
Infrastructure-as-Code
Automation Using
Terraform, Packer, Vault,
Nomad and Consul

Hands-on Deployment,
Configuration, and Best Practices
—
Navin Sabharwal
Sarvesh Pandey
Piyush Pandey

Infrastructure-as-
Code Automation
Using Terraform,

Packer, Vault, Nomad
and Consul

Hands-on Deployment,
Configuration, and Best

Practices

Navin Sabharwal
Sarvesh Pandey
Piyush Pandey

Infrastructure-as-Code Automation Using Terraform, Packer, Vault, Nomad

and Consul: Hands-on Deployment, Configuration, and Best Practices

ISBN-13 (pbk): 978-1-4842-7128-5		 ISBN-13 (electronic): 978-1-4842-7129-2
https://doi.org/10.1007/978-1-4842-7129-2

Copyright © 2021 by Navin Sabharwal, Sarvesh Pandey and Piyush Pandey

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Matthew Moodie
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
1 New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-7128-5. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Navin Sabharwal
New Delhi, Delhi, India

Piyush Pandey
New Delhi, India

Sarvesh Pandey
Noida, UP, India

https://doi.org/10.1007/978-1-4842-7129-2

iii

Table of Contents

Chapter 1: ��Getting Started with HashiCorp Automation Solutions��������1

Introduction to Infrastructure as Code���1

Introduction to HashiCorp Automation���4

Packer��5

Terraform��6

Vault���7

Nomad��7

Consul���8

Vagrant���8

Boundary��9

Waypoint���9

Summary���10

Chapter 2: ��Getting Started with HashiCorp Terraform�������������������������11

Introduction to HashiCorp Terraform��11

Terraform CLI (Open Source)��13

Terraform Cloud��14

Terraform Enterprise��14

Comparing the Options���14

About the Authors���ix

About the Technical Reviewer��xi

Acknowledgments��xiii

iv

Setting up an AWS Account��16

Getting Started with Terraform Cloud��22

Terraform Workflow���33

Getting Started with Terraform CLI���34

What’s New in Terraform 0.14��45

Terraform 0.14 vs. Terraform 0.13��45

Summary���45

Chapter 3: ��Understanding Terraform Programming Constructs����������47

Configuration Language���48

Arguments, Blocks, and Expressions���48

Code Organization��49

Configuration Ordering���50

Resources���50

Provider��51

Input Variables��52

Environment Variables��54

Output Values���55

Local Values��57

Modules��58

Creating a Custom Module���60

Version��65

count and for_each��66

depends_on Module���67

Providers��67

Provider Version Constraints in Modules��68

Automatic Installation of Third-Party Providers��69

Provider Plug-ins in a Local Filesystem���70

Table of Contents

v

Data Sources��71

Backend Configuration���73

Backend Types��74

Backend Initialization���75

Provisioners���75

Creation-Time Provisioners��76

Destroy-Time Provisioners���77

Multiple Provisioners��78

Types of Provisioners��79

Summary���83

Chapter 4: ��Automating Public Cloud Services Using Terraform����������85

Automating the GCP Public Cloud Using Terraform��85

Creating a VPC and Subnet with Terraform��94

Creating a Virtual Machine with Terraform���97

Creating a GCS Bucket with Terraform���101

Automating the Azure Public Cloud Using Terraform���108

Summary���129

Chapter 5: ��Getting Started with Vault��131

Introduction to HashiCorp Vault���131

Understanding Vault’s Logical Architecture���133

Understanding Vault’s Security Model���135

Installing Vault CLI and Integration with AWS��137

Summary���150

Chapter 6: ��Getting Started with HashiCorp Packer����������������������������151

Introduction to HashiCorp Packer��151

Builders��152

Communicators��153

Table of Contents

vi

Provisioners��153

Post-Processors���154

Variables���155

Installing Packer��156

Hands-on Exercise to Automate AWS AMI��158

Summary���166

Chapter 7: ��Getting Started with HashiCorp Consul����������������������������167

Introduction to HashiCorp Consul��167

Service Discovery���168

Configuration Management��169

Service Mesh and Network Segmentation���169

Architecture���170

Agent��171

Catalog���172

Anti-Entropy��173

Consensus Protocol��173

Gossip Protocol���173

LAN Gossip Pool���174

WAN Gossip Pool��174

Installing Consul���174

Service Discovery Using Consul���178

Intention Deletion���185

Service Registration���193

DNS and Health Checks Using Consul���198

Summary���199

Table of Contents

vii

Chapter 8: ��Getting Started with Nomad���201

Container Orchestration���201

Introduction to Nomad���204

Nomad Architecture��207

Autoscaling Overview���210

Installing Nomad��211

Policy-Driven Governance in Nomad��221

Namespaces���221

Resource Quotas��222

Sentinel Policies���222

Nomad ACLs���223

Container Application Deployment Using Nomad���224

Summary���236

�Index��237

Table of Contents

ix

About the Authors

Navin Sabharwal has more than 20 years

of industry experience. He is an innovator,

thought leader, patent holder, and author in

cloud computing, artificial intelligence and

machine learning, public cloud, DevOps,

AIOPS, infrastructure services, monitoring and

management platforms, big data analytics,

and software product development. Navin is

responsible for DevOps, artificial intelligence,

cloud lifecycle management, service

management, monitoring and management, IT Ops analytics, AIOPs and

machine learning, automation, operational efficiency of scaled delivery

through lean Ops, strategy, and delivery for HCL Technologies. He can

be reached at Navinsabharwal@gmail.com and www.linkedin.com/in/

navinsabharwal. 

Sarvesh Pandey is an innovator and

thought leader in hybrid cloud lifecycle

automation covering technologies (IP and

OEM products) like cloud management

automation, infrastructure as code, and

Runbook Automation, with 15 years of IT

experience. He is the Associate Director

and Practice Head of Cloud Management

Automation for HCL’s DRYiCE, focusing on

http://www.linkedin.com/in/navinsabharwal
http://www.linkedin.com/in/navinsabharwal

x

planning, designing, and managing multiple infrastructure automation

projects of strategic importance to the cloud and the IAC framework. He

has experience in working with highly engineered systems that require

a deep understanding of cutting-edge technology and the key drivers

in multiple markets. He can be reached at samsarvesh@gmail.com and

https://in.linkedin.com/in/sarvesh-pandey-11b82717.  

Piyush Pandey has 10+ years of Industry

Experience. He is currently working at HCL

Technologies as Automation Architect

delivering solutions catering to Hybrid Cloud

using Cloud Native and 3rd Party Solutions.

The Automation solutions cover use cases

like Enterprise Observability, Infra as Code,

Server Automation. Runbook Automation,

Cloud Management Platform, Cloud Native

Automation and Dashboard/Visibility.

He is responsible for designing end to end

solutions & architecture for enterprise

Automation adoption. piyushnsitcoep@gmail.com and https://www.

linkedin.com/in/piyush-pandey-704495b.  

About the Authors

https://in.linkedin.com/in/sarvesh-pandey-11b82717
https://www.linkedin.com/in/piyush-pandey-704495b
https://www.linkedin.com/in/piyush-pandey-704495b

xi

About the Technical Reviewer

Santhosh Kumar Srinivasan is an AWS

Certified Solutions Architect and TripleByte

Certified DevOps Engineer in India. He works

as a cloud consultant with Fortune 100 clients in

the United States. He is an expert in architecting

highly available, fault-tolerant workloads in

AWS Cloud to solve complex problems. San is

a mentor for advanced certification in software

engineering for cloud, blockchain, and IOT

offered by IIT Madras and GreatLearning. He

has trained hundreds of developers on full stack

development in Python. 

He has a bachelor’s degree in computer applications from Bharathiar

University, Coimbatore. San creates and maintains open source teaching

materials on various software engineering topics such as Python, AWS, and

RegEx on his GitHub profile (https://github.com/sanspace). He lived

in North Carolina and Virginia for four years before moving back to his

hometown in Coimbatore, India, where he is currently living with his wife.

He is an avid user of Terraform and works with other Hashicorp

products in his line of work. He plays chess, table tennis, and badminton.

To know more about San, please visit his website at https://sanspace.in

or follow him on Twitter @2sks (https://twitter.com/2sks).

https://github.com/sanspace
https://sanspace.in
https://twitter.com/2sks

xiii

Acknowledgments

To my family, Shweta and Soumil: for being always there by my side and

letting me sacrifice their time for my intellectual and spiritual pursuits, and

for taking care of everything while I am immersed in authoring. This and

other accomplishments of my life wouldn't have been possible without

your love and support.

To my mom and my sister: for their love and support as always;

without your blessings, nothing is possible.

To my co-authors, Sarvesh and Piyush: thank you for the hard work

and quick turnarounds to deliver this. It was an enriching experience, and

I am looking forward to working with you again soon.

I want to send special thanks to Rohan Bajaj, Abhijeet Thakur,

Manpreet Singh, Parvathy Subbiah, Tholupuluri Tsnmanindrababu, Aditya

Tanwar, and Avinaw Sharma. Their research input and automation code

samples helped in shaping the outline of the book.

To my team at HCL, who has been a source of inspiration with their

hard work, ever engaging technical conversations, and technical depth:

your everflowing ideas are a source of happiness and excitement every

single day. Amit Agrawal, Vasand Kumar, Punith Krishnamurthy, Sandeep

Sharma, Amit Dwivedi, Gauarv Bhardwaj, Nitin Narotra, and Vivek—thank

you for being there and making technology fun.

Thank you to Celestine, Aditee, and the entire team at Apress for

turning our ideas into reality. It has been an amazing experience authoring

with you, and over the years, the speed of decision-making and the

editorial support has been excellent.

To all that I have had the opportunity to work with my co-authors,

colleagues, managers, mentors, and guides in this world of 7 billion

xiv

people: it was a coincidence that brought us together. It is an enriching

experience to be associated with you and learn from you. All ideas and

paths are an assimilation of conversations that I have had and experiences

I have shared. Thank you.

Thank you, goddess Saraswati, for guiding me to the path of knowledge

and spirituality and keeping me on this path until salvation.

असतो मा साद गमय, तमसो मा ज्योतिर् गमय, मृत्योर मा अमृतम् गमय
(Asato Ma Sad Gamaya, Tamaso Ma Jyotir Gamaya, Mrityor Ma

Amritam Gamaya)

Lead us from ignorance to truth, lead us from darkness to light, lead us

from death to deathlessness.

Acknowledgments

1© Navin Sabharwal, Sarvesh Pandey and Piyush Pandey 2021
N. Sabharwal et al., Infrastructure-as-Code Automation Using Terraform, Packer,
Vault, Nomad and Consul, https://doi.org/10.1007/978-1-4842-7129-2_1

CHAPTER 1

Getting Started
with HashiCorp
Automation Solutions
This chapter introduces you to infrastructure as code (IaC) and

HashiCorp’s automation offerings, helping users adopt the IaC philosophy

to manage infrastructure and the application lifecycle. The chapter covers

the following topics.

•	 Introduction to infrastructure as code

•	 Introduction to HashiCorp’s automation offerings

�Introduction to Infrastructure as Code
Building infrastructure is an evolving and complex art, which demands

repetitive improvements involving aspects such as maintainability,

scalability, fault-tolerance, and performance.

In traditional environment, building and deploying infrastructure

components was a manual and tedious task which translates to delays and

decreases organizational agility. With the emergence of IaC infra components

are now treated as merely a software construct, a code which can be shared

across different teams. IaC has given rise to mutable infrastructure as the

https://doi.org/10.1007/978-1-4842-7129-2_1#DOI

2

lifecycle of every infra resource/component is treated via code. This leads

to negligible configuration drift across various environments thereby

maintaining sanity of the environment. Infrastructure is treated the same

way an application is treated in an environment. It follows the same devops

principle as application, shares same pipelines and is version controlled.

Another key benefit that IaC offers is the consistency of the build. If

you need to manage several environments (e.g., development, QA, staging,

and production), spinning those up from the same codebase ensures

that negligible configuration drift is introduced across the environments,

ensuring that they all behave the same way.

IaC encourages declarative style of code wherein the desired end

state and the configuration are present before final state is provisioned.

Declarative code tends to be more reusable in the environment as current

configuration changes are considered while catering for any new request

for new infrastructure.

Figure 1-1 is a high-level view of how IaC tools operate.

IaC solutions complies with below mentioned principles, as shown in

Figure 1-2.

•	 Version control is a popular concept wherein every

release corresponds to a source code build which is

maintained as a versioned artifact in the environment.

In IaC, a similar principle is applied to manage the

infrastructure and changes using version-control

Figure 1-1.  How infrastructure as code works

Chapter 1 Getting Started with HashiCorp Automation Solutions

3

commits in the source code repository. This provides

traceability of changes made to the infrastructure

definition covering who made changes, what has

changed, and so forth. This is also crucial when you

need to roll back to a previous version of the code while

troubleshooting an issue.

•	 Predictability refers to IaC capability as a solution to

always provide the same environment and associated

attributes (as defined in the version-controlled system)

every time it is invoked.

•	 Consistency ensures that multiple instances of the

same baseline code provide a similar environment.

This avoids inconsistencies and configuration drift

when manually building complex infrastructure

entities.

•	 Repeatability refers to a solution that always provides

the same results based on the provided input.

Figure 1-2.  Principles of infrastructure as code

Chapter 1 Getting Started with HashiCorp Automation Solutions

4

•	 Composability refers to service managed in a modular

and abstracted format, which can be used to build

complex application systems. This feature empowers

users to focus on the target application build rather

than worry about the under-the-hood details and

complex logic used for provisioning.

�Introduction to HashiCorp Automation
HashiCorp, founded in 2012 by Mitchell Hashimoto and Armon Dadgar,

is a well known infrastructure automation solution company with the aim

of automating hybrid cloud management processes, including application

development, delivery, and operations. Over the years, HashiCorp has

released a variety of open source and enterprise-supported hybrid cloud

automation solutions. Below are the Hashicorp toolsets which are widely

available for enterprise solutions–

•	 Terraform

•	 Vault

•	 Packer

•	 Consul

•	 Nomad

•	 Vagrant

•	 Boundary

•	 Waypoint

Now let’s look at how each of these solutions enables hybrid cloud

automation.

Chapter 1 Getting Started with HashiCorp Automation Solutions

5

�Packer
Image management has been a fundamental prerequisite for virtual or

physical system provisioning. Traditional image automation solutions

leverages baselines or golden images were manually build and maintained.

However, human errors introduced at the image-build stage could lead to

configuration drift in the provisioned service. HashiCorp Packer is an open

source tool for creating golden images for multiple platforms from single

source configuration thereby solving problems with manually created images.

Packer lets you automate the build of golden images. It works with tools

like ansible to install software while creating images. It uses configuration

files along with the concepts of builder and provisioners to spin up,

configure an instance as a golden image. The configuration code can be

changed in case of introduction of a new state element (addition of a new

agent) or during updation scenarios (patching, hardening) of golden image

and is used to create an updated image without human intervention.

The following are the key advantages of Packer solutions.

•	 Accelerated image creation and update process:

Packer helps create and update multiple images

belonging to multiple clouds or multiple OS types

within minutes. You don’t have to wait for the

administrator to create/update manually, which can

take hours or even days.

•	 Support for multiple providers: Packer supports

multiple providers and platforms, so you can manage

identical images across your hybrid cloud environment

with the same standardization and consistency level.

•	 Reduction in human error–induced inconsistencies:

Using a codified approach for managing images, you

can remove any inconsistencies or configuration drifts

in your environment.

Chapter 1 Getting Started with HashiCorp Automation Solutions

6

�Terraform
Terraform is an IaC (infrastructure as code) tool that allows users to define

a desirable infrastructure definition in a declarative language. Using

terraform the infra components within the environment can be deployed

and treated as a code in terraform's configuration file that you can version,

share and reuse.

HashiCorp Terraform has its own configuration language called HCL

(HashiCorp Configuration Language). An HCL file always ends with *.tf.

HashiCorp also supports the JSON format for configuration files. It’s the

user’s decision on whether to use JSON or HCL to write Terraform code.

HCL is widely used because of its simplicity and complex knowledge of

target infrastructure technologies.

HashiCorp Terraform is available in the following three modes.

•	 Terraform CLI (open source)

•	 Terraform Cloud

•	 Terraform Enterprise

The following are the key benefits of using HashiCorp Terraform.

•	 Accelerated hybrid cloud service provisioning:

Terraform enables accelerated provisioning of services

across the hybrid cloud, covering more than 500

technologies.

•	 State management: Terraform allows tracking services

for changes or configuration drifts. This enables

governance of service configuration beyond the

provisioning phase of the service lifecycle.

•	 Planning and testing services: Terraform enables the

planning and testing of services before the provisioning

or modification stages, allowing users to safely and

predictably manage the service lifecycle.

Chapter 1 Getting Started with HashiCorp Automation Solutions

7

•	 Consistency and reduction in human errors: Using

a codified approach to managing the service lifecycle,

you can remove any inconsistencies or configuration

drifts in your environment.

�Vault
HashiCorp Vault is leveraged for storing and securely accessing secrets

via API keys and password. Secrets are defined as any form of sensitive

credentials that need to be controlled; they are used to unlock sensitive

information. Secrets can be stored in passwords, API keys, or SSH keys.

Vault stores secrets for authentication and authorization.

Protecting secrets and access for automation is of primary importance.

HashiCorp Vault solutions make it easy to manage secrets and access by

leveraging the API and a user-friendly interface. You can monitor detailed

logs and fetch audit trails on who accessed which secrets and when.

User authentication is via a password or by using dynamic values to

generate temporary tokens that allow access to a particular path. Policies

can also be defined using HCL to determine which user gets what level of

access.

�Nomad
HashiCorp Nomad is an easy-to-use workload manager that enables users

to schedule tasks and deploy applications in a containerized or non-

containerized infrastructure. It allows you to write code and build software

using declarative infrastructure as code.

Chapter 1 Getting Started with HashiCorp Automation Solutions

8

�Consul
HashiCorp Consul is a multiple–data center service mesh solution that

provides the capability to govern application service communication

using a control plane. It also offers service discovery and health checks. It

leverages a secure TLS protocol to establish mutual TLS connections.

A service mesh allows you to control communication between

different application components or between multiple applications.

A service mesh leverages the IaC concept to define a communication

policy. It typically uses a network proxy or sidecar concept for governing

communication between application services. Data communication

patterns help developers optimize service interaction and performance.

For example, a service mesh can monitor the amount of time it takes to

reconnect to access the application service during unavailability. This can

help developers redefine the waiting period before an application service

tries to reconnect.

�Vagrant
One of the fundamental challenges developers face is the consistency of

the development environment used for writing code. Multiple solutions are

available on the market, including VirtualBox, VMware Workstation, and

Docker. Hypervisor platforms like VMware, KVM, and Hyper-V are typically

used for setting up developer workstations; however, manual administration

makes it tedious to manage configuration requirements for each application

team which results in no consistency between different environments and

introduces configuration drift due to manual intervention.

HashiCorp Vagrant enables you to build and manage a developer’s

environment using a workflow-driven approach that leverages the power

of infrastructure as a code. Using its integrations with various platform

technologies, the developer environment is configured using a consistent,

repeatable, and accelerated approach. From a developer’s perspective,

Chapter 1 Getting Started with HashiCorp Automation Solutions

9

all the required software, utilities, and environment configurations

can be applied to the environment using Vagrant’s file configuration. It

enables application team members to use the same standard platform for

development.

Vagrant is supported on multiple platforms, enabling developers to

focus on development using their favorite software and tools without

worrying about the underlying platform.

�Boundary
In modern times, especially in the wake of COVID-19, there is a paradigm

shift toward identity-based access. With most businesses, applications,

and infrastructure users working remotely, organizations cannot rely on

a network perimeter to secure access to resources. HashiCorp Boundary

provides identity-based access to resources by using popular identity

providers for authentication and authorization to human users.

Using integration with popular identity providers like Microsoft Azure

Active Directory, Okta, and PingFederate for authentication, Boundary

enables role-based authorized access to target services. This removes the

dependency of tracking the end user by using a physical IP address. User

access can now be defined using policies stored in a version-controlled

system, ensuring secure access to hybrid cloud services and applications

with automated governance.

�Waypoint
As modern infrastructure becomes more complex with the rise of public

cloud IaaS and PaaS services and container/microservice/serverless-

based applications, it’s difficult for developers to keep track of deployment

approaches in every platform (VM-based configurations, YAML files,

Kubectl, schedulers, etc.). HashiCorp Waypoint enables developers to

define the flow of how an application is built, deployed, and released

Chapter 1 Getting Started with HashiCorp Automation Solutions

10

across platforms. Waypoint is not a package manager or replacement

of solutions like Kubernetes. It enables the abstraction of build and

deployment complexities using codified flow, which is versioned

controlled.

Waypoint leverages build packs to build applications for various

languages and frameworks, which can be stored as artifacts. These artifacts

can be deployed on various platforms, leveraging either IaaS or PaaS

services. With a Waypoint solution, you can create a workflow to deploy

application components that use other solutions from HashiCorp, such

as Packer (for defining baseline image), Terraform (for defining desired

state configuration), Vault (for managing secrets), Nomad (for application

orchestration), or Consul (for managing Service to service connectivity).

�Summary
This chapter introduced infrastructure as code and various automation

solutions from HashiCorp that leverage the IaC principle. Upcoming

chapters cover Terraform, Packer, Vault, Nomad, and Consul and how

these solutions can be used in hybrid cloud automation.

Chapter 1 Getting Started with HashiCorp Automation Solutions

11© Navin Sabharwal, Sarvesh Pandey and Piyush Pandey 2021
N. Sabharwal et al., Infrastructure-as-Code Automation Using Terraform, Packer,
Vault, Nomad and Consul, https://doi.org/10.1007/978-1-4842-7129-2_2

CHAPTER 2

Getting Started with
HashiCorp Terraform
This chapter covers the core concepts of Terraform CLI and Terraform

Cloud automation.

•	 Introduction to HashiCorp Terraform

•	 Setting up an AWS account

•	 Getting started with Terraform Cloud

•	 Getting started with Terraform CLI

�Introduction to HashiCorp Terraform
DevOps and infrastructure as code (IaC) are gaining traction globally with

developers, administrators, architects, and cloud engineers. DevOps is a

philosophy encompassing people, processes, and tools. Its objective is to

accelerate software development and associated release and deployment

processes. In the overall umbrella of DevOps, IaC is an important

component that provides agility and scalability from the infrastructure side

to meet a application team’s needs. Infrastructure as code also enables

stable, secure, and consistent platforms for hosting applications.

https://doi.org/10.1007/978-1-4842-7129-2_2#DOI

12

There are many tools that implement infrastructure as code.

Terraform and Ansible are gaining traction in the DevOps and developer

communities. Similarly, public cloud hosting platforms provide native

solutions packaged as part of public cloud service offerings. This includes

AWS CloudFormation and Azure Resource Manager. In Google Cloud

Platform, the cloud-native IaC offering is called a deployment manager.

Terraform is an IaC tool that allows users to build, manage, and version

their infrastructures efficiently.

At a high level, Terraform consists of the following components.

•	 Hashicorp Terraform has its own configuration

language called HCL (HashiCorp Configuration

Language). Each configuration file may consists

of multiple code blocks wherein each codeblock

corresponds to an infra resource in the environment.

HashiCorp also supports creation of configuration

files in JSON format. HCL defines infrastructure in

a declarative language. Declarative languages are

nonprocedural or high level language, which specifies

what is to be done rather than how to do it.

Terraform understands HCL as the default

configuration language. It identifies HCL file by its

.tf extension. For the ease of end users, terraform

can also read JSON-based configuration files. It’s up

to the user to use JSON or HCL for writing Terraform

code.

HCL is widely used for its simplicity and complex

knowledge of target infrastructure technologies.

Chapter 2 Getting Started with HashiCorp Terraform

13

•	 A workspace determines how terraform organizes

infrastructure. It contains everything terraform needs

to manage a given collection of infrastructure and

separate workspaces corresponds to separate working

directories. Every workspace has a configuration

file and an associated backend configuration that

defines how the deployment was executed and where

a state was captured for deployment. Initially, there

is only a default workspace available; hence, all

configurations are mapped to the default workspace.

Additional workspaces can be created and switched to

differentiate runs and configurations.

•	 A workflow is the way you manage and run your code

in VCS or CLI. It consists of five major steps: write,

initiate, plan, apply, and destroy. Terraform governs a

resource service lifecycle through these five steps.

