


HashiCorp Terraform 
Associate (003) 
Exam Guide

Prepare to pass the Terraform Associate exam on 
your first attempt

Chandra Mohan Dhanasekaran 

Manjunath H. Gowda



HashiCorp Terraform Associate (003) Exam Guide
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted 
in any form or by any means, without the prior written permission of the publisher, except in the case 
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information 
presented. However, the information contained in this book is sold without warranty, either express 
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable 
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and 
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot 
guarantee the accuracy of this information.

Authors: Chandra Mohan Dhanasekaran and Manjunath H. Gowda

Reviewers: Salim Tekin and Mehdi Laruelle

Publishing Product Manager: Anindya Sil

Senior-Development Editor: Ketan Giri 

Development Editor: Kalyani S. 

Presentation Designer: Salma Patel

Editorial Board: Vijin Boricha, Megan Carlisle, Simon Cox, Ketan Giri, Saurabh Kadave,  
Alex Mazonowicz, Gandhali Raut, and Ankita Thakur

First Published: May 2024

Production Reference: 1310524

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB

ISBN: 978-1-80461-884-4

www.packtpub.com



Contributors

About the Authors
Chandra Mohan Dhanasekaran, a.k.a. Chandru D, is an AWS Certified Solutions Architect at Philips, 
focused on designing world-class resilient and cost-efficient solutions for customers in the public 
cloud. His previous experience includes stints at banking giants including JP Morgan Chase & Co. 
and Danske Bank, the largest bank in Denmark and very popular in the Nordic countries. He has 
close to 15 years of professional IT experience in different domains and various technology stacks 
ranging from mainframes to frontend, distributed, and container technologies. He has always had 
a profound love for mainframe systems and is fascinated by the advantages of using IaC tools and 
cloud services. You can find him at almost all AWS events and meetups around Bengaluru, and he 
loves to connect with people.

He always looks to explore new and blossoming open source technologies and is a fan of serverless 
technologies and Kubernetes. You can connect with him on LinkedIn: https://www.linkedin.
com/in/chandrud 

Outside of work, he loves cooking for the kids at the weekend and enjoys jogging whenever he finds 
time. He’s also a die-hard Manchester United fan and watching “Rafa” (Rafael Nadal) around the 
tennis court is something he can’t afford to miss!

Manjunath H. Gowda is a VP of cloud engineering at Lentra.ai. Previously, he worked at AWS as a 
solutions architect, helping customers migrate to AWS and build cloud-native solutions in the AWS 
cloud. While working as a freelance consultant, he helped several startups with their AWS architecture, 
cost optimization, infrastructure security assessment, and automation using IaC tools. He has a special 
interest in cloud security and infra-automation using IaC tools such as CloudFormation and Terraform.

When not in front of a laptop, he plays cricket and loves long-distance cycling. He is a loyal RCB fan 
who genuinely believes in the RCB slogan, “Ee sala cup namde”.

You can connect with him at https://www.linkedin.com/in/manju712/. 

https://www.linkedin.com/in/chandrud
https://www.linkedin.com/in/chandrud
https://www.linkedin.com/in/manju712/


About the Reviewers
Salim Tekin is a seasoned Senior DevOps Engineer, currently spearheading the optimization of the 
Data Science Platform at Generali Germany. Prior to this role, he served as a Cloud Engineer Consultant 
at Deloitte, where he specialized in crafting tailored cloud solutions. Before his tenure at Deloitte, 
Salim showcased his versatility as an ADAS Engineer at Bertrandt, simultaneously holding the role 
of Product Owner for Connectivity Backend on the 'Harry' project. With a rich skill set including 
Certified Kubernetes Administration and Development, AWS & GCP Architecture, and proficiency 
in tools like Terraform and Prometheus, Salim excels in driving efficiency and scalability in complex 
technological landscapes. Holding a Diploma in Industrial Engineering with a focus on Electronics & 
Informatics, Salim combines academic prowess with practical expertise to deliver impactful solutions. 
Outside of work, Salim enjoys staying abreast of the latest technological advancements and spending 
time with family and friends.

Mehdi Laruelle is a seasoned professional with a diverse background in the industry. With extensive 
experience working for major players and startups, he's honed his skills as a consultant, particularly 
in the realm of cloud, DevOps culture and tools. His proficiency extends to HashiCorp software like 
Terraform and Vault, among others. Passionate about sharing knowledge, Mehdi actively engages 
in training, writing articles, and organizing meetups. As the co-organizer of the HashiCorp User 
Group France meetup, he fosters a community of learning and collaboration. His expertise is widely 
recognized, earning him distinctions as a HashiCorp Ambassador, AWS Community Builder, and 
AWS Authorized Instructor (AAI). You can find him on GitHub under the username "mehdilaruelle".



Preface xiii

1
Introduction to Infrastructure as Code (IaC) and Concepts 1

Making the Most Out of This Book – 
Your Certification and Beyond 2
Technical Requirements 4
What Is IaC? 4
Scenario 5

Basic Concepts of IaC 7
Declarative Approach versus Imperative 
Approach 7
Version Control 7
Idempotency 8
Infrastructure Provisioning and 
Configuration Management 8

IaC Tools in the Market 8
How to Choose the Right IaC Tool 9
HashiCorp Terraform 9
Progress Chef 10
Creating Your First Recipe 11
Puppet 11
Pulumi 12

AWS CloudFormation 13

IaC Use Cases 17
Multi-Cloud Deployments 17
Application Deployments, Scaling, and 
Monitoring Tools 17
Policy Compliance and Management 17
Testing Environments and Software Demos 17

Benefits of IaC 18
Rapid Deployments and Tool Integration 18
Lower Costs and Error Reduction 18
Configuration Drift Elimination 19
Improved Infrastructure Consistency 19
DevOps and CI/CD 20
Don’t Repeat Yourself (DRY) 20
Creating a Simple AWS DynamoDB Table 
Using a CloudFormation Template 20
Creating an AWS S3 Bucket Using Terraform 24

Summary 27
Exam Readiness Drill – Chapter 
Review Questions 28

Table of Contents



Table of Contentsvi

2
Why Do We Need Terraform? 31

History of Infrastructure  
Provisioning 31
Why Is the Cloud Model a Good Fit for 
Infrastructure Automation? 32

Infrastructure Automation  
Using IaC 33
Advantages of IaC 33
Various Options for Implementing IaC 34
Ad Hoc Scripts 34
Configuration Management Tools 34
Cloud-Based IaC Services 35
Cloud-Agnostic IaC Tools 35

What Is Terraform? 35
Features of Terraform 36

Cloud/Vendor Agnostic 36
A Pioneer in IaC 36
Wide Partner Integration 36
Declarative 36
Idempotent 37
Easy Learning Curve 37
Version Controlled 37
Automation 37
Documentation 37
Community Support 38

Licensing Change from  
Version 1.5.5 (Aug 2023) 38
Summary 38
Exam Readiness Drill – Chapter 
Review Questions 39

3
Basics of Terraform and Core Workflow 43

Technical Requirements 43
How Terraform Works 44
Getting Started with Terraform 45
Terraform CLI Installation Check 45
AWS CLI Installation Check 45
Creating Your First Terraform Resource – 
AWS IAM User 46
Setting up AWS Credentials 46
Terraform Configuration 47
Creating the AWS IAM User 49

Terraform Settings 51
HCP Terraform Configuration Using the 
cloud {} block 52
Terraform Backend Configuration Using the 
backend {} Block 53

Initialization 54
Partial Configuration 54

The required_version Setting 55
The required_providers {} Block 55
Experimental Features 56
Provider Metadata 56

Terraform Providers 57
Types of Terraform Providers 57
Official Providers 57
Partner Providers 58
Community Providers 58
Archived Providers 59

Provider Requirements 59
Local Names 59
Source Addresses 59
Version Constraints 60



Table of Contents vii

Provider Configuration 60
Provider Meta-Arguments 61

Dependency lock file (.terraform.
lock.hcl) 62
Resources and Data Sources 63
Resources Syntax 63
Resources Meta-Arguments 64
depends_on 64
count 65
for_each 66
provider 66
lifecycle 67

Data Sources 67

Variables and Outputs 68

Input Variables 69
Declaring Input Variables 69
Supported Arguments 70
Input Variables Assignment 71
Input Variables Precedence 71

Output Values 72
Local Values 72

Core Workflow 73
Write – Creating the Configuration Script 73
Plan – Previewing the Changes 73
Apply – Provisioning the Infrastructure 73

Summary 74
Exam Readiness Drill – Chapter 
Review Questions 75

4
Terraform Commands and State Management 79

Technical Requirements 80
Basic Workflow Commands 80
The init Command 81
The plan Command 83
The apply Command 85
The destroy Command 87

Commands for Code Management 87
The fmt Command 87
The validate Command 89

Special Commands 89
The login Command 89
The logout Command 90
The console Command 90
The output Command 91
The show Command 92

The graph Command 93
The import Command 94

State Management and the  
terraform state Command 96
The state Command 96

Subcommands of terraform state 97
The terraform state list Command 97
The terraform state show Command 98
The terraform state mv Command 99
The terraform state rm Command 100
The terraform state replace-provider  
Command 101
The terraform state pull Command 101
The terraform state push Command 102

Summary 102
Exam Readiness Drill – Chapter 
Review Questions 103



Table of Contentsviii

5
Terraform Modules 107

Technical Requirements 108
Why Do We Need Modules? 109
Complexity 109
Duplication of Code 109
Segregation 109
Misconfiguration 110

What Is a Terraform Module? 110
Advantages of Modules 110
Reduces Complexity 110
Reduces Code Duplication 110
Segregation 111
Reduces Misconfigurations 111
Self-Service 111

Types of Modules 112
The Root Module 113

The Child Module 114
Local Modules 116
Remote Modules 118
Private Modules 119
Public Modules 119

Module Structure 121
The Module Block’s Syntax 122
Key Points to Consider When  
You Create a Module 125
Key Points to Consider While  
Using a Module 126
Drawbacks of Modules 126
Summary 127
Exam Readiness Drill – Chapter 
Review Questions 128

6
Terraform Backends and Resource Management 131

What Are Backends? 132
Backend Configuration 132
Configuring the backend {} Block 133
Partial Configuration 134

Supported Backends 135
local 135
remote 136
s3 137
http 139
Environment Variable Support 140

pg 140
Environment Variable Support 141

Kubernetes 141

Consul 143
azurerm 144
cos 145
Environment Variable Support 146

gcs 146
oss 147

Resource Addressing and 
Dependencies 148
Resource Addressing 148
Module Path 149
Resource Specifications 149
Addressing Resources with the for_each {} Block 149

Resource Dependencies 150
Implicit Dependency 150



Table of Contents ix

Explicit Dependency 151

Expressions and Constraints 152
Data Types 152
Operators 153
Conditional Expressions 154
for Expressions 154
splat Expressions 155

Type Constraints 155
The any Type 155
“optional” 156
Version Constraints 156

Summary 157
Exam Readiness Drill – Chapter 
Review Questions 158

7
Debugging and Troubleshooting Terraform 161

Configuration Errors 161
override.tf File-Related Issues 162
terraform validate 163

Variable-Related Issues 164
Type Constraint 164
Input Validation 164
Variable Precedence 165

State-Related Issues 166
Configuration Drift 166
State Conflict 167
Migrating the State from One  
Backend to Another 168

Core and Provider-Related Issues 169
Module-Related Issues 170

Missing Features 171
Output-Related Issues 171
Unsupported Argument 171
Version-Related Issues 172

Taking Help from the Forum 172
Bug Reporting 172
Gotchas 173
Avoid Lists Where Possible 173
Using -target in Terraform Runs 175
General Tips 176

Summary 177
Exam Readiness Drill – Chapter 
Review Questions 178

8
Terraform Functions 181

Technical Requirements 182
Function Syntax 182
Numeric Functions 183
The abs() Function 183
The ceil() Function 183
The floor() Function 184

The max() Function 184
The min() Function 185
The pow() Function 185
The log() Function 185
The signum() Function 186
The parseint() Function 186



Table of Contentsx

String Functions 187
The split() Function 187
The join() Function 187
The endswith() Function 188
The startswith() Function 188
The chomp() Function 189
The substr() Function 189
The strrev() Function 189
The lower() Function 190
The upper() Function 190
The trim() Function 190
The trimprefix() and trimsuffix() Functions 191
The trimspace() Function 191
The indent() Function 192
The replace() Function 192
The strcontains() Function 192
The title() Function 193
The format() Function 193
The formatlist() Function 194
The regex() Function 194
The regexall() Function 195

Date and Time Functions 195
The timestamp() Function 196
The formatdate() Function 196
The plantimestamp() Function 197
The timeadd() Function 197
The timecmp() Function 198

Collection Functions 198
The alltrue() Function 199
The anytrue() Function 199
The chunklist() Function 199
The coalesce() and coalescelist() Functions 200
The compact() Function 200
The concat() Function 200
The contains() Function 201
The distinct() Function 201
The element() Function 201
The flatten() Function 201
The keys() and values() Functions 202

The index() Function 202
The length() Function 202
The lookup() Function 202
The matchkeys() Function 203
The merge() Function 203
The one() Function 203
The range() Function 204
The reverse() Function 205
Set Functions 205
The setintersection() Method 205
The setproduct() Method 205
The setunion() Method 206
The setsubtract() Method 206

The slice() Function 206
The sort() Function 207
The sum() Function 207
The transpose() Function 207
The zipmap() Function 208

Type Conversion Functions 208
The can() Function 208
The sensitive() and nonsensitive() Functions 209
The try() Function 210
The type() Function 210
Conversion Functions 211

Filesystem Functions 212
The abspath() Function 212
The dirname() and basename() Functions 212
The pathexpand() Function 212
The file() and filebase64() Functions 213
The fileexists() Function 213
The fileset() Function 213
The templatefile() Function 213

IP Network Functions 214
The cidrhost() Function 214
The cidrnetmask() Function 214
The cidrsubnet() Function 214
The cidrsubnets() Function 215

Encoding Functions 215



Table of Contents xi

The base64encode() and base64decode() 
Functions 215
The base64gzip() Function 215
The csvdecode() Function 216
The jsonencode() and jsondecode()  
Functions 216
The textencodebase64() Function 216
The textdecodebase64() Function 217
The urlencode() Function 217

The yamlencode() and yamldecode()  
Functions 217

Hash and Crypto Functions 217
The uuid() Function 218
The uuidv5() Function 218

Summary 220
Exam Readiness Drill – Chapter 
Review Questions 221

9
Understanding HCP Terraform’s Capabilities 225

Terraform Editions 226
Shortcomings of Terraform Community 
Edition 227

HCP Terraform Features 228
Remote State Management 228
Multiple Workflows 228
Multiple Execution Modes 229
Version Control System Integration 229
Private Registry 229
Notifications 230
Run Tasks 230
Role-Based Access Control 230
Policy Enforcement 230
Cost Estimation 231

HCP Terraform Pricing 231
Key Concepts of HCP Terraform 232
Workspaces 232
Projects 233
Users 233
Teams 234
Permissions 234
Organizations 234
Locking Workspaces 235
Sentinel Policies 235
Explorer 236

HCP Terraform Sign-Up 236
Creating an Account with HCP Terraform 236
Creating an Account with HCP 238

Exercises on Workflows and 
Execution Modes 239
Remote Execution Mode Using  
the CLI-Driven Workflow 242
Local Execution Mode Using the  
CLI-Driven Workflow 244

Remote Execution Mode  
Using the VCS/UI Workflow 248
Creating a Public GitHub Repository and 
Adding Configuration Files 249
Integrating the VCS Repository with HCP 
Terraform 253
Testing the VCS/UI Workflow in HCP 
Terraform 258
Cost Estimation Feature 263

Migrating to HCP Terraform or 
Terraform Enterprise 265
Terraform Enterprise Features 266
Summary 267
Exam Readiness Drill – Chapter 
Review Questions 268



Table of Contentsxii

10
Miscellaneous Topics 271

Technical Requirements 271
Input Validations 272
Preconditions and Postconditions 273
The check {} block 274
Workspaces 276
The dynamic {} block 279
Provisioners 281
The file provisioner 281
The local-exec provisioner 282

The remote-exec provisioner 283

Handling Sensitive Data 284
AWS Access Keys or Admin Credentials 284
Variables 285
Output Values 285

Next Steps 285
Summary 286
Exam Readiness Drill – Chapter 
Review Questions 287

11
Accessing the Online Practice Resources 291

Index 297

Other Books You May Enjoy 304



Preface

With the cloud being the new normal for the deployment of applications, Infrastructure as Code (IaC) 
becomes very important in managing the infrastructure used to host these applications. HashiCorp’s 
Terraform is leading this space, with many startups and enterprises choosing it over the cloud-native 
IaC services for infrastructure management.

The knowledge, working experience, and certification of Terraform will definitely give engineers an 
edge over their peers.

This book will help you get a good understanding of Terraform concepts and prepare for the certification. 
The chapters in the book follow the certification content and cover all the key concepts that you’re 
expected to understand to pass the certification.

By the end of the book, you will be confident in managing a Terraform-based setup and deciding 
which Terraform edition to use for your use case, and will be ready to take the certification.

Who This Book Is For
Administrators, CloudOps engineers, DevOps engineers, developers, architects, any other roles related 
to infrastructure management, and anyone who wants to keep up with the latest in infrastructure 
management will all benefit from learning Terraform.

Having some programming background will help you quickly learn Terraform, but this is not mandatory.

Having a working knowledge of any of the cloud platforms will also help when it comes to trying out 
the Terraform code.

What This Book Covers
Chapter 1, Introduction to Infrastructure as Code (IaC) and Concepts, will help you get a clear 
understanding of IaC concepts and build your knowledge of the Terraform tool.

Chapter 2, Why Do We Need Terraform?, will give you an idea about the advantages of IaC when 
compared to the manual provisioning of infrastructure. The chapter will also discuss the Terraform 
tool and its benefits over other tools/services used for IaC.



Prefacexiv

Chapter 3, Basics of Terraform and Core Workflow, will introduce you to the building blocks that 
make Terraform an efficient tool to use. It will help you get a basic idea of what constitutes Terraform.

Chapter 4, Terraform Commands and State Management, is about the various commands you will use 
while working with Terraform CLI. While some commands are part of almost every infrastructure 
workflow, some may not be regularly used. But every command has its own significance.

Chapter 5, Terraform Modules, will introduce you to modules, one of the core concepts of Terraform 
because of their extensive use in the production environment.

Chapter 6, Terraform Backends and Resource Management, will cover remote backend configurations 
with supported backends and the ways to configure them. You will also take a look at some use cases.

Chapter 7, Debugging and Troubleshooting Terraform, talks about the issues you generally face while 
managing Terraform and how to either avoid, debug, or fix them.

Chapter 8, Terraform Functions, will cover the different built-in functions and their syntax with 
examples for better understanding.

Chapter 9, Understanding HCP Terraform’s Capabilities, will introduce you to HCP Terraform and 
Terraform Enterprise, the managed Terraform offerings by HashiCorp.

Chapter 10, Miscellaneous Topics, will cover topics relevant to the certification exam that could not be 
covered in the other chapters. These could add value when you encounter special use cases.

Online Practice Resources
With this book, you will unlock unlimited access to our online exam-prep platform (Figure 0.1). This 
is your place to practice everything you learn in the book. How to access the resources. To learn how 
to access the online resources, refer to Chapter 11, Accessing the Online Practice Resources at the 
end of this book.



Preface xv

Figure 0.1 – Online exam-prep platform on a desktop device

Sharpen your knowledge of Terraform concepts with multiple sets of mock exams, interactive flashcards, 
and exam tips accessible from all modern web browsers.

Note
If you are using the digital version of this book, we advise you to type the code and command 
lines yourself or access the code from the book's GitHub repository (a link is available in the 
next section). Doing so will help you avoid any potential errors related to the copying and 
pasting of code.



Prefacexvi

Download the Example Code Files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Hashicorp-Certified-Terraform-Associate-003-Exam-
guide-Second-Edition. If there are any updates to the code, the GitHub repository will be updated.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out.

Download the Color Images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You 
can download it here: https://packt.link/6ryKi.

Conventions Used
Code in text: Indicates code words in text, database table names, folder names, filenames, file 
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: In the 
following command, the file is downloaded under ~/Downloads and hence the command is being 
run from the Downloads folder.

A block of code is set as follows:

terraform {
  required_providers {
    aws = {
      source = "hashicorp/aws"
      version = "~> 5.0"
    }
  }
}
provider "aws" {
  region = "ap-south-1"
}

Add the code highlight example before the command line sentence:

When we wish to draw your attention to a particular part of a code block, the relevant lines or items 
are set in bold:

terraform {
  required_providers {
    local name = {
      source = «source location
      »version = «version constraint

https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition
https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition
https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://packt.link/6ryKi


Preface xvii

    »}
  }
}

Any command line or output is written as follows:

brew tap hashicorp/tap

Bold: Indicates a new term, an important word, or words that you see onscreen. Here is an example: 
This is exactly where Infrastructure as Code (IaC) adds value.

Tips or important notes
Appear like this.

Get in Touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you have found a mistake in this book, we would be grateful if you would report this to us. Please 
visit www.packtpub.com/support/errata and fill in the form. We ensure that all valid errata are promptly 
updated in the GitHub repository, with the relevant information available in the Readme.md file. You 
can access the GitHub repository at https://packt.link/ykI4S.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 
be grateful if you would provide us with the location address or website name. Please contact us at 
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
https://packt.link/ykI4S
mailto:copyright%40packt.com?subject=
http://authors.packtpub.com


Prefacexviii

Setting up the Environment
Before exploring the book, you need to set up Terraform CLI and configure one of the cloud platforms 
for Terraform usage. We use the AWS cloud platform in this book.

Terraform works seamlessly across multiple operating systems. It offers multiple installation options. 
The following sections will help you understand the Terraform components and the installation and 
configuration of Terraform for AWS:

• Components of Terraform

• Terraform installation:

 � macOS

 � Linux

 � Windows

• Configuring Terraform with AWS

By the end of this section, you will understand the different components of Terraform and the different 
ways of installing Terraform across Linux, Windows, and macOS.

Components of Terraform

When Terraform was launched in 2014, it was a single component that included the provider plugins 
as part of the binary. In 2017, HashiCorp made the decision to separate the providers to allow the 
provider’s code to be managed independently from the Terraform binary (from Terraform version 0.10).

Currently, Terraform has a plugin-based architecture in which the Terraform core makes a remote 
procedure call (RPC) to the Terraform plugins to provision and manage the infrastructure.

Terraform is composed of two components:

• Terraform core: This is a statically compiled binary written in the Go programming language. 
Once it has been compiled, you get a binary file that is used as the command-line tool. This 
binary is downloaded by users and acts as an entry point. The core communicates with the 
plugins, reads the configuration files, creates a plan, and manages the resources.

• Terraform plugins: Terraform plugins are the binaries that expose an implementation for a 
specific service/provider, such as AWS, GCP, or Salesforce. These plugins get invoked by the 
Terraform core over RPC. The providers are a type of plugin that needs to be installed separately. 
These provider plugins are responsible for authenticating and initializing the libraries to make 
the API calls to the infrastructure provider.



Preface xix

At the time of this book, Terraform supports the Windows, macOS, FreeBSD, OpenBSD, Solaris, and 
Linux (Ubuntu/Debian, CentOS/RHEL, Fedora, and Amazon Linux) operating systems. Figure 0.2 
summarizes the details of the Terraform installation.

Figure 0.2: Terraform installation

In the following section, you will learn how to install Terraform on macOS, Linux, and Windows.

Terraform Installation

The Terraform installation process varies depending on the operating system and the CPU architecture.

macOS

You can install Terraform on macOS using a package manager (Homebrew), by downloading the 
pre-compiled binary, or by compiling it from the source. In this section, you will learn how to install 
via the package manager and pre-compiled binary.



Prefacexx

Package Manager – Homebrew

Homebrew is a free, open source package management system for macOS. The following steps will 
help you install Terraform using the Homebrew package manager:

1. Install the HashiCorp tap containing the Terraform binary by running the following command:

brew tap hashicorp/tap

2. Install Terraform by running the following command:

brew install hashicorp/tap/terraform

3. After installation, you should see some output similar to that shown in Figure 0.3. There may be 
some variation in the messages received depending on the presence of a previous installation 
of Terraform.

Figure 0.3: Terraform installation using Homebrew

4. Test the installation of Terraform by running the following command, which shows the version:

terraform -v

5. You should see some output like that shown in Figure 0.04. The version shown on your terminal 
may be a different one.

Figure 0.4: Terraform installation validation



Preface xxi

Pre-Compiled Binary Download

If you are looking for a specific version of Terraform, it is recommended to go with the pre-compiled 
binary option. Another reason to go with this installation option is that the package managers may 
not always have the latest version of the software.

Pre-compiled binaries are available in both AMD64 and ARM64. Make sure to choose the right binary 
depending on your CPU architecture. The following steps will help you install Terraform using a 
pre-compiled binary:

1. Navigate to the following URL that has the latest version of pre-compiled binary:

https://developer.hashicorp.com/terraform/install

2. You should see the binaries, as shown in Figure 0.5.

Figure 0.5: Pre-compiled binary for macOS

3. Depending on the CPU architecture of your laptop or server, you can choose AMD64 or ARM64.

4. The binary is downloaded in ZIP format. Navigate to the path where the file was downloaded 
and unzip it. In the following command, the file is downloaded under ~/Downloads and 
hence the command is being run from the Downloads folder:

~/Downloads $ unzip terraform_1.7.3_darwin_arm64.zip

5. You should see the Terraform binary file, as shown in Figure 0.6.

Figure 0.6: Unzipping the Terraform ZIP file

https://developer.hashicorp.com/terraform/install


Prefacexxii

6. Now, move the Terraform binary to the appropriate directory on the filesystem. Typically, it is 
moved to /usr/local/bin:

mv ~/Downloads/terraform /usr/local/bin/

7. Now you can test the Terraform installation by running the following command:

terraform -v

You should see the output detailing the Terraform version as shown in Figure 0.7.

Figure 0.7: Pre-compiled binary installation validation

Note
If you get an error when you run terraform -v, make sure your PATH variable has the 
location where the Terraform binary is moved to. Here, the binary is moved to /usr/local/
bin, and this should be present in your PATH environment variable on your operating system.

Linux

Terraform is available for Ubuntu/Debian-based OS, CentOS/RHEL-based OS, Fedora, and Amazon 
Linux operating systems. All operating systems support installation via the package manager, 
pre-compiled binary, and compilation from the source.

In the following sections, you will learn how to install Terraform in Ubuntu and Amazon Linux.

Package Manager

Use the package manager specific to your Linux OS distribution to install Terraform. Here, you will 
be using Ubuntu and Amazon Linux as examples. For other OS, refer to https://developer.
hashicorp.com/terraform/install.

Ubuntu

The following steps will help you install Terraform via the package manager in Ubuntu:

1. Download HashiCorp’s GPG key onto your OS:

wget -O- https://apt.releases.hashicorp.com/gpg | sudo gpg --dearmor 
-o /usr/share/keyrings/hashicorp-archive-keyring.gpg

https://developer.hashicorp.com/terraform/install
https://developer.hashicorp.com/terraform/install


Preface xxiii

2. Add HashiCorp’s apt repository that contains Terraform:

echo "deb [signed-by=/usr/share/keyrings/hashicorp-archive-keyring.
gpg] https://apt.releases.hashicorp.com $(lsb_release

-cs) main" | sudo tee /etc/apt/sources.list.d/hashicorp.list

3. Update the repo and install Terraform:

sudo apt update && sudo apt install terraform

4. Test the installation:

terraform version

If you get the version details as output, then Terraform has been installed successfully.

Amazon Linux

The following steps will help you install Terraform via the package manager in Amazon Linux:

1. Install yum-config-manager to manage the repositories:

sudo yum install -y yum-utils shadow-utils

2. Add the HashiCorp Linux repository:

sudo yum-config-manager --add-repo https://rpm.releases.hashicorp.
com/AmazonLinux/hashicorp.repo

3. Install Terraform:

sudo yum -y install terraform

4. Test the installation:

terraform version

• If you get the version details as output, then Terraform has been installed successfully.

Pre-Compiled Binary Download

Copy the appropriate binary’s link for your OS and CPU architecture from the following URL:

https://developer.hashicorp.com/terraform/install

All the operating systems have similar steps: install the unzip application, download the Terraform 
binary, unzip the archive, move the binary to the right location, and test it. To avoid repetition, this 
section will cover Ubuntu only. For other OS, please make the required changes in the commands 
(mostly in the unzip installation) before proceeding with this method.

https://developer.hashicorp.com/terraform/install


Prefacexxiv

Ubuntu

The following steps will help you install Terraform using a pre-compiled binary in Ubuntu:

1. Install the unzip package, which is required to unzip the Terraform file:

sudo apt-get install unzip

2. Download the Terraform binary that needs to be installed (you need to copy this link from 
the HashiCorp downloads URL):

wget https://releases.hashicorp.com/terraform/1.7.3/
terraform_1.7.3_linux_amd64.zip

3. Extract the downloaded file archive:

unzip terraform_1.7.3_linux_amd64.zip

4. Move the extracted file into a directory as defined in the PATH variable:

mv terraform /usr/local/bin/

5. Test the installation:

terraform version

• If you get the version details, Terraform is installed successfully.

Compile from Source

The compile from source option is typically used for operating systems that are not directly supported 
by Terraform, but where you still want to install it.

The steps to compile the Terraform from source remain the same across the Linux OS. You will have 
to make sure you use an appropriate package manager to install go. The following steps are done 
on Ubuntu:

1. To compile the Terraform binary from source, clone the HashiCorp Terraform repository:

git clone https://github.com/hashicorp/terraform.git

2. Navigate to the new directory:

cd terraform

3. Install go, which is required to compile the binary:

sudo snap install go



Preface xxv

4. Now compile the binary by running the following command. The compiled binary is stored 
in $GOPATH/bin/terraform:

go install

5. Move the compiled Terraform binary file into a directory searched for executables. You will 
first have to navigate to the bin folder of the go installation and run the following command:

mv terraform /usr/local/bin/

6. Test the installation:

terraform version

• If you get the version details, Terraform has been installed successfully.

Windows

You can install Terraform on Windows using the Chocolatey package manager. You do not have to 
add the location of the Terraform binary in the PATH variable when installed through Chocolatey. 
The following steps will help you install Terraform in Windows using Chocolatey:

1. Open the PowerShell CLI as an administrator.

2. Enter the following command, which will install the Chocolatey package manager. This has 
been tested on Windows Server 2022 for the installation of Chocolatey. Please make use of the 
command appropriate for your version of Windows to install Chocolatey:

Set-ExecutionPolicy Bypass -Scope Process -Force; [System.
Net.ServicePointManager]::SecurityProtocol = [System.
Net.ServicePointManager]::SecurityProtocol -bor 3072; iex 
((New-Object System.Net.WebClient).DownloadString('https://
chocolatey.org/install.ps1'))

3. Once the installation succeeds, test it by running the following command:

choco version

4. Output like that in Figure 0.8 confirms the successful installation of Chocolatey:

Figure 0.8: Chocolatey installation validation



Prefacexxvi

5. Use Chocolatey to install Terraform by running the following command:

choco install -y terraform

The output will look like Figure 0.9 when Terraform is successfully installed:

Figure 0.9: Terraform installation via Chocolatey

6. Test the installation:

terraform version

7. If you get the version details as output, then Terraform has been installed successfully.

Pre-Compiled Binary Download

The following steps will help you install Terraform on Windows using a pre-compiled binary:

1. Depending on your operating system’s CPU architecture, download either the 386 or AMD64 
binary from the following HashiCorp URL:

https://developer.hashicorp.com/terraform/install

2. The file you download will be in ZIP format. Extract the contents of the archive to get the 
terraform.exe file.

3. Create a new folder named terraform under C:\Program Files (x86) and move this 
terraform.exe file into that folder (i.e., to C:\Program Files (x86)\terraform).

https://developer.hashicorp.com/terraform/install


Preface xxvii

4. You will have to add the Terraform binary file’s location in the PATH environment variable to 
make it available for the command line.

5. Open the command line and execute SystemPropertiesAdvanced. This should open 
the System Properties window on the Advanced tab, as shown in Figure 0.10. (Alternatively, 
you can search for advanced system settings in the search bar.)

Figure 0.10: System properties



Prefacexxviii

6. Click on Environment Variables. This should open a new window.

7. Select Path under System variables and click Edit as shown in Figure 0.11. This should open 
another screen.

Figure 0.11: Modifying the PATH environment variable



Preface xxix

8. On the new screen, either add the terraform.exe file’s location manually as shown in 
Figure 0.12, or browse to the location of the terraform.exe file to select it. Once the new 
location appears on the screen, click OK to save it.

Figure 0.12: Adding the Terraform location to the PATH environment variable

9. In the command line, run the following command, which should show the Terraform version 
if the configuration was successful:

terraform version



Prefacexxx

Configure Terraform for AWS

For Terraform to manage the resources in any platform, it must first authenticate against the platform. 
The following steps will help you in configuring Terraform to interact with AWS to manage the resources:

• Make sure you have installed Terraform and the AWS CLI. You can follow the steps given at 
the following URL to install the AWS CLI:

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-
install.html

• Terraform can authenticate against AWS using the following methods:

 � Parameters in the provider configuration (access key and secret access key in given in the 
provider config)

 � Environment variables (access key and secret access key passed through environment variables)

 � Shared credentials files (credentials are taken from $HOME/.aws/credentials)

 � Shared configuration files (credentials are taken from $HOME/.aws/config)

 � Container credentials (credentials are taken from the container’s task role)

 � Instance profile credentials (only if you are running Terraform on EC2 with an IAM 
role associated)

 � Assuming an IAM role (very useful for AWS multi-account login)

In the following steps, you will learn how to configure the Terraform to authenticate to AWS via 
Shared credentials files:

1. Log in to the AWS Management Console and create an IAM user with enough permissions 
to manage the required resources. Detailed instructions to create an IAM user are provided 
at https://packt.link/7afrg.

2. Generate the access key and secret access key for this IAM user from the IAM dashboard. Copy 
the access key and secret access key, as they will be required in later steps.

3. Configure the AWS CLI to use the credentials that were copied in the previous step by running 
the following command:

aws configure

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://packt.link/7afrg


Preface xxxi

4. You will be prompted for the access key, secret key, Region, and output format. Paste these 
details according to the prompt as shown in Figure 0.13.

Figure 0.13: Configuring the AWS CLI

5. Once you enter the details, the credentials get stored in the ~/.aws/credentials file in 
Linux and macOS.

6. You can use the following block to finish the final configuration required for Terraform to talk 
to AWS. Create a file named provider.tf containing the following code:

terraform {
  required_providers {
    aws = {
      source  = "hashicorp/aws"
      version = "~> 5.0"
    }
  }
}
provider "aws" {
  region = "ap-south-1"

}

Note
Note that we have not made any reference to the file where the credentials are stored or the 
profile used by the AWS CLI. If we are using the default options, we do not have to explicitly 
specify this as Terraform will automatically detect and use them.



Prefacexxxii

When you run terraform init and terraform plan with the provider code, it should go 
through without any issues as shown in Figure 0.14:

terraform init
terraform plan

Figure 0.14: Configuring AWS provider

You can test the connectivity to AWS by adding a simple VPC creation code from the public module 
either in the same provider.tf file or by creating a new file named vpc.tf (make sure both files 
are in the same folder) and then running terraform plan:

module "vpc" {
  source  = "terraform-aws-modules/vpc/aws"
  version = "5.5.2"
}



Preface xxxiii

You will see terraform plan trying to create four resources (NACL, security group, route table, 
and VPC). Only the VPC plan is shown in Figure 0.15 for brevity, but note that the plan shows the 
overall addition of four resources.

Figure 0.15: Terraform plan for VPC creation in AWS

The terraform plan output confirms that we have successfully configured Terraform to 
communicate with AWS to manage the resources.

Note
There are multiple editors that can be used for writing Terraform code. The choice of editor is 
very subjective. However, the most common ones are Visual Studio Code (VSCode), Atom, 
and PyCharm. Irrespective of the editor you choose, make sure you install the Terraform plugin/
extension, which helps a lot when writing Terraform code.



Prefacexxxiv

Share Your Thoughts
Once you’ve read HashiCorp Terraform Associate (003) Exam Guide, we’d love to hear your thoughts! 
Please click here to go straight to the Amazon review page for this book 
and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

https://www.amazon.in/review/create-review/?asin=1804618845


Preface xxxv

Download a Free PDF Copy of This Book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical 
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content 
in your inbox daily.

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781804618844

2. Submit your proof of purchase.

3. That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781804618844




1
Introduction to Infrastructure 

as Code (IaC) and Concepts

In the ever-evolving era of technology, the software applications being built are expected to be scalable 
in nature at the very minimum. The term scalability means the ability of an application or system 
to always match the growing needs of its user base and handle the increase in the number of users 
without any problems. This is applicable to all types of applications, including web applications, 
backend microservices, and internal apps. Such scalable apps are well suited for deployment in the 
cloud rather than on-premises because of the dynamic resource needs and because automating the 
scaling process (both scaling up and scaling down) will reap greater benefits. This is exactly where 
Infrastructure as Code (IaC) adds value.

In this chapter, you will explore IaC in detail and the various aspects of this framework through the 
following topics:

• What is IaC?

• Basic concepts of IaC

• IaC tools on the market

• IaC use cases

• Benefits of IaC

By the end of this chapter, you will have a firm understanding of IaC concepts, which will help you 
build your knowledge of the Terraform tool and focus on getting the HashiCorp Terraform Associate 
003 certification in the subsequent chapters.



Introduction to Infrastructure as Code (IaC) and Concepts2

Making the Most Out of This Book – Your Certification and 
Beyond
This book and its accompanying online resources are designed to be a complete preparation tool for 
your AZ-204 Exam.

The book is written in a way that you can apply everything you’ve learned here even after your 
certification. The online practice resources that come with this book (Figure 1.1) are designed to 
improve your test-taking skills. They are loaded with timed mock exams, interactive flashcards, and 
exam tips to help you work on your exam readiness from now till your test day.

Before You Proceed
To learn how to access these resources, head over to Chapter 11, Accessing the Online Practice 
Resources, at the end of the book.

Figure 1.1 – Dashboard interface of the online practice resources



Making the Most Out of This Book – Your Certification and Beyond 3

Here are some tips on how to make the most out of this book so that you can clear your certification 
and retain your knowledge beyond your exam:

1. Read each section thoroughly.

2. Make ample notes: You can use your favorite online note-taking tool or use a physical notebook. 
The free online resources also give you access to an online version of this book. Click the  
BACK TO THE BOOK link from the Dashboard to access the book in Packt Reader. You can 
highlight specific sections of the book there.

3. Chapter Review Questions: At the end of this chapter, you’ll find a link to review questions 
for this chapter. These are designed to test your knowledge of the chapter. Aim to score at least 
75% before moving on to the next chapter. You’ll find detailed instructions on how to make 
the most of these questions at the end of this chapter in the Exam Readiness Drill - Chapter 
Review Questions section. That way, you’re improving your exam-taking skills after each chapter, 
rather than at the end.

4. Flashcards: After you’ve gone through the book and scored 75% more in each of the chapter 
review questions, start reviewing the online flashcards. They will help you memorize key concepts.

5. Mock Exams: Solve the mock exams that come with the book till your exam day. If you get 
some answers wrong, go back to the book and revisit the concepts you’re weak in.

6. Exam Tips: Review these from time to time to improve your exam readiness even further.

This chapter covers the following main topics:

• The benefits of cloud computing

• Cloud deployment models

• Cloud service models

• The core concepts of Azure



Introduction to Infrastructure as Code (IaC) and Concepts4

Technical Requirements
This is an introductory chapter on IaC that covers aspects such as use cases, different tools, and benefits 
that require no prior experience. However, basic knowledge of code development practices, public 
and private clouds, automation, DevOps, containers, and virtualization will help you understand the 
chapter better.

There are a couple of exercises at the end of this chapter to help you get a feel for using IaC tools. To 
complete them, you need the following:

• Amazon Web Services (AWS) account ID with administrator access

• AWS CLI version 2.x.x

• Terraform CLI version 1.5.x or later

• Visual Studio Code or any text editor

The GitHub repository for the chapter contains the graphics and sample scripts used in the chapter 
and can be found here:

https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-
Associate-003-Exam-guide-Second-Edition/tree/main/ch1

What Is IaC?
In simple terms, IaC is the process of managing and provisioning an infrastructure through code 
instead of manual processes. In software engineering, you usually come across code development in 
programming languages such as Java, Python, and so many others that follow the Software Development 
Life Cycle (SDLC) process and then store them in a version-controlled source management tool such 
as GitHub or Bitbucket when they’re ready. They are then deployed in the appropriate infrastructure 
where needed, either manually or with the help of an automated CI/CD pipeline.

The concept of IaC revolves around similar practices, such as creating a set of configuration scripts 
that will exactly provide the same infrastructure every time when executed and are also version 
controlled and properly tested.

IaC tools help us define the infrastructure in human-readable configuration files that can be applied 
multiple times, and they provide the same infrastructure every time without any changes from the 
desired state.

Figure 1.1 shows the IaC workflow and how it can transform the configuration scripts or files into 
real-world infrastructure components.

https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition/tree/main/ch1
https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition/tree/main/ch1


What Is IaC? 5

Figure 1.2 – IaC workflow

Scenario

“Company X wants to build a next-generation e-commerce web application that will be used by millions 
of its customers. The solution will have multiple microservices working with different architectures 
and will be deployed in a cloud that needs to run 24x7 for 365 days a year.”

There are two ways to provide the infrastructure needed to run this application:

• Traditional approach

• IaC-based approach



Introduction to Infrastructure as Code (IaC) and Concepts6

In the traditional approach, there are clear segregations of responsibilities among the different teams 
involved, such as application development teams for app development, infrastructure teams for 
provisioning the resources to deploy the application, and operations teams to support the solution 
in production.

Once the entire solution has been developed and is ready for production, the development team will 
get in touch with the infrastructure team and share the requirements to run the application, usually 
with the ticketing mechanism. Then the infrastructure team will have a dedicated person/team to 
work on the task and make necessary planning for the deployment.

The planning process will involve procuring the dependent software and the required licenses and 
installing them on the server where the app will be running. The team will also spend time creating 
the scripts that need to be run manually before the deployment to get the environment ready.

The operations team will work on the monitoring part of the web application and come up with 
approaches such as health checks and mail notifications when there are any issues to support the 
deployment. There will be situations where the incoming traffic will increase rapidly, which requires 
scaling, and they might need to contact the infrastructure team to deploy multiple instances to serve the 
traffic, and the manual process will repeat once again. If there are any manual errors in this approach, 
that will delay the deployment of additional instances, which will affect the business.

As you can see, there are different bottlenecks in the overall execution and the temporary delays will 
have a bigger impact, and that is where the IaC approach will add real value.

In the IaC approach, based on DevOps principles, the application development team will also be 
responsible for the infrastructure provisioning, and they might support the application in production.

Once the application is ready to be deployed, the team focuses on creating the configuration scripts 
that will provision the required infrastructure on the cloud or on-premises setup. The team would be 
comfortable with going with the cloud-based deployment to make use of fully managed services and 
the pay-as-you-go model to avoid upfront costs.

The configuration scripts will focus on getting the initial setup ready, and they can be modified 
according to the varying needs of the application traffic. As the requirements state, the solution is 
expected to be available 24x7 for 365 days a year, but the volume of traffic will not always stay the 
same. The application does not need to run with the full set of resources during the night or early in 
the morning because the traffic will be lower. At the same time, the traffic will be enormous on offer 
days or during holidays, and this can be managed with very few changes to the configuration scripts 
and with no manual or operational overhead.

The entire provisioning process can also be automated to scale up/down the resources based on the 
incoming traffic so that the configuration can be auto applied to eliminate manual intervention. This 
allows the application developers not to worry about the infrastructure part at all; it is taken care of 
so that they can purely focus on implementing the business logic in the applications they design.



Basic Concepts of IaC 7

The IaC approach comes with the following benefits:

• Easy maintenance

• Less turnaround time

• Automated deployment and scaling

• Less/no manual intervention

Now you can proceed with the basic concepts and characteristics of IaC tools to further deepen your 
understanding of the topic.

Basic Concepts of IaC
IaC tools and practices are built based on the concepts described here. It helps to have a solid 
understanding of these concepts before exploring the advanced topics.

Declarative Approach versus Imperative Approach

Most IaC tools use the declarative approach of defining the required infrastructure, in contrast with 
the traditional imperative programming style. Before you get to know the declarative approach, you 
can take a look at what the imperative programming approach achieves.

The imperative programming approach primarily deals with detailed instructions about how exactly 
the infrastructure provisioning has to be achieved. This could be similar to the execution of setup 
scripts in the right sequence to set up a virtual machine or laptop, or similar.

In contrast, the declarative programming approach details the “what,” and describes the desired state 
of the infrastructure provisioning. This approach does not get into the implementation details, unlike 
the previous approach. But it tries to keep the configuration in the desired state as much as possible.

IaC tools such as Terraform support the declarative approach, and Chef supports both the declarative 
and the imperative approach.

Version Control

In software development, it is very common to keep the generated source code in version-controlled 
repositories such as GitHub and Bitbucket. This will keep the snapshots of the software from each 
development iteration and help us with reverting the changes and proper tracking.

In IaC too, version control is required to keep track of infrastructure changes, and this may not be 
needed if you just work with the scripts that are always run for every new request. Version control 
also helps us go back to a particular version if there are problems with the latest upgrades or the 
software versions used.



Introduction to Infrastructure as Code (IaC) and Concepts8

Idempotency

The idempotency behaviour of IaC tools comes along with the declarative approach, and it basically 
means that the scripts will produce the same output irrespective of the number of times they are 
executed. This is vitally important because the intention is not to duplicate/overprovision the required 
infrastructure if the scripts need to be executed more than once.

This is again different from the traditional programming languages, which might produce new output 
every time scripts are executed. For example, if a Java program is created to add a SQL database entry 
every time it is executed, the row will be inserted in every execution, and you can even say that the 
program will create a new output every time.

But with IaC provisioning, you can say that you want the code to add an EC2 instance to an AWS 
account and that is the desired state. In this case, even if the configuration scripts run multiple times, 
you always need only one EC2 instance, and this is supported by retaining the current state in state 
files in Terraform and always comparing it with the desired state. If there is no difference between 
the current state and the desired state, the code will not perform any action and will return an output 
message such as “The infrastructure matches the configuration, and no changes are required.”

Infrastructure Provisioning and Configuration Management

With the IaC tools firmly taking their place in the IT landscape, you also need to understand the 
difference between infrastructure provisioning and configuration management. This will help you 
pick the right toolset.

Infrastructure provisioning deals with the creation of resources such as EC2 instances, virtual machines, 
and database tables, and setting up container orchestration tools such as Kubernetes before you start 
running your application workloads on them. Container orchestration tools manage and automate 
the life cycle of containers at scale and provide out-of-the-box features such as scaling, networking, 
and load balancing. Basically, you need infrastructure provisioning to be working perfectly from day 
one of the setup.

Configuration management is something usually referred to as a “day-two process” where you have 
to manage the infrastructure with the security updates, install the latest dependencies, configure the 
application setup, and so on. There are tools such as Ansible and Chef that support both infrastructure 
provisioning and configuration management, which you will explore in the next section.

IaC Tools in the Market
Traditionally, infrastructure provisioning has been taken care of as part of the software configuration 
management process by the concerned teams. Now, the scope of infrastructure provisioning has 
broadened more than ever, and each application team is expected to take care of the infrastructure 
they need. With this, the importance of selecting the right IaC tool becomes vitally important.



