource. This resource doesn’t

allow us to create resources, but rather to run programs locally.

In this resource, we have the provisioner block, which is of the local-exec type, which oper-

ates on our local machine. Then, in this block, we indicate the command to execute, which is the

Get-Content command of PowerShell. With this, we are telling Terraform to use the PowerShell

interpreter to execute this command.

When executing the respective Terraform commands, we get the following result:

Figure 4.7: Terraform local program executed

As you can see, the text This is my text, which we had written in the file (in the local_file

resource), is displayed in the Terraform runtime output.

Using Terraform with External Data116

There’s more…
In this recipe, we looked at a simple local-exec command being executed with Terraform. It is

also possible to execute several commands that are stored in a script file (Bash, PowerShell, and

so on) with a sample Terraform configuration (which works on Windows and can be adapted

for Linux), as shown here:

resource "null_resource" "readcontentfile" {
 provisioner "local-exec" {
 command = "myscript.ps1"
 interpreter = ["pwsh", "-Command"]
 }
}

In addition, it is important to know that the local-exec provisioner, once executed, ensures that

the Terraform state file cannot be executed a second time by the terraform apply command.

To be able to execute the local-exec command based on a trigger element, such as a resource

that has been modified, it is necessary to add a trigger object inside null_resource that will

act as the trigger element of the local-exec resource.

The following example code uses a trigger, based on timestamp, to execute the local-exec code

at each execution step of Terraform:

resource "null_resource" "readcontentfile" {
 triggers = {
 trigger = timestamp()
 }
 provisioner "local-exec" {
 command = "Get-Content -Path ../mytextfile.txt"
 interpreter = ["PowerShell", "-Command"]
 }
}

In this example, the trigger is a timestamp that will have a different value each time Terraform

is run.

The local-exec provisioner sets expectations on the local system, which may not

be obvious. This is usually otherwise mitigated by cross-platform builds from pro-

viders and Terraform itself, where the implementation should generally work the

same on any supported platform (macOS/Linux/Windows).

Chapter 4 117

We will look at another concrete use case of local-exec in the Executing Azure CLI commands in

Terraform recipe in Chapter 8, Provisioning Azure Infrastructure with Terraform.

See also
The local-exec provisioner documentation is available at https://www.terraform.io/docs/

provisioners/local-exec.html.

Executing shell scripts using the Terraform Shell
provider
In the previous recipe, we learned that it is possible to execute local programs or commands with

Terraform by using the null_resource resource.

There is another solution to execute shell scripts to manage external resources by using local

commands or an API call.

The solution that we will discuss in this recipe is the use of the Terraform Shell provider in a

simple scenario.

Getting ready
To complete this recipe, you’ll need only to have some knowledge about Shell scripting.

This recipe can be applied natively on Linux and macOS operating systems. To perform this recipe

on Windows, you can use WSL. The documentation for WSL is available here:

In this recipe, we will mock an API call that manages a book store. We will only use the JSON

content created locally in the book.json file.

The complete source code of this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP04/shell.

How to do it…
To use the Terraform Shell provider, we perform the following steps:

1. In the new main.tf file, write the following content:

terraform {

 required_providers {

 shell = {

 source = "scottwinkler/shell"

https://www.terraform.io/docs/provisioners/local-exec.html
https://www.terraform.io/docs/provisioners/local-exec.html
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP04/shell
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP04/shell

Using Terraform with External Data118

 version = "1.7.10"

 }

 }

}

provider "shell" {}

2. Then, we use the shell_script resource with the following content:

resource "shell_script" "sh" {
 lifecycle_commands {
 create = file("${path.module}/scripts/create.sh")
 read = file("${path.module}/scripts/read.sh")
 delete = file("${path.module}/scripts/delete.sh")
 }

 interpreter = ["/bin/bash", "-c"]
 working_directory = path.module
 triggers = {
 timestamp = timestamp()
 }
}

output "id" {
 value = shell_script.sh.output["id"]
}

3. In the new subfolder, scripts, create the script create.sh with the content:

/bin/cat <<END >book.json

 {"id": "1", "title": "Terraform Cookbook", "Author": "MK", "tags":
"terraform-Azure"}

END

cat book.json

The complete source code of this script is available here: https://github.com/
PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP04/shell/

scripts/create.sh.

4. Write the read.sh file with the following content:

cat book.json

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP04/shell/scripts/create.sh
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP04/shell/scripts/create.sh
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP04/shell/scripts/create.sh

Chapter 4 119

The complete source code of this script is available here: https://github.com/
PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP04/shell/

scripts/read.sh.

5. Write delete.sh with the following content:

rm -rf book.json

The complete source code of this script is available here: https://github.com/
PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP04/shell/

scripts/delete.sh.

6. Finally, run the Terraform workflow with the init, plan, and apply commands.

How it works…
In Step 1, we instantiate the Shell provider by declaring the source, the version, and the provider

configuration, which is empty for our sample.

In Step 2, we use the Shell provider with the following configuration:

• The shell_script resource, which calls three scripts: one for the create operation that

is called during the apply Terraform command, one for the read operation that is called

in the plan Terraform command, and one for the delete operation that is called during

the destroy Terraform command.

• We also specify the interpreter (which is bash) and the trigger to run this resource at each

use of terraform apply (exactly like the null_resource resource).

• The output that returns the JSON Id property of the created book.

The documentation of the shell_script resource is available here: https://registry.terraform.

io/providers/scottwinkler/shell/latest/docs/resources/shell_script_resource.

Then, in Step 3, we write the shell script create.sh, which creates the book.json file, which

contains the JSON content of the created book (for the mock); this script will be executed by the

apply command of Terraform.

In Step 4, we write the read.sh script, which reads the book.json file created on the plan command.

In Step 5, we write the delete.sh script, which deletes the book.json file; this script will be

executed by the destroy command.

Finally, in Step 6, we run the Terraform workflow commands with init, plan, and apply.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP04/shell/scripts/read.sh
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP04/shell/scripts/read.sh
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP04/shell/scripts/read.sh
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP04/shell/scripts/delete.sh
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP04/shell/scripts/delete.sh
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP04/shell/scripts/delete.sh
https://registry.terraform.io/providers/scottwinkler/shell/latest/docs/resources/shell_script_resource
https://registry.terraform.io/providers/scottwinkler/shell/latest/docs/resources/shell_script_resource

Using Terraform with External Data120

The following image shows the terraform apply command:

Figure 4.8: Terraform Shell provider execution

We can see the Terraform output and the newly created file, book.json, at the root of the Terra-

form configuration directory.

Chapter 4 121

There’s more…
In this recipe, we used the Shell provider with the create, read, and delete operations. We can

also add the update operation, which will be applied by the apply command if the content of

the JSON file is changed.

The Terraform Shell provider also contains the data source shell_script, which only does

the read operation. For more information, read the documentation here: https://registry.

terraform.io/providers/scottwinkler/shell/latest/docs/data-sources/shell_script.

See also
• The documentation of the Terraform Shell provider is available here: https://registry.

terraform.io/providers/scottwinkler/shell/latest/docs.

The keepers = timestamp() line in the configuration shouldn’t be necessary. There

may be scenarios where it’s relevant, but in general, if the “read” script always pro-

vides the data, which reflects the reality, then this will be sufficient to detect a change

and generate a diff to show us these changes. Bypassing the diff detection and plan-

ning part does somewhat call into question whether the problem is best solved in

Terraform, since the planning part is one of its key features. At this point, Terraform

arguably just becomes just a program that runs another program. However, we have

chosen to keep all the infrastructure pieces together in one configuration so you can

see all the parts and how they fit together. It is your call as to whether you wish to

modify the code or keep it all together in one configuration.

Additionally, any and all Bash/shell scripts can generally be made more flexible

with a change to the top shebang notation, which makes it more likely to work on

more Linux distributions. If this is something you are curious about testing your-

self, see https://stackoverflow.com/questions/16365130/what-is-the-

difference-between-usr-bin-env-bash-and-usr-bin-bash.

https://registry.terraform.io/providers/scottwinkler/shell/latest/docs/data-sources/shell_script
https://registry.terraform.io/providers/scottwinkler/shell/latest/docs/data-sources/shell_script
https://registry.terraform.io/providers/scottwinkler/shell/latest/docs
https://registry.terraform.io/providers/scottwinkler/shell/latest/docs
https://stackoverflow.com/questions/16365130/what-is-the-difference-between-usr-bin-env-bash-and-usr-bin-bash
https://stackoverflow.com/questions/16365130/what-is-the-difference-between-usr-bin-env-bash-and-usr-bin-bash

Using Terraform with External Data122

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to

the author, and learn about new releases – follow the QR code below:

https://packt.link/cloudanddevops

https://packt.link/cloudanddevops

5
Managing Terraform State

One of the most important artifacts of Terraform is the Terraform state file. Terraform state is

the file that contains all the configuration that has been applied during the Terraform workflow.

In most situations, we don’t need to interact with it directly. However, you may need to manipu-

late it either to view its information, delete resources, import resources, or even move resources.

Knowing that this file is a JSON file, we can be tempted to manipulate it manually. This is not a

good practice, as it may cause errors that may make it impossible to run Terraform afterward.

Therefore, it is recommended to use the tools provided by HashiCorp, such as the Terraform CLI

or even the specific Terraform configuration block.

In this chapter, we will learn how to manipulate Terraform State safely using the Terraform CLI

to list resources, delete resources, synchronize resources, import existing resources, and move

resources. We will also learn how to use external resources from other state files and refactor the

Terraform configuration using the Terraform moved block.

We will cover the following recipes in this chapter:

• Using the local Terraform State

Since the Terraform State file is not necessarily a physical file but can also be in blob

object format, for example, throughout this chapter, we will use the term Terraform

State to refer to the Terraform State file.

For more information about Terraform State file, read the documentation overview

here: https://developer.hashicorp.com/terraform/language/state.

https://developer.hashicorp.com/terraform/language/state

Managing Terraform State124

• Managing resources in Terraform state

• Synchronizing Terraform state

• Importing existing resources

• Using external resources from other Terraform state files

• Refactoring resources in configuration

Using the local Terraform state
In the default behavior of Terraform, if no backend configuration is provided, Terraform state is

stored locally and is named terraform.tfstate.

This file is stored in the same folder that contains the Terraform configuration. (This folder is also

called the root module configuration.)

This is an approach to managing local state when starting with Terraform or for a proof-of-con-

cept project.

In this recipe, we will learn how to configure the local Terraform state.

Getting ready
This recipe doesn’t have any prerequisites; we will just generate a password with Terraform using

the following configuration:

resource "random_password" "password" {

 length = 16

 special = true

 override_special = "_%@"

}

The source code for this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP05/localstate.

How to do it…
To configure the local Terraform state, in the main.tf file, write the following Terraform config-

uration:

terraform {

 backend "local" {

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP05/localstate
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP05/localstate

Chapter 5 125

 path = "../../demo.tfstate"

 }

}

The complete source configuration is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/blob/main/CHAP05/localstate/main.tf.

Then, we run the Terraform workflow with init, plan, and apply commands.

How it works…
In the main.tf file, we write the configuration of the backend block, which is a local file, and in

the path property, we define the relative path of the state file with ../../demo.tfstate.

Then, we run the init, plan, and apply commands, and we can see the demo.tfstate file in the

specified folder (path = "../../demo.tfstate"):

Figure 5.1: Local Terraform state

We can see that the demo.tfstate file is created at the specified path (../../).

There’s more…
About the local Terraform Path; in the backend configuration, we can’t configure the absolute path

of the state file, only the relative path. Additionally, the Terraform CLI must have the necessary

permissions to create and write files in the target folder.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP05/localstate/main.tf
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP05/localstate/main.tf

Managing Terraform State126

If Terraform doesn’t have permission, we will get this error when running apply:

Figure 5.2: Permission denied on local Terraform state

To resolve this error, check and provide permission in the target folder.

If we want to use this local state file as a remote data state, we can write the following configu-

ration:

data "terraform_remote_state" "test" {

 backend = "local"

 config = {

 path = "${path.module}/../../demo.tfstate"

 }

}

We will learn more details about this in the Using external resources from other Terraform state files

recipe in this chapter.

The problems with storing the state file alongside the folder that contains the Terraform config-

uration are as follows:

Terraform state can contain sensitive information.

While Terraform state contains the configuration (which itself is human-readable and versioned),

it also contains other metadata sourced from remote APIs and essentially acts as an internal data-

base for Terraform. Just like storing binaries in VCS is not a common practice because comparing

changes is meaningless in most cases, storing state in VCS is equally discouraged for similar rea-

sons. It can’t be accessed by other Terraform configurations, which must access our state remotely.

Chapter 5 127

Finally, to resolve the issues above, one of the best practices with Terraform is to use a remote

backend and not to use the local backend because it isn’t secure. We will see an example of using

a remote backend in Azure in Chapter 8, Provisioning Azure Infrastructure with Terraform. So, before

using the local state file, analyze your infrastructure system and use the remote backend state.

See also
The documentation of the local backend is available here: https://developer.hashicorp.com/

terraform/language/settings/backends/local.

Managing resources in Terraform state
One important practice to take into consideration when we use Terraform is to never edit the

Terraform state file manually. Even if it is a JSON file, any manual modification incurs a risk of

corrupting it and thus making it unavailable for resource deployment.

In addition, companies should make certain that the users who apply the Terraform configura-

tions have permission to access the backend files that contain state files.

In response to the necessity of certain scenarios to display or update Terraform state, Terraform

has a set of commands that allow you to manage state safely.

In this recipe, we will learn how to manage Terraform state by detailing some of the Terraform

commands dedicated to Terraform state.

Let’s get started!

Getting ready
To complete this recipe, we will suppose that we have already provisioned resources in Azure

with Terraform using the following configuration:

resource "azurerm_resource_group" "rg-app" {

 name = "${var.resource_group_name}-${var.environment}"

 location = var.location

}

resource "azurerm_service_plan" "plan-app" {

 name = "${var.service_plan_name}-${var.environment}"

 location = azurerm_resource_group.rg-app.location

 resource_group_name = azurerm_resource_group.rg-app.name

 os_type = "Windows"

https://developer.hashicorp.com/terraform/language/settings/backends/local
https://developer.hashicorp.com/terraform/language/settings/backends/local

Managing Terraform State128

 sku_name = "S1"

}

resource "azurerm_windows_web_app" "app" {

 name = "${var.app_name}-${var.environment}"

 location = azurerm_resource_group.rg-app.location

 resource_group_name = azurerm_resource_group.rg-app.name

 service_plan_id = azurerm_service_plan.plan-app.id

 site_config {}

}

In this recipe, we will perform four operations on Terraform state:

• Display the content of Terraform state

• List Terraform resource names within Terraform state

• Show detailed resource properties in Terraform state

• Delete resources in state

For each of these operations, we will see the necessary Terraform command and its output.

The complete source code of this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP05/managestate.

How to do it…
Before running the following commands, we first run the terraform init, plan, and apply com-

mands to create the resources and make sure Terraform is up to date in terms of the configuration.

Displaying the content of state
To display the content of state, run the command:

terraform show

We will use Azure as the Terraform provider, but all commands can be applied to all

other providers; these commands aren’t specific to one provider.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP05/managestate
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP05/managestate

Chapter 5 129

The following image shows an extract of the output of this command:

Figure 5.3: Output sample of the terraform state show command

The output of the show command displays the content of state in human-friendly mode with all

the details of each resource.

We can also display this output in JSON format with the command terraform show -json, and

manipulate the JSON to filter or get information by using the Jq tool (see the documentation

here: https://stedolan.github.io/jq/manual/).

For more information about the show command, read the documentation here: https://developer.

hashicorp.com/terraform/cli/commands/show.

https://stedolan.github.io/jq/manual/
https://developer.hashicorp.com/terraform/cli/commands/show
https://developer.hashicorp.com/terraform/cli/commands/show

Managing Terraform State130

Listing Terraform resource names within state
To list the names of the Terraform resources stored in state, use the following command:

terraform state list

The following image shows an extract of the output of the command terraform state list:

Figure 5.4: Sample output of the terraform state list command

We see the list of names of Terraform resources provisioned and written in state.

We can also filter resources by running the command terraform state list <name>, for example,

to get all resources from a specified array or from a specified module.

In a Shell script, we can also filter the returned list by using the grep command, for example:

terraform state list | grep '^azurerm_resource_group'

The execution of this command returns only the list of resources of the azurerm_resource_group

type.

For more information about the state list command, read the documentation here: https://

developer.hashicorp.com/terraform/cli/commands/state/list.

Showing detailed resource properties in state
After displaying the list of resource names, we can display all details about one resource stored

in state.

To see these details, run the command terraform state show <resource name>, for example,

we run the command:

terraform state show azurerm_resource_group.rg-app

The following image shows the output of this command:

https://developer.hashicorp.com/terraform/cli/commands/state/list
https://developer.hashicorp.com/terraform/cli/commands/state/list

Chapter 5 131

Figure 5.5: Sample output of the terraform state show command

We can see the properties of the resource azurerm_resource_group.rg-app stored in state in

the output above.

For more information about the state show command, read the documentation here: https://

developer.hashicorp.com/terraform/cli/commands/state/show.

Deleting resources from state
In some cases, we need to remove a resource from state.

To perform this deletion, run the command terraform state rm <resource name>, for example,

we run the command:

terraform state rm azurerm_windows_web_app.app

The following image shows the output of this command:

Figure 5.6: Output of the terraform state rm command

The command output confirms the resource deletion.

For more information about the state rm command, read the documentation here: https://

developer.hashicorp.com/terraform/cli/commands/state/rm.

Please note, that this – unlike the terraform destroy command – will not remove

the underlying resource in Azure; the Azure App Service remains intact. It can be

thought of more as “disowning” the management of that resource by Terraform.

With that in mind, don’t forget to clean up the resource via the Azure portal after

removing it from state.

https://developer.hashicorp.com/terraform/cli/commands/state/show
https://developer.hashicorp.com/terraform/cli/commands/state/show
https://developer.hashicorp.com/terraform/cli/commands/state/rm
https://developer.hashicorp.com/terraform/cli/commands/state/rm

Managing Terraform State132

There’s more…
One scenario in which I recently needed to manipulate Terraform state was when I updated the

azurerm Terraform provider to version 3. I encountered some state schema errors during the

execution of terraform plan.

To resolve these errors, I needed to delete the resources from state with the terraform state rm

command and then import the resource into state under the new name (we will see that in detail

in the Importing existing resources recipe in this chapter). To get more information about this sce-

nario, read the documentation here: https://registry.terraform.io/providers/hashicorp/

azurerm/latest/docs/guides/3.0-upgrade-guide#migrating-to-new--renamed-resources.

In this recipe, we learned some commands to manipulate Terraform state. There are other inter-

esting commands to use and to get the complete list of commands that manipulate state, read

the documentation here: https://developer.hashicorp.com/terraform/cli/state.

In the next recipe, we will see another operation on Terraform state, which is the synchronization

the Terraform state.

See also
• The learning lab about Terraform state management is available here: https://developer.

hashicorp.com/terraform/tutorials/cli/state-cli.

Synchronizing Terraform state
In the previous recipes, we learned some operations to manage Terraform state to list, show, and

remove resources from Terraform state.

There is another use case where resources already provisioned with Terraform configuration have

been modified manually without using Terraform. The problem in this scenario is that the state

file doesn’t contain the configuration matching the configuration of the real provisioned resources.

The goal of this recipe is to learn how to synchronize or refresh the state file with the changes to

the resources.

Let’s get started!

https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/guides/3.0-upgrade-guide#migrating-to-new--renamed-resources
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/guides/3.0-upgrade-guide#migrating-to-new--renamed-resources
https://developer.hashicorp.com/terraform/cli/state
https://developer.hashicorp.com/terraform/tutorials/cli/state-cli
https://developer.hashicorp.com/terraform/tutorials/cli/state-cli

Chapter 5 133

Getting ready
To get started with this recipe, we need to have already provisioned a basic Azure infrastructure

composed of a resource group, a App Service plan, and an Azure Linux Web App.

The source code for the Terraform configuration of this infrastructure is here: https://github.

com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP05/sync.

After this deployment, we manually update one of the application settings directly in the Azure

portal by navigating to the Configuration menu, then clicking on the Application settings tab,

and finally clicking on the New application setting button.

The following screenshot shows the process to add the new application settings in Azure App

Service:

Figure 5.7: Adding new Azure App Service app settings

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP05/sync
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP05/sync

Managing Terraform State134

The following screenshot shows the modified application settings in App Service:

Figure 5.8: Sample Azure App Service app settings

Because the next execution of the terraform apply command will replace this value with the

original value, the goal of this recipe is to visualize the drift between Terraform state and the infra-

structure, and then synchronize the state file with the real state of the provisioned infrastructure.

How to do it…
Perform the following steps to view the drift and synchronize Terraform state:

1. First, we want to view the difference between Terraform state and the real infrastructure;

for this, we run the following command:

terraform plan –refresh-only

Chapter 5 135

2. Then, to synchronize Terraform state according to the previous plan output, we will run

this command:

Terraform apply --refresh-only

3. Finally, we update the Terraform configuration to set the same value as the manually

modified value.

How it works…
In Step 1, we run the command terraform plan –refresh-only to visualize the drift between

the Terraform state file and the real infrastructure. The following image shows the output of this

command:

Figure 5.9: Terraform refresh during plan

We can see that Terraform detects that in Terraform state, the API_KEY settings value is demo1234

and in the Web App, the value of this setting is demo123456.

Managing Terraform State136

In Step 2, we synchronize state by running the command terraform apply --refresh-only.

The following image shows the output of this command:

Figure 5.10: Terraform refreshes during apply

We can see that this command only refreshes state and doesn’t apply any changes to the resources.

Finally, we update the Terraform configuration with the same value as the API settings. If we run

the terraform plan command, we get the following output:

Figure 5.11: No changes after refresh

Chapter 5 137

We can see that there are no differences found. Therefore, there are no changes applied.

Now, the Terraform configuration, state, and the infrastructure have the same configuration.

There’s more…
Before Terraform 0.15.4, we refreshed state by running the command terraform refresh, but

this command has been deprecated, as mentioned here: https://developer.hashicorp.com/

terraform/cli/commands/refresh.

See also
• The learning lab on the refresh-only of state is available here: https://learn.hashicorp.

com/tutorials/terraform/refresh?in=terraform/cli

• The learning lab on drift detection is available here: https://developer.hashicorp.com/

terraform/tutorials/state/resource-drift

• The documentation on the refresh command is available here: https://developer.

hashicorp.com/terraform/cli/commands/refresh

Importing existing resources
So far in this book, we have seen the common use of Terraform, which is to write a Terraform

configuration for infrastructure to be created by Terraform. This execution will provision or apply

changes to an infrastructure, which will be reflected in the Terraform state file.

In the previous recipe, we learned to synchronize Terraform state to refresh it with updated

resource properties.

In certain scenarios, however, it may be necessary to import entire resources that have already

been provisioned the Terraform state. Examples of such scenarios include the following:

• Resources have been provisioned manually (or by scripts) and now it is desired that their

configuration is in the Terraform configuration and in Terraform state.

• Terraform state that contains the configuration of an infrastructure has been corrupted

or deleted and regeneration is desirable.

In this recipe, we will discuss how, with the assistance of Terraform commands, we can import

the configuration of a resource that has already been provisioned inside Terraform state.

https://developer.hashicorp.com/terraform/cli/commands/refresh
https://developer.hashicorp.com/terraform/cli/commands/refresh
https://learn.hashicorp.com/tutorials/terraform/refresh?in=terraform/cli
https://learn.hashicorp.com/tutorials/terraform/refresh?in=terraform/cli
https://developer.hashicorp.com/terraform/tutorials/state/resource-drift
https://developer.hashicorp.com/terraform/tutorials/state/resource-drift
https://developer.hashicorp.com/terraform/cli/commands/refresh
https://developer.hashicorp.com/terraform/cli/commands/refresh

Managing Terraform State138

Getting ready
For this recipe, the requirement is to have an existing Terraform configuration: we will use the

following Terraform configuration, which provisions an Azure Resource Group:

data azurerm_subscription "current" { }

resource "azurerm_resource_group" "rg-app" {

 name = "RG-APP-IMPORT-${substr(data.azurerm_subscription.current.
subscription_id,0,5)}"

 location = "westeurope"

}

In the above Terraform configuration, we have added the first five numbers of the current sub-

scription ID to the end of the resource group name. This allows us to make the name of our

resource group unique.

The source code for this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP05/import.

Also, in the Azure portal, we have created this resource group called RG-APP-IMPORT-<5 first

number of subscription id> manually, as explained in the pertinent documentation: https://
docs.microsoft.com/en-us/azure/azure-resource-manager/management/manage-resource-

groups-portal.

The following screenshot shows this resource group in Azure:

Figure 5.12: Existing Azure resource group

At this point, if we run Terraform on this configuration, the terraform apply command will try

to create this resource group. It will fail and return the error that the resource group already exists

and cannot be created, as shown in the following screenshot:

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP05/import
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP05/import
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/manage-resource-groups-portal
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/manage-resource-groups-portal
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/manage-resource-groups-portal

Chapter 5 139

Figure 5.13: Terraform error – resource already exists

It is therefore necessary to use a resource import operation directly in Terraform state.

The goal of this recipe is to import the configuration of this resource group in Terraform state

corresponding to our Terraform configuration.

How to do it…
Perform the following steps:

1. We initialize the Terraform context by executing the init command:

terraform init

2. Then, we execute the terraform import command as follows:

terraform import azurerm_resource_group.rg-app "/subscriptions/<your
azure subscriptionid>/resourceGroups/RG-APP-IMPORT-<5 first char of
your subscription id>"

In this recipe, we will perform an import operation with one resource group in Azure.

But it is important to note that each Terraform provider uses different formats of the

ID for the import command, often based on the different needs of the underlying

cloud APIs.

Managing Terraform State140

How it works…
In Step 1, the Terraform context is initialized with the terraform init command.

Then, in Step 2, we execute the terraform import command, which takes the reference name of

the Terraform resource as the first parameter and the Azure identifier of the resource group as

the second parameter.

The following screenshot shows the output of the execution of this command:

Figure 5.14: terraform import output

We can see that the resource was indeed imported into Terraform state.

We now have the Terraform configuration, the Terraform state file, and the resources in Azure

up to date.

There’s more…
To check the execution of the resource import, we execute the terraform plan command and it

should be such that no changes are required, as can be seen in the following screenshot:

Figure 5.15: terraform plan after import

We can see in the preceding output of the terraform plan command, that the resource has been

imported into Terraform state and the change is applied. Additionally, since Terraform 1.5.0 was

released, we can import resources by using the import block (the documentation is available at

https://developer.hashicorp.com/terraform/language/import) in the Terraform configu-

ration. For example, in our Terraform configuration studied in this recipe, in the main.tf file, we

https://developer.hashicorp.com/terraform/language/import

Chapter 5 141

add the following Terraform configuration under the azurerm_resource_group resource:

import {

 id = "/subscriptions/<your subscription id>/resourcegroups/RG-APP-
IMPORT-<5 first char of subcription id>"

 to = azurerm_resource_group.rg-app

}

In the preceding configuration:

• The id property is the ID of the resource (here, it is the Azure Group ID)

• The to property is the name of the Terraform resource (here, it is azurerm_resource_group.

rg-app)

The source code of the preceding Terraform configuration is available at https://github.com/

PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP05/import-block.

Remember to update the code with your subscription ID.

Then run the terraform init, plan, and apply commands to perform the import operation. The

following screenshot shows the execution of the terraform plan command:

Figure 5.16: terraform plan with import block

We can see that Terraform will perform one import operation with the details of the imported

resource.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP05/import-block
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP05/import-block

Managing Terraform State142

After the execution of the terraform apply command, Terraform state will be updated with the

Azure resource group configuration. What’s more, with this new import functionality described

directly in the Terraform configuration, we can go even further by generating the Terraform

configuration of the resource we want to import.

For this generation, let’s suppose we have a main.tf file that has no resources, in which we have

only the following provider configuration:

terraform {

 required_version = "~> 1.0"

 required_providers {

 azurerm = {

 source = "hashicorp/azurerm"

 version = "~> 3.20"

 }

 }

}

provider "azurerm" {

 features {}

}

And only the import block as shown here:

import {

 id = "/subscriptions/<your subscription id>/resourcegroups/RG-APP-
IMPORT"

 to = azurerm_resource_group.rg-app

}

The source code for the Terraform configuration is available at https://github.com/
PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP05/import-

generated. Remember to update the code with your subscription ID.

To generate the Terraform configuration for the Azure resource group RG-APP-IMPORT and import

it in Terraform state, add the option --generate-config-out in the terraform plan command.

To complete the import process (generating the configuration and importing into state) run the

following commands:

1. Run terraform init.

2. Run terraform plan --generate-config-out=generated.tf.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP05/import-generated
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP05/import-generated
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP05/import-generated

Chapter 5 143

3. At this step, the plan command execution will generate a new file, generated.tf, that

contains the Terraform configuration of the resource group. The following screenshot

shows the generated Terraform configuration:

Figure 5.17: Generated Terraform configuration using import block

• Finally, run the terraform apply command to perform the import in Terraform state.

See also
• The documentation for the import command is available here: https://www.terraform.

io/docs/commands/import.html.

• The documentation of the import block is available here: https://developer.hashicorp.

com/terraform/language/import

Using external resources from other Terraform state
files
In the Obtaining external data with data sources recipe in Chapter 4, Using Terraform with External

Data, we saw that it’s possible to retrieve information about resources already present in the

infrastructure using data blocks.

In this recipe, we will learn that it is also possible to retrieve external information that is present

in other Terraform state files.

Note that if you need to generate Terraform configuration for Azure resources you

can use the Azure specific tool aztfexport as explained in Chapter 8, Provisioning

Azure Infrastructure with Terraform, in the Generating a Terraform configuration for

existing Azure infrastructure recipe.

https://www.terraform.io/docs/commands/import.html
https://www.terraform.io/docs/commands/import.html
https://developer.hashicorp.com/terraform/language/import
https://developer.hashicorp.com/terraform/language/import

Managing Terraform State144

Getting ready
For this recipe, we will, like the previous recipe, use a Terraform configuration that provisions an

Azure App Service, which must be part of an already provisioned an App Service plan.

Unlike the previous recipe, we will not use individual data sources; instead, we will read outputs

from an existing Terraform state that was used to provision the App Service plan.

As a prerequisite, in the Terraform configuration that was used to provision the App Service plan,

we must have an output value (read the Using outputs to expose Terraform provisioned data recipe

in Chapter 2, Writing Terraform Configurations, to learn how to use an output value) that returns

the identifier of the App Service plan, as shown in the following configuration:

terraform {

 …

 backend "azurerm" {

 resource_group_name = "rg_tfstate"

 storage_account_name = "storstate"

 container_name = "tfbackends"

 key = "serviceplan.tfstate"

 }

}

resource "azurerm_service_plan" "plan-app" {

 name = "MyServicePlan"

 location = "westeurope"

 resource_group_name = "myrg"

 …

}

output "service_plan_id" {

 description = "The service plan"

 value = azurerm_service_plan.plan-app.id

}

To provision all resources (of this remote backend), you can use these scripts that create and

destroy these resources here: https://github.com/PacktPublishing/Terraform-Cookbook-

Second-Edition/tree/main/CHAP05/remote-backend.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP05/remote-backend
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP05/remote-backend

Chapter 5 145

In addition, we used a remote backend version of Azure Storage (see the Protecting state files in an

Azure remote backend recipe in Chapter 8, Provisioning Azure Infrastructure with Terraform, for more

information) to store Terraform state of the App Service plan.

The source code for this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP05/remote-state.

How to do it…
Perform the following steps:

1. In the Terraform configuration that provides the Azure App Service, add and configure

the terraform_remote_state block, as follows:

data "terraform_remote_state" "service_plan_tfstate" {

 backend = "azurerm"

 config = {

 resource_group_name = "rg_tfstate"

 storage_account_name = "storstate"

 container_name = "tfbackends"

 key = "serviceplan.tfstate"

 }

}

2. Then, in the Terraform configuration of the Azure App Service, use the created output of

the App Service plan, as follows:

resource "azurerm_windows_web_app" "app" {

 name = "${var.app_name}-${var.environement}"

 location = azurerm_resource_group.rg-app.location

 resource_group_name = azurerm_resource_group.rg-app.name

 service_plan_id = data.terraform_remote_state.service_plan_
tfstate.outputs.service_plan_id

 site_config {}

}

How it works…
In Step 1, we added the terraform_remote_state block, which allows us to retrieve outputs present

in another Terraform state file. In its block, we specified the remote backend information, which

is where the given Terraform state is stored (in this recipe, we used Azure Storage).

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP05/remote-state
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP05/remote-state

Managing Terraform State146

In Step 2, we used the ID returned by the output present in the Terraform state file.

The result of executing this configuration is the same as what we learned in the Using external

resources with data sources recipe in Chapter 4, Using Terraform with External Data.

There’s more…
This technique is very practical when separating a Terraform configuration that deploys a com-

plex infrastructure.

Separating the Terraform configuration is a good practice because it allows better control and

maintainability of the Terraform configuration. It also allows us to provision each part separately,

without it impacting the rest of the infrastructure.

To know when to use a data block or a terraform_remote_state block, the following recom-

mendations must be kept in mind:

The (Azure-specific) data source is used in the following cases:

• When external resources have not been provisioned with Terraform configuration (it has

been built manually or with a script)

• When the user providing the resources of our Terraform configuration does not have

access to the remote backend

The terraform_remote_state data source is used in the following cases:

• When external resources have been provisioned with Terraform configuration

• When the user providing the resources of our Terraform configuration has read access to

the other remote backend

• When the external Terraform state file contains the output of the property that we need

in our Terraform configuration

See also
• The documentation for the terraform_remote_state block is available at https://www.

terraform.io/docs/providers/terraform/d/remote_state.html.

Refactoring resources in configuration
In the previous recipes, we learned how to manage resources in Terraform state using the Ter-

raform CLI.

https://www.terraform.io/docs/providers/terraform/d/remote_state.html
https://www.terraform.io/docs/providers/terraform/d/remote_state.html

Chapter 5 147

In some situations, we may want to refactor the Terraform configuration by:

• Renaming resources or modules to be more consistent with the resource role

• Adding count or for_each iterators inside existing resources to scale the provisioning of

the resource from 1 instance to N instances

• Moving resources inside a module to refactor Terraform configuration

What you need to know is that any change in the Terraform configuration brings about changes

in the Terraform state file.

In this recipe, we will learn how to perform a simple and basic refactoring operation so as not to

destroy the resources that already exist in state, using two methods:

• Using the Terraform CLI

• Using the moved block

Let’s get started!

Getting ready
To complete this recipe, we will start with a simple Terraform configuration that creates two

Azure Linux Web Apps (inside the same App Service plan) using the following configuration

(called script 1):

resource "azurerm_virtual_network" "vnet" {

 name = "vnet1"

 address_space = ["10.0.0.0/16"]

 location = azurerm_resource_group.rg.location

 resource_group_name = azurerm_resource_group.rg.name

}

resource "azurerm_subnet" "snet1" {

 name = "subnet1"

 resource_group_name = azurerm_resource_group.rg.name

 virtual_network_name = azurerm_virtual_network.vnet.name

 address_prefixes = ["10.0.1.0/24"]

}

resource "azurerm_subnet" "snet2" {

 name = "subnet2"

 resource_group_name = azurerm_resource_group.rg.name

Managing Terraform State148

 virtual_network_name = azurerm_virtual_network.vnet.name

 address_prefixes = ["10.0.2.0/24"]

}

We run the terraform init, plan, and apply commands.

After reflection, we want to refactor the configuration to use only one resource, azurerm_subnet,

and use the foreach meta-argument to loop over a list.

In this Terraform configuration, we will directly replace the code with the configuration that we

want with the following code (called script 2):

locals {

 subnet_list = {

 subnet1 = "10.0.1.0/24"

 subnet2 = "10.0.2.0/24"

 }

}

resource "azurerm_subnet" "snetlist" {

 for_each = local.subnet_list

 name = each.key

 resource_group_name = azurerm_resource_group.rg.name

 virtual_network_name = azurerm_virtual_network.vnet.name

 address_prefixes = [each.value]

}

At the terraform apply execution, Terraform will delete the first two azurerm_subnet resources

that are in the first code, and recreate two new azurerm_subnet resources.

But the goal of the refactorization isn’t to delete and recreate new resources. The goal is just to

refactor the Terraform configuration and change Terraform state accordingly so no changes need

to be applied when terraform apply is executed.

The goal of this recipe is to refactor this configuration by using the Terraform CLI first, and then

using the moved block.

The complete source code for this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP05/refactor.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP05/refactor
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP05/refactor

Chapter 5 149

How to do it…
To refactor our initial Terraform configuration (script 1), using the Terraform CLI, perform the

following steps:

In the cli subfolder, run the terraform init, plan, and apply commands

Use the command terraform state mv to move each resource in Terraform state by running

the following commands:

terraform state mv 'azurerm_subnet.snet1' 'azurerm_subnet.
snetlist["subnet1"]'

terraform state mv 'azurerm_subnet.snet2' 'azurerm_subnet.
snetlist["subnet2"]'

Then, we can write the refactorized configuration (script 2) and delete the old configuration

(script 1).

Finally, we run the plan command.

The source code for this configuration is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP05/refactor/cli.

To refactor our initial Terraform configuration (script 1), using the Terraform moved block, perform

the following steps:

1. In the Terraform configuration, write the final refactorized configuration (script 2).

2. Then, in the same Terraform configuration file, add the following code:

moved {

 from = azurerm_subnet.snet1

 to = azurerm_subnet.snetlist["subnet1"]

}

On Windows, we can avoid using double quotes by instead using a backslash, for

example: terraform state mv 'azurerm_subnet.snet1' 'azurerm_subnet.

snetlist[\"subnet1\"]'.

The following article explains this further: https://devcoops.com/terraform-
powershell-escape-double-quotes/

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP05/refactor/cli
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP05/refactor/cli
https://devcoops.com/terraform-powershell-escape-double-quotes/
https://devcoops.com/terraform-powershell-escape-double-quotes/

Managing Terraform State150

moved {

 from = azurerm_subnet.snet2

 to = azurerm_subnet.snetlist["subnet2"]

}

3. Delete the old Terraform configuration (script 1).

Finally, we run the terraform init and apply commands.

Remove the two moved blocks written in Step 2 from the configuration.

The source code for this configuration is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP05/refactor/moved.

How it works…
In the first part of this recipe, in the first solution, we run the terraform state mv command,

which moves a resource inside another resource, like a list or module, and we can also use this

command to rename a Terraform resource.

We run this command for each azurerm_subnet (snet1 and snet2) to move it inside the new

azurerm_subnet resource snetlist.

The following image shows the execution of this command:

Figure 5.18: terraform state mv output

We can see the output of this command, which indicates the move operation has been completed

successfully.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP05/refactor/moved
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP05/refactor/moved

Chapter 5 151

After this operation, we can now refactor the code and write the final configuration, which in-

cludes a locals expression with a list of random string lengths and the count expression, and

we remove the old configuration.

Finally, we run the Terraform workflow with the init and plan commands. The following image

shows the result of the plan command:

Figure 5.19: terraform plan after terraform state mv

We can see that there are no changes to be applied and our random string value is kept intact

inside Terraform state.

In the second solution, we use the moved block, which was introduced in Terraform 1.1.

To apply this solution, we add two moved blocks in our initial configuration, which contain two

properties: from, which is the Terraform initial resource name, and to, which is the name of the

target resource name. For example, for the first azurerm_subnet, we write the following code:

moved {

 from = azurerm_subnet.snet1

 to = azurerm_subnet.snetlist["subnet1"]

}

Then, we delete the initial configuration and finally we run the Terraform workflow with init,

plan, and apply commands.

Managing Terraform State152

The following image shows the execution of the plan command:

Figure 5.20: Terraform moved in plan

We can see that Terraform will move the desired resources and will not make any changes to the

value of the resources.

To apply this move operation, we run the terraform apply command.

After the apply command, we can re-run terraform plan and see that there are no changes, as

in the following image:

Figure 5.21: terraform plan after apply using the moved block

To finish the refactoring process, we remove the configuration of the 2 moved blocks.

Chapter 5 153

There’s more…
In this recipe, we learned two ways to refactor Terraform configuration; the first way is by using

the terraform state mv command and the second way is by using the moved block, which we

write in the Terraform configuration.

You are probably wondering which solution to choose to refactor your code.

To help you, here is a list of the pros and cons of each of these solutions.

Using the terraform state mv command:

Pros:

• We can use this command to move a resource from one state to another. For more details,

read this documentation: https://developer.hashicorp.com/terraform/tutorials/

state/state-cli#move-a-resource-to-a-different-state-file.

• This can be integrated into an existing migration script if we need to refactor a lot of

configurations.

Cons:

• This command runs the move directly without asking the user for confirmation.

• If we use a CI/CD pipeline, we need to add this command inside the external script and

ensure that it runs.

Using the Terraform moved block:

Pros:

• We write the operation of the refactor inside the Terraform configuration.

• The move operation is integrated into the Terraform workflow. With plan and apply, we

can decide to not apply the move if the result of the plan command isn’t what we want

to move.

Cons:

• If the Terraform workflow is executed inside an automated pipeline and the code is sourced

to SVC (like Git), we need to perform multiple operations of commit and push to operate

the refactoring with the following workflow:

1. Add the moved block and new Terraform configuration.

2. Commit and push.

https://developer.hashicorp.com/terraform/tutorials/state/state-cli#move-a-resource-to-a-different-state-file
https://developer.hashicorp.com/terraform/tutorials/state/state-cli#move-a-resource-to-a-different-state-file

Managing Terraform State154

3. The pipeline runs the Terraform workflow.

4. Remove the moved blocks.

5. Commit and push the clean and refactorized code.

• As the moved block is in a specific Terraform configuration, we can’t use it to move a re-

source to another state.

• The moved block solves a common pain point by providing a safe migration path for

external modules, from the module author’s perspective. For example, imagine that

as a module author, you wish to change the structure, but do it without impacting con-

sumers of that module. Prior to introducing the moved blocks, most authors would rather

avoid refactoring, or communicate it very carefully through major version changes and

changelogs – e.g., v1 -> v2. On a similar note, the recommendations about removal are

different in this context since the author cannot assume a particular upgrade has already

happened (since they’re not in control of state, consumers are). They’d typically leave the

“moved{}" blocks in place for much longer, perhaps throughout the whole major release.

My personal advice is there isn’t a perfect solution, so choose the method that is adapted to your

scenario and your context.

Finally, in this recipe, we learned about just one scenario for Terraform configuration refactor-

ing. For more use cases, read the documentation here: https://developer.hashicorp.com/

terraform/language/modules/develop/refactoring.

See also
• The documentation for the terraform state mv command is available here: https://

developer.hashicorp.com/terraform/cli/commands/state/mv

• The documentation for the Terraform moved block is available here: https://developer.

hashicorp.com/terraform/language/modules/develop/refactoring

• A tutorial about refactoring with a moved block is available here: https://developer.

hashicorp.com/terraform/tutorials/configuration-language/move-config

• A video about the use of the moved block is available here: https://nedinthecloud.

com/2021/12/14/using-the-moved-block-in-terraform-1-1/

https://developer.hashicorp.com/terraform/language/modules/develop/refactoring
https://developer.hashicorp.com/terraform/language/modules/develop/refactoring
https://developer.hashicorp.com/terraform/cli/commands/state/mv
https://developer.hashicorp.com/terraform/cli/commands/state/mv
https://developer.hashicorp.com/terraform/language/modules/develop/refactoring
https://developer.hashicorp.com/terraform/language/modules/develop/refactoring
https://developer.hashicorp.com/terraform/tutorials/configuration-language/move-config
https://developer.hashicorp.com/terraform/tutorials/configuration-language/move-config
https://nedinthecloud.com/2021/12/14/using-the-moved-block-in-terraform-1-1/
https://nedinthecloud.com/2021/12/14/using-the-moved-block-in-terraform-1-1/

Chapter 5 155

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to

the author, and learn about new releases – follow the QR code below:

https://packt.link/cloudanddevops

https://packt.link/cloudanddevops

6
Applying a Basic Terraform
Workflow

Terraform is an Infrastructure as Code (IaC) tool that consists of linked elements: the Terraform

configuration, written in HashiCorp Configuration Language (HCL), which describes the infra-

structure we want to provision; the Terraform CLI, which will analyze and execute our Terraform

configuration; and the Terraform State. In Chapter 2, Writing Terraform Configurations, and Chapter

3, Scaling Your Infrastructure with Terraform, we studied a variety of recipes on writing Terraform

configuration using variables, loops, functions, and expressions of the language.

In this chapter, we will focus on the use of the Terraform CLI with its commands and options

to operate the basic Terraform workflow. We will discuss how to present the configuration well

and validate the syntax, the destruction of resources, how to list used providers, and the use

of workspaces. Then we will learn the taint functionality, and we will see how to generate a

dependency graph. Finally, we will see how to evaluate Terraform expressions and debug the

execution of Terraform.

We will cover the following recipes in this chapter:

• Keeping your Terraform configuration clean

• Validating the code syntax

• Destroying infrastructure resources

• Displaying a list of providers used in a configuration

• Generating one Terraform lock file with Windows and Linux compatibility

• Copying a Terraform module

Applying a Basic Terraform Workflow158

• Using workspaces to manage environments

• Exporting the output in JSON

• Tainting resources

• Generating the dependency graph

• Using different Terraform configuration directories

• Testing and evaluating Terraform expressions

• Debugging the Terraform execution

Technical requirements
Contrary to the previous chapters, the code examples provided in this chapter are not fundamental,

since we will focus on the execution of Terraform command lines.

The code examples in this chapter are available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP06.

Keeping your Terraform configuration clean
In any application with code, it is very important that the code is clean and clearly readable by all

contributors (current and future) who will be involved in its maintenance and evolution.

In IaC and with Terraform, it is even more important to have clean code because written code

serving as documentation is an advantage of IaC.

In this recipe, we will look at how to use Terraform’s command line to properly format its code,

and we will also see some tips to automate it.

In this chapter, to provide Terraform configuration samples, we will manage re-

sources in the Azure cloud; it is obvious that this also applies to all other Terraform

providers. If you want to apply these recipes and don’t have an Azure account, you

can create an Azure account for free at this site: https://azure.microsoft.com/

en-us/free/.

Additionally, to execute Terraform commands with the CLI, we use a command-line

terminal (CMD, PowerShell, Bash, and so on), and the execution folder will be the

folder containing the Terraform configuration of the recipe. This will apply to all

recipes in this chapter.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP06
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP06
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/

Chapter 6 159

Getting ready
To get started, we will start with a main.tf file that contains the following Terraform configuration:

Figure 6.1: A bad Terraform configuration format style

As we can see, this code is not very readable; it needs to be better formatted.

How to do it…
To fix the code indentation, execute the terraform fmt command at the root Terraform config-

uration, as follows:

terraform fmt

How it works…
The terraform fmt command makes it easier to arrange the code with the correct indentation.

At the end of its execution, this command displays the list of files that have been modified, as

shown in the following screenshot:

Figure 6.2: The Terraform fmt command execution

The output of this command displays all fixed and formatted Terraform files.

Applying a Basic Terraform Workflow160

We can see in the Terraform configuration that executing the terraform fmt command modified

our main.tf file.

Then, we open the main.tf file and read it:

Figure 6.3: The well-formatted Terraform configuration

We can see in the preceding screenshot that the code has been well indented and so is more

easily readable.

There’s more…
In this recipe, we learned about the terraform fmt command executed in its most basic way –

that is, without any additional options.

This default command indents any Terraform files, which are at the root of the current folder.

We can also execute this command recursively – that is, it can also indent the code in subfolders

of the current folder.

To do this, we execute the terraform fmt command with the -recursive option. The output of

this is shown in the following screenshot:

Figure 6.4: The terraform fmt –recursive command execution

We see that the command has also formatted the main.tf file in the sub folder.

Chapter 6 161

Among the other options of this command, there is also the -check option, which can be added and

allows you to preview the files that will be indented, without applying the changes in the file(s).

Finally, it’s also possible to automate the execution of this command, because apart from running

it manually in a command terminal, as seen in this recipe, we can automate it to ensure that every

time we save or commit a file in Git, the code provided and shared with the rest of the contributors

will always be properly indented.

Thus, the IDEs that support Terraform have integrated the execution of this command natively

with the writing of the code:

• With the Terraform extension of Visual Studio Code, we can have every Terraform file saved

and formatted with the terraform fmt command. For more information, read the pertinent

documentation: https://marketplace.visualstudio.com/items?itemName=HashiCorp.

terraform.

• In IntelliJ IDEA, the Save action plugin enables the code to be formatted every time it is

saved, and the Terraform plugin has a large integration of the terraform fmt command

within the IDE. Furthermore, with this Terraform plugin, it is possible to execute the

terraform fmt command and arrange the code at every code commit, as shown in the

following screenshot:

Figure 6.5: The IntelliJ Terraform plugin

https://marketplace.visualstudio.com/items?itemName=HashiCorp.terraform
https://marketplace.visualstudio.com/items?itemName=HashiCorp.terraform

Applying a Basic Terraform Workflow162

For Git commits, it’s possible to automate the execution of the terraform fmt command before

each commit by using pre-commits that are hooks in Git: https://git-scm.com/book/en/v2/

Customizing-Git-Git-Hooks.

We will learn about this pre-commit hook in Chapter 12, Deep-Diving into Terraform, in the reci-

pe Checking configuration before commit using Git hooks pre-commit recipe, when we learn how to

automate the fmt command in a Git pre-commit hook.

See also
The complete terraform fmt command documentation is available here: https://www.terraform.

io/docs/commands/fmt.html.

Validating the code syntax
When writing a Terraform configuration, it is important to be able to validate the syntax of the

configuration we are writing before executing it, or even before archiving it in a Git repository.

We will see in this recipe how, by using the Terraform binary, we can check the validity of Terra-

form configuration syntax.

Getting ready
For this recipe, we will start with the following Terraform configuration, which is written in a

main.tf file:

For more information on the Save action plugin, refer to https://plugins.

jetbrains.com/plugin/7642-save-actions, and for the Terraform plugin, refer

to https://plugins.jetbrains.com/plugin/7808-hashicorp-terraform--

hcl-language-support.

https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
https://www.terraform.io/docs/commands/fmt.html
https://www.terraform.io/docs/commands/fmt.html
https://plugins.jetbrains.com/plugin/7642-save-actions
https://plugins.jetbrains.com/plugin/7642-save-actions
https://plugins.jetbrains.com/plugin/7808-hashicorp-terraform--hcl-language-support
https://plugins.jetbrains.com/plugin/7808-hashicorp-terraform--hcl-language-support

Chapter 6 163

Figure 6.6: Bad Terraform configuration

What we notice in the preceding code is that the declaration of the environment variable is missing.

The source code of this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP06/validate.

How to do it…
To validate our Terraform configuration syntax, perform the following steps:

1. To start, initialize the Terraform context by running the following command:

terraform init

2. Then, validate the code by executing the validate command:

terraform validate

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP06/validate
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP06/validate

Applying a Basic Terraform Workflow164

At the end of the execution of this command, we get the following output:

Figure 6.7: The terraform validate command execution with an output error

3. We can see that there is one syntax error in the Terraform configuration, which indicates

that we call the variable var.environment, which has not been declared.

So, we correct the code and run the terraform validate command again until we have

no more errors, as shown in the following screenshot:

Figure 6.8: The Terraform configuration is valid

The output shows us that the Terraform configuration is valid.

How it works…
In Step 1, we initialize the Terraform context by executing the terraform init command.

Then, we perform a check of the code validity by executing the terraform validate command.

This command checks the syntax of the configuration and returns a list of errors.

There’s more…
This validation command is useful in local development mode, but also in code integration in a

continuous integration (CI) pipeline, so as to not execute the terraform plan command if the

terraform validate command returns syntax errors.

The following PowerShell code shows an example of the return code following the execution of

this command:

terraform validate

$LASTEXITCODE

Chapter 6 165

The PowerShell variable $LASTEXITCODE, which is native to PowerShell, will return 0 if there is no

error, or 1 if there is an error. This is similar to the $? variable in many Linux shells.

It is also possible to get the output of the terraform validate command in JSON format by

adding the -json option to this command, as shown in the following screenshot:

Figure 6.9: The terraform validate output to JSON

The JSON result can then be parsed with third-party tools such as jq and used in your workflow.

Be careful, however. This command only performs static validation of the configuration and pass-

ing validation; therefore, it does not necessarily imply successful execution (with the terraform

apply command), as that may depend on other external factors, such as the real state of the

infrastructure at the time of the execution of the terraform apply. A common problem that is

typically not detectable by static analysis is naming conflicts, where the same resource already

exists, but Terraform wouldn’t know until it reaches the Azure APIs.

If the Terraform configuration contains a backend block, then, for this validation

of the configuration, we don’t need to connect to the state file. We can add the

-backend=false option to the terraform init command.

Applying a Basic Terraform Workflow166

If you want to perform a more thorough validation that includes variables, you can provide those

(e.g. via the -var or -var-file argument, or via the tfvars file) and run terraform plan, which

will indirectly perform the same validation with variables replaced.

See also
The terraform validate command documentation is available here: https://www.terraform.

io/docs/commands/validate.html.

Destroying infrastructure resources
As we have said many times in this book, IaC allows the rapid provisioning of infrastructure.

Another advantage of IaC is that it allows a quick build and the cleaning up of resources that

have been provisioned.

Indeed, we may need to clean up an infrastructure for different reasons. Here are a few examples:

• We destroy an infrastructure with a view to rebuilding it better in accordance with new

specifications.

• We provide an infrastructure on demand, which means it is temporary for a specific need

(such as to test a new feature or a new branch of the application). And this infrastructure

must be capable of being built and destroyed quickly and automatically.

• We want to remove unused infrastructure and, at the same time, no longer pay for it.

In this recipe, we will discuss how to destroy an infrastructure that has been provisioned with

Terraform.

Getting ready
To get started, we will provide an infrastructure in Azure that uses Azure App Service.

For this, we use the Terraform configuration that can be found here: https://github.com/

PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP06/sampleApp.

To provision it, we execute the basic Terraform workflow with the following commands:

terraform init

terraform plan -out="app.tfplan"

terraform apply "app.tfplan"

At the end of its execution, we have an Azure resource group, an App Service plan, an App Service

instance, and an Application Insights resource in Azure.

https://www.terraform.io/docs/commands/validate.html
https://www.terraform.io/docs/commands/validate.html
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP06/sampleApp
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP06/sampleApp

Chapter 6 167

The goal of this recipe is to completely destroy this infrastructure using Terraform commands.

How to do it…
To clean your Terraform infrastructure by deleting resources, perform the following steps:

1. To start, initialize the Terraform context by running the init command:

terraform init

2. Then, to destroy the resources, we execute the following command:

terraform destroy

At the beginning of its execution, this command displays all resources that will be destroyed and

asks for confirmation to delete the resources. Validation is then confirmed by typing the word yes.

How it works…
In Step 1, we run the terraform init command to initialize the Terraform context.

In Step 2, we destroy all the provisioned resources by executing the terraform destroy command.

The following screenshot shows the extracted output of this command:

Figure 6.10: The terraform destroy command execution

At the end of the command execution, Terraform reports that the resources have been success-

fully destroyed.

There’s more…
In this recipe, we studied how to destroy all the resources that have been described and provi-

sioned with a Terraform configuration.

Applying a Basic Terraform Workflow168

Since the terraform destroy command deletes all the resources tracked in the Terraform state,

it is important to break the Terraform configuration by separating it into multiple Terraform state

to reduce the room for error when changing the infrastructure.

If you need to destroy a single resource while keeping all the resources tracked in the Terraform

state, then you can add the -target option to the terraform destroy command, which allows

you to target the resource to be deleted. The following is an example of this command with the

target option:

terraform destroy -target azurerm_application_insights.appinsight-app

In this example, only the Application Insights resource is destroyed. For more details, read the per-

tinent documentation here: https://www.terraform.io/docs/commands/plan.html#resource-

targeting.

In addition, if the terraform plan command applied in the Terraform configuration requires

the -var-file option to specify or override values to the variables, then the same options must

also be added to the terraform destroy command.

See also
• The documentation pertaining to the terraform destroy command is available here:

https://www.terraform.io/docs/commands/destroy.html

• The documentation pertaining to addressing the resource target is available here: https://

www.terraform.io/docs/internals/resource-addressing.html

Note that the targeting mechanism should only be used as a last resort. In an ideal

scenario, the configuration stays in sync with the Terraform state (as applied without

any extra target flags). The risk of executing a targeted apply or destroy operation

is that other contributors may miss the context, and more importantly, it becomes

much more difficult to apply further changes after changing the configuration.

In most cases, all options that apply to the terraform plan command also apply

to the terraform destroy command.

https://www.terraform.io/docs/commands/plan.html#resource-targeting
https://www.terraform.io/docs/commands/plan.html#resource-targeting
https://www.terraform.io/docs/commands/destroy.html
https://www.terraform.io/docs/internals/resource-addressing.html
https://www.terraform.io/docs/internals/resource-addressing.html

Chapter 6 169

Displaying a list of providers used in a configuration
When we use several Terraform providers inside a Terraform configuration, it’s important to have

governance over the providers list to upgrade them frequently.

In this recipe, we will learn how to display the list of providers used in our Terraform configura-

tion with their versions.

Let’s get started!

Getting ready
To complete this recipe, we will use a sample Terraform configuration that contains some providers.

The following code contains the Terraform configuration:

terraform {

 required_version = ">= 1.0"

 required_providers {

 random = {

 source = "hashicorp/random"

 version = "3.4.3"

 }

 azurerm = {

 source = "hashicorp/azurerm"

 version = "3.29.1"

 }

 http = {

 source = "hashicorp/http"

 version = "3.2.1"

 }

 null = {

 source = "hashicorp/null"

 version = "3.2.1"

 }

 }

}

This Terraform configuration uses the following providers: random, azurerm, http, and null.

The goal in this recipe is to list used providers.

Applying a Basic Terraform Workflow170

The complete source code of this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP06/providers.

How to do it…
Run the following command at the root of the Terraform configuration to list used providers:

terraform providers

How it works…
The command terraform providers displays the Terraform provider list used in the configuration.

With our sample Terraform configuration, the output of this command is shown in the following

image:

Figure 6.11: The Terraform providers list in the configuration

We can see all the used Terraform providers with their specified versions in the output above.

There’s more…
This command is interesting, but it only allows you to list the providers with the versions currently

in use (as installed via the last terraform init execution).

If you want to go further and know which providers are not up to date and need to be updated,

this command does not allow you to do this check.

So, for a better way to check which providers are not up to date, we can use a third-party tool called

tfvc whose documentation is available here: https://tfverch.github.io/tfvc/v0.7.12/. We

can install tfvc with the following script (on Linux):

wget https://github.com/tfverch/tfvc/releases/download/v0.7.12/
tfvc_0.7.12_Linux_x86_64.tar.gz && tar xzvf tfvc_0.7.12_Linux_x86_64.tar.
gz && sudo cp tfvc /usr/local/bin

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP06/providers
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP06/providers
https://tfverch.github.io/tfvc/v0.7.12/

Chapter 6 171

We can then execute tfvc at the root of our Terraform configuration with the command tfvc .,

and we get the following output:

Figure 6.12: The Terraform providers list using the tfvc tool

We can see that our azurerm Terraform provider isn’t the latest version and the latest is 3.35.0,

so we need to update it.

Additionally, we can see the list of providers directly in VS Code using the Terraform extension that

we learned about in Chapter 1, in the recipe Writing Terraform configuration in VS Code. For more

information about this feature in the extension read the documentation here: https://github.

com/hashicorp/vscode-terraform#terraform-module-and-provider-explorer.

See also
• The documentation of the terraform provider command is available here: https://

developer.hashicorp.com/terraform/cli/commands/providers

• The documentation of the tfvc tool is available here: https://tfverch.github.io/tfvc/

v0.7.12/

Generating one Terraform lock file with Windows
and Linux compatibility
We previously learned in Chapter 1, Setting Up the Terraform Environment, in the recipe Upgrading

Terraform providers, that the Terraform dependency file (.terraform.lock.hcl) contains infor-

mation used by Terraform providers in the Terraform configuration.

https://github.com/hashicorp/vscode-terraform#terraform-module-and-provider-explorer
https://github.com/hashicorp/vscode-terraform#terraform-module-and-provider-explorer
https://developer.hashicorp.com/terraform/cli/commands/providers
https://developer.hashicorp.com/terraform/cli/commands/providers
https://tfverch.github.io/tfvc/v0.7.12/
https://tfverch.github.io/tfvc/v0.7.12/

Applying a Basic Terraform Workflow172

Among these providers’ information, there are the name, the version, and also the hashes of the

packages for integrity checks.

What is important to know is that the package hashes are different, depending on the operating

system (OS) that runs Terraform, since both the Terraform CLI and provider builds (in both cases

written in Go) are built for each combination of OS and architecture separately.

And so, the problem you may encounter is that developers work and test their Terraform config-

uration on a Windows or macOS machine, but the CI pipeline that deploys that same Terraform

configuration on other environments is run on a Linux machine.

The Terraform providers that will be downloaded using the command will be based on different

OSes and, therefore, the file .terraform.lock.hcl will have different hashes. This produces

different files than what was sourced in Git.

The goal of this recipe is to show how to generate a .terraform.lock.hcl file that contains hashes

of used providers for different OSes.

This can also help you ensure that the providers in use are, in fact, available for the given platforms

where you intend to use them. For example, not all providers may be available for Windows, or

the ARM architecture.

Let’s get started!

Getting ready
To complete this recipe, we will use the following Terraform provider configuration:

terraform {

 required_version = ">= 1.0"

 required_providers {

 random = {

 source = "hashicorp/random"

 version = "3.4.3"

 }

 }

}

This Terraform provider configuration uses the random provider.

Chapter 6 173

Now we will generate .terraform.lock.hcl for both Windows and Linux compatibility.

How to do it…
Perform the following steps to generate terraform.lock.hcl:

1. Run the following command on any OS:

terraform providers lock -platform=windows_amd64 -platform=linux_
amd64

2. Then, run the basic Terraform workflow to apply our Terraform configuration on a local

machine.

3. Finally, we can source .terraform.lock.hcl in Git source control.

How it works…
In Step 1, we run the terraform provider lock command and specify the target OS that will run

this Terraform configuration; here, we specify windows_amd64 and linux_amd64.

The following image shows the output of this command:

Figure 6.13: The Terraform providers lock command execution

The generated .terraform.lock.hcl contains provider hashes for both specified operating sys-

tems.

Then, in Step 2, we can run this same Terraform configuration locally for example on the Windows

OS while ensuring reproducibility through the exact same version of the provider.

Finally, we store this file in Git source control to be executed in the CI pipeline. This file can be run

on a Linux OS, and during the terraform init execution no changes will be applied to this file.

Applying a Basic Terraform Workflow174

The following image shows changes applied on .terraform.lock.hcl, generated on Windows

without any OS specification and then updated with both Windows and Linux OSes.

Figure 6.14: The Terraform dependency file updated to a different OS

We can see the added line in the hashes property for the Linux provider package.

See also
• The documentation of the Terraform dependency file is available here: https://developer.

hashicorp.com/terraform/language/files/dependency-lock

• The documentation of the terraform provider lock command is available here: https://

developer.hashicorp.com/terraform/cli/commands/providers/lock

https://developer.hashicorp.com/terraform/language/files/dependency-lock
https://developer.hashicorp.com/terraform/language/files/dependency-lock
https://developer.hashicorp.com/terraform/cli/commands/providers/lock
https://developer.hashicorp.com/terraform/cli/commands/providers/lock

Chapter 6 175

Copying a Terraform module configuration
In Chapter 3, Scaling Your Infrastructure with Terraform, in the recipe Provisioning infrastructure

in multiple environments, we learned about different types of folder structures to organize your

Terraform configuration.

In this recipe, we will walk through another method to share one Terraform configuration in a

shared folder, and we will use the Terraform CLI to retrieve this shared configuration inside our

current Terraform configuration.

Let’s get started!

Getting ready
To complete this recipe, we will use a sample Terraform configuration that provisions an Azure

resource group.

The goal of this recipe is to share this Terraform configuration to a separate and centralized folder

and access the configuration from inside that folder by using the init command .

For the shared Terraform configuration, we will reuse the Terraform configuration that we

wrote in the previous chapter, the source code of which is available here: https://github.com/

PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP05/import.

How to do it…
To share the Terraform configuration, perform the following steps:

1. In the root of the CHAP06 folder, Create a folder called fromsource and inside it run the

command init with the following argument:

terraform init –from-module="../../CHAP05/import"

2. Run the Terraform workflow with the init, plan, and apply commands.

How it works…
In Step 1, in the new folder, we run the command terraform init –from-module="../../CHAP05/

import" that copies the entire content of the Terraform folder “import" to inside the current

directory that is empty.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP05/import
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP05/import

Applying a Basic Terraform Workflow176

The following image shows the execution of the init –from-module command:

Figure 6.15: Import shared configuration

We can see that the content of the import folder is copied into the current directory.

Then, we can run the Terraform workflow inside this fromsource directory.

There’s more…
The advantage of this method is that we can do other operations after running the init –from-

module command, for example, copying other files from an external source like tfvars files.

Another consideration, and one that we have to be careful of, is that we cannot run this command

if the target directory isn’t empty. If we run this command twice, we get the following error:

Figure 6.16: The import shared configuration error if the folder isn’t empty

This error message indicates that the folder isn’t empty.

We will learn the best method to share Terraform configurations using modules in Chapter 7,

Sharing Terraform Configurations with Modules.

See also
• The documentation of the -from-module option is available here: https://developer.

hashicorp.com/terraform/cli/commands/init#copy-a-source-module.

https://developer.hashicorp.com/terraform/cli/commands/init#copy-a-source-module
https://developer.hashicorp.com/terraform/cli/commands/init#copy-a-source-module

Chapter 6 177

Using workspaces to manage environments
In Terraform, there is the concept of workspaces, which enable the same Terraform configuration

to be used in order to build multiple environments.

Each of these configurations will be written to a different Terraform state and will, thus, be iso-

lated from the other configurations. Workspaces can be used to create several environments for

our infrastructure.

In this recipe, we will study the use of Terraform workspaces in Terraform configurations, with

the execution of Terraform CLI commands.

Getting ready
The purpose of this recipe is for an application to create an Azure resource group for each of its

environments (dev and prod).

Regarding the Terraform configuration, there are no prerequisites, as we will see in the steps of

the recipe.

The Terraform configuration for this recipe is available here: https://github.com/

PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP06/workspaces.

How to do it…
To manage a Terraform workspace, perform the following steps:

1. In a new main.tf file, we write the following Terraform configuration:

resource "azurerm_resource_group" "rg-app" {

 name = "RG-APP-${terraform.workspace}"

 location = "westeurope"

}

Be careful: in this recipe, we will study the workspaces of Terraform states, also called

Terraform CLI workspaces, which are different from the Terraform Cloud workspaces

used in HCP, which we will study in Chapter 14, Using Terraform Cloud to Improve

Team Collaboration, in the recipe Using workspaces in Terraform Cloud.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP06/workspaces
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP06/workspaces

Applying a Basic Terraform Workflow178

2. In a command terminal, we navigate into the folder that contains this Terraform config-

uration and execute the following command:

terraform init

terraform workspace new dev

3. To provision the dev environment, we run the basic commands of the Terraform workflow,

which are as follows:

terraform plan -out="outdev.tfplan"

terraform apply "outdev.tfplan"

4. Then, we execute the workspace new command with the name of the production work-

space to be created:

terraform workspace new prod

5. To finish and provision the prod environment, we execute the basic commands of the

Terraform workflow production, which are as follows:

terraform plan -out="outprod.tfplan"

terraform apply "outprod.tfplan"

How it works…
In Step 1, in the Terraform configuration we wrote, we provide a resource group in Azure that will

have a name composed of an RG-APP prefix and a dynamic suffix, terraform.workspace, which

will be the name of the workspace we are going to create.

In Step 2, we create the workspace that corresponds to the dev environment, and for this, we use

the terraform workspace new command followed by the workspace name (in this case, dev).

Once created, Terraform automatically switches to this workspace, as you can see in the following

screenshot:

Figure 6.17: The Terraform created workspace

Chapter 6 179

After we’ve created the workspace, we just execute the basic commands of the Terraform work-

flow, which we do in Step 3.

Then, to provision the prod environment, we repeat Steps 2 and 3, but this time, we create a

workspace called prod.

At the end of the execution of all these steps, we can see in the Azure portal that we have our two

resource groups, which contain in their suffixes the names of their workspaces, as you can see

in the following screenshot:

Figure 6.18: Azure resource groups created with the Terraform workspace suffix

In addition, we also notice two Terraform states, one for each workspace, which were created

automatically, as shown in the following screenshot:

Figure 6.19: One Terraform state for each workspace

Note that here we have added the -out option to the terraform plan command

to save the result of the plan in the outdev.tfplan file. Then, to apply the changes,

we specifically add this file as an argument to the terraform apply command.

This option is important in Terraform automation mode, to ensure that what will

be applied by Terraform is equal to the plan and nobody can change the Terraform

configuration between the execution of the plan and apply commands.

Applying a Basic Terraform Workflow180

In this screenshot, we can see two terraform.tfstate files, one in the dev directory and another

in the prod directory.

There’s more…
It is possible to see the list of workspaces in the backend by executing the following command:

terraform workspace list

The following screenshot shows the execution of this command in the case of our recipe:

Figure 6.20: A list of Terraform workspaces

In any Terraform configuration execution, there is a default workspace that is called default,

which we can also see in the list above. We can clearly see our dev and prod workspace, and that

the current workspace is prod (marked with an * in front of its name).

If you want to switch to another workspace, execute the terraform workspace select command,

followed by the name of the workspace to be selected – for example:

terraform workspace select dev

Then, before using Terraform workspace, check if your Terraform state backend is compatible with

multiple workspaces by referring to this page: https://developer.hashicorp.com/terraform/

language/state/workspaces#backends-supporting-multiple-workspaces.

Finally, you can also delete a workspace by executing the terraform workspace delete command,

followed by the name of the workspace to be deleted – for example:

terraform workspace delete dev

Please note that, when deleting a workspace, the associated resources are not deleted. That’s why,

in order to delete a workspace, you must first delete the resources provided by that workspace

using the terraform destroy command. Otherwise, if this operation is not carried out, it will

no longer be possible to manage these resources with Terraform because the Terraform state of

this workspace will have been deleted.

https://developer.hashicorp.com/terraform/language/state/workspaces#backends-supporting-multiple-workspaces
https://developer.hashicorp.com/terraform/language/state/workspaces#backends-supporting-multiple-workspaces

Chapter 6 181

For the reasons described above, as a precaution, it is not possible to delete a workspace whose

Terraform state is not empty by default. However, we can force the destruction of this workspace

by adding the -force option to the terraform workspace delete -force command, as docu-

mented here: https://www.terraform.io/docs/commands/workspace/delete.html.

See also
• The general documentation for workspaces is available here: https://www.terraform.

io/docs/state/workspaces.html

• The CLI documentation for the terraform workspace command is available here: https://

www.terraform.io/docs/commands/workspace/index.html

• Read this blog post for a more complete understanding of workspaces: https://www.

colinsalmcorner.com/terraform-all-the-things-with-vsts/

Exporting the output in JSON
In the Looping over object collections and Using outputs to expose Terraform provisioned data recipes of

Chapter 2, Writing Terraform Configurations, we discussed the use of Terraform’s outputs, which

allow you to have output values for the execution of the Terraform configuration.

Indeed, we have seen how to declare an output in the Terraform configuration, and we learned

that these outputs and their values were displayed at the end of the execution of the terraform

apply command.

The advantage of these outputs is that they can be retrieved by another program and, thus, be

used for another operation – for example, in a CI/CD pipeline.

In this recipe, we will see how the values of the outputs can be retrieved in JSON format so that

they can be used in an external program.

Getting ready
For this recipe, we will use only the Terraform configuration that we already studied in Chapter 3,

Scaling Your Infrastructure with Terraform, and whose sources can be found here: https://github.

com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP03/list_map.

In this code, we add another output that returns the list of Azure app services URLs as shown:

output "app_service_urls" {

 value = {for x in azurerm_app_service.app : x.name => x.default_site_
hostname }

}

https://www.terraform.io/docs/commands/workspace/delete.html
https://www.terraform.io/docs/state/workspaces.html
https://www.terraform.io/docs/state/workspaces.html
https://www.terraform.io/docs/commands/workspace/index.html
https://www.terraform.io/docs/commands/workspace/index.html
https://www.colinsalmcorner.com/terraform-all-the-things-with-vsts/
https://www.colinsalmcorner.com/terraform-all-the-things-with-vsts/
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP03/list_map
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP03/list_map

Applying a Basic Terraform Workflow182

To explore the values of the output, we need to use a tool that allows us to work with JSON. For

this, you can use any framework and library according to your scripting languages. In this recipe,

we will use jq, which is a free tool that allows you to easily manipulate JSON on the command

line. The documentation on jq installation is available here: https://stedolan.github.io/jq/.