HashiCorp Terraform is available in the following three modes.

•	 Terraform CLI (open source)

•	 Terraform Cloud

•	 Terraform Enterprise

Let’s look at each of these options.

�Terraform CLI (Open Source)
Terraform CLI is an IaC tool released under Mozilla Public License 2.0,

which is an open source license available to all. You can download the

latest binaries from HashiCorp’s repository according to the operating

system of your choice and start using them to automate your use cases.

Terraform CLI is recommended for users working on IaC projects, proof of

concept, prototyping, or small noncritical applications.

Chapter 2 Getting Started with HashiCorp Terraform

14

�Terraform Cloud
Terraform Cloud is one of HashiCorp’s managed commercial SaaS

offerings. You must subscribe to use it. The graphical user interface is user-

friendly and offers a good platform for collaboration. HashiCorp provides

a free account with limited offerings. Paid-subscription users have access

to many additional features that the open source and evaluation versions

don’t have.

Terraform Cloud is best suited for users who want to leverage

enterprise security controls like RBAC (role-based access control), team

collaboration, REST, or RESTful API (representational state transfer API)

interfaces for secure integration with other applications, without having to

manage the underlying Terraform infrastructure.

�Terraform Enterprise
Terraform Enterprise is HashiCorp’s commercial version that allows you to

host it locally in your own hosting space and have complete control over

the infrastructure and management policies. Organizations with security

or compliance concerns and that want to privately manage all aspects

should opt for Terraform Enterprise.

�Comparing the Options
Table 2-1 is a high-level comparison of all three HashiCorp Terraform

offerings.

Chapter 2 Getting Started with HashiCorp Terraform

15

Terraform Enterprise and Terraform Cloud offer the same level of

functionality. As part of the Enterprise offering, this book provides a

detailed walkthrough of usage for Terraform Cloud because it does not

need any underlying infrastructure.

Table 2-1.  Comparison of Terraform (open source) vs. Terraform

Cloud and Enterprise (paid versions)

Feature Terraform (open
source)

Terraform
Enterprise or
Cloud

Feature Functionality
(description)

Workspaces Yes, but

very limited

functionality

Yes, with

advanced

capabilities

Teams map responsibility to

individual workspaces and

link APIs accordingly

Team

Management

Difficult Easy, well

managed

Manages organizations,

teams, and permissions

separately

Private Module

Registry

No Yes Private and central repository

of modules

Configuration

Designer

No Yes GUI to manage workspaces,

variables, audits, and so forth

Sentinel No Yes Enforces user-defined

policies to better manage

resources

SAML No Yes SAML and SSO integration for

easy authentication

Audit No Yes Historical changes checked

Chapter 2 Getting Started with HashiCorp Terraform

16

At a high level, Terraform consists of the following components.

•	 Terraform code for defining resources

•	 A workspace to logically manage Terraform

configurations

•	 A workflow to manage your code in VCS and execute

your code in CLI

�Setting up an AWS Account
Before setting up Terraform, let’s quickly set up an AWS account, which

is used later in this chapter. We assume that you have basic knowledge of

the three public clouds (Amazon Web Services (AWS), Azure, and Google

Cloud Platform (GCP)) because the hands-on exercises in this book

require it.

Navigate to https://portal.aws.amazon.com/billing/signup#/

start to create your AWS account. If you already have an AWS account,

you can skip this exercise and proceed to the next one. Enter the required

information as highlighted in Figure 2-1, and click the Continue button.

Chapter 2 Getting Started with HashiCorp Terraform

https://portal.aws.amazon.com/billing/signup#/start
https://portal.aws.amazon.com/billing/signup#/start

17

Select a personal account and enter your information. Click the

Continue button (see Figure 2-2).

Figure 2-1.  New AWS Account registration page

Chapter 2 Getting Started with HashiCorp Terraform

18

Enter your payment information (see Figure 2-3). Click the Verify and

Continue button.

Figure 2-2.  Enter contact details

Chapter 2 Getting Started with HashiCorp Terraform

19

Select the Basic Plan. For new users, this free plan is sufficient. Click

the Free button (see Figure 2-4).

Figure 2-3.  Enter basic personal details

Chapter 2 Getting Started with HashiCorp Terraform

20

After successfully registering, log in to your AWS account (https://

console.aws.amazon.com/iam/home?region=us-east-1) to access the

AWS console.

Navigate to IAM ➤ Access management ➤ Users. Click the Add User

button (see Figure 2-5).

Enter the relevant information (see Figure 2-6) and select

programmatic access. When this is done, you get an access key and a

secret key, which are used later in the exercise.

Figure 2-4.  Select free basic plan

Chapter 2 Getting Started with HashiCorp Terraform

https://console.aws.amazon.com/iam/home?region=us-east-1
https://console.aws.amazon.com/iam/home?region=us-east-1

21

Figure 2-5.  IAM new user

Figure 2-6.  Create new user with programmatic access

Chapter 2 Getting Started with HashiCorp Terraform

22

�Getting Started with Terraform Cloud
Terraform Cloud is a SaaS (software as service) offering. It is hosted and

managed by HashiCorp in a highly reliable and consistent environment.

It provides users with features like collaboration space, secret data

management, RBAC, an approval process (for any changes), and a privately

hosted registry to share Terraform modules and for policy control.

Terraform Cloud can be accessed at https://app.terraform.io.

All you have to do is create a free account that allows collaboration in a

small team and other features. Let’s start with a hands-on exercise on

subscribing to Terraform Cloud.

Create a new account on Terraform cloud using an email account

of your choice by navigating to https://app.terraform.io/signup/

account. Click Create a Free Account and provide information to create

your account (see Figure 2-7).

Figure 2-7.  Terraform Cloud signup page

Chapter 2 Getting Started with HashiCorp Terraform

https://app.terraform.io
https://app.terraform.io/signup/account
https://app.terraform.io/signup/account

23

As soon as you register on the Terraform Cloud site, you get a

confirmation email from HashiCorp to verify your account. Click the link

to confirm your email address (see Figure 2-8).

After email verification, you are redirected to a page that asks you

to log in. Then, you are redirected to the Terraform Cloud, as shown in

Figure 2-9. Select the Start from Scratch option.

Figure 2-8.  New user registration verification email

Figure 2-9.  Terraform Cloud

Chapter 2 Getting Started with HashiCorp Terraform

24

Create a new organization, as shown in Figure 2-10.

Create a new workspace, as shown in Figure 2-11.

Figure 2-10.  Terraform Cloud new organization

Figure 2-11.  Terraform Cloud new workspace

Chapter 2 Getting Started with HashiCorp Terraform

25

Terraform provides a workspace that makes it easy to manage code as

things grow and become more complex. It’s a place where you put your

Terraform code and configurations. A new user might put all his code in a

single work directory, which might grow over time, and he makes different

directory structures for each environment or project. At some point, it

becomes difficult to manage and change, and the chance for error grows.

This is where a workspace comes in handy; it provides a logical separation

of code rather than managing it in a complex directory structure.

Select a workflow from the three options. VCS (version-control

system) is the most commonly used and preferred. It enables users to

leverage GitOps-based actions to manage an infrastructure by using an IaC

methodology. (Read more about VCS integration at www.terraform.io/

docs/cloud/vcs/).

Let’s select one of the VCS providers from the four provider options.

We opted for GitLab, as shown in Figure 2-12.

Select one of the GitLab provider options (see Figure 2-13). Go to User

Settings ➤ Applications to add GitLab as the VCS provider.

Figure 2-12.  Terraform Cloud VCS

Chapter 2 Getting Started with HashiCorp Terraform

http://www.terraform.io/docs/cloud/vcs/
http://www.terraform.io/docs/cloud/vcs/
https://gitlab.com/-/profile/applications

26

The following information is needed to use a GitLab provider (see

Figure 2-14).

•	 Name

•	 Redirect URI

•	 Scopes (API only)

Figure 2-13.  Add VCS provider in Terraform Cloud

Chapter 2 Getting Started with HashiCorp Terraform

27

Log in to your GitLab account. Navigate to the User Settings page,

and select Applications (see Figure 2-15). Enter the following information

(see Figure 2-14).

•	 Name (a relevant friendly name)

•	 Redirect URI (unique to each cloud user)

•	 Scopes (check API)

Figure 2-14.  Add VCS with GitLab

Chapter 2 Getting Started with HashiCorp Terraform

28

Once you save, enter the following information (see Figure 2-16).

•	 Application ID

•	 Secret

Figure 2-15.  GitLab application config to integrate GitLab with
Terraform Cloud

Chapter 2 Getting Started with HashiCorp Terraform

29

Navigate back to the Terraform Cloud page and enter the information

from GitLab (see Figure 2-16). Paste it in the Name, Application ID, and

Secret fields (see Figure 2-17).

Figure 2-16.  GitLab application configuration for GitLab &
Terraform integration

Figure 2-17.  Terraform Cloud Setup provider (with GitLab)

Chapter 2 Getting Started with HashiCorp Terraform

30

Click the Connect and Continue button (see Figure 2-17), which

takes you to the GitLab page (see Figure 2-18). Click the Authorize

button to complete the GitLab part of the configuration to authorize and

authenticate.

Click the Skip and Finish button (see Figure 2-19) to complete all VCS

integration steps.

Figure 2-18.  GitLab Configured for Cloud User

Chapter 2 Getting Started with HashiCorp Terraform

31

You should see the final page of the Terraform Cloud configuration

(see Figure 2-20), which summarizes the authorization details.

Now you can use GitLab as the VCS for Terraform Cloud.

Figure 2-19.  Add SSH and finish

Chapter 2 Getting Started with HashiCorp Terraform

32

Figure 2-20.  Terraform Cloud integrated with GitLab as
VCS summary

Chapter 2 Getting Started with HashiCorp Terraform

33

�Terraform Workflow
Once you log in with an activated Terraform Cloud account, you can start

using a Terraform workflow. Workflows allow you to manage your code on

a cloud platform. Terraform Cloud has the following three workflows for

managing Terraform runs.

•	 Version control workflow: This workflow stores your

Terraform configuration in a version-controlled system

like Git or GitLab repository, and triggers runs based

on pull and merges requests. It is one of the most

commonly used approaches in Enterprise.

•	 CLI-driven workflow: In this approach, you can trigger

remote Terraform runs from your local command line

(CLI). Users can run CLI commands like terraform

plan and terraform apply. They execute directly in

Terraform Cloud. The user can monitor progress on a

CLI terminal. This empowers developers and enforces

the appropriate governances and policies offered by

Terraform Enterprise.

•	 API-driven workflow: This is a more advanced option

that integrates Terraform into a larger pipeline using

the Terraform API.

As soon as you log in to your Terraform Cloud account, you are asked

to choose one of three workflow options (see Figure 2-21).

Chapter 2 Getting Started with HashiCorp Terraform

34

�Getting Started with Terraform CLI
The previous section covered configuring Terraform Cloud and working

with HashiCorp’s Enterprise offerings. This section starts with HashiCorp’s

open source offering by configuring Terraform CLI on a Linux system. Our

example uses a Red Hat virtual machine to install CLI.

Before you can download and configure Terraform, you need the wget

and unzip tools on your virtual machine. Execute the following command

to install packages on your virtual machine, as shown in Figure 2-22.

sudo yum install wget unzip –y

Figure 2-21.  Terraform Cloud workflow

Chapter 2 Getting Started with HashiCorp Terraform

35

Download a Terraform binary from the Terraform release website by

executing the following command based on your computer’s architecture

and operating system platform (Linux, Windows, etc.). We used version

0.13 for our installation (see Figure 2-23).

sudo wget https://releases.hashicorp.com/terraform/0.13.5/

terraform_0.13.5_linux_amd64.zip

Note A lways refrain from downloading an application binary from
third-party sites; only use the HashiCorp Terraform official release.

Use the following Linux command to unpack/unzip the binary you

downloaded from the official Terraform website (see Figure 2-24).

sudo unzip terraform_0.13.5_linux_amd64.zip

Figure 2-22.  Prerequisite tool install

Figure 2-23.  Terraform CLI download

Chapter 2 Getting Started with HashiCorp Terraform

36

Once the Terraform binary unzips in the current directory, you can

place it in the location where all other system binaries reside. No path has

to be configured to invoke Terraform CLI.

sudo mv terraform /usr/local/bin/

Execute the following command to validate that you have installed the

correct version, as shown in Figure 2-25.

terraform version

Now that Terraform CLI is installed, let’s test some Terraform code to

see how things work.

Execute the following commands to install the Git client, and then

clone the sample code from the GitHub repository.

yum install git

git clone https://github.com/dryice-devops/terraform_aws.git

Once you have cloned the repository, you should see five Terraform

files (see Listing 2-1 through Listing 2-5).

Figure 2-24.  Unzip Terraform binary

Figure 2-25.  Configure Terraform

Chapter 2 Getting Started with HashiCorp Terraform

37

Listing 2-1.  Terraform data.tf File

data "aws_ami" "centos" {

 owners = ["679593333241"]

 most_recent = true

 filter {

 name = "name"

 values = ["CentOS Linux 7 x86_64 HVM EBS *"]

 }

 filter {

 name = "architecture"

 values = ["x86_64"]

 }

 filter {

 name = "root-device-type"

 values = ["ebs"]

 }

}

Listing 2-2.  Terraform main.tf File

resource "aws_instance" "instance" {

 ami = data.aws_ami.centos.id

 instance_type = var.Instancetype

 associate_public_ip_address = "true"

 monitoring = "true"

 key_name = var.key_name

 subnet_id = var.subnet_id

 vpc_security_group_ids = var.vpc_security_group_ids

Chapter 2 Getting Started with HashiCorp Terraform

38

tags = {

 Name = var.name

 Environment = var.environment

 Business_Justification = var.bJustification

 Reason = var.reason

 }

Listing 2-3.  Terraform output.tf File

output "instance_ips" {

 value = ["${aws_instance.instance.*.private_ip}"]

}

Listing 2-4.  Terraform provider.tf File

provider "aws" {

access_key = var.aws_accesskey

secret_key = var.aws_secretkey

region = var.region

}

Listing 2-5.  Terraform variable.tf

variable "aws_accesskey" {

default = "ASIA3WEU6XXXXXXXXXXXXX"

description = "Enter Access Key"

}

variable "aws_secretkey" {

default = "bzNmvUZvsdidkhJzXXXXXXXXXXXXXXXXXXXXXXXXXX"

description = "Enter Secrete Key"

}

variable "environment" {

default = "development"

}

Chapter 2 Getting Started with HashiCorp Terraform

39

variable "vpc_security_group_ids"{

 description = "security group"

 type = list(string)

 default =[]

}

variable "subnet_id" {

 description = "Subnet ID"

}

variable "bJustification" {

default = "Demo"

}

variable "reason" {

default = "Demo FOr Customer"

}

variable "name" {

 description = �"Creates a unique name beginning with the

specified prefix"

}

variable "Instancetype" {

 description = "The size of instance to launch"

}

variable "key_name" {

 description = �"The key name that should be used for the

instance"

 default = ""

}

After cloning the code from the repository, you need to modify the

information in your AWS account. Once the code is modified, you can start the

Terraform initialization by executing the following command (see Figure 2-26).

 terraform init

Chapter 2 Getting Started with HashiCorp Terraform

40

Now you can apply as shown in Figure 2-27 the Terraform changes

using the following command, which starts provisioning the resources on

the AWS public cloud.

terraform apply

Figure 2-26.  Terraform code clone and run

Chapter 2 Getting Started with HashiCorp Terraform

41

The terraform apply command initially runs a Terraform plan to

validate the deployment and resources created as a part of the deployment.

Once the plan is successful, it seeks an interactive user confirmation to

proceed with the actual resource creation. This is done by typing YES in

Figure 2-27.  Terraform apply

Chapter 2 Getting Started with HashiCorp Terraform

42

the interactive shell. However, if you need to suppress the prompt, you can

use the –auto-approve flag along with terraform apply.

Once apply completes, you should see the output shown in Figure 2-28,

which includes the number of resources added, changed, or destroyed to

meet the changes defined in our Terraform code.

“Apply complete! Resources: 1 added, 0 changed, 0 destroyed.” appears

at the bottom of the screen.

Now you can navigate to AWS console (https://console.aws.amazon.

com/ec2/v2/home), go to the appropriate region (as per our code), and

review the resource created with the given name or as per the IP output

from the server (see Figure 2-29).

Figure 2-28.  Terraform apply output

Chapter 2 Getting Started with HashiCorp Terraform

https://console.aws.amazon.com/ec2/v2/home
https://console.aws.amazon.com/ec2/v2/home

43

Now that you have validated the outcome of the Terraform code, it’s a

good practice to delete that resource; otherwise, it costs if left running. For

that, run the destroy command as follows to delete all the resources and

their dependencies (see Figures 2-30 and 2-31).

terraform destroy

Figure 2-29.  Resource created from Terraform in AWS console

Chapter 2 Getting Started with HashiCorp Terraform

44

Figure 2-30.  Terraform destroy

Figure 2-31.  Terraform resource destroyed

Chapter 2 Getting Started with HashiCorp Terraform

45

�What’s New in Terraform 0.14
This chapter worked with Terraform 0.13. Terraform upgrades are

frequent, and every new version has enhanced features.

Terraform 0.14 is the latest version. The release and upgrade notes are at

https://github.com/hashicorp/terraform/blob/v0.14/CHANGELOG.md.

�Terraform 0.14 vs. Terraform 0.13
•	 Terraform 0.14 adds support to declare a variable

as sensitive to prevent it from being visible to the

naked eye.

•	 The init command creates a lock in the configuration

directory, which can be checked into version control

to ensure the same version of the plug-in is consumed

in the next run.

•	 Terraform’s latest version supports read and write

of all compatible state files from a future version of

Terraform.

�Summary
This chapter covered Terraform’s main concepts. We learned how to

subscribe to Terraform Cloud, install Terraform CLI, and execute simple

code to provision a service on AWS.

The next chapter covers Terraform programming constructs and looks

at how they can be leveraged to write automation code.

Chapter 2 Getting Started with HashiCorp Terraform

https://github.com/hashicorp/terraform/blob/v0.14/CHANGELOG.md

47© Navin Sabharwal, Sarvesh Pandey and Piyush Pandey 2021
N. Sabharwal et al., Infrastructure-as-Code Automation Using Terraform, Packer,
Vault, Nomad and Consul, https://doi.org/10.1007/978-1-4842-7129-2_3

CHAPTER 3

Understanding
Terraform
Programming
Constructs
This chapter covers Terraform’s programming components. Designing an

infrastructure with Terraform code requires some basic understanding

of the programming components. The following are the programming

components covered in this chapter.

•	 HCL

•	 Resources

•	 Providers

•	 Input variables

•	 Output values

•	 Local values

•	 Modules

https://doi.org/10.1007/978-1-4842-7129-2_3#DOI

48

•	 Data sources

•	 Backend configurations

•	 Provisioners

�Configuration Language
Terraform uses its own configuration language, called HashiCorp

Configuration Language, or HCL. It is a declarative language that lets you

achieve your configuration goals without concern about the sequence of

steps to do it. Terraform configuration consists of a root module, where

evaluation begins, along with a tree of child modules created when one

module calls another.

�Arguments, Blocks, and Expressions
The terraform language syntax is build around below key constructs:

•	 Blocks are the containers where the configuration of a

resource is kept. Blocks are comprised of block-types,

labels, arguments and nested blocks (e.g., a dynamic

block).

•	 Arguments assign a value to a specific name. They are

assigned within blocks.

•	 Expressions are literal or referenced values for

arguments.

•	 Values can be combined using built-in functions.

Chapter 3 Understanding Terraform Programming Constructs

49

Now let’s look at the code snippet shown in Listing 3-1. The block

in the block-type resource acts as a container for the forwarding rule

configuration. Multiple arguments (like project = var.project) are

present, where the name is an expression and the referenced value is var.

project. Similarly, for a load_balancing_scheme expression, there is a

literal value called EXTERNAL.

Listing 3-1.  Block Configuration

 resource "google_compute_forwarding_rule" "default" {

 project = var.project

 name = var.name

 target = �google_compute_target_pool.default.

self_link

 load_balancing_scheme = "EXTERNAL"

 port_range = var.service_port

 region = var.region

 ip_address = var.ip_address

 ip_protocol = var.ip_protocol

}

�Code Organization
Terraform configuration files have a .tf extension. It supports JSON-based

variants by using a .tf.json extension.

The basic Terraform configuration contains only a single .tf file. The

configuration can be enhanced by adding more resources. This is done

by creating new configuration files in the same root module or organizing

them in child modules. A module can also be a combination of .tf and .tf.

json, which can be managed together in a directory.

Chapter 3 Understanding Terraform Programming Constructs

50

�Configuration Ordering
Terraform is a declarative language and does not worry about the order

of the resources. It maintains a dependency order relationship within the

resources, maps them identically to real-world resources.

�Resources
Resources are the major building blocks in Terraform, any infrastructure

component(virtual machine, networks, databases etc.) in an environment

which needs to be created and managed via terraform is depicted as a

resource in configuration file. Let’s review the code snippet shown in

Listing 3-2. The resource block declares a resource-type (google compute

disk) with a given local name (test-d01-data). The name refers to the

resource from elsewhere in the same Terraform module, but has no

significance outside that module’s scope. The resource type and name

together serve as an identifier for a given resource and must be unique

within a module.

Within the block body (between { and }) are the configuration

arguments for the resource. Most arguments in this section depend on

the resource type, and in this example, type, size, and zone are arguments

defined specifically for “google compute disk”.

Listing 3-2.  Resources Configuration

resource "google_compute_disk" "test-d01-data" {

 name = "test-d01-data"

 type = "pd-ssd"

 size = "10"

 zone = "us-west1-a"

}

Chapter 3 Understanding Terraform Programming Constructs

51

�Provider
Provider is a Terraform plug-in that offers a collection of resource types. Each

Provider plug-in offers a set of resource types and defines which arguments

it accepts, which attributes it exports, and how changes to resources of that

type are applied to remote APIs. Providers also offer local utilities for tasks,

like generating random numbers for unique resource names.

Let’s review the code snippet shown in Listing 3-3. The "google"

provider specifies that the resources belong in the Google platform,

whereas project and credentials are the components specifying the

project and the credentials required to authorize the API.

Listing 3-3.  Provider Configuration

 provider "google" {

 project = "crafty-student-290205"

 credentials = file("crafty-student-290205-6d4ebc9cd946.json")

}

Before a new provider is added to a configuration, Terraform must

install the provider. If a persistent working directory is used, run terraform

init to install the provider. Once installed, the download resides in the

current working directory. To make the provider global (i.e., out of the

bounds of the working directory), you can enable a plug-in cache in the

Terraform configuration file in the terraform.d directory, as shown in

Listing 3-4. This directory must exist before Terraform cache plug-ins are

enabled. Terraform cannot create this directory itself.

Listing 3-4.  Plug-in Configuration

plugin_cache_dir = "$HOME/.terraform.d/plugin-cache"

disable_checkpoint = true

Chapter 3 Understanding Terraform Programming Constructs

52

�Input Variables
Input variables are often called Terraform variables. They are used as

parameters that allow certain resource values to be taken as either an input

from a var file or during runtime. This allows the module to be customized

without altering the module’s source code. Now let’s review the code

snippet shown in Listing 3-5.

Listing 3-5.  Input Variables

variable "disk-type" {

 type = string

 default = ""

 description = "Input from the user"

}

variable "zone" {

 type = string

 default = "us-east1-c"

 description = "Input from the user"

}

variable "size" {

 type = number

 default = ""

 description = "Input from the user"

}

variable "ami_id" {

 type = string

 validation {

 condition = can(regex("^ami-", var.example))

 error_message = "Must be an AMI id, starting with \"ami-\"."

 }

}

Chapter 3 Understanding Terraform Programming Constructs

53

The disk type, zone, and size of the Google compute disk are defined

as variables to be taken as input from the user during runtime. A variable

can also be initialized with a default value as specified for variable

“zone” in the above Listing 3-5. This makes the code robust and provides

flexibility. A description can be provided in the variable to make it more

understandable.

The last example includes a validation block introduced in Terraform

0.13, where a condition (can(regex("^ami-", var.example))) is given

to validate that the input must contain the ami prefix in the variable;

otherwise, it generates an error message (“Must be an AMI id, starting

with \”ami-“ ”).