IaC Tools in the Market 9

You are now familiar with IaC concepts and the way they help teams bootstrap their deployment 
infrastructure process. You will now learn about different IaC tools in the market and how you can 
choose the right one based on your requirements and the capabilities of the selected tool.

How to Choose the Right IaC Tool

Before you decide on the most suitable IaC tool, there are some basic questions that need to be answered 
to help you make the right decision:

• What are the different skillsets within the team (i.e., C#, Python, Golang, TypeScript, or none 
of them)?

• What cloud platform are you planning to deploy resources into?

• Are you comfortable with the declarative approach or the imperative approach of infrastructure 
provisioning, and which method are you most familiar with (push versus pull)?

• Are you concerned only about infrastructure provisioning or configuration management as well?

The following are the most widely used IaC tools:

• HashiCorp Terraform

• Progress Chef (formerly known as Chef)

• Puppet

• Pulumi

• AWS CloudFormation

HashiCorp Terraform

Terraform is the IaC tool developed by HashiCorp. It is user-friendly and easy to use for new developers. 
The tool was initially released in July 2014, and it is written in the Golang language.

Terraform supports multi-cloud platforms such as AWS, Microsoft Azure, Google Cloud Platform 
(GCP), and several others. Terraform has an extensive list of providers that can be categorized as 
Official, Community, Partner, and Archived. The providers provide the logical abstraction for the 
API interactions and are responsible for exposing the resources.

Users of Terraform define the required infrastructure resources in a set of configuration files written 
in a declarative configuration language known as HashiCorp Configuration Language (HCL). The 
configuration files are saved with the .tf extension, and JSON is also supported as an alternative to 
HCL to define resource configuration.

A sample Terraform configuration file called main.tf is provided for reference. It creates an EC2 
instance of type t3.large with the specified Amazon Machine Image (AMI) ID.



Introduction to Infrastructure as Code (IaC) and Concepts10

The script contains different blocks, such as terraform, provider, variable, resource, and 
output, and each has its own purpose. The terraform block indicates the Terraform provider 
to use, and the provider block configures this Terraform provider with the specified parameters. 
The variable block will take the user input, or it can have default values that will be used in the 
resource block. It will show the output in the terminal when the script is executed:

terraform {
 required_providers {
   aws = {
     source  = "hashicorp/aws"
     version = "~> 5.0"
   }
 }
}

provider "aws" {
 region = "us-east-1"
}

variable "ami" {
 default = "ami-00e93213821bcacf8"
 description = "Amazon Machine Image ID for Bottlerocket"
}

resource "aws_instance" "demo" {
 ami = var.ami
 instance_type = "t3.large"
 tags = {
   name = "Demo System"
 }
}

output "instance_id" {
 instance = aws_instance.demo.id
}

Progress Chef

Progress Chef (formerly known as Chef) is an IaC and configuration management tool initially 
released in January 2009. It is written in Ruby and Erlang.



IaC Tools in the Market 11

The tool uses pure Ruby, a Domain-Specific Language (DSL) for writing system configurations 
popularly known as recipes. The recipes describe the servers and utilities to be managed and how 
they need to be configured. When grouped together, the recipes form “cookbooks” with the main 
intention of making management easier. The cookbooks can also contain other components, such as 
attributes, templates, and files. Progress Chef is also integrated with multiple cloud platforms, such as 
AWS, Azure, and GCP, and always ensures that the provisioned servers are available in the desired state.

Similar to the concept of community providers in Terraform, Progress Chef has Chef Marketplace, 
which has community workbooks that you can use as dependencies in custom workbooks.

Creating Your First Recipe

Say you want to install OpenJDK 1.8 using Chef. You need to create a cookbook and then add a 
recipe. Here are the steps you can follow:

1. First, generate the cookbook using the chef generate command once the Chef Development 
Kit is installed on your workstation/laptop:

$ chef generate cookbook cookbooks/java

2. Once the cookbook has been created, create a default recipe to install epel-release and 
java-1.8.0-openjdk with the following content:

package 'epel-release' do
  action :install
end

package 'java-1.7.0-openjdk' do
  action :install
end

With these steps, you should be able to install OpenJDK 1.8 on your workstation.

Puppet

Puppet is another IaC tool that’s used for infrastructure provisioning and configuration management that 
uses its own declarative language to describe the configuration. The tool was initially released in 2005 
and has both an open source version, Puppet Software, and a closed source version, Puppet Enterprise.

Puppet software also supports the use of Ruby DSL to define the configuration. It also supports the 
resource configuration of Unix and Windows systems.

With this tool, the configuration information is stored in Puppet manifests, which are compiled into 
a system-specific catalogue with the details on resources and resource dependencies with the help of 
a utility called Facter.



Introduction to Infrastructure as Code (IaC) and Concepts12

The tool uses a client-server architecture. The client is usually called a Puppet agent, and it interacts 
with the Puppet server installed on one or more servers. The Puppet agent runs in machines to be 
managed by Puppet, and it fetches the configuration information from the server and applies the 
changes. The final status report is sent back to the server on the execution results.

For example, a Unix user can be defined as a resource using Puppet’s declarative language, as shown here:

user { 'alan':
  ensure => present,
  uid    => '1000',
  shell  => '/bin/bash',
  home   => '/var/tmp'
}

Pulumi

Pulumi is different from the tools you have read about so far because it takes the conventional approach 
of using traditional programming languages to set up infrastructure. It therefore becomes really easy 
for software programmers to onboard themselves onto the IaC bandwagon with their current expertise.

Pulumi supports programming languages such as TypeScript, JavaScript, Python, Go, .NET, and Java, 
and markup languages such as YAML to interact with cloud resources with the use of Pulumi SDK.

This tool was initially released in June 2018, and it comes with the Pulumi CLI, runtime, libraries, and 
a hosted service. These work together to deliver a robust and efficient way of provisioning, updating, 
and managing cloud infrastructure.

To declare new infrastructure resources in your program, you allocate resource objects whose properties 
correspond to the desired state of your infrastructure. These properties are also used between resources 
to handle any necessary dependencies and can be exported outside of the stack, if needed.

Programs usually reside in a project’s working directory that contains the source code for the program 
and metadata on how to run the program. After writing your program, you can run the pulumi up 
Pulumi CLI command from within your project directory. This command creates an isolated and 
configurable instance of your program, known as a stack. Stacks are similar to different deployment 
environments that you use when testing and rolling out application updates. This can allow you to 
have different configuration values for each environment where the resources are going to be deployed.

The following Java program shows how to create an EC2 instance of type t2.micro with the 
test-sg security group, which allows port 80 access:

package testproject;

import com.pulumi.Context;
import com.pulumi.Exports;
import com.pulumi.Pulumi;



IaC Tools in the Market 13

import com.pulumi.aws.ec2.Instance;
import com.pulumi.aws.ec2.InstanceArgs;
import com.pulumi.aws.ec2.SecurityGroup;
import com.pulumi.aws.ec2.SecurityGroupArgs;
import com.pulumi.aws.ec2.inputs.SecurityGroupIngressArgs;
import java.util.List;

public class App {
    public static void main(String[] args) {
        Pulumi.run(App::stack);
    }

    public static void stack(Context ctx) {
        final var group = new SecurityGroup("test-sg",
            SecurityGroupArgs.builder()
            .description("Enable HTTP access")
            .ingress(SecurityGroupIngressArgs.builder()
                .protocol("tcp")
                .fromPort(80)
                .toPort(80)
                .cidrBlocks("0.0.0.0/0")
                .build())
            .build());
        final var server = new Instance("web-server",
            InstanceArgs.builder()
                .ami("ami-032930428bf1abbff")
                .instanceType("t2.micro")
                .vpcSecurityGroupIds(group.name().
applyValue(List::of))
                .build());
        ctx.export("publicIp", server.publicIp());
        ctx.export("publicDns", server.publicDns());
    }
}

AWS CloudFormation

AWS CloudFormation is a service provided by AWS that helps users create AWS resources in an 
automated and secure manner. It allows users to spend less time managing their infrastructure resources 
so they can focus more on applications that will be running on AWS.

With AWS CloudFormation, the user can create template files that describe all the resources needed (for 
example, EC2 instances, RDS instances, or any S3 buckets) and the tool will take care of provisioning 
them. CloudFormation takes care of handling the resource dependencies automatically.



Introduction to Infrastructure as Code (IaC) and Concepts14

A CloudFormation template consists of several sections, including resources, parameters, mappings, 
conditions, outputs, and metadata. The most important section is the resources section, which 
defines the AWS resources to be created or modified:

• Resources: Details the AWS components that are created, updated, or deleted when the 
CloudFormation stack is created, updated, or modified

• Parameters: Used to pass custom input to the template

• Mappings: Set of key-value pairs that can be used to map the user input to the corresponding 
output values

• Conditions: Defines conditional statements within the CloudFormation template

• Outputs: Exports the information about the resources created by the template

• Metadata: Additional information about the template or resources within the template

An example CloudFormation template that creates an EC2 instance and associates it with the Elastic 
IP address is given here for reference:

{
    "AWSTemplateFormatVersion": "2010-09-09",
    "Description": "AWS CloudFormation Sample Template to associate an 
Elastic IP address with an Amazon EC2 instance",
    "Parameters": {
        "InstanceType": {
            "Description": "EC2 instance type",
            "Type": "String",
            "Default": "t1.micro",
            "AllowedValues": [
                "t1.micro"
            ],
            "ConstraintDescription": "Must be a valid EC2 instance 
type."
        },
        "KeyName": {
            "Description": "Existing EC2 KeyPair name to enable SSH 
access to the instances",
            "Type": "AWS::EC2::KeyPair::KeyName",
            "ConstraintDescription": "Name of an existing EC2 
KeyPair."
        }
    },
    "Mappings": {
        "AWSInstanceType2Arch": {
            "t1.micro": {



IaC Tools in the Market 15

                "Arch": "HVM64"
            }
        },
        "AWSInstanceType2NATArch": {
            "t1.micro": {
                "Arch": "NATHVM64"
            }
        },
        "AWSRegionArch2AMI": {
            "us-east-1": {
                "HVM64": "ami-032930428bf1abbff",
                "HVMG2": "ami-0aeb704d503081ea6"
            }
        }
    },
    "Resources": {
        "EC2Instance": {
            "Type": "AWS::EC2::Instance",
            "Properties": {
                "UserData": {
                    "Fn::Base64": {
                        "Fn::Join": [
                            "",
                            [
                                "IPAddress=",
                                {
                                    "Ref": "IPAddress"
                                }
                            ]
                        ]
                    }
                },
                "InstanceType": {
                    "Ref": "InstanceType"
                },
                "KeyName": {
                    "Ref": "KeyName"
                },
                "ImageId": {
                    "Fn::FindInMap": [
                        "AWSRegionArch2AMI",
                        {
                            "Ref": "AWS::Region"



Introduction to Infrastructure as Code (IaC) and Concepts16

                        },
                        {
                            "Fn::FindInMap": [
                                "AWSInstanceType2Arch",
                                {
                                    "Ref": "InstanceType"
                                },
                                "Arch"
                            ]
                        }
                    ]
                }
            }
        },
        "IPAddress": {
            "Type": "AWS::EC2::EIP"
        },
        "IPAssoc": {
            "Type": "AWS::EC2::EIPAssociation",
            "Properties": {
                "InstanceId": {
                    "Ref": "EC2Instance"
                },
                "EIP": {
                    "Ref": "IPAddress"
                }
            }
        }
    },
    "Outputs": {
        "InstanceId": {
            "Description": "InstanceId of the newly created EC2 
instance",
            "Value": {
                "Ref": "EC2Instance"
            }
        },
        "InstanceIPAddress": {
            "Description": "IP address of the newly created EC2 
instance",
            "Value": {
                "Ref": "IPAddress"
            }
        }



IaC Use Cases 17

    }
}

IaC Use Cases
This section will cover the most important use cases where IaC adds value and increases the developer’s 
or team’s productivity.

Multi-Cloud Deployments

For mission-critical applications, provisioning infrastructure in multi-cloud deployments will increase 
fault tolerance and reduce their dependency on one particular cloud provider so that they can be highly 
available if there are any issues. But multi-cloud deployments come with the increased complexity 
of handling each provider with their own setup, different tools/services, and different configuration 
procedures. IaC tools such as Terraform allow us to have the same workflow to deploy applications 
in multi-cloud environments and handle cross-cloud dependencies.

Application Deployments, Scaling, and Monitoring Tools

IaC tools can be used to efficiently deploy, release, scale, and monitor infrastructure for multi-tier 
applications. The multi-tier application architecture usually consists of a web layer that’s accessible 
from the internet for customers to interact with, a backend layer that exposes the data to the web 
layer, and a database layer that actually stores the data. This style allows you to individually scale the 
components and provides the separation of concerns. Using IaC will help you deploy the components 
together and handle dependencies. For example, the database layer should be provisioned before the 
web layer or the backend layer.

Policy Compliance and Management

There could be situations where we can enforce policies on the types of resources the internal team 
uses for development for compliance reasons, and IaC helps here as well. There are policy-as-code 
frameworks such as Sentinel that can be used to implement policies before the resources are provisioned.

Testing Environments and Software Demos

The applications are usually developed and tested in different environments, such as development, 
QA, and pre-prod, before the code is deployed in production. The different environments mostly have 
different scaling requirements, but with the same set of tools and dependencies, and IaC tools can 
help provide the infrastructure based on the environment with the same set of scripts.



Introduction to Infrastructure as Code (IaC) and Concepts18

IaC tools will also help set the space/environment for software demos that might be needed temporarily 
and that do not have to go through the ticketing process or reviews, mainly for bootstrapping the 
testing environments in no time, when compared to the traditional way of installing software and 
setting up project-related things.

Benefits of IaC
IaC comes with a lot of benefits in every phase of software development and also after the product 
is implemented in production. This removes a lot of bottlenecks in real-world problems around the 
installation and management of software products and other open-source tools used in the background.

Some of the key benefits are listed here.

Rapid Deployments and Tool Integration

As discussed earlier in the chapter, IaC practices, along with the cloud migration strategy, help 
organizations reduce their initial capital expenses and focus more on the applications that will be 
deployed in the cloud.

In this way, organizations can get started with application development with very minimal costs 
and take full advantage of the pay-as-you-go model with the cloud. Cloud service providers always 
strive to provide the best customer experience and at the same time enhance their products with 
value-added services.

For example, AWS provides managed services such as Amazon Managed Streaming for Apache 
Kakfa (Amazon MSK) and Managed Service for Prometheus. These help customers easily integrate 
popular tools such as Apache Kafka and Prometheus with their applications in the cloud with AWS 
doing all the heavy lifting.

With the use of IaC tools such as Terraform and Crossplane, supporting services and actual services 
needed for compute and storage can be integrated easily and deployed with clear dependencies with 
very little manual effort.

Lower Costs and Error Reduction

Going with the IaC approach of infrastructure provisioning and configuration management will help 
organizations and individual teams reduce their management costs to surprising levels.

Here is another example: an organization, BLUE, uses the IaC approach, and another organization, 
RED, sticks with the manual approach of providing infrastructure for internal application teams.



Benefits of IaC 19

Application teams at BLUE initially have to spend their time setting up their IaC scripts based on 
the application requirements, and these scripts can be reused in every deployment in all possible 
environments. They need very little to no help from the infrastructure team because of the stability 
IaC provides.

But the same scenario will not work with RED. They have to assign and allocate individuals every 
time a service request is raised, and they have to figure out deployment scripts and need constant 
communication with the application teams. If there are any problems, they need to do more work, 
and they need more capacity to support the same set of applications.

This clearly shows the advantages BLUE has over RED with regard to capacity costs and lower chances 
of error with infrastructure provisioning.

Configuration Drift Elimination

IaC automatically takes care of the configuration drift problem with its architecture. To understand 
this better, learn what exactly configuration drift is. This particularly arises when the actual state of the 
deployment Configuration Items (CIs) is different from the original intended state of the deployment.

For example, person A and person B from the same team with the same level of access are working 
on setting up an EC2 instance to run the application. Person A has created a Secure Shell (SSH) 
configuration script to allow SSH access, and at the same time, person B has created scripts that did 
not work as expected.

This creates a scenario where the original intended state might be affected by the problematic scripts 
created by the other individual and, eventually, the instance might become unusable. This scenario 
can easily be eliminated with the IaC approach, where the original desired state is always remembered 
and constantly checked against the current configuration.

If any differences are found, the scripts can be executed once again so the problematic resources can 
be removed and recreated with the desired status.

Improved Infrastructure Consistency

The IaC methodology also ensures that the provisioned infrastructure is always consistent with the 
desired configuration and that there are no deviations. Once the configuration scripts are in place after 
careful design, the scripts will always perform the same actions that result in the same infrastructure 
with the exact setup, irrespective of the number of executions or the execution environment in the 
current context.

This helps teams focus more on the application logic and the improvements in the design rather than 
worrying about the underlying infrastructure.



Introduction to Infrastructure as Code (IaC) and Concepts20

DevOps and CI/CD

DevOps and CI/CD have taken the world by storm, and one of the core principles of these advanced 
techniques is automation. Since automation is one of the core benefits you get from using IaC, it 
works well in this landscape.

DevOps and CI/CD tools such as Jenkins and GitLab work closely with open-source tools and third-party 
vendor products in the form of plugins, the build or test pipelines integrate them, and the triggers can 
be automated as well. The alignment of development and operations teams with the CI/CD processes 
using IaC through a DevOps approach leads to fewer errors and allows for automated deployments.

When integrated with IaC, DevOps best practices also help the infrastructure provisioning process 
where the same code is used for deployment in every environment and the code is going through the 
same testing pipeline, and version control helps maintain the different versions of infrastructure code.

Don’t Repeat Yourself (DRY)

With the benefits being discussed so far, it is evident that IaC helps with the deployment process in 
different environments with the same code base. This completely removes the redundant steps that 
have to be performed manually every time for each deployment in the traditional approach.

Hence, this approach supports the DRY principle to reduce manual effort and increase overall efficiency.

Note
As indicated earlier in the chapter, you need the AWS CLI set up with credentials for your AWS 
account and the Terraform CLI to complete the exercises.

It is assumed that the setup is ready by this point; you will find every step on the internet if 
you face any issues at all.

Creating a Simple AWS DynamoDB Table Using a CloudFormation 
Template

You are now going to create a new CloudFormation template that will provision a DynamoDB table 
based on user input when executed, and you will output the details of the table created at the end 
of the exercise. This will help you get a firm understanding of the IaC tool’s ability to provision the 
required infrastructure in a declarative fashion. Here are the steps:



Benefits of IaC 21

1. Create the template with the template version field and a short description of the template in 
JSON format:

{
    "AWSTemplateFormatVersion": "2010-09-09",
    "Description": "AWS CloudFormation Template to create a 
simple DynamoDB_Table"
}

2. Next, you will define the Parameters block to get the user inputs and configure the default, 
minimum, and maximum values:

    "Parameters": {
        "ElementName": {
            "Description": "Primary Key Name",
            "Type": "String",
            "AllowedPattern": "[a-zA-Z0-9]*",
            "MinLength": "1",
            "MaxLength": "2048",
            "ConstraintDescription": "Only alphanumeric 
characters are allowed"
        },
        "ElementType": {
            "Description": "Primary Key Type",
            "Type": "String",
            "Default": "S",
            "AllowedPattern": "[S|N]",
            "MinLength": "1",
            "MaxLength": "1",
            "ConstraintDescription": "Pattern values must be 
either S or N"
        },
        "ReadCapacityUnits": {
            "Description": "Provisioned read throughput",
            "Type": "Number",
            "Default": "5",
            "MinValue": "5",
            "MaxValue": "1000",
            "ConstraintDescription": "RCU must be between 5 and 
1000"
        },
        "WriteCapacityUnits": {
            "Description": "Provisioned write throughput",
            "Type": "Number",
            "Default": "10",



Introduction to Infrastructure as Code (IaC) and Concepts22

            "MinValue": "5",
            "MaxValue": "1000",
            "ConstraintDescription": "WCU must be between 5 and 
1000"
        }
    },

3. You can now create the Resources block, which is responsible for provisioning the 
DynamoDB resource:

    "Resources": {
        "myDynamoDBTable": {
            "Type": "AWS::DynamoDB::Table",
            "Properties": {
                "AttributeDefinitions": [
                    {
                        "AttributeName": {
                            "Ref": "ElementName"
                        },
                        "AttributeType": {
                            "Ref": "ElementType"
                        }
                    }
                ],
                "KeySchema": [
                    {
                        "AttributeName": {
                            "Ref": "ElementName"
                        },
                        "KeyType": "HASH"
                    }
                ],
                "ProvisionedThroughput": {
                    "ReadCapacityUnits": {
                        "Ref": "ReadCapacityUnits"
                    },
                    "WriteCapacityUnits": {
                        "Ref": "WriteCapacityUnits"
                    }
                }
            }
        }
    },



Benefits of IaC 23

4. The final step is to create the Outputs block, which will output the name of the table you 
have just created:

    "Outputs": {
        "TableName": {
            "Value": {
                "Ref": "myDynamoDBTable"
            },
            "Description": "DynamoDB table name"
        }
    }

5. Run the template in the AWS CLI with the following command:

aws cloudformation create-stack --stack-name DynamoDB-
Test --template-body file://./aws-dynamodb-template-cfn.json 
--parameters ParameterKey=ElementName,ParameterValue=CustomerID 
ParameterKey=ElementType,ParameterValue=S --region us-east-1

6. Upon successful execution, you will get the StackId value for the template in the CLI output 
and you will be able to see the table in the console, as shown in Figure 1.2:

{
    "StackId": "arn:aws:cloudformation:us-east-
1:xxxxxxxxxxxx:stack/DynamoDB-Test/23b50a90-56cb-11ee-b665-
0a54a53b11f8"
}

Figure 1.3 – Table in the console

You have successfully created a DynamoDB table using a CloudFormation template in this exercise, 
and this can be done with a template in YAML format as well.



Introduction to Infrastructure as Code (IaC) and Concepts24

Creating an AWS S3 Bucket Using Terraform

This exercise will explore the use of another popular IaC tool, Terraform, which we will focus on 
throughout the book. This will help you get a feel for its usage and learn how its simplified workflow 
can create real-world resources without any hassle:

1. Create a working directory, for example, create-s3-bucket-terraform, on a local 
machine where you will add your Terraform scripts for this exercise:

$ mkdir create-s3-bucket-terraform

2. You can now create the first configuration file inside the directory called provider.tf to 
configure the AWS Terraform provider, which will be used in the background:

terraform {
  required_providers {
    aws = {
      source  = "hashicorp/aws"
      version = "~> 5.14"
    }
  }

  required_version = ">= 1.4"
}

provider "aws" {
  profile = "default"
  region  = "ap-south-1"
}

Here, the first terraform configuration block is used to enforce the version constraints and 
to apply the configuration. The execution will be successful only if the specified criteria match.

The required_providers sub-block is used to specify the provider requirements, such 
as the source and the version that will be downloaded in the next step. The provider block 
will specify some default settings for the resources that will be provisioned.

3. It is now time to define the actual S3 bucket resource in the new file, main.tf, with the 
aws_s3_bucket AWS resource with some default tags. Please note that the bucket name 
we specify must be unique across all the AWS Regions; otherwise, the resource creation might 
fail. That’s the reason we add a random prefix:

resource "aws_s3_bucket" "test-bucket" {
  bucket = "test-s3-bucket-kquiyrt"

  tags = {
    Name      = "S3Bucket"



Benefits of IaC 25

    CreatedBy = "TestUser"
  }
}

4. The S3 bucket will be created with the default settings with the resource definition in the 
previous step, but we will additionally try to enable versioning for the bucket with the aws_
s3_bucket_versioning resource:

resource "aws_s3_bucket_versioning" "enable_version" {
  bucket = aws_s3_bucket.test-bucket.bucket
  versioning_configuration {
    status = "Enabled"
  }
}

5. You are ready now to test our script with the Terraform CLI. Running the terraform init 
command will download all the provider plugins referenced in the code:

$ terraform init

You should be seeing a similar output to the one shown here:

Figure 1.4: The output will look like this



Introduction to Infrastructure as Code (IaC) and Concepts26

6. You can then run the terraform plan command to see a preview of the resources that 
will be provisioned with the apply command. You can see that there are two resources that 
will be provisioned, one each for the S3 bucket and the versioning:

$ terraform plan
. . .
. . .
Plan: 2 to add, 0 to change, 0 to destroy.

7. You can run the terraform apply command to provision the resources and then view it 
from the AWS Management Console. When prompted for yes/no, please proceed with yes, or 
we can also use the -auto-approve option with the original command:

$ terraform apply
. . .
aws_s3_bucket.test-bucket: Creating...
aws_s3_bucket.test-bucket: Creation complete after 7s [id=test-
s3-bucket-kquiyrt]
aws_s3_bucket_versioning.versioning_demo: Creating...
aws_s3_bucket_versioning.versioning_demo: Creation complete 
after 3s [id=test-s3-bucket-kquiyrt]

Apply complete! Resources: 2 added, 0 changed, 0 destroyed.

8. In the AWS Management Console, you should be able to see the S3 bucket with the versioning 
option enabled, as shown in Figures 1.5 and 1.6.

Figure 1.5 – Bucket in the console



Summary 27

Figure 1.6 – S3 bucket with versioning option enabled

You will now be able to successfully create an S3 bucket in the AWS account using Terraform with 
the required configuration settings.

Summary
In this chapter, the IaC concept was discussed in detail, and some popular IaC tools were covered to help 
you understand the differences between them. You then read through various use cases demonstrating 
the implementation of the IaC approach, and these were followed up with the benefits of using them.

After having done the practical exercises using CloudFormation and Terraform tools, you now also 
have a better idea about the actual working of these tools and how they differ from each other.



Introduction to Infrastructure as Code (IaC) and Concepts28

Exam Readiness Drill – Chapter Review Questions
Apart from a solid understanding of key concepts, being able to think quickly under time pressure is 
a skill that will help you ace your certification exam. That is why working on these skills early on in 
your learning journey is key.

Chapter review questions are designed to improve your test-taking skills progressively with each 
chapter you learn and review your understanding of key concepts in the chapter at the same time. 
You’ll find these at the end of each chapter.

How to Access these Resources
To learn how to access these resources, head over to the chapter titled Chapter 11, Accessing 
the Online Practice Resources.

To open the Chapter Review Questions for this chapter, perform the following steps:

1. Click the link – https://packt.link/HCorp003Ch1.

Alternatively, you can scan the following QR code (Figure 1.7):

Figure 1.7 – QR code that opens Chapter Review Questions for logged-in users

https://packt.link/HCorp003Ch1


Exam Readiness Drill – Chapter Review Questions 29

2. Once you log in, you’ll see a page similar to the one shown in Figure 1.8:

Figure 1.8 – Chapter Review Questions for Chapter 1

3. Once ready, start the following practice drills, re-attempting the quiz multiple times.

Exam Readiness Drill

For the first three attempts, don’t worry about the time limit.

AT TEMPT 1

The first time, aim for at least 40%. Look at the answers you got wrong and read the relevant sections 
in the chapter again to fix your learning gaps.

AT TEMPT 2

The second time, aim for at least 60%. Look at the answers you got wrong and read the relevant sections 
in the chapter again to fix any remaining learning gaps.



Introduction to Infrastructure as Code (IaC) and Concepts30

AT TEMPT 3

The third time, aim for at least 75%. Once you score 75% or more, you start working on your timing.

Tip
You may take more than three attempts to reach 75%. That’s okay. Just review the relevant 
sections in the chapter till you get there.

Working On Timing
Target: Your aim is to keep the score the same while trying to answer these questions as quickly as 
possible. Here’s an example of how your next attempts should look like:

Attempt Score Time Taken

Attempt 5 77% 21 mins 30 seconds

Attempt 6 78% 18 mins 34 seconds

Attempt 7 76% 14 mins 44 seconds

Table 1.1 – Sample timing practice drills on the online platform

Note
The time limits shown in the above table are just examples. Set your own time limits with each 
attempt based on the time limit of the quiz on the website.

With each new attempt, your score should stay above 75% while your “time taken” to complete should 
“decrease”. Repeat as many attempts as you want till you feel confident dealing with the time pressure.



2
Why Do We Need Terraform?

This chapter will help you understand how infrastructure provisioning was done in different periods 
of IT history, the challenges associated with it, and how infrastructure automation tools solved 
those problems.

You will learn what Infrastructure as Code (IaC) is and its advantages when compared to the manual 
provisioning of infrastructure. Then, this chapter will discuss the various tools/services available on 
the market for Infrastructure as Code, and their pros and cons with respect to Terraform.

Further, the chapter will discuss the Terraform tool and its advantages over other tools/services used 
for Infrastructure as Code. Finally, the chapter will conclude by providing an overview of the licensing 
change made by HashiCorp.

History of Infrastructure Provisioning
Historically, infrastructure deployment has undergone three key technological changes:

• The datacenter period

• The virtualization period

• The cloud period

In the datacenter period, infrastructure deployment and configuration were fully manual. Right from 
putting up the racks; stacking the servers, routers, and switches; installing operating systems and cabling 
them; and ensuring offsite backup for disaster recovery. There was very little scope for automation in 
infrastructure tasks. Automation tasks were limited to installing the OS via the Unattended Install 
option, configuring the software, and so on.



Why Do We Need Terraform?32

In the virtualization period, infrastructure deployment got better. VMware was the pioneer in creating 
production-grade virtualization offerings. Some of the time-consuming tasks, such as operating system 
installation and application configuration, could then be deployed in a matter of minutes. Further, 
centralized backup and patching helped reduce the duration and complexity of tasks. Although virtual 
machines could be provisioned instantly, this was limited by the hardware you had already purchased 
for your VMware-based setup in your datacenter.

Some automation started taking place at this stage with HashiCorp’s Vagrant tool.

Vagrant helped quickly provision the development environment by adding the required resources 
and their dependencies in the Vagrant configuration files. These files were then used by the Vagrant 
tool to create the virtual machine in the VMware Workstation. This helped with quickly creating 
test environments and pre-production environments to test certain features before moving them to 
production. Since the provisioning and de-provisioning of the servers was done using the configuration 
files, the process could be automated easily, making it quicker and less error-prone.

Though the amount of infrastructure automation increased at this stage, it was limited to vendor-
specific tools. Professionals were still using VMware-specific tools and technologies to automate 
production-grade setups. The same tools could not be carried to other vendors’ solutions.

To summarize the discussion so far, the following were the challenges of infrastructure automation 
in the datacenter and virtualization periods:

• Manual processes were error-prone

• High expenses

• A long time was needed to set up the infrastructure required for application deployment

• A lack of tight integrations between various products

• Dependence on vendor-specific automation tools in the virtualization world

• Deploying applications in a different geographical region was a herculean task

It was the cloud era that paved the way for infrastructure automation in a significant manner by solving 
some of the above key challenges.

Why Is the Cloud Model a Good Fit for Infrastructure Automation?

The cloud model is considered suitable for infrastructure automation for the following reasons:

• Any creation/deletion/modification of a resource in the cloud can be done by calling an API

• There is seamless integration between the various resources of the cloud that can be stitched 
together for a production-grade solution



Infrastructure Automation Using IaC 33

• You can access the same set of resources in different geographical regions to deploy the 
same solution

• The compute, network, security, and SaaS tools are software-defined and can be created, 
modified, and integrated into the virtual environment

Now that you have reviewed the history of infrastructure provisioning and the challenges associated 
with each period, you are ready to explore the automation of infrastructure provisioning using IaC.

Infrastructure Automation Using IaC
As the name implies, IaC refers to managing infrastructure resources in the form of code instead of 
manual provisioning. This involves the creation, modification, and deletion of all the infrastructure 
resources via code.

One of the key principles of DevOps is automation. IaC precisely fits into this principle. Apart from 
automation, IaC also provides the advantage of using the same best practices that are used for application 
code in the Software Development Life Cycle (SDLC). This implies that, now, even infrastructure 
could be versioned and pipelines can be created for continuous deployment since it is all in code.

The following section presents the key advantages that IaC provides over manual deployments.

Advantages of IaC

While looking at the advantages of IaC, it will be compared against manual deployment. Some of the 
key advantages are listed below:

• Quicker deployment timelines: When the whole solution is in code that has been vetted, 
tested, and approved, it is easy to deploy everything in one go. This takes less time than the 
same deployment being done manually.

• Consistently repeatable deployments: As the resources are provisioned with the same set of 
APIs, you can expect the same behavior every single time it gets deployed. The uniformity of 
the deployment behavior provides assurance about the stability of the solution.

• Version controlled via a source code management tool such as Git: The configurations and 
integrations of all the resources can be carried out in code, which is stored in a tool such as 
Git. This helps you with versioning, merge requests, approvals, and so on. If there is an issue 
with the latest deployment, it is easy to roll back to the previous version.

• Better operational efficiency: Automating the process of launching and managing resources 
allows quicker deployment, which frees up the operations team to work on other important 
items rather than spending time just setting up the environments.



Why Do We Need Terraform?34

• Self-service: If you want to empower the development team to deploy the infrastructure, you 
can set certain guidelines for the modules/templates. They can use these guidelines for self-
service and don’t have to depend on other teams.

• Accountability: All code written, every modification made, and every line deleted is tracked 
in the version control system. It is easy to assign accountability to the person responsible for 
any tasks performed.

• Increased security: IaC embeds security from the base level and in each layer, such as the 
network, app, and database layers. Once these are validated by the infosec team, they can be 
used by all teams. This improves the overall security posture of the organization.

In the next section, you will review the various techniques used in the industry for provisioning 
infrastructure automatically and how they compare against Terraform.

Various Options for Implementing IaC

There are many ways of implementing IaC. Which option you choose depends on various factors, 
such as the level of automation required, the skills available in the team, the cloud platform chosen 
for application deployment, the plan for a multi-cloud presence, and so on. In the following sections, 
you will go through the options that are regularly used in the industry. Though there are options, 
Terraform has emerged as a go-to tool for IaC.

Ad Hoc Scripts

Ad hoc scripts are typically written in Shell script, Perl, or  Python to automate some of the infrastructure 
provisioning by directly calling the API and writing the required logic to integrate the resource into 
the solution. The disadvantage of this is that there is no standardization, and hence each person may 
solve a problem using different logic and resources in the scripting languages. Scripts written today 
may not make sense to the same person after three months.

Configuration Management Tools

Configuration management tools such as Chef, Puppet, and Ansible are meant to be used for managing 
the configuration of software within the operating system. These tools also support infrastructure 
provisioning. All three of these tools were launched before Terraform and were used by engineers 
for infrastructure automation. However, this is not their primary functionality. It is important to use 
the right tool for the right job. Using the wrong tool could give sub-optimal results or could require 
more effort from you to achieve the same result that could have been achieved using the right tool 
with minimal effort.

If you want to create the infrastructure for a three-tier architecture-based solution, you may end up 
spending a similar amount of time on all three tools to create the initial infrastructure. However, the 
complexity starts when you start modifying the infrastructure.



What Is Terraform? 35

Consider an example where you want to increase the number of servers from three to six:

• Write commands that will give the number of servers running in the account

• Write logic to calculate the new instances to be launched

• Finally, write code to launch these additional instances

In the case of Terraform, it is as simple as changing the number of servers from three to six. Terraform 
takes care of figuring out what needs to be done to get the servers to six.

Cloud-Based IaC Services

Each of the major cloud vendors has its own service for IaC functionality:

• AWS has CloudFormation and Cloud Development Kit (CDK)

• Microsoft Azure has Azure Resource Manager

• GCP has Cloud Deployment Manager

Each of these services has very tight integration with the services of the particular cloud, and their 
support for new services in that cloud will be significantly quicker than any third-party tool, such as 
Terraform or Pulumi. However, if you need to be present in multiple clouds, are unsure about sticking 
with a single cloud provider, or just want the team to learn how to use one tool that can be used across 
the infrastructure, platform, and SaaS tools provisioning automation, then it is better to choose a tool 
like Terraform that is not dependent on any single vendor but works across them all.

Cloud-Agnostic IaC Tools

Terraform by HashiCorp is a pioneer in cloud-agnostic IaC tools (i.e., able to run on any cloud 
without getting tied to a single cloud). In recent years, a new tool called Pulumi has also been slowly 
adopted. Pulumi lets users write code to deploy applications in the language of their choice. Currently, 
it supports Node.js, Python, Go, .NET, Java, and YAML format.

Note
The AWS Cloud Development Kit (AWS CDK) lets you define the AWS cloud infrastructure 
in a general-purpose programming language such as TypeScript, JavaScript, Python, Java, C#/.
NET, or Go. Both Pulumi and AWS CDK expect you to have some programming language 
knowledge to make the best use of the tool.

What Is Terraform?
Terraform is an IaC tool that lets you create and manage your infrastructure by writing code in a 
simple language called HashiCorp Configuration Language (HCL).



Why Do We Need Terraform?36

The following section describes the features of Terraform and explains how the problems of manual 
provisioning and other IaC options are solved by Terraform.

Features of Terraform

We will explore the primary features of Terraform in this section.

Cloud/Vendor Agnostic

A tool that is very specifically oriented toward a particular platform becomes highly dependent on the 
features of the platform and hinders customers’ ability to switch to another platform when they want 
to. It is very important for an IaC tool to be cloud-/vendor-agnostic (i.e., able to run on any cloud 
without getting tied to a single cloud/vendor) for such customers. Unlike many IaC tools provided by 
cloud vendors, Terraform is fully cloud-/vendor-agnostic and works with all the major cloud providers 
and also the majority of other vendors.

A Pioneer in IaC

Terraform was launched by HashiCorp in 2014 when the IT industry used either scripts, cloud-specific 
tools, or configuration management tools for infrastructure automation. It pioneered a new way of 
solving the infra-automation problem and brought in multi-cloud support. This was done by using a 
declarative approach to provisioning infrastructure, along with having “current state and desired state” 
as the central idea, where Terraform assesses the current infrastructure state with the desired state of 
infrastructure as defined by the user and then makes relevant changes to change the current state to 
the desired state. Trust in the HashiCorp brand prompted customers to use Terraform in production 
even before the general availability of version 1.0, which was announced in 2021. The tool has only 
improved with newer releases, by adding more features, such as HCP Terraform integration, moved 
blocks for code refactoring, support for Open Policy Agent (OPA), the ability to import manually 
created resources, testing frameworks, and so on, and integration with new partners.

Wide Partner Integration

Terraform can be used to provision and manage resources on any of the cloud platforms and SaaS 
offerings. Terraform already has thousands of partners integrated with it. Partners typically integrate 
with Terraform by creating a plugin that is downloaded by the customer along with the Terraform binary. 
There is a new set of partners who have products for code scanning, observability, cost management, 
security, and so on. If you want to support the automation of your product via Terraform, you can 
write your own custom provider plugin.

Declarative

Procedural and declarative ways of coding are an important consideration in understanding IaC.



What Is Terraform? 37

In the procedural style, the focus is on clearly defining the steps to achieve the desired end state. Ad hoc 
scripts and tools such as Ansible and Chef are all procedural language-based. In contrast, declarative 
style only requires you to outline the end state and the tool takes care of driving the workflow to this 
end. Terraform uses a declarative approach for infrastructure automation. Hence, the code is easier 
to write for a newbie.

Idempotent

When you run the same command/instruction multiple times and achieve the same result as you got 
the first time, the command/instruction is called idempotent. Terraform is idempotent. For example, 
if you have a Terraform file that creates an EC2 instance (a virtual machine in AWS) and you run 
it for the first time, it will create an EC2 instance. Running it a second or third time will not create 
additional instances as the desired state has already been achieved.

Easy Learning Curve

Terraform supports two formats to write and manage configuration files: JSON and HashiCorp 
Configuration Language (HCL).

JSON is typically used by systems for parsing but is tough for humans. In contrast, HCL is very easy 
to learn and implement even for someone with no programming background.

Version Controlled

The Terraform code written for infrastructure management is managed using a source code management 
tool such as Git. This code is pushed to platforms such as GitHub, GitLab, and so on to keep it in a 
central location. Storing it centrally helps with team collaborations, rolling back to previous versions in 
case of issues with the latest version, and creating a pipeline for automated infrastructure deployment.

Automation

Manual provisioning of infrastructure is manageable for a simple use case. When you are dealing with 
the creation of thousands of resources, the manual method will cause delays and errors, and will also 
be expensive. Automation solves all these problems.

You may be tempted to do things manually, but anything that needs to be done more than once 
should be considered for automation. There is a one-time investment of time while you write the code 
that will then bring you the benefits of automation when you  have to provision the same or similar 
resource multiple times.

Documentation

Documentation is crucial to explain the current state of your architecture and resources, but it gets out 
of date quickly in the cloud world. When Terraform is used for full management of the infrastructure, 
the Terraform code itself can give you the latest state of the resource or the solution that is deployed. 
Please note that using Terraform does not take away the need for documentation but can help to 
reduce exhaustive documentation.



Why Do We Need Terraform?38

Community Support

Terraform is widely used and supported by the community. Whenever cloud vendors add new features 
to existing products or launch new services, the community quickly adds them to Terraform and 
creates a merge request with the owners of the repo. Any bugs are also quickly detected and raised 
with the owners of the plugin for a fix.

Licensing Change from Version 1.5.5 (Aug 2023)
Terraform was an open source tool until August 10, 2023, and it changed to the community edition 
when HashiCorp changed the licensing of their products from Mozilla Public License v2.0 (MPL 
2.0) to Business Source License (BSL or BUSL) v1.1.

Though the BSL license is open, free, and makes the source code available, it does not meet the “open 
source” criteria defined by The Open Source Initiative (OSI), because of which the Terraform tool 
cannot be called “open source” anymore. This license is applicable from Terraform version 1.5.5.

As per the new license, “Organizations providing competitive offerings to HashiCorp will no longer 
be permitted to use the community edition products free of charge under our BSL license.”

For more details on new licensing and how it impacts your environment, visit the following links:

• https://www.hashicorp.com/blog/hashicorp-adopts-business-source-
license

• https://www.hashicorp.com/license-faq

Summary
In this chapter, you learned about the challenges of the manual provisioning of infrastructure, what IaC 
is, and what its advantages are. You also reviewed the importance of Terraform in the IaC landscape 
and examined what differentiates it from other tools on the market. This information will help you 
understand the big picture of infrastructure automation and the tools available on the market to 
solve the problems associated with it. This understanding will help you have a meaningful technical 
conversation with others about infrastructure automation.

There was a short discussion about the change of license that has stripped the term “open source” 
from the Terraform feature list.

Now that you understand why Terraform is required, you are ready to explore the basics of Terraform 
and its workflow in Chapter 3, Basics of Terraform and Core Workflow.

https://www.hashicorp.com/blog/hashicorp-adopts-business-source-license
https://www.hashicorp.com/blog/hashicorp-adopts-business-source-license
https://www.hashicorp.com/license-faq


Exam Readiness Drill – Chapter Review Questions 39

Exam Readiness Drill – Chapter Review Questions
Apart from a solid understanding of key concepts, being able to think quickly under time pressure is 
a skill that will help you ace your certification exam. That is why working on these skills early on in 
your learning journey is key.

Chapter review questions are designed to improve your test-taking skills progressively with each 
chapter you learn and review your understanding of key concepts in the chapter at the same time. 
You’ll find these at the end of each chapter.

How to Access these Resources
To learn how to access these resources, head over to the chapter titled Chapter 11, Accessing 
the Online Practice Resources.

To open the Chapter Review Questions for this chapter, perform the following steps:

1. Click the link – https://packt.link/HCorp003Ch2.

Alternatively, you can scan the following QR code (Figure 2.1):

Figure 2.1 – QR code that opens Chapter Review Questions for logged-in users

https://packt.link/HCorp003Ch2


Why Do We Need Terraform?40

2. Once you log in, you’ll see a page similar to the one shown in Figure 2.2:

Figure 2.2 – Chapter Review Questions for Chapter 2

3. Once ready, start the following practice drills, re-attempting the quiz multiple times.

Exam Readiness Drill

For the first three attempts, don’t worry about the time limit.

AT TEMPT 1

The first time, aim for at least 40%. Look at the answers you got wrong and read the relevant sections 
in the chapter again to fix your learning gaps.

AT TEMPT 2

The second time, aim for at least 60%. Look at the answers you got wrong and read the relevant sections 
in the chapter again to fix any remaining learning gaps.



Working On Timing 41

AT TEMPT 3

The third time, aim for at least 75%. Once you score 75% or more, you start working on your timing.

Tip
You may take more than three attempts to reach 75%. That’s okay. Just review the relevant 
sections in the chapter till you get there.

Working On Timing
Target: Your aim is to keep the score the same while trying to answer these questions as quickly as 
possible. Here’s an example of how your next attempts should look like:

Attempt Score Time Taken

Attempt 5 77% 21 mins 30 seconds

Attempt 6 78% 18 mins 34 seconds

Attempt 7 76% 14 mins 44 seconds

Table 2.1 – Sample timing practice drills on the online platform

Note
The time limits shown in the above table are just examples. Set your own time limits with each 
attempt based on the time limit of the quiz on the website.

With each new attempt, your score should stay above 75% while your “time taken” to complete should 
“decrease”. Repeat as many attempts as you want till you feel confident dealing with the time pressure.





3
Basics of Terraform and Core 

Workflow

In the previous chapter, you saw various use cases and scenarios for adopting Terraform into 
infrastructure-provisioning workflows to reap real benefits. It is now time to cover the basic building 
blocks that make Terraform an efficient tool to use, whether you have ample experience in IT or you 
are just starting in your career.

This chapter will cover the following topics:

• How does Terraform work?

• Getting started with Terraform

• Terraform settings

• Terraform providers

• Dependency lock file

• Resources and data sources

• Variables and outputs

• Core workflow

Technical Requirements
In this chapter, you will deep dive into Terraform concepts and try out multiple programs or scripts 
that need the right setup. Please ensure that you have the following tools installed and ready to use:

• AWS account ID with administrator access credentials

• AWS CLI version 2.x.x



Basics of Terraform and Core Workflow44

• Terraform CLI version 1.5.x or later

• Visual Studio Code or any text editor

The GitHub repository for the chapter contains the graphics and scripts used in the chapter and can 
be found using the following link:

https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-
Associate-003-Exam-guide-Second-Edition/tree/main/ch3/getting-
started-in-terraform

How Terraform Works
The HashiCorp Terraform tool is an Infrastructure as Code (IaC) tool that can be used to create 
both cloud and on-premises resources with the help of human-readable configuration scripts. This 
set of scripts can be used numerous times to provision the exact same infrastructure with consistent 
workflows. Scripts can be shared and reused within the team if multiple developers are working on 
the same set of resources.

With the proper backend configuration to store the Terraform state file in a remote location/repository, 
resources created in different workstations can point to the same configuration, avoiding duplication 
and reducing costs.

You can now take a look at the basic workflow of Terraform and how it helps manage and track 
infrastructure in a more efficient way.

Terraform creates and manages resources in different cloud environments and other services with 
the help of application programming interfaces (APIs). Suppose you want to create an S3 bucket (a 
storage service that stores data as objects) in the AWS cloud and you have the necessary permissions 
to accomplish the task.

There are multiple ways to do that:

• Use the AWS Management Console and select the S3 service to create the bucket with 
basic permissions.

• Use the AWS CLI to create the bucket with the aws s3 create-bucket command.

• Use the AWS CloudFormation template.

• Use programs written in Java/Python/C# that use the AWS SDK to interact with the AWS cloud.

