Infrastructure-as-Code
Automation Using
Terraform, Packer, Vault,
Nomad and Consul

Hands-on Deployment,
Configuration, and Best Practices

Navin Sabharwal
Sarvesh Pandey
Piyush Pandey

Infrastructure-as-
Code Automation
Using Terraform,
Packer, Vault, Nomad
and Consul

Navin Sabharwal
Sarvesh Pandey
Piyush Pandey

Apress’

Infrastructure-as-Code Automation Using Terraform, Packer, Vault, Nomad
and Consul: Hands-on Deployment, Configuration, and Best Practices

Navin Sabharwal Sarvesh Pandey
New Delhi, Delhi, India Noida, UP, India
Piyush Pandey

New Delhi, India

ISBN-13 (pbk): 978-1-4842-7128-5 ISBN-13 (electronic): 978-1-4842-7129-2
https://doi.org/10.1007/978-1-4842-7129-2

Copyright © 2021 by Navin Sabharwal, Sarvesh Pandey and Piyush Pandey

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Matthew Moodie

Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

1 New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-7128-5. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-7129-2

Table of Contents

About the AUthOrS.........cccccmmmsmmmmssnsmmsssssmsssssssssss s ssnnssssnnnnns ix
About the Technical REVIEWETccccssssemsssssnsmsssnsssssnsssssnsssssnsssssnnsnss xi
Acknowledgmentsccccuuseemmmsssssnnmmssssssssnsssssnssssssssnnsssssssnnssssssnnnnsssss Xiii
Chapter 1: Getting Started with HashiCorp Automation Solutions 1
Introduction to Infrastructure as Codec.covinrrnernnnsnnnss s 1
Introduction to HashiCorp Automationc.cccuvevrinirninnnsnnse e 4

o T (- 5

<] U0 1 SR 6
VAUIL......oeeecee e 7
0 1 T 7
004 T 8

112 T | - 11| SR 8
2T Lo SRS 9
L2 0 | SR 9
11T 111 T o S 10
Chapter 2: Getting Started with HashiCorp Terraform..........ccccceennnrens 11
Introduction to HashiCorp Terraform...........ccccoovnvnininninnnenesnsene s 11
Terraform CLI (OPEN SOUICE)ccovreererrenerrnserenesessesesseesesesesse s sessesensenens 13
Terraform ClOUM.........ccoreeereerecrerese e 14
Terraform ENTErPriSeccvvvivnininnsnes s s ssens 14
Comparing the OptionS.........ccrrnininir e 14

iii

TABLE OF CONTENTS

Setting up an AWS ACCOUNT.......cccvvererererrerereses s sressesessessessessssessessessessssessesnes 16
Getting Started with Terraform Cloudcccoveevncevnesnercrncerer e 22
Terraform WOrKFIOWccooocorererererescserese e 33
Getting Started with Terraform CLL..........cccoveererrnscsreser e 34
What’s New in Terraform 0.14.........cccovevnenninsnnsesnesessse s sssssssssenens 45

Terraform 0.14 vs. Terraform 0.13.......ccccvvernienneserese s 45
1] 4= S 45

Chapter 3: Understanding Terraform Programming Constructs.........47

Configuration LANQUAGE.........evrrerrererenrenserersessssessessessssessessessesssssssessessessssessesses 48
Arguments, Blocks, and EXPressions.........ccccvvnrnennsnsnsesiesssessesessssessessenns 48
Code Organization.........c.ccuceveinnnienennnnsese s s 49
Configuration Ordering.......c.cuoeeeresernsesessserrsse s s srssesenns 50
RESOUICES.....ceeeerreerreereee s e ne e 50
(01170 TS 51
INPUEVANADIES ... ————— 52
Environment Variables........c.ccovrrernnrennesrees e 54
OUPUL VAIUES ... e 55
(I Tezz | LT 57
MOGUIES ... 58
Creating @ Custom ModUIE..........ccvreermrenernserre e 60
L1 =] 6570 OSSR 65
count and fOr_BACK ..o 66
depends_0N MOAUIEccceverierrerree s s e s reesse e e s seesresae s e s ssesnesaenneen 67
Lo (01710 L £ SRRSO 67
Provider Version Constraints in Modules.........c.ccocvveennnenmnenesnsesensessssesessnns 68
Automatic Installation of Third-Party Providers............ccoouverrreneresernsesenenens 69
Provider Plug-ins in a Local FileSyStemccccvivvnnesnenennsesssesesesenennes 70

iv

TABLE OF CONTENTS

DAt SOUICES......ccererrreriieisireris s s 71
Backend Configuration.........c..cccoeeernccvncnniescss e 73
BaCKeNd TYPES....coeiriirerere s 74
Backend Initialization ..o 75

Lo (0TS 10 T £ SR 75
Creation-Time ProViSIONErScuorererererensenesese s sennes 76
Destroy-Time ProviSiONersc.cccvvvminieninsnsnsenne s ssesessessesees 77
MUHtIple PrOVISIONEIS ..o sine s sn s s s se e 78
TyYPES Of ProviSiONErS.......ccccvicrvrerisinsine s s ssssessesnens 79
SUMIMANY....eieeercserre e r e se s e re e nre e 83
Chapter 4: Automating Public Cloud Services Using Terraform 85
Automating the GCP Public Cloud Using Terraform.........c.cccovvrernsesensesenenensnnes 85
Creating a VPC and Subnet with Terraformccccvvvvniennnscninsesnesennnne, 94
Creating a Virtual Machine with Terraform...........cccocvvvnnienninssinsesssesennnne 97
Creating a GCS Bucket with Terraform..........cocvvvnnnnnnesnnnsnssesessenennnns 101
Automating the Azure Public Cloud Using Terraformccccoevvvvrierenenseniennes 108
SUMMAIY.c.ueiteirerere e s e ses s e s e e s s s ssese s e saesaese e e saesaesae e e e saesaesseennesaess 129
Chapter 5: Getting Started with Vault...........cccocccmninisennninsssnnnnnnssnnns 131
Introduction to HashiCorp Vaultcccecrrvnnenniecc e 131
Understanding Vault’s Logical ArchiteCtureccooeeerrecnreneresernsenesesereenes 133
Understanding Vault’s Security Modelc.ccccoveenrenrnsennesenesesssesessesesennes 135
Installing Vault CLI and Integration with AWScccocrrinniennnnsrssesesesennene 137
SUMMAIY . veitetrierere s serse e s s e s e e s s s e e s e s sae e e e s aeeaesae e e e eaesae e e e nannaees 150

Chapter 6: Getting Started with HashiCorp Packer.........c..cccenrvsnnnnns 191

Introduction to HashiCorp PACKETccccvverervrensererssessessessessssessessessssessensees 151
3T T[] £ S 152
(0] 1010 0T L0 153

TABLE OF CONTENTS

01T [0] =] T 153
POSE-PrOCESSOIS ... e 154
VariaDIES ..o s 155
INSTAIlING PACKETcc.eoviircrececir s s 156
Hands-on Exercise to Automate AWS AML.........ccooeorerrnnenenenesese s 158
SUMMANY....eieererereree s sr s e e ne e 166
Chapter 7: Getting Started with HashiCorp Consul...........coeemmmennnnnas 167
Introduction to HashiCorp CoNSULccuecervvennenmnnse e 167
SEIVICE DISCOVEIY ...viuerrrierrrerrssesessesessssesss e e e sss e sssse s s sss e sessesnssasessanes 168
Configuration Management..........cccccvvennnennesennsesnsese s 169
Service Mesh and Network Segmentationc...ccoovvevnreserinsennsesenssnenennes 169
AICHITECIUNE ...t 170
AQBNL ... ———————————— 171

07 - 1[0 o RS 172
ANti-ENTrOPY..cco e e e 173
CoNSENSUS ProtOCOL........cccvverirerircer e 173
GOSSIP ProtOCOL.....cccvecerreerinerisese e 173
LAN GOSSIP POOL.....ccueitrrierinerinesens s ss s s sn s ssases 174
WAN GOSSIP POOI ...t 174
TS e T o 0] O 174
Service Discovery USiNG CONSUL........ocvrvverernnensersesessssessesesssssssessesssssssessessens 178
Intention Deletion ... 185
Service RegiStrationcccvevevrrnrenie s 193
DNS and Health Checks USINg CONSULccccvvrerveriererenserseresessessessessssessensenes 198
SUMMAIY..c..citiciiire e s s e e e s r e e s R r e e e nne s 199

TABLE OF CONTENTS

Chapter 8: Getting Started with Nomad.........c.ccccmrnssnennninsssnnnnnsssnnns 201
Container Orchestration...........covveceererennessseseresse e sessns 201
Introduction t0 NOMAd ..o s 204
Nomad ArChiteCIUNE........covee e 207
AutosCaling OVEIVIEW......ccccveriririirerere s ss s snens 210
INStalling NOMAG........coeoereriereer e 211
Policy-Driven Governance in Nomad...........ccooucvvenmnenesnsssnnesessssesessesessesesennes 221
NAMESPACES ... ciuerriiiiriere s s b e e s be e e nne e 221
ReSOUICE QUOLAScoveeerrreeerreserinse s sr s 222
SeNtiNEl POICIES ...ccveueerreerieeresese e 222
NOMAA ACLSeeerreerreerensesessese s sessesesss s sessesessssesessssssssssssssessnssssnsenens 223
Container Application Deployment Using Nomad...........cccoouernvermnnennnenerensenenns 224
SUMMAIY.c.eeiteirerere s se s s s r e e s s e e s e e e s aesaesae e s e e aesae e e e nannaees 236

INA@X.iiiiisssnnnmnnnnnnnnssssssssnnnnnnnnsssssssnsnnnnnnnnssssssssnnnnnnnnnessssssnsnnnnnnnnnssssnnn 237

vii

About the Authors

Navin Sabharwal has more than 20 years

of industry experience. He is an innovator,
thought leader, patent holder, and author in
cloud computing, artificial intelligence and
machine learning, public cloud, DevOps,
AIOPS, infrastructure services, monitoring and
management platforms, big data analytics,
and software product development. Navin is

responsible for DevOps, artificial intelligence,
cloud lifecycle management, service
management, monitoring and management, IT Ops analytics, AIOPs and
machine learning, automation, operational efficiency of scaled delivery
through lean Ops, strategy, and delivery for HCL Technologies. He can

be reached at Navinsabharwal@gmail.com and www.linkedin.com/in/
navinsabharwal.

Sarvesh Pandey is an innovator and
thought leader in hybrid cloud lifecycle
automation covering technologies (IP and
OEM products) like cloud management
automation, infrastructure as code, and
Runbook Automation, with 15 years of IT
experience. He is the Associate Director

and Practice Head of Cloud Management
Automation for HCL's DRYiCE, focusing on

ix

http://www.linkedin.com/in/navinsabharwal
http://www.linkedin.com/in/navinsabharwal

ABOUT THE AUTHORS

planning, designing, and managing multiple infrastructure automation
projects of strategic importance to the cloud and the IAC framework. He
has experience in working with highly engineered systems that require
a deep understanding of cutting-edge technology and the key drivers

in multiple markets. He can be reached at samsarvesh@gmail.comand
https://in.linkedin.com/in/sarvesh-pandey-11b82717.

Piyush Pandey has 10+ years of Industry
Experience. He is currently working at HCL
Technologies as Automation Architect
delivering solutions catering to Hybrid Cloud
using Cloud Native and 3rd Party Solutions.
The Automation solutions cover use cases
like Enterprise Observability, Infra as Code,
Server Automation. Runbook Automation,
Cloud Management Platform, Cloud Native
Automation and Dashboard/Visibility.

He is responsible for designing end to end

solutions & architecture for enterprise
Automation adoption. piyushnsitcoep@gmail.comand https://www.
linkedin.com/in/piyush-pandey-704495b.

https://in.linkedin.com/in/sarvesh-pandey-11b82717
https://www.linkedin.com/in/piyush-pandey-704495b
https://www.linkedin.com/in/piyush-pandey-704495b

About the Technical Reviewer

Santhosh Kumar Srinivasan is an AWS
Certified Solutions Architect and TripleByte
Certified DevOps Engineer in India. He works
as a cloud consultant with Fortune 100 clients in
the United States. He is an expert in architecting
highly available, fault-tolerant workloads in
AWS Cloud to solve complex problems. San is

a mentor for advanced certification in software
engineering for cloud, blockchain, and IOT
offered by IIT Madras and GreatLearning. He
has trained hundreds of developers on full stack
development in Python.

He has a bachelor’s degree in computer applications from Bharathiar

University, Coimbatore. San creates and maintains open source teaching

materials on various software engineering topics such as Python, AWS, and

RegEx on his GitHub profile (https://github.com/sanspace). He lived

in North Carolina and Virginia for four years before moving back to his

hometown in Coimbatore, India, where he is currently living with his wife.

He is an avid user of Terraform and works with other Hashicorp

products in his line of work. He plays chess, table tennis, and badminton.

To know more about San, please visit his website at https://sanspace.in
or follow him on Twitter @2sks (https://twitter.com/2sks).

https://github.com/sanspace
https://sanspace.in
https://twitter.com/2sks

Acknowledgments

To my family, Shweta and Soumil: for being always there by my side and
letting me sacrifice their time for my intellectual and spiritual pursuits, and
for taking care of everything while I am immersed in authoring. This and
other accomplishments of my life wouldn't have been possible without
your love and support.

To my mom and my sister: for their love and support as always;
without your blessings, nothing is possible.

To my co-authors, Sarvesh and Piyush: thank you for the hard work
and quick turnarounds to deliver this. It was an enriching experience, and
I am looking forward to working with you again soon.

I want to send special thanks to Rohan Bajaj, Abhijeet Thakur,
Manpreet Singh, Parvathy Subbiah, Tholupuluri Tsnmanindrababu, Aditya
Tanwar, and Avinaw Sharma. Their research input and automation code
samples helped in shaping the outline of the book.

To my team at HCL, who has been a source of inspiration with their
hard work, ever engaging technical conversations, and technical depth:
your everflowing ideas are a source of happiness and excitement every
single day. Amit Agrawal, Vasand Kumar, Punith Krishnamurthy, Sandeep
Sharma, Amit Dwivedi, Gauarv Bhardwaj, Nitin Narotra, and Vivek—thank
you for being there and making technology fun.

Thank you to Celestine, Aditee, and the entire team at Apress for
turning our ideas into reality. It has been an amazing experience authoring
with you, and over the years, the speed of decision-making and the
editorial support has been excellent.

To all that I have had the opportunity to work with my co-authors,
colleagues, managers, mentors, and guides in this world of 7 billion

xiii

ACKNOWLEDGMENTS

people: it was a coincidence that brought us together. It is an enriching
experience to be associated with you and learn from you. All ideas and
paths are an assimilation of conversations that I have had and experiences
I have shared. Thank you.

Thank you, goddess Saraswati, for guiding me to the path of knowledge
and spirituality and keeping me on this path until salvation.

3l 171G 79y, THH 17 SR T, GaaR 9T Ha THd

(Asato Ma Sad Gamaya, Tamaso Ma Jyotir Gamaya, Mrityor Ma
Amritam Gamaya)

Lead us from ignorance to truth, lead us from darkness to light, lead us
from death to deathlessness.

Xiv

CHAPTER 1

Getting Started
with HashiCorp
Automation Solutions

This chapter introduces you to infrastructure as code (IaC) and
HashiCorp’s automation offerings, helping users adopt the IaC philosophy
to manage infrastructure and the application lifecycle. The chapter covers
the following topics.

¢ Introduction to infrastructure as code

e Introduction to HashiCorp’s automation offerings

Introduction to Infrastructure as Code

Building infrastructure is an evolving and complex art, which demands
repetitive improvements involving aspects such as maintainability,
scalability, fault-tolerance, and performance.

In traditional environment, building and deploying infrastructure
components was a manual and tedious task which translates to delays and
decreases organizational agility. With the emergence of IaC infra components
are now treated as merely a software construct, a code which can be shared
across different teams. IaC has given rise to mutable infrastructure as the

© Navin Sabharwal, Sarvesh Pandey and Piyush Pandey 2021 1
N. Sabharwal et al., Infrastructure-as-Code Automation Using Terraform, Packer,
Vault, Nomad and Consul, https://doi.org/10.1007/978-1-4842-7129-2_1

https://doi.org/10.1007/978-1-4842-7129-2_1#DOI

CHAPTER 1 GETTING STARTED WITH HASHICORP AUTOMATION SOLUTIONS

lifecycle of every infra resource/component is treated via code. This leads
to negligible configuration drift across various environments thereby
maintaining sanity of the environment. Infrastructure is treated the same
way an application is treated in an environment. It follows the same devops
principle as application, shares same pipelines and is version controlled.

Another key benefit that IaC offers is the consistency of the build. If
you need to manage several environments (e.g., development, QA, staging,
and production), spinning those up from the same codebase ensures
that negligible configuration drift is introduced across the environments,
ensuring that they all behave the same way.

IaC encourages declarative style of code wherein the desired end
state and the configuration are present before final state is provisioned.
Declarative code tends to be more reusable in the environment as current
configuration changes are considered while catering for any new request
for new infrastructure.

Figure 1-1 is a high-level view of how IaC tools operate.

2. Check the
current status

Infrastructure
) . \ Infrastructure-as- - Actual state on
< desired state ;
("1, Read file when code tool cloud
file triggered 3. Apply the

change (if any)

Figure 1-1. How infrastructure as code works

IaC solutions complies with below mentioned principles, as shown in
Figure 1-2.

e Version control is a popular concept wherein every
release corresponds to a source code build which is
maintained as a versioned artifact in the environment.
In IaC, a similar principle is applied to manage the

infrastructure and changes using version-control

CHAPTER 1 GETTING STARTED WITH HASHICORP AUTOMATION SOLUTIONS

commits in the source code repository. This provides
traceability of changes made to the infrastructure
definition covering who made changes, what has
changed, and so forth. This is also crucial when you
need to roll back to a previous version of the code while
troubleshooting an issue.

Predictability

Repeatability : Consistency

Figure 1-2. Principles of infrastructure as code

o Predictability refers to IaC capability as a solution to
always provide the same environment and associated
attributes (as defined in the version-controlled system)
every time it is invoked.

o Consistency ensures that multiple instances of the
same baseline code provide a similar environment.
This avoids inconsistencies and configuration drift
when manually building complex infrastructure

entities.

o Repeatability refers to a solution that always provides
the same results based on the provided input.

CHAPTER 1 GETTING STARTED WITH HASHICORP AUTOMATION SOLUTIONS

o Composability refers to service managed in a modular
and abstracted format, which can be used to build
complex application systems. This feature empowers
users to focus on the target application build rather
than worry about the under-the-hood details and
complex logic used for provisioning.

Introduction to HashiCorp Automation

HashiCorp, founded in 2012 by Mitchell Hashimoto and Armon Dadgar,

is a well known infrastructure automation solution company with the aim
of automating hybrid cloud management processes, including application
development, delivery, and operations. Over the years, HashiCorp has
released a variety of open source and enterprise-supported hybrid cloud
automation solutions. Below are the Hashicorp toolsets which are widely
available for enterprise solutions-

e Terraform

e Vault

o Packer
e Consul
e Nomad
e Vagrant

e Boundary
e Waypoint

Now let’s look at how each of these solutions enables hybrid cloud
automation.

CHAPTER 1 GETTING STARTED WITH HASHICORP AUTOMATION SOLUTIONS

Packer

Image management has been a fundamental prerequisite for virtual or
physical system provisioning. Traditional image automation solutions
leverages baselines or golden images were manually build and maintained.
However, human errors introduced at the image-build stage could lead to
configuration drift in the provisioned service. HashiCorp Packer is an open
source tool for creating golden images for multiple platforms from single
source configuration thereby solving problems with manually created images.

Packer lets you automate the build of golden images. It works with tools
like ansible to install software while creating images. It uses configuration
files along with the concepts of builder and provisioners to spin up,
configure an instance as a golden image. The configuration code can be
changed in case of introduction of a new state element (addition of a new
agent) or during updation scenarios (patching, hardening) of golden image
and is used to create an updated image without human intervention.

The following are the key advantages of Packer solutions.

¢ Accelerated image creation and update process:
Packer helps create and update multiple images
belonging to multiple clouds or multiple OS types
within minutes. You don’t have to wait for the
administrator to create/update manually, which can
take hours or even days.

o Support for multiple providers: Packer supports
multiple providers and platforms, so you can manage
identical images across your hybrid cloud environment
with the same standardization and consistency level.

¢ Reduction in human error-induced inconsistencies:
Using a codified approach for managing images, you
can remove any inconsistencies or configuration drifts
in your environment.

CHAPTER 1 GETTING STARTED WITH HASHICORP AUTOMATION SOLUTIONS

Terraform

Terraform is an IaC (infrastructure as code) tool that allows users to define
a desirable infrastructure definition in a declarative language. Using
terraform the infra components within the environment can be deployed
and treated as a code in terraform's configuration file that you can version,
share and reuse.

HashiCorp Terraform has its own configuration language called HCL
(HashiCorp Configuration Language). An HCL file always ends with *.tf.
HashiCorp also supports the JSON format for configuration files. It’s the
user’s decision on whether to use JSON or HCL to write Terraform code.
HCL is widely used because of its simplicity and complex knowledge of
target infrastructure technologies.

HashiCorp Terraform is available in the following three modes.

e Terraform CLI (open source)
e Terraform Cloud
e Terraform Enterprise
The following are the key benefits of using HashiCorp Terraform.

e Accelerated hybrid cloud service provisioning:
Terraform enables accelerated provisioning of services
across the hybrid cloud, covering more than 500
technologies.

o State management: Terraform allows tracking services
for changes or configuration drifts. This enables
governance of service configuration beyond the
provisioning phase of the service lifecycle.

« Planning and testing services: Terraform enables the
planning and testing of services before the provisioning
or modification stages, allowing users to safely and
predictably manage the service lifecycle.

CHAPTER 1 GETTING STARTED WITH HASHICORP AUTOMATION SOLUTIONS

o Consistency and reduction in human errors: Using
a codified approach to managing the service lifecycle,
you can remove any inconsistencies or configuration

drifts in your environment.

Vault

HashiCorp Vault is leveraged for storing and securely accessing secrets
via API keys and password. Secrets are defined as any form of sensitive
credentials that need to be controlled; they are used to unlock sensitive
information. Secrets can be stored in passwords, API keys, or SSH keys.
Vault stores secrets for authentication and authorization.

Protecting secrets and access for automation is of primary importance.
HashiCorp Vault solutions make it easy to manage secrets and access by
leveraging the API and a user-friendly interface. You can monitor detailed
logs and fetch audit trails on who accessed which secrets and when.

User authentication is via a password or by using dynamic values to
generate temporary tokens that allow access to a particular path. Policies
can also be defined using HCL to determine which user gets what level of

acCcess.

Nomad

HashiCorp Nomad is an easy-to-use workload manager that enables users
to schedule tasks and deploy applications in a containerized or non-
containerized infrastructure. It allows you to write code and build software
using declarative infrastructure as code.

CHAPTER 1 GETTING STARTED WITH HASHICORP AUTOMATION SOLUTIONS

Consul

HashiCorp Consul is a multiple-data center service mesh solution that
provides the capability to govern application service communication
using a control plane. It also offers service discovery and health checks. It
leverages a secure TLS protocol to establish mutual TLS connections.

A service mesh allows you to control communication between
different application components or between multiple applications.
A service mesh leverages the IaC concept to define a communication
policy. It typically uses a network proxy or sidecar concept for governing
communication between application services. Data communication
patterns help developers optimize service interaction and performance.
For example, a service mesh can monitor the amount of time it takes to
reconnect to access the application service during unavailability. This can
help developers redefine the waiting period before an application service
tries to reconnect.

Vagrant

One of the fundamental challenges developers face is the consistency of

the development environment used for writing code. Multiple solutions are
available on the market, including VirtualBox, VMware Workstation, and
Docker. Hypervisor platforms like VMware, KVM, and Hyper-V are typically
used for setting up developer workstations; however, manual administration
makes it tedious to manage configuration requirements for each application
team which results in no consistency between different environments and
introduces configuration drift due to manual intervention.

HashiCorp Vagrant enables you to build and manage a developer’s
environment using a workflow-driven approach that leverages the power
of infrastructure as a code. Using its integrations with various platform
technologies, the developer environment is configured using a consistent,
repeatable, and accelerated approach. From a developer’s perspective,

CHAPTER 1 GETTING STARTED WITH HASHICORP AUTOMATION SOLUTIONS

all the required software, utilities, and environment configurations
can be applied to the environment using Vagrant’s file configuration. It
enables application team members to use the same standard platform for
development.

Vagrant is supported on multiple platforms, enabling developers to
focus on development using their favorite software and tools without
worrying about the underlying platform.

Boundary

In modern times, especially in the wake of COVID-19, there is a paradigm
shift toward identity-based access. With most businesses, applications,
and infrastructure users working remotely, organizations cannot rely on
a network perimeter to secure access to resources. HashiCorp Boundary
provides identity-based access to resources by using popular identity
providers for authentication and authorization to human users.

Using integration with popular identity providers like Microsoft Azure
Active Directory, Okta, and PingFederate for authentication, Boundary
enables role-based authorized access to target services. This removes the
dependency of tracking the end user by using a physical IP address. User
access can now be defined using policies stored in a version-controlled
system, ensuring secure access to hybrid cloud services and applications

with automated governance.

Waypoint

As modern infrastructure becomes more complex with the rise of public
cloud IaaS and PaaS services and container/microservice/serverless-
based applications, it’s difficult for developers to keep track of deployment
approaches in every platform (VM-based configurations, YAML files,
Kubectl, schedulers, etc.). HashiCorp Waypoint enables developers to
define the flow of how an application is built, deployed, and released

CHAPTER 1 GETTING STARTED WITH HASHICORP AUTOMATION SOLUTIONS

across platforms. Waypoint is not a package manager or replacement
of solutions like Kubernetes. It enables the abstraction of build and
deployment complexities using codified flow, which is versioned
controlled.

Waypoint leverages build packs to build applications for various
languages and frameworks, which can be stored as artifacts. These artifacts
can be deployed on various platforms, leveraging either IaaS or PaaS
services. With a Waypoint solution, you can create a workflow to deploy
application components that use other solutions from HashiCorp, such
as Packer (for defining baseline image), Terraform (for defining desired
state configuration), Vault (for managing secrets), Nomad (for application
orchestration), or Consul (for managing Service to service connectivity).

Summary

This chapter introduced infrastructure as code and various automation
solutions from HashiCorp that leverage the IaC principle. Upcoming
chapters cover Terraform, Packer, Vault, Nomad, and Consul and how
these solutions can be used in hybrid cloud automation.

10

CHAPTER 2

Getting Started with
HashiCorp Terraform

This chapter covers the core concepts of Terraform CLI and Terraform
Cloud automation.

e Introduction to HashiCorp Terraform
o Setting up an AWS account
o Getting started with Terraform Cloud

o Getting started with Terraform CLI

Introduction to HashiCorp Terraform

DevOps and infrastructure as code (IaC) are gaining traction globally with
developers, administrators, architects, and cloud engineers. DevOps is a
philosophy encompassing people, processes, and tools. Its objective is to
accelerate software development and associated release and deployment
processes. In the overall umbrella of DevOps, IaC is an important
component that provides agility and scalability from the infrastructure side
to meet a application team’s needs. Infrastructure as code also enables
stable, secure, and consistent platforms for hosting applications.

© Navin Sabharwal, Sarvesh Pandey and Piyush Pandey 2021 11
N. Sabharwal et al., Infrastructure-as-Code Automation Using Terraform, Packer,
Vault, Nomad and Consul, https://doi.org/10.1007/978-1-4842-7129-2_2

https://doi.org/10.1007/978-1-4842-7129-2_2#DOI

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

There are many tools that implement infrastructure as code.
Terraform and Ansible are gaining traction in the DevOps and developer
communities. Similarly, public cloud hosting platforms provide native
solutions packaged as part of public cloud service offerings. This includes
AWS CloudFormation and Azure Resource Manager. In Google Cloud
Platform, the cloud-native IaC offering is called a deployment manager.

Terraform is an IaC tool that allows users to build, manage, and version
their infrastructures efficiently.

At a high level, Terraform consists of the following components.

e Hashicorp Terraform has its own configuration
language called HCL (HashiCorp Configuration
Language). Each configuration file may consists
of multiple code blocks wherein each codeblock
corresponds to an infra resource in the environment.
HashiCorp also supports creation of configuration
files in JSON format. HCL defines infrastructure in
a declarative language. Declarative languages are
nonprocedural or high level language, which specifies
what is to be done rather than how to do it.

Terraform understands HCL as the default
configuration language. It identifies HCL file by its
.tf extension. For the ease of end users, terraform
can also read JSON-based configuration files. It’s up
to the user to use JSON or HCL for writing Terraform
code.

HCL is widely used for its simplicity and complex
knowledge of target infrastructure technologies.

12

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

o A workspace determines how terraform organizes
infrastructure. It contains everything terraform needs
to manage a given collection of infrastructure and
separate workspaces corresponds to separate working
directories. Every workspace has a configuration
file and an associated backend configuration that
defines how the deployment was executed and where
a state was captured for deployment. Initially, there
is only a default workspace available; hence, all
configurations are mapped to the default workspace.
Additional workspaces can be created and switched to
differentiate runs and configurations.

o A workflow is the way you manage and run your code
in VCS or CLI. It consists of five major steps: write,
initiate, plan, apply, and destroy. Terraform governs a
resource service lifecycle through these five steps.

HashiCorp Terraform is available in the following three modes.
e Terraform CLI (open source)
o Terraform Cloud
e Terraform Enterprise

Let’s look at each of these options.

Terraform CLI (Open Source)

Terraform CLI is an IaC tool released under Mozilla Public License 2.0,
which is an open source license available to all. You can download the
latest binaries from HashiCorp’s repository according to the operating
system of your choice and start using them to automate your use cases.
Terraform CLI is recommended for users working on IaC projects, proof of
concept, prototyping, or small noncritical applications.

13

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

Terraform Cloud

Terraform Cloud is one of HashiCorp’s managed commercial SaaS
offerings. You must subscribe to use it. The graphical user interface is user-
friendly and offers a good platform for collaboration. HashiCorp provides
a free account with limited offerings. Paid-subscription users have access
to many additional features that the open source and evaluation versions
don’t have.

Terraform Cloud is best suited for users who want to leverage
enterprise security controls like RBAC (role-based access control), team
collaboration, REST, or RESTful API (representational state transfer API)
interfaces for secure integration with other applications, without having to
manage the underlying Terraform infrastructure.

Terraform Enterprise

Terraform Enterprise is HashiCorp’s commercial version that allows you to
host it locally in your own hosting space and have complete control over
the infrastructure and management policies. Organizations with security
or compliance concerns and that want to privately manage all aspects
should opt for Terraform Enterprise.

Comparing the Options

Table 2-1 is a high-level comparison of all three HashiCorp Terraform
offerings.

14

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

Table 2-1. Comparison of Terraform (open source) vs. Terraform

Cloud and Enterprise (paid versions)

Feature Terraform (open Terraform Feature Functionality
source) Enterprise or (description)
Cloud
Workspaces Yes, but Yes, with Teams map responsibility to
very limited advanced individual workspaces and
functionality capabilities link APIs accordingly
Team Difficult Easy, well Manages organizations,
Management managed teams, and permissions
separately
Private Module No Yes Private and central repository
Registry of modules
Configuration ~ No Yes GUI to manage workspaces,
Designer variables, audits, and so forth
Sentinel No Yes Enforces user-defined
policies to better manage
resources
SAML No Yes SAML and SSO integration for
easy authentication
Audit No Yes Historical changes checked

Terraform Enterprise and Terraform Cloud offer the same level of

functionality. As part of the Enterprise offering, this book provides a

detailed walkthrough of usage for Terraform Cloud because it does not

need any underlying infrastructure.

15

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

At a high level, Terraform consists of the following components.
o Terraform code for defining resources

e A workspace to logically manage Terraform
configurations

» A workflow to manage your code in VCS and execute
your code in CLI

Setting up an AWS Account

Before setting up Terraform, let’s quickly set up an AWS account, which
is used later in this chapter. We assume that you have basic knowledge of
the three public clouds (Amazon Web Services (AWS), Azure, and Google
Cloud Platform (GCP)) because the hands-on exercises in this book
require it.

Navigate to https://portal.aws.amazon.com/billing/signup#/
start to create your AWS account. If you already have an AWS account,
you can skip this exercise and proceed to the next one. Enter the required
information as highlighted in Figure 2-1, and click the Continue button.

16

https://portal.aws.amazon.com/billing/signup#/start
https://portal.aws.amazon.com/billing/signup#/start

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

aws

. -

Sign up for AWS

Explore Free Tier products with a Emall address
You wse this email address to sign in 1o your new

new AWS account.

To learn more, visit aws.amazon.com/free.

Password

QT
-~ @ N S

AWS account name
Choose a name for your aco
RAME i Your AcCount settin

Sign in to an existing AWS account

Figure 2-1. New AWS Account registration page

Select a personal account and enter your information. Click the
Continue button (see Figure 2-2).

17

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

Sign up for AWS

Free Tier offers Contact Information

How do you plan to use AWS?

Business - for your work, school, or
organization

AlL AWS accounts can explore 3 different types
of free offers, depending on the product used.