The variable name (e.g., variable “size”) assigns a value to a variable

and must be unique among all the variables in the same module.

The name of a variable can be any valid identifier except the following.

•	 Source

•	 Version

•	 Providers

•	 Count

•	 for_each

•	 locals

•	 depends_on

•	 Lifecycle

Type constraints in variables are a mixture of type keywords and type

constructors. The following are supported.

•	 String

•	 Number

•	 Boolean

Chapter 3 Understanding Terraform Programming Constructs

54

Type constructors define complex keywords. The following are

examples.

•	 list(<TYPE>)

•	 set(<TYPE>)

•	 map(<TYPE>)

•	 object({<ATTR NAME> = <TYPE>, ... })

•	 tuple([<TYPE>, ...])

If the variable type is unknown, or if you are unsure about the type,

then the “any” keyword can be used, making any value acceptable.

Variables can also be passed as vars files during the terraform plan

and apply phases. The following is an example.

terraform apply -var-file="testing.tfvars"

�Environment Variables
An external environment variable can be exported in the current working

shell. In Listing 3-6, TF_VAR_image_id is an external variable. This variable

can be used in Terraform code without having to implicitly mention it. This

value is used for AMI throughout the code without specifying it.

Listing 3-6.  Environment Variables

export TF_VAR_image_id=ami-08bcc13ad2c143073

The precedence order of variables is as follows:

	 1.	 vars is passed at the command line (–var-file).

	 2.	 Terraform.tfvars.json is next in precedence.

	 3.	 Terraform.tfvars follows.

	 4.	 Environment variables have the least precedence.

Chapter 3 Understanding Terraform Programming Constructs

55

�Output Values
Output values correspond to the values returned by Terraform modules

whenever terraform apply is run to apply a configuration. End users can

query the output by running the terraform output command.

These variables come in handy in the following cases.

•	 A child module wants to send the data or its resource

attributes to the parent module.

•	 External scripts want to query certain attributes from a

Terraform module.

Resources created by Terraform have certain output values that can be

later used by any other resource or by any processes.

Now let’s review the code snippet shown in Listing 3-7. The output

block is defined with block-type webserver_ip storing a compute instance’s

NIC IP.

Listing 3-7.  Output Variables

output "webserver_ip" {

 �value = google_compute_instance.default.network_

interface.0.access_config.0.nat_ip

}

To access the output from Listing 3-7, you can traverse to location

‘module.webserver.webserver_ip’ wherein webserver corresponds to the

block label name given to the resource “google_compute_instance”.

Output blocks can optionally include arguments like description,

sensitive, and depends_on.

•	 Description can be included in the output block to

provide information about the output and its purpose,

as shown in Listing 3-8.

Chapter 3 Understanding Terraform Programming Constructs

56

Listing 3-8.  Output Block

output "webserver_ip" {

 �value = google_compute_instance.default.network_

interface.0.access_config.0.nat_ip

 description = public ip of instance

}

•	 Sensitive is used when the output is confidential

and not to be shown on the command line (e.g.,

passwords), as shown in Listing 3-9.

Listing 3-9.  Output Block (Sensitive Data)

output "db_password" {

 value = aws_db_instance.db.password

 description = "The password for logging in to the database."

 sensitive = true

}

•	 depends_on is used when one of the resources

depends on the value of the output result, as shown in

Listing 3-10. It creates a relationship within the nodes

with a dependency graph.

Listing 3-10.  Depends_on Use Case

output "instance_ip_addr" {

 value = aws_instance.server.private_ip

 description = �"The private IP address of the main server

instance."

 depends_on = [

 �# Security group rule must be created before this IP

address could

Chapter 3 Understanding Terraform Programming Constructs

57

 �# actually be used, otherwise the services will be

unreachable.

 aws_security_group_rule.local_access

]

}

Here the resource instance_ip_addr needs to be created after fetching

the value of aws_security_group_rule.local_access. A depends_on output

must always have a description to make it easier for the future maintainer

of the code.

�Local Values
Local values in Terraform represent certain expressions or variables in

the file whose values are constant and are invoked at multiple places in

the code. For example, using locals for the bucket name in different cloud

providers is a good idea because it creates randomness in the name.

Now let’s review the code snippet shown in Listing 3-11. The two

locals—is_postgres and is_mysql—are defined inside a block called

locals. These values are available throughout the code.

Listing 3-11.  Defining Locals

locals {

 # Determine the engine type

 �is_postgres = replace(var.engine, "POSTGRES", "") != var.

engine

 is_mysql = replace(var.engine, "MYSQL", "") != var.engine

}

A local value can be used anywhere in the code. The value is called by

local.<Name>, as shown in Listing 3-12.

Chapter 3 Understanding Terraform Programming Constructs

58

Listing 3-12.  Using Local Values

resource "google_sql_user" "default" {

 depends_on = [google_sql_database.default]

 project = var.project

 name = var.master_user_name

 instance = google_sql_database_instance.master.name

 host = local.is_postgres ? null : var.master_user_host

 password = var.master_user_password

}

Here the host expression gets its value by fetching and comparing the

value of the local is_postgres. The expression determines the value from

the local is_postgres and puts it in the conditional logic.

Local values help remove duplicate calls in configuration files. Local

values are analogous to local variables in programming languages.

�Modules
A module is a container in which all the resources are defined to be used

together. Every Terraform code has one essential module, called a root

module, which contains all the resources in the .tf configuration file.

A module can call other modules, which allows inclusion of the child

module’s resources concisely into the configuration. Modules can be

called multiple times, either within the same configuration or in separate

configurations, making the code reusable.

Calling a module with an expression means to include the contents of

the module in the configuration file along with relevant input variables.

Now let’s review the code snippet shown in Listing 3-13.

Chapter 3 Understanding Terraform Programming Constructs

59

Listing 3-13.  Module Configuration

module "load_balancer" {

 source = "GoogleCloudPlatform/lb/google"

 version = "~> 2.0.0"

 region = var.region

 name = "load-balancer"

 service_port = 80

 target_tags = ["allow-lb-service"]

 network = var.network

}

In listing 3-13 the source argument is calling the GoogleCloudPlatform/

lb/google module.

For all modules, a source argument is a mandate that is specified

while invoking a module in the code. This location can be a local directory

or a remote module source containing configuration files related to the

module.

After the addition, removal, or modification of a module,

Terraform needs to be synchronized with the new module by running a

terraform init command. By default, terraform init does not upgrade an

installed module. Upgrade of an installed module can be initiated by using

the -upgrade flag.

Calling a module via terraform configuration does not implies that

attributes of the resources can be accessed directly as the resources are

encapsulated. To get the output values, certain selective values need to be

exported from it.

Now let’s review the code snippet shown in Listing 3-14. Instead of

calling the complete module, the value of default.ip_address is selected

and displayed as an output.

Chapter 3 Understanding Terraform Programming Constructs

60

Listing 3-14.  Module Output

output "external_ip" {

 description = "The external ip address of the forwarding rule."

 value = google_compute_forwarding_rule.default.ip_address

}

Terraform code is confined within a working directory; if the working

directory is changed, Terraform takes it as a new location with added

resources. The terraform state mv command is used to transfer resource

states into modules.

�Creating a Custom Module
Terraform treats any local directory referenced in a module block’s source

argument as a module. A typical file structure for a new module is shown

in Figure 3-1.

You can create a module with a single .tf file or use any other file

structure you like. Typically, each of the files shown in Figure 3-1 serves a

specific purpose.

Figure 3-1.  Directory structure

Chapter 3 Understanding Terraform Programming Constructs

61

•	 LICENSE contains the license under which your

module is distributed. When you share your module,

the LICENSE file let users know the terms of usage.

•	 README.md contains documentation describing how

to utilize the module in markdown format. Terraform

does not use this file, but services like Terraform

Registry and GitHub display the contents of this file to

people who visit the module’s Terraform Registry or

GitHub page.

•	 main.tf contains the main set of configurations for

your module. You can also create other configuration

files and organize them however it makes sense for

the project.

•	 variables.tf contains the variable definitions for

the module. When the module is invoked in the

configuration file, the variables are configured as

arguments in the module block. Since all Terraform

values must be defined, any variables that are not given

a default value become required arguments. Variables

with default values can also be provided as module

arguments, overriding the default value.

•	 outputs.tf contains the output definitions for

the module, which you can use to extract internal

information about the state of the resources.

Now let’s create a module for the s3 bucket in main.tf, as shown in

Listing 3-15.

Chapter 3 Understanding Terraform Programming Constructs

62

Listing 3-15.  Creating a Custom Module

Terraform configuration

resource "aws_s3_bucket" "s3_bucket" {

 bucket = var.bucket_name

 acl = "public-read"

 policy = <<EOF

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "PublicReadGetObject",

 "Effect": "Allow",

 "Principal": "*",

 "Action": [

 "s3:GetObject"

],

 "Resource": [

 "arn:aws:s3:::${var.bucket_name}/*"

]

 }

]

}

EOF

 website {

 index_document = "index.html"

 error_document = "error.html"

 }

 tags = var.tags

}

Chapter 3 Understanding Terraform Programming Constructs

63

The variables are defined in Listing 3-16.

Listing 3-16.  Defining Custom Module Variables

variable "bucket_name" {

 description = "Name of the s3 bucket. Must be unique."

 type = string

}

variable "tags" {

 description = "Tags to set on the bucket."

 type = map(string)

 default = {}

}

The output is defined in Listing 3-17.

Listing 3-17.  Module Output

Output variable definitions

output "arn" {

 description = "ARN of the bucket"

 value = aws_s3_bucket.s3_bucket.arn

}

output "name" {

 description = "Name (id) of the bucket"

 value = aws_s3_bucket.s3_bucket.id

}

output "website_endpoint" {

 description = "Domain name of the bucket"

 value = aws_s3_bucket.s3_bucket.website_endpoint

}

Chapter 3 Understanding Terraform Programming Constructs

64

Whenever you add a new module to a configuration, Terraform must

install it before it can be used. Both the terraform get and terraform

init commands install and update modules. The terraform init

command also initializes backends and installs plug-ins.

Now let’s install the module by running terraform get, and write the

configuration in the main.tf file, as shown in Listing 3-18.

Listing 3-18.  Installing Module

module "website_s3_bucket" {

 source = "./modules/aws-s3-static-website-bucket"

 bucket_name = "<UNIQUE BUCKET NAME>"

 tags = {

 Terraform = "true"

 Environment = "dev"

 }

}

Execute the terraform apply command to provision the bucket using

a custom module, as shown in Listing 3-19. In the configuration files, make

sre you have added the AWS account information created in Chapter 2.

Listing 3-19.  Terraform Apply with Module

$ terraform apply

An execution plan has been generated and is shown below.

Resource actions are indicated with the following symbols:

 + create

Chapter 3 Understanding Terraform Programming Constructs

65

Terraform will perform the following actions:

...

 # �module.website_s3_bucket.aws_s3_bucket.s3_bucket will be

created

 + resource "aws_s3_bucket" "s3_bucket" {

 + acceleration_status = (known after apply)

...

Do you want to perform these actions?

 Terraform will perform the actions described above.

 Only 'yes' will be accepted to approve.

 Enter a value:

Meta-arguments like version, count, provider, and depends_on are used

when creating code. Each has special relevance to usage in the module.

�Version
A version constraint string specifies acceptable versions of the module, as

shown in Listing 3-20.

Listing 3-20.  Meta-Argument Version

module "ssm" {

 source = "./aws"

 version = "0.2"

}

Here, version 0.2 is passed as a value to fetch the values from the ./aws

source inside the ssm module.

Chapter 3 Understanding Terraform Programming Constructs

66

The version attribute accepts a string value. Terraform tries to install

the version of the module in the attribute value. The version attribute is

only applicable for modules published in the Terraform module registry or

Terraform Cloud private module registry.

Modules residing in other sources may have their own version-control

mechanism, which can be specified in the source string. Modules residing

in local directories do not support versions; since they are loaded from the

same source repository, they always share the same version as their caller.

�count and for_each
count and for_each create multiple instances of the same resource, as

shown in Listing 3-21. These arguments have the same syntax and type

constraints as for_each and count when used with resources.

Listing 3-21.  For_each Example

Resource “aws_iam" “example” { {

 for_each = toset(var.user_names)

 source = "./aws/iam"

 name = each.value

}

The for_each constraint creates an IAM user matching the set user_

names defined in the /aws/iam module. The /aws/iam child module has

a configuration to create IAM users. for_each creates multiple users with a

special key name: each.value. Resources from child modules are prefixed

with module.module_name[module index] when displayed in the UI. In

our example, the ./aws/iam module contains aws_iam_user.example. The

two instances of this module produce IAM user resources with module.

iam["ram"].aws_iam_user.example and module.iam["rambo"].aws_iam_

user.example resource addresses. The ram and rambo values are taken as

variables.

Chapter 3 Understanding Terraform Programming Constructs

https://www.terraform.io/docs/internals/resource-addressing.html

67

�depends_on Module
In previous versions of Terraform, module instances served only as

separate namespaces. They were not nodes in Terraform’s dependency

graphs. Terraform has always tracked dependencies via the input variables

and output values of a module. But users have frequently requested a

concise way to declare that all objects inside a module share a particular

dependency in the calling module. Terraform v0.13 introduces this

capability by allowing depends_on as a meta-argument inside module

blocks, as shown in Listing 3-22.

Listing 3-22.  Depends_on with Module

resource "aws_iam_policy_attachment" "example" {

 name = "example"

 roles = [aws_iam_role.example.name]

 policy_arn = aws_iam_policy.example.arn

}

module "uses-role" {

 # ...

 depends_on = [aws_iam_policy_attachment.example]

}

�Providers
Provider in Terraform acts as a plug-in to integrate with third-party

systems. Each invoked provider brings a set of resource types or data

sources that Terraform can manage. Provider configurations can be

defined only in a root Terraform module.

Chapter 3 Understanding Terraform Programming Constructs

68

Once changes are applied, Terraform retains a reference to the

provider configuration that was most recently used to create the resources

in its state file. This is why terraform plan contains resources that have

references to the old configuration if the provider starts to fail. To solve this

problem, Terraform provider needs to be reintroduced in the configuration

file.

�Provider Version Constraints in Modules
Although provider configurations are shared between modules, each

module must declare its own provider requirements so that Terraform can

ensure that there is a single version of the provider that is compatible with

all modules in the configuration and to specify the source address that

serves as the global (module-agnostic) identifier for a provider.

Now let’s look at the provider shown in Figure 3-2.

Here the module version required for the vSphere provider is 1.24.2.

A Terraform configuration file can have multiple provider configurations,

such as one for GCP and another for AWS or different versions of the same

cloud.

Figure 3-2.  Provider versions

Chapter 3 Understanding Terraform Programming Constructs

https://www.terraform.io/docs/configuration/provider-requirements.html

69

�Automatic Installation of Third-Party Providers
Terraform v0.13 introduced a new hierarchical provider-naming scheme

that allows HashiCorp providers to occupy namespaces separate from

providers developed or distributed by others. Third-party providers are

indexed in Terraform Registry and automatically installed by Terraform.

The new provider naming scheme includes a registry hostname and

a namespace in addition to the provider name. The existing AzureRM

provider is now known as hashicorp/azurerm, which is short for registry.

terraform.io/hashicorp/azurerm. Providers not developed by HashiCorp

can be selected from their own namespaces, using a new provider

requirements syntax added in Terraform v0.13.

Let’s review the code snippet shown in Listing 3-23.

Listing 3-23.  Third-Party Providers

terraform {

 required_providers {

 jetstream = {

 source = "nats-io/jetstream"

 version = "0.0.5"

 }

 }

}

The nats-io/jetstream address is short for registry.terraform.io/nats-

io/jetstream, indicating a third-party provider published in the public

Terraform registry for widespread use.

The provider registry protocol is eventually published so that others

can implement it, in which case other hostnames become usable in source

addresses. At the time of writing this guide, only the public Terraform

Registry at registry.terraform.io was available for general testing.

Chapter 3 Understanding Terraform Programming Constructs

70

As a measure of backward compatibility for commonly used existing

providers, Terraform 0.13 includes a special case that if no explicit source

is selected for a provider, Terraform creates one by selecting registry.

terraform.io as the origin registry and “hashicorp” as the namespace.

For example, if “aws” provider is invoked in the configuration file

without the required_providers argument, terraform assumes the value

hashicorp/aws which is short for registry.terraform.io/hashicorp/aws.

�Provider Plug-ins in a Local Filesystem
While terraform init supports the automatic installation of HashiCorp

distributed providers, third-party-packaged providers must be installed

manually in a local filesystem. Some users also chose to create local

copies of the HashiCorp-distributed providers to avoid repeatedly re-

downloading them.

Terraform v0.13 still supports local copies of providers—officially

called local mirrors. But the new multi-level addressing scheme for

providers means that the expected directory structure in these local

directories has changed to include each provider’s origin registry

hostname and namespace, giving a directory structure like the following.

"registry.terraform.io/hashicorp/azurerm/2.0.0/linux_amd64/

terraform-provider-azurerm_v2.0.0"

In this example, terraform-provider-azurerm_v2.0.0 is an executable

residing inside the provider’s distribution zip file. The containing directory

structure allows Terraform to understand that this is a plug-in intended to

serve the hashicorp/azurerm (short for registry.terraform.io/hashicorp/

azurerm) provider at version 2.0.0 on the platform linux_amd64.

If you use local copies of providers that terraform init would

normally be able to autoinstall, you can use the new Terraform providers

Chapter 3 Understanding Terraform Programming Constructs

71

mirror command to automatically construct the directory structure for the

providers in the current configuration.

terraform providers mirror ~/.terraform.d/plugins

This creates local mirrors in one of the directories Terraform consults

by default on non-Windows systems. This same directory structure is used

for all the directories in which Terraform searches for plug-ins.

Note that due to the directory structure being multi-level, Terraform

no longer looks for provider plug-ins in the same directory where the

Terraform executable is installed. It is not conventional for there to be

subdirectories under directories, like /usr/bin on a Unix system.

�Data Sources
Data sources allow a Terraform configuration to use information defined

outside Terraform or defined by a different Terraform configuration (e.g.,

getting the details of an Amazon VPC defined manually or outside the

Terraform configuration file). A data source is accessed via a special kind

of resource known as a data resource, declared using the data block shown

in Listing 3-24.

Listing 3-24.  Data Sources

data "aws_ami" "std_ami" {

 most_recent = true

 owners = ["amazon"]

filter {

 name = "root-device-type"

 values = ["ebs"]

 }

Chapter 3 Understanding Terraform Programming Constructs

72

filter {

 name = "virtualization-type"

 values = ["hvm"]

 }

}

resource "aws_instance" "myec2" {

 ami = data.aws_ami.std_ami.id

 instance_type = "t2.micro"

}

The data block requests that Terraform read from a given data source.

In this case, the AMI details are read from the available ones on the aws_

ami resource, with a reference pointer called std_ami, through which it is

called inside the configuration.

The data source and name together serve as an identifier for a given

resource and must be unique within a module.

Within the block body (between { and }) are query constraints defined

by the data source. root-device-type and virtualization-type are the query

constraints with the filtered values. They are different from managed

resources (defined with resource block) so that data resources can only

perform read operations for the resource, whereas managed resources

perform all CRUD operations.

Each data resource is associated with a single data source, specifying

the kind of object it reads.

Most of the data source arguments specified within data blocks are

specific to the selected data source. These arguments can make full use

of expressions and other dynamic HCL features. However, there are some

meta-arguments that are defined by Terraform and apply across all data

sources.

Chapter 3 Understanding Terraform Programming Constructs

https://www.terraform.io/docs/configuration/expressions.html

73

�Backend Configuration
The backend in Terraform determines how the state is loaded and how

an operation such as apply is executed. This abstraction enables non-

local file state storage and remote execution. The most common way

to configure the backend is to be on a remote site, making it possible

for multiple users to work on the same code. The following are the key

benefits of using the backend.

•	 Team collaboration: Since backends are managed

on a remote site, multiple users can work on it, which

reduces time and effort. Locks are used for preventing

corruption, and versioning is enabled to keep multiple

copies of a code, maintaining a which tracks progress

for everyone.

•	 Preventing sensitive data exposure: State is retrieved

from the backends on demand and is only stored in

memory. If a backend such as Amazon S3 is used, then

the only location the state ever is persisted is in S3.

There is no risk of sensitive data being exposed.

•	 Remote operations: In a large infrastructure,

terraform apply can take a long time, so Terraform

supports remote operations, making the code run on

its own. With locking, different environments can be

maintained at the backend.

Backends are configured with a nested backend block within the top-

level Terraform block, as shown in Listing 3-25.

Chapter 3 Understanding Terraform Programming Constructs

74

Listing 3-25.  Backend Configuration

terraform {

 backend "s3" {

 bucket = "backend_bucket"

 key = "./key"

 region = "us-east-1"

 }

}

Here S3 object storage is leveraged as a backend provider for the state

file. Note that there can only be one backend per configuration, and the

backend block cannot refer to named values like input variables, locals, or

data source attributes.

�Backend Types
Backend types are usually grouped into two categories.

•	 Standard: State management and functionalities in

state storage and locking. Examples of a standard

backend include S3 bucket, Consul, Azure RM, etcd,

Manta, Kubernetes, and GCS.

•	 Enhanced: Everything in Standard plus remote

operations. Examples of an enhanced backend are local

and remote.

By default, Terraform does not have any backend. It uses the current

working directory as the local backend for storing state files in a simple

format.

The local backend stores the state on the local filesystem, locks that

state using system APIs, and performs operations locally. This is the

default backend.

Chapter 3 Understanding Terraform Programming Constructs

https://www.terraform.io/docs/backends/state.html
https://www.terraform.io/docs/backends/operations.html
https://www.terraform.io/docs/backends/operations.html

75

The remote backend stores the Terraform state and may run

operations in Terraform Cloud. When using full remote operations,

terraform plan or terraform apply can be executed in Terraform Cloud’s

run environment, with log output streaming to the local terminal. Remote

plan and apply use variable values from the associated Terraform Cloud

workspace. Terraform Cloud can also be used with local operations, in

which case the only state is stored in the Terraform Cloud backend.

The arguments used in the block’s body are specific to the chosen

backend type; they configure where and how the backend stores the

configuration’s state, and in some cases, configures other behavior.

�Backend Initialization
Whenever a configuration’s backend changes, terraform init must run

again to validate and configure the backend before you can perform any

plan, apply, or state operations. A simple copy/paste of the .tfstate file

can also be done, but a backup should be created to manage any adverse

situations.

�Provisioners
Provisioners can model specific actions on the machine to prepare servers

or other infrastructure objects for service.

Post-provisioning tasks, which can include agent onboarding, joining

a domain, running hardening scripts, installing third-party clients for

backup, antivirus, and so forth, can be achieved via provisioners.

Provisioners interact with remote servers over SSH (for Linux systems)

or WinRM (for Windows). Provisioners run the scripts defined within the

configuration on the servers by taking the session for servers and passing

the script to the server, which is then available at the system booting stage.

Chapter 3 Understanding Terraform Programming Constructs

76

This mechanism is analogous to a user data construct in other public

cloud platforms.

Now let’s review the code snippet shown in Listing 3-26. The local-exec

provisioner requires no other configuration, but most other provisioners

must connect to the remote system using SSH or WinRM. A connection

block must be included so that Terraform knows how to communicate

with the server.

Listing 3-26.  Provisioners Use Case

resource "aws_instance" "web" {

 # ...

 provisioner "local-exec" {

 �command = "echo The server's IP address is

${self.private_ip}"

 }

}

�Creation-Time Provisioners
There are certain activities in which some action must be done on

the resource while it is being created, such as booting a server in a

bootstrapping sequence. These activities are only needed during the

creation of the server and do not require a rollback at any other lifecycle

state. In these cases, creation-time provisioners are used.

Creation-time provisioners are only run during creation, not during

updating or any other lifecycle. They are meant to perform bootstrapping

on a system.

When an error is encountered during the execution of a provisioner,

the resource state is marked as tainted. Terraform plans the destroy and

re-creates the resource on the next terraform apply. This is necessary

Chapter 3 Understanding Terraform Programming Constructs

https://www.terraform.io/docs/provisioners/connection.html
https://www.terraform.io/docs/provisioners/connection.html

77

because a failed provisioner means that all desired/required tasks

specified within the provisioners did not run, leaving the final state of the

resource different from what it should be.