In all the preceding options, the final interaction with the AWS cloud happens with the help of the 
same APIs, but the way you access it slightly differs depending on the selected approach. Similarly, 
Terraform has also created an abstraction popularly known as providers and has hidden the internal 
details of how it interacts with APIs of different cloud providers and other services.

https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition/tree/main/ch3/getting-started-in-terraform
https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition/tree/main/ch3/getting-started-in-terraform
https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition/tree/main/ch3/getting-started-in-terraform


Getting Started with Terraform 45

The official Terraform Registry page (https://registry.terraform.io/) lists thousands 
of providers, such as AWS, GCP, Azure, Docker, and Kubernetes, among several others.

Figure 3.1 – A high-level overview of Terraform providers

Getting Started with Terraform
As mentioned previously, it is assumed that the prerequisite tools are ready in your local workstation. 
To verify that everything is working without any issues, please try out the following commands and 
ensure that you get a similar output.

If you encounter any issues, please resolve them before proceeding with the topics for better understanding.

Terraform CLI Installation Check

The below command can be used to check the Terraform CLI version installed on your workstation:

$ terraform -version

The command output is as follows

Figure 3.2 – Terraform version command output

AWS CLI Installation Check

The below command can be used to check the AWS CLI version installed on your workstation:

$ aws --version

https://registry.terraform.io/


Basics of Terraform and Core Workflow46

The command output is as follows:

Figure 3.3 – AWS CLI version command output

If you see similar outputs, you are good to go and can try out the following exercise to get the feel of 
using Terraform to create a basic AWS IAM user resource and a pair of access keys for the IAM user 
to use programmatically.

Creating Your First Terraform Resource – AWS IAM User

In this subtopic, you will be creating an AWS IAM user resource and attaching a pair of access keys 
for it. Access keys are long-term credentials that you can attach to AWS IAM users or the root user 
account. They are used to sign your programmatic requests to the AWS CLI or the API directly (via 
the AWS SDK).

The resources you will be creating as part of this topic will end up in the AWS account that will be 
configured as follows. Please ensure that you have the right set of credentials before this step and that 
you have complete control of the AWS account. This will be very helpful when you want to visualize 
and track the changes being performed by Terraform in the background.

Setting up AWS Credentials

Here are the steps to set up AWS credentials:

1. The first step is to configure the environment variables in your workstation with the admin 
access credentials so the AWS Terraform provider will pick it for resource creation. If you do 
not have the credentials and possess only the root admin user and password, please log in to 
the console and create the access keys for the root user in the IAM menu.

2. Once you have the credentials, please execute the following commands before you create the 
Terraform configuration. The following commands will work for Linux. Please use the setx 
<ENV_VARIABLE_KEY> <ENV VARIABLE VALUE> command for Windows to set the 
environment variables.



Getting Started with Terraform 47

Use the AWS access key ID instead of xxxx in the following command:
$ export AWS_ACCESS_KEY_ID=xxxx

Use the AWS secret access key instead of yyyy in the following command:
export AWS_SECRET_ACCESS_KEY=yyyy

Terraform Configuration

Now, you can create your own set of files inside the working directory to create the IAM user 
using Terraform. The files where you describe the infrastructure in Terraform are called the 
Terraform configuration.

Create a file named main.tf and paste the following configuration. Save it using any text editor:

terraform {
  required_providers {
    aws = {
      source  = "hashicorp/aws"
      version = "~> 5.0"
    }
  }

  required_version = ">= 1.5.0"
}

provider "aws" {
  region  = "us-east-1"
}

resource "aws_iam_user" "test_user" {
  name = "test-aws-user"
  path = "/test/"

  tags = {
    "createdby" = "terraform"
  }
}

resource "aws_iam_access_key" "user_access_keys" {
  user = aws_iam_user.test_user.name
}



Basics of Terraform and Core Workflow48

This single file contains the entire configuration that can be deployed using Terraform CLI. Basically, 
the code has three different block types: a terraform block, a provider block, and a couple of 
resource blocks. The following are explanations of each of these blocks:

• The terraform { } block: The terraform { } block contains the Terraform settings along 
with the different providers that will be used for the configuration. In this case, you are using 
only one provider, aws, and the required_providers block is used to specify the source 
and the version attributes. The source attribute will optionally include a hostname, namespace, 
and provider type. If the hostname is not mentioned, the Terraform Registry, registry.
terraform.io, is assumed.

The version attribute will include the version, which is optional but still recommended. 
This is because specifying the version will ensure the configuration scripts work for the version 
specified and Terraform will not install something that is incompatible.

• The provider { } block: The provider { }  block configures the provider you will use. 
The provider is nothing but a plugin that Terraform uses to create and manage resources by 
interacting with the cloud provider APIs.

Since the credentials are already configured to use the AWS cloud provider, the provider 
{ }  block just contains the region, which is set to us-east-1 (North Virginia). You want 
to create an IAM user that has a global scope and region is not applicable. But if you want to 
create an EC2 instance, the region parameter becomes important because the resource will 
be created in the region accordingly.

You can also use multiple provider { } blocks if the configuration involves creating multiple 
resources from different providers. The provider { }  blocks can also be dependent on 
values from other providers. For example, the secrets retrieved using the vault provider can be 
used to configure the AWS credentials, which is also possible when the credentials are secured 
in a vault.

• The resource { } block: The resource { }  block is used to define the actual infrastructure 
resources and these are implementation-specific for each Terraform provider. In this example, 
you are using the aws_iam_user resource type, which will create an IAM user in the AWS 
public cloud. The resource name is test_user in the first resource {} block.

Inside the resource { } block, the path and name parameters are additionally set to pass 
the required values. The defined resources can contain one or more parameters in addition 
to the mandatory ones and the provider documentation in the Terraform Registry will have 
additional details, such as usage and example resource blocks.

There is also an additional parameter, tags, that can be used to tag the IAM user resource 
to set additional metadata for the created resource. In AWS, the resource tags have different 
purposes, such as resource segregation and billing usage, among others.



Getting Started with Terraform 49

The second resource {} block will create AWS IAM access keys for the user just created 
in the previous block. The IAM access keys are used to set programmatic access with user 
permissions and have different use cases. If the IAM user permissions have to be used to 
configure the AWS CLI, then you need to create an AWS CLI profile with user access keys, and 
you need to use access keys similar to the one you are creating here.

IAM access keys are confidential information. If an intruder gets access to the access key, the AWS 
account can be compromised. So, you must secure the created credentials.

Creating the AWS IAM User

Now you have a basic understanding of the Terraform configuration script and can move on to 
creating the resources:

1. The first step is to initialize the working directory with the terraform init command. 
This command will download and install the providers defined in the script, in this case, the 
aws provider.

When the aws provider is successfully downloaded and installed, you can see that Terraform 
keeps the content in the hidden .terraform directory inside your working directory. The 
init command will also indicate which provider version was installed in the terminal, and 
the same operation also creates the .terraform.lock.hcl file, which specifies the exact 
provider version used.

This will help retain control of the provider versions installed in the future when the provider 
version changes with the latest upgrades. Figure 3.4 shows the output of the init command 
for reference.

Figure 3.4 – terraform init command output



Basics of Terraform and Core Workflow50

2. The terraform validate command can be used after the init operation is successful 
to validate the Terraform configuration to identify any possible errors. If there are no errors, 
the message Success! The configuration is valid will be given as output.

3. In the Terraform documentation, it is also suggested that the terraform fmt command 
can be used for consistent formatting of the Terraform configuration scripts. If the command 
is executed without the -recursive option, only the scripts in the main directory will be 
formatted, and using it will format the scripts in the subdirectories as well.

4. The final step is to apply the configuration with the terraform apply command. The 
Terraform output in the terminal will be like in Figure 3.5.

Figure 3.5 – terraform apply console output



Terraform Settings 51

Terraform will use the installed providers to create the final execution plan on how the resources need 
to be created. You may notice that some of the parameters are set to (known after apply), 
which means the actual value will be set when the resources are created and it is not a known value. 
You may also notice that additional parameters such as arn and create_date are displayed. 
These parameters are not actually coded in the configuration scripts and are specific to the resources 
being created.

A user prompt is also given in the output, which needs to be set to yes if you wish to proceed and 
apply the configuration. If any other value is specified, the apply operation will be terminated. Please 
enter yes if you are happy to proceed, and you will see the resources are created in the configured 
AWS account.

Figure 3.6 – resource creation from terraform apply

When the resources are created, Terraform creates the terraform.tfstate state file and stores all 
details about the resources, such as IDs and resource types, so it can update and destroy the resources 
going forward. Since there is no specific backend configuration, the state file is stored locally inside 
the working directory and can be inspected with the terraform show command.

Terraform also has the terraform state command for advanced state management, and the 
list option can be used to list the resources created with the current configuration:

$ terraform state list
aws_iam_access_key.user_access_keys
aws_iam_user.test_user

Terraform Settings
The first step in using the Terraform tool for infrastructure resource provisioning has now been 
completed successfully and you have a better idea of how to write a simple configuration script based 
on the requirements using the relevant provider.

Take a look at each of the blocks in detail now. This section will particularly cover the different 
configuration settings available for use inside the terraform {} block, and subsequent sections 
will discuss the provider, resources, and data sources blocks.

The terraform {} configuration block is mainly used to configure the behaviour of the Terraform 
tool itself, such as the minimum Terraform version required to run the scripts.



Basics of Terraform and Core Workflow52

This block has the following nested blocks, each with its own purpose, and they are not mandatory:

• HCP Terraform configuration using the cloud {} block

• Terraform backend configuration using the backend {} block

• The required_version {} block

• The required_providers {} block

• Experimental features using the experiments [] block

• Providers metadata using the provider_meta {} block

HCP Terraform Configuration Using the cloud {} block

HCP Terraform is a special offering from HashiCorp for teams to work on infrastructure provisioning 
together without any conflicts. HCP Terraform is a hosted service, accessible from https://app.
terraform.io, with the primary intention of providing a consistent and reliable environment 
for shared access, and additional features such as a private registry, security, and change approvals.

Small teams can use HCP Terraform for free and run Terraform in a remote environment. Its CLI-driven 
workflow is easy to adopt and you can start using it without any hassle.

If there is a requirement to use HCP Terraform instead of using the OSS version, the cloud {} 
nested block can be used within the terraform {} block to configure the settings pointing to the 
specific organization and workspaces under the organization. These concepts will be covered in detail 
in a later chapter covering HCP Terraform.

Note
Please note that HCP Terraform and the backend configurations cannot be used at the same time.

A sample cloud {} nested block is given for your reference, and you can look at each of the 
arguments inside the block at a high level:

terraform {
  cloud {
    organization = "test-cloud-org"
    hostname = "app.terraform.io"

    workspaces {
      project = "accounting-team"
      tags = ["accounting", "source:cli"]
    }
  }
}

https://app.terraform.io
https://app.terraform.io


Terraform Settings 53

The arguments used are as follows:

• organization: The name of the organization containing the workspaces that the configuration 
script should use.

• hostname: The hostname of a Terraform Enterprise installation. If it is not provided, then 
default to the HCP Terraform app.terraform.io hostname. (Terraform Enterprise is not the 
same as HCP Terraform; it is a self-hosted Terraform environment for organizations with 
tighter security requirements and statutory constraints.)

• workspace: This is another nested block that has details on the remote workspaces to be 
used for the configuration. The workspace block can contain only one argument – either 
name or tags – not both:

 � tags: This can contain a set of HCP Terraform tags and the current working directory 
can be used with any workspace that has the specified tags. The different workspaces can 
be switched using the terraform workspace select command. This cannot be used if 
name has already been specified.

 � name: This contains the name of the workspace to be used for the current working directory. 
It is optional like the tags argument.

• project: The name of the HCP Terraform project that contains the workspace. With the 
terraform workspace list command, the workspaces that will be listed in the output 
will be filtered with this project name.

• token: The authentication token to be used for HCP Terraform access. The right way to 
authenticate is by either using the terraform login command or supplying the credentials 
via the CLI config file.

Terraform Backend Configuration Using the backend {} Block

The terraform {} block also has a backend nested block to support different backend configurations 
to store the state file remotely in a secure manner.

In the previous section, with the first Terraform script, you saw that terraform.tfstate was 
created in the working directory because no backend configuration was available. But if you wish to 
store the Terraform state file remotely so the team can access and point to the same state file when 
multiple people work with the same configuration script, the backend configuration will help.

The backend nested block is optional, like the other nested blocks; you can configure it if it is applicable 
to your setup.

There are multiple backend types available for use; you can select the appropriate ones that work with 
your design. For example, if the team primarily works with AWS services, the s3 backend type is a 
natural option, and if microservices are being deployed in Kubernetes clusters, the Kubernetes 
backend can be selected to store the state as a Kubernetes Secret.



Basics of Terraform and Core Workflow54

Unlike the cloud {} nested block, the backend {} block will vary based on the actual backend 
type selected. This is because the different backend types will have their own custom configuration 
and the user is expected to pass the relevant values for them.

A sample s3 backend is given here for your reference. It has arguments such as bucket, region, 
and key that are specific to AWS:

terraform {
  backend "s3" {
    bucket = "mybucket"
    key    = "path/to/my/key"
    region = "us-east-1"
    dynamodb_table = "terraform-s3-backend-xyz"
  }
}

There are different considerations while working with the Terraform backend. They are listed as follows:

• If there is no backend block specified, the default local backend will be used. In this case, 
the state file will be stored in plain text in the current working directory.

• The Terraform configuration script can contain one backend block only.

• The Terraform backend {} block cannot contain references to named values such as variables, 
locals, and data sources.

Initialization

When the remote backend configuration is added for the first time, the terraform init command 
must be rerun to validate the settings.

If the command execution is successful, the Terraform tool will create the .terraform directory locally 
and store the most recent backend setup and any associated credentials inside it. This directory should 
not be committed into your version control tool, such as Git or Bitbucket, as it may contain credentials.

When there are changes again to the backend configuration, Terraform gives the option to migrate 
the state to the new backend to avoid duplication and any conflicts.

Partial Configuration

Partial configuration is helpful to the user when working with dynamic values or when the backend 
configuration is not possible in the first stage. You can now try to understand this with an example.

A software developer writes Terraform scripts with the s3 backend that work for the setup of different 
lower environments, such as DEV and QA. They like to use the same bucket to store the state files 
with different values for key or region arguments.



Terraform Settings 55

But environment values such as DEV and QA will be known only during the time of apply command 
execution and it is not possible to code them beforehand. In this scenario, partial configuration will 
help with not setting the value in the backend block, and this can be configured while using the 
terraform init command.

The terraform init command has the option of setting the backend config with the -backend-
config option to set the value for the key or region argument, as follows. This sets values such 
as key-value pairs. You can also do the same with the config file, even in an interactive manner:

$ terraform init -backend-config="key=DEV/data/"
$ terraform init -backend-config="region=us-east-1"

The required_version Setting

The required_version {} nested block accepts a version constraint string that enforces a 
minimum version of Terraform CLI that must be used to run the scripts.

This ensures that everyone working with the same configuration script has the required Terraform 
CLI version or the minimum version expected to run the scripts in a collaborative environment.

The required_version {} nested block version constraint is applicable only for Terraform CLI, 
and the resources created by the script are not applicable because each Terraform provider follows 
their own release timelines, independent of the Terraform CLI versions.

A sample terraform block with the required_version nested block is given for reference:

terraform {
. . .
required_version = "~> 1.4"
}

The required_providers {} Block

The required_providers nested block is used to specify all the providers required by the current 
configuration script. It maps the local provider name to the source address and the version constraint.



Basics of Terraform and Core Workflow56

The provider configuration will be discussed in detail in the upcoming sections of this chapter. A 
sample provider configuration for AWS is given here for reference:

terraform {
  required_providers {
    aws = {
      version = ">= 5.17.0"
      source = "hashicorp/aws"
    }
  }
}

Experimental Features

The Terraform team has also introduced experimental features that the community can try and share 
feedback on before it becomes a backward compatibility constraint.

The experimental features can be opted for using experiments with a list of features to try out. 
Experimental features usage is generally not recommended for scripts intended for production use. 
Check out the following terraform block:

terraform {
. . .
experiments = [feature1, feature2]
}

In this example, feature1 and feature2 have been enabled in this configuration.

Provider Metadata

The provider metadata block, provider_meta, aids a provider in offering an interface to pass 
information unrelated to the resources in the module. This topic is particularly technical and is more 
related to the provider setup.

You can focus on the configuration of other nested blocks covered so far since they are commonly used 
in different scenarios and are useful for creating production-grade scripts for infrastructure provisioning.

You can now move on to understand more about providers and their importance in the 
Terraform ecosystem.



Terraform Providers 57

Terraform Providers
As you saw earlier in this chapter, Terraform depends on plugins called providers to interact with 
cloud providers, SaaS providers, or any other APIs. Before you use them, you need to download and 
install them in the local working directory so that Terraform can use them. The required providers 
are declared in the terraform {} block. It is always suggested to declare them explicitly.

If you have previously worked with languages such as Java or Python, you can assume that providers 
are equivalent to the Java packages or Python libraries used with the import statements.

Terraform will look for the declared providers in the configuration scripts and try to download 
them when the terraform init command is executed for the first time. Without the providers, 
Terraform cannot manage any kind of infrastructure.

Basically, if you pick any Terraform provider, the provider will have a set of resources and/or data 
sources. In most cases, the resources will be the real-world infrastructure components you are 
interested in creating and the data sources will be used to fetch/retrieve the information about the 
real-world resources.

Terraform providers are listed on the Terraform Registry page, https://registry.terraform.
io/browse/providers, for the infrastructure platform you use. Some of the most common 
ones are as follows:

• AWS

• Azure

• Google Cloud Platform

• Kubernetes

• HTTP

Types of Terraform Providers

Some of the providers listed in the Terraform Registry are developed and published by HashiCorp 
and some are created and maintained by partners. There are also providers maintained by users and 
volunteers. Special badges are available to identify the provider type and know who maintains it:

Official Providers

These are the providers created and maintained by HashiCorp and are available under the HashiCorp 
namespace. At the time of writing this book, there are 35 official providers available for use.

https://registry.terraform.io/browse/providers
https://registry.terraform.io/browse/providers


Basics of Terraform and Core Workflow58

For the AWS Terraform provider, you can see the Official badge in Figure 3.7.

Figure 3.7 – Official provider: aws

Partner Providers

These are providers written, validated, and published by third-party companies for their own APIs. 
Companies must first register and become a HashiCorp partner before they can publish any providers.

For the Oracle Cloud Infrastructure (OCI) Terraform provider, you can see the Partner badge on 
their dedicated registry page.

Figure 3.8 – Partner provider: oci

Community Providers

Community providers are created and maintained by individual maintainers, a group of maintainers, 
or other members of the Terraform community.

Community providers do not carry any special badge; it is simply blank.

Figure 3.9 – Community provider: ansible



Terraform Providers 59

Archived Providers

• These are official or partner providers that are no longer maintained by HashiCorp or the Terraform 
community. This can happen if the underlying APIs are deprecated or user interest declines.

Provider Requirements

In the previous section, you would have noticed that the providers are declared inside the required_
providers nested block in the terraform {} block.

A provider requirement consists of the following:

• local name

• source location

• version constraint

Here is the template for declaring a Terraform provider:

terraform {
  required_providers {
    local name = {
      source  = «source location»
      version = «version constraint»
    }
  }
}

Local Names

Local names are assigned when the required provider is declared. It has details on the source location 
and the version constraint. The local names are module specific and should be unique to a module.

Outside the required_providers block, providers are referred to by the local names only.

Users have the option to select a local name to use; there are no restrictions. But almost every Terraform 
provider has a preferred local name. For example, the AWS Terraform provider (hashicorp/aws) 
has the prefix aws for every resource it contains. In this case, you can use aws as the local name; 
this is recommended.

Source Addresses

The source address of the Terraform provider specifies the primary location where Terraform can 
download it.



Basics of Terraform and Core Workflow60

The source address consists of three parts:

• hostname: The hostname of the Terraform Registry that hosts the provider. This is an optional 
parameter. If this part is omitted, it will be defaulted to the hostname of the public Terraform 
Registry (registry.terraform.io)

• namespace: The namespace is the organizational namespace in the Terraform Registry. In the 
case of a public Terraform Registry, this could be the organization that published the provider.

• type: The type is the platform or the system that the provider manages and should be unique 
within the namespace. This could also be the preferred local name for the provider in some cases.

If source addresses are omitted or not specified, Terraform will try to form the implicit source address 
with the hostname as registry.terraform.io and the namespace as hashicorp with 
the local name assumed as the type. The final source address that will be formed implicitly, then, is 
registry.terraform.io/hashicorp/<LOCAL NAME>.

Version Constraints

Each Terraform provider has its own version and release cycle. When declaring a provider, the version 
should be specified in the version argument so Terraform can select a single version and install it.

The version argument is optional, but it is always recommended to use the right version to avoid issues.

To ensure Terraform always installs the same provider version it was tested with, and to avoid being 
impacted by provider version upgrades, you can use the dependency lock file with the Terraform 
CLI. The file can also be committed in your version control tool.

You will learn more about the dependency lock file in an upcoming section.

Provider Configuration

Now that you have a good idea about declaring provider requirements in the terraform block, 
you can proceed with the provider configuration, which will vary based on the provider you want 
to configure.

For example, the AWS Terraform provider might expect the user to set the right access keys and region 
to create the AWS resources. On the other hand, other providers, such as Kubernetes, need details 
such as the API server endpoint details and the certificate to access it.

Generally, the provider configuration should be declared in the root module of the Terraform 
configuration and the sub-modules should get the details from the root module. If the sub-modules 
expect different configurations, they can override the default provider configuration with their own.



Terraform Providers 61

You can now take a look at the sample provider configuration:

provider "aws" {
  region     = "us-east-1"
  access_key = "my-access-key"
  secret_key = "my-secret-key"
}

There are a few things to note here:

• The value "aws" next to the provider keyword is the local name provided for the AWS 
Terraform provider in the terraform {} block.

• Inside the provider block, there are specific parameters, such as region, access_key, 
and secret_key, with values specific to this provider. It will vary for every provider based 
on their configuration setup before using it.

• For a few providers, the configuration parameters can also be set using the equivalent environment 
variables and Terraform will pick the configuration values automatically. In this example, 
the same access_key value can be set using the AWS_ACCESS_KEY_ID environment 
variable and the region can be set with the AWS_REGION or AWS_DEFAULT_REGION 
environment variable.

• Expressions can be used inside the provider configuration block, unlike the terraform {} 
block, and the parameters required by the provider are expected to be documented on the 
Terraform Registry page of the provider.

• There are providers such as hashicorp/random that do not need any explicit provider 
configuration. In this case, Terraform will assume a dummy configuration and no action would 
be required from the user. You can directly work with the creation of resources without any 
provider {} block.

Provider Meta-Arguments

Terraform will define two meta-arguments called alias and version that will be supported for all 
providers. The version meta-argument is not recommended as the version constraint parameter 
in the required_providers {} block will handle the different versions.

The alias Meta-Argument

To understand a real use case of the alias meta-argument, consider this scenario.

A cloud architect wants to design an architecture where the application microservices are deployed 
in EC2 instances running in one AWS region and the underlying databases are expected to run in a 
different region. This entire setup of the infrastructure will be provisioned via Terraform.



Basics of Terraform and Core Workflow62

Here, if you look closely, the cloud architect needs to create AWS resources in two different regions. 
That also means there are two different sets of provider configurations needed. This is where alias 
comes into the picture. It allows the user to have two provider configurations for the same provider 
declared only once inside the terraform {} block.

Here is an example:

# Default provider configuration - 1
provider "aws" {
  region = "us-east-1"
}
# Additional provider configuration - 2
# This can be referenced "aws.west".
provider "aws" {
  alias  = "west"
  region = "eu-west-1"
}

The version Meta-Argument

This meta-argument is deprecated and so there currently isn’t much that needs to be said about it. 
One important thing to note, however, is that the version meta-argument should be considered if 
the required_providers block does not contain the version parameter.

This will be removed in future Terraform versions, so it is better not to use it at all.

Dependency lock file (.terraform.lock.hcl)
When Terraform configuration scripts are created to provision resources, there are two types of 
dependencies that need to be tracked: providers and modules. They have their own life cycles, as 
discussed already. Hence, it is necessary to track the right versions for providers and modules to ensure 
that you always work with the compatible versions for the current configuration, so that it does not 
get impacted by future version upgrades from the provider.

With the current features, Terraform can only track and work with different versions of providers but 
not modules. For modules, it always downloads and uses the latest version available.

Terraform can remember the versions for each dependency with the dependency lock file (.terraform.
lock.hcl). So, it can use the same version every time with the help of this file.

Modules will be discussed in the following chapters in more detail, but you can consider them to be 
remote scripts that can be used for specific tasks, rather than having to write the code on your own. 
For example, there is a specific Terraform module for Amazon Elastic Kubernetes Service (EKS) 
cluster setup that internally creates a variety of resources. In this case, it makes sense to use the module 
provided by AWS to create the resources relevant for getting your EKS cluster setup up and running.



Resources and Data Sources 63

The dependency lock file is updated every time you run the terraform init command and it is 
stored in the current working directory along with other files.

The following points will help you understand Terraform’s behavior with the dependency lock file:

• When the provider versions are modified/updated in the configuration scripts, Terraform will 
always check the matching versions and update the lock file accordingly.

• If you want to upgrade the version of any provider after the initial terraform init command 
execution that locked the versions, you can use the -upgrade option with terraform 
init to override the locked versions.

• If any of the providers are no longer needed, the dependency will be automatically removed in the 
subsequent command executions when the configuration scripts do not contain any references.

Resources and Data Sources
Resources are the most fundamental building blocks of Terraform as they describe one or more 
infrastructure objects, such as virtual machines, storage buckets, and user entities or databases.

Terraform uses data sources to gather information about resources defined by Terraform or outside 
Terraform or any objects modified by functions. Say you want to create an S3 bucket and provide 
access to an AWS IAM user already available in the system. The data sources can then be used to get 
information about the user with some inputs, and the details can then be used to set up bucket access.

Resources Syntax

You can now check out this example resource block:

resource "aws_ebs_volume" "example_ebs_volume" {
  availability_zone = "us-east-1a"
  size              = 20
  tags = {
    Name = "HelloWorld"
  }
}

This resource block declares the resource of type aws_ebs_volume with the local name set as 
example_ebs_volume. Inside the block, you have configuration parameters specific to the resource 
type. In this case, it is an EBS volume (AWS service for block storage). In AWS, when an EBS volume 
needs to be created, the minimum configuration parameters expected are the Availability Zone and 
the storage size, which are specified here.



Basics of Terraform and Core Workflow64

Tags are common for most resources that can be defined in AWS.

The local name example_ebs_volume can be used to refer to this resource anywhere inside the 
module but not outside. Like the parameters coded here, there are also other configuration values 
or parameters set for this resource, and those can be referred to with the syntax <RESOURCE_
TYPE>.<RESOURCE_NAME>.<ATTRIBUTE_NAME>.

More information about configuration parameters available for specific resource types and example 
usage and validations can be found in the provider documentation on the Terraform Registry page.

Resources Meta-Arguments

Like providers, resources also support the use of meta-arguments and can be used with all possible 
resource types.

The following are the meta-arguments supported at the resources level:

• depends_on

• count

• for_each

• provider

• lifecycle

• provisioner (not discussed in this chapter)

depends_on

The depends_on meta-argument is helpful for handling module dependencies or hidden resource 
dependencies that Terraform cannot automatically infer. To understand this better, say you are creating 
an AWS IAM user and attach permissions with an IAM policy. In this case, the configuration scripts 
will be written so that the IAM user is created first and then the IAM policy. The IAM user created in 
the first place will be referred to while creating the IAM policy to attach.

In this case, Terraform will ensure that the IAM policy is not created until the IAM user resource is 
successfully created. However, there will be special scenarios, such as when the resource dependencies 
are not explicit but there is a logical sequence of how it needs to be used, where there are no direct 
dependencies. Note that certain resources cannot be created if the prerequisites are not set up.

As per the Terraform documentation, the depends_on meta-argument has to be used as a last 
resort when there is no other option to handle hidden resources or module dependencies. Instead of 
depends_on, the expression references can also be considered.

Wherever possible, it is always a good practice to include the comment along with the depends_on 
meta-argument explaining why it is being used.



Resources and Data Sources 65

The following example illustrates the use of depends_on:

module "eks_cluster" {
  source                  = "./modules/eks_cluster"
  region                  = var.region
  azs                     = module.vpc.azs
  environment             = var.environment
}

module "vault" {
  source                  = «./modules/vault»
  environment             = var.environment
  region                  = var.region
  service_secret_path     = var.service_secret_path
# The eks-cluster module creates certain keys that needs to be # added 
to vault and only when creation is successful.
  depends_on              = [module.eks_cluster]
}

count

The count meta-argument is used when you want to create more than one identical resource with the 
same resource definition. The default behavior of Terraform is to create one real-world infrastructure 
object. It can be overridden with this option.

The count meta-argument can be used with modules as well as for any resource type, and the specific 
instance can be referred to using the relevant index:

resource "aws_instance" "server" {
  count = 3 # create four similar EC2 instances

  ami           = «ami-exdswe123»
  instance_type = «t2.micro»
  tags = {
   instance_count = ${count.index}
  }
}

This example creates three identical EC2 instances with the t2.micro instance type with the same 
resource definition.



Basics of Terraform and Core Workflow66

for_each

The for_each meta-argument can be used to create multiple resources with the same definition, 
but the input values will be mapped using the map or set of strings. Please note that count and 
for_each cannot be used at the same time within the resource block.

When the resource block contains for_each, the values can be referenced using the each object, 
such as each.key and each.value. If for_each input is set, both each.key and each.
value will be the same.

Take a look at an example with for_each:

resource "aws_iam_user" "account-user" {
  for_each = toset( ["Adam", "Bob", "Chris", "Dennis"] )
  name     = each.key
}

In this example, the AWS IAM user is created for each value in the set.

provider

The provider meta-argument is used to refer to the provider configuration to use for the resource. 
As discussed in the Provider configuration section, multiple provider configurations are possible when 
the scripts need to work with different regions or access key combinations.

If the provider meta-argument is omitted, the default provider configuration with the preferred 
local name will be picked:

provider "aws" {
  region = "us-west-1"
}

provider "aws" {
  alias = west
  region = "us-west-1"
}
resource "aws_instance" "server" {
  provider = aws.west
  ami           = "ami-exdswe123"
  instance_type = "t2.micro"
}



Resources and Data Sources 67

lifecycle

The lifecycle meta-argument is used to customize the default life cycle behavior of how the 
resources are managed by Terraform. This can also be used with modules or any resource type.

The following options are supported for lifecycle:

• create_before_destroy

If the Terraform resource cannot be updated in place, Terraform will try to recreate the resource 
after destroying it. This option will force Terraform to create the replacement resource first and 
then destroy the previous instance.

• prevent_destroy

This will prevent the accidental deletion of critical objects and cause Terraform to reject any 
plan that will result in the destruction of the resource.

• ignore_changes

This will ignore future changes to the resource configuration. This is helpful for working 
with resources that are expected to change in the future but should not result in 
recreating/updating resources.

• replace_triggered_by

This triggers resource recreation every time the attributes of the different resources are changed:

resource "aws_instance" "server" {
  ami           = "ami-exdswe123"
  instance_type = «t2.micro»
  lifecycle {
    create_before_destroy = true
  }
}

Data Sources

Data sources are essentially read-only subsets of resources. Each provider will come with a set of data 
sources along with the resources that are supported. Data sources with the filter criteria are used to 
fetch the information about the specific resources that are defined already.

Sometimes it might be necessary to fetch the information about Amazon Machine Image (AMI) 
IDs before you use them to create the EC2 instance, and data sources can be helpful in this scenario.



Basics of Terraform and Core Workflow68

Here is an example data source block:

data "aws_ami" "my-amis" {
  most_recent = true
  owners = ["self"]
  filter {
    name   = "name"
    values = ["myami-*"]
  }
}

Here, you can see that the data block has the data keyword and it tried to query the aws_ami 
resource type and export the result into the local name my-amis. The local name must be unique 
within the given module and can be referenced with the following syntax: DATA.<RESOURCE_
TYPE>.<LOCAL_NAME>.

The query parameters inside the data {} block are the query constraints that are specific to the 
resource type. More information can be found on the Terraform Registry page. The main difference 
between the resources and the data sources is that the resources block can create/update/delete 
the infrastructure resources, whereas the data sources can only read the information about the 
provisioned resources.

The meta-arguments supported by Terraform for the managed resources are also applicable to data 
sources, but there will be slight differences in the behavior, as follows:

• While using depends_on with the data sources, the behavior is exactly the same as with the 
providers and the data sources will wait until all the dependencies are resolved.

• The count and for_each meta-arguments also behave the same way, and individual resource 
instances can be referred to in the same way as resources.

• The provider meta-argument can also be used with data sources to work with multiple 
provider configurations.

• The only exception is lifecycle, which is not supported for data sources, and there might 
be changes with the future versions of Terraform.

Variables and Outputs
You started the chapter with a quick hands-on exercise using the Terraform language and continued 
with the Terraform settings for configuration scripts. You then covered providers followed by resources 
and data sources.



Variables and Outputs 69

You can now proceed with variables and outputs, which help users customize module behavior without 
changing the source. The Terraform language supports the blocks listed here:

• Input variables

• Output values

• Local values

Input Variables

After providers and resources, input variables serve a unique purpose in the Terraform language when 
used with modules. With the use of input variables, Terraform modules can be shared across multiple 
configurations, and users can use different values to customize module behavior.

The input variables declared in the root module of the configuration can be set using the Terraform 
CLI as well as the environment variables. If they are declared in the child module, the input variables 
can be set inside the module {} block.

Declaring Input Variables

Input variables are declared using the variable {} block. You will learn about this further with 
an example variable {} block:

variable "availability_zone_names" {
  type    = list(string)
  default = ["us-east-1a"]
  description = «Availability zone names»
  sensitive = false
  nullable  = false
}

The variable block here has the variable keyword followed by the variable name. This name 
should be unique in the module and used to refer to the variable’s value inside the module. As per 
the Terraform documentation, the variable identifiers can be anything except source, version, 
providers, count, for_each, lifecycle, depends_on, and locals because these are 
reserved for module configuration blocks.

The input variables declared can be referenced with the syntax var.<NAME> where NAME is the 
input variable name.



Basics of Terraform and Core Workflow70

Supported Arguments

The following are the supported arguments for variable declaration:

• default: Variable declarations can include the default argument, and if they are present, 
that makes the input variable optional. If the value is not set, the default value will be used. The 
value passed should be a literal value and cannot refer to other objects in the configuration.

• type: This argument will help restrict the type of value that can be set for an input variable. 
When the variable declaration does not specify it, the variable can accept any type of value. But 
it is always recommended to specify the type that will help Terraform throw an error message 
if an incorrect value is set.

The following are the supported keywords:

 � string

 � bool

 � number

 � list(<TYPE>)

 � map(<TYPE>)

 � set(<TYPE>)

 � object

 � tuple

• description: The description argument is used to provide a concise description of 
the input variable.

• validation: You can specify the custom validation rules for the variable with this argument 
and throw a custom error message if the validation fails.

• sensitive: If the variable declaration is marked as sensitive, the variable will not be 
printed in the console output. Please remember that the variable value will still be recorded in 
the Terraform state file. You will learn about handling sensitive values in a state file further in 
future chapters when covering state management.

• nullable: The variable cannot be set to null when the variable declaration indicates that 
it is not nullable (nullable = false).



Variables and Outputs 71

Input Variables Assignment

Input variables can be assigned in a number of ways:

• With the -var command-line option

• Using the .tfvars files

• With environment variables

• With variables set in the HCP Terraform workspace (covered later)

If you are using the -var command-line option, individual variables can be set while executing the 
terraform plan and terraform apply commands.

A few examples are given here to understand the usage:

$ terraform apply -var="user_name=Bob"
$ terraform apply -var='az_list=["us-east-1a","us-east-1b"]'

Another option is to use the variable definition files with the .tfvars extension to set lots of variables. 
In this option, you can use the -var-file command-line option. If comfortable with the JSON 
format, you can use JSON as well and change the extension to .tfvars.json.

The .tfvars file will just contain the variable assignments. Here is an example:

user_name = "Bob"
az_names_list = ["us-east-1a", "us-east-1b"]

The last option is to use the environment variables to set the input variables and, in this case, Terraform 
will search the system environment variables to load the values before applying.

Here, the environment variable being set should follow a specific naming convention, which is 
the TF_VAR_<variable_name> prefix. For example, if the variable name is username, the 
environment variable that should be set is TF_VAR_username.

Input Variables Precedence

Terraform loads variables in the following order:

• Environment variables

• The terraform.tfvars file, if present

• The terraform.tfvars.json file, if present

• Any *.auto.tfvars or *.auto.tfvars.json file

• Any -var and -var-file options on the command line

(this includes variables set by a HCP Terraform workspace)



Basics of Terraform and Core Workflow72

Output Values

Output values are mainly used to expose information about the infrastructure to other Terraform 
configurations to use. This is similar to the return values in the case of programming languages.

Output values are declared using the output {} block mainly with the value argument. Here is 
an example output block:

output "iam_user_arn" {
  value = aws_iam_user.testuser.arn
}

In this block, the output name is iam_user_arn, which is used to output the arn attribute of the 
aws_iam_user resource type and the testuser resource name.

Like this, the output names of the child module can be accessed with the syntax module.<child_
module>.<output_name>.

The output values support the following arguments. The usage is exactly the same as was explained 
in the Provider configuration and the Input variables section:

• depends_on

• description

• sensitive

Local Values

Local values are helpful when you want to use the same expression multiple times in the Terraform 
configuration and you can assign a name to the expression to be used. This is very similar to the local 
variables you use with the programming languages.

The local values are declared using the locals {} block, and local values are referenced with the 
syntax local.<NAME>.

An example local block is as follows:

locals {
  environment = "dev"
  team = "accounting"
}



Core Workflow 73

Core Workflow
The core Terraform workflow has three steps. The general idea is that the core Terraform workflow 
process repeats every time there are changes to the configuration scripts. The three steps are as follows:

• Write

• Plan

• Apply

Write – Creating the Configuration Script

The first step is to create the configuration scripts in Terraform to provision infrastructure components. 
Once the initial scripts are created, the scripts can be added to a version-controlled repository to save 
the changes.

The scripts can be validated using the terraform fmt and terraform validate commands 
to ensure that the code is rightly formatted and that any syntax errors can be corrected.

If the team is working on the same configuration scripts rather than individuals, it is also recommended 
that different branches are created so that the work is not affected by other parallel changes. Automating 
the application of configuration can also be considered, since the scripts will be tested with the same 
workflow and the deployments streamlined.

Plan – Previewing the Changes

Once the scripts are validated and ready to be deployed, the final plan can be reviewed with the 
terraform plan command. This gives a clear picture of the resources that will be provisioned 
in the apply step.

This is the step to check whether the changes that are going to be applied match the requirements and 
if any further changes need to be considered.

Apply – Provisioning the Infrastructure

The final step is the actual application of the configuration scripts that will provision the resources 
in the cloud. As indicated earlier in the chapter, the apply step will also update the state file to record 
the changes being applied.



Basics of Terraform and Core Workflow74

Summary
In this chapter, you have learned about the basics of the Terraform language and the CLI-based 
workflow and when to apply them. The different block types, configuration settings, and parameters 
such as input variables and outputs were discussed. You also saw the steps involved in the Terraform 
core workflow.

The next chapter will cover Terraform commands in detail, along with the options and the scenarios 
where they can be used.



Exam Readiness Drill – Chapter Review Questions 75

Exam Readiness Drill – Chapter Review Questions
Apart from a solid understanding of key concepts, being able to think quickly under time pressure is 
a skill that will help you ace your certification exam. That is why working on these skills early on in 
your learning journey is key.

Chapter review questions are designed to improve your test-taking skills progressively with each 
chapter you learn and review your understanding of key concepts in the chapter at the same time. 
You’ll find these at the end of each chapter.

How to Access these Resources
To learn how to access these resources, head over to the chapter titled Chapter 11, Accessing 
the Online Practice Resources.

To open the Chapter Review Questions for this chapter, perform the following steps:

1. Click the link – https://packt.link/HCorp003Ch3.

Alternatively, you can scan the following QR code (Figure 3.10):

Figure 3.10 – QR code that opens Chapter Review Questions for logged-in users

https://packt.link/HCorp003Ch3


Basics of Terraform and Core Workflow76

2. Once you log in, you’ll see a page similar to the one shown in Figure 3.11:

Figure 3.11 – Chapter Review Questions for Chapter 3

3. Once ready, start the following practice drills, re-attempting the quiz multiple times.

Exam Readiness Drill

For the first three attempts, don’t worry about the time limit.

AT TEMPT 1

The first time, aim for at least 40%. Look at the answers you got wrong and read the relevant sections 
in the chapter again to fix your learning gaps.

AT TEMPT 2

The second time, aim for at least 60%. Look at the answers you got wrong and read the relevant sections 
in the chapter again to fix any remaining learning gaps.



Working On Timing 77

AT TEMPT 3

The third time, aim for at least 75%. Once you score 75% or more, you start working on your timing.

Tip
You may take more than three attempts to reach 75%. That’s okay. Just review the relevant 
sections in the chapter till you get there.

Working On Timing
Target: Your aim is to keep the score the same while trying to answer these questions as quickly as 
possible. Here’s an example of how your next attempts should look like:

Attempt Score Time Taken

Attempt 5 77% 21 mins 30 seconds

Attempt 6 78% 18 mins 34 seconds

Attempt 7 76% 14 mins 44 seconds

Table 3.1 – Sample timing practice drills on the online platform

Note
The time limits shown in the above table are just examples. Set your own time limits with each 
attempt based on the time limit of the quiz on the website.

With each new attempt, your score should stay above 75% while your “time taken” to complete should 
“decrease”. Repeat as many attempts as you want till you feel confident dealing with the time pressure.





4
Terraform Commands and State 

Management

In the previous chapters, you learned about the building blocks of the Terraform configuration language 
and the out-of-the-box capabilities it provides, such as multi-cloud support, extensive support for 
different providers, and state management. This chapter is all about the various commands you will 
use while working with Terraform CLI.

Each command has its own significance and purpose, and you may not use everything in regular 
scenarios. But there are a few commands (such as terraform init, terraform apply, and 
terraform destroy) that will be a part of almost every infrastructure workflow and are used 
as and when the need arises.

The following exam objectives will be covered in this chapter:

• Use the core Terraform workflow

• Implement and maintain state

You will start by looking at the aforementioned primary commands and then you will cover the 
various subcommands. This will then be followed by concepts around Terraform state management.

This chapter will cover the following topics:

• Basic workflow commands

• Commands for code management

• Special commands

• State management and the terraform state command and subcommands



Terraform Commands and State Management80

Technical Requirements
In this chapter, you will deep dive into Terraform commands and try them out on Terraform CLI, 
installed on your workstation. Please ensure that you have the following installed and ready to use:

• An AWS account ID with administrator access credentials

• AWS CLI version 2.x.x

• Terraform CLI version 1.5.x or later

• Visual Studio Code or any text editor

The GitHub URL for the chapter will contain graphics and the sample scripts used in the chapter and 
can be referred to at the following link:

https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-
Associate-003-Exam-guide-Second-Edition/tree/main/ch4/terraform-
commands-and-state-management

Basic Workflow Commands
In the previous chapter on Terraform basics, you used the following commands in the sample exercise 
to create an IAM user. You saw how it helps in different phases of project development. You will now 
take a closer look at the basic commands. The different options available to use are listed here and 
will be covered in detail in the subsequent sections:

• init

• plan

• apply

• destroy

Please note that all the preceding commands will be preceded by the keyword terraform when you 
actually use them in Terraform CLI. For every command, you will be look at the command syntax 
and options, followed by more details on the command usage in different scenarios.

As a general rule, the command syntax will be as follows:

$ terraform <command_name> <command_options>

https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition/tree/main/ch4/terraform-commands-and-state-management
https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition/tree/main/ch4/terraform-commands-and-state-management
https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition/tree/main/ch4/terraform-commands-and-state-management


Basic Workflow Commands 81

The init Command

As you have seen in the previous chapter on Terraform basics, the terraform init command 
is the first command that should be run to initialize the working directory where the configuration 
scripts are stored. The init command will download all the required providers and modules needed 
to run the script.

Based on the configuration scripts, the init command will perform different activities in the 
background, but it is safe to say that you do not need to know the details. Suppose the provider or the 
module version is changed in the script; the init command needs to be rerun to allow the changes 
to take effect before the resource creation.

This is how the command is used:

$ terraform init <init_options>

Now take a look at some common options supported by the init command:

• -input=true: If you are setting this option, it will ask for an input to execute the init 
command if necessary. If this is set to false, the command will fail directly without the user 
prompt. The default value is true.

This option is like using Amazon S3 as the backend to store the terraform state file and 
the partial configuration (not all inputs are provided for successful backend configuration) is 
used in the script.

A backend for S3 would require a bucket name, region, and key name to store the file. If any 
of the inputs are missing, the default behavior is that it will be prompted when you run the 
terraform init command.

If this option is set to false, the command will error out immediately.

• -lock=false: This option will disable the locking of state files; locking is enabled by default.

• -lock-timeout=<duration>: This option will override the duration of the state lock 
with the user-provided value; the default is zero seconds. It might help in scenarios where there 
are parallel processes running pointing to the same state file and it makes sense to wait for the 
lock to get released for the next process to use it.

• -no-color: This option will disable color codes in the output.

• -upgrade: This option will upgrade modules and providers to the latest version if applicable. 
If this option is used, the recorded versions in the dependency lock file will be ignored and 
the relevant modules and provider plugins will be upgraded to match the version constraints 
currently in the configuration.



Terraform Commands and State Management82

• -from-module=<module_location>: This option will be used in special scenarios 
where your configuration scripts refer to a module that is not present in the local/current 
working directory.

In this case, the module source location should be provided when running the init command, 
and this option helps achieve providing the module source location. Take a look at a scenario.

You have created a new Terraform configuration and it has a module block that refers to the 
code available in GitHub and not available on your local machine. When you run the init 
command with the -from-module option, in this case, the given module will be copied to 
the local working directory before the initialization steps are performed.

• -reconfigure: If the Terraform script is configured with the backend block, the init 
command execution will configure the backend settings accordingly. However, there might 
be cases where the current backend configuration is not relevant, and changes have been 
made to use a different backend. This is when this option needs to be specified along with the 
terraform init command, once again, to reflect the latest changes to use the new backend.

• -migrate-state: This option is used to migrate the state file to the new backend, and, 
based on the setup, there will be additional prompts for the user to enter values to complete 
the state migration.

• -force-copy: The use case for this option is exactly the same as the -migrate-state 
option but the difference is that there will not be prompts and yes will be automatically 
assumed for state migration.

• -backend=false: This option is used to skip the backend configuration with the current 
execution of the init command.

• -plugin-dir=<plugin_location>: This option is used to provide the alternate path 
to search for plugins, and is primarily used in the development stages when you create new 
modules or develop a new provider plugin.

• -get=false: This option will disable downloading the modules referenced.

• -lockfile=MODE : This is used to set the dependency lock file mode; the only value supported 
now is readonly.

• -lock=false: This option will not hold the state file during the backend migration, and 
should be used very cautiously, especially when there will be other developers who can run 
the same configuration referring to the same workspace. State locking is enabled by default.



Basic Workflow Commands 83

The plan Command

You now have a better idea about using the terraform init command that primarily deals with 
the initialization of the working directory. You can continue with the commands that form the core 
part of the Terraform provisioning workflow. The terraform plan command is the first one 
before the apply and destroy commands.