Persenal - for your own prajects

—\ Always free
\\ Mever expires ‘Who should we contact about this account?

Full Name
12 months free
Start from initial sign-up date
Phone Number
Enter your country code and your phone numiber.

Trials
Start from service activation date

Country or Region

United States v

Address

City
State, Provinge, or Region

Postal Code

I have read and agree to the terms of the
AWS Customer Agreement [

Continue (step 2 of 5)

Figure 2-2. Enter contact details

Enter your payment information (see Figure 2-3). Click the Verify and
Continue button.

18

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

aws

S —

Sign up for AWS

Secure verification Billing Information
Credit or Debit card number

(@ We will not charge for usage below
AWS Free Tier limits, We temporarily

hold §1 USD/EUR as a pending VISA . E ———
transaction for 3-5 days to verify —atl
your identity. WS aceopts all major credit a ardls. To le
are abaut payment optians FAQ
Expiration date
v v

Cardholder's name

@ Billing address

© Use my contact address
137 zalgario
vilnius vilnius 08217
LT
Use a new address
Verify and Continue (step 3 of 5)

s webiite 1o

Privacy Policy [| Terms of Use [5 | Cookie Preferences | Sgn Out

Figure 2-3. Enter basic personal details

Select the Basic Plan. For new users, this free plan is sufficient. Click
the Free button (see Figure 2-4).

19

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

aws English ~

—T

Select a Support Plan

AWS offers a selection of support plans to meet your needs. Choose the support plan
that best aligns with your AWS usage. Lean more

Basic Plan Developer Plan Business Plan
Frea From S20/month From $100/month

= Includod with all = For early adoption, = For production
nocou !

teating and dovelopmant workicads & businoss

critical dopendoncios
an 1o AWS

uring business - 2457

t. phone, and
» AWS

Need Enterprise level support?

Contact your account manager for additional information on running business and mission
ritical-worklonds on AWS {starting at $15,000/month). Learn mons
© 2017 Amuzon Web Services, Inc. or s afilates. All Fgnts reservd
Privacy Policy TormeofUse Sign Ou

Figure 2-4. Select free basic plan

After successfully registering, log in to your AWS account (https://
console.aws.amazon.com/iam/home?region=us-east-1) to access the
AWS console.

Navigate to TAM » Access management » Users. Click the Add User
button (see Figure 2-5).

Enter the relevant information (see Figure 2-6) and select
programmatic access. When this is done, you get an access key and a
secret key, which are used later in the exercise.

20

https://console.aws.amazon.com/iam/home?region=us-east-1
https://console.aws.amazon.com/iam/home?region=us-east-1

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

s-east-1#/users

€ Q0 8 https//console.aws.amazon.com/ian

Identity and Access
Management (LAM) b

Dashboard

» Access management User name ~ Groups

Use

Roles

Policies

Identity providers

Account setlings
 Access reports

Access analyzer

Figure 2-5. 1AM new user

Add user o 2) () (&) (5

Set user details

You can add multiple users at once with the same access type and permissions. Leam more
User name™ Terraform-user

© Add another user

Select AWS access type

Select how these users will access AWS. Access keys and autogenerated passwords are provided in the last step. Learn more

Access type‘l v Prggrammatic AccCess I
Enables an access key ID and secret access key for the AWS API, CLI, SDK, and
other development tools

AWS Management Console access
Enables a password that allows users to sign-in to the AWS Management Console

Figure 2-6. Create new user with programmatic access

21

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

Getting Started with Terraform Cloud

Terraform Cloud is a SaaS (software as service) offering. It is hosted and
managed by HashiCorp in a highly reliable and consistent environment.
It provides users with features like collaboration space, secret data
management, RBAC, an approval process (for any changes), and a privately
hosted registry to share Terraform modules and for policy control.

Terraform Cloud can be accessed at https://app.terraform.io.
All you have to do is create a free account that allows collaboration in a
small team and other features. Let’s start with a hands-on exercise on
subscribing to Terraform Cloud.

Create a new account on Terraform cloud using an email account
of your choice by navigating to https://app.terraform.io/signup/
account. Click Create a Free Account and provide information to create
your account (see Figure 2-7).

Create an accountcousonn

Username
Email
Password

| agree to the Terms of Use.
| acknowledge the Privacy Policy.

Please review the Terms of Use and Privacy Policy.

Figure 2-7. Terraform Cloud signup page

22

https://app.terraform.io
https://app.terraform.io/signup/account
https://app.terraform.io/signup/account

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

As soon as you register on the Terraform Cloud site, you get a
confirmation email from HashiCorp to verify your account. Click the link
to confirm your email address (see Figure 2-8).

Terraform Cloud <no-reply@hashicorp.com>

[Terraform Cloud] Confirm your email address

o p—m———

Hella,
Please confirm this email address for your Terraform Cloud account by clicking on the link below:

https:/fapc0l. safelinks.protection.gutlook.comPurl=https%3A%IF% 2 Fapp.terraform.io®¥2Fconfirmation%3Fconfirmation token®
3DRLBeVhzFWTuGCCI Exywz &data=025%7C01%7Crajesh.shisodiva%40hcl.com%7C3726{e387 3dd4e2d657908d86bEI %
7C189de737c93ad15a8b6B614ca004191 2% TCOMTCONTCE37377587663254024amp;sdata=1IDPW1%2BG| LrinSBIyW7WIFGCST7tPGY2F IzHhxFO%
2BIPRXIDBamp;reserved=0

Best,
HashiCorp

Figure 2-8. New user registration verification email

After email verification, you are redirected to a page that asks you
to login. Then, you are redirected to the Terraform Cloud, as shown in
Figure 2-9. Select the Start from Scratch option.

Welcome to Terraform Cloud!

Choose your setup workflow

El Try an example configuration Recommended for 0SS users

Perform your first Terraform Cloud run using a sample configuration with the CLI. >

Learn More &'

[E] start from scratch
Start with a blank slate. Best for users who are already familiar with Terraform Cloud. ?

Learn More &

Figure 2-9. Terraform Cloud

23

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM
Create a new organization, as shown in Figure 2-10.

Create a new organization

Organizations are privately shared spaces for teams to collaborate on infrastructure. Learn mare (5 about organizations in Terraform Cloud

Organization name

.. company-name

Organization names must be unique and will be part of your resource names used in various tools, for example hashicorp/www-prod .

Email acdress

The arganization email is used for any future notifications, such as billing alerts, and the organization avatar, via gravatar.com (2.
Create organization

Figure 2-10. Terraform Cloud new organization

Create a new workspace, as shown in Figure 2-11.

Create a new Workspace

Workspaces determine how Terraform Cloud organizes infrastructure. A workspace contains your Terraform configuration (infrastructure as
code), shared variable values, your current and historical Terraform state, and run legs. Leam mere (3 about workspaces in Terraform Cloud.

o Choose Type VS
Choose your workflow

[[] Version control workflow Most comman
Store your Terraform configuration in a git repository, and trigger runs based on pull requests and merges. »
Learn More &y

[=] cLi-driven workflow
Trigger remote Terraform runs from your local command line >
Learn More [y

& API-driven workflow
A more advanced option. Integrate Terraform into a larger pipeline using the Terraform API. >

Learn More [y

Figure 2-11. Terraform Cloud new workspace

24

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

Terraform provides a workspace that makes it easy to manage code as
things grow and become more complex. It’s a place where you put your
Terraform code and configurations. A new user might put all his code in a
single work directory, which might grow over time, and he makes different
directory structures for each environment or project. At some point, it
becomes difficult to manage and change, and the chance for error grows.
This is where a workspace comes in handy; it provides a logical separation
of code rather than managing it in a complex directory structure.

Select a workflow from the three options. VCS (version-control
system) is the most commonly used and preferred. It enables users to
leverage GitOps-based actions to manage an infrastructure by using an IaC
methodology. (Read more about VCS integration at waw.terraform.io/
docs/cloud/vcs/).

Let’s select one of the VCS providers from the four provider options.
We opted for GitLab, as shown in Figure 2-12.

° Choose Type o Connect to VCS

Connect to a version control provider

Choose the version control provider that hosts the Terraform configuration for this workspace.

O GitHub v & Gitlab v BJ Bitbucket v /A Azure DevOps v
Figure 2-12. Terraform Cloud VCS

Select one of the GitLab provider options (see Figure 2-13). Go to User
Settings » Applications to add GitLab as the VCS provider.

25

http://www.terraform.io/docs/cloud/vcs/
http://www.terraform.io/docs/cloud/vcs/
https://gitlab.com/-/profile/applications

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

Add VCS Provider

Figure 2-13. Add VCS provider in Terraform Cloud

The following information is needed to use a GitLab provider (see
Figure 2-14).

¢ Name
e Redirect URI

e Scopes (API only)

26

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

Terraform-CloudDemo / Settings / VCS Providers / Add VCS Provider

Add VCS Provider

To connect workspaces, modules, and policy sets to git repositories containing Terraform configurations, Terraform Cloud
needs access to your version control system (VICS) provider. Use this page to configure QAuth authentication with your
VCS provider. For more information, please see the Terraform Cloud documentation on Configuring Version Control
Access 3.

a Connect to VCS a Set up provider Set up SSH |

Set up provider

For additional information about connecting to GitLab.com to Terraform Cloud, please read our documentation .

1. On GitlLab, register a new OAuth Application. (3 Enter the following information:

Name: Terraform Cloud (Terraform-CloudDemo) € Copied!

Redirect URL: https://app.terraform.io/auth/2eee91d0-600c-41f3-af4{ -S4 7a%%/ callback)

Copied

Scopes: Only the following should be checked:
api

2. After clicking the "Save application” button, you'll be taken to the new application's page. Enter the Application ID and
Secret below:

Figure 2-14. Add VCS with GitLab

Log in to your GitLab account. Navigate to the User Settings page,
and select Applications (see Figure 2-15). Enter the following information
(see Figure 2-14).

e Name (arelevant friendly name)
e Redirect URI (unique to each cloud user)

e Scopes (check API)

27

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

4 GitLab

User Settings * Applications

Applications

Manage applications that can use Gitlab as an
Ofuth provider, and applications that you've
authorized to use your account.

Add new application

Mame
Terraform Cloud (Terraform-CloudDema)
Redirect URI

https,//app.terraform.ic/auth/2eeed 1 d0-600c-4113-af4{ SN A7 299/ callback

Use one line per URI

Confidential

ed where the client se

be kept confidential, Native mobile apps

nsidered non-conf

ess to the APL, including all groups and projects, the container

read_user
Gra ad-only access

ile through the fuser AP

access to read-only A

under fusers

Figure 2-15. GitLab application config to integrate GitLab with

Terraform Cloud

Once you save, enter the following information (see Figure 2-16).

e Application ID

e Secret

28

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

&P Gitlab Projests v

User Settings * Applications * Terraform Cloud (Terraform-CloudDema)

Ak
‘a: :i User Settings
v
@ Profile @ The application was created successfully.

® Arcount
A ® Application: Terraform Cloud (Terraform-CloudDemo)

B Billing
Application ID ef113fc6955a63e2o84c | [}
o8 Applications
Secret 84525a484397079caccc3s | [f
B Chat
© Access T : Callback URL https://app.terraform, io/auth/ Jeeed1dd-608c-41F3-af4f - QP 7a%9: /callback
ACCess fokens
Canfidential Yes
B Emails
Scopes = api (Access the authenticated user’s API)
B Password
£ Motifications
£ S5H Keys

Figure 2-16. GitLab application configuration for GitLab &
Terraform integration

Navigate back to the Terraform Cloud page and enter the information
from GitLab (see Figure 2-16). Paste it in the Name, Application ID, and
Secret fields (see Figure 2-17).

D connect 1o ves B Serup provider

Set up provider

rud Do -Gitlah-VES

1B S B A SO et S T PO S 10 517 o
Secret

45050404007 0T DA cc 357 BOCOBT A W0 c 5 20164 1407 & UM

£ Back Po— Conneat and comntinue

Figure 2-17. Terraform Cloud Setup provider (with GitLab)

29

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

Click the Connect and Continue button (see Figure 2-17), which
takes you to the GitLab page (see Figure 2-18). Click the Authorize
button to complete the GitLab part of the configuration to authorize and
authenticate.

LY GitLab Projects v Groups v More v

User Settings » User Settings

Authorize Terraform Cloud (Terraform-CloudDemo) to use
your account?

An application called Terraform Cloud (Terraform-CloudDemo) is
requesting access to your GitLab account. This application was created by
Rajesh. Please note that this application is not provided by GitLab and you
should verify its authenticity before allowing access.

This application will be able to:

* Access the authenticated user's API
Grants complete read/write access to the API, including all groups
and projects, the container registry, and the package registry.

oy ([

Click the Skip and Finish button (see Figure 2-19) to complete all VCS
integration steps.

Figure 2-18. GitLab Configured for Cloud User

30

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

/ Settings / VCS Providers / Add VCS Provider

Add VCS Provider

To connect workspaces, modules, and policy sets to git repositories containing Terraform configurations, Terraform Cloud
needs access to your version control system (VCS) provider. Use this page to configure OAuth authentication with your VCS
provider. For more information, please see the Terraform Cloud documentation on Configuring Version Control Access (.

° Connect to VCS ° Set up provider e Set up SSH keypair

Set up SSH keypair (optional)

o Optional SSH keypair setup

Maost organizations will not need to add an SSH private key. However, if the organization repositories include Git
submodules that can only be accessed via SSH, an SSH key can be added along with the QAuth credentials.

SSH will only be used to clone Git submodules. All other Git operations will still use HTTPS.

You can add or update the SSH private key at a later time.

On a secure workstation, create an SSH keypair that Terraform Cloud can use to connect to GitLab.com. The exact command
depends on your OS, but is usually something like:

ssh-keygen -t rsa -m PEM -f "/Users/<NAME>/.ssh/service_terraform” -C
"service_terraform_enterprise”

This creates a "service_terraform’ file with the private key, and a “service_terraform.pub’ file with the public key. This SSH key
must have an empty passphrase. Terraform Cloud cannot use SSH keys that require a passphrase.

Logged into the GitLab.com account you want Terraform Cloud to act as, navigate to the SSH Keys settings page, add a new
SSH key and paste the value of the SSH public key you just created.

Private SSH key

Add SSH key

Skip and finish

Figure 2-19. Add SSH and finish

You should see the final page of the Terraform Cloud configuration
(see Figure 2-20), which summarizes the authorization details.
Now you can use GitLab as the VCS for Terraform Cloud.

31

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

U Terraform-CloudDemo-Gitlab-VCS

Callback URL
https://app.terraform.io/auth/2eee91d0-600c-41f3-afAf -SRI 299¢/callback

HTTP URL
https://gitlab.com

APl URL
https://gitlab.com/api/v4

Created
Oct 28, 2020 17:37:12 pm

OAuth Token ID
ot-TovGk3b5X| s)
Connection Revoke connection

A connection was made on Oct 28, 2020 17:39:20 pm by authenticating via OAuth as
GitLab.com user Wil which assigned an OAuth token for use by all Terraform
Cloud users in the Terraform-CloudDemo organization.

You can add a private SSH key to this connection to be used for cloning git submodules.

Figure 2-20. Terraform Cloud integrated with GitLab as
VCS summary

32

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

Terraform Workflow

Once you log in with an activated Terraform Cloud account, you can start

using a Terraform workflow. Workflows allow you to manage your code on

a cloud platform. Terraform Cloud has the following three workflows for

managing Terraform runs.

Version control workflow: This workflow stores your
Terraform configuration in a version-controlled system
like Git or GitLab repository, and triggers runs based
on pull and merges requests. It is one of the most
commonly used approaches in Enterprise.

CLI-driven workflow: In this approach, you can trigger
remote Terraform runs from your local command line
(CLI). Users can run CLI commands like terraform
plan and terraform apply. They execute directly in
Terraform Cloud. The user can monitor progress on a
CLI terminal. This empowers developers and enforces
the appropriate governances and policies offered by
Terraform Enterprise.

API-driven workflow: This is a more advanced option
that integrates Terraform into a larger pipeline using
the Terraform API.

As soon as you log in to your Terraform Cloud account, you are asked

to choose one of three workflow options (see Figure 2-21).

33

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

Choose your workflow

D Version control workflow Most commen

Store your Terraform configuration in a git repository, and trigger runs based on pull 5
requests and merges

Learn More &

CLI-driven workflow
Trigger remote Terraform runs from your local command line >

Learn More &

A& API-driven workflow
A more advanced option. Integrate Terraform into a larger pipeline using the Terraform 5
AP

Learn More &

Figure 2-21. Terraform Cloud workflow

Getting Started with Terraform CLI

The previous section covered configuring Terraform Cloud and working
with HashiCorp’s Enterprise offerings. This section starts with HashiCorp’s
open source offering by configuring Terraform CLI on a Linux system. Our
example uses a Red Hat virtual machine to install CLI.

Before you can download and configure Terraform, you need the wget
and unzip tools on your virtual machine. Execute the following command
to install packages on your virtual machine, as shown in Figure 2-22.

sudo yum install wget unzip -y

34

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

Version Repository size

]
H
o

Figure 2-22. Prerequisite tool install

Download a Terraform binary from the Terraform release website by
executing the following command based on your computer’s architecture
and operating system platform (Linux, Windows, etc.). We used version
0.13 for our installation (see Figure 2-23).

sudo wget https://releases.hashicorp.com/terratorm/0.13.5/
terraform 0.13.5 linux_amd64.zip

Note Always refrain from downloading an application binary from
third-party sites; only use the HashiCorp Terraform official release.

Figure 2-23. Terraform CLI download

Use the following Linux command to unpack/unzip the binary you
downloaded from the official Terraform website (see Figure 2-24).

sudo unzip terraform 0.13.5 linux_amd64.zip

35

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

[root@ ~]$ sudo unzip terraform 0.13.5_linux_amdé4.zip
Archive: terraform 0.13.5_linux_amdé4.zip
inflating: terraform
[root@ ~]$ 11
total 438536
-rwxr-xr-x 1 root root 85545059 Oct 21 18:50 terraform

Figure 2-24. Unczip Terraform binary

Once the Terraform binary unzips in the current directory, you can
place it in the location where all other system binaries reside. No path has
to be configured to invoke Terraform CLI.

sudo mv terraform /usr/local/bin/

Execute the following command to validate that you have installed the
correct version, as shown in Figure 2-25.

terraform version

[root@ ~]$ sudo mv terraform /usr/local/bin/
[root@ ~]15 terraform version
Terraform v0.13.5

Figure 2-25. Configure Terraform

Now that Terraform CLI is installed, let’s test some Terraform code to
see how things work.

Execute the following commands to install the Git client, and then
clone the sample code from the GitHub repository.

yum install git
git clone https://github.com/dryice-devops/terraform aws.git

Once you have cloned the repository, you should see five Terraform
files (see Listing 2-1 through Listing 2-5).

36

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

Listing 2-1. Terraform data.tf File

data "aws_ami" "centos" {
owners = ["679593333241"]
most_recent = true
filter {
name = "name"
values = ["CentOS Linux 7 x86 64 HVM EBS *"]
}
filter {
name = "architecture"
values = ["x86 64"]
}
filter {
name = "root-device-type"
values = ["ebs"]
}

}

Listing 2-2. Terraform main.tf File

resource "aws_instance" "instance" {
ami data.aws_ami.centos.id
instance_type var.Instancetype
associate public_ip address = "true"

monitoring = "true"

key name = var.key name

subnet_id = var.subnet_id

vpc_security group ids = var.vpc_security group_ ids

37

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

tags = {
Name = var.name
Environment = var.environment
Business Justification = var.bJustification
Reason = var.reason

}

Listing 2-3. Terraform output.tf File

output "instance ips" {
value = ["${aws_instance.instance.*.private ip}"]

}

Listing 2-4. Terraform provider.tf File

provider "aws" {

access_key = var.aws_accesskey
secret_key = var.aws_secretkey
region = var.region

Listing 2-5. Terraform variable.tf

variable "aws_accesskey" {

default = "ASIA3WEUBXXXXXXXXXXXXX"

description = "Enter Access Key"

}

variable "aws_secretkey" {

default = "bzNmvUZvsdidkhJzXXXXXXXXXXXXXXXXXXXXXXXXXX"
description = "Enter Secrete Key"

}

variable "environment" {

default = "development"

}

38

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

variable "vpc_security group ids"{

description = "security group”
type = list(string)
default =[]

}

variable "subnet id" {
description = "Subnet ID"
}
variable "bJustification" {
default = "Demo"
}
variable "reason" {
default = "Demo FOr Customer"
}
variable "name"
description = "Creates a unique name beginning with the
specified prefix"
}
variable "Instancetype" {
description = "The size of instance to launch"

}
variable "key name" {
description = "The key name that should be used for the
instance"
default = ""
}

After cloning the code from the repository, you need to modify the
information in your AWS account. Once the code is modified, you can start the
Terraform initialization by executing the following command (see Figure 2-26).

terraform init

39

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

[vcs@ terral$ 11

total 8

-rw-rw-r-— 1 root root 402 Nov 5 08:41 main.tf
-rw-rwWw-r-- 1 root root 220 Nov S 08:39 variable.tf
[vcs@ terral$

[vcs@ terral$ terraform init

Initializing the backend...

Initializing provider plugins...

- Finding latest version of hashicorp/aws...

- Installing hashicorp/aws v3.13.0...

- Installed hashiccorp/aws v3.13.0 (signed by HashiCorp)

The following providers do not have any version constraints in configuration,
so the latest version was installed.

To prevent automatic upgrades to new major wversions that may contain breaking
changes, we recommend adding version constraints in a required_providers block
in your configuration, with the constraint strings suggested below.

* hashicorp/aws: version = "~> 3.13.0"

Terraform has been successfully initialized!

[ves@ terral$

Figure 2-26. Terraform code clone and run

Now you can apply as shown in Figure 2-27 the Terraform changes
using the following command, which starts provisioning the resources on
the AWS public cloud.

terraform apply

40

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

[ves@ terral]$ terraform apply

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
+ create

Terraform will perform the following actions:

aws_instance.ec2_server will be created
+ resource "aws_instance” "ec2 server" {
+ ami "ami-0947d2bal2eelff75"
+ arn (known after apply)
+ associate_public ip address (known after apply)
+ availability_zone (known after apply)
+ cpu_core_count (known after apply)
cpu_threads per core (known after apply)
+ get_password_data false
+ host_id (known after apply)
+ id (known after apply)
+ instance_state (known after apply)
+ instance_type "t2.micro”
+ ipv6é_address_count (known after apply)
+ ipvé_addresses (known after apply)
+ key_ name (known after apply)
+ outpost_arn (known after apply)
+ password_data (known after apply)
+ placement_group (known after apply)
+ primary network_interface_id (known after apply)
+ private_dns (known after apply)
+ private_ip (known after apply)
+ public_dns (known after apply)
+ public_ip (known after apply)
+ secondary private_ ips (known after apply)
+ security_groups (known after apply)
+ source_dest_check true

| | || (| | (| (1 | A | Y [

+ subnet_id (known after apply)
+ tags {

+ "Environment” = "MyDemo"

+ "Name" = "My EC2 host"

Figure 2-27. Terraform apply

The terraform apply command initially runs a Terraform plan to
validate the deployment and resources created as a part of the deployment.
Once the plan is successful, it seeks an interactive user confirmation to
proceed with the actual resource creation. This is done by typing YES in

41

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

the interactive shell. However, if you need to suppress the prompt, you can
use the —auto-approve flag along with terraform apply.

Once apply completes, you should see the output shown in Figure 2-28,
which includes the number of resources added, changed, or destroyed to
meet the changes defined in our Terraform code.

root_block _device (
+ delete_on_termination = (known after apply)
+ device_name (known after apply)

encrypted (known after apply)
+ iops (known after apply
+ kms_key_id (known after apply)

o mwn

+ volume_id (known after apply)
+ volume_ size (known after apply)
+ volume_type = (known after apply)
}
Plan: 1 to add, 0 to change, 0 to destroy.
Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value: yes

aws_instance.ec2_server: Creating...

aws_instance.ec2_server: Still creating... [10s elapsed]
aws_instance.ec2_server: Still creating... [20s elapsed]
aws_instance.ec2_server: Still creating... [30s elapsed]
aws_instance.ec2_server: Still creating... [40s elapsed]

aws_instance.ec2_server: Creation complete after 42s [id=i-06ee7ZbdaleaB256e]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.
Outputs:
ec2-server-ip-address = |

"34.204.12.227",

[vcs@ terral$

Figure 2-28. Terraform apply output

“Apply complete! Resources: 1 added, 0 changed, 0 destroyed.” appears
at the bottom of the screen.

Now you can navigate to AWS console (https://console.aws.amazon.
com/ec2/v2/home), go to the appropriate region (as per our code), and
review the resource created with the given name or as per the IP output
from the server (see Figure 2-29).

42

https://console.aws.amazon.com/ec2/v2/home
https://console.aws.amazon.com/ec2/v2/home

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

>) search:My _EG2_host Add filer (2] 1to1
B HName = Instance ID « Instance Type - Avallabllity Zone -~ Instance State - Status Checks - Alarm St
B My _EC2 host i-D6eeT2b4aTealts 2 micro us-gast-1c @ running I Intializing None

Instance: | I-06ee72b4aTeaB256e (My_EC2_host) Public DNS: ec2-34-204-12-227 compute-1.amazonaws.com

Description Status Checks | Monitoring | Tags

Instance ID i-0SeeT2bdaTeali2B5e Public DNS (IPv4) ec2-34-204-12-22T compute
1 amazonaws com
nsiance stale nunning IPv4 Public IP
Instance type 12 micro IPvEIPs -
Finding Opl-in to AWS Compute Optimizer for Elastic IPs
recommendations. Learn more
Private DNS p-172-31-82-110 ec2 mtemal Avaiabity zone us-east-ic
Private IPs 172.31.82 110 Secunty groups default. view inbound rules. view outbound
rules
Secondary private [Ps Scheduled events
VPCID vpc-5595ch2f AN D
Platform Amazon Limux Subnet ID
Platform details LinugUNIX Network interfaces
Usage operation Runinstances 1AM role
Sourcerdest check True Key par name

T2T3 Unlimited Disabled

Figure 2-29. Resource created from Terraform in AWS console

Now that you have validated the outcome of the Terraform code, it’s a
good practice to delete that resource; otherwise, it costs if left running. For
that, run the destroy command as follows to delete all the resources and
their dependencies (see Figures 2-30 and 2-31).

terraform destroy

43

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

[vcs@ terral$ terraform destroy
aws_instance.ec2_server: Refreshing state...

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
destroy

Terraform will perform the following actions:

aws_instance.ec2_server will be destroyed

[id=i-06ee72bdaTeald256e]

ami
arn
associate_public_ip_address
availability_zone
Cpu_core_count
cpu_threads_per_ core
disable api_termination
ebs_optimized
get_password_data
hibernation
id
instance_state
instance_type
ipvé_address_count
ipv6_addresses
monitoring
primary_network_interface_id
private_dns
private_ip
public_dns
public_ip
secondary_private_ips
security_groups

"dafault”,
1
source_dest_check
subnet_id
tags

"Environment™ = "MyDemo"

resource "aws_instance” "ec2_server™ |(

= "ami-0947d2balZeelff75"
= "arn:aws:ec2:us-east-1:8. /8:instance/i-06ee72bdalead2see”

1

1

false

false

false

false ull
"i-0éee72bdaTeal25ce"

running”™

"t2.micro®

0

]

false 1
"eni-07cafdebbd20a5198"
"ip=-172-31-82-110.ec2.internal”™
"172.31.82.110"
"ec2-34-204-12-227.compute-1.amazonaws.com"™
"34.204.12.227" T

0

[

true 1
"subnet-bf646c.1"
{

"Nama" = "My ECZ host"

Figure 2-30. Terraform destroy

Changes to Outputs:
ec2-server-ip-address = [
"34.204.12.227",
]

Enter a value: yes

[ves@ terral$

Plan: 0 to add, 0 to change, 1 to destroy.

Do you really want to destroy all resources?
Terraform will destroy all your managed infrastructure, as shown above.
There is no undo. Only 'yes' will be accepted to confirm.

aws_instance.ec2_server: Destroying... [id=i-06ee72b4aleaB2S56e]
aws_instance.ec2_server: Still destroying... [i
aws_instance.ec2_server: Still destroying... [id=i-06ee72b4a7eat2S€e, 20s elapsed]
aws_instance.ec2_server: Destruction complete after 30s

i-0bee72bda7ead256e, 10s elapsed]

Destroy complete! Resources: 1 destroyed.

Figure 2-31. Terraform resource destroyed

44

CHAPTER 2 GETTING STARTED WITH HASHICORP TERRAFORM

What’s New in Terraform 0.14

This chapter worked with Terraform 0.13. Terraform upgrades are
frequent, and every new version has enhanced features.

Terraform 0.14 is the latest version. The release and upgrade notes are at
https://github.com/hashicorp/terraform/blob/v0.14/CHANGELOG.md.

Terraform 0.14 vs. Terraform 0.13

e Terraform 0.14 adds support to declare a variable
as sensitive to prevent it from being visible to the
naked eye.

e The init command creates a lock in the configuration
directory, which can be checked into version control
to ensure the same version of the plug-in is consumed

in the next run.

o Terraform’s latest version supports read and write
of all compatible state files from a future version of

Terraform.

Summary

This chapter covered Terraform’s main concepts. We learned how to
subscribe to Terraform Cloud, install Terraform CLI, and execute simple
code to provision a service on AWS.

The next chapter covers Terraform programming constructs and looks
at how they can be leveraged to write automation code.

45

https://github.com/hashicorp/terraform/blob/v0.14/CHANGELOG.md

CHAPTER 3

Understanding
Terraform
Programming
Constructs

This chapter covers Terraform’s programming components. Designing an

infrastructure with Terraform code requires some basic understanding
of the programming components. The following are the programming

components covered in this chapter.

HCL
Resources
Providers
Input variables
Output values
Local values

Modules

© Navin Sabharwal, Sarvesh Pandey and Piyush Pandey 2021
N. Sabharwal et al., Infrastructure-as-Code Automation Using Terraform, Packer,
Vault, Nomad and Consul, https://doi.org/10.1007/978-1-4842-7129-2_3

47

https://doi.org/10.1007/978-1-4842-7129-2_3#DOI

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

o Data sources
e Backend configurations

e Provisioners

Configuration Language

Terraform uses its own configuration language, called HashiCorp
Configuration Language, or HCL. It is a declarative language that lets you
achieve your configuration goals without concern about the sequence of
steps to do it. Terraform configuration consists of a root module, where
evaluation begins, along with a tree of child modules created when one
module calls another.

Arguments, Blocks, and Expressions

The terraform language syntax is build around below key constructs:

o Blocks are the containers where the configuration of a
resource is kept. Blocks are comprised of block-types,
labels, arguments and nested blocks (e.g., a dynamic
block).

e Arguments assign a value to a specific name. They are
assigned within blocks.

o Expressions are literal or referenced values for
arguments.

e Values can be combined using built-in functions.

48

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

Now let’s look at the code snippet shown in Listing 3-1. The block
in the block-type resource acts as a container for the forwarding rule
configuration. Multiple arguments (like project = var.project) are
present, where the name is an expression and the referenced value is var.
project. Similarly, for aload_balancing scheme expression, there is a
literal value called EXTERNAL.

Listing 3-1. Block Configuration

resource "google compute forwarding rule" "default" {

project = var.project

name = var.name

target = google compute target pool.default.
self link

load_balancing_scheme = "EXTERNAL"

port_range = var.service port

region = var.region

ip address = var.ip address

ip protocol = var.ip protocol

Code Organization

Terraform configuration files have a .tf extension. It supports JSON-based
variants by using a .tf.json extension.

The basic Terraform configuration contains only a single .tf file. The
configuration can be enhanced by adding more resources. This is done
by creating new configuration files in the same root module or organizing
them in child modules. A module can also be a combination of .tf and .tf.
json, which can be managed together in a directory.

49

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

Configuration Ordering

Terraform is a declarative language and does not worry about the order
of the resources. It maintains a dependency order relationship within the
resources, maps them identically to real-world resources.

Resources

Resources are the major building blocks in Terraform, any infrastructure
component(virtual machine, networks, databases etc.) in an environment
which needs to be created and managed via terraform is depicted as a
resource in configuration file. Let’s review the code snippet shown in
Listing 3-2. The resource block declares a resource-type (google compute
disk) with a given local name (test-d01-data). The name refers to the
resource from elsewhere in the same Terraform module, but has no
significance outside that module’s scope. The resource type and name
together serve as an identifier for a given resource and must be unique
within a module.

Within the block body (between { and }) are the configuration
arguments for the resource. Most arguments in this section depend on
the resource type, and in this example, type, size, and zone are arguments
defined specifically for “google compute disk”.

Listing 3-2. Resources Configuration

resource "google compute disk" "test-doi-data" {
name = "test-doi-data"

type = "pd-ssd"
size = "10"
zone = "us-west1-a"

50

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

Provider

Provider is a Terraform plug-in that offers a collection of resource types. Each
Provider plug-in offers a set of resource types and defines which arguments
it accepts, which attributes it exports, and how changes to resources of that
type are applied to remote APIs. Providers also offer local utilities for tasks,
like generating random numbers for unique resource names.

Let’s review the code snippet shown in Listing 3-3. The "google"
provider specifies that the resources belong in the Google platform,
whereas project and credentials are the components specifying the
project and the credentials required to authorize the API.