�Destroy-Time Provisioners
Provisioners specified with a when = destroy condition in the provisioner

code lock are called destory-time provisioners. These provisioners are

called before the resource is destroyed in Terraform. Listing 3-27 is an

example of an aws_instance resource named web, and a provisioner is

called at the destroy state.

Listing 3-27.  Destroy Time Provisioners

resource "aws_instance" "web" {

 # ...

 provisioner "local-exec" {

 when = destroy

 command = "echo 'Destroy-time provisioner'"

 }

}

The fail behavior for the destroy provisioners is similar to create-time

provisioners (i.e., terraform will error and rerun the provisioners on

the next terraform apply). Due to this behavior, care should be taken

with destroy provisioners to be safe enough to run multiple times.

Destroy-time provisioners can only run if they remain in the

configuration at the time a resource is destroyed. If a resource block with

a destroy-time provisioner is removed entirely from the configuration,

its provisioner configurations are removed along with it, and thus the

destroy provisioner cannot run. You can use the following workaround to

overcome this issue.

Chapter 3 Understanding Terraform Programming Constructs

78

	 1.	 Update the resource configuration to include count = 0.

	 2.	 Apply the configuration to destroy any existing

resource instances, including running the destroy

provisioner.

	 3.	 Remove the resource block entirely from

configuration, along with its provisioner blocks.

	 4.	 Apply again, at which point no further action should

be taken since the resources were already destroyed.

A destroy-time provisioner within a resource that is tainted cannot run.

This includes resources that are marked tainted from a failed creation-time

provisioner or tainted manually using terraform taint.

�Multiple Provisioners
In some scenarios, multiple actions need to be executed on the resource.

In such cases, multiple provisioners can be specified in a single resource

code (as shown in Listing 3-28).

Multiple provisioners are executed in the order they are defined in the

configuration file. Only the provisioners that are valid for a given operation

are run. The valid provisioners are run in the order they are defined in the

configuration file.

Listing 3-28.  Multiple Provisioners

resource "aws_instance" "web" {

 # ...

 provisioner "local-exec" {

 command = "echo first"

 }

Chapter 3 Understanding Terraform Programming Constructs

79

 provisioner "local-exec" {

 command = "echo second"

 }

}

�Types of Provisioners
There are two prominent types of provisioners: generic and vendor.

�Generic Provisioners

Generic provisioners are built-in provisioners provided by Terraform. They

include file, local-exec, and remote-exec.

File Provisioners

File provisioners copy files from the machine executing Terraform to the

newly created resource. A file provisioner supports both SSH and WinRM

type connections, as shown in Listing 3-29.

Listing 3-29.  File Provisioner

provisioner "file" {

 source = "/etc/demo.txt"

 destination = "/usr/demo.txt"

 }

The file provisioner copies the contents of the /etc/demo.txt directory

to the /use/demo.txt destination inside the Terraform configuration file.

Chapter 3 Understanding Terraform Programming Constructs

https://www.terraform.io/docs/provisioners/connection.html

80

Note A file provisioner can upload a complete directory to a remote
machine. Make sure the destination directory already exists. Use
a remote-exec provisioner before the file provisioner to create the
directory if you need to. If you use the winrm connection type, the
destination directory is created if it does not already exist.

Local-Exec Provisioners

The local-exec provisioner invokes a local executable after a resource is

created, as shown in Listing 3-30. This process is on the machine running

Terraform, not on the resource, and there is no guarantee that it is in an

operable state.

Listing 3-30.  Local Exec Provisioner

resource "vsphere_virtual_machine" "tfe-resource2" {

 name = "XXXXXXXX"

 ## resource code

 provisioner "local-exec" {

command = "echo ${data.vsphere_datastore.datastore.d} >>

datastoreid.txt"

}

}

Interpreters can be specified for a command to be executed with

Terraform, as shown in Listing 3-31.

Chapter 3 Understanding Terraform Programming Constructs

81

Listing 3-31.  Local-exec with Interpreter

resource "null_resource" "example" {

 provisioner "local-exec" {

 command = "Get-Process > getprocess.txt"

 interpreter = ["PowerShell", "-Command"]

 }

}

Remote-Exec Provisioners

The remote-exec provisioner invokes a script on a remote resource after it

is created, as shown in Listing 3-32. It can be used to run a configuration

management tool, bootstrap into a cluster, and so forth. The remote-exec

provisioner supports both SSH and WinRM type connections.

Listing 3-32.  Remote-exec Provisioner

 provisioner "remote-exec" {

 inline = [

 hostnamectl set-hostname test

]

 }

}

�Vendor Provisioners

Vendor provisioners allow third-party software vendors to configure

and run the respective client on remote machines. Examples of

vendor provisioners include chef, habitat, puppet, and salt-masterless

provisioners.

Chapter 3 Understanding Terraform Programming Constructs

https://www.terraform.io/docs/provisioners/connection.html

82

Chef Provisioners

The chef provisioner, supported by SSH and WinRM connections, is

responsible for installing and configuring the chef client on a remote

resource. To use a specific type chef of provisioner, there are a few

prerequisites that must be fulfilled. Listing 3-33 is a sample chef

provisioner configuration.

Listing 3-33.  Chef Provisioner

resource "aws_instance" "webmachine" {

 # ...

 provisioner "chef" {

 attributes_json = <<EOF

 {

 "key": "value",

 "app": {

 "cluster1": {

 "nodes": [

 "webserver1",

 "webserver2"

]

 }

 }

 }

 EOF

 environment = "_default"

 client_options = ["chef_license 'accept'"]

 run_list = ["cookbook::recipe"]

 node_name = "webserver1"

 secret_key = "${file("../encrypted_data_bag_secret")}"

Chapter 3 Understanding Terraform Programming Constructs

83

 server_url = �"https://chef.company.com/organizations/

org1"

 recreate_client = true

 user_name = "bork"

 user_key = "${file("../bork.pem")}"

 version = "15.10.13"

 �# If you have a self signed cert on your chef server change

this to :verify_none

 ssl_verify_mode = ":verify_peer"

 }

}

�Summary
This chapter covered the main concepts of HCL, Terraform’s programming

language. We learned how to leverage it while composing automation code.

The next chapter includes hands-on exercises using Terraform CLI to

automate service provisioning on a public cloud like GCP and Azure.

Chapter 3 Understanding Terraform Programming Constructs

85© Navin Sabharwal, Sarvesh Pandey and Piyush Pandey 2021
N. Sabharwal et al., Infrastructure-as-Code Automation Using Terraform, Packer,
Vault, Nomad and Consul, https://doi.org/10.1007/978-1-4842-7129-2_4

CHAPTER 4

Automating Public
Cloud Services Using
Terraform
Previous chapters discussed using Terraform to automate AWS service

provisioning using Terraform. This chapter uses hands-on exercises

for automating Azure and GCP cloud services through Terraform. The

following are the key topics covered in this chapter.

•	 Automating the GCP public cloud using Terraform

•	 Automating the Azure public cloud using Terraform

�Automating the GCP Public Cloud Using
Terraform
Before starting with Google Cloud Platform (GCP) automation using

Terraform, we need to create a GCP account. The following explains

how to create a GCP account and the service account used to integrate

Terraform with GCP.

https://doi.org/10.1007/978-1-4842-7129-2_4#DOI

86

The primary prerequisite for signing up with the platform is a Google

account or any account configured with GSuite (now known as Google

Workspace). GCP uses Google accounts for access management and

authentication.

Note  If the account is already signed in, you are directly redirected
to the GCP cloud console.

Enter https://cloud.google.com in the browser and create a Google

Cloud account with your Google account (see Figure 4-1).

If you are eligible for the free tier, you are prompted for your account

information (see Figure 4-2).

Figure 4-1.  Google Cloud Platform

Chapter 4 Automating Public Cloud Services Using Terraform

https://cloud.google.com

87

Select your country, agree to the Terms of Service and click on the

Agree and Continue button. This takes you to the next step (see Figure 4-3),

where you create and select your payment profile. Provide the required

billing information however auto-debit does not happen unless you

manually upgrade it (see Figure 4-3).

Figure 4-2.  GCP free tier registration step 1

Chapter 4 Automating Public Cloud Services Using Terraform

88

Google offers a free trial (worth $300) to everyone. It can be spent over

12 months, which is sufficient to explore all the exercises in the book and

evaluate GCP further. Once you have specified all the details, click the Start

My Free Trial button.

It takes a while for the registration to complete. Once the necessary

validations are done, you are redirected to the Google console, and you are

ready to start.

Now let’s create the project for this exercise. A project is essentially

a container for regrouping all IT and non-IT resources connected to a

specific cloud project. Every project is identified by a specific parameter

(see Table 4-1).

Figure 4-3.  GCP free tier registration step 2

Chapter 4 Automating Public Cloud Services Using Terraform

89

To create a new project, click the Create a New Project as shown in

Figure 4-4.

On the Select Organization drop-down list at the top of the page, select

the organization that you want to create a project in. If you are a free trial

user, skip this step because this list does not appear. Click Create Project.

In the New Project window, enter a project name and select an

applicable account (see Figure 4-5).

Figure 4-4.  New Project screen

Table 4-1.  Project Parameters

Parameter Description

Name Identifies and describes a project. The name is only for user

reference and can be changed at any stage. The free tier allows you

to create 24 projects.

Project ID A unique string for identifying the project globally. It is created

starting with the project name. Project ID is editable and can be

changed. To create a project ID, you can use any lowercase letter,

number, and hyphens. The only requirement is the uniqueness of

the name. After this is entered, it is no longer possible to change it.

Project

Number

A parameter that is autogenerated by GCP. You cannot manage or

change this number.

Chapter 4 Automating Public Cloud Services Using Terraform

90

Remember the project ID, a unique name across all Google Cloud

projects. It is referred to later as PROJECT_ID.

When you’ve finished entering your new project information, click

Create. New Project is selected and appears as shown in Figure 4-6.

Figure 4-5.  New Project

Figure 4-6.  New Project view

Chapter 4 Automating Public Cloud Services Using Terraform

91

To have programmatic access for Terraform to access GCP services,

a service account must be created. This service account provides a

credentials file which will be used in a Terraform configuration file to

authorize access to the GCP environment. The following steps explain how

to create a service account.

Navigate to the IAM service from Home (see Figure 4-7) and click the

Service Accounts option.

Click the +Create Service Account button to create a service account,

as shown in Figure 4-8.

Figure 4-7.  Navigating through dashboard to IAM

Figure 4-8.  Create service account

Chapter 4 Automating Public Cloud Services Using Terraform

92

Provide a name and description and click the Create button, as shown

in Figure 4-9.

In the Roles tab, select Project Editor, as shown in Figure 4-10.

Navigate to the Keys section and click the Add Key button to create a

key (see Figure 4-11).

Figure 4-9.  Service account Name details

Figure 4-10.  Service account role mapping

Chapter 4 Automating Public Cloud Services Using Terraform

93

Download and save the credentials file in a .json or .p12 format. This

credentials file will be used to integrate Terraform with GCP.

In previous chapter we had installed Terraform. Now let’s begin by

creating GCP services using Terraform. Figure 4-12 shows an architecture

diagram of the services provisioned using Terraform. The basic

infrastructure consists of a VPC, a subnet, an instance, and GCS.

Figure 4-11.  Service account key

Figure 4-12.  Lab use-case architecture

Chapter 4 Automating Public Cloud Services Using Terraform

94

�Creating a VPC and Subnet with Terraform
Clone the files from the GitHub repository used in this exercise by using

the following command.

git clone https://github.com/dryice-devops/Terraform-GCP-

UseCase-Automation

We used a Google provider and the service account credentials created

in the previous section (see Listing 4-1).

Listing 4-1.  Provider.tf

variable "project" {

 type = string

 default = "your project id"

 description = "GCP Project to be used for creating resources"

}

Listing 4-2 creates the VPC with “test-vpc” as the name and a subnet

called “test”. The variables are defined in vars.tf.

Listing 4-2.  Vars.tf

variable "vpc_name" {

 type = string

 default = "test-vpc"

 description = "VPC for creating resources"

}

variable "region" {

 type = string

 default = "us-east1"

 description = "Region for vpc"

}

Chapter 4 Automating Public Cloud Services Using Terraform

95

variable "subnet_name" {

 type = string

 default = "test"

 description = "Name of the Subnet to be Created"

}

Listing 4-3 shows the content of main.tf, which contains the logical

code to create the network and subnetwork.

Listing 4-3.  Main.tf

provider "google" {

 project = var.project

 credentials = file("##############.json") // your

credentials.json file

#--

Creating the VPC

#--

resource "google_compute_network" "vpc" {

 name = var.vpc_name

 auto_create_subnetworks = "false"

}

#--

Creating the Subnet

#--

resource "google_compute_subnetwork" "subnet" {

 name = var.subnet_name

 ip_cidr_range = "10.2.0.0/16"

 network = var.vpc_name

 depends_on = ["google_compute_network.vpc"]

 region = var.region

}

Chapter 4 Automating Public Cloud Services Using Terraform

96

This example creates a VPC and a subnet that keeps the subnet’s

autocreation as false. test-vpc has a subnet called test-subnet, in which the

dependency on the VPC is mentioned by depends_on.

The name of the VPC network and subnetwork are displayed on the

output screen with the help of the output.tf file (see Listing 4-4).

Listing 4-4.  Output.tf

output "network_name" {

 value = google_compute_network.vpc.name

 description = "The name of the VPC being created"

}

output "subnets" {

 value = google_compute_subnetwork.subnet.name

 description = "The created subnet resources"

}

Run terraform init as shown in Figure 4-13. It is a good practice to run

terraform plan before running terraform apply because it provides a skeleton

view of what is to be created and how they are dependent on each other.

Figure 4-13.  GCP Terraform code init

Chapter 4 Automating Public Cloud Services Using Terraform

97

�Creating a Virtual Machine with Terraform
The configuration in Listing 4-5 creates an instance using the Google

compute engine service. To create a compute engine, you need to mention

the parameters shown in vars.tf. In GCP, passing the SSH keys is not passed

like the other cloud providers; instead, it is passed as metadata. Also, the

firewall rules are attached to the compute engine through tags. Finally,

the web server IP is fetched as the output value. Make sure that you use a

different directory for each GCP service to avoid any errors while running

terraform init, plan, and apply.

Listing 4-5.  Vars.tf

variable "machine-type" {

 type = string

 default = "n1-standard-1"

 description = "Disk to be snapshotted"

}

variable "zone" {

 type = string

 default = "us-east1-c"

 description = "Input from the user"

}

variable "region" {

 type = string

 default = "us-east1"

 description = "Input from the user"

}

Chapter 4 Automating Public Cloud Services Using Terraform

98

variable "image" {

 type = string

 default = "centos-7-v20200910"

 description = "Input from the user"

}

The main.tf file contains the operational logic to create the compute

engine and firewall rule to connect the virtual machine, as shown in

Listing 4-6.

Listing 4-6.  Main.tf

provider "google" {

 project = var.project

 �credentials = file("###############.json") // credentials.

json to be used here

}

resource "google_compute_instance" "default" {

 name = "test"

 machine_type = var.machine-type

 zone = var.zone

 allow_stopping_for_update = true

 tags = ["ssh"]

labels = {

 environment = "test"

 project = "test"

 }

Chapter 4 Automating Public Cloud Services Using Terraform

99

 boot_disk {

 initialize_params {

 image = var.image

 }

 }

 network_interface {

 network = "default"

 access_config {

 // Ephemeral IP

 }

 }

 metadata = {

 ssh-keys = "your ssh keys to login"

 }

}

allow ssh traffic

resource "google_compute_firewall" "allow-ssh" {

 name = "allow-ssh"

 network = "default"

 allow {

 protocol = "tcp"

 ports = ["22"]

 }

 source_ranges = ["0.0.0.0/0"]

 target_tags = ["ssh"]

}

Chapter 4 Automating Public Cloud Services Using Terraform

100

The compute engine public IP is displayed on the output screen with

the help of the output.tf file (see Listing 4-7).

Listing 4-7.  Output.tf

output "webserver_ip" {

 �value = google_compute_instance.default.network_

interface.0.access_config.0.nat_ip

}

Now run terraform init, plan, and apply, as shown in Figure 4-14.

The output is shown in Figure 4-15.

Figure 4-14.  GCP Terraform code plan

Chapter 4 Automating Public Cloud Services Using Terraform

101

Figure 4-15.  GCP Terraform code output

After running terraform apply, let’s verify the virtual machine

instance configuration on the GCP console. Navigate to the VM instance

pane (see Figure 4-16) to verify the provisioned instance.

�Creating a GCS Bucket with Terraform
Listing 4-8 creates a GCS bucket. We provide all the input variable details

in the vars.tf file shown in Listing 4-9. The provider.tf file contains the

project details.

Figure 4-16.  GCP console-level validation of VM instance

Chapter 4 Automating Public Cloud Services Using Terraform

102

Listing 4-8.  Provider.tf

variable "project" {

 type = string

 default = "your project id"

 description = "GCP Project to be used for creating resources"

}

Listing 4-9.  Vars.tf

variable "name" {

 description = "The name of the bucket."

 type = string

 default = "terrahashi"

}

variable "location" {

 description = "The location of the bucket."

 type = string

 default = "us-east1"

}

variable "storage_class" {

 description = "The Storage Class of the new bucket."

 type = string

 default = "STANDARD"

}

variable "labels" {

 description = �"A set of key/value label pairs to assign to

the bucket."

 type = map(string)

 default = null

}

Chapter 4 Automating Public Cloud Services Using Terraform

103

variable "bucket_policy_only" {

 description = "Enables Bucket Policy Only access to a bucket."

 type = bool

 default = true

}

variable "versioning" {

 description = �"While set to true, versioning is fully enabled

for this bucket."

 type = bool

 default = true

}

variable "force_destroy" {

 description = �"When deleting a bucket, this boolean option

will delete all contained objects. If false,

Terraform will fail to delete buckets which

contain objects."

 type = bool

 default = false

}

variable "retention_policy" {

 description = �"Configuration of the bucket's data

retention policy for how long objects in

the bucket should be retained."

 type = object({

 is_locked = bool

 retention_period = number

 })

 default = null

}

Chapter 4 Automating Public Cloud Services Using Terraform

104

variable "encryption" {

 description = �"A Cloud KMS key that will be used to encrypt

objects inserted into this bucket"

 type = object({

 default_kms_key_name = string

 })

 default = null

}

The main.tf file keeps the logical configuration of the components used

to provision GCS with its retention policy and lifecycle rule, as shown in

Listing 4-10.

Listing 4-10.  Main.tf

provider "google" {

 project = var.project

 �credentials = file("#########################.json") // your

credentials.json to be used here

}

#--

Creating GCS Bucket

#--

resource "google_storage_bucket" "bucket" {

 name = var.name

 project = var.project

 location = var.location

 storage_class = var.storage_class

 uniform_bucket_level_access = var.bucket_policy_only

 labels = var.labels

 force_destroy = var.force_destroy

Chapter 4 Automating Public Cloud Services Using Terraform

105

 versioning {

 enabled = var.versioning

 }

 dynamic "retention_policy" {

 �for_each = var.retention_policy == null ? [] : [var.

retention_policy]

 content {

 is_locked = var.retention_policy.is_locked

 retention_period = var.retention_policy.retention_period

 }

 }

 dynamic "encryption" {

 for_each = var.encryption == null ? [] : [var.encryption]

 content {

 default_kms_key_name = var.encryption.default_kms_key_name

 }

 }

 lifecycle_rule {

 action {

 type = "SetStorageClass"

 storage_class = "NEARLINE"

 }

 condition {

 age = 7

 }

 }

 lifecycle_rule {

 action {

 type = "SetStorageClass"

 storage_class = "COLDLINE"

 }

Chapter 4 Automating Public Cloud Services Using Terraform

106

 condition {

 age = 30

 }

 }

}

The output.tf file displays the bucket name with information about its

specifications and configurations (see Listing 4-11).

Listing 4-11.  Output.tf

output "bucket" {

 description = "The created storage bucket"

 value = google_storage_bucket.bucket

}

Run terraform init, plan, and apply to create the GCS bucket. The

output is shown in Figure 4-17.

Chapter 4 Automating Public Cloud Services Using Terraform

107

Figure 4-17.  GCP Terraform code output

After running the three use cases for the VPC/subnet, virtual instance,

and GCS bucket, you can execute terraform destroy in the respective

code directories to clean all the resources, as shown in Figure 4-18.

Chapter 4 Automating Public Cloud Services Using Terraform

108

�Automating the Azure Public Cloud Using
Terraform
To use services on the Microsoft Azure cloud, you must have an Azure

account. This section explains how to create a Microsoft account for

Terraform integration. Microsoft Azure offers a free 30-day trial for all new

accounts.

Navigate to https://azure.microsoft.com and create a free account

to begin using Azure cloud services.

Click the Start Free button to begin the free trial subscription. Enter

your email address and password.

Enter your information in all the fields required to create the account,

and then click Next (see Figure 4-19).

Figure 4-18.  GCP terraform destroy

Chapter 4 Automating Public Cloud Services Using Terraform

https://azure.microsoft.com

109

Confirm your identification via phone call or text message per

the information provided in the previous step. Enter your credit card

information for verification, as shown in Figure 4-20.

Figure 4-19.  Provide details for account creation

Chapter 4 Automating Public Cloud Services Using Terraform

110

Select the checkboxes to accept Microsoft Azure’s terms and

conditions. Click the Sign Up button to complete the account creation

process (see Figure 4-21).

Figure 4-20.  Credit card information for account creation

Chapter 4 Automating Public Cloud Services Using Terraform

111

Navigate to https://login.microsoftonline.com to log in to your

Azure account using the Azure portal.

The next step is to create an Azure service principal that integrates

Terraform with Azure. Navigate to Azure Active Directory → App

registrations and click the +New Application Registration button, as shown

in Figure 4-22.

Figure 4-21.  Complete sign-up process

Chapter 4 Automating Public Cloud Services Using Terraform

https://login.microsoftonline.com

112

Provide a name and URL (test.com) for the application. Select Web

app/API as the type of application (see Figure 4-23). After setting the

values, click the Create button.

Figure 4-22.  Creating a service principal

Figure 4-23.  Providing details for service principal

Chapter 4 Automating Public Cloud Services Using Terraform

113

Once registration is completed, note the application ID and tenant ID

(see Figure 4-24). These values are used for integration.

Figure 4-25 shows the Azure services that we automated using

Terraform. For this exercise, we create a VNet (virtual network), subnet,

NSG, and virtual machine using Terraform. Let’s begin the exercise.

Figure 4-25.  Azure hands-on exercise

Figure 4-24.  Service principal

Chapter 4 Automating Public Cloud Services Using Terraform

114

Clone the files from the GitHub repository used in this exercise by

using the following command.

git clone https://github.com/dryice-devops/Terraform-Azure-

UseCase-Automation/tree/master

You see the directory structure under the cloned directory, as shown in

Figure 4-26.

Navigate to the base directory (as shown in Figure 4-26) and update

the provider.tf file’s subscription_id, client_id, client_secret, and tenant_id

fields, as shown in Listing 4-12 (using the service principal information).

These variables are being referred to the provider.tf file. Also, update the

variable value for the VNet name and resource group name and location

used for creating the VNet. Update the vars.tf file (see Listing 4-13).

Figure 4-26.  Clone Terraform directories

Chapter 4 Automating Public Cloud Services Using Terraform

115

Listing 4-12.  Update Provider.tf File

variable "subscription_id" {

 type = string

 default = "Enter Subscription ID"

 description = "Specifies the ID of the Subscription"

}

variable "client_id" {

 type = string

 default = "Enter Client ID"

 description = "Specifies the ID of the Azure Client"

}

variable "client_secret" {

 type = string

 default = "Enter client_secret"

 description = "Specifies the Client Secret"

}

variable "tenant_id" {

 type = string

 default = "Enter Tenant ID"

 description = "Specifies the ID of the Tenant"

}

variable "location" {

 type = string

 default = "West US"

 description = �"The Location/Region where the Virtual network

is created"

}

Chapter 4 Automating Public Cloud Services Using Terraform

116

Listing 4-13.  Vars.tf File

variable "vnet_name" {

 type = string

 default = "Test"

 description = "The name of the Vnet to be used in VM Scale Set"

}

Let’s review the main.tf file, which contains details of the VNet

provisioned using Terraform (see Listing 4-14). Azure Virtual Network,

or VNet, is the fundamental building block for your resources, which are

running in a private network. VNet enables many types of Azure resources

(e.g., virtual machines) to securely communicate with each other.