The main purpose of the plan command is to evaluate the configuration scripts and determine the 
desired state of the resources declared. Then, it will compare the desired state with the state of the 
real infrastructure objects using the state file and figure out the changes to achieve the desired state.

Once the changes needed are figured out, the plan command presents the execution plan. Please 
note that the plan command does not make any changes to real-world infrastructure objects. The 
responsibility of making actual changes is given to the terraform apply command, which 
usually follows next.

The plan output from the command can also be saved with the -out option, which can be directly 
given as input to the apply command to proceed with making the changes.

In some cases, it is also possible that the real-world infrastructure objects are in sync with the desired 
state of the declared resources, which means no change is needed. If you run the terraform plan 
command in this case, the command output will clearly indicate that no infrastructure change is needed.

This is how the command is used:

$ terraform plan <plan_options>

Now you can take a look at some of the options supported by the plan command:

• -destroy: This option with the plan command is to clean up all the resources provisioned 
so far, and this will result in an empty state file. The plan command with the -destroy 
option will exhibit the same behavior as running the terraform destroy command, 
which will be discussed in the subsequent sections.

• -refresh-only: This option has two purposes: updating the Terraform state file and output 
values from the root module to sync with the changes made outside Terraform.

Now, when might this be useful? Assume that you have created a resource in AWS such as 
an IAM user or RDS database instance, initially using Terraform, and the terraform.
tfstate state file has been updated. You also went ahead and made changes directly on the 
AWS Management Console.

It is important to sync the state file with the changes made from the console, and that is when 
the -refresh-only option can be used.



Terraform Commands and State Management84

• -refresh=false: This option will disable the refresh of the Terraform state file before 
applying the configuration changes. In the default scenario, the plan command will also 
check the remote objects and refresh the Terraform state to figure out the changes needed to 
achieve the desired state. This indirectly means Terraform will issue API calls to the respective 
providers and get the details, which can consume more time.

With this option, the refresh part is disabled, and hence, the plan will run faster; this can be 
considered only in special scenarios because the state file can go out of sync.

This option cannot be used along with the -refresh-only option since the refresh behavior 
will not happen at all.

• -target=<RESOURCE_ADDRESS>: This option is used to target particular resources or 
a set of resources for planning rather than for the entire configuration. This will be helpful to 
provision the resources that you would like to test first before completing the entire development.

• -replace=<RESOURCE_ADDRESS>: This option is used to replace the resources that match 
the given address; this is similar to the target option to focus on a particular resource or a set of 
resources that have been manipulated and need replacement. The earlier version of Terraform 
had a separate command, terraform taint, for this purpose, but it is deprecated now.

• -var "VARIABLE_NAME=VALUE": Use this option to set a value for the variable declared 
in the main configuration. If there are multiple variables, the option can be used for each 
variable name.

Here is a sample command:
$ terraform plan -var "region=us-east-1"

• -var-file=<FILENAME>: This option is used to set the values of multiple input variables 
usually using the *.tfvars file. The option can also be used multiple times to pick the values 
from more than one file.

• -detailed-exitcode: This option changes the exit codes and meanings to provide more 
information on the output plan. The possible values are zero (0), one (1), and two (2) according 
to the execution result:

exitcode 0: Success with no changes in the plan

exitcode 1: Error condition

exitcode 2: Success with changes in the plan

• -generate-config-out=<PATH>: If there are import blocks available in the configuration, 
this option will help generate Terraform resource blocks in the HCL language in the path 
specified. The concept of using import blocks is an advanced topic and will be covered in 
later chapters when applicable.



Basic Workflow Commands 85

• -input=false: This option exactly works the same as we have seen with the init command, 
and it disables the default prompt for any input variable with the value missing.

• -lock=false: This disables the state file lock operation, which is not generally recommended 
if there is a possibility of multiple concurrent runs.

• -json: This can be set to enable the JSON formatted output and is very helpful when the 
Terraform execution happens in an automated fashion and the JSON format is machine readable.

• -lock-timeout=<duration>: This option will override the duration of the state lock 
with the user-provided value; the default is zero seconds. It might help in scenarios where there 
are parallel processes running pointing to the same state file and it makes sense to wait for the 
lock to get released for the next process to use it.

• -no-color: This option is used to disable color codes in the output.

• -parallelism=<COUNT>: This option can be used to override the maximum number of 
parallel operations on the machine running Terraform. This can be used when you want to 
intentionally decrease/increase the load on the host machine to have better control. The default 
value is ten (10).

• -out=<FILENAME>: As already mentioned earlier, the terraform plan command 
can also include the -out option to save the plan output, which can be used directly with 
terraform apply.

One important thing to note here is that Terraform can accept any filename, but the file 
should not have any suffix or file extension. If a suffix is present, Terraform will consider it as 
a different file format and the .tf suffix will also result in Terraform treating it as a regular 
configuration file.

Here is a sample command:
$ terraform plan -out=tfplan -input=false

Some of these options are also supported by the terraform apply command, and you will read 
about this in the next section.

The apply Command

In the core workflow, the next command is the apply command and its responsibility is to make the 
changes proposed in the Terraform execution plan. The terraform apply command has two 
ways of operating: auto plan mode and saved plan mode.

In the auto plan mode, you cannot expect the terraform plan file to be saved already, and when 
the apply command is executed, it automatically creates an execution plan for you. This will be 
followed by a user prompt to confirm the plan and take the necessary actions. In automation cases, 
the prompt can be disabled with the -auto-approve option.



Terraform Commands and State Management86

In the case of the saved plan mode, terraform plan was executed previously, and you have the 
plan already. In this mode, the apply operation will run and it does not need any user inputs. In 
this mode, additional plan options cannot be specified.

This is how the command is used:

$ terraform apply <apply_options>

The following options are also supported in the terraform apply command. Since you have 
already read about this in the previous topic, the options are just listed here:

• -destroy

• -refresh-only

• -refresh=false

• -replace=<RESOURCE_ADDRESS>

• -target=<RESOURCE_ADDRESS>

• -var "VARIABLE_NAME=VALUE"

• -var-file=<FILENAME>

• -input=false

• -lock=false

• -lock-timeout=<DURATION>

• -parallelism=n

• -no-color

Please remember that all the preceding options are applicable when the apply command is executed 
without a saved plan file.

Other options supported for apply are as follows, and the last three options are applicable when 
using the local backend:

• -auto-approve: Setting this option will allow the process to proceed without the user 
prompt to provision the resources and update the state file.

• -compact-warnings: This option will compact the warning messages.

• -state=<PATH>: This option is used to read and save the state file path; if not set, this will 
default to the terraform.tfstate file in the current working directory.



Commands for Code Management 87

• -state-out=<PATH>: This option is used to save the state file in a different location, so 
the old state is not impacted by the latest execution.

• -backup=<PATH>: This is used to back up the state file in the specified path before modifying 
the state file.

The destroy Command

The destroy command is used to destroy all the real-world infrastructure objects managed by a 
particular configuration. As we have seen in this chapter, the destroy command will have the same 
behavior as the terraform apply command with the -destroy option. So, most of the options 
supported by the apply command can also be used with terraform destroy.

This is how the command is used:

$ terraform destroy <destroy_options>

Before the actual execution of destroy, you can also review the plan by running the following command:

$ terraform plan -destroy

This is helpful in scenarios where the applied configuration will not be used further, and the resources 
provisioned can be cleaned up.

Commands for Code Management
In this section, you will quickly look at a couple of commands – terraform fmt and terraform 
validate – used in the development stages. There will be no harm to the configuration if these are 
not used. The intention, however, is to check that it is the right code and is formatted properly, and 
to check whether there are syntactical errors.

The fmt Command

The terraform fmt command is used to rewrite/update the Terraform configuration scripts to a 
canonical format and style. This is based on the style conventions opinionated of HashiCorp itself to 
ensure consistency across all the files.

For example, you can generate a Terraform configuration using the -generate-config-out 
option with the plan command and the resulting configuration will follow the Terraform styling 
conventions. You also might write scripts manually for other resources, but using the terraform 
fmt command will ensure that the code is formatted consistently.

At the end of the day, it is up to the developer to choose the styling conventions, and there is no 
problem with the approach. It is not enforced by any means. There will be no change in the result, 
irrespective of the formatting approach you use.



Terraform Commands and State Management88

This is how the command is used:

$ terraform fmt <fmt_options> <TARGET>

Running this command will format the files in the current working directory by default. If the 
<TARGET> option is used, the command will scan the file/directory passed in the input. If a hyphen 
is specified for <TARGET>, the command will read the input from standard input (STDIN).

The following are the options supported by this command and it is not mandatory to use them. Just 
running the terraform fmt command will also work if you expect the default behavior:

• -list=false: Setting this option will not list the files that are not properly formatted.

• -check: This option will just check whether the input files are formatted as per the styling 
conventions and the exit code will be set accordingly. It will be zero (0) if all input files are 
formatted properly and non-zero if there are any inconsistencies.

• -rewrite=false: This option will not overwrite the input files and can be used along with 
the -check option if you are just going to validate the configuration or input files.

• -diff: This option lists differences in the formatting changes.

• -recursive: This option is used to format the input files in the current working directory 
as well as in subdirectories. The default behavior is that the command will format the files in 
the current working directory only.

Take a look at a simple example of how terraform fmt will reorganize a simple resource block that 
will create an Amazon S3 (AWS storage service to store files as objects) bucket. You will notice that the 
Name key and value alignment are formatted according to the other tag in the tags {} inner block.

This is before running the terraform fmt command:

resource "aws_s3_bucket" "testbucket" {
  bucket = "fmt-test-bucket"

  tags = {
    Name = "Test bucket"
    Environment = "testing"
  }
}

This is after running the terraform fmt command:

resource "aws_s3_bucket" "testbucket" {
  bucket = "fmt-test-bucket"

  tags = {
    Name        = "Test bucket"



Special Commands 89

    Environment = "testing"
  }
}
There are few additional

The validate Command

The terraform validate command is used to validate the configuration files in the directory, 
checking whether the configuration is syntactically correct and that there are no inconsistencies with 
the variable names or any attributes. This command does not access the state file or call the provider 
APIs, and it works within the directory only.

The command requires the current working directory to be initialized with the terraform 
init command.

This is how the command is used:

$ terraform validate <validate_options>

The following are the options supported:

• -json: This option produces the machine-readable JSON output and this can help with 
automation scenarios.

• -no-color: The output will not have any color if this option is specified.

Special Commands
So far, you have read about the core Terraform workflow commands and then followed this up with 
the code reformatting commands that will be used in most cases. In this section, you will see some 
special commands in appropriate scenarios.

The login Command

The terraform login command is used to obtain and save an API token for HCP Terraform, 
Terraform Enterprise, or any other compatible host. In the case of HCP Terraform and Terraform 
Enterprise, the user will be interacting with the host with the API token as the authentication mechanism 
and it is applicable to use in interactive scenarios.

This is how the command is used:

$ terraform login <HOSTNAME>



Terraform Commands and State Management90

In case HOSTNAME is not specified, it will default to the HCP Terraform host at app.terraform.io.

If the command execution is successful in CLI, the API token retrieved will be stored locally in the file 
named credentials.tfrc.json by default. But there is also an option to change this behavior 
and save the API token in a different location when you run the login command.

The logout Command

The terraform logout command is used to remove the API token stored by the login command. 
With this command, the API token will be removed from the local file storage only and the token 
stored in the remote server has to be manually revoked.

This is how the command is used:

$ terraform logout <HOSTNAME>

In case HOSTNAME is not specified, it will default to the HCP Terraform host at app.terraform.io.

The console Command

The terraform console command is used to start an interactive console to try out and experiment 
with expressions. For example, if you would like to try out expressions or any functions before using 
them in the actual configuration, this console-based command will help. This command has two ways 
of operating based on the state file content.

If the state file is empty, you can use this command as usual to try out the expressions; if the state file 
is not empty and you already have the configuration in place, the command will place a lock on the 
state file during the operation.

For configurations such as the local backend, the -state command-line option can be used to 
point to a different state file than the terraform.tfstate file in the current working directory.

Shortcuts such as Ctrl + C or Ctrl + D can be used to exit the console, and the exit command can 
also be used.

This is how the command is used:

$ terraform console <console_options>

Look at a simple string function, replace() and uuid(), to print a Universally Unique Identifier 
(UUID) in the terraform console command:

$ terraform console
> replace(«ec2_instances», «_», «-»)
"ec2-instances"



Special Commands 91

> uuid()

"b00bdca8-7e54-0f08-7127-3184926735f7"

The output Command

The terraform output command is used to extract the values of the output variables from the 
Terraform state file.

This is how the command is used:

$ terraform output <output_options> OUT_VARNAME

If OUT_VARNAME is not specified, the command will extract all the output values, and when specified, 
it will extract the value of that output variable.

The following options are supported by the terraform output command to interact with the 
output values stored in the state file:

• -json: This option produces the output in JSON format.

• -raw: This option can be used to produce the output values in string format without any special 
formatting and it helps when the Terraform execution is integrated with shell scripts. This 
option only supports string, number, and Boolean values; complex data types will not work.

• -no-color: This option is used to disable color codes in the output.

• -state=<PATH_TO_STATE_FILE>: This is used to point to a state file in a different 
location and is not applicable for remote backends.

Another important consideration with this command is that the command will display any sensitive 
value in the state file as plain text when using the -json or -raw option and should be used cautiously 
to avoid exposing sensitive data.

Take a look at the output.tf file in this configuration that has a couple of output values, such as 
the access key ID and the Amazon Resource Name (ARN) of the IAM user the script creates:

output "access_key" {
  value = aws_iam_access_key.user_access_keys.id
}

output "user_arn" {
  value = aws_iam_user.test_user.arn
}



Terraform Commands and State Management92

After the Terraform configuration is applied, you can try the terraform output command, 
which will show the values from the state file. A few examples follow:

Example 1 shows terraform output with no output variable names:

$ terraform output
access_key = "AKIAEXAMPLETESTVALUE"
user_arn = "arn:aws:iam::123456789012:user/test/test-aws-user"

Example 2 shows terraform output in JSON format:

$ terraform output -json
{
  "access_key": {
    "sensitive": false,
    "type": "string",
    "value": "AKIAEXAMPLETESTVALUE"
  },
  "user_arn": {
    "sensitive": false,
    "type": "string",
    "value": "arn:aws:iam::123456789012:user/test/test-aws-user"
  }
}

Example 3 shows terraform output with an output variable name:

$ terraform output user_arn
"arn:aws:iam:123456789012:user/test/test-aws-user"

The show Command

The terraform show command is used to read the state file or the plan output file and show 
the output in human-readable format. This command can also be used in automation cases with the 
-json option flag.

This is how the command is used:

$ terraform show <show_options> <STATE_OR_PLAN_FILE>

If STATE_OR_PLAN_FILE is not specified, the state file in the default location will be referenced.



Special Commands 93

The following command options are supported by the terraform show command:

• -json: This option produces the machine-readable JSON output.

• -no-color: The output will not have any color if this option is specified.

Like the terraform output command, sensitive information will be displayed in plain text if 
the -json option is specified.

The graph Command

The terraform graph command is used to create a graph with the dependency relationships of 
the resources and data blocks for a given configuration as per the conventions in the DOT language. 
The DOT language saves the graph with .gv or .dot extensions and these are outside the scope of 
this book.

By default, the graph command results in a simple graph of resources and dependencies, and with 
the -type option, different types of graphs can be created with more detail and are helpful when 
you work with complex configurations.

This is how the command is used:

$ terraform graph <graph_options>

The supported command options are listed here:

• -plan=tfplan: This option creates the graph for the given plan that implies -type=apply.

• -draw-cycles: This option can be used to highlight the cycles in the graph with colored 
edges, and this is helpful for debugging any cycle errors.

• -type=<operation_type>: This option is used to specify the operation type for which 
the graph has to be created. The possible values are plan, apply, plan-refresh-only, 
and plan-destroy.

For the sample configuration you have in this chapter, the terraform graph command produces 
the following output. Please note that the command needs the Graphviz tool to be installed on your 
local workstation. Here is the download link: https://graphviz.org/download/

Here is an example command:

$ terraform graph | dot -Tpng > ch4_graph.png

https://graphviz.org/download/


Terraform Commands and State Management94

Figure 4.1 shows the resource dependencies in graph format:

Figure 4.1: The graph command output

The import Command

The terraform import command is used to import the existing real-world infrastructure resources 
into your configuration state so it can be managed by Terraform.

The import command expects a resource configuration block to be written manually for the resource 
and then you can run the import command in Terraform CLI. This command itself will not generate 
any configuration.

If you would like Terraform to generate the configuration, the import block functionality can be 
used (available with Terraform v1.5.0 or later). The terraform import command can import only 
one resource at a time and the import block can import more than one resource at the same time.



Special Commands 95

This is how the command is used:

$ terraform import <import_options> RESOURCE_ADDRESS RESOURCE_ID

This command will import the resource with the specified Resource ID at the given Resource Address. 
If the resource is defined inside the module, the module name with the keyword should be appended 
before the resource address.

Here is an example:

$ terraform import module.foo.aws_s3_bucket.testbucket test-bucket-
qwi02

The resource ID can vary based on the resource type you intend to import. In the example configuration 
you are using in this chapter, the resource ID refers to the access key ID in the case of IAM access keys. 
So, if you are trying to import an IAM access key resource into Terraform, the import command 
would look like this:

$ terraform import aws_iam_access_key.user_access_keys 
AKIAEXAMPLETESTVALUE

Take a look at the options available for this command:

• -config=<PATH>: This option can be used to specify the alternate location that contains 
the configuration scripts. If not specified, Terraform will look for configuration scripts in the 
current working directory.

• -input=true: Setting this option will ask for input to execute the init command if necessary. 
If this is set to false, it will cause an error if the input is not provided.

• -lock=false: This option will disable the locking of state files.

• -lock-timeout=<duration>: This option will override the duration of the state lock 
with the user-provided value. The default is zero seconds. It might help in scenarios where 
there are parallel processes running pointing to the same state file and it makes sense to wait 
for the lock to get released for the next process to use it.

• -no-color: This option is used to disable color codes in the output.

• -parallelism=<COUNT>: This option can be used to override the maximum number of 
parallel operations on the machine running Terraform.

• -var "VARIABLE_NAME=VALUE": Use this option to set a value for the variable declared 
in the main configuration. If there are multiple variables, the option can be used for each 
variable name.

• -var-file=<FILENAME>: This option is used to set the values of multiple input variables, 
usually using the *.tfvars file. The option can also be used multiple times to pick the values 
from more than one file.



Terraform Commands and State Management96

• -provider=provider: This option is used to override the default provider configuration 
while importing the object. By default, Terraform uses the provider specified in the configuration 
for the target resource. This option is deprecated.

Note
For configurations using the local backend only, terraform import also accepts the legacy 
options of -state, -state-out, and -backup. For more details on these options, please 
refer to the Options section under the terraform apply command.

State Management and the terraform state Command
As you have, the Terraform state file, terraform.tfstate, is critical to the core workings of a 
Terraform tool. The individual entries in the Terraform state file map directly to real-world infrastructure. 
This allows Terraform to sync the resources whenever there are changes to the configuration.

The state file is managed and updated automatically when commands such as plan and apply are 
executed. Sometimes, there might be a need to interact with the state file and make some adjustments 
to accommodate the changes made outside Terraform. This is where the terraform state 
command plays a vital role.

You can start with the terraform state command and the options associated with it. There 
are also subcommands within the state command that help in different scenarios, which will be 
discussed further in this topic.

The state Command

As discussed previously, the terraform state command is used mainly for state management. 
This command will modify the state file seamlessly without you having to work directly with the state 
file and editing it.

This is how the command is used:

$ terraform state [subcommand] <state_options> <ARGUMENTS>

The terraform state command will work the same way with both the local and remote backends. 
In the case of a local backend, the command will run faster, as there are no network hops, and remote 
backends take some time and the turnaround time will be delayed. Remote backends have their own 
advantages, such as security, backup management, and restricted access control.



Subcommands of terraform state 97

The state command output can also be integrated with other tools, such as jq, and can be automated. 
The subcommands will also take a backup of the state file before it is modified by them. There are 
also subcommands such as terraform state list and terraform state show that are 
read-only and will not take any backups.

Subcommands of terraform state
The following section will cover the subcommands of the terraform state command; each has 
its own use case that will be discussed in detail.

The terraform state list Command

The terraform state list command will list all the resources within the state file.

This is how the command is used:

$ terraform state list <list_options> <RESOURCE_ADDRESS>

If RESOURCE_ADDRESS is not specified, the command will list all resources available in the state 
file. When specified, the command will list only the resources matching the criteria.

There could be situations where you might be dealing with a large number of resources and listing 
everything in one go may not be required. In that case, you can choose to list only specific resources, all 
resources belonging to a specific module, all instances created by the same resource group, and so on.

The options supported by this command are as follows:

• -state=<PATH>: This option is used to specify the state file to be considered. If not provided, 
it will default to the terraform.tfstate file in the current working directory.

• -id=<ID>: This option is used to filter the resource by ID.

For a better understanding, a few examples are provided here:

Example 1 lists all resources in the state file:

$ terraform state list
Output:
aws_iam_access_key.user_access_keys
aws_iam_user.test_user

Example 2 lists resources by resource address:

$ terraform state list aws_iam_user.test_user
Output:
aws_iam_user.test_user



Terraform Commands and State Management98

In this case, if multiple instances of the same resource type are provisioned, all of them will be listed 
with the index. In your case, you only have one, so it displays the same resource.

Example 3 filters resources by resource ID:

$ terraform state list -id=AKIAEXAMPLETESTVALUE
Output:
aws_iam_access_key.user_access_keys

The terraform state show Command

The terraform state show command is used to display the attributes of a single resource in 
the state file.

This is how the command is used:

$ terraform state show RESOURCE_ADDRESS

In this command, RESOURCE_ADDRESS is not optional, and hence, needs to be provided always. 
Upon successful execution, the attributes of the matching resource will be displayed.

The resource address format can be in any valid form that can be accepted by Terraform, and the 
supported command option is as follows:

-state=<PATH>: This option is used to specify the state file to be considered. If not provided, it 
will default to the terraform.tfstate file in the current working directory.

You can now run this command with the available configuration:

$ terraform state show aws_iam_user.test_user
Output:
# aws_iam_user.test_user:
resource "aws_iam_user" "test_user" {
    arn           = "arn:aws:iam::123456789012:user/test/test-aws-
user"
    force_destroy = false
    id            = "test-aws-user"
    name          = "test-aws-user"
    path          = "/test/"
    tags          = {
        "createdby" = "terraform"
    }
    tags_all      = {
        "createdby" = "terraform"



Subcommands of terraform state 99

    }
    unique_id     = "AIDAEXAMPLEUSERIDKHNJ"
}

You can see that this command lists all the possible attributes for the given resource from the state 
file and it is meant for human interaction. If there are any automation scenarios, the terraform 
show -json command can be used to get the same output in machine-readable JSON format, 
which we already discussed.

The terraform state mv Command

The default behavior of Terraform is that if you change the configuration after provisioning the 
resources already, it will track the changes and ensure that the remote objects match the current 
configuration settings.

How does this work? During the apply stage, Terraform destroys the resource provisioned with the 
previous snapshot of the configuration and a new resource will be provisioned with the latest changes.

But there will be rare scenarios where you do not want to destroy the remote object that’s already active 
and want to track it with the new resource address. This command will help in this case.

This is how the command is used:

$ terraform state mv <move_options> SOURCE DESTINATION

Even here, SOURCE and DESTINATION should follow the resource-addressing conventions. When 
valid values are provided, Terraform will look at the specific resource address and see whether the 
object exists. If successful, it will move the resource to the new destination resource address.

The options supported are as follows:

• -dry-run: This option will report all resources in the state matching the source address 
but will not move/make any changes. It can be used for testing purposes before making the 
actual change.

• -lock=false: This option will disable the locking of state files; the default behavior is state 
locking will be enabled.

• -lock-timeout=<duration>: This option will override the duration of the state lock 
with the user-provided value and the default is zero seconds. It might help in scenarios where 
there are parallel processes running pointing to the same state file and it makes sense to wait 
for the lock to get released for the next process to use it.

A simple example to understand this command would be renaming the IAM user resource in the 
current configuration as follows.



Terraform Commands and State Management100

This is the code before changes:

resource "aws_iam_user" "test_user" {
  name = "test-aws-user"
  path = "/test/"
. . .
}

This is the code after changes:

resource "aws_iam_user" "preprod_user" {
  name = "test-aws-user"
  path = "/test/"
. . .
}

In this case, the terraform state mv command will help us track the IAM user resource under 
the new address. The command to be used is as follows:

$ terraform state mv aws_iam_user.testuser aws_iam_user.preprod user

Note
For configurations using the local backend only, the terraform state mv command also 
accepts the legacy options of -state, -state-out, and -backup.

The terraform state rm Command

The terraform state rm command will help remove the remote object from the state file so it 
can continue to exist without destroying it. This also means that if the same configuration is reapplied, 
the new resources will be created again for the removed instances to be in sync.

This is how the command is used:

terraform state rm <remove_options> RESOURCE_ADDRESS

The supported command options are the same as the terraform state mv command:

• -dry-run: This option will report all resources in the state matching the source address but 
will not move any resources/make a change. It can be used for testing purposes before making 
the actual change.

• -lock=false: This option will disable the locking of state files.



Subcommands of terraform state 101

• -lock-timeout=<duration>: This option will override the duration of the state lock 
with the user-provided value and the default is zero seconds. It might help in scenarios where 
there are parallel processes running pointing to the same state file and it makes sense to wait 
for the lock to get released for the next process to use it.

Note
For configurations using the local backend only, the terraform state rm command also 
accepts the legacy options of -state, -state-out, and -backup.

The terraform state replace-provider Command

If there are scenarios to replace the provider currently used in the configuration with the new provider 
configuration, the terraform state replace-provider command can be used. This command 
will also take a backup of the state file before the update and the backup option cannot be disabled.

This is how the command is used:

$ terraform state replace-provider FROM_PROVIDER TO_PROVIDER

Upon successful execution, resources from FROM_PROVIDER will be moved to TO_PROVIDER. 
The supported options are listed here:

• -auto-approve: This option will execute the changes without waiting for any approvals.

• -lock=false: This option will disable the locking of state files.

• -lock-timeout=<duration>: This option will override the duration of the state lock 
with the user-provided value and the default is zero seconds. It might help in scenarios where 
there are parallel processes running pointing to the same state file and it makes sense to wait 
for the lock to get released for the next process to use it.

Note
For configurations using the local backend only, the terraform state replace-
provider command also accepts the legacy options of -state, -state-out, and -backup.

The terraform state pull Command

The terraform state pull command downloads the state file from its current location, upgrades 
it so that it is compatible with the locally installed Terraform, and prints the raw output to the console.



Terraform Commands and State Management102

This is how the command is used:

$ terraform state pull

This command can also be used in cases where the information from the state should be retrieved 
when paired with other third-party tools such as jq. It is not recommended to use this command 
with the state file stored in the remote backend.

The terraform state push Command

The terraform state push command is used to manually upload a local state file to the remote 
backend and should be used very rarely, when there are no other alternatives.

This is how the command is used:

$ terraform state push <push_options> PATH

The state file from the specified path will be pushed to the currently configured backend.

Before the state file is pushed, Terraform performs safety checks to ensure the changes are completely 
secure. To disable the checks, the -force option can be used but is not recommended.

Note
To use the state pull and state push commands, Terraform expects the file to be in 
UTF-8 format without the byte order mark (BOM).

Summary
In this chapter, you read about the core Terraform workflow commands. This was followed by 
explanations of special-purpose commands such as console, graph, and import, used as and 
when the need arises. The terraform state command was then discussed in detail with the 
subcommands. You also looked at how each command helps the developer interact with and manage 
the state file beyond infrastructure provisioning.

Now, you can proceed with the next chapter, on how to use the commands with Terraform CLI with 
full confidence. This will help in increasing productivity and the seamless transition to advanced 
concepts such as Terraform modules, HCP Terraform, and so on.



Exam Readiness Drill – Chapter Review Questions 103

Exam Readiness Drill – Chapter Review Questions
Apart from a solid understanding of key concepts, being able to think quickly under time pressure is 
a skill that will help you ace your certification exam. That is why working on these skills early on in 
your learning journey is key.

Chapter review questions are designed to improve your test-taking skills progressively with each 
chapter you learn and review your understanding of key concepts in the chapter at the same time. 
You’ll find these at the end of each chapter.

How to Access these Resources
To learn how to access these resources, head over to the chapter titled Chapter 11, Accessing 
the Online Practice Resources.

To open the Chapter Review Questions for this chapter, perform the following steps:

1. Click the link – https://packt.link/HCorp003Ch4.

Alternatively, you can scan the following QR code (Figure 4.2):

Figure 4.2 – QR code that opens Chapter Review Questions for logged-in users

https://packt.link/HCorp003Ch4


Terraform Commands and State Management104

2. Once you log in, you’ll see a page similar to the one shown in Figure 4.3:

Figure 4.3 – Chapter Review Questions for Chapter 4

3. Once ready, start the following practice drills, re-attempting the quiz multiple times.

Exam Readiness Drill

For the first three attempts, don’t worry about the time limit.

AT TEMPT 1

The first time, aim for at least 40%. Look at the answers you got wrong and read the relevant sections 
in the chapter again to fix your learning gaps.

AT TEMPT 2

The second time, aim for at least 60%. Look at the answers you got wrong and read the relevant sections 
in the chapter again to fix any remaining learning gaps.



Working On Timing 105

AT TEMPT 3

The third time, aim for at least 75%. Once you score 75% or more, you start working on your timing.

Tip
You may take more than three attempts to reach 75%. That’s okay. Just review the relevant 
sections in the chapter till you get there.

Working On Timing
Target: Your aim is to keep the score the same while trying to answer these questions as quickly as 
possible. Here’s an example of how your next attempts should look like:

Attempt Score Time Taken

Attempt 5 77% 21 mins 30 seconds

Attempt 6 78% 18 mins 34 seconds

Attempt 7 76% 14 mins 44 seconds

Table 4.1 – Sample timing practice drills on the online platform

Note
The time limits shown in the above table are just examples. Set your own time limits with each 
attempt based on the time limit of the quiz on the website.

With each new attempt, your score should stay above 75% while your “time taken” to complete should 
“decrease”. Repeat as many attempts as you want till you feel confident dealing with the time pressure.





5
Terraform Modules

Imagine that your company’s Quality Assurance (QA) team needs a test environment to be spun up 
in a very short interval and the dependency on your team is causing delays.

The best way to handle this is to facilitate a self-service option for the QA team where they can create 
the required environment themselves by passing some unique inputs for each environment. This can 
be achieved using a module.

Modules are one of the core concepts of Terraform because of their extensive use in the production 
environment. You will rarely find a production environment where modules are not used. A good 
understanding of modules is required not just from a certification perspective but also for day-to-
day operations while managing a Terraform-based setup. The following are the key topics that will 
be covered in this chapter:

• Why do we need modules?

• What is a module in Terraform?

• Advantages of modules

• Types of modules

• Module structure

• Module syntax

• Key points to consider before creating modules

• Key points to consider while using a module

• Drawbacks of modules



Terraform Modules108

Once you complete these topics, you will find exercises where you will learn how modules are used 
in the real world in a practical way:

• Using a root module to provision resources

• Using a local module to provision resources

• Using a remote module to provision resources

By the end of this chapter, you will have a good understanding of modules and some of the key 
considerations from a design point of view. Operationally, you will also be able to write your own 
modules for any requirement and will be able to use a public module and customize it for your needs.

Technical Requirements
This chapter has three exercises. The following are the pre-requisites for you to get started with 
the exercises:

• An AWS account and an IAM user with required permissions (or an SSO user if your organization 
is using AWS SSO). Refer to the following URL for steps on how to create an IAM user in 
AWS: https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_
create.html.

• The AWS CLI installed (version 2.0 and above preferred). For detailed instructions on installing 
the AWS CLI, go to https://docs.aws.amazon.com/cli/latest/userguide/
getting-started-install.html.

• Terraform installed (version 1.4.0 and above preferred).

• The code required for the exercise is present in our GitHub repository.

• Here is the URL for the GitHub repository: https://github.com/PacktPublishing/
Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-
Edition/tree/main

• Clone the GitHub repository to your local machine by running the following command:

git clone https://github.com/PacktPublishing/Hashicorp-
Certified-Terraform-Associate-003-Exam-guide-Second-Edition.git

• Navigate to Chapter 5 by running the following command:

cd Hashicorp-Certified-Terraform-Associate-003-Exam-guide-
Second-Edition/ch5

• You should find the README.md file along with three folders, each of which contains an exercise.

• Refer to README.md for instructions on the exercises.

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition/tree/main
https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition/tree/main
https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition/tree/main


Why Do We Need Modules? 109

Note
The exercises launch real resources in the AWS cloud. Almost all the resources are free except 
for the EC2 instance, which gets charged till you delete it. It should not cost you more than a 
dollar if you complete the exercise within three to four hours. Please make sure you delete the 
resources to avoid getting charged.

Why Do We Need Modules?
When you start using Terraform, you start by creating a few infrastructure objects by writing code 
in a single configuration file. As your requirements grow, you start adding additional configurations 
to the same file or adding new files to the same directory. Theoretically, you can even keep using this 
approach. However, is this the right approach that is recommended by HashiCorp?

Before answering this question, take a look at the drawbacks of this approach:

Complexity

When you start copy-pasting the code for similar requirements or multiple resources of the same 
configuration, the complexity (imagine having 50 blocks of code to create 50 instances) will increase 
with the growth in the number of resources. It becomes very difficult for the team managing Terraform 
to understand the code and navigate it for either changes or troubleshooting.

Duplication of Code

You use the same block of code with minor changes for similar resources. One of the key 
principles of software development is Don’t Repeat Yourself (DRY). When you are trying 
to adopt the best practices of software development in Infrastructure as Code (IaC), 
duplicating the code goes against one of the important principles of software development. 
For example, if you want to launch three EC2 instances of the same configuration but with different 
names, you end up copying the same code thrice and changing a single argument for the name.

Segregation

The segregation of different layers of infrastructure resources is important to assign ownership to 
different teams. Imagine a situation where the network team wants to create code for all the networking 
requirements and the application team wants to write code for app-related requirements. How are 
you going to segregate and delegate the ownership?



Terraform Modules110

Misconfiguration

When you want to make changes, apart from knowing what exactly the Terraform command does, 
you also need to know the whole environment to gauge the impact a simple change will have on your 
setup. The chance of a misconfiguration and its impact on the environment is very high.

So, how can you solve these problems? What is the recommendation from HashiCorp? What is being 
followed by the industry? Terraform modules are the answer. By the end of this chapter, you will 
understand how Terraform solves all these problems.

What Is a Terraform Module?
In non-technical terms, a Terraform module is a template using which you can launch logically grouped 
resources as per your requirement even without knowing its inner workings.

You define the template once and use it any number of times to launch resources. For example, you 
can create a module for the launch of a test environment of your product and your QA team can use 
this module any number of times to launch the test environment.

HashiCorp calls the module a set of configuration files in a single directory that helps you organize 
and re-use Terraform configuration. In other words, any directory with Terraform configuration files 
to create a certain resource(s) can be called a module.

Terraform uses modules to package resource configurations, and the user can reuse these modules 
whenever there is a requirement to launch resources packaged in a module.

Advantages of Modules
In this section, you will look at some advantages of modules:

Reduces Complexity

Modules group logical components, making them easy to manage and update when required. This makes 
it easy for the team that manages Terraform to understand the code and make the required changes.

Reduces Code Duplication

You write modules once (or use public modules) and these get used to launch resources. There is no 
duplication of code here. You only pass values to the variables to decide the number of resources or 
the configuration of the resources.

This not only prevents the duplication of code but also saves time by reducing the effort required for 
the same task.



Advantages of Modules 111

Segregation

Modules inherently support segregation because you can build one layer on top of another. A root module 
is the place where a child module gets referenced in one of the configuration files. The child module 
variable’s value gets passed and the required outputs are defined. The output of one module can be used as 
input to another resource’s configuration. Hence, you can create a separate layer for each infrastructure tier. 
For example, in a typical three-tier architecture, there will be a web layer (presentation layer), an app 
layer, and a database layer.

To deploy this three-tier-based application, you also need a network layer, which is managed by the 
network team.

The network team will be responsible for creating the networking components that will be used by 
other teams to deploy their respective layers. The app/web/DBA team will have their own modules 
for the launch of respective resources. They will own these modules but when they launch the 
infrastructure objects, they will consume the outputs of the networking layer to make sure these run 
within the defined network.

Reduces Misconfigurations

It is only human to err. You have likely experienced a situation where you or one of your colleagues made 
changes in an environment/file/resource that were not meant to be made. When you use individual 
files, you define every single parameter, and hence, the chance of human error is higher. With modules, 
you standardize most of these configurations and only allow a few important configurations to be 
modified via variables. This automation helps in reducing the chance of misconfigurations.

Self-Service

If you want to allow people to create resources on their own without spending too much time learning 
about Terraform, modules can help. You can just publish a module and the variables whose values 
need to be passed by the respective team to create the resource.

All the complex configurations are hidden under the hood. The end user just needs to understand 
the inputs and outputs. Inputs can be passed as input variables and the outputs of the modules need 
to be accessed using standard syntax.

Apart from these key advantages, modules help in quick deployments and maintain a consistent 
environment where the best practices of the industry can be tested once and deployed to environments 
via modules.



Terraform Modules112

Types of Modules
Depending on the criteria one uses, modules can be classified in multiple ways. Figure 5.1 shows the 
classification of modules based on two important criteria:

• Based on the entry point for the module (i.e., where terraform plan/apply is run):

 � Root module

 � Child module

• Based on where the configuration files are stored/installed:

 � Local module

 � Remote module

Figure 5.1: Types of modules

Now that you have seen the types of modules, it is time to take a look at each module type in detail 
in the following section.



Types of Modules 113

The Root Module

Any folder with a set of Terraform configuration files to create infrastructure objects can be called a 
root module.

If the Terraform module is a template, someone must instantiate it, that is, make a copy of the 
infrastructure objects using the template. This is where the root module comes in.

The root module is the primary entry point for the module. This is the directory with the configuration 
files where the user will run terraform plan or terraform apply.

A root module can have a few configuration files to create the infrastructure and/or it can call the 
child modules as shown in Figure 5.2.

Figure 5.2: Root module



Terraform Modules114

A typical root module’s files are shown in Figure 5.3.

When you call the child module from the current directory (i.e., the root module), it loads the 
configuration files of the child module and replaces the variable value with the one you defined in 
the current directory.

Figure 5.3: Root module file structure example

The Child Module

A module is called a child module when it gets called by the root module using a module block, as 
shown in Figure 5.5.

Once you have created the child module, you can call it any number of times within the configuration 
files in your root module. It can also be called from multiple root modules, provided they have access 
to this child module. When you run terraform get or terraform init from the root module, 
the child module gets downloaded if it’s a remote module. If it is a local module, the modules.json 
file under .terraform/modules will contain the path of the modules in the local filesystem.

Note
When people talk about modules, most of the time it is in the context of a child module. If it 
is a root module, it is normally specified.



Types of Modules 115

Figure 5.4: Child module called by root module



Terraform Modules116

While Figure 5.4 is a pictorial representation of the child module’s work, the following Figure 5.5 shows 
the code/file representation of the module.

Figure 5.5: Child module and root module file structure example

Note
Some child modules have their own child modules. Such a module is called a nested module.

Local Modules

As explained earlier, a module is a bunch of configuration files and needs to be stored somewhere 
before it gets called by anyone who wants to use it.

If you store these configuration files on your local filesystem, it is called a local module.

When you are calling a local module, it must begin with ./ or ../ to indicate that the module is 
present in the local filesystem, as shown in Figure 5.6.

HashiCorp recommends using the relative filesystem paths to refer to the local Terraform modules 
instead of the absolute filesystem paths. Using the absolute path tightly couples the configuration file 
path to the specific computer’s filesystem layout.

You will be able to understand this well with the following example, where you will try both the full 
path and relative path to call the child module from the root module.



Types of Modules 117

This is the child module’s path:

/Users/manju/Desktop/terraform/vpc-module

This is the root module where the execution is happening:

/Users/manju/Desktop/terraform/example

Within the main.tf file of the root module, you will call the child module.

If you use the full path as follows, your code will not be able to run on your colleague’s laptop as the 
path where they run Terraform will be different:

module "vpc"{
 source = "/Users/manju/Desktop/terraform/vpc-module"
 ---- Truncated ----
}

Instead, you should use a relative path, as follows. This should work on any computer provided the 
operating system is Linux:

module "vpc"{
 source = "../vpc-module/"
 ---- Truncated ----}

Figure 5.6: Example code for local module implementation



Terraform Modules118

While Figure 5.6 shows a local child module’s path, Figure 5.7 illustrates the local child module’s initialization.

Figure 5.7: Local child modules getting initialized

When installing a local module, Terraform will not download the module, but will instead refer 
to the source directory using the path of the modules as specified in the modules.json file 
under .terraform/modules.

Storing the configuration on a local filesystem limits the ability to share the modules and work as a 
team. But this works great for testing modules before pushing them to a version control system or 
the Terraform Registry to make it a remote module.

Remote Modules

If a module’s configuration files are stored and downloaded from a remote system like the Terraform 
Registry, a version control system (for example, GitHub, Bitbucket, etc.), HTTP URLs, an S3 bucket, 
or a GCS bucket, then these are called remote modules.

When installing a remote module, Terraform will download the module into the .terraform 
directory in your configuration’s root directory. Any changes in the remote module will be reflected 
only after you upgrade the modules by running the terraform init –upgrade command.



Types of Modules 119

A remote module can be public (Terraform Registry) or private ( HCP Terraform private registry).

The Terraform Registry is the native way of distributing modules. It is integrated directly into 
Terraform, so a Terraform configuration can refer to any module published in the registry using 
the <NAMESPACE>/<NAME>/<PROVIDER> syntax: for example, hashicorp/consul/aws.

A registry is an index of modules and is the easiest way to find public modules that are created by 
the community.

Unless you specify a specific version using the ref argument, Terraform will choose the default branch 
of the selected repository. If you want to use a different version, you can use the ref argument with 
the tag name, branch, or SHA-1 hash.

Remote modules can be further divided into two, depending on the availability of the modules to 
the user:

• Private modules

• Public modules

Private Modules

Private modules are modules that are available only to members of your team/organization based on 
how you have set them up.

You can store your modules in the version control system and decide who has access to this repository. 
Another option is to use the organization’s HCP Terraform private registry that is integrated with your 
version control system. Apart from keeping modules private, HCP Terraform offers other features 
that will be discussed in Chapter 9, Understanding HCP Terraform’s Capabilities.

The private registry modules have the following syntax for their name:

terraform-<PROVIDER>-<NAME>

Examples are terraform-gcp-vault and terraform-aws-vpc.

Public Modules

Public modules are those that can be downloaded by everyone. The most popular place for hosting a 
public module is the Terraform Registry. A registry exposes some additional information that is very 
helpful in deciding whether you can use a module or should try others.

Some of these modules are uploaded by vendors themselves and are validated by HashiCorp. These 
are trusted to be good ones.

You can also see individuals/teams upload modules, allowing everyone to consume them.



Terraform Modules120

An example of downloading a remote module from the Terraform Registry is shown in Figure 5.8:

Figure 5.8: Example code for a public (and remote) module (Terraform Registry)

An example of downloading a remote module from GitHub’s public repository is shown in Figure 5.9:

Figure 5.9: Example code for public (and remote) module (GitHub)

You must always verify public modules before using them. Since anyone can contribute to the public 
modules on the Terraform Registry, you will not know whether the code is of high quality, free from 
security issues, or whether it follows best practices without verifying the code yourself. There is enough 
information about these modules that can help you decide whether you should use them. They are 
scattered between the Terraform Registry and GitHub.

Key parameters to verify a module in the Terraform Registry are the following:

• How old is the module?

• How active is the module? (How many times has it been downloaded in the last week/month?)

• Versions



Module Structure 121

Key parameters to verify a module in GitHub are the following:

• Is it getting frequent updates in terms of commits and versions?

• Does it have a good number of active contributors and stars?

• Are the license terms compatible with your organization’s policies?

• Does it have pull requests and issues raised by the community? How has the response been 
for previous issues?

• Take a look at the code to rule out any undocumented resources or features.

Module Structure
There is no mandatory structure for modules. However, HashiCorp recommends following their 
standard module structure, since Terraform tools are designed to understand this structure in order 
to generate documentation and index modules when you upload modules to the Terraform Registry.

HashiCorp adds a root module as the mandatory component of the module structure. However, the 
focus here is mostly on the child module’s structure. Hence, you will not see the root module as one 
of the requirements in the structure given here.

These are the key files that make up a module:

• main.tf: This is the main configuration file that defines the resources that need to be launched.

• variables.tf: Hardcoding the configuration value in the module’s code makes it difficult 
to reuse it. You parameterize (define the variable but pass the value of the variable during 
execution) the arguments of the resources as variables and pass the value of these variables 
when you call this module from the root module. All the variables corresponding to the module 
are defined in the variables.tf file.

• README.md: This is a helper file to be written in the Markdown format. This gives information 
to the user on what the module is used for and how the module should be used.

• outputs.tf: All the resources created by the module are encapsulated and the attributes 
cannot be accessed from the root module unless they are exported in the child module as 
outputs. This is typically defined in the outputs.tf of the child module.

For example, if a security group is created using a child module, the ID of the security group will be 
available in the root module only if it is exported as an output in the child module and is also defined 
as an output in the root module – preferably, in outputs.tf.



Terraform Modules122

You can use these outputs as input to other configurations or modules.

You typically refer to output values as module.MODULE_NAME.OUTPUT_NAME.

Most modules follow the preceding structure, and it is recommended that you use at least these files 
in a module.

Figure 5.10 shows the module with the minimum number of files as per the standard structure 
recommended by HashiCorp:

Figure 5.10: Module structure with minimal files

Some people also prefer to share more information about the module by adding additional files like 
changelog.md (key changes with version increment), folders like examples (with sample code 
for users), and modules with child modules. This is optional and you can add required files/folders 
based on your requirements.

The following URL is a good example for the module files. It has the changelog.md, LICENSE, 
and README.md file, along with main.tf, variables.tf, and outputs.tf:

https://github.com/terraform-aws-modules/terraform-aws-vpc/tree/master

The Module Block’s Syntax
When you want to use child modules in the root module, there is a particular syntax you need to make 
use of. This syntax is part of the module block and is shown in Figure 5.11. Module blocks document the 
syntax for calling a child module from a parent module, including meta-arguments like for_each:

https://github.com/terraform-aws-modules/terraform-aws-vpc/tree/master


The Module Block’s Syntax 123

Figure 5.11: Syntax and example of a module block

The name specified within " " after the module keyword is considered the local name. This is used 
by other modules to refer to this module.

The content within {} is called the module body.

This module body contains four arguments:

• source: This is a mandatory argument. This can be a path of a local filesystem or a remote 
one (Terraform Registry, GitHub, and more). This has to be a literal string, and expressions or 
variable interpolations are not allowed here.

• version: This is used to constrain the version of the modules that can be downloaded. 
It is recommended to pin the version number in production. By default, the latest version 
gets downloaded when you pull the module. This can cause compatibility issues and break 
some functionalities. By pinning the versions, you can perform testing for the newer version 
separately, iron out issues, and then do an upgrade of this module. Here are the other aspects 
of this argument:

 � Terraform supports various operators (=, !=, > , >=, <, <=, ~>) to help you 
pin versions.