Listing 3-3. Provider Configuration

provider "google" {
project = "crafty-student-290205"
credentials = file("crafty-student-290205-6d4ebc9cd946.json™)

}

Before a new provider is added to a configuration, Terraform must
install the provider. If a persistent working directory is used, run terratorm
init to install the provider. Once installed, the download resides in the
current working directory. To make the provider global (i.e., out of the
bounds of the working directory), you can enable a plug-in cache in the
Terraform configuration file in the terraform.d directory, as shown in
Listing 3-4. This directory must exist before Terraform cache plug-ins are
enabled. Terraform cannot create this directory itself.

Listing 3-4. Plug-in Configuration

plugin cache dir
disable checkpoint

"$HOME/ . terraform.d/plugin-cache"
true

51

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

Input Variables

Input variables are often called Terraform variables. They are used as
parameters that allow certain resource values to be taken as either an input
from a var file or during runtime. This allows the module to be customized
without altering the module’s source code. Now let’s review the code
snippet shown in Listing 3-5.

Listing 3-5. Input Variables

variable "disk-type" {

type = string

default =""

description = "Input from the user"
}
variable "zone" {

type = string

default = "us-easti-c"

description = "Input from the user"
}
variable "size" {

type = number

default = ""

description = "Input from the user"
}

variable "ami_id" {

type = string
validation {
condition

can(regex(""~ami-", var.example))
"Must be an AMI id, starting with \"ami-\"."

€rror_message

}
}

52

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

The disk type, zone, and size of the Google compute disk are defined
as variables to be taken as input from the user during runtime. A variable
can also be initialized with a default value as specified for variable
“zone” in the above Listing 3-5. This makes the code robust and provides
flexibility. A description can be provided in the variable to make it more
understandable.

The last example includes a validation block introduced in Terraform
0.13, where a condition (can(regex(""~ami-", var.example)))is given
to validate that the input must contain the ami prefix in the variable;
otherwise, it generates an error message (“Must be an AMI id, starting
with \"ami-“").

The variable name (e.g., variable “size”) assigns a value to a variable
and must be unique among all the variables in the same module.

The name of a variable can be any valid identifier except the following.

e Source

e Version

e Providers

e Count

o for_each

e locals

e depends_on
o Lifecycle

Type constraints in variables are a mixture of type keywords and type
constructors. The following are supported.

o String
e Number

¢ Boolean

53

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

Type constructors define complex keywords. The following are

examples.
o list(<TYPE>)
o set(<TYPE>)
o map(<TYPE>)
« object({<ATTR NAME> = <TYPE>, ... })
e tuple([<TYPE>,...])

If the variable type is unknown, or if you are unsure about the type,
then the “any” keyword can be used, making any value acceptable.

Variables can also be passed as vars files during the terraform plan
and apply phases. The following is an example.

terraform apply -var-file="testing.tfvars"

Environment Variables

An external environment variable can be exported in the current working
shell. In Listing 3-6, TF_VAR_image_id is an external variable. This variable
can be used in Terraform code without having to implicitly mention it. This
value is used for AMI throughout the code without specifying it.

Listing 3-6. Environment Variables
export TF_VAR image id=ami-08bcc13ad2c143073
The precedence order of variables is as follows:
1. varsis passed at the command line (-var-file).
2. Terraform.tfvars.json is next in precedence.
3. Terraform.tfvars follows.

4. Environment variables have the least precedence.

54

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

Output Values

Output values correspond to the values returned by Terraform modules
whenever terraform apply is run to apply a configuration. End users can
query the output by running the terraform output command.

These variables come in handy in the following cases.

¢ A child module wants to send the data or its resource
attributes to the parent module.

o External scripts want to query certain attributes from a

Terraform module.

Resources created by Terraform have certain output values that can be
later used by any other resource or by any processes.

Now let’s review the code snippet shown in Listing 3-7. The output
block is defined with block-type webserver_ip storing a compute instance’s
NICIP.

Listing 3-7. Output Variables

output "webserver ip" {
value = google compute instance.default.network
interface.0.access _config.0.nat_ip

}

To access the output from Listing 3-7, you can traverse to location
‘module.webserver.webserver_ip’ wherein webserver corresponds to the
block label name given to the resource “google_compute_instance”.

Output blocks can optionally include arguments like description,
sensitive, and depends_on.

e Description can be included in the output block to
provide information about the output and its purpose,
as shown in Listing 3-8.

55

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

Listing 3-8. Output Block

output "webserver ip" {
value = google compute instance.default.network
interface.0.access_config.0.nat_ip
description = public ip of instance

}

o Sensitive is used when the output is confidential
and not to be shown on the command line (e.g.,
passwords), as shown in Listing 3-9.

Listing 3-9. Output Block (Sensitive Data)

output "db_password" {

value = aws_db_instance.db.password
description = "The password for logging in to the database.”
sensitive = true

o depends_on is used when one of the resources
depends on the value of the output result, as shown in
Listing 3-10. It creates a relationship within the nodes
with a dependency graph.

Listing 3-10. Depends_on Use Case

output "instance ip addr" {
value = aws_instance.server.private_ip
description = "The private IP address of the main server
instance.”

depends on = [
Security group rule must be created before this IP
address could

56

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

actually be used, otherwise the services will be
unreachable.
aws_security group rule.local access
]
}

Here the resource instance_ip_addr needs to be created after fetching
the value of aws_security_group_rule.local_access. A depends_on output
must always have a description to make it easier for the future maintainer
of the code.

Local Values

Local values in Terraform represent certain expressions or variables in
the file whose values are constant and are invoked at multiple places in
the code. For example, using locals for the bucket name in different cloud
providers is a good idea because it creates randomness in the name.

Now let’s review the code snippet shown in Listing 3-11. The two
locals—is_postgres and is_mysql—are defined inside a block called
locals. These values are available throughout the code.

Listing 3-11. Defining Locals

locals {
Determine the engine type
is postgres = replace(var.engine, "POSTGRES", "") != var.
engine
is mysql = replace(var.engine, "MYSQL", "") != var.engine

Alocal value can be used anywhere in the code. The value is called by
local.<Name>, as shown in Listing 3-12.

57

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS
Listing 3-12. Using Local Values

resource "google sql user" "default" {
depends_on = [google sql database.default]

project = var.project

name = var.master_user_name
instance
host
password

google sql database_instance.master.name

local.is_postgres ? null : var.master user_host
var.master_user_password

Here the host expression gets its value by fetching and comparing the
value of the local is_postgres. The expression determines the value from
the local is_postgres and puts it in the conditional logic.

Local values help remove duplicate calls in configuration files. Local
values are analogous to local variables in programming languages.

Modules

A module is a container in which all the resources are defined to be used
together. Every Terraform code has one essential module, called a root
module, which contains all the resources in the .tf configuration file.
A module can call other modules, which allows inclusion of the child
module’s resources concisely into the configuration. Modules can be
called multiple times, either within the same configuration or in separate
configurations, making the code reusable.
Calling a module with an expression means to include the contents of
the module in the configuration file along with relevant input variables.
Now let’s review the code snippet shown in Listing 3-13.

58

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

Listing 3-13. Module Configuration

module "load balancer" {

source = "GoogleCloudPlatform/1b/google"
version = "~ 2.0.0"

region = var.region

name = "load-balancer"

service_port = 80
target tags = ["allow-lb-service"]
network = var.network

In listing 3-13 the source argument is calling the GoogleCloudPlatform/
Ib/google module.

For all modules, a source argument is a mandate that is specified
while invoking a module in the code. This location can be a local directory
or aremote module source containing configuration files related to the
module.

After the addition, removal, or modification of a module,

Terraform needs to be synchronized with the new module by running a
terraform init command. By default, terraform init does not upgrade an
installed module. Upgrade of an installed module can be initiated by using
the -upgrade flag.

Calling a module via terraform configuration does not implies that
attributes of the resources can be accessed directly as the resources are
encapsulated. To get the output values, certain selective values need to be
exported from it.

Now let’s review the code snippet shown in Listing 3-14. Instead of
calling the complete module, the value of default.ip_address is selected
and displayed as an output.

59

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS
Listing 3-14. Module Output

output "external ip" {
description = "The external ip address of the forwarding rule."
value = google compute forwarding rule.default.ip_address

Terraform code is confined within a working directory; if the working
directory is changed, Terraform takes it as a new location with added
resources. The terraform state mv command is used to transfer resource
states into modules.

Creating a Custom Module

Terraform treats any local directory referenced in a module block’s source
argument as a module. A typical file structure for a new module is shown
in Figure 3-1.

Figure 3-1. Directory structure

You can create a module with a single .tf file or use any other file
structure you like. Typically, each of the files shown in Figure 3-1 serves a
specific purpose.

60

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

o LICENSE contains the license under which your
module is distributed. When you share your module,
the LICENSE file let users know the terms of usage.

e README.md contains documentation describing how
to utilize the module in markdown format. Terraform
does not use this file, but services like Terraform
Registry and GitHub display the contents of this file to
people who visit the module’s Terraform Registry or
GitHub page.

e main.tf contains the main set of configurations for
your module. You can also create other configuration
files and organize them however it makes sense for
the project.

o variables.tf contains the variable definitions for
the module. When the module is invoked in the
configuration file, the variables are configured as
arguments in the module block. Since all Terraform
values must be defined, any variables that are not given
a default value become required arguments. Variables
with default values can also be provided as module
arguments, overriding the default value.

o outputs.tf contains the output definitions for
the module, which you can use to extract internal
information about the state of the resources.

Now let’s create a module for the s3 bucket in main.tf, as shown in
Listing 3-15.

61

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS
Listing 3-15. Creating a Custom Module
Terraform configuration

resource "aws_s3 bucket" "s3 bucket" {
bucket
acl

var.bucket name

"public-read"

policy = <<EOF

{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "PublicReadGetObject",
"Effect": "Allow",
"Principal": "*",
"Action": [
"s3:GetObject"
]J
"Resource": [
"arn:aws:s3:::${var.bucket name}/*"

website {

"index.html"

"error.html"

index_document
error_document

}

tags = var.tags

}

62

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

The variables are defined in Listing 3-16.

Listing 3-16. Defining Custom Module Variables

variable "bucket name" {
description = "Name of the s3 bucket. Must be unique."
type = string

}

variable "tags" {
description = "Tags to set on the bucket."
type = map(string)
default = {}

}

The output is defined in Listing 3-17.

Listing 3-17. Module Output
Output variable definitions

output "arn" {

description = "ARN of the bucket"

value = aws_s3_bucket.s3 bucket.arn
}
output "name" {

description = "Name (id) of the bucket"

value = aws_s3_bucket.s3 bucket.id
}

output "website endpoint” {
description = "Domain name of the bucket"
value = aws_s3_bucket.s3 bucket.website _endpoint

63

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

Whenever you add a new module to a configuration, Terraform must
install it before it can be used. Both the terraform get and terraform
init commands install and update modules. The terraform init
command also initializes backends and installs plug-ins.

Now let’s install the module by running terraform get, and write the
configuration in the main.tf file, as shown in Listing 3-18.

Listing 3-18. Installing Module

module "website s3 bucket" {
source = "./modules/aws-s3-static-website-bucket"

bucket_name = "<UNIQUE BUCKET NAME>"

tags = {
Terraform = "true"
Environment = "dev"
}

Execute the terraform apply command to provision the bucket using
a custom module, as shown in Listing 3-19. In the configuration files, make
sre you have added the AWS account information created in Chapter 2.

Listing 3-19. Terraform Apply with Module

$ terraform apply

An execution plan has been generated and is shown below.

Resource actions are indicated with the following symbols:
+ create

64

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

Terraform will perform the following actions:
...

module.website s3 bucket.aws s3 bucket.s3 bucket will be
created
+ resource "aws_s3 bucket" "s3 bucket" {
+ acceleration_status = (known after apply)

...

Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value:

Meta-arguments like version, count, provider, and depends_on are used
when creating code. Each has special relevance to usage in the module.

Version

A version constraint string specifies acceptable versions of the module, as
shown in Listing 3-20.

Listing 3-20. Meta-Argument Version

module "ssm"
source = "./aws"

version = "0.2"

Here, version 0.2 is passed as a value to fetch the values from the ./aws
source inside the ssm module.

65

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

The version attribute accepts a string value. Terraform tries to install
the version of the module in the attribute value. The version attribute is
only applicable for modules published in the Terraform module registry or
Terraform Cloud private module registry.

Modules residing in other sources may have their own version-control
mechanism, which can be specified in the source string. Modules residing
in local directories do not support versions; since they are loaded from the
same source repository, they always share the same version as their caller.

count and for_each

count and for_each create multiple instances of the same resource, as
shown in Listing 3-21. These arguments have the same syntax and type
constraints as for_each and count when used with resources.

Listing 3-21. For_each Example

Resource “aws_iam" “example” { {

for each = toset(var.user names)
source = "./aws/iam"
name = each.value

The for_each constraint creates an IAM user matching the set user_
names defined in the /aws/iam module. The /aws/iam child module has
a configuration to create IAM users. for_each creates multiple users with a
special key name: each.value. Resources from child modules are prefixed
with module.module_name[module index] when displayed in the UL In
our example, the ./aws/iam module contains aws_iam_user.example. The
two instances of this module produce IAM user resources with module.
iam["ram"].aws_iam user.example and module.iam["rambo"].aws iam_
user.example resource addresses. The ram and rambo values are taken as
variables.

66

https://www.terraform.io/docs/internals/resource-addressing.html

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

depends_on Module

In previous versions of Terraform, module instances served only as

separate namespaces. They were not nodes in Terraform’s dependency

graphs. Terraform has always tracked dependencies via the input variables

and output values of a module. But users have frequently requested a

concise way to declare that all objects inside a module share a particular

dependency in the calling module. Terraform v0.13 introduces this

capability by allowing depends_on as a meta-argument inside module

blocks, as shown in Listing 3-22.

Listing 3-22. Depends_on with Module

resource "aws_iam policy attachment" "example" {

name = "example"

roles = [aws_iam role.example.name]
policy arn = aws_iam policy.example.arn
}
module "uses-role" {
...

depends on = [aws_iam policy attachment.example]

}

Providers

Provider in Terraform acts as a plug-in to integrate with third-party
systems. Each invoked provider brings a set of resource types or data
sources that Terraform can manage. Provider configurations can be

defined only in a root Terraform module.

67

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

Once changes are applied, Terraform retains a reference to the
provider configuration that was most recently used to create the resources
in its state file. This is why terraform plan contains resources that have
references to the old configuration if the provider starts to fail. To solve this
problem, Terraform provider needs to be reintroduced in the configuration
file.

Provider Version Constraints in Modules

Although provider configurations are shared between modules, each
module must declare its own provider requirements so that Terraform can
ensure that there is a single version of the provider that is compatible with
all modules in the configuration and to specify the source address that
serves as the global (module-agnostic) identifier for a provider.

Now let’s look at the provider shown in Figure 3-2.

provider "vsphere" ﬁ
user OO0
password
vsphere_server
version

"ooooooooe”
0aooooee”
=2 24.2%
If you have a self-signe
allow_unverified ssl = true

)

Figure 3-2. Provider versions

e
1240 Cart

Here the module version required for the vSphere provider is 1.24.2.
A Terraform configuration file can have multiple provider configurations,
such as one for GCP and another for AWS or different versions of the same
cloud.

68

https://www.terraform.io/docs/configuration/provider-requirements.html

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

Automatic Installation of Third-Party Providers

Terraform v0.13 introduced a new hierarchical provider-naming scheme
that allows HashiCorp providers to occupy namespaces separate from
providers developed or distributed by others. Third-party providers are
indexed in Terraform Registry and automatically installed by Terraform.

The new provider naming scheme includes a registry hostname and
a namespace in addition to the provider name. The existing AzureRM
provider is now known as hashicorp/azurerm, which is short for registry.
terraform.io/hashicorp/azurerm. Providers not developed by HashiCorp
can be selected from their own namespaces, using a new provider
requirements syntax added in Terraform v0.13.

Let’s review the code snippet shown in Listing 3-23.

Listing 3-23. Third-Party Providers

terraform {
required providers {

jetstream = {
source = "nats-io/jetstream”
version = "0.0.5"

}

The nats-io/jetstream address is short for registry.terraform.io/nats-
io/jetstream, indicating a third-party provider published in the public
Terraform registry for widespread use.

The provider registry protocol is eventually published so that others
can implement it, in which case other hostnames become usable in source
addresses. At the time of writing this guide, only the public Terraform
Registry at registry.terraform.io was available for general testing.

69

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

As a measure of backward compatibility for commonly used existing
providers, Terraform 0.13 includes a special case that if no explicit source
is selected for a provider, Terraform creates one by selecting registry.
terraform.io as the origin registry and “hashicorp” as the namespace.

For example, if “aws” provider is invoked in the configuration file
without the required_providers argument, terraform assumes the value
hashicorp/aws which is short for registry.terraform.io/hashicorp/aws.

Provider Plug-ins in a Local Filesystem

While terraform init supports the automatic installation of HashiCorp
distributed providers, third-party-packaged providers must be installed
manually in a local filesystem. Some users also chose to create local
copies of the HashiCorp-distributed providers to avoid repeatedly re-
downloading them.

Terraform v0.13 still supports local copies of providers—officially
called local mirrors. But the new multi-level addressing scheme for
providers means that the expected directory structure in these local
directories has changed to include each provider’s origin registry
hostname and namespace, giving a directory structure like the following.

"registry.terraform.io/hashicorp/azurerm/2.0.0/1inux_amd64/
terraform-provider-azurerm_v2.0.0"

In this example, terraform-provider-azurerm_v2.0.0 is an executable
residing inside the provider’s distribution zip file. The containing directory
structure allows Terraform to understand that this is a plug-in intended to
serve the hashicorp/azurerm (short for registry.terraform.io/hashicorp/
azurerm) provider at version 2.0.0 on the platform linux_amd64.

If you use local copies of providers that terraform init would
normally be able to autoinstall, you can use the new Terraform providers

70

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

mirror command to automatically construct the directory structure for the
providers in the current configuration.

terraform providers mirror ~/.terraform.d/plugins

This creates local mirrors in one of the directories Terraform consults
by default on non-Windows systems. This same directory structure is used
for all the directories in which Terraform searches for plug-ins.

Note that due to the directory structure being multi-level, Terraform
no longer looks for provider plug-ins in the same directory where the
Terraform executable is installed. It is not conventional for there to be
subdirectories under directories, like /usr/bin on a Unix system.

Data Sources

Data sources allow a Terraform configuration to use information defined
outside Terraform or defined by a different Terraform configuration (e.g.,
getting the details of an Amazon VPC defined manually or outside the
Terraform configuration file). A data source is accessed via a special kind
of resource known as a data resource, declared using the data block shown
in Listing 3-24.

Listing 3-24. Data Sources

data "aws_ami" "std ami" {
most_recent = true

owners = ["amazon"
filter {
name = "root-device-type"
values = ["ebs"]
}

71

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

filter {
name = "virtualization-type"
values = ["hvm"]
}
}

resource "aws_instance" "myec2" {
data.aws_ami.std ami.id

"t2.micro"

ami
instance_type

}

The data block requests that Terraform read from a given data source.

In this case, the AMI details are read from the available ones on the aws_
ami resource, with a reference pointer called std_ami, through which it is
called inside the configuration.

The data source and name together serve as an identifier for a given
resource and must be unique within a module.

Within the block body (between { and }) are query constraints defined
by the data source. root-device-type and virtualization-type are the query
constraints with the filtered values. They are different from managed
resources (defined with resource block) so that data resources can only
perform read operations for the resource, whereas managed resources
perform all CRUD operations.

Each data resource is associated with a single data source, specifying
the kind of object it reads.

Most of the data source arguments specified within data blocks are
specific to the selected data source. These arguments can make full use
of expressions and other dynamic HCL features. However, there are some
meta-arguments that are defined by Terraform and apply across all data

sources.

72

https://www.terraform.io/docs/configuration/expressions.html

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

Backend Configuration

The backend in Terraform determines how the state is loaded and how

an operation such as apply is executed. This abstraction enables non-

local file state storage and remote execution. The most common way

to configure the backend is to be on a remote site, making it possible

for multiple users to work on the same code. The following are the key

benefits of using the backend.

Team collaboration: Since backends are managed

on a remote site, multiple users can work on it, which
reduces time and effort. Locks are used for preventing
corruption, and versioning is enabled to keep multiple
copies of a code, maintaining a which tracks progress
for everyone.

Preventing sensitive data exposure: State is retrieved
from the backends on demand and is only stored in
memory. If a backend such as Amazon S3 is used, then
the only location the state ever is persisted is in S3.
There is no risk of sensitive data being exposed.

Remote operations: In a large infrastructure,
terraform apply can take along time, so Terraform
supports remote operations, making the code run on
its own. With locking, different environments can be
maintained at the backend.

Backends are configured with a nested backend block within the top-

level Terraform block, as shown in Listing 3-25.

73

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

Listing 3-25. Backend Configuration

terraform {
backend "s3" {
bucket = "backend bucket"
key = "./key"
region = "us-east-1"
}
}

Here S3 object storage is leveraged as a backend provider for the state

file. Note that there can only be one backend per configuration, and the
backend block cannot refer to named values like input variables, locals, or
data source attributes.

Backend Types

Backend types are usually grouped into two categories.

o Standard: State management and functionalities in
state storage and locking. Examples of a standard
backend include S3 bucket, Consul, Azure RM, etcd,
Manta, Kubernetes, and GCS.

o Enhanced: Everything in Standard plus remote
operations. Examples of an enhanced backend are local
and remote.

By default, Terraform does not have any backend. It uses the current
working directory as the local backend for storing state files in a simple
format.

The local backend stores the state on the local filesystem, locks that
state using system APIs, and performs operations locally. This is the
default backend.

74

https://www.terraform.io/docs/backends/state.html
https://www.terraform.io/docs/backends/operations.html
https://www.terraform.io/docs/backends/operations.html

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

The remote backend stores the Terraform state and may run
operations in Terraform Cloud. When using full remote operations,
terraform plan or terraform apply can be executed in Terraform Cloud’s
run environment, with log output streaming to the local terminal. Remote
plan and apply use variable values from the associated Terraform Cloud
workspace. Terraform Cloud can also be used with local operations, in
which case the only state is stored in the Terraform Cloud backend.

The arguments used in the block’s body are specific to the chosen
backend type; they configure where and how the backend stores the
configuration’s state, and in some cases, configures other behavior.

Backend Initialization

Whenever a configuration’s backend changes, terraform init mustrun
again to validate and configure the backend before you can perform any
plan, apply, or state operations. A simple copy/paste of the .tfstate file
can also be done, but a backup should be created to manage any adverse
situations.

Provisioners

Provisioners can model specific actions on the machine to prepare servers
or other infrastructure objects for service.

Post-provisioning tasks, which can include agent onboarding, joining
a domain, running hardening scripts, installing third-party clients for
backup, antivirus, and so forth, can be achieved via provisioners.

Provisioners interact with remote servers over SSH (for Linux systems)
or WinRM (for Windows). Provisioners run the scripts defined within the
configuration on the servers by taking the session for servers and passing
the script to the server, which is then available at the system booting stage.

75

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

This mechanism is analogous to a user data construct in other public
cloud platforms.

Now let’s review the code snippet shown in Listing 3-26. The local-exec
provisioner requires no other configuration, but most other provisioners
must connect to the remote system using SSH or WinRM. A connection
block must be included so that Terraform knows how to communicate
with the server.

Listing 3-26. Provisioners Use Case

resource "aws_instance" "web" {
...

provisioner "local-exec" {
command = "echo The server's IP address is
${self.private_ip}"
}
}

Creation-Time Provisioners

There are certain activities in which some action must be done on

the resource while it is being created, such as booting a server in a
bootstrapping sequence. These activities are only needed during the
creation of the server and do not require a rollback at any other lifecycle
state. In these cases, creation-time provisioners are used.

Creation-time provisioners are only run during creation, not during
updating or any other lifecycle. They are meant to perform bootstrapping
on a system.

When an error is encountered during the execution of a provisioner,
the resource state is marked as tainted. Terraform plans the destroy and
re-creates the resource on the next terratorm apply. This is necessary

76

https://www.terraform.io/docs/provisioners/connection.html
https://www.terraform.io/docs/provisioners/connection.html

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

because a failed provisioner means that all desired/required tasks
specified within the provisioners did not run, leaving the final state of the
resource different from what it should be.

Destroy-Time Provisioners

Provisioners specified with awhen = destroy condition in the provisioner
code lock are called destory-time provisioners. These provisioners are
called before the resource is destroyed in Terraform. Listing 3-27 is an
example of an aws_instance resource named web, and a provisioner is

called at the destroy state.

Listing 3-27. Destroy Time Provisioners

resource "aws_instance" "web" {
...

provisioner "local-exec" {
when = destroy
command = "echo 'Destroy-time provisioner'"

}
}

The fail behavior for the destroy provisioners is similar to create-time
provisioners (i.e., terraform will error and rerun the provisioners on
the next terraform apply). Due to this behavior, care should be taken
with destroy provisioners to be safe enough to run multiple times.

Destroy-time provisioners can only run if they remain in the
configuration at the time a resource is destroyed. If a resource block with
a destroy-time provisioner is removed entirely from the configuration,
its provisioner configurations are removed along with it, and thus the
destroy provisioner cannot run. You can use the following workaround to

overcome this issue.

77

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

1. Update the resource configuration to include count = 0.

2. Apply the configuration to destroy any existing
resource instances, including running the destroy
provisioner.

3. Remove the resource block entirely from
configuration, along with its provisioner blocks.

4. Apply again, at which point no further action should
be taken since the resources were already destroyed.

A destroy-time provisioner within a resource that is tainted cannot run.
This includes resources that are marked tainted from a failed creation-time
provisioner or tainted manually using terraform taint.

Multiple Provisioners

In some scenarios, multiple actions need to be executed on the resource.
In such cases, multiple provisioners can be specified in a single resource
code (as shown in Listing 3-28).

Multiple provisioners are executed in the order they are defined in the
configuration file. Only the provisioners that are valid for a given operation
are run. The valid provisioners are run in the order they are defined in the
configuration file.

Listing 3-28. Multiple Provisioners

resource "aws_instance" "web" {
...

provisioner "local-exec" {
command = "echo first"

78

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

provisioner "local-exec" {
command = "echo second"

Types of Provisioners

There are two prominent types of provisioners: generic and vendor.

Generic Provisioners

Generic provisioners are built-in provisioners provided by Terraform. They
include file, local-exec, and remote-exec.

File Provisioners

File provisioners copy files from the machine executing Terraform to the
newly created resource. A file provisioner supports both SSH and WinRM
type connections, as shown in Listing 3-29.

Listing 3-29. File Provisioner

provisioner "file" {
source = "/etc/demo.txt"
"/usr/demo.txt"

destination

The file provisioner copies the contents of the /etc/demo.txt directory
to the /use/demo.txt destination inside the Terraform configuration file.

79

https://www.terraform.io/docs/provisioners/connection.html

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

Note A file provisioner can upload a complete directory to a remote
machine. Make sure the destination directory already exists. Use

a remote-exec provisioner before the file provisioner to create the
directory if you need to. If you use the winrm connection type, the
destination directory is created if it does not already exist.

Local-Exec Provisioners

The local-exec provisioner invokes a local executable after a resource is
created, as shown in Listing 3-30. This process is on the machine running
Terraform, not on the resource, and there is no guarantee that it is in an
operable state.

Listing 3-30. Local Exec Provisioner

resource "vsphere virtual _machine" "tfe-resource2" {
name = "XXXXXXXX"
resource code

provisioner "local-exec" {

command = "echo ${data.vsphere datastore.datastore.d} >>

datastoreid.txt"

}
}

Interpreters can be specified for a command to be executed with
Terraform, as shown in Listing 3-31.

80

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

Listing 3-31. Local-exec with Interpreter

example" {
provisioner "local-exec" {
command = "Get-Process > getprocess.txt"
interpreter = ["PowerShell", "-Command"]

}
}

resource "null resource

Remote-Exec Provisioners

The remote-exec provisioner invokes a script on a remote resource after it
is created, as shown in Listing 3-32. It can be used to run a configuration
management tool, bootstrap into a cluster, and so forth. The remote-exec
provisioner supports both SSH and WinRM type connections.

Listing 3-32. Remote-exec Provisioner

provisioner "remote-exec" {
inline = [
hostnamectl set-hostname test
]
}
}

Vendor Provisioners

Vendor provisioners allow third-party software vendors to configure
and run the respective client on remote machines. Examples of
vendor provisioners include chef, habitat, puppet, and salt-masterless

provisioners.

81

https://www.terraform.io/docs/provisioners/connection.html

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

Chef Provisioners

The chef provisioner, supported by SSH and WinRM connections, is
responsible for installing and configuring the chef client on a remote
resource. To use a specific type chef of provisioner, there are a few
prerequisites that must be fulfilled. Listing 3-33 is a sample chef

provisioner configuration.

Listing 3-33. Chef Provisioner

resource "aws_instance" "webmachine" {

...

provisioner "chef" {
attributes _json = <<EOF
{
"key": "value",
"app”: {
"cluster1": {
"nodes": [
"webserver1",
"webserver2"

environment
client_options

" default"
["chef license 'accept'"]

run_list = ["cookbook: :recipe"]
node_name = "webserver1"
secret_key = "${file("../encrypted data_bag secret")}"

82

CHAPTER 3 UNDERSTANDING TERRAFORM PROGRAMMING CONSTRUCTS

server_url = "https://chef.company.com/organizations/
orgl"

recreate client = true

user_name = "bork"

user_key = "${file("../bork.pem")}"

version = "15.10.13"

If you have a self signed cert on your chef server change
this to :verify none
ssl verify mode = ":verify peer"

Summary

This chapter covered the main concepts of HCL, Terraform’s programming

language. We learned how to leverage it while composing automation code.
The next chapter includes hands-on exercises using Terraform CLI to

automate service provisioning on a public cloud like GCP and Azure.

83

CHAPTER 4

Automating Public
Cloud Services Using
Terraform

Previous chapters discussed using Terraform to automate AWS service
provisioning using Terraform. This chapter uses hands-on exercises
for automating Azure and GCP cloud services through Terraform. The
following are the key topics covered in this chapter.

e Automating the GCP public cloud using Terraform

e Automating the Azure public cloud using Terraform

Automating the GCP Public Cloud Using
Terraform

Before starting with Google Cloud Platform (GCP) automation using
Terraform, we need to create a GCP account. The following explains
how to create a GCP account and the service account used to integrate
Terraform with GCP.

© Navin Sabharwal, Sarvesh Pandey and Piyush Pandey 2021
N. Sabharwal et al., Infrastructure-as-Code Automation Using Terraform, Packer,
Vault, Nomad and Consul, https://doi.org/10.1007/978-1-4842-7129-2_4

https://doi.org/10.1007/978-1-4842-7129-2_4#DOI

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

The primary prerequisite for signing up with the platform is a Google
account or any account configured with GSuite (now known as Google
Workspace). GCP uses Google accounts for access management and
authentication.

Note If the account is already signed in, you are directly redirected
to the GCP cloud console.

Enter https://cloud.google.comin the browser and create a Google
Cloud account with your Google account (see Figure 4-1).

Tems of Service

= |whnmeumwummmarmmumu
sarvicn of wey spplioatls services el AP

AGRER AND CONTIMNUE.

Figure 4-1. Google Cloud Platform

If you are eligible for the free tier, you are prompted for your account
information (see Figure 4-2).

86

https://cloud.google.com

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

€ 3 0O @ £ hitps/consobe cloud google.comfroetrisls

Try Google Cloud Platform for free

Step1of2

country

India -

Terms of Service
[0 1 have read and agree to the Google Cloud Platform Free Trial Terms

of Service.

Fiequined 82 continas

CONTINUE

Figure 4-2. GCP free tier registration step 1

Select your country, agree to the Terms of Service and click on the

Access to all Cloud Platform Products

ything d and run your apps,
websites and services, including Firehase and the
Google Maps AP,

$300 credit for free

Sign up end get 5300 to spend on Google Cloud
Platform over the next 12 months.

No auto-payment after free trial ends

W sk you for your credil card 1o make sure you're
ot & robot, You won't be changed unkess you turn on
automatic biling now or anytime dusing yous free
trial. Either way, you still get $300 in credit

Agree and Continue button. This takes you to the next step (see Figure 4-3),

where you create and select your payment profile. Provide the required

billing information however auto-debit does not happen unless you

manually upgrade it (see Figure 4-3).

87

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

Try Google Cloud Platform for free

Step 2 of 2

Payments profile (O

Choose the payments profile that will be associated with How you pay

this account or ransaction. A payments profile is shared

and used across all Google products. E W —

2 You pay for this service on a regular
o T PO 100 T 00 TR Y monthly basis, via an automatic charge
PR R when your payment is due

inf
e e Payment method (©

O Accounttype ©

& Mastercard * 5 v

B Taxinformation

Bl MNameandaddress & START MY FREE TRIAL

Figure 4-3. GCP free tier registration step 2

Google offers a free trial (worth $300) to everyone. It can be spent over
12 months, which is sufficient to explore all the exercises in the book and
evaluate GCP further. Once you have specified all the details, click the Start
My Free Trial button.

It takes a while for the registration to complete. Once the necessary
validations are done, you are redirected to the Google console, and you are
ready to start.