Listing 4-14.  VNet Terraform Main.tf File

################ Creating Resource group ####################

resource "azurerm_resource_group" "demo" {

 name = var.rg_name

 location = var.location

}

############### Creating virtual Network ###################

resource "azurerm_virtual_network" "demo" {

 name = var.vnet_name

 address_space = ["10.0.0.0/16"]

 location = var.location

 resource_group_name = var.rg_name

 depends_on = [azurerm_resource_group.demo]

Run terraform init, plan, and apply to create Azure VNet. The

output is shown in Figure 4-27.

Chapter 4 Automating Public Cloud Services Using Terraform

117

After successful provisioning, you can validate the VNet configuration

using the Azure portal (see Figure 4-28).

Figure 4-27.  VNet Terraform execution

Chapter 4 Automating Public Cloud Services Using Terraform

118

Now that our resource group and VNet have been created, let’s begin

creating a subnet and NSG using Terraform.

Navigate to the network directory (as shown in Figure 4-26) and update

the var.tf file’s subscription_id, client_id, client_secret, and tenant_id fields

(see Listing 4-15), using the service principal information). These variables

are referred to in the provider.tf file. Also, update the variable value for

the subnet name, VNet name, resource group name (use the name of the

resource group used for the VNet use case), and the name and location

used to create the subnet and NSG. The NSG rule and subnet prefix sizes

are already defined in the main.tf file (see Listing 4-16). A network security

group contains security rules that allow or deny inbound and outbound

traffic from several types of Azure resources.

Listing 4-15.  Vars and Provider File

variable "subscription_id" {

 type = string

 default = "Enter Subscription ID"

 description = "Specifies the ID of the Subscription"

}

Figure 4-28.  VNet validation from Azure portal

Chapter 4 Automating Public Cloud Services Using Terraform

119

variable "client_id" {

 type = string

 default = "Enter Client ID"

 description = "Specifies the ID of the Azure Client"

}

variable "client_secret" {

 type = string

 default = "Enter client_secret"

 description = "Specifies the Client Secret"

}

variable "tenant_id" {

 type = string

 default = "Enter Tenant ID"

 description = "Specifies the ID of the Tenant"

}

variable "location" {

 type = string

 default = "West US"

 description = �"The Location/Region where the Virtual network

is created"

}

variable "rg_name" {

 type = string

 default = "Test"

 description = �"The name of the Resource Group where the

Resource will be Created"

}

Chapter 4 Automating Public Cloud Services Using Terraform

120

variable "subnet_name" {

 type = string

 default = "Test"

 description = �"The name of the Subnet to be used in VM

Scale Set"

}

variable "vnet_name" {

 type = string

 default = "Test"

 description = �"The name of the Subnet to be used in VM

Scale Set"

}

variable "nsg_name" {

 type = string

 default = "Test"

 description = �"The name of the Network Security Group to be

used to InBound and OutBound Traffic"

}

Listing 4-16.  Subnet prefix and NSG definitions in Main.tf File

################ Creating Subnet ###########################

resource "azurerm_subnet" "demo" {

 name = var.subnet_name

 address_prefix = ["10.0.2.0/24"]

 resource_group_name = var.rg_name

 virtual_network_name = var.vnet_name

}

Chapter 4 Automating Public Cloud Services Using Terraform

121

################# Creating NSG and Rule #####################

resource "azurerm_network_security_group" "demo" {

 name = var.nsg_name

 resource_group_name = var.rg_name

 location = var.location

 security_rule {

 name = "HTTP"

 priority = 1020

 direction = "Inbound"

 access = "allow"

 protocol = "tcp"

 source_port_range = "*"

 destination_port_range = "80"

 source_address_prefix = "*"

 destination_address_prefix = "*"

 }

tags = {

 ENVIRONMENT = "Terraform Demo"

 }

Run terraform init, plan, and apply to create an Azure subnet and

NSG. The output is shown in Figure 4-29.

Chapter 4 Automating Public Cloud Services Using Terraform

122

Now that our resource group and VNet have been created, let’s extend

the code to create a public IP, network interface, and a virtual machine. We

used the VNet and subnet from other Terraform function data.

Now that the VNet, subnet, and NSG have been created, let’s create a

virtual machine using Terraform. All the configurations are defined in

the main.tf file shown in Listing 4-17. All the variables are defined in

Listing 4-18.

Figure 4-29.  Subnet and NSG Terraform execution

Chapter 4 Automating Public Cloud Services Using Terraform

123

Listing 4-17.  Main.tf

########## Fetch Info of existing Resources ###################

data "azurerm_subnet" subnet {

 name = var.subnet_name

 resource_group_name = var.rg_name

 virtual_network_name = var.vnet_name

}

data "azurerm_network_security_group" "nsg" {

 name = var.nsg_name

 resource_group_name = var.rg_name

}

############# Create Public Ip ################################

resource "azurerm_public_ip" "demo" {

 name = var.pip_name

 location = var.location

 resource_group_name = var.rg_name

 allocation_method = "Static"

 tags = {

 ENVIRONMENT = "Terraform Demo"

 }

}

############# Create Network Interface ########################

resource "azurerm_network_interface" "demo" {

 name = var.network_int_name

 location = var.location

 resource_group_name = var.rg_name

Chapter 4 Automating Public Cloud Services Using Terraform

124

 ip_configuration {

 name = "demo"

 subnet_id = data.azurerm_subnet.subnet.id

 private_ip_address_allocation = "Dynamic"

 public_ip_address_id = azurerm_public_ip.demo.id

 }

 tags = {

 ENVIRONMENT = "Terraform Demo"

 }

}

Connect the Security Groups to the network interface

resource "azurerm_network_interface_security_group_association"

"demo" {

 network_interface_id = azurerm_network_interface.demo.id

 �network_security_group_id = data.azurerm_network_security_

group.nsg.id

}

############# Create virtual Machine #########################

resource "azurerm_virtual_machine" "demo" {

 name = "demo-vm"

 location = var.location

 resource_group_name = var.rg_name

 network_interface_id = [azurerm_network_interface.demo.id]

 vm_size = var.node_size

 storage_image_reference {

 publisher = "Canonical"

 offer = "UbuntuServer"

 sku = "16.04-LTS"

 version = "latest"

 }

Chapter 4 Automating Public Cloud Services Using Terraform

125

 storage_os_disk {

 name = "demoosdisk"

 caching = "ReadWrite"

 create_option = "FromImage"

 managed_disk_type = "Standard_LRS"

 }

 os_profile {

 computer_name = "demo-vm"

 admin_username = var.username

 admin_password = var.password

 }

 os_profile_linux_config {

 disable_password_authentication = false

 }

 tags = {

 ENVIRONMENT = "Terraform Demo"

 }

}

Listing 4-18.  Vars.tf

variable "vnet_name" {

 type = string

 default = "Test"

 description = "The name of the Vnet to be used in VM Scale Set"

}

Chapter 4 Automating Public Cloud Services Using Terraform

126

variable "subnet_name" {

 type = string

 default = "Test"

 description = �"The name of the Subnet to be used in VM

Scale Set"

}

variable "nsg_name" {

 type = string

 default = "Test"

 description = �"The name of the Network Security Group to be

used to InBound and OutBound Traffic"

}

variable "pip_name" {

 type = string

 default = "Test"

 description = "The name of the Public Ip for accessing VM"

}

variable "network_int_name" {

 type = string

 default = "Test"

 description = "The name of the Network interface"

}

variable "node_size" {

 type = string

 default = "Standard_DS1_v2"

 description = "The size of the Azure VM Node"

}

Chapter 4 Automating Public Cloud Services Using Terraform

127

variable "username" {

 type = string

 default = "SU-user"

 description = "The name of the user for VM Login"

}

variable "password" {

 type = string

 default = "#YLPRgg89"

 description = "The password of the user for VM Login"

}

Run terraform init, plan, and apply to create the Azure VM, NIC,

and Public IP. The output is shown in Figure 4-30.

Chapter 4 Automating Public Cloud Services Using Terraform

128

After successful provisioning, you can also validate the virtual machine

configuration using the Azure portal (see Figure 4-31).

Figure 4-30.  Virtual machine Terraform execution

Chapter 4 Automating Public Cloud Services Using Terraform

129

After completing the exercise, be sure to clean up all resources by

executing terraform destroy for the virtual machine, subnet, NSG, and

VNet.

�Summary
This chapter provided hands-on exercises for automating Azure and GCP

services using open source Terraform.

The next chapter covers a HashiCorp Vault solution and how it

manages secrets in IaC automation scenarios using Terraform.

Figure 4-31.  Virtual machine validation in Azure portal

Chapter 4 Automating Public Cloud Services Using Terraform

131© Navin Sabharwal, Sarvesh Pandey and Piyush Pandey 2021
N. Sabharwal et al., Infrastructure-as-Code Automation Using Terraform, Packer,
Vault, Nomad and Consul, https://doi.org/10.1007/978-1-4842-7129-2_5

CHAPTER 5

Getting Started
with Vault
This chapter covers the core concepts of Vault.

•	 Introduction to HashiCorp Vault

•	 Understanding Vault’s logical architecture

•	 Understanding Vault’s security model

•	 Installing Vault and integration with AWS

Note  In this chapter, all references to Vault are for the open source
version. Thus, features like disaster recovery, enterprise governance,
compliance, and replication across DCs are not explained because
they are associated with the Enterprise version of Vault.

�Introduction to HashiCorp Vault
HashiCorp Vault is used for storing and securely accessing secrets. You

can access the secrets using API keys and passwords. Secrets are defined

as any form of sensitive credentials that need to be controlled and can be

used to unlock sensitive information. Secrets in Vault could be of any type,

https://doi.org/10.1007/978-1-4842-7129-2_5#DOI

132

including sensitive environment variables, database credentials, API keys,

RSA tokens, and more.

Protecting secrets and access in automation is of primary importance.

Vault makes it easy to manage secrets and access by leveraging APIs and a

user-friendly interface. You can monitor detailed logs and fetch the audit

trail describing who accessed which secrets and when.

User authentication to Vault can either be via password or using

dynamic values to generate temporary tokens that allows a particular

user to access a secret. Policies can also be defined using HashiCorp

Configuration Language (HCL) to determine which user gets what level of

access.

The following are Vault’s key features.

•	 Data encryption: Vault can easily encrypt and decrypt

credentials. It provides a security configuration feature

to define encryption parameters, and developers can

store encrypted data in it without having to design their

own encryption methods.

•	 Revocation: Vault provides a default feature that

revokes credentials after a fixed duration (768 hours).

This value is configurable and can be set per user

requirements. Revocation assists in key and secret

rotation and locking down systems in the event of an

intrusion.

Note  The leasing method of dynamic credentials ensures that Vault
knows each client’s secrets. This makes it possible to revoke specific
leases in any attack/hacking attempt.

Chapter 5 Getting Started with Vault

133

•	 On-demand secrets: Vault can generate on-demand

secrets for few methods (e.g., AWS or SQL database).

It can handle dynamic secrets, which are generated on

demand basis. A secret ID is unique for a particular user.

Dynamic secrets are more secure than static secrets,

which are predefined and shared. Vault can revoke

access when the lease expires for on-demand secrets.

•	 Renewal: Vault has a secret renewal feature. It can

revoke credentials, and end users can renew secrets

through the renew API. By attaching a lease period to

secrets, Vault has information on maximum time to

live, and after that duration, secrets are automatically

rotated.

•	 Secret management: Secret management is one

of Vault’s primary features. It can store any type of

credentials, including sensitive environment variables,

API keys, and databases. Vault allows you to take full

control of any sensitive secrets used for automating

hybrid cloud services.

�Understanding Vault’s Logical Architecture
Now let’s look at the logical architecture of the HashiCorp Vault solution,

as shown in Figure 5-1.

Chapter 5 Getting Started with Vault

134

The following are Vault’s key components.

•	 The storage backend stores encrypted data/secrets.

•	 A barrier is used for all data flows between Vault and

backend storage.

•	 A client token verifies the identity of the end user.

•	 A secret controls access (e.g., passwords).

•	 An auth method authenticates the application and

users connecting to Vault.

Figure 5-2 shows a high-level flow between an admin or application

and Vault for accessing secrets. It is used for managing secrets; you can

secure your credentials with Vault.

Figure 5-1.  Vault logical architecture

Chapter 5 Getting Started with Vault

135

While applications can request secrets from Vault based on the policy

configured for access and secret management, the admin can define the

backend policies for secret lifecycle governance.

�Understanding Vault’s Security Model
Vault security architecture is designed to meet the key infosec controls i.e.

confidentiality, integrity, availability, accountability, and authorized access

using authentication. Vault helps prevent eavesdropping or tampering

attempts by leveraging data at rest and transit encryption techniques. A

similar approach is used to protect data in backend storage leveraged for

secrets.

Now let’s look at the threat vector or paths of intrusion and see how

Vault helps protect secrets from such threats. Essentially, there are two

kinds of threats: external and internal.

Vault securely manages sensitive data. Its security model is leveraged

to ensure authentication, availability, and integrity to secure sensitive

data. End user or application access to data is governed by a robust

authentication and authorization model and policies to provide granular

control for security and access management.

Figure 5-2.  Application and Vault architecture

Chapter 5 Getting Started with Vault

136

As shown in Figure 5-3, there are three different systems that are of

concern when it comes to accessing Vault.

The client, an application or automation code, accesses Vault

using an API or CLI interface to access a secret. Clients use secure TLS-

based connections to verify the server’s identity and establish a secure

communication channel with Vault. The server requires that the client

provide a client token for each Vault access request in order to identify the

client. A client that does not provide its own token is not allowed any login

or secret access. Vault communicates with the backend over TLS to provide

an additional layer of security.

Figure 5-3.  Managing secrets and protecting sensitive data

Chapter 5 Getting Started with Vault

137

End users sometimes worry that attackers may hack Vault’s system

data despite robust authentication and authorization features. Within the

traditional Vault systems, a major security concern is that attackers may

successfully access secret material that they are not authorized to access.

This kind of threat is an internal threat.

When a client first authenticates, an auth method verifies the

client’s identity and, in return, gets a list of associated ACL policies. This

association is primarily configured by the administrators or operators.

Figure 5-4 shows that if an application wants to communicate with

sensitive data, Vault creates a randomly generated token for authentication.

The application sends a token upon receiving each request for

communication. Vault checks the validity of the token for communication

and generates an ACL based on the associated policies. Based on the ACL

policy rule, the application performs many actions.

�Installing Vault CLI and Integration
with AWS
Let’s install HashiCorp Vault CLI and see how it works in a hands-on

exercise where we will use AWS public cloud secrets for managing secrets.

Figure 5-4.  App integrates with Vault data

Chapter 5 Getting Started with Vault

138

Before installing Vault, you need an AWS S3 bucket to be created and

an AWS KMS service to be set up first. This is used later in another hands-

on exercise. Let’s use the same AWS account created in Chapter 2 for the S3

bucket.

Sign in to the AWS console and navigate to S3 services under Storage

and Content Delivery. Click the Create Bucket button and provide the

name and region information to create the bucket, as shown in Figure 5-5.

Note W hile performing the hands on execercise we assume user has
KMS keys with IAM user permission to integrate with the Vault setup.

To install Vault, you need a virtual machine with the Linux operating

system. We are using CentOS for our hands-on exercise however

HashiCorp Vault also supports other Linux flavors like Ubuntu, RHEL and

Debian. Execute the following command to install the yum-utils package

used to manage the package repository on a Linux system (see Figure 5-6).

sudo yum install -y yum-utils

Figure 5-5.  Create S3 bucket

Chapter 5 Getting Started with Vault

139

Execute the following command to add the HashiCorp repository to

install Vault using the yum-config manager (see Figure 5-7).

sudo yum-config-manager –add-repo https://rpm.releases.

hashicorp.com/RHEL/hashicorp.repo

Execute the following command to install Vault on the Linux server, as

shown in Figure 5-8.

sudo yum -y install vault

Figure 5-6.  Install yum-utils

Figure 5-7.  Add HashiCorp repository

Chapter 5 Getting Started with Vault

140

Execute the following commands to verify Vault installation (see

Figures 5-9, 5-10, and 5-11).

vault --help

Figure 5-8.  Installation of Vault

Chapter 5 Getting Started with Vault

141

vault --version

Figure 5-9.  Verify Vault installation

Figure 5-10.  Verify Vault version

Chapter 5 Getting Started with Vault

142

sudo service vault status

Now let’s access the Vault UI. Before that you need to update the Vault

config file and disable HTTPS access for the lab exercise. This feature is

typically enabled in a production or customer environment however in

this lab exercise we are disabling the feature to avoid any certificate errors

in HTTPS-based access.

Navigate to /etc/vault.d path and edit the vault.hcl file by

uncommenting the HTTP listener block and commenting out HTTPS

listener block (see Figure 5-12).

Save the /etc/vault.d/vault.hcl file after making the changes, and

restart Vault. After restarting the Vault service, access the UI at http:// <IP

address of your Vault server>:8200/ui/vault/init (see Figure 5-13).

Figure 5-11.  Verify service status

Figure 5-12.  Disable HTTPS listener

Chapter 5 Getting Started with Vault

143

Execute the following commands to set the VAULT_ADDR variable and

check the Vault server status (see Figure 5-14).

export VAULT_ADDR='http://127.0.0.1:8200'

vault status

Figure 5-13.  Check Vault UI

Figure 5-14.  Check Vault status

Chapter 5 Getting Started with Vault

144

Now let’s integrate the S3 bucket created earlier as a backend for

Vault. Navigate to /etc/vault.d path and edit the vault.hcl file to provide

information on the AWS S3 bucket name, the bucket region, KMS ID, and

the access-secret keys (see Figures 5-15(a), 5-15(b), and 5-16). Save the file

and restart Vault.

#Example of vault.hcl file

ui = true

#mlock = true

#disable_mlock = true

Storage "file" {

 Path = "/opt/vault/data"

}

storage "s3" {

 access_key = "Enter Access Key"

 secret_key = "Enter Secret Keys"

 bucket = "Add bucket name"

 region = "Enter Aws Region"

}

Figure 5-15(a).  Navigate to /etc/vault.d and edit vault.hcl file

Chapter 5 Getting Started with Vault

145

storage "awskms" {

 access_key = "Enter Access Key"

 secret_key = "Enter Secret Keys"

 region = "Enter Aws Region"

 kms_key_id = "Enter KMS ID"

}

Execute the following command to check Vault status. It now displays

an AWS KMS recovery seal, as shown in Figure 5-17.

vault status

Figure 5-16.  Update config file with KMS values

Figure 5-15(b).  Update config file for S3

Chapter 5 Getting Started with Vault

146

Execute the following command to initialize the Vault server, as shown

in Figure 5-18. Copy the root token returned as an output of the command.

We use this value later in the exercise.

vault operator init –recovery-shares=1 –recovery-threshold=1

Now execute the following command to verify that the initialization

status is true and the sealed status is false (see Figure 5-19).

vault status

Figure 5-17.  Check Vault status

Figure 5-18.  Initialize Vault

Chapter 5 Getting Started with Vault

147

After the initialization is completed, you can navigate to the AWS

console and verify that Vault objects are now stored in the S3 bucket, as

shown in Figure 5-20.

Log in to Vault using the root token generated in the previous step by

executing the following command, as shown in Figure 5-21.

vault login <Your root token>

Figure 5-20.  S3 bucket with initialized Vault objects

Figure 5-21.  Vault login

Figure 5-19.  Check Vault status

Chapter 5 Getting Started with Vault

148

Execute the following command to enable the secret engine, as shown

in Figure 5-22.

vault secrets enable kv

Now let’s add some basic credentials into the Vault server for testing by

executing the following command, as shown in Figure 5-23.

vault kv put kv/foo test=mycred

You can also validate the credentials added to Vault by logging in to

the UI using the token root credentials. Navigate to the Secrets tabs to view

details of the foo secret under the key, as shown in Figure 5-24.

Figure 5-22.  Enable the secret engine

Figure 5-24.  Check secrets in Vault UI

Figure 5-23.  Entering credentials to Vault

Chapter 5 Getting Started with Vault

149

Similarly, you can store multiple types of secrets in Vault, including

sensitive environment variables, API keys, RSA tokens, and more.

Now let’s add some API keys, as shown in Figure 5-25.

vault kv put kv/token token=xxxxxxxx

You can validate the token added in the Vault UI, as shown in

Figure 5-26.

You can delete the credentials by executing the following command, as

shown in Figure 5-27.

vault kv delete kv/foo

Figure 5-26.  Check token on Vault UI

Figure 5-27.  Delete test cred

Figure 5-25.  Adding a token to Vault

Chapter 5 Getting Started with Vault

150

�Summary
This chapter covered the main concepts of HashiCorp Vault. We learned

how to install Vault CLI and performed a hands-on exercise on managing

secrets in an AWS public cloud.

The next chapter covers the HashiCorp Packer solution and how it

automates image management in a hybrid cloud environment.

Chapter 5 Getting Started with Vault

151© Navin Sabharwal, Sarvesh Pandey and Piyush Pandey 2021
N. Sabharwal et al., Infrastructure-as-Code Automation Using Terraform, Packer,
Vault, Nomad and Consul, https://doi.org/10.1007/978-1-4842-7129-2_6

CHAPTER 6

Getting Started with
HashiCorp Packer
This chapter covers the following HashiCorp Packer topics.

•	 Introduction to open source HashiCorp Packer

•	 Installing Packer

•	 Hands-on exercise in automating AWS AMI creation

�Introduction to HashiCorp Packer
Packer is an open source HashiCorp solution for creating machine images

for multiple platforms using the IaC methodology. It is a lightweight tool

written in the GO language. It has rich integrations for creating machine

images with support for multiple platforms in parallel by leveraging a

single-source code version-controlled declarative configuration.

Packer capabilities cover two key areas. The first one is building

base images for application infrastructure. Packer creates an image that

contains all the dependencies, patches, and configurations required to run

one or multiple applications. The second one is creating golden images

(where everything is baked inside the image). With Packer now Golden

image configuration can be automated for initial release as well as future

releases can be protected against any configuration drift.

https://doi.org/10.1007/978-1-4842-7129-2_6#DOI

152

Packer uses a template file that configures the various components

used to create one or more machine images. Packer templates consist of

the following components.

�Builders
The builders block is the engine of the template file. It is responsible for

turning templates into a machine and then back into an image for various

platforms. Listing 6-1 shows the build section within the Packer template.

Listing 6-1.  Builders Block in Packer Template

{

 "builders": [

 // ... one or more builder definitions here

]

}

A simple AWS builders block is shown in the following example. You

can define details regarding the AWS AMI in fields like the AMI type,

region, and source AMI, from which the image has to be baselined.

"builders": [{

 "type": "amazon-ebs",

 "access_key": "{{user `aws_access_key`}}",

 "secret_key": "{{user `aws_secret_key`}}",

 "region": "us-west-1",

 "source_ami": "ami-sd3543ds",

 "instance_type": "t2.medium",

 "ssh_username": "ec2-user",

 "ami_name": "packer-demo {{timestamp}}"

}]

Chapter 6 Getting Started with HashiCorp Packer

153

�Communicators
Communicators are considered the transport layer in Packer. They

execute scripts and upload files to machines created from images and are

configured within the builder section. Packer supports the following three

types of communicators.

•	 none No communicator is used. If this is set, most

provisioners cannot be used.

•	 ssh An SSH connection is established to the machine. It

is usually the default.

•	 winrm A WinRM connection is established.

Now let’s review the following code snippet, which shows an SSH

communicator configuration.

 "ssh_username": "{{ user `aws_ssh_username` }}",

 "ssh_password": "{{ user `aws_ssh_password` }}",

 "ssh_pty" : "true"

If an SSH agent is configured on the host running Packer, and SSH

agent authentication is enabled in the communicator config, Packer

automatically forwards the SSH agent to the remote host.

�Provisioners
Provisioners are optional when it comes to automating image creation using

Packer. If no provisioners are defined within a template, then no software

(other than the defaults) is installed within the resulting machine images.

Now let’s review the code snippet shown in Listing 6-2, which shows a

provisioners configuration and a sample configuration using a shell type

provisioner for executing demo-script.sh.