The purpose of this recipe is to provision two Azure App Service instances using a Terraform config-

uration and then, with a script, perform a response check of the URL of the first App Service instance.

How to do it…
Perform the following steps to export Terraform output for use in other programs:

1. Execute the Terraform workflow with the following commands:

terraform init

terraform plan -out="app.tfplan

"terraform apply "app.tfplan"

2. Then, run the terraform output command:

terraform output

3. Finally, to retrieve the URL of the created App Service instance, we execute the following

command in the command terminal:

urlwebapp1=$(terraform output -json | jq -r .app_service_urls.value.
webappdemobook1)

How it works…
In Step 1, we execute the basic commands of the Terraform workflow. After executing the terraform

apply command, the command displays the output.

Then, in Step 2, we visualize the output of this Terraform configuration more clearly by executing

the terraform output command, as shown in the following screenshot:

Figure 6.21: The result of the terraform output command

https://stedolan.github.io/jq/

Chapter 6 183

the preceding screenshot, we can see that this command returns the two outputs declared in the

code, which are as follows:

• app_service_names: This returns a list of App Service names.

• app_service_urls: This returns a list of the URLs of provisioned App Service instances.

Finally, in Step 3, we run a script that checks the URL of the webappdemobook1 App Service instance.

In the first line of this script, we execute the terraform output -json command, which enables

the result of the output to be returned in JSON format, as you can see in the following screenshot:

Figure 6.22: terraform output in JSON format

Then, with this result in JSON, we use the jq tool on it by retrieving the URL of the webappdemobook1

App Service instance. The returned URL is put in a variable called urlwebapp1.

Applying a Basic Terraform Workflow184

Then, in the second line of this script, we use cURL on this URL by passing options to return only

the HTTP header of the URL.

The result of executing this script is shown in the following screenshot:

Figure 6.23: Terraform output after using the curl command

You can see that the result of the check is OK, with a status code of 200.

There’s more…
In this recipe, we learned how to retrieve all the output of a Terraform configuration. It is also

possible to retrieve the value of a particular output by executing the terraform output <output

name> command.

In our case, we could have executed the app_service_urls command to display the value of the

output in JSON format:

terraform output -json app_service_urls

The following screenshot shows the execution of this command:

Figure 6.24: terraform output execution with the target resource

Then, we would run the following command to check the URL:

urlwebapp1=$(terraform output -json app_service_urls | jq -r
.webappdemobook1) &&

curl -sL -I "$urlwebapp1/hostingstart.html"

We can see in this script that the command used is terraform output -json app_service_urls,

which is more simplistic than $(terraform output -json | jq -r .app_service_urls.value.

webappdemobook1).

Chapter 6 185

See also
• The terraform output command documentation is available here: https://www.

terraform.io/docs/commands/output.html

• The jq website documentation can be found here: https://stedolan.github.io/jq/

Tainting resources
Earlier, in the Destroying infrastructure resources recipe of this chapter, we learned how to destroy

resources that have been provisioned with Terraform.

However, in certain situations, you may need to destroy a particular resource just to rebuild

it immediately. Examples of such situations may include modifications that have been made

manually to that resource.

To destroy and rebuild a resource, you could perform the terraform destroy -target <resource>

command, followed by the apply command. However, the problem is that between the destroy

and apply commands, there may be other undesirable changes applied in the Terraform config-

uration.

So, in this recipe, we will see how to perform this operation using the Terraform concept of tainting.

Getting ready
In order to apply this recipe, we first provision an infrastructure composed of a resource group,

an App Service plan, a Linux App Service instance, and an Application Insights resource. The

Terraform configuration used for this provisioning can be found here: https://github.com/

PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP06/sampleApp.

The goal of this recipe is to destroy and then rebuild the App Service instance in a single operation,

using the taint command of Terraform.

How to do it…
To apply the taint operation, perform the following steps:

1. Run the terraform init, plan and apply commands to create the resources

2. Then, execute the terraform taint command to flag the resource as tainted:

terraform taint azurerm_linux_web_app.app

https://www.terraform.io/docs/commands/output.html
https://www.terraform.io/docs/commands/output.html
https://stedolan.github.io/jq/
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP06/sampleApp
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP06/sampleApp

Applying a Basic Terraform Workflow186

3. Finally, to recreate the App Service instance, execute the following command:

terraform apply

How it works…
In Step 1, we execute the terraform init command to initialize the context. Then, in Step 2, we

execute the terraform taint command to flag the azurerm_app_service.app resource as taint-

ed – that is, to be destroyed and rebuilt.

This command does not affect the resource itself, but only marks it as tainted in the Terraform state.

The following screenshot shows the result of the taint command:

Figure 6.25: The terraform taint command

Finally, in Step 3, we execute the terraform apply command, and when it is executed, we can

see that Terraform will delete and then recreate the Azure Linux App Service instance, as shown

in the following screenshot:

Figure 6.26: terraform apply after taint

We can see in the preceding screenshot that Terraform destroys the Linux App Service resource

and then recreates it.

Chapter 6 187

There’s more…
To check that the resource is tainted, we can display the status of this resource in the terminal,

flagged in the Terraform state by executing the terraform state show command. For a refresher,

refer to what we learned in Chapter 5, Managing Terraform State, in the recipe Managing resources in

the Terraform State, which displays the contents of the Terraform state in the command terminal

(documented here: https://www.terraform.io/docs/commands/state/show.html) in response

to the following command:

terraform state show azurerm_linux_web_app.app

The following screenshot shows the result of this command:

Figure 6.27: Displaying the status of the resource in the Terraform state

We can see that the App Service resource has the flag tainted.

Moreover, in order to cancel the taint flag applied with the terraform taint command, we

can execute the inverse command, which is terraform untaint. This command can be executed

like this:

terraform untaint azurerm_linux_web_app.app

We have used the terraform state command to display the contents of the Ter-

raform state, since it is strongly discouraged to read and modify the Terraform state

manually, as documented here: https://www.terraform.io/docs/state/index.

html#inspection-and-modification.

https://www.terraform.io/docs/commands/state/show.html
https://www.terraform.io/docs/state/index.html#inspection-and-modification
https://www.terraform.io/docs/state/index.html#inspection-and-modification

Applying a Basic Terraform Workflow188

Then, if we execute the terraform plan command, we can see that there is no change, as shown

in the following screenshot:

Figure 6.28: The terraform untaint command and plan

We can see in this screenshot that the untaint command has canceled the effect of the taint

command, and during the execution of the plan command, no changes will be applied to the

infrastructure.

See also
• The terraform taint command documentation is available here: https://www.terraform.

io/docs/commands/taint.html

• The terraform untaint command documentation is available here: https://www.

terraform.io/docs/commands/untaint.html

• The terraform state command documentation is available here: https://www.terraform.

io/docs/commands/state/index.html

• An article that explains the taint and untaint commands really well can be found here:
https://www.devopsschool.com/blog/terraform-taint-and-untaint-explained-

with-example-programs-and-tutorials/

Generating the dependency graph
One of the interesting features of Terraform is the ability to generate a dependency graph of the

resource dependencies declared in the Terraform configuration.

https://www.terraform.io/docs/commands/taint.html
https://www.terraform.io/docs/commands/taint.html
https://www.terraform.io/docs/commands/untaint.html
https://www.terraform.io/docs/commands/untaint.html
https://www.terraform.io/docs/commands/state/index.html
https://www.terraform.io/docs/commands/state/index.html
https://www.devopsschool.com/blog/terraform-taint-and-untaint-explained-with-example-programs-and-tutorials/
https://www.devopsschool.com/blog/terraform-taint-and-untaint-explained-with-example-programs-and-tutorials/

Chapter 6 189

The visualization of the dependency graph is important to understand the dependencies of Ter-

raform resources and the Terraform operations order.

In this recipe, we will see how to generate and visualize this dependency graph.

Getting ready
For this recipe, we need to use a third-party drawing generation tool called Graphviz, which is

available for download at https://graphviz.gitlab.io/download/. You will need to download

and install the package corresponding to your OS.

As an example, we will take the Terraform configuration available at https://github.com/

PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP06/sampleApp.

How to do it…
To generate the dependency graph, perform the following steps:

1. Inside the folder that contains the Terraform configuration, run the terraform init

command.

2. Execute the terraform graph command:

terraform graph | dot -Tsvg > graph.svg

3. Open File Explorer, navigate inside the folder that contains the Terraform configuration,

and open the file called graph.svg.

How it works…
In Step 1, we will execute the terraform graph command. Then, we send the result of this graph

command to the dot utility that was previously installed with Graphviz. This dot utility will gen-

erate a graph.svg file, which contains the graphical representation of the Terraform configuration.

On Windows, an encoding issue can occur on the PowerShell Terminal con-

sole; however, this command works fine on the Cmd terminal console.

https://graphviz.gitlab.io/download/
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP06/sampleApp
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP06/sampleApp

Applying a Basic Terraform Workflow190

In Step 2, we open the graph.svg file, and we can see the dependency graph as shown in the

following diagram:

Figure 6.29: The Terraform dependency graph

In the preceding diagram, we can see the dependencies between variables, resources, and the

provider.

See also
• The terraform graph command documentation is available here: https://www.terraform.

io/docs/commands/graph.html

• Documentation relating to Graphviz is available here: https://graphviz.gitlab.io/

Using different Terraform configuration directories
Until now, in all the recipes we have covered, we executed the Terraform workflow commands

in the folder that contains the Terraform configuration to apply.

However, in IaC enterprise scenarios, the Terraform configuration is often separated into multiple

folders (see the note below), and to apply the changes we need to navigate to each folder in the

correct order.

In this recipe, we will learn how to run the Terraform CLI and target the Terraform configuration.

Let’s get started!

It is best practice to separate Terraform configurations into multiple folders (also

called “modules” or “components”), to isolate the Terraform state, and to have a

different life cycle deployment for each component.

https://www.terraform.io/docs/commands/graph.html
https://www.terraform.io/docs/commands/graph.html
https://graphviz.gitlab.io/

Chapter 6 191

Getting ready
To illustrate this recipe, we will use a Terraform configuration folder structure that deploys a

network infrastructure, then deploys the database, and finally, deploys the web infrastructure

components.

The following image shows the Terraform folder structure, annotated with the order of the de-

ployment:

Figure 6.30: The Terraform folder components structure

First of all, to deploy these three components we would run the following script from the MyApp

folder:

cd network

terraform init

terraform plan -out=network.tfplan

terraform apply network.tfplan

cd ..

cd database

terraform init

terraform plan -out=database.tfplan

terraform apply database.tfplan

cd ..

cd web

terraform init

terraform plan -out=web.tfplan

terraform apply web.tfplan

Applying a Basic Terraform Workflow192

As we can see in the previous script we have to navigate in the folders several times for each of

the components with cd .. and cd <folder name>, which could be more complex if we had

sub-files at several levels.

This problem of folder navigation is all the more important in an automation context, such as a

CI/CD pipeline for Terraform execution.

The goal of this recipe is to learn how to simplify the Terraform execution by switching the Ter-

raform configuration folder with the Terraform CLI.

The sample of this Terraform folder structure with sample configuration is available here: https://
github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP06/

MyApp.

How to do it…
In the MyApp folder, run the following script:

terraform -chdir=network init

terraform -chdir=network plan -out=network.tfplan

terraform -chdir=network apply network.tfplan

terraform -chdir=database init

terraform -chdir=database plan -out=database.tfplan

terraform -chdir=database apply database.tfplan

terraform -chdir=web init

terraform -chdir=web plan -out=database.tfplan

terraform -chdir=web apply database.tfplan

How it works…
In the script running in this recipe, we execute the Terraform workflow from one folder (here,

it is the MyApp folder), and we add the option -chdir to all Terraform commands to target and

switch the Terraform configuration.

There’s more…
Contrary to the other Terraform options, which are placed after the name of the command to be

executed (terraform <command name> options), the -chdir option is placed before the name

of the command (terraform -chdir <command name>).

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP06/MyApp
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP06/MyApp
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP06/MyApp

Chapter 6 193

See also
• The documentation of the -chdir option is available here: https://developer.hashicorp.

com/terraform/cli/commands#switching-working-directory-with-chdir

Testing and evaluating a Terraform expression
When we write a Terraform configuration that contains variables and expressions or uses a built-

in Terraform function, it’s sometimes difficult to predict the result of this Terraform configuration

before running the apply command.

Fortunately, the Terraform CLI contains a feature that will allow us to evaluate Terraform code

before applying changes.

In this recipe, we will see how to test and evaluate a Terraform expression.

Let’s get started!

Getting ready
To complete this recipe, we will use the following Terraform configuration that provisions Azure

infrastructure:

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/

CHAP06/console

Here we use the azurerm provider, but this recipe can be applied for any Terraform configuration.

In this Terraform configuration, we use several Terraform variables and expressions such as:

locals {

 linux_web_app = toset([for each in var.web_apps : each.name if each.os
== "Linux"])

 windows_web_app = toset([for each in var.web_apps : each.name if each.os
== "Windows"])

 default_app_settings = {

 "DEFAULT_KEY1" = "DEFAULT_VAL1"

 }

}

Or also:

app_settings = merge(local.default_app_settings, var.custom_app_settings)

https://developer.hashicorp.com/terraform/cli/commands#switching-working-directory-with-chdir
https://developer.hashicorp.com/terraform/cli/commands#switching-working-directory-with-chdir
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP06/console
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP06/console

Applying a Basic Terraform Workflow194

The goal of this recipe is to display the result of the expressions:

 linux_web_app = toset([for each in var.web_apps : each.name if each.
os == "Linux"])

and

app_settings = merge(local.default_app_settings, var.custom_app_settings)

We want to display these results before running the plan and apply commands. That way, we can

test that the expression in the Terraform configuration is what we expect.

How to do it…
Perform the following steps to evaluate the Terraform configuration expression:

1. Initialize the Terraform context by running the following command:

terraform init -backend=false

2. Then run the command console as follows:

terraform console

3. In the terraform console execution, enter the following input to evaluate the expression:

local.linux_web_app

4. Then run the second expression to evaluate with this input:

merge(local.default_app_settings, var.custom_app_settings)

5. Finally, to finish the evaluation, input exit to stop the console mode.

How it works…
In Step 1, we run the command terraform init -backend=false to initialize the Terraform con-

text without using the backend, because our goal now isn’t to apply changes but just to evaluate

an expression in the Terraform configuration.

In Step 2, we run the command terraform console, which opens the console mode.

Then, in the execution of terraform console, we can evaluate the desired expressions, displaying

the content or values of local expressions.

Chapter 6 195

The following image shows the evaluation of the local. linux_web_app local expression:

Figure 6.31: Terraform evaluating the locals expression

We can see the content of the list local.linux_web_app that will be applied by Terraform.

Then we input the second expression, and the following image shows this evaluation result:

Figure 6.32: Terraform evaluating the built-in function

We can see the expression that contains the built-in function, which in this case is a merge function.

We can also evaluate the Terraform variable defined in our Terraform configuration – for example,

to evaluate the value of the variable web_apps, by inputting the expression var.web_apps in the

terraform console execution.

Finally, to close the console mode, input the command exit.

There’s more…
In this recipe, we learned how to use the terraform console to evaluate local variables or ex-

pressions used in our Terraform configuration.

We can also use this console command to evaluate expressions that are not written in our Ter-

raform configuration – for example, to evaluate or test expressions before using them in the

configuration, or to learn Terraform built-in functions.

Applying a Basic Terraform Workflow196

The following screenshot shows some samples of built-in Terraform function evaluation:

Figure 6.33: Terraform testing the built-in functions

We can see in the image above the evaluation of the max, format, join, and lower functions.

See also
• The documentation of the terraform console command with more examples is available

here: https://developer.hashicorp.com/terraform/cli/commands/console

• The learning lab of the console command is available here: https://developer.

hashicorp.com/terraform/tutorials/cli/console

Debugging the Terraform execution
When we execute Terraform commands, the console output is quite simple and clear.

In this recipe, we will study how to activate debug mode in Terraform, which will allow us to

display more information about it and trace its execution.

Getting ready
For this recipe, we will use the Terraform configuration available at https://github.com/

PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP06/sampleApp.

Furthermore, for the purposes of this demonstration, we will run it on a Windows OS, but the

operation is exactly the same on other OSes.

How to do it…
To activate the debug on Terraform, perform the following steps:

1. In the terminal console or script, set the TF_LOG environment variable by executing the

following command:

$env:TF_LOG = "TRACE"

https://developer.hashicorp.com/terraform/cli/commands/console
https://developer.hashicorp.com/terraform/tutorials/cli/console
https://developer.hashicorp.com/terraform/tutorials/cli/console
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP06/sampleApp
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP06/sampleApp

Chapter 6 197

2. Now, we can execute the Terraform workflow commands with the display logs activated:

terraform init

terraform plan -out="out.tfplan"app.tfplan

terraform apply app.tfplan

How it works…
In Step 1, we create a Terraform environment variable, TF_LOG, which enables Terraform’s verbose

mode to be activated, indicating that we want to see all traces of Terraform’s execution displayed.

The possible values we can set this environment variable to are TRACE, DEBUG, INFO, and WARN.

Then, in Step 2, we execute the commands of the Terraform workflow, and we can see in the output

all traces of this execution, as shown in the following screenshot:

Figure 6.34: The Terraform debug output sample

In this screenshot, which is an extract of the execution of Terraform, you can see different in-

formation about used providers, Terraform CLI information, and all the steps involved in the

execution of Terraform.

In this recipe, we used the $env command to set this environment variable because

we are working on Windows. You can, of course, do the same on other OSes with

the correct syntax.

For example, in a shell, script execute export TF_LOG="TRACE".

Applying a Basic Terraform Workflow198

There’s more…
Instead of having all these traces displayed in the console output, it is also possible to save them

in a file.

To do this, just create a second environment variable, TF_LOG_PATH, that will contain the path to

the log file as a value. Indeed, the logs are often very verbose and difficult to read on the console

output. That’s why we prefer that the output of the logs is written in a file that can be read more

easily.

Moreover, to disable these traces, the TF_LOG environment variable must be emptied by assigning

it an empty value, as follows:

• On Windows: $env:TF_LOG = ""

• On Linux or MacOs: unset TF_LOG=""

See also
• The documentation on the Terraform debug is available here: https://www.terraform.

io/docs/internals/debugging.html

• Documentation on Terraform’s environment variables is available here: https://www.

terraform.io/docs/commands/environment-variables.html

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to

the author, and learn about new releases – follow the QR code below:

https://packt.link/cloudanddevops

https://www.terraform.io/docs/internals/debugging.html
https://www.terraform.io/docs/internals/debugging.html
https://www.terraform.io/docs/commands/environment-variables.html
https://www.terraform.io/docs/commands/environment-variables.html
https://packt.link/cloudanddevops

7
Sharing Terraform
Configuration with Modules

A common problem most developers face in any language is code reuse and how to do it effectively

and easily. Hence, the emergence of language, framework, and software packages that are easily

reusable in several applications and that can be shared between several teams (such as NuGet,

NPM, Bower, PyPI, RubyGems, and many others). In Infrastructure as Code (IaC) in general, we

also encounter the same problems of code structure, its homogenization, and its sharing in the

company.

In the Provisioning infrastructure in multiple environments recipe in Chapter 3, Scaling Your Infra-

structure with Terraform, we learned about some hierarchies of the Terraform configuration, which

gave us a partial answer to the question of how to structure a Terraform configuration well. But

that doesn’t stop there—Terraform also allows you to create modules with which you can share

Terraform configuration between several applications and several teams.

In this chapter, we will study the main stages of the module lifecycle, which are: their creation,

the basic use of them and use of them with loops, and also the publishing of them. We will learn

about the creation of a Terraform module and its local use, as well as the rapid bootstrapping of

the code of a module. We will also study the use of Terraform modules using a public registry or a

Git repository. Finally, we will discuss how to use the Terrafile pattern to reference modules’ use.

In this chapter, we cover the following recipes:

• Creating a Terraform module and using it locally

• Provisioning multiple instances of a Terraform module

Sharing Terraform Configuration with Modules200

• Using modules from the public registry

• Sharing a Terraform module in the public registry using GitHub

• Using another file inside a custom module

• Using the Terraform module generator

• Generating module documentation

• Using a private Git repository for sharing Terraform modules

• Applying a Terrafile pattern for using modules

• Testing Terraform module code with Terratest

Technical requirements
In this chapter, for some recipes, we will need certain prerequisites, which are as follows:

• To have Node�js and NPM installed on your computer: The download website is here:

https://nodejs.org/en/.

• To have a GitHub account: If you don’t have one, the creation of an account is free and

can be done here: https://github.com/.

• To have an Azure DevOps organization: You can create one with a Microsoft account or

GitHub account here: https://azure.microsoft.com/en-in/services/devops/.

• To have a basic knowledge of Git commands and workflow: The documentation is

available here: https://git-scm.com/doc.

• To know about Docker: The documentation is here: https://docs.docker.com/.

• To install Golang on our workstation: The documentation is here: https://golang.

org/doc/install. We will see the main steps of its installation in the Testing a Terraform

module using Terratest recipe in Chapter 11, Running Tests and Compliance Security on Ter-

raform Configuration.

The complete source code for this chapter is available on GitHub at https://github.com/

PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07.

Creating a Terraform module and using it locally
A Terraform module is a Terraform configuration that contains one or more Terraform resources.

Once created, this module can be used in several Terraform configuration files either locally or

even remotely.

https://nodejs.org/en/
https://github.com/
https://azure.microsoft.com/en-in/services/devops/
https://git-scm.com/doc
https://docs.docker.com/
https://golang.org/doc/install
https://golang.org/doc/install
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07

Chapter 7 201

In this recipe, we will look at the steps involved in creating a module and using it locally.

Getting ready
To start this recipe, we will use the Terraform configuration that we already wrote in the Pro-

visioning infrastructure in multiple environments recipe of Chapter 3, Scaling Your Infrastructure

with Terraform, and whose sources can be found at https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP07/sample-app.

The module we will create in this recipe will be in charge of providing an Azure Service Plan,

one App Service, and an Application Insights resource in Azure. Its source code is available here:
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/

CHAP07/moduledemo/Modules/webapp.

Then, we will write a Terraform configuration that uses this module, and the code is here: https://
github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/

moduledemo/MyApp.

How to do it…
To create the module, perform the following steps:

1. In a new directory called moduledemo, create one subdirectory called Modules. Inside the

Modules directory, create a subdirectory called webapp.

2. In the webapp subdirectory, create a new variables.tf file with the following code:

variable "resource_group_name" {
 description = "Resource group name"
}

variable "location" {
 description = "Location of Azure resource"
 default = "West Europe"
}

variable "service_plan_name" {
 description = "Service plan name"
}

variable "app_name" {
 description = "Name of application"
}

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/sample-app
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/sample-app
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/moduledemo/Modules/webapp
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/moduledemo/Modules/webapp
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/moduledemo/MyApp
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/moduledemo/MyApp
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/moduledemo/MyApp

Sharing Terraform Configuration with Modules202

3. Then, create the main.tf file with the following code:

terraform {

 required_version = "~> 1.0"

 required_providers {

 azurerm = {

 version = "~> 3.18"

 }

 }

}

provider "azurerm" {

 features {}

}

resource "azurerm_service_plan" "plan-app" {

 name = var.service_plan_name

 location = var.location

 resource_group_name = var.resource_group_name

 os_type = "Linux"

 sku_name = "B1"

}

resource "random_string" "str" {

 length = 4

 special = false

 upper = false

}

resource "azurerm_linux_web_app" "app" {

 name = "${var.app_name }-${random_string.str.
result}"

 location = var.location

 resource_group_name = var.resource_group_name

 service_plan_id = azurerm_service_plan.plan-app.id

 site_config {}

}

resource "azurerm_application_insights" "appinsight-app" {

 name = var.app_name

Chapter 7 203

 location = var.location

 resource_group_name = var.resource_group_name

 application_type = "web"

}

4. Finally, create the outputs.tf file with the following code:

output "webapp_id" {

 value = azurerm_linux_web_app.app.id

}

output "webapp_url" {

 value = azurerm_linux_web_app.app.default_hostname

}

5. Inside the moduledemo folder, create a subfolder called MyApp.

6. Inside the MyApp subdirectory, create a main.tf file with the following code:

terraform {

 required_version = "~> 1.0"

 required_providers {

 azurerm = {

 version = "~> 3.18"

 }

 }

}

provider "azurerm" {

 features {}

}

resource "azurerm_resource_group" "rg-app" {

 name = "RG_MyAPP_demo"

 location = "West Europe"

}

module "webapp" {

 source = "../Modules/webapp"

 service_plan_name = "spmyapp"

 app_name = "myappdemo"

 location = azurerm_resource_group.rg-app.location

Sharing Terraform Configuration with Modules204

 resource_group_name = azurerm_resource_group.rg-app.name

}

output "webapp_url" {

 value = module.webapp.webapp_url

}

How it works…
In Step 1, we create the moduledemo directory, which will contain the code for all modules with

one subdirectory per module. So, we create a webapp subdirectory for our recipe, which will con-

tain the Terraform configuration for the webapp module. Then, in Steps 2, 3, and 4, we create the

module code, which is the standard Terraform configuration and contains the following files:

• main.tf: This file contains the code of the resources that will be provided by the module.

• variables.tf: This file contains the input variables needed by the module.

• outputs.tf: This file contains the outputs of the module that can be used in the Terraform

configuration that calls this module.

In Step 5, we created the webapp subfolder, which will contain the Terraform configuration of our

application. Finally, in Step 6, we created the Terraform configuration of our application with the

main.tf file.

In the code of this file, we have three blocks:

There is the Terraform azurerm_resource_group resource, which provides a resource group.

The Terraform configuration that uses the module we created, using the module "<module name>"

expression. In this module type block, we used the source properties whose values are the relative

path of the directory that contains the webapp module.

We also have the Terraform output, webapp_url, which gets the output of the module to use as

output for our main Terraform configuration.

There’s more…
At the end of all of these steps, we obtain the following directory tree:

Note that if some variables of the module are defined with default values, then in

some cases, it will not be necessary to instantiate them when calling the module.

Chapter 7 205

Figure 7.1: Terraform module structure

To apply this Terraform configuration, you have to navigate in a terminal to the MyApp folder

containing the Terraform configuration and then execute the following Terraform workflow

commands:

terraform init

terraform plan -out=app.tfplan

terraform apply app.tfplan

When executing the terraform init command, Terraform will get the module’s Terraform

configuration and hence integrate its configuration with that of the application, as shown in the

following screenshot:

Figure 7.2: terraform init get module

Finally, at the end of the execution of the terraform apply command, the value of the output is

displayed in the terminal, as shown in the following screenshot:

Figure 7.3: Terraform output from the module

Sharing Terraform Configuration with Modules206

Our Terraform configuration has therefore retrieved the output of the module and used it as the

output of our main code.

In this recipe, we have shown the basics of the creation of a Terraform module and its local use.

Later in this chapter, we will see how to generate the structure of a module and how to use remote

modules in the Using the Terraform module generator recipe.

See also
• The documentation on module creation is available at https://www.terraform.io/docs/

modules/index.html

• General documentation on the modules is available at https://www.terraform.io/docs/

configuration/modules.html

• Terraform’s learning lab on module creation is available at https://learn.hashicorp.

com/terraform/modules/creating-modules

Provisioning multiple instances of a Terraform
module
We learned in Chapter 3, Scaling Your Infrastructure with Terraform, that some Terraform language

features, such as count and for_each, provision multiple instances of the same resource.

Before the release of version 0.13 of Terraform, it was not possible to create multiple instances

of the same module. If we wanted to create several instances of resources that were in a module,

we had to apply the for_each or count expression to each resource that was referenced in the

module, which could complicate the maintenance of such a module.

One of the new features of the release of Terraform 0.13 is that we can now use count and for_each

directly on the module block. For more information about this release, read this blog announce-

ment: https://www.hashicorp.com/blog/announcing-hashicorp-terraform-0-13.

In this recipe, we will learn how to use for_each on Terraform modules.

Let’s get started!

Getting ready
To complete this recipe, you’ll need to read Chapter 3, Scaling Your Infrastructure with Terraform, to

understand meta-arguments like count and for_each, and also read the previous recipe of this

chapter to understand how to create a Terraform module.

https://www.terraform.io/docs/modules/index.html
https://www.terraform.io/docs/modules/index.html
https://www.terraform.io/docs/configuration/modules.html
https://www.terraform.io/docs/configuration/modules.html
https://learn.hashicorp.com/terraform/modules/creating-modules
https://learn.hashicorp.com/terraform/modules/creating-modules
https://www.hashicorp.com/blog/announcing-hashicorp-terraform-0-13

Chapter 7 207

The goal of this recipe is to provision multiple instances of Azure Web Apps in the same Azure

Resource Group. The objective of this recipe is to have 1 module with the responsibility to create

1 Web App, and to have a Terraform configuration that calls this module with a loop to create N

Web Apps.

To do this Terraform configuration, we will use the webapp module we already created, for which

the source code is available here: https://github.com/PacktPublishing/Terraform-Cookbook-

Second-Edition/tree/main/CHAP07/moduledemo/Modules/webapp.

To go ahead in this recipe, we will start with the following Terraform configuration in a new

main.tf file:

resource "azurerm_resource_group" "rg-app" {

 name = "rg_app_demo_loop"

 location = "West Europe"

}

The preceding configuration creates an Azure Resource Group. Now, we will complete this con-

figuration to provision our Azure Web Apps in this Azure Resource Group.

The complete source code of this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP07/moduledemo/myapp-loop.

How to do it…
To loop over the Terraform module, perform the following steps:

1. In main.tf, add the following Terraform configuration:

locals {

 webapp_list = ["webapp12412", "webapp22412"]

}

2. Then, add the following configuration

module "webapp" {

 source = "../Modules/webapp"

 for_each = toset(local.webapp_list)

 app_name = "${each.key}-${random_string.randomstr.
result}"

service_plan_name = "spmyapp-${each.key}-${random_string.
randomstr.result}"

 location = azurerm_resource_group.rg-app.location

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/moduledemo/Modules/webapp
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/moduledemo/Modules/webapp
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/moduledemo/myapp-loop
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/moduledemo/myapp-loop

Sharing Terraform Configuration with Modules208

 resource_group_name = azurerm_resource_group.rg-app.name

}

3. Finally, to provision these resources, we run the Terraform basic workflow with the init,

plan, and apply commands.

How it works…
In Step 1, we create a Terraform local expression named webapp_list, which contains a list of the

two Azure Web Apps that will be provisioned.

Then, in Step 2, we call the local webapp module and we add a for_each meta-argument with the

following expression:

for_each = toset(local.webapp_list)

By using this for_each, the equivalent module will be created “for each” element of the local.

webapp_list list.

Moreover, to reference the current element of the set during the loop, we use the each.key prop-

erty like this:

 app_name = each.key

 service_plan_name = "spmyapp-${each.key}"

There’s more…
In this recipe, we use the for_each expression in the module, we can also use a count expression

as learned in Chapter 3, Scaling Your Infrastructure with Terraform.

Additionally, we can also add a Terraform output from this module by adding the following

Terraform configuration:

output "app_service_urls" {

 value = values(module.webapp)[*].webapp_url

}

In this output, we get all the Web App URLs created by the module, by using values(module.

webapp)[*] to get all the output instances in the webapp module and filtering to get only the

webapp_url module outputs.

Chapter 7 209

After executing the terraform output command, we get the following result:

Figure 7.4: Terraform output from the module using a loop

We can see the hostname of the two provisioned Azure Web Apps.

See also
• The documentation for the count and for_each in modules is available here:

https://developer.hashicorp.com/terraform/language/modules/develop/

refactoring#enabling-count-or-for_each-for-a-module-call.

Using modules from the public registry
So far, we have studied how to create a module and how to write a Terraform configuration that

uses this module locally.

To facilitate the development of Terraform configuration, HashiCorp has set up a public Terra-

form module registry.

This registry solves several problems, such as the following:

• Discoverability with search and filter

• The quality provided by a partner verification process

• Clear and efficient versioning strategy, which is otherwise impossible to solve universally

across other existing module sources (HTTP, S3, and Git)

These public modules published in this registry are developed by cloud providers, publishers,

communities, or even individual users who wish to share their modules publicly. In this recipe,

we will see how to access this registry and how to use a module that has been published in this

public registry.

Getting ready
In this recipe, we will write Terraform code from scratch, which does not require any special

prerequisites.

https://developer.hashicorp.com/terraform/language/modules/develop/refactoring#enabling-count-or-for_each-for-a-module-call
https://developer.hashicorp.com/terraform/language/modules/develop/refactoring#enabling-count-or-for_each-for-a-module-call

Sharing Terraform Configuration with Modules210

The purpose of this recipe is to provision a Resource Group and network resources in Azure, which

are a Virtual Network and subnet. We will see the public module call but we won’t look at the

Terraform configuration of the module in detail.

The code source for this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP07/publicmodule.

How to do it…
To use the Terraform module from a public registry, perform the following steps:

1. In a web browser, go to the URL https://registry.terraform.io/browse/modules.

2. On this page, in the Provider checkbox list in the left panel, select the checkbox with

azurem:

Figure 7.5: Terraform Registry provider filter

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/publicmodule
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/publicmodule
https://registry.terraform.io/browse/modules

Chapter 7 211

3. In the results list, click on the item, that is, the Azure / network module:

Figure 7.6: Terraform module registry details

4. Finally, in your workstation, create a new file, main.tf, then paste the following code:

resource "azurerm_resource_group" "rg" {

 name = "my-rg"

 location = "West Europe"

}

module "network" {

 source = "Azure/network/azurerm"

 resource_group_name = azurerm_resource_group.rg.name

 vnet_name = "vnetdemo"

 address_space = "10.0.0.0/16"

 subnet_prefixes = ["10.0.1.0/24"]

 subnet_names = ["subnetdemo"]

}

How it works…
In Steps 1 to 2, we explored Terraform’s public registry to look for a module that allows the pro-

visioning of resources for Azure (using the azurerm filter).

Then, in Steps 3 and 4, we accessed the details page of the network module published by the

Azure team.

In Step 5, we used this module by specifying the necessary input variables with the source prop-

erty, which has a public module-specific alias, Azure/network/azurerm, provided by the registry.

Sharing Terraform Configuration with Modules212

There’s more…
We saw in this recipe that using a module from the public registry saves development time. Here,

in our recipe, we used a HashiCorp “verified” module (we can read more details about “verified”

modules here: https://developer.hashicorp.com/terraform/registry/modules/verified),

but you can perfectly easily use the other community modules.

It is possible to use the versioning of these modules by choosing the desired version of the module

from the version drop-down list and providing provision instructions:

Figure 7.8: Terraform module registry version choice

And so in the module call, use the version property with the chosen version number.

Note that, like all modules or community packages, you must check that their code is clean and

secure before using them by manually reviewing the code inside their GitHub repository. Indeed,

in each of these modules, there is a link to the GitHub repository, which contains the source code.

Also, before using a module in a company project, you must consider that if there is a request for

the correction or enhancement of a module, you need to create an issue or make a pull request in

the GitHub repository of this module. This may require waiting for some time (for the validation

waiting time and merge of the pull request) before it can be used with the fix or the requested

enhancement.

https://developer.hashicorp.com/terraform/registry/modules/verified

Chapter 7 213

However, it is worth using these modules, as they are very handy and save a lot of time for demon-

strations, labs, and sandbox projects.

We saw the use of the public registry in this recipe; we will study in Chapter 14, Using Terraform

Cloud to Improve Collaboration, how to use a private registry of modules in Terraform.

See also
• The documentation on the Terraform module registry is available at https://www.

terraform.io/docs/registry/.

Sharing a Terraform module in the public registry
using GitHub
In the Creating a Terraform module and using it locally recipe of this chapter, we studied how to

create a module, and in the previous recipe, Using a module from the public registry, of this chapter,

how to use a module from the public registry.

In this recipe, we’ll see how to publish a module in the public registry by storing its code on GitHub.

Getting ready
To apply this recipe, we need to have a GitHub account (which is currently the only Git provider

available for publishing public modules), which you can create here: https://github.com/join.

Also, you’ll need to know the basics on the Git commands and workflow (https://www.hostinger.

com/tutorials/basic-git-commands).

Concerning the code of the module we are going to publish, we will use the Terraform configura-

tion of the module we created in the first recipe of this chapter, the source for which is available

at https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/

CHAP07/moduledemo/Modules/webapp.

How to do it…
To share our custom module in the public registry, perform the following steps:

https://www.terraform.io/docs/registry/
https://www.terraform.io/docs/registry/
https://github.com/join
https://www.hostinger.com/tutorials/basic-git-commands
https://www.hostinger.com/tutorials/basic-git-commands
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/moduledemo/Modules/webapp
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/moduledemo/Modules/webapp

Sharing Terraform Configuration with Modules214

1. In our GitHub account, create a new repository named terraform-azurerm-webapp with

the following basic configuration:

Figure 7.9: Create a GitHub repository for the Terraform module

2. In the local workstation, execute the Git command to clone this repository:

git clone https://github.com/<your account>/terraform-azurerm-
webapp.git

3. Copy the source code from https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/tree/main/CHAP07/moduledemo/Modules/webapp and paste

it inside the new folder created by the git clone command.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/moduledemo/Modules/webapp
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/moduledemo/Modules/webapp

Chapter 7 215

4. Update the content of the README.md file with more description of the module role.

5. Stage all files by using the Git commit git add.

6. Commit and push all files in this folder; to perform this action, you can use Visual Studio

Code or Git commands (commit and push).

7. Add and push a Git tag v1.0.0 on this commit by executing this command:

git tag v1.0.0

git push origin v1.0.0

8. In a web browser, go to the URL https://registry.terraform.io/.

9. On this page, click on the Sign-in link on the top menu:

Figure 7.10: Terraform registry sign-in

10. In the newly opened window, click on the Sign in with GitHub button, and if prompted,

authorize HashiCorp to read your repositories:

Figure 7.11: Terraform registration with GitHub

11. Once authenticated, click on the Publish link on the top menu:

Figure 7.12: Terraform registry Publish button

https://registry.terraform.io/

Sharing Terraform Configuration with Modules216

1. On the next page, select the <your account>/terraform-azurerm-webapp repository,

which contains the code of the module to publish, and check the I agree to the Terms of

Use checkbox:

Figure 7.13: Terraform module publishing

2. Click on the PUBLISH MODULE button and wait for the module page to load.

How it works…
In Steps 1 and 2, we created a Git repository in GitHub and cloned it locally, and in Steps 3 to 6,

we wrote the Terraform configuration for the module (using existing code). We also edited the

README.md file that will be used as documentation to use the module.

Then, we made a commit and pushed this code in the remote Git repository, and we added a tag,

which will be in the form vX.X.X and will be used to version the module.

Finally, in Steps 7 to 12, we published this module to the public registry by logging in with our

GitHub credentials in the registry and then selecting the repository that contains the module code.

The registry automatically detects the version of the module in relation to the Git tag that was

pushed (in Step 6).

After all of these steps, the module is available in Terraform’s public registry, as shown in the

following screenshot:

Chapter 7 217

Figure 7.14: Terraform module in registry

The module is publicly accessible; the instructions for use are displayed in the right panel and

the README.md text is displayed as documentation in the content of the page.

There’s more…
Concerning the name of the repository that will contain the module code, it must be composed

as follows:

terraform-<provider>-<name>

Similarly, for the Git tag, it must be in the form vX.X.X to be integrated into the registry. To learn

more about module requirements, see the documentation: https://www.terraform.io/docs/

registry/modules/publish.html#requirements.

Once published, it is possible to delete a module by choosing Delete Module from the Manage

Module drop-down list:

Figure 7.15: Terraform – Delete Module

https://www.terraform.io/docs/registry/modules/publish.html#requirements
https://www.terraform.io/docs/registry/modules/publish.html#requirements

Sharing Terraform Configuration with Modules218

Be careful: after deleting it from the registry, the module becomes unusable. Aside from rare cases

of experimentation (like here), or possibly some serious security reasons related to leaking IP/

secrets, it is more often better to leave modules and all old versions published. This is especially

true if the module is public, or generally when it has consumers who depend on it.

See also
• The module publishing documentation is available here: https://www.terraform.io/

docs/registry/modules/publish.html.

• Documentation on the Registry APIs is available here: https://www.terraform.io/docs/

registry/api.html.

Using another file inside a custom module
In the Creating Terraform module and using it locally recipe of this chapter, we studied the steps to

create a basic Terraform module.

We may have scenarios where we need to use another file in the module that does not describe

the infrastructure via Terraform (.tf extension), for example, in the case where the module needs

to execute a script locally.

In this recipe, we will study how to use another file in a Terraform module.

Getting ready
For this recipe, we don’t need any prerequisites; we will write the Terraform configuration for

the module from scratch.

The goal of this recipe is to create a Terraform module that will execute a Bash script that will

perform actions on the local computer (for this recipe, a hello world display will suffice).

Since we will be running a Bash script as an example, we will run Terraform under a bash console,

like in Linux, WSL for Windows or macOS.

The source code of the created module in this recipe is available here: https://github.com/

PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/moduledemo/

Modules/execscript.

It is important to keep in mind that provisioners such as this reduce the reusability

of your configuration by assuming that the system where Terraform runs has Bash

installed. This is otherwise usually not a limiting factor in Terraform as it offers

builds for different OSes and architectures and runs cross-platform.

https://www.terraform.io/docs/registry/modules/publish.html
https://www.terraform.io/docs/registry/modules/publish.html
https://www.terraform.io/docs/registry/api.html
https://www.terraform.io/docs/registry/api.html
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/moduledemo/Modules/execscript
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/moduledemo/Modules/execscript
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/moduledemo/Modules/execscript

Chapter 7 219

How to do it…
Perform the following steps to use the file inside the module:

1. In a new folder called execscript (inside the Modules folder), which will contain the code

for the module, we create a new file, script.sh, with the following content:

echo "Hello world"

2. Create a main.tf file in this module and write the following code inside it:

resource "null_resource" "execfile" {

 provisioner "local-exec" {

 command = "${path.module}/script.sh"

 interpreter = ["/bin/bash"]

 }

}

3. Then, in the Terraform configuration main.tf that is new folder callscript (in moduledemo

folder, call this module using the following code:

module "execfile" {

 source = "../Modules/execscript"

}

The complete source code of this Terraform configuration is available here: https://
github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/

CHAP07/moduledemo/callscript.

4. Finally, in a command-line terminal, navigate to the folder of the Terraform configuration

and execute the basic Terraform workflow with the following commands:

terraform init

terraform plan -out="app.tfplan"

terraform apply app.tfplan

How it works…
In Steps 1 and 2, we created a module that executes a script locally using the local_exec (https://

www.terraform.io/docs/provisioners/local-exec.html).

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/moduledemo/callscript
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/moduledemo/callscript
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/moduledemo/callscript
https://www.terraform.io/docs/provisioners/local-exec.html
https://www.terraform.io/docs/provisioners/local-exec.html

Sharing Terraform Configuration with Modules220

local_exec executes a script in a script.sh file that is stored inside the module. To configure

the path relative to this script.sh file, which can be used during the execution of Terraform,

we used the path.module expression, which returns the complete path relative to the module.

Then, in Step 3, we wrote the Terraform configuration that calls this module. Finally, in Step 4, we

ran Terraform on this code and we got the following result:

Figure 7.16: Terraform exec module with file

You can see that the script executed successfully and it displays Hello world in the console.

There’s more…
Let’s see what would happen if we hadn’t used the path.module expression in the code of this

module and we had written the module code in the following way:

resource "null_resource" "execfile" {

 provisioner "local-exec" {

 command = "script.sh"

 interpreter = ["/bin/bash"]

 }

}

When executing the apply command, the following error would have occurred:

Figure 7.17: Terraform error with the bad path.module

Note that, in this recipe, the null_resource Terraform resource very often indicates

an attempt at a “hacky solution,” a task that is likely better done outside of Terra-

form entirely. It’s available as a “clutch” but if the solution doesn’t need a clutch at

all, then it’s even better.

Chapter 7 221

Because Terraform interprets the main.tf file, it will interpret any relative paths as relative to

the current working directory to where terraform plan/apply is running from, rather than the

module.

See also
• Documentation on the path.module expression is available here: https://developer.

hashicorp.com/terraform/language/expressions/references#filesystem-and-

workspace-info.

Using the Terraform module generator
We learned how to create, use, and share a Terraform module and we studied the module file

structure best practices, which consist of having a main file, another for variables, and another

that contains the outputs of the module. In the Sharing a Terraform module in the public registry

using GitHub recipe, we also discussed that we could document the use of the module with a

README.md file.

Apart from these standard files for the operation of the module, we can also add scripts, tests

(which we will see in the Testing Terraform module code with Terratest recipe), and other files.

For company projects that may need to create a lot of Terraform modules, recreating the structure

of the module every time can be a very repetitive and boring task.

To facilitate the creation of the structure of Terraform modules, Microsoft has published a tool

that allows us to generate the basic structure (also called a template) of a Terraform module.

In this recipe, we will see how to create the base of a module using the module generator.

Getting ready
The software prerequisites for using this module generator are in the following order:

1. Install Node.js (6.0+) locally; its download documentation is available at https://nodejs.

org/en/download/.

A warning, dear reader: the tool we will study in this recipe is no longer maintained

by Microsoft. It is therefore recommended to use it if you are a beginner in the cre-

ation of Terraform modules just to help you understand the basics and conventions

of the structure of a Terraform module.

https://developer.hashicorp.com/terraform/language/expressions/references#filesystem-and-workspace-info
https://developer.hashicorp.com/terraform/language/expressions/references#filesystem-and-workspace-info
https://developer.hashicorp.com/terraform/language/expressions/references#filesystem-and-workspace-info
https://nodejs.org/en/download/
https://nodejs.org/en/download/

Sharing Terraform Configuration with Modules222

2. Then, install the npm package, Yeoman (https://www.npmjs.com/package/yo), by exe-

cuting the following command:

npm install -g yo

To illustrate this recipe, we will use this generator to create the structure of a module that will

be in charge of provisioning a Resource Group.

A sample of the generated module from this recipe is available at https://github.com/

PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/generatedmodule.

How to do it…
To generate a structure for a Terraform module, perform the following steps:

1. In a command-line terminal, execute the following command:

npm install -g generator-az-terra-module

2. Create a new folder with the name of the module, terraform-azurerm-rg.

3. Then, in this folder, in the command-line terminal, execute this command:

yo az-terra-module

4. Finally, the generator will ask some questions; type responses like those in the following

screenshot:

Figure 7.18: Terraform module generator

How it works…
In Step 1, we installed the module generator, which is an npm package called generator-az-terra-

module. So we used the classical npm command line, which installs a package globally, that is to

say, for the whole machine.

In Step 2, we created the folder that will contain the code of the module; for our recipe, we used

the nomenclature required by Terraform Registry.

https://www.npmjs.com/package/yo
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/generatedmodule
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/generatedmodule

Chapter 7 223

In Steps 3 and 4, we executed the az-terra-module generator. During its execution, this generator

asks the user questions that will allow the customization of the module template that will be

generated. The first question concerns the name of the module.

The second one concerns the existence of the module in npm; we answered No. Then, the next three

questions concern the module metadata. Finally, the last question asks whether we want to add

to the module code a Dockerfile that will be used to run the tests on the module—we answer Yes.

At the end of all of these questions, the generator copies all of the files necessary for the module

into our directory:

Figure 7.19: Terraform module generator execution creates files

As you can see on this screen, the generator displays in the terminal the list of folders and files

that have been created.

Sharing Terraform Configuration with Modules224

Finally, in File Explorer, we can see all of these files:

Figure 7.20: Terraform module generator folder structure

The basic structure of our Terraform module is well generated.

There’s more…
In this recipe, we saw that it is possible to generate the file structure of a Terraform module.

At the end of the execution of this generator, the directory of the created module contains the

Terraform files of the module, which will be edited afterward with the code of the module. This

folder will also contain other test files and a Dockerfile whose usefulness we will see in the Test-

ing a Terraform module with Terratest recipe of Chapter 11, Running Test and Compliance Security on

Terraform Configuration.

Also, although this generator is published by Microsoft, it can be used to generate the structure

of any Terraform modules you need to create even if it does not provide anything in Azure.

See also
• The source code for the module generator is available on GitHub at https://github.com/

Azure/generator-az-terra-module.

https://github.com/Azure/generator-az-terra-module
https://github.com/Azure/generator-az-terra-module

Chapter 7 225

• Documentation on the use of the generator is available at https://docs.microsoft.com/

en-us/azure/developer/terraform/create-a-base-template-using-yeoman.

• Yeoman documentation is available at https://yeoman.io/.

• The npm package of the generator is available at https://www.npmjs.com/package/

generator-az-terra-module.

Generating module documentation
We learned from the previous recipes that in the composition of a Terraform module, we have

input variables, as well as outputs.

As with all packages that are made available to other teams or even publicly, it is very important

to document your Terraform module.

The problem with this documentation is that it is tedious to update it for every change in the

code and therefore it quickly becomes obsolete.

Among all of the tools in the Terraform toolbox, there is terraform-docs, an open source,

cross-platform tool that allows the documentation of a Terraform module to be generated au-

tomatically.

We will discuss in this recipe how to automatically generate the markdown documentation for

a module with terraform-docs.

Getting ready
For this recipe, we are going to generate the documentation of the module we created in the Cre-

ating a Terraform module and using it locally recipe of this chapter, which allowed us to create a web

app in Azure, the source for which is here: https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/tree/main/CHAP07/moduledemo/Modules/webapp.

If you are working on a Windows OS, you will need to install Chocolatey by following this doc-

umentation: https://chocolatey.org/install. The documentation we will generate for the

webapp module is available at https://github.com/PacktPublishing/Terraform-Cookbook-

Second-Edition/blob/main/CHAP07/moduledemo/Modules/webapp/Readme.md.

https://docs.microsoft.com/en-us/azure/developer/terraform/create-a-base-template-using-yeoman
https://docs.microsoft.com/en-us/azure/developer/terraform/create-a-base-template-using-yeoman
https://yeoman.io/
https://www.npmjs.com/package/generator-az-terra-module
https://www.npmjs.com/package/generator-az-terra-module
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/moduledemo/Modules/webapp
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/moduledemo/Modules/webapp
https://chocolatey.org/install
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP07/moduledemo/Modules/webapp/Readme.md
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP07/moduledemo/Modules/webapp/Readme.md

Sharing Terraform Configuration with Modules226

How to do it…
Perform the following steps to generate the module documentation:

1. If you are working on a Linux OS, execute the following script in a command-line terminal:

curl -L https://github.com/segmentio/terraform-docs/releases/
download/v0.9.1/terraform-docs-v0.9.1-linux-amd64 -o terraform-docs-
v0.9.1-linux-amd64

tar -xf terraform-docs-v0.9.1-linux-amd64

chmod u+x terraform-docs-v0.9.1-linux-amd64

sudo mv terraform-docs-v0.9.1-linux-amd64 /usr/local/bin/terraform-
docs

If you are working on a Windows OS, execute the following script:

choco install terraform-docs -y

2. Execute the following script to test the installation:

terraform-docs --version

3. In a command-line terminal, navigate into the moduledemo folder and execute the fol-

lowing command:

terraform-docs markdown Modules/webapp/ > Modules/webapp/Readme.md

How it works…
In Step 1, we install terraform-docs according to the operating system. For Linux, the provided

script downloads the terraform-docs package from GitHub, decompresses it with the TAR tool,

gives it execution rights with chmod, and finally copies it to the local directory, /usr/bin/local

(which is already configured in the PATH environment variable).

The following screenshot shows the installation in Linux:

Chapter 7 227

Figure 7.21: Download terraform-doc on Linux

For Windows, the script uses the choco install command from Chocolatey to download the

terraform-docs package.

The following screenshot shows the installation in Windows:

Figure 7.22: Download terraform-doc on Windows

Then, in Step 2, we check its installation by running terraform-docs and adding the --version

option. This command displays the installed version of terraform-docs, as shown in the fol-

lowing screenshot:

Figure 7.23: terraform-docs --version command

Sharing Terraform Configuration with Modules228

Finally, in Step 3, we execute terraform-docs specifying in the first argument the type of format

of the documentation. In our case, we want it in markdown format. Then, in the second argument,

we specify the path of the modules directory. At this stage, we could execute the command this

way and during its execution, the documentation is displayed in the console, as shown in the

following screenshot:

Figure 7.24: Generate terraform documentation using terraform-doc

But to go further, we added the > Modules/webapp/Readme.md command, which indicates that

the content of the generated documentation will be written in the Readme.md file that will be

created in the module directory.

At the end of the execution of this command, a new Readme.md file can be seen inside the module

folder that contains the module documentation. The generated documentation is composed of

the providers used in the module, the input variables, and the outputs.

There’s more…
In our recipe, we chose to generate markdown documentation, but it is also possible to generate

it in JSON, XML, YAML, or text (pretty) format. To do so, you have to add the format option to

the terraform-docs command. To know more about the available generation formats, read the

documentation here: https://terraform-docs.io/reference/terraform-docs/#subcommands.

https://terraform-docs.io/reference/terraform-docs/#subcommands

Chapter 7 229

You can also improve your processes by automating the generation of documentation by trigger-

ing the execution of terraform-docs every time you commit code in Git. For this, you can use a

pre-commit Git Hook, as explained in the documentation here: https://terraform-docs.io/

how-to/pre-commit-hooks/.

Also, to get the latest version of terraform-docs, follow the release here – https://github.com/

segmentio/terraform-docs/releases.

See also
• The source code for terraform-docs is available here: https://github.com/segmentio/

terraform-docs.

• The Chocolatey terraform-docs package page is available here: https://chocolatey.

org/packages/Terraform-Docs.

Using a private Git repository for sharing a
Terraform module
In this chapter dedicated to Terraform modules, we have seen that it is possible to put the code

of a module in a GitHub repository to publish it in the Terraform public registry.

However, in companies of any size, there is a need to create modules without exposing the code

of these modules publicly in GitHub repositories, that is, making it accessible to everyone.

What you need to know is that there are several types of Terraform module sources, as indicated

in this documentation: https://www.terraform.io/docs/modules/sources.html.

In this recipe, we will study how to expose a Terraform module through a private Git repository.

Either this Git server is installed internally (so-called on-premises) or on the cloud, i.e., SaaS, but

requires authentication to access the repository.

If you want to publish your module in the Terraform registry as we have seen in the

Sharing a Terraform module in the public registry using GitHub recipe in this chapter,

you do not need to generate this documentation because it is already included in

the registry’s functionalities.

https://terraform-docs.io/how-to/pre-commit-hooks/
https://terraform-docs.io/how-to/pre-commit-hooks/
https://github.com/segmentio/terraform-docs/releases
https://github.com/segmentio/terraform-docs/releases
https://github.com/segmentio/terraform-docs
https://github.com/segmentio/terraform-docs
https://chocolatey.org/packages/Terraform-Docs
https://chocolatey.org/packages/Terraform-Docs
https://www.terraform.io/docs/modules/sources.html

Sharing Terraform Configuration with Modules230

Getting ready
For this recipe, we will use a Git repository in Azure Repos (Azure DevOps), which is free and

requires authentication to access it. For more information and how to create a free Azure DevOps

account, go to https://azure.microsoft.com/en-us/services/devops/.

We will use an SSH key to clone repositories in Azure DevOps, and more information on how to

configure SSH keys can be found here: https://learn.microsoft.com/en-us/azure/devops/

repos/git/use-ssh-keys-to-authenticate?view=azure-devops.

As a prerequisite, we need a project that has already been created; it can be named, for example,

Terraform-modules, and it will contain the Git repository of all of the modules.

The next screenshot shows the form for creating this Azure DevOps project:

Figure 7.25: Azure DevOps creating a private project

The purpose of this recipe is not to focus on the use of Azure DevOps; we will use it

just to have an example of a private repository.

https://azure.microsoft.com/en-us/services/devops/
https://learn.microsoft.com/en-us/azure/devops/repos/git/use-ssh-keys-to-authenticate?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/repos/git/use-ssh-keys-to-authenticate?view=azure-devops

Chapter 7 231

You will also need to know the basics of the commands and workflow of Git: https://www.

hostinger.com/tutorials/basic-git-commands.

Concerning the code of the module that we are going to put in Azure Repos, we are going to use the

code of the module that we created in the first recipe of this chapter, the source code for which is

available here: https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/

tree/main/CHAP07/moduledemo/Modules/webapp.

How to do it…
To use a private module repository, we need to perform the following steps:

1. In the Azure DevOps project, Terraform-modules, create a new Git repository named

terraform-azurerm-webapp with basic configuration, as shown in the following screen-

shot:

Figure 7.26: Azure Repos | Create a repository

2. In a local workstation, execute the Git command for cloning this repository using HTTPS

(and replace <organisation> with your Azure DevOps organisation):

git clone git@https://<your azdo organisation>@dev.azure.com/
BookLabs/Terraform-modules/_git/terraform-azurerm-webapp

3. During the first operation, you will have to enter your Azure DevOps login and password

for identification.

4. Copy the source code from https://github.com/PacktPublishing/Terraform-Cookbook-

Second-Edition/tree/main/CHAP07/moduledemo/Modules/webapp and paste it into the

new folder created by the git clone command.

https://www.hostinger.com/tutorials/basic-git-commands
https://www.hostinger.com/tutorials/basic-git-commands
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/moduledemo/Modules/webapp
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/moduledemo/Modules/webapp
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/moduledemo/Modules/webapp
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/moduledemo/Modules/webapp

Sharing Terraform Configuration with Modules232

5. Update the content of the Readme.md file with a description of the module’s purpose.

6. Commit and push all files into this folder; to perform this action, you can use VS Code or

Git commands:

git add .

git commit -m "add code"

git push origin master

7. Add and push a Git tag v1.0.0 on this commit by executing this command:

git tag v1.0.0

git push origin v1.0.0

8. Finally, in the Terraform main.tf file, the following code is written, which uses the module:

resource "azurerm_resource_group" "rg-app" {

 name = "RG_MyAPP_Demo2"

 location = "West Europe"

}

module "webapp" {

 source = "git@ssh.dev.azure.com:v3/BookLabs/
Terraform-modules/terraform-azurerm-webapp?ref=v1.0.0"

 service_plan_name = "spmyapp2"

 app_name = "myappdemobook2"

 location = azurerm_resource_group.rg-app.location

 resource_group_name = azurerm_resource_group.rg-app.name

}

output "webapp_url" {

 value = module.webapp.webapp_url

}

This operation can also be done via the web interface of Azure Repos, in the

Tags tab of the repository.

Chapter 7 233

How it works…
In Steps 1 and 2, we created a Git repository in Azure Repos and cloned it locally. Then, in Steps 3

to 7, we wrote the Terraform configuration for the module (using already existing code). We also

edited the Readme.md file, which will be used as documentation for the use of the module. Then,

we made a commit and pushed this code into the remote Git repository. The following screenshot

shows the remote repository in Azure Repos:

Figure 7.27: Azure Repos module README.md

Then, we added a Git tag, which will be in the format vX.X.X and will be used to version the module.

Finally, in Step 8, we wrote the Terraform configuration, which remotely uses this module with

a Git-type source. For this, we specified the source property of the module with the Git URL of

the repository. In addition to this URL, we added the ref parameter, to which we give the Git tag

we created as a value.

Sharing Terraform Configuration with Modules234

It will be during the execution of the terraform init command that Terraform will clone the

repository locally:

Figure 7.28: terraform init downloads the private module

The module code will be cloned into the Terraform context directory, as shown in the following

screenshot:

Figure 7.29: Terraform module download during init

The webapp module is downloaded inside the .terraform folder.

There’s more…
In this recipe, most of the steps are identical to the ones already studied in the Sharing a Terraform

module in the public registry using GitHub recipe, in which we stored the module code in GitHub

and shared it in the public registry. The difference is that, in Step 8 of this recipe, we filled the

value of the source property with the Git repository URL.

The advantages of using a private Git repository are, on the one hand, that it’s only accessible to

people who have permission for that repository. On the other hand, in the ref parameter that

we put in the module call URL, we used a specific version of the module using a Git tag. We can

also name a specific Git branch, which is very useful when we want to evolve the module without

impacting the main branch.

Chapter 7 235

We could also very well store the module’s code in a GitHub repository and fill the source proper-

ties with the GitHub repository URL, as shown in this documentation: https://www.terraform.

io/docs/modules/sources.html#github.

In this recipe, we took a Git repository in Azure DevOps as an example, but it also works very

well with other Git repository providers such as Bitbucket (https://www.terraform.io/docs/

modules/sources.html#bitbucket).

Regarding Git repository authentication, you can check out this documentation at https://www.

terraform.io/docs/modules/sources.html#generic-git-repository for information on access

to and the authentication of a Git repository in HTTPS or SSH.

See also
• The module source documentation is available here: https://www.terraform.io/docs/

modules/sources.html.

Applying a Terrafile pattern for using modules
We saw throughout this chapter’s recipes how to create Terraform modules and how to use them

either locally or remotely with a public registry or Git repositories.

However, when you have a Terraform configuration that uses many modules, managing these

modules can become complicated. This is indeed the case when the versions of these modules

change; it is necessary to browse through all of the Terraform configurations to make version

changes. Moreover, we do not have global visibility of all of the modules called in this Terraform

configuration, as well as their versions.

Analogous to the classic package managers (NPM and NuGet), a pattern has emerged that allows

users to gather the configuration of the Terraform modules used in a Terraform configuration in

a centralized file called a Terrafile.

In this recipe, we will study how to use the Terrafile pattern to manage the sources of the Terra-

form modules.

Note that branches should only be used during development, if necessary – since

the underlying branch can change at any time and break things. Production code

should always point to a tag, which is treated as immutable.

https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#bitbucket
https://www.terraform.io/docs/modules/sources.html#bitbucket
https://www.terraform.io/docs/modules/sources.html#generic-git-repository
https://www.terraform.io/docs/modules/sources.html#generic-git-repository
https://www.terraform.io/docs/modules/sources.html
https://www.terraform.io/docs/modules/sources.html

Sharing Terraform Configuration with Modules236

Getting ready
For this recipe, we will use the Terraform source code that is already written and available here:
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/

CHAP07/terrafile/initial/main.tf. This Terraform configuration is at first classically con-

figured—it calls several modules and in each of the calls to these modules, we use the source

property with the GitHub repositories’ URLs.

Moreover, we will execute a code written in Ruby with Rake (https://github.com/ruby/rake).

For this, we need to have Ruby installed on our computer. The installation documentation is

available here: https://www.ruby-lang.org/en/documentation/installation/. However, no

prior Ruby knowledge is required; the complete script is provided in the source code for this recipe.

The goal of this recipe will be to integrate the Terrafile pattern into this code by centralizing the

management of the modules to be used.

The code source of this recipe is available at https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/tree/main/CHAP07/terrafile.

How to do it…
Perform the following steps to use the Terrafile pattern:

1. Copy the content from main.tf, available at https://github.com/PacktPublishing/
Terraform-Cookbook-Second-Edition/blob/main/CHAP07/terrafile/initial/main.

tf, into a new folder.

2. In this new folder, create a new file called Terrafile (without an extension) with the

following content:

rg-master:

 source: "https://github.com/mikaelkrief/terraform-azurerm-
resource-group.git"

 version: "master"

webapp-1.0.0:

 source: "https://github.com/mikaelkrief/terraform-azurerm-webapp.
git"

 version: "1.0.0"

network-3.0.1:

 source: "https://github.com/Azure/terraform-azurerm-network.git"

 version: "v3.0.1"

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP07/terrafile/initial/main.tf
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP07/terrafile/initial/main.tf
https://github.com/ruby/rake
https://www.ruby-lang.org/en/documentation/installation/
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/terrafile
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP07/terrafile
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP07/terrafile/initial/main.tf
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP07/terrafile/initial/main.tf
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP07/terrafile/initial/main.tf

Chapter 7 237

3. Create another new file, Rakefile (without an extension), with the following content (the

complete source code is at https://github.com/PacktPublishing/Terraform-Cookbook-

Second-Edition/blob/main/CHAP07/terrafile/new/Rakefile):

.....
desc 'Fetch the Terraform modules listed in the Terrafile'
task :get_modules do
 terrafile = read_terrafile
 create_modules_directory
 delete_cached_terraform_modules
 terrafile.each do |module_name, repository_details|
 source = repository_details['source']
 version = repository_details['version']
 puts "[*] Checking out #{version} of #{source}
...".colorize(:green)
 Dir.mkdir(modules_path) unless Dir.exist?(modules_path)
 Dir.chdir(modules_path) do
 #puts "git clone -b #{version} #{source} #{module_name} &> /
dev/null".colorize(:green)
 'git clone -q -b #{version} #{source} #{module_name}'
 end
 end
end

4. In main.tf, update all the source module properties with the following content:

module "resourcegroup" {

 source = "./modules/rg-master"

 ...

}

module "webapp" {

 source = "./modules/webapp-1.0.0"

...

}

module "network" {

 source = "./modules/network-3.0.1"

...

}

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP07/terrafile/new/Rakefile
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP07/terrafile/new/Rakefile

Sharing Terraform Configuration with Modules238

5. In the command-line terminal, inside this folder, execute the following script:

gem install colorize

rake get_modules

6. Finally, run the basic Terraform workflow executing the commands terraform init,

plan, and apply.

How it works…
The mechanism of the Terrafile pattern is that instead of using the Git sources directly in module

calls, we reference them in a file in Terrafile YAML format. In the Terraform configuration, in the

module call, we instead use a local path relative to the modules folder. Finally, before executing

the Terraform workflow, we execute a script that runs through this Terrafile file and will locally

clone each of these modules referenced in its specific folder (which is in the module call).

In Step 1, we created the Terrafile file, which is in YAML format and contains the repository of

the modules we are going to use in the Terraform configuration. For each of the modules, we

indicate the following:

• The name of the folder where the module will be copied

• The URL of the Git repository of the module

• Its version, which is the Git tag or its branch

In Step 2, we wrote the Ruby Rake script called Rakefile, which, when executed, will interpret

the Terrafile and will execute the git clone command on all modules into the specified folders.

Then, in Step 3, we modify the Terraform configuration to call the modules, no longer with the

Git URL but with the relative path of their specified folder in the Terrafile.

Finally, in Step 4, we execute the Rakefile script by calling the get_modules function of this script,

which will make a Git clone of all of these modules in their folders.

Once these steps are done, we can execute the classic Terraform workflow commands with init,

plan, and apply.

There’s more…
As we learned in this recipe, we have a Terrafile file that serves as a source of truth for the

modules we will use in our Terraform configuration. This allows for better management and

maintenance of the modules and versions to be used.

Chapter 7 239

In this file, for each module, we have specified its destination folder, and as you can see, we have

added the version number in the folder name. Hence, the name of the folder is unique and will

allow us to use several versions of the same module in the Terraform configuration. The following

code shows an extract of a Terrafile with two different versions of the same module:

network-3.0.1:

 source: "https://github.com/Azure/terraform-azurerm-network.git"

 version: "v3.0.1"

network-2.0.0:

 source: "https://github.com/Azure/terraform-azurerm-network.git"

 version: "v2.0.0"

Also, it allows you to specify, if necessary, the authorized Git credentials to clone the module code.

Be careful, however, not to write passwords in this file, which will be archived in a Git repository.

In this recipe, the Rakefile script was provided and is available in the original article on the Terrafile

pattern (https://bensnape.com/2016/01/14/terraform-design-patterns-the-terrafile/).

You are free to adapt it according to your needs.

The essentials of the Terrafile pattern are not the script, the language, or the format used but,

rather, its working principle. There are alternative scripts and tools to use this Rakefile with, for

example, a Python script available at https://github.com/claranet/python-terrafile, or a

tool written in Go available at https://github.com/coretech/terrafile.

Finally, there is another similar solution for referencing private Terraform modules inside your

Terraform configuration – by using Git submodules (https://git-scm.com/book/en/v2/Git-

Tools-Submodules), or the the vendir tool from Carvel, available here: https://carvel.dev/

vendir/.

See also
• The main reference article on the Terrafile pattern is available here: https://bensnape.

com/2016/01/14/terraform-design-patterns-the-terrafile/.

• The Python Terrafile package is available here: https://pypi.org/project/terrafile/

and its use is described here https://github.com/claranet/python-terrafile.

• The Terrafile tool written in Go is available here: https://github.com/coretech/

terrafile.

https://bensnape.com/2016/01/14/terraform-design-patterns-the-terrafile/
https://github.com/claranet/python-terrafile
https://github.com/coretech/terrafile
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://carvel.dev/vendir/
https://carvel.dev/vendir/
https://bensnape.com/2016/01/14/terraform-design-patterns-the-terrafile/
https://bensnape.com/2016/01/14/terraform-design-patterns-the-terrafile/
https://pypi.org/project/terrafile/
https://github.com/claranet/python-terrafile
https://github.com/coretech/terrafile
https://github.com/coretech/terrafile

Sharing Terraform Configuration with Modules240

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to

the author, and learn about new releases – follow the QR code below:

https://packt.link/cloudanddevops

https://packt.link/cloudanddevops

8
Provisioning Azure
Infrastructure with Terraform

Terraform contains a multitude of providers that enable the provisioning of various types of

infrastructure, whether in the cloud or an on-premises data center.

In the previous chapters of this book, we studied the basic concepts of the Terraform language,

as well as the Terraform command-line interface, and we saw the sharing of Terraform config-

uration using modules. In addition, even if the Terraform configuration examples mentioned in

the previous chapters are based on the provider’s azurerm, all the recipes we have seen in the

previous chapters are generic and can be used by all Terraform providers.

In this chapter, we will focus on using Terraform to provision a cloud infrastructure in Azure. We

will start with its integration into Azure Cloud Shell, its secure authentication, and the protection

of the Terraform state file in an Azure storage account.

You will learn how to run Azure Resource Manager (ARM) templates and Azure CLI scripts with

Terraform and how to retrieve the Azure resource list with Terraform. Then we’ll look at how to

protect sensitive data in Azure Key Vault using Terraform. We will write two case studies in Azure,

with the first showing the provisioning and configuration of an IaaS infrastructure consisting of

VMs, and the second showing the provisioning of a PaaS infrastructure in Azure. Finally, we will

go further with the cost estimation of Azure resources based on Terraform configuration and

the use of a new AzAPI provider for the generation of Terraform configuration from an already

existing infrastructure.

Provisioning Azure Infrastructure with Terraform242

In this chapter, we will cover the following recipes:

• Using Terraform in Azure Cloud Shell

• Protecting the Azure credential provider

• Protecting the state file in the Azure remote backend

• Executing ARM templates in Terraform

• Executing Azure CLI commands in Terraform

• Using Azure Key Vault with Terraform to protect secrets

• Provisioning and configuring an Azure VM with Terraform

• Building Azure serverless infrastructure with Terraform

• Generating a Terraform configuration for existing Azure infrastructure

• Enabling optional Azure features

• Estimating Azure cost of infrastructure using Infracost

• Using the AzAPI Terraform provider

Technical requirements
To apply the recipes in this chapter, you must have an Azure subscription. If you don’t have one,

you can create an Azure account for free at this site: https://azure.microsoft.com/free/.

For the Terraform Azure provider to provision and manipulate resources in Azure, the provider must

authenticate in Azure using an Azure account, and that account must have the correct authoriza-

tions. Read this documentation for more details: https://registry.terraform.io/providers/

hashicorp/azurerm/latest/docs/guides/service_principal_client_certificate.

The complete source code for this chapter is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP08.

Using Terraform in Azure Cloud Shell
In Chapter 1, Setting Up the Terraform Environment, we studied the steps involved in installing

Terraform on a local machine.

In Azure Cloud Shell, Microsoft has integrated Terraform into the list of tools that are installed

by default.

In this recipe, we will see how to write a Terraform configuration and use Terraform in Azure

Cloud Shell.

https://azure.microsoft.com/free/
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/guides/service_principal_client_certificate
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/guides/service_principal_client_certificate
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP08
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP08

Chapter 8 243

Getting ready
The prerequisite for this recipe is to have an Azure subscription and to be connected to this sub-

scription via the Azure portal, which is accessible here: https://portal.azure.com/.

In addition, you need to associate your Azure Cloud Shell with an existing Azure Storage Account

or create a new one, as explained in the following documentation: https://docs.microsoft.

com/azure/cloud-shell/persisting-shell-storage.