 � version is not useful in the local modules as these are referenced directly in the local 
filesystem using the path specified in the modules.json file. Hence, the local modules 
used are always the latest ones.



Terraform Modules124

• Input variables: Input variables are used to customize the resources of Terraform modules 
without altering the module’s own source code. This helps to keep the module’s code generic 
while allowing people to pass the specific values based on their requirements. Here are the 
other aspects of this argument:

 � These input variables can be declared in both the root module and the child module.

 � While the values for the root module can be passed via the CLI, environment variables, or 
a .tfvars file, the values for the child module should be passed by the calling module in 
the module block.

• Additional meta-arguments: Apart from source and version, there are a few more meta-
arguments used with modules:

 � count: Used to create multiple copies of the infrastructure objects defined in a single 
module block. It is typically an integer that indicates how many times the module needs to 
be instantiated to launch infra objects.

 � for_each: Though for_each is also used to create multiple copies of infrastructure 
objects, it is used when the argument needed is a distinct value that is present in a map or 
set. Here, there is no definite number of iterations but it depends on the number of distinct 
values present.

 � depends_on: Terraform understands the implicit dependency (created when the graph gets 
created during terraform plan/apply). However, if there are any explicit dependencies 
that need to be configured, you can make use of this meta-argument.

Note
~> operator: This operator is called the pessimistic constraint operator. You use this operator 
to allow the upgrade of only the rightmost version component.

For example, if you define version ~> 1.4.1, the upgrade process is allowed to change 
to the new version starting from 1.4.1 to 1.4.10, but not 1.5.0.

If you define version ~> 1.2, the upgrade process is allowed to change the version from 
1.2 to 1.10 but not 2.0.

As you will notice from the two examples, only the last number is allowed to change when 
you use this operator.



Key Points to Consider When You Create a Module 125

Key Points to Consider When You Create a Module
Once you decide to create a module for a certain requirement, there are certain points to keep in mind:

• You need to decide whether you are going to create modules to encapsulate all the services 
required for a particular project or create modules for the resources that are then called by a 
root module of the project. This is an important consideration and has a long-term impact since 
you will be using these modules on a day-to-day basis. Hence, it is a good idea to brainstorm 
this with your team before deciding on the approach.

• An infrastructure object may need multiple arguments to be passed before it can be provisioned. 
For example, an EC2 instance would need ami-id, instance-type, keypair, security 
group, and a number of other details. You will have to decide which of these arguments 
should be exposed to users and which ones to hide (and pass default values). Exposing all the 
arguments will make it difficult for the user to use the module. These arguments can be exposed 
to the users as input variables for which a user will pass the value. It is recommended to keep 
the input variables to a minimum.

• An infrastructure object created by the module can have multiple attributes as output. Are all 
these important for your requirements? You will have to decide which ones are required and 
expose them as outputs. These outputs can be consumed by other modules or the user who 
runs the code.

• Always have different modules for long-lived objects and short-lived objects, for example, VPC 
in AWS will be present for a long time, unlike application servers, which can be created and 
destroyed often. The same is true for the database servers, which should be around for a long 
time compared to a security group rule.

• If your organization allows it, share the module with the community via Terraform Registry. 
You will not only be helping the community but also helping yourself because the community 
shares feedback on bugs and new features that can be used to improve your module.

• Documenting the module is important as it helps the end user understand the purpose of the 
module and how to use the module. Documenting is done using the README.md file, which 
can be created either manually or using some automated tools. The following are some of the 
key details that will have to be present in the README.md file:

 � Resources created by the module

 � Example code usage

 � Inputs

 � Outputs

These are not exhaustive points but are key ones before you get started.



Terraform Modules126

Note
terraform-docs is one of the tools used to generate documentation for modules. You may 
reference https://terraform-docs.io/ for more information.

Key Points to Consider While Using a Module
Whether you create a module yourself or use public modules, there are certain points you need to be 
aware of while using these. Though not exhaustive, the following points are a good starter:

• Modules call other modules using a module block.

• After adding or removing module blocks, you must run terraform init to enable Terraform 
to either download a module or delete a module.

• If you modify a module block, you will have to run terraform init –upgrade to enable 
Terraform to download the latest changes.

• When you are using a public module from Terraform Registry, go for verified modules unless 
there is not a verified module for your requirements. Verified modules are reviewed by HashiCorp 
for compatibility with the Terraform core. These modules also have active contributors from 
the providers (like AWS, GCP, and so on) to keep the module up to date. The verified badge 
appears next to modules that are published by a verified source. Public modules can be used 
in different ways:

 � You can download a whole module onto your filesystem and start referring to it from your 
root module. With this option, you will miss out on the latest updates of public modules.

 � You can directly refer to a public module in your root module.

 � You can create another abstraction and create a new module that refers to a public module. 
This newly created module is then called from the root module. This adds some flexibility 
and gives an option to add missing features.

Drawbacks of Modules
Though modules help in solving several problems, they also come with a few cons that you should be 
careful about. When you compare the pros and cons, the pros outweigh the cons by a huge margin, 
but still, you need to know about them. Even HashiCorp recommends using modules in moderation.

• When you start using module blocks, your configuration becomes hierarchical, where each 
module contains its own set of resources and could have its own child modules. This creates a 
deep, complex tree of resource configurations that make troubleshooting difficult.

https://terraform-docs.io/


Summary 127

• By default, Terraform downloads the latest version of the module from Terraform Registry. 
Over a period of time, you may end up having incompatibilities due to the untested version 
upgrade. You can avoid this issue by pinning the module to a certain version in the module block.

• Public modules are created to cover most generic use cases. If you have a use case that is very 
specific, you will either have to write your own module or create another abstraction (i.e., 
create another module) using the public module and make the required customizations. This 
customization helps when you want to add certain features but cannot modify the existing 
logic of a public module. If you need to do this, you will have to fork the code and modify it 
for your use case.

• Not every requirement needs a module; some use cases that need to be run only once are better 
done using resource blocks than writing a new module for them.

Summary
In this chapter, you learned about Terraform modules. Since there are multiple types of modules, it 
can be difficult to understand them without understanding the basics.

You started with a problem statement that the modules solve and then moved on to different ways 
of using modules.

With this understanding, you will be able to decide whether you should use a module or go for a 
one-time implementation via a resource block, create a module yourself, or use a public one, verify 
whether a public module is trustworthy to use, and so on.



Terraform Modules128

Exam Readiness Drill – Chapter Review Questions
Apart from a solid understanding of key concepts, being able to think quickly under time pressure is 
a skill that will help you ace your certification exam. That is why working on these skills early on in 
your learning journey is key.

Chapter review questions are designed to improve your test-taking skills progressively with each 
chapter you learn and review your understanding of key concepts in the chapter at the same time. 
You’ll find these at the end of each chapter.

How to Access these Resources
To learn how to access these resources, head over to the chapter titled Chapter 11, Accessing 
the Online Practice Resources.

To open the Chapter Review Questions for this chapter, perform the following steps:

1. Click the link – https://packt.link/HCorp003Ch5.

Alternatively, you can scan the following QR code (Figure 5.12):

Figure 5.12 – QR code that opens Chapter Review Questions for logged-in users

https://packt.link/HCorp003Ch5


Exam Readiness Drill – Chapter Review Questions 129

2. Once you log in, you’ll see a page similar to the one shown in Figure 5.13:

Figure 5.13 – Chapter Review Questions for Chapter 5

3. Once ready, start the following practice drills, re-attempting the quiz multiple times.

Exam Readiness Drill

For the first three attempts, don’t worry about the time limit.

AT TEMPT 1

The first time, aim for at least 40%. Look at the answers you got wrong and read the relevant sections 
in the chapter again to fix your learning gaps.

AT TEMPT 2

The second time, aim for at least 60%. Look at the answers you got wrong and read the relevant sections 
in the chapter again to fix any remaining learning gaps.



Terraform Modules130

AT TEMPT 3

The third time, aim for at least 75%. Once you score 75% or more, you start working on your timing.

Tip
You may take more than three attempts to reach 75%. That’s okay. Just review the relevant 
sections in the chapter till you get there.

Working On Timing
Target: Your aim is to keep the score the same while trying to answer these questions as quickly as 
possible. Here’s an example of how your next attempts should look like:

Attempt Score Time Taken

Attempt 5 77% 21 mins 30 seconds

Attempt 6 78% 18 mins 34 seconds

Attempt 7 76% 14 mins 44 seconds

Table 5.1 – Sample timing practice drills on the online platform

Note
The time limits shown in the above table are just examples. Set your own time limits with each 
attempt based on the time limit of the quiz on the website.

With each new attempt, your score should stay above 75% while your “time taken” to complete should 
“decrease”. Repeat as many attempts as you want till you feel confident dealing with the time pressure.



6
Terraform Backends and 

Resource Management

Think of a scenario where you are part of a large enterprise-level DevOps team, primarily dealing with 
the provision of infrastructure resources from different cloud providers for multiple project teams. 
Your team maintains the Terraform configuration scripts and is responsible for end-to-end activities, 
such as state management and adding/updating resource attributes. There could be situations where 
you and your colleagues might have to collaborate and work on the same ticket, with the same set of 
configuration scripts.

This also means that everyone working on the same configuration needs to refer to the same state 
file. Terraform creates the state file and stores it locally with the terraform.tfstate filename 
by default. It is difficult to share the latest state file for every iteration within the team, and losing it 
completely due to workstation issues or an OS crash can be disastrous. This is where Terraform comes 
in, with the amazing idea of backends, which we will explore in the upcoming sections.

The exam objectives that will be covered in this chapter are as follows:

• Describe a default local backend

• Differentiate remote state backend options

• Describe a backend block and cloud integration in configuration

The high-level topics that will be covered in this chapter are as follows:

• Backend configuration

• Supported backends

• Resource addressing and dependencies

• Expressions and constraints



Terraform Backends and Resource Management132

You can now proceed with the chapter, delving into backends and more.

What Are Backends?
Backends basically determine where a state file will be stored for a given configuration. Instead of 
locally, there are a couple of ways to use backend features:

• Integration with HCP Terraform

• Configuring the backend {} block to store the state file in a remote location

The Terraform paid offerings will be discussed in detail as part of Chapter 9, Understanding HCP 
Terraform’s Capabilities. In this chapter, you will learn about remote backend configurations with 
supported backends and ways to configure them. The list of backends supported by Terraform will 
vary between different versions. Refer to the official documentation for the latest information. In the 
subsequent sections, you will cover the list of backends supported. The list is based on Terraform 
version 1.5.x at the time of writing.

Backend Configuration
As you have just seen, backend configuration can be done either using HCP Terraform or remote 
backend configuration, based on the type of backend we intend to use.

The backend configuration in both cases requires us to add the backend {} block to the configuration 
with the necessary parameters, which will be discussed in detail. Some of the backends will be used 
only to refer to the state file, and some might have advanced capabilities, such as state locking, that 
will help preserve the state file content when there is a possibility of simultaneous operations against 
the same state file.

If there is no explicit backend configuration, the default “local” backend will be used. The “local” 
backend does not need any parameters, and it simply stores the state file in the current working directory.

As per the Terraform 1.5.x documentation, the list of supported built-in backends is as follows:

• local

• remote

• s3

• http

• Kubernetes

• azurerm

• consul



Backend Configuration 133

• cos

• gcs

• oss

• pg

There were a few backends, such as artifactory, etcd, etcdv3, and swift, that were 
previously supported in Terraform versions prior to 1.3. So, it is always suggested to refer to the 
updated documentation for the list of backends that support the version you will use.

Configuring the backend {} Block

The backend {} block to configure the backend must be added as a nested block under the 
terraform {} block. A sample backend {}  block looks like this:

terraform {
  backend "s3" {
    bucket = "tf-state-bucket-qu34y"
    key    = "dev/accounting/key"
    region = "us-east-1"
  }
}

In this example block, the "s3" label indicates the backend you are trying to use, and the parameter(s) 
inside the block is specific to this particular backend. This "s3" backend is useful when you want to 
store the state file in the bucket storage provided by AWS Simple Storage Service (S3).

When using the remote backend configuration, Terraform stores the backend configuration settings 
inside .terraform/terraform.tfstate for the current working directory. This is also 
applicable when the plan is created via the terraform plan command, and it will ensure that 
the same backend settings will be used when the plan is actually applied.

Based on the type of remote backend, there could be situations where credentials need to be passed. 
This can be done in multiple ways:

• Directly specifying the credentials inside the backend {} block

• Using the -backend-config option in the terraform init command

• Using environment variables

• Out of these options, the use of environment variables is the preferred one because the credentials 
will not be stored in the state file, whereas using the two other options will result in storing the 
actual credentials in the state file, and that is risky.



Terraform Backends and Resource Management134

• The backend configuration can also be changed at any time. After the changes, Terraform will 
automatically detect the changes, and you may be required to reinitialize based on the type of 
changes. A change could be the use of a completely new remote backend or switching back to 
the local backend from a remote one. When changing backends, Terraform also provides the 
option to migrate the existing state file to the new backend. However, it is always recommended 
to manually back up the current state file to a safe location before performing the migration.

There are a few limitations with backend {} blocks:

• Any terraform configuration can contain only one backend {} block

• Usually, the cloud {} block is used to configure the HCP Terraform, and if that is the case, 
the backend {} block cannot be used at the same time

• Input variables, locals, or data source attributes cannot be referred to in the backend {} 
block

Partial Configuration

In the previous section, the path parameter in the sample backend {} block is specified as dev/
accounting/key, and this is where the remote state file will be stored. Assume that the value is 
not known at the time of writing the configuration and you want to keep that dynamic.

This means that it is possible to use the same configuration and the same backend, but there are 
parameters that can change based on the context. In such situations, Terraform allows us to write 
only the known parameters in the backend {} block and specify the dynamic parameters at the 
time of initialization. This capability is what you can call partial configuration.

With partial configuration, the following are the ways to specify the missing arguments:

• File: A file can be specified for the -backend-config option that will contain the arguments 
at the time of executing the terraform init command

• Command key/value pairs: The arguments can also be specified in the -backend-
config=KEY=VALUE format to specify the arguments as part of the init command

• Interactively: If the previous options are not used, running the terraform init command 
only will prompt the user to enter the missing arguments in an interactive manner

It is also possible that there are no known arguments at the time of writing the configuration, and if 
so, an empty backend {} block can be specified:

terraform {
  backend "s3" {}
}



Supported Backends 135

Note
If you are planning to use the configuration file option, the suggested naming convention is 
*.backendname.tfbackend as per the Terraform official documentation. Other names 
will not harm anything either.

Valid examples could be config.remote.tfbackend or config.http.tfbackend.

Supported Backends
In this section, you will read about the list of supported backends and their actual usage. In most 
situations, you will stick to the type of backend that is closely associated with your system or application 
architecture and where it is currently deployed.

A few backends, such as “s3” and “azurerm”, support a wide range of possible configurations that 
are specific to a cloud provider, but we will not cover every possibility and will stick to the scope of 
this book.

local

The “local” backend is the default option to store a state file when the remote backend is not 
configured. With this backend, the state file is stored in the local filesystem and the operations are 
performed locally.

A sample configuration for the local backend is given here:

terraform {
  backend "local" {
    path = "/path/to/terraform.tfstate"
  }
}

The “local” backend configuration accepts two parameters:

• path: The path to the location of the terraform.tfstate file. This is optional.

• workspace_dir: The path to the non-default workspaces. This is an optional parameter as well.

• Most commands, such as terraform plan and terraform apply, that work with the 
Terraform state file stored in the local backend accept the following command-line options to 
change the default behavior. However, they are not necessarily used in all scenarios:

• -state=<FILENAME>: Overrides the default state filename when the command intends 
to read the state file

• -state-out=<FILENAME>: Overrides the state filename with FILENAME when the 
command creates a new state file snapshot



Terraform Backends and Resource Management136

• -backup=<FILENAME>: Overrides the default backup filename that the local backend will 
use to back up the state file

remote

The “remote” backend is special when compared to all the other available backends because it can 
support the default function, such as storing the state file, and also support remote operations, such 
as plan and apply with HCP Terraform.

HCP Terraform integration involves steps such as setting up workspaces, performing terraform 
login to log in to HCP Terraform, executing the terraform plan and terraform apply 
commands, and pointing to a remote workspace in HCP Terraform. You will look at the HCP Terraform 
configuration in a later chapter, but you should be aware of the remote backend capabilities in 
this section.

Another important consideration is that the HCP Terraform configuration can also be done using a 
cloud {} nested block inside the terraform {} block, and it’s recommended to use it with the 
latest versions of Terraform because of its additional features.

This is a sample remote backend configuration:

terraform {
  backend "remote" {
    hostname = "app.terraform.io"
    organization = "mytestorg"
    workspaces {
      name = "payroll-dev"
    }
  }
}

Here, the label is set as remote to refer to the remote backend, and with HCP Terraform, the hostname 
will always be app.terraform.io, and the organization value will be set with the organization 
name defined in HCP Terraform.

This will refer to the payroll-dev remote workspace for the current configuration, and operations 
will affect the state file stored in this workspace.

You can now take a look at the configuration parameters in detail:

• hostname: The hostname for the remote backend to connect. This will default to app.
terraform.io and is optional.

• organization: The name of the organization that contains the workspaces.



Supported Backends 137

• token: The authentication token to connect to the host. This is optional. As per the Terraform 
documentation, using the token is not recommended, and instead, the terraform login 
command should be used before applying the configuration.

• workspaces: This block will have either name or prefix, which will help map the 
workspace to be used:

 � name: The name parameter can be used if we are going to work with a single HCP Terraform 
workspace, and a full workspace name can be specified.

 � prefix: The prefix parameter will help work with multiple workspaces, all with the same 
prefix, and you can switch the intended workspace with the terraform workspace 
select command.

• For example, if you have workspaces such as billing-dev, billing-preprod, and 
billing-prod for the same configuration, you can use the prefix value of billing- and 
the workspaces can be set dynamically.

• If you want to configure the remote backend with the configuration file rather than coding it 
directly, you can use the -backend-config option with terraform init. A sample 
config file is given here:

terraform {
  backend "remote" {}
}

Here is the config file content:
workspaces { name = "billing-test" }
hostname     = "app.terraform.io"
organization = "mytestorg"

s3

The “s3”backend is used to store the Terraform state file in the bucket created using Amazon Simple 
Storage Service (S3). This backend supports a state-locking feature with Amazon DynamoDB. It is 
optional. The S3 bucket and the DynamoDB table should exist already to use this backend, and one 
table can be used to lock multiple remote state files.

The recommendation with this backend is that the S3 versioning option should be enabled before 
using it with Terraform so that you can track the changes later, and you will retain the snapshots every 
time the state file is updated.



Terraform Backends and Resource Management138

Here’s a sample configuration:

terraform {
  backend "s3" {
    bucket = "my-tf-bucket-789ew"
    key    = "dev/acc/infra"
    region = "us-east-1"
  }
}

The credentials that have access to the bucket can be passed with the environment variable option, 
so it is not exposed in the configuration. There are AWS-specific IAM permissions to provide access 
to the S3 bucket and DynamoDB table, and those need to be mapped to the credentials before using 
them with Terraform.

The most common configuration parameters supported by the “s3” backend are given here:

• bucket: The name of the S3 bucket.

• key: The path in the bucket where the state file will be stored.

• dynamodb_table: The name of the DynamoDB table to be used.

• region: The AWS Region of the S3 bucket and the DynamoDB table that is applicable, which 
is required.

• access_key and secret_key: The AWS credentials to be used to access the bucket and 
the table. If these parameters are not set, the shared credentials file will be used.

• profile: The name of the profile to be used from the AWS shared credentials file.

• shared_credentials_file: The path location of the shared credentials file.

• endpoint: The custom endpoint of the S3 API.

• dynamodb_endpoint: The custom endpoint of the DynamoDB API.

• iam_endpoint: The custom endpoint of the AWS IAM API.

• sts_endpoint: The custom endpoint to retrieve the STS token from AWS Security Token 
Service (STS).

• token: The session token to be passed if the temporary credentials option is used.

Some of the other supported parameters are as follows:

• acl

• encrypt

• force_path_style



Supported Backends 139

• kms_key_id

• sse_customer_key

• workspace_key_prefix

This backend also supports the Assume Role option, where the AWS IAM role can be used in 
place of long-lived credentials with access. The environment variables option also can be used for 
most parameters discussed in this section, and the official documentation can be referred to for a 
complete list.

http

The “http” backend is used to store a state file via a REST client, and this supports state locking 
and unlocking.

When using the HTTP endpoint for this type of backend, there are a few requirements:

• The state file will be fetched with the GET method.

• The state file will be updated with the POST method.

• The state file will be deleted with the DELETE method.

• The valid HTTP status codes acceptable are as follows:

 � 423 – locked or 409 – a conflict when the state file is locked

 � 200 for success

A sample “http” backend configuration would look like this:

terraform {
  backend "http" {
    address = "http://myhttp-server.com/state"
    lock_address = "http://myhttp-server.com/lock"
    unlock_address = "http://myhttp-server.com/unlock"
  }
}

The following are the most common configuration parameters supported by the “http” backend:

• address: The address of the HTTP backend endpoint. This is a mandatory parameter.

• update_method: The HTTP method to be used to update the state file. The default value 
is POST.

• lock_address and unlock_address: The address for the state locking and 
unlocking, respectively.



Terraform Backends and Resource Management140

• lock_method and unlock_method: The HTTP methods to use for locking and unlocking, 
respectively. The default values are LOCK and UNLOCK.

• username and password: The parameters to be used for HTTP basic authentication.

• Some other parameters supported are listed as follows – they will be discussed only in brief 
because they are outside the scope of this book:

• skip_cert_verification (flag to indicate whether the Transport Layer Security (TLS) 
verification should be skipped or not and the default value is false)

• retry_max (the maximum count of retries with a default value of two)

• retry_wait_min and retry_wait_max (the wait time between a retry – the default 
values are 1 and 30 seconds, respectively)

• The parameters for mutual TLS authentication:

 � client_certificate_pem

 � client_private_key_pem

 � client_ca_certificate_pem

Environment Variable Support

• All the preceding parameters can also be set with environment variables. The convention is 
TF_HTTP_ appended before the parameter. The parameter name should be uppercase.

• For example, the equivalent environment variable for the lock_method parameter is TF_
HTTP_LOCK_METHOD.

pg

The word “pg” is an abbreviated version of Postgres, and this backend supports storing the state file 
in a Postgres relational table. The requirement to use it with Terraform is that the database version 
must be 10 or above.

This backend type also supports state locking via Postgres’s native way, where the state file locks are 
automatically released when a connection is not active or aborted. The force-unlock command 
with LOCK_ID is not supported.

Here is a sample configuration:

terraform {
  backend "pg" {
    conn_str = "postgres://user:pass@my-tf-db.com/tf_backend"
  }
}



Supported Backends 141

Here, the credentials along with the database address are provided in the connection string format. 
Another alternative could be setting the credentials in the environment variables, such as PGUSER 
and PGPASSWORD, and just using the database address as a value for CONN_STR.

The database must exist already before using this backend in the configuration. If using partial 
configuration or an empty pg {} block, the Postgres-supported environment variables can be used 
to pass the required values.

With this backend, Terraform will try to create a table called states, and each entry in this table 
will be mapped to the unique workspace we use. If no workspaces are used, the entry will be made 
with the default value.

The following are the parameters supported by this backend:

• conn_str: The connection string to connect with the postgres://<URL> format.

• schema_name: The name of the schema that will be managed by Terraform to track the state 
information. If not specified, the default value is terraform_remote_state. The ones 
given as follows are self-explanatory and can be used when you have a database managed by 
admin already:

 � skip_schema_creation

 � skip_table_creation

 � skip_index_creation

Environment Variable Support

This backend also supports using environment variables, and the convention is to append PG_ before 
the parameter. The parameter name should be uppercase.

For example, the equivalent environment variable for the connection string conn_str parameter 
is PG_CONN_STR.

Kubernetes

Kubernetes is a container orchestration tool that manages containers in the form of clusters, with 
features such as autoscaling, service discovery, load balancing, and automatic rollouts. This tool has 
become very popular recently because of its various capabilities and is widely used across different 
industries in various domains.

The “kubernetes” backend is also supported by Terraform and can manage the state with Kubernetes 
Secrets. This also supports state locking, but the restriction is that the Secret cannot be larger than 
1 MB in size.



Terraform Backends and Resource Management142

State locking is supported by provisioning a Lease resource in the given namespace.

This backend supports more than one way of doing configuration:

• Using config_paths or config_path

• Using in_cluster_config

If the configuration has both in_cluster_config or config_paths and  config_path, 
config_path will take precedence.

The environment variables are different from the configuration parameters. Refer to the official 
Terraform documentation if you are opting to use environment variables.

A sample configuration block for the Kubernetes backend is given here:

terraform {
  backend "kubernetes" {
    secret_suffix    = "state"
    config_path      = "~/.kube/config"
  }
}

Here, the config_path option is used, and it points to the location of the kubeconfig file. 
secret_suffix is used when creating secrets in Kubernetes, with the naming convention  
tfstate-{workspace-name}-secret_suffix.

The following parameters are supported by this backend, and in most cases, a service account with 
config_path will do the job:

• secret_suffix: The suffix to be used while creating secrets.

• labels: The set of labels to be applied for a secret and the lease resource.

• namespace: The namespace to store the secret and the lease.

• in_cluster_config: If the authentication has to be done from one of the Pods already 
running in the Kubernetes cluster, this can be used.

• config_path: The path to the location of the kubeconfig file.

• config_paths: The list of paths to the kubeconfig files.

• host: The name of the Kubernetes master host. The default is https://localhost.

• username and password: The username and password to be used for HTTP basic authentication.

• insecure: A flag to indicate whether the connection should be tried without validating the 
TLS certificate.



Supported Backends 143

• client_certificate, client_key, and client_ca_certificate: Parameters 
to be used for TLS authentication.

• config_context, config_context_auth_info, and config_context_cluster: 
The parameters to be used while picking specific context within a kubeconfig file that has 
more than one cluster config.

• token: The authentication token to be used for the service account.

• exec: The configuration block to use an exec-based credential plugin that will provide user 
credentials for authentication. The subparameters valid inside the exec block are listed here:

 � api_version: The API version to decode the user credentials

 � command: The command to execute

 � args: The list of arguments to pass

 � env: The list of environment variables to set for plugin execution

Consul

Consul is another offering from HashiCorp that primarily helps enterprises secure their applications 
running in production with identity-based networking policies. For example, a multinational financial 
company can choose to control the infrastructure access based on an employee’s identity or role, the 
team, and the business unit or function, and that can be set up using Consul. This backend also enables 
other prominent features such as secure networking between applications, automated networking, 
and service discovery.

The “consul” backend manages the state information with the key-value store supported by Consul 
(commonly known as the Consul KV store).

Even here, the environment variables are different from the backend block configuration parameters. 
Refer to the official documentation for this backend.

Here is a sample configuration block for the “consul” backend:

terraform {
  backend "consul" {
    address = "myconsul.server.com"
    scheme  = "https"
    path    = "test/secret"
  }
}



Terraform Backends and Resource Management144

The configuration parameters supported are as follows:

• address: The DNS name of the Consul server to use

• scheme: The type of HTTP protocol (HTTP/HTTPS) to use to connect to the server

• path: The path to the key-value store

• access_token: The access token

• http_auth: Credentials in the format of user or user:password to be used for authentication

• gzip: A flag to indicate whether the state file should be compressed using gzip or not

• datacenter: The data center to use for the connection

• lock: The flag to indicate the state locking – the default value is true

• ca_file, cert_file, and key_file: The parameters to use for the TLS authentication 
when applicable

azurerm

With the “azurerm” backend, you can manage the state file in Blob Storage provided by Azure, and 
state locking is supported natively.

This backend has multiple options to configure the backend block, but we will look at the most 
commonly used one in the following sample configuration:

terraform {
  backend "azurerm" {
    resource_group_name  = "Acc-ResourceGrp"
    storage_account_name = "AzureAcctTest"
    container_name       = "tfstate"
    key                  = "prod.tfstate"
  }
}

The following configuration options are supported:

• storage_account_name: The name of the storage account.

• container_name: The name of the container within the storage account.

• key: The name of the Terraform state file inside the storage container. This is a mandatory parameter.

• environment: The possible values are "public", "china", "german", "stack", and 
"usgovernment". The default value is "public".

• endpoint: The custom endpoint for Azure Resource Manager.



Supported Backends 145

• metadata_host: The hostname of the Azure Instance Metadata Service.

• snapshot: A flag to decide whether the state file snapshot has to be created before using it. 
The default value is false.

• Refer to the official Terraform documentation for more configuration options with this backend.

cos

The “cos” backend is used to store the state file in the Cloud Object Storage service provided by 
Tencent Cloud. The service is very similar to the S3 service provided by AWS.

This supports state locking. The bucket is expected to already exist to store the state file.

A sample configuration looks like the following:

terraform {
  backend "cos" {
    region = "ap-hongkong"
    bucket = "tf-bucket-yyitr"
    prefix = "terraform/state"
  }
}

The following configuration options are supported:

• region: The name of the region where the bucket is created.

• bucket: The bucket name to store the state file.

• prefix: The directory to store the state file inside the bucket.

• key: The file key or name for the state file. If not provided, it defaults to “terraform.
tfstate”.

• secret_id & secret_key: The credentials to access the bucket.

• security_token: The temporary credentials in the form of a token for bucket access.

• encrypt: This indicates whether the server-side encryption should be enabled or not.

• acl: The access control lists (ACLs) to be applied for the state file.

• accelerate: This indicates whether to enable global acceleration.

• This backend also supports authentication with the “Assume Role” option, where the role 
can be used for bucket access instead of supplying credentials, and the following options can 
be used to do the same inside the assume_role {} block:

• role_arn



Terraform Backends and Resource Management146

• session_name

• session_duration

• policy

Here’s an example configuration:

terraform {
  backend "cos" {
    region = "ap-hongkong"
    bucket = "tf-state-bucket-tpluy"
    prefix = "terraform/state"
    assume_role {
      role_arn = "qcs::cam::uin/xxx:roleName/yyy"
      session_name = "my-session-name"
      session_duration = 3600
    }
  }
}

Environment Variable Support

This backend also supports using the environment variables, and the convention is "TENCENTCLOUD_" 
appended before the parameter. The parameter name should be in uppercase.

For example, the equivalent environment variable for the "region"  region parameter 
is TENCENTCLOUD_REGION.

gcs

If you use Google Cloud Platform (GCP) for your application hosting and deployment and plan to 
use Terraform, the “gcs” backend is the right option, as it provides backend support for state file 
storage in buckets created using the Google Cloud Storage (GCS) service.

A sample configuration is given here for reference:

terraform {
  backend "gcs" {
    bucket  = "terraform-state-bucket-ytr51"
    prefix  = "terraform/state"
  }
}

The Google account credentials that Terraform will use have to be set up properly with bucket access 
to manage the state files stored inside.



Supported Backends 147

Take a look at the configuration parameters supported by this backend:

• bucket: The name of the GCS bucket to store the state file. This is a mandatory parameter.

• credentials: The path to the Google account credentials in the JSON format. If this parameter 
is not set, the application default credentials will be fetched from the default location if available.

• prefix: The prefix inside the bucket to store the state file.

• access_token: The OAuth token to pass for authorization. This is an alternative to the 
credentials option.

• impersonate_service_account: The service account to be used to access the GCS bucket.

• impersonate_service_account_delegates: Used in conjunction with the previous 
parameter if a delegation chain is used. This is specific to GCP.

• encryption_key & kms_encryption_key: The parameters to pass the customer-
supplied encryption keys and customer-managed encryption keys to encrypt the bucket contents.

• The environment variables are different from the configuration parameters; refer to the official 
Terraform documentation if you are opting to use environment variables.

oss

The “oss” backend is used to store the state file in the Object Storage Service provided by Alibaba 
Cloud. It supports state locking with the OTS TableStore feature.

A sample configuration looks like the one here:

terraform {
  backend "oss" {
    bucket = "bucket-for-tf-state"
    prefix   = "tf/prod/statefile"
    region = "cn-beijing"
    tablestore_endpoint = "https://terraform-remote.cn-hangzhou.ots.
aliyuncs.com"
    tablestore_table = "statelock"
  }
}

The following configuration options are supported:

• region: The name of the region where the bucket is created.

• bucket: The bucket name to store the state file.

• prefix: The directory to store the state file inside the bucket.



Terraform Backends and Resource Management148

• key: The file key or name of the state file.

• access_key and secret_key: The credentials to access the bucket.

• security_token: The temporary credentials in the form of a token for bucket access.

• endpoint: The custom endpoint to access the OSS API.

• encrypt: Indicates whether server-side encryption should be enabled or not.

• acl: The ACLs to be applied to the state file.

• shared_credentials_file: The path location of the shared credentials file.

• profile: The profile name in the shared credentials file to be used.

• ecs_role_name: The RAM role name to be used for API operations if applicable.

• tablestore_endpoint and tablestore_table: The parameters to set if the state 
locking feature is used.

This backend also supports authentication with the Assume Role option where the role can be 
used for bucket access instead of supplying credentials, and the following options can be used to do 
the same inside the assume_role {} block:

• assume_role_role_arn

• assume_role_policy

• assume_role_session_name

• assume_role_session_expiration

Resource Addressing and Dependencies
Now that you have seen the backends supported by Terraform, you can delve deeper into resource 
addressing and how to set and handle resource dependencies while you manage them with the state file.

Resource Addressing

When you write Terraform configuration scripts, they primarily consist of multiple resources that will 
support the overall infrastructure you try to deploy. So, it becomes necessary to refer to a particular 
resource or a set of resources, manipulating or recreating them if there are any issues.

This is where resource addressing becomes vital, and any resource address will consist of two parts:

• The module path

• Resource specifications



Resource Addressing and Dependencies 149

Resource specifications may not always be needed. If you would like to refer to all the resources 
created by a particular module, specifying the module path will suffice. You can read about each one 
of them in detail now.

Module Path

If there are multiple modules within the configuration, the module path will refer to the particular 
module, and if there are multiple module calls, it will refer to the particular instance.

The syntax is as follows:

module.module_name[module_index]

Here, the module keyword is static, and it is then followed by the module name. module_index 
is optional.

Resource Specifications

Similar to the module path, resource specifications also have three parts – resource_type, 
resource_name, and instance_index.

The syntax is as follows:

resource_type.resource_name[instance_index]

The resource type is the type of resource being provisioned, and resource_name is the user-defined 
value for the resource block. If there are multiple instances of the resource, instance_index will 
be used to refer to the particular instance.

For example, the Terraform configuration consists of a module with the name compute. It provisions 
the AWS EC2 instance with the resource name testinstance and the count parameter is set to 4.

Then, the first and third individual instances can be referred to as follows:

module.compute.aws_instance.testinstance[1]
module.compute.aws_instance.testinstance[3]

Addressing Resources with the for_each {} Block

There are possible scenarios where multiple instances of the same resource type are provisioned with 
the for_each block. If so, the resource address will slightly vary, with the index as the alphanumeric 
key. The following example will help you to better understand this.



Terraform Backends and Resource Management150

Consider the following resource block:

resource "aws_instance" "web" {
  for_each = {
    "dev": "testinstance",
    "prod":  "prodinstance"
  }
}

In this case, the resource address will be based on the key inside the for_each block:

aws_instance.web["dev"]
aws_instance.web["prod"]

Resource Dependencies

With Terraform, the default behavior when applying the configuration is that the resources will be 
created in parallel. If some of the resource attributes are referenced in another resource block, 
Terraform will infer the dependency and ensure that the latter resource is created only after the 
prerequisite resource is provisioned successfully. This is known as implicit dependency.

This will work most of the time, but sometimes, Terraform will not be able to infer the dependencies 
on its own, and you need to explicitly specify the dependency with the depends_on argument.

Implicit Dependency

Take a look at how the implicit dependency approach works with this sample configuration:

provider "aws" {
  region = "us-east-1"
}
# Uncomment the below resource block to create default VPC with the 
below command.
# terraform apply -target="aws_default_vpc.default"
#
# resource "aws_default_vpc" "default" {
#  tags = {
#    Name = "default-vpc"
#  }
#}

resource "aws_instance" "testinstance" {
  ami           = "ami-0cb06ac50a7eea4f2"
  instance_type = "t3.micro"
}



Resource Addressing and Dependencies 151

resource "aws_eip" "ip" {
  instance = aws_instance.testinstance.id
}

If you look at the configuration carefully, you can see that the instance attribute inside the aws_eip 
resource type block refers to the instance ID of the EC2 instance created in the same configuration.

In this case, the implicit dependency comes into effect, and Terraform will automatically wait for the 
EC2 instance to be created first and then assign the elastic IP address, as shown in Figure 6.1.

Figure 6.1 – The terraform apply output – the implicit dependency

Explicit Dependency

As highlighted at the beginning of this section, an explicit dependency can be set with the depends_on 
argument inside the resource block.

To understand this, assume that you have an EC2 instance and your application is hosted inside the 
instance that internally uses an S3 bucket as part of the functionality. This dependency cannot be 
handled by Terraform, and hence, you can set the dependency explicitly that the S3 bucket has to be 
created first and then provision the EC2 instance to deploy the application.

In the following example, you can see that the depends_on argument is set for the EC2 instance 
resource block:

provider "aws" {
  region = "us-east-1"
}
#creates a S3 bucket with random name
resource "aws_s3_bucket" "appbucket" {}
resource "aws_instance" "testinstance" {



Terraform Backends and Resource Management152

  ami           = "ami-0cb06ac50a7eea4f2"
  instance_type = "t3.micro"
  depends_on    = [aws_s3_bucket.appbucket]
}

When you apply the preceding configuration, you can see that the EC2 instance creation will wait for 
the S3 bucket because of the explicit dependency you added, as shown in Figure 6.2.

Figure 6.2 – The terraform apply output – the explicit dependency

Expressions and Constraints
In Terraform, expressions are computed values within the configuration. Terraform has rich support 
for different types of expressions, such as a reference to a data source, arithmetic evaluation, complex 
types, and built-in functions.

However, there are a few restrictions on the usage of an expression in specific places. For example, it 
is not allowed within the backend {} block. The official documentation of the Terraform language 
clearly indicates the scenarios where it can be used and cases where it is not applicable.

Data Types

The result of any expression is a value. Suppose that there is an expression such as 2 + 3; it will 
result in 5, which is the value.

In Terraform, there are different types of values supported, as follows:

• string: Any sequence of characters such as Hi, BobWilliams , or dev-team can be 
represented with this type.

• number: This can be used to represent numerical values such as 6 and 10.2 (both decimal 
numbers and fractional values).

• bool: A Boolean value – the possible values are true and false.

• list or tuple: A sequence of values enclosed within square brackets. Each item can be 
referenced by its index – for example, ["test", "dev", "prod"].

• set: A collection of unique values that do not have an index.



Expressions and Constraints 153

• map or object: A group of values with named labels – for example, {"environment" = 
"dev", "department" = "accounting"}.

• null: This type represents the absence of a value, and if any attribute is set to null, Terraform 
will ignore it.

Data types such as string, number, and bool are termed primitive types, whereas list, set, 
and map are complex types.

Operators

An operator is another type of expression that works on one or more expressions to produce a result.

In Terraform, the following are the different types of operators supported:

• Arithmetic operators:

 � +: Addition

 � -: Subtraction

 � *: Multiplication

 � /: Division

 � %: The remainder operator

 � -: The negation operator when used with a single expression

• Logical operators:

 � ||: The OR operator

 � && The AND operator

 � !: The NOT operator

• Equality operators:

 � ==: Returns true if the expressions are both equal and false if not equal

 � !=: Opposite of the == operator function

• Comparison operators:

 � <: Less than

 � <=: Less than or equal to

 � >: Greater than

 � >=: Greater than or equal to



Terraform Backends and Resource Management154

Conditional Expressions

A conditional expression uses the Boolean result of an expression to choose between two values. A 
simple example would be wanting to return a pass or fail value based on the Boolean result of 
an evaluating mark.

The syntax is as follows:

condition ? value_if_true : value_if_false

If the condition is true, value_if_true will be returned, and if false, then value_if_false 
will be returned.

A requirement with conditional expressions is that both the return values should be of the same type, 
so Terraform will know what type of value will be returned without knowing the condition.

for Expressions

for expressions create the complex type value by transforming another complex type. The 
syntax is given here:

for <element> in <complex_type> : <expression>

Here, element refers to the individual element in the input complex type, and the expression on 
the right-hand side will create the new complex type. The resulting complex type depends on the 
enclosing brackets that contain the for expression.

If the for expression is enclosed in [ ] (square brackets), the new complex type will be a list. If it 
is ( ), it will create a set, and so on.

Here is an example:

vowel_list = ["a", "e", "i", "o", "u"]
{for item in vowel_list : item => index(vowel_list, item)}

The preceding example will create a map, with the key as the item in vowel_list and its position 
as the value.



Expressions and Constraints 155

splat Expressions

A splat expression is very similar to the for expression, but the only difference is the representation, 
and this is a more concise way to refer to all the elements in the input type.

Consider this example variable object that has two elements, and each has the "id" attribute:

obj_list=[{"id" = 1, "name" = "a"}, {"id" = 2, "name" = "b"}]

To retrieve only the id attribute from both elements, the following for expression can be used:

[for obj in  object_list : obj.id]

The splat expression can also be used in this case, and the syntax would be as follows:

var.obj_list[*].id

Note
The splat expression is applicable only to lists, sets, and tuples.

Type Constraints

We have already discussed the different data types to use in Terraform, and we will now look at the 
constraints applicable to them.

Automatic type conversion is applicable in Terraform, meaning a number or Boolean value can be 
automatically converted to string if needed.

list and tuple are similar, but tuple can contain different types of elements and list has 
elements of the same type:

• ["a", "b", "c"]: list

• ["a", 1, true]: luple

The any Type

There is also a special type called any that a developer can use as a placeholder if the variable type has 
not been decided upon yet. This type skips setting the right type and is not a recommended solution.

Here is an example:

variable "test_variable" {
 type = any
}



Terraform Backends and Resource Management156

“optional”

When using complex types, you can set some attributes as “optional”, and this will help when the 
user does not provide a value for the attribute. If the “optional” setting is not used, Terraform 
will throw an error.

If default_value is not set when using the optional modifier, Terraform will use null.

Here is the syntax:

optional(type, default_value)

Here is an example:

variable "optional_var_object" {
  type = object({
    name = string                # a required attribute
    age = number                 # a required attribute
    birthplace = optional(string)# an optional attribute
  })
}

Version Constraints

Version constraints are helpful when you want to use specific versions of a module or a provider within 
your configuration, preventing the automatic use of newer versions in the future.

This can also be used in the terraform {} block to restrict the Terraform version that should be 
used to apply the configuration.

Here is the syntax:

version = "<condition>"

The condition has different variations with the operators used, and some of the examples are listed here:

• Only the exact version is allowed, and no other version can be accepted:

version = "5.38.0"

• Not the specified version, but other versions can be used:

version = "!= 3.14.0"



Summary 157

• The version can be in the range of specified version(s):

version = "> 2.1.0"
version = "< 5.1.0"
version = ">= 1.2.0, < 2.0.0"

• The last portion of the version can only increase:

version = "~> 2.1.0"

In the preceding example, Terraform will accept versions such as 2.1.1 and 2.1.2, but it will not 
use versions such as 2.0.0 and 2.2.0.

If Terraform does not have the acceptable versions, it will try to download the newest version as per 
the specified constraints. Also, if the acceptable version cannot be downloaded, Terraform will not 
allow for plan and apply operations.

Summary
In this chapter, you learned about the backend configuration syntax, and then you followed this 
up by reading about valid backends supported by Terraform and how to configure them with the 
limitations. Resource addressing and the concept of implicit and explicit dependency were also 
discussed. Finally, different types of expressions such as splat expressions and for expressions 
were looked at, with examples.

A backend configuration for any production-grade configuration script will help teams store the state 
file securely and interact with it in multiple executions, without any conflict. This is where Terraform 
stands out from other tools.



Terraform Backends and Resource Management158

Exam Readiness Drill – Chapter Review Questions
Apart from a solid understanding of key concepts, being able to think quickly under time pressure is 
a skill that will help you ace your certification exam. That is why working on these skills early on in 
your learning journey is key.

Chapter review questions are designed to improve your test-taking skills progressively with each 
chapter you learn and review your understanding of key concepts in the chapter at the same time. 
You’ll find these at the end of each chapter.

How to Access these Resources
To learn how to access these resources, head over to the chapter titled Chapter 11, Accessing 
the Online Practice Resources.

To open the Chapter Review Questions for this chapter, perform the following steps:

1. Click the link – https://packt.link/HCorp003Ch6.

Alternatively, you can scan the following QR code (Figure 6.3):

Figure 6.3 – QR code that opens Chapter Review Questions for logged-in users

https://packt.link/HCorp003Ch6


Exam Readiness Drill – Chapter Review Questions 159

2. Once you log in, you’ll see a page similar to the one shown in Figure 6.4:

Figure 6.4 – Chapter Review Questions for Chapter 6

3. Once ready, start the following practice drills, re-attempting the quiz multiple times.

Exam Readiness Drill

For the first three attempts, don’t worry about the time limit.

AT TEMPT 1

The first time, aim for at least 40%. Look at the answers you got wrong and read the relevant sections 
in the chapter again to fix your learning gaps.

AT TEMPT 2

The second time, aim for at least 60%. Look at the answers you got wrong and read the relevant sections 
in the chapter again to fix any remaining learning gaps.



Terraform Backends and Resource Management160

AT TEMPT 3

The third time, aim for at least 75%. Once you score 75% or more, you start working on your timing.

Tip
You may take more than three attempts to reach 75%. That’s okay. Just review the relevant 
sections in the chapter till you get there.

Working On Timing
Target: Your aim is to keep the score the same while trying to answer these questions as quickly as 
possible. Here’s an example of how your next attempts should look like:

Attempt Score Time Taken

Attempt 5 77% 21 mins 30 seconds

Attempt 6 78% 18 mins 34 seconds

Attempt 7 76% 14 mins 44 seconds

Table 6.1 – Sample timing practice drills on the online platform

Note
The time limits shown in the above table are just examples. Set your own time limits with each 
attempt based on the time limit of the quiz on the website.

With each new attempt, your score should stay above 75% while your “time taken” to complete should 
“decrease”. Repeat as many attempts as you want till you feel confident dealing with the time pressure.



7
Debugging and 

Troubleshooting Terraform

When Terraform fails or does not work as expected, how do you figure out what is wrong? Is it a 
configuration issue or is it the wrong version? Is it the authentication that is creating an issue or is 
the problem something else entirely?

This chapter talks about the issues you generally face while managing Terraform and how to either 
avoid, debug, or fix them.

The focus here will be on the general errors you might receive across key areas of Terraform and what 
steps need to be taken to resolve them. The following types of issues will be covered in the chapter:

• Configuration errors

• Variable-related issues

• State-related issues

• Core and provider errors

• Module-related issues

• Bug reporting

• Gotchas

Configuration Errors
Terraform configuration is defined in the Hashicorp Configuration Language (HCL), which is 
interpreted by Terraform Core.

When Terraform core processes the configuration files and finds an error, it will throw an error with 
additional information about the error along with the line number where it found the problem.  These 
could be interpolation errors or malformed resource definitions.



Debugging and Troubleshooting Terraform162

The following example code shows a configuration error where a variable has not been defined but 
is being referred to in the code:

provider "aws" {
  region = "ap-south-1"
}

resource "aws_instance" "test" {
  ami               = "ami-026255a2746f88074"
  availability_zone = "ap-south-1a"
  instance_type     = var.instance_type

  tags = {
    Name = "Test-EC2"
  }
}

~/terraform-troubleshoot:terraform plan
Error: Reference to undeclared input variable
on main.tf line 8, in resource "aws_instance" "test":
8:   instance_type     = var.instance_type
An input variable with the name "instance_type" has not been declared. 
This variable can be declared with a variable "instance_type" {} 
block.