Chapter 6 Getting Started with HashiCorp Packer

154

Listing 6-2.  Provisioners Configuration

{

 "provisioners": [

 // ... one or more provisioner definitions here

]

}

"provisioners": [{

 "type": "shell",

 "script": "demo-script.sh"

}]

�Post-Processors
Post-processors executes after the builder and provisioner components

to execute any post-processing task upon the resulting image. Examples

include compressing files, uploading artifacts, and so forth.

Listing 6-3.  Post-Processors

{

 "post-processors": [

 // ... one or more post-processor definitions here

]

}

There are three ways to define a post-processor in a template (as shown

in Listing 6-3): simple definitions, detailed definitions, and sequence

definitions. The simple and detailed definitions are shortcuts for a

sequence definition.

A simple definition is a string name of the post-processor when no

additional configuration is needed. The following is an example.

{

 "post-processors": ["compress"]

}

Chapter 6 Getting Started with HashiCorp Packer

155

A detailed definition (JSON object) contains a type field to denote

the post-processor. It is used when additional configuration is needed.

The following is an example.

{

 "post-processors": [

 {

 "type": "compress",

 "format": "tar.gz"

 }]

}

A sequence definition is a JSON array. The post-processors defined in

the array are run in order, with the artifact of each feeding into the next.

The following is an example.

{

 "post-processors": [

 �["compress", {"type": "upload", "endpoint":

http://example.com }]

]

}

�Variables
The variables supported by Packer are of 2 types: user-defined and

environment variables. The variables block holds all the default variables

within a template. The following is an example where we are using an

instance_type variable for the EC2 server size and the region variable to

provide the AWS region for the image.

"variables": {

 "instance_type": "t2.medium",

 "region": "us-west-1"

 }

Chapter 6 Getting Started with HashiCorp Packer

156

�Using Declared Variables in Templates

The declared variables can be accessed using “{{user `variable-name`}}”

syntax.

The following is an example where instead of providing hard-coded

values, you can take input from the user when executing the code.

"instance_type": "{{user `instance_type`}}",

"region": "{{user `region`}}"

�Using Environment Variables in Templates

Packer lets us use the system’s environment variables. You need to declare

the environment variables in the variable section to use them in other

parts of the template. You can declare that variable as follows.

Example:

"variables": {

 "script_path": "{{env `SCRIPT_PATH`}},

}

�Installing Packer
Let’s begin by installing Packer on a Linux virtual machine. In this exercise,

we are using the Red Hat OS to install Packer.

Execute the following command to download the Packer package from

the HashiCorp website.

wget https://releases.hashicorp.com/packer/1.6.6/packer_1.6.6_

linux_amd64.zip

Execute the following command to extract the Packer binaries (see

Figure 6-1).

unzip packer_1.6.6_linux_amd64.zip

Chapter 6 Getting Started with HashiCorp Packer

157

Execute the following command (first 2 commands) to move the

extracted Packer binaries to /usr/bin path (see Figure 6-2) and navigate to

/usr/bin path. After installing Packer, verify the installation by executing

the second and third commands (see Figure 6-2 and 6-3).

mv packer /usr/bin

cd /usr/bin

Now Run the command to ensure that packer is installed properly.

packer

packer –version

Figure 6-1.  Extracting Packer binaries

Figure 6-2.  Verifying Packer

Figure 6-3.  Verifying Packer version

Chapter 6 Getting Started with HashiCorp Packer

158

�Hands-on Exercise to Automate AWS AMI
Now let’s do a hands-on exercise to automate AWS AMI. In this example,

we bake a t2.micro AMI using a shell provisioner. We use a shell script for

hardening the image using security baselines. After creating the image, we

will update it by bundling an application package using Packer. Figure 6-4

shows a high-level flow of the activities performed in this exercise.

Before starting the exercise, ensure that the AWS CLI is installed and

configured on the Packer server with the credentials configured for the

AWS account created in the previous chapter.

First, set up the AWS CLI tool on the Packer server. Execute the

following command to install Python 3.6 on the system.

sudo yum install python36

Figure 6-4.  Automating AWS AMI creation using Packer

Chapter 6 Getting Started with HashiCorp Packer

159

Verify the Python version by executing the following command

(see Figure 6-5).

python3 –version

Install the AWS CLI by executing the following command.

pip3 install awscli –-upgrade –user

Verify the AWS CLI version by executing the following command

(see Figure 6-6).

aws –version

Configure the AWS account credentials (access and secret key) by

executing the following command. Add the secret key, access key

(see Chapter 5), and region (eu-west-1). Select JSON as the output format

(see Figure 6-7).

aws configure

Figure 6-5.  AWS CLI tool prerequisite installation

Figure 6-6.  AWS CLI tool installation validation

Chapter 6 Getting Started with HashiCorp Packer

160

Execute the following command to set up the Packer project for the

hands-on exercise.

mkdir packer_project

Create a script file named server_hardening.sh in the packer_project

directory and add the image hardening contents to it. The following are

code snippets from the image server baselining script. They are used for

regularly checking the integrity of the filesystem.

The following example code is ensuring the integrity of the filesystem.

sudo echo '0 5 * * * /usr/sbin/aide –check' > /tmp/filenew

sudo crontab -u root -l | cat - /tmp/filenew | crontab -u root –

sudo rm -rf /tmp/filenew

The following snippet ensures that the SELinux state is set to

“Enforcing” and the policy is configured.

Ensure the SELinux state is Enforcing

sudo sed -I '/^SELINUX=/c SELINUX=enforcing' /etc/selinux/

config

Ensure Selinux policy is configured

sudo sed -I '/^SELINUXTYPE=/c SELINUXTYPE=targeted' /etc/

selinux/config

Figure 6-7.  AWS CLI tool configuration

Chapter 6 Getting Started with HashiCorp Packer

161

The following code snippet triggers security patch installation.

Ensure updates, patches and additional security software are

installed

sudo yum update –security -y

The following code ensures that time synchronization is in use.

sudo yum install ntp -y

sudo echo "restrict -4 default kod nomodify notrap nopeer

noquery" >> /etc/ntp.conf

sudo echo "restrict -6 default kod nomodify notrap nopeer

noquery" >> /etc/ntp.conf

You can download the entire script by cloning it from the following

GitHub location and executing the command, as shown in Figure 6-8.

git clone git@github.com:dryice-devops/packer.git

The directory created after cloning contains the templates and scripts

for our exercise (see Figure 6-9).

Figure 6-8.  Cloning script from GitHub

Figure 6-9.  Reviewing files from GitHub

Chapter 6 Getting Started with HashiCorp Packer

162

Create an aws_ami.json file in the packer_project directory created

in the previous step and add content, as shown in Figure 6-11. Copy the

cloned server_harderning.sh file to the packer_project directory.

Note W e are using custom AMI (ami-0881f3111e1e8797b)
as shown in Figure 6-10, but you can use any RHEL AMI in the
marketplace.

Example:

{

 "variables": {

 "ami_id": "ami-xxxxxxx",

 },

 "builders": [{

 "type": "amazon-ebs",

 "region": "eu-west-1",

 "source_ami": "{{user `ami_id`}}",

 "instance_type": "t2.micro",

 "ssh_username": "ec2-user",

 "ami_name": "PACKER-DEMO-1.0",

 "tags": {

 "Name": "PACKER-DEMO-1.0",

 "Env": "DEMO"

 }

 }],

Figure 6-10.  Fetching AMI id from AWS Console

Chapter 6 Getting Started with HashiCorp Packer

163

 "provisioners" [

 {

 "type": "shell",

 "script": "server_hardening.sh"

 }

]

}

Now that the template is ready, the next step will be to execute it

for baking the AMI with hardening instructions. Execute the following

command to validate the Packer template image. You can inspect the

template with the second command (Output shown in Figure 6-12).

packer validate aws_ami.json

packer inspect aws_ami.json

Figure 6-11.  Packer_project directory content

Chapter 6 Getting Started with HashiCorp Packer

164

Execute the following command to build the AMI.

packer build aws_ami.json

You can view the AMI by navigating to the EC2 service in AWS Console

and clicking AMI (see Figure 6-13).

Now that we have created the first version of our image, let’s perform

an exercise to update this image using Packer. Suppose that the AMI we

baked in the previous step had an AMI ID, “ami-0bf84e68a94b25c98”,

from AWS. Let’s create a new Packer template called aws_http.json in the

packer_project directory, as shown in the following example. Replace the

ami_id variable value with the AMI ID created in the AWS account.

Figure 6-12.  Validate and inspect Packer template

Figure 6-13.  View AWS AMI using AWS

Chapter 6 Getting Started with HashiCorp Packer

165

Example:

{

 "variables": {

 "ami_id": "ami-0bf84e68a94b25c98",

 "app_name": "httpd"

 },

 "builders": [{

 "type": "amazon-ebs",

 "region": "eu-west-1",

 "source_ami": "{{user `ami_id`}}",

 "instance_type": "t2.micro",

 "ssh_username": "ec2-user",

 "ami_name": "PACKER-DEMO-1.1-{{user `app_name` }}",

 "tags": {

 "Name": "PACKER-DEMO-1.0-{{user `app_name` }}",

 "Env": "DEMO"

 }

 }],

 "provisioners" [

 {

 "type": "shell",

 "script": "app_script.sh"

 }

]

}

Now let’s create the app_script.sh script file under the packer_project

directory, which includes the steps to install Apache as a package in the

image.

Chapter 6 Getting Started with HashiCorp Packer

166

#!/bin/bash

Sudo yum install apache -y

Sudo systemctl start httpd

Sudo systemctl status httpd

Sudo systemctl enable httpd

Before creating a new image using the updated Packer template, let’s

validate the template by executing the following command.

packer validate aws_http.json

Note T his command validates the template code (syntax) and
returns a zero exit status when successful and a non-zero exit status
when a failure.

After successful validation, execute the following command to update

AWS AMI with an Apache package in it (see Figure 6-14). Executing the

following command validates from AWS.

Packer build aws_http.json

�Summary
This chapter covered the main concepts of HashiCorp Packer. You learned

how to install open source Packer. You also did a hands-on exercise to

create and update AWS AMI.

The next chapter covers the HashiCorp Consul solution and how it

manages network access in an application.

Figure 6-14.  View updated AWS AMI using AWS

Chapter 6 Getting Started with HashiCorp Packer

167© Navin Sabharwal, Sarvesh Pandey and Piyush Pandey 2021
N. Sabharwal et al., Infrastructure-as-Code Automation Using Terraform, Packer,
Vault, Nomad and Consul, https://doi.org/10.1007/978-1-4842-7129-2_7

CHAPTER 7

Getting Started with
HashiCorp Consul
This chapter covers the core concepts of HashiCorp Consul.

•	 Introduction to HashiCorp Consul

•	 Installing Consul

•	 Service discovery using Consul

•	 DNS and health checks using Consul

�Introduction to HashiCorp Consul
HashiCorp Consul provides service discovery, health checks, load

balancing, service graph, identity enforcement via TLS, interservice

communication, network segmentation, and distributed service

configuration management.

The disadvantage with a monolithic application is that if any

subcomponents of an application fail, it necessitates redeployment of the

entire stack, which is not ideal. The same monolithic app can be delivered

as a set of individual, discrete services where the freedom of independently

developing and deploying is possible.

https://doi.org/10.1007/978-1-4842-7129-2_7#DOI
https://en.wikipedia.org/wiki/Service_discovery
https://microservices.io/patterns/observability/health-check-api.html
https://en.wikipedia.org/wiki/Load_balancing_(computing)
https://en.wikipedia.org/wiki/Load_balancing_(computing)
https://medium.com/@marcus.cavalcanti/using-service-graphs-to-reduce-mttr-in-a-http-based-architecture-624d2c9d54c1
https://www.nevatech.com/blog/post/What-you-need-to-know-about-securing-APIs-with-mutual-certificates
https://www.pluralsight.com/guides/role-of-configuration-management-in-devops
https://www.pluralsight.com/guides/role-of-configuration-management-in-devops

168

However when we move to a microservices architecture there are

cross-service challenges, such as service discovery, data consistency, and

network communication. Let’s look at how Consul helps us to overcome

these challenges.

�Service Discovery
In a distributed system, the services are on different machines, so the

identification/discovery of services is difficult. A load balancer is in front of

each service for identification (see Figure 7-1).

The disadvantages of service discovery include

•	 No capability for dynamic auto-discovery/must be

managed manually

•	 Single point of failure

•	 Communication is through a series of networks and is

not direct

Consul overcomes these disadvantages by using a central service

registry that contains the entry for all upstream services. The following are

some of the advantages of Consul-based service discovery.

Figure 7-1.  Service discovery

Chapter 7 Getting Started with HashiCorp Consul

https://auth0.com/blog/an-introduction-to-microservices-part-3-the-service-registry/
https://auth0.com/blog/an-introduction-to-microservices-part-3-the-service-registry/

169

•	 When a service instance starts, it auto-registers on the

central registry.

•	 The service can directly talk to the desired destination

service instance without a mediator.

•	 If one of the service instances or services itself is

unhealthy or fails its health check, the registry would

then know about this scenario and would avoid

returning the service’s address; hence, load balancing

is also done.

�Configuration Management
There is some difficulty in maintaining configurations in a distributed

system.

•	 Maintaining consistency between the configuration on

different services after each update is a challenge.

•	 Dynamically updating a configuration can be a

challenge.

Consul overcomes these disadvantages by using a key-value based

centralized repository. The entire configuration of all services is stored,

which helps with dynamically configuring the services on a distributed

system.

�Service Mesh and Network Segmentation
A service mesh is an infrastructure layer that handles a high volume of

network-based interprocess communication among application services

using APIs. It is implemented by a proxy instance, called a sidecar, for each

service instance.

Chapter 7 Getting Started with HashiCorp Consul

170

The following are challenges in a distributed system.

•	 Controlling the flow of traffic

•	 Segmenting the network into groups

•	 Traffic may come from different endpoints and reach

different services

•	 Inability to verify if traffic is from a trusted entity makes

security a concern

Consul’s solution to these issues is to use

•	 Service graphs

•	 Mutual TLS

•	 Consul Connect

Consul Connect enrolls interservice communication policies and

implements them as part of a service graph. For example, a policy might say

that service A can talk to service B, but B cannot talk to C. Consul provides

a mechanism to enforce such policies without defining firewall rules or IP

restrictions using TLS protocol. TLS protocol works based on certificates

and these certificates help other services securely identify each other and

initiate communication with each other.

�Architecture
Consul has good support for multiple datacenters. There is a mixture of

clients and servers within each datacenter. Typically, there are three to five

servers. However, there is no limit to the number of clients, and they can

easily scale into the thousands or tens of thousands. This strikes a balance

between performance and availability in the event of failure. Figure 7-2

shows a Consul master server in two datacenters interacting with a Consul

client using a gossip protocol.

Chapter 7 Getting Started with HashiCorp Consul

https://medium.com/sitewards/the-magic-of-tls-x509-and-mutual-authentication-explained-b2162dec4401

171

The following describes the key components of Consul.

�Agent
An agent is a core component in Consul. It manages and maintains

membership information, registers services, and performs checks, like

health checks on managed services. The agents are responsible for

executing their own health checks and updating their local state. Any agent

may run in one of two modes: client or server (see Figure 7-3).

Figure 7-2.  Consul multi-datacenter architecture

Chapter 7 Getting Started with HashiCorp Consul

172

�Catalog
Consul leverages a catalog concept for managing all discovered services.

It is formed by aggregating the information received from the agents. It

can be queried through DNS or HTTP to get information on services (see

Figure 7-4).

Figure 7-3.  Consul agent (client and server)

Figure 7-4.  Consul catalog

Chapter 7 Getting Started with HashiCorp Consul

173

�Anti-Entropy
Anti-entropy is a mechanism to ensure that running application services

are kept stable if any underlying components fail or the system falls into a

state of disorder. Consul isolates the global service catalog and the agent’s

local state. Anti-entropy is a synchronization of the local agent state and

the catalog updating the services.

�Consensus Protocol
The server-type agents are pooled together under a single raft peer set that

works in leader-follower mode. Any transactions received by the follower

are forwarded to the leader for processing, and any transactions executed

by the leader are replicated to followers. Consul leverages a consensus

protocol based on the “Raft: in search of an understandable consensus”

algorithm to manage leader-follower interactions.

Raft nodes are always in one of three states: follower, candidate, or

leader. A node starts as a follower, promotes to a candidate, and when a

quorum of votes are received, becomes a leader.

�Gossip Protocol
A gossip protocol is used to broadcast messages within a cluster. The

following are the advantages of a gossip protocol.

•	 There is no need to configure clients with server

addresses; discovery is made automatically.

•	 The work of detecting agent failure is not placed on the

servers; it is distributed. It neglects naive heartbeat schemes.

•	 It is used as a messaging layer to notify when important

events, such as leader election, take place.

Consul uses two gossip pools.

Chapter 7 Getting Started with HashiCorp Consul

174

�LAN Gossip Pool
Each datacenter that Consul operates in has a LAN gossip pool containing

all members—clients and servers.

�WAN Gossip Pool
All the clusters’ servers communicate via a WAN gossip pool. It processes

cross-datacenter requests.

�Installing Consul
There are three approaches to installing Consul: using a precompiled

binary, installing from source, or installing on Kubernetes using a

container image. This chapter explains installing Consul using a

precompiled binary. To install the precompiled binary, download the

appropriate package for your system. (Consul is currently packaged as a

zip file.)

This exercise uses a Red Hat virtual machine to install Consul. Make

sure that you have Internet access enabled on the virtual machine and the

package repo configured to download packages from Red Hat.

Execute the following commands to view the Red Hat OS version.

Verify the OS platform type by executing the second command (see

Figure 7-5). This value downloads the appropriate package of Consul from

the HashiCorp website.

cat /etc/redhat-release

uname -m

Chapter 7 Getting Started with HashiCorp Consul

https://www.consul.io/docs/k8s/installation/install
https://www.consul.io/downloads

175

Execute the following command to create a Consul directory. Navigate

the directory by executing the second command (see Figure 7-6).

mkdir consul

cd consul

Execute the following command to download Consul 1.9.2 package for

Linux-based distribution from HashiCorp official website (see Figure 7-7).

wget https://releases.hashicorp.com/consul/1.9.2/consul_1.9.2_

linux_amd64.zip

Figure 7-5.  VM OS version verification

Figure 7-6.  Consul directory creation

Figure 7-7.  Download Consul package

Chapter 7 Getting Started with HashiCorp Consul

176

Execute the first command to extract the Consul package from the

zip file. Execute the second command to list extracted files, as shown in

Figure 7-8.

unzip consul_1.9.2_linux_amd64.zip

Execute the following command to move Consul binary to /usr/

bin location to invoke Consul commands without modifying the PATH

variable.

mv consul /usr/bin/

Execute the following command to verify installation of Consul, as

shown in Figure 7-9.

consul --version

Execute the following command to start the Consul agent in

development mode, as shown in Figure 7-10.

consul agent –dev –ui –bind '{{ GetInterfaceIP "eth0" }}' –

client 0.0.0.0

Figure 7-8.  Unzip and list Consul package

Figure 7-9.  Consul installation verification

Chapter 7 Getting Started with HashiCorp Consul

177

Execute the following commands to query the Consul leader and

peers, as shown in Figure 7-11.

curl http://127.0.0.1:8500/v1/status/leader

curl http://127.0.0.1:8500/v1/status/peers

Execute the following commands to see the Consul members, as

shown in Figure 7-12.

consul members

Figure 7-10.  Consul agent setup

Figure 7-11.  Query Consul leader and peers

Figure 7-12.  View Consul members

Chapter 7 Getting Started with HashiCorp Consul

178

�Service Discovery Using Consul
The main goal of service discovery is to provide a catalog of available

services. A service can be associated with a health check.

A service definition can have either a .json or .hcl extension or

registered dynamically using the HTTP API. The following are things to

keep in mind when using service definitions in Consul.

•	 A service definition must include a name and may

include an ID, tags, address, meta, port, enable_tag_

override, and check.

•	 A service can have an associated health check to

remove failing nodes.

•	 Proxies used with Connect are registered as services in

Consul’s catalog.

•	 Services may contain a token field to provide an ACL

token.

•	 The connect field can be specified to configure Connect

for a service. This field is available in Consul 1.2.0 and

later.

•	 Multiple services definitions can be provided at once

using the plural services key in your configuration file.

Now let’s look at a typical service definition file, as shown in Listings 7-1

and 7-2. The following samples are the service definitions for two services:

dashboard and counting. Both services have defined the health check

mechanism (i.e., HTTP-based and port to be used).

Chapter 7 Getting Started with HashiCorp Consul

https://www.consul.io/api
https://www.consul.io/docs/connect

179

Listing 7-1.  Sample Dashboard Service Definition File

service {​​​​​

name = "dashboard"

port = 9002

connect {​​​​​

sidecar_service {​​​​​

proxy {​​​​​

upstreams = [

{​​​​​

destination_name = "counting"

local_bind_port = 5000

}​​​​​

]

}​​​​​

}​​​​​

}​​​​​

check {​​​​​

id = "dashboard-check"

http = "http://localhost:9002/health"

method = "GET"

interval = "1s"

timeout = "1s"

}​​​​​

}​​​​​

Listing 7-2.  Sample Counting Service Definition File

service {

name = "counting"

id = "counting-1"

port = 9003

Chapter 7 Getting Started with HashiCorp Consul

180

connect {

sidecar_service {}

}

check {

id = "counting-check"

http = "http://localhost:9003/health"

method = "GET"

interval = "1s"

timeout = "1s"

}

}

There are several ways to register services in Consul.

•	 Directly from a Consul-aware application

•	 From an orchestrator, like Nomad or Kubernetes

•	 Using configuration files that are loaded at node startup

•	 Using the API to register them with a JSON or HCL

specification

•	 Using the CLI to simplify this submission process

Let’s start with a hands-on exercise that registers the dashboard and

counting services on the Consul server using CLI.

Create a directory called Test and navigate within it. Execute the

command in Listing 7-3 to clone the sample template files from GitHub,

and then execute the next command to unzip the two files for the

dashboard and counting services.

Chapter 7 Getting Started with HashiCorp Consul

https://www.nomadproject.io/docs/job-specification/service.html
https://www.consul.io/docs/commands/services.html

181

Listing 7-3.  Cloning and Unzipping the Binaries

git clone git@github.com:dryice-devops/consul.git

unzip counting-service_linux_amd64.zip

unzip dashboard-service_linux_amd64.zip

Execute the following commands to set up the dashboard and

counting services in listening mode on the Consul server, as shown in

Figures 7-13 and 7-14.

PORT=9002 COUNTING_SERVICE_URL="http://localhost:5000" ./

dashboard-service_linux_amd64 &

PORT=9003 ./counting-service_linux_amd64 &

Execute the following commands to register the dashboard and

counting services with Consul, as shown in Figure 7-15. Make sure that you

have created the counting and dashboard files, as shown in Figures 7-16

and 7-17.

consul services register counting.hcl

consul services register dashboard.hcl

Figure 7-13.  Starting dashboard service

Figure 7-14.  Starting counting service

Chapter 7 Getting Started with HashiCorp Consul

182

Execute the following command to verify that the services registered

successfully in Consul, as shown in Figure 7-16.

consul catalog services

Execute the following command to create an intention for the counting

and dashboard services (see Figure 7-17). Intentions define access control

for services in the service mesh and control which services may establish

connections. The default intention behavior for dev agents is defined by

the default ACL policy, which is "allow all".

consul intention create dashboard counting

Figure 7-16.  Verifying service registration

Figure 7-17.  Intention creation using Consul

Figure 7-15.  Registering services in Consul

Chapter 7 Getting Started with HashiCorp Consul

183

Execute the following commands to start the built-in sidecar proxy for

the counting and dashboard services, as shown in Figures 7-18 and 7-19.

consul connect proxy -sidecar-for counting-1 > counting-proxy.

log &

consul connect proxy -sidecar-for dashboard > dashboard-proxy.

log &

You can verify the service registration by opening the Consul UI.

Navigate to http://<IP of your Consul Server>:8500/ui to open the Consul

UI in your browser (see Figure 7-20). Click the Services tab to view the

registered services list.

Figure 7-18.  Starting sidecar proxy for counting service

Figure 7-19.  Starting sidecar proxy for dashboard service

Chapter 7 Getting Started with HashiCorp Consul

184

Click the counting service to see the registered service information, as

shown in Figure 7-21.