How to do it…
To use Terraform in Azure Cloud Shell, perform the following steps:

1. In the Azure portal, open Azure Cloud Shell by clicking the Azure Cloud Shell button in

the top menu, as shown in the following screenshot:

Figure 8.1: Azure Cloud Shell button

2. Inside the Cloud Shell panel, in the top menu, in the dropdown, choose Bash mode:

Figure 8.2: Azure Cloud Shell Bash mode

3. In the Cloud Shell terminal, create a new folder, demotf, inside the default clouddrive

folder by executing the following command:

mkdir clouddrive/demotf

Inside this new folder, enter the cd clouddrive/demotf command.

Note that this prerequisite applies to all recipes in this chapter.

https://portal.azure.com/
https://docs.microsoft.com/azure/cloud-shell/persisting-shell-storage
https://docs.microsoft.com/azure/cloud-shell/persisting-shell-storage

Provisioning Azure Infrastructure with Terraform244

4. To write a Terraform configuration inside a web IDE called the Azure Cloud Shell editor,

execute the code command. For more information, read the documentation here: https://

learn.microsoft.com/en-us/azure/cloud-shell/using-cloud-shell-editor.

5. In the Azure Cloud Shell editor, write the following sample Terraform configuration:

terraform {

 required_version = "~> 1.0"

}

provider "azurerm" {

 features {}

}

resource "azurerm_resource_group" "rg-app" {

 name = "RG-TEST-DEMO"

 location = "westeurope"

}

6. Save this file by using the Ctrl + S shortcut and name this file main.tf.

7. Finally, to apply this Terraform configuration to the Cloud Shell terminal, execute the

Terraform workflow as follows:

terraform init

terraform plan -out=app.tfplan

terraform apply app.tfplan

How it works…
In this recipe, we used the integrated environment of Azure Cloud Shell, which consists of a

command-line terminal that we chose to use in Bash mode. In addition, in Steps 5 and 6, we used

the built-in editor, using the code command, to write a Terraform configuration, which also has

syntax highlighting for Terraform files. And finally, in Step 7, we used the Terraform CLI, which

is already installed in this Cloud Shell environment to provision our infrastructure with the ex-

ecution of the Terraform workflow commands.

The following screenshot shows Azure Cloud Shell with Terraform execution:

https://learn.microsoft.com/en-us/azure/cloud-shell/using-cloud-shell-editor
https://learn.microsoft.com/en-us/azure/cloud-shell/using-cloud-shell-editor

Chapter 8 245

Figure 8.3: Terraform on Azure Cloud Shell

We can see in the preceding screenshot the top panel with the integrated editor and, in the bottom

panel, the command line with the execution of the Terraform command.

There’s more…
For this recipe, we chose the option to edit the Terraform files directly in the editor, which is in

Cloud Shell, but the following alternative options are available:

• The Terraform files could be created and edited using the Vim tool (Linux editor: https://

www.linux.com/training-tutorials/vim-101-beginners-guide-vim/), which is built

into Cloud Shell.

• We could also have edited the Terraform files locally on our machine and then copied

them to the Azure Storage service that is connected to Azure Cloud Shell.

• If the files are stored in a Git repository, we could also have cloned the repository directly

into the Cloud Shell storage by running a git clone command in the Cloud Shell com-

mand-line terminal.

Also, regarding Terraform’s authentication to perform actions in Azure, we did not need to take

any action because Azure Cloud Shell allows direct authentication to our active Azure subscription,

and Terraform, which is in Cloud Shell, automatically inherits that authentication.

https://www.linux.com/training-tutorials/vim-101-beginners-guide-vim/
https://www.linux.com/training-tutorials/vim-101-beginners-guide-vim/

Provisioning Azure Infrastructure with Terraform246

On the other hand, if you have several subscriptions, prior to executing the Terraform workflow,

you must choose the subscription target by executing the following command:

az account set -s <subscription _id>

This chosen subscription then becomes the default subscription during execution. Refer to the

documentation at https://docs.microsoft.com/cli/azure/account?view=azure-cli-latest

- az-account-set.

Regarding the version of Terraform that is installed on Cloud Shell, you can check it by running

the terraform --version command. You need to check that your Terraform configuration is

compatible with this version before executing.

Finally, as regards the recommended use of Azure Cloud Shell for Terraform, it can only be used

for development and testing. It cannot be integrated into a CI/CD pipeline using your personal

permissions on Azure to provision resources. For this reason, in the next recipe, we will look at

how to securely authenticate Terraform to Azure.

See also
• Refer to this blog post, which also shows the use of Terraform in Azure Cloud Shell

• Documentation that explains the use of Azure Cloud Shell: https://docs.microsoft.

com/azure/cloud-shell/using-cloud-shell-editor

• A tutorial that shows how to use and configure locally installed Visual Studio Code to

execute a Terraform configuration in Azure Cloud Shell: https://docs.microsoft.com/

azure/developer/terraform/configure-vs-code-extension-for-terraform

Protecting the Azure credential provider
In the previous recipe, we studied how to automatically authenticate the Terraform context in

Azure Cloud Shell with our personal account and permissions. However, in a company context,

as well as in production, it is very bad practice to use your personal account as this could expire,

be deleted, or, even worse, be misused.

Therefore, one of the options we have when running Terraform in Azure is to use an app registra-

tion account (also known as a service principal) that is not linked to a physical person.

In this recipe, we will first study the creation of this service principal and then we will see how

to use it securely to run a Terraform configuration.

https://docs.microsoft.com/cli/azure/account?view=azure-cli-latest - az-account-set
https://docs.microsoft.com/cli/azure/account?view=azure-cli-latest - az-account-set
https://docs.microsoft.com/azure/cloud-shell/using-cloud-shell-editor
https://docs.microsoft.com/azure/cloud-shell/using-cloud-shell-editor
https://docs.microsoft.com/azure/developer/terraform/configure-vs-code-extension-for-terraform
https://docs.microsoft.com/azure/developer/terraform/configure-vs-code-extension-for-terraform

Chapter 8 247

Getting ready
To apply the first part of this recipe, you must have user account creation permissions in Azure

Active Directory. Moreover, to create this service principal, we will do it using the command line

with the Azure CLI tool, documentation relating to which is available at https://docs.microsoft.

com/cli/azure/?view=azure-cli-latest.

In addition, we need to retrieve the ID of the subscription in which resources will be provisioned.

For this, we can get it in Azure Cloud Shell by running the az account list command to display

our subscription details:

Figure 8.4: Getting the account ID using Azure CLI

We can then get the id property of the subscription concerned by performing the copy/paste

operation.

You can also run the command az account show --query id --output tsv to get only the

Subscription ID value.

How to do it…
This recipe comprises two parts: part one is the creation of the service principal, and part two is

the configuration of Terraform authentication using this service principal.

To create this service principal, perform the following steps:

1. Open Azure Cloud Shell and execute the following command:

az ad sp create-for-rbac --name="BookDemoTerraform"
--role="Contributor" --scopes="/subscriptions/<Subscription Id>"

https://docs.microsoft.com/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/cli/azure/?view=azure-cli-latest

Provisioning Azure Infrastructure with Terraform248

2. Retrieve all the identification information provided in the output of the previous command

by making a note (because we won’t be able to retrieve the password after closing this

console) of appId, password, and tenant, as shown in the following screenshot:

Figure 8.5: Getting account information using the Azure CLI

3. We check that the service principal has the “contributor” permissions on the subscrip-

tion: to perform this, in the Azure portal, click on the Access control (IAM) link on the

left menu on the Subscription details page, as you can see in the following screenshot:

Figure 8.6: Showing the service principal in Access control (IAM)

We can see in the preceding image that the service principal BookDemoTerraform is a contributor

to the subscription.

Now that the service principal is created and has contributor permissions on the subscription,

we can use it to provision Azure infrastructure with Terraform by performing the following steps:

1. In the command-line terminal, set four new environments variables as follows:

export ARM_SUBSCRIPTION_ID=<subscription_id>

export ARM_CLIENT_ID=<appId>

Chapter 8 249

export ARM_CLIENT_SECRET=<password>

export ARM_TENANT_ID=<tenant id>

2. Then, we can apply the Terraform configuration by executing the following Terraform

workflow:

terraform init

terraform plan -out=app.tfplan

terraform apply app.tfplan

How it works…
In the first part of this recipe, we created a service principal and gave it its permissions on a sub-

scription, using the command az ad sp. We added the following arguments to this command:

• name, which is the name of the service principal we are going to create.

• role, which is the role that the service principal will have on the subscription; here, we

specify Contributor.

• scopes, where we specify the Azure ID of the resource on which the service principal

will have contributor permissions. In our case, this is the subscription ID in which the

resources will be provisioned by Terraform.

This command will therefore create the service principal with a generated password and will give

it the Contributor role on the specified subscription.

At the end of its execution, this command displays the information of the service principal, in-

cluding AppId, password, and tenant. As explained in Step 2, we need to retrieve this information

and store it in a safe place because this password cannot be retrieved later. Then, we check via

the Azure portal that the service principal has the contributor permissions on the subscription.

In the second part of this recipe, we used this service principal to authenticate the Terraform

Azure provider. For this, there are several solutions, the most secure one being to use specific Azure

provider environment variables because these environment variables will not be visible in the

code and will only be persistent during the execution session. So, we have set four environment

variables, which are as follows:

• ARM_SUBSCRIPTION_ID: This contains the Azure subscription ID.

• ARM_CLIENT_ID: This contains the service principal ID, called AppId.

• ARM_CLIENT_SECRET: This contains the password of the service principal.

• ARM_TENANT_ID: This contains the ID of the Azure Active Directory tenant.

Provisioning Azure Infrastructure with Terraform250

Once these environment variables were set, we executed the basic Terraform workflow with

terraform init, plan, and apply.

There’s more...
Regarding the creation of the service principal, we made the choice to use the Azure CLI tool,

but we could also have done it directly via the Azure portal, as detailed in the documentation

available at https://docs.microsoft.com/azure/active-directory/develop/howto-create-

service-principal-portal, or we could have used the Azure PowerShell commands (https://
docs.microsoft.com/azure/active-directory/develop/howto-authenticate-service-

principal-powershell).

In addition, as regards the configuration of the Terraform Azure provider, we have used environ-

ment variables, but we can also put this information directly into the Terraform configuration,

as shown in the following code snippet:

provider "azurerm" {

 ...

 subscription_id = "<Subscription ID>"

 client_id = "<Client ID>"

 client_secret = "<Client Secret>"

 tenant_id = "<Tenant ID>"

}

This solution does not require an extra step (the set of environment variables) to be implemented

prior to executing the Terraform configuration, but it leaves identification information in clear

text in the code, and hardcoding credentials in code is generally considered a bad practice from

a security perspective since the leakage of code also leaks credentials and makes it impossible to

share the code with anyone without exposing the credentials. And in the case where the Terra-

form configuration provides resources for several environments that are in different subscriptions,

Terraform variables will have to be added, which can add complexity to the code.

Finally, the use of environment variables offers the advantage of being easily integrated into a

CI/CD pipeline while preserving the security of the authentication data.

In the recipe, we used the export command of the Linux system. On Windows

PowerShell, we can use the $env command. In addition, in all subsequent recipes

in this chapter, we will use these environment variables before executing Terraform.

https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
https://docs.microsoft.com/azure/active-directory/develop/howto-authenticate-service-principal-powershell
https://docs.microsoft.com/azure/active-directory/develop/howto-authenticate-service-principal-powershell
https://docs.microsoft.com/azure/active-directory/develop/howto-authenticate-service-principal-powershell

Chapter 8 251

See also
• The Azure documentation and Terraform configuration are available here: https://docs.

microsoft.com/azure/developer/terraform/install-configure

• Documentation on the configuration of the azurerm provider, along with the other au-

thentication options, is available here: https://www.terraform.io/docs/providers/

azurerm/index.html

Protecting the state file in the Azure remote backend
When executing the Terraform workflow commands, which are mainly terraform plan, terraform

apply, and terraform destroy, Terraform has a mechanism that allows it to identify which re-

sources need to be updated, added, or deleted. To perform this mechanism, Terraform maintains

a file called a Terraform state file that contains all the details of the resources provisioned by

Terraform. This Terraform state file is created the first time the terraform plan command is run

and is updated with each action (apply or destroy).

In an enterprise, the Terraform state file can present certain interesting problems:

• Sensitive information on the provisioned resources is mentioned in clear text.

• If several people are working together, this file must be shared by everyone, or, by de-

fault, this file is created on the local workstation or on the workstation that contains the

Terraform binary.

• Even if it is archived in a Git repository, once it is retrieved on the local workstation, it

does not allow several people to work on the same file.

• With this locally stored file, managing multiple environments can quickly become com-

plicated and risky.

• Any deletion of this local file or manual editing can affect the execution of the Terraform

configuration.

A solution to all these problems is the use of a remote backend, which consists of storing this file

in a remote, shared, and secure store.

For more information about how to manage the Terraform state, read Chapter 5,

Managing Terraform State.

https://docs.microsoft.com/azure/developer/terraform/install-configure
https://docs.microsoft.com/azure/developer/terraform/install-configure
https://www.terraform.io/docs/providers/azurerm/index.html
https://www.terraform.io/docs/providers/azurerm/index.html

Provisioning Azure Infrastructure with Terraform252

In the case of Terraform, there are several types of remote backends, such as S3, azurerm, Ar-

tifactory, and many others, which are listed in the menu on the following page: https://www.

terraform.io/docs/backends/types/index.html.

In this recipe, we will study the use of a remote backend in Azure, azurerm, by storing this Terra-

form state file inside a container in an Azure Storage Account.

Getting ready
For this recipe, we will use Azure Cloud Shell and Azure CLI commands to create the Storage

Account.

The source code for this recipe and the script used are available at https://github.com/

PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP08/remotebackend.

How to do it…
This recipe consists of three parts. In the first part, we will create the Storage Account, in the

second part, we will configure Terraform to use the azurerm remote backend, and finally, we will

set the ARM_ACCESS_KEY environment variable:

1. In Azure Cloud Shell, execute the following Azure CLI script (available at https://github.
com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP08/

remotebackend/create-backend.sh) to create the Storage Account with a blob container

in the resource group:

1- Create Resource Group

az group create --name "RG-TFBACKEND" --location westeurope

2- Create storage account

az storage account create --resource-group "RG-TFBACKEND" --name
"storagetfbackend " --sku Standard_LRS --encryption-services blob

3- Create blob container

az storage container create --name "tfstate" --account-name
"storagetfbackend"

4- Get storage account key

ACCOUNT_KEY=$(az storage account keys list --resource-group "RG-
TFBACKEND" --account-name "storagetfbackend" --query [0].value -o
tsv)

https://www.terraform.io/docs/backends/types/index.html
https://www.terraform.io/docs/backends/types/index.html
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP08/remotebackend
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP08/remotebackend
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP08/remotebackend/create-backend.sh
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP08/remotebackend/create-backend.sh
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP08/remotebackend/create-backend.sh

Chapter 8 253

echo $ACCOUNT_KEY

2. Then, we configure the Terraform state backend by adding the following code to the

main.tf file:

terraform {

 backend "azurerm" {

 resource_group_name = "RG-TFBACKEND"

 storage_account_name = "storagetfbackend" # name of your Azure
Storage Account

 container_name = "tfstate"

 key = "myapp.tfstate"

 }

}

3. Finally, to execute the Terraform configuration, we set a new environment variable, ARM_

ACCESS_KEY, with the following command:

export ARM_ACCESS_KEY=<access key>

4. Set the four authentication environment variables we learned about in the Protecting the

Azure credential provider recipe in this chapter.

5. Finally, we execute the basic commands of the Terraform workflow.

How it works…
In the first step, we used a script that performs the following actions in sequence:

1. It creates a resource group called RG-TFBACKEND.

2. In this resource group, we use the az storage account create command to create a

Storage Account named storagetfbackend.

3. Then, this script creates a blob container in this Storage Account with the az storage

container create command.

4. Finally, we retrieve the account key of the Storage Account created and display its value.

Note that in the preceding script, the name of the storage account,

storagetfbackend, is just an example. When you execute this script, change

the name to a unique storage name.

Provisioning Azure Infrastructure with Terraform254

Then, in Step 2, we configure Terraform to use this Storage Account as a remote backend to store

the Terraform state file. In this configuration, which is located in a backend "azurerm" block,

we indicate, on the one hand, the Storage Account information, and on the other, the blob with

the following properties:

• resource_group_name: This is the name of the resource group that contains the Storage

Account.

• storage_account_name: This is the name of the Storage Account.

• container_name: This is the name of the blob container.

• key: This is the name of the Terraform state file.

Finally, we define a new environment variable, ARM_ACCESS_KEY, that contains the account key

for the Storage Account we retrieved from the script we ran in step 1. This variable is used to

authenticate the Storage Account.

Then, to set all the environment variables, we can execute the init, plan, and apply commands

of Terraform.

Based on what we studied in the previous recipe, Protecting the Azure credential provider, here is

the complete script for executing this Terraform script in Azure:

export ARM_SUBSCIPTION_ID =<subscription_id>

export ARM_CLIENT_ID=<appId>

export ARM_CLIENT_SECRET=<password>

export ARM_TENANT_ID=<tenant id>

export ARM_ACCESS_KEY=<account key>

terraform init

terraform plan -out=app.tfplan

terraform apply app.tfplan

So, we used the four authentication environment variables, as well as the ARM_ACCESS_KEY en-

vironment variable, for authentication to the Storage Account, and we executed the Terraform

commands.

There’s more…
In this recipe, we used an environment variable to specify the value of the access key to protect

this sensitive data.

Chapter 8 255

We could have specified it in the remote backend configuration using the access_key property,

as in the following example, but as mentioned in the Protecting the Azure credential provider recipe

of this chapter, it isn’t good practice to leave sensitive keys as plain text:

terraform {

 backend "azurerm" {

 resource_group_name = "RG-TFBACKEND"

 storage_account_name = "storagetfbackend"

 container_name = "tfstate"

 key = "myapp.tfstate"

 access_key = xxxxxx-xxxxx-xxx-xxxxx

 }

}

Moreover, if our Terraform configuration is designed to be deployed on multiple environments,

we can create N configurations of the azurerm backend with the following steps:

1. The main.tf file contains the following code with the backend "azurerm" block empty:

terraform {

 required_version = ">= 1.0"

 backend "azurerm" {

 }

}

2. We create one backend.tfbackend file per environment (in a specific folder for this envi-

ronment) with the following code:

resource_group_name = "RG-TFBACKEND"

storage_account_name = "storagetfbackend"

container_name = "tfstate"

key = "myapp.tfstate"

3. Finally, in the execution of the init command, we specify the backend.tfbackend

file to be used with the following command, as specified in the init command docu-

mentation, which is available at https://www.terraform.io/docs/backends/config.

html#partial-configuration:

terraform init -backend-config="<path>/backend.tfbackend"

https://www.terraform.io/docs/backends/config.html#partial-configuration
https://www.terraform.io/docs/backends/config.html#partial-configuration

Provisioning Azure Infrastructure with Terraform256

Another consideration is that if the service principal that was used to authenticate with Terra-

form has permissions on this Storage Account, then this environment variable is not mandatory.

See also
• Documentation relating to the azurerm remote backend is available here: https://

developer.hashicorp.com/terraform/language/settings/backends/azurerm

• Terraform’s learning module with the azurerm remote backend is available here: https://

learn.hashicorp.com/terraform/azure/remote_az#azurerm

• Azure documentation relating to the Terraform remote backend is available here: https://

docs.microsoft.com/azure/developer/terraform/store-state-in-azure-storage

Executing ARM templates in Terraform
Among all the Infrastructure as Code (IaC) tools and languages, there is one provided by Azure

called ARM, based on JSON format files, that contains the description of the resources to be

provisioned.

When using Terraform to provision resources in Azure, you may need to use resources that are not

yet available in the Terraform azurerm provider. Indeed, the azurerm provider is open source and

community-based on GitHub and has a large community of contributors, but this is not enough to

keep up with all the changes in Azure’s functionalities in real time. This is due to several reasons:

• New releases of Azure resources are very frequent.

• The Terraform azurerm provider is highly dependent on the Azure Go SDK (https://

github.com/Azure/azure-sdk-for-go), which does not contain real-time Azure updates

on new features or even on features that are still in preview.

To partially solve this problem, and for organizations that wish to remain in full Terraform, there

is a Terraform azurerm_template_deployment resource that allows you to execute ARM code

using Terraform.

In this recipe, we will discuss the execution of ARM code with Terraform.

To learn more about ARM templates, read the following documentation: https://

docs.microsoft.com/azure/azure-resource-manager/templates/overview.

https://developer.hashicorp.com/terraform/language/settings/backends/azurerm
https://developer.hashicorp.com/terraform/language/settings/backends/azurerm
https://learn.hashicorp.com/terraform/azure/remote_az#azurerm
https://learn.hashicorp.com/terraform/azure/remote_az#azurerm
https://docs.microsoft.com/azure/developer/terraform/store-state-in-azure-storage
https://docs.microsoft.com/azure/developer/terraform/store-state-in-azure-storage
https://github.com/Azure/azure-sdk-for-go
https://github.com/Azure/azure-sdk-for-go
https://docs.microsoft.com/azure/azure-resource-manager/templates/overview
https://docs.microsoft.com/azure/azure-resource-manager/templates/overview

Chapter 8 257

Getting ready
The Terraform configuration of this recipe will provision an Azure App Service resource that

includes an extension. Since the extension App Service resource is not available in the azurerm

provider at the time of writing this book, the Azure App Service code will be written in HashiCorp

Configuration Language (HCL), and its extension will be provisioned using an ARM template

that will be executed with Terraform.

In this recipe, we will present only the key code extracts. The complete source code for this chapter

is available at https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/

tree/main/CHAP08/arm-template.

How to do it…
To execute the ARM template with Terraform, perform the following steps:

1. Inside the folder that will contain the Terraform configuration, create a new file called

ARM_siteExtension.json, which contains the following ARM JSON template:

{

...

 "parameters": {

 "appserviceName": { ... },

 "extensionName": { ... },

 "extensionVersion": { ... }

 },

 "resources": [

 {

 "type": "Microsoft.Web/sites/siteextensions",

 "name": "[concat(parameters('appserviceName'), '/',
parameters('extensionName'))]",

 ...

 "properties": {

 "version": "[parameters('extensionVersion')]"

 }

The purpose of the recipe is not to detail the code of the ARM template of the exten-

sion but to study its execution with Terraform.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP08/arm-template
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP08/arm-template

Provisioning Azure Infrastructure with Terraform258

 }

]

}

The complete source code of this file is available here: https://github.com/
PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP08/arm-

template/ARM_siteExtension.json.

2. In the main.tf file, add the following Terraform extract code:

resource "azurerm_resource_group_template_deployment" "extension" {

 name = "extension"

 resource_group_name = azurerm_resource_group.rg-app.name

 template_content = file("ARM_siteExtension.json")

 parameters_content = jsonencode({

 "appserviceName" = {

 value = azurerm_linux_web_app.app.name

 },

 "extensionName" = {

 value = "AspNetCoreRuntime.2.2.x64"

 },

 "extensionVersion" = {

 value = "2.2.0-preview3-35497"

 }

 })

 deployment_mode = "Incremental"

}

The complete source code of this file is available here: https://github.com/
PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP08/arm-

template/main.tf.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP08/arm-template/ARM_siteExtension.json
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP08/arm-template/ARM_siteExtension.json
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP08/arm-template/ARM_siteExtension.json
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP08/arm-template/main.tf
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP08/arm-template/main.tf
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP08/arm-template/main.tf

Chapter 8 259

3. Then, we can execute the basic Terraform workflow with the following:

• Authentication with four Azure environment variables, as discussed in the Pro-

tecting the Azure credential provider recipe of this chapter

• The execution of the init, plan, and apply commands, as mentioned previously

and in earlier chapters

How it works…
In Step 1, in the directory that contains the Terraform configuration, we created a JSON file that

contains the ARM code for creating an extension for an App Service resource. In this ARM file, we

have the following three input parameters:

• appserviceName: This corresponds to the name of the App Service resource.

• extensionName: This corresponds to the name of the extension to be added (from the

extension catalog).

• extensionVersion: This corresponds to the version of the extension to be added.

Then, the rest of this file describes the site extension resource to be added in Azure using the

three parameters.

Then, in Step 2, in the Terraform configuration, we used the Terraform resource azurerm_resource_

group_template_deployment, which allows the execution of an ARM template with the following

properties:

• template_content: This is the ARM code in JSON format. Here, in our example, we used

the file function to indicate that it is a file.

• parameters_content: In this block, we fill in the input properties of the ARM template

in JSON format, which are appserviceName, extensionName, and extensionVersion.

In our recipe, we install the AspNetCoreRuntime.2.2.x64 extension of version

2.2.0-preview3-35497.

Finally, to provision this Azure App Service resource and its extension, the Terraform workflow

commands are executed.

Provisioning Azure Infrastructure with Terraform260

The following screenshot shows the result of executing the workflow commands in the Azure

portal:

Figure 8.7: Azure App Service extension

We can see the extension provisioned inside the App Service resource.

There’s more…
In this recipe, we have studied the possibility of running an ARM template with Terraform. This

method allows you to provision elements in Azure that are not available in the azurerm provider,

but it is important to know that Terraform knows the resources described in this ARM template

when it is executed.

That is to say that these resources (here, in our Resource, it is the extension) do not follow the

lifecycle of the Terraform workflow and are not registered in the Terraform state file. For this

reason, it is advisable that you use this type of deployment only to complete resources that have

been provisioned with Terraform HCL code.

In the next recipe, we will stay on the same topic of handling a provisioned resource that isn’t

available in the azurerm provider yet, but instead of using an ARM template, we will see how to

use Azure CLI commands with Terraform.

See also
• Documentation pertaining to the azurerm_resource_group_template_deployment

resource of the azurerm provider is available here: https://registry.terraform.io/
providers/hashicorp/azurerm/latest/docs/resources/resource_group_template_
deployment

https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/resource_group_template_deployment
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/resource_group_template_deployment
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/resource_group_template_deployment

Chapter 8 261

Executing Azure CLI commands in Terraform
In the previous recipe, we studied how to run ARM templates with Terraform in a situation where

the provisioned resource is not yet available in the azurerm provider.

However, there are cases where the use of an ARM template is not possible, such as the following:

• We want to fill in one or more properties of a resource, which are not available in an ARM

template.

• The ARM template is not available for the resource to be provisioned.

For these situations, there is another solution, which entails executing Azure CLI commands

with Terraform.

This recipe is a practical application of the Executing local programs with Terraform recipe from

Chapter 4, Using Terraform with External Data. We will study the Terraform configuration and its

execution to integrate Azure CLI commands with Terraform.

Getting ready
For this recipe, it is necessary to have read beforehand the Executing local programs with Terraform

recipe from Chapter 4, Using Terraform with External Data, which provides the basis of the Terraform

configuration we are going to write.

Moreover, it will also be necessary to have already installed the Azure CLI tool, documentation

pertaining to which is available here: https://docs.microsoft.com/cli/azure/?view=azure-

cli-latest.

To demonstrate the use of the Azure CLI command in Terraform, in this recipe, we will set up an

Azure Storage Account by configuring the properties of a static website feature in it.

The source code for this recipe is available at https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/tree/main/CHAP08/azcli.

As with the previous recipe, the purpose of this recipe is to show how to use Azure CLI

commands with Terraform, but we will not focus on the Azure CLI command used

because, since version 2.0.0 of the azurerm provider, the properties of a static website

have been added to the Terraform resource (https://github.com/terraform-
providers/terraform-provider-azurerm/blob/master/CHANGELOG-v2.

md#200-february-24-2020).

https://docs.microsoft.com/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/cli/azure/?view=azure-cli-latest
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP08/azcli
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP08/azcli
https://github.com/hashicorp/terraform-provider-azurerm/blob/main/CHANGELOG-v2.md#200-february-24-2020
https://github.com/hashicorp/terraform-provider-azurerm/blob/main/CHANGELOG-v2.md#200-february-24-2020
https://github.com/hashicorp/terraform-provider-azurerm/blob/main/CHANGELOG-v2.md#200-february-24-2020

Provisioning Azure Infrastructure with Terraform262

How to do it…
Perform the following steps to execute Azure CLI commands with Terraform:

1. In the main.tf file that contains the Terraform configuration, write the following config-

uration to provision the Storage Account:

resource "azurerm_storage_account" "sa" {
 name = "saazclidemo"
 resource_group_name = azurerm_resource_group.rg.name
 location = "westeurope"
 account_tier = "Standard"
 account_kind = "StorageV2"
 account_replication_type = "GRS"
}

2. In the same Terraform configuration, add the code to configure the static website using

the following Azure CLI command:

resource "null_resource" "webapp_static_website" {

 triggers = {

 account = azurerm_storage_account.sa.name

 }

 provisioner "local-exec" {

 command = "az storage blob service-properties update --account-
name ${azurerm_storage_account.sa.name} --static-website true
--index-document index.html --404-document 404.html"

 }

}

3. Then, in our command-line terminal, we log in to Azure by executing the following com-

mand by replacing your APP_ID (CLIENT ID), PASSWORD (CLIENT SECRET) and TENANT_ID:

az login --service-principal --username APP_ID --password PASSWORD
--tenant TENANT_ID

4. Finally, we can execute the basic Terraform workflow with the following:

• Authentication with four Azure environment variables, as discussed in the Pro-

tecting the Azure credential provider recipe of this chapter

Chapter 8 263

• The execution of the init, plan, and apply commands, as mentioned previously

and in earlier chapters

How it works…
In Step 1, there is nothing special. We just wrote the Terraform configuration to provision a

StorageV2 Storage Account, which is required to activate the static website feature.

In Step 2, we completed this code by adding null_resource, which contains a local-exec pro-

visioner. In the command property of local-exec, we run the command Azure CLI that must be

executed to activate and configure the static website functionality on the Storage Account we

wrote in Step 1.

Then, in Step 3, we executed the az login command to authenticate the context of the Azure

CLI. On this command, we added the authentication parameters with a service principal (see the

Protecting the Azure credential provider recipe in this chapter), as documented here: https://

learn.microsoft.com/en-us/cli/azure/authenticate-azure-cli#sign-in-with-a-service-

principal.

There’s more…
In the implementation of this recipe, there are two important points:

• The first point is that we used null_resource with the local-exec provisioner that we

had already studied in detail in the Executing local programs with Terraform recipe from

Chapter 4, Using Terraform with External Data. The only novelty brought here is the fact

that the executed command is an Azure CLI command. It could also be a file that contains

a script with several Azure CLI commands.

The second point is that Terraform’s authentication for Azure with the four environment variables

does not allow authentication of the Azure CLI context that will be executed by Terraform. This

is why, in Step 3, we also had to authenticate the Azure CLI context with the az login command

by passing the credentials of the service principal as parameters.

The advantage of executing Azure CLI commands in this way is that we can integrate the variables

and expressions of the Terraform language into them, just as we did when we passed the name

of the Storage Account as a parameter.

We added the trigger block with the name of the storage as an argument, so that if

the name of the storage changes, then provisioning will be re-executed.

https://learn.microsoft.com/en-us/cli/azure/authenticate-azure-cli#sign-in-with-a-service-principal
https://learn.microsoft.com/en-us/cli/azure/authenticate-azure-cli#sign-in-with-a-service-principal
https://learn.microsoft.com/en-us/cli/azure/authenticate-azure-cli#sign-in-with-a-service-principal

Provisioning Azure Infrastructure with Terraform264

As with the ARM templates we learned about in the previous recipe, Executing ARM templates in

Terraform, Terraform does not know the resources manipulated in the Azure CLI command or

script. These resources do not follow the Terraform lifecycle and are not registered in the Ter-

raform state file. On the other hand, in the local-exec provisioner of null_resource, we can

specify a command to be executed in the case of execution of the terraform destroy command.

The following is an example of the configuration that I used to create a Cosmos DB database

(before the azurerm provider supported it):

resource "null_resource" "cosmosdb_database" {

 provisioner "local-exec" {

 command = "az cosmosdb database create --name ${var.cosmosdb_
name} --db-name ${var.app_name} --resource-group ${var.cosmosdb_rg}
--throughput ${var.cosmosdb_throughput}"

 }

 provisioner "local-exec" {

 when = "destroy"

 command = "az cosmosdb database delete --name ${var.cosmosdb_name}
--db-name ${var.app_name} --resource-group ${var.cosmosdb_rg}"

 }

}

In this example, in the provisioner, we used the when = "destroy" property to specify that the

Azure CLI command, az cosmosdb database delete, will be executed to delete the Cosmos DB

database in the case of terraform destroy.

See also
• Documentation pertaining to the az login command and its parameters is available

here: https://docs.microsoft.com/cli/azure/authenticate-azure-cli?view=azure-

cli-latest

• Documentation pertaining to the Terraform provisioner is available here: https://www.

terraform.io/docs/provisioners/index.html

Note that, as with any local provisioner, this restricts where the configuration can

be applied as it assumes the existence of the Azure CLI (the Azure CLI becomes a

hidden dependency).

https://docs.microsoft.com/cli/azure/authenticate-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/cli/azure/authenticate-azure-cli?view=azure-cli-latest
https://www.terraform.io/docs/provisioners/index.html
https://www.terraform.io/docs/provisioners/index.html

Chapter 8 265

• Documentation pertaining to the when property of provisioner is available here: https://

www.terraform.io/docs/provisioners/index.html#destroy-time-provisioners

Using Azure Key Vault with Terraform to protect
secrets
One of the challenges of IaC is the protection of sensitive information that is part of the infra-

structure.

Indeed, one of the advantages of IaC is the possibility to version the code in a Git repository and so

this code benefits from the Git workflow of versioning and validation of the code. However, with

this approach, we tend to write everything in this code, sometimes forgetting that some data that

is sensitive, such as passwords or login strings, can be misused if they end up in the wrong hands.

In this recipe, we will study how to protect this sensitive data by storing it in Azure’s secret man-

ager, which is Azure Key Vault, and then using it in the Terraform configuration.

Getting ready
For this recipe, we assume the use of Azure Key Vault. For more information, you can refer to the

documentation available at https://docs.microsoft.com/azure/key-vault/.

As a prerequisite for this recipe, we need to manually create the secret of the connection string

in Azure Key Vault. This can be done either with Terraform, as documented here (https://www.

terraform.io/docs/providers/azurerm/r/key_vault_secret.html), or with the Azure CLI

commands, as documented here (https://learn.microsoft.com/en-gb/cli/azure/keyvault/

secret?view=azure-cli-latest#az-keyvault-secret-set).

In the Azure Key Vault instance that we have created for the application of this recipe, we store

a secret that protects the connection string of the SQL Server database of our application hosted

in an Azure web application.

This connection string is as follows:

Data Source=mysever.com;initial catalog=databasedemo;User
ID=useradmin;Password=demobook

https://www.terraform.io/docs/provisioners/index.html#destroy-time-provisioners
https://www.terraform.io/docs/provisioners/index.html#destroy-time-provisioners
https://docs.microsoft.com/azure/key-vault/
https://www.terraform.io/docs/providers/azurerm/r/key_vault_secret.html
https://www.terraform.io/docs/providers/azurerm/r/key_vault_secret.html
https://learn.microsoft.com/en-gb/cli/azure/keyvault/secret?view=azure-cli-latest#az-keyvault-secret-set
https://learn.microsoft.com/en-gb/cli/azure/keyvault/secret?view=azure-cli-latest#az-keyvault-secret-set

Provisioning Azure Infrastructure with Terraform266

Here is the output of the Azure CLI command, az keyvault secret show, which shows its storage

and properties in Azure Key Vault:

Figure 8.8: Azure Key Vault secret

In the preceding screenshot, we can see the connection string of the database stored in the value

property of the secret object.

The goal of this recipe is to write the Terraform configuration that requests the value of this secret

to use it in the properties of an Azure App Service instance.

The source code for this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP08/keyvault.

How to do it…
To get and use an Azure Key Vault secret in Terraform, perform the following steps:

1. In Azure Key Vault, we add access policy properties by granting the service principal that

will be used by Terraform for Azure (for more details about the creation of the service prin-

cipal for Terraform, read the Protecting the Azure credential provider recipe in this chapter)

to have permission to get and list secrets:

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP08/keyvault
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP08/keyvault

Chapter 8 267

Figure 8.9: Add access policy

2. In the main.tf file, we add the following code to get the Key Vault secret:

data "azurerm_key_vault" "keyvault" {

 name = "keyvdemobook"

 resource_group_name = "rg_keyvault"

}

data "azurerm_key_vault_secret" "app-connectionstring" {

 name = "ConnectionStringApp"

 key_vault_id = data.azurerm_key_vault.keyvault.id

}

Note that to make it more visual, in this recipe, we set the access

policy of the Azure Key Vault using the Azure Portal, but it is more

recommended to do it in the Terraform configuration by refer-

ring to this documentation: https://registry.terraform.io/
providers/hashicorp/azurerm/latest/docs/resources/

key_vault_access_policy.

https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/ key_vault_access_policy
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/ key_vault_access_policy
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/ key_vault_access_policy

Provisioning Azure Infrastructure with Terraform268

3. Then, in the Terraform configuration of the App Service resource, in the main.tf file, we

add the following code:

resource "azurerm_linux_web_app" "app" {

 name = "demovaultbook-${random_string.random.
result}"

 location = azurerm_resource_group.rg-app.location

 resource_group_name = azurerm_resource_group.rg-app.name

 service_plan_id = azurerm_service_plan.plan-app.id

 connection_string {

 name = "Database"

 type = "SQLServer"

 value = data.azurerm_key_vault_secret.app-connectionstring.value

 }

 site_config {}

}

4. Finally, we run the basic Terraform workflow for Azure with the four environment vari-

ables (from the Protecting the Azure credential provider recipe of this chapter) and execute

init, plan, and apply, as mentioned previously and in earlier chapters.

How it works…
In Step 1, we gave permission to the service principal used by Terraform to read and list the secrets

of Azure Key Vault.

Then, in Step 2, we wrote the Terraform configuration, which contains two data sources:

• The first data source, azurerm_key_vault, enables retrieval of the Azure ID of the Azure

Key Vault resource.

• The second data source, azurerm_key_vault_secret, is used to retrieve the secret that

contains the database connection string as a value.

We can do this either via the Azure portal or on the command line with the Azure

CLI, as explained in the following documentation: https://docs.microsoft.com/

cli/azure/keyvault?view=azure-cli-latest#az-keyvault-set-policy.

https://docs.microsoft.com/cli/azure/keyvault?view=azure-cli-latest#az-keyvault-set-policy
https://docs.microsoft.com/cli/azure/keyvault?view=azure-cli-latest#az-keyvault-set-policy

Chapter 8 269

For more information about Terraform block data, read the Using external resources with a data

block recipe from Chapter 4, Using Terraform with External Data.

In Step 3, we continue with the writing of the Terraform configuration, putting in the property

value of the connection_string block of the App Service resource with the expression data.

azurerm_key_vault_secret.app-connectionstring.value, which is the value obtained from

the block data, azurerm_key_vault_secret, written in Step 2.

Finally, in the last step, we execute this Terraform configuration. During this operation, Terra-

form will first retrieve the values requested in the block data (Key Vault, and then the Key Vault

secret) and will then inject the value obtained from the secret into the configuration of the App

Service resource.

This result is obtained in Azure and shown in the following screenshot:

Figure 8.10: Azure App Service configuration

We can see that the connection string is well filled in the App Service configuration.

There’s more…
We have learned in this recipe that the connection string, which contains sensitive data, has been

stored in Azure Key Vault and will be used automatically when Terraform is run. So, thanks to Azure

Key Vault, we didn’t need to put the sensitive data in clear text in the Terraform configuration.

Provisioning Azure Infrastructure with Terraform270

However, care should still be taken. Although this data is not written in plain text in the Terra-

form configuration, it will be written in plain text in the Terraform state file, as can be seen in

this extract of the Terraform state file content from this recipe:

Figure 8.11: Sensitive data in Terraform state

That is why, if we need to inspect the contents of this file, it is recommended to use the terraform

state show azurerm_linux_web_app.app command, which protects the displaying of sensitive

data, as can be seen in the following screenshot:

Figure 8.12: Terraform protecting sensitive data

Chapter 8 271

This is one of the reasons why it is necessary to protect this Terraform state file by storing it in a

secure remote backend, as we have seen in the Protecting the state file in the Azure remote backend

recipe of this chapter, and which is explained in the following documentation: https://www.

terraform.io/docs/state/sensitive-data.html.

Also in this recipe, although we stored the sensitive data in Azure Key Vault, we can also store it

in a HashiCorp Vault instance that integrates very well with Terraform. For this, it is advised that

you read the Vault provider documentation here: https://www.terraform.io/docs/providers/

vault/index.html.

Finally, as a prerequisite for this recipe, we manually created the secret of the connection string in

Azure Key Vault. This could have been done either with Terraform, as documented here (https://

www.terraform.io/docs/providers/azurerm/r/key_vault_secret.html), or with the Azure CLI

commands, as documented here (https://docs.microsoft.com/en-us/cli/azure/keyvault/

secret?view=azure-cli-latest#az-keyvault-secret-set). On the other hand, in this case,

since the data will be written in clear text in the code, it will be necessary to secure it well by

giving read and write permissions only to authorized persons.

See also
• Documentation on the block data, azurerm_key_vault_secret, is available here: https://

www.terraform.io/docs/providers/azurerm/d/key_vault_secret.html

Provisioning and configuring an Azure VM with
Terraform
In this recipe, we will study a typical use case of Terraform in Azure in which we will provision

and configure a VM in Azure using Terraform.

Getting ready
For this recipe, we don’t need any special prerequisites. We will start the Terraform configuration

from scratch. This recipe will only involve writing the Terraform configuration. We will explore

the process of writing the Terraform configuration in different stages as we proceed with this

recipe. As for the architecture in Azure, we have already built a network beforehand, which will

contain this VM and which is made up of the following resources:

• A virtual network (VNet) called VNET-DEMO.

• Inside this VNet, a subnet named Subnet1 is registered.

https://www.terraform.io/docs/state/sensitive-data.html
https://www.terraform.io/docs/state/sensitive-data.html
https://www.terraform.io/docs/providers/vault/index.html
https://www.terraform.io/docs/providers/vault/index.html
https://www.terraform.io/docs/providers/azurerm/r/key_vault_secret.html
https://www.terraform.io/docs/providers/azurerm/r/key_vault_secret.html
https://docs.microsoft.com/en-us/cli/azure/keyvault/secret?view=azure-cli-latest#az-keyvault-secret-set
https://docs.microsoft.com/en-us/cli/azure/keyvault/secret?view=azure-cli-latest#az-keyvault-secret-set
https://www.terraform.io/docs/providers/azurerm/d/key_vault_secret.html
https://www.terraform.io/docs/providers/azurerm/d/key_vault_secret.html

Provisioning Azure Infrastructure with Terraform272

In addition, the VM that will be provisioned will have a public IP address so that it can be accessed

publicly.

Finally, keeping the VM’s password secret in the code, we protect it in an Azure Key Vault resource,

as studied in the Using Azure Key Vault with Terraform to protect secrets recipe of this chapter.

The source code for this chapter is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP08/vm.

How to do it…
Write the following Terraform configuration to provision a VM with Terraform:

1. The first resource to build is the resource group, with the help of the following code:

resource "azurerm_resource_group" "rg" {

 name = "RG-VM"

 location = "EAST US"

}

2. Then, we write the following code to provision the public IP:

resource "azurerm_public_ip" "ip" {

 name = "vmdemo-pip"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 allocation_method = "Dynamic"

}

3. We continue by writing the code for the network interface:

data "azurerm_subnet" "subnet"{

 name = "Default1"

 resource_group_name = "RG_NETWORK"

 virtual_network_name = "VNET-DEMO"

}

Note that, for this recipe, we will expose the VM with a public IP, but in production,

it is not recommended to use a public IP; it is recommended to use a private endpoint

as documented here: https://learn.microsoft.com/azure/private-link/

private-endpoint-overview.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP08/vm
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP08/vm
https://learn.microsoft.com/azure/private-link/private-endpoint-overview
https://learn.microsoft.com/azure/private-link/private-endpoint-overview

Chapter 8 273

resource "azurerm_network_interface" "nic" {

 name = "vmdemo-nic"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 ip_configuration {

 name = "internal"

 subnet_id = data.azurerm_subnet.subnet.id

 private_ip_address_allocation = "Dynamic"

 public_ip_address_id = azurerm_public_ip.ip.id

 }

}

4. We get the VM password by using the random_password resource:

resource "random_password" "password" {

 length = 16

 special = true

 override_special = "_%@"

}

5. Finally, we write the code for the VM resource, as follows. (Here is an extract of the

Terraform configuration, the complete code is available here: https://github.com/
PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP08/vm/main.

tf):

resource "azurerm_linux_virtual_machine" "vm" {

 name = "myvmdemo"

...

 admin_username = "adminuser"

 admin_password =

random_password.password.result

 network_interface_ids = [azurerm_network_interface.nic.id]

 source_image_reference {

 publisher = "Canonical"

 offer = "UbuntuServer"

 sku = "18.04-LTS"

 version = "latest"

 }

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP08/vm/main.tf)
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP08/vm/main.tf)
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP08/vm/main.tf)

Provisioning Azure Infrastructure with Terraform274

...

 provisioner "remote-exec" {

 inline = [

 "sudo apt update"

"sudo apt install nginx -y",

]

 connection {

 host = self.public_ip_address

 user = self.admin_username

 password = self.admin_password

 }

 }

}

6. Finally, we set the four environment variables for the Terraform Azure authentication

and we run the Terraform workflow with the terraform init, plan, and apply commands.

7. Go to the Azure portal on the created VM properties, and get the public IP value, as shown

in the following image:

Figure 8.13: Getting the VM’s public IP

8. Open a browser and navigate to http://<PUBLIC_IP>:

Chapter 8 275

Figure 8.14: nginx default website

We can see that we have access to the successfully installed nginx web server.

How it works…
In Step 1, we wrote the Terraform configuration that will create the resource group containing

the VM. This step is optional because you can provision the VM in an existing resource group,

and in this case, you can use the azurerm_resource_group block data, whose documentation is

available here: https://www.terraform.io/docs/providers/azurerm/d/resource_group.html.

Then, in Steps 2 and 3, we wrote the Terraform configuration that provides the following:

• A public IP of the dynamic type, so that we don’t have to set the IP address (this IP address

will be the first free address of the subnet).

• The network interface of the VM that uses this IP address, which will register in the sub-

net that has already been created. To retrieve the subnet ID, we used an azurerm_subnet

data source.

In Step 4, we use the random_password resource to generate a random password for the VM (refer

to the Generating passwords with Terraform recipe in Chapter 2, Writing Terraform Configurations,

for more details).

Finally, in Step 5, we write the code that will provision the VM. In this code, we have defined the

following properties of the VM:

• Its name and size (which includes its RAM and CPU)

• The basic image used, which is an Ubuntu (Linux) image

• Authentication information for the VM with a login and a password (an SSH key can also

be used but is not detailed in this recipe)

https://www.terraform.io/docs/providers/azurerm/d/resource_group.html

Provisioning Azure Infrastructure with Terraform276

In this resource, we also added a remote-exec provisioner, which allows you to remotely execute

commands or scripts directly on the VM that will be provisioned. The use of this provisioner will

allow you to configure the VM for administration, security, or even middleware installation tasks.

Here, in this recipe, we use the provisioner to install nginx using the command apt install nginx.

At the end of the execution of the Terraform commands, we open the browser at the public IP URI

address and we get a default installed nginx website.

There’s more…
The interesting and new aspect of this recipe is the addition of the remote-exec provisioner, which

enables the configuration of the VM using commands or scripts. This method can be useful in

performing the first steps of VM administration, such as opening firewall ports, creating users,

and other basic tasks. Here, in our recipe, we used it to update the packages with the execution

of the apt update command. However, this method requires that this VM is accessible from the

computer running Terraform because it connects to the VM (SSH or WinRM) and executes the

commands.

If you want to keep a real IaC, it is preferable to use an Code as configuration tool, such as Ansible,

Puppet, Chef, or PowerShell DSC. And so, in the case of using Ansible to configure a Windows VM,

the remote-exec provisioner can perfectly serve to authorize the WinRM SSL protocol on the VM

because this port is the port used by Ansible to configure Windows machines.

Moreover, in Azure, you can also use a custom script VM extension, which is another alternative

to configuring VMs using a script. In this case, you can provision this VM extension with Terra-

form using the azurerm_virtual_machine_extension resource, as explained in the following

documentation: https://www.terraform.io/docs/providers/azurerm/r/virtual_machine_

extension.html.

Apart from providing remote-exec and the VM extension, another solution is to use the custom_

data property of the Terraform resource, azurerm_virtual_machine. Documentation pertain-

ing to the custom_data property is available at https://www.terraform.io/docs/providers/

azurerm/r/linux_virtual_machine.html#custom_data, and a complete code sample is available

at https://github.com/terraform-providers/terraform-provider-azurerm/blob/master/

examples/virtual-machines/linux/custom-data/main.tf.

There can only be one custom script extension per VM. Therefore, you have to put

all the configuration operations in a single script.

https://www.terraform.io/docs/providers/azurerm/r/virtual_machine_extension.html
https://www.terraform.io/docs/providers/azurerm/r/virtual_machine_extension.html
https://www.terraform.io/docs/providers/azurerm/r/linux_virtual_machine.html#custom_data
https://www.terraform.io/docs/providers/azurerm/r/linux_virtual_machine.html#custom_data
https://github.com/terraform-providers/terraform-provider-azurerm/blob/master/examples/virtual-machines/linux/custom-data/main.tf
https://github.com/terraform-providers/terraform-provider-azurerm/blob/master/examples/virtual-machines/linux/custom-data/main.tf

Chapter 8 277

Finally, by way of another alternative for VM configuration, we can also preconfigure the VM

image with all the necessary software using Packer, which is another open source tool from

HashiCorp and allows you to create your own VM image using JSON or HCL2 (as documented

at https://www.packer.io/guides/hcl). Once this image is created, in the Terraform VM con-

figuration, we will set the name of the image created by Packer instead of the image provided by

the Marketplace (Azure or other cloud providers). For more information about Packer, read the

following documentation: https://www.packer.io/.

The differences between these two solutions are:

• The remote-exec or custom script is useful if you want to install or configure software or

components, but it doesn’t guarantee the immutability of the OS configuration and its

security hardening, because anyone who writes the Terraform configuration can insert a

security hole in the VM. So you need to use it with care and control what is put into the

Terraform configuration.

• As for Packer, it will be useful for ensuring OS immutability with its configuration and

hardening. However, its use requires the construction of OS images and a frequent update

pipeline.

See also
• Various tutorials and guides are available in the Azure documentation available here:

https://docs.microsoft.com/azure/developer/terraform/create-linux-virtual-

machine-with-infrastructure

Building Azure serverless infrastructure with
Terraform
In the previous recipe, we studied the implementation of the Terraform configuration that allows

the provisioning of an IaaS (that is, a VM) infrastructure in Azure.

In this recipe, we will stay in the same realm as the previous recipe, but this time, we will focus

on writing the Terraform configuration that is used to provision a PaaS serverless infrastructure

with the provisioning of an Azure App Service resource.

Getting ready
The purpose of this recipe is to provision and configure an Azure App Service resource of the web

app type. In addition to provisioning, we will deploy an application in this web app at the same

time as it is being provisioned using Terraform.

https://www.packer.io/guides/hcl
https://www.packer.io/
https://docs.microsoft.com/azure/developer/terraform/create-linux-virtual-machine-with-infrastructure
https://docs.microsoft.com/azure/developer/terraform/create-linux-virtual-machine-with-infrastructure

Provisioning Azure Infrastructure with Terraform278

Most of the Terraform configuration needed for this recipe has already been studied in several

recipes in this book. We will just study the Terraform configuration needed to deploy the appli-

cation in this web app.

Regarding the application, it must be packaged in a ZIP file that is in the format <appname>_<version>.

zip, such as myapp_v0.1.1.zip, and then we will upload this ZIP file in an Azure Blob Storage

resource. This ZIP file can be uploaded either via Azure CLI, as indicated in this documentation,
https://docs.microsoft.com/en-us/cli/azure/storage/blob?view=azure-cli-latest#az-

storage-blob-upload, or via Terraform using the azurerm_storage_blob resource, whose

documentation is available here: https://www.terraform.io/docs/providers/azurerm/r/

storage_blob.html.

The Terraform configuration we will write in this recipe will use this ZIP file in a secure way. The

source code for this recipe is available at https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/tree/main/CHAP08/webapp.

How to do it…
Perform the following steps to provision a web app with Terraform:

1. In a new Terraform file, copy and paste the web app Terraform configuration from https://
github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/

CHAP08/sample-app.

2. Inside this Terraform file, we add a new azurerm_storage_account data block with the

following code:

data "azurerm_storage_account" "storagezip" {
 name = "storappdemo"
 resource_group_name = "RG-storageApp"
}

3. Then, we add another azurerm_storage_account_sas data block to get a security token

with the following extract code:

data "azurerm_storage_account_sas" "storage_sas" {
 connection_string = data.azurerm_storage_account.storagezip.
primary_connection_string
...
 services {
 blob = true
...
 }

https://docs.microsoft.com/en-us/cli/azure/storage/blob?view=azure-cli-latest#az-storage-blob-upload
https://docs.microsoft.com/en-us/cli/azure/storage/blob?view=azure-cli-latest#az-storage-blob-upload
https://www.terraform.io/docs/providers/azurerm/r/storage_blob.html
https://www.terraform.io/docs/providers/azurerm/r/storage_blob.html
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP08/webapp
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP08/webapp
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP08/sample-app
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP08/sample-app
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP08/sample-app

Chapter 8 279

 start = "2020–06–15"

 expiry = "2024-09-21"

 permissions {

 read = true

 write = false

 ...

 }

}

The complete code of this block is available at https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/blob/main/CHAP08/webapp/main.tf.

How it works…
In Step 1, we retrieved the Terraform configuration that allows a web app to be provisioned. In the

following steps of the recipe, we will complete it in order to be able to deploy a web application

directly in this web app, with Terraform, at the same time as its provisioning.

Then, in Step 2, we add the azurerm_storage_account data block, which will allow us to retrieve

properties from the Storage Account that contains the ZIP file of the application. In Step 3, we add

the azurerm_storage_account_sas data block, which will return a security token to the blob.

In this token, we indicate that the access will be read-only and that we only give access to the

blob service.

Finally, in Step 4, we complete the azurerm_linux_web_app resource by adding in the application

settings of the WEBSITE_RUN_FROM_PACKAGE key, which contains, by way of a value, the complete

URL of the ZIP file and in which we concatenated the token key returned in the block.

There’s more…
In this recipe, we have studied the possibility of provisioning an Azure web app and deploying it

with Terraform. There are, however, several other ways to deploy this application in the web app,

as explained in the documentation available at https://docs.microsoft.com/en-us/azure/

app-service/deploy-zip.

In the Building CI/CD pipelines for Terraform configuration in Azure Pipelines recipe in Chapter 13,

Automating Terraform Execution in a CI/CD Pipelines, we will learn how to automate this deploy-

ment in a CI/CD pipeline in Azure Pipelines.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP08/webapp/main.tf
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP08/webapp/main.tf
https://docs.microsoft.com/en-us/azure/app-service/deploy-zip
https://docs.microsoft.com/en-us/azure/app-service/deploy-zip

Provisioning Azure Infrastructure with Terraform280

See also
• Documentation pertaining to the WEBSITE_RUN_FROM_PACKAGE app setting of a web app

is available here: https://docs.microsoft.com/en-us/azure/app-service/deploy-

run-package

• Documentation pertaining to the azurerm_storage_account_sas block data is available

here: https://www.terraform.io/docs/providers/azurerm/d/storage_account_sas.

html

• Documentation pertaining to the Terraform resource, azurerm_linux_web_app, is avail-

able here: https://registry.terraform.io/providers/hashicorp/azurerm/latest/

docs/resources/linux_web_app

Generating a Terraform configuration for existing
Azure infrastructure
When enterprises want to automate their processes and adopt IaC practices (for example, with

Terraform), they face the challenge of how to generate code for infrastructure that is already

provisioned.

Indeed, for new infrastructure, it is sufficient to write the corresponding Terraform configuration

and then execute it to provision it. On the other hand, for resources that are already provisioned,

depending on their number and configuration, it can be long and tedious to write all the Ter-

raform configuration and then execute it to also have the corresponding Terraform state file. In

addition, this execution of the Terraform configuration can have side effects on these resources.

As a partial answer to this problem, we have seen, in the Importing existing resources recipe from

Chapter 5, Managing Terraform State, that we can use the terraform import command to import

the configuration of already provisioned resources into the Terraform state file.

However, this command requires that, on the one hand, the corresponding Terraform configura-

tion is already written because this command only updates the Terraform state file, and on the

other, this command must be executed in order for each resource to be imported.

With this in mind, and having already had this request from many clients, I asked myself the

question: Are there tools or scripts that can be used to generate Terraform configuration and its

Terraform state file for resources already provisioned in Azure?

https://docs.microsoft.com/en-us/azure/app-service/deploy-run-package
https://docs.microsoft.com/en-us/azure/app-service/deploy-run-package
https://www.terraform.io/docs/providers/azurerm/d/storage_account_sas.html
https://www.terraform.io/docs/providers/azurerm/d/storage_account_sas.html
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/linux_web_app
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/linux_web_app

Chapter 8 281

In this recipe, I’m going to share the results of my investigation with you using one of the Terraform

configuration generation tools called Microsoft Azure Export for Terraform (aztfexport) main-

tained by Azure; the documentation is here: https://learn.microsoft.com/azure/developer/

terraform/azure-export-for-terraform/export-terraform-overview.

Getting ready
To use aztfexport, we need to download and install it. The installation procedure depends on the

operating system that you use, and we can find all installation methods on this page: https://

github.com/Azure/aztfexport#install.

For example, on Linux, we use the following script:

curl -sSL https://packages.microsoft.com/keys/microsoft.asc > /etc/apt/
trusted.gpg.d/microsoft.asc

ver=20.04 # or 22.04

apt-add-repository https://packages.microsoft.com/ubuntu/${ver}/prod

apt-get install aztfexport

This above script registers the Microsoft repository and installs the aztfexport tool.

In the first edition of this book, we used a tool called Terraformer in this recipe,

which is hosted in the GitHub repo of Google Cloud Platform, at https://github.

com/GoogleCloudPlatform/terraformer.

In this second edition, I updated this recipe with a specific tool for Azure providers.

You can read the content of the first edition here: https://subscription.
packtpub.com/book/cloud-and-networking/9781800207554/6/
ch06lvl1sec65/generating-a-terraform-configuration-for-existing-
azure-infrastructure#_ga=2.119507852.480259339.1673192707-

504938521.1673192707.

https://learn.microsoft.com/azure/developer/terraform/azure-export-for-terraform/export-terraform-overview
https://learn.microsoft.com/azure/developer/terraform/azure-export-for-terraform/export-terraform-overview
https://github.com/Azure/aztfexport#install
https://github.com/Azure/aztfexport#install
https://github.com/GoogleCloudPlatform/terraformer
https://github.com/GoogleCloudPlatform/terraformer
https://subscription.packtpub.com/book/cloud-and-networking/9781800207554/6/ch06lvl1sec65/generating-a-terraform-configuration-for-existing-azure-infrastructure#_ga=2.119507852.480259339.1673192707- 504938521.1673192707
https://subscription.packtpub.com/book/cloud-and-networking/9781800207554/6/ch06lvl1sec65/generating-a-terraform-configuration-for-existing-azure-infrastructure#_ga=2.119507852.480259339.1673192707- 504938521.1673192707
https://subscription.packtpub.com/book/cloud-and-networking/9781800207554/6/ch06lvl1sec65/generating-a-terraform-configuration-for-existing-azure-infrastructure#_ga=2.119507852.480259339.1673192707- 504938521.1673192707
https://subscription.packtpub.com/book/cloud-and-networking/9781800207554/6/ch06lvl1sec65/generating-a-terraform-configuration-for-existing-azure-infrastructure#_ga=2.119507852.480259339.1673192707- 504938521.1673192707
https://subscription.packtpub.com/book/cloud-and-networking/9781800207554/6/ch06lvl1sec65/generating-a-terraform-configuration-for-existing-azure-infrastructure#_ga=2.119507852.480259339.1673192707- 504938521.1673192707

Provisioning Azure Infrastructure with Terraform282

Once installed, its installation can be checked by executing the aztfexport --help command,

and the list of aztfexport commands is displayed:

Figure 8.15: aztfexport help command

The purpose of this recipe is to generate the Terraform configuration and the Terraform state file

of an Azure infrastructure that is already created in Azure, which is composed of one resource

group and, inside it, one service plan and one Azure App Service resource, as shown in the fol-

lowing screenshot:

Figure 8.16: Azure’s existing resources to import

Chapter 8 283

Once these commands have been run, we are ready to get started generating a Terraform config-

uration for our pre-existing Azure infrastructure.

Before running the aztfexport tool, we need to authenticate to Azure and select the subscription

using the following commands:

az login

az account set -s <your subscription id>

Let’s get started!

How to do it…
To generate a Terraform configuration using aztfexport, perform the following steps:

1. Inside your workstation, create a new folder named, for example, azgenerated that will

contain the generated Terraform configuration.

2. Inside this new folder, in Terminal, run the aztfexport rg command:

aztfexport rg "RG-DEMO-ARM"

3. The command analyzes all resources to import and asks you to choose the resources to

import, as shown in the following screenshot:

Figure 8.17: aztfexport import resources

The command display all resources. We type “w" on the keyboard to import all resources

in the selected resource – that is, the resource group.

4. The aztfexport tool imports the resources and displays a confirmation message when it

is done, as is displayed in the following image:

Figure 8.18: aztfexport import confirmation

Provisioning Azure Infrastructure with Terraform284

We can then hit any keyboard key to close the tool.

5. Finally, in this azgenerated folder, we will test the configuration generated by running

the basic Terraform workflow with the terraform init and terraform plan commands:

Figure 8.19: terraform plan after resource import

If the output is generated successfully, we should see that the configuration generated does not

apply any changes. It corresponds to our infrastructure exactly.

How it works…
In Step 1, we create a new folder that will contain the generated Terraform configuration.

In Step 2, we run the command aztfexport rg <resource group> to generate the Terraform

configuration of the entire resource group resources.

In Steps 3 and 4, the tools propose several options, and we choose to import all resources inside

this resource group.

Then, when the import is done, we can see the list of generated files inside the azgenerated folder:

Figure 8.20: aztfexport generated files

We can see main.tf and provider.tf, which contain the imported Terraform configuration, and

terraform.tfstate, which is the Terraform state file of the imported resources (by default, the

state file is generated locally).

The main.tf file contains the following Terraform configuration:

Chapter 8 285

Figure 8.21: aztfexport generated Terraform configuration

We can see the configuration of the Azure resource group, the service plan, and the Azure web app.

Provisioning Azure Infrastructure with Terraform286

The provider.tf file contains the following Terraform configuration:

Figure 8.21: aztfexport generated provider.tf

We can see the terraform block configuration and the azurerm provider configuration.

Finally, in Step 5, we verified that the generated code is equal to the provisioned resources by

executing the terraform init and plan commands. During its execution, no changes will be

applied. The Terraform configuration is well in line with our infrastructure.

There’s more…
Here in this recipe, we used aztfexport with the optional rg to generate the Terraform configu-

rations for all resources inside a resource group; however, we can also use aztfexport with the

option to import the Terraform configuration for only one Azure resource.

This aztfexport tool contains other options to filter resources; read the documentation for more

information here: https://learn.microsoft.com/en-us/azure/developer/terraform/azure-

export-for-terraform/export-terraform-overview.

aztfexport is a tool to import and generate Terraform configuration for Azure infrastructure,

there are other tools to import and generate Terraform configuration for more providers. Among

these tools, there are:

• Terraformer (the documentation here: https://github.com/GoogleCloudPlatform/

terraformer).

• TerraCognita (https://github.com/cycloidio/terracognita/), which still integrates

a number of resources for Azure.

https://learn.microsoft.com/en-us/azure/developer/terraform/azure-export-for-terraform/export-terraform-overview
https://learn.microsoft.com/en-us/azure/developer/terraform/azure-export-for-terraform/export-terraform-overview
https://github.com/GoogleCloudPlatform/terraformer
https://github.com/GoogleCloudPlatform/terraformer
https://github.com/cycloidio/terracognita/

Chapter 8 287

The problem with all these tools is that they must follow the evolution of the Terraform language

and the evolution of different providers, which requires a lot of development and maintenance

time.

See also
• The source code and the documentation of aztfexport are available here: https://github.

com/Azure/aztfexport

• A blog post about aztfy (the legacy tool of aztfexport) is available here: https://
thomasthornton.cloud/2022/10/07/using-aztfy-to-import-existing-azure-

resources-into-terraform/

• A video showing how to use aztfy (the legacy tool of aztfexport) is available here:

https://www.youtube.com/watch?v=ADnTk3U22ew

Enabling optional Azure features
One of the interesting points of the azurerm provider is the possibility to activate or deactivate

some optional Azure features directly via the provider configuration.

To illustrate this provider feature, we will see in this recipe how to disable the deletion of an Azure

resource group if this resource group contains resources.

Let’s get started!

Getting ready
To complete this recipe, no requirements are needed.

We consider that the Terraform configuration used in this recipe is already written and it provi-

sions a resource group. Inside this resource group, we create an Azure Storage Account manually

(via the portal, Azure CLI, or another Terraform configuration).

The source code of this Terraform configuration is available here: https://github.com/

PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP08/feature/main.tf.

By default, without any other configuration, If we execute the command terraform destroy on

our Terraform configuration, Terraform will not delete the resource group because it contains a

Storage Account.

https://github.com/Azure/aztfexport
https://github.com/Azure/aztfexport
https://thomasthornton.cloud/2022/10/07/using-aztfy-to-import-existing-azure-resources-into-terraform/
https://thomasthornton.cloud/2022/10/07/using-aztfy-to-import-existing-azure-resources-into-terraform/
https://thomasthornton.cloud/2022/10/07/using-aztfy-to-import-existing-azure-resources-into-terraform/
https://www.youtube.com/watch?v=ADnTk3U22ew
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP08/feature/main.tf
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP08/feature/main.tf

Provisioning Azure Infrastructure with Terraform288

The goal of this recipe is to add configuration to enable the deletion of the resource group in such

a scenario.

How to do it…
In our Terraform configuration, add the following configuration inside the provider configuration:

provider "azurerm" {

 features {

 resource_group {

 prevent_deletion_if_contains_resources = false

 }

 }

}

How it works…
In this recipe, we updated the features block by adding a prevent_deletion_if_contains_

resources property with a false value.

By default, the value of this property is true, which prevents the deletion of the resource group

that contains the resource.

Here, to enable the deletion of the resource group, we set the value of this property to false.

There’s more…
To see the list of all properties of the features block, read the documentation here: https://
registry.terraform.io/providers/hashicorp/azurerm/latest/docs/guides/features-

block.

Estimating Azure cost of infrastructure using
Infracost
By using IaC with Terraform, we see that we are able to rapidly provision a large-scale cloud

infrastructure.

The question that is often asked by people who oversee finance is what the estimated cost of this

infrastructure before being deployed is, but they also ask for an estimate of the delta of costs at

each change of this infrastructure.

There is a tool called Infracost that allows you to estimate costs based on a Terraform configura-

tion that involves a cloud infrastructure (Azure, AWS, or GCP).

https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/guides/features-block
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/guides/features-block
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/guides/features-block

Chapter 8 289

Infracost (whose official website is https://www.infracost.io/) is a solution that consists of

three components:

• The binary, which is open-source and free and which allows all the basic operations of

resource pricing.

• Infracost Cloud, which is a SaaS that allows you to have integrated CI/CD features on

pull requests, in addition to the features of the free version. Infracost also allows you

to have policy integration with Jira, in addition to many other features that help with

team integration. Information on the price of this version is available here: https://www.

infracost.io/pricing/.

• The Infracost API, which connects to the different clouds to retrieve pricing information

for the different cloud resources.

In this recipe, we will learn about the usage of Infracost with Terraform configuration that pro-

visions an Azure resource.

Let’s get started!

Getting ready
To complete this recipe, we will first install the Infracost binary by referring to the installation

configuration that is available here: https://www.infracost.io/docs/.

For this recipe, we will install it on Linux using the following script:

curl -fsSL https://raw.githubusercontent.com/infracost/infracost/master/
scripts/install.sh | sh

The following image shows the output of the above script:

Figure 8.23: Infracost install script

Note that the goal of Infracost is only to return cost estimation. It isn’t the actual

price, which can depend on other factors like network bandwidth, scalability, etc.

https://www.infracost.io/
https://www.infracost.io/pricing/
https://www.infracost.io/pricing/
https://www.infracost.io/docs/

Provisioning Azure Infrastructure with Terraform290

Then, after the Infracost installation, we need to log in to the Infracost system to generate an API

key by executing the following command:

infracost auth login

This command opens a website in a web browser; then, on this web page, we click on the Log in

button to authenticate ourselves anonymously, as we can see in the following image:

Figure 8.24: Infracost login

A confirmation is displayed on the browser page as well as in the command terminal.

In the command terminal, we also have information that the API key is generated as well, as

shown in the following image:

Figure 8.25: Infracost store credentials

So, we are authenticated and an API key is generated. We can now run Infracost on a Terraform

configuration.

The goal of this recipe is to estimate the cost of Azure infrastructure that is composed of:

• One resource group

• One VNet and subnet

• One virtual machine

• One service plan and one web app

All these resources are specified in the Terraform configuration whose source code is available

here: https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/

main/CHAP08/cost.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP08/cost
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP08/cost

Chapter 8 291

How to do it…
The first part is to perform the following steps to estimate the cost of these resources for the first

provisioning:

1. The first step is to estimate the cost of these Azure resources before creating them. For

this, inside the folder that contains the Terraform configuration, we run the following

Infracost command:

infracost breakdown --path .

The following image shows the output of this command:

Figure 8.26: Infracost estimation cost

According to these estimates, we will pay $173.82/month for the service plan and the

virtual machine and its OS disk.

2. Then, we run the Terraform workflow to create these resources using the commands

terraform init, plan, and apply.

3. Finally, we will run the following Infracost command to generate a JSON file with the

preceding cost estimation:

infracost breakdown --path . --format json --out-file infracost-
base.json

Provisioning Azure Infrastructure with Terraform292

In the second part, we perform the following steps to update our Terraform configuration and

get the cost estimation only on the cost differential:

1. Update the Terraform configuration by changing the VM size to Standard_E8_v4 (instead

of Standard_DS2_v2), as shown in the Terraform configuration extract below:

Figure 8.27: Change VM size

2. Then, we run the following command to have an estimate of the additional (or lower)

costs that will be applied when we have executed this code change:

infracost diff --path . --compare-to infracost-base.json

The following image shows the result of its execution:

Figure 8.28: Infracost diff estimation

We can see that we will pay between $101 to $444 per month.

Chapter 8 293

3. Finally, if we agree with this cost, we run the Terraform workflow to create these resources

using the commands terraform init, plan, and apply.

How it works…
In the first part of this recipe, we perform a first cost estimation of Azure resources before creating

them.

The used Infracost commands are:

 infracost breakdown --path .

The breakdown option is to get the entire cost estimation of the infrastructure, and the path option

targets the folder that contains the Terraform configuration to analyze.

Then we execute the command infracost breakdown --path . --format json --out-file

infracost-base.json to export the cost estimation to an infracost-base.json file. We will use

this file in the second part of this recipe.

In the second part of this recipe, we continue to use Infracost to estimate the cost difference after

updating the Terraform configuration.

For this, we update the Terraform configuration by changing the VM size and we run the infracost

command:

infracost diff --path . --compare-to infracost-base.json

The diff option is used to perform a differential cost operation and the compare-to option speci-

fies the JSON file to compare the cost, so we use the generated JSON file in the first part of the recipe.

There’s more…
In this recipe, we learned about the basic usage of Infracost using the CLI. We can also use In-

fracost directly in VS Code with the Infracost extension available here: https://marketplace.

visualstudio.com/items?itemName=Infracost.infracost.

With this extension, we can estimate resource costs at the same time as we write the Terraform

configuration.

https://marketplace.visualstudio.com/items?itemName=Infracost.infracost
https://marketplace.visualstudio.com/items?itemName=Infracost.infracost

Provisioning Azure Infrastructure with Terraform294

The following image shows the Infracost integration in VS Code:

Figure 8.29: Infracost estimation in VS Code

When we click on the resource cost [1], a window opens in VS Code with the cost details for this

resource [2].