Now let’s create the project for this exercise. A project is essentially
a container for regrouping all IT and non-IT resources connected to a
specific cloud project. Every project is identified by a specific parameter
(see Table 4-1).

88

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

Table 4-1. Project Parameters

Parameter Description

Name Identifies and describes a project. The name is only for user
reference and can be changed at any stage. The free tier allows you
1o create 24 projects.

Project ID A unique string for identifying the project globally. It is created
starting with the project name. Project ID is editable and can be
changed. To create a project ID, you can use any lowercase letter,
number, and hyphens. The only requirement is the uniqueness of
the name. After this is entered, it is no longer possible to change it.

Project A parameter that is autogenerated by GCP. You cannot manage or
Number change this number.

To create a new project, click the Create a New Project as shown in
Figure 4-4.

Select a project [3 NEWPROJECT
Q Search projects and folders
Figure 4-4. New Project screen

On the Select Organization drop-down list at the top of the page, select
the organization that you want to create a project in. If you are a free trial
user, skip this step because this list does not appear. Click Create Project.

In the New Project window, enter a project name and select an

applicable account (see Figure 4-5).

89

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

= Google Cloud Platform

New Project

Project name *
My Project 99157

Project ID: basic-formula-267506. It cannot be changed later.

Location *
B No organisation

Parent organisation or folder

CREATE CANCEL

Figure 4-5. New Project

EDIT

BROWSE

Remember the project ID, a unique name across all Google Cloud

projects. It is referred to later as PROJECT_ID.

When you've finished entering your new project information, click

Create. New Project is selected and appears as shown in Figure 4-6.

= Google Cloud Platform 2 My First Project «

DASHBOARD ACTIATY RECOMMENDATIONS

[" . ean more

8¢ Project info E I APIs
Project nome
My First Project
Proestio

conty-student 790205 |

Prosect numbir \ I 1| |
|

267044846487 | || - |

ADD PECPLE TO THIS PROJECT I /1

=3 Goto project settings

& Resources

= Swage
1 bucket

Figure 4-6. New Project view

90

cusToMm

DISAMISS

& Google Cloud Platform status

Al serdces normal

= GotoCloud status deshboard

& Billing
Estemated charges INR €0 00
For the biling period Oct 1 - 14, 2000

<> view detsdled charges

== Monitoring i

547 up alerting polkcis

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

To have programmatic access for Terraform to access GCP services,
a service account must be created. This service account provides a
credentials file which will be used in a Terraform configuration file to
authorize access to the GCP environment. The following steps explain how
to create a service account.

Navigate to the IAM service from Home (see Figure 4-7) and click the
Service Accounts option.

Figure 4-7. Navigating through dashboard to IAM

Click the +Create Service Account button to create a service account,
as shown in Figure 4-8.

loud Platform

‘H

ACCOUNT i DELETE SHOW INFO PANEL
2 M - .
Service accounts for project "My First Project
[:] Identity & Crganization A BTacE SCSTUR MErTSens & uch Ergre vids, App Lngne ppa, of sYstems funfeng oulsde Googie. Loarm mane sbout
[ETRT————
% Policy g tn Iiatures, Bmen 5 matimae LAM Grases, key sroatan’ pladd, o B crasten of serace
Secourts entrsly. Lasm miey about servios scooyml orgenizaiion policies.
@ Oeganiation Polcies
0 Service Accounts W Filter toble. P -
* Lab 0O e Suns nama Daseription Koy D Astiens
O =8 267064846461 [Comeute 6a4ebedeRIEbATbI6aTcbod2e Sdedaced
& Setings COMPUILHEHOPL GRONICEICOT COm Engine
defanit
@ Privecy & Security senvice
cooun!
B ity s sty 0O =3 estésgeniyshudent- (-] test BOICBA9 7Raa0dIde SILT750%ectb 1 Bl §

HI05:

com

Figure 4-8. Create service account

91

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

Provide a name and description and click the Create button, as shown

in Figure 4-9.

Google Cloud Platform 3= My First Project « ©Q, Search products and resc

Q@

e & € B @ F O 5

L]

1AM & Admin

LA
Identity & Crganization
Policy Troubleshooter
COvganizaticn Poiicies
Service Accounts
Labels

Setlings
Privacy & Security

Identity-Aware Progy

Audit Logs

Create service account

@ Service accountdetails @) Grant this service account access to project (optional)

©) Grant users sccess 1o this service account (cptional)

Service account details

Sarvice accounl name
test

Bisplay name for this senvice account
Service account I
Test-391 orafty-sludent- 290205 iom gsenviceaccountcom X (Y

SATVICE BCCOUNT CSCTITNoN
[Atest service aceount]

Describe what this service acoount will do.

CREATE CANCEL

Figure 4-9. Service account Name details

s

D Hll

e & € B @ F O B

In the Roles tab, select Project Editor, as shown in Figure 4-10.

Google Cloud Platform 4 [

1AM & Admin

]
ety & Crganization
Py Troutleshoater
Organization Policies
Serves Accourts
Labels

Setlings

Privacy & Securty

c
Project = Erowser
e e unt access to project (optional)
‘ Access Context Ma. Owrer
Actions awer
Al Notebooks
S ncroid Management
G Aﬁﬂmmy sssion o
< v
L MANAGE AOLES W

+ ADD ANOTHER ROLE

Figure 4-10. Service account role mapping

Navigate to the Keys section and click the Add Key button to create a

key (see Figure 4-11).

92

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

= Goog
B 1AM & Admin & test Feor woaeE
e qua t
viss
© Identity & Organiration
A, Poiky Troubleshooter Service account status
Drsabisng rinr acsount ohows you o poic
O Organization Pobcies
@ Azcoust cusreey sctive
] Service Accounts
DISABLE SERVICE ACCOUNT
% Labels
v SHOW DOMAIN-WIDE DELEGATION
& Setings
Keys
° h > Add 8 new ki pair of upload a pubile key certificate f mmednngmnakmeau
= note that public certificates need 1o be in RSA_XS09_PEM formet | [
W idensty Aware Prosy ot
= Foes
ADD KE
= Aucitlogs

Figure 4-11. Service account key

Download and save the credentials file in a .json or .p12 format. This
credentials file will be used to integrate Terraform with GCP.

In previous chapter we had installed Terraform. Now let’s begin by
creating GCP services using Terraform. Figure 4-12 shows an architecture
diagram of the services provisioned using Terraform. The basic
infrastructure consists of a VPC, a subnet, an instance, and GCS.

) Google Cloud Platform

e 10.0.0.028 e
ra

“loud
irewall Rules

Ingress
IP-0.0.0.0
Port-22

Figure 4-12. Lab use-case architecture

93

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

Creating a VPC and Subnet with Terraform

Clone the files from the GitHub repository used in this exercise by using
the following command.

git clone https://github.com/dryice-devops/Terratorm-GCP-
UseCase-Automation

We used a Google provider and the service account credentials created
in the previous section (see Listing 4-1).

Listing 4-1. Provider.tf

variable "project" {

type = string
default = "your project id"
description = "GCP Project to be used for creating resources"

}

Listing 4-2 creates the VPC with “test-vpc” as the name and a subnet
called “test” The variables are defined in vars.tf.

Listing 4-2. Vars.tf

variable "vpc_name" {

type = string

default = "test-vpc"

description = "VPC for creating resources”
}
variable "region" {

type = string

default = "us-east1”

description = "Region for vpc"

}

94

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

variable "subnet name" {
type = string
default = "test"
description = "Name of the Subnet to be Created"

}

Listing 4-3 shows the content of main.tf, which contains the logical
code to create the network and subnetwork.

Listing 4-3. Main.tf

provider "google" {

project = var.project
file("HHHHH#H#HHHHHAHE . json") // your
credentials.json file

credentials

resource "google compute network" "vpc" {

name = var.vpc_name
auto_create subnetworks = "false"
}
U
Creating the Subnet
B o o o o o oo

resource "google compute subnetwork” "subnet" {
name

var.subnet _name

ip _cidr_range = "10.2.0.0/16"

network = var.vpc_name

depends_on = ["google compute network.vpc"]
region = var.region

}

95

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

This example creates a VPC and a subnet that keeps the subnet’s
autocreation as false. test-vpc has a subnet called test-subnet, in which the
dependency on the VPC is mentioned by depends_on.

The name of the VPC network and subnetwork are displayed on the
output screen with the help of the output.tf file (see Listing 4-4).

Listing 4-4. Output.tf

output "network name" {

value = google compute network.vpc.name
description = "The name of the VPC being created"

}

output "subnets" {
value = google compute_subnetwork.subnet.name
description = "The created subnet resources"

}

Run terraform init as shown in Figure 4-13. It is a good practice to run
terraform plan before running terraform apply because it provides a skeleton
view of what is to be created and how they are dependent on each other.

[avinaw.sharmaldrylcelabs.comémycloudU2lb compute]$ terraform 1ni
Initializing the backend...
Initializing provider plugins...

The following providers do not have any version constraints in configuration,
so the latest version was installed.

To prevent automatic upgrades to new major versions that may contain breaking
changes, it is recommended to add version = "..." constraints to the

corresponding provider blocks in configuration, with the constraint strings
suggested below.
* provider.google: wversion = "-> 3.40"

Terraform has been successfully initialized!

n working with Terraform. Try mning "terraform plan

Figure 4-13. GCP Terraform code init

96

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

Creating a Virtual Machine with Terraform

The configuration in Listing 4-5 creates an instance using the Google
compute engine service. To create a compute engine, you need to mention
the parameters shown in vars.tf. In GCP, passing the SSH keys is not passed
like the other cloud providers; instead, it is passed as metadata. Also, the
firewall rules are attached to the compute engine through tags. Finally,

the web server IP is fetched as the output value. Make sure that you use a
different directory for each GCP service to avoid any errors while running
terraform init, plan, and apply.

Listing 4-5. Vars.tf

variable "machine-type" {
type = string
default "ni-standard-1"

description = "Disk to be snapshotted"
}
variable "zone" {

type = string

default = "us-easti1-c"

description = "Input from the user"
}
variable "region" {

type = string

default = "us-east1"

description = "Input from the user"
}

97

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

variable "image" {

type = string
default = "centos-7-v20200910"
description = "Input from the user"

}

The main.tf file contains the operational logic to create the compute
engine and firewall rule to connect the virtual machine, as shown in
Listing 4-6.

Listing 4-6. Main.tf

provider "google" {
project = var.project
credentials = file("###HHHH#HHHHH##. json") // credentials.
json to be used here

}

resource "google compute instance" "default" {
name = "test"
machine_type = var.machine-type
zone = var.zone
allow stopping for update = true

["ssh"]

labels = {
environment = "test"

tags

project = "test"

}

98

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

boot disk {
initialize params {
image = var.image
}
}

network interface {
network = "default”

access_config {
// Ephemeral IP

}

metadata = {
ssh-keys =
}
}

allow ssh traffic

resource "google compute firewall" "allow-ssh” {
name = "allow-ssh"
network = "default"

"your ssh keys to login"

allow {
protocol = "tcp"
ports = ["22"]
}

source_ranges = ["0.0.0.0/0"]
target tags = ["ssh"]
}

99

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

The compute engine public IP is displayed on the output screen with
the help of the output.tffile (see Listing 4-7).

Listing 4-7. Output.tf

output "webserver ip" {
value = google compute instance.default.network
interface.0.access_config.0.nat_ip

}

Now run terraform init, plan, and apply, as shown in Figure 4-14.
The output is shown in Figure 4-15.

Figure 4-14. GCP Terraform code plan

100

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

Enter a value: yes

poogle_compute_inatance.defanlt: Creating...
oogle compute instance.default: Still creating... [10z elapsed)
compute_inatance.default: Creation complete after 18s [id-projects/crafty-atudent-250205/zcones/us-eastl-c/instances/test]

pply complete! Resources: 1 added, 0 changed, 0 destroyed.
utputs:
cbserver ip = 35.227.31.206

Figure 4-15. GCP Terraform code output

After running terraform apply, let’s verify the virtual machine
instance configuration on the GCP console. Navigate to the VM instance
pane (see Figure 4-16) to verify the provisioned instance.

Google Cloud Platform s DryleePOC Q, Search products and resources
{EF Compute Engine VM instances
Virtusl machines -~
- Columns.
B vMinetances
Nume Tone Rpcnmmendasion 0 use by Irtwenal 1P Fuzecnal 1P Cannse:
[mstance templates
Lo ¥ Increase perf. dryicewqal058--nich 34542270 ROP ~
dryicewqal088 wesila (10.188.0.43) (micO)
Sclo-tenant nodes i
O kafka 3 16.128.15.193 (nicO) None
@ Machine images centrall
o i 10.128.15.195 (nicO) Hone
& T maschine 02 centrall-a
& Migrate for Compute Engi_ @ test us 16.142.0.59 inic0) 3519552228 EET
castl-c
B8 Committed use discounts O et = 10.8.16.6 (ke Mone B -
Wndows- castl-b
Sharnnn P instamced

¥ mMarketploce

Figure 4-16. GCP console-level validation of VM instance

Creating a GCS Bucket with Terraform

Listing 4-8 creates a GCS bucket. We provide all the input variable details
in the vars.tf file shown in Listing 4-9. The provider.tf file contains the
project details.

101

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM
Listing 4-8. Provider.tf

variable "project" {

type = string
default = "your project id"
description = "GCP Project to be used for creating resources”

}

Listing 4-9. Vars.tf

variable "name" {

description = "The name of the bucket."
type = string
default = "terrahashi"

}

variable "location" {
description = "The location of the bucket."
type = string
default = "us-east1"

}

variable "storage class" {
description = "The Storage Class of the new bucket."
type = string
default = "STANDARD"

}

variable "labels" {
description = "A set of key/value label pairs to assign to
the bucket."
map(string)
null

type
default

102

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

variable "bucket policy only" {

description = "Enables Bucket Policy Only access to a bucket."
type = bool
default = true

}

variable "versioning" {
description = "While set to true, versioning is fully enabled
for this bucket."
type = bool
default = true
}

variable "force destroy" {
description = "When deleting a bucket, this boolean option
will delete all contained objects. If false,
Terraform will fail to delete buckets which
contain objects.”

type = bool
default = false
}
variable "retention policy" {
description = "Configuration of the bucket's data
retention policy for how long objects in
the bucket should be retained."
type = object({
is locked = bool
retention period = number
1)
default = null
}

103

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

variable "encryption" {
description = "A Cloud KMS key that will be used to encrypt
objects inserted into this bucket"

type = object({
default_kms key name = string
1)
default = null
}

The main.tf file keeps the logical configuration of the components used
to provision GCS with its retention policy and lifecycle rule, as shown in
Listing 4-10.

Listing 4-10. Main.tf

provider "google" {
project = var.project
credentials = file("###HHHHHHHHAHHHHHHAHERI json") // your
credentials.json to be used here

resource "google storage bucket" "bucket" {

name = var.name
project = var.project

location = var.location

storage _class = var.storage class
uniform_bucket level access = var.bucket_policy only
labels = var.labels

force destroy = var.force destroy

104

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

versioning {
enabled = var.versioning

}

dynamic "retention policy" {
for_each = var.retention policy == null ? [] : [var.
retention policy]

content {
is_locked = var.retention policy.is locked
retention period = var.retention policy.retention period
}
}
dynamic "encryption" {
for_each = var.encryption == null ? [] : [var.encryption]
content {

default_kms key name = var.encryption.default kms key name

}
}

lifecycle rule {
action {
type "SetStorageClass"
storage class = "NEARLINE"
}
condition {
age = 7

}

}
lifecycle rule {

action {

type
storage class

}

"SetStorageClass"
"COLDLINE"

105

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

condition {
age = 30
}
}

The output.tf file displays the bucket name with information about its
specifications and configurations (see Listing 4-11).

Listing 4-11. Output.tf

output "bucket" {
description = "The created storage bucket"
value google storage bucket.bucket

Run terraform init, plan, and apply to create the GCS bucket. The
output is shown in Figure 4-17.

106

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

 bucket.bucket: Creating...
3 Creation complete aft

er 43 [id=terrazion)

Figure 4-17. GCP Terraform code output

After running the three use cases for the VPC/subnet, virtual instance,
and GCS bucket, you can execute terraform destroy in the respective
code directories to clean all the resources, as shown in Figure 4-18.

107

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

Figure 4-18. GCP terraform destroy

Automating the Azure Public Cloud Using
Terraform

To use services on the Microsoft Azure cloud, you must have an Azure
account. This section explains how to create a Microsoft account for
Terraform integration. Microsoft Azure offers a free 30-day trial for all new
accounts.

Navigate to https://azure.microsoft.comand create a free account
to begin using Azure cloud services.

Click the Start Free button to begin the free trial subscription. Enter
your email address and password.

Enter your information in all the fields required to create the account,
and then click Next (see Figure 4-19).

108

https://azure.microsoft.com

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

Try Azure for fre

Follow th C ask for these details to protect your
account mation. There are ne upfront charges or fees.

1 About you -~ What's included

° 12 months of free products
Country/Region @ Gat frew access to popular products

United Kingden

fer 12 months after you
your sccount 1o pay-as-y

Choote the location that matches your billing address You
camnot change this selection later. If your country is nct

istod, the offer is not available in your region. Leam Mors pricing.

First nane: o £150 credit _
Usir your £150 credit 1o expeviment
with any Azure service in your first
3 dayri—taeyond the free product
amounts

Last name

° 25+ abways-free products
mare than

Ermail address ©

Company VatlD @
[notified and have the chance to
upgrade and start paying oely tor

the nesources you use beyond the

Figure 4-19. Provide details for account creation

Confirm your identification via phone call or text message per
the information provided in the previous step. Enter your credit card
information for verification, as shown in Figure 4-20.

109

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

l 3 Identity verification by card

W ask for your credit card number to verify your identity and to keep out

spam and bots.
Vou won't ba charged unless you upgrade.

W sccent the folowing cands:
wsa B2
Cardhcider Name

Card e
Expires.

MM Y
o

Whatie 3 OV

Agdruss e 1

Acduss e 2 (Cporal)

CountryRugion

United Kingaom

for 12 months atter you upgrade
YOUF BECOUNE BG BaY-88-yOU-GO
prcing

£150 credit

e your £150 rcdt
with any Azure son
30 days—beyond the free preduct
amzunts

25+ always-free products

Take advartage of mone then 25
products, inchading sevverle
containes, and artificial intedigence,
that are abeys Fren. Gat thase in
your first 30 days, ond abveys

ance you choose o upgrade

No sutomatic charges

You woert be changed unless you
choose 10 upgrade. Sefore the end
of your first 30 days, you'll be
atified and Fave the chance 19
upgrade and stan paying only for
the resources you Lse beyond the
ot HOURTS

Figure 4-20. Credit card information for account creation

Select the checkboxes to accept Microsoft Azure’s terms and

conditions. Click the Sign Up button to complete the account creation
process (see Figure 4-21).

110

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

Try Azure for free

Follow these steps to get started. We ask for these details to protect your
account and infarmation. There are no upfront charges or fees.

1 About you

2 |dentity verification by phone

3 |dentity verification by card

4 Agreement

What's included

12 months of free products
Got pular products

pricing

days—beyond the free product
SmoRNES.

o 25+ always-free products
n

Taice advantage o

your first 30 days, and ahways—
once you choose to upgrade.

o Mo sutomatic charges

You won't be charged unbess you

ve 10 upgrade. Before the end

st 30 days, you'll be
have the chance to
upgrae and start paying ondy for
1he MS0UTCES YOu use bayond the
free amounts.

Figure 4-21. Complete sign-up process

Navigate to https://login.microsoftonline.com to login to your

Azure account using the Azure portal.

The next step is to create an Azure service principal that integrates

Terraform with Azure. Navigate to Azure Active Directory — App
registrations and click the +New Application Registration button, as shown

in Figure 4-22.

111

https://login.microsoftonline.com

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

Microsoft Azure

Home * &l - App registrations

Create a resource

gl - App registrations

Home
o«

Dashboard

&l services O overview

FAVORITES 7 Getting started
Al Mansge
a Users
4 Groups
®E Organizational relationships

s Roles and administrators
Enterprise applications
Devices

App registrations

5 8 m B

virtual machines App registrations (Preview)

= Endpoints K Troubleshoot

+ New application regstration
(’ The preview experience for App registrations is available, Clck this banner to launch|
My apps

e

DISPLAY NAME

Figure 4-22. Creating a service principal

Provide a name and URL (test.com) for the application. Select Web

app/API as the type of application (see Figure 4-23). After setting the

values, click the Create button.

Home >

Create

Nan

e @

P

registrations > Create

O X

customauthserviceprincipal

tion type

Web app / API

® Cinn.

n URL o
http://test.com

Figure 4-23. Providing details for service principal

112

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

Once registration is completed, note the application ID and tenant ID

(see Figure 4-24). These values are used for integration.

Home > B A \pp registrations > customauthserviceprincipal

customauthserviceprincipal

Registered app
¥ settings ,# Manifest @ Delete

Application ID

Display name
001 u my g i «n Bedow b071

customauthserviceprincipal

Application type Object ID
: "l 15

Web app / API cc{ rplinls g u W] [io] ey
Managed application in local directory

Home page
customauthserviceprincipal

http://test.com

»

Figure 4-24. Service principal

Figure 4-25 shows the Azure services that we automated using
Terraform. For this exercise, we create a VNet (virtual network), subnet,
NSG, and virtual machine using Terraform. Let’s begin the exercise.

[ﬁ] e

Resource Group

E;I Public IP
S ——
=] Address

Device Client -
Virtual Machine Disk Storage

Subnet

Figure 4-25. Azure hands-on exercise

113

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

Clone the files from the GitHub repository used in this exercise by
using the following command.

git clone https://github.com/dryice-devops/Terraform-Azure-
UseCase-Automation/tree/master

You see the directory structure under the cloned directory, as shown in
Figure 4-26.

—— main.tf
— provider.tf
— vars.tf

— main.tf
— output.tf
— provider.tf
— vars.tf

— main.tf
— provider.tf
— vars.tf

3 directories, 10 files

Figure 4-26. Clone Terraform directories

Navigate to the base directory (as shown in Figure 4-26) and update
the provider.tf file’s subscription_id, client_id, client_secret, and tenant_id
fields, as shown in Listing 4-12 (using the service principal information).
These variables are being referred to the provider.tf file. Also, update the
variable value for the VNet name and resource group name and location
used for creating the VNet. Update the vars.tf file (see Listing 4-13).

114

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

Listing 4-12. Update Provider.tf File

variable "subscription id" {

type = string

default = "Enter Subscription ID"

description = "Specifies the ID of the Subscription”
}
variable "client id" {

type = string

default = "Enter Client ID"

description = "Specifies the ID of the Azure Client"

}

variable "client secret" {

type = string
default = "Enter client secret"
description = "Specifies the Client Secret"
}
variable "tenant id" {
type = string
default = "Enter Tenant ID"
description = "Specifies the ID of the Tenant"
}
variable "location" {
type = string
default = "West US"
description = "The Location/Region where the Virtual network
is created"
}

115

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

Listing 4-13. Vars.tf File

variable "vnet name" {

type = string
default = "Test"
description = "The name of the Vnet to be used in VM Scale Set"

}

Let’s review the main.tf file, which contains details of the VNet
provisioned using Terraform (see Listing 4-14). Azure Virtual Network,
or VNet, is the fundamental building block for your resources, which are
running in a private network. VNet enables many types of Azure resources
(e.g., virtual machines) to securely communicate with each other.

Listing 4-14. VNet Terraform Main.tf File
S Creating Resource group #iHHHE#HHHEHHHHHH

resource "azurerm resource group” "demo" {
name = var.rg_name
location = var.location

}
HHHEH A Creating virtual Network #iHHHHHHHHHHHHHHIH

resource "azurerm virtual network" "demo" {

name = var.vnet_name
address_space = ["10.0.0.0/16"]
location = var.location

resource group_name = var.rg_name
[azurerm_resource_group.demo]

depends_on

Run terraform init, plan, and apply to create Azure VNet. The
output is shown in Figure 4-27.

116

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

Initializing the backend...

Initializing provider plugins...

- Checking for available provider plugins...

- Downloading plugin for provider "azurerm®™ (hashicorp/azurerm) 2.32.0...

Terraform has been successfully initialized!

Plan: 2 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value: yes

azurerm resource_group.demo: Creating...
azurerm resource_group.demo: Creation complete after 4s [id=/subscriptions/3
azurerm virtual network.demo: Creating...

azurerm virtual network.demo: Still creating... [10s elapsed])
azurerm virtual network.demo: Creation complete after 1l4s [id=/subscriptiong
work/virtualNetworks/demo-network]

Apply complete! Resources: 2 added, 0 changed, 0 destroyed.

Figure 4-27. VNet Terraform execution

After successful provisioning, you can validate the VNet configuration
using the Azure portal (see Figure 4-28).

117

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

Device e Type T4 IP Address T Subnet

Figure 4-28. VNet validation from Azure portal

Now that our resource group and VNet have been created, let’s begin
creating a subnet and NSG using Terraform.

Navigate to the network directory (as shown in Figure 4-26) and update
the var.tf file’s subscription_id, client_id, client_secret, and tenant_id fields
(see Listing 4-15), using the service principal information). These variables
are referred to in the provider.tf file. Also, update the variable value for
the subnet name, VNet name, resource group name (use the name of the
resource group used for the VNet use case), and the name and location
used to create the subnet and NSG. The NSG rule and subnet prefix sizes
are already defined in the main.tf file (see Listing 4-16). A network security
group contains security rules that allow or deny inbound and outbound
traffic from several types of Azure resources.

Listing 4-15. Vars and Provider File

variable "subscription id" {

type = string
default = "Enter Subscription ID"
description = "Specifies the ID of the Subscription”

}

118

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

variable "client id" {

type = string
default = "Enter Client ID"
description = "Specifies the ID of the Azure Client"
}
variable "client secret" {
type = string
default = "Enter client secret"
description = "Specifies the Client Secret"
}
variable "tenant id" {
type = string
default = "Enter Tenant ID"
description = "Specifies the ID of the Tenant"
}
variable "location" {
type = string
default = "West US"
description = "The Location/Region where the Virtual network
is created"
}
variable "rg name" {
type = string
default = "Test"
description = "The name of the Resource Group where the
Resource will be Created"”
}

119

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

variable "subnet name" {

type = string
default = "Test"
description = "The name of the Subnet to be used in VM
Scale Set"
}
variable "vnet name" {
type = string
default = "Test"
description = "The name of the Subnet to be used in VM
Scale Set"
}
variable "nsg name" {
type = string
default = "Test"
description = "The name of the Network Security Group to be
used to InBound and OutBound Traffic"
}

Listing 4-16. Subnet prefix and NSG definitions in Main.tf File
HHHAHHH A Creating Subnet #HHHHHHHHHHHHHHHHHEHAHHE

resource "azurerm subnet" "demo" {
name var.subnet_name
address_prefix = ["10.0.2.0/24"]
resource_group name = var.rg name

virtual network name = var.vnet name

120

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM
S Creating NSG and Rule ###HHHHHHHHEHHHHIHHHH

resource "azurerm network security group" "demo" {

name = var.nsg_name
resource_group hame = var.rg name
location = var.location
security rule {
name = "HTTP"
priority = 1020
direction = "Inbound"
access = "allow"
protocol = "tcp"
waen

source_port_range
destination port range
source_address_prefix

"80"
Il*ll

Il*"

destination_address prefix

}

tags = {
ENVIRONMENT = "Terraform Demo"
}

Run terraform init, plan, and apply to create an Azure subnet and
NSG. The output is shown in Figure 4-29.

121

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

azurerm subnet.demo will be created
+ resource "azurerm subnet”™ "demo"™ {

+ address_prefix *®10.0.2.0/24"

+ address _prefixes = (known after apply)
+ enforce private_link endpoint network policies = false

+ enforce_private_link service_network policies = false

+ id = (known after apply)
+ name = "demo"

+ resource_group_name = "demo"™

+ wirtual_network name = "demo"

}

Plan: 2 to add, 0 to change, 0 to destroy.

[Warning: “address_prefix": [DEPRECATED] Use the ‘“address_prefixes® property instead.

on main.tf line 2, in resource "azurerm subnet" "demo":
2: resource "azurerm subnet" "demo™ {

Do you want to perform these actions?
Terraform will perform the actions described above.
Cnly 'yes' will be accepted to approve.

Enter a value: yes

azurerm subnet.demo: Creating...

azurerm network_security group.demo: Creating...

azurerm subnet.demo: Creation complete after 6s [id=/subscriptions/3f853c29-f9%c0-42b|
alNetworks/demo/subnets/demo]

azurerm"ne:uorkvsecurity_group.deno: 5till creating... [l03 elapsed]

azurerm network security group.demo: Creation complete after 13s [id=/subscriptions/|
oft.Network/networkSecurityGroups/demo]

IApply complete! Resources: 2 added, 0 changed, 0 destroyed.

Figure 4-29. Subnet and NSG Terraform execution

Now that our resource group and VNet have been created, let’s extend
the code to create a public IP, network interface, and a virtual machine. We
used the VNet and subnet from other Terraform function data.

Now that the VNet, subnet, and NSG have been created, let’s create a
virtual machine using Terraform. All the configurations are defined in
the main.tf file shown in Listing 4-17. All the variables are defined in
Listing 4-18.

122

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

Listing 4-17. Main.tf
#HHHHH#E Fetch Info of existing Resources #HHHHHHHHHHHHHH#H

data "azurerm subnet" subnet {
name = var.subnet name
resource_group _name = var.rg name
virtual network name = var.vnet name

data "azurerm network security group" "nsg" {
name = var.nsg_name
resource group_name = var.rg_name

HHHHH I Create Public Ip #HHHHHHHHHHHHHEHHHHE A

resource "azurerm public_ip" "demo" {

name = var.pip_name
location = var.location
resource_group_nhame = var.rg _name
allocation method = "Static"
tags = {

ENVIRONMENT = "Terraform Demo"

}
}

HHHHH A Create Network Interface ##tHHHHEHHIHHHHHHEHHH

resource "azurerm network interface" "demo" {
name = var.network int name
location = var.location
resource_group_nhame = var.rg _name

123

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

ip_configuration {
name = "demo"
subnet_id = data.azurerm subnet.subnet.id
private ip address allocation = "Dynamic"
public ip address id = azurerm public_ip.demo.id

}
tags = {
ENVIRONMENT = "Terraform Demo"
}
}

Connect the Security Groups to the network interface

resource "azurerm network interface security group association'
"demo" {
network interface id = azurerm network interface.demo.id
network_security group id = data.azurerm_network security
group.nsg.id

}
I Create virtual Machine ##HHHHHHHHEHHHHIHHHIHEHHH

resource "azurerm virtual machine" "demo" {
name = "demo-vm"
location = var.location
resource_group_name = var.rg_name
network interface id = [azurerm network interface.demo.id]
vm_size = var.node_size

storage _image reference {
publisher = "Canonical"
offer = "UbuntuServer"
sku = "16.04-LTS"
version = "latest"

124

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

storage os disk {
name = "demoosdisk"
caching = "ReadWrite"
create option = "FromImage"
managed_disk type = "Standard LRS"

}

os_profile {
computer name = "demo-vm"
admin_username = var.username
admin_password

}

os_profile linux_config {
disable password authentication = false

var.password

}
tags = {

ENVIRONMENT = "Terraform Demo"
}

}

Listing 4-18. Vars.tf

variable "vnet name" {
type = string
default = "Test"
description = "The name of the Vnet to be used in VM Scale Set"

}

125

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

variable "subnet name" {

type = string
default = "Test"
description = "The name of the Subnet to be used in VM
Scale Set"
}
variable "nsg name" {
type = string
default = "Test"
description = "The name of the Network Security Group to be
used to InBound and OutBound Traffic"
}
variable "pip name" {
type = string
default = "Test"
description = "The name of the Public Ip for accessing VM"
}
variable "network int name" {
type = string
default = "Test"

description = "The name of the Network interface"

}

variable "node size" {

type = string

default = "Standard DS1 v2"

description = "The size of the Azure VM Node"
}

126

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

variable "username" {

type = string

default = "SU-user"

description = "The name of the user for VM Login"
}
variable "password" {

type = string

default = "#YLPRgg89"

description = "The password of the user for VM Login"
}

Run terraform init, plan, and apply to create the Azure VM, NIC,
and Public IP. The output is shown in Figure 4-30.

127

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

Plan: 4 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value: yes

azurerm public_ip.demo: Creating...

azurerm public ip.demo: Still creating... [l0s elapsed]

azurerm public ip.demo: Creation complete after lls [id=/subscriptions/3}
ublicIPAddresses/demo]

azurerm network interface.demo: Creating...

azurerm network interface.demo: Still creating... [10s elapsed]

azurerm network interface.demo: Creation complete after 1lls [id=/subscrij
etwork/networkInterfaces/demo]

azurerm network interface_securi r.y_group_associacion. demo: Creating...
azurerm virtual machine.demo: Creating..

azurerm | network interface_security group_association.demo: Creation comp]
dem/provxders/mcxosoft Network/networkInterfaces/demo|/subscriptions/31
etworkSecurityGroups/demo]

azurerm virtual machine.demo: S5till creating... [10s elapsed]

azurerm virtual machine.demo: Still creating... [20s elapsed]

azurerm virtual machine.demo: 5till creating... [30s elapsed]

azurerm virtual machine.demo: Still creating... [40s elapsed]

azurerm virtual machine.demo: Still creating... [50s elapsed]

azurerm virtual machine.demo: Still creating... [1lm0Os elapsed]

azurerm virtual machine.demo: Creation complel:e after 1lm3s [id=/subscripf
mpute/virtualMachines/demo-vm]

Apply complete! Resources: 4 added, 0 changed, 0 destroyed.
Outputs:

public_ip address_demo = 13.64.128.215

Figure 4-30. Virtual machine Terraform execution

After successful provisioning, you can also validate the virtual machine
configuration using the Azure portal (see Figure 4-31).