In the preceding error message, you can clearly see the reference to the undeclared variable on line 8. 
At times, you will come across problems where there is no configuration issue but, still, the resource/
resource’s attribute that gets created is not the one you expected. The following section talks about 
one of the reasons for issues such as this.

override.tf File-Related Issues

The override.tf file is used very rarely in the production setup. It overrides specific portions of 
an existing configuration object that has been defined in the main configuration files.

The code defined in the following appserver.tf file is used to create an EC2 instance of the 
t3.small instance type. In this code, instance_type is an attribute that defines the type of 
EC2 instance to be created.

However, this attribute is overwritten by the code defined in the override.tf file and the instance 
type is changed to c5.large.



Configuration Errors 163

The appserver.tf file has the following code (truncated):

resource "aws_instance" "appserver" {
  instance_type = "t3.small"
}

The override.tf file has the following code:

resource "aws_instance" "appserver" {
  instance_type = "c5.large"
}

The final code executed by Terraform core will have the following code. Please note that this code is 
given for reference and you will not see this in any configuration file:

resource "aws_instance" "appserver" {
  instance_type = "c5.large"
}

As you can see, the instance type defined in the aws_instance resource block has changed from 
t3.small to c5.large. If you do not know about the presence of the override.tf file, you 
will not be able to understand why Terraform is creating the wrong instance type.

terraform validate

terraform validate can help solve the basic syntax issue in configuration files present in the 
current working directory. It checks whether the code in the configuration file is syntactically valid 
and the correctness of the attribute and values of the resource defined in the configuration file. Please 
note that it only refers to the configuration, does not access any remote services such as remote state or 
provider APIs, and requires an initialized working directory with any referenced plugins and modules 
installed. Terraform does not continue validating once it catches an error.

The following example shows the code used to launch an EC2 instance. However, it will throw an 
error when you run terraform validate since instance_types is not a valid attribute of 
the aws_instance resource:

provider "aws" {
  region = "ap-south-1"
}

resource "aws_instance" "test" {
  ami               = "ami-026255a2746f88074"
  availability_zone = "ap-south-1a"
  instance_types     = "t3.micro"



Debugging and Troubleshooting Terraform164

  tags = {
    Name = "Test-EC2",
  }
}
terraform-troubleshoot:terraform validate
Error: Unsupported argument
    on main.tf line 8, in resource "aws_instance" "test":
    8:   instance_types     = "t3.micro"
  An argument named "instance_types" is not expected here. Did you 
mean "instance_type"?

Variable-Related Issues
Variable-related errors are some of the most common errors you will find while working with Terraform. 
In the following sections, you will see the errors related to the variable type constraint, variable input 
validation, and variable precedence.

Type Constraint

• One of the issues you might come across while managing Terraform is incorrect input variable 
values that cause failures during terraform run.

• You can use the type argument in the variable block to restrict the type of the value accepted 
for the variable.

• An example is if the total number of instances to be launched by Terraform is controlled by 
the ec2-count variable, which is expecting a number, but the user inputs the string Two 
instead of the number 2. Terraform runs would fail in this case.

Input Validation

• At times, even though the value of the type matches the variable, it may not be in the format 
that is expected. For such use cases, you can use the validation option in the input variables 
as a proactive measure to prevent issues.

• This feature is supported in Terraform version 0.13 and above.

• You can specify custom validation rules for a particular variable by adding a validation 
block within the corresponding variable block. The following example checks whether the 
AMI ID has the correct syntax:

variable "image_id" {
  type        = string
  description = "The id of the machine image (AMI) to use for 
the server."



Variable-Related Issues 165

  validation {
    condition     = length(var.image_id) > 4 && substr(var.
image_id, 0, 4) == "ami-"
    error_message = "The image_id value must be a valid AMI id, 
starting with \"ami-\"."
  }
}

• The following conditions are checked by the validation condition in the variable block. 
All the conditions need to evaluate to TRUE to pass the validation:

• The length function is used to determine the length of a string/map/list. In this code, it is 
used to determine the length of the image_id variable and then the > comparison operator 
is used to check whether this length is greater than 4.

• The substr function is used to extract a substring from a given string. In this code, it will 
extract the first four characters of the image_id variable (i.e., image_id) by offset (from 
the zero index) and maximum (the total characters to be selected) length and use the equality 
operator, ==, to compare whether the value returned is equal to ami-: substr (var.
image_id, 0, 4) == ami-.

• Finally, when the user inputs the value for the image_id variable, both conditions explained 
in the previous two points will be checked and the validation will pass only if both conditions 
return TRUE. Otherwise, the user will get an error message: "The image_id value must 
be a valid AMI id, starting with ami-".

• Depending on your requirement, you can add the validation either for all your variables or the 
ones that are prone to wrong input from the users.

Variable Precedence

• At times, you will see that the variable has a different value than what you have defined. This is 
most prevalent during the authentication with cloud providers since there are multiple places 
from which the credentials can be taken.

• A variable’s value can be defined at multiple places such as the command line, environment 
variable, tfvars files, and so on. If the variable is given different values in different places, 
Terraform picks only one value of the variable, and this value is dependent on the variable 
precedence. Terraform loads variables in the following order, with later sources taking precedence 
over earlier ones:

 � Environment variables

 � The terraform.tfvars file, if present

 � The terraform.tfvars.json file, if present



Debugging and Troubleshooting Terraform166

 � Any *.auto.tfvars or *.auto.tfvars.json files, processed in lexical order of 
their filenames

 � Any -var and -var-file options on the command line, in the order they are provided 
(this includes variables set by a HCP Terraform workspace)

While managing Terraform, you might get authentication errors or permission errors in the cloud 
despite using the right credentials and permissions. This could be because of the presence of multiple 
credentials in different locations with different permissions. The credentials with higher precedence 
would be used by Terraform, but you may be expecting credentials with lower precedence to be used.

For example, if you have admin credentials in the environment variables but read-only credentials in 
the terraform.tfvars file, read-only will take precedence as per the variable precedence order.

State-Related Issues
As you already know, the Terraform state file (terraform.tfstate) is a JSON document that 
maps your Terraform configurations to the resources that it is managing. This file tracks the metadata, 
resource relationships, and the actual state of resources.

The following sections talk about some of the state-related issues.

Configuration Drift

• There are times when you might have to make changes outside of Terraform. This could be 
because of a lack of knowledge of how to make these changes from Terraform or you may not 
have permission to modify the Terraform code. This could also be due to time constraints.

• While dealing with production issues where you are running against time, it is not uncommon 
to make the changes directly in the console. If you are managing too many resources in a single 
directory, Terraform can take a long time, and hence, a manual change may be warranted. 
Though this may not be the ideal way, this happens quite often in the real world. You can 
reconcile this in a few ways:

 � If you can afford to roll back the manual changes and apply this change via Terraform at a 
later time, this is recommended.

 � If you have created new resources manually, you will have to add the relevant code in the 
configuration file and import that resource using terraform import.

 � If you have changed the name of the resource manually, you can use the moved block of 
Terraform to give this file a new name in the state file.



State-Related Issues 167

• If you have deleted some resources manually, you can do one of the following:

 � You can remove that resource from the state using terraform state rm resource 
for versions prior to Terraform 1.7 or use the removed block for Terraform 1.7+ and delete 
the relevant code from the configuration file. (Make sure you understand the Terraform 
state command and its impact before making these changes. Also, take a backup of your 
state file before the activity.)

 � Alternatively, you can delete the relevant code in the configuration file (or change the 
attribute value) and use terraform refresh for Terraform versions prior to v0.15.4 and 
terraform apply -refresh-only for versions post v0.15.4. This updates the state 
file of your infrastructure with metadata that matches the physical resources they are tracking. 
This will not modify your infrastructure, but it can modify your state file to update metadata. 
terraform refresh is deprecated but is still available only for backward compatibility.

State Conflict

• Simultaneous Terraform runs can cause conflicts if you do not configure the state file locking. It is 
highly recommended to enable state file locking even if you are the only person using Terraform.

• Remote backends such as Consul, S3 with DynamoDB, Azure Blob storage, HCP Terraform, 
and a few others offer state locking to prevent such conflicts.

• When you enable state file locking, Terraform makes sure only a single process that has the 
key modifies the state file. Any other simultaneous process trying to acquire the key will get 
an error. This is the expected behavior to prevent potential state corruption.

• The following error shows the messages you will see when there is a state-locking error:

State locking error:
Acquiring state lock. This may take a few moments…
  Error: Error acquiring the state lock
  Error message: ConditionalCheckFailedException: The 
conditional request failed
  Lock Info:
    ID:        a2324f3-x872-09fs-b216-g87ed071284
  ---- Truncated ----

• You get this error in different situations, and some of them are listed here:

• You run terraform apply while one of your colleagues has already run terraform 
apply and has the key that locks the state file. This is a genuine use case where you want 
Terraform to throw this error to prevent state corruption.



Debugging and Troubleshooting Terraform168

• You have run terraform apply by mistake and want to cancel it. You hit Ctrl + C (or Ctrl 
+ Z) to cancel the run. Though the run gets canceled, you end up with a state lock. The state 
error will show up next time you run either terraform plan or terraform apply 
since Terraform has not released the lock properly.

• You have run terraform apply on your laptop and Terraform core is making the required 
changes. If the laptop shuts down during the operation or the session gets disconnected due to 
a network issue, you will end up with a state lock.

In the first situation, the lock will be automatically released once the process that holds this key is 
completed. However, the second and third situations need the lock to be released before you can use 
Terraform. The terraform force-unlock command is used to release the lock. This should 
be used only in genuine use cases where you have a state lock problem and not to kill the parallel 
Terraform runs from a colleague.

When you run terraform plan or apply, you will see the error message and an ID. You will 
have to supply this ID in the next command: 

terraform force-unlock ID 
terraform force-unlock a2324f3-x872-09fs-b216-g87ed071284

Migrating the State from One Backend to Another

• There are a number of reasons for migrating the state from one backend to another. It could 
be due to team collaboration where you want to migrate from the local to a remote backend 
or to move from the remote backend (such as S3 or Consul) to HCP Terraform.

• Terraform supports the migration of state between backends or from local to remote backends.

• Be very careful while migrating the state from one backend to another (local to remote or from 
one cloud storage to another).

• Make a backup of the state file before you attempt the migration.

• After adding the relevant backend code in the configuration file, you will have to run the 
following command to migrate the state:

terraform init -migrate-state

• The following output shows the message and prompt you will receive when you are migrating 
your state from local to S3:

Initializing the backend...
Do you want to copy existing state to the new backend?
  Pre-existing state was found while migrating the previous 
"local" backend to the
  newly configured "s3" backend. No existing state was found in 
the newly



Core and Provider-Related Issues 169

  configured "s3" backend. Do you want to copy this state to the 
new "s3"
  backend? Enter "yes" to copy and "no" to start with an empty 
state.
  Enter a value:

• As the message says, entering yes will copy the state file from the local backend to a 
remote backend.

• If you enter no, an empty state file will be created in the remote backend.

Note
If you try running terraform plan or terraform apply before running terraform 
init, you will see the following error:

Backend initialization required: please run terraform init 
Reason: Backend configuration block has changed

Core and Provider-Related Issues
• Terraform core interprets the configuration, manages the state file, constructs the resource 

dependency graph, and communicates with provider plugins. Errors produced at this level may 
be a bug. You will have to raise a GitHub issue with HashiCorp for such an error.

• The provider plugins handle authentication, API calls, and mapping resources to services. For 
any issues you find in the providers, you will have to directly raise a GitHub issue with the 
provider development team.

• To debug errors related to the core or provider, you will have to enable logging.

• To enable logging in Terraform, you will have to declare a specific environmental variable, 
TF_LOG, with one of the logging levels that is described in the following points. When you 
enable logging, the logs are sent to the console where you are running the Terraform commands. 
Since these logs can be too many to be captured within the console, it is also recommended 
to use another environment variable, TF_LOG_PATH, to store these logs in a file on the 
local filesystem.

• There are multiple log levels. You will have to choose the right log level depending on the 
verbosity of the logs you need. The following are the various log levels supported by HashiCorp:

 � TRACE: Setting the logging to this level provides the details of every step taken by Terraform 
during the execution. This is the most verbose log level.

 � DEBUG: This is less verbose than the TRACE level and helps developers debug the issues 
by providing a shorter description of the internal events when the terraform run happens.



Debugging and Troubleshooting Terraform170

 � INFO: This provides information instructions similar to the contents of the README file. 
This is fine for the general logging to get the high-level messages during Terraform runs.

 � WARN: This provides information about the misconfigurations but is not a blocker that needs 
to be fixed immediately.

 � ERROR: Enable this level to get the logs only when something is severely wrong and is 
blocking the Terraform run. This does not generate too many logs.

• The TF_LOG environment variable logs all the components such as Terraform core, providers, 
and SDKs. If you want to get logs related to a specific component, you can use different 
environment variables for them.

• TF_LOG_CORE, only Terraform core binary logs are written.

• With TF_LOG_PROVIDER, logs related to all providers and SDKs used in the configuration 
file are written. To enable the TRACE logging level for all components (from Linux or macOS), 
run the following command:

export TF_LOG=TRACE

• To enable logging only for providers, run the command below:

export TF_LOG_PROVIDER=TRACE

• To enable logging only for Terraform core, run the following command:

export TF_LOG_CORE=TRACE

• To enable storing the logs in a specific file, run the following command (from Linux/macOS), 
run the command given below:

export TF_LOG_PATH=~/terraform-logs.txt

Module-Related Issues
You will be able to spot the errors related to modules when you have some basic understanding of 
child modules getting called from the root module. You will have to know whether the root module 
is using the local child module or remote child module, the mandatory input variables expected by 
the child module, and the outputs exposed by the child module to spot an error related to the module.

Most of the time, the errors are related to the unsupported argument, unable to get the expected 
output, version mismatch, missing features, and so on. These are discussed in more detail in the 
following sections.



Module-Related Issues 171

Missing Features

• If you are writing modules yourself, this is easy to solve. You need to add additional code to the 
module to add the missing features. Once you add the new code for the feature, you will have 
to pull the latest changes of the child module in your root module by running terraform 
init -upgrade if there is no versioning. If you have versioned the modules, then you will 
have to pull the latest version of the child module in the root module.

• If you are using public modules, this can get tricky. Check whether there is a latest version of 
the module that adds this feature. If it does, then pull the latest version of the module in the 
root module.

• There are a couple of other ways to handle such issues:

• Fork this module and make the required changes. But you will have to manage this code 
yourself going forward.

• Create an abstraction layer where you create a new module using the public module as the 
source. This new module can be stored in the version control system. With this option, you will 
still be able to make use of the latest versions of the public module and still add the features 
that are not present in the public module.

• If you are using local modules, you do not have to upgrade the module. The modules.json 
file under .terraform/modules will contain the path of the modules in the local filesystem.

Output-Related Issues

• This is one of the most common issues while dealing with modules.

• When you call the child module via the root module, you need to make sure the outputs you 
are defining in the root module are exposed in the child module.

For example, if you are using the child module of EC2 to create the instance and have not defined 
output for the instance ID or the IP address, you will never be able to get these details from the calling 
module (i.e., the root module). First, you need to define this in the child module and then refer to it 
from the root module’s outputs.

Unsupported Argument

• Take a look at the error given below. This error is similar to the output-related issue, where the 
particular argument is not defined in the child module, and hence, when you pass the value 
for that argument in the root module, you get an error:

Unsupported argument: An argument named "xxxxxxx" is not 
expected here.



Debugging and Troubleshooting Terraform172

• Review the variables declared in the child module to troubleshoot this issue.

Version-Related Issues

• In the production environment, it is highly recommended to lock the versions of the modules.

• One con of this precaution is that you will not upgrade the module version regularly and will 
fall behind in terms of the features available with the modules.

• Always test the latest version of the module thoroughly before rolling it out to production setup.

Taking Help from the Forum
• After you run out of options, you may reach out to the community for help in the HashiCorp forum.

• Make sure you search the existing threads for your issue before raising a new one.

• You may access the Terraform forum using the following URL:

https://discuss.hashicorp.com/c/terraform-core/27

• Go through the guidelines of the forum before you post a question:

https://discuss.hashicorp.com/t/guide-to-asking-for-help-in-
this-forum/48571

Bug Reporting
Once you eliminate the possibility of language misconfiguration, version mismatch, variable-related 
issues, or state discrepancies, consider bringing your issue to the core Terraform team or Terraform 
provider community as a GitHub issue.

If you would like input from the community before submitting your issue to the repository, consider 
submitting your issue as a forum topic in the HashiCorp Discuss forum.

You will have to provide the Terraform version when opening a GitHub issue. Enable Terraform 
logging by running export TF_LOG_CORE=TRACE and export TF_LOG_PATH=logs.txt.

Run terraform refresh, which generates the logs and stores them in the logs.txt file.

Before raising this issue, you will have to confirm whether it is a provider issue or a Terraform core 
issue. In your logs.txt file, find the final error message and trace it back to the source. It should 
contain provider-terraform-<PROVIDER-NAME> if it is a provider issue. Make sure you 
remove any confidential information that may be present in the logs.

When you determine where your error originated, navigate to the Terraform core GitHub repository 
or search the provider registry for your provider’s GitHub repository.

https://discuss.hashicorp.com/c/terraform-core/27
https://discuss.hashicorp.com/t/guide-to-asking-for-help-in-this-forum/48571
https://discuss.hashicorp.com/t/guide-to-asking-for-help-in-this-forum/48571


Gotchas 173

First, navigate to the Terraform GitHub repository, choose Issues from the top tabs, and create one 
with all the information.

Gotchas
In this section, you will see some recommendations that are typically not covered in the Terraform 
documentation. These are not very obvious unless you go through them in your setup, hence the name 
“Gotchas.” This section is followed by general tips.

Avoid Lists Where Possible

• When you are dealing with use cases that warrant using lists, try using maps or sets 
wherever possible.

• When you use a list, Terraform uses the index position to map it to the resource that gets created. 
Using the index position may be fine for use cases where you do not see many deletions of values 
in the list, but it should not be used for use cases where you expect the values to be deleted and 
added to the list in random order. This may sound confusing or may not make sense in the first 
read. Try reading this again after going through the following example.

• Say, for example, you are creating IAM users using the list type. The following code can be 
used to create users, and whenever you need a new user, all you need to do is add the username 
to the default argument in the usernames variable:

resource "aws_iam_user" "iam-user" {
  count = length(var.usernames)
  name = element(var.usernames,count.index)
}
variable "usernames" {
  type = list(string)
  default = ["manju","packt","chandru"]
}

• terraform apply will create three IAM users: manju, packt, and chandru.

• Now, you want to remove the packt user. While the resource block remains the same, you 
would remove the packt user from the variable block in the following manner:

variable "usernames" {
  type = list(string)
  default = ["manju","chandru"]
}



Debugging and Troubleshooting Terraform174

• When you run terraform plan, the expectation is to delete the packt user and for all 
the other users to remain as is. But the output of this modification is given here:

  # aws_iam_user.iam-user[1] will be updated in-place
  ~ resource "aws_iam_user" "iam-user" {
        id            = "packt"
      ~ name          = "packt" -> "chandru"
        tags          = {}
        # (5 unchanged attributes hidden)
    }

  # aws_iam_user.iam-user[2] will be destroyed
  # (because index [2] is out of range for count)
  - resource "aws_iam_user" "iam-user" {
      - arn           = "arn:aws:iam::123456789:user/chandru" -> 
null
      - id            = "chandru" -> null
      - name          = "chandru" -> null
      - path          = "/" -> null
      - unique_id     = "AIDA3LH3Gxxxxxxxx" -> null
    }
Plan: 0 to add, 1 to change, 1 to destroy.

• As you can see, Terraform is trying to rename the packt user to chandru and delete the 
chandru user.

• From Terraform’s perspective, index position 1 was occupied by the packt user previously, 
but now the chandru user is present in that position. Hence, it has to be renamed.

• There are only two users in the variable, hence index [2] is out of range (index starts 
from zero). So, the chandru user must be deleted.

• Alternatively, you can use the for_each option along with the toset function to solve 
this problem:

resource "aws_iam_user" "iam-user" {
  for_each = toset(["manju", "packt", "chandru"])
  name     = each.value
}

• This would create three users.



Gotchas 175

• When you delete the packt function and try running terraform plan, you will see only 
one deletion:

  # aws_iam_user.iam-user["packt"] will be destroyed
  # (because key ["packt"] is not in for_each map)
  - resource "aws_iam_user" "iam-user" {
      - arn           = "arn:aws:iam::123456789:user/packt" -> 
null
      - id            = "packt" -> null
      - name          = "packt" -> null
      - path          = "/" -> null
      - unique_id     = "AIDA3LH3Gxxxxxxxxxx" -> null
    }
Plan: 0 to add, 0 to change, 1 to destroy.

• Here, the list is converted to a set before for_each iterates over the values.

• The IAM user list does not need an ordered collection, and hence, it is fine to convert it to a set 
here. But if you need an ordered collection, then this may not be the right option.

Using -target in Terraform Runs

• Using the -target option for specific resources makes changes to the dependent resources 
too.  Use the -target option only in exceptional circumstances such as recovering from a 
mistake or implementing a solution to overcome the limitations of Terraform.

• The code in the following example creates two resources – an EC2 instance and an elastic IP, 
which has an implicit dependency on the EC2 instance:

provider "aws" {
  region = "ap-south-1"
}
resource "aws_eip" "eip" {
  instance = aws_instance.test.id
  domain   = "vpc"
}
resource "aws_instance" "test" {
  ami               = "ami-026255a2746f88074"
  availability_zone = "ap-south-1a"
  instance_type     = "t3.micro"
  tags = {
    Name = "Test-EC2"
  }
}



Debugging and Troubleshooting Terraform176

• When you try to delete just the EC2 instance using the -target option, you will see that 
Terraform tries to delete the elastic IP too:

$~/terraform-troubleshoot:terraform destroy -target="aws_
instance.test"
aws_instance.test: Refreshing state... [id=i-01c2645577c1b2b65]
Terraform used the selected providers to generate the following 
execution plan. Resource actions are
indicated with the following symbols:
  - destroy
Terraform will perform the following actions:
  # aws_eip.eip will be destroyed
  - resource "aws_eip" "eip" {
      ---- TRUNCATED ----
    }
  # aws_instance.test will be destroyed
  - resource "aws_instance" "test" {
      - ami = "ami-026255a2746f88074" -> null
      ---- TRUNCATED ----
    }
Plan: 0 to add, 0 to change, 2 to destroy.
│ Warning: Resource targeting is in effect

• To summarize, -target not only deletes the resource you are targeting but also the dependency. 
You need to be aware of this while using this option.

General Tips

Finally, here are some general tips to make things easier for you:

• If you do not lock the versions of modules and providers, they get updated during terraform 
init -upgrade. The updated version might break the compatibility and cause issues in 
your environment.

• Make sure that Terraform is also locked to a certain version, and that team members are asked 
to use the same version while dealing with Terraform. Changing the Terraform version that is 
incompatible with the version you have defined in the Terraform block will throw an error, but 
will not update the Terraform version in your state file, saving you a lot of pain.

• Whenever possible, try to create the resource manually (or go through the steps for the creation) 
before writing the Terraform code. Once you get a sense of the steps involved, you will be able 
to write efficient code or troubleshoot the issue.

• If you are not able to find the resources that you created, make sure you are in the right 
CLI workspace.



Summary 177

Summary
In this chapter, you learned about the key areas in which Terraform issues arise and how to handle 
those issues. The areas or the issues highlighted here are in no way exhaustive but should give you a 
good understanding of the frequent issues in Terraform.

You also learned how to enable logging, which is the most important step in troubleshooting issues 
or raising a bug report with the providers or with HashiCorp.

In the end, you saw some tips from real-world Terraform management. In Chapter 8, Terraform 
Functions, you will read about the use of Terraform functions that the Terraform language supports.



Debugging and Troubleshooting Terraform178

Exam Readiness Drill – Chapter Review Questions
Apart from a solid understanding of key concepts, being able to think quickly under time pressure is 
a skill that will help you ace your certification exam. That is why working on these skills early on in 
your learning journey is key.

Chapter review questions are designed to improve your test-taking skills progressively with each 
chapter you learn and review your understanding of key concepts in the chapter at the same time. 
You’ll find these at the end of each chapter.

How to Access these Resources
To learn how to access these resources, head over to the chapter titled Chapter 11, Accessing 
the Online Practice Resources.

To open the Chapter Review Questions for this chapter, perform the following steps:

1. Click the link – https://packt.link/HCorp003Ch7.

Alternatively, you can scan the following QR code (Figure 7.1):

Figure 7.1 – QR code that opens Chapter Review Questions for logged-in users

https://packt.link/HCorp003Ch7


Exam Readiness Drill – Chapter Review Questions 179

2. Once you log in, you’ll see a page similar to the one shown in Figure 7.2:

Figure 7.2 – Chapter Review Questions for Chapter 7

3. Once ready, start the following practice drills, re-attempting the quiz multiple times.

Exam Readiness Drill

For the first three attempts, don’t worry about the time limit.

AT TEMPT 1

The first time, aim for at least 40%. Look at the answers you got wrong and read the relevant sections 
in the chapter again to fix your learning gaps.

AT TEMPT 2

The second time, aim for at least 60%. Look at the answers you got wrong and read the relevant sections 
in the chapter again to fix any remaining learning gaps.



Debugging and Troubleshooting Terraform180

AT TEMPT 3

The third time, aim for at least 75%. Once you score 75% or more, you start working on your timing.

Tip
You may take more than three attempts to reach 75%. That’s okay. Just review the relevant 
sections in the chapter till you get there.

Working On Timing
Target: Your aim is to keep the score the same while trying to answer these questions as quickly as 
possible. Here’s an example of how your next attempts should look like:

Attempt Score Time Taken

Attempt 5 77% 21 mins 30 seconds

Attempt 6 78% 18 mins 34 seconds

Attempt 7 76% 14 mins 44 seconds

Table 7.1 – Sample timing practice drills on the online platform

Note
The time limits shown in the above table are just examples. Set your own time limits with each 
attempt based on the time limit of the quiz on the website.

With each new attempt, your score should stay above 75% while your “time taken” to complete should 
“decrease”. Repeat as many attempts as you want till you feel confident dealing with the time pressure.



8
Terraform Functions

In Chapter 6, Terraform Backends and Resource Management, you read about Terraform expressions 
and their different variations and took a look at some use cases. The Terraform language also supports 
the use of Terraform functions as part of these expressions.

The main use of Terraform’s built-in functions is in expressions and to transform input values and 
create new values. For example, the toset() function can be used to convert an input value to a set 
(the input value type can be a list or map), and this can be used in places where the set type is expected.

In this chapter, you will learn about the different built-in functions and their syntax with examples. 
Not all functions are regularly used, but knowledge of different functions will help when there are 
special requirements that can be simplified by using functions.

Terraform functions are grouped based on the types of values or arguments they can act upon, and 
the configuration files are also created with the same approach.

Here is a list of topics that will be covered in this chapter:

• Function syntax

• Numeric functions

• String functions

• Date and time functions

• Collection functions

• Type conversion functions

• Filesystem functions

• IP network functions

• Encoding functions

• Hash and crypto functions



Terraform Functions182

After finishing this chapter, it is recommended that you try out the most common functions in your 
own expressions with different use cases. This will help in the HashiCorp Terraform Associate 003 
certification journey as well as with your daily tasks.

If you only want to try out the functions, the terraform console command will be a good starting 
point. This feature is particularly useful for understanding the behavior of the different functions with 
the example inputs before actually using it in the configuration scripts.

Technical Requirements
Sample configuration files have been used in the chapter, and you can find them at the following link:

https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-
Associate-003-Exam-guide-Second-Edition/tree/main/ch8/terraform-
functions

• To use the files, you need the following tools in your workstation:

• AWS account ID with administrator access credentials

• AWS CLI version 2.x.x

• Terraform CLI version 1.5.x or later

• Visual Studio Code or any text editor

Function Syntax
The functions in Terraform follow this common syntax:

FUNCTION_NAME(argument-1, argument-2, . . . . argument-n)

FUNCTION_NAME is the name of the function to be called, and the number of arguments it takes 
will vary from 1 to n based on the function.

Some of the functions have a definitive set of arguments that they can accept, and a few will accept 
any variable number of inputs. For example, the endswith() string function will accept only two 
arguments and return either true or false. The first argument is the string to check and the second 
is the suffix string.

But if you take the max() function, which gives the maximum number in the given list of input 
numbers, you can pass any number of input values and the result will be a single number.

https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition/tree/main/ch8/terraform-functions
https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition/tree/main/ch8/terraform-functions
https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition/tree/main/ch8/terraform-functions


Numeric Functions 183

Numeric Functions
In this section, you will look at some of the most common functions that work with numeric arguments. 
Numeric functions will help in cases where you might need to select the smallest value from the 
given list of values and process accordingly or convert the string representation of the given value 
to a number to perform some arithmetic operations using the same. It will be clearer once you go 
through the different functions supported by Terraform with sample inputs.

The examples used in this section will be available with the filename 1. numeric-functions.
txt in the GitHub link provided at the start of this chapter. You just need to take the specific command 
and try it with your sample inputs in the terraform console terminal.

The abs() Function

The abs() function always returns the absolute value of the given number, and it takes only 
one argument. If the input number is less than zero (0), the value will be multiplied by  
-1 and then returned. If the input number is greater than zero, the value will be returned with no changes.

Here is the syntax:

abs(argument-1)

Some examples are as follows:

$ abs(-5)
> 5
$ abs(100)
> 100

The ceil() Function

The ceil() function will return the whole number that is greater than or equal to the input number. 
If the input number is a whole number already, the output will be the same number. If the input 
number is a fraction, the next closest whole number will be returned.

Here is the syntax:

ceil(argument-1)

Some examples are as follows:

$ ceil(7)
> 7
$ ceil(10.4)
> 11



Terraform Functions184

The floor() Function

The floor() function will return the whole number that is less than or equal to the input number. If 
the input number is a whole number already, the output will be the same number. If the input number 
is a fraction, the previous closest whole number will be returned.

Here is the syntax:

floor(argument-1)

Some examples are as follows:

$ floor(11)
> 11
$ floor(8.8)
> 8

The max() Function

The max() function will return the greatest number in the given inputs, and it can take any number 
of values as input. The function works with the individual arguments; if the input values are already 
in a complex type such as a list or set, use three dots (...) next to the input list or set to expand 
the collection.

If the three dots are not specified when the input is a complex type, the command will fail with the 
following error:

Error: Invalid function argument. Invalid value for "numbers" 
parameter: number required

Here is the syntax:

max(argument-1, argument-2)
max([argument-1, argument-2]...)

Some examples are as follows:

$ max(10, 59, 23, 68)
> 68
$ max([10, -2, 3, 15]...)
> 15
$ max([10, -2, 3, 15])  --- without the three dots
> Error: Invalid function argument
│
│   on <console-input> line 1:
│   (source code not available)



Numeric Functions 185

│
│ Invalid value for "numbers" parameter: number required.

The min() Function

The min() function will return the smallest number in the given inputs, and it can take any number 
of values as input. The function works with the individual arguments; if the input values are already 
in a complex type such as a list or set, use three dots (...) next to the input list or set to expand 
the collection.

The behavior is exactly the same when the three dots are not specified for a complex type input value.

Here is the syntax:

min(argument-1, argument-2)
min([argument-1, argument-2]...)

Some examples are as follows:

$ min(-2, 5, 11, 1)
> -2
$ min([13, 22, 76, 99]...)
> 13

The pow() Function

The pow() function will result in the exponent value based on the input arguments. The first argument 
will be raised to the power of the second argument, and it always only accepts two arguments.

Here is the syntax:

pow(argument-1, power-of-argument-2)

Some examples are as follows:

$ pow(2, 2)
> 4
$ pow(17, 0)
> 1

The log() Function

This function returns the logarithm of a given number and it takes two arguments. The first argument 
is the number, and the second argument is the base.



Terraform Functions186

Here is the syntax:

log(number-argument-1, base-argument-2)

An example is as follows:

$ log(44,2)
> 5.459431618637297

The signum() Function

The signum() function will return the sign of the given number and the value will be between -1 
and 1. If the input number is negative, then -1 will be returned; the return value will be 1 in the case 
of a positive number. This function will return zero if the input value is zero (0).

Here is the syntax:

signum(number-argument-1)

Some examples are as follows:

$ signum(34)
> 1
$ signum(0)
> 0
$ signum(-24)
> -1

The parseint() Function

The parseint() function will return the number parsing the string representation of the input value 
in the specified base. The first argument is the input value in string format and the second argument 
is the base. The limitation of this function is that the base can only be between the values of 2 and 62.

If the input value cannot be parsed with the specified base, the function will return an error.

Here is the syntax:

parseint(input-argument-1, base-argument-2)

Some examples are as follows:

$ parseint("10110", 2)
> 22
$ parseint("EDA1", 16)
> 60833



String Functions 187

With this function, we have covered the numeric functions supported in Terraform and we will proceed 
with the string functions in the next section. The functions supported might vary with the release 
of every new Terraform version and the latest documentation will help in those cases.

String Functions
The following section will cover the most common string functions supported by Terraform 1.5.x. 
string functions are primarily used for formatting the input values for different requirements and 
using the result in the subsequent workflow. The examples used in the section will be available with 
the filename 2. string-functions.txt in the GitHub link provided at the start of this chapter. 
You just need to take the specific command and try it with your sample inputs in the Terraform 
console terminal.

The split() Function

The split() function will split the input string in all occurrences where the separator character is 
present. The resulting value will be of the list type, and if we are using the output values to initialize 
any variable, the variable should be of the list data type.

Here is the syntax:

split(separator-char, input-string)

Some examples are as follows:

$ split("-", "test-dev-prod")
> tolist([
  "test",
  "dev",
  "prod",
])
$ split(",", "Adam,Bob,William")

> tolist([
  "Adam",
  "Bob",
  "William",

The join() Function

The join() function joins the string elements in the input list and produces the final string with 
the specified separator. If the separator character is not specified (just double quotes), then the 
list elements will be just concatenated.



Terraform Functions188

Here is the syntax:

join(separator-char, input-list)

Some examples are as follows:

$ join("-", ["h", "e", "l", "l", "o"])
> "h-e-l-l-o"
$ join("", ["c", "a", "t"])
> "cat"

The endswith() Function

The endswith() function will return either true or false based on whether the input string 
ends with the specified suffix string or not. The function takes two arguments.

Here is the syntax:

endswith(input-string-1, suffix-string)

Some examples are as follows:

$ endswith("test-app", "app")
> true
$ endswith("terraform-function", "func")
> false

The startswith() Function

The startswith() function will return either true or false based on whether the input string 
ends with the specified prefix string or not. The function takes two arguments.

Here is the syntax:

endswith(input-string-1, prefix-string)

Some examples are as follows:

$ startswith("test-app", "test")
> true
$ startswith("terraform-function", "test")
> false



String Functions 189

The chomp() Function

This function will be very helpful when you read strings from any file that has newline characters at 
the end, and it takes only one argument. It does not remove the spaces at the end of the input string.

Here is the syntax:

chomp("input-string")

Some examples are as follows:

$ chomp("hello  \n\n")
> "hello  "
$ chomp("test string 01\n")
> "test string 01"

The substr() Function

The substr() function extracts the part of the string that starts at the specified offset and length. 
The function takes three arguments, which are the input string, the offset value (which starts from 
0), and the length.

Here is the syntax:

substr(input-string, offset-value, length)

Some examples are as follows:

$ substr("Adam Williamson", 5, 7)
> "William"
$ substr("input-string", 0, 2)
> "in"

The strrev() Function

The strrev() function returns the reversed version of the input string and it takes one argument 
only, which is the input string.

Here is the syntax:

strrev(input-string)



Terraform Functions190

Some examples are as follows:

$ strrev("olleh")
> "hello"
$ strrev("string")
> "gnirts"

The lower() Function

This function converts the input string to lowercase.

Here is the syntax:

lower(input-string)

Some examples are as follows:

$ lower("Language")
> "language"
$ lower("ALPHABETS")
> "alphabets"

The upper() Function

This function converts the input string to uppercase.

Here is the syntax:

upper(input-string)

Some examples are as follows:

$ upper(«document»)
> «DOCUMENT»
$ upper(«characters»)
> "CHARACTERS"

The trim() Function

The trim() function will remove the characters specified in the second argument from the start and 
end of the input string. Here, every character in the second argument will be replaced individually 
and does not have to be an exact match in the input string.

Here is the syntax:

trim(input-string, remove-chars)



String Functions 191

Some examples are as follows:

$ trim("football", "fl")
> "ootba"
$ trim("sports", "s")
> "port"

The trimprefix() and trimsuffix() Functions

The trimprefix() and trimsuffix() functions will remove the specified prefix and suffix 
strings from the start and end of the strings, respectively. If the input prefix/suffix is not present in 
the input string, the output value will be the same with no change.

Here is the syntax:

trimprefix(input-string, prefix-to-remove)
trimsuffix(input-string, suffix-to-remove)

Some examples are as follows:

$ trimprefix("bridge", "b")
> "ridge"
$ trimsuffix("baseball", "ball")
> "base"
$ trimprefix("universe", "one")
> "universe"

The trimspace() Function

The trimspace() function will remove the newline characters from the start and end of the given 
string. This is different from the regular trim() function, which will remove the specified characters. 
In this function, newline characters mean \n, \r, and similar characters.

Here is the syntax:

trimspace(input-string)

Some examples are as follows:

$ trimspace("\n\r test string\n")
> "test string"
$ trimspace("    terraform      \n    \r")
> "terraform"



Terraform Functions192

The indent() Function

The indent() function will be used to indent the strings in the specified multi-line string based 
on the input value except the first line.

Here is the syntax:

indent(number-of-spaces, input-string)

An example is as follows:

$ indent(2, "[\n  test-line-1,\n  test-line-2,\n]")

> <<EOT
[
    test-line-1,
    test-line-2,
  ]
EOT

The replace() Function

The replace() function is used to replace the specified character set from the input string with 
the replacement sequence provided. If the substring to be replaced is wrapped with forward slashes 
(/), then it is considered to be a regular expression.

Here is the syntax:

replace(input-string, string-to-replace, replacement-chars)

 Some examples are as follows:

$ replace("This is a test string", " ", "-")
> "This-is-a-test-string"
$ replace("There are ten players", "/t.*n/", "10")
> "There are 10 players"

The strcontains() Function

The strcontains() function will return either true or false based on whether the specified 
substring is present in the input string or not. This function takes two arguments only.

Here is the syntax:

strcontains(input-string, string-to-search)



String Functions 193

Some examples are as follows:

$ strcontains("The game is on", "is")
> true
$ strcontains("Apple is Red", "white")
> false

The title() Function

This function will convert the first letter of each word in the specified input string to uppercase and 
it takes one argument only.

Here is the syntax:

title(input-string)

Some examples are as follows:

$ title("this is amazing")
> "This Is Amazing"
$ title("one two three")
> "One Two Three"

The format() Function

The format() function is used to format the string with the specifications, and this is similar to 
the printf function in C.

Here is the syntax:

format(specification-string, input-string)

For the specification string, some of the commonly used parameters are the following:

• %s: For strings

• %d: For numbers in decimal representation

• %b: For numbers in binary representation

• %f: For fraction notation

Please refer to the Terraform documentation for more options available with this function.



Terraform Functions194

Some examples are as follows:

$ format("%s has won the match", "Brazil")
> "Brazil has won the match"
$ format("Each team has %d players", 11)
> "Each team has 11 players"
$ format("The value of PI is %.2f", 3.14)
> "The value of PI is 3.14"
$ format("Binary value of 2 is %b", 2)
> "Binary value of 2 is 10"

The formatlist() Function

The formatlist() function uses the same syntax as the format() function except that this 
function produces the list of strings with the specifications provided.

Here is the syntax:

formatlist(specification-string, input-list-string)

An example is as follows:

$ formatlist("%s is a vowel", ["a", "e", "i", "o", "u"])

> tolist([
  "a is a vowel",
  "e is a vowel",
  "i is a vowel",
  "o is a vowel",
  "u is a vowel",
])

The regex() Function

The regex() function applies a regular expression to the input string and returns any matching 
substrings as the output. If the regular expression does not match with any substrings, the function 
will throw an error. If the pattern sequence itself starts with the backslash, another backslash must be 
added before use inside the function.

This function has several advanced features and possible sequences that cannot be covered in this 
topic. Therefore, please refer to the official documentation for more information.

Here is the syntax:

regex(regular-expression, input-string)



Date and Time Functions 195

Some of the commonly used regular expression sequences are as follows:

• \d: Any ASCII digit from 0 to 9

• [a-z]: Any character between a and z

Some examples are as follows:

$ regex("\\d\\d",  "1234abc5678")
> "12"
$ regex("[a-z]",  "1234a5678")
> "a"

The regexall() Function

The regexall() function uses the same syntax as the regex() function, but this function 
produces a list of matching strings.

Here is the syntax:

regexall(regular-expression, input-string)

An example is as follows:

$ regexall("[a-z]+", "ab123cd")

> tolist([
  "ab",
  "cd",
])

With this function, you have completed the discussion on string functions and can now proceed with 
the date and time functions, which are helpful when handling the different date and time formats to 
use with the Terraform resources.

Date and Time Functions
The following section will cover the most common date and time functions supported by Terraform 
1.5.x. The examples used in the section will be available with the filename 3. date-and-time-
functions.txt in the GitHub link provided at the start of this chapter.



Terraform Functions196

The timestamp() Function

The timestamp() function returns the current date and time in the UTC format as per RFC 3339 
specifications. This is the same format used internally by Terraform where the timestamps are used; 
hence, this function also returns with the same syntax.

Here is the syntax:

timestamp()

An example is as follows:

$ timestamp()
"2024-03-09T17:03:03Z" ("YYYY-MM-DDTHH:MM:SSZ")

Note
The output will vary based on when the function was tried out.

The formatdate() Function

The formatdate() function converts the given timestamp into a different date and time format. 
For more details on the possible format sequences, please refer to the official documentation.

The date and time format sequences that are commonly used are as follows:

• YYYY: Year in four digits

• YY: Year in two digits

• MMM: Month in abbreviated form, such as Jan, Feb, and so on

• MM: Month in two digits

• DD: Date in two digits with padding, such as 01, 02, and so on

• D: Date without padding

• HH: Hour in two digits with padding (12-hour format)

• hh: Hour in two digits with padding (24-hour format)

Here is the syntax:

formatdate(format, timestamp)



Date and Time Functions 197

Some examples are as follows:

$ formatdate("DD-MM-YYYY", timestamp())
> "09-03-2024"
$ formatdate("hh:mm", timestamp())
> "17:15"

Note
The output will vary based on when the function was tried out.

The plantimestamp() Function

The plantimestamp() function is like the timestamp() function but the result of the function 
will change with every plan operation.

This function is not available within the Terraform console and can be tested with a random 

terraform plan.

Here is the syntax:

plantimestamp()

The timeadd() Function

The timeadd() function will return the new timestamp adding the duration specified with the input 
timestamp. It is possible that the duration parameter can contain negative values as well.

The valid units are one of the following:

• ns (nanoseconds)

• us or µs (microseconds)

• ms (milliseconds)

• s (seconds)

• m (minutes) and

• h (hour)

Here is the syntax:

timeadd(timestamp-value, duration)



Terraform Functions198

Some examples are as follows:

$ timeadd(timestamp(), "4h")
> "2024-03-10T10:09:20Z"
$ timeadd(timestamp(), "5m")
> "2024-03-10T06:15:06Z"

Note
The output will vary based on when the function was tried out.

The timecmp() Function

The timecmp() function compares the given timestamps and returns a number based on their 
ordering. This function only accepts two timestamps as arguments.

Here is the syntax:

timecmp(timestamp-1, timestamp-2)

If timestamp-1 < timestamp-2, then the return value will be -1.

If timestamp-1 = timestamp-2, then the return value will be 0.

If timestamp-1 > timestamp-2, then the return value will be 1.

Some examples are as follows:

$ timecmp(«2024-03-10T06:15:06Z», «2024-03-10T10:09:20Z»)
> -1
$ timecmp("2024-03-10T10:09:20Z", "2024-03-10T10:09:20Z")
> 0
$ timecmp("2024-03-10T10:09:20Z", "2024-03-10T06:15:06Z")
> 1

The date and time functions have now all been discussed, so you can proceed with the collection 
functions in the next section.

Collection Functions
Terraform supports a huge number of functions that work with collection types such as list, tuple, 
set, or map. In this section, you will briefly look at the most common ones. The examples used in 
the section will be available with the filename 4. collection-functions.txt in the GitHub 
provided at the start of this chapter.



Collection Functions 199

Since these functions can work with different collection types, you will be skipping the syntax part 
and looking at the examples directly.

The alltrue() Function

The alltrue() function will return true (Boolean type) if all the input elements in the list/tuple 
are true (Boolean type value) or true (string value).

Some examples are as follows:

$ alltrue([true, true])
> true
$ alltrue([true, false])
> false

The anytrue() Function

This function returns true if any of the elements in the input collection has true (Boolean type 
value) or true (string value).

Some examples are as follows:

$ anytrue([true, false])
> true
$ anytrue([true])
> true

The chunklist() Function

This function splits a single input list into a list of lists based on chunk size.

An example is as follows:

$ chunklist([11, 22, 33], 1)

> tolist([
  tolist([
    11,
  ]),
  tolist([
    22,
  ]),
  tolist([
    33,
  ]),
])



Terraform Functions200

The coalesce() and coalescelist() Functions

These functions return the first input element that is not null or an empty string. The coalescelist() 
function will take lists as input.

Some examples are as follows:

$ coalesce("", "", null, "a")
> "a"
$ coalescelist([], ["a", "b"])
> [
  "a",
  "b",
]

The compact() Function

The compact() function will take a list of strings as input and return the list without empty or 
null values.

An example is as follows:

$ compact(["a", "b", "", null, "c"])

> tolist([
  "a",
  "b",
  "c",
])

The concat() Function

The concat() function takes lists as input and produces a single list after concatenation.

 An example is as follows:

$ concat(["1", "2"],["3"])
> [
  "1",
  "2",
  "3"
]



Collection Functions 201

The contains() Function

The contains() function returns true or false based on whether the element is present in 
the list or not.

An example is as follows:

$ contains(["1", "2"], "2")
> true

The distinct() Function

The distinct() function will return the list without any duplicates, as in this example:

$ distinct(["1", "11", "111", "1", "11", "1111"])

> tolist([
  "1",
  "11",
  "111",
  "1111",
])

The element() Function

This function retrieves a single element from the list, as in this example:

$ element(["1", "11", "111"], 1)
> "11"

The flatten() Function

The flatten() function will take lists and replace the elements with the flattened sequence of the 
elements. If the list element is a nested list, that too will be flattened.

Here is an example:

$ flatten([["a", "b", "c"], ["d"]])
[
  "a",
  "b",
  "c",
  "d",
]



Terraform Functions202

The keys() and values() Functions

The keys() and values() functions will return the keys and values of the map, respectively.