Infracost can also be integrated into a CI/CD pipeline; for more information, read the documen-

tation here: https://www.infracost.io/docs/integrations/cicd/.

In addition, advanced Infracost features are available in the Infracost Cloud solution. For more

information, read the documentation here: https://www.infracost.io/docs/infracost_cloud/

get_started/.

See also
• The documentation of Infracost is available here: https://www.infracost.io/docs/

• The Infracost blog is available here: https://www.infracost.io/blog/

Using the AzApi Terraform provider
The azurerm provider is an open source project that is maintained by HashiCorp, Microsoft, and

by the community.

Its evolution depends on multiple factors like issue triage, maintenance work, and the Go Azure

SDK version that is maintained by another team.

With all this, preview features of Azure are not added in real time in the azurerm provider.

So, if we want to use the Azure preview feature or another feature that might not yet be imple-

mented in the azurerm provider, we can integrate it in the Terraform configuration in several

ways, as we already learned:

• Use a null_resource resource that calls the az cli command, which we learned about

previously in this chapter in the Executing Azure CLI commands in Terraform recipe.

https://www.infracost.io/docs/integrations/cicd/
https://www.infracost.io/docs/infracost_cloud/get_started/
https://www.infracost.io/docs/infracost_cloud/get_started/
https://www.infracost.io/docs/
https://www.infracost.io/blog/

Chapter 8 295

• Use an ARM template deployed with a resource, which we learned about previously in

this chapter in the Executing ARM templates in Terraform recipe

Since April 2022, we can use the new AzApi Terraform provider to provision Azure preview features.

In this recipe, we will learn how to use the AzApi Terraform provider.

Let’s get started!

Getting ready
The goal of this recipe is to provision an Azure Storage Account using the azurerm provider and

activate the STFP feature on this storage using the AzApi provider. The documentation is available

here: https://registry.terraform.io/providers/Azure/azapi/latest/docs.

The source code of this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP08/azapi.

How to do it…
To activate SFTP on a storage account using the AzApi provider, perform the following steps:

1. First, in main.tf, we write the Terraform configuration to create the Azure resource group

and Azure Storage using the following Terraform configuration:

terraform {

 required_version = "~> 1.1"

 required_providers {

 azurerm = {

 version = "~> 3.35"

 }

 }

}

provider "azurerm" {

 features {}

In this scenario, the SFTP feature is shown as a preview feature. Note that it is no lon-

ger considered as a preview and has now been integrated into the azurerm provider.

You can read more about this here: https://registry.terraform.io/providers/
hashicorp/azurerm/latest/docs/resources/storage_account#sftp_

enabled.

https://registry.terraform.io/providers/Azure/azapi/latest/docs
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP08/azapi
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP08/azapi
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/storage_account#sftp_ enabled
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/storage_account#sftp_ enabled
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/storage_account#sftp_ enabled

Provisioning Azure Infrastructure with Terraform296

}

resource "azurerm_resource_group" "rg" {

 name = "rg-demo-azapi"

 location = "westeurope"

}

resource "azurerm_storage_account" "storage" {

 name = "accountsftpdemo"

 location = azurerm_resource_group.rg.location

 resource_group_name = azurerm_resource_group.rg.name

 account_tier = "Standard"

 account_replication_type = "LRS"

 min_tls_version = "TLS1_2"

 is_hns_enabled = true

}

2. Then, we complete the provider configuration to use the AzApi provider:

terraform {

 required_version = "~> 1.1"

 required_providers {

 azurerm = {

 version = "~> 3.35"

 }

 azapi = {

 source = "Azure/azapi"

 version = "1.1.0"

 }

 }

}

3. We add the configuration to enable the sftp feature to this Azure account:

resource "azapi_update_resource" "sftp_azpi_sftp" {

 type = "Microsoft.Storage/storageAccounts@2021-09-01"

 resource_id = azurerm_storage_account.storage.id

 body = jsonencode({

 properties = {

Chapter 8 297

 isSftpEnabled = true

 }

 })

 response_export_values = ["*"]

}

4. Finally, we run the Terraform workflow with the init, plan, and apply commands.

How it works…
In Step 1, we write the Terraform configuration to create an Azure resource group and an Azure

Storage Account using the azurerm provider.

Then, in Step 2, we update the terraform block to specify the use of version 1.1.0 of the Azure/

azapi provider.

In Step 3, we use the Terraform resource azapi_update_resource of the AzApi provider that

provides the feature to add, update, enable, or disable properties of the existing Azure resource

(here, this existing resource is the Storage Account specified with the property resource_id).

The AzApi provider calls the Azure REST API, so we need to pass it the API URL endpoint and the

body payload.

Here, we set the Azure API URL in the type property, with the value: Microsoft.Storage/

storageAccounts@2021-09-01 and the body payload in JSON-encoded format with the follow-

ing code:

body = jsonencode({

 properties = {

 isSftpEnabled = true

 }

 })

In the above body, we enabled the SFTP feature for the Storage Account. We also specify the ex-

plicit dependency with the Storage Account.

Provisioning Azure Infrastructure with Terraform298

At the end, we run init, plan, and apply to provision this Storage Account, and after apply, we

can check SFTP on the Azure portal, as in the following screenshot:

Figure 8.30: Azure Storage SFTP enabled

We can see that the SFTP feature is enabled on the Storage Account; all that’s left is to configure

the list of local users.

There’s more…
Here in this recipe, we learned how to use the AzApi Terraform provider to enable/disable a feature

by changing a property in an existing resource. We can also provision a complete resource using

the azapi_resource of the azapi provider (read the documentation here: https://registry.

terraform.io/providers/Azure/azapi/latest/docs/resources/azapi_resource).

The advantages of using the AzApi provider are:

• The provider uses the Terraform state lifecycle

• It’s possible to update an existing resource

• The provider uses the Azure REST API without the Go SDK

• No need to use an external script (like a JSON file) or tools (like azcli)

The disadvantage is:

• We need to explore the Azure API specification to understand the properties that need to

be set in the azapi_update_resource resource’s body property

https://registry.terraform.io/providers/Azure/azapi/latest/docs/resources/azapi_resource
https://registry.terraform.io/providers/Azure/azapi/latest/docs/resources/azapi_resource

Chapter 8 299

See also
• The documentation of the AzApi provider is here: https://registry.terraform.io/

providers/Azure/azapi/latest/docs

• Below is a list of some resources for the AzApi provider:

• https://learn.microsoft.com/en-us/azure/developer/terraform/get-

started-azapi-resource

• https://www.redeploy.com/post/day-zero-terraform-deployments-with-

azapi

• https://build5nines.com/azapi-terraform-provider-introduction-to-

working-with-azure-preview-resources/

• https://www.youtube.com/watch?v=VOod_VNgdJk

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to

the author, and learn about new releases – follow the QR code below:

https://packt.link/cloudanddevops

https://registry.terraform.io/providers/Azure/azapi/latest/docs
https://registry.terraform.io/providers/Azure/azapi/latest/docs
https://learn.microsoft.com/en-us/azure/developer/terraform/get-started-azapi-resource
https://learn.microsoft.com/en-us/azure/developer/terraform/get-started-azapi-resource
https://www.redeploy.com/post/day-zero-terraform-deployments-with-azapi
https://www.redeploy.com/post/day-zero-terraform-deployments-with-azapi
https://build5nines.com/azapi-terraform-provider-introduction-to-working-with-azure-preview-resources/
https://build5nines.com/azapi-terraform-provider-introduction-to-working-with-azure-preview-resources/
https://www.youtube.com/watch?v=VOod_VNgdJk
https://www.youtube.com/watch?v=VOod_VNgdJk
https://packt.link/cloudanddevops

9
Getting Starting to Provisioning
AWS and GCP Infrastructure
Using Terraform

We have mentioned Azure a lot in previous chapters. Originally, we did so to explain Terraform

configuration examples on concrete business cases. However, as of Chapter 8, Provisioning Azure

Infrastructure with Terraform, we have instead discussed Azure in the context of using Terraform

to provision resources in Azure, which is what we will continue to cover now.

In this chapter, we will learn a basic way of using Terraform for provisioning AWS and GCP in-

frastructure. For each of these cloud providers, we will learn about how to create credentials for

Terraform, the provider configuration, and the protection of the state file in the remote backend

on AWS S3 and in GCP Storage.

For GCP, we will also learn how to use the integrated shell called Google Cloud Shell to execute

Terraform without any local machine configuration.

In this chapter, we will cover the following recipes:

• Getting started using Terraform for AWS

• Using an S3 backend in AWS

Note that while this chapter is the starting point for AWS and GCP, all of the Terra-

form configuration, language, and best practices already learned about in all other

chapters can also be applied to AWS and GCP.

Getting Starting to Provisioning AWS and GCP Infrastructure Using Terraform302

• Getting started using Terraform for GCP

• Using a Google Cloud Storage (GCS) backend in GCP

• Executing Terraform in Google Cloud Shell

Technical requirements
To complete the recipes of this chapter, we will need to have the following service subscriptions:

• For AWS, we need to have an AWS subscription. You can get a free tier subscription here:

https://aws.amazon.com/free/

• For GCP, we need to have a GCP account. You can subscribe to it here https://console.

cloud.google.com/freetrial/ with free tier services.

Getting started using Terraform for AWS
In this recipe, we will learn the basic steps to use Terraform to build simple resources on AWS.

We will principally discuss authentication and then resource provisioning with Terraform.

Let’s get started!

Getting ready
To complete this recipe, you will need to generate user keys (an ID and secret key) that have

permissions to create resources. In AWS, user or service account management is done via IAM

(Identity and Access Management) and it is used to authenticate the aws provider.

To generate user keys, perform the following steps:

1. Log in to the AWS console by clicking on the Sign In to the Console button at the top:

Figure 9.1: AWS console sign-in button

https://aws.amazon.com/free/
https://console.cloud.google.com/freetrial/
https://console.cloud.google.com/freetrial/

Chapter 9 303

2. Then, in the top-right menu, click on your account name and, in the submenu, click on

the Security credentials link, as shown in the following screenshot:

Figure 9.2: AWS Security credentials

3. On the page that opens, scroll down to the Access Keys section and click on the Create

access key button.

Figure 9.3: AWS Create access key

Getting Starting to Provisioning AWS and GCP Infrastructure Using Terraform304

4. Then, check the checkbox to indicate that you understand that you are creating a root

access key and click on Create access key.

Figure 9.4: AWS Create access key confirmation

5. Finally, get the provided value of Access key and Secret access key.

Figure 9.5: AWS access key information

Now that we have created our AWS account, we can use it with Terraform.

In this recipe, we will create an EC2 (virtual machine) resource using Terraform.

The source code of this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP09/aws

How to do it…
Perform the following steps to provision an AWS resource:

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP09/aws
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP09/aws

Chapter 9 305

1. Create a new file called main.tf. In this file, write the following Terraform configuration:

terraform {

 required_version = "~> 1.1"

 required_providers {

 aws = {

 version = "~> 3.27"

 }

 }

}

provider "aws" {

 region = "us-east-2"

}

resource "aws_instance" "my_ec2_instance" {

 ami = "ami-07c1207a9d40bc3bd"

 instance_type = "t2.micro"

}

2. Then, in the console, run the following commands:

export AWS_ACCESS_KEY_ID="<your access key ID>"

export AWS_SECRET_ACCESS_KEY="<your secret key> "

3. Finally, in the folder that contains the main.tf file, run the basic Terraform workflow

with init, plan, and apply commands.

How it works…
In Step 1, we write the Terraform configuration that provisions an EC2 instance in AWS. In the

configuration, we use the aws provider. Then, in the provider configuration block, we configure

the provider to provision resources in the us-east-2 region. Finally, in this configuration, we use

the aws_instance resource to describe the virtual machine.

Note that, here, in the aws_intance resource, we use the ami property to have a sim-

ple configuration. For a more perfect configuration, use the aws_ami resource, and

for more information, read the documentation here: https://registry.terraform.
io/providers/hashicorp/aws/latest/docs/resources/instance#example-

usage.

https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/instance#example- usage
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/instance#example- usage
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/instance#example- usage

Getting Starting to Provisioning AWS and GCP Infrastructure Using Terraform306

In Step 2, we authenticate the aws provider using our aws credentials created previously, in the

Getting ready section of this recipe.

For this, we set two variable environments, AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY,

with our access key ID and access key.

In Step 3, we run the Terraform workflow with init, plan, and apply.

After the execution of apply, we can check that the VM instance is created. In the AWS console,

choose the Ohio region in the top menu, navigate under the EC2 instances, and check that your

created instance is present and running, as shown in the following screenshot:

Figure 9.6: AWS view instances list

Our EC2 instance is created and running.

There’s more…
Here in this recipe, in Step 2, we use environment variables to set authentication credentials for

the aws provider, which is the recommended method for security reasons.

We can also set the credentials directly in the Terraform configuration, in the provider configu-

ration, as follows:

provider "aws" {

 region = "us-east-2"

 access_key = "<your access key ID>"

 secret_key = "<your secret key>"

}

You may be tempted to set the credentials directly in the Terraform configuration. This approach

is, however, not recommended as it prevents the whole configuration from being easily reused,

makes it hard to protect the keys, and increases the risk of those keys ending up in the VCS, in

turn increasing the risk of leakage.

Chapter 9 307

In development mode, we can also use the AWS CLI to authenticate the provider. For more in-

formation, read the documentation on AWS CLI configuration here: https://docs.aws.amazon.

com/cli/latest/userguide/cli-configure-files.html.

Additionally, in this recipe, we use the root IAM access to authenticate the provider, which has

full permissions on resources. In Infrastructure as Code best practices, it is recommended to

use an IAM user with scope permissions (so, limited permissions). For this, create a user with

programmatic access. For more information, read the documentation here: https://docs.aws.

amazon.com/IAM/latest/UserGuide/id_users_create.html.

See also
• The documentation of the aws Terraform provider is available here: https://registry.

terraform.io/providers/hashicorp/aws/latest/docs

Using the S3 backend in AWS
In the previous recipe, we learned how to authenticate the aws Terraform provider, then how to

use Terraform to provision resources on AWS.

In the Protecting the state file in the Azure remote backend recipe of Chapter 8, Provisioning Azure

Infrastructure with Terraform, we learned the importance of storing Terraform state in a backend

and how to protect the Terraform state file in Azure Storage.

Now, using the same concept, in this recipe, we will learn how to store the state file in AWS using

S3’s bucket feature.

Let’s get started!

Getting ready
To complete this recipe, there are no specific requirements.

We will create an S3 bucket manually in the AWS console and we will configure Terraform to use

this S3 bucket as a Terraform state backend.

To create this S3 bucket, we will perform the following steps:

1. Sign in to the AWS console.

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://registry.terraform.io/providers/hashicorp/aws/latest/docs
https://registry.terraform.io/providers/hashicorp/aws/latest/docs

Getting Starting to Provisioning AWS and GCP Infrastructure Using Terraform308

2. Create an S3 bucket by selecting S3 in the Services menu (use the search text to find it).

Figure 9.7: AWS – select the S3 service

3. Click on the Create bucket button.

Figure 9.8: AWS Create bucket button

Chapter 9 309

4. Fill in the bucket form by entering the bucket name tfstatebookdemo (here the bucket name

is given as example, you need to choose an unique name), activate the versioning, and

click on the Create bucket button.

Figure 9.9: Filling in the S3 form

Now, in these steps of this recipe, we will learn how to use this S3 bucket to store our Terraform

state.

The source code of this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP09/aws-state.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP09/aws-state
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP09/aws-state

Getting Starting to Provisioning AWS and GCP Infrastructure Using Terraform310

How to do it…
To use this S3 bucket as Terraform remote backend, perform the following steps:

1. main.tf contains our Terraform configuration, complete the terraform block with the

following configuration:

terraform {

…

 }

 backend "s3" {

 bucket = "tfstatebookdemo"

 key = "terraform.tfstate"

 region = "us-east-2"

 }

}

2. Then, set the two environment variables to authenticate the provider and the remote

state configuration using the following commands:

export AWS_ACCESS_KEY_ID="<your access key ID>"

export AWS_SECRET_ACCESS_KEY="<your secret key> "

3. Finally, run the Terraform workflow with the init, plan, and apply commands.

How it works…
In the steps of this recipe, we add the configuration of the s3 backend in the terraform block

with the following properties:

• In the bucket property, we enter the bucket name tfstatedemobook.

• In the key property, we enter the name of the state object. Here, we configure terraform.

tfstate.

• In the region property, we enter the region of the bucket.

Then we set the two aws credentials provider environment variables for the authentication.

Finally, we run the Terraform commands to apply changes to the Terraform configuration.

Chapter 9 311

After the execution of Terraform, we can check the creation of the Terraform state object in the

bucket. The following screenshot shows the content of the S3 bucket:

Figure 9.10: AWS state file in S3 bucket

We can see terraform.tfstate in the bucket and the state file is now protected.

There’s more…
In this recipe, we configure the S3 bucket with a basic option, that is, versioning. We can also add

a DynamoDB table to add locks to S3 objects. For this AWS and Terraform configuration, read

the following articles:

• https://ksummersill.medium.com/setting-up-terraform-state-management-with-

s3-bucket-and-dynamo-db-cfab238c1306

• https://www.golinuxcloud.com/configure-s3-bucket-as-terraform-backend/

Additionally, we create the bucket by using the AWS console. We can also perform the same op-

erations (including the DynamoDB table) using the AWS CLI. Read this article for more details:
https://skundunotes.com/2021/04/03/create-terraform-pre-requisites-for-aws-using-

aws-cli-in-3-easy-steps/.

It’s also possible to create an AWS S3 bucket for the backend, but it is often avoided because it

creates a “chicken and egg” problem, where it’s not clear where to store the state for that bucket.

See also
• The documentation of the S3 remote backend is available here: https://developer.

hashicorp.com/terraform/language/settings/backends/s3

https://ksummersill.medium.com/setting-up-terraform-state-management-with-s3-bucket-and-dynamo-db-cfab238c1306
https://ksummersill.medium.com/setting-up-terraform-state-management-with-s3-bucket-and-dynamo-db-cfab238c1306
https://www.golinuxcloud.com/configure-s3-bucket-as-terraform-backend/
https://skundunotes.com/2021/04/03/create-terraform-pre-requisites-for-aws-using-aws-cli-in-3-easy-steps/
https://skundunotes.com/2021/04/03/create-terraform-pre-requisites-for-aws-using-aws-cli-in-3-easy-steps/
https://developer.hashicorp.com/terraform/language/settings/backends/s3
https://developer.hashicorp.com/terraform/language/settings/backends/s3

Getting Starting to Provisioning AWS and GCP Infrastructure Using Terraform312

Getting started using Terraform for GCP
In the previous recipes of this chapter, we learned how to use Terraform on AWS.

In this recipe, we will learn how to create a GCP service account and provision resources in GCP

using Terraform.

Let’s get started!

Getting ready
Before creating a resource in GCP with Terraform, we need to create a GCP service account that

will have permission to provision resources in GCP.

To create a GCP service account using the console, perform the following steps:

1. In the Services menu, select the IAM & Admin menu and select the Service Accounts

submenu.

Figure 9.11: GCP Service Accounts menu

Chapter 9 313

2. Then, click on the CREATE SERVICE ACCOUNT button.

Figure 9.12: GCP CREATE SERVICE ACCOUNT button

3. Fill in the Service accounts form:

a. Enter the service account name and description and click on the CREATE AND

CONTINUE button.

Figure 9.13: GCP service account details form

Getting Starting to Provisioning AWS and GCP Infrastructure Using Terraform314

b. Then, select Basic and the Owner role and click on the CONTINUE button.

Figure 9.14: GCP service account role

c. Finally, skip the optional Step 3, Grant users access to this service account, and

click on the DONE button.

Figure 9.15: Validating the service account

Chapter 9 315

We can see our new service account in the service account list.

Figure 9.16: GCP service account list

4. The last step is to generate and download a service account key. To do this, we navigate

to the KEYS tab of the service account created and click on the Create new key option.

Figure 9.17: Create new key for service account

Getting Starting to Provisioning AWS and GCP Infrastructure Using Terraform316

5. In the pop-up window, choose the JSON format for the key and click on the CREATE button.

Figure 9.18: Exporting the JSON key

6. The JSON key file is generated, downloaded locally, and rename gcp-key.json. Keep this

file as we will use it for authentication in the recipe steps.

We created a new GCP service account. Now we are ready to provision resources in GCP with

Terraform.

In this recipe, we will create a compute instance (virtual machine) in the default VPC.

The source code of this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP09/gcp.

How to do it…
To create a resource in GCP with Terraform, perform the following steps:

1. In the main.tf file, write the following Terraform configuration:

terraform {

 required_providers {

 google = {

 source = "hashicorp/google"

 version ~> "3.5.0"

 }

 }

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP09/gcp
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP09/gcp

Chapter 9 317

}

provider "google" {

 region = "us-central1"

}

2. Then complete this file with the following configuration:

resource "google_compute_instance" "instance" {

 name = "inst-demo-${random_string.random.result}"

 machine_type = "e2-micro"

 zone = "us-central1-a"

 boot_disk {

 initialize_params {

 image = "ubuntu-os-cloud/ubuntu-1804-lts"

 }

 }

 network_interface {

 network = "default"

 }

}

3. In the console, set the GOOGLE_APPLICATION_CREDENTIALS environment variable with the

path of the downloaded (in the requirements of this recipe) JSON file with credentials.

Perform the following command:

export GOOGLE_APPLICATION_CREDENTIALS="$PWD/gcp-key.json"

4. Set the environment variable of the GCP project to use by executing the following com-

mand:

export GOOGLE_PROJECT="<your GCP project name>"

5. Finally, we run the basic Terraform workflow with the init, plan, and apply commands.

How it works…
In Step 1, we create a new main.tf and instantiate it with the configuration of the Terraform block

for use with the google provider.

Getting Starting to Provisioning AWS and GCP Infrastructure Using Terraform318

We also configure the google provider with the google project name and the region.

In Step 2, in this main.tf, we add the Terraform configuration to create the compute instance

(VM) that will be created in the “default” VPC network.

Then, in Step 3, we authenticate the google provider using the service account credentials by

setting a GOOGLE_APPLICATION_CREDENTIALS environment variable with the path of the located

JSON file with the credentials of the service account.

In Step 4, we set the GOOGLE_PROJECT environment variable with the name of the GCP project.

Finally, in Step 5, we run the basic Terraform workflow with the init, plan, and apply commands.

At the end of the execution, we can check the VM instance in the GCP dashboard.

The following screenshot shows the VM instance.

Figure 9.19: GCP instance status

For more information about the provider configuration and specific environment vari-

ables, read the documentation here: https://registry.terraform.io/providers/
hashicorp/google/latest/docs/guides/provider_reference#project

https://registry.terraform.io/providers/hashicorp/google/latest/docs/guides/provider_reference#project
https://registry.terraform.io/providers/hashicorp/google/latest/docs/guides/provider_reference#project

Chapter 9 319

The instance-demobook VM is created and running.

There’s more…
For more information about basic Terraform provisioning for GCP, read the first chapter (free) of

Terraform for Google Cloud Essential Guide here: https://www.packtpub.com/product/terraform-
for-google-cloud-essential-guide/9781804619629?_ga=2.12616958.85607785.1674469424-

504938521.1673192707

See also
• The documentation of Terraform on Google Cloud is available here: https://cloud.

google.com/docs/terraform

• The documentation of the Terraform google provider is available here: https://registry.

terraform.io/providers/hashicorp/google/latest/docs

Using a GCS backend in GCP
If you use Terraform to provision a resource on GCP, like for Azure and AWS, we need to store the

Terraform state in the backend.

In this recipe, we will learn how to store a Terraform state file in a GCP storage bucket.

Let’s get started!

Getting ready
There are no specific requirements to complete this recipe.

In this recipe, we will create a GCP storage bucket manually in the GCP dashboard and we will

configure the Terraform block to use this GCP storage bucket as a state backend.

To create a GCP bucket, perform these steps:

1. Log in to your GCP console.

https://www.packtpub.com/product/terraform-for-google-cloud-essential-guide/9781804619629?_ga=2.12616958.85607785.1674469424-504938521.1673192707
https://www.packtpub.com/product/terraform-for-google-cloud-essential-guide/9781804619629?_ga=2.12616958.85607785.1674469424-504938521.1673192707
https://www.packtpub.com/product/terraform-for-google-cloud-essential-guide/9781804619629?_ga=2.12616958.85607785.1674469424-504938521.1673192707
https://cloud.google.com/docs/terraform
https://cloud.google.com/docs/terraform
https://registry.terraform.io/providers/hashicorp/google/latest/docs
https://registry.terraform.io/providers/hashicorp/google/latest/docs

Getting Starting to Provisioning AWS and GCP Infrastructure Using Terraform320

2. Go to the left menu and navigate to Cloud Storage > Buckets.

Figure 9.20: GCP Buckets menu

3. Click on the CREATE button.

Figure 9.21: GCP bucket CREATE button

4. Fill in the form with the bucket name (here the bucket name is given as example, choose

another unique name).

Figure 9.22: GCP – fill in the name of the bucket

Chapter 9 321

5. Then, choose Region (here, it is a single region):

Figure 9.23: GCP bucket region

6. Then activate Object versioning.

Figure 9.24: Activating object versioning

Getting Starting to Provisioning AWS and GCP Infrastructure Using Terraform322

7. Finish by clicking on the CREATE button.

Now, in this recipe, we will learn how to use this bucket as a state backend.

The source code of this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP09/gcp-state

How to do it…
To use this GCP bucket as a Terraform remote backend, perform the following steps:

1. On main.tf, which contains our Terraform configuration, complete the terraform block

with the following configuration:

terraform {

…

 backend "gcs" {

 bucket = "<your created bucket name>"

 prefix = "tfstate"

 }

}

2. Then, set the GOOGLE_APPLICATION_CREDENTIALS environment variable with the path of

the downloaded (in the requirements of this recipe) JSON file with credentials. Perform

the following command:

 export GOOGLE_APPLICATION_CREDENTIALS="$PWD/gcp-key.json"

3. Finally, run the Terraform workflow with the init, plan, and apply commands.

How it works…
In the first part of this recipe, we create a GCP bucket, using the GCP console, that will store the

Terraform state file.

For this bucket, we enter the name tfstatebookdemo, and out of the several options, we choose

only one region and activate the versioning option.

In the second part of this recipe, we add in the terraform block the configuration of this gcs

backend with the following properties:

• In the bucket property, we enter the bucket name tfstatedemobook.

• In the prefix property, we enter the name of the state folder. Here, we configure tfstate.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP09/gcp-state
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP09/gcp-state

Chapter 9 323

Then we set the GOOGLE_APPLICATION_CREDENTIALS environment variable for provider authen-

tication.

Finally, we run the Terraform init, plan, and apply commands to apply changes to the config-

uration.

After the execution of Terraform, we can check the creation of the state file as an object in the

bucket. The following screenshot shows the content of the bucket:

Figure 9.25: GCP state file in bucket

The default.state state is created in the tfstate folder in the terraformstatebook bucket.

Just like with AWS, it’s possible to create the GCP S3 bucket for the backend, but this is usually

avoided because it’s not clear where to store the state for that bucket.

See also
• The documentation of the gcs remote backend is available here: https://developer.

hashicorp.com/terraform/language/settings/backends/gcs

• The Google Cloud documentation for Terraform with remote state is available here:

https://cloud.google.com/docs/terraform/resource-management/store-state

Executing Terraform in GCP Cloud Shell
In the two previous recipes, we learned about the usage of Terraform configuration to provision

GCP resources and deploy those resources from a local machine (or virtual machine).

https://developer.hashicorp.com/terraform/language/settings/backends/gcs
https://developer.hashicorp.com/terraform/language/settings/backends/gcs
https://cloud.google.com/docs/terraform/resource-management/store-state

Getting Starting to Provisioning AWS and GCP Infrastructure Using Terraform324

Like in Azure, the GCP console contains a cloud shell that provides the possibility to run GCP

commands and tools inside the browser.

In this recipe, we will learn how to run Terraform inside GCP Cloud Shell to provision GCP re-

sources and use the GCP console-connected account to automatically authenticate the provider.

Let’s get started!

Getting ready
To complete this recipe, you don’t need to install any software: all software used is included in

GCP Cloud Shell.

The only requirement is to have an active GCP account, which we can get for free here: https://

console.cloud.google.com/freetrial/.

The goal of this recipe is to write a Terraform configuration and run it inside GCP Cloud Shell.

How to do it…
To run Terraform in GCP Cloud Shell, perform the following steps:

1. Launch GCP Cloud Shell by clicking on the top button.

Figure 9.26: GCP Cloud Shell button

2. In the console that is open at the bottom, we can check the installed Terraform version

by executing the terraform version command.

Figure 9.27: GCP Terraform version in Cloud Shell

https://console.cloud.google.com/freetrial/
https://console.cloud.google.com/freetrial/

Chapter 9 325

3. In the console, create a new folder, which will contain the Terraform configuration files,

by executing the mkdir terraform-demo command.

4. Then, to write the Terraform configuration inside the terraform-demo folder, click on

the Open Editor button.

Figure 9.28: GCP Open Editor in Cloud Shell

5. In the editor, in the terraform-demo folder, create a new main.tf file and copy-paste in

this Terraform configuration:

terraform {
 required_providers {
 google = {
 source = "hashicorp/google"
 version = "3.5.0"
 }
 random = {
 source = "hashicorp/random"
 version = "3.5.1"
 }
 }
}

provider "google" {
 region = "us-central1"
}

resource "random_string" "random" {
 length = 4
 special = false
 upper = false
}

resource "google_compute_network" "vpc_network" {
 name = "tf-demo-shell-${random_string.random.result}"
}

Getting Starting to Provisioning AWS and GCP Infrastructure Using Terraform326

This code is also available here: https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/blob/main/CHAP09/gcp-shell/main.tf

6. Click on the Open Terminal button.

The following screenshot shows the actions performed in Steps 5 and 6.

Figure 9.29: Writing Terraform configuration

7. Finally, inside the console, navigate inside this folder with the cd terraform-demo com-

mand and run the Terraform workflow by running the init, plan, and apply commands.

8. Note that during the first apply execution, the shell asks you to grant it permission to

provision resources.

Figure 9.30: AWS sign-in button

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP09/gcp-shell/main.tf
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP09/gcp-shell/main.tf

Chapter 9 327

At the end of the command execution, the resources are provisioned.

How it works…
In this recipe, we opened Cloud Shell in GCP to write a Terraform configuration using the Cloud

Shell editor and run the Terraform commands inside the Cloud Shell console.

At the end of the execution of the apply command, we can see the provisioned resources. The

following screenshot shows the resources created in Step 7 with the apply command [1].

Figure 9.31: GCP Cloud Shell terraform apply output and result in the console

We can see the output of the apply command and the VPC resource created [2].

There’s more…
In this recipe, we use the cloud editor to write Terraform configurations. We can also use git

commands to clone a Git repository to use an existing Terraform configuration.

For example, we can clone the GitHub repository of this book using the git clone https://github.

com/PacktPublishing/Terraform-Cookbook-Second-Edition.git command and navigate to

the CHAP09/gcp-shell folder.

If you use GCP Cloud Shell by default without any backend configuration, the state file will be

stored in the Cloud Shell drive, so be careful to use a remote backend to store the Terraform state

file.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition.git
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition.git

Getting Starting to Provisioning AWS and GCP Infrastructure Using Terraform328

See also
• The documentation of GCP Cloud Shell is available here: https://cloud.google.com/

shell/

• A tutorial on the use of Terraform on GCP using Cloud Shell is available here: https://
github.com/hashicorp/terraform-getting-started-gcp-cloud-shell/blob/master/

tutorial/cloudshell_tutorial.md

• Getting started with GCP Cloud Shell: https://github.com/hashicorp/terraform-

getting-started-gcp-cloud-shell

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to

the author, and learn about new releases – follow the QR code below:

https://packt.link/cloudanddevops

https://cloud.google.com/shell/
https://cloud.google.com/shell/
https://github.com/hashicorp/terraform-getting-started-gcp-cloud-shell/blob/master/tutorial/cloudshell_tutorial.md
https://github.com/hashicorp/terraform-getting-started-gcp-cloud-shell/blob/master/tutorial/cloudshell_tutorial.md
https://github.com/hashicorp/terraform-getting-started-gcp-cloud-shell/blob/master/tutorial/cloudshell_tutorial.md
https://github.com/hashicorp/terraform-getting-started-gcp-cloud-shell
https://github.com/hashicorp/terraform-getting-started-gcp-cloud-shell
https://packt.link/cloudanddevops

10
Using Terraform for Docker and
Kubernetes Deployment

When we talk about Terraform, the first thing that comes to mind is using Terraform for Infra-

structure as Code to provision resources in the popular cloud providers, like Azure, AWS, or GCP.

Terraform can be used for more than just cloud provisioning. It has a multitude of providers that

will allow you to automate any type of components or configuration that are not related to the

cloud, such as files (which we studied in Chapter 4, Using Terraform with External Data), Docker,

Kubernetes, and many other resources.

In the previous chapter, we learned about Terraform for Azure, AWS, and GCP. In this chapter,

we will move on to another domain, which is the usage of Terraform in the context of Docker

and Kubernetes. Indeed, with its simplicity, Terraform is becoming more and more of a tool for

centralizing the automation of resource and component deployment using the same Infrastruc-

ture as Code language.

In this chapter, we will learn how to use Terraform to manipulate Docker images, and how to

deploy applications in Kubernetes using the kubernetes provider and helm provider.

Then, we will learn how to apply GitOps practices with Terraform, with the usage of the Kuber-

netes Terraform controller.

In this chapter, we will cover the following recipes:

• Creating a Docker container using Terraform

• Deploying Kubernetes resources using Terraform

Using Terraform for Docker and Kubernetes Deployment330

• Deploying a Helm chart in Kubernetes using Terraform

• Using a Kubernetes controller as a Terraform reconciliation loop

Technical requirements
To apply the recipes in this chapter, you need to have basic knowledge of Docker, Kubernetes,

and Helm.

Below is a list of links to documentation for learning about these concepts and technologies:

• Docker: https://docs.docker.com/

• Kubernetes: https://kubernetes.io/docs/home

• Helm: https://helm.sh/

You can also read Section 3 of the book Learning DevOps: Second Edition here https://
subscription.packtpub.com/book/cloud-and-networking/9781801818964/11#_

ga=2.194054702.286366035.1676194628-504938521.1673192707, specifically Chapter 9, Contain-

erizing Your Application with Docker, and Chapter 10, Managing Containers Effectively with Kubernetes.

In the last two recipes, we will discuss more advanced concepts with GitOps and Kubernetes

operators.

To apply the recipes of this chapter, we need to install these software requirements:

• Docker Engine: https://docs.docker.com/engine/install/

• kubectl: https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/

• The Helm CLI: https://helm.sh/docs/intro/install/

This chapter doesn’t explain the provisioning of the cluster with Terraform, because that depends

on your Kubernetes platform or cloud provider.

So, for all recipes of this chapter, we assume that we have an already-provisioned Kubernetes

cluster.

If you want to provision a Kubernetes cluster in a cloud provider using Terraform, here are some

HashiCorp tutorials:

• Provisioning an AKS cluster with Terraform: https://developer.hashicorp.com/

terraform/tutorials/kubernetes/aks

• Provisioning an EKS cluster with Terraform: https://developer.hashicorp.com/

terraform/tutorials/kubernetes/eks

https://docs.docker.com/
https://kubernetes.io/docs/home
https://helm.sh/
https://subscription.packtpub.com/book/cloud-and-networking/9781801818964/11#_ga=2.194054702.286366035.1676194628-504938521.1673192707
https://subscription.packtpub.com/book/cloud-and-networking/9781801818964/11#_ga=2.194054702.286366035.1676194628-504938521.1673192707
https://subscription.packtpub.com/book/cloud-and-networking/9781801818964/11#_ga=2.194054702.286366035.1676194628-504938521.1673192707
https://docs.docker.com/engine/install/
https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/
https://helm.sh/docs/intro/install/
https://developer.hashicorp.com/terraform/tutorials/kubernetes/aks
https://developer.hashicorp.com/terraform/tutorials/kubernetes/aks
https://developer.hashicorp.com/terraform/tutorials/kubernetes/eks
https://developer.hashicorp.com/terraform/tutorials/kubernetes/eks

Chapter 10 331

• Provisioning a GKE cluster with Terraform: https://developer.hashicorp.com/

terraform/tutorials/kubernetes/gke

Creating a Docker container using Terraform
To start this chapter dedicated to Docker and Kubernetes, we will learn how to automate Docker

operations using Terraform.

Let’s get started!

Getting ready
To complete this recipe, you will need to install Docker Engine by reading the documentation here:

https://docs.docker.com/engine/. In this recipe, we assume that Docker is already installed

and running on the same workstation on which we run Terraform.

In this recipe, we will discuss how to pull a Docker image named mikaelkrief/demobook from

Docker Hub, and then run a container from this pulled image.

We will not learn how to build this Docker image from the dockerfile, but the source code for this

Dockerfile is available here: https://github.com/PacktPublishing/Learning-DevOps-Second-

Edition/blob/main/CHAP09/appdocker/Dockerfile.

Now, in this recipe, we will learn how to pull this image and how to run it as a container using

Terraform configuration.

The source code for this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP10/docker.

How to do it…
To pull a Docker image and run it as a container, perform the following steps:

1. In a new file in main.tf, write the following Terraform configuration:

terraform {

 required_providers {

 docker = {

 source = "kreuzwerker/docker"

 version = "3.0.1"

 }

 }

}

https://developer.hashicorp.com/terraform/tutorials/kubernetes/gke
https://developer.hashicorp.com/terraform/tutorials/kubernetes/gke
https://docs.docker.com/engine/
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP09/appdocker/Dockerfile
https://github.com/PacktPublishing/Learning-DevOps-Second-Edition/blob/main/CHAP09/appdocker/Dockerfile
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP10/docker
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP10/docker

Using Terraform for Docker and Kubernetes Deployment332

2. In this file, add the following content:

provider "docker" {

}

3. Then, add the Terraform configuration:

resource "docker_image" "image" {

 name = "mikaelkrief/demobook:latest"

}

4. Continue to add the following content:

resource "docker_container" "container" {

 name = "demo"

 image = docker_image.image.image_id

}

5. Finally, we run the basic Terraform workflow by executing the terraform init, plan,

and apply commands.

How it works…
In Step 1, we create a new main.tf and we initialize it with the terraform block that specifies that

we use the kreuzwerker/docker Terraform provider.

In Step 2, we add the configuration for the docker provider with empty configuration.

In Step 3, we add the Terraform resource docker_image, which pulls a Docker image; the name

property indicates the name (name and tag of the image) to pull.

Here, in this recipe, we pull the image mikaelkrief/demobook:latest, which is published here:

https://hub.docker.com/repository/docker/mikaelkrief/demobook/general.

Then, in Step 4, we add the resource docker_container to run a Docker container from the pulled

image in Step 3.

For more information about the docker provider configuration, read the docu-

mentation here: https://registry.terraform.io/providers/kreuzwerker/

docker/latest/docs.

https://hub.docker.com/repository/docker/mikaelkrief/demobook/general
https://registry.terraform.io/providers/kreuzwerker/docker/latest/docs
https://registry.terraform.io/providers/kreuzwerker/docker/latest/docs

Chapter 10 333

For this resource, we indicate the container name “demo" and the image to run in the image prop-

erty using the implicit Terraform dependency docker_image.image.image_id to use the image

Id pulled from the above resource docker_image from Step 3.

Finally, to apply this Terraform configuration, we run the terraform init, plan, and apply

commands.

The following image shows the execution of the terraform apply command on this configuration:

Figure 10.1: Terraform apply command with docker provider

We can see that terraform apply command is working successfully.

Now, we can check the execution of this terraform apply above by running Docker commands.

The first check is to verify that the image mikaelkrief/demobook is pulled into our host. For this,

we run the Docker command docker images.

The output of this command is shown in the following image:

Figure 10.02: List of Docker images pulled

Using Terraform for Docker and Kubernetes Deployment334

We can see that the mikaelkrief/demobook image is pulled with IMAGE ID 4b7bfae2dcf7.

The second check is to verify the list of containers running on this host; for this, we run the Docker

command: docker ps.

The output of this command is shown in the following image:

Figure 10.03: List of Docker containers

We can see that the container “demo" based on the Image ID 4b7bfae2dcf7 is running.

There’s more…
Like in all Terraform workflows, we can delete the Docker container and the image by running

the terraform destroy command.

The following image shows the output of the docker images and docker ps commands after

the execution of the terraform destroy command:

Figure 10.04: Docker image and container deleted

The container and the image mikaelkrief/demobook have been deleted.

See also
• The documentation for the kreuzwerker/docker Terraform provider is available here:

https://registry.terraform.io/providers/kreuzwerker/docker/latest/docs.

• Here is an article about Terraform and docker provider: https://automateinfra.
com/2021/03/29/how-to-build-docker-images-containers-and-docker-services-

with-terraform-using-docker-provider/.

Deploying Kubernetes resources using Terraform
There are several methods to deploy applications in Kubernetes. The default and basic method to

deploy YAML specifications of Kubernetes resources is to use the Kubernetes CLI called kubectl.

For more information, read the documentation here: https://kubernetes.io/docs/reference/

kubectl/.

https://registry.terraform.io/providers/kreuzwerker/docker/latest/docs
https://automateinfra.com/2021/03/29/how-to-build-docker-images-containers-and-docker-services-with-terraform-using-docker-provider/
https://automateinfra.com/2021/03/29/how-to-build-docker-images-containers-and-docker-services-with-terraform-using-docker-provider/
https://automateinfra.com/2021/03/29/how-to-build-docker-images-containers-and-docker-services-with-terraform-using-docker-provider/
https://kubernetes.io/docs/reference/kubectl/
https://kubernetes.io/docs/reference/kubectl/

Chapter 10 335

In some situations or use cases, when Terraform is well implemented in the company, instead

of using different tools or CLIs, we want to automate the deployment of the cluster and the de-

ployment of the applications using Terraform configuration.

In addition, the use of Terraform for Kubernetes resources deployment will allow you to see a

preview of the changes when you apply the workflow.

In this recipe, we learn how to deploy Kubernetes resources (using object YAML specifications)

in a Kubernetes cluster using Terraform.

Let’s get started!

Getting ready
To complete this recipe, you will need to know about the Kubernetes resource specifications (the

documentation is available here: https://kubernetes.io/docs/concepts/).

Before performing this recipe, you need to have a running Kubernetes cluster and the Kubernetes

configuration file in ~/.kube/config. For configuring and authenticating Kubernetes, set new

environment variable called KUBE_CONFIG_PATH containing the path of the Kubernetes configu-

ration file (for example, on Linux this can be “~/.kube/config").

In this recipe, in the same Terraform configuration, we will perform these operations:

• Create a new Kubernetes namespace

• In this namespace, deploy a Deployment resource and a Service resource

The deployed Pod will contain a container instance of this Docker image: mikaelkrief/demobook.

The source code for this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP10/app.

How to do it…
To use Terraform to deploy a Kubernetes application, perform the following steps:

1. In a new file called main.tf, write the following Terraform configuration:

terraform {

 required_providers {

 kubernetes = {

 source = "hashicorp/kubernetes"

 version = ~> 2.18"

https://kubernetes.io/docs/concepts/
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP10/app
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP10/app

Using Terraform for Docker and Kubernetes Deployment336

 }

 }

}

provider "kubernetes" {

}

2. Then, add the following Terraform configuration:

resource "kubernetes_namespace" "ns" {

 metadata {

 labels = {

 mylabel = "demobook"

 }

 name = "myapp"

 }

}

3. Continue to add the following Terraform configuration:

resource "kubernetes_deployment" "deployment" {

 metadata {

 name = "webapp"

 namespace = kubernetes_namespace.ns.metadata.0.name

 labels = {

 app = "webapp"

 }

 }

 spec {

 replicas = 2

 selector {

 match_labels = {

 app = "webapp"

 }

 }

Chapter 10 337

 template {

 metadata {

 labels = {

 app = "webapp"

 }

 }

 spec {

 container {

 image = "mikaelkrief/demobook:latest"

 name = "demobookk8s"

 }

 }

 }

 }

}

4. Continue to add the following Terraform configuration:

resource "kubernetes_service" "service" {

 metadata {

 name = "webapp"

 namespace = kubernetes_namespace.ns.metadata.0.name

 }

 spec {

 selector = {

 app = kubernetes_deployment.deployment.metadata.0.labels.app

 }

 port {

 port = 80

 target_port = 80

 node_port = 31001

 }

 type = "NodePort"

 }

}

Using Terraform for Docker and Kubernetes Deployment338

5. Finally, in this folder, run the basic Terraform workflow by executing the terraform init,

plan, and apply commands.

How it works…
In Step 1, we create a new main.tf file and we add the terraform block, in which we specify

the source and the version of the kubernetes Terraform provider (see the documentation here:

https://registry.terraform.io/providers/hashicorp/kubernetes/latest/docs).

We also configure the kubernetes provider to use the Kubernetes configuration file generated in

the requirements of this recipe.

In Step 2, we add the namespace configuration using the kubernetes_namespace resource by

specifying the metadata labels and name for the namespace.

In Step 3, we add the Kubernetes deployment object configuration using the kubernetes_

deployment resource by specifying:

• The name of the deployment: webapp

• The namespace where the deployment will be stored: using the dependencies kubernetes_

namespace.ns.metadata.0.name

• The replica number : 2

• The container image: mikaelkrief/demobook:latest

In Step 4, we add the Kubernetes service object using the Kubernetes_service resource by

specifying the port exposition and the type of the service as NodePort.

Finally, in Step 5, we deploy this application running the Terraform workflow by executing the

terraform init, plan, and apply commands.

At the end of the apply execution command, we run the following kubectl command to check

that all resources are deployed successfully:

kubectl get all -n myapp

https://registry.terraform.io/providers/hashicorp/kubernetes/latest/docs

Chapter 10 339

The following image shows the output of this command:

Figure 10.05: Get a list of Pods in the myapp namespace

We can see in the above output:

• The 2 Pod replicas

• The service of type NodePort

• The deployment Kubernetes resource

There’s more…
In this recipe, in the sample application, we use classic Kubernetes resources like a namespace,

Deployment, and Service, and to deploy them, we use the Kubernetes provider.

To learn with more examples of Custom Resource Deployment (CRD) using Terraform, read

the tutorial here: https://developer.hashicorp.com/terraform/tutorials/kubernetes/

kubernetes-crd-faas.

Moreover, for your existing YAML Kubernetes specifications, if you want to migrate them into

a Terraform configuration in HashiCorp Configuration Language (HCL), you can use the k2tf

tool, available here: https://github.com/sl1pm4t/k2tf.

Another point – to delete all the deployed resources in Kubernetes, run the command terraform

destroy.

https://developer.hashicorp.com/terraform/tutorials/kubernetes/kubernetes-crd-faas
https://developer.hashicorp.com/terraform/tutorials/kubernetes/kubernetes-crd-faas
https://github.com/sl1pm4t/k2tf

Using Terraform for Docker and Kubernetes Deployment340

See also
• The documentation for the Terraform Kubernetes provider is available here: https://

registry.terraform.io/providers/hashicorp/kubernetes/latest/docs.

Deploying a Helm chart in Kubernetes using
Terraform
In the previous recipe, we learned how to deploy Kubernetes applications resources using Terra-

form and the kubernetes provider.

Among the different ways to deploy an application in Kubernetes, there is also the possibility to

use (or deploy) a Helm chart.

We will not explain here in detail the use and creation of a Helm chart, but to explain simply, a

Helm chart is a package that contains a template of Kubernetes resources to deploy.

For all the details about Helm chart usage and creation, read the documentation here: https://

helm.sh/docs/.

In this recipe, we will learn how to deploy a Helm chart in Kubernetes using Terraform.

Let’s get started!

Getting ready
For the cluster provisioning, we will use the existing Kubernetes cluster.

To illustrate this recipe, we will deploy a sample application, which is the nginx ingress controller.

The documentation on the nginx ingress controller is available here: https://artifacthub.io/

packages/helm/ingress-nginx/ingress-nginx and here https://kubernetes.github.io/

ingress-nginx.

To run a Helm command to check the deployment, we need to install the Helm CLI by following

the documentation here: https://helm.sh/docs/intro/install/.

Note that in this recipe, we will deploy ingress-nginx, which is just a sample ap-

plication; all the steps can be applied to all and any Helm chart packages.

https://registry.terraform.io/providers/hashicorp/kubernetes/latest/docs
https://registry.terraform.io/providers/hashicorp/kubernetes/latest/docs
https://helm.sh/docs/
https://helm.sh/docs/
https://artifacthub.io/packages/helm/ingress-nginx/ingress-nginx
https://artifacthub.io/packages/helm/ingress-nginx/ingress-nginx
https://kubernetes.github.io/ingress-nginx
https://kubernetes.github.io/ingress-nginx
https://helm.sh/docs/intro/install/

Chapter 10 341

Before performing this recipe, you need to have a running Kubernetes cluster and the Kubernetes

configuration file in ~/.kube/config. For configuring and authenticating Kubernetes, set new

environment variable called KUBE_CONFIG_PATH containing the path of the Kubernetes configu-

ration file (for example, on Linux this can be “~/.kube/config").

The source code for this chapter is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP10/helm.

How to do it…
To deploy a Helm chart using Terraform, perform the following steps:

1. In a new file main.tf, write the following Terraform configuration:

terraform {

 required_providers {

 helm = {

 source = "hashicorp/helm"

 version = "~> 2.7"

 }

 }

}

provider "helm" {

 kubernetes {

 config_path = pathexpand("~/.kube/config")

 }

}

2. Then, add the following Terraform configuration:

resource "helm_release" "nginx_ingress" {

 name = "ingress"

 repository = "https://kubernetes.github.io/ingress-nginx"

 chart = "ingress-nginx"

 version = "4.5.2"

 namespace = "ingress"

 create_namespace = true

 wait = true

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP10/helm
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP10/helm

Using Terraform for Docker and Kubernetes Deployment342

 set {

 name = "controller.replicaCount"

 value = 2

 }

 set {

 name = "controller.service.type"

 value = "NodePort"

 }

}

3. Finally, run the basic Terraform workflow by running the terraform init, plan, and

apply commands.

How it works…
In Step 1, we create a new main.tf file and we add the terraform block in which we specify the

source and the version of the helm Terraform provider (see the documentation here: https://

registry.terraform.io/providers/hashicorp/helm/latest).

We also configure the helm provider to use the Kubernetes configuration file generated in the

Deploying Kubernetes resources using Terraform recipe of this chapter.

In Step 2, in this same file, we add the Terraform resource helm_release to configure the property

of this Helm release.

Inside this resource configuration, we add a set block to override the default values of values.

yaml provided in the Helm chart.

Here, we specify the version of the Helm chart to use, that we want 2 Pod replicas, and the service

type to be NodePort.

Another important configuration is create_namespace = true to create the namespace ingress

directly using Helm.

In Step 3, we deploy this Helm chart by running the Terraform workflow, which is itself run by

the terraform init, plan, and apply commands.

https://registry.terraform.io/providers/hashicorp/helm/latest
https://registry.terraform.io/providers/hashicorp/helm/latest

Chapter 10 343

At the end of the apply command, we check the deployment of the Kubernetes resources and then

we check the deployment of the Helm release by running the following commands:

1. Run the command kubectl get all -n ingress to check the status of all resources de-

ployed in the ingress namespace. The following image shows the output of this command:

Figure 10.6: Check all resources in the ingress namespace

We can see that all resources are ready, the 2 Pod replicas, and that the service type of the

controller is NodePort.

2. Run the command helm list -n ingress to check the deployment of the Helm release.

The following image shows the output of this command:

Figure 10.7: Get Helm list for the ingress namespace

We can see the ingress release and the deployment status is deployed.

There’s more…
Here in this recipe, we can see a basic usage of the helm_release Terraform resource by setting

values (replica number and service type) of the Helm chart directly in the resource configuration,

we can also override the values property using values.yaml . For more information, read the

helm_release documentation here: https://registry.terraform.io/providers/hashicorp/

helm/latest/docs/resources/release#values.

Another consideration is if we want to have more control over the Kubernetes namespace to

add labels, we can also create it using the Kubernetes provider, and reference it inside the helm_

resource resource.

https://registry.terraform.io/providers/hashicorp/helm/latest/docs/resources/release#values
https://registry.terraform.io/providers/hashicorp/helm/latest/docs/resources/release#values

Using Terraform for Docker and Kubernetes Deployment344

The following configuration shows sample code for the use of the kubernetes and helm providers

together:

resource "kubernetes_namespace" "ns" {

 metadata {

 labels = {

 mylabel = "ingress"

 }

 name = "ingress"

 }

}

resource "helm_release" "nginx_ingress" {

 name = "ingress"

 repository = "https://kubernetes.github.io/ingress-nginx"

 chart = "ingress-nginx"

 version = "4.5.2"

 namespace = kubernetes_namespace.ns.metadata.0.name

 create_namespace = true

 wait = true

…

}

In the above configuration, we use implicit dependency to link the namespace at the release.

See also
• The helm provider documentation is available here: https://registry.terraform.io/

providers/hashicorp/helm/latest/docs.

Using a Kubernetes controller as a Terraform
reconciliation loop
In the previous chapter’s recipes, we learned how to use Terraform to deploy a Docker container,

provision a Kubernetes cluster, and deploy applications in Kubernetes using different tools.

https://registry.terraform.io/providers/hashicorp/helm/latest/docs
https://registry.terraform.io/providers/hashicorp/helm/latest/docs

Chapter 10 345

In this recipe, we will learn how to perform a reconciliation loop to provision infrastructure using

Terraform and reapply the Terraform workflow at each code change.

By using Terraform reconciliation, you can:

• Ensure that the state of your infrastructure always matches the desired state defined in

the Terraform code.

• Automate the deployment of infrastructure resources based on changes to the Git repos-

itory, reducing the risk of errors and improving the speed of deployments.

So, we will learn in this recipe how to apply infrastructure changes coded with Terraform using

a Kubernetes controller in Kubernetes.

Let’s get started!

Getting ready
To complete this recipe, we need some prerequisites:

• Store the Terraform configuration in a Git repository – for this, we will use the existing

Terraform configuration that provisioned the Azure Web Apps app, detailed in the reci-

pe, Building Azure serverless infrastructure with Terraform in Chapter 8, Provisioning Azure

Infrastructure with Terraform, and the source code is available here: https://github.com/

PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP08/webapp.

• Have an existing Kubernetes cluster.

• Install Helm CLI, to install Flux components (the commands will be detailed in the recipe).

• Add a KUBECONFIG environment variable containing the path of the Kubernetes configu-

ration file, for example ~/.kube/config.

There are many tools to provide GitOps on Kubernetes; for this recipe, we will use Weave Flux,

and for Terraform, we will use Flux tf-controller. We will see their installation and their use

in the body of the recipe.

As a requirement, we will install the Flux CLI by referring to the documentation here: https://

fluxcd.io/flux/installation/, depending on your operating system. Then, we will install Flux

operator resources in our Kubernetes cluster by running the command flux install.

This Flux command creates the flux-system namespace and all required resources in our cluster.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP08/webapp
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP08/webapp
https://fluxcd.io/flux/installation/
https://fluxcd.io/flux/installation/

Using Terraform for Docker and Kubernetes Deployment346

The following image shows the output of this command:

Figure 10.8: Installation of Flux in Kubernetes

All the Flux components are installed on the Kubernetes cluster in the flux-system namespace.

In this recipe, we will learn from the beginning how to apply Terraform configuration using Flux’s

tf-controller in Kubernetes.

The source code for this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP10/gitops.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP10/gitops
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP10/gitops

Chapter 10 347

How to do it…
Perform the following steps to apply Terraform configuration with tf-controller:

1. Install Flux tf-controller with Helm by running the two following commands:

helm repo add tf-controller https://weaveworks.github.io/tf-
controller/

helm upgrade -i tf-controller tf-controller/tf-controller
--namespace flux-system

2. Then, create a new file called tf-controller-azurerm.yaml and add the following code

inside it:

apiVersion: source.toolkit.fluxcd.io/v1beta1

kind: GitRepository

metadata:

 name: azurerm-demo

 namespace: flux-system

spec:

 interval: 30s

 url: https://github.com/PacktPublishing/Terraform-Cookbook-Second-
Edition

 ref:

 branch: main

3. Append the content of this YAML file by adding the following content:

apiVersion: infra.contrib.fluxcd.io/v1alpha1

kind: Terraform

metadata:

 name: azurerm-demo

 namespace: flux-system

spec:

 path: ./CHAP08/sample-app/

 interval: 1m

 approvePlan: auto

Using Terraform for Docker and Kubernetes Deployment348

 sourceRef:

 kind: GitRepository

 name: azurerm-demo

 namespace: flux-system

 runnerPodTemplate:

 spec:

 env:

 - name: ARM_CLIENT_ID

 value: "<your azure client id>"

 - name: ARM_TENANT_ID

 value: "<your azure tenant id>"

 - name: ARM_CLIENT_SECRET

 value: "<your azure client secret>"

 - name: ARM_SUBSCRIPTION_ID

 value: "<your azure subscription id>"

4. Finally, deploy this Kubernetes resource by running the following kubectl command:

kubectl apply -f tf-controller-azurerm.yaml

Let’s look at all these steps in detail.

How it works…
In Step 1, we add the tf-controller registry locally and then we install the Terraform controller

called tf-controller using the helm upgrade –install command from the tf-controller

Helm registry inside the flux-system namespace.

The following image shows the output of this helm command:

Figure 10.9: Install tf-control using the Helm chart

The Helm chart is installed successfully.

Chapter 10 349

To check the installation status of the Helm chart, run the command helm list -n flux-system,

The output status value must be deployed.

By this point, we have installed all the necessary components to run our Terraform configuration

inside the tf-controller.

Then, in Step 2 and Step 3, we create a new file called tf-controller-azure.yaml, which will

contain all the configurations to run the Terraform configuration.

In the first part of this file, we add the kind resource GitRepository in which we configure the

URL and the branch name of the Git repository where the Terraform configuration is stored. (Here,

in this recipe, the configured repository is https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition and the controller will target only the main branch of this repository).

In the second part of this file, we add the Terraform kind Kubernetes resource, in which we

configure:

• The path where the Terraform configuration is inside the Git repository (here, our con-

figuration to apply is in the CHAP08/sample-app folder).

• The autoapprove option to indicate to the controller to perform the complete Terraform

workflow with init, plan, and apply without the user performing any operation.

• The name of the GitRepository resource added just before this file.

• The four Azure environment variables to authenticate the azurerm provider; for more in-

formation, read the Protecting the Azure credential provider recipe in Chapter 8, Provisioning

Azure Infrastructure with Terraform.

Finally, in Step 4, we deploy these two new Kubernetes configurations (the GitRepository and

Terraform kinds) in our Kubernetes cluster by running the kubectl apply -f <file> command.

Now, what is interesting is to understand what happened once this command was executed.

When these two new Kubernetes resources are deployed, the tf-controller will create a new

Pod that will run the Terraform workflow on the specified configuration in the Git repository.

Note that in this recipe, we install the tf-controller using Helm, but we can

also use the kubectl command, as explained in this documentation: https://

weaveworks.github.io/tf-controller/getting_started/#installation.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition
https://weaveworks.github.io/tf-controller/getting_started/#installation
https://weaveworks.github.io/tf-controller/getting_started/#installation

Using Terraform for Docker and Kubernetes Deployment350

The following image shows the new Pod called azurerm-demo-tf-runner in the flux-system

namespace:

Figure 10.10: Get Pods in the flux-system namespace

And once the execution of Terraform is finished, it automatically destroys itself and the Azure

resources are provisioned.

Moreover, any commit made on the main branch will re-trigger the execution of this Pod, which

will re-execute the Terraform workflow on the changes made to the infrastructure configuration,

and thus ensure that the infrastructure (in this case, Azure) will always be up to date with respect

to its Terraform configuration.

There’s more…
In this recipe, we see how to apply GitOps for Terraform using Weave tf-controller; we can

also use ArgoCD tools in tandem; for more information, read the documentation here: https://

www.cncf.io/blog/2022/09/30/how-to-gitops-your-terraform/.

Another Kubernetes operator allows you to apply GitOps practices for Terraform to Kubernetes

by using the Terraform Operator, and for more information, refer to the documentation here:

http://tf.isaaguilar.com/.

Additionally, in Step 1, we use the Helm command line to install the tf-controller Helm chart;

we can instead use the Terraform Helm provider (for more details, read the Deploying a Helm

chart in Kubernetes using Terraform recipe earlier in this chapter) using the following Terraform

configuration:

resource "helm_release" "tf-controller" {

 name = "tf-controller"

 repository = "https://weaveworks.github.io/tf-controller/"

 chart = "tf-controller"

 namespace = "flux-system"

 wait = true

}

https://www.cncf.io/blog/2022/09/30/how-to-gitops-your-terraform/
https://www.cncf.io/blog/2022/09/30/how-to-gitops-your-terraform/
http://tf.isaaguilar.com/

Chapter 10 351

The complete source code for this Terraform configuration is available here: https://github.com/

PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP10/tf-controller.

Finally, in this recipe, we see how to automatically deploy Terraform configuration using a Ku-

bernetes controller; there are two other practices or tools to deploy Terraform configuration.

The first method is to use a CI/CD pipeline in pipeline tools like GitHub Actions, Jenkins, Azure

DevOps, and more. We will see this in detail in Chapter 13, Automating Terraform Execution in a

CI/CD Pipeline.

The second method is to use Terraform Cloud, which contains automated pipelines. We will see

this in detail in Chapter 14, Using Terraform Cloud to Improve Team Collaboration.

See also
• The Weave tf-controller documentation is available here: https://weaveworks.github.

io/tf-controller/

• The GitHub source code of the tf-controller is available here: https://github.com/

weaveworks/tf-controller

• Article from the CNCF on using the tf-controller: https://www.cncf.io/

blog/2022/09/30/how-to-gitops-your-terraform/

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to

the author, and learn about new releases – follow the QR code below:

https://packt.link/cloudanddevops

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP10/tf-controller
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP10/tf-controller
https://weaveworks.github.io/tf-controller/
https://weaveworks.github.io/tf-controller/
https://github.com/weaveworks/tf-controller
https://github.com/weaveworks/tf-controller
https://www.cncf.io/blog/2022/09/30/how-to-gitops-your-terraform/
https://www.cncf.io/blog/2022/09/30/how-to-gitops-your-terraform/
https://packt.link/cloudanddevops

11
Running Test and Compliance
Security on Terraform
Configuration
When writing Terraform configuration, it is very important to integrate a test phase into the

Terraform workflow.

Indeed, when provisioning an infrastructure using a Terraform configuration, one must be care-

ful not to bypass security rules, not to introduce vulnerabilities (even unintentionally), and to

respect the company’s conventions.

For these reasons, it is necessary to introduce one or more test phases that will be applied to our

Terraform configuration.

Exactly as for an application, there are several types of tests (for more information, see the explana-

tion of the test pyramid here: https://martinfowler.com/articles/practical-test-pyramid.

html) for a Terraform configuration.

For a Terraform configuration, here are the different types of tests:

• The unit test: This aims to test the Terraform configuration at the lowest level, by checking
bits of resources without dependency on external elements. The unit tests are performed
before the execution of the terraform apply command, i.e., on the HCL code or the result
of the terraform plan. Unit tests can consist of checking the syntax of the code and the
consistency of the variables by executing the terraform validate command, which we
saw in detail in Chapter 6, Applying a Basic Terraform Workflow, in the Validating the code
syntax recipe, or analyzing the result of terraform plan and checking if the result obtained
is the expected one.

https://martinfowler.com/articles/practical-test-pyramid.html
https://martinfowler.com/articles/practical-test-pyramid.html

Running Test and Compliance Security on Terraform Configuration354

• Plan analysis for compliance: This analysis of the plan result can be done either by using

third-party tools, which have built-in rules like tflint, checkov, or tfsec, as we will see in

this chapter, or by using a framework, and in this case, we will write our own rules, as we

will see in this chapter, with PowerShell or Python. This analysis is performed just after

the terraform plan execution, so if the analysis fails, terraform apply is not executed.

• The contact tests: These test the correct input of variables by using a condition expression

on the variables that we quickly learned about in Chapter 2, Writing Terraform Configu-

rations in the Manipulating variables recipe – for more details, read the documentation

here: https://developer.hashicorp.com/terraform/language/expressions/custom-

conditions.

• The integration tests: These test the correct provisioning of resources. These tests are most

often used on Terraform modules to test that a Terraform configuration using this Terra-

form module gets the expected input. The workflow of the integration test is to provision

the resources using the Terraform configuration; run some tests, like for connectivity or

security; and, at the end, destroy all provisioned resources. This workflow can be operated

using development scripts like PowerShell, Python, Bash, Ruby, and Golang or using a

testing framework like Terratest (which we will learn about in the Testing Terraform module

code with Terratest recipe in this chapter) or Kitchen-Terraform (which we will learn about

in the recipe Testing the Terraform configuration using Kitchen-Terraform of this chapter).

For more details on testing Terraform, read the HashiCorp blog here: https://www.hashicorp.

com/blog/testing-hashicorp-terraform.

In the first part of this chapter, we will learn how to use several methods and tools to test Terra-

form configuration by writing custom rules and policies using PowerShell or Python. We will also

learn about the best tests to perform on Terraform configurations using tools like terraform-

compliance, tfsec, and Open Policy Agent (OPA).

Then, in the second part of this chapter, we will learn how to perform an integration test on

Terraform modules using Terratest or Kitchen-Terraform.

Finally, in the last part of the chapter, we will learn to use the new integrated Terraform module

integration test to write a test directly in the HCL Terraform configuration.

Note that in all recipes of this chapter, we intentionally will start with Terraform

configurations that are not compliant to show the tests error results; then, we will

fix the Terraform configuration to be compliant with the tests and we will re-run

the tests to show the result of the successful test execution.

https://developer.hashicorp.com/terraform/language/expressions/custom-conditions
https://developer.hashicorp.com/terraform/language/expressions/custom-conditions
https://www.hashicorp.com/blog/testing-hashicorp-terraform
https://www.hashicorp.com/blog/testing-hashicorp-terraform

Chapter 11 355

In this chapter, we will cover the following recipes:

• Using PowerShell’s Pester framework to perform Terraform testing

• Testing the Terraform configuration using Python

• Using OPA to check the Terraform configuration

• Using tfsec to analyze the compliance of the Terraform configuration

• Applying Terraform compliance with terraform-compliance

• Testing Terraform module code with Terratest

• Testing the Terraform configuration using Kitchen-Terraform

• Using the new integrated Terraform module integration test

Technical requirements
To complete the recipes in this chapter, we need to install some software requirements:

• Python – the installation documentation is available here: https://www.python.org/

downloads/

• PowerShell or PowerShell Core – the installation documentation is available here:
https://learn.microsoft.com/en-us/powershell/scripting/install/installing-

powershell?view=powershell-7.3

• Golang – the installation documentation is available here: https://go.dev/

• Ruby – the installation documentation is available here: https://www.ruby-lang.org/

en/documentation/installation/

The source code for this chapter is available at https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP11.

Using PowerShell’s Pester framework to perform
Terraform testing
In this recipe, we will learn how to write and execute tests on our Terraform configuration using

a testing framework.

This framework called Pester is a PowerShell library that allows us to write several types of tests.

With Pester, you can write tests that verify the behavior of your PowerShell scripts and ensure that

they meet the expected requirements. Pester supports a wide range of tests, including unit tests,

integration tests, and acceptance tests. It also includes powerful mocking capabilities, which can

help you simulate complex scenarios and test your scripts in isolation.

https://www.python.org/downloads/
https://www.python.org/downloads/
https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell?view=powershell-7.3
https://go.dev/
https://www.ruby-lang.org/en/documentation/installation/
https://www.ruby-lang.org/en/documentation/installation/
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP11
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP11

Running Test and Compliance Security on Terraform Configuration356

Pester uses a simple syntax that is easy to understand and learn. Tests are written in PowerShell

script files, which makes it easy to integrate them into your development workflow. Pester can be

run from the command line, which makes it easy to automate your testing process and integrate

it into your CI/CD pipeline.

In addition to testing PowerShell scripts, Pester can also be used to test other types of code, such

as JSON or XML files. It is also extensible, which means you can write custom extensions and

add-ons to support your specific testing needs.

Overall, Pester is a powerful and flexible testing framework that can help you improve the quality

and reliability of your PowerShell scripts and other code.

So, we will learn how to write tests in PowerShell using Pester and then we will see their execution.

Let’s get started!

Getting ready
To complete this recipe, you will need to know about PowerShell scripting.

The software requirements are to install these in order:

1. PowerShell or PowerShell Core – refer to the documentation here: https://
learn.microsoft.com/en-us/powershell/scripting/install/installing-

powershell?view=powershell-7.3.

2. Then, install the PowerShell module Pester, the documentation for which is available

here: https://pester.dev/docs/introduction/installation.

Like most of the book’s recipes, this recipe can be run on Windows, Linux, or macOS.

The goal of this recipe is to provide a basic example of how to write and execute tests in Pester,

which tests to make sure that the Azure storage account name is compliant and that the only

access to the account is through HTTPS.

In this recipe, we will not detail the steps for writing the Terraform configuration that provisions

the Azure storage account (which is detailed in the official documentation here: https://registry.

terraform.io/providers/hashicorp/azurerm/latest/docs/resources/storage_account).

The code source for this Terraform configuration is the following Terraform configuration:

With Pester, tests are executed just after the terraform plan command, and before

terraform apply, so that if the tests are failing, terraform apply will not continue.

https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell?view=powershell-7.3
https://pester.dev/docs/introduction/installation
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/storage_account
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/storage_account

Chapter 11 357

resource "azurerm_storage_account" "storage" {

 name = "sademotestpester1"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 account_tier = "Standard"

 account_replication_type = "GRS"

 enable_https_traffic_only = false

}

The complete source code for this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP11/tf-pester.

How to do it…
To write Pester tests, perform the following steps:

1. Inside the folder that contains our Terraform configuration, create a new PowerShell file

called storage.test.ps1.

2. Start to write in this new file by adding the following Describe block:

Describe "Azure Storage Account Compliance" {

….

}

3. In this Describe block, add the following code:

 BeforeAll -ErrorAction Stop {

 Write-Host 'Performing terraform init...'

 terraform init

 Write-Host 'Performing terraform validate...'

 terraform validate

 Write-Host 'Performing terraform plan...'

 terraform plan -out terraform.plan

 Write-Host 'Converting the plan output to JSON...'

 $plan = terraform show -json terraform.plan | ConvertFrom-
Json

 }

For the demo of the recipe, in this above Terraform configuration, we explicitly con-

figure the storage to be accessible via HTTP and name it sademotestpester1.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP11/tf-pester
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP11/tf-pester

Running Test and Compliance Security on Terraform Configuration358

4. Just after this above code, add the following code (inside the Describe block):

 It "should have the correct name" {

 $expectedStorageAccountName = "sademotestpester123"

 $storageAccountobj = $plan.resource_changes | Where-Object
{ $_.address -eq 'azurerm_storage_account.storage' }

 $saName = $storageAccountobj.change.after.name

 $saName | Should -Be $expectedStorageAccountName

 }

5. Continue to add the following code (inside the Describe block):

 It "should be access only with HTTPS" {

 $expectedsaAccessHttps = "true"

 $storageAccountobj = $plan.resource_changes | Where-Object
{ $_.address -eq 'azurerm_storage_account.storage' }

 $saAccessHttps = $storageAccountobj.change.after.enable_
https_traffic_only

 $saAccessHttps | Should -Be $expectedsaAccessHttps

 }

6. Finish writing the test by adding the following code (inside the Describe block):

 AfterAll {Write-Host 'Delete the terraform.plan file'

 Remove-Item -Path .\terraform.plan

 }

7. Finally, run Pester tests by executing the following command inside the folder that con-

tains the PowerShell Pester script:

pwsh -c "Invoke-Pester -Path ./storage.test.ps1"

The following image shows the output of this command (using as a target the initial

Terraform configuration that explicitly was not compliant):

Chapter 11 359

Figure 11.01: Terraform test with Pester execution with error

In this output, we can see the 4 operations of the tests as follows:

1. The BeforeAll execution

2. The first test that checks the name of the storage

3. The second test that checks whether HTTPS is enabled

4. The AfterAll execution

Here, all tests are failing.

8. So, now, we fix our Terraform configuration by updating the initial configuration with

the following configuration:

resource "azurerm_storage_account" "storage" {

 name = "sademotestpester123"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 account_tier = "Standard"

 account_replication_type = "GRS"

 enable_https_traffic_only = true

}

Running Test and Compliance Security on Terraform Configuration360

9. And finally, we execute again the Pester command pwsh -c "Invoke-Pester -Path ./

storage.test.ps1", and the following image shows the expected output of the test’s

execution:

Figure 11.02: Successful Terraform test with Pester execution

We can see that all tests are running successfully.