128

CHAPTER 4 AUTOMATING PUBLIC CLOUD SERVICES USING TERRAFORM

K2 demo-vm 2 5

* v Essential

Properties Monitoring Capabiities Recommendations Tutorials

K3 Virtusl machine B Networking

w8 0 O amE Boe

Figure 4-31. Virtual machine validation in Azure portal

After completing the exercise, be sure to clean up all resources by
executing terratorm destroy for the virtual machine, subnet, NSG, and
VNet.

Summary

This chapter provided hands-on exercises for automating Azure and GCP
services using open source Terraform.

The next chapter covers a HashiCorp Vault solution and how it
manages secrets in IaC automation scenarios using Terraform.

129

CHAPTER 5

Getting Started
with Vault

This chapter covers the core concepts of Vault.
e Introduction to HashiCorp Vault
o Understanding Vault’s logical architecture
o Understanding Vault’s security model

o Installing Vault and integration with AWS

Note In this chapter, all references to Vault are for the open source
version. Thus, features like disaster recovery, enterprise governance,
compliance, and replication across DCs are not explained because
they are associated with the Enterprise version of Vault.

Introduction to HashiCorp Vault

HashiCorp Vault is used for storing and securely accessing secrets. You
can access the secrets using API keys and passwords. Secrets are defined
as any form of sensitive credentials that need to be controlled and can be
used to unlock sensitive information. Secrets in Vault could be of any type,

© Navin Sabharwal, Sarvesh Pandey and Piyush Pandey 2021 131
N. Sabharwal et al., Infrastructure-as-Code Automation Using Terraform, Packer,
Vault, Nomad and Consul, https://doi.org/10.1007/978-1-4842-7129-2_5

https://doi.org/10.1007/978-1-4842-7129-2_5#DOI

CHAPTER 5 GETTING STARTED WITH VAULT

including sensitive environment variables, database credentials, API keys,
RSA tokens, and more.

Protecting secrets and access in automation is of primary importance.
Vault makes it easy to manage secrets and access by leveraging APIs and a
user-friendly interface. You can monitor detailed logs and fetch the audit
trail describing who accessed which secrets and when.

User authentication to Vault can either be via password or using
dynamic values to generate temporary tokens that allows a particular
user to access a secret. Policies can also be defined using HashiCorp
Configuration Language (HCL) to determine which user gets what level of
access.

The following are Vault’s key features.

o Data encryption: Vault can easily encrypt and decrypt
credentials. It provides a security configuration feature
to define encryption parameters, and developers can
store encrypted data in it without having to design their
own encryption methods.

¢ Revocation: Vault provides a default feature that
revokes credentials after a fixed duration (768 hours).
This value is configurable and can be set per user
requirements. Revocation assists in key and secret
rotation and locking down systems in the event of an
intrusion.

Note The leasing method of dynamic credentials ensures that Vault
knows each client’s secrets. This makes it possible to revoke specific
leases in any attack/hacking attempt.

132

CHAPTER 5 GETTING STARTED WITH VAULT

e On-demand secrets: Vault can generate on-demand
secrets for few methods (e.g., AWS or SQL database).
It can handle dynamic secrets, which are generated on
demand basis. A secret ID is unique for a particular user.
Dynamic secrets are more secure than static secrets,
which are predefined and shared. Vault can revoke
access when the lease expires for on-demand secrets.

¢ Renewal: Vault has a secret renewal feature. It can
revoke credentials, and end users can renew secrets
through the renew API. By attaching a lease period to
secrets, Vault has information on maximum time to
live, and after that duration, secrets are automatically
rotated.

¢ Secret management: Secret management is one
of Vault’s primary features. It can store any type of
credentials, including sensitive environment variables,
API keys, and databases. Vault allows you to take full
control of any sensitive secrets used for automating
hybrid cloud services.

Understanding Vault’s Logical Architecture

Now let’s look at the logical architecture of the HashiCorp Vault solution,
as shown in Figure 5-1.

133

CHAPTER 5

GETTING STARTED WITH VAULT

HTTP/S API

Token Store

Policy Store

Core Audit Broker
Rollback Mgr. Expiration Mgr.
8
E Path Routing Audit Device
m
System Secret . .
Backend Engine Auth Method Audit Device
Storage Backend

Figure 5-1. Vault logical architecture

The following are Vault’s key components.

Figure 5-2 shows a high-level flow between an admin or application
and Vault for accessing secrets. It is used for managing secrets; you can

The storage backend stores encrypted data/secrets.

A barrier is used for all data flows between Vault and

backend storage.

A client token verifies the identity of the end user.

A secret controls access (e.g., passwords).

An auth method authenticates the application and

users connecting to Vault.

secure your credentials with Vault.

134

CHAPTER 5 GETTING STARTED WITH VAULT

((©

6. Connect using the
credentials
1. Enable the database secret engine
2. Configure the secret engine

4. Request a set of credentials
%3. Create roles P 9
o >

admin 5. Returns a new set of credentials App

TTL = 1 hour
Renewable = true

Y

Figure 5-2. Application and Vault architecture

While applications can request secrets from Vault based on the policy
configured for access and secret management, the admin can define the
backend policies for secret lifecycle governance.

Understanding Vault’s Security Model

Vault security architecture is designed to meet the key infosec controls i.e.
confidentiality, integrity, availability, accountability, and authorized access
using authentication. Vault helps prevent eavesdropping or tampering
attempts by leveraging data at rest and transit encryption techniques. A
similar approach is used to protect data in backend storage leveraged for
secrets.

Now let’s look at the threat vector or paths of intrusion and see how
Vault helps protect secrets from such threats. Essentially, there are two
kinds of threats: external and internal.

Vault securely manages sensitive data. Its security model is leveraged
to ensure authentication, availability, and integrity to secure sensitive
data. End user or application access to data is governed by a robust
authentication and authorization model and policies to provide granular
control for security and access management.

135

CHAPTER 5 GETTING STARTED WITH VAULT

As shown in Figure 5-3, there are three different systems that are of
concern when it comes to accessing Vault.

Client

Vault API

2 aws /g .

£ oo ® 0
Encryption

Authentication Secrets

Figure 5-3. Managing secrets and protecting sensitive data

The client, an application or automation code, accesses Vault
using an API or CLI interface to access a secret. Clients use secure TLS-
based connections to verify the server’s identity and establish a secure
communication channel with Vault. The server requires that the client
provide a client token for each Vault access request in order to identify the
client. A client that does not provide its own token is not allowed any login
or secret access. Vault communicates with the backend over TLS to provide
an additional layer of security.

136

CHAPTER 5 GETTING STARTED WITH VAULT

End users sometimes worry that attackers may hack Vault’s system
data despite robust authentication and authorization features. Within the
traditional Vault systems, a major security concern is that attackers may
successfully access secret material that they are not authorized to access.
This kind of threat is an internal threat.

When a client first authenticates, an auth method verifies the
client’s identity and, in return, gets a list of associated ACL policies. This
association is primarily configured by the administrators or operators.

Figure 5-4 shows that if an application wants to communicate with
sensitive data, Vault creates a randomly generated token for authentication.

Authenticate to Vault

Return Client token

i
-«

Request a secret

Mt orp

Vault

Return a secret

Figure 5-4. App integrates with Vault data
The application sends a token upon receiving each request for
communication. Vault checks the validity of the token for communication

and generates an ACL based on the associated policies. Based on the ACL
policy rule, the application performs many actions.

Installing Vault CLI and Integration
with AWS

Let’s install HashiCorp Vault CLI and see how it works in a hands-on
exercise where we will use AWS public cloud secrets for managing secrets.

137

CHAPTER 5 GETTING STARTED WITH VAULT

Before installing Vault, you need an AWS S3 bucket to be created and
an AWS KMS service to be set up first. This is used later in another hands-
on exercise. Let’s use the same AWS account created in Chapter 2 for the S3
bucket.

Sign in to the AWS console and navigate to S3 services under Storage
and Content Delivery. Click the Create Bucket button and provide the
name and region information to create the bucket, as shown in Figure 5-5.

Create a Bucket - Select a Bucket Name and Region

A bucket is a container for objects stored in Amazon S3. When creating a bucket, you can
choose a Region to optimize for latency, minimize costs, or address regulatory requirements.
For more information regarding bucket naming conventions, please visit the Amazon 53
documentation

Bucket Name:

Region: Oregon

Set Up Logging > m Cancel

Figure 5-5. Create S3 bucket

Note While performing the hands on execercise we assume user has
KMS keys with IAM user permission to integrate with the Vault setup.

To install Vault, you need a virtual machine with the Linux operating
system. We are using CentOS for our hands-on exercise however
HashiCorp Vault also supports other Linux flavors like Ubuntu, RHEL and
Debian. Execute the following command to install the yum-utils package
used to manage the package repository on a Linux system (see Figure 5-6).

sudo yum install -y yum-utils

138

CHAPTER 5 GETTING STARTED WITH VAULT

[centos@demo ~]$ sudo yum install -y yum-utils
oaded plugins: fastestmirror

etermining fastest mirrors
pel/x86_64/metalink

* base: d36uatko69830t.cloudfront.net

* epel: download-cc-rdu@l.fedoraproject.org
* extras: d36uatko69830t.cloudfront.net

* ypdates: d36uatko69830t.cloudfront.net
base

epel

extras

updates

(1/7): base/7/x86_64/group_gz

£ f=% L B - |

Figure 5-6. Install yum-utils

Execute the following command to add the HashiCorp repository to
install Vault using the yum-config manager (see Figure 5-7).

sudo yum-config-manager -add-repo https://rpm.releases.
hashicorp.com/RHEL/hashicorp.repo

centos@demo ~]5 sude yum-config-manager --add-repo https://rpm.releases.hashicorp.com/RHEL/hashicorp.repo
loaded plugins: fastestmirror

pdding repo from: https://rpn.releases.hashicorp.com/RHEL /hashicorp.repo

prabbing file https://rpm.releases.hashicorp.com/RHEL/hashicorp.repo to fetc/yum.repos.dfhashicerp.repo
repo saved to jetc/yum.repos.d/hashicorp.repo

Figure 5-7. Add HashiCorp repository

Execute the following command to install Vault on the Linux server, as
shown in Figure 5-8.

sudo yum -y install vault

139

CHAPTER 5 GETTING STARTED WITH VAULT

[centos@demo ~]$ sudo yum -y install vault
Loaded plugins: fastestmirror

Loading mirror speeds from cached hostfile

* base: d36uatko69830t.cloudfront.net

* epel: download-cc-rdu@l.fedoraproject.org
* extras: d36uatko69830t.cloudfront.net

* updates: d36uatko69830t.cloudfront.net
hashicorp

hashicorp/7/x86_64/primary

hashicorp

Resolving Dependencies

--> Running transaction check

---> Package vault.x86 64 0:1.5.4-1 will be installed

Figure 5-8. Installation of Vault

Execute the following commands to verify Vault installation (see
Figures 5-9, 5-10, and 5-11).

vault --help

140

CHAPTER 5 GETTING STARTED WITH VAULT

[centos@demo ~]$ vault --help
Usage: vault <command> [args]

Common commands:

read Read data and retrieves secrets

write Write data, configuration, and secrets
delete Delete secrets and configuration

list List data or secrets

login Authenticate locally

agent Start a Vault agent

server Start a Vault server

status Print seal and HA status

unwrap Unwrap a wrapped secret

Other commands:

audit Interact with audit devices

auth Interact with auth methods

debug Runs the debug command

kv Interact with Vault's Key-Value storage
lease Interact with leases

monitor Stream log messages from a Vault server
namespace Interact with namespaces

operator Perform operator-specific tasks
path-help Retrieve API help for paths

plugin Interact with vault plugins and catalog
policy Interact with policies

print Prints runtime configurations

secrets Interact with secrets engines

ssh Initiate an SSH session

token Interact with tokens

Figure 5-9. Verify Vault installation

vault --version

[centos@demo ~]$ vault --version
Vault v1.5.4 (1a730771ec70149293efe91e1d283b10d255¢c6d1)

Figure 5-10. Verify Vault version

141

CHAPTER 5 GETTING STARTED WITH VAULT

sudo service vault status

[centos@demo ~]§ s
hedirecting to /bi
kv

anaging secrets”
Loaded: loaded /lib/systemd/system/vault.service; disabled; vendor preset: disabled)
Active: inactive (dead)

Docs: https://www.vaultproject.io/docs/

Figure 5-11. Verify service status

Now let’s access the Vault UL Before that you need to update the Vault
config file and disable HTTPS access for the lab exercise. This feature is
typically enabled in a production or customer environment however in
this lab exercise we are disabling the feature to avoid any certificate errors
in HTTPS-based access.

Navigate to /etc/vault.d path and edit the vault.hcl file by
uncommenting the HTTP listener block and commenting out HTTPS
listener block (see Figure 5-12).

HTTP listener

Listener "tcp" {
address = "9.0.0.0:8200"
tls_disable = 1

}

HTTPS listerner
listener "tcp” {
address = "0.0.0.0:8200"
tls_cert_file = "/opt/vault/tls/tls.crt”
tls_key file = "/opt/vault/tls/tls.key"
}

Figure 5-12. Disable HTTPS listener

Save the /etc/vault.d/vault.hcl file after making the changes, and
restart Vault. After restarting the Vault service, access the Ul at http:// <IP
address of your Vault server>:8200/ui/vault/init (see Figure 5-13).

142

CHAPTER 5 GETTING STARTED WITH VAULT

&« [S) D Not secure | 54.145.224.244:8200/ui/vault/init

Let's set up the initial set of
master keys that you’ll need in
case of an emergency

Key shares

Key threshold

Figure 5-13. Check Vault Ul

Execute the following commands to set the VAULT_ADDR variable and
check the Vault server status (see Figure 5-14).

export VAULT ADDR="http://127.0.0.1:8200'
vault status

[centos@demo ~]$ export ?AULT_RDDR='E::;:EJ;:".}.&.;:52}3'
[centos@demo ~]$ vault status
'f:',' alue
Seal Type shamir
pInitialized false
Sealed true
Total Shares
Threshold
Unsea rogress /0
Unseal Nonce n/a

ersion n/a

HA Enabled false

Figure 5-14. Check Vault status

143

CHAPTER 5 GETTING STARTED WITH VAULT

Now let’s integrate the S3 bucket created earlier as a backend for
Vault. Navigate to /etc/vault.d path and edit the vault.hcl file to provide
information on the AWS S3 bucket name, the bucket region, KMS ID, and
the access-secret keys (see Figures 5-15(a), 5-15(b), and 5-16). Save the file
and restart Vault.

#Example of vault.hcl file
ui = true

#mlock = true
#disable mlock = true

Storage "file" {
Path = "/opt/vault/data"

[centosfdemo vault.d]$§ vi vault,hcl
ui = true
storage {

path =

¥

Figure 5-15(a). Navigate to /etc/vault.d and edit vault.hcl file

storage "s3" {
access_key = "Enter Access Key"

secret key = "Enter Secret Keys"
bucket = "Add bucket name"
region = "Enter Aws Region"

144

CHAPTER 5 GETTING STARTED WITH VAULT

-

storage
access_key =
secret_key
bucket =
region

I

Figure 5-15(b). Update config file for S3

storage "awskms" {

access_key = "Enter Access Key"
secret key = "Enter Secret Keys"
region = "Enter Aws Region"
kms_key id = "Enter KMS ID"
}
seal {

access_key =
secret_key =
region =

Ems_key_id =

Figure 5-16. Update config file with KMS values

Execute the following command to check Vault status. It now displays
an AWS KMS recovery seal, as shown in Figure 5-17.

vault status

145

CHAPTER 5 GETTING STARTED WITH VAULT

[centos@demo ~]§ vault status
Key Value
Recovery Seal Type awslmns
Initialized false
Sealed true
Total Recovery Shares 0
Threshold 0
Unseal Progress 0/0
Unseal Nonce n/a
Version n/a
HA Enabled i false

Figure 5-17. Check Vault status

Execute the following command to initialize the Vault server, as shown
in Figure 5-18. Copy the root token returned as an output of the command.
We use this value later in the exercise.

vault operator init -recovery-shares=1 -recovery-threshold=1

[centos@demo ~]§ vault operator init -recovery-shares=l -recovery-threshold=l
Recovery Key 1l: thckdbEaouMj3f0zZZlohfwMFwJePf5béamKgEpRow=
Initial Root Token: s.scjzhjIrPHHgTwKO4tTMLBGZ

Success! Vault is initialized

Recovery key initialized wich 1 key shares and a key threshold of 1. Please
securely distribute the key shares printed above.

Figure 5-18. Initialize Vault

Now execute the following command to verify that the initialization
status is true and the sealed status is false (see Figure 5-19).

vault status

146

CHAPTER5 GETTING STARTED WITH VAULT

[centos@demo ~]§ wault status

Key Value

Recovery Seal Type shamir

Initialized true

Sealed false

Total Recovery Shares 1

Threshold 1

Version 1.5.5

Cluster NHame vault-cluster-77feSaec
Cluster ID 32a06084-8a78-57f1-d356-6laad05d324d
HA Enabled false

Figure 5-19. Check Vault status

After the initialization is completed, you can navigate to the AWS
console and verify that Vault objects are now stored in the S3 bucket, as
shown in Figure 5-20.

e

55 Entes to search. Press ESC 1o clear

US East (N. Virginia) <

Viewing 1t 3
Name + Last modfied = Size - Slorage class *
& coe
& logcal
& o

Figure 5-20. S3 bucket with initialized Vault objects

Log in to Vault using the root token generated in the previous step by
executing the following command, as shown in Figure 5-21.

vault login <Your root token>

8.sc)zh]) IrPHHgTWHKO4t THLBGZ
token information displayed below

. You do NOT need to run "vault login®
sts will automatically use this token.

h3 IrPHHQTWHOGt THLBGL
AJOPXuJEMDIOQcJz34FHvhUYK
i

false

["rooc™]
identity_policies n
|pclicies ["rooc”]

Figure 5-21. Vault login

147

CHAPTER 5 GETTING STARTED WITH VAULT

Execute the following command to enable the secret engine, as shown
in Figure 5-22.

vault secrets enable kv

[centos@demo ~]§ wault secrets enable kv

Success! Enabled the kv secrets engine at: kv/

Figure 5-22. Enable the secret engine

Now let’s add some basic credentials into the Vault server for testing by
executing the following command, as shown in Figure 5-23.

vault kv put kv/foo test=mycred

Figure 5-23. Entering credentials to Vault

You can also validate the credentials added to Vault by logging in to
the Ul using the token root credentials. Navigate to the Secrets tabs to view
details of the foo secret under the key, as shown in Figure 5-24.

Delete secret » Copyseorst = Editsecrst 3

Figure 5-24. Check secrets in Vault UI

148

CHAPTER 5 GETTING STARTED WITH VAULT

Similarly, you can store multiple types of secrets in Vault, including
sensitive environment variables, API keys, RSA tokens, and more.
Now let’s add some API keys, as shown in Figure 5-25.

vault kv put kv/token token=xxxxxxxx

[centos@demo vault.d]§ vault kv put kv/token token=xxxxxxx

Success! Data written to: kv/token

Figure 5-25. Adding a token to Vault

You can validate the token added in the Vault UI, as shown in
Figure 5-26.

v Secrets Access Policies Tools

token

token

Key Value

token

Figure 5-26. Check token on Vault Ul

You can delete the credentials by executing the following command, as
shown in Figure 5-27.

vault kv delete kv/foo

Figure 5-27. Delete test cred

149

CHAPTER 5 GETTING STARTED WITH VAULT

Summary

This chapter covered the main concepts of HashiCorp Vault. We learned
how to install Vault CLI and performed a hands-on exercise on managing
secrets in an AWS public cloud.

The next chapter covers the HashiCorp Packer solution and how it

automates image management in a hybrid cloud environment.

150

CHAPTER 6

Getting Started with
HashiCorp Packer

This chapter covers the following HashiCorp Packer topics.
¢ Introduction to open source HashiCorp Packer
o Installing Packer

o Hands-on exercise in automating AWS AMI creation

Introduction to HashiCorp Packer

Packer is an open source HashiCorp solution for creating machine images
for multiple platforms using the IaC methodology. It is a lightweight tool
written in the GO language. It has rich integrations for creating machine
images with support for multiple platforms in parallel by leveraging a
single-source code version-controlled declarative configuration.

Packer capabilities cover two key areas. The first one is building
base images for application infrastructure. Packer creates an image that
contains all the dependencies, patches, and configurations required to run
one or multiple applications. The second one is creating golden images
(where everything is baked inside the image). With Packer now Golden
image configuration can be automated for initial release as well as future
releases can be protected against any configuration drift.

© Navin Sabharwal, Sarvesh Pandey and Piyush Pandey 2021 151
N. Sabharwal et al., Infrastructure-as-Code Automation Using Terraform, Packer,
Vault, Nomad and Consul, https://doi.org/10.1007/978-1-4842-7129-2_6

https://doi.org/10.1007/978-1-4842-7129-2_6#DOI

CHAPTER6 GETTING STARTED WITH HASHICORP PACKER

Packer uses a template file that configures the various components
used to create one or more machine images. Packer templates consist of
the following components.

Builders

The builders block is the engine of the template file. It is responsible for
turning templates into a machine and then back into an image for various
platforms. Listing 6-1 shows the build section within the Packer template.

Listing 6-1. Builders Block in Packer Template

{
"builders": [

// ... one or more builder definitions here

A simple AWS builders block is shown in the following example. You
can define details regarding the AWS AMI in fields like the AMI type,
region, and source AMI, from which the image has to be baselined.

"builders": [{
"type": "amazon-ebs",
"access_key": "{{user “aws access key }}",
"secret_key": "{{user “aws secret key'}}",
"region": "us-west-1",
"source_ami": "ami-sd3543ds",
"instance_type": "t2.medium",
"ssh_username"”: "ec2-user”,

"ami_name": "packer-demo {{timestamp}}"

H

152

CHAPTER6 GETTING STARTED WITH HASHICORP PACKER

Communicators

Communicators are considered the transport layer in Packer. They
execute scripts and upload files to machines created from images and are
configured within the builder section. Packer supports the following three
types of communicators.

« mnone No communicator is used. If this is set, most
provisioners cannot be used.

o ssh An SSH connection is established to the machine. It

is usually the default.
¢ winrm A WinRM connection is established.

Now let’s review the following code snippet, which shows an SSH

communicator configuration.

"ssh _username": "{{ user “aws_ssh username’ }}",
"ssh _password": "{{ user “aws_ssh password }}",
"ssh_pty" : "true"

If an SSH agent is configured on the host running Packer, and SSH
agent authentication is enabled in the communicator config, Packer
automatically forwards the SSH agent to the remote host.

Provisioners

Provisioners are optional when it comes to automating image creation using
Packer. If no provisioners are defined within a template, then no software
(other than the defaults) is installed within the resulting machine images.

Now let’s review the code snippet shown in Listing 6-2, which shows a
provisioners configuration and a sample configuration using a shell type
provisioner for executing demo-script.sh.

153

CHAPTER6 GETTING STARTED WITH HASHICORP PACKER

Listing 6-2. Provisioners Configuration

"provisioners”: [
// ... one or more provisioner definitions here

}

"provisioners”: [{
"type": "shell",
"script": "demo-script.sh”

H

Post-Processors

Post-processors executes after the builder and provisioner components
to execute any post-processing task upon the resulting image. Examples
include compressing files, uploading artifacts, and so forth.

Listing 6-3. Post-Processors

{

"post-processors”: [
// ... one or more post-processor definitions here

There are three ways to define a post-processor in a template (as shown
in Listing 6-3): simple definitions, detailed definitions, and sequence
definitions. The simple and detailed definitions are shortcuts for a
sequence definition.

A simple definition is a string name of the post-processor when no
additional configuration is needed. The following is an example.

{

"post-processors”: ["compress"]

154

CHAPTER6 GETTING STARTED WITH HASHICORP PACKER

A detailed definition (JSON object) contains a type field to denote
the post-processor. It is used when additional configuration is needed.
The following is an example.

{
"post-processors": [
{
"type": "compress”,
"format": "tar.gz"
H
}

A sequence definition is a JSON array. The post-processors defined in
the array are run in order, with the artifact of each feeding into the next.
The following is an example.

{
"post-processors": [
["compress”, {"type": "upload”, "endpoint":
http://example.com }]
]
}
Variables

The variables supported by Packer are of 2 types: user-defined and
environment variables. The variables block holds all the default variables
within a template. The following is an example where we are using an
instance_type variable for the EC2 server size and the region variable to
provide the AWS region for the image.

"variables": {
"instance type": "t2.medium",
"region": "us-west-1"

}

155

CHAPTER6 GETTING STARTED WITH HASHICORP PACKER

Using Declared Variables in Templates

The declared variables can be accessed using “{{user "variable-name"}}”
syntax.

The following is an example where instead of providing hard-coded
values, you can take input from the user when executing the code.

"instance_type": "{{user “instance type }}",
"region": "{{user “region’}}"
Using Environment Variables in Templates

Packer lets us use the system’s environment variables. You need to declare
the environment variables in the variable section to use them in other

parts of the template. You can declare that variable as follows.

Example:
"variables": {
"script path": "{{env “SCRIPT PATH}},

Installing Packer

Let’s begin by installing Packer on a Linux virtual machine. In this exercise,
we are using the Red Hat OS to install Packer.

Execute the following command to download the Packer package from
the HashiCorp website.

wget https://releases.hashicorp.com/packer/1.6.6/packer 1.6.6
linux_amd64.zip

Execute the following command to extract the Packer binaries (see
Figure 6-1).

unzip packer 1.6.6_linux_amd64.zip

156

CHAPTER6 GETTING STARTED WITH HASHICORP PACKER

[roct@inpransb0l packer_directoryl# 1ls
packer_1.6.6_linux amdé4.zip
[roct@inpransb0l packer_directoryl# unzip packer_1.6.6_linux amdé4.zip
Archive: packer_1.6.6_linux amdé4.zip
inflating: packer

Figure 6-1. Extracting Packer binaries

Execute the following command (first 2 commands) to move the
extracted Packer binaries to /usr/bin path (see Figure 6-2) and navigate to
/usr/bin path. After installing Packer, verify the installation by executing
the second and third commands (see Figure 6-2 and 6-3).

mv packer /usr/bin
cd /usr/bin

Now Run the command to ensure that packer is installed properly.

packer

packer -version

[root@inpransb0l packer_directory]# packer
Usage: packer [--version] [--help] <command> [<args>]
Available commands are:
build build image ({3s) from template
console creates a console for testing variable interpclation
fix fixes templates from old versions of packer
fmt Rewrites HCL2 config files to canonical format
hcl2 _upgrade transform a J50N template into an HCL2 configuration
inspect see components of a template
wvalidate check that a template is valid
version Prints the Packer version

Figure 6-2. Verifying Packer

[root@inpransbOl packer_ directory]# packer --version
l1.6.6

Figure 6-3. Verifying Packer version

157

CHAPTER6 GETTING STARTED WITH HASHICORP PACKER

Hands-on Exercise to Automate AWS AMI

Now let’s do a hands-on exercise to automate AWS AMI. In this example,

we bake a t2.micro AMI using a shell provisioner. We use a shell script for

hardening the image using security baselines. After creating the image, we

will update it by bundling an application package using Packer. Figure 6-4

shows a high-level flow of the activities performed in this exercise.

Packer building a golden ami using a
default linux ami from the aws market place

-

sy N
i
—

0 Packer >

Template.json

L
”

PACKER-DEMO-1.0

Later Packer is utilizing the golden ami * PACKER-
DEMO-1.0" to create a ami with application pre

baked in

N

L.
r

PACKER-DEMO-1.1-httpd

\

/

Figure 6-4. Automating AWS AMI creation using Packer

Before starting the exercise, ensure that the AWS CLI is installed and

configured on the Packer server with the credentials configured for the

AWS account created in the previous chapter.
First, set up the AWS CLI tool on the Packer server. Execute the
following command to install Python 3.6 on the system.

sudo yum install python36

158

CHAPTER6 GETTING STARTED WITH HASHICORP PACKER

Verify the Python version by executing the following command
(see Figure 6-5).

python3 -version

[saurabht@dryicelabs.com@devopsee88 ~]$% python3 --version
Python 3.6.8

Figure 6-5. AWS CLI tool prerequisite installation

Install the AWS CLI by executing the following command.
pip3 install awscli --upgrade -user

Verify the AWS CLI version by executing the following command
(see Figure 6-6).

aws -version

[saurabht@dryicelabs.com@devops®e88 ~]$ aws --version
laws-cli/1.16.3084 Python/3.6.8 Linux/3.10.0-862.el17.x86_64 botocore/1.13.40
[saurabht@dryicelabs.com@devops@e88 ~]%

Figure 6-6. AWS CLI tool installation validation

Configure the AWS account credentials (access and secret key) by
executing the following command. Add the secret key, access key
(see Chapter 5), and region (eu-west-1). Select JSON as the output format
(see Figure 6-7).

aws configure

159

CHAPTER6 GETTING STARTED WITH HASHICORP PACKER

[Saurabhtgdrylcelabs.comgdevopsooss ~]%
[saurabht@dryicelabs.com@devops@@88 ~]% aws configure
AWS T Access Key TD [S EEEEEEERRs e SHKP]:

JAWS Secret Access Key [******®xxxxxxxx*He4g]:

Default region name [None]: us-east-1

Default output format [None]: json

Figure 6-7. AWS CLI tool configuration

Execute the following command to set up the Packer project for the
hands-on exercise.

mkdir packer project

Create a script file named server_hardening.sh in the packer_project
directory and add the image hardening contents to it. The following are
code snippets from the image server baselining script. They are used for
regularly checking the integrity of the filesystem.

The following example code is ensuring the integrity of the filesystem.

sudo echo '0 5 * * * /usr/sbin/aide -check' > /tmp/filenew
sudo crontab -u root -1 | cat - /tmp/filenew | crontab -u root -
sudo rm -rf /tmp/filenew

The following snippet ensures that the SELinux state is set to
“Enforcing” and the policy is configured.

Ensure the SELinux state is Enforcing

sudo sed -I '/"SELINUX=/c SELINUX=enforcing' /etc/selinux/
config

Ensure Selinux policy is configured

sudo sed -I '/"SELINUXTYPE=/c SELINUXTYPE=targeted' /etc/
selinux/config

160

CHAPTER6 GETTING STARTED WITH HASHICORP PACKER

The following code snippet triggers security patch installation.

Ensure updates, patches and additional security software are
installed
sudo yum update -security -y

The following code ensures that time synchronization is in use.

sudo yum install ntp -y

sudo echo "restrict -4 default kod nomodify notrap nopeer
noquery" >> /etc/ntp.conf

sudo echo "restrict -6 default kod nomodify notrap nopeer
noquery"” >> /etc/ntp.conf

You can download the entire script by cloning it from the following
GitHub location and executing the command, as shown in Figure 6-8.

git clone git@github.com:dryice-devops/packer.git

[root@inpransb0l packer]# git clone git@github.com:dryice-devops/packer.git
Cloning into ‘packer'...

remote: Enumerating objects: 12, done.

remote: Counting objects: 100% (12/12), done.

remote; Compressing objects: 100% (10/10), done.

remote: Total 12 (delta 2), reused 0 (delta 0), pack-reused 0
Receiving objects: 100% (12/12), done.

Resolving deltas: 100% (2/2), done.

[root@inpransb0l packer]#

[root@inpransb0l packer]# I

Figure 6-8. Cloning script from GitHub

The directory created after cloning contains the templates and scripts

for our exercise (see Figure 6-9).

[root@inpranskb0l packer)# cd packer/

[root@inpransb0l packer]l# ls

app_script.sh aws_linux.json README.md rhel_ hardening.sh
[root@inpransb0l packer]#

Figure 6-9. Reviewing files from GitHub

161

CHAPTER6 GETTING STARTED WITH HASHICORP PACKER

Create an aws_ami.json file in the packer_project directory created
in the previous step and add content, as shown in Figure 6-11. Copy the
cloned server_harderning.sh file to the packer_project directory.

o U@ MF I CH Sami-0881f3111e1e8797h

latest ami pof rhel 7.8 with ansible user created

Root device type: ebs Virtualization type: hvm Owner: 711964153936 ENA Enabled: No

Figure 6-10. Fetching AMI id from AWS Console

Note We are using custom AMI (ami-0881f3111e1e8797h)
as shown in Figure 6-10, but you can use any RHEL AMI in the
marketplace.