Some examples are as follows:

$ keys({one=1, two=2, three=3})
[
  "one",
  "three",
  "two",
]
$ values({one=1, two=2, three=3})
> [
  1,
  3,
  2,
]

The index() Function

The index() function will return the index of the search element if it is present, as in this example:

$ index(["a", "b", "c"], "a")
> 0

The length() Function

The length() function will return the length of the list, as in this example:

$ length(["a", "b", "c"])
> 3

The lookup() Function

The lookup() function will return the value from the map for the provided key, as in this example:

$ lookup({one=1, two=2, three=3}, "two")
> 2



Collection Functions 203

The matchkeys() Function

The matchkeys() function will create a new list with the elements whose indexes match the 
corresponding indexes in the keylist. searchvalue is the third argument.

Here is the syntax:

matchkeys(valuelist, keylist, searchvalue)

An example is as follows:

$ matchkeys(["ec2", "lambda", "dynamodb"], ["server", "serverless", 
"serverless"], ["serverless"])

> tolist([
  "lambda",
  "dynamodb",
])

The merge() Function

The merge() function will take a map or objects as input and create a merged map. If the same key 
is present in multiple maps, the last occurrence will take precedence.

Here is an example:

$ merge({a=1, b=2, c=3},{b=4},{d=5})
{
  "a" = 1
  "b" = 4
  "c" = 3
  "d" = 5
}

The one() Function

The one() function will take a list, a set, or a tuple with zero or one element. If the input has zero 
elements, the function will return null and if it has one element, the first element will be returned. 
If there is more than one element, the function will throw an error.

Some examples are as follows:

$ one([])
> null
$ one(["1"])
> "1"



Terraform Functions204

The range() Function

The range() function generates a list of numbers with the specified start value, end value, and 
step value.

Here is the syntax:

range(max-value)
range(start-value, max-value)
range(start-value, max-value, step-value)

Some examples are as follows:

$ range(3)

> tolist([
  0,
  1,
  2,
])
$ range(11, 15)

> tolist([
  11,
  12,
  13,
  14,
])
$ range(2, 10, 2)

> tolist([
  2,
  4,
  6,
  8,
])



Collection Functions 205

The reverse() Function

The reverse() function takes the input list and returns it in a reversed fashion.

An example is as follows:

$ reverse([1,2])
> [
  2,
  1,
]

Set Functions

Under collection functions, there is a special category of functions grouped together as set functions 
and there are four functions available in this category that are similar in syntax. You will now look 
at the examples directly.

These functions will work with the input values of the set type.

The setintersection() Method

This is the intersection result of the input sets:

$ setintersection(["adam", "bob"],["bob", "chris"])

> toset([
  "bob",
])

The setproduct() Method

This is the product result of the input sets:

$ setproduct(["adam"],["1", "2"])

> tolist([
  [
    "adam",
    "1",
  ],
  [
    "adam",
    "2",
  ],
])



Terraform Functions206

The setunion() Method

This is the combined result of the input sets:

$ setunion(["adam", "bob"],["bob", "chris"])

> toset([
  "adam",
  "bob",
  "chris",
])

The setsubtract() Method

This is the result of the input sets when the common elements are removed from the first set. This 
takes two sets only as input:

$ setsubtract(["adam", "bob"],["bob", "chris"])

> toset([
  "adam",
])

The slice() Function

The slice() function extracts the elements from the specified starting index and last index. The 
result will not include the element in the last index. This is similar to the substr() function, but 
the substr() function will use the length attribute instead of the index.

Here is an example:

$ slice([11, 22, 33, 44, 55], 1, 4)
> [
  22,
  33,
  44,
]



Collection Functions 207

The sort() Function

The sort() function sorts a given list.

Here is an example:

$ sort(["23", "12", "44", "09", "66"])

> tolist([
  "09",
  "12",
  "23",
  "44",
  "66",
])

The sum() Function

This function returns the sum of the elements in a given list.

Here is an example:

$ sum([11, 22, 33])
> 66

The transpose() Function

The transpose() function takes a map of strings and switches the keys and values.

Here is an example:

$ transpose({"s3" = ["aws", "service"]})

> tomap({
  "aws" = tolist([
    "s3",
  ])
  "service" = tolist([
    "s3",
  ])
})



Terraform Functions208

The zipmap() Function

The zipmap() function creates a map with the specified list inputs as keys and values.

Here is an example:

$ zipmap(["a"], ["1"])
> {
  "a" = "1"
}

With the zipmap() function, you have completed the section on collection functions, and have read 
about the functions that are primarily used to manipulate the input values or derive new values from 
it. The next section will deal with type conversions such as changing sensitive values to non-sensitive 
values and converting an input value to a new type.

Type Conversion Functions
This section will cover type conversion functions, as highlighted previously. They will be useful to 
ensure that input values are always compatible with the written configuration scripts, so they can be 
handled with the right validations.

The examples used in the section will be available with the filename 5. type-conversion-
functions.txt in the GitHub link provided at the start of this chapter.

The can() Function

The can() function is mainly used to validate whether the expression will produce a valid result or 
not. If a valid result is possible, true is returned; otherwise, false will be returned.

You can now take a look at a couple of examples:

$ can(anytrue([true, false]))
> true
$ can(one([1, 2]))
> false

Here, the anytrue() function will always return a result, so the can() output is true. In the 
second case, the one() function will throw an error if the input list has more than one element, and 
hence the function returns false.



Type Conversion Functions 209

The sensitive() and nonsensitive() Functions

The sensitive() and nonsensitive() functions are used to create a copy of any value that 
will be marked as sensitive and non-sensitive, respectively, so Terraform can manage how to handle it.

These functions can be used in situations where you want to mark any variable value marked as 
sensitive to a non-sensitive value to print it, and vice versa.

In the following example in Figure 8.1, there are two variables (outval1 and outval2) but outval1 
is set with a sensitive variable value:

Figure 8.1 – main.tf with sensitive and nonsensitive variables



Terraform Functions210

When the terraform plan command is executed, you can see the outval1 value is hidden and 
the outval2 value is displayed in the terminal, as shown in Figure 8.2:

Figure 8.2 – The terraform plan terminal output

The try() Function

The try() function will take the argument expressions and return the first one that does not result 
in an error.

Here is an example:

$ try(one([1,2]), ["1", "2"], [])
[
  "1",
  "2",
]

The type() Function

The type() function determines the type of the given value.

Here is an example:

$ type(["1", "2"])
> tuple([
    string,
    string,
])
$ type(true)
> bool



Type Conversion Functions 211

Conversion Functions

The following functions convert the input value from one type to another:

• tobool()

• tolist()

• tomap()

• tostring()

• tonumber()

• toset()

Some examples are as follows:

$ tobool("true")
> true
$ tonumber("23")
> 23
$ tostring(100)
> "100"
$ toset(["1", "2", "3", "2"])

> toset([
  "1",
  "2",
  "3",
])
$ tomap({"one" = 1, "two" = 2})

> tomap({
  "one" = 1
  "two" = 2
})
$ tolist(["a", "b", 1, true])

> tolist([
  "a",
  "b",
  "1",
  "true",
])



Terraform Functions212

Now that you have read about type conversion functions, you can proceed to learn about filesystem 
functions, which allow you to interact with file-based input handling, along with encoding capabilities.

Filesystem Functions
Filesystem functions are used when you work with files to pass configuration values or read the input 
content and so on. This is very helpful in real-life scenarios such as processing upstream files via 
automation or creating files to be passed to downstream systems with custom content and encoding. 
The examples used in the section will be available with the filename 6. filesystem-functions.
txt in the GitHub link provided at the start of this chapter.

Function outputs for the examples in this section will be based on Windows OS but similar outputs 
can be expected if you use a different operating system.

For the following examples, create a file with the name test.txt with the content as testfile 
before trying out these functions.

The abspath() Function

The abspath() function will convert the string with the file path to an absolute path.

Here is an example:

$ abspath("/terraform")
"C:/terraform"

The dirname() and basename() Functions

The dirname() and basename() functions will return the directory name, removing the filename 
at the end if present. The behavior of the function will vary based on the operating system.

Some examples are as follows:

$ dirname("C:\\Users\\chandru\\test.txt")
"C:\\Users\\chandru"
$ basename("C:\\Users\\chandru\\test.txt")
"test.txt"

The pathexpand() Function

The pathexpand() function will expand the file path that might begin with a tilde symbol (~) and 
replace it with the HOME directory. If the HOME environment variable is not set, the HOMEDRIVE or 
HOMEPATH value will be used; if that is also not available, the USERPROFILE value will be used to 
expand the path.



Filesystem Functions 213

Here is an example:

$ pathexpand("~")
"C:\\Users\\chandru"

The file() and filebase64() Functions

The file() and filebase64() functions read the contents of the given file and return it in 
regular string format and string encoded in the base64 format, respectively.

Here is an example:

$ file("C:\\Users\\chandru\\test.txt")
> "testfile"
$ filebase64("C:\\Users\\chandru\\test.txt")
> "dGVzdGZpbGU="

The fileexists() Function

The fileexists() function returns true or false based on whether the file exists or not in 
the specified path, as in this example:

$ fileexists("C:\\Users\\chandru\\test.txt")
> true

The fileset() Function

The fileset() function will return the set of filenames matching the specified pattern. Please refer 
to the official documentation for more information on valid patterns.

Here is the syntax:

fileset(path, match-pattern)

The templatefile() Function

The templatefile() function is useful to read the template file and dynamically set the content 
of the file using the template variables.

Here is the syntax:

templatefile(file-path, template-vars)

With this, you have finished learning about filesystem functions.



Terraform Functions214

IP Network Functions
In this section, you will read about IP network functions supported in Terraform. These are helpful 
when you work with the setup of AWS resources such as VPC and are creating public and private 
subnets within the VPC and similar components to provision new infrastructure from scratch. 
Understanding these functions requires knowledge of network-addressing concepts.

The examples used in the section will be available with the filename 7. ip-network-functions.
txt in the GitHub link provided at the start of this chapter.

The cidrhost() Function

The cidrhost() function returns the full IP address for a given host number within the given IP 
address prefix.

The function will accept both the IPv4 and IPv6 prefixes.

Here is an example:

$ cidrhost("192.168.1.1/16", 10)
> "192.168.0.10"

The cidrnetmask() Function

The cidrnetmask() function converts an IPv4 address prefix to a subnet mask address. This will 
throw an error if the IPv6 address prefix is given as input.

Here is an example:

$ cidrnetmask("192.168.1.1/16")
> "255.255.0.0"

The cidrsubnet() Function

The cidrsubnet() function calculates the subnet address for a given IP address prefix, and this 
function takes three arguments to extend the prefix. This function accepts IPv4 and IPv6 address prefixes.

Here is the syntax:

cidrsubnet(prefix, new-range, net-num)

An example is as follows:

$ cidrsubnet("192.168.1.1/16", 4, 2)
> "192.168.32.0/20"



Encoding Functions 215

The cidrsubnets() Function

This function returns the sequence of IP address ranges within the CIDR range.

An example is as follows:

$ cidrsubnets("192.168.1.1/16", 4, 4)

> tolist([
  "192.168.0.0/20",
  "192.168.16.0/20",
])

Encoding Functions
This section will cover the different encoding functions available in Terraform. You can use them to 
encode the files created in your own configuration or decode a given file in a specific scheme.

The examples used in the section will be available with the filename 8. encoding-functions.
txt in the GitHub link provided at the start of this chapter.

The base64encode() and base64decode() Functions

These functions can encode a given string in base64 format, decode a base64 encoded string, 
and return the original string.

Here is an example:

$ base64encode("This is a string")
> "VGhpcyBpcyBhIHN0cmluZw=="
$ base64decode("VGhpcyBpcyBhIHN0cmluZw==")
> "This is a string"

The base64gzip() Function

This function compresses a string with gzip and then encodes it with base64 encoding.

Here is an example:

$ base64gzip("This is a string")
> "H4sIAAAAAAAA/wrJyCxWyCxWSFQoLinKzEsHAAAA//8BAAD//z9jdggQAAAA"



Terraform Functions216

The csvdecode() Function

The csvdecode() function decodes a CSV string and produces a list of maps. The first line is 
considered as a header and the remaining lines are considered as data.

Here is an example:

$ csvdecode("1,2\na, b\n")

> tolist([
  {
    "1" = "a"
    "2" = " b"
  },
])

The jsonencode() and jsondecode() Functions

The jsonencode() and jsondecode() functions are used to encode the given string into JSON 
syntax, and vice versa.

The Terraform types are converted to the equivalent JSON types as per the predefined conversion rules.

Here is an example:

$ jsonencode({"one" = 1, "two" = 2})
> "{\"one\":1,\"two\":2}"
$ jsondecode("{\"one\":1,\"two\":2}")
{
  "one" = 1
  "two" = 2
}

The textencodebase64() Function

The textencodebase64() function encodes the given string using the specified encoding scheme.

Here is an example:

$ textencodebase64("This is a string", "UTF-8")
> "VGhpcyBpcyBhIHN0cmluZw=="
$ textencodebase64("This is a string", "UTF-16")
> "/v8AVABoAGkAcwAgAGkAcwAgAGEAIABzAHQAcgBpAG4AZw=="



Hash and Crypto Functions 217

The textdecodebase64() Function

The textdecodebase64() function decodes an already encoded base64 string using the 
specified encoding scheme.

Here is an example:

$ textdecodebase64("VGhpcyBpcyBhIHN0cmluZw==", "UTF-8")
> "This is a string"

The urlencode() Function

The urlencode() function encodes a given string in the URL encoding format, as in this example:

$ urlencode("test url/resource")
> "test+url%2Fresource"

The yamlencode() and yamldecode() Functions

The yamlencode() function encodes the given string using the YAML syntax and the yamldecode() 
function performs the opposite.

Here is an example:

$ yamlencode({"one" = "1"})

> <<EOT
"one": "1"

EOT
$ yamldecode("one : 1")
{
  "one" = 1
}

You have learned about encoding functions in this section and can now proceed to the next section 
on hash and crypto functions, which can be used to generate unique UUIDs. Different hashing 
algorithm-based functions are also supported.

Hash and Crypto Functions
Hash and crypto functions are helpful to generate UUIDs in version 4 and version 5. There are more 
functions to compute different hashing methods such as SHA1, MD5, and so on, which have applicable 
use cases in the field of cryptography.



Terraform Functions218

These functions can also be used to encrypt a file using different methods based on specific requirements. 
The examples used in the section will be available with the filename 9. hash-and-crypto-
functions.txt in the GitHub link provided at the start of this chapter.

The uuid() Function

The uuid() function generates a unique UUID identifier. The version 4 UUID generated by this 
function is random in nature and cannot be duplicated easily. This function will generate a new output 
every time it is tried out.

Here is an example:

$ uuid()
> "9e3eaa9e-5304-4077-7a9a-4f267e9319aa"

The uuidv5() Function

This function generates a version 5 UUID based on the name and namespace values. This is different 
from the uuid() function, where the generated UUID will be the same if the namespace and 
name values remain the same (not random in nature).

The valid values for namespace are "dns", "url", "oid" (object identifier), and "x500".

Here is the syntax:

uuidv5(namespace-value, name)

Here is an example:

$ uuidv5("url", "https: //www.google.co. in")
> "1040b910-63b8-53cb-ad98-8d28e9d9eb95"

Other functions under this category can be grouped into two categories – functions that work on the 
string and ones that work on files.

These are the functions with string input:

• base64sha256()

• base64sha512()

• bcrypt()

• md5()



Hash and Crypto Functions 219

• sha1()

• sha256()

• sha512()

Some examples are as follows:

$ sha1("test string")
> "661295c9cbf9d6b2f6428414504a8deed3020641"
$ md5("test string")
> "6f8db599de986fab7a21625b7916589c"
$ base64sha256("test string")
> "1VecRt/MfxggcBPmW0Tky04sIpj0rEV7qPgnQ/Mekws="

These functions use file input:

• filebase64sha256()

• filebase64sha512()

• filemd5()

• filesha1()

• filesha256()

• filesha512()

For the following examples, you can reuse the same test file created previously when filesystem 
functions were discussed:

$ filebase64sha256("./test.txt")
> "03uTlcK68Wj5d86f+ewAfXJw/ITL8VSTJL/I38NDM6k="
$ filemd5("./test.txt")
> "8bc944dbd052ef51652e70a5104492e3"

With this example, you have completed a thorough walk-through of all the available Terraform 
functions and you should be able to use them in your configuration scripts to make them more 
dynamic and flexible.



Terraform Functions220

Summary
In this chapter, you looked at the different types of functions, starting with basic numeric and string 
functions, followed by collection functions to work with the complex types. Then, the type conversion 
functions were covered with file-based functions with encoding options and a few special utility functions.

From the exam perspective, these functions may not be directly asked about in the questions, but this 
knowledge will be helpful in other scenario-based questions.



Exam Readiness Drill – Chapter Review Questions 221

Exam Readiness Drill – Chapter Review Questions
Apart from a solid understanding of key concepts, being able to think quickly under time pressure is 
a skill that will help you ace your certification exam. That is why working on these skills early on in 
your learning journey is key.

Chapter review questions are designed to improve your test-taking skills progressively with each 
chapter you learn and review your understanding of key concepts in the chapter at the same time. 
You’ll find these at the end of each chapter.

How to Access these Resources
To learn how to access these resources, head over to the chapter titled Chapter 11, Accessing 
the Online Practice Resources.

To open the Chapter Review Questions for this chapter, perform the following steps:

1. Click the link – https://packt.link/HCorp003Ch8.

Alternatively, you can scan the following QR code (Figure 8.3):

Figure 8.3 – QR code that opens Chapter Review Questions for logged-in users

https://packt.link/HCorp003Ch8


Terraform Functions222

2. Once you log in, you’ll see a page similar to the one shown in Figure 8.4:

Figure 8.4 – Chapter Review Questions for Chapter 8

3. Once ready, start the following practice drills, re-attempting the quiz multiple times.

Exam Readiness Drill

For the first three attempts, don’t worry about the time limit.

AT TEMPT 1

The first time, aim for at least 40%. Look at the answers you got wrong and read the relevant sections 
in the chapter again to fix your learning gaps.

AT TEMPT 2

The second time, aim for at least 60%. Look at the answers you got wrong and read the relevant sections 
in the chapter again to fix any remaining learning gaps.



Working On Timing 223

AT TEMPT 3

The third time, aim for at least 75%. Once you score 75% or more, you start working on your timing.

Tip
You may take more than three attempts to reach 75%. That’s okay. Just review the relevant 
sections in the chapter till you get there.

Working On Timing
Target: Your aim is to keep the score the same while trying to answer these questions as quickly as 
possible. Here’s an example of how your next attempts should look like:

Attempt Score Time Taken

Attempt 5 77% 21 mins 30 seconds

Attempt 6 78% 18 mins 34 seconds

Attempt 7 76% 14 mins 44 seconds

Table 8.1 – Sample timing practice drills on the online platform

Note
The time limits shown in the above table are just examples. Set your own time limits with each 
attempt based on the time limit of the quiz on the website.

With each new attempt, your score should stay above 75% while your “time taken” to complete should 
“decrease”. Repeat as many attempts as you want till you feel confident dealing with the time pressure.





9
Understanding HCP Terraform’s 

Capabilities

In this chapter, you will learn about HCP Terraform and Terraform Enterprise, the managed Terraform 
offerings by HashiCorp. While Terraform Community Edition is great, it does have some shortcomings 
that are fixed by HashiCorp with their HCP Terraform and Terraform Enterprise offerings.

It is important for you to understand the differences between the Community, HCP Terraform, and 
Enterprise editions. This knowledge will help you make an informed decision about which edition best 
serves your company’s interests, not just from a technical perspective but also from a cost perspective.

The following are the key topics that will be covered in this chapter:

• Terraform editions

• Shortcomings of Terraform Community Edition

• HCP Terraform features

• HCP Terraform pricing

• Key concepts of HCP Terraform

• HCP Terraform sign-up

• Exercises on workflows, and execution modes in HCP Terraform

• Migrating to HCP Terraform

• Terraform Enterprise features

By the end of this chapter, you will have a good understanding of the difference between various 
Terraform editions, as well as the key features of HCP Terraform and Enterprise. This understanding 
will not only help answer the certification questions related to this chapter but will also help you decide 
which edition is suitable for your environment if you want to explore the paid options of Terraform.



Understanding HCP Terraform’s Capabilities226

Terraform Editions
HashiCorp provides the following editions of Terraform, which should cover a wide spectrum 
of customers:

• Community

• HCP Terraform

• Terraform Enterprise

The following figure shows the available Terraform editions:

Figure 9.1: Terraform editions

Note
HashiCorp changed the name of Terraform Cloud to HCP Terraform. All the functionality 
provided by Terraform Cloud continues in HCP Terraform, with additional features expected 
to be added in the coming days.



Terraform Editions 227

Shortcomings of Terraform Community Edition

Imagine you are the only person managing your infrastructure using Terraform and you went with 
the default Terraform installation, which stored the configuration files and state file on your laptop 
(though it is not recommended even for a single user).

With the increase in the number of environments and the workload, you have been asked by your 
manager to hire additional members to handle the workload. Your new team members will not be 
able to access the state file and the configuration files as they are locally stored on your laptop. You 
realize that the default configuration of the Terraform Community Edition is not meant for team 
collaboration. However, you solve this by customizing Terraform by using version control system 
providers such as GitHub to store the configuration files, blob storage such as S3 for the state file, and 
a NoSQL database such as DynamoDB to enable locking for the state file.

You were able to solve this problem because you knew the shortcomings of the Community edition 
and how to address them. If you are a beginner with Terraform, you might not be able to get around 
problems such as this quite so quickly and confidently.

There are other challenges you will not be able to solve while using Terraform Community Edition. 
A few of them are listed here:

• If your company has a policy to have Service-Level Agreement (SLA)-based support for all 
third-party applications used in production

• The company’s policy dictates using Single Sign-On (SSO) for all the third-party tools used 
in production

• Role-based access control

• Enforce a governance policy or cost policy using policy-as-code frameworks

• The team is comfortable using a Graphical User Interface (GUI)

Terraform Community Edition is great when you are the sole engineer working on infrastructure 
automation and management. However, you will soon notice the following:

• The state file, by default, gets stored in the local filesystem (in the default installation)

• No state file locking (in the default installation)

• No private modules

• No policy as code

• No GUI

• No SSO

• No production support



Understanding HCP Terraform’s Capabilities228

If these shortcomings are impacting your ability to manage the infrastructure, you should explore 
the paid offerings of HashiCorp, which address these problems and provide additional capabilities. 
Depending on your requirements, you can choose between HCP Terraform or Terraform Enterprise.

HCP Terraform Features
HCP Terraform is a SaaS application that runs Terraform in a stable, remote environment and securely 
stores state and secrets. HCP Terraform has a GUI that gives you a detailed view of the resources 
managed by Terraform and good visibility into each Terraform operation. It is available as a hosted 
service at https://app.terraform.io.

The key features of HCP Terraform are discussed in the following section.

Remote State Management

HCP Terraform acts as a remote backend to store Terraform state. It securely stores and versions 
Terraform state remotely, with encryption at rest. You also have access to the state file history since 
the state files are versioned.

Note
Please note that the sensitive data is still stored in the state file. Hence, access to the state file 
directly (via the terraform state command) or indirectly (by accessing the storage where 
the state is stored) should be tightly controlled.

Multiple Workflows

You can initiate Terraform runs (i.e. terraform plan, terraform apply, and any other 
Terraform commands) in any one of the following workflows:

• The CLI-driven workflow: As the name suggests, the workflow initiation happens with the 
user using the Terraform CLI tool but the runs happen in HCP Terraform. That is, the user will 
have the configuration files on the local system, and when they run terraform plan or 
terraform apply, the execution happens in HCP Terraform and the output gets streamed 
to the local system.

• The UI/Version Control System (VCS) driven workflow: Terraform configuration files are 
stored in the VCS repositories of providers such as GitHub. Any changes pushed to these 
repositories trigger runs in the respective workspaces.

• The API-driven workflow: This is an advanced use case. If you want to integrate Terraform 
directly into your application/workflows, you can trigger the Terraform run directly using its APIs.

https://app.terraform.io


HCP Terraform Features 229

Multiple Execution Modes

You can initiate Terraform runs in one of the following execution modes:

• Remote: The plan and apply commands occur on disposable virtual machines in HCP Terraform’s 
infrastructure. You and your team will have the ability to review and collaborate on runs. You 
will be able to review the output of the Terraform runs of your colleagues.

• Local: The plan and apply commands occur on the machine where you are running Terraform 
CLI. HCP Terraform is used to store and synchronize the state only.

• Agent: Agents are used when you want to manage private isolated environments in the on-premises 
setup. These agents poll HCP Terraform/Enterprise for any changes in the configuration and 
apply them locally. As it works via a pull-based mechanism through the outbound connectivity, 
you do not have to allow any ingress traffic through the perimeter firewall. If you work in a 
highly restricted environment where inbound connectivity is not allowed, then the Agent 
execution mode can be used.

Version Control System Integration

Configuration files that are used by Terraform can be stored in a VCS. HCP Terraform supports 
integration with many VCS providers, such as GitHub, GitLab, and BitBucket. It watches for the 
changes in the repository and triggers a run when the new commits are merged. While using a VCS 
is strongly recommended, it is optional.

Private Registry

With Terraform Community Edition, you only get access to public modules. But what if you do not want 
to share your modules with anyone other than your team? A private registry is used in this situation. 
You can upload the provider and modules to it and share it only with the selected members/team. 
The user interface remains the same as the public Terraform registry. The modules can be published 
to the private registry in HCP Terraform and you can control access to these private modules via 
teams in HCP Terraform.

There are a few best practices to be followed while publishing a module to a private repository:

• You should be the admin of the repository where the code is residing (and is integrated with 
HCP Terraform).

• Module repositories should follow a standard naming convention: terraform-PROVIDER-NAME 
– for example, terraform-aws-eip, terraform-gcp-vault, and terraform-aws-
ec2-instance (NAME can have additional hyphens to indicate the resources being managed).

• You must follow the semantic versioning convention for the release tag of the modules/providers. 
Semantic versioning follows the convention of MAJOR.MINOR.PATCH with an optional v at 
the beginning of the version, for example, v1.2.0, v3.8.2, and v5.4.1.



Understanding HCP Terraform’s Capabilities230

Notifications

HCP Terraform can send notifications about Terraform runs to other systems, such as Slack, or any 
other service that accepts webhooks.

Run Tasks

If you want to perform some actions using third-party tools at certain stages of the Terraform lifecycle, 
you can make use of the run tasks option in HCP Terraform. The stages where you can perform actions 
using such tools are before terraform plan, after terraform plan, before terraform 
apply, and after terraform apply.

Typical use cases of run tasks are cost management, policy compliance, and infrastructure drift detection.

Imagine you have a mandate to adhere to the Payment Card Industry Data Security Standard 
(PCI-DSS), which is a security standard for data security in the payments industry, and you want to 
make sure all your infrastructure deployments are verified against the PCI-DSS compliance policies 
before they are provisioned.

run tasks can be utilized in such use cases where the policies related to the PCI-DSS are checked and, 
if they are successful, the resources will be provisioned, or the run will fail.

You can take a look at some of the run tasks available in the Terraform Registry at the following URL:

https://registry.terraform.io/browse/run-tasks

Role-Based Access Control

HCP Terraform supports role-based access control to ensure that only approved teams can access, 
edit, and manage infrastructure with HCP Terraform.

Policy Enforcement

Policies are rules that HCP Terraform enforces on Terraform runs. These policies are written using 
policy-as-code frameworks.

HCP Terraform supports the following policy-as-code frameworks:

• Sentinel: Policies are written in HashiCorp’s Sentinel language.

• Open Policy Agent (OPA): Policies are written in a high-level declarative language called Rego. 
This is not as intuitive as Sentinel.

https://registry.terraform.io/browse/run-tasks


HCP Terraform Pricing 231

Cost Estimation

HCP Terraform can estimate the cost you will incur when the resources you have defined in the 
configuration files are provisioned. By default, the cost estimation feature is disabled. You will have 
to enable this in the organization’s settings. Once enabled, it will start showing the monthly cost you 
will incur for the resources that are provisioned in each run. Cost estimation is not supported by all 
the resources.

At the time of writing this book, HashiCorp has published the supported resources for AWS, Azure, 
and GCP. If you want to look at the supported AWS resources, check out the following URL:

https://developer.hashicorp.com/terraform/cloud-docs/cost-estimation/
aws

HCP Terraform Pricing
HCP Terraform has both free and paid offerings. The amount of features available to you depends on 
the plan you choose. HCP Terraform has three tiers:

• HCP Free (up to 500 managed resources)

• HCP Standard

• HCP Plus

Many key features, such as remote state storage, VCS connection, secure variable storage, private registry, 
a policy set of five policies (policy set is a collection of policies that can be applied at the individual 
workspace or all workspaces), and SSO are made available in the HCP Terraform Free edition.

Though the feature list is good for the free edition, it is very difficult to have a production environment 
as there is a limitation of 500 managed resources. This option is good for assessing whether the features 
of HCP Terraform suit your requirements.

Managed resource/Resources Under Management (RUM) is a resource in an HCP Terraform managed 
state file where mode = managed. HCP Terraform counts a resource as part of this count starting 
from the first terraform plan or terraform apply operation on the resource.

Note
HCP Terraform does not include resources defined as a null_resource or terraform_
data in the total managed resource count.

RUM-based billing applies to the Free edition and the Standard edition. For the Free edition, you are 
limited to 500 managed resources. With the Standard edition, you get charged after 500 managed resources.

https://developer.hashicorp.com/terraform/cloud-docs/cost-estimation/aws
https://developer.hashicorp.com/terraform/cloud-docs/cost-estimation/aws


Understanding HCP Terraform’s Capabilities232

For more details on the pricing and features across different editions, refer to the following 
URL: https://www.hashicorp.com/products/terraform/pricing.

Key Concepts of HCP Terraform
When you compare Terraform Community Edition with the HCP Terraform edition, you will see 
several new concepts have been introduced. Figure 9.1 shows the hierarchy of the concepts within 
HCP Terraform:

Figure 9.2: HCP Terraform concepts hierarchy

You will learn about some of the key concepts of HCP Terraform in the following section.

Workspaces

When you run Terraform locally, you have configuration files, a state file, and variables in a single 
directory (which is also your working directory). Terraform CLI always looks for configuration files 
ending with .tf or .tf.json for configuration, .tfvars files for the values of the variables, and 
the state file to know the current state of the infrastructure in the current working directory (it does 
not look at the subdirectories).

When you want to organize infrastructure resources into a meaningful group, you create different 
directories and have the relevant configuration files in these new directories.

https://www.hashicorp.com/products/terraform/pricing


Key Concepts of HCP Terraform 233

For example, you could have all the VPC and subnet-related configuration files in the network folder 
and have all the config files of RDS and DynamoDB in the database folder.

Similarly, HCP Terraform manages the infrastructure collections with workspaces. You can equate 
the HCP Terraform workspace to the directory in the local Terraform CLI. A workspace contains the 
configuration file, a state file, and variables that are needed by Terraform to manage the infrastructure.

It is recommended that you create multiple workspaces instead of having one big workspace. This means 
Terraform runs and delegating permissions of different workspaces to different teams are quicker.

For example, you can delegate the management of the network workspace to your networking team, 
while an application team can manage the application workspace.

Note
Terraform CLI workspaces are different from HCP Terraform workspaces. CLI workspaces 
are used to deploy multiple environments using the same set of configuration files. Each CLI 
workspace in this context will have a different state file.

For example, if you want to have a testing environment that is similar to the production 
environment, you do not have to duplicate the same code. You can just create two CLI workspaces 
named production and testing in the same directory. Any resources deployed in the production 
workspace will be tracked in a state file specific to the production workspace. Similarly, any 
resource deployed in the testing workspace will be tracked in a separate state file specific to 
the testing workspace. The production state file will not be visible when you are working in 
the testing workspace and vice versa. This is one of the features that is not well received by the 
community and is not recommended as there is a high chance of deleting resources due to 
confusion and difficulty in restricting access.

Projects

Projects let you organize workspaces into groups. Projects are typically used when you want to group 
a certain workspace based on a theme, such as business units, technology divisions, or subsidiaries.

Instead of assigning the same permissions to multiple workspaces that belong to the same business 
units or subsidiaries, you can group them into a single project and assign the permission to this project.

Each workspace must be part of exactly one project. Unless you create a new project, all the workspaces 
belong to a default project named Default Project.

Users

A user account is created for the individual user who has to log in to HCP Terraform to execute 
Terraform runs.



Understanding HCP Terraform’s Capabilities234

A user can be part of one or more teams that are granted permissions on one or more workspaces. 
These users can execute Terraform runs within their respective workspace. A user can be part of 
multiple organizations too.

Teams

A team is a group of HCP Terraform users and is used to grant permission on the workspace. The 
team management feature is available in HCP Terraform Standard.

Teams can only have permissions on workspaces within their organization, but users can belong to 
teams of other organizations too.

Owners team is the default team present in the organization (for all editions) and it cannot be deleted.

Permissions

The access a user or a team has in the organization/project or workspace is dictated by permissions. A 
permission is assigned to a team, and hence users who are part of the team will get these permissions. 
The permission model is split into organization-level, project-level, and workspace-level permissions. 
Most of HCP Terraform’s permissions are focused on workspaces.

There are two ways to assign permission to a team in a workspace:

• Fixed permission sets: These are bundles of specific permissions for workspaces that you can 
use to delegate access to workspaces easily:

 � Workspace admins: Full permission over the workspace.

 � Write: Provisioning and modifying infrastructure.

 � Plan: For people who need to modify the configuration files to propose changes.

 � Read: For people who need to view the status and configuration of infrastructure.

• Custom permissions: If the fixed permission sets are too wide for your requirements, you can 
set fine-grained permissions to a team by using custom permissions.

Organizations

Organizations are a shared space for one or more teams to collaborate on workspaces. It is at the top 
of the hierarchy in HCP Terraform. To join an organization, you must be invited by one of its owners 
and must accept the emailed invitation.

Users who are part of the same organization can collaborate on workspaces and share private modules 
and providers.



Key Concepts of HCP Terraform 235

Locking Workspaces

If you need to prevent Terraform runs on your HCP Terraform account due to production freeze or 
any other reason, you can lock a workspace. This prevents all applies (and many kinds of plans) from 
proceeding, and affects runs created via the UI, CLI, API, and automated systems.

To enable Terraform runs again, you must unlock the workspace.

Sentinel Policies

Sentinel policies are rules that are enforced by HCP Terraform on Terraform runs. It enables HCP 
Terraform to have granular control over the infrastructure using these policies.

A collection of these policies makes a policy set that can be applied at the organization level, the 
project level, or the workspace level.

Every time a Terraform run happens in the workspace, HCP Terraform checks the plan against the 
applicable policy, which can be either a Sentinel policy or an Open Policy Agent (OPA) policy.

As these policies can access the plan, state, and Terraform configurations during the plan stage, they 
are able to check for violations. Depending on the enforcement level configured, if there is a violation, 
the run will fail or will display an error message in the UI after allowing the run.

There are three enforcement levels with Sentinel policies:

• Advisory: The runs are not interrupted when the policy is violated but an error will be displayed 
in the HCP Terraform UI.

• Soft mandatory: The run is stopped when there is a policy violation, but the user can override 
it and allow the run to complete.

• Hard mandatory: The run is stopped until the user fixes the issue that caused this failure.

An important concept in Sentinel policy is imports. When you write a Sentinel policy, imports give the 
required information at the respective stage to compare them against the policy. There are four imports:

• tfplan: This import gives access to the plan created by Terraform core when the user runs 
terraform plan.

• tfconfig: This gives access to all the configuration present in the Terraform configuration 
files that describe the user’s desired state.

• tfstate: This import gives access to the Terraform state, which has details of all the resources 
under Terraform’s management and shows the current infrastructure state.

• tfrun: This import gives access to the data associated with a run in HCP Terraform.

The HCP Terraform UI displays policy results for each policy set you apply to the workspace.



Understanding HCP Terraform’s Capabilities236

Explorer

As your organization grows, keeping track of all your infrastructure objects will become 
increasingly complex.

Explorer helps you analyze your data to understand the organization’s Terraform usage. It displays 
the information in two main sections: types and usecases.

Within the types section, you can get information about modules, providers, workspaces, and 
Terraform versions.

Within the usecases section, you can get details such as top module versions and top 
provider versions.

Clicking any of the options triggers the explorer to perform a query and display the results in a table 
of data.

HCP Terraform Sign-Up
You can use HCP Terraform by creating an account either with HashiCorp Cloud Platform (HCP) 
or by directly signing up with HCP Terraform.

If you use HashiCorp’s other products, such as Boundary or Vault, then you can create an HCP account. 
The same account can be used for HCP Terraform too. If not, you can just create an account with HCP 
Terraform. The following sections cover both ways of creating an account to access HCP Terraform.

Creating an Account with HCP Terraform

The following steps explain how to create an account with HCP Terraform directly:

1. Navigate to this URL: https://app.terraform.io/public/signup/account.

2. Enter your username, email ID, and password, as shown in Figure 9.3.

3. Once you read the terms of use and privacy policy, you can select the checkboxes if you agree.

4. Click Create account.

https://app.terraform.io/public/signup/account


HCP Terraform Sign-Up 237

Figure 9.3: HCP Terraform account sign up

5. A confirmation link will be sent to the email address you specified when creating the account. 
This is for verification. Once you click the link and complete the verification, you are ready to 
use the HCP Terraform account.

You have learned how to create an account with HCP Terraform.

The other way to create an account is by signing up with HCP. This is covered in the next section.



Understanding HCP Terraform’s Capabilities238

Creating an Account with HCP

The following steps explain how to create an account with HCP:

1. Navigate to this URL: https://app.terraform.io/public/signup/account.

2. Click on Continue with HCP account.

3. If you have a GitHub account, you can sign in to the HCP account by clicking on the Sign in 
with GitHub option.

4. If you do not have a GitHub account or want to create an account using a different email ID 
than the one you use for GitHub, look for the Sign up hyperlink at the bottom and click on it.

5. Enter the email ID and password, and you will be asked to agree to the terms of service and 
privacy policy on the next screen, as shown in Figure 9.4.

6. You may select them if you agree and click Continue.

Figure 9.4: HCP sign-up screens

https://app.terraform.io/public/signup/account


Exercises on Workflows and Execution Modes 239

7. An email will be sent to validate the email address you have entered. Once validated, your 
account will be created in HCP.

8. Unlike the account with HCP Terraform, this account can be used to access other HashiCorp 
products, such as Boundary, Consul, and Vault. Within the HCP console, there is a hyperlink 
to take you to HCP Terraform. Once you have an account either with HCP or HCP Terraform, 
you can get started with your infrastructure management using HCP Terraform.

Exercises on Workflows and Execution Modes
In this section, you will perform three exercises to learn more about the remote execution mode and 
local execution mode on HCP Terraform. The other topics covered in these exercises are CLI-driven 
and VCS-driven workflows.

The following are the pre-requisites for the exercises:

• An AWS account and an IAM user with enough permissions to perform the exercises (or an 
SSO user if your organization is using AWS SSO). Refer to the following URL for steps on how 
to create an IAM user in AWS:

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.
html.

• Terraform installed (version 1.4.0 and above preferred).

• HCP Terraform account.

• API token to configure Terraform CLI to access HCP Terraform API.

The following steps will help you create the API token and configure Terraform CLI:

1. Log in to HCP Terraform via the web browser, which is required to generate the API token.



Understanding HCP Terraform’s Capabilities240

2. Now, log in to HCP Terraform via the CLI by running the following command, which should 
prompt you for a confirmation to proceed, as shown in Figure 9.5:

terraform login

Figure 9.5: HCP Terraform login via CLI

3. Once you key in yes and hit Enter, a web page will be opened in your browser with a prompt 
to create an API token named terraform login with the expiration set to 30 days, as shown in 
Figure 9.6. (If you do not see this prompt, make sure you have logged in to HCP Terraform.)

Figure 9.6: API token creation in HCP Terraform



Exercises on Workflows and Execution Modes 241

4. Click Generate token, copy the API token displayed on the screen (this API token is displayed 
only once in HCP Terraform), and paste it into the CLI prompt, as you can see in Figure 9.7 
(as a security measure, the token will not be printed when you paste it in the CLI prompt).

Figure 9.7: HCP Terraform login via CLI waiting for API token

5. This token is stored in the $HOME/.terraform.d/credentials.tfrc.json file, 
which is used to authenticate against HCP Terraform for future runs.



Understanding HCP Terraform’s Capabilities242

6. Once you have logged in successfully, you will see a message that says Welcome to HCP 
Terraform and a series of steps, as you can see in Figure 9.8:

Figure 9.8: Successful login to HCP Terraform via the CLI

Remote Execution Mode Using the CLI-Driven Workflow

In this exercise, you will learn how to run Terraform in remote execution mode in HCP Terraform 
using the CLI-driven workflow.

Make sure all the prerequisites highlighted in the preceding section are completed before you go to 
the next steps.

The code required for this exercise will be present locally on your system, but terraform plan/
apply happens in HCP Terraform with the output being streamed to your local system.

Follow these steps to complete this exercise:

1. Clone the Git repository that contains the files required for this exercise. All the resources 
provisioned in this exercise use a fictitious cloud vendor called Fake Web Services that 
provisions fake VPC, servers, a load balancer, and a database. As these are not real resources 
that are provisioned in any cloud, you will not get charged for these resources.

   git clone https://github.com/hashicorp/tfc-getting-started.git

2. Navigate to the tfc-getting-started folder:

   cd tfc-getting-started/



Exercises on Workflows and Execution Modes 243

3. Run the script by executing the setup.sh file:

   ./scripts/setup.sh

4. When prompted to press any key, hit Enter (or any other key) to confirm the execution.

5. Output like the following should be displayed on your screen too:

~/tfc-getting-started : ./scripts/setup.sh
--------------------------------------------------------
Getting Started with HCP Terraform
--------------------------------------------------------
HCP Terraform offers secure, easy-to-use remote state management 
and allows
you to run Terraform remotely in a controlled environment. HCP 
Terraform runs
can be performed on demand or triggered automatically by various 
events.
This script will set up everything you need to get started. 
You'll be
applying some example infrastructure - for free - in less than a 
minute.
First, we'll do some setup and configure Terraform to use HCP 
Terraform.
Press any key to continue (ctrl-c to quit):
Creating an organization and workspace...
Writing HCP Terraform configuration to backend.tf...
=========================================================
Ready to go; the example configuration is set up to use HCP 
Terraform!
An example workspace named 'getting-started' was created for 
you.
You can view this workspace in the HCP Terraform UI here:
https://app.terraform.io/app/example-org-64362c/workspaces/
getting-started
Next, we'll run 'terraform init' to initialize the backend and 
providers:
$ terraform init
Press any key to continue (ctrl-c to quit):

6. This script will create an organization (example-org-******) and workspace named getting-
started in the HCP Terraform console.

7. It will try to run terraform init, terraform plan, and terraform apply 
-auto-approve in the next three steps. Each step will ask you to confirm the run by pressing 
any key to continue.



Understanding HCP Terraform’s Capabilities244

8. By the end of the apply, Terraform will create five resources: one VPC, two servers, a load 
balancer, and a database. These are all fake resources created using the fakewebservices provider.

9. Notice the execution mode set to Remote, as highlighted in Figure 9.9:

Figure 9.9: CLI-driven remote execution mode completion details

10. Now that you have learned how to run Terraform in remote execution mode and in the CLI-driven 
workflow, you can destroy the resources by running the following command:

terraform destroy –auto-approve

Do not delete the Terraform code, organization, and workspace used for this exercise. They will be 
used in the next exercise, which deals with the local execution mode.

Local Execution Mode Using the CLI-Driven Workflow

In this exercise, you will learn how to run Terraform in local execution mode using the CLI-driven 
workflow. This exercise uses the same Terraform code, organization, and workspace as the preceding 
exercise, Remote Execution Mode Using the CLI-Driven Workflow. Hence, the preceding exercise needs 
to be completed before you start this exercise.

When you select local execution mode, terraform plan/apply runs on your local system and 
the state file is stored in HCP Terraform.

You will not be able to check the details of the runs on HCP Terraform, but you can see the new state 
file being created on HCP Terraform after every local terraform apply.



Exercises on Workflows and Execution Modes 245

 Follow these steps to complete this exercise:

1. If you have already logged in to HCP Terraform, you may continue with this exercise. If not, 
log in to the HCP Terraform web interface via the browser.

2. Select the organization (example: org-******) and workspace (getting-started) that were 
provisioned in the preceding exercise, Remote Execution Mode Using the CLI-Driven Workflow.

3. Navigate to the settings of the workspace (make sure you go to workspace settings and not the 
organization settings, which impacts all workspaces).

4. In the General workspace settings, you should find an option to change Execution Mode.

5. You should see Organization Default mode selected. Change this to Local (custom) execution 
mode as highlighted in Figure 9.10.

Figure 9.10: CLI-driven local execution mode configuration



Understanding HCP Terraform’s Capabilities246

6. Save the settings.

7. In the Remote Execution Mode Using the CLI-Driven Workflow exercise, you used the 
tfc-getting-started folder on the CLI. This folder has the following configuration files:

 � backend.tf: Defines the HCP Terraform organization and workspace where these 
Terraform runs should happen

 � provider.tf: Has a provider_token variable and the fakewebservices provider 
required for our example

 � main.tf: Has a resource block to create the fake VPC, servers, load balancer, and database

8. In the main.tf file, change cidr_block to 10.0.0.0/8 in the fakewebservices_
vpc resource and count to 10 in the fakewebservices_server resource, as shown 
in Figure 9.11. Do not forget to save this setting.

Figure 9.11: CLI-driven local execution mode changes



Exercises on Workflows and Execution Modes 247

9. Run terraform plan to verify that the modifications appear:

terraform plan

10. You will be prompted to enter a value for var.provider_token. This is the same token 
that was generated in the prerequisite section and stored in the credentials.tfrc.json 
file. You can either copy the content of this file and pass it as input when prompted, or you can 
pass it as an environmental variable, TF_VAR_provider_token.

11. You should see that Terraform is trying to add eight resources and modify two resources, as 
shown in Figure 9.12. The eight servers are added to the load balancer and hence modify that 
resource too. You also changed cidr_range of the VPC, which is another modification.

Figure 9.12: terraform plan output for local execution mode

12. Run terraform apply, which creates/modifies the resources as per the code change:

terraform apply

13. Log in to the HCP Terraform console and navigate to the overview of the workspace on which 
you are working. You should see that the number of resources has changed from 5 to 13 (10 
servers, 1 VPC, 1 load balancer, 1 database), but the timestamp of the run is not updated, as shown 
in Figure 9.13. This is because runs from local execution mode are not shown in the console. 



Understanding HCP Terraform’s Capabilities248

Unlike remote execution mode, local mode does not have the Runs option in the workspace 
that shows all previous terraform runs.

Figure 9.13: CLI-driven local execution mode completion details

14. Notice the execution mode is set to Local.

Now that you have learned how to run Terraform in local execution mode using the CLI-driven 
workflow, you can destroy the resources by running the following command. Enter the API 
token when prompted. It will delete all 13 resources:

terraform destroy –auto-approve

Remote Execution Mode Using the VCS/UI Workflow
In this exercise, you will learn how to integrate a VCS with HCP Terraform. You will see how a 
change committed to the VCS repository will trigger an automatic terraform plan/apply in 
HCP Terraform.

In the VCS/UI workflow, there is only the remote execution mode, and every workspace on HCP 
Terraform is associated with a repository. If you do not associate your workspace with a specific branch 
of the repository, it gets associated with a main branch.



Remote Execution Mode Using the VCS/UI Workflow 249

HCP Terraform registers webhooks with the VCS provider. Whenever there is a change to the particular 
branch of the repository that a workspace is associated with, it automatically queues a Terraform run.

A workspace on HCP Terraform is linked only to one branch of the repository, and any changes to 
the other branches do not trigger Terraform runs.