How it works…
In step 1, we create a new PowerShell file, which will contain our Pester Terraform scripts.

In step 2, we start to write this script by adding a Describe block, which contains the code for all

the tests (called the test suite). For more information about the Pester test file structure, read the

documentation here: https://pester.dev/docs/usage/test-file-structure.

In step 3, we add a BeforeAll block, which contains the operations to perform before starting the

test suite. Here, in this block, we perform the following operations:

• Run the terraform init command.

• Run the terraform validate command.

• Run the terraform plan -out terraform�out command (export the result of plan into

the terraform.out file)

• Run the terraform show -json terraform.plan command to show the JSON format of

the plan and set the JSON result in the $plan PowerShell variable

In step 4, we write the first test, which checks the name of the Storage Account that will be provi-

sioned. This script filters the resources azurerm_storage_account.storage inside the JSON of

the plan, selects the name property, and checks whether the name is equal to the expected name.

Refer to this blog post to understand the JSON plan schema: https://www.scalr.

com/blog/opa-series-part-3-how-to-analyze-the-json-plan.

https://pester.dev/docs/usage/test-file-structure
https://www.scalr.com/blog/opa-series-part-3-how-to-analyze-the-json-plan
https://www.scalr.com/blog/opa-series-part-3-how-to-analyze-the-json-plan

Chapter 11 361

In step 5, we write the second test, which checks the value of the enable_https_traffic_only

property for the storage account that will be provisioned. This script filters the azurerm_storage_

account.storage resources inside the JSON of the plan, selects the enable_https_traffic_only

property, and checks if enable_https_traffic_only is equal to true.

In step 6, we end the Describe block by adding the AfterAll block, which contains the operations

to perform after running the whole test suite. Here, in this block, we delete the terraform.out

file generated in the BeforeAll block (in step 3).

Now that we have written the tests, we can run them using Pester.

In step 7, we run Pester on the script by executing the Invoke-Pester -Path ./storage.test.

ps1 command.

As the result of this command, if the tests are erroneous, we fix the Terraform configuration ac-

cording to the test compliance and we run this command above again to check that all tests are

running successfully (performed in steps 8 and 9).

There’s more…
In this sample of Terraform testing with Pester, we stopped the script just after the execution of

the tests; we could also have used the apply command to add integration tests to this script to

check (for example) the connectivity of the storage account after it was created.

For another complete sample with unit and integration tests for the Azure Storage Terraform

module, see this GitHub code: https://github.com/devblackops/presentations/tree/master/
PSSummit2021%20-%20Testing%20Terraform%20with%20Pester/demo3/terraform-module-

storage.

Additionally, here is a list of the pros and cons of using the Pester PowerShell Framework:

Pros:

• Automated testing: Pester allows you to automate the testing process, so you can easily

perform compliance testing on your Terraform code without the need for manual testing.

• Repeatable and consistent: With Pester, you can write tests that are repeatable and con-

sistent, which means you can ensure that your code always meets the required compliance

standards.

• Fast feedback loop: By integrating Pester into your CI/CD pipeline, you can get fast feed-

back on whether your Terraform code is compliant or not, which can help you identify

and fix compliance issues early in the development cycle.

https://github.com/devblackops/presentations/tree/master/PSSummit2021%20-%20Testing%20Terraform%20with%20Pester/demo3/terraform-module-storage
https://github.com/devblackops/presentations/tree/master/PSSummit2021%20-%20Testing%20Terraform%20with%20Pester/demo3/terraform-module-storage
https://github.com/devblackops/presentations/tree/master/PSSummit2021%20-%20Testing%20Terraform%20with%20Pester/demo3/terraform-module-storage

Running Test and Compliance Security on Terraform Configuration362

• Easy to use: Pester is a PowerShell module, which means you can quickly get started with

writing and running tests for your Terraform code.

Cons:

• Complexity: Writing tests for Terraform code using Pester can be complex, especially if

you need to test complex infrastructure configurations. This can make it difficult to write

tests that are both comprehensive and maintainable.

• Learning curve: While Pester is relatively easy to use if you’re already familiar with Pow-

erShell, there is still a learning curve involved, especially if you are not familiar with

PowerShell scripting. This can make it more challenging for teams to adopt Pester for

their compliance testing needs.

• Integration with other tools: If you are using other tools for your compliance testing,

such as specialized compliance frameworks or tools like HashiCorp Sentinel, you may

find that integrating Pester into your workflow is more challenging.

See also
• The Pester documentation is available here: https://pester.dev/.

• A video that explains how to use Pester to test Terraform configuration: https://www.

youtube.com/watch?v=Sdfxntl6H24.

Testing the Terraform configuration using Python
In the previous recipe, we learned how to write Terraform tests using a PowerShell script and

the Pester framework.

In this recipe, we will learn the same concept for Terraform tests by using the Python language

and pytest framework.

Let’s get started!

Getting ready
To complete this recipe, you’ll need to know some basic knowledge of Python.

With pytest, the tests are executed just after the terraform plan command and

before terraform apply, so that if the tests are failing, apply will not continue.

https://pester.dev/
https://www.youtube.com/watch?v=Sdfxntl6H24
https://www.youtube.com/watch?v=Sdfxntl6H24

Chapter 11 363

We need to have Python already installed with pip. The installation documentation for Python

is available here: https://www.python.org/downloads/. And pip’s installation documentation

is available here: https://pip.pypa.io/en/stable/installation/.

We also install the pytest Python test framework by using pip with the pip install pytest

command.

For more information about pytest, read the documentation here: https://docs.pytest.org/

en/7.2.x/contents.html.

In this recipe, we will not detail the steps for writing the Terraform configuration that provisions

the Azure Storage Account. The source code for this Terraform configuration is the following:

resource "azurerm_storage_account" "storage" {

 name = "sademotestpy1"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 account_tier = "Standard"

 account_replication_type = "GRS"

 enable_https_traffic_only = false

}

The complete source code for this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP11/pytest.

How to do it…
To test the Terraform configuration using pytest, perform the following steps:

The goal of this recipe is to provide a basic example of how to write and execute tests

in pytest, which tests to make sure the Azure storage account name is compliant

and that the only access to the account is through HTTPS. Exactly as we learned

in the previous recipe, the execution of these tests will be performed just after the

terraform plan command and before terraform apply.

For the demo of the recipe, in this above Terraform configuration, we explicitly con-

figure the storage to be accessible via HTTP.

https://www.python.org/downloads/
https://pip.pypa.io/en/stable/installation/
https://docs.pytest.org/en/7.2.x/contents.html
https://docs.pytest.org/en/7.2.x/contents.html
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP11/pytest
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP11/pytest

Running Test and Compliance Security on Terraform Configuration364

1. Inside the folder that contains the Terraform configuration, create a new Python file called

test_tf.py (by default, a pytest file must be called test_<…>.py).

2. In this Python file, write the following content:

import pytest

import subprocess

import json

@pytest.fixture(scope="session")

def terraform_plan_output():

 subprocess.run(["terraform", "init"])

 subprocess.run(["terraform", "plan", "-out", "plan.tfout"])

 show_output = subprocess.check_output(["terraform", "show",

 "-json", "plan.tfout"])

 return json.loads(show_output)

def test_storage_account_https_only_enabled(terraform_plan_output):

 enable_https_traffic_only = terraform_plan_output['resource_

 changes'][1]['change']['after']['enable_https_traffic_only']

 assert enable_https_traffic_only == True

3. In the terminal console, execute the pytest command.

4. The following image shows the result of this command:

Figure 11.03: pytest execution of the Terraform test with an error

Chapter 11 365

We can see that the assert fails when testing the enable_https_traffic_only property.

5. So, now, we fix our Terraform configuration by updating the initial configuration with

the following configuration:

resource "azurerm_storage_account" "storage" {

 name = "sademotestpy123"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 account_tier = "Standard"

 account_replication_type = "GRS"

 enable_https_traffic_only = true

}

6. And finally, we execute again the Python pytest command, and the following image

shows the output of the test’s execution:

Figure 11.04: Successful Terraform test with pytest execution

All tests pass.

How it works…
In step 1, we create a new Python file called test_tf.py. This name follows the pytest default

format, which is test_<…>.py.

In step 2, we write the pytest test code with the following details:

• First, we import a library like pytest, the subprocess, and the JSON.

• Then, we write a function terraform_plan_output, which runs terraform init and

terraform plan and exports the plan results as JSON in memory.

• Finally, we write a function test_storage_account_https_only_enabled, which takes

the JSON plan and tests the value of the enable_https_traffic_only property with the

assert pytest method.

Running Test and Compliance Security on Terraform Configuration366

In step 3, we run the pytest command, which will execute the above pytest script.

Looking at the results of this command, if the tests are failing, we fix the Terraform configuration

according to the test result and we run this above command again to check that all tests are passing.

There’s more…
Here in this recipe, we learned about a basic sample of pytest to test Terraform configuration. I

encourage you to refer to the pytest documentation and also the tftest Python library (available

here at https://pypi.org/project/tftest/) to write more advanced tests.

See also
• The pytest documentation is available here: https://docs.pytest.org/en/7.2.x/

contents.html

• Some posts on Terraform testing with Python: https://betterprogramming.pub/

testing-your-terraform-infrastructure-code-with-python-a3f913b528e3

https://betterprogramming.pub/terraform-resource-testing-101-c9da424faaf3

https://medium.com/saas-infra/terraform-testing-made-easy-with-python-
exploring-tftest-925bb207eabd

Using OPA to check the Terraform configuration
In the previous recipes, we learned how to apply a Terraform compliance check using several

tools and languages, such as PowerShell’s Pester.

Now, in this recipe, we will study another popular tool, called Open Policy Agent (OPA), which

allows us to perform checks on Terraform configuration.

Before we start, here is a short introduction to OPA.

OPA is an open source, general-purpose policy engine that provides a unified language for man-

aging policies across an organization’s software infrastructure. OPA is designed to help organi-

zations define, manage, and enforce policies consistently across different applications, services,

and infrastructure.

Refer to this documentation to understand the JSON plan schema: https://
developer.hashicorp.com/terraform/internals/json-format#plan-

representation.

https://pypi.org/project/tftest/
https://docs.pytest.org/en/7.2.x/contents.html
https://docs.pytest.org/en/7.2.x/contents.html
https://betterprogramming.pub/testing-your-terraform-infrastructure-code-with-python-a3f913b528e3
https://betterprogramming.pub/testing-your-terraform-infrastructure-code-with-python-a3f913b528e3
https://betterprogramming.pub/terraform-resource-testing-101-c9da424faaf3
https://medium.com/saas-infra/terraform-testing-made-easy-with-python-exploring-tftest-925bb207eabd
https://medium.com/saas-infra/terraform-testing-made-easy-with-python-exploring-tftest-925bb207eabd
https://developer.hashicorp.com/terraform/internals/json-format#plan- representation
https://developer.hashicorp.com/terraform/internals/json-format#plan- representation
https://developer.hashicorp.com/terraform/internals/json-format#plan- representation

Chapter 11 367

OPA allows developers and operators to write policies in a declarative language called Rego. Rego

is a high-level language that is designed to be easy to read and write, making it accessible to

non-experts in policy management. Rego policies can be written to enforce security, compliance,

and other operational policies.

OPA is typically integrated into an organization’s software infrastructure, where it evaluates

policies against data and configuration information. OPA can be integrated with various tools

and systems, including Kubernetes, Terraform, and Istio, to enforce policies at different stages

of the software development and deployment lifecycle.

Some of the key features of OPA include:

• Policy as code: OPA allows policies to be defined and managed using code, making it

easier to version-control and track changes.

• Decoupling policies from code: OPA enables policies to be defined and managed inde-

pendently of application code, which promotes better separation of concerns and reduces

the risk of policy conflicts.

• Centralized policy management: OPA provides a centralized policy management system,

allowing policies to be defined and enforced consistently across different applications

and infrastructures.

• Auditing and traceability: OPA provides an audit trail of policy evaluations, allowing

organizations to track and trace policy enforcement over time.

That’s all for this short introduction to OPA; for more information, read the OPA documentation

here: https://www.openpolicyagent.org/.

Let’s get started!

Getting ready
To use OPA, you need to have the following artifacts:

• OPA binary: This is the OPA engine that evaluates policies against data and configuration

information. To complete this recipe, you’ll need to install OPA by referring to the installa-

tion documentation here: https://www.openpolicyagent.org/docs/latest/#running-

opa. This is the only requirement for this recipe.

With OPA, tests are executed just after the terraform plan command, and before

terraform apply, so that if the tests are failing, apply will not continue.

https://www.openpolicyagent.org/
https://www.openpolicyagent.org/docs/latest/#running-opa
https://www.openpolicyagent.org/docs/latest/#running-opa

Running Test and Compliance Security on Terraform Configuration368

Alternatively, you can use a container image from a registry like Docker Hub.

• Rego policies: These are the policies written in the Rego language that OPA evaluates.

Rego policies are typically stored in files with a .rego extension. You can write Rego pol-

icies from scratch or use existing policies from the OPA community.

We will see the Rego policies at the core of this recipe.

• Data input: This is the data and configuration information that OPA evaluates policies

against. Data input can come from a variety of sources, including API requests, configu-

ration files, and data stores.

In this recipe, we will use JSON as the data input for OPA.

• An OPA query: This is a request for OPA to evaluate a specific policy against given input

data. In other words, a query is a question that OPA can answer by returning a Boolean

value (true or false) based on whether the given input data satisfies the specified policy.

The core of the recipe is that we will learn about the concept of queries.

In this recipe, we will not detail the steps for writing the Terraform configuration that provisions

the Azure Storage Account; the source code for this Terraform configuration is the following:

resource "azurerm_storage_account" "storage" {

 name = "sademotestopa123"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 account_tier = "Standard"

 account_replication_type = "GRS"

 enable_https_traffic_only = false

}

To install OPA on Windows, go to the open policy agent releases page, avail-

able here: https://github.com/open-policy-agent/opa/releases. Once there,

click on the desired release (I would recommend the latest). Click on the

opa_windows_amd64.exe link on the web page to download the binary ex-

ecutable file.

Rename the downloaded file to opa [in code style] and finally update the

PATH [in code style] environment variable to add the downloaded path.

Chapter 11 369

We will use OPA to check the name of the Azure storage account is compliant and that the security

option only allows access to the storage via HTTPS.

The complete source code for this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP11/opa.

How to do it…
To use OPA to check the Terraform configuration, perform the following steps:

1. In the same folder that contains the Terraform configuration, create a new file called sa-

policies.rego, and in this file, start to write the following content:

package terraform.policies.storage

import input as plan

azurerm_storage[resources] {

 resources := plan.resource_changes[_]

 resources.type == "azurerm_storage_account"

 resources.mode == "managed"

}

2. Continue to add the following content:

deny[msg] {

 az_storage := azurerm_storage[_]

 r := az_storage.change.after

 not r.enable_https_traffic_only

 msg := sprintf("Storage Account %v must use HTTPS traffic only",
[az_storage.name])

}

3. And add the following content:

deny[msg] {

 az_storage := azurerm_storage[_]

 r := az_storage.change.after

 r.name != "sademotestopa123"

For the demo of the recipe, in this above Terraform configuration, we explicitly con-

figure the storage to be accessible via HTTP and call it sademotestopa1.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP11/opa
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP11/opa

Running Test and Compliance Security on Terraform Configuration370

 msg := sprintf("Storage Account %v must be named
sademotestopa123", [az_storage.name])

}

4. Then, inside this folder, run the following Terraform commands:

terraform init

terraform plan -out="out.tfplan"

terraform show -json out.tfplan > tfplan.json

5. Finally, run the following opa eval command:

opa eval --format pretty --data sa-policies.rego --input tfplan.json
"data.terraform.policies.storage.deny"

The following image shows the output of the result of this command execution:

Figure 11.05: OPA execution of the Terraform test with an error

We can see our two policies that are not compliant.

6. Now, we fix the Terraform configuration to be compliant with the policies, with an update

via the following configuration:

resource "azurerm_storage_account" "storage" {

 name = "sademotestopa123"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 account_tier = "Standard"

 account_replication_type = "GRS"

 enable_https_traffic_only = true

}

7. And we rerun Step 4 (the Terraform commands) and step 5 (the opa eval command).

The following image shows the output of the opa eval command after fixing the con-

figuration:

Figure 11.06: Successful OPA execution of the Terraform test

Chapter 11 371

We can see that all policies passed successfully with no errors.

How it works…
In step 1, we create a new file, sa-policies.rego, which will contain OPA policies that will check

the compliance of the Azure storage account that is provisioned.

In this file, we start to define the name of the Rego package name; here, we choose terraform.

policies.storage as the package name to indicate that it contains Terraform policies on storage.

Then, we add an input parameter, which is the result of terraform plan in JSON format.

Finally, we declare an azurerm_storage function, which filters and gets all azurerm_storage_

account resources in terraform plan's result.

In step 2, we write the first policy called deny, which checks that the Azure storage account is

configured to be accessible only via HTTPS. The policy code checks the JSON plan content of the

azurerm_storage object obtained in step 2 and checks the property enable_https_traffic_only

in the after.change property of the plan. If enable_https_traffic_only is false, then the

policy returns an error message.

In step 3, we write the second policy, also called deny, which checks that the Azure storage ac-

count is named sademotestopa123. The policy code checks the JSON plan content of the azurerm_

storage object obtained in step 2 and checks the property name in the after.change property of

the plan. If the name is not equal to sademotestopa123, then the policy fails.

In Step 4, we execute the terraform init command, then terraform plan -out="out.tfplan"

to export the plan as a binary file, out.tfplan. Finally, we run the terraform show -json out.

tfplan > tfplan.json command to export the plan in JSON format into the tfplan.json file.

In step 5, we run the OPA commands to check our Terraform configuration based on OPA’s policies.

For this, we run the following command:

opa eval --format pretty --data sa-policies.rego --input tfplan.json
"data.terraform.policies.storage.deny"

Refer to this blog post to understand the JSON plan schema: https://www.scalr.

com/blog/opa-series-part-3-how-to-analyze-the-json-plan.

https://www.scalr.com/blog/opa-series-part-3-how-to-analyze-the-json-plan
https://www.scalr.com/blog/opa-series-part-3-how-to-analyze-the-json-plan

Running Test and Compliance Security on Terraform Configuration372

With the following arguments:

• The data argument is the OPA policy file that we wrote in steps 1 to 3

• The input argument is the JSON Terraform plan exported in step 5

• The last argument is the OPA query to check all deny policies in the package terraform.

policies.storage

These 3 arguments represent the OPA artifacts, which are a Rego policy, data input, and an OPA

query.

As a result of this command, if the tests are erroneous, we fix the Terraform configuration accord-

ing to the test output and we run this above command again to check that all tests are passing.

There’s more…
In this recipe, we wrote OPA policies, and we ran them directly to check our Terraform configu-

ration.

In real-world scenarios in a company, it is a best practice to test OPA policies before using them.

To test OPA policies, we have 2 possibilities:

• Use the Rego playground, which is a web UI for writing input and testing policies directly

in a web browser. The Rego playground is available here: https://play.openpolicyagent.

org/. This playground can be useful for quickly checking the Rego syntax and execution

policies, but it can’t be integrated into automatic testing.

• Use an OPA test framework that allows writing Rego tests for Rego policies. The complete

documentation is available here: https://www.openpolicyagent.org/docs/latest/

policy-testing/. The advantages of this solution are that the code for the policy test is

stored with the policy, and this policy test can run automatically in CI/CD, for example.

You can also see a test for the Rego policies written in this recipe here: https://github.com/
PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP11/opa/sa-

policies_test.rego.

By using OPA, we can run more kinds of tests on Terraform configuration, for example, to do some

linting (or static testing) on the Terraform code itself: we can test, for example, that a resource

has lifecycle > ignore_changes (for some business compliance) and ensure that nobody can

delete this ignore_change setting.

https://play.openpolicyagent.org/
https://play.openpolicyagent.org/
https://www.openpolicyagent.org/docs/latest/policy-testing/
https://www.openpolicyagent.org/docs/latest/policy-testing/
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP11/opa/sa-policies_test.rego
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP11/opa/sa-policies_test.rego
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP11/opa/sa-policies_test.rego

Chapter 11 373

To do this, we can convert the Terraform configuration into JSON format using the hcl2json tool

(available here: https://www.hcl2json.com/) and then use the JSON result as input for OPA, and

write a Rego policy to test the content of the resource code.

The advantage of this method is that we can run this lint test before running terraform plan

and get linter feedback earlier in the Terraform workflow.

See also
• The OPA documentation is available here: https://www.openpolicyagent.org/

• The OPA for Terraform documentation is available here: https://www.openpolicyagent.
org/docs/latest/terraform/

• Two videos that explain how to use OPA for Terraform, by Ned Bellavance, can be found

here:

• Using OPA with Terraform - Rego Basics: https://www.youtube.com/watch?v=DpUDYbFK4IE

• Open Policy Agent and Terraform - Examining a Terraform Execution Plan with Rego:

https://www.youtube.com/watch?v=YAFICF55aKE

• The Rego playground: https://play.openpolicyagent.org/

Using tfsec to analyze the compliance of Terraform
configuration
In the previous recipe, we learned how to use a custom tool to perform an HCL check on the

Terraform configuration without running terraform plan and exporting the output of the plan

command.

In this recipe, we will learn how to use the popular tool tfsec to analyze the compliance of the

Terraform configuration.

tfsec (its documentation is available here: https://aquasecurity.github.io/tfsec/v1.28.1/)

is an open source static analysis tool for Terraform code. It is designed to detect security issues,

policy violations, and other potential problems in Terraform code, and provides a set of rules that

can be used to scan code for these issues.

tfsec works by analyzing the Abstract Syntax Tree (AST) of Terraform code. This allows it to

identify security issues and policy violations based on the structure of the code, without executing

the code or connecting to any external services.

https://www.hcl2json.com/
https://www.openpolicyagent.org/
https://www.openpolicyagent.org/docs/latest/terraform/
https://www.openpolicyagent.org/docs/latest/terraform/
https://www.youtube.com/watch?v=DpUDYbFK4IE
https://www.youtube.com/watch?v=YAFICF55aKE
https://play.openpolicyagent.org/
https://aquasecurity.github.io/tfsec/v1.28.1/

Running Test and Compliance Security on Terraform Configuration374

Some of the benefits of tfsec include:

• Easy installation: tfsec is easy to install and can be installed using pip or Homebrew, or

by downloading a pre-built binary.

• Customizable rules: tfsec comes with a set of built-in rules, but you can also create your

own custom rules using Python.

• Integration with CI/CD pipelines: tfsec can be easily integrated into CI/CD pipelines

using tools like Jenkins, GitLab CI/CD, or CircleCI.

• Support for multiple Terraform versions: tfsec supports multiple versions of Terraform,

including Terraform 0.12, Terraform 0.13, and Terraform 0.14.

• Detailed output: tfsec provides detailed output, which helps you understand the issues

that it has detected in your code. It provides information about the rule that was violated,

the location of the violation in the code, and suggestions for how to fix the issue.

tfsec is a powerful tool that can help you identify security issues and policy violations in your

Terraform code. By using tfsec to scan your code, you can ensure that your infrastructure is

secure and compliant with best practices and policies.

Let’s get started!

Getting ready
To complete this recipe, you will need to install tfsec by referring to the installation documen-

tation, which is available here: https://aquasecurity.github.io/tfsec/v1.28.1/guides/

installation/.

In this recipe, we will not detail the steps for writing the Terraform configuration that provisions

the Azure Storage Account; the source code for this Terraform configuration is the following:

resource "azurerm_storage_account" "storage" {

 name = "sademotesttfsec123"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 account_tier = "Standard"

 account_replication_type = "GRS"

 enable_https_traffic_only = false

}

https://aquasecurity.github.io/tfsec/v1.28.1/guides/installation/
https://aquasecurity.github.io/tfsec/v1.28.1/guides/installation/

Chapter 11 375

We will use tfsec to check the security compliance of this Azure Storage Account.

The complete source code of this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP11/tfsec.

How to do it…
To analyze the Terraform configuration with tfsec, perform the following steps:

1. Inside the folder that contains the Terraform configuration to analyze, run the following

command:

tfsec . --concise-output

The following image shows the result of the output of this tfsec execution:

Figure 11.07: tfsec execution of the Terraform test with errors

We can see two failures:

• Regarding the TLS version

• Regarding the HTTPS access

For the demo of the recipe, in this above Terraform configuration, we explicitly con-

figure the storage to be accessible via HTTP.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP11/tfsec
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP11/tfsec

Running Test and Compliance Security on Terraform Configuration376

2. So, we fix the Terraform configuration with the following code update:

resource "azurerm_storage_account" "storage" {
 name = "sademotesttfsec123"
 resource_group_name = azurerm_resource_group.rg.name
 location = azurerm_resource_group.rg.location
 account_tier = "Standard"
 account_replication_type = "GRS"
 enable_https_traffic_only = true
 min_tls_version = "TLS1_2"
}

3. Then, we rerun the same tfsec command that we ran in step 1, and we get the following

output:

Figure 11.08: Successful Terraform test with tfsec execution

We can see that all security problems in the Terraform configuration are fixed.

How it works…
In this recipe, we run the command tfsec . --concise-output, where the . is the path that

contains the Terraform configuration to analyze, and --concise-output indicates a concise output.

As a result of this command, if the tests are failing, we fix the Terraform configuration according

to the results and we run the above command again to check that all tests pass.

There’s more…
In this recipe, we learned about the basic use of tfsec via the CLI; the best practice is to inte-

grate this with the CI/CD pipeline, and for more information, we can see an example integration

on GitHub Actions here: https://aquasecurity.github.io/tfsec/v1.28.1/guides/github-

actions/github-action/.

Additionally, in this recipe, we run tfsec with built-in rules. We can also write custom rules

to provide custom and additional rules. For more information about writing custom rules, re-

fer to the documentation here: https://aquasecurity.github.io/tfsec/v1.28.1/guides/

configuration/custom-checks/.

https://aquasecurity.github.io/tfsec/v1.28.1/guides/github-actions/github-action/
https://aquasecurity.github.io/tfsec/v1.28.1/guides/github-actions/github-action/
https://aquasecurity.github.io/tfsec/v1.28.1/guides/configuration/custom-checks/
https://aquasecurity.github.io/tfsec/v1.28.1/guides/configuration/custom-checks/

Chapter 11 377

Finally, in some cases, we may want to ignore checks on resources to accept the knowledge of

the security problems and the risks they pose. Perhaps these rules were too strict for the current

context. So, we can add annotations in the Terraform configuration to resources to ignore checks

for specific rules. For more information, read the documentation here: https://aquasecurity.

github.io/tfsec/v1.28.1/guides/configuration/ignores/.

See also
• The documentation for tfsec is available here: https://aquasecurity.github.io/tfsec/

v1.28.1/

• The GitHub repository for tfsec is available here: https://github.com/aquasecurity/
tfsec

Applying Terraform compliance using terraform-
compliance
terraform-compliance allows you to write tests in a very readable format that follows the idea

of Behavior-Driven Development (BDD).

Let’s get started!

Getting ready
To complete this recipe, you’ll need to install the terraform-compliance binary, and for this

installation, refer to the installation documentation here: https://terraform-compliance.com/

pages/installation/.

The requirements for installing terraform-compliance are to have already installed python and

pip (see the documentation here: https://pip.pypa.io/en/stable/installation/) on your

machine.

The goal of this recipe is to write and execute compliance tests for the Terraform configuration

that provisions an Azure Storage Account.

The compliance rules check that the storage is only accessible in HTTPS mode and has the DEMO

= book tag.

With terraform-compliance, the tests are executed just after the terraform plan

command, and before terraform apply, so that if the terraform-compliance

tests are failing, apply will continue.

https://aquasecurity.github.io/tfsec/v1.28.1/guides/configuration/ignores/
https://aquasecurity.github.io/tfsec/v1.28.1/guides/configuration/ignores/
https://aquasecurity.github.io/tfsec/v1.28.1/
https://aquasecurity.github.io/tfsec/v1.28.1/
https://github.com/aquasecurity/tfsec
https://github.com/aquasecurity/tfsec
https://terraform-compliance.com/pages/installation/
https://terraform-compliance.com/pages/installation/

Running Test and Compliance Security on Terraform Configuration378

The Terraform configuration that provisions the Azure storage account is already complete as

follows:

resource "azurerm_storage_account" "storage" {

 name = "sademotestcomp123"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 account_tier = "Standard"

 account_replication_type = "GRS"

 enable_https_traffic_only = false

}

Now in the recipe, we will write and execute terraform-compliance to check the configuration,

and we will fix the configuration to conform with the compliance rules.

The complete source code of this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP11/tf-compliance.

How to do it…
Perform the following steps to execute terraform-compliance on the Terraform configuration:

1. Inside the folder that contains the Terraform configuration, to provision the Azure Storage

account, create a new folder called acceptance.

2. Inside this acceptance folder, create a new file called storage.feature.

3. At the top of this new file, add the following content:

Feature: Test compliance of Azure Storage Account

4. Add the first test by adding the following content to this file:

 Scenario: Ensure our Azure Storage have Tag DEMO with value demo

 Given I have azurerm_storage_account defined

 Then it must contain tags

 Then it must contain DEMO

 And its value must be "book"

For the demo of the recipe, in this above Terraform configuration, we explicitly con-

figure the storage to be accessible via HTTP and have no tags.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP11/tf-compliance
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP11/tf-compliance

Chapter 11 379

5. In this file, add the second test by adding the following content:

 Scenario: Ensure our Storage is accessible via HTTPS only

 Given I have azurerm_storage_account defined

 Then it must contain enable_https_traffic_only

 And its value must be true

6. Inside the Terraform configuration folder, run the command terraform init.

7. Then, run the Terraform command terraform plan -out="out.tfplan".

8. Run the following terraform-compliance command:

terraform-compliance -f ./acceptance -p out.tfplan

The following image shows the output of this command:

Figure 11.09: terraform-compliance execution of the Terraform test with errors

The tests will fail.

9. Fix the Terraform configuration by updating the Azure Storage configuration as follows:

resource "azurerm_storage_account" "storage" {

 name = "sademotestcomp123"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

Running Test and Compliance Security on Terraform Configuration380

 account_tier = "Standard"

 account_replication_type = "GRS"

 enable_https_traffic_only = true

 tags = {

 DEMO = "book"

 }

}

10. Rerun the Terraform command terraform plan -out="out.tfplan".

11. Finally, rerun the terraform-compliance command terraform-compliance -f ./

acceptance -p out.tfplan.

The following image shows the output of the terraform-compliance command execution

when all tests are fixed.

Figure 11.10: Successful execution of terraform-compliance for the Terraform test

All tests are executed successfully.

12. Run the terraform apply command to apply changes.

How it works…
In step 1, we create a new folder called acceptance inside the folder that contains our Terraform

configuration. Inside this folder, we create a new file called storage.feature. This file will contain

all the test specifications that will be written in this recipe.

Chapter 11 381

In step 2, we initialize this file by adding the Feature title Test compliance of Azure Storage

Account. In terraform-compliance, a Feature is a logical group of tests, also called a test suite.

In step 3, we add in this file the code for the first scenario test, which checks that the Azure storage

account has the tag DEMO = book.

The language of the scenario is based on BDD with GIVEN, (optional WHEN), and THEN instructions.

In GIVEN, we specify the initial condition; here, the condition is that the Terraform configuration

contains the azurerm_storage_account resource. In the THEN instruction, we specify what is

expected; here we expect that storage contains a Tag property with DEMO=book as the key value.

In Step 4, we add the second scenario test, which checks that the Azure storage account allows

only HTTPS access.

In GIVEN, we specify the initial condition; here, the condition is that the Terraform configuration

contains the azurerm_storage_account resource. In THEN, we specify what is expected; here we

expect that the storage contains an enable_https_traffic_only property with a value of true.

For more information about the BDD terraform-compliance reference, read the documentation

here: https://terraform-compliance.com/pages/bdd-references/

Now that we have written the test code, we will run terraform-compliance during the Terraform

workflow.

In Step 5, we start the Terraform workflow by running the terraform init command.

In Step 6, we execute the command terraform plan -out=out.tfplan to export the plan result

into the file out.tfplan.

In step 7, we run the terraform-compliance command by specifying the following arguments:

• -f : The folder path where we wrote the acceptance tests in steps 2 to 4

• -p: The terraform plan result exported in step 6

We get two test failures: first due to the absence of the tag and the second due to the enable_

https_only property set to false.

Then, in step 8, we fix the Terraform configuration, and in step 9, we run the above workflow

again with the terraform init, the terraform plan, and the terraform-compliance execution.

By the end, in step 11, we can apply changes by running terraform apply.

https://terraform-compliance.com/pages/bdd-references/

Running Test and Compliance Security on Terraform Configuration382

There’s more…
For more information about how to test compliance with terraform-compliance on Azure Ter-

raform configurations, read the documentation here: https://learn.microsoft.com/en-us/

azure/developer/terraform/best-practices-compliance-testing.

Additionally, in this recipe, we learned how to execute the CLI of terraform-compliance manually.

In a business scenario, the next goal is to integrate it with a CI/CD pipeline like Jenkins, Azure

DevOps, and so on.

See also
• The documentation for terraform-compliance is available here: https://terraform-

compliance.com/

• A post about terraform-compliance is available here: https://dev.to/aws-builders/

trusting-in-your-iac-terraform-compliance-4cch

• The Python package source for terraform-compliance is available here: https://pypi.

org/project/terraform-compliance/

• Azure documentation on integration tests using terraform-compliance: https://learn.
microsoft.com/en-us/azure/developer/terraform/best-practices-compliance-

testing

Testing Terraform module code with Terratest
When developing a Terraform module that will be used in multiple Terraform configurations

and shared with other teams, there is one step that is often neglected and that is the testing of

the module.

Among the Terraform framework and testing tools is the Terratest framework, and the docu-

mentation is available here – https://gruntwork.io/ – which is popular and allows you to write

tests in the Go language.

In this recipe, we will study how to use Terratest to write and run integration tests against Ter-

raform configuration and modules.

Let’s get started!

Getting ready
The Terratest test framework is written in Go. That’s why, as a prerequisite, we need to install

Go by going to https://golang.org/.

https://learn.microsoft.com/en-us/azure/developer/terraform/best-practices-compliance-testing
https://learn.microsoft.com/en-us/azure/developer/terraform/best-practices-compliance-testing
https://terraform-compliance.com/
https://terraform-compliance.com/
https://dev.to/aws-builders/trusting-in-your-iac-terraform-compliance-4cch
https://dev.to/aws-builders/trusting-in-your-iac-terraform-compliance-4cch
https://pypi.org/project/terraform-compliance/
https://pypi.org/project/terraform-compliance/
https://learn.microsoft.com/en-us/azure/developer/terraform/best-practices-compliance-testing
https://learn.microsoft.com/en-us/azure/developer/terraform/best-practices-compliance-testing
https://learn.microsoft.com/en-us/azure/developer/terraform/best-practices-compliance-testing
https://gruntwork.io/
https://golang.org/

Chapter 11 383

The Go installation depends on your operating system, and the installation documentation is

available here: https://go.dev/doc/install.

The goal of this recipe is to write the integration tests for a very simple module, which we will

also write in this recipe to serve as a demonstration.

The source code for this chapter with the module and its test is available here: https://github.
com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP11/testing-

terratest.

How to do it…
This recipe is in two parts: the first part concerns the writing of the module and its tests, and the

second part concerns the execution of the tests.

To write the module and its tests, we perform the following steps:

1. We create a new module folder that will contain the Terraform configuration for the mod-

ule. In this module folder, we create a main.tf file, which contains the following code:

variable "string1" {}

variable "string2" {}

PUT YOUR MODULE CODE

##_____________________

output "stringfct" {

 value = format("This is test of %s with %s", var.string1,
upper(var.string2))

}

2. In this module folder, we create the fixture folder inside a tests folder.

3. Then, in this fixture folder, we create a main.tf file, which contains the following Ter-

raform configuration:

module "demo" {

 source = "../../"

The minimum Go version required for Terratest is specified here: https://terratest.

gruntwork.io/docs/getting-started/quick-start/#requirements.

https://go.dev/doc/install
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP11/testing-terratest
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP11/testing-terratest
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP11/testing-terratest
https://terratest.gruntwork.io/docs/getting-started/quick-start/#requirements
https://terratest.gruntwork.io/docs/getting-started/quick-start/#requirements

Running Test and Compliance Security on Terraform Configuration384

 string1 = "module"

 string2 = "terratest"

}

output "outmodule" {

 value = module.demo.stringfct

}

4. In the test folder, we create a module _test.go file, which contains the following code:

package test

import (

 "testing"

 "github.com/gruntwork-io/terratest/modules/terraform"

 "github.com/stretchr/testify/assert"

)

func TestTerraformModule(t *testing.T) {

 terraformOptions := &terraform.Options{

 // path to the terraform configuration

 TerraformDir: "./fixture",

 }

 // lean up resources with "terraform destroy" at the end of the
test.

 defer terraform.Destroy(t, terraformOptions)

 // Run "terraform init" and "terraform apply". Fail the test if
there are any errors.

 terraform.InitAndApply(t, terraformOptions)

 // Run 'terraform output' to get the values of output variables
and check they have the expected values.

 output := terraform.Output(t, terraformOptions, "outmodule")

 assert.Equal(t, "This is test of module with TERRATEST", output)

}

Chapter 11 385

5. To execute the tests, we execute the go test command as follows:

go test -v

During this execution, Terratest will carry out the following actions in order:

• Execute the terraform init and terraform apply commands on the Terraform test

code located in the fixture folder.

• Get the value of the outmodule output.

• Compare this value with the expected value.

• Execute the terraform destroy command.

• Display the test results.

The next screenshot shows the execution of the tests on our module:

Figure 11.11: Execution of Terraform test with Terratest

Running Test and Compliance Security on Terraform Configuration386

You can see, in this screenshot, the different operations that have been executed by the go test

-v command, as well as the result of the tests.

How it works…
In the first part of this recipe, we worked on the development of the module and its tests with

the Terratest framework. We wrote the module’s code, which focuses on the module’s output.

In step 3, in the fixture folder, we wrote Terraform configuration that uses the module locally

and that we will use to test it.

What is important in this configuration is to have output in the module. In Terratest, we will use

the output to test that the module returns the expected value.

In step 4, we write the module tests in Go. The code is composed as follows: in the first lines of

this code, we import the libraries needed to run the tests, including the terratest and assert

libraries. Then, we create a TestTerraformModule function, which takes *testing.T as a param-

eter, which indicates that it is a test function.

The following are the details of the code of this function, which is composed of five lines of code.

In the first line, we define the test options with the folder containing the Terraform configuration

that will be executed during the tests:

terraformOptions := &terraform.Options{

 // path to the terraform configuration

 TerraformDir: "./fixture",

}

Then, we define the terraform.Destroy function, which allows us to execute the terraform

destroy command at the end of the tests, as described in the following code:

defer terraform.Destroy(t, terraformOptions)

Then, we call the terraform.InitAndApply function, which allows us to execute the terraform

init and apply commands, as described in the following code:

terraform.InitAndApply(t, terraformOptions)

After executing the InitAndApply command, we will retrieve the value of the output, which is

called outmodule:

output := terraform.Output(t, terraformOptions, "outmodule")

Chapter 11 387

Finally, we use assert to test the previously recovered value of the output with the value we expect:

assert.Equal(t, "This is test of module with TERRATEST", output)

Then, in the second part of this recipe, we work on the execution of the tests. The first step is to

initialize the Go package by navigating to the test folder.

Then, running the go mod init <package name> command, here, in this sample, we choose

the package name github.com/terraform-cookbook/module-test, and run the go mod tidy

command.

These two above commands generate go.mod and go.sub files, which contain a list of all the Go

package dependencies.

Then, inside the test folder, we run the tests by executing this command:

go test -v

There’s more…
Terratest allows you to execute integration tests on Terraform configuration that allow you to

provision resources, execute the tests, and finally destroy the resources.

We have seen in the prerequisites for this recipe that the setup of the Golang development envi-

ronment requires actions that vary from one operating system to another. To facilitate this task,

you can execute your Terratest tests in a Docker container that already has an environment con-

figured. The Dockerfile corresponding to this container is available here: https://austincloud.

guru/2021/06/24/running-terratest-in-a-docker-container/.

Finally, as said in the introduction to this recipe, Terratest is not limited to Terraform—it also

allows testing on Packer, Docker, and Kubernetes code. But it goes further by also running tests

against cloud providers such as AWS, Azure, and GCP.

The following code snippet shows how to test the size of the VM in Azure based on Terraform’s

output:

azureVmName := terraform.Output(t, terraformOptions, "vm_name")

resourceGroupName := terraform.Output(t, terraformOptions, "rg_name")

If Terraform modules provide resources via cloud providers, the authentication pa-

rameters must be set before running tests.

https://austincloud.guru/2021/06/24/running-terratest-in-a-docker-container/
https://austincloud.guru/2021/06/24/running-terratest-in-a-docker-container/

Running Test and Compliance Security on Terraform Configuration388

actualVMSize := azure.GetSizeOfVirtualMachine(t, vmName,
resourceGroupName, "")

expectedVMSize := compute.VirtualMachineSizeTypes("Standard_DS2_v2")

See also
• Terratest’s official website is available here: https://terratest.gruntwork.io/

• Terratest’s documentation is available here: https://terratest.gruntwork.io/docs/

• Example Terratest code is available here: https://github.com/gruntwork-io/terratest/

tree/master/examples

• Read this great article about Terratest: https://blog.octo.com/en/test-your-

infrastructure-code-with-terratest/

Testing the Terraform configuration using Kitchen-
Terraform
We have already studied, in the Testing Terraform module code with Terratest recipe of this chapter,

how to test Terraform modules using the Terratest framework.

In this recipe, we will test Terraform configuration using another tool: KitchenCI and its Kitch-

en-Terraform plugin.

Getting ready
Kitchen-Terraform is written in Ruby and is a plugin for KitchenCI (more simply called Kitchen),

which is an IaC testing tool. To apply this recipe properly, you must first understand the principles

and workflow of Kitchen, documented at https://kitchen.ci/index.html.

As Kitchen is written in Ruby, you will need to install Ruby (available at https://www.ruby-lang.

org/en/) on your computer by following the installation documentation available at https://

www.ruby-lang.org/en/documentation/installation/.

In addition to Ruby, we need to install Bundler, available from https://bundler.io/. This is the

package manager for Ruby packages by running the commannd gem install bundler.

We can install kitchen-terraform by using the method recommended by Kitchen using gems

and bundles by following this procedure:

https://terratest.gruntwork.io/
https://terratest.gruntwork.io/docs/
https://github.com/gruntwork-io/terratest/tree/master/examples
https://github.com/gruntwork-io/terratest/tree/master/examples
https://blog.octo.com/en/test-your-infrastructure-code-with-terratest/
https://blog.octo.com/en/test-your-infrastructure-code-with-terratest/
https://kitchen.ci/index.html
https://www.ruby-lang.org/en/
https://www.ruby-lang.org/en/
https://www.ruby-lang.org/en/documentation/installation/
https://www.ruby-lang.org/en/documentation/installation/
https://bundler.io/

Chapter 11 389

1. In the folder that contains the Terraform configuration to be tested, we create a Gemfile

that contains the list of packages (here, we specify the kitchen-terraform package) to

install, containing the following:

source "https://rubygems.org/" do

 gem "kitchen-terraform"

end

2. In a terminal, execute the following command to install the packages referenced in the

Gemfile (in Linux, run on sudo mode to have all the necessary permissions to install

packages):

bundle install

The execution of the preceding command installs all the packages necessary to run Kitchen-

Terraform.

Finally, concerning the writing of the tests, we will use Inspec, which is a test framework based

on Rspec. Inspec allows you to test local systems or even infrastructure in the cloud. For more

information about Inspec, I suggest you read its documentation at https://www.inspec.io/.

In this recipe, the goal is not to test the creation of the network and the VMs, only the inventory file.

Finally, as with all integration testing, it is preferable to have an isolated system or environment

to run the tests.

The source code for this recipe is available at https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/tree/main/CHAP11/kitchen.

How to do it…
To test the Terraform configuration execution with Kitchen-Terraform, perform the following

steps:

1. Inside the folder containing the Terraform configuration, create the Inspec test folder

with the following tree:

test > integration > kt_suite

If you have any issues with the kitchen-terraform installation, read the documen-

tation here: https://github.com/newcontext-oss/kitchen-terraform#kitchen-terra-

form-ruby-gem

https://www.inspec.io/
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP11/kitchen
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP11/kitchen

Running Test and Compliance Security on Terraform Configuration390

2. In this kt_suite folder, add the Inspec profile file named inspec.yml with the following

content:

name: default

3. In the kt_suite folder, create a new folder called controls, which will contain the Inspec

tests. Then, inside the controls folder, add a new inventory.rb file with the following

content:

control "check_inventory_file" do

 describe file('./inventory') do

 it { should exist }

 its('size') { should be > 0 }

 end

end

4. At the root of the Terraform configuration folder, we create a Kitchen configuration file

called kitchen.yml with the following content:

driver:

 name: terraform

provisioner:

 name: terraform

verifier:

 name: terraform

 systems:

 - name: basic

 backend: local

 controls:

 - check_inventory_file

platforms:

 - name: terraform

suites:

 - name: kt_suite

Chapter 11 391

5. In a terminal (running in the root of the Terraform configuration folder), run the following

kitchen command:

kitchen test

The result of this execution is shown in the following three screenshots.

This execution takes place in the same console and the same workflow. I’ve split this into

three screenshots for better visibility because you can’t see everything on just one screen.

The following screenshot shows the execution of the init and apply commands:

Figure 11.12: Execution of init and apply for a Terraform test with Kitchen-Terraform

The following screenshot shows the execution of Inspec:

Figure 11.13: Execution of Inspec for a Terraform test

Running Test and Compliance Security on Terraform Configuration392

This last screenshot shows the destroy command:

Figure 11.14: Execution of destroy for a Terraform test with Inspec

These three screenshots show the execution of Terraform; the successful execution of the Inspec

tests, which indicates that my inventory file was indeed generated by Terraform; and finally the

destruction of the resources that had been allocated for the tests.

How it works…
In steps 1 to 3, we write the inspection tests with the following steps:

1. First, we create the folder tree that will contain the profile and the Inspec tests. In the

kt_suite folder, we create the inspec.yml file, which is the Inspec profile. In our case,

this just contains the name property with the default value.

2. Then, in the controls > inventory.rb file, we write the Inspec tests (in Rspec format)

by creating a control “check_inventory_file" that will contain the tests. In these tests,

we use the resource file Inspec (see the documentation at https://www.inspec.io/docs/

reference/resources/file/), which allows us to run tests on files. Here, the property of

this resource is inventory, which is the name of the inventory file generated by Terraform.

In this control, we have written two tests:

• it { should exist }: This inventory file must exist on disk.

• its('size') { should be > 0 }: The size of this file must be > 0, so it must

contain some content.

To learn more about Inspec profiles, refer to the documentation at https://

www.inspec.io/docs/reference/profiles/.

https://www.inspec.io/docs/reference/resources/file/
https://www.inspec.io/docs/reference/resources/file/
https://www.inspec.io/docs/reference/profiles/
https://www.inspec.io/docs/reference/profiles/

Chapter 11 393

Once we have written the tests, in step 4, we create the kitchen.yml file, which contains

the Kitchen configuration, consisting of three parts, the first one being the driver:

driver:

 name: terraform

The driver is the platform that is used for testing. Kitchen supports a multitude of virtual

and cloud platforms. In our case, we use the terraform driver provided by the Kitchen-

Terraform plugin.

The documentation on the drivers supported by Kitchen is available at https://kitchen.

ci/docs/drivers/.

The second part of the kitchen.yml file is the provisioner:

provisioner:

 name: terraform

The provisioner is the tool that will configure the VMs. It can use scripts, Chef, Ansible,

or Desired State Configuration (DSC). In our case, since in our test, we don’t provision

VMs, we use the terraform provisioner provided by Kitchen-Terraform.

The third part is the verifier:

verifier:

 name: terraform

 systems:

 - name: basic

 backend: local

 controls:

 - check_inventory_file

platforms:

 - name: terraform

suites:

 - name: kt_suite

The documentation on Kitchen-supported provisioners is available at

https://kitchen.ci/docs/provisioners/.

https://kitchen.ci/docs/drivers/
https://kitchen.ci/docs/drivers/
https://kitchen.ci/docs/provisioners/

Running Test and Compliance Security on Terraform Configuration394

The verifier is the system that will test the components applied by the provisioner. We

can use Inspec, Chef, Shell, or Pester as our testing framework. In our case, we config-

ure the verifier on the control and the Inspec test suite we wrote in step 2. In addition,

the control property is optional – it allows us to filter the Inspec controls to be executed

during the tests.

3. Finally, in the last step, we perform the tests by executing the kitchen test command,

which, based on the YAML kitchen configuration, will perform the following actions:

4. Execute the init and apply commands of the Terraform workflow.

5. Run the Inspec tests.

6. Execute the destroy Terraform command to delete all resources provisioned for the test.

There’s more…
To go deeper into the writing of the tests, we could have added the Inspec its('content') ex-

pression, which allows us to test the content of the file, as explained in the Inspec documentation

at https://www.inspec.io/docs/reference/resources/file/.

Concerning the execution of the tests in this recipe, we must execute the kitchen test command.

In the case of integration tests in which, after executing the tests, we don’t want to destroy the

resources that have been built with Terraform, we can execute the kitchen verify command.

Finally, as mentioned in the introduction, in this recipe we used Kitchen-Terraform to test a

Terraform configuration, but we can also use it to test Terraform modules.

See also
• KitchenCI’s documentation is available at https://kitchen.ci/

• The source code for the Kitchen-Terraform plugin is available on GitHub at https://

github.com/newcontext-oss/kitchen-terraform

• You can find tutorials on Kitchen-Terraform at https://newcontext-oss.github.io/

kitchen-terraform/tutorials/

• For more information about the kitchen test command, see the documentation at
https://kitchen.ci/docs/getting-started/running-test/

Documentation on Kitchen-supported verifiers is available at https://

kitchen.ci/docs/verifiers/.

https://www.inspec.io/docs/reference/resources/file/
https://kitchen.ci/
https://github.com/newcontext-oss/kitchen-terraform
https://github.com/newcontext-oss/kitchen-terraform
https://newcontext-oss.github.io/kitchen-terraform/tutorials/
https://newcontext-oss.github.io/kitchen-terraform/tutorials/
https://kitchen.ci/docs/getting-started/running-test/
https://kitchen.ci/docs/verifiers/
https://kitchen.ci/docs/verifiers/

Chapter 11 395

Using the new integrated Terraform module
integration test
In the previous recipe, we learned how to perform unit tests on a Terraform module using the

Terratest framework written in Go.

Since Terraform v1.0, HashiCorp has introduced a test integration feature for modules.

In this recipe, we will learn how to use the integrated Terraform module integration test.

Let’s get started!

Getting ready
For this recipe, no specific software requirements are required; we will use only Terraform con-

figuration and the Terraform CLI.

To complete this recipe, we have already written one Terraform module, which provisions an

Azure resource group and one Azure storage account.

The following source code is the main code for this Terraform module:

resource "azurerm_storage_account" "storage" {

 name = "sademotest1"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 account_tier = "Standard"

 account_replication_type = "GRS"

 enable_https_traffic_only = false

}

output "https_enabled" {

 value = azurerm_storage_account.storage.enable_https_traffic_only

}

output "storage_name" {

 value = azurerm_storage_account.storage.name

}

At the time of writing, the new test feature has been changed in the alpha version

of Terraform 1.6.0. See here for more information: https://github.com/hashicorp/

terraform/releases/tag/v1.6.0-alpha20230816

Running Test and Compliance Security on Terraform Configuration396

The complete source code for the module is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP11/moduletest.

The goal of this recipe is to apply security and naming compliance to ensure that our Azure storage

account has the following requirements:

• The storage account is configured to allow only HTTPS.

• The name of the Azure account must end with 123.

For the execution of this recipe, we explicitly write code for the module that does not respect the

above requirements.

Now, in this recipe, we will write tests to check the module requirements, the tests result will fail

(in red), then we will fix the module code to respect compliance, and finally, we will re-run those

tests and check that all are passing (green).

How to do it…
To operate integrated tests on this Terraform module, perform the following steps:

1. Inside the moduletest folder, create a tests folder, and inside this folder, create a defaults

folder. Inside the defaults folder, create a new file, which we call test_defauts.tf. In

this file, start by writing the following Terraform configuration:

terraform {

 required_providers {

 test = {

 source = "terraform.io/builtin/test"

 }

 }

}

module "storage" {

 source = "../.."

}

This test execution method is called Test-Driven Design (TDD); for more informa-

tion, read this article from Packt here: https://subscription.packtpub.com/
book/web-development/9781782174929/1/ch01lvl1sec09/understanding

-test-driven-development.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP11/moduletest
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP11/moduletest
https://subscription.packtpub.com/book/web-development/9781782174929/1/ch01lvl1sec09/understanding -
https://subscription.packtpub.com/book/web-development/9781782174929/1/ch01lvl1sec09/understanding -
https://subscription.packtpub.com/book/web-development/9781782174929/1/ch01lvl1sec09/understanding -

Chapter 11 397

2. In this file, add the following Terraform configuration to test HTTPS access:

resource "test_assertions" "https" {

 component = "https"

 equal "scheme" {

 description = "https must be enabled"

 got = module.storage.https_enabled

 want = true

 }

}

3. Continue by adding this Terraform configuration in this file to test the Azure storage

account name:

resource "test_assertions" "storageName" {

 component = "name"

 check "storage_name" {

 description = "storage name must end with 123"

 condition = can(regex("^123", module.storage.storage_name))

 }

}

4. Now, inside the moduletest folder, run the following Terraform command:

terraform test

5. Then, we will fix the Terraform configuration of the module with the following code (see

the highlighted, updated code):

resource "azurerm_storage_account" "storage" {

 name = "sademotest123"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 account_tier = "Standard"

 account_replication_type = "GRS"

 enable_https_traffic_only = true

}

6. Finally, we rerun the terraform test command.

Running Test and Compliance Security on Terraform Configuration398

How it works…
In step 1, we create the Terraform test folder structure with the following hierarchy moduletest >

tests > defaults. In this defaults folder, we will create a new Terraform file test_default.tf.

In this file, we add code for the following actions:

• Use the terraform.io/builtin/test Terraform provider

• Reference our module using the module block and internal source

In step 2, in this file, we add a Terraform resource test_assertions that tests the HTTPS require-

ment by checking that the https_enabled module output is equal to true.

In step 3, in this file, we add the Terraform resource test_assertion, which tests the storage

account name requirement by checking that the storage_name module output finishes with 123

using a regular expression.

Then, in step 4, inside the moduletest folder, we run the terraform test command.

This command performs the following actions:

1. Provision the resources for the module by running the terraform init, plan, and apply

commands.

2. Execute the tests.

3. Destroy the provisioned resources by running the terraform destroy command.

4. Display the test results.

The following image shows the output of this command.

Figure 11.15: The terraform test command execution with an error

Chapter 11 399

In this output, we can see the following elements:

• Warning about the experimental feature (bullet 1)

• The test on the storage that is failing because the name doesn’t end with 123 (bullet 2)

• The test on HTTPS that is failing because the code is configured for HTTP (bullet 3)

Now, in step 5, we will fix the Terraform configuration of the module to be compliant with the

specifications (HTTPS and the name).

Finally, to check the configuration, we rerun the terraform test command; the following image

shows the output of this command:

Figure 11.16: Successful execution of the Terraform test command

We can see that all tests are passing successfully.

There’s more…
As we have said a lot, this command is still in the experimental stage and still has some short-

comings in my opinion.

For example, when we execute this command, we do not see any log on what the command oper-

ates; only the result of the tests is displayed at the end – for example, the init, plan, apply, and

destroy command executions, which are done on the module configuration and are not displayed

in the logs of the command. And if the apply command fails, not only does the command not

display it but also mentions that the test results are successful.

Additionally, the terraform test command has some optional arguments as follows:

• compact-warning to compact the warning message

• junit-xml to export the test results in the Junit XML format, to publish this XML file in

a CI/CD system

To get more details about the command options, run the terraform test –help command.

Running Test and Compliance Security on Terraform Configuration400

See also
• For more information about Terraform testing, read the article here: https://www.

hashicorp.com/blog/testing-hashicorp-terraform

• The documentation for this experimental testing feature is available here: https://

developer.hashicorp.com/terraform/language/modules/testing-experiment

• The documentation for the terraform test command is available here: https://
developer.hashicorp.com/terraform/cli/commands/test

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to

the author, and learn about new releases – follow the QR code below:

https://packt.link/cloudanddevops

https://www.hashicorp.com/blog/testing-hashicorp-terraform
https://www.hashicorp.com/blog/testing-hashicorp-terraform
https://developer.hashicorp.com/terraform/language/modules/testing-experiment
https://developer.hashicorp.com/terraform/language/modules/testing-experiment
https://developer.hashicorp.com/terraform/cli/commands/test
https://developer.hashicorp.com/terraform/cli/commands/test
https://developer.hashicorp.com/terraform/cli/commands/test
https://packt.link/cloudanddevops

12
Deep-Diving into Terraform

In this book, we started with recipes for Terraform that concern its installation, writing the Ter-

raform configuration, as well as examining the use of the Terraform CLI commands. Then, we

studied sharing the Terraform configuration using modules. Finally, we focused on the use of

Terraform to build Azure, GCP, AWS, and Kubernetes infrastructures.

Now, in this chapter, we will discuss recipes that allow us to go further in our usage of Terraform.

We will learn how to use the templates in Terraform to generate an Ansible inventory file. We will

discuss how to prevent the destruction of resources, how to implement a zero-downtime deploy-

ment with Terraform, and how to detect the deletion of resources when Terraform applies changes.

Then, we will discuss the use of Terragrunt to manage the workspace dependency and its use as

a wrapper for the Terraform CLI.

Finally, we will talk about the use of Git hooks to check in the Terraform configuration before

committing the configuration and Rover to visualize the Terraform resource dependencies, and

get an overview of the Terraform CDK for abstracting Terraform configuration with a higher-level

language like TypeScript.

In this chapter, we will cover the following recipes:

• Preventing resources from being destroyed

• Ignoring manual changes

• Using Terraform’s templating feature

• Zero-downtime deployment with Terraform

• Managing Terraform configuration dependencies using Terragrunt

• Using Terragrunt as a wrapper for Terraform

Deep-Diving into Terraform402

• Generating a self-signed certificate using Terraform

• Checking the configuration before committing code using Git hooks

• Visualizing Terraform resource dependencies with Rover

• Using the Terraform CDK for developers

Technical requirements
For the recipes in this chapter, we will need the following tools:

• Terragrunt, whose documentation is available at https://terragrunt.gruntwork.io/.

• We will also use the jq utility to parse JSON. You can download it from https://stedolan.

github.io/jq/.

• We will use Node.js to install it, refer to the documentation here: https://nodejs.org/en.

The complete source code for this chapter is available here:

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/

CHAP12

Preventing resources from being destroyed
The use of Infrastructure as Code (IaC) requires attention in some cases. Indeed, when the

Terraform execution is integrated into a CI/CD pipeline and the plan is overlooked, resources

containing important data can be deleted. This can be done either by changing a property of a

Terraform resource, which requires the deletion and recreation of this resource, or by executing

the terraform destroy command.

Fortunately, Terraform includes a configuration in its language that prevents the destruction of

sensitive resources.

In this recipe, we will see how to prevent the destruction of resources that are managed in a

Terraform configuration.

Getting ready
For this recipe, we will use a Terraform configuration to manage the following resources in Azure:

• An Azure Resource Group

• An Azure App Service plan

• An Azure App Service (web app) instance

• An Azure Application Insights instance

https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://nodejs.org/en
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12

Chapter 12 403

We often encounter in company projects that resources contain valuable data; in our example,

we have the Application Insights instance containing the logs and metrics of our application,

which is in the Azure Web App. We don’t want the Application Insights instance to be deleted

automatically and for us to lose its data.

Let’s take as a scenario a company that has decided to change the nomenclature of its resources,

and we need to update the Terraform configuration with the new nomenclature. When running

Terraform, we would get the following result from the terraform plan command:

Figure 12.1: Terraform recreates a resource

As you can see, the name change requires the deletion of the Application Insights instance, which

contains important log metrics.

The purpose of this recipe is to change the Terraform configuration so that the Application In-

sights resource is never deleted.

The source code for this recipe is available at https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/tree/main/CHAP12/preventdestroy.

How to do it…
To prevent the deletion of a resource by Terraform, perform the following steps:

1. Inside the Terraform configuration of the Application Insights resource, add the following

lifecycle block:

resource "azurerm_application_insights" "appinsight-app" {

...

 lifecycle {

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12/preventdestroy
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12/preventdestroy

Deep-Diving into Terraform404

 prevent_destroy = true

 }

}

2. In variables.tf, change the default value of the app_name variable to another name for

the Application Insights instance, such as MyApp2-DEV1.

3. Execute the Terraform CLI workflow – the result is shown in the following screenshot:

Figure 12.2: Terraform prevent_destroy resource

How it works…
In this recipe, we have added the Terraform lifecycle block, which contains the properties that

allow interaction with resource management. Here, in our case, we used the prevent_destroy

property, which, as its name indicates, prevents the destruction of the specified resource.

There’s more…
As we have discussed, the prevent_destroy property allows you to prohibit the deletion of re-

sources.

Note that in our example with Azure, this property does not prohibit the deletion of

resources via the Azure portal or the Azure CLI.

Chapter 12 405

However, it should be noted that if a resource in the Terraform configuration contains this property,

and this property must be deleted when executing the terraform apply command, then this

prevent_destroy property prevents the application from making changes to all the resources

described in the Terraform configuration. This blocks us from applying changes to resources if

those changes include the destruction of that resource. This is one of the reasons why it is rec-

ommended to break up the Terraform configuration, putting the configuration of the sensitive

resources that mustn’t be destroyed into one folder (and thus a separate Terraform state file), and

the other resources into another folder. This way, we can apply changes to the resources without

being blocked by our resource destruction prevention settings.

In addition, mostly to prevent human mistakes, it isn’t possible to add variables to the values of

the properties of the lifecycle block. If you wanted to make the value of this property dynamic,

you might be tempted to use a bool-type variable, such as in the following code:

lifecycle {

 prevent_destroy = var.prevent_destroy_ai

}

However, when executing the terraform apply command, the following error occurs:

Figure 12.3: Terraform prevent_destroy is not allowed as a variable

Here, I’m writing about separating the Terraform configuration and the terraform

state, but it’s also necessary to separate the workflows in the CI/CD pipeline, with

one pipeline that applies the changes and another that destroys the resources.

Deep-Diving into Terraform406

These errors indicate that a variable is not allowed in the lifecycle block, so you must keep

true/false values in the code.

See also
• Documentation on the prevent_destroy property is available at https://www.terraform.

io/docs/configuration/resources.html#prevent_destroy.

• An interesting article on the HashiCorp blog about drift management can be found at

https://www.hashicorp.com/blog/detecting-and-managing-drift-with-terraform/.

• Read this article from HashiCorp about feature toggles, blue-green deployments, and ca-

nary testing using Terraform, available at https://www.hashicorp.com/blog/terraform-

feature-toggles-blue-green-deployments-canary-test/.

Ignoring manual changes
In the previous recipe, we learned how to prevent resources from being deleted when using Ter-

raform by using the prevent_destroy property.

In some situations, which need to be measured, we need to modify the resource properties man-

ually, i.e., without having to modify the Terraform configuration. And as we know, if we modify a

resource outside the Terraform configuration, the next time we apply Terraform, the changes we

made manually will be overwritten by the Terraform configuration. When Terraform is applied,

it performs a refresh step that reads the current state of the infrastructure and compares it to the

desired state described in the configuration files. If Terraform detects any changes between the

two, it will attempt to modify the infrastructure to match the desired state.

This is the purpose of IaC, to have the code be the source of truth for the state of the infrastructure.

In this recipe, we will learn how to update the Terraform configuration to allow us to update

resources manually and not overwrite the resource in the next execution of the terraform apply

command.

Let’s get started!

https://www.terraform.io/docs/configuration/resources.html#prevent_destroy
https://www.terraform.io/docs/configuration/resources.html#prevent_destroy
https://www.hashicorp.com/blog/detecting-and-managing-drift-with-terraform/
https://www.hashicorp.com/blog/terraform-feature-toggles-blue-green-deployments-canary-test/
https://www.hashicorp.com/blog/terraform-feature-toggles-blue-green-deployments-canary-test/

Chapter 12 407

Getting ready
To illustrate this recipe, we will provision a basic Azure resource composed of an Azure Resource

Group, an Azure Service Plan, and an Azure App Service using a Terraform configuration. (The

source code for this Terraform configuration is included in the source code for this recipe.)

To provision the Azure resources, go to the CHAP12/ignorechanges/ folder found in this book’s

GitHub repository. Execute the Terraform workflow running the init, plan and apply commands.

Doing so will create four resources

In this scenario, after provisioning the resources, developers want to add or update the application

settings of the provisioned App Service directly via the Azure portal.

The following image shows Application settings in the Azure portal edited by users:

Figure 12.4: Application settings in the Azure portal

Users add the application settings API_KEY directly via the Azure portal.

The problem is when we run terraform plan on the configuration, we get the following result:

Deep-Diving into Terraform408

Figure 12.5: Terraform changes the value

We can see that the configuration will overwrite the user’s changes.

The goal of this recipe is to allow us to update the application settings manually without im-

pacting the future execution of the terraform apply command for this Terraform configuration.

The source code for this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP12/ignorechanges.

How to do it…
To allow manual changes, perform the following steps:

1. Inside the configuration of the Azure Web App, add the meta-argument ignore_changes

in the lifecycle block with the following configuration:

resource "azurerm_linux_web_app" "app" {
….

 app_settings = {}

 lifecycle {
 ignore_changes = [
 app_settings
]
 }
}

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12/ignorechanges
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12/ignorechanges

Chapter 12 409

2. Run the commands terraform init and terraform plan to check that the App Service

instance will not be changed.

The following image shows the output of terraform plan:

Figure 12.6: Terraform manually changes with ignore_change

No changes will be applied by Terraform.

How it works…
In this recipe, we add the ignore_changes meta-argument inside the lifecycle block to ignore

changes to application settings.

When you use the ignore_changes meta-argument in Terraform, it tells Terraform to skip compar-

ing certain resource attributes between the desired state and the current state during terraform

apply.

There’s more…
When Terraform applies a configuration, it compares the desired state of the infrastructure with

the current state of the infrastructure. It does this by examining the configuration files and also

by querying the API of the cloud provider (such as Azure, AWS, or GCP) to get the current state

of the resources. Then, it determines what changes need to be made to bring the desired state

and the current state into alignment.

However, when you specify an attribute in the ignore_changes block, Terraform will ignore any

changes to that attribute during this comparison process. This means that if the current state

of the infrastructure has a different value for the ignored attribute from what is specified in the

configuration file, Terraform will not attempt to modify the infrastructure to match the config-

uration file. Instead, it will simply leave the current value in place.

Deep-Diving into Terraform410

It’s important to note that ignore_changes should be used with care, as it can potentially lead to

configuration drift if the current state of the infrastructure diverges significantly from the desired

state specified in the configuration file. Therefore, you should only use ignore_changes if you are

sure that it’s safe to do so and you fully understand the consequences.

See also
• The documentation for the ignore_changes meta-argument is available here: https://

developer.hashicorp.com/terraform/language/meta-arguments/lifecycle#ignore_

changes.

Using Terraform’s templating feature
Terraform is a very good IaC tool that allows us to build complex infrastructure with code. One

of Terraform’s features is the ability to generate text or files based on templates. To illustrate this

feature, let’s take a look at a use case I came upon in one of our companies. Of course, there are

plenty of use cases for templating with Terraform.

The scenario I’d like to illustrate is the possibility of generating an Ansible inventory file contain-

ing the list of host VMs to be configured (using Ansible playbooks) from Terraform configuration,

which will have previously provisioned these VMs.

As we studied in Chapter 8, Provisioning Azure Infrastructure with Terraform, concerning the con-

struction of virtual machines, on all cloud providers, the common objective of Terraform is to

build a VM without configuring it, which includes the installation of its middleware and its

administration.

Ansible (https://www.ansible.com/), is very popular in the open-source world (much like Chef

and Puppet). The installation documentation is available here: https://docs.ansible.com/

ansible/latest/installation_guide/intro_installation.html.

One of the advantages of Ansible is that it’s agentless, which means you don’t need to install an

agent on the VMs you want to configure. Thus, to know which VMs to configure, Ansible uses a

file called inventory, which contains the list of VMs that need configuring.

In this recipe, we will learn how to generate this inventory file using Terraform’s templating

features.

Getting ready
The purpose of this recipe is not to discuss the installation and use of Ansible but just the auto-

matic creation of its inventory file.

https://developer.hashicorp.com/terraform/language/meta-arguments/lifecycle#ignore_changes
https://developer.hashicorp.com/terraform/language/meta-arguments/lifecycle#ignore_changes
https://developer.hashicorp.com/terraform/language/meta-arguments/lifecycle#ignore_changes
https://www.ansible.com/
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html

Chapter 12 411

The starting point of our recipe is to use Terraform to create VMs in Azure whose private IP ad-

dresses are not known before they are created. In this Terraform configuration of VMs, we use the

configuration we already studied in the Provisioning and configuring an Azure VM with Terraform

recipe of Chapter 8, Provisioning Azure Infrastructure with Terraform. So, to keep it simple, we use the

Terraform modules published in the public registry with the following Terraform configuration:

1. Instantiate a vmhosts variable that specifies the hostname of the VM we want to create:

variable "vmhosts" {

 type = list(string)

 default = ["vmwebdemo1", "vmwebdemo2"]

}

2. Then, use the network module and compute from the public registry to create the VM

inside the network:

module "network" {

 source = "Azure/network/azurerm"

 resource_group_name = "rg-demoinventory"

 subnet_prefixes = ["10.0.2.0/24"]

 subnet_names = ["subnet1"]

 use_foreach = true

}

module "linuxservers" {

 source = "Azure/compute/azurerm"

 resource_group_name = "vmwebdemo-${random_string.random.result}"

 vm_os_simple = "UbuntuServer"

 nb_instances = 2

 nb_public_ip = 2

 vm_hostname = "azurerm_resource_group.rg.name"

 vnet_subnet_id = azurerm_subnet.snet1.id

}

To learn more about Ansible, I invite you to read Chapter 3, Using Ansible for Config-

uring IaaS Infrastructure, of my book entitled Learning DevOps, also available from

Packt at https://www.packtpub.com/eu/cloud-networking/learning-devops.

https://www.packtpub.com/eu/cloud-networking/learning-devops

Deep-Diving into Terraform412

In the preceding Terraform configuration, we create a virtual network, a subnet, and two Linux

VMs, which will have private IP addresses.

The goal of this recipe is to generate an inventory text file, in the same Terraform configuration,

which will contain the list of hosts (along with their IP addresses) that have been created by

Terraform. This inventory file will be in the following form:

[vm-web]

<host1> ansible_host=1<ip 1>

<host2> ansible_host=<ip 2>

The complete source code for this recipe is available at https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP12/ansible-inventory.

How to do it…
To generate the Ansible inventory file with Terraform, perform the following steps:

1. Inside the folder containing the Terraform configuration, we create a new file called

template-inventory.tpl with the following content:

[vm-web]

%{ for host, ip in vm_dnshost ~}

${host} ansible_host=${ip}

%{ endfor ~}

2. Then, in the main.tf file of the Terraform configuration that creates a VM, we add the

following code to generate the inventory file:

resource "local_file" "inventory" {

 filename = "inventory"

 content = templatefile("template-inventory.tpl",

 {

 vm_dnshost = zipmap(var.vmhosts,module.linuxservers.
network_interface_private_ip)

 })

}

3. Finally, to create the VMs and generate the inventory file, we run the basic Terraform

init, plan, and apply workflow commands.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12/ansible-inventory
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12/ansible-inventory

Chapter 12 413

How it works…
We first create a template-inventory.tpl file, which uses Terraform’s template format. In this

file, we use a for loop with the syntax %{ for host, ip in vm_dnshost ~}, which allows us to loop

the elements of the vm_dnshost variable. For each VM in this loop, we use the following syntax:

${host} ansible_host=${ip}

We end the loop with the %{ endfor ~} syntax.