Example:
{
"variables": {
"ami_id": "ami-xxxxxxx",
b
"builders": [{
"type": "amazon-ebs",
"region": "eu-west-1",
"source ami": "{{user “ami id }}",
"instance_type": "t2.micro",
"ssh_username": "ec2-user"”,
"ami_name": "PACKER-DEMO-1.0",

"tags": {
"Name": "PACKER-DEMO-1.0",
"Env": "DEMO"
}

Hs

162

CHAPTER6 GETTING STARTED WITH HASHICORP PACKER

"provisioners" [

{
"type": "shell",
"script": "server hardening.sh"

[root@inpransb0l packer project]# 1s
aws_ami.json server_hardening.sh
[root@inpransb0l packer project]# I

Figure 6-11. Packer_project directory content

Now that the template is ready, the next step will be to execute it
for baking the AMI with hardening instructions. Execute the following
command to validate the Packer template image. You can inspect the
template with the second command (Output shown in Figure 6-12).

packer validate aws_ami.json
packer inspect aws_ami.json

163

CHAPTER6 GETTING STARTED WITH HASHICORP PACKER

[root@inpransb0Ol packer_project]# packer validate aws_ami.json
[root@inpransb0l packer project]# packer inspect aws_ami.json
Packer Inspect: JSON mode
Optional variables and their defaults:

ami_id = ami-6f68cfOf
Builders:

amazon-ebs
Provisioners:

shell
Note: If your build names contain user variables or template
functions such as 'timestamp', these are processed at build time,

and therefore only show in their raw form here.
[root@inpransb0l packer_project]# I

Figure 6-12. Validate and inspect Packer template

Execute the following command to build the AMI.
packer build aws ami.json

You can view the AMI by navigating to the EC2 service in AWS Console
and clicking AMI (see Figure 6-13).

Name ~ AMI Name ~ AMIID -

PACKER-DEMO-1.0 packer_linux_a... ami-0bf84e68a94b25c98

Figure 6-13. View AWS AMI using AWS

Now that we have created the first version of our image, let’s perform
an exercise to update this image using Packer. Suppose that the AMI we
baked in the previous step had an AMI ID, “ami-0bf84e68a94b25c98’,
from AWS. Let’s create a new Packer template called aws_http.json in the
packer_project directory, as shown in the following example. Replace the
ami_id variable value with the AMI ID created in the AWS account.

164

CHAPTER6 GETTING STARTED WITH HASHICORP PACKER

Example:
{
"variables": {
"ami_id": "ami-obf84e68a94b25c98",
"app_name": "httpd"
})
"builders": [{
"type": "amazon-ebs",
"region": "eu-west-1",
"source_ami": "{{user “ami_id }}",
"instance_type": "t2.micro",
"ssh_username": "ec2-user",
"ami_name": "PACKER-DEMO-1.1-{{user “app name" }}",

"tags": {
"Name": "PACKER-DEMO-1.0-{{user “app name’ }}",
"Env": "DEMO"
}
Hs
"provisioners” [
{
"type": "shell",
"script": "app script.sh”
}
]

Now let’s create the app_script.sh script file under the packer_project
directory, which includes the steps to install Apache as a package in the
image.

165

CHAPTER 6 GETTING STARTED WITH HASHICORP PACKER
#!/bin/bash

Sudo yum install apache -y
Sudo systemctl start httpd
Sudo systemctl status httpd
Sudo systemctl enable httpd

Before creating a new image using the updated Packer template, let’s
validate the template by executing the following command.

packer validate aws_http.json

Note This command validates the template code (syntax) and
returns a zero exit status when successful and a non-zero exit status
when a failure.

After successful validation, execute the following command to update
AWS AMI with an Apache package in it (see Figure 6-14). Executing the
following command validates from AWS.

Packer build aws http.json

PACKER-DEMO-1.0-httpd packer_linux_a... ami-0075a3e2911981f8e

Figure 6-14. View updated AWS AMI using AWS

Summary

This chapter covered the main concepts of HashiCorp Packer. You learned
how to install open source Packer. You also did a hands-on exercise to
create and update AWS AMI.

The next chapter covers the HashiCorp Consul solution and how it
manages network access in an application.

166

CHAPTER 7

Getting Started with
HashiCorp Consul

This chapter covers the core concepts of HashiCorp Consul.
¢ Introduction to HashiCorp Consul
e Installing Consul
o Service discovery using Consul

e DNS and health checks using Consul

Introduction to HashiCorp Consul

HashiCorp Consul provides service discovery, health checks, load
balancing, service graph, identity enforcement via TLS, interservice
communication, network segmentation, and distributed service
configuration management.

The disadvantage with a monolithic application is that if any
subcomponents of an application fail, it necessitates redeployment of the
entire stack, which is not ideal. The same monolithic app can be delivered
as a set of individual, discrete services where the freedom of independently
developing and deploying is possible.

© Navin Sabharwal, Sarvesh Pandey and Piyush Pandey 2021 167
N. Sabharwal et al., Infrastructure-as-Code Automation Using Terraform, Packer,
Vault, Nomad and Consul, https://doi.org/10.1007/978-1-4842-7129-2_7

https://doi.org/10.1007/978-1-4842-7129-2_7#DOI
https://en.wikipedia.org/wiki/Service_discovery
https://microservices.io/patterns/observability/health-check-api.html
https://en.wikipedia.org/wiki/Load_balancing_(computing)
https://en.wikipedia.org/wiki/Load_balancing_(computing)
https://medium.com/@marcus.cavalcanti/using-service-graphs-to-reduce-mttr-in-a-http-based-architecture-624d2c9d54c1
https://www.nevatech.com/blog/post/What-you-need-to-know-about-securing-APIs-with-mutual-certificates
https://www.pluralsight.com/guides/role-of-configuration-management-in-devops
https://www.pluralsight.com/guides/role-of-configuration-management-in-devops

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL

However when we move to a microservices architecture there are
cross-service challenges, such as service discovery, data consistency, and
network communication. Let’s look at how Consul helps us to overcome
these challenges.

Service Discovery

In a distributed system, the services are on different machines, so the
identification/discovery of services is difficult. A load balancer is in front of
each service for identification (see Figure 7-1).

Microservice2

Microservicel Load Balancer

Microservice?

Figure 7-1. Service discovery

The disadvantages of service discovery include

e No capability for dynamic auto-discovery/must be
managed manually

o Single point of failure

e Communication is through a series of networks and is
not direct

Consul overcomes these disadvantages by using a central service
registry that contains the entry for all upstream services. The following are
some of the advantages of Consul-based service discovery.

168

https://auth0.com/blog/an-introduction-to-microservices-part-3-the-service-registry/
https://auth0.com/blog/an-introduction-to-microservices-part-3-the-service-registry/

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL

e When a service instance starts, it auto-registers on the
central registry.

e The service can directly talk to the desired destination

service instance without a mediator.

o Ifone of the service instances or services itself is
unhealthy or fails its health check, the registry would
then know about this scenario and would avoid
returning the service’s address; hence, load balancing
is also done.

Configuration Management

There is some difficulty in maintaining configurations in a distributed
system.

e Maintaining consistency between the configuration on
different services after each update is a challenge.

e Dynamically updating a configuration can be a
challenge.

Consul overcomes these disadvantages by using a key-value based
centralized repository. The entire configuration of all services is stored,
which helps with dynamically configuring the services on a distributed
system.

Service Mesh and Network Segmentation

A service mesh is an infrastructure layer that handles a high volume of
network-based interprocess communication among application services
using APIs. It is implemented by a proxy instance, called a sidecar, for each
service instance.

169

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL

The following are challenges in a distributed system.
o Controlling the flow of traffic
e Segmenting the network into groups

o Traffic may come from different endpoints and reach
different services

o [Inability to verify if traffic is from a trusted entity makes

security a concern
Consul’s solution to these issues is to use
e Service graphs
e Mutual TLS
e Consul Connect

Consul Connect enrolls interservice communication policies and
implements them as part of a service graph. For example, a policy might say
that service A can talk to service B, but B cannot talk to C. Consul provides
a mechanism to enforce such policies without defining firewall rules or IP
restrictions using TLS protocol. TLS protocol works based on certificates
and these certificates help other services securely identify each other and
initiate communication with each other.

Architecture

Consul has good support for multiple datacenters. There is a mixture of
clients and servers within each datacenter. Typically, there are three to five
servers. However, there is no limit to the number of clients, and they can
easily scale into the thousands or tens of thousands. This strikes a balance
between performance and availability in the event of failure. Figure 7-2
shows a Consul master server in two datacenters interacting with a Consul
client using a gossip protocol.

170

https://medium.com/sitewards/the-magic-of-tls-x509-and-mutual-authentication-explained-b2162dec4401

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL

COos! LAN COsSIP
CLENT ~ pesweieg CLENT pepeey CLIENT
.
l RPC &:3“‘:0.‘_ l RPC
TCP/B300 U~ 5t TCR/8300
LEADER A
FORWARDING oy n
D ————
SERVER reademenise bl SERVER
FOLLOWLE TCP/8300 TCP/8300 JLOWER
v
™
e
2 55 <
0:0‘;..‘ <«

REPLICATION

TCR/a300

REPLICATION
TCR/8300

Figure 7-2. Consul multi-datacenter architecture

The following describes the key components of Consul.

Agent

An agent is a core component in Consul. It manages and maintains

membership information, registers services, and performs checks, like

health checks on managed services. The agents are responsible for

executing their own health checks and updating their local state. Any agent

may run in one of two modes: client or server (see Figure 7-3).

171

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL

Consul Server

Consul Server Consul Server

LAN Gossip

LAN Gossip

—— Consul Client

Consul Client —

proy 43 @.

Proxy

Figure 7-3. Consul agent (client and server)

Catalog

Consul leverages a catalog concept for managing all discovered services.

It is formed by aggregating the information received from the agents. It

can be queried through DNS or HTTP to get information on services (see

Figure 7-4).

Service
Client

Load Balance Request _’;;;7 Service A

~» Service B

——& Service C

Figure 7-4. Consul catalog

172

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL

Anti-Entropy

Anti-entropy is a mechanism to ensure that running application services
are kept stable if any underlying components fail or the system falls into a
state of disorder. Consul isolates the global service catalog and the agent’s
local state. Anti-entropy is a synchronization of the local agent state and
the catalog updating the services.

Consensus Protocol

The server-type agents are pooled together under a single raft peer set that
works in leader-follower mode. Any transactions received by the follower
are forwarded to the leader for processing, and any transactions executed
by the leader are replicated to followers. Consul leverages a consensus
protocol based on the “Raft: in search of an understandable consensus”
algorithm to manage leader-follower interactions.

Raft nodes are always in one of three states: follower, candidate, or
leader. A node starts as a follower, promotes to a candidate, and when a
quorum of votes are received, becomes a leader.

Gossip Protocol

A gossip protocol is used to broadcast messages within a cluster. The
following are the advantages of a gossip protocol.

e There is no need to configure clients with server
addresses; discovery is made automatically.

o The work of detecting agent failure is not placed on the
servers; it is distributed. It neglects naive heartbeat schemes.

o Itisused as a messaging layer to notify when important
events, such as leader election, take place.

Consul uses two gossip pools.

173

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL

LAN Gossip Pool

Each datacenter that Consul operates in has a LAN gossip pool containing

all members—clients and servers.

WAN Gossip Pool

All the clusters’ servers communicate via a WAN gossip pool. It processes
cross-datacenter requests.

Installing Consul

There are three approaches to installing Consul: using a precompiled
binary, installing from source, or installing on Kubernetes using a
container image. This chapter explains installing Consul using a
precompiled binary. To install the precompiled binary, download the
appropriate package for your system. (Consul is currently packaged as a
zip file.)

This exercise uses a Red Hat virtual machine to install Consul. Make
sure that you have Internet access enabled on the virtual machine and the
package repo configured to download packages from Red Hat.

Execute the following commands to view the Red Hat OS version.
Verify the OS platform type by executing the second command (see
Figure 7-5). This value downloads the appropriate package of Consul from
the HashiCorp website.

cat /etc/redhat-release
uname -m

174

https://www.consul.io/docs/k8s/installation/install
https://www.consul.io/downloads

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL

[root@ip-10-5-13-156 ~]# cat /etc/redhat-release
Red Hat Enterprise Linux Server release 7.8 (Maipo)
[root@ip-10-5-13-156 ~]# uname -m

x86_64

Figure 7-5. VM OS version verification

Execute the following command to create a Consul directory. Navigate
the directory by executing the second command (see Figure 7-6).

mkdir consul

cd consul

mkdir consul
cd consul

Figure 7-6. Consul directory creation

Execute the following command to download Consul 1.9.2 package for
Linux-based distribution from HashiCorp official website (see Figure 7-7).

wget https://releases.hashicorp.com/consul/1.9.2/consul_1.9.2_
linux_amd64.zip

J1.¢
151.101.
<oom) [151.101.201.183):

Jur
Saving te: ‘co

100%([

2021-04-01 10:53:08 (91.1 MB/s) - ‘consul_1.9.2 linux amdéd.zip’ saved [41313084/41313084)

Figure 7-7. Download Consul package

175

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL

Execute the first command to extract the Consul package from the

zip file. Execute the second command to list extracted files, as shown in

F

u

igure 7-8.

nzip consul 1.9.2 linux amd64.zip

Archive: consul 1.9.2 linux amdé4.zip

consul

[ansibledip-10-5-12-84 ~]$§ unzip consul 1.9.2 linux amdé4.zip

inflating: consul
[ansible@ip-10-5-12-84 ~]5 13
naul 5 inux amdé4.zip

Figure 7-8. Unzip and list Consul package

b

V

m

Execute the following command to move Consul binary to /usr/
in location to invoke Consul commands without modifying the PATH

ariable.
v consul /usr/bin/

Execute the following command to verify installation of Consul, as

shown in Figure 7-9.

(@

onsul --version

[zooticonsul consul]f consul --version

Consul v1.9.2

Revision 6530c£370

Protocol 2 spoken by default, understands 2 to 3 (agent will automatically use protocol >2 when speaking to com|
patible agents)

Figure 7-9. Consul installation verification

Execute the following command to start the Consul agent in

development mode, as shown in Figure 7-10.

C
C

1

onsul agent -dev -ui -bind '{{ GetInterfaceIP "etho" }}' -
lient 0.0.0.0

76

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL

[ansible@ip-10-5-12-84 ~]

==> Starting Consul ager

§$ consul agent -devw *{{ GetInterfaceIPF "eth0" }}' -client 0.0.0.0

Version: "1
Node ID: "dddfé6aBl-f79b-alee-9155-15537c5e2470"
Node name: "ip-10-5-12-84"'
Datacenter: "dcl' (Segment: '<all>")
Server: true (Bootstrap: false)

Client Addr: [0.0.0.0] (HTTP: 8500, : 8502, DN5: 8€00)
Cluster Addr: 10.5.12.84 (LAN: 8301,
Encrypt: Gossip: false, TL5-Outgoing: false, TLS-Incoming: false, Auto-Encrypt-TL5: false

==> Log data will now stream in as it occurs:

Figure 7-10. Consul agent setup

Execute the following commands to query the Consul leader and

peers, as shown in Figure 7-11.

curl http://127.0.0.1:8500/v1/status/leader
curl http://127.0.0.1:8500/v1/status/peers

"10.5.12.84:8300"

[

]
[ansible@ip-10-5-12-84 ~15 [

"10.5.12.84:8300"

[ansibleRip-10-5-12-84 ~]5 curl http://127.0.0.1:8500/v1/status/leader

[ansible@ip-10-5-12-84 ~]$ curl http://127.0.0.1:8500/v1l/status/peers

Figure 7-11. Query Consul leader and peers

Execute the following commands to see the Consul members, as

shown in Figure 7-12.

consul members

Node Address
ip-10-5-12-84 10.5.12.84:8301
[ansible@ip-10-5-12-84 ~]3 l

[ansible@ip-10-5-12-84 ~]§ consul members

Build Protocol DC Segment
1.9.2 2 del <all>

Figure 7-12. View Consul members

177

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL

Service Discovery Using Consul

The main goal of service discovery is to provide a catalog of available

services. A service can be associated with a health check.

A service definition can have either a .json or .hcl extension or

registered dynamically using the HTTP API. The following are things to

keep in mind when using service definitions in Consul.

A service definition must include a name and may
include an ID, tags, address, meta, port, enable_tag
override, and check.

A service can have an associated health check to
remove failing nodes.

Proxies used with Connect are registered as services in
Consul’s catalog.

Services may contain a token field to provide an ACL
token.

The connect field can be specified to configure Connect
for a service. This field is available in Consul 1.2.0 and
later.

Multiple services definitions can be provided at once
using the plural services key in your configuration file.

Now let’s look at a typical service definition file, as shown in Listings 7-1

and 7-2. The following samples are the service definitions for two services:

dashboard and counting. Both services have defined the health check

mechanism (i.e., HTTP-based and port to be used).

178

https://www.consul.io/api
https://www.consul.io/docs/connect

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL

Listing 7-1. Sample Dashboard Service Definition File

service {
name = "dashboard"
port = 9002

connect {
sidecar service {

proxy {
upstreams = [

{

destination_name = "counting'
local bind port = 5000

}
]
}
}
}

check {
id = "dashboard-check"

http = "http://localhost:9002/health"
method = "GET"
interval = "1s

timeout = "1s

}

}

Listing 7-2. Sample Counting Service Definition File
service {

name = "counting"

id = "counting-1"

port = 9003

179

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL

connect {
sidecar service {}

}

check {
id = "counting-check"
http = "http://localhost:9003/health"

method = "GET"
interval = "1s"
timeout = "1s"
}
}

There are several ways to register services in Consul.

Directly from a Consul-aware application
o From an orchestrator, like Nomad or Kubernetes
e Using configuration files that are loaded at node startup

e Using the API to register them with a JSON or HCL
specification

e Using the CLI to simplify this submission process

Let’s start with a hands-on exercise that registers the dashboard and
counting services on the Consul server using CLIL.

Create a directory called Test and navigate within it. Execute the
command in Listing 7-3 to clone the sample template files from GitHub,
and then execute the next command to unzip the two files for the
dashboard and counting services.

180

https://www.nomadproject.io/docs/job-specification/service.html
https://www.consul.io/docs/commands/services.html

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL
Listing 7-3. Cloning and Unzipping the Binaries

git clone git@github.com:dryice-devops/consul.git
unzip counting-service linux_amd64.zip
unzip dashboard-service linux amd64.zip

Execute the following commands to set up the dashboard and
counting services in listening mode on the Consul server, as shown in
Figures 7-13 and 7-14.

PORT=9002 COUNTING SERVICE URL="http://localhost:5000" ./
dashboard-service linux_amd64 &
PORT=9003 ./counting-service linux_amd64 &

[rootéconsul consullk PORT=9002 COUNTING_SERVICE URL="http://lecalhost:5000" ./dashboard-service_ linux amdéd &
[1] 8614

[root@consul consul]# Starting server on http://0.0.0.0:9002

(Pass as PORT environment variable)

Using counting service at http://localhost:5000

(Pass as COUNTING SERVICE_URL environment variable)

Starting websocket server...

Figure 7-13. Starting dashboard service

[rootEeconsul consul]l# PORT=9003 ./counting-service_linux_a.md64 &
[4] 13983

[root@consul consull# Serving at http://localhost:9003

(Pass as PORT environment wvariable)

Figure 7-14. Starting counting service

Execute the following commands to register the dashboard and
counting services with Consul, as shown in Figure 7-15. Make sure that you
have created the counting and dashboard files, as shown in Figures 7-16
and 7-17.

consul services register counting.hcl
consul services register dashboard.hcl

181

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL

[root@ip-10-5-12-84 test]# consul services register counting.hcl
Registered service: counting
[root@ip-10-5-12-84 test]# consul services register dashboard.hcl
Registered service: dashboard
[root@ip-10-5-12-84 test]# |j

Figure 7-15. Registering services in Consul

Execute the following command to verify that the services registered

successfully in Consul, as shown in Figure 7-16.

consul catalog services

[rootdip-10-5-12-84 consul_dir|# consul catalog services
consul

counting

counting-sidecar-proxy

dashboard

dashboard-sidecar-proxy

[root@ip-10-5-12-84 consul dir]# |}

Figure 7-16. Verifying service registration

Execute the following command to create an intention for the counting
and dashboard services (see Figure 7-17). Intentions define access control
for services in the service mesh and control which services may establish
connections. The default intention behavior for dev agents is defined by

the default ACL policy, which is "allow all".

consul intention create dashboard counting

[root@ip-10-5-12-84 ~]4 consul intention create dashboard counting

Created: dashboard => counting (allow)

[root@ip-10-5-12-84 ~]# consul intention create -deny -replace dashboard counting
[root@ip-10-5-12-84 ~]14 |}

Figure 7-17. Intention creation using Consul

182

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL

Execute the following commands to start the built-in sidecar proxy for
the counting and dashboard services, as shown in Figures 7-18 and 7-19.

consul connect proxy -sidecar-for counting-1 > counting-proxy.
log &
consul connect proxy -sidecar-for dashboard > dashboard-proxy.
log &

[root@consul consul]# consul connect proxy -sidecar-for counting-1 > counting-proxy.leg &
[2] 9954

Figure 7-18. Starting sidecar proxy for counting service

[rootGconsul consul]# consul connect proxy -sidecar-for dashboard > dashboard-proxy.log &
[3] 10306

Figure 7-19. Starting sidecar proxy for dashboard service

You can verify the service registration by opening the Consul Ul
Navigate to http://<IP of your Consul Server>:8500/ui to open the Consul
Ul in your browser (see Figure 7-20). Click the Services tab to view the
registered services list.

183

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL

< c A Notsecure | 18.209.98.187:8500/ui/dc/services

G’:’ Services Modes Key/Value ACL Intentions

Services s wul

l Q | arc Search across Health Sta

I nginx
1Instance @ in service

@ consul

1 Instance

@ httpd

1instance @ in service mesh with proxy

@ counting
1 Instance @ in ser

@ dashboard

1Instance B in service mesh with prox

Figure 7-20. Consul Ul

Click the counting service to see the registered service information, as
shown in Figure 7-21.

<« Cc A Not secure | 18.209.98.187:8500/ui/dc1/services/counting/topology

G Services Nodes Key/Value ACL Intentions

< All Services

counting

Topology Instances Intentions Routing Tags

da1 @

dashboard counting

@ 100%

& Configure metrics dashboard

Figure 7-21. Counting Service navigation on Consul UI

184

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL

Navigate to http://<IP of your Consul Server>:9002 to access the
Dashboard service, as shown in Figure 7-22.

€ C & Notsecure | 18.209.98.187:3002 L N

Connected

Dashboard

Figure 7-22. Dashboard service browser navigation

A positive number on the screen indicates that a connection between
the services has been established. This number indicates the amount of
time (in seconds) the user has been connected to the front-end portal.
Also, the green Connected status in the top-right corner indicates a

successful connection.

Intention Deletion

Now let’s try to disrupt the service connectivity between the counting and
dashboard services by deleting the intention.

Execute the following command to delete the intention, as shown in
Figure 7-23.

consul intention delete dashboard counting

[root@ip-10-5-12-84 ~]# consul intention delete dashboard counting
Intention deleted.
[root@ip-10-5-12-84 ~]# I

Figure 7-23. Deleting intention

185

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL

To test whether traffic is flowing through the sidecar proxies, let’s
create a deny intention by executing the following command.

consul intention create -deny -replace dashboard counting

Navigate to http://<IP of your Consul Server>:9002 to access the
dashboard service, as shown in Figure 7-24.

€ C A Not secure 16.206.58.187 5002 « » 0

Counting Service Is Unreachable

Dashboard

Figure 7-24. Connection lost

The negative number and the “Counting Service is Unreachable”
message in the top corner indicate that the connectivity between the
services is lost.

Execute the following command to restore communication between
the services by replacing the deny intention with an allow (see Figure 7-25).

consul intention create -allow -replace dashboard counting

[root@ip-10-5-12-84 test]# consul intention create -allow -replace dashboard counting
[root@ip-10-5-12-84 test]# Fetched count &2

Figure 7-25. Allow intention creation

You can validate the connection restore by navigating back to the
Dashboard service page, as shown in Figure 7-26.

186

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL

& C© A Notsecure | 1820998 1879002 * »6

Connected

Dashboard

Figure 7-26. Connection restored

Now let’s look at another example of managing communication
between two applications. The LAMP stack and Nginx demonstrate
Consul’s capabilities in managing communication. Let’s start with the
installation of the LAMP stack and Nginx. We will enable Apache and
Nginx as services on Consul and then manage the communication
between them.

Execute the following command to install an HTTPd package, and then
enable service to start up on reboot, as shown in Figure 7-27.

yum install httpd
systemctl enable httpd.service

-5-13-156 consul]#
56 consul]# yum install httpd
n-id, search-disabled-repcs

[root@ip-
[root@i

7_% will be installed
= 2.4.6-97.el7_9 for
es for package: httpd-:
0() (64bit) for pack
) (6é4bit) for package:

X be installed
211.%86_64 0:1.F will be inatalled
httpd-tools.xB6_64 0:2.4.6-97.el7_9 will be installed
---> Package mailcap.noarch 0:2.1.41-2.el7 will be installed

> Finished Dependency Resclution

Dependencies Resolved

Figure 7-27. Installing Apache

Execute the following command to start the Apache service.

systemctl start httpd.service

187

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL

Execute the following command to install the MySQL package, and
then enable the service to start up on reboot, as shown in Figure 7-28.

yum install mysql-server mysql
systemctl enable mysqld.service

& root@ip-10-5-12-84:~

[roct@ip-10-5-12-84 ~]# yum install mysgl-server mysc
Loaded plugins

mazon-id, product-id, search-d

Figure 7-28. Installation of MySQL

Execute the following command to start the MySQL service.
systemctl start mysqld.service

Execute the following command to configure MySQL to remove
anonymous users and other default tables and provide the input shown in
Figures 7-29 and 7-30.

mysql_secure_installation

188

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL

[root@ip-10-5-12-84 ~]# mysql secure_installation

NOTE: RUNNING ALL PARTS OF THIS SCRIPT IS RECOMMENDED FOR ALL MySQL
SERVERS IN PRODUCTION USE! PLEASE READ EACH STEP CAREFULLY!

In order to log into MySQL to secure it, we'll need the current
password for the root user. If you've just installed My5QL, and
you haven't set the root password yet, the password will be blank,
so you should just press enter here.

Enter current password for root (enter for none):
OK, successfully used password, moving on...

Setting the root password ensures that nobody can log into the MySQL
root user without the proper authorisation.

You already have a root password set, so you can safely answer 'n'.

Change the root password? [Y/n] n
... skipping.

By default, a MySQL installation has an anonymous user, allowing anyone
to log into MySQL without having to have a user account created for
them. This is intended only for testing, and to make the installation
go a bit smoother. You should remove them before moving into a
production environment.

Remove anonymous users? [Y/n] Y
««. Success!

Normally, root should only be allowed to connect from 'localhost'. This
ensures that someone cannot guess at the root password from the network.

Disallow root login remotely? [Y/n] Y
«++ Succesas!

By default, MySQL comes with a database named 'test' that anyone can
access. This is also intended only for testing, and should be removed
before moving into a production environment.

Remove test database and access to it? [Y¥/n] Yl

Figure 7-29. Reconfiguring MySQL

189

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL

Remove test database and access to it? [Y/n] Y
- Dropping test database...
ERROR 1008 (HY000) at line 1l: Can't drop database 'test'; database doesn't exist
. Failed! Not critical, keep moving...
- Removing privileges on test database...
. Success!

Reloading the privilege tables will ensure that all changes made so far
will take effect immediately.

Reload privilege tables now? [Y/n] Y

. Success!

All done! If you've completed all of the above steps, your MySQL
installation should now be secure.

Thanks for using MySQL!

Cleaning up... -

Figure 7-30. Reconfiguring MySQL

Execute the following command to install the PHP package.
yum -y install php php-mysqlnd php-cli

Execute the following command to restart the Apache service.
systemctl restart httpd.service

Create a basic PHP configuration with the basic content shown next by
creating a test.php file under the/var/www/html directory.

<?php phpinfo(); ?>

Access the test.php file created in the previous step by navigating to
http://<IP address of your Consul server>/test.php, as shown in Figure 7-31.

190

€ C A MNotsecure | TB209.98.187/test php

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL

System Linu lp-10-5-12-84 3.90.0-1127.19. 1.7 xB8_64 #1 SMP Tue Aug 11 13:12.04 EDT 2020 xB86_f4

Builc Date Feb 2 2021 10:32.50

Build System Fied Mat Entorpeise Linux Sorver reiease 7.0 (Makpa)

Buila Provider s RPM repository

Sarver AP Apache 2.0 Hangier

Vietual Directory Support satied

Configuration File (php.ini) Path Jete

Py e

Scan tnia dir for additional ini files Ietcipnp o

Acdtional ind iles parsed b inl, fedciphe ietciphp 420-ctype i

et eints i, Jetciphp A20-hp i, fesciph 420-gd.n, fedc/php 420-gelex ini

m\:‘rm&nﬂmﬁ. fetciphg. fetciphp. JM...‘_._. gl by A 20rvys phe
e A20-aqited i, jetc/php d70-okenizer inl, fefciph. &20-xmbwriter i, fetciphp A720-
¢nmm«mwm«ﬁ¢:¢hmmwnmmmw

PHPAPL 20180731

PHP Extension 201807

Zand Extension 320180731

‘Zana Extension Build TS

PHP APIZOIBOTIINTS

Dabug Bulld no ate W

Figure 7-31. Accessing Test.php file

Execute the following command to install Nginx and enable the service

to start up at reboot, as shown in Figure 7-32.

yum install nginx
systemctl enable nginx

[rootBconsul consul]# yum install nginx

Nothing to do

Loaded plugins: amazon-id, search-disabled-repos
Package l:nginx-1.17.5-9334.el7.art.x86_6€4 already installed and latest version

Figure 7-32. Installation of Nginx

Execute the following command to start the Nginx service.

systemctl start nginx

You can also verify the default Nginx installation by accessing

http://< IP address of your Consul server> (see Figure 7-33).

191

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL

{#} Hello, Nginx! ® +

< C A Notsecure | 18.209.98.187

Hello, Nginx!
We have just configured our Nginx web server on RHEL 7.8 Server!
Figure 7-33. Verifying Nginx service
The Apache port may conflict with the Nginx port, so you can modify
an Apache configuration to listen on port 8080. Modify the /etc/httpd/

conf/httpd.conf file to include the following content, and then save the file
(see Figure 7-34).

Listen 127.0.0.1:8080

[root@ip-10-5-12-84 ~]# cat /etc/httpd/conf/httpd.conf | grep Listen
Listen: Al;owc you to bind Apache to specific IP addresses and/or

Change this to Listen on specific IP addresses as shown below to
f._. en 12. 34 '3F| 78:80

izten 127.0.0.1:8080

[root@ip-10- '-—12 34 ~14 |

Figure 7-34. Updating Apache listing port

Also modify the document root in the /usr/share/nginx/html file, as
shown in Figure 7-35.

DocumentRoot "/usr/share/nginx/html/"

[1oot@1p 10-5-12-84 ~]# cat /etc/httpd/conf/httpd.conf | grep DocumentRoot
$ I 1ER ': The directory out of which you will serve your
Doc : "/usr/share/nginx/html"

access content that does not live under the DocumentRoot.
[root@ip-10-5-12-84 ~]1#% |}

Figure 7-35. Updating document root

192

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL
Execute the following command to restart the Apache service.
systemctl restart httpd.service

Make sure the Nginx configuration file can process the PHP locations,
as shown in Listing 7-4.

Listing 7-4. Nginx Configuration File

server {

listen 80;

root /usr/share/nginx/html;

index index.php index.htm index.html;
server_name _;

location / {
try files $uri $uri/ /index.php;

}

location ~ \.php$ {

proxy_pass http://127.0.0.1:8080;
proxy_set_header Host $host;

proxy set header X-Real-IP $remote addr;
proxy set header X-Forwarded-For $remote addr;

}

location ~ /\.ht {
deny all;
}

Service Registration

Let’s register the Nginx and LAMP services. Create nginx.hcl and apache.
hcl files, as shown in Listings 7-5 and 7-6.

193

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL
Listing 7-5. Nginx Configuration File

service {

name = "nginx"

id = "nginx"

port = 80

address = "10.5.12.84"

tags = ["webfrontend"]
meta = {

version = "1"

}

check {
id = "nginx url hit"

http = "http://10.5.12.84:80"
method = "GET"
interval = "1s

timeout = "1s

}

}

Listing 7-6. Apache Configuration File
service {

name = "“apache"

id = "apache"

port = 8080

address = "127.0.0.1"
tags = ["httpd"]

meta = {

version = "1"

}

194

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL

check {
id = "apache url hit"

http = "http://10.5.12.84:8080"
method = "GET"
interval = "1s

timeout = "1s

}
}

Execute the following commands to register Nginx and Apache
services with Consul.

consul services register nginx.hcl
consul services register apache.hcl

Execute the following command to create intention for the Apache and
Nginx service.

consul intention create apache nginx

Log in to the Consul UI (http://<IP Address of your Consul
server>:8500/ui) and navigate to the Service tab to view both the Apache
and Nginx services, as shown in Figure 7-36.

195

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL

& C' A Notsecure | 18.2C

G dcl Services Nodes Key/Value

Services ;5w

Search acn

@ consul

1 Instance

@ apache
1lInstance > httpe

@ nginx
1Instance © webfronter

Figure 7-36. Review Apache and Nginx service on Consul GUI

Click each service to view the details.

Check Nginx’s health status. The status is 200 OK, if the health check
has passed (i.e., web page is reachable as per our health check definition).
The default health check verifies that the node is alive, reachable, and has
passed (see Figure 7-37).