Figure 7-21.  Counting Service navigation on Consul UI

Figure 7-20.  Consul UI

Chapter 7 Getting Started with HashiCorp Consul

185

Navigate to http://<IP of your Consul Server>:9002 to access the

Dashboard service, as shown in Figure 7-22.

A positive number on the screen indicates that a connection between

the services has been established. This number indicates the amount of

time (in seconds) the user has been connected to the front-end portal.

Also, the green Connected status in the top-right corner indicates a

successful connection.

�Intention Deletion
Now let’s try to disrupt the service connectivity between the counting and

dashboard services by deleting the intention.

Execute the following command to delete the intention, as shown in

Figure 7-23.

consul intention delete dashboard counting

Figure 7-22.  Dashboard service browser navigation

Figure 7-23.  Deleting intention

Chapter 7 Getting Started with HashiCorp Consul

186

To test whether traffic is flowing through the sidecar proxies, let’s

create a deny intention by executing the following command.

consul intention create -deny -replace dashboard counting

Navigate to http://<IP of your Consul Server>:9002 to access the

dashboard service, as shown in Figure 7-24.

The negative number and the “Counting Service is Unreachable”

message in the top corner indicate that the connectivity between the

services is lost.

Execute the following command to restore communication between

the services by replacing the deny intention with an allow (see Figure 7-25).

consul intention create -allow -replace dashboard counting

You can validate the connection restore by navigating back to the

Dashboard service page, as shown in Figure 7-26.

Figure 7-25.  Allow intention creation

Figure 7-24.  Connection lost

Chapter 7 Getting Started with HashiCorp Consul

187

Now let’s look at another example of managing communication

between two applications. The LAMP stack and Nginx demonstrate

Consul’s capabilities in managing communication. Let’s start with the

installation of the LAMP stack and Nginx. We will enable Apache and

Nginx as services on Consul and then manage the communication

between them.

Execute the following command to install an HTTPd package, and then

enable service to start up on reboot, as shown in Figure 7-27.

yum install httpd

systemctl enable httpd.service

Execute the following command to start the Apache service.

systemctl start httpd.service

Figure 7-26.  Connection restored

Figure 7-27.  Installing Apache

Chapter 7 Getting Started with HashiCorp Consul

188

Execute the following command to install the MySQL package, and

then enable the service to start up on reboot, as shown in Figure 7-28.

yum install mysql-server mysql

systemctl enable mysqld.service

Execute the following command to start the MySQL service.

systemctl start mysqld.service

Execute the following command to configure MySQL to remove

anonymous users and other default tables and provide the input shown in

Figures 7-29 and 7-30.

mysql_secure_installation

Figure 7-28.  Installation of MySQL

Chapter 7 Getting Started with HashiCorp Consul

189

Figure 7-29.  Reconfiguring MySQL

Chapter 7 Getting Started with HashiCorp Consul

190

Execute the following command to install the PHP package.

yum -y install php php-mysqlnd php-cli

Execute the following command to restart the Apache service.

systemctl restart httpd.service

Create a basic PHP configuration with the basic content shown next by

creating a test.php file under the/var/www/html directory.

<?php phpinfo(); ?>

Access the test.php file created in the previous step by navigating to

http://<IP address of your Consul server>/test.php, as shown in Figure 7-31.

Figure 7-30.  Reconfiguring MySQL

Chapter 7 Getting Started with HashiCorp Consul

191

Execute the following command to install Nginx and enable the service

to start up at reboot, as shown in Figure 7-32.

yum install nginx

systemctl enable nginx

Execute the following command to start the Nginx service.

systemctl start nginx

You can also verify the default Nginx installation by accessing

http://< IP address of your Consul server> (see Figure 7-33).

Figure 7-32.  Installation of Nginx

Figure 7-31.  Accessing Test.php file

Chapter 7 Getting Started with HashiCorp Consul

192

The Apache port may conflict with the Nginx port, so you can modify

an Apache configuration to listen on port 8080. Modify the /etc/httpd/

conf/httpd.conf file to include the following content, and then save the file

(see Figure 7-34).

Listen 127.0.0.1:8080

Also modify the document root in the /usr/share/nginx/html file, as

shown in Figure 7-35.

DocumentRoot "/usr/share/nginx/html/"

Figure 7-34.  Updating Apache listing port

Figure 7-35.  Updating document root

Figure 7-33.  Verifying Nginx service

Chapter 7 Getting Started with HashiCorp Consul

193

Execute the following command to restart the Apache service.

systemctl restart httpd.service

Make sure the Nginx configuration file can process the PHP locations,

as shown in Listing 7-4.

Listing 7-4.  Nginx Configuration File

server {

listen 80;

root /usr/share/nginx/html;

index index.php index.htm index.html;

server_name _;

location / {

try_files $uri $uri/ /index.php;

}

location ~ \.php$ {

proxy_pass http://127.0.0.1:8080;

proxy_set_header Host $host;

proxy_set_header X-Real-IP $remote_addr;

proxy_set_header X-Forwarded-For $remote_addr;

}

location ~ /\.ht {

deny all;

}

�Service Registration
Let’s register the Nginx and LAMP services. Create nginx.hcl and apache.

hcl files, as shown in Listings 7-5 and 7-6.

Chapter 7 Getting Started with HashiCorp Consul

194

Listing 7-5.  Nginx Configuration File

service {

name = "nginx"

id = "nginx"

port = 80

address = "10.5.12.84"

tags = ["webfrontend"]

meta = {

version = "1"

}

check {

id = "nginx url hit"

http = "http://10.5.12.84:80"

method = "GET"

interval = "1s"

timeout = "1s"

}

}

Listing 7-6.  Apache Configuration File

service {

name = "apache"

id = "apache"

port = 8080

address = "127.0.0.1"

tags = ["httpd"]

meta = {

version = "1"

}

Chapter 7 Getting Started with HashiCorp Consul

195

check {

id = "apache url hit"

http = "http://10.5.12.84:8080"

method = "GET"

interval = "1s"

timeout = "1s"

}

}

Execute the following commands to register Nginx and Apache

services with Consul.

consul services register nginx.hcl

consul services register apache.hcl

Execute the following command to create intention for the Apache and

Nginx service.

consul intention create apache nginx

Log in to the Consul UI (http://<IP Address of your Consul

server>:8500/ui) and navigate to the Service tab to view both the Apache

and Nginx services, as shown in Figure 7-36.

Chapter 7 Getting Started with HashiCorp Consul

196

Click each service to view the details.

Check Nginx’s health status. The status is 200 OK, if the health check

has passed (i.e., web page is reachable as per our health check definition).

The default health check verifies that the node is alive, reachable, and has

passed (see Figure 7-37).

Figure 7-36.  Review Apache and Nginx service on Consul GUI

Chapter 7 Getting Started with HashiCorp Consul

197

Check Apache’s health status. The status is 200 OK, if the health check

has passed. The default health check determines if the node is alive,

reachable, and has passed (see Figure 7-38).

Figure 7-37.  Review Nginx service on Consul GUI

Chapter 7 Getting Started with HashiCorp Consul

198

�DNS and Health Checks Using Consul
The DNS, without any high integration with Consul, allows applications to

use service discovery. By default, Consul listens on 127.0.0.1:8600 for DNS

queries. nslookup or dig tools can interact with a DNS server.

Dig @127.0.0.1 –p 8600 redis.service.dc1.consul. ANY

From a Windows OS perspective, nslookup should be used. From a

Linux OS perspective, dig can be used in addition to nslookup. Make sure

the bind-utils package is present for dig usage in a Linux environment.

A health check is application-specific; if not integrated, it has a scope

at the node level.

Figure 7-38.  Review Apache service on Consul GUI

Chapter 7 Getting Started with HashiCorp Consul

199

There are several different types of checks.

•	 HTTP checks make an HTTP GET request to the

specified URL.

•	 TCP checks make a TCP connection attempt to the

specified IP/hostname and port.

•	 TTL checks retain their last known state for a

given TTL. The state of the check must be updated

periodically over the HTTP interface.

•	 Docker checks invoke an external application that is

packaged within a Docker container.

•	 gRPC checks the whole application. Checks are

intended for applications that support the standard

gRPC health-checking protocol.

•	 Alias checks are for a local service. They check the

health state of another registered node or service.

�Summary
This chapter covered in detail the main concepts of HashiCorp Consul.

We learned how to install open source Consul and also performed a

hands-on exercise involving application service discovery using Consul.

The next chapter covers the HashiCorp Nomad solution and how

it can be used to manage the orchestration of containerized and

non-containerized applications.

Chapter 7 Getting Started with HashiCorp Consul

https://github.com/grpc/grpc/blob/master/doc/health-checking.md

201© Navin Sabharwal, Sarvesh Pandey and Piyush Pandey 2021
N. Sabharwal et al., Infrastructure-as-Code Automation Using Terraform, Packer,
Vault, Nomad and Consul, https://doi.org/10.1007/978-1-4842-7129-2_8

CHAPTER 8

Getting Started
with Nomad
This chapter discusses the core concepts of HashiCorp Nomad. You should

have a basic understanding of container orchestration, scheduling, and

autoscaling functionalities. The chapter covers the following topics.

•	 Container orchestration

•	 Introduction to Nomad

•	 Installing Nomad

•	 Policy-driven governance using Nomad

•	 Container application deployment using Nomad

�Container Orchestration
Containers are a way to wrap up an application into its own isolated

package. Everything the application requires to run successfully as a

process is captured and executed within the container. A container enables

bundling all application dependencies, such as library dependencies

and runtimes. This enables standardization and consistency across

environments because the container comes preloaded with all the

prerequisite/dependencies required to run the application service.

https://doi.org/10.1007/978-1-4842-7129-2_8#DOI

202

You can develop the application code on your personal workstation and

then safely deploy it to run in production-level infrastructure.

A container is an instance of a container image. A container image is a

way to package an app or service (like a snapshot) and then deploy it in a

reliable and reproducible way (see Figure 8-1).

Building applications using containers brings agility to developing,

testing, and deploying any application across any cloud. With containers,

you can take any app from development to production with little or

no code change. You can use a manual approach or use a CI/CD tool

with IaC solutions to deploy your application code. You might need to

perform tasks like modifying configuration items, copying application

content between servers, and running interactive setup programs based

on application setups, followed by testing. In a manual setup, this can

consume significant time.

What if you have many applications to manage? Managing each

one of them manually is very time-consuming. You need to create and

Figure 8-1.  Container vs. VM comparison

Chapter 8 Getting Started with Nomad

203

destroy hundreds of containers and monitor each one of them. If a

container encounters an error, which could cause the downtime of critical

applications, you’d need to destroy and provision a new one. Even worse,

what if your thousands of containers were scattered across hundreds of

servers? You need to keep track of which server contains which containers

and which application each container belongs to.

Container orchestration has been introduced to overcome the manual

effort of managing containers. It helps minimize the hassle of provisioning,

destroying, controlling, and scaling containers.

Container orchestration tools provide a framework for managing

containers and microservices architecture at scale. Nomad is a container

orchestration tool for container lifecycle management. Nomad

orchestration allows you to build application services that can span across

multiple containers, schedule containers across a cluster, and manage

their health over time.

Nomad eliminates most of the manual intervention involved in

deploying and scaling containerized applications. Nomad can cluster

groups of hosts on physical or virtual machines and run Linux containers.

Nomad offers a platform to easily and efficiently manage clusters.

In the Nomad container orchestration tool, HCL describes

the configuration of an application. The configuration file tells the

configuration management tool to find the container images, establish a

network, and store logs.

When deploying a new container, Nomad automatically schedules a

deployment to a cluster and finds the right host, considering any defined

requirements or restrictions. It then manages the container’s lifecycle

based on the specifications.

Container orchestration can be used in any environment that runs

containers, including on-premise servers and public or private cloud

environments.

Chapter 8 Getting Started with Nomad

204

�Introduction to Nomad
Nomad has a built-in feature to deploy/upgrade applications using blue/

green and canary deployments.

Nomad can integrate with HashiCorp Terraform, Consul, and Vault. It is

suited for easy integration into an organization’s existing workflows. It comes

in two versions Open Source and Enterprise, the following Table 8-1 lists the

differences between the two.

Table 8-1.  Nomad: Open Source vs. Enterprise

Nomad Features Open Source Enterprise

Service and Batch Scheduling ✔ ✔

Task Drivers ✔ ✔

Device Plug-ins ✔ ✔

Multi-Upgrade Strategies ✔ ✔

Federation ✔ ✔

Autoscaling ✔ ✔

Container Storage Interface plug-in ✔ ✔

Container Network Interface plug-in ✔ ✔

Access Control System ✔ ✔

Web UI ✔ ✔

Consul Integration ✔ ✔

Vault Integration ✔ ✔

Namespaces ✔ ✔

ENTERPRISE PLATFORM X ✔

Automated Upgrades X ✔
(continued)

Chapter 8 Getting Started with Nomad

205

The following describes Nomad’s key features.

•	 Service and batch scheduling: Nomad provides

service and batch scheduling. It can restart or

reschedule jobs.

•	 Task driver support for multiple platforms: Task

drivers in Nomad are runtime components that execute

workloads. The task drivers support Docker, Java, and

binaries running on the host operating system.

•	 Multi-device plug-ins: Detects and makes devices

available to tasks in Nomad. Devices are physical

hardware that exist on a node, such as a GPU or an

FPGA. By having extensible device plug-ins, Nomad

has the flexibility to support a broad set of devices and

allows the community to build additional device plug-

ins as needed.

•	 Multiple upgrade strategies: Most applications are

long-lived and require updates over time. Nomad has

built-in support for rolling, blue/green, and canary

updates to deploy a new application or upgrade to a

new version of the application. When a job specifies a

Nomad Features Open Source Enterprise

Automated Backup X ✔

Enhanced Read Scalability X ✔

Redundancy Zones X ✔

Multi-Vault Namespaces X ✔

Table 8-1.  (continued)

Chapter 8 Getting Started with Nomad

206

rolling update, Nomad uses task state and health check

information to detect allocation health and minimize

or eliminate downtime.

•	 Multi-region federation: This built-in capability allows

multiple clusters to be linked together.

•	 Autoscaling: The Nomad autoscaler periodically

checks for jobs with queued allocations, ensuring

enough capacity to schedule these allocations.

Whenever there isn’t enough capacity, a scale-up event

is triggered.

•	 Container storage interface plug-in: Manages

external storage volumes for stateful workloads running

inside your cluster. CSI providers are third-party plug-

ins that run as jobs and can mount volumes created by

your cloud provider. Nomad is aware of CSI-managed

volumes during the scheduling process, enabling it to

schedule your workloads based on the availability of

volumes from a specific client.

•	 Container network interface plug-in: Supports

CNI plug-ins while deploying on containerized

applications.

•	 Access control system: Enables access of policies and

tokens to only authorized users and applications.

•	 Consul integration: Enables automatic clustering,

built-in service registration, and dynamic rendering of

configuration files and environment variables.

•	 Vault integration: Nomad integrates with HashiCorp

Vault to enable secure, auditable, and easy access to

your secrets.

Chapter 8 Getting Started with Nomad

207

•	 Namespaces: Supports namespaces, allowing jobs and

their associated objects to be segmented from each

other and other cluster users.

•	 Sentinel: Sentinel is a language and framework for

building policies. This feature is available in the

Enterprise version. A Sentinel policy describes the

allowed actions under specific scenarios or conditions.

Sentinel integration builds on the ACL system. It

provides the ability to create fine-grained policy

enforcement.

�Nomad Architecture
The Nomad architecture shown in Figure 8-2 consists of client and server

components within the same region. Servers in a region act as the brain

of the cluster and are used for managing jobs, clients, and deployments,

including aspects like resource placement decisions. Each region may have

clients from multiple datacenters, allowing a small number of servers to

handle very large clusters.

Figure 8-2.  Single region Nomad architecture

Chapter 8 Getting Started with Nomad

208

Nomad servers always have leader-follower relationships. They use

a consensus protocol based on the Raft algorithm for state replication.

Nomad servers in every region are all part of a single consensus group.

This means that they work together to elect a single leader, which has

extra duties. The leader is responsible for processing all queries and

transactions.

Nomad execution is concurrent, meaning all servers participate

in making scheduling decisions in parallel. The leader provides the

additional coordination necessary to do this safely and to ensure clients

are not oversubscribed.

The servers create tasks from the jobs provided by the end user. The

servers send them across to the clients where those jobs are executed.

The agent running on the client is responsible for registering with the

servers, watching for any work to be assigned, and executing tasks. The

Nomad agent is a long-lived process that interfaces with the servers.

When providing availability or scalability, Nomad may be in a multi-

region setup (see Figure 8-3). This topology helps the user to interact with

Nomad servers in any region.

Figure 8-3.  Multi-region Nomad architecture

Chapter 8 Getting Started with Nomad

209

Nomad server clusters in different datacenters can be federated

using WAN links. The server clusters can be joined to communicate

over the WAN on port 4648. This same port is used for single datacenter

deployments over LAN.

Servers within two regions are loosely coupled and communicate

using a gossip protocol, which allows users to submit jobs to any region or

query the state of any region transparently. Requests are forwarded to the

appropriate server to be processed, and the results are returned.

Let’s look at key concepts or terminologies that are used while working

with Nomad.

•	 Nomad agent/client: A Nomad agent is a long-running

process that runs on every machine that is part of

the Nomad cluster. It works in either server mode or

client mode (depending on the server where an agent

is running). Clients are responsible for running tasks,

whereas servers are responsible for managing the

cluster.

•	 Nomad follower: All nodes start as followers and can

accept log entries from a leader, cast votes, and receive

health checks, heartbeat, and liveness for all the nodes.

•	 Nomad leader: The peer set elects a single node to

be the leader whenever it wants. The leader ingests

new log entries, replicates to followers, and manages

committed entries.

•	 Job: A task submitted by the user is called a job in

Nomad. It contains instructions that determine what

should be done but not where it should be run. Nomad

makes sure the final state (after a job is completed)

matches the user’s desired state. A job is composed of

one or more task groups.

Chapter 8 Getting Started with Nomad

210

•	 Task group: Multiple sets of tasks that must be run

together in a job. It is the scheduling unit, meaning the

entire group must run on the same client node and not

be split.

•	 Driver: Represents the basic means of executing your

Tasks. Binary files, Docker, and Java, are examples of

drivers.

•	 Task: A task is the smallest unit of work in Nomad.

Tasks are dependent on browsers, which allow Nomad

to be flexible in the types of tasks it supports.

•	 Client: Refers to the workloads where tasks are

executed.

•	 Allocation: A mapping between a task group in a job

and a client node. Nomad servers create them as part of

scheduling during an evaluation.

•	 Bin packing: The process that maximizes the

utilization of bins. In Nomad, the clients are bins, and

the items are task groups.

�Autoscaling Overview
When a job is launched in Nomad, the master scheduler tries to find

available capacity to run it. In cases where there are not enough resources

to meet the job’s demands, queued allocations and metrics show that

the job cannot run due to exhausted nodes. In such scenarios, Nomad

supports the following autoscaling mechanisms to overcome resource

issues.

Chapter 8 Getting Started with Nomad

211

�Dynamic Application Sizing

Dynamic Application Sizing enables organizations to optimize the

resource consumption of applications using sizing recommendations.

It evaluates, processes, and stores historical task resource usage data,

making recommendations on CPU and memory resource parameters. The

recommendations can be calculated using several different algorithms to

ensure the best fit for the application.

Dynamic Application Sizing can be enabled on an individual task

by configuring autoscaling policies within the task stanza using the job

specification scaling block.

�Horizontal Cluster Autoscaling

Horizontal cluster autoscaling adds or removes Nomad clients from a

cluster to ensure there is an appropriate cluster resource for the scheduled

applications. Cluster scaling is enabled by configuring the autoscaler agent

with policies targeting the Nomad cluster.

�Horizontal Application Autoscaling

Horizontal application autoscaling automatically controls the number of

instances to have sufficient work throughput to meet service-level agreements

(SLAs). In Nomad, horizontal application autoscaling modifies the number

of allocations in a task group based on the value of a relevant metric, such as

CPU and memory utilization or the number of open connections.

�Installing Nomad
Let’s begin with a hands-on exercise to install a Nomad server and client.

A cluster in any type of topology in Nomad (single region or multi-region)

typically consists of three to five servers and a few client agents. Nomad

divides the whole infrastructure into regions that can be under one server

Chapter 8 Getting Started with Nomad

212

cluster. It can manage multiple datacenters or availability zones. This

exercise is a three-node Nomad setup with one node client on an AWS EC2

machine. We use four servers with two CPUs and 8 GB RAM on an Amazon

Linux operating system.

First, create four EC2 instances on AWS with an Amazon Linux OS

and ensure the servers can communicate with each other without any

restrictions from the security group. Also, ensure you have Internet access

available on the virtual machine to download the package.

Execute the following command to clone the code used in this chapter,

as shown in Figure 8-4.

git clone https://github.com/dryice-devops/nomad.git

Execute the following command to export the Nomad_Version variable

value, as shown in Figure 8-5.

export NOMAD_VERSION="1.0.1"

Execute the following command to download the precompiled binary,

as shown in Figure 8-6.

curl –silent --remote-name https://releases.hashicorp.com/

nomad/${NOMAD_VERSION}/nomad_${NOMAD_VERSION}_linux_amd64.zip

Figure 8-5.  Exporting environment variable

Figure 8-4.  Cloning lab files from GitHub

Chapter 8 Getting Started with Nomad

213

Execute the following commands to unzip the binary and update file

permission. Then move it to the system executable location (/usr/bin), as

shown in Figures 8-7 and 8-8.

unzip nomad_${NOMAD_VERSION}_linux_amd64.zip

sudo chown root:root nomad

sudo mv nomad /usr/local/bin/

Execute the following command to verify the Nomad installation, as

shown in Figure 8-9.

nomad version

Figure 8-6.  Downloading precompiled Nomad binary

Figure 8-7.  Extracting Nomad binary from zip file

Figure 8-8.  Moving Nomad binaries

Chapter 8 Getting Started with Nomad

214

Execute the following commands to enable the autocompletion of

Nomad commands, as shown in Figure 8-10.

nomad -autocomplete-install

complete -C /usr/local/bin/nomad nomad

Execute the following command to create an /opt/nomad data

directory that stores Nomad service–related files. Check that the directory

was created (see Figure 8-11).

mkdir -p /opt/nomad

file /opt/nomad

Create a Nomad service file called nomad.service in the /etc/systemd/

system directory, and add content using the files cloned in the first step

(see Figure 8-12).

Sudo touch /etc/systemd/system/nomad.service

Figure 8-9.  Verifying Nomad installation

Figure 8-10.  Enabling autocompletion of Nomad commands

Figure 8-11.  Creating Nomad service file directory

Chapter 8 Getting Started with Nomad

215

Create a nomad.d directory in the /etc directory. Create nomad.hcl

and server.hcl server configuration files in the /etc/nomad.d directory

using the content of the cloned files (see Figure 8-13). The nomad.hcl file

provides information on the datacenter name (i.e., DC1) and the location

of the Nomad service directory (/opt/Nomad). The server.hcl file provides

the number of master nodes (i.e., 3).

sudo mkdir –parents /etc/nomad.d

sudo chmod 700 /etc/nomad.d

sudo touch /etc/nomad.d/server.hcl

Execute the following commands to enable and start the Nomad server

service, as shown in Figure 8-14.

sudo systemctl enable nomad

sudo systemctl start nomad

sudo systemctl status nomad

Figure 8-12.  Creating Nomad service file

Figure 8-13.  Creating Nomad server configuration file

Chapter 8 Getting Started with Nomad

216

Execute all the prior steps in this exercise on the other two Amazon

Linux servers to set up a Nomad server component.

On the remaining two servers, join the two nodes with the leader.

Execute the following command to register two Amazon Linux servers with

the leader server (the first server set up), as shown in Figure 8-15.

nomad server join <IP Address of Nomad Leader Server(First

server we used in exercise)>:4648

Execute the following command to verify the total members in the

Nomad server, as shown in Figure 8-16.

nomad server members

Figure 8-14.  Enabling Nomad server service

Figure 8-15.  Registering Nomad server with leader

Chapter 8 Getting Started with Nomad

217

You can review the Nomad server configuration in the UI. Navigate

to http://<IP Address of Leader Nomad (the first server used in

exercise)>:4646 to see your Nomad server configuration, as shown in

Figure 8-17. Click Servers to review the three Nomad servers configured in

the previous step.