Then, in Step 2, to the Terraform configuration, we add a local_file resource (which we already

studied in the Manipulating local files with Terraform recipe in Chapter 2, Writing Terraform Con-

figurations) in which we fill in the following properties:

• filename: This contains inventory as its value, which is the name of the file that will be

generated.

• content: This contains the elements that will fill this file. Here, we use the templatefile

function, passing the following as parameters:

• The name of the template file, template-inventory.tpl, that we created in Step 1.

• The vm_dnshost variable, which will fill the content of the template file. We use

the built-in Terraform zipmap function, which allows us to build a map from two

lists, one being the keys list and the other the values list.

For more details on this templating format, read the documentation at https://www.

terraform.io/docs/configuration/expressions.html#string-templates.

In this recipe, the file will be generated inside the directory that currently

contains this Terraform configuration. You are free to enter another folder

for generation and storage.

Documentation on the zipmap function is available at https://www.

terraform.io/docs/configuration/functions/zipmap.html.

https://www.terraform.io/docs/configuration/expressions.html#string-templates
https://www.terraform.io/docs/configuration/expressions.html#string-templates

Deep-Diving into Terraform414

Finally, in the last step, we execute the commands of the Terraform workflow, and at the end of

its execution, we can see that the inventory file has indeed been generated with the following

content:

[vm-web]

vmwebdemo1 ansible_host=10.0.2.5

vmwebdemo2 ansible_host=10.0.2.4

Now, all new VMs added to this Terraform configuration will be added to this Ansible inventory.

There’s more…
The primary objective of this recipe is to show the use of templates with Terraform, which we

applied to an Ansible inventory. There are several other use cases for these templates, such as using

the cloud-init file to configure a VM, which is explained in the article at https://grantorchard.

com/dynamic-cloudinit-content-with-terraform-file-templates/.

See also
• The documentation on the Terraform templatefile function is available at https://www.

terraform.io/docs/configuration/functions/templatefile.html.

• The documentation on the local_file resource of the local provider is available at
https://registry.terraform.io/providers/hashicorp/local/latest/docs/

resources/file.

• A list of books on Ansible from Packt is available at https://subscription.packtpub.

com/search?query=ansible.

• Here is a list of web articles that deal with the same subject of Ansible inventories gener-

ated by Terraform by proposing different solutions:

• https://hooks.technology/posts/ansible-terraform/

• http://web.archive.org/web/20210921222018/https://www.linkbynet.com/

produce-an-ansible-inventory-with-terraform

• https://gist.github.com/hectorcanto/71f732dc02541e265888e924047d47ed

• https://stackoverflow.com/questions/45489534/best-way-currently-to-
create-an-ansible-inventory-from-terraform

https://grantorchard.com/dynamic-cloudinit-content-with-terraform-file-templates/
https://grantorchard.com/dynamic-cloudinit-content-with-terraform-file-templates/
https://www.terraform.io/docs/configuration/functions/templatefile.html
https://www.terraform.io/docs/configuration/functions/templatefile.html
https://registry.terraform.io/providers/hashicorp/local/latest/docs/resources/file
https://registry.terraform.io/providers/hashicorp/local/latest/docs/resources/file
https://subscription.packtpub.com/search?query=ansible
https://subscription.packtpub.com/search?query=ansible
https://hooks.technology/posts/ansible-terraform/
https://gist.github.com/hectorcanto/71f732dc02541e265888e924047d47ed
https://stackoverflow.com/questions/45489534/best-way-currently-to-create-an-ansible-inventory-from-terraform
https://stackoverflow.com/questions/45489534/best-way-currently-to-create-an-ansible-inventory-from-terraform

Chapter 12 415

Zero-downtime deployment with Terraform
As discussed in the previous recipe, changing certain properties of resources described in the

Terraform configuration can lead to their destruction and subsequent recreation. Resources are

destroyed and recreated in the order in which they depend on each other (if they do). The default

behavior when recreating a resource involves first destroying the old one and then creating a new

one, and for certain resources in a production context, during this time period, this will lead to

downtime, that is, a service interruption. This downtime will be greater or smaller depending

on the type of resources that have to be destroyed and then recreated.

In Terraform, there is a mechanism that allows for zero downtime and therefore avoids this service

interruption when deleting a resource.

In this recipe, we will study how to implement zero downtime on a resource described in a Ter-

raform configuration.

Getting ready
For this recipe, we will use the Terraform configuration available here – https://github.com/

PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12/zerodowntime –

which allows us to provision the following resources in Azure:

• An Azure Resource Group

• An Azure Service Plan

• An Azure App Service (web app) instance

• An Application Insights instance

In addition, this Terraform configuration has already been applied to the Azure cloud.

For example, in Azure, a VM takes much longer to destroy and rebuild than a Web

App or a Network Security Group (NSG) rule.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12/zerodowntime
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12/zerodowntime

Deep-Diving into Terraform416

For our use case, let’s assume that a company has decided to change the resource name and that

we need to update the Terraform configuration with the new name. When running Terraform,

the following result would be obtained by the terraform plan command:

Figure 12.7: Terraform destroying a resource

As you can see, the name change requires the deletion of the Azure Web App that hosts our web

application. This deletion would result in the application not being accessible for a small amount

of time while it is recreated. The purpose of this recipe is to modify the Terraform configuration

so that even when the App Service resource is deleted, the web application will still be available.

The source code for this recipe is available at https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/tree/main/CHAP12/zerodowntime.

How to do it…
To provide zero downtime in a Terraform configuration, perform the following steps:

1. In the Terraform configuration, inside the azurerm_app_service resource, add the

lifecycle block, as shown in the following code:

resource "azurerm_app_service" "app" {

 name = "${var.app_name}-${var.environement}"

...

 lifecycle {

 create_before_destroy = true

 }

}

2. Change the name property of the App Service to apply the new nomenclature.

3. Execute the Terraform CLI workflow and the terraform apply result will be shown, as

in the following screenshot:

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12/zerodowntime
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12/zerodowntime

Chapter 12 417

Figure 12.8: Terraform creating a resource before destroying it

How it works…
In Step 2, we added the lifecycle block to the azurerm_app_service resource. In this block, we

added the create_before_destroy property with its value set to true. This property makes the

regeneration of a resource possible in the event of destruction by indicating to Terraform to first

recreate the resource, and only then to delete the original resource.

There’s more…
As we’ve seen, by using this property, there is no more interruption of service. As long as the new

resource is not created, the old one is not deleted, and the application continues to be online.

However, before using create_before_destroy, there are some things to consider, as follows:

The create_before_destroy property only works when a configuration change requires the

deletion and then regeneration of resources. It only works when executing the terraform apply

command; it does not work when executing the terraform destroy command.

You must be careful that the names of the resources that will be created have different names

from the ones that will be destroyed afterward. Otherwise, if the names are identical, the resource

may not be created.

Moreover, this zero-downtime technique is only really effective if the resource that will be impact-

ed is fully operational at the end of its creation. For example, let’s take the case of a VM: although

Terraform can quickly create it, it’s still fully functional after being recreated (the installation of

the middleware and deployment of the application). All this configuration can generate downtime,

and in order to be efficient in this case, I advise you to use Packer from HashiCorp (https://www.

packer.io/), which allows you to create images of VMs that are already fully configured.

To implement zero downtime in Azure with Packer and Terraform, read the tutorial

at https://docs.microsoft.com/en-us/azure/developer/terraform/create-

vm-scaleset-network-disks-using-packer-hcl.

https://www.packer.io/
https://www.packer.io/
https://docs.microsoft.com/en-us/azure/developer/terraform/create-vm-scaleset-network-disks-using-packer-hcl
https://docs.microsoft.com/en-us/azure/developer/terraform/create-vm-scaleset-network-disks-using-packer-hcl

Deep-Diving into Terraform418

Finally, we have seen in this recipe how to implement zero-downtime deployments with Terra-

form, but according to your provider, there are most likely other practices that are native to them.

For example, we can also use load balancers, and for an App Service instance on Azure, we can

use slots, as explained in the documentation at https://docs.microsoft.com/en-us/azure/

app-service/deploy-staging-slots.

See also
• Read the HashiCorp blog post about the create_before_destroy property at https://

www.hashicorp.com/blog/zero-downtime-updates-with-terraform/.

• A good article on zero downtime can be found at https://dzone.com/articles/zero-

downtime-deployment.

Managing Terraform configuration dependencies
using Terragrunt
In several recipes in this book, we have discussed the organization of the files that contain the

Terraform configuration. We examined this more specifically in the Provisioning infrastructure in

multiple environments recipe in Chapter 2, Writing Terraform Configurations, which outlines several

architecture solutions.

One of the best practices regarding the structure of the configuration is to separate the Terra-

form configuration into infrastructure and application components, as explained in the article at
https://www.cloudreach.com/en/resources/blog/how-to-simplify-your-terraform-code-

structure/. The challenge with a structure split into several configurations is the maintenance

of dependencies and run schedules between these components.

Among all the third-party tools that revolve around Terraform, there is Terragrunt (https://

terragrunt.gruntwork.io/), developed by Gruntwork. Terragrunt is open-source and offers

a lot of additional functionality for the organization and execution of Terraform configurations.

In this recipe, we will learn how you can use Terragrunt to manage the dependencies of different

Terraform workspace dependencies.

Getting ready
For this recipe, we must have previously installed the Terragrunt binary on our workstations

by following the instructions at https://terragrunt.gruntwork.io/docs/getting-started/

install/#install-terragrunt.

https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://www.hashicorp.com/blog/zero-downtime-updates-with-terraform/
https://www.hashicorp.com/blog/zero-downtime-updates-with-terraform/
https://dzone.com/articles/zero-downtime-deployment
https://dzone.com/articles/zero-downtime-deployment
https://www.cloudreach.com/en/resources/blog/how-to-simplify-your-terraform-code-structure/
https://www.cloudreach.com/en/resources/blog/how-to-simplify-your-terraform-code-structure/
https://terragrunt.gruntwork.io/
https://terragrunt.gruntwork.io/
https://terragrunt.gruntwork.io/docs/getting-started/install/#install-terragrunt
https://terragrunt.gruntwork.io/docs/getting-started/install/#install-terragrunt

Chapter 12 419

In this recipe, we will build an infrastructure consisting of the following elements:

• An Azure Resource Group

• An Azure network with a virtual network and a subnet

• An Azure VM

The architecture of the folders containing this Terraform configuration is as follows:

Figure 12.9: Terraform folder configuration structure

The problem with this architecture is the dependency between configurations and the fact that

they must be executed in a specific order. Indeed, to apply the network, the Resource Group must

be applied first, and it’s the same for the VM: the network must be created beforehand. With Ter-

raform, in the case of several changes, the Terraform workflow must be executed several times

and in the correct order for each of those configurations.

Before installing Terragrunt, check the version compatibility with Terraform by using

the following link: https://terragrunt.gruntwork.io/docs/getting-started/
supported-terraform-versions/

Deep-Diving into Terraform420

The purpose of this recipe is not to explain all the functionalities of Terragrunt in detail, but to

demonstrate one of its features, which is to simplify the execution of Terraform when the Terra-

form configuration is separated into several folders that are linked by dependencies.

The source code for this recipe is available at https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/tree/main/CHAP12/demogrunt/.

How to do it…
Perform the following steps to use Terragrunt with Terraform dependencies:

1. To add the dependency between the network and rg configurations, inside the network

folder, add a new file called terragrunt.hcl with the following content:

dependencies {

 paths = ["../rg"]

}

2. Inside the vm-web folder, add a new file called terragrunt.hcl with the following content:

dependencies {

 paths = ["../network"]

}

3. In a terminal, inside the dev folder, run the following terragrunt commands to create

the Resource Group, the Azure Virtual Network, and the VM:

terragrunt run-all init

terragrunt run-all apply --terragrunt-non-interactive

How it works…
The terragrunt.hcl file we added contains the configuration for Terragrunt.

Here, in the configuration we wrote in Step 2, we indicated a dependency between the network

configuration and the Resource Group configuration (because the Resource Group must be created

before executing the network configuration) and the dependency between the VM and the network.

In Step 3, we then executed the Terragrunt commands (terragrunt run-all init and terragrunt

run-all apply) and when executing them, thanks to the configuration we wrote, Terragrunt will

first apply Terraform in the correct order of dependency that we configured in the file terragrunt.

hcl.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12/demogrunt/
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12/demogrunt/

Chapter 12 421

So the application order is to start with the Resource Group, then move to the network automat-

ically, and finally handle the VM. This is without having to apply the Terraform workflow several

times to several Terraform configurations and in the right order.

There’s more…
As you saw in this recipe, we did not execute the terragrunt run-all plan command because,

in the Terraform configuration, we used resources of type data, which reference resources that

must be created in the dependency configuration (which must be applied before the current

configuration). And so the execution of the terraform plan command doesn’t work until the

Terraform dependency configuration has been applied.

In this recipe, we studied how to improve the dependency between the Terraform configuration

using Terragrunt and its configuration. We can go even further with this improvement, external-

izing the configuration (which is redundant between each environment) by reading the documen-

tation available at https://terragrunt.gruntwork.io/docs/features/execute-terraform-

commands-on-multiple-modules-at-once/.

However, since Terragrunt runs the Terraform binary that is installed on your local computer,

you should make sure to install a version of Terragrunt that is compatible with the version of

the Terraform binary installed.

In the next recipe, we will complete the configuration of Terragrunt to be able to use it as a wrap-

per for Terraform by simplifying the Terraform command lines.

See also
• Detailed documentation for Terragrunt is available at .

• The source code for Terragrunt is available on GitHub at https://github.com/gruntwork-

io/terragrunt.

• A useful blog article on the architecture of the Terraform configuration can be found

at https://www.hashicorp.com/blog/structuring-hashicorp-terraform-

configuration-for-production/.

https://terragrunt.gruntwork.io/docs/features/execute-terraform-commands-on-multiple-modules-at-once/
https://terragrunt.gruntwork.io/docs/features/execute-terraform-commands-on-multiple-modules-at-once/
https://github.com/gruntwork-io/terragrunt
https://github.com/gruntwork-io/terragrunt
https://www.hashicorp.com/blog/structuring-hashicorp-terraform-configuration-for-production/
https://www.hashicorp.com/blog/structuring-hashicorp-terraform-configuration-for-production/

Deep-Diving into Terraform422

Using Terragrunt as a wrapper for Terraform
In the many years that I have worked and supported customers with Terraform, a recurring

problem has prevented users from making full use of Terraform’s functionality. What I have

noticed is that these users do not encounter any problems with the language and the writing

of the provider’s resource configuration, but they do have difficulty with the automation of the

Terraform client through the use of command lines in their workflow.

To simplify the automation of the Terraform workflow, whether for use on a local workstation or

in a CI/CD pipeline, we can use Terragrunt as a Terraform wrapper that integrates the Terraform

workflow.

What we will learn in this recipe is how to use Terragrunt (which we already studied in the pre-

vious recipe) as a Terraform wrapper.

Getting ready
For this recipe, we must have previously installed the Terragrunt binary on our workstations

by following the instructions at https://terragrunt.gruntwork.io/docs/getting-started/

install/#install-terragrunt.

The Terraform configuration used in this recipe is available at https://github.com/

PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12/demogrunt-

wrapper. It allows us to build resources in Azure. It uses an env-vars.tfvars variable file and a

remote backend configuration file (azurerm) in the backend.tfvars file. To create this infrastruc-

ture, the following Terraform commands must be executed:

terraform init -backend-config="backend.tfvars"

terraform plan -var-file env-vars.tfvars

terraform apply -var-file env-vars.tfvars

Before installing Terragrunt, check the version compatibility with Terraform by using

the following link: https://terragrunt.gruntwork.io/docs/getting-started/
supported-terraform-versions/

The Terraform configuration for this resource creates resources in Azure, but what

we will study in this recipe applies to any Terraform configuration.

https://terragrunt.gruntwork.io/docs/getting-started/install/#install-terragrunt
https://terragrunt.gruntwork.io/docs/getting-started/install/#install-terragrunt
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12/demogrunt-wrapper
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12/demogrunt-wrapper
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12/demogrunt-wrapper

Chapter 12 423

The purpose of this recipe is to use the Terragrunt configuration to help execute these Terraform

commands in an automation context.

How to do it…
Perform the following steps to use Terragrunt as a Terraform CLI wrapper:

1. Inside the folder that contains the Terraform configuration, create a new file called

terragrunt.hcl.

2. In this file, add the following configuration section to configure the init command:

extra_arguments "custom_backend" {

 commands = [

 "init"

]

 arguments = [

 "-backend-config", "backend.tfvars"

]

}

3. Add the following code to configure the plan and apply commands:

extra_arguments "custom_vars-file" {

 commands = [

 "apply",

 "plan",

 "destroy",

 "refresh"

]

 arguments = [

 "-var-file", "env-vars.tfvars"

]

}

4. In the command-line terminal, from the folder that contains the Terraform configuration,

run the following Terragrunt command to initialize the Terraform context:

terragrunt init

Deep-Diving into Terraform424

5. Finally, run the following Terragrunt commands to apply the changes we’ve made:

terragrunt plan

terragrunt apply

How it works…
In Step 1, we created the terragrunt.hcl file, which will contain the Terragrunt configuration of

the Terraform wrapper. In Step 2, we described in this file the Terraform execution configuration

for the init command. In the list of commands, we indicate that this configuration applies to the

init command, and in the list of arguments, we put an entry for the --backend-config option,

which takes as a value the backend.tfvars file.

Then, in Step 3, we did the same configuration operation for the plan and apply commands. In

this configuration, we specify the list of commands: plan, apply, destroy, and refresh. We also

specified the -var-file, env-vars.tfvars Terraform CLI options on the arguments block.

Once this configuration file is finished being written, we use it to run Terragrunt. In Step 4, we

execute the terragrunt init command, which will use the configuration we wrote and so Ter-

ragrunt will execute the following command:

terraform init -backend-config="backend.tfvars"

Finally, to preview the changes, we execute the terragrunt plan command, which will cause Ter-

ragrunt to use the configuration we wrote, and Terragrunt will execute the following command:

terraform plan -var-file env-vars.tfvars

If these changes correspond to your expectations, you can use the following Terragrunt command

to apply these changes:

terragrunt apply

Finally, to destroy all the resources provisioned by Terragrunt, run the command terragrunt

destroy, which runs the Terraform command terraform destroy -var-file env-vars.tfvars.

See also
• Detailed CLI configuration documentation is available at https://terragrunt.gruntwork.

io/docs/features/keep-your-cli-flags-dry/.

https://terragrunt.gruntwork.io/docs/features/keep-your-cli-flags-dry/
https://terragrunt.gruntwork.io/docs/features/keep-your-cli-flags-dry/

Chapter 12 425

Generating a self-signed SSL certificate using
Terraform
In this recipe, we will learn how to generate an SSL certificate using Terraform.

Let’s get started!

Getting ready
This recipe doesn’t require any software installation.

The goal of this recipe is to learn to generate a self-signed SSL certificate with Terraform config-

uration.

The source code for this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP12/cert.

How to do it…
To generate an SSL certificate with Terraform, perform the following steps:

1. In a new main.tf file, write the following Terraform configuration:

terraform {

 required_providers {

 tls = {

 source = "hashicorp/tls"

 version = "4.0.4"

 }

 }

}

resource "tls_private_key" "private_key" {

 algorithm = "RSA"

}

resource "tls_self_signed_cert" "self_signed_cert" {

 private_key_pem = tls_private_key.private_key.private_key_pem

 validity_period_hours = 120

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12/cert
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12/cert

Deep-Diving into Terraform426

 subject {

 common_name = "test.com"

 }

 allowed_uses = [

 "digital_signature",

 "cert_signing",

 "crl_signing",

]

}

2. Then, run the basic Terraform workflow by running the commands terraform init,

plan, and apply.

How it works…
In Step 1 of this recipe, we write Terraform configuration that generates a self-signed SSL certificate.

In this configuration, we write the following elements:

• In the provider configuration, we use the provider hashicorp/tls.

• Then, we use the resource tls_private_key to generate the certificate private key by using

the algorithm RSA; other algorithm values are listed here: https://registry.terraform.

io/providers/hashicorp/tls/latest/docs/resources/private_key#algorithm.

• Finally, we use the resource tls_self_signed_cert. By using a private key in the preceding

resource, tls_private_key, we indicate the validity of the certificate is 120 hours, and

the common name of the certificate is test.com for the sample. The documentation for

this resource is available here: https://registry.terraform.io/providers/hashicorp/

tls/latest/docs/resources/self_signed_cert.

After executing the terraform apply command in Step 2, all certificate details are stored in the

Terraform state.

There’s more…
In this recipe, we learned about the basic Terraform configuration to generate a self-signed certif-

icate. The following are some use cases that we can perform to go deeper with the two following

use-cases:

https://registry.terraform.io/providers/hashicorp/tls/latest/docs/resources/private_key#algorithm
https://registry.terraform.io/providers/hashicorp/tls/latest/docs/resources/private_key#algorithm
https://registry.terraform.io/providers/hashicorp/tls/latest/docs/resources/self_signed_cert
https://registry.terraform.io/providers/hashicorp/tls/latest/docs/resources/self_signed_cert

Chapter 12 427

1. In this recipe, the content that we generated is inside the terraform state. If we want to

generate a key and pem file on the disk, add the following Terraform configuration in main.

tf (created in the recipe):

resource "local_file" "ca_key" {

 content = tls_private_key.private_key.private_key_pem

 filename = "${path.module}/ca.key"

}

resource "local_file" "ca_cert" {

 content = tls_self_signed_cert.self_signed_cert.cert_pem

 filename = "${path.module}/ca.pem"

}

With this above configuration, after the execution of the terraform apply command, the

files ca.key and ca.pem will be generated inside the folder that contains this Terraform

configuration.

2. In this main recipe, we learned about certificate generation in PEM format. We can also

use Terraform to generate Windows certification in PXF format, based on the generated

PEM certificate. To generate a PXF certificate, add the following Terraform configuration

to main.tf:

Complete the terraform block with the reference to the pkcs_12 provider:

terraform {

 required_providers {

 …

 pkcs12 = {

 source = "chilicat/pkcs12"

 version = "0.0.7"

 }

 }

}

Then, add the Terraform resources:

resource "random_password" "self_signed_cert" {

 length = 24

 special = true

Deep-Diving into Terraform428

}

resource "pkcs12_from_pem" "self_signed_cert_pkcs12" {

 cert_pem = tls_self_signed_cert.self_signed_cert.cert_pem

 private_key_pem = tls_private_key.private_key.private_key_pem

 password = random_password.self_signed_cert.result

}

resource "local_file" "result" {

 filename = "${path.module}/ca.pxf"

 content_base64 = pkcs12_from_pem.self_signed_cert_pkcs12.
result

}

In this above configuration, we use the resource pkcs12_from_pem to generate the PFX

based on the PEM certificate using a random password and use the resource local_file

to save the content of the PFX certificate to the disk.

With this above configuration, after the execution of the terraform apply command, the file

ca.pxf will be generated inside the folder that contains this Terraform configuration.

See also
• The tls Terraform provider documentation is available here: https://registry.

terraform.io/providers/hashicorp/tls/latest/docs.

• The pkcs12 Terraform provider documentation is available here: https://registry.

terraform.io/providers/chilicat/pkcs12/latest.

• Article for PXF certificate on Azure: https://blog.xmi.fr/posts/tls-terraform-azure-

self-signed/.

• GCP documentation on using a certificate with Terraform: https://cloud.google.com/

certificate-authority-service/docs/using-terraform.

• Renew a certificate using Terraform on AWS: https://www.missioncloud.com/blog/

how-to-generate-and-renew-an-ssl-certificate-using-terraform-on-aws.

• Blog post on a SSL certificate using Terraform https://amod-kadam.medium.com/create-

private-ca-and-certificates-using-terraform-4b0be8d1e86d.

https://registry.terraform.io/providers/hashicorp/tls/latest/docs
https://registry.terraform.io/providers/hashicorp/tls/latest/docs
https://registry.terraform.io/providers/chilicat/pkcs12/latest
https://registry.terraform.io/providers/chilicat/pkcs12/latest
https://blog.xmi.fr/posts/tls-terraform-azure-self-signed/
https://blog.xmi.fr/posts/tls-terraform-azure-self-signed/
https://cloud.google.com/certificate-authority-service/docs/using-terraform
https://cloud.google.com/certificate-authority-service/docs/using-terraform
https://www.missioncloud.com/blog/how-to-generate-and-renew-an-ssl-certificate-using-terraform-on-aws
https://www.missioncloud.com/blog/how-to-generate-and-renew-an-ssl-certificate-using-terraform-on-aws
https://amod-kadam.medium.com/create-private-ca-and-certificates-using-terraform-4b0be8d1e86d
https://amod-kadam.medium.com/create-private-ca-and-certificates-using-terraform-4b0be8d1e86d

Chapter 12 429

Checking the configuration before committing code
using Git hooks
Git hooks are scripts that run automatically before or after certain Git events, such as committing

code. These scripts can be used to automate tasks and ensure code quality.

In different chapters of this book, we have learned some commands and tools in Terraform that

allow us to do Terraform code analysis.

Here are some of the Terraform commands and tools we have learned about:

• terraform fmt to format the configuration with the right code indentation

• terraform validate to validate the Terraform configuration syntax

• Tflint, a linter for Terraform configuration

• Tfsec to check some security compliance

The goal of this recipe is to show how to use Git hooks to integrate these commands and the

execution of these tools before committing the configuration to a Git repository.

Let’s get started!

Getting ready
Before performing this recipe, it is recommended to read the documentation on Git Hooks, avail-

able here – https://www.atlassian.com/git/tutorials/git-hooks – and also here – https://

git-scm.com/book/en/v2/Customizing-Git-Git-Hooks.

You’ll need to install the following requirements:

• pre-commit, which is the tool for managing pre-commit Git hooks. The installation doc-

umentation is available here: https://pre-commit.com/#install.

• Tflint – the installation documentation is available here: https://github.com/

terraform-linters/tflint.

• Tfsec – the documentation installation is available here: https://aquasecurity.github.

io/tfsec/v1.28.1/guides/installation/. Also, read the dedicated recipe Using Tfsec to

analyze the compliance of the Terraform configuration in Chapter 11, Running Test and Com-

pliance Security on Terraform Configuration.

https://www.atlassian.com/git/tutorials/git-hooks
https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
https://pre-commit.com/#install
https://github.com/terraform-linters/tflint
https://github.com/terraform-linters/tflint
https://aquasecurity.github.io/tfsec/v1.28.1/guides/installation/
https://aquasecurity.github.io/tfsec/v1.28.1/guides/installation/

Deep-Diving into Terraform430

The goal of this recipe is to integrate pre-commit Git Hooks into the GitHub repository that con-

tains the complete source code of this book (https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition). To check the configuration formatting, run the terraform validate

command, execute tflint, and run tfsec automatically before the commit.

How to do it…
To integrate pre-commit hooks into the Terraform configuration, perform the following steps:

1. In the root of the repository that contains the Terraform configuration, create a new file

named .pre-commit-config.yaml.

2. In this file, write the following content:

repos:

 - repo: https://github.com/antonbabenko/pre-commit-terraform

 rev: "v1.78.0"

 hooks:

 - id: terraform_fmt

 - id: terraform_tflint

 - id: terraform_validate

 - id: terraform_tfsec

The preceding code is simply basic code. The real code in the root of the GitHub repository

contains more options to excludes some folders.

3. Then, to manually run the pre-commit based on the YAML configuration above, in the

terminal console, run the following pre-commit command:

pre-commit run --all-files

4. Finally, to try the pre-commit Git hooks, create a new Terraform configuration inside the

new file main.tf in the precommit-demo folder.

5. In this file, write the Terraform configuration. The content of this file is not very rel-

evant to this recipe. You can find the content of this file here: https://github.com/
PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12/

precommit-demo.

6. Commit this code in Git by running the following commands:

git add .

git commit -m "test pre-commit"

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12/precommit-demo
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12/precommit-demo
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12/precommit-demo

Chapter 12 431

The following image shows the partial execution output of this command:

Figure 12.10: Pre-commit hooks with the Terraform check

We can see that the git commit command triggers the pre-commit Git hook execution, starting

with terraform fmt and terraform validate.

How it works…
In Step 1 and Step 2, we create a new .pre-commit-config.yaml file at the root of the repository.

In this file, we write the YAML configuration that describes the list of tools and commands to run

just before the Git commit operation.

Here, in our YAML configuration, we specify the GitHub repo of scripts to run. This GitHub reposi-

tory – https://github.com/antonbabenko/pre-commit-terraform – contains a lot of Terraform

commands and tools to integrate into the pre-commit.

In this recipe, we list 4 commands by ID (these IDs are specified in the above GitHub repository):

terraform_fmt, terraform_tflint, terraform_validate, and terraform_tfsec.

Note that here, for the first execution of the pre-commit, we must also com-

mit the pre-commit configuration. For committing after the first execution,

however, to run the previous commands you need to have files for commits.

https://github.com/antonbabenko/pre-commit-terraform

Deep-Diving into Terraform432

In Step 3, to check that the configuration is working fine, and get the pre-commit result execu-

tion, we run the command pre-commit run is ––all-file to execute the pre-commit on all files

present in the repository.

In Steps 4 and 5, we test the execution of the pre-commit hook by adding a new Terraform con-

figuration and performing a git commit operation. In the resulting command output, we can

see that the pre-commit has been triggered.

If the execution of the pre-commit hooks returns an error, the files are not committed, which

allows us to commit only files that respect the rules of validation and compliance specified in

the commands and tools integrated into the pre-commit.

There’s more…
If for some reason we want to disable the pre-commit hooks, we can add the –no-verify option

to the git commit command, as explained in this blog post: https://ma.ttias.be/git-commit-

without-pre-commit-hook/.

We have learned in this recipe how, using pre-commit Git hooks, we can execute check and

validation commands before committing code, but of course this does not prevent us from also

integrating these commands and tools into the Terraform CI/CD pipelines, which we will see in

detail in Chapter 13, Automating Terraform Execution in a CI/CD Pipeline.

See also
• The pre-commit documentation is available here: https://pre-commit.com/.

• The GitHub repository for the Terraform pre-commit is available at https://github.com/

antonbabenko/pre-commit-terraform.

• A blog post on the Terraform pre-commit is available here: https://jamescook.dev/

pre-commit-for-terraform.

Read the documentation inside the GitHub repository – https://github.com/

antonbabenko/pre-commit-terraform – to see all included commands and tools.

If we want to integrate other tools, add them to the YAML configuration by following

the pre-commit documentation available here: https://pre-commit.com/.

https://ma.ttias.be/git-commit-without-pre-commit-hook/
https://ma.ttias.be/git-commit-without-pre-commit-hook/
https://pre-commit.com/
https://github.com/antonbabenko/pre-commit-terraform
https://github.com/antonbabenko/pre-commit-terraform
https://jamescook.dev/pre-commit-for-terraform
https://jamescook.dev/pre-commit-for-terraform

Chapter 12 433

Visualizing Terraform resource dependencies with
Rover
In Chapter 6, Applying a Basic Terraform Workflow in the Generating the dependency graph recipe,

we learned how to generate a Terraform dependency graph using the Terraform command line.

This generated graph provides a global visualization of the dependencies of modules and resources,

but it is static and sometimes difficult to read due to the complexity of the graph.

Among the open-source tools that integrate with Terraform, there is a tool called Rover, which

is an open-source tool that allows for dynamic and interactive visualization of the dependency

graph of the Terraform resources that are provisioned.

In this recipe, we will learn how to use Rover to visualize the dependency graph.

Let’s get started!

Getting ready
We will just install Rover before performing the recipe.

To install Rover, refer to the documentation here: https://github.com/im2nguyen/rover. We

can use it by installing the CLI locally or by using Docker.

We do not use a specific Terraform configuration for this recipe. For the sample configuration,

we will use the existing Terraform configuration, which is available here: https://github.com/

PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP08/sample-app.

How to do it…
To visualize the dependency graph with Rover, perform the following steps:

1. Navigate into the folder that contains the Terraform configuration to display the graph

and run the command terraform init.

2. Run the command terraform plan -out="tfplan.out".

3. Then, run Rover on this generated plan by running this command:

rover -tfPath "/home/mikael/.tfenv/bin/terraform"

In the above command, the tfPath parameter value was set for Linux. For

Windows users, you can set -tfPath “terraform.exe", or the specific path

for terraform.exe.

https://github.com/im2nguyen/rover
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP08/sample-app
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP08/sample-app

Deep-Diving into Terraform434

The following image shows the output of the execution of this command:

Figure 12.11: Rover execution

Rover will start a website on port 9000 on localhost.

4. Open your browser and navigate to the URL http://localhost:9000. The Rover website

displays an interactive dependency graph, with variables, resources, outputs, and more

details.

The following image shows the content of the generated Rover page:

Figure 12.12: Rover dependency graph

We can see the dependency graph, with variables, and in the left-hand menu, some options to

filter the data in the graph.

How it works…
In Steps 1 and 2 of this recipe, we run the command terraform init and generate the output file

of the terraform plan of our Terraform configuration.

Then, we use the Rover command line rover -tfPath "/home/mikael/.tfenv/bin/terraform".

to generate a dynamic and more user-friendly UI of the dependency graph.

http://localhost:9000

Chapter 12 435

On this command line, we add the optional argument -tfPath to specify the path of the Terra-

form binary. And we specify the path of the generated plan output with the “.” to indicate that

is in the current folder.

For more information about all arguments available on the Rover command line, execute the

command rover -–help.

Finally, we open the localhost:9000 page and we can see the dependency graph generated by

Rover.

See also
• The documentation for Rover is available here https://github.com/im2nguyen/rover.

• See Rover in action in these videos – https://www.youtube.com/watch?v=2Y9yXgURxyE
– and here – https://www.hashicorp.com/resources/terraform-plan-interactive-

configuration-and-state-visualization-with-rover.

Using the Terraform CDK for developers
So far in this book, we have seen how to write Terraform configuration using HCL. HCL is a config-

uration language that has the advantage of being easy to read for humans. However, application

developers who wanted to use Terraform had to learn a new language.

To address this issue, in August 2022, HashiCorp announced the availability of a Cloud Devel-

opment Kit for Terraform (CDKTF). Read the announcement blog post here: https://www.

hashicorp.com/blog/cdk-for-terraform-now-generally-available.

CDKTF is a tool that allows you to define IaC using familiar programming languages such as

TypeScript, JavaScript, Python, and Java.

With CDKTF, you write code that describes your infrastructure in a higher-level language, allowing

for more abstraction layers compared to the Terraform (HCL) language. CDKTF synthesizes your

code, i.e., generates the equivalent Terraform configuration under the hood. This allows you to

use a familiar programming language syntax to define your infrastructure, while still leveraging

the power and flexibility of the Terraform engine to provision and manage resources.

Some of the benefits of using CDKTF include:

• Simplicity: CDKTF makes it easy to create and manage infrastructure with just a few lines

of code, using a high-level object-oriented syntax.

• Reusability: CDKTF makes it easy to create reusable components, which can be shared

across different projects or teams.

https://github.com/im2nguyen/rover
https://www.youtube.com/watch?v=2Y9yXgURxyE - and here - https://www.hashicorp.com/resources/terraform-plan-interactive-configuration-and-state-visualization-with-rover
https://www.youtube.com/watch?v=2Y9yXgURxyE - and here - https://www.hashicorp.com/resources/terraform-plan-interactive-configuration-and-state-visualization-with-rover
https://www.youtube.com/watch?v=2Y9yXgURxyE - and here - https://www.hashicorp.com/resources/terraform-plan-interactive-configuration-and-state-visualization-with-rover
https://www.hashicorp.com/blog/cdk-for-terraform-now-generally-available
https://www.hashicorp.com/blog/cdk-for-terraform-now-generally-available

Deep-Diving into Terraform436

• Type Safety: CDKTF allows you to leverage the type checking and error reporting features

of modern programming languages to catch errors at compile time, reducing the risk of

runtime errors and speeding up the development cycle.

• Ease of Integration: Because CDKTF generates standard Terraform code, it can be used

seamlessly with other Terraform tools and workflows.

• Faster Development: Assuming you choose a language you’re already familiar with, CD-

KTF could allow you to create and modify infrastructure quicker than with traditional

Terraform code, resulting in faster development cycles and more responsive infrastructure.

In this recipe, we will learn how to use CDKTF using the TypeScript language and will not use

any other languages such as Go or C#.

Let’s get started!

Getting ready
To complete this recipe, you’ll need to install:

• NodeJS and npm – the installation documentation is available here: https://nodejs.

org/en/download.

• TypeScript: Download and install using the documentation here: https://www.

typescriptlang.org/download.

You need to also have some knowledge of TypeScript/Node.js development practices.

For the sample of this recipe, using the CDKTF tool, we will provision an Azure infrastructure

composed of an Azure Resource Group, an Azure Service Plan, and an Azure Linux App Service.

The recipe will be composed of two parts:

• Writing the TypeScript code of the infrastructure

• Using the CDKTF CLI to provision the infrastructure

The source code for this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP12/cdktf-demo.

https://nodejs.org/en/download
https://nodejs.org/en/download
https://www.typescriptlang.org/download
https://www.typescriptlang.org/download
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12/cdktf-demo
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12/cdktf-demo

Chapter 12 437

How to do it…
To use CDKTF, perform the following steps:

1. Install the npm package cdktf-cli available here – https://www.npmjs.com/package/

cdktf-cli – by executing the following command:

npm install --global cdktf-cli@latest

Then, check the package installation by running the command cdktf–help:

Figure 12.13: cdktf list commands

We can see that this above command displays all CDKTF CLI available commands.

2. Create a new folder that will contain the code, named cdktf-demo (this name is an ex-

ample for this recipe).

3. Inside this folder, cdktf-demo, in the terminal console, run this command:

cdktf init --template=typescript

https://www.npmjs.com/package/cdktf-cli
https://www.npmjs.com/package/cdktf-cli

Deep-Diving into Terraform438

Then, during this execution, the CDKTF CLI will ask some questions to provide the best

starting template, as shown in the following image:

Figure 12.14: cdktf init command

We can see folders and files of the templates in the cdktf-demo folder.

4. In the terminal console, run the command npm install @cdktf/provider-azurerm.

5. Then, inside the folder cdktf-demo, in the generated code, delete the code of the main.

ts and replace it with the following code (which we explain in detail in the How it works…

section):

import { Construct } from "constructs";

import { App, TerraformStack, TerraformOutput } from "cdktf";

import { AzurermProvider } from "@cdktf/provider-azurerm/lib/
provider";

import { ResourceGroup } from "@cdktf/provider-azurerm/lib/resource-
group";

import { ServicePlan } from "@cdktf/provider-azurerm/lib/service-
plan";

import { LinuxWebApp } from "@cdktf/provider-azurerm/lib/linux-web-
app";

Chapter 12 439

class CDKTFDemo extends TerraformStack {

 constructor(scope: Construct, name: string) {

 super(scope, name);

 let random = (Math.random() + 1).toString(36).substring(7);

 new AzurermProvider(this, "azureFeature", {

 features: {},

 });

 const rg = new ResourceGroup(this, "cdktf-rg", {

 name: "cdktf-demobook-",

 location: "westeurope",

 });

 const asp = new ServicePlan(this, "cdktf-asp", {

 osType: "Linux",

 skuName: "S1",

 resourceGroupName: rg.name,

 location: rg.location,

 name: "cdktf-demobook"+random

 });

 const app = new LinuxWebApp(this, "cdktf-app", {

 name: "cdktf-demobook",

 location: rg.location,

 servicePlanId: asp.id,

 resourceGroupName: rg.name,

 clientAffinityEnabled: false,

 httpsOnly: true,

 siteConfig: {

 },

 });

 new TerraformOutput(this, "cdktf-app-url", {

 value: 'https://${app.name}.azurewebsites.net/',

 });

 }

Deep-Diving into Terraform440

}

const app = new App();

new CDKTFDemo(app, "azure-app-service");

app.synth();

6. Finally, to deploy this infrastructure, in the terminal console, run the following cdktf

command:

cdktf deploy

During the execution of this command, the CDKTF CLI will ask for confirmation to apply.

Figure 12.15: cdktf approval of application

Select the Approve choice to confirm the application.

The provisioning of the infrastructure will start….

7. At the end of the provisioning, the following command output displays the result of the

application execution.

Figure 12.16: cdktf apply execution output

All resources are provisioned, and the terminal displays the value of the output cdktf-app-service.

Chapter 12 441

How it works…
In Step 1, we install the CDKTF npm package named cdktf-cli from the npm registry.

In Step 2, we create a new folder that will contain the code of the infrastructure in the TypeScript

language.

In Step 3, we run the command cdktf init –template=Typescript to generate a template for

the CDKTF code in the TypeScript language.

Then, in Step 4, we install the azurerm provider npm package for CDKTF by running the command

npm install @cdktf/provider-azurerm.

The package will be downloaded in the node_modules folder, which we can see in the following

image:

Figure 12.17: cdktf provider-azurerm npm package

We can see the provider-azurerm npm package downloaded in the node_modules folder.

In Step 5, we write the code for our infrastructure in main.tf in the TypeScript language. Here

are some details of this code:

Deep-Diving into Terraform442

• We start the code by importing the azurerm npm provider library.

• Then, we write the TypeScript code to provision each Azure resource:

This code below provisions the Azure Resource Group:

const rg = new ResourceGroup(this, "cdktf-rg", {

 name: "cdktf-demobook",

 location: "westeurope",

 });

This code below provisions the Azure Service Plan:

 const asp = new ServicePlan(this, "cdktf-asp", {

 osType: "Linux",

 skuName: "S1",

 resourceGroupName: rg.name,

 location: rg.location,

 name: "cdktf-demobook"

 });

This code below provisions the Linux App Service:

 const app = new LinuxWebApp(this, "cdktf-app", {

 name: "cdktf-demobook",

 location: rg.location,

 servicePlanId: asp.id,

 resourceGroupName: rg.name,

 clientAffinityEnabled: false,

 httpsOnly: true,

 siteConfig: {

 },

 });

Finally, we write the following code to output the URL of the Azure Web App:

 new TerraformOutput(this, "cdktf-app-url", {

 value: 'https://${app.name}.azurewebsites.net/',

 });

Chapter 12 443

• The last line of the code is the main code that calls the class and CDKTF function with

the following code:

const app = new App();

new CDKTFDemo(app, "azure-app-service");

app.synth();

In Step 6, we execute the command cdktf deploy, which performs the following operations:

• Generate the HCL code from the above TypeScript code. This HCL code (in JSON format)

is stored in the cdktf.out subfolder, and this operation is called synthesizing.

• Inside this generated HCL code, run the terraform init command.

• Inside this generated HCL code, run the terraform apply command.

• Then, exactly as would happen with the terraform apply command, the execution of

this cdktf command asks for confirmation to apply the changes of code.

• We select the option Approve to apply the changes and provision the resources.

In Step 7, we see the output of the cdktf deploy command.

There’s more…
Here in this recipe, we learned the basic steps for using CDKTF, and we explicitly used only one

CDKTF command to apply the resources.

There are other CDKTF CLI commands that can be useful. Below are some of them:

• Run the command cdktf diff to get a preview of changes. This command is equal to the

terraform plan command.

• Run the command cdktf destroy to delete all provisioned resources. This command is

equal to the terraform destroy command.

• In cdktf deploy, add the option –auto-approve to directly apply the changes and not be

asked for confirmation. This option can be used in automated mode.

Additionally, if we have already written Terraform configuration and we want to convert it into

a CDKTF language (for example, into TypeScript), we can run the cdktf convert command, for

example:

cat main.tf | cdktf convert --provider hashicorp/azurerm > importedmain.ts

Deep-Diving into Terraform444

Also, if we want to use only the synthesize operation to generate the CDKTF TypeScript code in

the HCL language, run the command cdktf synth; the HCL configuration will be generated in

the cdktf.out folder.

Finally, we can write and execute integration testing using the developer language that we use

in CDKTF; in our case, TypeScript using the Jest test framework. For more information about

CDKTF testing, read the documentation here: https://developer.hashicorp.com/terraform/

cdktf/test/unit-tests.

See also
• Documentation on CDKTF is available here: https://developer.hashicorp.com/

terraform/cdktf.

• CDKTF’s installation documentation is available here: https://developer.hashicorp.

com/terraform/tutorials/cdktf/cdktf-install.

• A sample of CDKTF for Azure is available here: https://github.com/hashicorp/

terraform-cdk/blob/main/examples/typescript/azure-app-service/main.ts.

• A video demonstration of CDKTF: https://www.youtube.com/watch?v=bssG1piyaKw.

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to

the author, and learn about new releases – follow the QR code below:

https://packt.link/cloudanddevops

https://developer.hashicorp.com/terraform/cdktf/test/unit-tests
https://developer.hashicorp.com/terraform/cdktf/test/unit-tests
https://developer.hashicorp.com/terraform/cdktf
https://developer.hashicorp.com/terraform/cdktf
https://developer.hashicorp.com/terraform/tutorials/cdktf/cdktf-install
https://developer.hashicorp.com/terraform/tutorials/cdktf/cdktf-install
https://github.com/hashicorp/terraform-cdk/blob/main/examples/typescript/azure-app-service/main.ts
https://github.com/hashicorp/terraform-cdk/blob/main/examples/typescript/azure-app-service/main.ts
https://www.youtube.com/watch?v=bssG1piyaKw
https://packt.link/cloudanddevops

13
Automating Terraform Execution
in a CI/CD Pipeline

In the previous chapters of this book, we executed all Terraform commands locally in a console

with occasional manual user interactions to check the plan provided by Terraform.

In this chapter, we will learn how to run Terraform automatically.

What does it mean to run Terraform automatically?

As we know, in the basic Terraform workflow, there are the apply and destroy commands, which

ask the user to confirm the application of changes.

However, in a DevOps and automation context, our Terraform configuration should be executed

in a CI/CD pipeline that does not require user interaction.

As a reminder, we have already learned one of the ways to automate the execution in Chapter 10,

Using Terraform for Docker and Kubernetes Deployment, in the recipe Applying GitOps practices on

Kubernetes with Terraform, in which our Terraform configuration is executed in a GitOps context.

Note: Even if we talk about automation, the step of applying terraform plan should

still require user confirmation. The automation concerns user confirmation during

the execution of terraform apply (or destroy).

Automating Terraform Execution in a CI/CD Pipeline446

In this chapter, we will learn how to integrate Terraform execution for Terraform configuration

and Terraform modules in CI/CD pipelines in two DevOps cloud services:

• GitHub

• Azure Pipelines

We will also learn in this chapter how to run Terraform in an automation context and how to run

commands or scripts to display a summary of the results of terraform plan.

Before reading this chapter, please review the best practices for migrating from manual provision-

ing processes to a collaborative IaC workflow at https://developer.hashicorp.com/terraform/

cloud-docs/recommended-practices/part3.

In this chapter, we will cover the following recipes:

• Running Terraform in automation mode

• Displaying a summary of the execution of terraform plan

• Building CI/CD pipelines to apply Terraform configurations in Azure Pipelines

• Automating Terraform execution in GitHub Actions

• Working with workspaces in CI/CD

• Building CI/CD for Terraform modules in Azure Pipelines

• Building a workflow for publishing Terraform modules using GitHub Actions

Running Terraform in automation mode
To start this chapter, in this recipe, we will explain how to enable Terraform to run automatically

without user interaction using three different solutions.

Let’s get started!

Getting ready
There are no technical requirements to complete this recipe.

Before learning how to integrate the Terraform execution into a CI/CD pipeline (as we will see in

other recipes in this chapters), it’s important to understand how to run Terraform in automation

mode locally by manipulating the Terraform CLI options.

Note: What we will learn in these two services can be applied in all other CI/CD

systems, such as Jenkins, GitLab, and Bitbucket.

https://developer.hashicorp.com/terraform/cloud-docs/recommended-practices/part3
https://developer.hashicorp.com/terraform/cloud-docs/recommended-practices/part3

Chapter 13 447

The goal of this recipe is to show how to run Terraform automatically using different options in

the command line.

How to do it…
To run Terraform in automation mode, we have multiple solutions, which are detailed below:

• The first point of automation concerns the entry of the values of the variables during the

plan. If our Terraform configuration requires the input of the values of the variables during

the execution of terraform plan, we can alleviate the need to manually input the values

by adding the argument -input=false in the terraform plan command, by also adding

the argument -var or -var-file, as below:

terraform plan -var-file=dev.tfvars -input=false

For more details about the use of -input arguments, read the documentation here:

https://developer.hashicorp.com/terraform/cli/commands/plan#input-false

And for more details about the -var and -var-file arguments, read the recipe Manipu-

lating variables in Chapter 2, Writing Terraform Configurations.

• The second way is to use terraform plan out using the following Terraform command

workflow:

terraform init

terraform plan -out=tfplan.out

terraform apply tfplan.out

In the preceding commands, we generate the terraform plan result in the tfplan.out

file and we use this file in the input of the terraform apply command.

The execution of terraform apply will be done without any user confirmation. Applying

a saved plan file is highly recommended because, in addition to including the automa-

tion, it ensures the exact application of what was generated in the terraform plan. And

thus, if the Terraform configuration has been modified between the terraform plan and

the terraform apply (example committed in a Git repository) and it is this terraform

plan that has been validated, it is thus ensured that it is the validated plan that will

be applied or else an error will be shown. However, in order to apply this solution, it is

strongly recommended that the terraform plan and the terraform apply be executed

on the same machine and the apply must be able to access the file generated during the

terraform plan.

https://developer.hashicorp.com/terraform/cli/commands/plan#input-false

Automating Terraform Execution in a CI/CD Pipeline448

• Another way to automate the execution of the Terraform workflow is to add the argument

–auto-approve to the terraform apply command, as shown here:

terraform init

terraform plan

terraform apply –auto-approve

By adding this argument, Terraform will not ask the user for confirmation to perform the

terraform apply of the changes mentioned in the previous execution of the terraform

plan. Be careful, using this solution is not recommended because if changes in the con-

figurations take place between the terraform plan and the terraform apply, then

uncontrolled changes can be applied. So be sure to use the -auto-approve argument on

the same code version as the plan.

How it works…
In this recipe, we learned three ways to automate the Terraform execution using Terraform CLI

options:

• The first way is to skip the prompting of variables, during the plan and apply execution,

by adding the option -input=false.

• The second way is to generate plan results in a file using the -out option and use this

plan file in the apply execution.

• The last way is to automate the approval of the apply command by using the -auto-

approve option.

There’s more…
In the case that you run the terraform plan and apply on different machines (for example, in

a CI/CD pipeline in a different runner), follow this documentation to learn the process of how

to transfer the configuration between the plan and the apply: https://developer.hashicorp.
com/terraform/tutorials/automation/automate-terraform#plan-and-apply-on-different-

machines.

See also
• Documentation for running Terraform in automation mode is available here: https://

developer.hashicorp.com/terraform/tutorials/automation/automate-terraform

https://developer.hashicorp.com/terraform/tutorials/automation/automate-terraform#plan-and-apply-on-different-machines
https://developer.hashicorp.com/terraform/tutorials/automation/automate-terraform#plan-and-apply-on-different-machines
https://developer.hashicorp.com/terraform/tutorials/automation/automate-terraform#plan-and-apply-on-different-machines
https://developer.hashicorp.com/terraform/tutorials/automation/automate-terraform
https://developer.hashicorp.com/terraform/tutorials/automation/automate-terraform

Chapter 13 449

Displaying a summary of the execution of terraform
plan
In the previous recipe, we learned how to run Terraform in automation mode. The major differ-

ence between the workflows that are running locally and the workflows that are running in a CI/

CD pipeline is the automation of the terraform plan and apply commands without any user

interaction.

However, it can be very interesting (I would even say necessary) to visualize a summary of what

will be applied by Terraform.

In this recipe, we will discuss some tips to display the summary of the terraform plan result

inside a CI/CD pipeline.

Let’s get started!

Getting ready
There are no software requirements to complete this recipe.

How to do it…
The first tip to display a short plan summary result is to display if there are some changes or no

changes by using the detailed-exit-code argument of the terraform plan command by run-

ning the following pseudo code:

terraform plan -out=tfplan –detailled-exite-code > /dev/null

OUT=$?

//Pseudo code to display information

If $OUT==0 THEN "No changes"

If $OUT==1 THEN "Terraform has failed"

If $OUT==2 THEN "There is changes"

For more information about the -detailed-exit-code argument, read the documentation here:

https://developer.hashicorp.com/terraform/cli/commands/plan#detailed-exitcode.

The second way to display the plan summary is to use the tf-summarize tool, available here:

https://github.com/dineshba/tf-summarize.

tf-summarize is a tool that displays a short and human-readable summary of the terraform

plan result.

https://developer.hashicorp.com/terraform/cli/commands/plan#detailed-exitcode
https://github.com/dineshba/tf-summarize

Automating Terraform Execution in a CI/CD Pipeline450

Perform the following steps to use tf-summarize:

1. Download and install it by referring to the documentation here: https://github.com/

dineshba/tf-summarize#install.

2. Navigate to the Terraform configuration folder you want to see a plan summary of and

run the terraform init command and then the following terraform plan command:

terraform plan -out=tfplan

3. Run tf-summarize with the following command:

tf-summarize tfplan

The following image shows the output of the above command:

Figure 13.1: Terraform plan summary

We can see a table with a list of actions performed on different resources here; in our

sample Terraform execution, all resources will be added.

The advantage of tf-summarize is that we can display and export the output of the summary

result as JSON or Markdown so it is easy to integrate it in your CI/CD system.

For this recipe, we will run tf-summarize on existing Terraform configurations,

which are available here: https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/tree/main/CHAP12/cert.

https://github.com/dineshba/tf-summarize#install
https://github.com/dineshba/tf-summarize#install
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12/cert
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12/cert

Chapter 13 451

Another way is to export the result of the terraform plan command in JSON format and inspect it

using the JQ tool (available here: https://stedolan.github.io/jq/). For example, perform the

following commands inside the Terraform configuration to display the number of resources that

will be created, the number that will be updated, and the number of resources that will be deleted:

terraform plan -out=tfplan

terraform show -json tfplan > plan.json

 jq -r '[.resource_changes | select(.[].change.actions[] == "create")] |
length' plan.json

In the preceding script, we export the result of the plan command in JSON format (line 2) and

we use the JQ tool to filter only created resources.

There’s more…
In this recipe, we have learned about some different ways of using Terraform commands, to script

them, and display some information based on the terraform plan summary.

You are free to use your own scripting language and tools to integrate the result of the terraform

plan according to your CI/CD system.

See also
• A blog post on how to display the terraform plan result in Azure Pipelines: https://

chamindac.blogspot.com/2022/08/show-terraform-plan-in-azure-pipeline.html

• A blog post on how to integrate the result of the terraform plan in a pull request using

Azure Pipelines: https://www.natmarchand.fr/terraform-plan-as-pr-comment-in-

azure-devops/#more-315

Building CI/CD pipelines to apply Terraform
configurations in Azure Pipelines
In all the recipes in this book, we’ve discussed Terraform configuration, CLI execution, and their

benefits for IaC.

Now, in this recipe, we will discuss how we will integrate this Terraform workflow into a CI/CD

pipeline in Azure Pipelines using the Terraform extension for Azure DevOps and Pipelines YAML.

To see more examples of the usage of tf-summarize, read the documentation here:

https://github.com/dineshba/tf-summarize#examples.

https://stedolan.github.io/jq/
https://chamindac.blogspot.com/2022/08/show-terraform-plan-in-azure-pipeline.html
https://chamindac.blogspot.com/2022/08/show-terraform-plan-in-azure-pipeline.html
https://www.natmarchand.fr/terraform-plan-as-pr-comment-in-azure-devops/#more-315
https://www.natmarchand.fr/terraform-plan-as-pr-comment-in-azure-devops/#more-315
https://github.com/dineshba/tf-summarize#examples

Automating Terraform Execution in a CI/CD Pipeline452

Getting ready
The purpose of this recipe is not to explain in detail how Azure Pipelines works, but just to focus

on the execution of Terraform in Azure Pipelines. To learn more about Azure Pipelines, I suggest

you look at the official documentation at https://docs.microsoft.com/en-us/azure/devops/

pipelines/index?view=azure-devops.

To use Terraform in Azure Pipelines, there are a couple of solutions:

• Use custom scripts (PowerShell and Bash) to execute the Terraform CLI commands.

• Use Terraform extensions for Azure DevOps.

In this recipe, we will learn how to use the Terraform extension for Azure DevOps published by

Charles Zipp (with the understanding that there are, of course, other extensions available by

other publishers).

To install this extension, implement the following steps:

1. Go to https://marketplace.visualstudio.com/items?itemName=charleszipp.azure-

pipelines-tasks-terraform in your browser and click on Terraform Build & Release

Tasks.

2. At the top of the page, click on Get it free.

3. On the installation page, in the Organization dropdown, choose the organization in which

the extension will be installed (1), then click on the Install button (2):

Figure 13.2: Azure DevOps installing the Terraform extension

The extension will be installed in your Azure DevOps organization.

https://docs.microsoft.com/en-us/azure/devops/pipelines/index?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/index?view=azure-devops
https://marketplace.visualstudio.com/items?itemName=charleszipp.azure-pipelines-tasks-terraform
https://marketplace.visualstudio.com/items?itemName=charleszipp.azure-pipelines-tasks-terraform

Chapter 13 453

Additionally, for the Terraform state, we will use an Azure remote backend. To be able to use it

in Azure (Azure Storage, to be precise) with Terraform, we learned in the Protecting the state file in

Azure remote backend recipe of Chapter 8, Provisioning Azure Infrastructure with Terraform, that an

Azure service principal must be created.

To create this connection with Azure, in Azure Pipelines, we set up a service connection with the

information from the created Azure service principal. To operate this, in the Project Settings, we

navigate to the Service connections menu. Then we create a new Azure RM service connection

and configure it with the service properties.

The following screenshot shows the service connection to my Azure Terraform Demo configu-

ration:

Figure 13.3: Azure DevOps creating Azure service connection

Automating Terraform Execution in a CI/CD Pipeline454

Finally, the code that contains the Terraform configuration must be stored in a Git repository, such

as GitHub or Azure Repos (in this recipe, we will use GitHub as the code repository that contains

the Terraform configuration).

Note that, in this recipe, we will not study the deployed Terraform configuration code, which is

very basic (it generates a self-signed certificate, which we already covered in Chapter 12, Deep-Div-

ing into Terraform, in the recipe Generate a self-signed certificate with Terraform) – its purpose is to

demonstrate the implementation of the pipeline.

The Terraform configuration source code that will be used in this recipe is available at https://
github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP13/

azpipeline.

How to do it…
To create the pipeline, we perform the following steps:

1. In the Azure DevOps menu, click Pipelines:

Figure 13.4: Azure DevOps Pipelines menu

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP13/azpipeline
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP13/azpipeline
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP13/azpipeline

Chapter 13 455

2. Click on the Create Pipeline button:

Figure 13.5: Azure DevOps Create Pipeline

3. For the code source, select the Git repository that contains the Terraform configuration.

For this recipe, we choose our GitHub repository and select the Starter pipeline option

to start with a new pipeline from scratch:

Figure 13.6: Azure DevOps select repository for pipeline

4. The pipeline editor opens, and you can start writing the CI/CD steps directly online. Let’s

look at the code for this pipeline, which is in YAML format. First, we’re going to configure

the pipeline options with the following code to use an Ubuntu agent:

trigger:

 - master

pool:

 vmImage: 'ubuntu-latest'

Automating Terraform Execution in a CI/CD Pipeline456

5. Then, we tell the pipeline to download the desired version of the Terraform binary by

adding this code:

- task: charleszipp.azure-pipelines-tasks-terraform.azure-pipelines-
tasks-terraform-installer.TerraformInstaller@0

 displayName: 'Install Terraform 1.4.4'

 inputs:

 terraformVersion: 1.4.4

6. We continue with the first command of the Terraform workflow and execute the terraform

init command:

- task: charleszipp.azure-pipelines-tasks-terraform.azure-pipelines-
tasks-terraform-cli.TerraformCLI@0

 displayName: 'terraform init'

 inputs:

 command: init

 workingDirectory: "CHAP12/cert/"

 backendType: azurerm

 backendServiceArm: '<Your Service connection name>'

 backendAzureRmResourceGroupName: 'RG_BACKEND'

 backendAzureRmStorageAccountName: storagetfbackendbook

 backendAzureRmContainerName: tfstate

 backendAzureRmKey: myappdemo.tfstate

7. After the init step, the pipeline executes the terraform plan command for preview and

displays the changes that the pipeline will apply:

- task: charleszipp.azure-pipelines-tasks-terraform.azure-pipelines-
tasks-terraform-cli.TerraformCLI@0

 displayName: 'terraform plan'

 inputs:

 command: plan

 workingDirectory: "CHAP12/cert/"

 commandOptions: '-out="out.tfplan"'

Chapter 13 457

8. And finally, the pipeline runs the terraform apply command to apply the changes:

- task: charleszipp.azure-pipelines-tasks-terraform.azure-pipelines-
tasks-terraform-cli.TerraformCLI@0

 displayName: 'terraform apply'

 inputs:

 command: apply

 workingDirectory: "CHAP12/cert/"

 commandOptions: 'out.tfplan'

The complete source code of this pipeline in YAML is available at https://github.
com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP13/

azpipeline/azure-pipelines.yml.

9. After editing the YAML code of the pipeline, we can test it and trigger the execution of the

pipeline by clicking on Save and run at the top right of the page:

Figure 13.7: Azure DevOps running the pipeline

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP13/azpipeline/azure-pipelines.yml
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP13/azpipeline/azure-pipelines.yml
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP13/azpipeline/azure-pipelines.yml

Automating Terraform Execution in a CI/CD Pipeline458

10. When the execution of the pipeline is finished, we will be able to see the log results of

the execution:

Figure 13.8: Azure DevOps pipeline result

How it works…
In Steps 1 to 3 of this recipe, we used Azure Pipelines via the web interface to create a new pipeline,

which we configured on our GitHub repository. Moreover, we chose to configure it by starting

with a new YAML file.

Steps 4 to 8 were dedicated to writing the YAML code for our pipeline in which we defined the

following steps:

• We downloaded the Terraform binary and specified the version that is compatible with

our Terraform configuration; here, in our sample, we used version 1.4.4.

• Then, using the extension installed in the prerequisites, we executed the Terraform work-

flow with a step for the terraform init command and the use of the Azure remote

backend. We then executed the terraform plan command with the out argument, which

generated a plan output file. Finally, we applied the changes by executing the terraform

apply command using the generated plan output file.

Even if you are using an agent hosted by Microsoft that already has Terraform

installed, I advise you to download Terraform with a specific binary version

because the version installed by default may not be compatible with your

configuration.

Chapter 13 459

Finally, in Steps 9 and 10 of the recipe, the pipeline was triggered, and it is clear from the output

logs that the changes described in the Terraform configuration have been applied.

There’s more…
We have seen in this recipe how to create a pipeline for Terraform from an empty YAML file, but

you can also create a pipeline using a prewritten YAML file archived in your Git repository.

If your Terraform configuration deploys an infrastructure in Azure, and you want to use a custom

script inside the pipeline instead of the Terraform task, then you will have to add, in the Variables

tab, the four environment variables of the main service used for authentication in Azure (we

studied these in the Protecting the Azure credential provider recipe of Chapter 8, Provisioning Azure

Infrastructure with Terraform), as shown in the following screenshot:

Figure 13.9: Azure Pipelines adding variables

As we learned in the recipe Running Terraform in automation mode earlier in

this chapter, the terraform apply command used by this last task has the

output file generated by the plan and the -auto-approve option to allow

changes to be applied automatically.

If you want to use Terraform in an Azure DevOps pipeline using the classic mode

(that is, in the graphical mode without YAML), you can refer to the hands-on labs at

https://www.azuredevopslabs.com/labs/vstsextend/terraform/.

https://www.azuredevopslabs.com/labs/vstsextend/terraform/

Automating Terraform Execution in a CI/CD Pipeline460

These four variables will be automatically loaded as environment variables in the pipeline exe-

cution session.

Additionally, in this recipe, we used a CI/CD Azure Pipelines platform as an example, but the

automation principle remains the same for all DevOps tools, including Jenkins, GitHub Actions,

GitLab, and so on.

See also
The following is a list of links to articles and videos related to this topic:

• Terraform on Microsoft Azure – Continuous Deployment using Azure Pipelines: https://
blog.jcorioland.io/archives/2019/10/02/terraform-microsoft-azure-pipeline-

continuous-deployment.html

• A CI/CD journey with Azure DevOps and Terraform: https://medium.com/faun/a-ci-cd-

journey-with-azure-devops-and-terraform-part-3-8122624efa97 (see part 1 and

part 2)

• Deploying Terraform Infrastructure using Azure DevOps Pipelines Step by Step: https://medium.
com/@gmusumeci/deploying-terraform-infrastructure-using-azure-devops-

pipelines-step-by-step-d58b68fc666d

• Terraform deployment with Azure DevOps: https://www.starwindsoftware.com/blog/

azure-devops-terraform-deployment-with-azure-devops-part-1

• Infrastructure as Code (IaC) with Terraform and Azure DevOps: https://itnext.io/

infrastructure-as-code-iac-with-terraform-azure-devops-f8cd022a3341

• Terraform all the Things with VSTS: https://www.colinsalmcorner.com/terraform-all-

the-things-with-vsts/

• Terraform CI/CD with Azure DevOps: https://www.youtube.com/watch?v=_oMacTRQfyI

• Deploying your Azure Infrastructure with Terraform: https://www.youtube.com/

watch?v=JaesylupZa8

• Enterprise Deployment to Azure and AWS in Azure DevOps: https://www.hashicorp.com/

resources/enterprise-deployment-to-azure-and-aws-in-azure-devops/

Automating Terraform execution in GitHub Actions
In the previous recipe, we learned how to automate the execution of Terraform in CI/CD in Azure

DevOps using the Azure Pipelines service.

In this recipe we will perform the same automation operations in another popular CI/CD system,

that is, GitHub Actions.

https://blog.jcorioland.io/archives/2019/10/02/terraform-microsoft-azure-pipeline-continuous-deployment.html
https://blog.jcorioland.io/archives/2019/10/02/terraform-microsoft-azure-pipeline-continuous-deployment.html
https://blog.jcorioland.io/archives/2019/10/02/terraform-microsoft-azure-pipeline-continuous-deployment.html
https://medium.com/faun/a-ci-cd-journey-with-azure-devops-and-terraform-part-3-8122624efa97
https://medium.com/faun/a-ci-cd-journey-with-azure-devops-and-terraform-part-3-8122624efa97
mailto:https://medium.com/@gmusumeci/deploying-terraform-infrastructure-using-azure-devops-pipelines-step-by-step-d58b68fc666d
mailto:https://medium.com/@gmusumeci/deploying-terraform-infrastructure-using-azure-devops-pipelines-step-by-step-d58b68fc666d
mailto:https://medium.com/@gmusumeci/deploying-terraform-infrastructure-using-azure-devops-pipelines-step-by-step-d58b68fc666d
https://www.starwindsoftware.com/blog/azure-devops-terraform-deployment-with-azure-devops-part-1
https://www.starwindsoftware.com/blog/azure-devops-terraform-deployment-with-azure-devops-part-1
https://itnext.io/infrastructure-as-code-iac-with-terraform-azure-devops-f8cd022a3341
https://itnext.io/infrastructure-as-code-iac-with-terraform-azure-devops-f8cd022a3341
https://www.colinsalmcorner.com/terraform-all-the-things-with-vsts/
https://www.colinsalmcorner.com/terraform-all-the-things-with-vsts/
https://www.youtube.com/watch?v=_oMacTRQfyI
https://www.youtube.com/watch?v=JaesylupZa8
https://www.youtube.com/watch?v=JaesylupZa8
https://www.hashicorp.com/resources/enterprise-deployment-to-azure-and-aws-in-azure-devops/
https://www.hashicorp.com/resources/enterprise-deployment-to-azure-and-aws-in-azure-devops/

Chapter 13 461

Let’s get started!

Getting ready
To complete this recipe, you’ll need to know about GitHub and GitHub Actions. In this recipe, we

will just provide the YAML content of Terraform execution in GitHub Actions.

To perform this recipe, you need to have a GitHub account; the registration can be done here:

https://github.com/signup. As a prerequisite, read the documentation of GitHub Actions, which

is available here: https://docs.github.com/en/actions.

The goal of this recipe is to automate the execution of Terraform on an existing Terraform config-

uration, which we learned about in Chapter 12, Deep-Diving into Terraform, in the recipe Generating

a self-signed certificate. The source code is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP12/cert.

How to do it…
To automate Terraform in GitHub Actions, perform the following steps:

1. In your GitHub repository, create a new file called tf.yaml in the .github > workflows

directory (if this directory does not exist, create it).

2. In this tf.yaml file, start to add the following YAML content:

name: 'Terraform'

defaults:
 run:
 shell: bash
 working-directory: CHAP12/cert/
on:
 push:
 branches:
 - main

3. Continue to add the following YAML content:

jobs:
 terraform:
 runs-on: ubuntu-latest
 name: Terraform
 environment: dev
 steps:

https://github.com/signup
https://docs.github.com/en/actions
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12/cert
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP12/cert

Automating Terraform Execution in a CI/CD Pipeline462

 - name: Checkout
 uses: actions/checkout@v3

4. Similarly, add the following YAML content:

 - name: Setup Terraform

 uses: hashicorp/setup-terraform@v2

 with:

 terraform_version: 1.4.6

 terraform_wrapper: false

 - name: Terraform Init

 id: init

 run: terraform init

 - name: Terraform Plan

 id: plan

 run: terraform plan -input=false -no-color -out tf.plan

 - name: Terraform Apply

 run: terraform apply -input=false tf.plan

5. Then, save this tf.yaml file and commit and push it inside the GitHub repository.

6. The workflow will be triggered automatically.

7. Finally, in GitHub, go to the Actions tab, click on the Terraform workflow on the left menu,

and wait for the end of the execution of the workflow.

The following image shows the GitHub Actions result in the Actions tab:

Figure 13.10: GitHub Actions running the workflow

Chapter 13 463

We can see that the workflow is running successfully.

How it works…
In the first step of this recipe, we create a GitHub Actions workflow using a YAML file. In this

YAML file, we define a list of steps to execute during the pipeline.

In Step 2, we define the workflow trigger; here, we define that the workflow will be triggered on

each push on the main branch.

In Step 3, we define the checkout task to retrieve the Terraform configuration source code.

Then, in step 4, in the pipeline YAML file, we write the Terraform execution tasks. First, we write

the installation of a specific version of the Terraform binary, and then follow it with the execution

of terraform init, plan, -out, and apply commands in automation mode.

For more details about automation mode, read the first recipe of this chapter, Running Terraform

in automation mode.)

For more details about GitHub Actions Terraform tasks, read the documentation at https://

github.com/hashicorp/setup-terraform.

There’s more…
In this pipeline, you can, of course, add validation and check steps like running the terraform

validate command, running the tfsec tool, and so on.

To illustrate this, we will complete the workflow of this recipe with the execution of tf-summarize

(which we learned about in the the Displaying a summary of the execution of terraform plan recipe

earlier in this chapter) to display a summary of the plan in the workflow summary of GitHub

Actions. To display the terraform plan summary inside GitHub Actions, add the following YAML

code in the GitHub workflow file:

 - name: Install terraform-plan-summary
 run: |
 RE"O="dineshba/terraform-plan-summ"ry"
 curl -LO https://github.com/$REPO/releases/0.3.1/download/tf-
summarize_linux_amd64.zip
 tmpDir=$(mktemp -d -t tmp.XXXXXXXXXX)
 mv tf-summarize_linux_amd64.zip $tmpDir
 cd $tmpDir
 unzip tf-summarize_linux_amd64.zip
 chmod +x tf-summarize

https://github.com/hashicorp/setup-terraform
https://github.com/hashicorp/setup-terraform

Automating Terraform Execution in a CI/CD Pipeline464

 echo $PWD >> $GITHUB_PATH
 - name: summary in draw table format
 run: |
 rm -rf tf-summarize-table-output.md
 terraform show -json tf.plan | tf-summarize -md > tf-summarize-
table-output.md

 - name: Adding markdown
 run: |
 cat tf-summarize-table-output.md > $GITHUB_STEP_SUMMARY

In the preceding YAML code, we add the GitHub Actions task to install tf-summarize. Then, in

the second task, we run tf-summarize on the exported terraform plan result, and then export

the plan summary in a Markdown file.

Finally, in the latest Github Actions task, we display the content of the Markdown file in a GitHub

Actions summary using the GitHub predefined variable GITHUB_STEP_SUMMARY.

The following image shows the result of the workflow with the integration of tf-summarize:

Figure 13.11: Display plan summary in GitHub Actions

Chapter 13 465

We can see a new Terraform summary panel that contains the plan summary in Markdown format.