196

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL

< C A Notsecure | 18.209.98.187:8500/ui/dc1/services/nginx/instances/ip-10-5-12-84/nginx/health-checks

Service Name Nods Hame
agina ip10-5-12-84
Health Checks &M
Seareh s Health Statin Kl Type

@ Serf Health Status

ModeHame CheckiD Type Notes

Cutput

@ Service ‘nginx’ check
ServiceName CheckiD Type Motes

Cutprit

Figure 7-37. Review Nginx service on Consul GUI

Check Apache’s health status. The status is 200 OK, if the health check
has passed. The default health check determines if the node is alive,
reachable, and has passed (see Figure 7-38).

197

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL

& c A Not secure | 18.209.98.187:8500/ui/dc1/services/apache/instances/ip-10-5-12-84/apache/health-checks

G:j: dcl Services Nodes KeyMalue ACL Intentions

< All Services [/ Service (apache]

apache

Service Name Node Name

apache ip-10-5-12-84
Health Checks Tags & Meta

Search across ¥ Health Status Kind Type v
@ Serf Health Status
NodeName ChecklD Type Notes
Output
Agent alive and reachabla
@ Service "apache’ check
ServiceMame CheckiD Type Notes
Dutput
HTTP GET http://127.9.0.1:3080: 200 OK Output: <!doctype html»
<hitels
<head>
: 35
sl ftit

Figure 7-38. Review Apache service on Consul GUI

DNS and Health Checks Using Consul

The DNS, without any high integration with Consul, allows applications to
use service discovery. By default, Consul listens on 127.0.0.1:8600 for DNS
queries. nslookup or dig tools can interact with a DNS server.

Dig @127.0.0.1 -p 8600 redis.service.dcil.consul. ANY

From a Windows OS perspective, nslookup should be used. From a
Linux OS perspective, dig can be used in addition to nslookup. Make sure
the bind-utils package is present for dig usage in a Linux environment.

A health check is application-specific; if not integrated, it has a scope
at the node level.

198

CHAPTER 7 GETTING STARTED WITH HASHICORP CONSUL

There are several different types of checks.

e HTTP checks make an HTTP GET request to the
specified URL.

e TCP checks make a TCP connection attempt to the
specified IP/hostname and port.

o TTL checks retain their last known state for a
given TTL. The state of the check must be updated
periodically over the HTTP interface.

¢ Docker checks invoke an external application that is
packaged within a Docker container.

o gRPC checks the whole application. Checks are
intended for applications that support the standard
gRPC health-checking protocol.

o Alias checks are for a local service. They check the
health state of another registered node or service.

Summary

This chapter covered in detail the main concepts of HashiCorp Consul.
We learned how to install open source Consul and also performed a
hands-on exercise involving application service discovery using Consul.

The next chapter covers the HashiCorp Nomad solution and how
it can be used to manage the orchestration of containerized and
non-containerized applications.

199

https://github.com/grpc/grpc/blob/master/doc/health-checking.md

CHAPTER 8

Getting Started
with Nomad

This chapter discusses the core concepts of HashiCorp Nomad. You should
have a basic understanding of container orchestration, scheduling, and
autoscaling functionalities. The chapter covers the following topics.

e Container orchestration
¢ Introduction to Nomad

o Installing Nomad

Policy-driven governance using Nomad

o Container application deployment using Nomad

Container Orchestration

Containers are a way to wrap up an application into its own isolated
package. Everything the application requires to run successfully as a
process is captured and executed within the container. A container enables
bundling all application dependencies, such as library dependencies

and runtimes. This enables standardization and consistency across
environments because the container comes preloaded with all the
prerequisite/dependencies required to run the application service.

© Navin Sabharwal, Sarvesh Pandey and Piyush Pandey 2021 201
N. Sabharwal et al., Infrastructure-as-Code Automation Using Terraform, Packer,
Vault, Nomad and Consul, https://doi.org/10.1007/978-1-4842-7129-2_8

https://doi.org/10.1007/978-1-4842-7129-2_8#DOI

CHAPTER 8 GETTING STARTED WITH NOMAD

You can develop the application code on your personal workstation and
then safely deploy it to run in production-level infrastructure.

A container is an instance of a container image. A container image is a
way to package an app or service (like a snapshot) and then deploy it in a
reliable and reproducible way (see Figure 8-1).

VMs vs. Containers

i" Docker Engine il

Figure 8-1. Container vs. VM comparison

Building applications using containers brings agility to developing,
testing, and deploying any application across any cloud. With containers,
you can take any app from development to production with little or
no code change. You can use a manual approach or use a CI/CD tool
with IaC solutions to deploy your application code. You might need to
perform tasks like modifying configuration items, copying application
content between servers, and running interactive setup programs based
on application setups, followed by testing. In a manual setup, this can
consume significant time.

What if you have many applications to manage? Managing each
one of them manually is very time-consuming. You need to create and

202

CHAPTER 8 GETTING STARTED WITH NOMAD

destroy hundreds of containers and monitor each one of them. If a
container encounters an error, which could cause the downtime of critical
applications, you'd need to destroy and provision a new one. Even worse,
what if your thousands of containers were scattered across hundreds of
servers? You need to keep track of which server contains which containers
and which application each container belongs to.

Container orchestration has been introduced to overcome the manual
effort of managing containers. It helps minimize the hassle of provisioning,
destroying, controlling, and scaling containers.

Container orchestration tools provide a framework for managing
containers and microservices architecture at scale. Nomad is a container
orchestration tool for container lifecycle management. Nomad
orchestration allows you to build application services that can span across
multiple containers, schedule containers across a cluster, and manage
their health over time.

Nomad eliminates most of the manual intervention involved in
deploying and scaling containerized applications. Nomad can cluster
groups of hosts on physical or virtual machines and run Linux containers.
Nomad offers a platform to easily and efficiently manage clusters.

In the Nomad container orchestration tool, HCL describes
the configuration of an application. The configuration file tells the
configuration management tool to find the container images, establish a
network, and store logs.

When deploying a new container, Nomad automatically schedules a
deployment to a cluster and finds the right host, considering any defined
requirements or restrictions. It then manages the container’s lifecycle
based on the specifications.

Container orchestration can be used in any environment that runs
containers, including on-premise servers and public or private cloud

environments.

203

CHAPTER 8 GETTING STARTED WITH NOMAD

Introduction to Nomad

Nomad has a built-in feature to deploy/upgrade applications using blue/

green and canary deployments.

Nomad can integrate with HashiCorp Terraform, Consul, and Vault. It is

suited for easy integration into an organization’s existing workflows. It comes

in two versions Open Source and Enterprise, the following Table 8-1 lists the

differences between the two.

Table 8-1. Nomad: Open Source vs. Enterprise

Nomad Features

Open Source

Enterprise

Service and Batch Scheduling
Task Drivers

Device Plug-ins

Multi-Upgrade Strategies
Federation

Autoscaling

Container Storage Interface plug-in
Container Network Interface plug-in
Access Control System

Web Ul

Consul Integration

Vault Integration

Namespaces

ENTERPRISE PLATFORM
Automated Upgrades

X X L KKK KKK KKK s

SN N T N N N N N N N

204

(continued)

CHAPTER 8 GETTING STARTED WITH NOMAD

Table 8-1. (continued)

Nomad Features Open Source Enterprise

Automated Backup X v

Enhanced Read Scalability
Redundancy Zones

Multi-Vault Namespaces

>xX >xX X

v
v
v

The following describes Nomad’s key features.

Service and batch scheduling: Nomad provides
service and batch scheduling. It can restart or
reschedule jobs.

Task driver support for multiple platforms: Task
drivers in Nomad are runtime components that execute
workloads. The task drivers support Docker, Java, and
binaries running on the host operating system.

Multi-device plug-ins: Detects and makes devices
available to tasks in Nomad. Devices are physical
hardware that exist on a node, such as a GPU or an
FPGA. By having extensible device plug-ins, Nomad
has the flexibility to support a broad set of devices and
allows the community to build additional device plug-
ins as needed.

Multiple upgrade strategies: Most applications are
long-lived and require updates over time. Nomad has
built-in support for rolling, blue/green, and canary
updates to deploy a new application or upgrade to a
new version of the application. When a job specifies a

205

CHAPTER 8 GETTING STARTED WITH NOMAD

206

rolling update, Nomad uses task state and health check
information to detect allocation health and minimize
or eliminate downtime.

Multi-region federation: This built-in capability allows
multiple clusters to be linked together.

Autoscaling: The Nomad autoscaler periodically
checks for jobs with queued allocations, ensuring
enough capacity to schedule these allocations.
Whenever there isn’t enough capacity, a scale-up event
is triggered.

Container storage interface plug-in: Manages
external storage volumes for stateful workloads running
inside your cluster. CSI providers are third-party plug-
ins that run as jobs and can mount volumes created by
your cloud provider. Nomad is aware of CSI-managed
volumes during the scheduling process, enabling it to
schedule your workloads based on the availability of
volumes from a specific client.

Container network interface plug-in: Supports
CNI plug-ins while deploying on containerized
applications.

Access control system: Enables access of policies and
tokens to only authorized users and applications.

Consul integration: Enables automatic clustering,
built-in service registration, and dynamic rendering of

configuration files and environment variables.

Vault integration: Nomad integrates with HashiCorp
Vault to enable secure, auditable, and easy access to
your secrets.

CHAPTER 8 GETTING STARTED WITH NOMAD

o Namespaces: Supports namespaces, allowing jobs and
their associated objects to be segmented from each
other and other cluster users.

o Sentinel: Sentinel is a language and framework for
building policies. This feature is available in the
Enterprise version. A Sentinel policy describes the
allowed actions under specific scenarios or conditions.
Sentinel integration builds on the ACL system. It
provides the ability to create fine-grained policy
enforcement.

Nomad Architecture

The Nomad architecture shown in Figure 8-2 consists of client and server
components within the same region. Servers in a region act as the brain

of the cluster and are used for managing jobs, clients, and deployments,
including aspects like resource placement decisions. Each region may have
clients from multiple datacenters, allowing a small number of servers to
handle very large clusters.

Nomad Nomad Nomad
Server TCH 184 Server T 164 Server
Follower > Leader Follower
Nomad Nomad Nomad
Client Client Client

Figure 8-2. Single region Nomad architecture

207

CHAPTER 8 GETTING STARTED WITH NOMAD

Nomad servers always have leader-follower relationships. They use
a consensus protocol based on the Raft algorithm for state replication.
Nomad servers in every region are all part of a single consensus group.
This means that they work together to elect a single leader, which has
extra duties. The leader is responsible for processing all queries and
transactions.

Nomad execution is concurrent, meaning all servers participate
in making scheduling decisions in parallel. The leader provides the
additional coordination necessary to do this safely and to ensure clients
are not oversubscribed.

The servers create tasks from the jobs provided by the end user. The
servers send them across to the clients where those jobs are executed.

The agent running on the client is responsible for registering with the
servers, watching for any work to be assigned, and executing tasks. The
Nomad agent is a long-lived process that interfaces with the servers.

When providing availability or scalability, Nomad may be in a multi-
region setup (see Figure 8-3). This topology helps the user to interact with
Nomad servers in any region.

Fam— , (I

APUCLIWab [4sda] Nomad Clignt | m—

Figure 8-3. Multi-region Nomad architecture

208

CHAPTER 8 GETTING STARTED WITH NOMAD

Nomad server clusters in different datacenters can be federated
using WAN links. The server clusters can be joined to communicate
over the WAN on port 4648. This same port is used for single datacenter
deployments over LAN.

Servers within two regions are loosely coupled and communicate
using a gossip protocol, which allows users to submit jobs to any region or
query the state of any region transparently. Requests are forwarded to the
appropriate server to be processed, and the results are returned.

Let’s look at key concepts or terminologies that are used while working
with Nomad.

o Nomad agent/client: A Nomad agent is a long-running
process that runs on every machine that is part of
the Nomad cluster. It works in either server mode or
client mode (depending on the server where an agent
is running). Clients are responsible for running tasks,
whereas servers are responsible for managing the
cluster.

¢« Nomad follower: All nodes start as followers and can
accept log entries from a leader, cast votes, and receive
health checks, heartbeat, and liveness for all the nodes.

o Nomad leader: The peer set elects a single node to
be the leader whenever it wants. The leader ingests
new log entries, replicates to followers, and manages

committed entries.

¢ Job: A task submitted by the user is called a job in
Nomad. It contains instructions that determine what
should be done but not where it should be run. Nomad
makes sure the final state (after a job is completed)
matches the user’s desired state. A job is composed of
one or more task groups.

209

CHAPTER 8 GETTING STARTED WITH NOMAD

o Task group: Multiple sets of tasks that must be run
together in a job. It is the scheduling unit, meaning the
entire group must run on the same client node and not
be split.

o Driver: Represents the basic means of executing your
Tasks. Binary files, Docker, and Java, are examples of
drivers.

o Task: A task is the smallest unit of work in Nomad.
Tasks are dependent on browsers, which allow Nomad
to be flexible in the types of tasks it supports.

¢ Client: Refers to the workloads where tasks are
executed.

e Allocation: A mapping between a task group in a job
and a client node. Nomad servers create them as part of
scheduling during an evaluation.

e Bin packing: The process that maximizes the
utilization of bins. In Nomad, the clients are bins, and
the items are task groups.

Autoscaling Overview

When a job is launched in Nomad, the master scheduler tries to find
available capacity to run it. In cases where there are not enough resources
to meet the job’s demands, queued allocations and metrics show that

the job cannot run due to exhausted nodes. In such scenarios, Nomad
supports the following autoscaling mechanisms to overcome resource

issues.

210

CHAPTER 8 GETTING STARTED WITH NOMAD

Dynamic Application Sizing

Dynamic Application Sizing enables organizations to optimize the
resource consumption of applications using sizing recommendations.
It evaluates, processes, and stores historical task resource usage data,
making recommendations on CPU and memory resource parameters. The
recommendations can be calculated using several different algorithms to
ensure the best fit for the application.

Dynamic Application Sizing can be enabled on an individual task
by configuring autoscaling policies within the task stanza using the job
specification scaling block.

Horizontal Cluster Autoscaling

Horizontal cluster autoscaling adds or removes Nomad clients from a
cluster to ensure there is an appropriate cluster resource for the scheduled
applications. Cluster scaling is enabled by configuring the autoscaler agent
with policies targeting the Nomad cluster.

Horizontal Application Autoscaling

Horizontal application autoscaling automatically controls the number of
instances to have sufficient work throughput to meet service-level agreements
(SLAs). In Nomad, horizontal application autoscaling modifies the number
of allocations in a task group based on the value of a relevant metric, such as
CPU and memory utilization or the number of open connections.

Installing Nomad

Let’s begin with a hands-on exercise to install a Nomad server and client.
A cluster in any type of topology in Nomad (single region or multi-region)
typically consists of three to five servers and a few client agents. Nomad
divides the whole infrastructure into regions that can be under one server

211

CHAPTER 8 GETTING STARTED WITH NOMAD

cluster. It can manage multiple datacenters or availability zones. This
exercise is a three-node Nomad setup with one node client on an AWS EC2
machine. We use four servers with two CPUs and 8 GB RAM on an Amazon
Linux operating system.

First, create four EC2 instances on AWS with an Amazon Linux OS
and ensure the servers can communicate with each other without any
restrictions from the security group. Also, ensure you have Internet access
available on the virtual machine to download the package.

Execute the following command to clone the code used in this chapter,
as shown in Figure 8-4.

git clone https://github.com/dryice-devops/nomad.qgit

[roct@ip-10-5-12-43 repo]# git clone https://fgithub.com/dryice-devops/nomad.git
Cloning into ‘nomad®. ..

remote: Enumerating chjects: 21, done.

remote: Counting cbjects: 106% (21/21), done.

remote: Compressing cbjects: 100% (17/17). done.

remote: Total 21 (delta 4), reused 0 (delta 0], pack-reused 0

Inpacking objects: 100% (21/21), done.

[roctiip-10-5-12-43 repol# I

Figure 8-4. Cloning lab files from GitHub

Execute the following command to export the Nomad_Version variable
value, as shown in Figure 8-5.

export NOMAD VERSION="1.0.1"

[root@ip-172-31-38-249 ~]# export NOMAD_VERSION="1.0.1"
[root@ip-172-31-38-249 ~1# I

Figure 8-5. Exporting environment variable

Execute the following command to download the precompiled binary,
as shown in Figure 8-6.

curl -silent --remote-name https://releases.hashicorp.com/
nomad/${NOMAD_VERSION}/nomad ${NOMAD VERSION} linux_amd64.zip

212

CHAPTER 8 GETTING STARTED WITH NOMAD

[ksoi@ib—l?i-éi;js;éié ;j# curl ::§i1éni'-:;eﬁéfé:ﬁ;hé.Effﬁéz}?féféas;;thashlcorp.cominomad!&{ﬂﬂth

VERSION}/nomad${NOMAD_VERSION} linux_amd64.zip

[root@ip-172-31-38-249 ~]# 1s -1rt --color=never

total 38520

-rW-r--r-- 1 root reoot 39444296 Mar 8 00:58 nomad_1.0.1_linux_amdé4.zip
[root@ip-172-31-38-249 ~1# [

Figure 8-6. Downloading precompiled Nomad binary

Execute the following commands to unzip the binary and update file

permission. Then move it to the system executable location (/usr/bin), as

shown in Figures 8-7 and 8-8.
unzip nomad ${NOMAD VERSION} linux_amd64.zip
sudo chown root:root nomad

sudo mv nomad /usr/local/bin/

[rooti@ip-172-31-38-249 ~]# unzip nomad_${NOMAD_VERSION}_linux_amd64.zip
Archive: nomad_1.0.1_linux_amdsd.zip
inflating: nomad
[root@ip-172-31-38-249 ~]# 1s -1rt --color=never
total 143704
-rwxr-xr-x 1 root root 107707520 Dec 16 21:09 nomad
-rW-r--r-- 1 root root 39444296 Mar 8 00:58 nomad_1.0.1_linux_amd64.zip
[root@ip-172-31-38-249 ~]# I

Figure 8-7. Extracting Nomad binary from zip file

[root@ip-172-31-38-249 ~]# sudo chown root:root nomad
[root@ip-172-31-38-249 ~]# 1s -1rt --color=never

jtotal 143704

-rwxr-xr-x 1 root root 107707520 Dec 16 21:09 nomad

-rw-r--r-- 1 root root 39444296 Mar B8 00:58 nomad_1.0.1_linux_amd64.zip
[root@ip-172-31-38-249 ~]# sudo mv nomad /fusr/local/bin/
[root@ip-172-31-38-249 ~]# |1

Figure 8-8. Moving Nomad binaries

Execute the following command to verify the Nomad installation, as

shown in Figure 8-9.

nomad version

213

CHAPTER 8 GETTING STARTED WITH NOMAD

iroutﬁ;b—l?2-3l—33-24s ~jﬁ nomad version
MNomad v1.0.1 (c9c68aa55a7275722d233872df53e67ebfcb9238)
[root@ip-172-31-38-249 -1# |1

Figure 8-9. Verifying Nomad installation

Execute the following commands to enable the autocompletion of
Nomad commands, as shown in Figure 8-10.

nomad -autocomplete-install

complete -C /usr/local/bin/nomad nomad

[root@ipti;é—Bl-BS-zdg ~|¢'1ﬂ§ﬁé& T;U;b:;ﬁplete—lnstall
[root@ip-172-31-38-249 ~]# complete -C /usr/local/bin/nomad nomad
[root@ip-172-31-38-249 ~]# |}

Figure 8-10. Enabling autocompletion of Nomad commands

Execute the following command to create an /opt/nomad data
directory that stores Nomad service-related files. Check that the directory
was created (see Figure 8-11).

mkdir -p /opt/nomad

file /opt/nomad

[root@ip-10-5-14-144 ~]# mkdir -p Jopt/nomad
[root@ip-10-5-14-144 ~]# file Jopt/nomad/
/opt/nomad/: directory

Figure 8-11. Creating Nomad service file directory

Create a Nomad service file called nomad.service in the /etc/systemd/
system directory, and add content using the files cloned in the first step
(see Figure 8-12).

Sudo touch /etc/systemd/system/nomad.service

214

CHAPTER 8 GETTING STARTED WITH NOMAD

[root@ip-172-31-38-249 ~]# sudo touch /etc/systemd/system/nomad.service
[root@ip-172-31-38-249 ~1# |1

Figure 8-12. Creating Nomad service file

Create a nomad.d directory in the /etc directory. Create nomad.hcl
and server.hcl server configuration files in the /etc/nomad.d directory
using the content of the cloned files (see Figure 8-13). The nomad.hcl file
provides information on the datacenter name (i.e., DC1) and the location
of the Nomad service directory (/opt/Nomad). The server.hcl file provides
the number of master nodes (i.e., 3).

sudo mkdir -parents /etc/nomad.d
sudo chmod 700 /etc/nomad.d

sudo touch /etc/nomad.d/server.hcl

[root@ip-172-31-38-249 ~]# sudo mkdir --parents fetc/nomad.d
[root@ip-172-31-38-249 ~]# sudo chmod 700 fetc/nomad.d
[root@ip-172-31-38-249 ~]# sudo touch /etc/nomad.d/nomad.hecl
[root@ip-172-31-38-249 ~1# ||

[réntuié-i?2-31:38-24é ~]# sudo touch fetc/nomad.d/server.hcl
[rootRip-172-31-38-249 ~1# I

Figure 8-13. Creating Nomad server configuration file

Execute the following commands to enable and start the Nomad server
service, as shown in Figure 8-14.

sudo systemctl enable nomad
sudo systemctl start nomad

sudo systemctl status nomad

215

CHAPTER 8 GETTING STARTED WITH NOMAD

[root@ip-172-31-38-249 nomad.d]# sudo systemctl enable nomad
[root@ip-172-31-38-249 nomad.d]# sudo systemctl start nomad
[root@ip-172-31-38-249 nomad.d]# sudo systemctl status nomad
nomad.service - Nomad
Loaded: loaded (/etc/systemd/system/nomad.service; enabled; vendor preset: disabled)
Active: active (running) since Mon 2021-03-08 01:18:25 UTC; 4s ago
Docs: https://www.nomadproject.io/docs
Main PID: 762 (nomad)
CGroup: /system.slice/nomad, service
762 /usr/local/bin/nomad agent -config fetc/nomad.d

ar 08 01:18:25 ip-172-31-38-249.ec2,internal nomad[762): 2021-03-08T01:18:25.726Z [INFO] age....0
ar 08 01:18:25 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:25.726Z [INFO] age....0
ar 08 01:18:25 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:25.736Z [INFO] nom...[]
ar 08 01:18:25 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:25.736Z [INFO] nom...r=
ar 08 01:18:25 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:25.737Z [INFO] nom...49
ar 08 01:18:25 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:25.737Z [INFO] nom...e]
ar 08 01:18:25 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:25.737Z [INFO] nom...)}"
ar 08 01:18:25 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:25.738Z [ERROR] nom...d"
ar 08 01:18:26 ip-172-31-38-249.ec2.internal nomad[762]: ==> Newer Nomad version available: 1...1)
ar 08 01:18:27 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:27.585Z [WARN] nom...on
int: Some lines were ellipsized, use -1 to show in full.

[root@ip-172-31-38-249 nomad.d]# I

Figure 8-14. Enabling Nomad server service

Execute all the prior steps in this exercise on the other two Amazon
Linux servers to set up a Nomad server component.

On the remaining two servers, join the two nodes with the leader.
Execute the following command to register two Amazon Linux servers with
the leader server (the first server set up), as shown in Figure 8-15.

nomad server join <IP Address of Nomad Leader Server(First
server we used in exercise)>:4648

[root@ip-172-31-38-249 nomad.d]# nomad server join 172,31.38.249:4648
Doined 1 servers successfully
[rootpip-172-31-38-249 nomad.d]# I

Figure 8-15. Registering Nomad server with leader

Execute the following command to verify the total members in the
Nomad server, as shown in Figure 8-16.

nomad server members

216

CHAPTER 8 GETTING STARTED WITH NOMAD

[rooti#ip-172-31-33-110 -]# nomad server join 172.31.38.249:4648
Doined 1 servers successfully
(rooct@ip-172-31-33-110 ~]# nomad server members

ame Address Port Status Leader Protecol Build Datacenter Region
ip-172-31-33-110. ec2, internal.global 172,31.33.110 4648 alive true 2 1.0.1 decl global
ip-172-31-38-249.ec2. internal.global 172,31.38.249 4648 alive false 2 1.0.1 del global
ip-172-31-41-94, ec2, internal. glebal 172.31.41.94 4648 alive false 2 1.0.1 dcl global

[root@ip-172-31-33-110 ~]# ||

Figure 8-16. Listing Nomad server members

You can review the Nomad server configuration in the UI. Navigate
to http://<IP Address of Leader Nomad (the first server used in
exercise)>:4646 to see your Nomad server configuration, as shown in
Figure 8-17. Click Servers to review the three Nomad servers configured in
the previous step.

€« c

il A O OilefuionMid b Saggroed Sty [l rportest From I B - phycumdd

D Nomad

ki Atz ol dicre port
Ip-172-51.33-T10.ecZinternal. global aime Truse 12813500 4548 del
Storage 1A
Ip-172-31-38- 249 ac . interrul ghobal e False 1723138249 A8 a1
Clerts.
Ip-172-31-41-84 sc2 intsenal.global aine Faise 1254184 4848 det
Server
Topokongy 133

Figure 8-17. Nomad Ul server configuration

Click Clients. You see that no clients are currently registered, as shown
in Figure 8-18.

217

CHAPTER 8 GETTING STARTED WITH NOMAD

e FusonMidd. b Suggmsed S [l imported from 10 - pryscraced.

Stocage 1 Mo Clients

Figure 8-18. Nomad UI client configuration

Let’s look at how to set up the client server and register the client with
Nomad servers.

Repeat the first seven steps from the previous section to set up the
Nomad server on the fourth Amazon Linux server.

Create the nomad.d directory in the /etc directory. Create the nomad.
hcl and client.hcl client configuration files in the /etc/nomad.d directory
using the content of the files cloned from GitHub (see Figure 8-19).

Sudo touch /etc/nomad.d/client.hcl

[root@ip-172-31-38-249 ~]# sudo touch /fetc/neomad.d/client.hcl
[root@ip-172-31-38-249 ~]# |

Figure 8-19. Nomad client configuration
Execute the following commands to enable and start the Nomad client
service, as shown in Figure 8-20.
sudo systemctl enable nomad
sudo systemctl start nomad

sudo systemctl status nomad

218

CHAPTER 8 GETTING STARTED WITH NOMAD

[root@ip-172-31-38-249 nomad.d]# sudo systemctl enable nomad
[root@ip-172-31-38-249 nomad.d]# sudo systemctl start nomad
[root@ip-172-31-38-249 nomad.d]# sudo systemctl status nomad
nomad.service - Nomad
Loaded: loaded (/etc/systemd/system/nomad.service; enabled; vendor preset: disabled)
Active: active (running) since Mon 2021-03-08 01:18:25 UTC; 4s ago
Docs: https://www.nomadproject.io/docs
Main PID: 762 (nomad)
CGroup: /system.slice/nomad, service
762 /usr/local/bin/nomad agent -config fetc/nomad.d

ar 08 01:18:25 ip-172-31-38-249.ec2,internal nomad[762): 2021-03-08T01:18:25.726Z [INFO] age....0
ar 08 01:18:25 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:25.726Z [INFO] age....0
ar 08 01:18:25 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:25.736Z [INFO] nom...[]
ar 08 01:18:25 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:25.736Z [INFO] nom...r=
ar 08 01:18:25 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:25.737Z [INFO] nom...49
ar 08 01:18:25 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:25.737Z [INFO] nom...e]
ar 08 01:18:25 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:25.737Z [INFO] nom...)}"
ar 08 01:18:25 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:25.738Z [ERROR] nom...d"
ar 08 01:18:26 ip-172-31-38-249.ec2.internal nomad[762]: ==> Newer Nomad version available: 1...1)
ar 08 01:18:27 ip-172-31-38-249.ec2.internal nomad[762]: 2021-03-08T01:18:27.585Z [WARN] nom...on
int: Some lines were ellipsized, use -1 to show in full.

[root@ip-172-31-38-249 nomad.d]# I

Figure 8-20. Enabling Nomad client service

Now let’s register the Nomad client with the Nomad server. Edit the
client.hcl file in the /etc/nomad.d directory and add the information
shown in Figure 8-21. The IP address field in the Servers section refers to
the Nomad server IP address. TCP port 4647 is used for registration.

[root@ip-10-5-14-14 <]# cat /etc/nomad.d/client. hcl
client {

enabled = true

servers = ["10.5.12 43:4647")

facl {
anabled = true

[root@ip-10-5-14-14 ~]# I

Figure 8-21. Registering client with Nomad server

Execute the following commands to restart and check the status of the
Nomad client service, as shown in Figure 8-22.

sudo systemctl restart nomad

sudo systemctl status nomad

219

CHAPTER 8 GETTING STARTED WITH NOMAD

[root@ip-10-5-14-144 ~]# sudo systemctl restart nomad
[root@ip-10-5-14-144 -]# sudo systemctl status nomad
o nomad. service - Nomad
Loaded: loaded (/fetc/systemd/system/nomad.service; enabled; vendor preset: disabled)
Active: active (running) since Fri 2021-04-02 05:27:13 UTC;: 565 ago
Docs: https://www. nomadproject. io/docs
Hain PID: 5879 (nomad)
Tasks: 8
Memory: 16.2H
CGroup: /system.slice/nomad.service
L5879 fusr/lecal/bin/nomad agent -cenfig /etc/nomad.d

jior 62 ©5:27:13 ip-10-5-14-144,ec2. internal nomad[5879]: 2021-04-02T05:27:13.671Z [INFO] client.plugin: starting p...vice
hpr 62 05:27:13 ip-10-5-14-144.ec2. internal nomad[5879]: 2021-04-02T05:2 .692Z [INFO] client: started client: n...b533
jApr 82 05:27:15 ip-10-5-14-144.ec2. internal nomad[5879]: 2021-04-02T05:2 .395Z [WARN] nomad.raft: heartbeat tim...der=s
ipr 82 05:27:15 ip-16-5-14-144,ec2. internal nomad[5879]: 2021-04-02T05: .396Z [INFO] nomad.raft: entering cand...rm=3
ip-10-5-14-144 . ec2. internal nomad[5879]): 2021-04-02T05 .401Z [INFO] nomad.raft: election won:...lysl
ip-108-5-14-144. ec2. internal nomad[5879]: 2021-04-02T05 -401Z [INFO) nomad.raft: entering lead...er]"
ip-10-5-14-144, ec2. internal nomad[5879]: 2021-04-02T05 .402Z [INFO) nomad: cluster leadership...ired
ip-10-5-14-144 . ec2. internal nomad[5879): 2021-04-02T05:27:15.452Z [INFO] client: node registration...lete
ip-18-5-14-144. ec2. internal nomad[5879]: ==> Newer Nomad version available: 1.0.4 (currently runnin,..0.1)
4 ip-10-5-14-144, ec2. internal nomad[5879): 2021-04-02T05:27:24.111Z [INFO] client: node registration...lete
Hint: Some lines were ellipsized, use -1 to show in full.

Irocti#gip-10-5-14-144 -1#

Figure 8-22. Restart and check the status of Nomad client service

Execute the following command to verify the Nomad client node
status, as shown in Figure 8-23. A status-ready message indicates active
clients. A status-down message indicates that the client is no longer
available or is not reachable by the Nomad server.

nomad node status

[root@ip-10-5-14-14 ~]# nomad node status
10

0 Name Class Orain Eligibility Status
[27abcfa dcl ip-10-5-14-14.ec2.internal <none> false eligible ready
[06453e06 dcl ip-10-5- 12- 159, ec2.internal <none> false eligible down

Figure 8-23. Verifying Nomad client

You can review client details by navigating to the Nomad Ul, as shown
in Figure 8-24.

220

CHAPTER 8 GETTING STARTED WITH NOMAD

c

i Mps O OmdefusonMdd. b SeggestedSas [l iepertedFromE ¢ Blog - physicameriel

Clients

dFTakicta ip-10-5-14- 1 peZinter ready [LEXFRFHEIT] et [

:::::::

OCA51e06 ip=10-5-15-159.ec2inte.. dowm IR5I5.1594646 det o

Figure 8-24. Verifying Nomad client using Ul

Policy-Driven Governance in Nomad

Nomad’s governance and policies capabilities let users address the
complexity of a multi-team managed multi-cluster environment. Features
like namespaces, resource quotas, Sentinel, and ACL help manage an
environment in adherence to organizational standards. The governance
and policy module is provided in the Enterprise version of Nomad. Let’s
look at how each of these capabilities help with application governance.

Namespaces

The Nomad namespaces feature allows a single cluster to be shared by
many teams and projects without conflict. Nomad requires unique job IDs
within namespaces, which allows each team to operate independently.
When combined with ACLs, the isolation of namespaces can be enforced,
allowing only designated users access to read or modify the jobs and
associated objects in a namespace.

221

CHAPTER 8 GETTING STARTED WITH NOMAD

Resource Quotas

Within a namespace, resource quotas provide a mechanism for cluster
administrators to restrict resources. A quota specification has a unique
name, an optional human-readable description, and a set of limits. The
quota limits define the allowed resource usage within a region.