Click Clients. You see that no clients are currently registered, as shown

in Figure 8-18.

Figure 8-16.  Listing Nomad server members

Figure 8-17.  Nomad UI server configuration

Chapter 8 Getting Started with Nomad

218

Let’s look at how to set up the client server and register the client with

Nomad servers.

Repeat the first seven steps from the previous section to set up the

Nomad server on the fourth Amazon Linux server.

Create the nomad.d directory in the /etc directory. Create the nomad.

hcl and client.hcl client configuration files in the /etc/nomad.d directory

using the content of the files cloned from GitHub (see Figure 8-19).

Sudo touch /etc/nomad.d/client.hcl

Execute the following commands to enable and start the Nomad client

service, as shown in Figure 8-20.

sudo systemctl enable nomad

sudo systemctl start nomad

sudo systemctl status nomad

Figure 8-18.  Nomad UI client configuration

Figure 8-19.  Nomad client configuration

Chapter 8 Getting Started with Nomad

219

Now let’s register the Nomad client with the Nomad server. Edit the

client.hcl file in the /etc/nomad.d directory and add the information

shown in Figure 8-21. The IP address field in the Servers section refers to

the Nomad server IP address. TCP port 4647 is used for registration.

Execute the following commands to restart and check the status of the

Nomad client service, as shown in Figure 8-22.

sudo systemctl restart nomad

sudo systemctl status nomad

Figure 8-20.  Enabling Nomad client service

Figure 8-21.  Registering client with Nomad server

Chapter 8 Getting Started with Nomad

220

Execute the following command to verify the Nomad client node

status, as shown in Figure 8-23. A status-ready message indicates active

clients. A status-down message indicates that the client is no longer

available or is not reachable by the Nomad server.

nomad node status

You can review client details by navigating to the Nomad UI, as shown

in Figure 8-24.

Figure 8-23.  Verifying Nomad client

Figure 8-22.  Restart and check the status of Nomad client service

Chapter 8 Getting Started with Nomad

221

�Policy-Driven Governance in Nomad
Nomad’s governance and policies capabilities let users address the

complexity of a multi-team managed multi-cluster environment. Features

like namespaces, resource quotas, Sentinel, and ACL help manage an

environment in adherence to organizational standards. The governance

and policy module is provided in the Enterprise version of Nomad. Let’s

look at how each of these capabilities help with application governance.

�Namespaces
The Nomad namespaces feature allows a single cluster to be shared by

many teams and projects without conflict. Nomad requires unique job IDs

within namespaces, which allows each team to operate independently.

When combined with ACLs, the isolation of namespaces can be enforced,

allowing only designated users access to read or modify the jobs and

associated objects in a namespace.

Figure 8-24.  Verifying Nomad client using UI

Chapter 8 Getting Started with Nomad

222

�Resource Quotas
Within a namespace, resource quotas provide a mechanism for cluster

administrators to restrict resources. A quota specification has a unique

name, an optional human-readable description, and a set of limits. The

quota limits define the allowed resource usage within a region.

When resource quotas are applied to a namespace, they limit

resource consumption by the jobs in a namespace. This can prevent the

consumption of excessive cluster resources and negatively impacting other

teams or applications sharing the cluster.

�Sentinel Policies
Sentinel policies use logic to enforce a certain resource requirement.

Policies ensure that the resource request complies with user- or

organization-defined policies. Sentinel policies declare a scope that

determines when the policies apply. The only supported scope is “submit-

job”. This applies to any new jobs being submitted or existing jobs being

updated (see Figure 8-25).

Sentinel policies support multiple enforcement levels, such as

advisory, soft-mandatory, and hard mandatory. The advisory level emits

a warning when the policy fails. Soft-mandatory and hard-mandatory

prevent the operation. A soft-mandatory policy can be overridden if the

user has the necessary permissions.

Figure 8-25.  Sentinel policies

Chapter 8 Getting Started with Nomad

223

�Nomad ACLs
Nomad provides an ACL feature that controls access to data or APIs. ACL

policies are written using HashiCorp Configuration Language (HCL). ACL

comprises four key objects to govern resource access policies.

�Tokens

Requests to Nomad are authenticated using a bearer token. Each ACL

token has a public accessor ID that names a token and a secret ID to make

requests to Nomad. The secret ID is provided using a request header

(X-Nomad-Token) and authenticates the caller. Tokens are management or

client types. The management tokens effectively “root” in the system and

can perform any operation. The client tokens are associated with one or

more ACL policies that grant specific capabilities.

�Policies

Policies consist of a set of rules defining the capabilities or actions to be

granted. For example, a read-only policy might only grant the ability to list

and inspect running jobs but not submit new ones. No permissions are

granted by default, making Nomad a default-deny system.

�Rules

Policies are comprised of one or more rules. The rules define the

capabilities of a Nomad ACL token for accessing objects in a cluster—

like namespaces, node, agent, operator, quota. The full set of rules are

discussed later.

Chapter 8 Getting Started with Nomad

224

�Capabilities

Capabilities are a set of actions that can be performed. This includes listing

jobs, submitting jobs, and querying nodes. A management token is granted

all capabilities. Client tokens are granted specific capabilities via ACL

policies. The full set of capabilities is discussed in the rule specifications.

�Container Application Deployment Using
Nomad
Now let’s perform a hands-on exercise to deploy a containerized

application using Nomad. We begin by setting up Docker on the Nomad

client server.

Execute the following commands to install and start Docker on the

Nomad client server, as shown in Figures 8-26, 8-27, 8-28, and 8-29.

Nomad automatically detects the installed Docker components using its

drivers.

sudo yum update -y

sudo amazon-linux-extras install docker

systemctl start docker

systemctl status docker

Figure 8-26.  Update all the installed packages.

Chapter 8 Getting Started with Nomad

225

Figure 8-27.  Installing Docker on Nomad client server

Figure 8-28.  Start Docker service on Nomad client server

Figure 8-29.  Check the status of Docker service on Nomad client server

Chapter 8 Getting Started with Nomad

226

You can verify the installation from the Nomad UI, as shown in

Figure 8-30. Navigate to the Client section and click the client name to view

the details of the Docker installation.

The Easy Travel application is used for this hands-on exercise. It is a

multi-tier application built using microservices principles. The application

simulates issues such as high CPU load, database slowdowns, or slow

authentication problems. Figure 8-31 is an architectural diagram of the

application. We installed only the customer frontend portion, including

Nginx, a frontend and backend database, and a load generator.

Figure 8-30.  Verifying Docker installation using Nomad UI

Chapter 8 Getting Started with Nomad

227

Table 8-2 describes the components in the Easy Travel application.

Earlier in this chapter, we cloned a few files from GitHub. We used a file

named easytravel.nomad, which contains the configuration for the Easy

Travel application. Let’s look at the various sections in the file.

The Easy Travel application consists of five microservices that are

defined as different groups in easytravel.nomad. Each group contains a

configuration related to its microservice. Figure 8-32 shows the block used

for the frontend.

Figure 8-31.  Easy Travel application architecture

Table 8-2.  Application Components

Component Description

Mongodb A pre-populated travel database (MongoDB)

Backend The Easy Travel business backend (Java)

Frontend The Easy Travel customer frontend (Java)

Nginx A reverse-proxy for the Easy Travel customer frontend

Loadgen A synthetic UEM load generator (Java)

Chapter 8 Getting Started with Nomad

228

In the file, we added a value for the datacenter (i.e., DC1), which we

used during Nomad server setup (see Figure 8-33).

The file also contains a constraint section. Defining constraints is

optional because it restricts the deployment to specific clients based on

OS type, kernel version, IP address, and so forth. Our example uses Linux

as the kernel value since we use an Amazon Linux EC2 instance to run the

Easy Travel application (see Figure 8-34).

The Group section within the easytravel.nomad file has the following

subsections, as shown in Figure 8-35.

•	 count: The number of containers to be deployed.

•	 network: Defines the ports for microservices

communication.

•	 restart: Nomad periodically checks the health status

of deployed containers and reinitiates the task in the

event of a failure.

•	 task: Defines the resources to be consumed like CPU,

RAM, and the image to build a container.

Figure 8-32.  Frontend section of Easy Travel application Nomad file

Figure 8-33.  Easy Travel application mapping to Nomad datacenter

Figure 8-34.  Constraint section in Nomad deployment file

Chapter 8 Getting Started with Nomad

229

Execute the following command to validate the easytravel.nomad

file for any syntax errors and a dry-run of the Easy Travel application

deployment, as shown in Figure 8-36.

nomad job plan easytravel.nomad

Execute the following command to deploy the Easy Travel application,

as shown in Figure 8-37.

nomad job run easytravel.nomad

Figure 8-36.  Easy Travel deployment dry run

Figure 8-35.  Group section in Nomad deployment file

Chapter 8 Getting Started with Nomad

230

Once the deployment job is completed, you can review the application

configuration in the Nomad UI. Navigate to the Jobs section and click the

Easy Travel job to view details, as shown in Figure 8-38.

In the Nomad UI, you can see the number of containers deployed in

each group and their health status, as shown in Figure 8-39.

Figure 8-38.  Easy Travel configuration review from Nomad UI

Figure 8-39.  Easy Travel container health status

Figure 8-37.  Easy Travel deployment dry run

Chapter 8 Getting Started with Nomad

231

Figure 8-40.  Easy Travel container health status

You can drill down the Nomad UI to see the details of all the

containers, as shown in Figure 8-40.

The Definition tab provides information on the application deployed

using the easytravel.nomad file (see Figure 8-41).

Nomad captures the job versions if you update code multiple times

for the same job, as shown in Figure 8-42. It also allows you to revert to a

specific version.

Figure 8-41.  Easy Travel application definition

Chapter 8 Getting Started with Nomad

232

Let’s try to modify the Easy Travel application and see how Nomad

reports the changes. Edit the easytravel.nomad file by changing the

frontend count to 2, as shown in Figure 8-43.

Save the file and execute the following command to redeploy the Easy

Travel application, as shown in Figure 8-44.

nomad job run easytravel.nomad

Figure 8-44.  Redeploy Easy Travel application

Figure 8-42.  Easy Travel application versioning

Figure 8-43.  Modify Easy Travel application frontend count

Chapter 8 Getting Started with Nomad

233

You can review the configuration in the Jobs section of the Nomad UI.

Click the Versions tab, as shown in Figure 8-45. You can see the changes

made to the Easy Travel application.

You can review the resources allocated to the deployed containers by

navigating to the Allocations tab. It shows the allocated CPU and memory

for each container (see Figure 8-46). The CPU and Memory bars in the far-

right columns are continuously updated as they gather information from a

Nomad client.

Figure 8-45.  Review Easy Travel application change history

Figure 8-46.  Allocation detail for Easy Travel application

Chapter 8 Getting Started with Nomad

234

Nomad initiates self-healing tasks in the event of a failure. To test this

scenario, let’s stop one of the containers by using the docker command, as

shown in Figure 8-47. Once the container is stopped, Nomad automatically

brings it back to the desired running state. The first command lists the

container ID running on the Nomad client server. The second command

stops the container per the container ID. While executing the second

command, use the container ID displayed in your lab setup to view the

results.

docker container ls -aq

docker container stop <Container ID>

You can review changes using the Overview tab in the Nomad UI. After

stopping the running container, the count reduces. Nomad triggers the

task to bring the count back to the original configuration, as shown in

Figures 8-48 and 8-49.

Figure 8-47.  Stopping Easy Travel application container

Chapter 8 Getting Started with Nomad

235

Figure 8-48.  Easy Travel application container count after stopping
container

Figure 8-49.  Easy Travel application container count after self-
healing

You can review the changes to the stopped container by clicking the

container ID, as shown in Figure 8-50.

Chapter 8 Getting Started with Nomad

236

�Summary
This chapter covered the main concepts of HashiCorp Nomad. We learned

how to install open source Nomad. We also performed a hands-on exercise

in application deployment using Nomad.

With this we have reached the end of our journey on Infrastructure as

code using various tools from Hashicorp. We hope that you have enjoyed

the journey and learnt the basics of these tools and will progress to deploy

and use them in your environments.

Figure 8-50.  Easy Travel application container change history

Chapter 8 Getting Started with Nomad

237© Navin Sabharwal, Sarvesh Pandey and Piyush Pandey 2021
N. Sabharwal et al., Infrastructure-as-Code Automation Using Terraform, Packer,
Vault, Nomad and Consul, https://doi.org/10.1007/978-1-4842-7129-2

Index

A, B
Amazon Web Services (AWS)

contact details, 18
new user, 21
personal details, 19
plan selection, 20
programmatic access, 21
registration page, 16, 17

Azure public cloud
account creation, 108
credit card

information, 110
directory structure, 114
hands-on exercise, 113
Main.tf file, 116, 120
program execution, 121, 122
provide details, 108, 109
Provider.tf file, 115–117
service principal creation,

111–113
sign-up process, 110, 111
terraform execution, 128
vars/provider file, 118
Vars.tf file, 116
VNet program

main.tf, 122–129
network security, 118–121

output, 116, 117
validation, 118, 129

C
Chef provisioner, 82–83
Command-line

interface (CLI), 13, 137
apply command, 41
binary unzips, 36
configuration, 36
data.tf file, 37
destroy command, 43, 44
download, 35
main.tf file, 37
output.tf file, 38
prerequisite tool, 34, 35
program output, 42
provider.tf file, 38
resource creation, 43
terraform code clone/run, 40
unzip files, 36
variable.tf, 38

Consul
agent (client and server), 172, 173
anti-entropy, 173
catalog concept, 172
concepts, 167

https://doi.org/10.1007/978-1-4842-7129-2#DOI

238

configuration management, 169
consensus protocol, 173
cross-service challenges, 168
disadvantage, 167
DNS/health checks, 198, 199
gossip protocol, 173
installation

agent setup, 177
directory creation, 175
leader and peers, 177
OS version verification, 175
package download, 175
precompiled binary, 174
unzip and list package, 176
verification, 176
view members, 177

intention deletion
Apache installation, 187
command, 185
connection lost, 186
intention creation, 186
listing port, 192
MySQL installation, 188
Nginx configuration

file, 193
Nginx installation, 191, 192
PHP package, 190
reconfiguring MySQL, 189
restore connection, 186
sidecar proxies, 186
Test.php file, 191
updating document root, 192

LAN gossip pool, 174

multi-datacenter
architecture, 171, 172

service discovery
browser navigation, 185
cloning/unzipping file, 181
counting navigation, 184
counting service, 181
dashboard file, 179
dashboard service, 181
definition, 178
intention creation, 182
registering services, 180, 182
sidecar proxy, 183
UI navigation, 183, 184
verification, 182

service identification/discovery,
168, 169

service mesh/network
segmentation, 169, 170

service registration
Apache configuration file, 194
Nginx configuration file, 194
review Nginx/Apache

service, 197, 198
service tab, 195, 196

sidecar, 169
WAN gossip pool, 174

Container application deployment
allocation detail, 233
application components, 227
application definition, 231
client/server installation, 225
components, 224
configuration review, 230

Consul (cont.)

INDEX

239

container change history, 236
container health status, 230, 231
datacenter setup, 228
deployment file, 228, 229
Docker service, 225
easytravel.nomad file, 229
frontend count, 232
frontend section, 228
group section, 229
history, 233
packages installation, 224
self-healing, 235
stopping container, 234
subsections, 228
travel application

architecture, 227
verification, 226
versioning application, 232

Container orchestration, 201–203
Creation-time provisioners, 76

D, E
Destroy-time provisioner, 78, 79

F
File provisioners, 79–81

G
Generic provisioners, 79
Google Cloud Platform (GCP)

bucket
destroy, 107

destroy, 108
Main.tf, 104, 105
Output.tf, 106
Provider.tf, 101
terraform code output, 107
Vars.tf, 102, 103

platform, 86
prerequisite, 85
project creation

lab use-case architecture, 93
name and description, 92
navigation, 91
new project screen, 89
parameters, 89
role mapping, 92
service account, 91
view, 90

service account, 93, 94
subnet, 94
tier registration, 86–88
virtual machine, 98–102

H
HashiCorp’s automation

solution, 1
boundary, 9
Consul solution, 8
nomad, 7
packer, 5
terraform, 6, 7
vagrant, 8, 9
vault, 7
waypoint leverages, 10

INDEX

240

I, J, K
Infrastructure as code (IaC), 1

benefits, 2
composability, 4
consistency/repeatability, 3
improvements, 1
predictability, 3
terraform, 6, 7
tools operate, 2
version control, 2

L
Local-exec provisioner, 80

M
Multiple provisioners, 78, 79

N, O
Nomad

architecture, 207
autoscaling mechanisms, 210

cluster, 211
dynamic application

sizing, 211
horizontal application, 211

availability/scalability, 208
concepts, 201
concepts/terminologies, 209
container application

(see Container application
deployment)

container/chestration, 201–203
installation

autocompletion, 214
binaries, 213
client configuration, 218, 219
cloning lab files, 212
command, 212
enabling server

service, 216
exporting environment

variable, 212
listing members, 217
registering server, 216
restart/check status, 220
server/client, 211
server configuration

file, 215
server.hcl file, 215
service file directory, 214
source code, 219
system executable

location, 213
UI client/server

configuration, 217
verification, 214, 220, 221

key features, 205–207
multi-region architecture, 208
open source vs. enterprise,

204, 205
policy-driven governance

(see Policy-driven
governance)

servers, 208

INDEX

241

P, Q
Packer, 151

builders block, 152
communicators, 153
hands-on exercise

AMI navigation, 164, 165
Apache package, 166
CLI execution, 159
cloning script, 161
configuration, 160
directory, 161
filesystem, 160
high-level flow, 158
installation validation, 159
packer_project directory,

162, 163
prerequisite installation, 159
security patch, 161
synchronization, 161
validation, 164
view updation, 166

installation, 156, 157
machine images, 151
post-processors, 154, 155
provisioners configuration,

154, 155
sequence definition, 155
simple and detailed

definitions, 154
variables block

declaration, 156
source code, 155
system’s environment, 156
verification, 157

Policy-driven governance
ACL feature, 223
capabilities, 224
namespaces, 221
policies, 223
resource quotas, 222
rules, 223
sentinel policies, 222
token, 223

R, S
Remote-exec provisioner, 81
Role-based access control (RBAC), 14

T, U
Terraform

CLI (see Command-line
interface (CLI))

Cloud
collaboration, 22
GitLab provider, 26–32
organization, 24
Scratch option, 23
signup page, 22
user registration, 23
VCS option, 25, 26
workspace/workflow, 24, 25

GitLab
account creation, 27
Cloud user, 30
integration steps, 30
process completion, 31

INDEX

242

setup provider, 29
summary, 32

GitLab provider
VCS option, 27

0.14 vs. 0.13 version, 45
workflows, 33, 34

Terraform automation, 11
AWS account, 16–21
CLI (open source), 13
Cloud, 14
components, 12, 16
deployment manager, 12
DevOps, 11
high-level comparison, 15–17

Terraform automationenterprise, 14
Terraform automationworkspace/

workflow, 13
Terraform’s programming

arguments, 48
backend configuration

initialization, 75
key benefits, 73, 74
types, 74

block Configuration, 49
code configuration files, 49
components, 47
configuration language, 48
data sources, 71, 72
expressions, 48
module creation

count/for_each, 66
depends_on, 67

directory structure, 60
file structure, 60, 61
installation, 64
main.tf file, 61, 62
output, 63
terraform apply

command, 64
variables, 63
versions, 65

ordering configuration
constructors, 53
environment

variables, 54
input variables, 52–54
local values, 57, 58
module, 58–60
output values, 55–57
provider, 51
resources, 50

providers
configuration, 67
plug-ins/filesystem, 70, 71
third-party installation, 69, 70
versions, 68

provisioners
creation-time, 76
destroy-time

provisioner, 78, 79
file type, 79–81
generic type, 79
meaning, 75
multiple provisioners, 78, 79
vendor type, 81–83

GitLab (cont.)

INDEX

243

V, W, X, Y, Z
Vault software

admin/application, 134
app integrates, 137
CLI/integration, 137

access-secret keys, 144
bucket creation, 138
configuration file, 145
credentials, 148
delete test, 149
HashiCorp

repository, 139
HTTPS listener, 142
initialization, 146
KMS values, 145
Linux server, 139
login screen, 147
navigation, 144
objects, 147
secret engine, 148
secrets tabs, 148
service status, 142
status, 146

status check, 143, 146
token validation, 149
UI checking, 143
verification, 141
version, 141
yum-utils installation, 139

components, 134
encryption methods, 132
key features, 132
logical architecture, 133–135
on-demand secrets, 133
overview, 131
protecting secrets and

access, 132
renewal feature, 133
revocation, 132
secret management, 133
secrets and protecting sensitive

data, 136
security architecture, 135–137

Vendor provisioners, 81–83
version-control system (VCS), 25, 26
Virtual private cloud (VPC), 94

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Getting Started with HashiCorp Automation Solutions
	Introduction to Infrastructure as Code
	Introduction to HashiCorp Automation
	Packer
	Terraform
	Vault
	Nomad
	Consul
	Vagrant
	Boundary
	Waypoint

	Summary

	Chapter 2: Getting Started with HashiCorp Terraform
	Introduction to HashiCorp Terraform
	Terraform CLI (Open Source)
	Terraform Cloud
	Terraform Enterprise
	Comparing the Options

	Setting up an AWS Account
	Getting Started with Terraform Cloud
	Terraform Workflow
	Getting Started with Terraform CLI
	What’s New in Terraform 0.14
	Terraform 0.14 vs. Terraform 0.13

	Summary

	Chapter 3: Understanding Terraform Programming Constructs
	Configuration Language
	Arguments, Blocks, and Expressions
	Code Organization
	Configuration Ordering
	Resources
	Provider
	Input Variables
	Environment Variables
	Output Values
	Local Values
	Modules

	Creating a Custom Module
	Version
	count and for_each
	depends_on Module

	Providers
	Provider Version Constraints in Modules
	Automatic Installation of Third-Party Providers
	Provider Plug-ins in a Local Filesystem

	Data Sources
	Backend Configuration
	Backend Types
	Backend Initialization

	Provisioners
	Creation-Time Provisioners
	Destroy-Time Provisioners
	Multiple Provisioners
	Types of Provisioners
	Generic Provisioners
	File Provisioners
	Local-Exec Provisioners
	Remote-Exec Provisioners

	Vendor Provisioners
	Chef Provisioners

	Summary

	Chapter 4: Automating Public Cloud Services Using Terraform
	Automating the GCP Public Cloud Using Terraform
	Creating a VPC and Subnet with Terraform
	Creating a Virtual Machine with Terraform
	Creating a GCS Bucket with Terraform

	Automating the Azure Public Cloud Using Terraform
	Summary

	Chapter 5: Getting Started with Vault
	Introduction to HashiCorp Vault
	Understanding Vault’s Logical Architecture
	Understanding Vault’s Security Model
	Installing Vault CLI and Integration with AWS
	Summary

	Chapter 6: Getting Started with HashiCorp Packer
	Introduction to HashiCorp Packer
	Builders
	Communicators
	Provisioners
	Post-Processors
	Variables
	Using Declared Variables in Templates
	Using Environment Variables in Templates

	Installing Packer
	Hands-on Exercise to Automate AWS AMI
	Summary

	Chapter 7: Getting Started with HashiCorp Consul
	Introduction to HashiCorp Consul
	Service Discovery
	Configuration Management
	Service Mesh and Network Segmentation

	Architecture
	Agent
	Catalog
	Anti-Entropy
	Consensus Protocol
	Gossip Protocol
	LAN Gossip Pool
	WAN Gossip Pool

	Installing Consul
	Service Discovery Using Consul
	Intention Deletion
	Service Registration

	DNS and Health Checks Using Consul
	Summary

	Chapter 8: Getting Started with Nomad
	Container Orchestration
	Introduction to Nomad
	Nomad Architecture
	Autoscaling Overview
	Dynamic Application Sizing
	Horizontal Cluster Autoscaling
	Horizontal Application Autoscaling

	Installing Nomad
	Policy-Driven Governance in Nomad
	Namespaces
	Resource Quotas
	Sentinel Policies
	Nomad ACLs
	Tokens
	Policies
	Rules
	Capabilities

	Container Application Deployment Using Nomad
	Summary

	Index