See also
• A blog post about GitHub Actions and Terraform adding the use of environment variables:

https://gaunacode.com/deploying-terraform-at-scale-with-github-actions

Working with workspaces in CI/CD
In the Using workspaces for managing environments recipe in Chapter 6, Applying a Basic Terraform

Workflow, we studied the use of some Terraform commands to manage and create workspaces.

In Terraform CLI workspaces, workspaces make it possible to manage several environments by

creating several Terraform state files for the same Terraform configuration.

In this recipe, we will go further with the use of workspaces by automating their creation in a

CI/CD pipeline.

Getting ready
The prerequisite for this recipe is to know the Terraform CLI options for the workspaces, the doc-

umentation for which is available at https://www.terraform.io/docs/commands/workspace/

index.html.

Concerning the CI/CD pipeline, we will implement it in Azure Pipelines, which we have already

seen in this chapter, in the Building CI/CD pipelines to apply Terraform configurations in Azure

Pipelines recipe.

The purpose of this recipe is to illustrate a scenario I recently implemented, which is the creation

of on-demand environments with Terraform. These environments will be used to test the func-

tionalities during the development of an application.

To summarize, we want to deploy the code of a branch of a Git repository in a specific environment

that will be used to test this development.

Note that, in this recipe, we will not study the deployed Terraform configuration, which is very

basic (it generates a self-signed certificate, which we already saw in Chapter 12, Deep-Diving into

Terraform, in the recipe Generate a self-signed certificate with Terraform) – its purpose is to demon-

strate the implementation of the pipeline.

The YAML code of the Azure pipeline is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/blob/main/CHAP13/azpipeline/azure-pipelines.yml.

https://gaunacode.com/deploying-terraform-at-scale-with-github-actions
https://www.terraform.io/docs/commands/workspace/index.html
https://www.terraform.io/docs/commands/workspace/index.html
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP13/azpipeline/azure-pipelines.yml
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP13/azpipeline/azure-pipelines.yml

Automating Terraform Execution in a CI/CD Pipeline466

We will just complete it with our workspace management practice. We assume that the name of

the workspace we will create will be the name of the Git branch that will be deployed.

How to do it…
To manage workspaces in the YAML pipeline, perform the following steps:

1. Inside the folder that contains the Terraform configuration, add the ManageWorkspaces.

ps1 file with the following content:

$envName=$args[0]

terraform workspace select -or-create $envName

2. Inside the azure-pipelines.yaml file, add the following code just after the Terraform

init step:

- task: PowerShell@2

 inputs:

 filePat': 'CHAP13/workspace-pipeline/ManageWorkspaces.'s1'

 argument': '$(Build.SourceBranchNa'e)'

 workingDirector": "CHAP13/workspace-pipeli"e/"

3. Commit and push the PowerShell script that we just created and the YAML pipeline file

changes inside your Git repository.

4. In Azure Pipelines, run the pipeline, and during the configuration step, choose the branch

to deploy to (when this recipe is complete, you will need to go back and follow these steps

with the branch you didn’t select the first time) from the Branch/tag drop-down menu (1):

Chapter 13 467

Figure 13.12: Azure Pipelines selecting branch

Lastly, run the pipeline by clicking on the Run button (2).

Automating Terraform Execution in a CI/CD Pipeline468

How it works…
In Step 1, we create a PowerShell script that takes, as an input parameter, the name of the envi-

ronment to create (which corresponds to the name of the branch to deploy). Then, in line 2, this

script executes the terraform workspace select command to select it and we add the option

-or-create (an option available since Terraform 1.4.0) to create this workspace if it doesn’t already

exist. (Read about the select workspace command here: https://developer.hashicorp.com/

terraform/cli/commands/workspace/select.)

In Step 2, we complete the YAML pipeline that we created in the previous recipe by inserting, be-

tween terraform init and terraform plan, the execution of this PowerShell script by passing

as an argument the name of the branch that we sectioned.

Then, we commit these code changes (the PowerShell script and the pipeline YAML file) to the

Git repository.

Finally, in Step 4, we execute the pipeline in Azure Pipelines by selecting the branch to be deployed,

the name of which will be used as the workspace name.

The following screenshot shows the execution result in the pipeline logs:

Figure 13.13: Azure Pipelines Manages Workspaces in the pipeline logs

https://developer.hashicorp.com/terraform/cli/commands/workspace/select
https://developer.hashicorp.com/terraform/cli/commands/workspace/select

Chapter 13 469

And in the end, we can see the Terraform state files, which were created automatically:

Figure 13.14: Terraform state for workspace

As you can see, the Terraform state files created by the workspaces contain the workspace name

at the end.

There’s more…
In this recipe, we have managed the workspaces using a PowerShell script, but you are, of course,

free to write it in another scripting language of your choice, such as Bash or Python.

See also
• Before using multiple workspaces, make sure to check their compatibility with the

backends by following the instructions at https://www.terraform.io/docs/state/

workspaces.html.

• The documentation on CLI commands for workspaces in Terraform is available at https://

www.terraform.io/docs/commands/workspace/index.html.

Building CI/CD for Terraform modules in Azure
Pipelines
Throughout this book, we have studied recipes for creating, using, and testing Terraform mod-

ules. On the other hand, in the Using a private Git repository for sharing a Terraform module recipe

in Chapter 7, Sharing Terraform Configuration with Modules, we discussed the possibility of using

a private Git repository, such as Azure DevOps, to store and version your Terraform modules.

In a DevOps context, when the module is created and the tests have been written, we need to

create a DevOps CI/CD pipeline that will automate all of the steps we discussed for the execution

of the tests that we performed manually.

https://www.terraform.io/docs/state/workspaces.html
https://www.terraform.io/docs/state/workspaces.html
https://www.terraform.io/docs/commands/workspace/index.html
https://www.terraform.io/docs/commands/workspace/index.html

Automating Terraform Execution in a CI/CD Pipeline470

There are many CI/CD pipeline platforms, like Jenkins, GitHub Actions, GitLab CI, and Azure

Pipelines; in this recipe, we will see the implementation of a CI/CD pipeline to automate the tests

and the publication of a Terraform module in Azure Pipelines.

Getting ready
To start this recipe, we must first create a Terraform module and tests with Terratest. For this, we

will use the same module and tests that we created in Chapter 11, Running Test and Compliance

Security on Terraform Configuration, in the recipe Testing a Terraform module with Terratest, the

source code for which is available from https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/tree/main/CHAP11/testing-terratest.

Also, as far as Azure Pipelines is concerned, we will assume that we have already archived the

module code in Azure Repos, as we saw in the Using a private Git repository for sharing a Terraform

module recipe in Chapter 7, Sharing Terraform Configuration with Modules.

To avoid having to install the tools needed to run tests in an Azure Pipelines agent, we will use

a Docker image. You should, therefore, have a basic knowledge of Docker and Docker Hub by

referring to the documentation here: https://docs.docker.com/.

Finally, in Azure Pipelines, we will use YAML pipelines, which allow us to have pipelines as code,

the documentation for which is here: https://docs.microsoft.com/en-us/azure/devops/

pipelines/yaml-schema?view=azure-devops&tabs=schema%2Cparameter-schema.

How to do it…
Perform the following steps to create a pipeline for the module in Azure Pipelines:

1. In this module directory, we create a runtests.sh file with the following content:

#!/bin/bash

cd tests

ec"o "==> Get Terratest modu"es"

go get github.com/gruntwork-io/terratest/modules/terraform

ec"o "==> go t"st"

go test -v -timeout 30m

2. Then, we create an azure-pipeline.yaml file with the following extract of YAML code:

- script: "./runtests.sh"

 workingDirector": "$(Build.SourcesDirectory)/CHAP05/testing-
terrate"t/module"

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP11/testing-terratest
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP11/testing-terratest
https://docs.docker.com/
https://docs.microsoft.com/en-us/azure/devops/pipelines/yaml-schema?view=azure-devops&tabs=schema%2Cparameter-schema
https://docs.microsoft.com/en-us/azure/devops/pipelines/yaml-schema?view=azure-devops&tabs=schema%2Cparameter-schema

Chapter 13 471

 displayNam": "Run tests"

-

- task: PowerShell@2

 displayNam": "Tag c"de"

 inputs:

 targetTyp': 'inl'ne'

 script: |

 $env:GIT_REDIRECT_STDERR''= '2'&1'

 $tag"= "v$(Build.BuildNumb"r)"

 git tag $tag

 Write-Ho"t "Successfully created tag $"ag"

 git pu– --tags

 Write-Ho"t "Successfully pushed tag $"ag"

 failOnStderr: false

3. We commit and push these three files to the Azure Repos of the Terraform module.

4. In Azure Pipelines, in the Pipelines section (1), we click on the Create Pipeline button (2):

Figure 13.15: Azure Pipelines Create Pipeline

The complete source code of this file is available here: https://github.
com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/

main/CHAP11/testing-terratest/azure-pipeline.yaml.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP11/testing-terratest/azure-pipeline.yaml
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP11/testing-terratest/azure-pipeline.yaml
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/blob/main/CHAP11/testing-terratest/azure-pipeline.yaml

Automating Terraform Execution in a CI/CD Pipeline472

5. Then, we choose the repository (module-sample) in Azure Repos that contains the code

of the module:

Figure 13.16: Azure Pipelines selecting a Terraform module repository

6. Then, select the Existing Azure Pipelines YAML file option in the pipeline configuration

window:

Figure 13.17: Azure Pipelines choosing the existing YAML file option

Chapter 13 473

7. In the layout that opens on the right, we choose the azure-pipeline.yaml file (1) that we

wrote in Step 3, then we validate it by clicking on the Continue button (2):

Figure 13.18: Azure Pipelines YAML path

8. Finally, the next page displays the contents of the YAML file of the pipeline we have se-

lected. To trigger the pipeline, we click on the Run button:

Figure 13.19: Azure Pipelines run pipeline

Automating Terraform Execution in a CI/CD Pipeline474

9. As soon as the pipeline ends, you can see that all of the steps have been executed success-

fully, as shown in the following screenshot:

Figure 13.20: Azure Pipelines test module summary

And the new tag version is applied to the code:

Figure 13.21: Azure Repos tags

Chapter 13 475

How it works…
In Step 1, we write the code of the shell script, runtest.sh, which will be in charge of executing the

Terratest tests using the go test -v commands, as we learned in the Testing a Terraform module

with Terratest recipe in Chapter 11, Running Test and Compliance Security on Terraform Configuration.

In Step 2, we write the YAML code of the Azure DevOps pipeline, which consists of three steps:

1. Execute the tests by running the runtest.sh script.

2. Version control the module code by adding a tag to the module code.

3. Then, we commit and push these files to the Azure Repos repository of the module.

In Steps 3 to 7, we create a new pipeline in Azure Pipelines by choosing the module repository and

the YAML file that contains the pipeline definition.

In Steps 8 and 9, we execute the pipeline and wait for the end of its execution.

The added tag will be used to version the Terraform module so that it can be used when calling

the module.

Hence, with this implementation, when calling the module, we will use a version of the module

that has been automatically tested by the pipeline.

There’s more…
In this recipe, we have studied the basic steps of the YAML pipeline installation in Azure Pipelines.

It is possible to go further by additionally using the reporting of the tests in the pipeline. To learn

more, read this blog post: https://blog.jcorioland.io/archives/2019/09/25/terraform-

microsoft-azure-ci-docker-azure-pipeline.html.

In the next recipe, we will see the same pipeline process but for a Terraform module that is stored

in GitHub and that we want to publish in the Terraform public registry.

See also
• Documentation for Azure Pipelines is available here: https://docs.microsoft.com/en-

us/azure/devops/pipelines/?view=azure-devops.

https://blog.jcorioland.io/archives/2019/09/25/terraform-microsoft-azure-ci-docker-azure-pipeline.html
https://blog.jcorioland.io/archives/2019/09/25/terraform-microsoft-azure-ci-docker-azure-pipeline.html
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops

Automating Terraform Execution in a CI/CD Pipeline476

Building a workflow for publishing Terraform
modules using GitHub Actions
In the Sharing a Terraform module using GitHub recipe of Chapter 7, Sharing Terraform Configuration

with Modules, we studied how to publish a Terraform module in the Terraform public registry by

putting its code on GitHub. Then, in the Testing a Terraform module with Terratest recipe of Chapter

11, Running Test and Compliance Security on Terraform Configuration, we learned how to write and

run module tests using Terratest.

We will go further in this recipe by studying the implementation of an automated module pub-

lishing workflow using GitHub Actions.

Getting ready
To start this recipe, you must have worked through the two recipes, Sharing a Terraform module

using GitHub and Testing a Terraform module with Terratest, of Chapter 11, Running Test and Com-

pliance Security on Terraform Configuration, which include all the bases and artifacts necessary

for this recipe.

In this recipe, we will use the Terraform module configuration we wrote in the Testing Terraform

module code with Terratest recipe in Chapter 11, Running Test and Compliance Security on Terraform

Configuration, the source code for which is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP11/testing-terratest/module.

Also, we will be using GitHub Actions, which is a free service for public GitHub repositories, the

documentation for which is available here: https://github.com/features/actions.

The source code for this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP13/githubaction.

How to do it…
Perform the following steps to use GitHub Actions on our Terraform module:

1. In the root of the GitHub repository that contains the module code, we create, via the

GitHub web interface, a new file called integration-test.yaml in the .github >

workflows folder:

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP11/testing-terratest/module
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP11/testing-terratest/module
https://github.com/features/actions
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP13/githubaction
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP13/githubaction

Chapter 13 477

Figure 13.22: GitHub Actions create workflow file

2. In this file, we write the following YAML code (the complete code is available at https://
github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/

CHAP13/githubaction):

...

 steps:

 - name: Check out code

 uses: actions/checkout@v3

 - name: Set up Go 1.14

 uses: actions/setup-go@v1

 with:

 go-version: 1.14

 id: go

 - name: Get Go dependencies

 run: go get -v -t -d ./...

 - name: Run Tests

 working-directory: "CHAP11/testing-terratest/module/tests/"

 run: |

 go test -v -timeout 30m

 - name: Bump version and push tag

 uses: mathieudutour/github-tag-action@v4

 with:

 github_token: ${{ secrets.GITHUB_TOKEN }}

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP13/githubaction
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP13/githubaction
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP13/githubaction

Automating Terraform Execution in a CI/CD Pipeline478

Then, we validate the page by clicking on the Commit new file button at the bottom of

the page:

Figure 13.23: GitHub Commit new file

3. Finally, we click on the Actions tab of our repository and we can see the workflow that

has been triggered:

Figure 13.24: GitHub Actions list of workflows

How it works…
To create the workflow in GitHub Actions, we have created a new YAML file in the repository that

contains the module code, in the specific .github > workflows folder that contains the steps

that the GitHub Actions agent will perform.

In Step 2 of the recipe, our workflow is as follows:

Chapter 13 479

1. First, do a checkout to retrieve the repository code:

- name: Check out code

 uses: actions/checkout@v3

2. Then, we install the Go SDK with the following code:

- name: Set up Go 1.14

 uses: actions/setup-go@v1

 with:

 go-version: 1.14 #need to be >=1.13

 id: go

3. Then, we download the dependencies with this code:

- name: Get Go dependencies

 run: go get -v -t -d ./...

4. We run the Terratest tests with the following code:

- name: Run Tests

 working-directory: "CHAP11/testing-terratest/module/tests/"

 run: |

 go test -v -timeout 30m

5. Finally, the last step is to add a tag to the code. To do this, we use the github-tag action

provided by the mathieudutour/github-tag-action@v4 repository, and we use the built-

in GITHUB_TOKEN variable, which allows the agent to authenticate itself to perform Git

commands on the repository:

- name: Bump version and push tag

 uses: mathieudutour/github-tag-action@v4

 with:

 github_token: ${{ secrets.GITHUB_TOKEN }}

For more information about the minimum Go version, read the documenta-

tion here: https://terratest.gruntwork.io/docs/getting-started/

quick-start/#requirements.

https://terratest.gruntwork.io/docs/getting-started/quick-start/#requirements
https://terratest.gruntwork.io/docs/getting-started/quick-start/#requirements

Automating Terraform Execution in a CI/CD Pipeline480

At the end of the execution of the workflow, you will see the results, as shown in the following

screenshot:

Figure 13.25: GitHub Actions workflow result

If the workflow runs correctly, a new tag will be added to the code, as shown in the following

screenshot:

Figure 13.26: GitHub tags

Chapter 13 481

And if this module is published in the public registry, a new version of this module will be available.

There’s more…
The incrementing of the tag in the repository (major, minor, or patch) is done automatically and

will depend on the content of the commit description that triggered the action. For more infor-

mation, read the documentation at https://github.com/angular/angular.js/blob/master/

DEVELOPERS.md#-git-commit-guidelines.

See also
• Documentation on the github-tag action is available here: https://github.com/

marketplace/actions/github-tag.

• Read this blog post about Terratest and GitHub Actions, provided by HashiCorp: https://
www.hashicorp.com/blog/continuous-integration-for-terraform-modules-with-

github-actions/.

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to

the author, and learn about new releases – follow the QR code below:

https://packt.link/cloudanddevops

https://github.com/angular/angular.js/blob/master/DEVELOPERS.md#-git-commit-guidelines
https://github.com/angular/angular.js/blob/master/DEVELOPERS.md#-git-commit-guidelines
https://github.com/marketplace/actions/github-tag
https://github.com/marketplace/actions/github-tag
https://www.hashicorp.com/blog/continuous-integration-for-terraform-modules-with-github-actions/
https://www.hashicorp.com/blog/continuous-integration-for-terraform-modules-with-github-actions/
https://www.hashicorp.com/blog/continuous-integration-for-terraform-modules-with-github-actions/
https://packt.link/cloudanddevops

14
Using Terraform Cloud to
Improve Team Collaboration

Throughout this book, we have demonstrated how to write Terraform configurations and apply

Terraform CLI through various recipes. All of this applies to small projects and small teams, but

in a corporate context, when working on large infrastructure projects, it is necessary to have a

collaborative platform for sharing modules and centralized deployments. This platform, which

must be able to be connected to a source control repository with a Version Control System (VCS)

such as Git, must allow infrastructure changes to be applied via Terraform in an automated and

centralized manner for all team members. This is why, in 2019, HashiCorp released a SaaS platform

called Terraform Cloud (TFC), which is one of the services in the HashiCorp Cloud Platform

(HCP), available here: https://www.hashicorp.com/cloud.

Terraform Cloud is a cloud-based platform provided by HashiCorp, designed to facilitate man-

agement and collaboration on infrastructure as code.

Terraform Cloud extends the capabilities of Terraform by offering additional features and benefits

for teams and organizations working on infrastructure automation. Here are some key features

and benefits of Terraform Cloud:

• Collaboration and teamwork: Terraform Cloud provides a centralized platform where

teams can collaborate on infrastructure provisioning. It allows multiple users to work

together on the same infrastructure codebase, making it easier to manage and coordinate

changes.

https://www.hashicorp.com/cloud

Using Terraform Cloud to Improve Team Collaboration484

• Remote state management: Terraform Cloud offers a remote state management feature,

which means it securely stores the state of your infrastructure. This allows multiple team

members to access and modify the state, ensuring consistency and enabling better col-

laboration.

• Version control integration: Terraform Cloud integrates with popular version control

systems such as Git, enabling you to store your infrastructure code in repositories. This

integration allows for versioning, change tracking, and easy rollbacks when needed.

• Policy enforcement and governance: Terraform Cloud helps enforce policies and gov-

ernance standards across infrastructure provisioning. You can define policy checks and

validations to ensure compliance with security, cost, and operational requirements.

• Infrastructure workflow automation: Terraform Cloud enables you to automate your

infrastructure workflow. You can set up triggers to automatically apply infrastructure

changes when code is merged or pull requests are approved, reducing manual interven-

tion and improving efficiency.

• Secure and scalable infrastructure: With Terraform Cloud, you can provision infrastruc-

ture resources securely. It provides features such as access controls, encryption of sensi-

tive data, and integrations with identity providers to ensure that your infrastructure is

protected.

• Monitoring and observability: Terraform Cloud offers monitoring and observability

features to help you track the state and health of your infrastructure. It provides insights

into the status of your deployments, logs, and metrics to aid in troubleshooting and per-

formance optimization.

Overall, Terraform Cloud simplifies the management and collaboration of infrastructure as code

projects, providing a robust platform for teams to work together efficiently and securely. It en-

hances the capabilities of Terraform and enables organizations to scale their infrastructure au-

tomation efforts effectively.

To learn more about Terraform Cloud and its history, please refer to the documen-

tation here: https://www.terraform.io/docs/cloud/index.html.

The complete and detailed list of Terraform Cloud functionalities and pricing is

available in the documentation here: https://www.hashicorp.com/products/

terraform/pricing/.

https://www.terraform.io/docs/cloud/index.html
https://www.hashicorp.com/products/terraform/pricing/
https://www.hashicorp.com/products/terraform/pricing/

Chapter 14 485

In this chapter, we will learn how to authenticate with Terraform Cloud, how to create a project

and a workspace, and how to perform the remote execution of Terraform configuration directly

inside Terraform Cloud.

We will learn how to use the cloud backend to store the Terraform State and how to publish and

use modules in the private registry on Terraform Cloud. We will explore the paid features and

usage of OPA (short for Open Policy Agent) in order to apply compliance tests and visualize cost

estimation.

Finally, we will learn how to configure Terraform Cloud using the TFE Terraform provider.

In this chapter, we’ll cover the following recipes:

• Authenticating Terraform to Terraform Cloud

• Managing workspaces in Terraform Cloud

• Using the remote backend in Terraform Cloud

• Migrating Terraform State to Terraform Cloud

• Using Terraform Cloud as a private module registry

• Executing Terraform configuration remotely in Terraform Cloud

• Checking the compliance of Terraform configurations using OPA in Terraform Cloud

• Using integrated cost estimation for cloud resources

• Integrating the Infracost run task during the Terraform Cloud run

• Configuring Terraform Cloud with a Terraform TFE provider

Let’s get started!

Technical requirements
The primary and essential prerequisite for this chapter is to have an account on the Terraform

Cloud platform. Creating an account (with a specific login/password or GitHub account) is simple,

and a free plan is available. You can sign up at https://app.terraform.io/signup/account.

After registering for an account, it will be necessary (if you haven’t done so already) to create an

organization.

https://app.terraform.io/signup/account

Using Terraform Cloud to Improve Team Collaboration486

Also, we will integrate Terraform Cloud with a Git repository. For this, we will be using GitHub,

and you can create a free account on GitHub at https://github.com/.

If you want to use the GitHub repository of this book to apply the recipes from this chapter, you

will need to fork this repository, https://github.com/PacktPublishing/Terraform-Cookbook-

Second-Edition, to your GitHub account.

The source code for this chapter is available at https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP14.

Authenticating Terraform to Terraform Cloud
To perform interactions between the CLI and Terraform Cloud, we need to perform authentication.

The following Terraform Cloud operations can be carried out using the CLI once Terraform is

authenticated to Terraform Cloud:

• By logging in, you gain access to the remote state, allowing you to query the current state of

your infrastructure and perform actions such as applying changes or destroying resources.

• We can trigger remote Terraform execution.

• We can migrate the local state to the remote state backend.

In this recipe, we will learn how to authenticate the CLI to Terraform Cloud.

Let’s get started!

Getting ready
To complete this recipe, you’ll need to have an existing Terraform Cloud account.

For detailed steps regarding how to create an account and organization, follow

the Terraform learning process at https://learn.hashicorp.com/terraform/

cloud-getting-started/signup. For more information on organizations, read

the documentation at https://www.terraform.io/docs/cloud/users-teams-

organizations/organizations.html#creating-organizations.

In most of the recipes in this chapter, we will use GitHub as the VCS, but you can use

another VCS, like Bitbucket, GitLab, or Azure DevOps, if you prefer.

https://github.com/
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP14
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP14
https://learn.hashicorp.com/terraform/cloud-getting-started/signup
https://learn.hashicorp.com/terraform/cloud-getting-started/signup
https://www.terraform.io/docs/cloud/users-teams-organizations/organizations.html#creating-organizations
https://www.terraform.io/docs/cloud/users-teams-organizations/organizations.html#creating-organizations

Chapter 14 487

How to do it…
To authenticate Terraform to Terraform Cloud, perform the following steps:

1. In the terminal, run the following command:

terraform login

2. During the execution of this command, Terraform will ask for a confirmation to write

the token in plain text in the file .terraform.d/credentials.tfrc.json, as is shown in

the following image:

Figure 14.1: Terraform login command

Confirm by entering yes.

3. Then, the login command asks for the token value and opens a new browser tab to cre-

ate a new token within Terraform Cloud. The following image shows the token creation

window:

Figure 14.2: Create TFC user token

Using Terraform Cloud to Improve Team Collaboration488

Update the Description value if you want (I left the default description), and click the

Generate token button.

4. The Terraform Cloud page displays the generated token value, so copy the value of the

generated token.

5. The following image shows the token value:

Figure 14.3: TFC token

6. Paste this token value in the terminal console opened in Step 1 (the value will be hidden

in the terminal).

7. Finally, at the end of the terraform login execution, Terraform displays a confirmation

message about the successful authentication and the first steps to getting started with

Terraform Cloud.

Figure 14.4: TFC authentication output

Chapter 14 489

We are now authenticated to Terraform Cloud via Terraform CLI.

There’s more…
In this recipe, we learned how to authenticate with Terraform Cloud using the interactive mode

in the terminal console. This operation can be useful for the first authentication. If you want to

just update the token value (for example, after its expiration), rerun the login command.

We can also perform this authentication without the CLI by editing the local file directly in

.terraform.d/credentials.tfrc.json.

Figure 14.5: TFC credentials local file

We can see that the token value is stored in plain text in the token property.

Additionally, to log out, run the command terraform logout or delete the file at .terraform.d/

credentials.tfrc.json.

The following image shows the two ways to log out of Terraform from Terraform Cloud:

Figure 14.6: Terraform logout command

Caution: This second method is less recommended as it can lead to manual errors

in this JSON file.

Using Terraform Cloud to Improve Team Collaboration490

We can see in this image:

• In the area labeled 1, the output of the command terraform logout

• In the area labeled 2, the content of the file .terraform.d/credentials.tfrc.json for

logging out

Another point is, if you want to use multiple credentials to authenticate with multiple hosts (the

hostname of Terraform Cloud is app.terraform.io, but every Terraform Enterprise instance can

have different hostnames), you can add multiple credential entries in the terraform.rc file as

is detailed in this documentation here: https://developer.hashicorp.com/terraform/cli/

config/config-file#credentials-1.

Moreover, we can bypass or override the credentials stored in terraform.rc by using a specific

TF_TOKEN_app_terraform_io environment variable.

For more information about the Terraform Cloud environment variable, read the documentation

here: https://developer.hashicorp.com/terraform/cli/config/config-file#environment-

variable-credentials.

Additionally, if you want to list and manage all created user tokens, go to the page https://app.

terraform.io/app/settings/tokens.

See also
• Documentation of the terraform login command can be found here: https://developer.

hashicorp.com/terraform/cli/commands/login.

• Documentation of the terraform logout command can be found here: https://developer.

hashicorp.com/terraform/cli/commands/logout.

• A tutorial on the terraform login command can be found here: https://developer.

hashicorp.com/terraform/tutorials/cloud-get-started/cloud-login.

Managing workspaces in Terraform Cloud
One of the main components of Terraform Cloud is a workspace. TFC workspaces enable users

to organize the provisioning of infrastructure components inside logical groups or components.

For example, we can decouple Terraform components to have one component for provisioning

the network and a second component to provision an Azure VM by creating two TFC workspaces

in Terraform Cloud.

https://developer.hashicorp.com/terraform/cli/config/config-file#credentials-1
https://developer.hashicorp.com/terraform/cli/config/config-file#credentials-1
https://developer.hashicorp.com/terraform/cli/config/config-file#environment-variable-credentials
https://developer.hashicorp.com/terraform/cli/config/config-file#environment-variable-credentials
https://app.terraform.io/app/settings/tokens
https://app.terraform.io/app/settings/tokens
https://developer.hashicorp.com/terraform/cli/commands/login
https://developer.hashicorp.com/terraform/cli/commands/login
https://developer.hashicorp.com/terraform/cli/commands/logout
https://developer.hashicorp.com/terraform/cli/commands/logout
https://developer.hashicorp.com/terraform/tutorials/cloud-get-started/cloud-login
https://developer.hashicorp.com/terraform/tutorials/cloud-get-started/cloud-login

Chapter 14 491

In addition to workspaces, we can create TFC projects to organize multiple TFC workspaces inside.

Let’s get started!

Getting ready
To complete this recipe, you’ll need to have already created a Terraform Cloud organization.

Additionally, before creating workspaces, it’s important to check the required permissions. For

this, read this documentation: https://developer.hashicorp.com/terraform/cloud-docs/

workspaces/creating#permissions.

The goal of this recipe is to create one project and two workspaces within it, using the Terraform

Cloud UI.

How to do it…
To create a TFC workspace, perform the following steps:

1. The first step is to create the TFC project. For this, click the link Projects & workspaces in

the left menu, then click on the New button, and then on the Project button.

The following image shows the steps to create a project:

Figure 14.7: TFC create project

Very important note: Be careful not to confuse the Terraform CLI workspaces we

learned about in Chapter 6, Applying a Basic Terraform Workflow, in the recipe Using

workspaces for managing environments, with the TFC workspaces that we cover in

this recipe.

For more details on the differences, read the documentation here: https://
developer.hashicorp.com/terraform/cloud-docs/workspaces#terraform-

cloud-vs-terraform-cli-workspaces.

https://developer.hashicorp.com/terraform/cloud-docs/workspaces/creating#permissions
https://developer.hashicorp.com/terraform/cloud-docs/workspaces/creating#permissions
https://developer.hashicorp.com/terraform/cloud-docs/workspaces#terraform- cloud-vs-terraform-cli-workspaces
https://developer.hashicorp.com/terraform/cloud-docs/workspaces#terraform- cloud-vs-terraform-cli-workspaces
https://developer.hashicorp.com/terraform/cloud-docs/workspaces#terraform- cloud-vs-terraform-cli-workspaces

Using Terraform Cloud to Improve Team Collaboration492

2. In the project form, type a project name, such as DemoVM, and click on the Create button

as shown in the following image:

Figure 14.8: TFC set project name

3. Then, in the second part, we create the first workspace inside this project by clicking the

New > Workspace button:

Figure 14.9: TFC create workspace

4. The workspace creation wizard takes you through the following steps:

a. The first step of the workspace wizard is to choose the workflow of the workspace;

we will choose the first option to use the version control workflow:

Figure 14.10: TFC workspace version control

Chapter 14 493

b. Then, we choose GitHub as the source control:

Figure 14.11: Terraform Cloud connecting workspace to GitHub

c. Then, we select the GitHub repository that contains the Terraform configuration

(here we’ve selected the fork of the repository of this book).

Figure 14.12: Selection of a GitHub repository

Finally, we need to fill out the settings of the workspace.

Using Terraform Cloud to Improve Team Collaboration494

d. Input the name of the workspace (read the workspace name nomenclature con-

straints here: https://developer.hashicorp.com/terraform/cloud-docs/

workspaces/creating#workspace-naming), and select in which project it will be

included. Here, we chose the project DemoVM, created in Steps 1 and 2 of this recipe.

Figure 14.13: Workspace name configuration

e. Click the Advanced options link for more settings.

https://developer.hashicorp.com/terraform/cloud-docs/workspaces/creating#workspace-naming
https://developer.hashicorp.com/terraform/cloud-docs/workspaces/creating#workspace-naming

Chapter 14 495

f. Input the path to the Terraform configuration inside the repository, and choose

Manual apply to check the plan before applying it:

Figure 14.14: Workspace Terraform configuration

Using Terraform Cloud to Improve Team Collaboration496

g. Leave the other default configurations and click the Create workspace button.

Figure 14.15: Triggers configuration

The first workspace is now created.

Chapter 14 497

5. To create the second workspace, perform the same operation as in Steps 3 and 4 with the

workspace name VMLinux and the path to the Terraform configuration of the VM.

Figure 14.16: TFC second workspace configuration

6. We can see the list and status of the created project and associated workspaces, as shown

in the following image, which includes the steps to display a workspace’s list of projects:

Figure 14.17: TFC workspace list in project

Using Terraform Cloud to Improve Team Collaboration498

7. To manage the settings of specific TFC workspaces, click on the desired workspace and

click the Settings button in the left menu:

Figure 14.18: TFC workspace Settings menu option

In these settings, we can update all the workspace configurations and also delete the workspace

by clicking on the Destruction and deletion left menu option.

How it works…
At the end of the execution of this recipe, we get the following project/workspace structure:

Figure 14.19: TFC workspace organization

Chapter 14 499

In the next recipes of this chapter, we will learn in detail how to use these created workspaces.

There’s more…
In this recipe, we learned how to create a TFC workspace using the TFC UI, which provides friendly

and intuitive UI steps.

In an automation context, we can also create a TFC workspace using either the TFC API (for

more information, refer to the API documentation here: https://developer.hashicorp.com/

terraform/cloud-docs/api-docs/workspaces#create-a-workspace) or the Terraform con-

figuration and the Terraform Enterprise/Cloud provider (called tfe), which we will learn about

in more detail in the recipe Configuring Terraform Cloud with the Terraform TFE provider later in

this chapter.

Since it was announced in HashiDays 2023, Terraform Cloud has also included an organization

explorer (in beta at the time this chapter is being written). The organization explorer enables

you to see a consolidated view of the components in your organization, such as the workspace

dashboard and the Terraform version that is being used by your Terraform configuration.

An excerpt from the workspace dashboard is shown in the image below:

Figure 14.20: TFC explorer workspace list

https://developer.hashicorp.com/terraform/cloud-docs/api-docs/workspaces#create-a-workspace
https://developer.hashicorp.com/terraform/cloud-docs/api-docs/workspaces#create-a-workspace

Using Terraform Cloud to Improve Team Collaboration500

And the following image shows the Terraform provider dashboard:

Figure 14.21: TFC explorer Terraform version list

For more details about the Explorer view feature, read the documentation here, https://

developer.hashicorp.com/terraform/cloud-docs/workspaces/explorer, and the blog post

at https://www.hashicorp.com/blog/new-terraform-cloud-capabilities-to-import-view-

and-manage-infrastructure.

See also
• Documentation on TFC projects and workspaces is available here: https://developer.

hashicorp.com/terraform/cloud-docs/workspaces and https://developer.hashicorp.

com/terraform/cloud-docs/workspaces/organize-workspaces-with-projects.

• A tutorial about creating TFC workspaces is available here: https://developer.hashicorp.

com/terraform/cloud-docs/workspaces/creating.

• A video from Ned Bellavance about Terraform Cloud workspaces can be found here:

https://www.youtube.com/watch?v=tDexI54Cjs8.

Using the remote backend in Terraform Cloud
Throughout this book, we have discussed storing and sharing the Terraform state.

In the Protecting the state file in the Azure remote backend recipe in Chapter 8, Provisioning Azure In-

frastructure with Terraform, we saw a concrete case of this when we set up and used a backend in

Azure (using Azure Storage). However, this recipe can only be applied with an Azure subscription.

The different types of backends listed at https://www.terraform.io/docs/backends/types/

index.html mostly require you to purchase platforms or tools.

https://developer.hashicorp.com/terraform/cloud-docs/workspaces/explorer
https://developer.hashicorp.com/terraform/cloud-docs/workspaces/explorer
https://www.hashicorp.com/blog/new-terraform-cloud-capabilities-to-import-view-and-manage-infrastructure
https://www.hashicorp.com/blog/new-terraform-cloud-capabilities-to-import-view-and-manage-infrastructure
https://developer.hashicorp.com/terraform/cloud-docs/workspaces
https://developer.hashicorp.com/terraform/cloud-docs/workspaces
https://developer.hashicorp.com/terraform/cloud-docs/workspaces/organize-workspaces-with-projects
https://developer.hashicorp.com/terraform/cloud-docs/workspaces/organize-workspaces-with-projects
https://developer.hashicorp.com/terraform/cloud-docs/workspaces/creating
https://developer.hashicorp.com/terraform/cloud-docs/workspaces/creating
https://www.youtube.com/watch?v=tDexI54Cjs8
https://www.terraform.io/docs/backends/types/index.html
https://www.terraform.io/docs/backends/types/index.html

Chapter 14 501

One of Terraform Cloud’s primary features is that it allows you to host the state.

In this recipe, we will learn how to use the cloud backend, which refers to Terraform Cloud.

Getting ready
The prerequisite for this recipe (as for all the others in this chapter) is that you have an account

on Terraform Cloud (http://app.terraform.io/) and are logged in. Furthermore, you will need

to create a project called demoVM, and inside of this project, create a workspace called networkVM-

state by following the steps found in the Managing workspaces in Terraform Cloud recipe in this

chapter, but selecting CLI-driven workflow for the workspace type.

Figure 14.22: TFC workspace CLI-driven workflow

The goal of this recipe is to configure and use the cloud backend for a simple Terraform config-

uration (that does not depend on a cloud infrastructure provider such as Azure). Furthermore,

the execution of this configuration will be done in Terraform Cloud in local mode, that is, on a

machine outside Terraform Cloud (which can be a local workstation or a CI/CD pipeline agent).

The source code for this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP14/vm/network.

http://app.terraform.io/
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP14/vm/network
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP14/vm/network

Using Terraform Cloud to Improve Team Collaboration502

How to do it…
This recipe will be split into three parts, as follows:

1. Configuring local mode execution in Terraform Cloud

2. Generating a new user API token

3. Configuring and using the cloud backend

For the first part, we will configure local mode execution, as follows:

1. In our new Terraform Cloud workspace networkVM, go to Settings in the left menu, and

then to the General tab, and change the Execution Mode option to Local:

Figure 14.23: TFC workspace local mode execution

2. Click the Save settings button to apply these changes.

Chapter 14 503

Now, for the second part, we need to generate a new API token to authenticate with Terraform

Cloud. Follow these steps:

1. In the Settings tab of the demoBook organization, go to the API tokens tab.

2. Scroll down to the bottom of this page and click on the create a user API token link to

generate a new user API token.

Figure 14.24: TFC API tokens

Using Terraform Cloud to Improve Team Collaboration504

3. On the opened page, click on Create an API token. In the newly opened dialog, enter the

name of the token and choose the time expiration of the token (the default is 30 days).

Finally, click on the Generate token button.

Figure 14.25: TFC create a user token

4. The token is displayed in the token list on the page. Make a note of it as it will not be

displayed after this page is reloaded.

5. Then run the command terraform login and paste the token during the execution of

this command:

Figure 14.26: Terraform login command asking for the token

Finally, the last part is to configure and use the remote backend. Follow these steps:

1. In the main.tf file of the Terraform configuration, add the following cloud block con-

figuration:

Chapter 14 505

terraform {

 cloud {

 hostname = "app.terraform.io"

 organization = "demoBook"

 workspaces {

 name = "networkVM"

 }

 }

}

2. For cloud authentication, here using Azure, set the four Azure authentication environ-

ment variables covered in the “Protecting the Azure credential provider” recipe in Chapter

8, Provisioning Azure Infrastructure with Terraform.

3. Execute the basic Terraform workflow commands init, plan, and apply from your local

workstation.

How it works…
In the first part of this recipe, we configured the execution mode of our workspace. In this con-

figuration, we chose local mode, which indicates that Terraform will assume the configuration

is available on a private machine (either a local development workstation or a CI/CD pipeline

agent). In this case, the created workspace is just used to store the Terraform State.

Then, in the second part, we created a token that allows the CLI to authenticate with our Terra-

form Cloud workspace.

In the last part, we wrote the configuration, which describes our TFC configuration that will store

the state file. In this configuration, we used the cloud block, in which we added the following

parameters:

• hostname with the "app.terraform.io" value, which is the domain of Terraform Cloud

• organization, which contains the demoBook name of the organization

• workspaces with the name of the NetworkVM workspace that we created manually in the

prerequisites of this recipe

At the end, we executed the Terraform workflow commands locally.

Using Terraform Cloud to Improve Team Collaboration506

After executing these commands, upon clicking on the States menu option of our workspace, we

will see that our status file has been created:

Figure 14.27: TFC workspace Terraform state

By clicking on this file, you can view its content or download it.

There’s more…
In this recipe, we created the User API token via the TFC UI and put it inside the CLI configuration

file terraform.rc, which is the best file to use for automation mode.

In manual mode, we can use the terraform login command. In the terminal, run the command

terraform login to authenticate Terraform to our workspace as we learned in the Authenticating

Terraform to Terraform Cloud recipe in this chapter. During the execution of this command, enter

the generated token.

To learn more about the use of API tokens, please refer to the documentation at https://www.

terraform.io/docs/cloud/users-teams-organizations/api-tokens.html.

In the next recipe, we will learn how to migrate your existing state to Terraform Cloud.

See also
• The documentation on the cloud block is available here: https://developer.hashicorp.

com/terraform/cli/cloud/settings.

Migrating Terraform State to Terraform Cloud
In the previous recipe, we learned how to use Terraform Cloud as a remote backend. In Chapter

5, Managing Terraform State, we learned how to operate the state. We will now combine both

of these skills into one project. In this recipe, we will learn how to migrate the existing state to

Terraform Cloud.

https://www.terraform.io/docs/cloud/users-teams-organizations/api-tokens.html
https://www.terraform.io/docs/cloud/users-teams-organizations/api-tokens.html
https://developer.hashicorp.com/terraform/cli/cloud/settings
https://developer.hashicorp.com/terraform/cli/cloud/settings

Chapter 14 507

In general, when you migrate a state from one backend to another, if you don’t follow the state

migration procedure, Terraform will see a new backend in its configuration. Then, it will want to

delete the resources, so you’ll have to recreate them in the new state, which will cause a service

interruption.

To avoid having to reprovision resources, we need to migrate the state to Terraform Cloud.

Let’s get started!

Getting ready
To complete this recipe, you’ll need to use the same version of Terraform CLI between the time

of the original state creation and the time you will operate the migration of the state.

The migration of the state will be done with Terraform CLI and use the remote backend, so the

Terraform version must be equal to or greater than 1.1.

Another requirement is to have a Terraform Cloud workspace already created that the new state

will be imported to. For more details, read the first part of the previous recipe, Using the remote

backend in Terraform Cloud.

In this recipe, we will use the Terraform configuration available here, https://github.com/

PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP14/migratestate,

in which we have already performed the terraform init, plan, and apply commands.

After running the apply command, we can see the Terraform state file stored locally, as shown

in the following image:

Figure 14.28: Terraform local state

Note that the Terraform-created random password here is very basic, and is just to

demonstrate the state migration.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP14/migratestate
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP14/migratestate

Using Terraform Cloud to Improve Team Collaboration508

The goal of this recipe is to migrate this existing state to Terraform Cloud without needing to

destroy and redeploy the infrastructure.

How to do it…
To migrate this existing state, perform the following steps:

1. In your existing configuration, configure the remote backend by adding the cloud backend

configuration, as we learned in the previous recipe, by adding the following Terraform

configuration in main.tf:

terraform {

 required_version = "~> 1.1"

 required_providers {

random = {

 source = "hashicorp/random"

 version = "3.5.1"

 }

 }

 cloud {

 hostname = "app.terraform.io"

 organization = "demoBook"

 workspaces {

 name = "MigrateState"

 }

 }

}

2. Inside the folder that contains this Terraform configuration, run the terraform init

command. The init command will detect that the backend configuration has changed

and ask you to confirm the migration of the state to Terraform Cloud.

Chapter 14 509

3. We confirm the migration by entering yes. The following image shows the execution of

the terraform init command:

Figure 14.29: Terraform init migrate State

4. The migration of the state is done, so now we can delete the local terraform.tfstate

created in the Getting ready section of this recipe.

Using Terraform Cloud to Improve Team Collaboration510

5. Finally, we check the migration by running the terraform plan command in the same

directory. The following image shows the output of the terraform plan command:

Figure 14.30: Terraform plan after state migration

We can see that there are no changes, so the state is migrated without needing to destroy and

recreate resources.

How it works…
In our recipe, the terraform init command detects the change of the Terraform configuration

in the remote backend and then provides the choice to migrate the configuration into a Terraform

Cloud workspace.

See also
• The State migration documentation is available here: https://www.terraform.io/docs/

cloud/migrate/index.html.

Using Terraform Cloud as a private module registry
In the Using the remote backend in Terraform Cloud recipe found in this chapter, we learned how to

use Terraform Cloud as a remote backend. It is centralized, secure, and free of charge.

https://www.terraform.io/docs/cloud/migrate/index.html
https://www.terraform.io/docs/cloud/migrate/index.html

Chapter 14 511

In this book, we dedicated Chapter 7, Sharing Terraform Configuration with Modules, to the creation,

usage, and sharing of Terraform modules. As a reminder, what we studied was publishing modules

in the Terraform public registry, which is publicly accessible by all Terraform users, and sharing

Terraform modules privately using a Git repository.

Concerning private module sharing, the Git repository system is efficient but does not offer a

centralized platform for sharing and documenting modules as the public registry does. In order to

provide companies with a private registry of their Terraform modules, HashiCorp has integrated

this functionality into Terraform Cloud/Enterprise.

In this recipe, we will learn how to publish and use a Terraform module in the private registry

of Terraform Cloud.

Getting ready
In order to publish a module in Terraform Registry, you’ll need to store your module code in a

VCS provider that is supported by Terraform Cloud. The list of supported file types can be found

at https://www.terraform.io/docs/cloud/vcs/index.html.

To start this recipe, in the Settings section of the Terraform Cloud organization, we need to create

a connection to the VCS provider that contains the Terraform configuration, as described in the

documentation at https://www.terraform.io/docs/cloud/vcs/index.html.

In our scenario, we will use the GitHub VCS, which contains a terraform-azurerm-webapp re-

pository (which creates an App Service plan, an App Service instance, and Application Insights

in Azure).

To use this, you must fork this GitHub repository: https://github.com/mikaelkrief/terraform-

azurerm-webapp.

(The Terraform configuration isn’t updated with the latest version of the azurerm provider; it

just serves as an example.)

In addition, as we studied in the Sharing Terraform modules using GitHub recipe in Chapter 7, Sharing

Terraform Configuration with Modules, you need to create a Git tag in this repository that contains

the version number of the module. For this recipe, we will create a v1.0.0 tag, as shown in the

following screenshot:

https://www.terraform.io/docs/cloud/vcs/index.html
https://www.terraform.io/docs/cloud/vcs/index.html
https://github.com/mikaelkrief/terraform-azurerm-webapp
https://github.com/mikaelkrief/terraform-azurerm-webapp

Using Terraform Cloud to Improve Team Collaboration512

Figure 14.31: GitHub tag on the Terraform module

To integrate Terraform Cloud and GitHub, execute the process documented here: https://www.

terraform.io/docs/cloud/vcs/github-app.html. At the end of this integration, we get the

following screen when going to Settings > VCS Providers:

Figure 14.32: TFC VCS provider

https://www.terraform.io/docs/cloud/vcs/github-app.html
https://www.terraform.io/docs/cloud/vcs/github-app.html

Chapter 14 513

Our organization now has a connection to the required GitHub account and we can start pub-

lishing the module in Terraform Cloud.

How to do it…
To publish a Terraform module in Terraform Cloud’s private registry, perform the following steps:

1. In our Terraform Cloud organization, click on the Registry menu, which is in the left bar

menu, and click on the Publish a module link:

Figure 14.33: Publishing a module link in TFC

2. On the next page, in the first step of the wizard, choose GitHub as the VCS provider, which

we integrated as part of the preparation for this recipe:

Figure 14.34: Adding a module from GitHub in TFC

Using Terraform Cloud to Improve Team Collaboration514

3. In the second step of the wizard, choose the repository that contains the Terraform mod-

ule configuration:

Figure 14.35: Choosing a repository for your code in TFC

4. Finally, in the last step of the wizard, publish the module by clicking on the Publish

module button:

Figure 14.36: Publishing a Terraform module

Chapter 14 515

The Terraform module is published on the private Terraform Cloud registry.

How it works…
To publish a module in the private registry of Terraform, you just have to follow the steps proposed

by the wizard, which consists of choosing a VCS provider and then selecting the repository that

contains the Terraform configuration of the module so that it can be published. After doing this,

details about the module will be displayed in the layout of the public registry. In the center of

this page, you will be able to see the contents of the Readme.md file, while on the right-hand side,

you will be able to see the technical information about the use of this module.

There’s more…
Once this module has been published in this registry, you can use it in a Terraform configuration.

If you’re using Terraform Cloud in local execution mode, you must configure Terraform CLI, as

detailed in https://developer.hashicorp.com/terraform/cli/config/config-file. Then,

you need to use this Terraform module in a Terraform configuration and write the following:

module "webapp" {

 source = "app.terraform.io/<TFC organisation>/webapp/azurerm"

 version = "1.0.4"

...

}

In addition, if your modules have been published in this private registry, you can generate the

Terraform configuration that calls them using the design configuration feature of Terraform

Cloud. You can find out more about this at https://www.terraform.io/docs/cloud/registry/

design.html.

Finally, please note that if you have several organizations in Terraform Cloud and you want to use

the same private modules in all of them, you will have to publish these modules in each of your or-

ganizations. As for upgrading their versions, this will be done automatically for each organization.

See also
• Documentation regarding privately registering modules in Terraform Cloud is available

here: https://www.terraform.io/docs/cloud/registry/index.html.

https://developer.hashicorp.com/terraform/cli/config/config-file
https://www.terraform.io/docs/cloud/registry/design.html
https://www.terraform.io/docs/cloud/registry/design.html
https://www.terraform.io/docs/cloud/registry/index.html

Using Terraform Cloud to Improve Team Collaboration516

Executing Terraform configuration remotely in
Terraform Cloud
In the Managing workspaces in Terraform Cloud recipe in this chapter, we studied how to create a

workspace. During the Terraform Cloud workspace configuration, we can configure the CLI to

apply the configuration present on a local workstation outside the Terraform Cloud platform. This

private workstation is therefore private and can be a development workstation or a machine that

serves as an agent for a CI/CD pipeline (such as on an Azure pipeline agent or a Jenkins node).

One of the great advantages of Terraform Cloud is its ability to execute Terraform configurations

directly within this platform. This feature, called remote operations, makes it possible to have free

Terraform configuration execution pipelines without having to install, configure, and maintain

VMs that serve as agents. In addition, it provides a shared Terraform execution interface for all

members of the organization.

In this recipe, we will look at the steps involved in running a Terraform configuration in Terraform

Cloud using the UI workflow.

Getting ready
In this recipe, the Terraform configuration creates an Azure resource group and an Azure App

Service instance.

Since, in this configuration, we will be creating Azure resources, we need to create an Azure service

principal that has sufficient permissions in the subscription. For more information on Azure ser-

vice principals and the authentication of Terraform in Azure, see the Protecting the Azure credential

provider recipe in Chapter 8, Provisioning Azure Infrastructure with Terraform.

Also, since we will be storing the configuration in GitHub, we will need to add the GitHub VCS

provider, as explained in the documentation here: https://www.terraform.io/docs/cloud/

vcs/github-app.html.

In your Terraform Cloud organization, you need to create a workspace (for this recipe, we will

name this workspace WebApp). For more details on this procedure, read the Managing workspaces

in Terraform Cloud recipe in this chapter.

Finally, all the steps of this recipe will be done in the Terraform Cloud web interface.

https://www.terraform.io/docs/cloud/vcs/github-app.html
https://www.terraform.io/docs/cloud/vcs/github-app.html

Chapter 14 517

The Terraform configuration used in this recipe is available here: https://github.com/

PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP14/remoteexec.

Fork this repository to use this Terraform configuration in your Terraform Cloud organization and

link your Terraform Cloud workspace with your forked repository using a VCS provider.

How to do it…
Because we’re deploying resources in Azure, we first need to add the four Azure authentication

environment variables to the workspace variable settings by performing the following steps:

1. On the WebApp workspace Overview page, click on the Configure variables button:

Figure 14.37: Configuring variables in the TFC workspace

2. Then, in the Workspace variables section, add our four Terraform azurerm provider au-

thentication environment variables, as shown in the following screenshot:

Figure 14.38: Adding an environment variable in TFC

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP14/remoteexec
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP14/remoteexec

Using Terraform Cloud to Improve Team Collaboration518

For each variable, configure the type of the variable (here, we set Environment variable),

the variable name, and the value of the variable. Choose the Sensitive option for the secret

and then click on the Add variable button.

3. Then, after creating the four environment variables, we can list them:

Figure 14.39: TFC variables list

Now that we’ve configured our workspace, we can execute the Terraform configuration inside

Terraform Cloud.

To plan the configuration remotely in Terraform Cloud, perform the following steps:

1. To trigger the run, click on the Actions button and then on Start new run, as shown in

the following image:

Figure 14.40: Start new run

Chapter 14 519

2. In the window that opens, choose the option to run only the plan, and click on Start run.

Figure 14.41: TFC start run options

3. Terraform Cloud will launch a new execution for this Terraform configuration. By running

the terraform plan command, we will be able to see the logs for this execution:

Figure 14.42: TFC run execution

Using Terraform Cloud to Improve Team Collaboration520

4. After executing plan, Terraform Cloud expects the user to confirm this before the changes

are applied.

If we agree to the previewed changes, we can confirm these changes by clicking on the

Confirm & Apply button:

Figure 14.43: Confirm and apply run

5. Add a comment and click on the Confirm Plan button:

Figure 14.44: Confirm the plan to apply

6. Once finished, the result of executing the plan will be shown:

Figure 14.45: TFC plan applied

Chapter 14 521

We can see the details of resource changes. Here three Azure resources will be created. At the end

of this execution, our Azure resources are provisioned.

How it works…
In this recipe, we configured a workspace in Terraform Cloud by adding the Azure environment

variables configuration, which is an optional step and depends on the resources and cloud pro-

viders you wish to manage. In this workspace variables configuration, we can also add values

for required variables or override default values. If, for example, in the configuration we have

this variable:

variable "location" {

 type = string

 description = " he location where resources will be deployed to."

}

We can set the value in the variables configuration of the workspace, as is shown in the following

image:

Figure 14.46: Adding a Terraform variable

Then, we run a remote execution of the Terraform configuration directly in Terraform Cloud with

plan validation.

There’s more…
In this recipe, we learned how to configure environment variables in the workspace settings. If we

need to use the same environments in many workspaces, we can configure and use variable sets

by following this tutorial: https://developer.hashicorp.com/terraform/tutorials/cloud/

cloud-multiple-variable-sets.

https://developer.hashicorp.com/terraform/tutorials/cloud/cloud-multiple-variable-sets
https://developer.hashicorp.com/terraform/tutorials/cloud/cloud-multiple-variable-sets

Using Terraform Cloud to Improve Team Collaboration522

We also learned how to run the plan and apply variables directly using the web interface of this

platform. In the workspace settings, you can also configure whether you want to apply the plan

manually (that is, with a confirmation, like in our recipe) or automatically. You can also choose

the version of the Terraform binary you wish to use (by default, it uses the latest stable version

that can be found at the time of the workspace’s creation; beta versions are not considered):

Figure 14.47: Specifying the Terraform version

Chapter 14 523

You can also destroy all the resources that have been provisioned using the Destruction and

Deletion feature, which is accessible by going to the workspace Settings > Destruction and

Deletion menu and then clicking on the Queue destroy plan button:

Figure 14.48: TFC destroy operation

This operation will execute the terraform destroy command on the Terraform configuration.

In addition, as you may have noticed, by running the Terraform configuration in Terraform Cloud

using the UI, we did not need to configure the cloud backend, as we discussed in the Using a remote

backend in Terraform Cloud recipe of this chapter. In our case, the configuration of the Terraform

state file is integrated with the workspace inside Terraform Cloud. One possible downside of

this approach is that it may not be obvious to someone other than you, who is making changes

to the configuration, where exactly the state is located and how to apply it. Keeping it alongside

the configuration (i.e., declaring the cloud block) makes that much more obvious.

Using Terraform Cloud to Improve Team Collaboration524

By clicking the States menu option, we’ll notice the presence of the Terraform State:

Figure 14.49: TFC state management

Moreover, if you are in a development context and want to check the development before com-

mitting to the repository, you can still use this remote mode of Terraform execution to make a

terraform plan. This is done by controlling the execution that takes place in Terraform Cloud

using your local Terraform CLI. To do this, simply add the configuration of the cloud backend, as

in the Using the remote backend in Terraform Cloud recipe of this chapter, by using the name of the

workspace we created in the first step of that recipe, which corresponds to the following code:

terraform {

 backend "remote" {

 hostname = "app.terraform.io"

 organization = "demoBook"

 workspaces {

 name = "WebApp"

 }

 }

}

Then, on the development station, execute the terraform plan command, as shown in the

following screenshot:

Chapter 14 525

Figure 14.50: Migrating the state

During this execution, your Terraform CLI will create a configuration package and upload it to the

Terraform Cloud workspace. The CLI triggers Terraform Cloud to run Terraform on the uploaded

code. Finally, the output of the plan command is also available in the terminal. Please also note

that, in this case, you do not need to set the environment variables locally since they are already

configured in the workspace.

Finally, if your Terraform configuration includes provisioning local-exec (which we studied

in the Executing local programs with Terraform recipe in Chapter 4, Using Terraform with External

Data) and, in its command, it uses a third-party tool, you will have to ensure that this tool is al-

ready present or install it on the Terraform Cloud agent, which will execute the Terraform binary.

For more information about additional third-party tools in the execution of Terraform Cloud, I

recommend reading the documentation available at https://www.terraform.io/docs/cloud/

run/install-software.html.

In order to ensure that the changes are applied in one place, you can’t run the apply

command on a workspace that is connected to a VCS. However, if your workspace is

not connected to a VCS, then you can also execute the apply command from your

local CLI.

https://www.terraform.io/docs/cloud/run/install-software.html
https://www.terraform.io/docs/cloud/run/install-software.html

Using Terraform Cloud to Improve Team Collaboration526

See also
• The documentation on remote execution in Terraform Cloud is available here: https://

www.terraform.io/docs/cloud/run/index.html.

• The documentation on using the CLI with remote execution is available here: https://

www.terraform.io/docs/cloud/run/cli.html.

Checking the compliance of Terraform configurations
using OPA in Terraform Cloud
The aspect of Terraform configuration tests was discussed in Chapter 11, Running Test and Com-

pliance Security on Terraform Configuration, such as using Open Policy Agent (OPA), which was

covered in the Using Open Policy Agent for Terraform compliance recipe.

In Terraform, compliance tests are carried out after the terraform plan command is executed.

They verify that the result of the plan command corresponds to the rules described in the tests.

Only if these tests have passed can the terraform apply command be executed.

Among the tools and frameworks for compliance testing, Terraform Cloud offers, in its free and

paid plans, the stack, which allows us to write tests using the Sentinel or OPA framework and

execute them directly in Terraform Cloud. This is done by using the run action between the plan

and apply commands.

In this recipe, we will study a simple case of integrating OPA compliance tests and executing

them in Terraform Cloud.

Getting ready
The essential requirement for this recipe is to have a Terraform Cloud organization.

Policies are rules that Terraform Cloud enforces on Terraform runs. You can define policies using

either the Sentinel or OPA policy-as-code framework. Note that the Terraform Cloud Free edi-

tion includes one policy set of up to five policies. A policy set is a group of policies that may be

enforced on workspaces.

If you have an older Terraform Cloud organisation, you need to migrate to a new free

plan as explained here: https://www.hashicorp.com/blog/terraform-cloud-
updates-plans-with-an-enhanced-free-tier-and-more-flexibility

https://www.terraform.io/docs/cloud/run/index.html
https://www.terraform.io/docs/cloud/run/index.html
https://www.terraform.io/docs/cloud/run/cli.html
https://www.terraform.io/docs/cloud/run/cli.html
https://www.hashicorp.com/blog/terraform-cloud- updates-plans-with-an-enhanced-free-tier-and-more-flexibility
https://www.hashicorp.com/blog/terraform-cloud- updates-plans-with-an-enhanced-free-tier-and-more-flexibility

Chapter 14 527

If you have the free plan, you can configure only one policy set per organization and you can’t

link your created policy set with a VCS repository.

The Terraform configuration used in this recipe is the one we already learned about in the recipe

Using Open Policy Agent for Terraform compliance in Chapter 11, Running Test and Compliance Security

on Terraform Configuration, available at https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/tree/main/CHAP11/opa. This configuration will create a Resource

Group and an Azure Storage account.

In addition, to use the code written in this recipe in your TFC organization, you need to create a

fork of the original repository of this book (https://github.com/PacktPublishing/Terraform-

Cookbook-Second-Edition/tree/main).

The goal of this recipe is to integrate the OPA rules, as part of policy sets, that will test the following:

that the Azure Storage account is only available on HTTPS and that it is named sademotestopa123.

Then, we will learn how to apply these policy sets during the execution of Terraform Cloud.

Finally, the storage workspace must be created and configured in Terraform Cloud with a VCS

provider, as described in the Managing workspaces in Terraform Cloud recipe of this chapter.

For this recipe, as we subscribed to the free plan of Terraform Cloud, we can’t connect a policy

set to our VCS provider. Therefore, we will create the policy directly in the Terraform Cloud UI.

The source code of the Terraform configuration used in this recipe is available here: https://

github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP11/opa.

Documentation about the plans, prices, and features is available here: https://

developer.hashicorp.com/terraform/cloud-docs/overview.

The purpose of this recipe is not to study all the elements for writing policies (for

that, refer to the OPA documentation at https://www.openpolicyagent.org/).

Here, we will be writing some simple code that you can easily reproduce.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP11/opa
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP11/opa
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP11/opa
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP11/opa
https://developer.hashicorp.com/terraform/cloud-docs/overview
https://developer.hashicorp.com/terraform/cloud-docs/overview
https://www.openpolicyagent.org/

Using Terraform Cloud to Improve Team Collaboration528

The storage workspace is configured with the following setting:

Figure 14.51: TFC Terraform working directory

How to do it…
First, we need to configure policy sets in our Terraform Cloud organization:

1. In your organization Settings, select the Policy sets menu option and click on the Connect

a new policy set button:

Figure 14.52: Creating a policy set

Chapter 14 529

2. As we are using a free plan, we can’t link the policy set to a VCS provider. So, we will click

on the create a policy set with individually managed policies link, as shown in the

following image:

Figure 14.53: Connecting a policy set in TFC

3. In the newly opened form, configure the policy as follows:

a. Choose Open Policy Agent as the policy framework.

Figure 14.54: Choosing the OPA framework

Using Terraform Cloud to Improve Team Collaboration530

b. Name the policy set checkStorage.

Figure 14.55: Setting the policy name

c. Choose the scope of the policies as selected workspaces and select the Storage

workspace from the available workspaces (leave the policies association empty).

Figure 14.56: TFC policy configuration – select workspace

4. Finish by clicking on the Connect policy set button at the bottom of the above form.

Chapter 14 531

Then, we will create the policy that will use OPA. Perform the following steps:

1. In the organization Settings, go to the Policies menu and click on the Create a new policy

button.

2. Set the following configuration:

a. Choose the Open Policy Agent policy framework.

Figure 14.57: Selecting the OPA framework

b. Enter the name of the policy.

Figure 14.58: Setting the policy name

c. Set Enforcement behavior to Mandatory.

Figure 14.59: Setting the policy enforcement

Using Terraform Cloud to Improve Team Collaboration532

d. In the Policy code (Rego) input box, write the Rego code of the OPA policy:

import input.plan as tfplan

azurerm_storage[resources] {

 resources := tfplan.resource_changes[_]

 resources.type == "azurerm_storage_account"

 resources.mode == "managed"

}

deny[msg] {

 az_storage := azurerm_storage[_]

 r := az_storage.change.after

 not r.enable_https_traffic_only

 msg := sprintf("Storage Account %v must use HTTPS traffic
only", [az_storage.name])

}

deny[msg] {

 az_storage := azurerm_storage[_]

 r := az_storage.change.after

 r.name != "sademotestopa123"

 msg := sprintf("Storage Account %v must be named
sademotestopa123", [az_storage.name])

}

The details of this code are explained in the recipe Using Open Policy

Agent for Terraform compliance in Chapter 11, Running Test and Com-

pliance Security on Terraform Configuration.

Chapter 14 533

e. Select the policy set that this policy will be associated with. Choose the policy set

checkStorage (created in the first part of this recipe):

Figure 14.60: Associating a policy with a policy set

f. Create the policy by clicking on the Create policy button.

With this step, we have created a policy set that contains a policy that is configured to run on the

Storage TFC workspace.

Now, the last part is to run the pipeline execution of the Storage workspace with the following

steps:

1. In the Storage workspace, we click on the Actions > Start new run button (as we learned

in detail in the Executing Terraform configuration remotely in Terraform Cloud recipe of this

chapter):

Figure 14.61: Start new run

Using Terraform Cloud to Improve Team Collaboration534

2. In the details of the run execution, we can see the OPA execution just after the run plan:

Figure 14.62: OPA execution failed

In the above output, we can see the compliance of the HTTPS access and the name of the

Azure Storage account.

3. Now, fix the compliance errors on Terraform configuration (read the recipe Using Open

Policy Agent for Terraform compliance in Chapter 11, Running Test and Compliance Security on

Terraform Configuration, for more details), commit the code to your GitHub repository, and

rerun the workflow in Terraform Cloud. The following image shows the run result output:

Figure 14.63: OPA compliance passed successfully

The OPA compliance has passed successfully.

Chapter 14 535

There’s more…
In this recipe, we learned how to use the OPA framework to apply Terraform compliance in Ter-

raform Cloud. We can also use the Sentinel framework, which I covered in the first edition of this

book (but in this edition, I wanted to focus on OPA). For more information, refer to the following

documentation resources:

• The code for Sentinel functions is available here: https://github.com/hashicorp/

terraform-guides/tree/master/governance/third-generation.

• The documentation on how to install the Sentinel CLI is available at https://docs.

hashicorp.com/sentinel/intro/getting-started/install/.

• The guide to writing and installing policies is available here: https://www.hashicorp.

com/resources/writing-and-testing-sentinel-policies-for-terraform/.

• The basic learning guide for policies is available here: https://learn.hashicorp.com/

terraform/cloud-getting-started/enforce-policies.

• Read this article to learn more about the use of Sentinel: https://medium.com/hashicorp-

engineering/using-new-sentinel-features-in-terraform-cloud-c1ade728cbb0.

• The following is a video that demonstrates policy testing: https://www.hashicorp.com/

resources/testing-terraform-sentinel-policies-using-mocks/.

See also
• A great HashiCorp tutorial on how to detect infrastructure drift and enforce OPA policies:

https://developer.hashicorp.com/terraform/tutorials/policy/drift-and-opa.

• HashiCorp documentation on policy enforcement is available here: https://developer.

hashicorp.com/terraform/cloud-docs/policy-enforcement.

Using integrated cost estimation for cloud resources
When we create resources in a cloud architecture, we often tend to forget that this incurs a fi-

nancial cost that depends on the types of resources that are created. This is even more true with

automation and IaC, which allow us to create a multitude of resources using a few commands.

One of the interesting features of Terraform Cloud is cost estimation, which makes it possible

to visualize the cost of the resources that are handled in the Terraform configuration while it’s

being run.

In this recipe, we will learn how to use cost estimation in Terraform Cloud.

https://github.com/hashicorp/terraform-guides/tree/master/governance/third-generation
https://github.com/hashicorp/terraform-guides/tree/master/governance/third-generation
https://docs.hashicorp.com/sentinel/intro/getting-started/install/
https://docs.hashicorp.com/sentinel/intro/getting-started/install/
https://www.hashicorp.com/resources/writing-and-testing-sentinel-policies-for-terraform/
https://www.hashicorp.com/resources/writing-and-testing-sentinel-policies-for-terraform/
https://learn.hashicorp.com/terraform/cloud-getting-started/enforce-policies
https://learn.hashicorp.com/terraform/cloud-getting-started/enforce-policies
https://medium.com/hashicorp-engineering/using-new-sentinel-features-in-terraform-cloud-c1ade728cbb0
https://medium.com/hashicorp-engineering/using-new-sentinel-features-in-terraform-cloud-c1ade728cbb0
https://www.hashicorp.com/resources/testing-terraform-sentinel-policies-using-mocks/
https://www.hashicorp.com/resources/testing-terraform-sentinel-policies-using-mocks/
https://developer.hashicorp.com/terraform/tutorials/policy/drift-and-opa
https://developer.hashicorp.com/terraform/cloud-docs/policy-enforcement
https://developer.hashicorp.com/terraform/cloud-docs/policy-enforcement

Using Terraform Cloud to Improve Team Collaboration536

Getting ready
Before you start this recipe, you must have a Terraform Cloud organization and have created a

project and workspace with VCS linked to a GitHub repository as we learned in the recipe Man-

aging workspaces in Terraform Cloud in this chapter. Also, the execution mode of the workspace is

configured as remote execution. For this recipe, the created workspace is called MyApp.

In Terraform Cloud, there are two solutions to manage cost infrastructure estimation:

• Using the cost estimation feature integrated into Terraform Cloud

• Using the Infracost run task

For more information on how to use the Infracost CLI, read the Estimating the cost of Azure Infra-

structure using Infracost recipe in Chapter 8, Provisioning Azure Infrastructure with Terraform. For

detailed implementation in Terraform Cloud, read the next recipe, Integrating the Infracost Run

task during the Terraform Cloud run.

The purpose of this recipe is to provision an Azure virtual machine and Azure App Service and to

visualize the cost estimation of these resources in the Terraform Cloud interface using the cost

integration feature.

The source code for the Terraform configuration that will be executed in this recipe is available

here: https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/

main/CHAP14/costestimation.

How to do it…
To view the estimation of costs for our resources using integrated cost management, perform

the following steps:

Note: There is a list of cloud providers and the resources that are supported by the

cost management functionality available at https://www.terraform.io/docs/

cloud/cost-estimation/index.html#supported-resources.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP14/costestimation
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP14/costestimation
https://developer.hashicorp.com/terraform/cloud-docs/cost-estimation#supported-resources
https://developer.hashicorp.com/terraform/cloud-docs/cost-estimation#supported-resources

Chapter 14 537

1. In the Settings section of the Terraform Cloud organization, in the Cost Estimation tab,

check the Enable Cost Estimation for all workspaces checkbox and then click on the

Update settings button, as shown in the following image:

Figure 14.64: Enabling integrated Cost Estimation

2. In the workspace used, MyApp, which provisions the Azure resources with our Terraform

configuration, click on the Actions button and then click on Start new run, as shown in

the following image:

Figure 14.65: Start new run

Using Terraform Cloud to Improve Team Collaboration538

3. For the provider’s authentication, here for Azure, in the Variables tab set your four Azure

authentication variables as explained in the Executing Terraform configuration remotely in

Terraform Cloud recipe in this chapter.

4. In the window that opens, choose the option to run only the plan (labeled 1), and click

on Start run:

Figure 14.66: Start run

Chapter 14 539

5. After executing our plan, click on the See details button on the run. We can view the

evaluated cost of the resources:

Figure 14.67: Integrated cost estimation during run

We can see the cost estimation details in the above image output.

How it works…
Once the cost estimation option has been activated, Terraform Cloud uses the APIs of the differ-

ent cloud providers to evaluate and display the costs of the resources that will be provisioned.

Using Terraform Cloud to Improve Team Collaboration540

There’s more…
It is important to note that this is only an estimate and that it is necessary to refer to the different

price documentation of the cloud providers.

Another thing to be aware of is that activating the cost estimation feature will estimate costs for

all workspaces and organizations. You can also write policies with Sentinel (which we studied

in the previous recipe) to integrate compliance rules for estimated costs. For more information,

please read the documentation at https://www.terraform.io/docs/cloud/cost-estimation/

index.html#verifying-costs-in-policies.

See also
• The documentation regarding the integrated cost estimation feature is available here:

https://www.terraform.io/docs/cloud/cost-estimation/index.html.

Integrating the Infracost run task during the
Terraform Cloud run
In the previous recipe, we learned how to estimate cost infrastructure using the integrated cost

estimation feature in Terraform Cloud.

In this recipe, we will learn how to execute a run task during the run pipeline and we will use the

Infracost run task as an example.

Terraform Cloud run tasks are third-party tools and services that allow you to perform some

custom operations during the Terraform workflow. To get the list of all run tasks already inte-

grated into the Terraform Cloud registry, look here: https://registry.terraform.io/browse/

run-tasks?product_intent=terraform.