When resource quotas are applied to a namespace, they limit
resource consumption by the jobs in a namespace. This can prevent the
consumption of excessive cluster resources and negatively impacting other
teams or applications sharing the cluster.

Sentinel Policies

Sentinel policies use logic to enforce a certain resource requirement.
Policies ensure that the resource request complies with user- or
organization-defined policies. Sentinel policies declare a scope that
determines when the policies apply. The only supported scope is “submit-
job”. This applies to any new jobs being submitted or existing jobs being
updated (see Figure 8-25).

ACL Tokens ACL Policy Sentinel Policy Capabilities
||| Associated - I Allow | Job ©
Policy _/) Submit Job —/; Meets Policy L/'
I — | — | —/

Figure 8-25. Sentinel policies

Sentinel policies support multiple enforcement levels, such as
advisory, soft-mandatory, and hard mandatory. The advisory level emits
a warning when the policy fails. Soft-mandatory and hard-mandatory
prevent the operation. A soft-mandatory policy can be overridden if the
user has the necessary permissions.

222

CHAPTER 8 GETTING STARTED WITH NOMAD

Nomad ACLs

Nomad provides an ACL feature that controls access to data or APIs. ACL
policies are written using HashiCorp Configuration Language (HCL). ACL
comprises four key objects to govern resource access policies.

Tokens

Requests to Nomad are authenticated using a bearer token. Each ACL
token has a public accessor ID that names a token and a secret ID to make
requests to Nomad. The secret ID is provided using a request header
(X-Nomad-Token) and authenticates the caller. Tokens are management or
client types. The management tokens effectively “root” in the system and
can perform any operation. The client tokens are associated with one or
more ACL policies that grant specific capabilities.

Policies

Policies consist of a set of rules defining the capabilities or actions to be
granted. For example, a read-only policy might only grant the ability to list
and inspect running jobs but not submit new ones. No permissions are
granted by default, making Nomad a default-deny system.

Rules

Policies are comprised of one or more rules. The rules define the
capabilities of a Nomad ACL token for accessing objects in a cluster—
like namespaces, node, agent, operator, quota. The full set of rules are
discussed later.

223

CHAPTER 8 GETTING STARTED WITH NOMAD

Capabilities

Capabilities are a set of actions that can be performed. This includes listing
jobs, submitting jobs, and querying nodes. A management token is granted
all capabilities. Client tokens are granted specific capabilities via ACL
policies. The full set of capabilities is discussed in the rule specifications.

Container Application Deployment Using
Nomad

Now let’s perform a hands-on exercise to deploy a containerized
application using Nomad. We begin by setting up Docker on the Nomad
client server.

Execute the following commands to install and start Docker on the
Nomad client server, as shown in Figures 8-26, 8-27, 8-28, and 8-29.
Nomad automatically detects the installed Docker components using its

drivers.

sudo yum update -y

sudo amazon-linux-extras install docker
systemctl start docker

systemctl status docker

[root@ip-10-5-14-144 ~]# sudo yum update -y

oaded plugins: extras_suggestions, langpacks, priorities, update-motd
No packages marked for update

[root@ip-10-5-14-144 ~]#

Figure 8-26. Update all the installed packages.

224

CHAPTER 8 GETTING STARTED WITH NOMAD

[root@ip-10-5-14-144 ~]# sudo amazon-linux-extras install docker
Installing docker
|oaded plugins: extras_suggestions, langpacks, priorities, update-motd
ICleaning repos: amzn2-core amznZextra-docker
12 metadata files removed
B sgqlite files removed
P metadata files removed
lLoaded plugins: extras_suggestions, langpacks, priorities, update-motd
lamzn2-core
lamzn2extra-docker
(1/5): amzn2-core/2/x86_64/updateinfo
(2/5): amzn2-core/2/x86_64/group_gz
(3/5): amzn2extra-docker/2/x86_64/updateinfo
(4/5): amznZextra-docker/2/xB6_64/primary_db
(5/5): amzn2-core/2/x86_64/primary_db
Resolving Dependencies
--> Running transaction check
---> Package docker.x86_64 0:19.03.13ce-1.amzn2 will be installed
--» Processing Dependency: runc >= 1.0.0 for package: docker-19.03.13ce-1.amzn2,x86_64
--> Processing Dependency: containerd >= 1.3.2 for package: docker-19.03.13ce-1.amzn2.x86_64
--» Processing Dependency: pigz for package: docker-19.03,13ce-1.amzn2.x86_64
--> Processing Dependency: libcgroup for package: docker-19.03.13ce-1.amzn2. x86_64
--> Running transaction check
---> Package containerd.x86_64 ©:1.4.4-1.amzn2 will be installed
---> Package libcgroup.x86_64 0:0.41-21.amzn2 will be installed
Funning transaction
Installing : runc-1.0.0-0.1,20210225.9it12644e6. amzn2, x86_64 1/5
Installing : containerd-1.4.4-1.amzn2.x86_64
Installing : libcgroup-0.41-21. amzn2.x86_64 3/5
Installing : pigz-2.3.4-1.amzn2.0.1.x86_64 4/5
Installing : docker-19.03.13ce-1.amzn2. x86_64 5/5
Verifying : containerd-1.4.4-1.amzn2.x86_64 1/5
Verifying : docker-19.03.13ce-1.amzn2. x86_64 2/5
Verifying : runc-1.0.0-0.1.20210225.g9it12644e6. amzn2. xB6_64 3/5
Verifying : pigr-2.3.4-1.amzn2.0.1.xB6_64 475
Verifying : libcgroup-0.41-21.amzn2. x86_64 5/5

00:00:
00:00:
00:00:
00:00:
00:00:
00:00
60:00

b % el ol

=0 R D~
o

2 o e 3

Toomom®

23283288

(3]

Installed:
docker.x86_64 0:19.03.13ce-1.amzn2

Figure 8-27. Installing Docker on Nomad client server

|[root@ib-10-5-14-144 ~]1# systemctl start docker

Figure 8-28. Start Docker service on Nomad client server

reot@ip-172-31-47-200 ~]# systemctl status docker
p docker.service - Docker Application Container Engine
Loaded: loaded (/usr/lib/systemd/system/docker.service; disabled; vendor preset: disabled)
Active: active (running) since Mon 2021-03-08 02:24:38 UTC; 4min 1lls ago
Docs: https://docs.docker.com
Process: 5818 ExecStartPre=/usr/libexec/docker/docker-setup-runtimes.sh (code=exited, status=0/5UCC
Process: 5807 ExecStartPre=/bin/mkdir -p /run/docker (code=exited, status=0/SUCCESS)
Main PID: 5825 (dockerd)
Tasks: 10
Memory: 38.3M
CGroup: /system.slice/docker.service
L5825 fusr/bin/dockerd -H fd:// --containerd=/run/containerd/containerd.sock --default-ul

flar 08 02:24:34 ip-172-31-47-200.ec2.internal dockerd[5825]: time="2021-03-08T02:24:34,766990442Z" le
flar 08 02:24:34 ip-172-31-47-200.ec2.internal dockerd[5825]: time="2021-03-08T02:24:34.767262226Z" le
flar 08 02:24:34 ip-172-31-47-200.ec2.internal dockerd[5825]: time="2021-03-08T02:24:34,767560423Z" le
lar 08 02:24:38 ip-172-31-47-200.ec2.internal dockerd[5825]: time="2021-03-08T02:24:38.387135900Z" le
flar 08 02:24:38 ip-172-31-47-200.ec2.internal dockerd[5825]: time="2021-03-08T02:24:38.664944090Z" le
flar 08 02:24:38 ip-172-31-47-200.ec2.internal dockerd[5825]: time="2021-03-08T02:24:38.850045050Z" le
flar 08 02:24:38 ip-172-31-47-200.ec2.internal dockerd[5825]: time="2021-03-08T02:24:38 880421734Z" le
lar 08 02:24:38 ip-172-31-47-200.ec2.internal dockerd[5825]: time="2021-03-08T02:24:38.880524590Z" le
Har 08 02:24:38 ip-172-31-47-200.ec2.internal systemd[1]: Started Docker Application Container Engine

Figure 8-29. Check the status of Docker service on Nomad client server

225

CHAPTER 8 GETTING STARTED WITH NOMAD

You can verify the installation from the Nomad UI, as shown in
Figure 8-30. Navigate to the Client section and click the client name to view
the details of the Docker installation.

[r—

Jobs

Storage wma

docker | Meaithy Detected Yes Last Updated in 3 few seconds detaits
Chients
o B Heaithy Detected Yes Last Updated 22 minutes ago detaily

Servers

Tapology

Attributes

Figure 8-30. Verifying Docker installation using Nomad Ul

The Easy Travel application is used for this hands-on exercise. It is a
multi-tier application built using microservices principles. The application
simulates issues such as high CPU load, database slowdowns, or slow
authentication problems. Figure 8-31 is an architectural diagram of the
application. We installed only the customer frontend portion, including
Nginx, a frontend and backend database, and a load generator.

226

CHAPTER 8 GETTING STARTED WITH NOMAD

N Apache Toment N, apacha Toment
s ” | 8
I v 5
CLISI_OITHQI_FIDH‘QI'!d Bu_sl_n;ssﬁacisend | I Matve
Customer Frontend ([' -
| =1
Y 4 LS "
I@‘b W, Apache 20122 v CreditCardAuthorization
- B Microsoh 15, B Microsch IS,
> 3 = >t |
» 'J el]
= - - - 2
B2 Frontend J =, ? -~ ;’
(Travel Agency's) | ‘Web Server | dotNetFrontend dotNetBackend ‘

Figure 8-31. Easy Travel application architecture

Table 8-2 describes the components in the Easy Travel application.

Table 8-2. Application Components

Component Description

Mongodb A pre-populated travel database (MongoDB)

Backend The Easy Travel business backend (Java)

Frontend The Easy Travel customer frontend (Java)

Nginx A reverse-proxy for the Easy Travel customer frontend
Loadgen A synthetic UEM load generator (Java)

Earlier in this chapter, we cloned a few files from GitHub. We used a file
named easytravel.nomad, which contains the configuration for the Easy
Travel application. Let’s look at the various sections in the file.

The Easy Travel application consists of five microservices that are
defined as different groups in easytravel.nomad. Each group contains a
configuration related to its microservice. Figure 8-32 shows the block used
for the frontend.

227

CHAPTER 8 GETTING STARTED WITH NOMAD

- frontend
group “frontend" {

Figure 8-32. Frontend section of Easy Travel application Nomad file

In the file, we added a value for the datacenter (i.e., DC1), which we
used during Nomad server setup (see Figure 8-33).

[root@ip-10-5-12-43 ~]# cat easytravel.nomad [] h - h
ob "easytraveltestl" {
datacenters = ["dcl”]

Figure 8-33. Easy Travel application mapping to Nomad datacenter

The file also contains a constraint section. Defining constraints is
optional because it restricts the deployment to specific clients based on
OS type, kernel version, IP address, and so forth. Our example uses Linux
as the kernel value since we use an Amazon Linux EC2 instance to run the
Easy Travel application (see Figure 8-34).

constraint {
attribute = "${attr.kernel.nama}"
value = "linux"

Figure 8-34. Constraint section in Nomad deployment file
The Group section within the easytravel.nomad file has the following
subsections, as shown in Figure 8-35.
e count: The number of containers to be deployed.

o network: Defines the ports for microservices
communication.

o restart: Nomad periodically checks the health status
of deployed containers and reinitiates the task in the
event of a failure.

o task: Defines the resources to be consumed like CPU,
RAM, and the image to build a container.

228

CHAPTER 8 GETTING STARTED WITH NOMAD

count = 1

network {

port “http" {
to = BOBO

¥

¥

restart {
attempts = 10
interval = “Sm"
delay = "25s"
mode = "delay"

Figure 8-35. Group section in Nomad deployment file

Execute the following command to validate the easytravel.nomad
file for any syntax errors and a dry-run of the Easy Travel application
deployment, as shown in Figure 8-36.

nomad job plan easytravel.nomad

[roct@ip-10-5-12-43 ~]# nomad job plan easytravel.nomad
[l Job: "easytraveltestl®
b+ Task Group: “backend” (1 create)

+ Task: “easytravel-backend" (forces create]

+ Task Group: "frontend™ (1 create)
+ Task: "easytravel-frontend" (forces create)

+ Task Group: "loadgen® (1 create)
+ Task: “easytravel-loadgen" [(forces create]

+ Task Group: "mengodb® (1 create)
+ Task: “easytravel-mongodb" (forces create)

+ Task Group: "nginx" (1 create)
+ Task: “easytravel-nginx" (forces create)

[Scheduler dry-run:
- A1l tasks successfully allocated.

lob Modify Index: @
To submit the job with version verification run:

nomad job run -check-index 0 easytravel.nomad

Figure 8-36. Easy Travel deployment dry run

Execute the following command to deploy the Easy Travel application,
as shown in Figure 8-37.

nomad job run easytravel.nomad

229

CHAPTER 8 GETTING STARTED WITH NOMAD

—TTewT =TT T
[root@ip-10-5-12-43 ~]# nomad job run easytravel.nomad
=== Monitering evaluation "ebeflld2*
Evaluation triggered by job “"easytraveltestl®
=== Monitering evaluation “ebeflld2”
Evaluation within deployment: “cbhdiOcBe*
Allocation "2296fdb4" created: nede “d27aéefa”. group “backend"
Allocation “2707d210* created: node “d27aécfa”, group “frontend'
Allocation "2f2d4d6f" created: node "d27agefa”, group “mengodh”
Allocation "7772bfe8" created: nede "d27ascfa”. group "leadgen”
Allocation “eldfeae” created: node "d27aécfa™, group "nginx"
Evaluation status changed: "pending” -> "completa”
[=> Evaluation "ebeflld2” finished with status “"complete"
[rooti@ip-10-5-12-43 ~]& I

Figure 8-37. Easy Travel deployment dry run

Once the deployment job is completed, you can review the application
configuration in the Nomad UI. Navigate to the Jobs section and click the
Easy Travel job to view details, as shown in Figure 8-38.

a x R] - |

Figure 8-38. Easy Travel configuration review from Nomad Ul

In the Nomad Ul, you can see the number of containers deployed in
each group and their health status, as shown in Figure 8-39.

i Appn O Orsclefution Mdd. b SuggeiiedSites [l dmprtesd From E

D Nomad

Storage 578 easytraveltestl CIm® B e [Swop
Type: service | Pricrity: 50

Allocation Status 3 caltapss

/] e

Figure 8-39. Easy Travel container health status

230

CHAPTER 8 GETTING STARTED WITH NOMAD

You can drill down the Nomad UI to see the details of all the
containers, as shown in Figure 8-40.

% . wldiese g Mae 11 084136 2 mirutes W runsing 0 dITasehy
e 0530 ago
P TTT2bted e N’;;.Inl 08:41:36 i;rum W runung 1]
Severs
Topology 22ddct mongedt Mar 11 0B:41:36 2 mirwtes B running] dl7ahcty
2530 ago
2r0Ta210 tusitend Mar 11 084136 2 mirites W renning [
0530 0
22964db4 backeng Mear 11 08:41:38 2 minutes W running o WTakchy
+0530 ago

Figure 8-40. Easy Travel container health status

The Definition tab provides information on the application deployed
using the easytravel.nomad file (see Figure 8-41).

Charts
Servers

Topalogy

Figure 8-41. Easy Travel application definition

Nomad captures the job versions if you update code multiple times
for the same job, as shown in Figure 8-42. It also allows you to revert to a
specific version.

231

CHAPTER 8 GETTING STARTED WITH NOMAD

Vertion #0 Stable false Submitted Mar 15:05 0% Na Changes

Figure 8-42. Easy Travel application versioning

Let’s try to modify the Easy Travel application and see how Nomad
reports the changes. Edit the easytravel.nomad file by changing the
frontend count to 2, as shown in Figure 8-43.

- frontend
group “frontend” {
count = 2
network {
port “http" {
to = BOBO
b

Figure 8-43. Modify Easy Travel application frontend count

Save the file and execute the following command to redeploy the Easy
Travel application, as shown in Figure 8-44.

nomad job run easytravel.nomad

[roct@ip-10-5-12-43 ~]# nomad job run easytravel.nomad

[==> Monitoring evaluation “13627b78"

Evaluation triggered by job “"easytraveltestl"

=== Monitoring evaluation “13627b78"
Evaluation within deployment: “2377eS80"
Allocation "1c2b0cS7" created: node “d27aGcfa®. group “frontend"
Allocation "2296fdb4" modified: node “d27aécfa™, group “"backend"
Allocation "2707d210" modified: node "d27a6cfa”™, group "frontend"
Allocation "2f2d4def"” modified: node “d27aécfa™. group “mongodb”
Allocation "7772bfe8" modified: node “d27aécfa™, group “loadgen”
Allocation "eld0feas" modified: node “d27aGcfa™, group "nginx®
Evaluation status changed: “pending” -> “complete”

l==> Evaluation "13627b78" finished with status "complete"

Figure 8-44. Redeploy Easy Travel application

232

CHAPTER 8 GETTING STARTED WITH NOMAD

You can review the configuration in the Jobs section of the Nomad UI.
Click the Versions tab, as shown in Figure 8-45. You can see the changes
made to the Easy Travel application.

easytraveltest!

Versons Deployments Allacations Evaluations

Figure 8-45. Review Easy Travel application change history

You can review the resources allocated to the deployed containers by
navigating to the Allocations tab. It shows the allocated CPU and memory
for each container (see Figure 8-46). The CPU and Memory bars in the far-
right columns are continuously updated as they gather information from a
Nomad client.

easytraveltest]

akdtioae g Mar 11 (136 16 minokes W uing 0 2 Takcts
w030 0
Cherts
Servers TTT2bMel Iasdaen Mar 11 0841:36 16 minutes W runeing o 2 —_—
ok 0880 o
04d60 moogocn Mar 11084136 16 minute: W runcing e

Figure 8-46.

2T07d2%

22964d4

0580
ar 11
0530

Mar 11 (Ead1:36
0530

Allocation detail for Easy Travel application

233

CHAPTER 8 GETTING STARTED WITH NOMAD

Nomad initiates self-healing tasks in the event of a failure. To test this
scenario, let’s stop one of the containers by using the docker command, as
shown in Figure 8-47. Once the container is stopped, Nomad automatically
brings it back to the desired running state. The first command lists the
container ID running on the Nomad client server. The second command
stops the container per the container ID. While executing the second
command, use the container ID displayed in your lab setup to view the
results.

docker container ls -aq

docker container stop <Container ID>

[root@ip-10-5-14-14 ~]# docker container 1s -ag
529600467711

9dead21a304

54775763713

f493Becc322b

3d1457635510

(rooti@ip-10-5-14-14 ~]# docker container stop Bdl457635510
81457635510

Irootiip-10-5-14-14 ~1# ||

Figure 8-47. Stopping Easy Travel application container

You can review changes using the Overview tab in the Nomad UI. After
stopping the running container, the count reduces. Nomad triggers the
task to bring the count back to the original configuration, as shown in
Figures 8-48 and 8-49.

234

CHAPTER 8 GETTING STARTED WITH NOMAD

[Definition Vershors Deplayments Allocaticns Evaliations

Type: serace | Priority: 50

Pe—

Allocation Status 5 collapse
Cherts

) % 1 Sustng
Servers
4 Runrins
Tepelogy L] 2 L
L} -
Latess Deployment chdslcte 33 nmtes sge

Figure 8-48. Easy Travel application container count after stopping
container

Allpcation St 3 collapse

—_— PLE
Servers X
R ’
ol I
WOk L]
Latest Deploymment chdscts 33 miretes ago
Placed Desired Heslthy | reptemment comptesedt maccesity

[

Figure 8-49. Easy Travel application container count after self-
healing

You can review the changes to the stopped container by clicking the
container ID, as shown in Figure 8-50.

235

CHAPTER 8 GETTING STARTED WITH NOMAD

i S O OeceFamon Mid. b Suggeind 5o Bl Iported From B Blog - physcaworkd

D Nomad

Jobs easytraveltest] backend 2296fdb4 easytravel-backend

Storage e Mar 10, °21 01543 +0530 Started Task started by chent
Mar 11,21 01542 40530 Drver Downloading image
Charts
Servers Mar 11, 21 081513 #0830 Restarting Tack restarting in 34757702088
Topelogy
Mar 11,21 091513 #0530 Terminated Exit Coce: 137, Exit Message: "Decker container exted with nan-ser ent code: 137
Mar 11, °27 (4137 +0530 Saarted Task started by chent
Mar 10,21 (o136 #0530 Driver Dewnioading image
Mar 11,21 04136 +0530 Tusk Satup Building Task Directory

Figure 8-50. Easy Travel application container change history

Summary

This chapter covered the main concepts of HashiCorp Nomad. We learned
how to install open source Nomad. We also performed a hands-on exercise
in application deployment using Nomad.

With this we have reached the end of our journey on Infrastructure as
code using various tools from Hashicorp. We hope that you have enjoyed
the journey and learnt the basics of these tools and will progress to deploy
and use them in your environments.

236

Index

A, B
Amazon Web Services (AWS)
contact details, 18
new user, 21
personal details, 19
plan selection, 20
programmatic access, 21
registration page, 16, 17
Azure public cloud
account creation, 108
credit card
information, 110
directory structure, 114
hands-on exercise, 113
Main.tf file, 116, 120
program execution, 121, 122
provide details, 108, 109
Provider.tf file, 115-117
service principal creation,
111-113
sign-up process, 110, 111
terraform execution, 128
vars/provider file, 118
Vars.tffile, 116
VNet program
main.tf, 122-129
network security, 118-121

output, 116, 117
validation, 118, 129

Chef provisioner, 82-83
Command-line

interface (CLI), 13, 137
apply command, 41
binary unzips, 36
configuration, 36
data.tf file, 37
destroy command, 43, 44
download, 35
main.tf file, 37
output.tf file, 38
prerequisite tool, 34, 35
program output, 42
provider.tf file, 38
resource creation, 43
terraform code clone/run, 40
unzip files, 36
variable.tf, 38

Consul

agent (client and server), 172, 173
anti-entropy, 173

catalog concept, 172

concepts, 167

© Navin Sabharwal, Sarvesh Pandey and Piyush Pandey 2021 237
N. Sabharwal et al., Infrastructure-as-Code Automation Using Terraform, Packer,
Vault, Nomad and Consul, https://doi.org/10.1007/978-1-4842-7129-2

https://doi.org/10.1007/978-1-4842-7129-2#DOI

INDEX

Consul (cont.)

configuration management, 169
consensus protocol, 173
cross-service challenges, 168
disadvantage, 167
DNS/health checks, 198, 199
gossip protocol, 173
installation

agent setup, 177

directory creation, 175

leader and peers, 177

OS version verification, 175

package download, 175

precompiled binary, 174

unzip and list package, 176

verification, 176

view members, 177
intention deletion

Apache installation, 187

command, 185

connection lost, 186

intention creation, 186

listing port, 192

MySQL installation, 188

Nginx configuration

file, 193

Nginx installation, 191, 192

PHP package, 190

reconfiguring MySQL, 189

restore connection, 186

sidecar proxies, 186

Test.php file, 191

updating document root, 192
LAN gossip pool, 174

238

multi-datacenter
architecture, 171, 172
service discovery
browser navigation, 185
cloning/unzipping file, 181
counting navigation, 184
counting service, 181
dashboard file, 179
dashboard service, 181
definition, 178
intention creation, 182
registering services, 180, 182
sidecar proxy, 183
Ul navigation, 183, 184
verification, 182
service identification/discovery,
168, 169
service mesh/network
segmentation, 169, 170
service registration
Apache configuration file, 194
Nginx configuration file, 194
review Nginx/Apache
service, 197, 198
service tab, 195, 196
sidecar, 169
WAN gossip pool, 174

Container application deployment

allocation detail, 233
application components, 227
application definition, 231
client/server installation, 225
components, 224
configuration review, 230

container change history, 236

container health status, 230, 231

datacenter setup, 228

deployment file, 228, 229

Docker service, 225

easytravel.nomad file, 229

frontend count, 232

frontend section, 228

group section, 229

history, 233

packages installation, 224

self-healing, 235

stopping container, 234

subsections, 228

travel application
architecture, 227

verification, 226

versioning application, 232

Container orchestration, 201-203
Creation-time provisioners, 76

D, E

Destroy-time provisioner, 78, 79

F

File provisioners, 79-81

G

Generic provisioners, 79
Google Cloud Platform (GCP)
bucket
destroy, 107

INDEX

destroy, 108
Main.tf, 104, 105
Output.tf, 106
Provider.tf, 101
terraform code output, 107
Vars.tf, 102, 103
platform, 86
prerequisite, 85
project creation
lab use-case architecture, 93
name and description, 92
navigation, 91
new project screen, 89
parameters, 89
role mapping, 92
service account, 91
view, 90
service account, 93, 94
subnet, 94
tier registration, 86-88
virtual machine, 98-102

HashiCorp’s automation

solution, 1
boundary, 9
Consul solution, 8
nomad, 7
packer, 5
terraform, 6, 7
vagrant, 8, 9
vault, 7
waypoint leverages, 10

239

INDEX

,J,K

Infrastructure as code (IaC), 1
benefits, 2
composability, 4
consistency/repeatability, 3
improvements, 1
predictability, 3
terraform, 6, 7
tools operate, 2
version control, 2

L

Local-exec provisioner, 80

Multiple provisioners, 78, 79

N,O
Nomad
architecture, 207
autoscaling mechanisms, 210
cluster, 211
dynamic application
sizing, 211
horizontal application, 211
availability/scalability, 208
concepts, 201
concepts/terminologies, 209
container application
(see Container application
deployment)

240

container/chestration, 201-203

installation
autocompletion, 214
binaries, 213

client configuration, 218, 219

cloning lab files, 212
command, 212
enabling server
service, 216
exporting environment
variable, 212
listing members, 217
registering server, 216
restart/check status, 220
server/client, 211
server configuration
file, 215
server.hcl file, 215
service file directory, 214
source code, 219
system executable
location, 213
Ul client/server
configuration, 217
verification, 214, 220, 221
key features, 205-207
multi-region architecture, 208
open source vs. enterprise,
204, 205
policy-driven governance
(see Policy-driven
governance)
servers, 208

INDEX

P, Q Policy-driven governance
ACL feature, 223
capabilities, 224
namespaces, 221
policies, 223

resource quotas, 222

Packer, 151
builders block, 152
communicators, 153
hands-on exercise
AMI navigation, 164, 165

Apache package, 166 ruleﬁ, 2?3 licies. 222
CLI execution, 159 sentinepolicies,
token, 223

cloning script, 161
configuration, 160
directory, 161

filesystefn, 160 R, S
high-level flow, 158
installation validation, 159
packer_project directory,

Remote-exec provisioner, 81
Role-based access control (RBAC), 14

162, 163
prerequisite installation, 159 T’ U
security patch, 161 Terraform
synchronization, 161 CLI (see Command-line
validation, 164 interface (CLI))
view updation, 166 Cloud
installation, 156, 157 collaboration, 22
machine images, 151 GitLab provider, 26-32
post-processors, 154, 155 organization, 24
provisioners configuration, Scratch option, 23
154, 155 signup page, 22
sequence definition, 155 user registration, 23
simple and detailed VCS option, 25, 26
definitions, 154 workspace/workflow, 24, 25
variables block GitLab
declaration, 156 account creation, 27
source code, 155 Cloud user, 30
system’s environment, 156 integration steps, 30
verification, 157 process completion, 31

241

INDEX

GitLab (cont.)
setup provider, 29
summary, 32
GitLab provider
VCS option, 27
0.14 vs. 0.13 version, 45
workflows, 33, 34
Terraform automation, 11
AWS account, 16-21
CLI (open source), 13
Cloud, 14
components, 12, 16
deployment manager, 12
DevOps, 11
high-level comparison, 15-17
Terraform automationenterprise, 14
Terraform automationworkspace/
workflow, 13
Terraform'’s programming
arguments, 48
backend configuration
initialization, 75
key benefits, 73, 74
types, 74
block Configuration, 49
code configuration files, 49
components, 47
configuration language, 48
data sources, 71, 72
expressions, 48
module creation
count/for_each, 66
depends_on, 67

242

directory structure, 60

file structure, 60, 61

installation, 64

main.tf file, 61, 62

output, 63

terraform apply
command, 64

variables, 63

versions, 65

ordering configuration

constructors, 53
environment
variables, 54
input variables, 52-54
local values, 57, 58
module, 58-60
output values, 55-57
provider, 51
resources, 50

providers

configuration, 67
plug-ins/filesystem, 70, 71
third-party installation, 69, 70
versions, 68

provisioners

creation-time, 76
destroy-time
provisioner, 78, 79
file type, 79-81
generic type, 79
meaning, 75
multiple provisioners, 78, 79
vendor type, 81-83

INDEX

VW, X Y,Z status check, 143, 146

Vault software token validation, 149

admin/application, 134 ul (.:}}eclfmg, 143
. verification, 141
app integrates, 137 ion. 141
CLI/integration, 137 verswn,.l . llation. 139
access-secret keys, 144 yum—utlts 111133;21 aton,
bucket creation, 138 compo?en > thods. 132
configuration file, 145 CRETyPHON METoas,

credentials, 148 i<ey. feelltur(;s., . 133-135
delete test, 149 ogica archtecture, _

HashiCorp on-demand secrets, 133

. overview, 131
repository, 139 .
HTTPS listener. 142 protecting secrets and

initialization, 146 aCTf;SS, 132 .
KMS values, 145 renewal feature,

. revocation, 132

Linux server, 139

. secret management, 133
login screen, 147 . .

L secrets and protecting sensitive
navigation, 144 data. 136
objects, 147 .a &]

. security architecture, 135-137

secret engine, 148 Vend . 81.83
secrets tabs, 148 en‘ orp rov15110ners, _/CS 05 26
service status, 142 ;//B.I'SIOIII-C(.)HU‘O SlySth\gpc);)4 !
status, 146 irtual private cloud (),

243

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Getting Started with HashiCorp Automation Solutions
	Introduction to Infrastructure as Code
	Introduction to HashiCorp Automation
	Packer
	Terraform
	Vault
	Nomad
	Consul
	Vagrant
	Boundary
	Waypoint

	Summary

	Chapter 2: Getting Started with HashiCorp Terraform
	Introduction to HashiCorp Terraform
	Terraform CLI (Open Source)
	Terraform Cloud
	Terraform Enterprise
	Comparing the Options

	Setting up an AWS Account
	Getting Started with Terraform Cloud
	Terraform Workflow
	Getting Started with Terraform CLI
	What’s New in Terraform 0.14
	Terraform 0.14 vs. Terraform 0.13

	Summary

	Chapter 3: Understanding Terraform Programming Constructs
	Configuration Language
	Arguments, Blocks, and Expressions
	Code Organization
	Configuration Ordering
	Resources
	Provider
	Input Variables
	Environment Variables
	Output Values
	Local Values
	Modules

	Creating a Custom Module
	Version
	count and for_each
	depends_on Module

	Providers
	Provider Version Constraints in Modules
	Automatic Installation of Third-Party Providers
	Provider Plug-ins in a Local Filesystem

	Data Sources
	Backend Configuration
	Backend Types
	Backend Initialization

	Provisioners
	Creation-Time Provisioners
	Destroy-Time Provisioners
	Multiple Provisioners
	Types of Provisioners
	Generic Provisioners
	File Provisioners
	Local-Exec Provisioners
	Remote-Exec Provisioners

	Vendor Provisioners
	Chef Provisioners

	Summary

	Chapter 4: Automating Public Cloud Services Using Terraform
	Automating the GCP Public Cloud Using Terraform
	Creating a VPC and Subnet with Terraform
	Creating a Virtual Machine with Terraform
	Creating a GCS Bucket with Terraform

	Automating the Azure Public Cloud Using Terraform
	Summary

	Chapter 5: Getting Started with Vault
	Introduction to HashiCorp Vault
	Understanding Vault’s Logical Architecture
	Understanding Vault’s Security Model
	Installing Vault CLI and Integration with AWS
	Summary

	Chapter 6: Getting Started with HashiCorp Packer
	Introduction to HashiCorp Packer
	Builders
	Communicators
	Provisioners
	Post-Processors
	Variables
	Using Declared Variables in Templates
	Using Environment Variables in Templates

	Installing Packer
	Hands-on Exercise to Automate AWS AMI
	Summary

	Chapter 7: Getting Started with HashiCorp Consul
	Introduction to HashiCorp Consul
	Service Discovery
	Configuration Management
	Service Mesh and Network Segmentation

	Architecture
	Agent
	Catalog
	Anti-Entropy
	Consensus Protocol
	Gossip Protocol
	LAN Gossip Pool
	WAN Gossip Pool

	Installing Consul
	Service Discovery Using Consul
	Intention Deletion
	Service Registration

	DNS and Health Checks Using Consul
	Summary

	Chapter 8: Getting Started with Nomad
	Container Orchestration
	Introduction to Nomad
	Nomad Architecture
	Autoscaling Overview
	Dynamic Application Sizing
	Horizontal Cluster Autoscaling
	Horizontal Application Autoscaling

	Installing Nomad
	Policy-Driven Governance in Nomad
	Namespaces
	Resource Quotas
	Sentinel Policies
	Nomad ACLs
	Tokens
	Policies
	Rules
	Capabilities

	Container Application Deployment Using Nomad
	Summary

	Index