In this book, I will not detail everything regarding the addition and configuration of

all run task integrations. For more details, refer to the documentation here: https://
developer.hashicorp.com/terraform/cloud-docs/workspaces/settings/

run-tasks. In this recipe, we will learn about the usage of the Infracost run task.

https://developer.hashicorp.com/terraform/cloud-docs/cost-estimation#verifying-costs-in-policies
https://developer.hashicorp.com/terraform/cloud-docs/cost-estimation#verifying-costs-in-policies
https://developer.hashicorp.com/terraform/cloud-docs/cost-estimation
https://registry.terraform.io/browse/run-tasks?product_intent=terraform
https://registry.terraform.io/browse/run-tasks?product_intent=terraform
https://developer.hashicorp.com/terraform/cloud-docs/workspaces/settings/run-tasks
https://developer.hashicorp.com/terraform/cloud-docs/workspaces/settings/run-tasks
https://developer.hashicorp.com/terraform/cloud-docs/workspaces/settings/run-tasks

Chapter 14 541

Getting ready
Before you start this recipe, you must have a Terraform Cloud subscription and have created

one project and one workspace with VCS configured and linked to the GitHub repository, as we

learned in the Managing workspaces in Terraform Cloud recipe in this chapter. Also, the workspace

is configured as remote execution. For this recipe, the created workspace is called MyApp.

In this recipe, we will use the Infracost run task (for more information on how to use the Infracost

CLI, read the Estimating the cost of Azure infrastructure using Infracost recipe in Chapter 8, Provisioning

Azure Infrastructure with Terraform).

Before using the Infracost run task (available here: https://registry.terraform.io/browse/

run-tasks?category=cost-management), you need to create an account on Infracost here:

https://dashboard.infracost.io/. Also refer to the list of supported cloud providers here:

https://www.infracost.io/docs/supported_resources/overview/.

Additionally, to use Infracost in Terraform Cloud, we need to get the Infracost Endpoint URL and

the HMAC key. For this, we log in to our Infracost account, click on Org settings > Integrations,

and click on the link Terraform Run Task, as shown in the following image:

Figure 14.68: Infracost TFC integration

Then get the provided Endpoint URL and HMAC key values.

https://registry.terraform.io/browse/run-tasks?category=cost-management
https://registry.terraform.io/browse/run-tasks?category=cost-management
https://dashboard.infracost.io/
https://www.infracost.io/docs/supported_resources/overview/

Using Terraform Cloud to Improve Team Collaboration542

Figure 14.69: Infracost Endpoint URL and HMAC key

Finally, go to the Terraform Cloud organization and click on the Settings > Run tasks > Create

run tasks menu, and fill in the form with the name, the endpoint URL, and the HMAC of the run

task as shown in the following image:

Figure 14.70: Creating an Infracost run task

Chapter 14 543

Now we have configured the Infracost run task.

The purpose of this recipe is to provision an Azure virtual machine and Azure Web Apps and to

visualize the cost estimation of these resources in the Terraform Cloud interface using Infracost.

The source code for the Terraform configuration that will be executed in this recipe is available

here: https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/

main/CHAP14/costestimation.

How to do it…
To estimate costs in Terraform Cloud using the Infracost run task, perform the following steps:

1. Go to the Settings of the Terraform Cloud workspace MyApp and inside the Run Tasks

configuration, choose to use the Infracost run task that we configured in the requirements

of this recipe.

Figure 14.71: Infracost run task

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP14/costestimation
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP14/costestimation

Using Terraform Cloud to Improve Team Collaboration544

2. Then, in the next form, we keep the default configuration to run the Infracost run task in

the Post-plan stage (just after the execution of terraform plan) and keep the enforce-

ment level as Advisory.

Figure 14.72: Configuration of the Infracost run task

Chapter 14 545

3. In the workspace MyApp, which provisions the Azure resources with our Terraform con-

figuration, click on the Actions button and then on Start new run, as shown in the fol-

lowing image:

Figure 14.73: Start new run

4. In the window that opens, choose the option to run only the plan, and click on Start run.

Figure 14.74: Start run

Using Terraform Cloud to Improve Team Collaboration546

5. In the details of the run, we can see the post-plan execution with the Infracost run task

execution and the cost estimation summary:

Figure 14.75: TFC run details with Infracost execution

6. For more details of this cost estimation, click on the Details link (on the Infracost row),

which will open a new web page on your Infracost cloud dashboard.

Figure 14.76: Infracost cost estimation details

Chapter 14 547

We can see in this image the detailed cost estimation performed by Infracost.

How it works…
Once the Infracost run task has been activated, Infracost uses the APIs of the different cloud pro-

viders to evaluate and display the costs of the resources that will be provisioned.

There’s more…
It is important to note that this is only an estimate and that it is necessary to refer to the different

price documentation of the cloud providers.

See also
• The Infracost documentation is available here: https://www.infracost.io/.

• The Infracost integration with Terraform Cloud documentation is available here: https://

www.infracost.io/docs/integrations/terraform_cloud_enterprise/.

Configuring Terraform Cloud with the Terraform TFE
provider
In the previous recipes of this chapter, we learned how to use projects, workspaces, and run tasks

in Terraform Cloud using the web interface. In a company context, with large-scale infrastructure

and a lot of Terraform Cloud organizations and workspaces, the manual actions to configure all

of them can be difficult to maintain and need to be automatized.

To automate the configuration of Terraform Cloud, we can use a Terraform provider called TFE.

The TFE provider is specifically designed to configure and manage resources within Terraform

Cloud (as well as Terraform Enterprise).

Here are a few reasons why you would use the TFE provider to configure Terraform Cloud:

• Integration with Terraform Cloud: The TFE provider allows you to interact with and

configure Terraform Cloud resources directly from your Terraform configuration files. It

provides a set of resources and data sources that map to various components and func-

tionalities of Terraform Cloud, such as workspaces, variables, state management, and runs.

• Automation and infrastructure as code: By using the TFE provider, you can automate the

configuration of Terraform Cloud resources, ensuring consistent and reproducible work-

flows. It enables you to define and manage your Terraform Cloud infrastructure as code,

making it easier to version control, share, and collaborate on infrastructure configurations.

https://www.infracost.io/
https://www.infracost.io/docs/integrations/terraform_cloud_enterprise/
https://www.infracost.io/docs/integrations/terraform_cloud_enterprise/

Using Terraform Cloud to Improve Team Collaboration548

• Collaboration and teamwork: Terraform Cloud offers features like team management, ac-

cess controls, and collaboration tools that facilitate working with multiple team members

on infrastructure provisioning. The TFE provider allows you to automate the setup and

management of teams, user access permissions, and other collaboration aspects within

Terraform Cloud, streamlining the teamwork process.

• Enhanced state management: Terraform Cloud provides centralized state storage, which

enables multiple team members to work on the same infrastructure codebase concurrently.

The TFE provider allows you to configure and manage state storage configurations, in-

cluding remote backends and state locking, ensuring safe and efficient state management

across your organization.

• Auditing and governance: Terraform Cloud offers audit logging and governance features,

allowing you to track changes, review logs, and enforce policy checks. The TFE provider

enables you to configure these auditing and governance settings, ensuring compliance

with organizational requirements and providing visibility into infrastructure changes.

Overall, using the TFE provider simplifies the configuration and management of Terraform Cloud

resources, automates workflows, and enhances collaboration and governance capabilities, making

it an effective choice for provisioning and managing infrastructure in Terraform Cloud.

In this recipe, we will see an example of Terraform configuration to configure Terraform Cloud

using the TFE Terraform provider.

Let’s get started!

Getting ready
To complete this recipe, you’ll need to have an existing Terraform Cloud organization, which

will be the “main” organization (which we named demo-tfe in this example), and a workspace

named main-tfe, which will just store the Terraform State of the Terraform configuration that

will run in the recipe.

To gain permission to create other organizations, one method is to authenticate to Terraform

Cloud in the terminal console that will run the Terraform commands. To authenticate, use the

terraform login command or create a new Terraform Cloud user token, as we learned in the

Authenticating Terraform to Terraform Cloud recipe of this chapter.

For more details about the TFE authentication, refer to the documentation here: https://

registry.terraform.io/providers/hashicorp/tfe/latest/docs#authentication.

https://registry.terraform.io/providers/hashicorp/tfe/latest/docs#authentication
https://registry.terraform.io/providers/hashicorp/tfe/latest/docs#authentication

Chapter 14 549

In the manage-tfe workspace in the Variables configuration, we will set a new variable as an

environment variable that contains the value of the user token:

Figure 14.77: TFC TFE_TOKEN environment variable configuration

The goal of this recipe is to create a new Terraform Cloud organization, a project, and, inside this

project, two workspaces using Terraform configuration and the TFE provider.

How to do it…
To use the TFE provider, perform the following steps:

1. In the new main.tf file, add the following configuration:

terraform {

 required_version = "~> 1.1.0"

 required_providers {

 tfe = {

 source = "hashicorp/tfe"

 version = "0.45.0"

 }

 }

 cloud {

 hostname = "app.terraform.io"

 organization = "demo-tfe"

 workspaces {

 name = "manage-tfe"

 }

 }

}

Using Terraform Cloud to Improve Team Collaboration550

In this configuration, we add the tfe provider and configure a remote backend on Terra-

form Cloud in the manage-tfe workspace.

2. Then, add the following Terraform configuration:

provider "tfe" {}

resource "tfe_organization" "test-organization" {

 name = "demo-tfe-book-${random_string.random.result}"

 email = "demo@tfcookobook.com"

}

resource "tfe_project" "project" {

 organization = tfe_organization.test-organization.name

 name = "appproject"

}

resource "tfe_workspace" "wsnetwork" {

 name = "network"

 organization = tfe_organization.test-organization.name

}

resource "tfe_workspace" "wsvm" {

 name = "vm"

 organization = tfe_organization.test-organization.name

}

This Terraform configuration creates one organization, demo-tfe-book, one project,

appproject, and two workspaces, wsnetwork and wsvm.

3. Finally, in the terminal console, run the basic Terraform workflow with the init, plan,

and apply commands.

Chapter 14 551

4. Check the creation of the Terraform Cloud resources:

Figure 14.78: TFC project and workspace created by the TFE provider

We can see that TFE creates the demo-tfe-book organization, the project appproject, and the

two workspaces, network and vm.

There’s more…
In this recipe, in Step 3, we executed a Terraform workflow that was run inside TFC, and the output

was streamed back into the terminal. We can also run the pipeline directly in Terraform Cloud by

connecting the manage-tfe workspace with the VCS that contains this Terraform configuration,

as we learned in detail in the Executing Terraform configuration remotely in Terraform Cloud recipe

in this chapter.

But once we have configured the VCS in the workspace, we can’t run Terraform commands via

the terminal console as shown in the following image:

Figure 14.79: Terraform destroy error when attempting TFC integration

We can see the error on running the destroy command, as it doesn’t allow running Terraform

commands in the terminal.

Using Terraform Cloud to Improve Team Collaboration552

See also
• The TFE documentation is available here: https://registry.terraform.io/providers/

hashicorp/tfe/latest/docs.

• A case study on the use of TFE can be found at https://www.hashicorp.com/resources/

managing-workspaces-with-the-tfe-provider-at-scale-factory.

• Article on TFE usage (by Ned Bellavance): https://nedinthecloud.com/2022/02/03/

managing-terraform-cloud-with-the-tfe-provider/.

• GitHub source code of HashiCorp tutorial on TFE: https://github.com/hashicorp/

learn-terraform-tfe-provider-run-triggers/.

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to

the author, and learn about new releases – follow the QR code below:

https://packt.link/cloudanddevops

https://registry.terraform.io/providers/hashicorp/tfe/latest/docs
https://registry.terraform.io/providers/hashicorp/tfe/latest/docs
https://www.hashicorp.com/resources/managing-workspaces-with-the-tfe-provider-at-scale-factory
https://www.hashicorp.com/resources/managing-workspaces-with-the-tfe-provider-at-scale-factory
https://nedinthecloud.com/2022/02/03/managing-terraform-cloud-with-the-tfe-provider/
https://nedinthecloud.com/2022/02/03/managing-terraform-cloud-with-the-tfe-provider/
https://github.com/hashicorp/learn-terraform-tfe-provider-run-triggers/
https://github.com/hashicorp/learn-terraform-tfe-provider-run-triggers/
https://packt.link/cloudanddevops

15
Troubleshooting Terraform
Errors

We’ve now reached the final chapter of this book. Throughout this book, we’ve learned how to

use Terraform to provision infrastructure resources. As you learn more about Terraform, you may

come across Terraform configuration errors that will require troubleshooting.

In this chapter, we’ll look at how to debug and fix some of the common errors identified by

HashiCorp in the documentation here: https://developer.hashicorp.com/terraform/

tutorials/configuration-language/troubleshooting-workflow.

We’ll look at how to correct interpolation, the address cycle, for_each loops, and output errors. In

each of the recipes, we’ll look at errors in the Terraform configuration, the steps for reproducing

the errors, and finally, the steps for correcting the errors.

The chapter doesn’t cover all types of Terraform errors. There are other errors (some of which we

have already studied in this book), for example:

• The locking or corruption of the Terraform state, with more information here: https://www.
pluralsight.com/resources/blog/cloud/how-to-troubleshoot-5-common-terraform-

errors#h-5-terraform-state-errors.

• The resource already exists error; see this article for more information: https://saturncloud.
io/blog/getting-started-with-terraform-resolving-resource-already-exists-

error-with-newly-created-resource/ and the Importing existing resources recipe of

Chapter 5, Managing Terraform State.

https://developer.hashicorp.com/terraform/tutorials/configuration-language/troubleshooting-workflow
https://developer.hashicorp.com/terraform/tutorials/configuration-language/troubleshooting-workflow
https://www.pluralsight.com/resources/blog/cloud/how-to-troubleshoot-5-common-terraform-errors#h-5-terraform-state-errors
https://www.pluralsight.com/resources/blog/cloud/how-to-troubleshoot-5-common-terraform-errors#h-5-terraform-state-errors
https://www.pluralsight.com/resources/blog/cloud/how-to-troubleshoot-5-common-terraform-errors#h-5-terraform-state-errors
https://saturncloud.io/blog/getting-started-with-terraform-resolving-resource-already-exists-error-with-newly-created-resource/
https://saturncloud.io/blog/getting-started-with-terraform-resolving-resource-already-exists-error-with-newly-created-resource/
https://saturncloud.io/blog/getting-started-with-terraform-resolving-resource-already-exists-error-with-newly-created-resource/

Troubleshooting Terraform Errors554

This chapter covers:

• Fixing interpolation errors

• Fixing cycle errors

• Fixing for_each errors

• Fixing output errors

Fixing interpolation errors
Terraform interpolation is a feature provided by Terraform that allows you to embed expressions

within strings or configuration blocks. These expressions are evaluated at runtime and can con-

tain references to variables, data sources, resources, functions, and other Terraform constructs.

Interpolation enables you to dynamically generate values, compute derived values, and perform

various transformations within your Terraform configurations.

The syntax for interpolation in Terraform is ${...}. Inside the interpolation syntax, you can use

a wide range of expressions, including variable references, resource attributes, function calls, and

mathematical operations.

One of the errors encountered when applying Terraform configuration is the improper use of

interpolation.

In this recipe, we’ll illustrate an example of an interpolation error and how to resolve it.

Let’s get started!

Getting ready
In this recipe, we have an existing Terraform configuration that provisions an Azure Resource

Group that contains the following configuration:

variable "resource_group_name" {

 default = "rg-demo-error"

}

resource "azurerm_resource_group" "rg-app" {

 name = var.resource_group_name-test

 location = "westeurope"

}

Chapter 15 555

In this configuration, the name of the Azure resource group is the value of the variable resource_

group_name.

We will see in this recipe that this configuration contains an interpolation error and how to fix it.

The source code of this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP15/interpolation.

How to do it…
Perform the following steps to apply this Terraform configuration:

1. In the folder that contains this configuration, run terraform init.

2. Then, run terraform validate.

3. The following screenshot shows the output of the terraform validate command:

Figure 15.1: Terraform interpolation error

We can see that our configuration contains two errors in the resource group name attribute.

4. To fix these errors, we change the name value of the resource group to the following con-

figuration:

resource "azurerm_resource_group" "rg-app" {

 name = "${var.resource_group_name}"

 location = "westeurope"

}

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP15/interpolation
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP15/interpolation

Troubleshooting Terraform Errors556

5. Finally, we rerun the terraform validate command and we get the following output:

Figure 15.2: Fixing Terraform interpolation

How it works…
In Step 3, we fixed the interpolation error by adding double quotes around the name value with

the format "${<variable>}<string>".

To check the validity of the configuration syntax, we use the terraform validate command,

which we looked at in detail in Chapter 6, Applying a Basic Terraform Workflow, in the Validating

the code syntax recipe.

To see more about interpolation troubleshooting, read the lab documentation here:
https://developer.hashicorp.com/terraform/tutorials/configuration-language/

troubleshooting-workflow#correct-a-variable-interpolation-error

See also
• Documentation for the string type and templating is available here: https://developer.

hashicorp.com/terraform/language/expressions/strings

Fixing cycle errors
In Chapter 2, Writing Terraform Configurations, in the Managing Terraform resource dependencies

recipe, we learned how to use implicit and explicit Terraform dependencies.

In some cases, when we use lots of dependencies between resources, we can get a cycle error

between Terraform resources (such as cases where the resource depends on itself within the

chain of dependencies).

To understand the concept of Terraform dependencies and cycle errors, read this explanation:

https://serverfault.com/a/1005791

Let’s get started!

Getting ready
For this recipe, we will start with the following configuration in main.tf (it’s only a part of the

configuration):

https://developer.hashicorp.com/terraform/tutorials/configuration-language/troubleshooting-workflow#correct-a-variable-interpolation-error
https://developer.hashicorp.com/terraform/tutorials/configuration-language/troubleshooting-workflow#correct-a-variable-interpolation-error
https://developer.hashicorp.com/terraform/language/expressions/strings
https://developer.hashicorp.com/terraform/language/expressions/strings
https://serverfault.com/a/1005791

Chapter 15 557

resource "azurerm_linux_virtual_machine" "vm" {

 name = "myvmdemo-${random_string.str.result}"

 network_interface_ids = [azurerm_network_interface.nic.id]

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

….

}

resource "azurerm_network_interface" "nic" {

 name = "${azurerm_linux_virtual_machine.vm.name}-nic"

 resource_group_name = azurerm_resource_group.rg.name

 location = azurerm_resource_group.rg.location

 ….

}

The complete source code of this Terraform configuration is available here: https://github.com/

PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP15/cycle.

The above configuration provisions an Azure VM and associates an Azure Network Interface (NIC),

and we can see in this configuration that the VM has an implicit dependency on the NIC with

the code network_interface_ids = [azurerm_network_interface.nic.id] and the NIC name

contains the name of the VM with the configuration name= "${azurerm_linux_virtual_machine.

vm.name}-nic".

So, the VM depends on the NIC and the NIC depends on the VM.

In this recipe, we will see the issues produced by this configuration.

How to do it…
Perform the following steps to apply this configuration:

1. In the folder that contains this configuration, run the following commands:

terraform init

terraform validate

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP15/cycle
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP15/cycle

Troubleshooting Terraform Errors558

The following screenshot shows the output of these commands:

Figure 15.3: Terraform cycle error

We can see the cycle being reported between the VM and the NIC resources.

2. To fix this error, we can create a locals expression that contains the VM name, by adding

the following Terraform configuration in the same main.tf file:

locals {

 vmname = "vmdemo-${random_string.str.result}"

}

Then, we use this locals expression in the name of the NIC with the
following Terraform configuration:

resource "azurerm_network_interface" "nic" {

 name = "${local.vmname}-nic"

 resource_group_name = azurerm_resource_group.rg.name

…

3. Finally, we again run the terraform validate commands, which run successfully with-

out a cycle error.

How it works…
In Step 1, we run the terraform validate command to check the syntax of our Terraform con-

figuration. The validate command returns a cycle error. In Step 2 of this recipe, we use a locals

expression to remove a cycle dependency between the VM and the NIC.

There’s more…
In this recipe, we use a locals expression to fix the cycle error. This isn’t the only solution. To

find the appropriate solution, analyze your Terraform configuration and find where the cycle

dependency is.

To visualize all dependencies between the Terraform resources of your configuration, run the

terraform graph command, and for more details, read the Generating the graph dependencies

recipe of Chapter 6, Applying a Basic Terraform Workflow and the Visualizing the Terraform resource

dependencies with Rover recipe in Chapter 12, Deep-Diving into Terraform.

Chapter 15 559

To see more about cycle troubleshooting, read the lab documentation here: https://developer.
hashicorp.com/terraform/tutorials/configuration-language/troubleshooting-

workflow#correct-a-cycle-error

Fixing for_each errors
In Chapter 3, Scaling Your Infrastructure with Terraform, in the Looping over object collections recipe,

we learned how to use the for_each expression to loop over collections.

Now, regarding for_each errors, potential issues related to for_each can include:

• Missing Key in the Input Data Structure: If the data structure used with for_each is

empty or does not contain the expected keys or elements, Terraform may raise an error.

For example, if you attempt to use for_each with an empty map or set, Terraform won’t

be able to create any instances, resulting in an error.

• Duplicate Keys in the Input Data Structure: for_each expects unique keys in the input

data structure to create distinct resource instances. If there are duplicate keys, Terraform

will raise an error because resource instances must have unique identifiers.

• Data Type Mismatch: The data structure used with for_each must be compatible with

the resource or module block. If there’s a type mismatch (for example, using a list instead

of a map), Terraform will raise an error.

• Referencing Nonexistent Items: If you’re using for_each to create instances based on a

map, set, or other data structure, and you reference a non-existent key or element in your

resource configuration, Terraform may raise an error during the planning or applying

phase.

In this recipe, we will learn how to troubleshoot some data type mismatch errors that we can get

when we use for_each expressions.

Let’s get started!

Getting ready
In this recipe, we will start with the following Terraform configuration:

locals {

 webapplist = ["webappdemobook1", "webappdemobook2"]

}

resource "azurerm_linux_web_app" "app" {

https://developer.hashicorp.com/terraform/tutorials/configuration-language/troubleshooting-workflow#correct-a-cycle-error
https://developer.hashicorp.com/terraform/tutorials/configuration-language/troubleshooting-workflow#correct-a-cycle-error
https://developer.hashicorp.com/terraform/tutorials/configuration-language/troubleshooting-workflow#correct-a-cycle-error

Troubleshooting Terraform Errors560

 for_each = local.webapplist.*.key

 name = "${each.value}-${random_string.str.result}"

 location = "westeurope"

 resource_group_name = azurerm_resource_group.rg-app.name

 service_plan_id = azurerm_service_plan.plan-app.id

 site_config {}

}

In this Terraform configuration, we want to create multiple Azure web apps that have different

names and the same properties. To apply this Terraform configuration simply using one Terra-

form resource, we can use the for_each expression based on the local webapplist expression.

First, we run the terraform init command.

Then, the execution of terraform validate on the above configuration returns the following error:

Figure 15.4: Terraform for_each property error

In this error, the key property of the locals expression is not recognized.

Another possibility for Terraform configuration with a for_each expression is the following:

resource "azurerm_linux_web_app" "app" {

 for_each = local.webapplist

 name = "${each.value}-${random_string.str.result}"

Chapter 15 561

 location = "westeurope"

 resource_group_name = azurerm_resource_group.rg-app.name

 service_plan_id = azurerm_service_plan.plan-app.id

 site_config {}

}

The execution of terraform validate on the above configuration returns the following error:

Figure 15.05: Terraform for_each object error

In this error, the for_each expression must be applied on a map or set function. Here, we applied

it on a tuple.

Let’s see now how to fix the above two errors.

The source code of this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP15/foreach

How to do it…
To fix the above two for_each errors, perform the following steps:

1. In the above configuration, update the configuration to the following:

resource "azurerm_linux_web_app" "app" {

 for_each = toset(local.webapplist)

 name = "${each.value}-${random_string.str.result}"

 location = "westeurope"

 resource_group_name = azurerm_resource_group.rg-app.name

 service_plan_id = azurerm_service_plan.plan-app.id

 site_config {}

}

In the above configuration, we fix the for_each expression to convert a local expression,

webapplist, to a set of strings using the toset built-in Terraform function.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP15/foreach
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP15/foreach

Troubleshooting Terraform Errors562

2. Then we run the terraform validate command on this configuration, and we get the

following output:

Figure 15.6: Terraform fix on for_each

Now the configuration is valid, and we can run the basic Terraform workflow executing the init,

plan, and apply commands.

There’s more…
To address the potential errors mentioned in this recipe introduction, ensure that you have valid

and correct data structures and that they align with the expected format for for_each. It’s essential

to verify the input data before using it with for_each to prevent errors during Terraform operations.

To read more about for_each troubleshooting, see the lab documentation here: https://developer.

hashicorp.com/terraform/tutorials/configuration-language/troubleshooting-

workflow#correct-a-for_each-error

Fixing output errors
In the previous recipe, we saw how to troubleshoot and fix for_each errors.

Now, using the same configuration, we can see another scenario to get the hostname for a creat-

ed Azure web app. This will allow us to test the availability of the web app just after its creation.

Note that when testing the avilabilty of the web app, we are simply working on the output render.

Let’s get started!

Getting ready
To add the output, in the same Terraform configuration as before, we add the following config-

uration:

output "webapps_hostnames" {

 value= azurerm_linux_web_app.app.default_hostname

}

In this recipe, we will not discuss about the test of the availability of the Web App,

we will just work on the output render.

https://developer.hashicorp.com/terraform/tutorials/configuration-language/troubleshooting-workflow#correct-a-for_each-error
https://developer.hashicorp.com/terraform/tutorials/configuration-language/troubleshooting-workflow#correct-a-for_each-error
https://developer.hashicorp.com/terraform/tutorials/configuration-language/troubleshooting-workflow#correct-a-for_each-error

Chapter 15 563

The source code of this recipe is available here: https://github.com/PacktPublishing/

Terraform-Cookbook-Second-Edition/tree/main/CHAP15/outputs

In this Terraform configuration, we run the terraform init command, and then the terraform

validate command.

The following figure shows the result of the validate command:

Figure 15.7: Terraform output error

We get an error on output that says the output value isn’t valid for resources provisioned with

the for_each expression.

How to do it…
To fix this error, perform the following steps:

1. Update the above configuration to the following:

output "webapps_hostnames" {

 value = [for app in azurerm_linux_web_app.app : app.default_
hostname]

}

To fix the output error, we use the for expression in the output value.

In the Looping over a map of object recipe of Chapter 3, Scaling Your Infra-

structure with Terraform, we learned how to use outputs with loops on maps.

https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP15/outputs
https://github.com/PacktPublishing/Terraform-Cookbook-Second-Edition/tree/main/CHAP15/outputs

Troubleshooting Terraform Errors564

2. Then, run the Terraform workflow by executing the terraform init, plan, and apply

commands.

3. Finally, run the terraform outputs command. The following screenshot shows the result

of this command:

Figure 15.8: Fixing the output error

We can see the list of Azure web app hostnames in the Terraform webapps_hostnames output value.

How it works…
In Step 1 we fixed the Terraform configuration on the existing output block by replacing azurerm_

linux_web_app.app.default_hostname (which retrieves only one instance of azurerm_linux_web_

app) with a for expression that loops over the list of created azurerm_linux_web_app instances.

Then, in Step 2 we executed the Terraform workflow to apply the configuration. Finally, in Step 3,

we ran the terraform output command to display the webapps_hostnames output, so that we

can see all the Web App hostnames.

There’s more…
To read more about output troubleshooting, see the lab documentation here: https://developer.
hashicorp.com/terraform/tutorials/configuration-language/troubleshooting-

workflow#correct-your-outputs-to-return-all-values

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to

the author, and learn about new releases – follow the QR code below:

https://packt.link/cloudanddevops

https://developer.hashicorp.com/terraform/tutorials/configuration-language/troubleshooting-workflow#correct-your-outputs-to-return-all-values
https://developer.hashicorp.com/terraform/tutorials/configuration-language/troubleshooting-workflow#correct-your-outputs-to-return-all-values
https://developer.hashicorp.com/terraform/tutorials/configuration-language/troubleshooting-workflow#correct-your-outputs-to-return-all-values
https://packt.link/cloudanddevops

Terraform Cheat Sheet

This Terraform cheat sheet is designed to provide quick answers and guidance to common tasks.

Each section offers a concise overview of concepts, commands, and practices, making it easy to

find the information you need. Whether you’re creating cloud resources, managing infrastructure

changes, or diving into advanced techniques, this cheat sheet is your companion in harnessing

the power of Terraform for efficient and scalable infrastructure management.

Remember, while this cheat sheet covers a broad range of topics, Terraform is a dynamic and

evolving tool. Always refer to the official documentation and community resources for the latest

updates and insights into best practices.

The Terraform CLI documentation is available here: https://developer.hashicorp.com/

terraform/cli

Basic commands
Command What it does Documentation link

terraform –help Displays all CLI commands https://developer.hashicorp.
com/terraform/cli/

commands#basic-cli-features

terraform –version Displays the CLI version https://developer.hashicorp.
com/terraform/cli/commands/

version

terraform <command>
-chdir

Runs Terraform commands

in a specific Terraform

configuration folder

https://developer.hashicorp.
com/terraform/cli/
commands#switching-working-

directory-with-chdir

This Terraform cheat sheet is not exhaustive and should be used in conjunction

with the official Terraform documentation for accurate and up-to-date information.

https://developer.hashicorp.com/terraform/cli
https://developer.hashicorp.com/terraform/cli
https://developer.hashicorp.com/terraform/cli/commands#basic-cli-features
https://developer.hashicorp.com/terraform/cli/commands#basic-cli-features
https://developer.hashicorp.com/terraform/cli/commands#basic-cli-features
https://developer.hashicorp.com/terraform/cli/commands/version
https://developer.hashicorp.com/terraform/cli/commands/version
https://developer.hashicorp.com/terraform/cli/commands/version
https://developer.hashicorp.com/terraform/cli/commands#switching-working-directory-with-chdir
https://developer.hashicorp.com/terraform/cli/commands#switching-working-directory-with-chdir
https://developer.hashicorp.com/terraform/cli/commands#switching-working-directory-with-chdir
https://developer.hashicorp.com/terraform/cli/commands#switching-working-directory-with-chdir

Appendix A566

Format Terraform configuration
Command What it does Documentation link

terraform fmt Formats Terraform

configuration

https://developer.hashicorp.com/

terraform/cli/commands/fmt

terraform fmt
--recursive

Formats Terraform

configuration recursively

https://developer.hashicorp.
com/terraform/cli/commands/

fmt#recursive

Terraform providers management
Command What it does Documentation link

terraform
providers

Returns the Terraform

providers used in the

current configuration

https://developer.hashicorp.com/
terraform/cli/commands/providers

terraform get
-update=true

Downloads Terraform

providers

https://developer.hashicorp.com/

terraform/cli/commands/get

Terraform dependency file
Command What it does Documentation link

terraform init
--upgrade

Upgrades the Terraform

dependency file

https://developer.hashicorp.
com/terraform/cli/commands/

init#upgrade

terraform
provider lock
-platform=windows_
amd64
-platform=linux_
amd64

Generates a Terraform lock

for the specified OS

https://developer.hashicorp.com/
terraform/cli/commands/providers/

lock

https://developer.hashicorp.com/terraform/cli/commands/fmt
https://developer.hashicorp.com/terraform/cli/commands/fmt
https://developer.hashicorp.com/terraform/cli/commands/fmt#recursive
https://developer.hashicorp.com/terraform/cli/commands/fmt#recursive
https://developer.hashicorp.com/terraform/cli/commands/fmt#recursive
https://developer.hashicorp.com/terraform/cli/commands/providers
https://developer.hashicorp.com/terraform/cli/commands/providers
https://developer.hashicorp.com/terraform/cli/commands/get
https://developer.hashicorp.com/terraform/cli/commands/get
https://developer.hashicorp.com/terraform/cli/commands/init#upgrade
https://developer.hashicorp.com/terraform/cli/commands/init#upgrade
https://developer.hashicorp.com/terraform/cli/commands/init#upgrade
https://developer.hashicorp.com/terraform/cli/commands/providers/lock
https://developer.hashicorp.com/terraform/cli/commands/providers/lock
https://developer.hashicorp.com/terraform/cli/commands/providers/lock

Appendix A 567

Basic workflow commands
Command What it does Documentation link

terraform init Initializes a directory of

Terraform configuration

files

https://developer.hashicorp.com/

terraform/cli/commands/init

terraform plan Visualizes a change preview https://developer.hashicorp.com/

terraform/cli/commands/plan

terraform apply Applies changes https://developer.hashicorp.com/

terraform/cli/commands/apply

terraform plan –

out=out.tfplan

terraform apply
out.tfplan

Visualizes changes and

applies them using the

plan file

https://developer.hashicorp.com/
terraform/cli/commands/plan#out-

filename

terraform apply –
auto-approve

Auto-approves the

application of changes

https://developer.hashicorp.com/
terraform/cli/commands/apply#auto-

approve

terraform destroy Destroys all resources https://developer.hashicorp.com/

terraform/cli/commands/destroy

terraform destroy
–target <resource
id>

Destroys a specific resource https://developer.hashicorp.
com/terraform/cli/commands/

plan#target-address

terraform plan

-out=tfplan

terraform show
-json tfplan >
plan.json

Exports the result of the

plan in JSON format

Backend configuration
Command What it does Documentation link

terraform
init –backend-
config=backend.hcl

Uses the backend

configuration file

https://developer.hashicorp.com/
terraform/language/settings/
backends/configuration#partial-

configuration

https://developer.hashicorp.com/terraform/cli/commands/init
https://developer.hashicorp.com/terraform/cli/commands/init
https://developer.hashicorp.com/terraform/cli/commands/plan
https://developer.hashicorp.com/terraform/cli/commands/plan
https://developer.hashicorp.com/terraform/cli/commands/apply
https://developer.hashicorp.com/terraform/cli/commands/apply
https://developer.hashicorp.com/terraform/cli/commands/plan#out-filename
https://developer.hashicorp.com/terraform/cli/commands/plan#out-filename
https://developer.hashicorp.com/terraform/cli/commands/plan#out-filename
https://developer.hashicorp.com/terraform/cli/commands/apply#auto-approve
https://developer.hashicorp.com/terraform/cli/commands/apply#auto-approve
https://developer.hashicorp.com/terraform/cli/commands/apply#auto-approve
https://developer.hashicorp.com/terraform/cli/commands/destroy
https://developer.hashicorp.com/terraform/cli/commands/destroy
https://developer.hashicorp.com/terraform/cli/commands/plan#target-address
https://developer.hashicorp.com/terraform/cli/commands/plan#target-address
https://developer.hashicorp.com/terraform/cli/commands/plan#target-address
https://developer.hashicorp.com/terraform/language/settings/backends/configuration#partial-configura
https://developer.hashicorp.com/terraform/language/settings/backends/configuration#partial-configura
https://developer.hashicorp.com/terraform/language/settings/backends/configuration#partial-configura
https://developer.hashicorp.com/terraform/language/settings/backends/configuration#partial-configura

Appendix A568

terraform init
-migrate-state

Migrates the state file

between backends

https://developer.hashicorp.
com/terraform/cli/commands/

init#backend-initialization

Validate configuration
Command What it does Documentation link

terraform validate Validates Terraform

configuration files

https://developer.hashicorp.com/

terraform/cli/commands/validate

Get outputs
Command What it does Documentation link

terraform output Views outputs https://developer.hashicorp.com/

terraform/cli/commands/output

terraform output
-json

Views outputs in JSON

format

https://developer.hashicorp.com/
terraform/cli/commands/output#json

Import resources
Command What it does Documentation link

terraform import
<terraform resource
id> <real resource
id>

Imports existing resources

in state

https://developer.hashicorp.com/
terraform/cli/commands/import

Terraform workspaces
Command What it does Documentation link

terraform
workspace select
<name>

Selects an existing

workspace

https://developer.hashicorp.com/
terraform/cli/commands/workspace/

select

terraform
workspace select
<name> -or-create

Selects an existing

workspace or creates one if

one doesn't already exist

https://developer.hashicorp.com/
terraform/cli/commands/workspace/

select#or-create

terraform
workspace new
<name>

Creates a new workspace https://developer.hashicorp.com/
terraform/cli/commands/workspace/

new

https://developer.hashicorp.com/terraform/cli/commands/init#backend-initialization
https://developer.hashicorp.com/terraform/cli/commands/init#backend-initialization
https://developer.hashicorp.com/terraform/cli/commands/init#backend-initialization
https://developer.hashicorp.com/terraform/cli/commands/validate
https://developer.hashicorp.com/terraform/cli/commands/validate
https://developer.hashicorp.com/terraform/cli/commands/output
https://developer.hashicorp.com/terraform/cli/commands/output
https://developer.hashicorp.com/terraform/cli/commands/output#json
https://developer.hashicorp.com/terraform/cli/commands/output#json
https://developer.hashicorp.com/terraform/cli/commands/import
https://developer.hashicorp.com/terraform/cli/commands/import
https://developer.hashicorp.com/terraform/cli/commands/workspace/select
https://developer.hashicorp.com/terraform/cli/commands/workspace/select
https://developer.hashicorp.com/terraform/cli/commands/workspace/select
https://developer.hashicorp.com/terraform/cli/commands/workspace/select#or-create
https://developer.hashicorp.com/terraform/cli/commands/workspace/select#or-create
https://developer.hashicorp.com/terraform/cli/commands/workspace/select#or-create
https://developer.hashicorp.com/terraform/cli/commands/workspace/new
https://developer.hashicorp.com/terraform/cli/commands/workspace/new
https://developer.hashicorp.com/terraform/cli/commands/workspace/new

Appendix A 569

terraform
workspace delete
<name>

Deletes a workspace https://developer.hashicorp.com/
terraform/cli/commands/workspace/

delete

terraform
workspace list

Lists all workspaces https://developer.hashicorp.com/
terraform/cli/commands/workspace/

list

terraform
workspace show

Displays the current

workspace

https://developer.hashicorp.com/
terraform/cli/commands/workspace/

show

Terraform debug
Command What it does Documentation link

terraform console Enters interactive

console mode to evaluate

Terraform expressions

https://developer.hashicorp.com/

terraform/cli/commands/console

State management
Command What it does Documentation link

terraform show Shows the state file https://developer.hashicorp.com/

terraform/cli/commands/show

terraform state
list

Lists resources in the state https://developer.hashicorp.com/
terraform/cli/commands/state/list

terraform state
list <resource id>

Lists specific resources in

the state

https://developer.hashicorp.com/
terraform/cli/commands/state/list

terraform state rm Removes resources from

the state

https://developer.hashicorp.com/
terraform/cli/commands/state/rm

terraform state mv Moves a resource from one

reference name to another

(within the same state)

https://developer.hashicorp.com/
terraform/cli/commands/state/mv

terraform state
pull > <terraform.
tfstate>

Downloads state https://developer.hashicorp.com/
terraform/cli/commands/state/pull

terraform state
push

Uploads local state to the

backend

https://developer.hashicorp.com/
terraform/cli/commands/state/push

https://developer.hashicorp.com/terraform/cli/commands/workspace/delete
https://developer.hashicorp.com/terraform/cli/commands/workspace/delete
https://developer.hashicorp.com/terraform/cli/commands/workspace/delete
https://developer.hashicorp.com/terraform/cli/commands/workspace/list
https://developer.hashicorp.com/terraform/cli/commands/workspace/list
https://developer.hashicorp.com/terraform/cli/commands/workspace/list
https://developer.hashicorp.com/terraform/cli/commands/workspace/show
https://developer.hashicorp.com/terraform/cli/commands/workspace/show
https://developer.hashicorp.com/terraform/cli/commands/workspace/show
https://developer.hashicorp.com/terraform/cli/commands/console
https://developer.hashicorp.com/terraform/cli/commands/console
https://developer.hashicorp.com/terraform/cli/commands/show
https://developer.hashicorp.com/terraform/cli/commands/show
https://developer.hashicorp.com/terraform/cli/commands/state/list
https://developer.hashicorp.com/terraform/cli/commands/state/list
https://developer.hashicorp.com/terraform/cli/commands/state/list
https://developer.hashicorp.com/terraform/cli/commands/state/list
https://developer.hashicorp.com/terraform/cli/commands/state/rm
https://developer.hashicorp.com/terraform/cli/commands/state/rm
https://developer.hashicorp.com/terraform/cli/commands/state/mv
https://developer.hashicorp.com/terraform/cli/commands/state/mv
https://developer.hashicorp.com/terraform/cli/commands/state/pull
https://developer.hashicorp.com/terraform/cli/commands/state/pull
https://developer.hashicorp.com/terraform/cli/commands/state/push
https://developer.hashicorp.com/terraform/cli/commands/state/push

Appendix A570

terraform state
show

Shows the resource in a

state

https://developer.hashicorp.com/
terraform/cli/commands/state/show

terraform refresh
(deprecated)

Refreshes the state https://developer.hashicorp.com/
terraform/cli/commands/refresh

terraform plan –
refresh-only

Previews the refresh of the

state

https://developer.hashicorp.com/
terraform/cli/commands/refresh

terraform apply –
refresh-only

Applies the refresh of the

state

https://developer.hashicorp.com/
terraform/cli/commands/refresh

terraform state
replace-provider
<provider source>
<provider target>

Replaces the provider in

the state

https://developer.hashicorp.com/
terraform/cli/commands/state/
replace-provider

Display Terraform graph dependencies
Command What it does Documentation link

terraform graph |
dot -Tpng > graph.
png

Generates the Terraform

graph dependency in a

PNG file

https://developer.hashicorp.com/
terraform/cli/commands/graph

Taint/untaint resources
Command What it does Documentation link

terraform taint
<resource id>

Taints the resource https://developer.hashicorp.com/
terraform/cli/commands/taint

terraform untaint
<resource id>

Untaints the resource https://developer.hashicorp.com/
terraform/cli/commands/untaint

Terraform Cloud/Enterprise
Command What it does Documentation link

terraform login Logs in to Terraform Cloud/

Enterprise

https://developer.hashicorp.com/
terraform/cli/commands/login

terraform logout Logs out of Terraform

Cloud/Enterprise

https://developer.hashicorp.com/
terraform/cli/commands/logout

https://developer.hashicorp.com/terraform/cli/commands/state/show
https://developer.hashicorp.com/terraform/cli/commands/state/show
https://developer.hashicorp.com/terraform/cli/commands/refresh
https://developer.hashicorp.com/terraform/cli/commands/refresh
https://developer.hashicorp.com/terraform/cli/commands/refresh
https://developer.hashicorp.com/terraform/cli/commands/refresh
https://developer.hashicorp.com/terraform/cli/commands/refresh
https://developer.hashicorp.com/terraform/cli/commands/refresh
https://developer.hashicorp.com/terraform/cli/commands/state/replace-provider
https://developer.hashicorp.com/terraform/cli/commands/state/replace-provider
https://developer.hashicorp.com/terraform/cli/commands/state/replace-provider
https://developer.hashicorp.com/terraform/cli/commands/graph
https://developer.hashicorp.com/terraform/cli/commands/graph
https://developer.hashicorp.com/terraform/cli/commands/taint
https://developer.hashicorp.com/terraform/cli/commands/taint
https://developer.hashicorp.com/terraform/cli/commands/untaint
https://developer.hashicorp.com/terraform/cli/commands/untaint
https://developer.hashicorp.com/terraform/cli/commands/login
https://developer.hashicorp.com/terraform/cli/commands/login
https://developer.hashicorp.com/terraform/cli/commands/logout
https://developer.hashicorp.com/terraform/cli/commands/logout

Terraform Resources

This appendix contains a non-exhaustive list of official Terraform resources from HashiCorp and

non-official resources from the community.

Terraform official resources
Documentation

• Terraform CLI documentation: https://developer.hashicorp.com/terraform/cli

• Terraform language documentation: https://developer.hashicorp.com/terraform/

language

• Terraform Cloud: https://developer.hashicorp.com/terraform/cloud-docs

• Terraform Enterprise: https://developer.hashicorp.com/terraform/enterprise

• Cloud Development Kit for Terraform: https://developer.hashicorp.com/terraform/

cdktf

Registry
• Terraform Registry: https://registry.terraform.io/?product_intent=terraform

• Terraform Registry publishing: https://developer.hashicorp.com/terraform/registry

Providers development
• Plugin development: https://developer.hashicorp.com/terraform/plugin

• Call APIs with custom framework providers: https://developer.hashicorp.com/

terraform/tutorials/providers-plugin-framework

• Terraform Integration Program: https://developer.hashicorp.com/terraform/docs/

partnerships

• Terraform glossary: https://developer.hashicorp.com/terraform/docs/glossary

• Terraform tools: https://developer.hashicorp.com/terraform/docs/terraform-tools

• Terraform tutorial library: https://developer.hashicorp.com/tutorials/

library?product=terraform

• Terraform community forum: https://discuss.hashicorp.com/c/terraform-core/27

https://developer.hashicorp.com/terraform/cli
https://developer.hashicorp.com/terraform/language
https://developer.hashicorp.com/terraform/language
https://developer.hashicorp.com/terraform/cloud-docs
https://developer.hashicorp.com/terraform/enterprise
https://developer.hashicorp.com/terraform/cdktf
https://developer.hashicorp.com/terraform/cdktf
https://registry.terraform.io/?product_intent=terraform
https://developer.hashicorp.com/terraform/registry
https://developer.hashicorp.com/terraform/plugin
https://developer.hashicorp.com/terraform/tutorials/providers-plugin-framework
https://developer.hashicorp.com/terraform/tutorials/providers-plugin-framework
https://developer.hashicorp.com/terraform/docs/partnerships
https://developer.hashicorp.com/terraform/docs/partnerships
https://developer.hashicorp.com/terraform/docs/glossary
https://developer.hashicorp.com/terraform/docs/terraform-tools
https://developer.hashicorp.com/tutorials/library?product=terraform
https://developer.hashicorp.com/tutorials/library?product=terraform
https://discuss.hashicorp.com/c/terraform-core/27

Appendix B572

• Terraform support: https://www.hashicorp.com/customer-success?product_

intent=terraform

• Terraform source code on GitHub: https://github.com/hashicorp/terraform

• Terraform releases: https://github.com/hashicorp/terraform/releases

• HashiCorp YouTube channel: https://www.youtube.com/@HashiCorp

Terraform community resources
• YouTube channel of Ned Bellavance: https://www.youtube.com/@NedintheCloud

• Awesome Terraform resources: https://github.com/shuaibiyy/awesome-terraform

• Terraform on Azure documentation: https://learn.microsoft.com/en-us/azure/

developer/terraform/

• Terraform on GCP documentation: https://cloud.google.com/docs/terraform

• Terraform articles on Medium: https://medium.com/search?q=terraform

• Udemy courses on Terraform: https://www.udemy.com/topic/terraform/

Terraform news feed
• Weekly Terraform: https://www.weekly.tf/

Terraform certifications and certification preparation
Terraform certification program pages

• https://developer.hashicorp.com/certifications/infrastructure-automation

• https://developer.hashicorp.com/terraform/tutorials/certification-003

Terraform certification preparation
• https://www.pluralsight.com/paths/hashicorp-certified-terraform-associate

• https://www.udemy.com/course/terraform-hands-on-labs/

• https://www.udemy.com/course/terraform-associate-practice-exam/

• https://www.pluralsight.com/cloud-guru/courses/hashicorp-certified-
terraform-associate

https://www.hashicorp.com/customer-success?product_intent=terraform
https://www.hashicorp.com/customer-success?product_intent=terraform
https://github.com/hashicorp/terraform
https://github.com/hashicorp/terraform/releases
mailto:https://www.youtube.com/@HashiCorp
mailto:https://www.youtube.com/@NedintheCloud
https://github.com/shuaibiyy/awesome-terraform
https://learn.microsoft.com/en-us/azure/developer/terraform/
https://learn.microsoft.com/en-us/azure/developer/terraform/
https://cloud.google.com/docs/terraform
https://medium.com/search?q=terraform
https://www.udemy.com/topic/terraform/
https://www.weekly.tf/
https://developer.hashicorp.com/certifications/infrastructure-automation
https://developer.hashicorp.com/terraform/tutorials/certification-003
https://www.pluralsight.com/paths/hashicorp-certified-terraform-associate
https://www.udemy.com/course/terraform-hands-on-labs/
https://www.udemy.com/course/terraform-associate-practice-exam/
https://www.pluralsight.com/cloud-guru/courses/hashicorp-certified-terraform-associate
https://www.pluralsight.com/cloud-guru/courses/hashicorp-certified-terraform-associate

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of

free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packt.com
http://www.packt.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Kubernetes - Fourth Edition

Gigi Sayfan

ISBN: 9781804611395

• Learn how to govern Kubernetes using policy engines

• Learn what it takes to run Kubernetes in production and at scale

• Build and run stateful applications and complex microservices

• Master Kubernetes networking with services, Ingress objects, load balancers, and service

meshes

• Achieve high availability for your Kubernetes clusters

• Improve Kubernetes observability with tools such as Prometheus, Grafana, and Jaeger

• Extend Kubernetes with the Kubernetes API, plugins, and webhooks

https://www.packtpub.com/product/mastering-kubernetes-fourth-edition/9781804611395

Other Books You May Enjoy576

AWS for Solutions Architects - Second Edition

Saurabh Shrivastava , Neelanjali Srivastav, Alberto Artasanchez, Imtiaz Sayed

ISBN: 9781803238951

• Optimize your Cloud Workload using the AWS Well-Architected Framework

• Learn methods to migrate your workload using the AWS Cloud Adoption Framework

• Apply cloud automation at various layers of application workload to increase efficiency

• Build a landing zone in AWS and hybrid cloud setups with deep networking techniques

• Select reference architectures for business scenarios, like data lakes, containers, and

serverless apps

• Apply emerging technologies in your architecture, including AI/ML, IoT and blockchain

https://www.packtpub.com/product/aws-for-solutions-architects-second-edition/9781803238951

Other Books You May Enjoy 577

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and

apply today. We have worked with thousands of developers and tech professionals, just like you,

to help them share their insight with the global tech community. You can make a general appli-

cation, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished Terraform Cookbook, Second Edition, we’d love to hear your thoughts! If you

purchased the book from Amazon, please click here to go straight to the Amazon review

page for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1804616427
https://packt.link/r/1804616427

Index

A
Abstract Syntax Tree (AST) 373
Advanced Package Tool (APT) package

manager 13
used, for installing

Terraform on Linux 13, 14
alias

adding, to provider to use multiple instances
of same provider 40-42

Ansible
reference link 410

App Service instance
creating, on App Service instance 105

apply command 165
archive_file resource

reference link 114
ArgoCD tools 350
ARM templates

executing, in Terraform 256-260
reference link 256

automation mode
Terraform, running in 446-448

AWS
S3 backend, using 307-311
Terraform, using for 302-307

AzApi Terraform provider
using 294-299

Azure CLI commands
executing, in Terraform 261-264

Azure Cloud Shell

Terraform, using in 242-245
Azure credential provider

protecting 246-250
Azure Key Vault

using, with Terraform to protect
secrets 265-271

Azure remote backend
state file, protecting 251-256

Azure Repos (Azure DevOps) 230
AzureRM Provider

reference link 132
Azure serverless infrastructure

building, with Terraform 277- 279
azure-specific data source 146
Azure VM

configuring, with Terraform 271-277
provisioning, with Terraform 271- 277

B
BDD terraform-compliance

reference link 381
Behavior-Driven Development (BDD) 377
built-in jsonencode function

reference link 59

built-in yamldecode function
reference link 59

C
check block

reference link 72

Index580

checkov rules 354
checks

using, for infrastructure validation 70-72
Chocolatey 11, 227

reference link, for commands 13
URL 11
used, for installing Terraform on

Windows 11, 12
CI/CD pipelines

building, for Terraform configurations in
Azure Pipelines 451-460

building, for Terraform modules in Azure
Pipelines 469- 475

workspaces, working with 465- 469
Cloud Development Kit for Terraform

(CDKTF)
benefits 435
reference link 435
using 437

code syntax
validating 162-164

Command-Line Interface (CLI) 34
conditional expressions

reference link 61
writing 59, 61

console command 195
reference link 196

continuous integration (CI) pipeline 164
count meta-argument

multiple resources, provisioning with 81-85
reference link 85

create_before_destroy property 417
custom functions

local variables, used for 49-51
custom pre- and post-conditions

adding 66-70
references 70

Custom Resource Deployment (CRD) 339
cycle errors

fixing 556- 558
cycle troubleshooting

reference link 559

D
data blocks 106

reference link 107
data sources

external data, obtaining with 104-106
dependency file 31
dependency graph

generating 188, 189
dependency lock file

reference link 32
Desired State Configuration (DSC) 393
destroy command 168

executing 403
reference link 168

Docker
references 20

Docker container
creating, with Terraform 331-334
Terraform, executing in 17-20

Docker Engine
reference link 331

Dockerfiles
reference link 17

Docker installation guides
reference link 17

Don't Repeat Yourself (DRY) principle 2, 75
dynamic block

multiple blocks, generating with 93- 97

Index 581

E
environments

managing, with workspaces 177-179
environment variables

reference link 198

existing resources
importing 137- 143

explicit dependency 65
external data

obtaining, with data sources 104- 106
querying, with Terraform 107-111

external resources
using, from Terraform State files 143-145

external Terraform resource
references 111

F
feature flags 85
Flux CLI

installation link 345
fmt command 159-161

reference link 162
for_each errors

fixing 559-562
for_each troubleshooting

reference link 562

G
GCP

GCS backend, using 319-323
Terraform, using for 312- 319

GCP Cloud Shell
Terraform, executing 323- 327

GCS backend
using, in GCP 319-323

Git hooks
used, for checking configuration before

committing code 429-432
GitHub Actions

Terraform execution, automating 460-465
Terraform module publishing workflow,

building with 476- 481
Go

URL 382
graph command 189

reference link 190
Graphviz

URL 189, 190

H
HashiCorp 209
HashiCorp Cloud Platform (HCP)

reference link 483
HashiCorp Configuration Language

(HCL) 157, 257
hcl2json

URL 373
HCL enhancements

reference link 36
Helm Chart

deploying, in Kubernetes with
Terrafrom 340-343

Helm CLI
reference link 340

helm_release documentation
reference link 343

Index582

I
Identity and Access Management(IAM) 302
implicit dependency 65
import block

reference link 140

import command
reference link 143

Infracost
Azure cost of infrastructure, estimating

 with 288- 294
Infracost run task

integrating, during Terraform Cloud
run 540-547

Infrastructure as Code
(IaC) 1, 75, 157, 158, 402

best practices 2
infrastructure provisioning

in multiple environments 76
infrastructure resources

destroying 166, 167
infrastructure validation

checks, using for 70-72
init

reference link 27
Inspec 389, 392

URL 389
Inspec profiles

reference link 392
installation of Terraform, with package

manager
reference link 14

integrated cost estimation
using, for cloud resources 535-540

integrated Terraform
module integration test

using 395- 399
interpolation 554
interpolation errors

fixing 554-556
interpolation troubleshooting

reference link 556

J
jq 15, 165, 182

reference link 15, 185
JSON

output, exporting in 181-184

K
Kitchen-supported provisioners

reference link 393
Kitchen-supported verifiers

reference link 394
Kitchen-Terraform 354, 388

references 394
used, for testing Terraform

configuration 388-394
kitchen test command

reference link 394
kreuzwerker/docker

reference link 334
Kubernetes

Terraform, used for deploying Helm
Chart 340-343

Kubernetes controller
using, as Terraform reconciliation

loop 344-349
Kubernetes resources

deploying, with Terraform 334-339

Index 583

L
Linux

APT package manager, used for installing
Terraform on 13, 14

script, used for installing Terraform
on 14-16

local backend
reference link 127

local-exec provisioner 116
reference link 117

local_file resource
reference link 114

local files
manipulating, with Terraform 111-113

local programs
executing, with Terraform 114, 115

local Terraform State
using 124-127

local variables
reference link 51
using, for custom functions 49-51

loop functionalities
using 89-92

M
Man in The Middle (MITM) attacks 31
manual changes

allowing 408, 409
ignoring 406, 407-409

map of objects
looping 89-92

maps
filtering 97-100
using 85-89

merge function
reference link 89

moved configuration block
reference link 154

multiple blocks
generating, with dynamic block 93-97

multiple resources
provisioning, with count

meta-argument 81-85
multiple Terraform versions

switching between 21-25

N
Network Security Group (NSG) rule 415

O
OPA binary 367
OPA policies

testing 372
OPA query 368
Open Policy Agent (OPA) 354, 366, 372

features 367
reference link 367
Terraform configuration compliance,

checking with 526- 535
using, to check Terraform

configuration 369-372
Open Policy Agent (OPA), usage artifacts

data input 368
OPA binary 367
OPA query 368
Rego policies 368

output errors
fixing 562, 564

Index584

outputs
exporting, in JSON 181-184
used, for exposing Terraform provisioned

data 52- 54
output command

reference link 185
output troubleshooting

reference link 564

P
Packer

reference link 277, 417
passwords

generating, with Terraform 61-63
Pester 355, 356

pros and cons 361, 362
references 362
used, for applying compliance 356-361

Pester test file structure
reference link 360

Pester tests
writing 357, 358

plan command 96
prevent_destroy property 404, 406
private Git repository

used, for sharing Terraform module 229-234
private module registry

Terraform Cloud, using as 510-515
provider alias

reference link 42
providers, properties

reference link 40
provider lock command

reference link 174
provider version

using 34-39

providers command 170
reference link 171

public registry
Terraform module, sharing with GitHub

213-217
Terraform module, using from 209-212

PXF certificate 427
pytest 362

reference link 363
references 366
Terraform configuration, testing 363-366

Python
Terraform compliance, testing with 362-366

R
refresh command

reference link 137
Rego playground

URL 372
Rego policies 368
remote backend

using, in Terraform Cloud 500-506
remote operations 516
resource already exists error

reference link 553
resources

preventing, from getting destroyed 402-404
tainting 185, 186

RG-APP-IMPORT
reference link 138

Rover
Terraform resource dependencies,

visualizing with 433
Rspec 389
Ruby

references 388

Index 585

S
S3 backend

using, for AWS 307-311
S3 remote backend

reference link 311

Save action plugin
reference link 162

script
used, for installing Terraform on Linux 14-16

self-signed SSL certificate
generating, with Terraform 425-427

sensitive variables
references 49
securing 47-49

Shell scripts
executing, with Terraform Shell

provider 117-120
show command

reference link 129
state command

reference link 188
state mv command

cons 153
pros 153
reference link 154

state list command
reference link 130

state rm command
reference link 131

state show command
reference link 131

string type and templating, documentation
reference link 556

T
taint operation

applying 185
reference link 188

taint command
reference link 188

template 221
templating feature

using 410-413
Terrafile 235
Terrafile pattern

applying, for using Terraform
module 235-239

Terraform 157
ARM templates, executing 256-260
authenticating, to Terraform Cloud 486-490
Azure CLI commands, executing 261-264
best practices 2, 3
configuring 34-39
downloading 4
executing, in Docker container 17-20
executing, in GCP Cloud Shell 323-327
execution, automating in GitHub

Actions 460-465
external data, querying with 107-111
installing on Linux, APT package manager

used 13, 14
installing on Linux, script used 14-16
installing on Windows, Chocolatey

used 11, 12
local files, manipulating 111-113
local programs, executing with 114, 115
manual installation, on Windows 4-10
provider version, using 34-39
resources dependencies, managing 64-66
running, in automation mode 446-448

Index586

templating feature, using 410- 414
used, for creating Docker container 331-334
used, for deploying Kubernetes

resources 334-339
used, for downloading azurerm provider 39
used, for generating passwords 61-63
used, for generating self-signed SSL

certificate 425-427
used, for generating self-signed SSL

certificate 427
used, for zero-downtime

deployment 415-417
using, for AWS 302-307
using, for GCP 312-319
using, in Azure Cloud Shell 242-245
using, to deploy Helm Chart in

Kubernetes 340-343
Terraform azurerm provider

reference link 36
Terraform binary versioning

reference link 40
Terraform block, properties

reference link 40
Terraform built-in functions

calling 54-56
reference link 56

Terraform CDK
using, for developers 435-443

Terraform CLI 157
URL 515

Terraform Cloud (TFC) 483
configuring, with Terraform TFE

provider 547-551
reference link 501
remote backend, using in 500-506
Terraform, authenticating to 486-490
Terraform configuration, remote

execution 516-525

Terraform State, migrating to 506-510
URL 515
using, as private module registry 510-515
workspaces, managing 490-499

Terraform Cloud run
Infracost run task, executing 540-547

terraform-compliance 354, 377
analyzing, with tfsec 375, 376
references 382
testing, with Python 362-366
used, for applying Terraform

compliance 378-381
Terraform configuration 157

best practices 2, 3
checking, with OPA 369-372
contact tests 354
generating, for existing Azure

infrastructure 280-287
integration tests 354
keeping clean 158-160
list of providers, displaying 169, 170
plan analysis for compliance 354
resources, refactoring 147-154
sharing 175
testing, with Kitchen-Terraform 388-394
testing, with pytest 363-366
unit tests 353
YAML files, using in 57, 59

Terraform configuration compliance
checking, with OPA 526-535

Terraform configuration dependencies
managing, with Terragrunt 418- 421

Terraform configuration directories
using 190-192

Terraform configuration folder hierarchy
implementing 76- 80

Index 587

Terraform configurations, in Azure Pipelines
CI/CD pipelines, building for 451-460

Terraform debug
reference link 198

Terraform dependencies and cycle errors
reference link 556

Terraform dependency file
reference link 174

Terraformer 281
Terraform execution

debugging 196, 197
Terraform expression

evaluating 193-195
testing 193-195

Terraform lock file
generating, with Windows and Linux

compatibility 171-174
Terraform module 200

creating 201- 203
documentation, generating 225-228
file, using 218-220
multiple instances, provisioning 206, 207
output, with loop 209
sharing, in public registry with

GitHub 213-217
sharing, with private Git repository 229-234
structure 205
structure, generating from 222-224
using, for applying Terrafile pattern 235- 239
using, from public registry 209, 211, 212
using, it locally 204-206

Terraform module code
testing, with Terratest 383-387

Terraform module configuration
copying 175, 176

Terraform module generator
using 221-224

Terraform module publishing workflow
building, with GitHub Actions 476-481

Terraform modules, in Azure Pipelines
CI/CD pipelines, building for 469-475

Terraform moved block
cons 153
pros 153
reference link 154

Terraform Official Packaging guide
reference link 14

Terraform Operator 350
Terraform outputs

reference link 54
terraform plan execution summary

displaying 449, 450, 451
Terraform plugin

reference link 162
Terraform providers

reference link 32
upgrading 27- 31

Terraform provisioned data
exposing, with outputs 52-54

Terraform reconciliation loop
Kubernetes controller, using as 344- 349

terraform_remote_state block
reference link 146

terraform_remote_state data source 146
Terraform resource dependencies

visualizing, with Rover 433, 434
Terraform, resources dependencies

reference link 66
Terraform Shell provider

reference link 121
used, for executing Shell scripts 117-120

Index588

Terraform State 157
content, displaying 128, 129
detailed resource properties, displaying 130
migrating, to Terraform Cloud 506- 510
reference link 123
resource names, listing 130
resources, deleting 131
resources, managing 127, 128
synchronizing 132-137

Terraform State errors
reference link 553

Terraform State files
external resources, using 143-145

Terraform State management
reference link 132

Terraform testing
reference link 400

Terraform TFE provider
Terraform Cloud, configuring with 547- 551

Terraform troubleshooting
reference link 553

Terraform variables
refernce link 46

Terragrunt 20
reference link 418
Terraform configuration dependencies,

managing with 418- 420
using, as wrapper for Terraform 422-424

Terratest 354, 382, 387, 388
references 388
Terraform module code, testing 383-387

Test-Driven Design (TDD) 396
test command

reference link 400

test pyramid
reference link 353

TFC workspace
creating 499, 500

tfenv 21
commands 26
functionalities 21
installing 22
reference link 22
references 27

tflint 354
tfsec 354, 373

benefits 374
reference link 373
references 376, 377
used, for analyzing Terraform

configuration 375, 376
tfvc 170

reference link 171

U
untaint command

reference link 188
untaint operation

reference link 188

V
validate command 164

reference link 166
variable custom rules validation

refernce link 46
variables

elements 44
manipulating 43, 44, 45, 46

virtual network (VNet) 271

Index 589

W
Windows

Chocolatey, used for installing Terraform
on 11, 12

Terraform, installing manually on 4-10

workspace command
reference link 181

workspaces 177, 180, 181
managing, in Terraform Cloud 490-499
reference link 181
used, for managing environments 177-179

workspaces, CI/CD
working with 465-469

Y
YAML files

using, in Terraform configuration 57-59

Z
zero-downtime deployment

with Terraform 415- 418
zipmap function

reference link 413

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804616420

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804616420

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Chapter 1: Setting Up the Terraform Environment
	Technical requirements
	Overviewing Terraform best practices
	Downloading and installing Terraform on Windows manually
	Getting ready
	How to do it…
	How it works…

	Installing Terraform using Chocolatey on Windows
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Installing Terraform on Linux using the APT package manager
	Getting ready
	How to do it…
	How it works…
	See also

	Installing Terraform using a script on Linux
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Executing Terraform in a Docker container
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Switching between multiple Terraform versions
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Upgrading Terraform providers
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Chapter 2: Writing Terraform Configurations
	Technical requirements
	Configuring Terraform and the provider version to use
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Adding alias to a provider to use multiple instances of the same provider
	Getting ready
	How to do it…
	How it works…
	See also

	Manipulating variables
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Keeping sensitive variables safe
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Using local variables for custom functions
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Using outputs to expose Terraform provisioned data
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Calling Terraform’s built-in functions
	Getting ready
	How to do it…
	How it works…
	See also

	Using YAML files in Terraform configuration
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Writing conditional expressions
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Generating passwords with Terraform
	Getting ready
	How to do it…
	How it works…
	See also

	Managing Terraform resource dependencies
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Adding custom pre and postconditions
	Getting ready
	How to do it…
	How it works…
	See also

	Using checks for infrastructure validation
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Chapter 3: Scaling Your Infrastructure with Terraform
	Technical requirements
	Provisioning infrastructure in multiple environments
	Getting ready
	How to do it…
	How it works…
	See also

	Provisioning multiple resources with the count meta-argument
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Using maps
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Looping over a map of objects
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Generating multiple blocks with the dynamic block
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Filtering maps
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Chapter 4: Using Terraform with External Data
	Technical requirements
	Obtaining external data with data sources
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Querying external data with Terraform
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Manipulating local files with Terraform
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Executing local programs with Terraform
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Executing shell scripts using the Terraform Shell provider
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Chapter 5: Managing Terraform State
	Using the local Terraform state
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Managing resources in Terraform state
	Getting ready
	How to do it…
	Displaying the content of state
	Listing Terraform resource names within state
	Showing detailed resource properties in state
	Deleting resources from state

	There’s more…
	See also

	Synchronizing Terraform state
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Importing existing resources
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Using external resources from other Terraform state files
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Refactoring resources in configuration
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Chapter 6: Applying a Basic Terraform Workflow
	Technical requirements
	Keeping your Terraform configuration clean
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Validating the code syntax
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Destroying infrastructure resources
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Displaying a list of providers used in a configuration
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Generating one Terraform lock file with Windows and Linux compatibility
	Getting ready
	How to do it…
	How it works…
	See also

	Copying a Terraform module configuration
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Using workspaces to manage environments
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Exporting the output in JSON
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Tainting resources
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Generating the dependency graph
	Getting ready
	How to do it…
	How it works…
	See also

	Using different Terraform configuration directories
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Testing and evaluating a Terraform expression
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Debugging the Terraform execution
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Chapter 7: Sharing Terraform Configuration with Modules
	Technical requirements
	Creating a Terraform module and using it locally
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Provisioning multiple instances of a Terraform module
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Using modules from the public registry
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Sharing a Terraform module in the public registry using GitHub
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Using another file inside a custom module
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Using the Terraform module generator
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Generating module documentation
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Using a private Git repository for sharing a Terraform module
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Applying a Terrafile pattern for using modules
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Chapter 8: Provisioning Azure Infrastructure with Terraform
	Technical requirements
	Using Terraform in Azure Cloud Shell
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Protecting the Azure credential provider
	Getting ready
	How to do it…
	How it works…
	There’s more...
	See also

	Protecting the state file in the Azure remote backend
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Executing ARM templates in Terraform
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Executing Azure CLI commands in Terraform
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Using Azure Key Vault with Terraform to protect secrets
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Provisioning and configuring an Azure VM with Terraform
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Building Azure serverless infrastructure with Terraform
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Generating a Terraform configuration for existing Azure infrastructure
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Enabling optional Azure features
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Estimating Azure cost of infrastructure using Infracost
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Using the AzApi Terraform provider
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Chapter 9: Provisioning Simple AWS and GCP Infrastructure Using Terraform
	Technical requirements
	Getting started using Terraform for AWS
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Using the S3 backend in AWS
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Getting started using Terraform for GCP
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Using a GCS backend in GCP
	Getting ready
	How to do it…
	How it works…
	See also

	Executing Terraform in GCP Cloud Shell
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Chapter 10: Using Terraform for Docker and Kubernetes Deployment
	Technical requirements
	Creating a Docker container using Terraform
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Deploying Kubernetes resources using Terraform
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Deploying a Helm chart in Kubernetes using Terraform
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Using a Kubernetes controller as a Terraform reconciliation loop
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Chapter 11: Running Test and Compliance Security on Terraform Configuration
	Technical requirements
	Using PowerShell’s Pester framework to perform Terraform testing
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Testing the Terraform configuration using Python
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Using OPA to check the Terraform configuration
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Using tfsec to analyze the compliance of Terraform configuration
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Applying Terraform compliance using terraform-compliance
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Testing Terraform module code with Terratest
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Testing the Terraform configuration using Kitchen-Terraform
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Using the new integrated Terraform module integration test
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Chapter 12: Deep-Diving into Terraform
	Technical requirements
	Preventing resources from being destroyed
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Ignoring manual changes
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Using Terraform’s templating feature
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Zero-downtime deployment with Terraform
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Managing Terraform configuration dependencies using Terragrunt
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Using Terragrunt as a wrapper for Terraform
	Getting ready
	How to do it…
	How it works…
	See also

	Generating a self-signed SSL certificate using Terraform
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Checking the configuration before committing code using Git hooks
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Visualizing Terraform resource dependencies with Rover
	Getting ready
	How to do it…
	How it works…
	See also

	Using the Terraform CDK for developers
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Chapter 13: Automating Terraform Execution in a CI/CD Pipeline
	Running Terraform in automation mode
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Displaying a summary of the execution of terraform plan
	Getting ready
	How to do it…
	There’s more…
	See also

	Building CI/CD pipelines to apply Terraform configurations in Azure Pipelines
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Automating Terraform execution in GitHub Actions
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Working with workspaces in CI/CD
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Building CI/CD for Terraform modules in Azure Pipelines
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Building a workflow for publishing Terraform modules using GitHub Actions
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Chapter 14: Using Terraform Cloud to Improve Team Collaboration
	Technical requirements
	Authenticating Terraform to Terraform Cloud
	Getting ready
	How to do it…
	There’s more…
	See also

	Managing workspaces in Terraform Cloud
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Using the remote backend in Terraform Cloud
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Migrating Terraform State to Terraform Cloud
	Getting ready
	How to do it…
	How it works…
	See also

	Using Terraform Cloud as a private module registry
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Executing Terraform configuration remotely in Terraform Cloud
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Checking the compliance of Terraform configurations using OPA in Terraform Cloud
	Getting ready
	How to do it…
	There’s more…
	See also

	Using integrated cost estimation for cloud resources
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Integrating the Infracost run task during the Terraform Cloud run
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also

	Configuring Terraform Cloud with the Terraform TFE provider
	Getting ready
	How to do it…
	There’s more…
	See also

	Chapter 15: Troubleshooting Terraform Errors
	Fixing interpolation errors
	Getting ready
	How to do it…
	How it works…
	See also

	Fixing cycle errors
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Fixing for_each errors
	Getting ready
	How to do it…
	There’s more…

	Fixing output errors
	Getting ready
	How to do it…
	How it works…
	There’s more…

	Appendix A: Terraform Cheat Sheet
	Basic commands
	Format Terraform configuration
	Terraform providers management
	Terraform dependency file
	Basic workflow commands
	Backend configuration
	Validate configuration
	Get outputs
	Import resources
	Terraform workspaces
	Terraform debug
	State management
	Display Terraform graph dependencies
	Taint/untaint resources
	Terraform Cloud/Enterprise

	Appendix B:Terraform Resources
	Terraform official resources
	Documentation
	Registry
	Providers development

	Terraform community resources
	Terraform news feed
	Terraform certifications and certification preparation
	Terraform certification program pages
	Terraform certification preparation

	PacktPage
	Other Books You May Enjoy
	Index