Note
You must trigger the first run of the workspace manually, after which you can trigger the following 
runs via the VCS webhook. You will use the Hashicorp-Certified-Terraform-Associate-003-
Exam-guide-Second-Edition repository in this exercise to learn about the VCS workflow in 
HCP Terraform.

For the VCS/UI workflow exercise, you will have to complete four tasks:

• Create a public repository in GitHub and populate it with the required Terraform configuration files.

• Integrate this repository with HCP Terraform.

• Test the VCS/UI workflow by committing a change to the repository to test the Terraform runs 
getting triggered in HCP Terraform.

• Cost estimation for the runs.

The steps required for each of the tasks are explained under the respective headings.

Creating a Public GitHub Repository and Adding Configuration 
Files

Follow these steps to complete this task:

1. You need to create the VCS repository with the required Terraform configuration files:

I. Log in to your GitHub account.

II. Create a new repository. Since this is for learning, you can create a public repository, as 
shown in Figure 9.14. In this exercise, it is named terraform-vcs-workflow.



Understanding HCP Terraform’s Capabilities250

III. It is recommended to select .gitignore for Terraform, a README, and a license.

Figure 9.14: Creating a public repository in GitHub



Remote Execution Mode Using the VCS/UI Workflow 251

2. Click on the newly created repository and copy the link (as shown in Figure 9.15) required to 
clone this repository to a local machine under the home directory.

git clone https://github.com/GIT_USERNAME/terraform-vcs-workflow.
git ~/terraform-vcs-workflow

Replace GIT_USERNAME with your Git username.

Figure 9.15: Copying the HTTPS link from the GitHub repository

3. In the folder where you have cloned the repo, update the remote endpoint URL (as before, 
replace GIT_USERNAME with your Git username):

cd ~/terraform-vcs-workflow

git remote set-url origin https://github.com/GIT_USERNAME/terraform-vcs-
workflow.git

4. Copy the configuration files of the remote-child-module-example folder used in  
Chapter 5, Terraform Modules, to the terraform-vcs-workflow folder.

5. Clone the Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition 
repository on your local machine in the home directory:

git clone https://github.com/PacktPublishing/Hashicorp-Certified-
Terraform-Associate-003-Exam-guide-Second-Edition.git ~/terraform-
book



Understanding HCP Terraform’s Capabilities252

6. Copy the files to the terraform-vcs-workflow folder:

cp ~/terraform-book/ch5/terraform-modules/remote-child-module-example/* 
~/terraform-vcs-workflow

7. In the providers.tf file, you will notice the terraform block declaring only an AWS 
provider and no configuration for HCP Terraform. When using the VCS-driven workflow for 
HCP Terraform, you do not need to define the cloud block in your configuration.

8. Git is tracking the changes in the terraform-vcs-workflow folder. Since the new files are copied to 
this folder, you can add these changes to the Git staging area by running the following command:

cd ~/terraform-vcs-workflow && git add .

9. Commit the change.

cd ~/terraform-vcs-workflow && git commit -m "first set of files 
to test VCS workflow"

10. Push the changes to the repository created in GitHub:

git push

11. If you encounter any errors during the code push to the repository, make sure you are correctly 
authenticated against GitHub using the personal access token. The following URL can help 
you solve this problem:

https://packt.link/xpAav

You have completed the creation of the public GitHub repository and have populated the required 
configuration files within the repository, as shown in Figure 9.16. In the next section, you will integrate 
this repository with HCP Terraform.

Figure 9.16: Exercise files populated in the GitHub repository

https://packt.link/xpAav


Remote Execution Mode Using the VCS/UI Workflow 253

Integrating the VCS Repository with HCP Terraform

Follow these steps to integrate the public repository you created earlier with HCP Terraform:

1. If you have already logged in to HCP Terraform (via the browser), you can continue. You need 
to log in before proceeding to the next steps.

2. Create a new organization on HCP Terraform by clicking on the Create new organization 
option in the bottom-left corner of the HCP Terraform console, as shown in Figure 9.17. In 
this exercise, the organization is named packt-learn-terraform.

Figure 9.17: Creating a new organization in HCP Terraform



Understanding HCP Terraform’s Capabilities254

3. Once you have selected the organization and clicked Create a Workspace, you will see three 
options. Select Version Control Workflow as shown in Figure 9.18.

Figure 9.18: Creating a new workspace with Version Control Workflow

4. Select GitHub for the version control provider and select the GitHub.com version from 
the dropdown on the screen, as shown in Figure 9.19. A new window will open, asking you to 
authorize HCP Terraform to verify and use your GitHub account.

Figure 9.19: Choosing the version control provider



Remote Execution Mode Using the VCS/UI Workflow 255

5. If you have multiple GitHub accounts, you will have to select the one you want to use and 
click the green Authorize Terraform Cloud button to authorize the connection, as shown in 
Figure 9.20.

Figure 9.20: Authorization window in GitHub

Note
In Figure 9.20 and Figure 9.21, you can see Terraform Cloud instead of HCP Terraform. 
HashiCorp is yet to make this name change in these two workflows. Once that update is done, 
you will see HCP Terraform on those two screens instead of Terraform Cloud.



Understanding HCP Terraform’s Capabilities256

6. You will be asked to install Terraform Cloud/HCP Terraform for your GitHub account, as 
shown in Figure 9.21. When prompted, select the organization where you want to install this 
app. You may select all the repositories on the next screen to make sure the app installation 
covers all repositories. You can later select a specific repository that needs to be integrated 
with the workspace.

Figure 9.21: Install Terraform Cloud/HCP Terraform in GitHub

7. Once successfully installed, it displays all the repositories in the account. Choose the repository 
you want, and the name of the workspace is auto-filled with the same name as the repository.



Remote Execution Mode Using the VCS/UI Workflow 257

8. Click on Create to create a workspace that is integrated with a VCS repository. Once it has 
been created, you should see the screen shown in Figure 9.22:

Figure 9.22: Successful creation of a workspace

This completes the second task of integrating the VCS repository with HCP Terraform.



Understanding HCP Terraform’s Capabilities258

Testing the VCS/UI Workflow in HCP Terraform

In this final task of the VCS/UI workflow, you will test the end-to-end flow by committing a change 
to the repository and verify whether it triggers terraform plan/apply in HCP Terraform.

Now you are ready to trigger your first run manually, which can be done by clicking Start new plan 
within the user interface of HCP Terraform.

This first run will fail because the AWS credentials are not configured yet.

The following steps will help you with the final task of making the change to the public repository and 
triggering terraform plan in HCP Terraform. The resources that get provisioned in this task 
will be in the AWS cloud environment and will cost you money. If you finish this exercise within an 
hour and delete the resources, the cost should be less than $1.

1. You need to provision an IAM user, assign the required policy, and generate an access key 
and secret key. For detailed instructions on how to create an IAM user, refer to the following 
AWS documentation:

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.
html

2. Go to the Overview option of the newly created workspace and you will see a Configure 
variable option. Alternatively, you can directly go to the Variables option under the workspace.

3. Click on Add variable and select Environment variable from the variable category.

4. You need to add two variables: AWS access key (AWS_ACCESS_KEY_ID) and AWS secret 
access key (AWS_SECRET_ACCESS_KEY). While adding the secret access key, select the 
Sensitive checkbox as per best practice. Once the variables are added, you should see entries 
similar to those shown in Figure 9.23.

Note
Workspaces support two types of variables: Environment variables and Terraform variables. 
Environment variables are available in the Terraform runtime environment.

5. Terraform variables are defined in the configuration file, mostly in variables.tf. In 
Terraform CLI, you normally pass the value for these variables via the .tfvars file. In HCP 
Terraform, you pass the value for the variable via the Terraform variable.

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html


Remote Execution Mode Using the VCS/UI Workflow 259

Figure 9.23: Adding AWS credentials as variables

6. Now you have the VCS repository with the required Terraform configuration files, integrated 
the repository with the HCP Terraform workspace, and configured the AWS credentials to 
authenticate to AWS for resource provisioning. You can now trigger the Run manually to verify 
whether everything works as planned.

7. You should see terraform plan running successfully, as shown in Figure 9.24. Toward 
the end of the plan, there is a prompt asking you to either confirm terraform apply or 
discard run.

Figure 9.24: terraform plan output for VCS trigger



Understanding HCP Terraform’s Capabilities260

8. Once you click Confirm and apply, add a comment, and click Confirm plan, as shown in 
Figure 9.25, the resources will get provisioned.

Figure 9.25: Confirm the Terraform plan to apply

9. The code has created VPC, subnets, a route table, EC2, and a few other things, as shown in 
Figure 9.26:

Figure 9.26: Creation of resources after a manual run



Remote Execution Mode Using the VCS/UI Workflow 261

10. You can now make changes to the code locally and push it to the GitHub repository. This should 
automatically trigger terraform run in HCP Terraform.

11. Change the keypair name from root-module-kp to vcs-test-kp in the main.tf file, 
as shown in Figure 9.27:

Figure 9.27: Changing the keypair name

12. Now add the changed file to Git:

git add .

13. Commit the change:

git commit -m "changed the name of keypair"

14. Push the changes to the repository created in GitHub:

git push

15. Since the keypair cannot be renamed, it will have to be deleted and recreated. The EC2 instance 
that uses the keypair will also have to be deleted and recreated. The plan that was triggered 
automatically should confirm these changes.

16. As soon as the latest code is pushed to the GitHub repository, HCP Terraform picks up the 
change and runs terraform plan. It will present the changes as shown in Figure 9.28.



Understanding HCP Terraform’s Capabilities262

17. Go ahead and hit Confirm & apply, add a comment, and hit Confirm plan. You will see the 
resources getting provisioned.

Figure 9.28: terraform plan output for the keypair change in the VCS repository

You can see that the change committed to the VCS repository has triggered the run in HCP Terraform 
and provisioned the resources once you approved the change.

This completes the VCS repository integration with HCP Terraform task.

Note
HCP Terraform now supports dynamic provider credentials to authenticate to AWS. This is a 
recommended way of authenticating against AWS for all production requirements.



Remote Execution Mode Using the VCS/UI Workflow 263

Cost Estimation Feature

The last task in this exercise is to enable the Cost Estimation feature in the organization setting. This 
will give us a cost estimate for each run to indicate how much will it cost us to provision and run the 
infrastructure proposed by terraform run.

One of the important questions you’ll get from your managers is about cost. This feature helps you to 
get a quick number that can be used for your discussions.

You will have to navigate to Organization settings and look for the Cost Estimation option. Click 
on the Enable Cost Estimation for all workspaces checkbox, as shown in Figure 9.29:

Figure 9.29: Enabling the Cost Estimation feature at the organization level

To verify that this change is working, we will make a few changes in the configuration file.

Modify the EC2 instance type from t3.micro to t3.small in the main.tf file and push the 
changes to the repo. Follow the same steps that changed the keypair name in the preceding exercise 
on the VCS/UI workflow.

This should trigger a run, and this time you should see the estimated cost for this infrastructure 
provisioning, as shown in Figure 9.30.



Understanding HCP Terraform’s Capabilities264

Please note that the price can vary a bit depending on the pricing changes made by AWS and the 
region used by you.

Figure 9.30: terraform plan showing the estimated cost

This completes the task of enabling and testing the Cost estimation feature in the VCS workflow.

Before you move on to the next section, please delete all the resources you have created, along with the 
workspace and organization in HCP Terraform. Though Terraform resources such as the workspace 
and organization will not cost you, AWS resources will be charged until they are deleted.



Migrating to HCP Terraform or Terraform Enterprise 265

Migrating to HCP Terraform or Terraform Enterprise
If you are using Terraform Community Edition to manage your resources, you can migrate to HCP 
Terraform or Terraform Enterprise and continue to manage your resources.

The following steps need to be followed to complete the migration:

1. Make a list mapping the Terraform CLI directory with the HCP Terraform workspace.

2. Stop all Terraform operations to prevent any interaction with the state files during the migration.

3. Now you need to let Terraform know that HCP Terraform will be used going forward to manage 
the infrastructure. You do this by adding the cloud block within the terraform block of 
your configuration file. The cloud block has mandatory arguments, such as organization 
and workspaces, and optional arguments, such as hostname, project, and name. For 
a single workspace, the following cloud block needs to be added (make sure you change 
the organization and workspace name to the one you have in your HCP Terraform account):

terraform {
  cloud {
    organization = "packt-terraform"
    workspaces {
      name = "networking"
    }
  }
}

4. This should migrate the state file into HCP Terraform or to Terraform Enterprise, depending 
on which one you have used.

Note
Speculative Plans: These are plan-only runs, that is, these runs can never be applied but will 
only show the changes that your infrastructure will undergo due to the latest change in the 
configuration code. In the VCS-integrated workspace, any pull request to the repository will 
trigger a speculative plan, whereas in the CLI-integrated workspace, the terraform plan 
command will trigger the speculative plan.



Understanding HCP Terraform’s Capabilities266

Terraform Enterprise Features
If your company has a security mandate to have in-house deployment of the tools used to manage 
your infrastructure, Terraform Enterprise is the only edition to use.

Terraform Enterprise is the self-hosted distribution of HCP Terraform.

In terms of the features, Terraform Enterprise builds on the feature set of HCP Terraform. We will 
focus only on the unique additional features that are provided by Terraform Enterprise.

The following features are exclusive to Terraform Enterprise:

• Cross-organization registry sharing.

• Both HCP Terraform and Terraform Enterprise support the creation of multiple organizations 
and using the private registry within them. However, only Terraform Enterprise supports 
sharing the modules/providers in the private registry with other organizations in the same 
Terraform Enterprise instance.

• Runtime metrics (Prometheus) and application-level logging.

• Metrics and logs are very important from an observability perspective, as you will need to 
understand the state of the application and its performance.

• As Terraform Enterprise is a self-hosted application, you will need to monitor the runtime 
metrics and also keep an eye on the application logs.

• Runtime metrics need to be explicitly enabled as they are disabled by default. You can use 
Grafana with Prometheus to visualize these exported metrics.

• The application logs are sent directly to standard output and standard error.

• Air gap network deployment.

• If your company has a restricted network environment so that the tools deployed in your 
network cannot access the internet, you will have to go with Terraform Enterprise.

• Log forwarding.

• It is a common practice in enterprises to aggregate logs in a single location and pass them through 
security tools for observability, retain them for compliance, and use them for troubleshooting 
when needed.

• Terraform Enterprise supports forwarding logs to central locations, which could be external 
destinations such as Syslog server or paid offerings such as Datadog or Splunk. It also supports 
sending logs to cloud offerings such as AWS S3 and Cloudwatch (only when Terraform Enterprise 
is running within AWS), GCP Cloud Logging, or Azure Blob storage.



Summary 267

• Support for ServiceNow integration (only the HCP Terraform Plus edition supports this other 
than Terraform Enterprise).

• Many enterprises use ServiceNow for their workflow automation and prefer using a single tool 
while working with other applications too. Terraform Enterprise can integrate with ServiceNow, 
which will help users provision a self-serve infrastructure directly from ServiceNow.

• After the successful integration, end users will be able to use ServiceNow to create workspaces 
and perform Terraform runs.

• Terraform Enterprise provides an API to back up and restore all its application data.

Terraform Enterprise supports more flexible deployment options, such as Docker Engine (using 
Compose) and Kubernetes (using Helm).

Note
For a full feature comparison between Terraform Community Edition, HCP Terraform, and 
Terraform Enterprise, visit the following URL and navigate to the features section:

https://www.hashicorp.com/products/terraform/pricing

Summary
In this chapter, you have learned about the various Terraform editions at your disposal after you decide 
to go with Terraform for infrastructure management. By now, you should have a good understanding 
of the shortcomings of Terraform Community Edition, when to move to HCP Terraform/Enterprise, 
and the additional features of these editions. You also learned how to sign up for HCP Terraform and 
looked at a few exercises that helped you understand how the workflows work and what the local and 
remote execution modes are.

Policy as code is one of the key features that is used to enforce certain policies around costing, best 
practices, and compliance. You learned how this can be implemented using Sentinel. Toward the end 
of the chapter, you looked at the unique features of Terraform Enterprise.

In the next chapter, you will look at some miscellaneous topics that have not been covered so far.

https://www.hashicorp.com/products/terraform/pricing


Understanding HCP Terraform’s Capabilities268

Exam Readiness Drill – Chapter Review Questions
Apart from a solid understanding of key concepts, being able to think quickly under time pressure is 
a skill that will help you ace your certification exam. That is why working on these skills early on in 
your learning journey is key.

Chapter review questions are designed to improve your test-taking skills progressively with each 
chapter you learn and review your understanding of key concepts in the chapter at the same time. 
You’ll find these at the end of each chapter.

How to Access these Resources
To learn how to access these resources, head over to the chapter titled Chapter 11, Accessing 
the Online Practice Resources.

To open the Chapter Review Questions for this chapter, perform the following steps:

1. Click the link – https://packt.link/HCorp003Ch9.

Alternatively, you can scan the following QR code (Figure 9.31):

Figure 9.31 – QR code that opens Chapter Review Questions for logged-in users

https://packt.link/HCorp003Ch9


Exam Readiness Drill – Chapter Review Questions 269

2. Once you log in, you’ll see a page similar to the one shown in Figure 9.32:

Figure 9.32 – Chapter Review Questions for Chapter 9

3. Once ready, start the following practice drills, re-attempting the quiz multiple times.

Exam Readiness Drill

For the first three attempts, don’t worry about the time limit.

AT TEMPT 1

The first time, aim for at least 40%. Look at the answers you got wrong and read the relevant sections 
in the chapter again to fix your learning gaps.

AT TEMPT 2

The second time, aim for at least 60%. Look at the answers you got wrong and read the relevant sections 
in the chapter again to fix any remaining learning gaps.



Understanding HCP Terraform’s Capabilities270

AT TEMPT 3

The third time, aim for at least 75%. Once you score 75% or more, you start working on your timing.

Tip
You may take more than three attempts to reach 75%. That’s okay. Just review the relevant 
sections in the chapter till you get there.

Working On Timing
Target: Your aim is to keep the score the same while trying to answer these questions as quickly as 
possible. Here’s an example of how your next attempts should look like:

Attempt Score Time Taken

Attempt 5 77% 21 mins 30 seconds

Attempt 6 78% 18 mins 34 seconds

Attempt 7 76% 14 mins 44 seconds

Table 9.1 – Sample timing practice drills on the online platform

Note
The time limits shown in the above table are just examples. Set your own time limits with each 
attempt based on the time limit of the quiz on the website.

With each new attempt, your score should stay above 75% while your “time taken” to complete should 
“decrease”. Repeat as many attempts as you want till you feel confident dealing with the time pressure.



10
Miscellaneous Topics

A big congratulations to you for maintaining sheer focus and dedication to your Terraform certification 
journey – and yes, you have reached the final chapter of this book.

As you will have noticed, the core aspects of the Terraform configuration language were covered 
initially. This was then followed by learnings on enterprise offerings such as Terraform Cloud and 
Terraform Enterprise that elevate the overall development experience for software developers. They 
also enable you to manage production infrastructure seamlessly with minimal overhead.

In this chapter, some topics relevant to the certification exam that could not be covered so far will be 
discussed. The individual topics are not very extensive, but they add value in special scenarios if the 
use case demands it.

The topics that will be covered in this chapter are the following:

• Input validations

• Preconditions and postconditions

• The check {} block

• Workspaces

• The dynamic {} block

• Provisioners

• Handling sensitive data

Technical Requirements
There are sample configuration files with the examples used in the chapter and you can find them at 
the following link:

https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-
Associate-003-Exam-guide-Second-Edition/tree/main/ch10

https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition/tree/main/ch10
https://github.com/PacktPublishing/Hashicorp-Certified-Terraform-Associate-003-Exam-guide-Second-Edition/tree/main/ch10


Miscellaneous Topics272

To use the files, the following tools are expected to be available on your workstation:

• An AWS account ID with administrator access credentials

• The AWS CLI (version 2.x.x)

• The Terraform CLI (version 1.5.x or later)

• Visual Studio Code or any text editor

Input Validations
In real-world scenarios, it is very common to get the necessary inputs from the user and provision 
the infrastructure accordingly. For example, you can assume that you are part of a central DevOps 
team that is involved in setting up the CICD pipelines for any team requiring your service. In this 
case, they might need to provide basic inputs such as application name/ID, cloud-specific details such 
as region, and so on.

If the infrastructure provisioning is automated from your end, such that the workflow will trigger 
directly when the user provides the input via a ticket, it becomes necessary to run the workflow for 
valid inputs only. Manual errors in inputs would also need to be filtered as early as possible.

This is where input validations will help, and in Terraform, this can be achieved by adding the 
validation {} block with the condition argument specifying the rules in the form of expressions. 
If the result of the expression is TRUE, the input will be considered valid, and if it’s FALSE, Terraform 
will return an error message.

This is primarily used with variable declarations. Take a look at the following code snippet:

variable "app_id" {
  type        = string
  description = "The application id for ECR repo creation."

  validation {
    condition     = length(var.app_id) == 9 && substr(var.app_id, 0, 
4) == "app-"
    error_message = "The app_id value must include the prefix \"app-\" 
and should be 9 characters long."
  }
}

Here, the app_id variable is to get the user input for the application ID and that will be used to 
create the Elastic Container Registry (ECR) repository for the application to host Docker images. 
ECR is a managed service from the AWS cloud provider for customers to host their container images 
in public or private repositories.



Preconditions and Postconditions 273

If the input does not match the criteria of a length of nine characters or is missing the app-, prefix, 
Terraform will return a coded error message like the one shown in Figure 10.1. This is directly related 
to the resource lifecycle and terraform applies will go through only if the specified condition 
is TRUE. You will further look into other functionalities and how they  behave:

Figure 10.1 – Error message returned by Terraform

The complete code is available at the GitHub link provided previously – feel free to try it out with 
your AWS account.

Preconditions and Postconditions
Input validation stops resource creation in the case of invalid inputs if you run the configuration script, 
which means the validation takes place before the terraform apply operation.

But if you want a similar condition(s) to be applied to resources, data sources, or outputs and the 
evaluation has to be done before and after, based on the scenario, Terraform has precondition 
and postcondition to explore.

For resources and data sources, the precondition and postcondition checks need to be 
added under the lifecycle {} block. The outputs can contain a precondition check only 
without the lifecycle {} block. The precondition and postcondition check will contain 
the condition and the error message parameters, such as the one you saw with the input validation.

Look at the following code snippet:

data "aws_ecr_repository" "repo_data" {
  name = aws_ecr_repository.app_repo.name

  lifecycle {
    precondition {
      condition     = aws_ecr_repository.app_repo.image_tag_mutability 
== "IMMUTABLE"
      error_message = "The only value allowed is \"IMMUTABLE\"."



Miscellaneous Topics274

    }

    postcondition {
      condition     = substr(self.name, 10, 4) == "repo"
      error_message = "Resource suffix \"repo\" missing for the ECR 
repo"
    }
  }
}

The data {} block here has one precondition and one postcondition specified. 
precondition will validate whether the image_tag_mutablity argument is set to IMMUTABLE 
to allow the resource creation. If not, Terraform will return an error message.

postcondition will check whether the repo to be created has the right repo suffix appended at 
the end. If not, the resource creation will be blocked again, and the error message will be returned. 
This behavior is the same when applied with resource {} blocks as well.

If you look closely, the self keyword is used to refer to the name attribute within the same data 
resource block and the validation will come into effect when you issue the terraform plan and 
terraform apply commands.

In the case of outputs, only precondition is applicable, and that will be validated before the 
value parameter. Specifying the precondition with the outputs will help save the right output value 
in the output, and if there are any problems with the latest changes, it will preserve the previous output 
value with this type of check.

The check {} block
Unlike the input variable validations and the custom preconditions/postconditions, check {} blocks 
are not tied to the resource lifecycle directly. check {} blocks are used to validate the checks for 
the overall configuration after the plan/apply operations.

check {} blocks can help perform the functional validation of the provisioned infrastructure 
after apply – check {} blocks have assert {} block inside them, which, in turn, contain the 
condition and error_message arguments.

Another major difference is that check {} blocks will allow the terraform plan/apply 
operation to go through in the case of validation failures. The error message will be written at the end 
if the defined condition seems to be invalid. This can also be used with data sources.



The check {} block 275

To understand this block better, we will define an AWS Simple Storage Service (S3) bucket and check 
the force_destroy parameter in the check {} block:

resource "aws_s3_bucket" "app_bucket" {
#  force_destroy = true
}
check "destroy_check" {
    assert {
      condition = aws_s3_bucket.app_bucket.force_destroy == true
      error_message = "The S3 bucket created with the force_destroy 
parameter as false"
    }
}

During the planning stage, the force_destroy parameter value that is going to be set is known, 
and hence, Terraform will throw the error message shown in Figure 10.2.

Figure 10.2 – Error message from the check {} block



Miscellaneous Topics276

If you proceed with apply, the S3 bucket will still be created, and the error message will also be 
returned, as shown in Figure 10.3.

Figure 10.3 – Output from terraform apply

Workspaces
This section is relevant to Terraform CLI workspaces and is different from the Terraform Cloud 
workspaces covered in the previous chapter.

As you are aware, Terraform configuration files can be configured to use a particular backend to persist 
the state file data. This has more advantages over the default local backend in terms of backup and 
recovery, shared access within teams, security, and so on.

When you work with the default settings, the configuration stores the state file that belongs to the 
default workspace. If there is a need to manage and work with multiple workspaces for the same 
configuration, there is a list of compatible backends that support that.

Have a look at a scenario and proceed with a sample exercise to know more:

The accounting team of the ABC company is planning to go ahead and use Terraform for their 
infrastructure provisioning. They will be deploying resources with the same AWS account to support 
multiple lower environments. AWS S3 is the backend they will be configuring for their scripts.

This approach will help with better management. This will also remove the need to deal with multiple 
AWS accounts. In this case, the configuration scripts that will be used are the same for all environments, 
and the resources created must be unique to avoid conflicts.

Instead of creating copies of the configuration for each environment with hardcoded values, you can 
parameterize the configuration so the resource names are decided dynamically and you can work 
with a single set.



Workspaces 277

This is where Terraform workspaces can help; for the above scenario, the S3 backend can be configured 
to use different workspaces for each environment, and all state files will be created and managed 
within the same S3 bucket.

The main.tf file for the sample exercise is given here:

provider "aws" {
  region = "us-east-1"
}

locals {
  queue_prefix = "${terraform.workspace}"
}

resource «aws_sqs_queue» «main_queue» {
  name = "${local.queue_prefix}-accounting-stmt-queue"

  redrive_policy = jsonencode({
    deadLetterTargetArn = aws_sqs_queue.dlq_queue.arn
    maxReceiveCount     = 4
  })
}
resource "aws_sqs_queue" "dlq_queue" {
  name = "${local.queue_prefix}-accounting-stmt-dlq"
}

resource "aws_sqs_queue_redrive_allow_policy" "queue_redrive_policy" {
  queue_url = aws_sqs_queue.dlq_queue.id

  redrive_allow_policy = jsonencode({
    redrivePermission = "byQueue",
    sourceQueueArns   = [aws_sqs_queue.main_queue.arn]
  })
}

Here are some things to note:

• The local queue_prefix variable will be set based on the current workspace name in the 
context, and it will decide the final name of the SQS resources to be created.



Miscellaneous Topics278

• The script will create an SQS queue and its respective dead letter queue with a redrive policy. 
SQS is a fully managed queueing service from AWS to be used in event-driven architectures 
where different microservices can interact with the queue messages to be processed in an 
asynchronous fashion. The redrive policy will ensure the unprocessed messages in the dead 
letter queue will be moved to the standard queue for processing.

More information can be found at the following links:

 � https://docs.aws.amazon.com/sqs

 � https://docs.aws.amazon.com/AWSSimpleQueueService/latest/
SQSDeveloperGuide/sqs-configure-dead-letter-queue-redrive.html

• The default local backend is used as there is no backend {} block configured.

• On applying this configuration with the default settings, the SQS resources that will be created 
are as follows:

 � default-accounting-stmt-dlq

 � default-accounting-stmt-queue

The terraform.tfstate file is stored in the default root directory location as expected. If you 
want to, use the same script to create the same set of resources for the dev environment with the 
dev prefix.

As a first step, you can go ahead and create the dev workspace with the following command:

$ terraform workspace new dev

Then, the context will be automatically switched to the new dev workspace (marked with the asterisk 
(*) symbol), which can be validated with the terraform workspace list command, as 
shown in Figure 10.4.

$ terraform workspace list

Figure 10.4 – terraform workspace list command output

https://docs.aws.amazon.com/sqs
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configure-dead-letter-queue-redrive.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configure-dead-letter-queue-redrive.html


The dynamic {} block 279

Now, rerun the plan and apply commands and see the results:

• You will notice that a new terraform.tfstate.d folder has been created in the root 
directory and it has one subfolder, dev, which has a new state file created.

• The state file will have the following resources defined and is different from the ones created 
with the default workspace:

 � dev-accounting-stmt-dlq

 � dev-accounting-stmt-queue

You can use the same steps to create multiple workspaces with the same configuration without having 
to manage multiple backends. To destroy the resources created in the respective workspace(s), please 
use the terraform workspace select <WORKSPACE_NAME> command, followed by the 
destroy command.

You can also refer to the commands.txt file in the GitHub repository for this chapter, which lists 
the different commands used with these examples.

The list of supported backends for multiple workspaces is given here:

• Azure Resource Manager (RM): Blob storage supported by Microsoft

• Consul: Backend to store the state as Key/Value (KV) in the given path

• COS: Tencent Cloud object storage

• GCS: Google’s object storage service

• Kubernetes: Open-source container orchestration platform

• Local: Default backend supported by Terraform

• OSS: Bucket storage option from Alibaba Cloud

• Postgres: Popular relational database

• Remote: Generic remote backend to configure different backends

• S3: AWS object storage platform

The dynamic {} block
The dynamic {} block is a special type of block that can be used to generate nested blocks instead 
of a value. This is different from the for_each expression, which dynamically sets the expression 
value based on the input complex type.

The dynamic {} block creates a nested block for special resources, data sources, providers, or 
provisioner blocks that might accept repeatable nested blocks. A very good example of possible usage 
is DynamoDB table creation using Terraform.



Miscellaneous Topics280

AWS DynamoDB is a non-relational NoSQL database service; it can accept multiple attribute blocks, 
and these blocks can be automatically constructed using the dynamic {} block if the values can 
be passed from a complex type variable.

The following configuration snippet uses the dynamic block to define a DynamoDB table with the 
AccountId and AccountName attributes:

resource "aws_dynamodb_table" "account-table" {

  name           = "Accounttable"
  billing_mode   = "PROVISIONED"
  read_capacity  = 2
  write_capacity = 2
  hash_key       = "AccountId"
  range_key      = "AccountName"

  dynamic "attribute" {
    for_each = var.dynamodb_attributes
    content {
      name = attribute.value["name"]
      type = attribute.value["type"]
    }
  }

  tags = {
    Description = "Account Table"
    CreatedBy   = "dynamic  block"
  }
}

You might have a question now – how does this actually work?

• You have a dynamodb_attributes variable with the list(object) type, with each 
occurrence having the name and type keys.

• The variable will have a couple of values, AccountID and AccountName, that will be set 
as attributes using the attribute block.

• The dynamic block generates this type by looping over the variable values using the for_each 
expression and ensures that different attribute blocks are generated before creating 
the resource.

• The content {} block will actually set the content for the attribute block with the input 
values passed.



Provisioners 281

This is helpful in this particular case, but this should not be applied wherever possible, because that 
could make the configuration complex and difficult to understand. The dynamic blocks can also be 
used within other dynamic blocks if needed to create multiple-level nested blocks.

One limitation with the dynamic {} block is that it can generate nested blocks supported by the resource 
type but cannot be used for generating meta-argument blocks for lifecycle and provisioner blocks.

Provisioners
Terraform supports the concept of provisioners, which can be used to perform some actions on a 
local machine executing Terraform or a remote machine provisioned using Terraform that works in 
sync with other real-world objects.

Local and remote provisioners should be considered as the last option to use in Terraform because 
it has no control over the actions performed by provisioners and it can depend on multiple things 
in the local/remote machine. If there are alternatives available from providers to avoid the use of 
provisioners, they should be considered first as per the Terraform documentation.

Think of a scenario where a team of developers is working on the same set of configuration scripts with 
local provisioners and there are dependencies on the scripts for a few resources. The local provisioner 
will mostly work with the software installed on the local machine, and it can have different versions 
on different machines. Hence, the behavior of the local provisioner will vary and there are chances of 
dependent resources being impacted.

There are a few situations where provisioners are still used:

• Passing data to virtual machines using user_data, metadata, or custom_data blocks, 
based on the cloud provider

• Provisioning files using the cloudinit_config data source

• Running configuration management software

The file provisioner

The file provisioner is mainly used to copy files to newly created resources in Terraform or create new 
files. It supports ssh and winrm connection modes.

The same resource can contain multiple file provisioner blocks if needed, and the parameters 
supported are as follows:

• source: The source file or directory

• content: The actual content to be copied to the file in the new resource

• destination: The destination file or directory



Miscellaneous Topics282

The source and content parameters cannot be used at the same time.

A sample file provisioner is given here for reference, and for this example to work, the configs 
folder should be available in the current working directory and SSH access should be enabled on the 
EC2 machine to be accessible from the local machine running the script:

resource "aws_instance" "web" {
  # Copies the configs folder to /etc/configs
  provisioner « file » {
    source      = « ./configs «
    destination = « /etc/configs »
  }
}

The local-exec provisioner

The local-exec provisioner is used to run commands after the resource is created and it runs on 
the host machine running Terraform.

The following are the parameters supported for the local-exec provisioner:

• command: The command to be executed.

• working_dir: The working directory for the command to run; if not provided, defaults to 
the current working directory.

• interpreter: The interpreter arguments to pass for the command – examples are [sh, -c] 
and [/bin/bash, -c].

• environment: The name of the environment in key-value pairs for the command.

• when: To specify when to execute the command and the valid values are when = destroy. 
This will run when the resource is destroyed.

• quiet: When set to true, the command will not be printed in the output terminal. But still, 
the output of the command will be displayed.

Here is a sample configuration:

In this example, the aws configure list command is executed on the local machine to check 
the current configuration set for the AWS CLI. For this example to work, the AWS CLI tool should 
be available on the local machine and a valid configuration profile should exist:

resource "aws_instance" "web" {
  # ...
  provisioner "local-exec" {
    command = «aws configure list»
    environment = {



Provisioners 283

      env = "prod"
      region = "us-east-1"
    }
    when = destroy
  }
}

The remote-exec provisioner

The remote-exec provisioner is used to execute the command on the new resource created remotely. 
This provisioner requires the connection block and it supports both ssh and winrm connection types.

The following parameters are supported when using this provisioner:

• inline: The list of commands to execute on the remote machine using the default shell 
available on the machine. If the default shell needs to be overridden, the first command in the 
list should be set to the required shell program.

• script: The relative or absolute path of the script available locally to be copied and then 
executed. This cannot be used if the inline or scripts option is specified.

• scripts: The relative or absolute path of the scripts available locally to be copied and then 
executed. This cannot be used if the inline or script option is specified.

When using the script or scripts option, arguments are not allowed to be passed. In that case, 
the file provisioner can be used and then the inline option can be used to pass the arguments for 
the command.

As mentioned already, provisioners are not the preferred option for use if providers support an 
alternative way of executing any commands/scripts when the resource is created.

Here’s a sample configuration:

resource "aws_instance" "web" {
  connection {
    type     = "ssh"
    user     = "testuser"
    password = base64decode(var.password)
    host     = self.public_ip
  }
  provisioner "remote-exec" {
    inline = [
      "/bin/bash -c echo ${aws_instance.web.id}"
    ]
  }
}



Miscellaneous Topics284

Handling Sensitive Data
When you deal with creating and managing cloud resources using Terraform, there could be situations 
where you will be working with sensitive data such as admin credentials, database user passwords, 
vault keys, and so on. So, it is very important that you secure the sensitive data, so it is not exposed 
to the outside world.

The sensitive data is stored in the state file as well, since it must record all the relevant attributes of 
the provisioned resources to track whether there are any changes made subsequently. So, the state 
file with the sensitive data is important, and you need a proper strategy to decide where it was stored 
and accessed.

However, a couple of considerations must be made:

• When the state file is stored with the default local backend, the data is stored in plain text format.

• When the state file is stored in a remote backend such as S3, it can be configured to enable 
encryption at rest so the data will be decrypted and used only when Terraform uses it. Also, 
bucket policies can be additionally added to enable only specific users to have access to the 
state file.

The following section looks at the different aspects of handling sensitive data within the Terraform 
workflow and how to secure them.

AWS Access Keys or Admin Credentials

In AWS, the most common way of provisioning resources is by using admin credentials in the 
background. There are special cases where the AWS CLI is also expected to be configured already on 
the host machine running Terraform.

There are multiple ways to set up admin credentials:

• provider {} block configuration values

• Environment variables

• Shared credentials/configuration file

• Container credentials

• Instance profile credentials

But the preferred way is to use the environment variables option so that it does not get recorded in 
the state file as it is and does not use hardcoded credentials.



Next Steps 285

Variables

Terraform variables are also expected to contain sensitive information sometimes, to be passed for 
configuration, such as database initial credentials such as usernames and passwords.

In this case, the sensitive attribute of the variable has to be set to true, so it is not exposed directly 
in the console during the plan and apply operations.

But remember that the variable value will be stored in plain text fashion in the state file. When setting variable 
values, the environment variables option is preferred with the TF_VAR_<variable_name> convention.

You can use the .tfvars file to set variable values, but then again, you need to ensure that the 
configuration scripts with the .tfvars file are accessible only to a special group of people.

Another good practice is to fetch the values from an external secret engine such as AWS Secrets 
Manager, HashiCorp Vault, or similar tools.

This is how you should declare a variable that might contain a sensitive value:

variable "database_password" {
  description = "Database password"
  type        = string
  sensitive   = true
}

Output Values

Output values also can refer to a variable marked as sensitive in the configuration, like any other 
variable. In this case, Terraform would throw an Output refers to sensitive values error message.

To overcome this issue, the output value also needs to be marked as sensitive using the attribute 
and then the output value will also be hidden from the console output. Again, the values will be 
recorded in plain text inside the state file.

Next Steps
Now that you have covered miscellaneous topics, you should be good to go ahead and try out the 
practice exams.

Once you feel confident, schedule the certification exam and get certified with flying colors!



Miscellaneous Topics286

Summary
In this chapter, the focus was more on topics that are not vast but are very important to understand 
when you want to build and deploy complex applications using Terraform. Provisioners are very 
helpful if you know how to use them effectively and handle exceptions that can occur. The usage of 
sensitive data in Terraform needs to be planned well ahead of the project schedule and external secret 
engines should be utilized whenever possible.



Exam Readiness Drill – Chapter Review Questions 287

Exam Readiness Drill – Chapter Review Questions
Apart from a solid understanding of key concepts, being able to think quickly under time pressure is 
a skill that will help you ace your certification exam. That is why working on these skills early on in 
your learning journey is key.

Chapter review questions are designed to improve your test-taking skills progressively with each 
chapter you learn and review your understanding of key concepts in the chapter at the same time. 
You’ll find these at the end of each chapter.

How to Access these Resources
To learn how to access these resources, head over to the chapter titled Chapter 11, Accessing 
the Online Practice Resources.

To open the Chapter Review Questions for this chapter, perform the following steps:

1. Click the link – https://packt.link/HCorp003Ch10.

Alternatively, you can scan the following QR code (Figure 10.5):

Figure 10.5 – QR code that opens Chapter Review Questions for logged-in users

https://packt.link/HCorp003Ch10


Miscellaneous Topics288

2. Once you log in, you’ll see a page similar to the one shown in Figure 10.6:

Figure 10.6 – Chapter Review Questions for Chapter 10

3. Once ready, start the following practice drills, re-attempting the quiz multiple times.

Exam Readiness Drill

For the first three attempts, don’t worry about the time limit.

AT TEMPT 1

The first time, aim for at least 40%. Look at the answers you got wrong and read the relevant sections 
in the chapter again to fix your learning gaps.

AT TEMPT 2

The second time, aim for at least 60%. Look at the answers you got wrong and read the relevant sections 
in the chapter again to fix any remaining learning gaps.



Working On Timing 289

AT TEMPT 3

The third time, aim for at least 75%. Once you score 75% or more, you start working on your timing.

Tip
You may take more than three attempts to reach 75%. That’s okay. Just review the relevant 
sections in the chapter till you get there.

Working On Timing
Target: Your aim is to keep the score the same while trying to answer these questions as quickly as 
possible. Here’s an example of how your next attempts should look like:

Attempt Score Time Taken

Attempt 5 77% 21 mins 30 seconds

Attempt 6 78% 18 mins 34 seconds

Attempt 7 76% 14 mins 44 seconds

Table 10.1 – Sample timing practice drills on the online platform

Note
The time limits shown in the above table are just examples. Set your own time limits with each 
attempt based on the time limit of the quiz on the website.

With each new attempt, your score should stay above 75% while your “time taken” to complete should 
“decrease”. Repeat as many attempts as you want till you feel confident dealing with the time pressure.





11
Accessing the Online Practice 

Resources

Your copy of HashiCorp Terraform Associate (003) Exam Guide comes with free online practice 
resources. Use these to hone your exam readiness even further by attempting practice questions on 
the companion website. The website is user-friendly and can be accessed from mobile, desktop, and 
tablet devices. It also includes interactive timers for an exam-like experience.

How to Access These Resources
Here’s how you can start accessing these resources depending on your source of purchase.

Purchased from Packt Store (packtpub.com)

If you’ve bought the book from the Packt store (packtpub.com) eBook or Print, head to  
https://packt.link/hsh003practice. There, log in using the same Packt account you 
created or used to purchase the book.

Packt+ Subscription

If you’re a Packt+ subscriber, you can head over to the same link (https://packt.link/
hsh003practice), log in with your Packt ID, and start using the resources. You will have 
access to them as long as your subscription is active.

If you face any issues accessing your free resources, contact us at customercare@packt.com.

http://packtpub.com
https://packt.link/hsh003practice
https://packt.link/hsh003practice
https://packt.link/hsh003practice
mailto:customercare%40packt.com?subject=


Accessing the Online Practice Resources292

Purchased from Amazon and Other Sources

If you’ve purchased from sources other than the ones mentioned above (like Amazon), you’ll need to 
unlock the resources first by entering your unique sign-up code provided in this section. Unlocking 
takes less than 10 minutes, can be done from any device, and needs to be done only once. Follow 
these five easy steps to complete the process:

STEP 1

Open the link https://packt.link/hsh003unlock OR scan the following QR code 
(Figure 11.1):

Figure 11.1 – QR code for the page that lets you unlock this book’s free online content.

Either of those links will lead to the following page as shown in Figure 11.2:

Figure 11.2 – Unlock page for the online practice resources

https://packt.link/hsh003unlock


How to Access These Resources 293

STEP 2

If you already have a Packt account, select the option Yes, I have an existing Packt 
account. If not, select the option No, I don't have a Packt account.

If you don’t have a Packt account, you’ll be prompted to create a new account on the next page. It’s 
free and only takes a minute to create.

Click Proceed after selecting one of those options.

STEP 3

After you’ve created your account or logged in to an existing one, you’ll be directed to the following 
page as shown in Figure 11.3.

Make a note of your unique unlock code:

IPW4426

Type in or copy this code into the text box labeled ‘Enter Unique Code':

Figure 11.3 – Enter your unique sign-up code to unlock the resources



Accessing the Online Practice Resources294

Troubleshooting Tip
After creating an account, if your connection drops off or you accidentally close the page, 
you can reopen the page shown in Figure 11.2 and select Yes, I have an existing 
account. Then, sign in with the account you had created before you closed the page. You’ll 
be redirected to the screen shown in Figure 11.3.

STEP 4

Note
You may choose to opt into emails regarding feature updates and offers on our other certification 
books. We don’t spam, and it’s easy to opt out at any time.

Click Request Access.

STEP 5

If the code you entered is correct, you’ll see a button that says, OPEN PRACTICE RESOURCES, as 
shown in Figure 11.4:

Figure 11.4 – Page that shows up after a successful unlock



How to Access These Resources 295

Click the OPEN PRACTICE RESOURCES link to start using your free online content. You’ll be 
redirected to the Dashboard shown in Figure 11.5:

Figure 11.5 – Dashboard page for HashiCorp Terraform Associate (003) practice resources

Bookmark this link
Now that you’ve unlocked the resources, you can come back to them anytime by visiting  
https://packt.link/hsh003practice or scanning the following QR code provided 
in Figure 11.6:

Figure 11.6 – QR code to bookmark practice resources website

https://packt.link/hsh003practice


Accessing the Online Practice Resources296

Troubleshooting Tips
If you’re facing issues unlocking, here are three things you can do:

• Double-check your unique code. All unique codes in our books are case-sensitive and your 
code needs to match exactly as it is shown in STEP 3.

• If that doesn’t work, use the Report Issue button located at the top-right corner of the page.

• If you’re not able to open the unlock page at all, write to customercare@packt.com and 
mention the name of the book.

Share Feedback
If you find any issues with the platform, the book, or any of the practice materials, you can click 
the Share Feedback button from any page and reach out to us. If you have any suggestions for 
improvement, you can share those as well.

Back to the Book
To make switching between the book and practice resources easy, we’ve added a link that takes you 
back to the book (Figure 11.7). Click it to open your book in Packt’s online reader. Your reading 
position is synced so you can jump right back to where you left off when you last opened the book.

Figure 11.7 – Dashboard page for HashiCorp Terraform Associate (003) practice resources

mailto:customercare%40packt.com?subject=


Index

A
abspath: 212
accountid: 280
aliyuncs: 147
alltrue: 199
ami-exdswe: 65-67
ami-id: 125
appbucket: 151-152
ap-south: 24, 162-163, 175
azurerm: 132, 135, 144

B
backend: 1, 17, 44, 51-55, 81-82, 86, 90, 

96, 100-102, 131-148, 152, 157, 
168-169, 228, 243, 246, 276-279, 284

backup: 31-32, 96-97, 101, 136, 167-168, 276
blocks: 10, 36, 43, 48, 51-53, 56, 63, 69, 79, 84, 

93, 109, 122, 126-127, 134, 274, 279-281
boolean: 91, 152, 154-155, 199
bootstrap: 9
bucket: 24-27, 44, 54, 63, 81, 88, 95, 

118, 133, 137-138, 145-148, 
151-152, 275-277, 279, 284

bundles: 234

C
cidrsubnet: 214
cluster: 62, 65, 142-143
command: 11-12, 23, 25-26, 37, 44-47, 49-51, 

53-55, 57, 63, 71, 73, 79-102, 108, 110, 
118, 133-135, 137, 140, 143, 150, 165-168, 
170, 182-184, 187, 210, 228, 240, 244, 
248, 252, 265, 278-279, 282-283

commit: 252, 261
computing: 3
condition: 84, 154, 156, 165, 272-275
config: 53, 55, 135, 137, 142-143, 233, 281
configure: 8, 21, 24, 46, 48-49, 51-53, 

60, 82, 132-134, 137, 144, 157, 
167, 239, 243, 258, 279, 282

console: 23, 26, 44, 46, 50, 70, 83, 90, 
101-102, 166, 169, 182-183, 187, 
197, 239, 243, 247, 253, 285

consul: 119, 132, 143-144, 167-168, 239, 279
container: 8, 141, 144, 272, 279, 284

D
dashboard: 2-3
database: 8, 17, 34, 83, 111, 125, 140-141, 227, 

233, 242, 244, 246-247, 279-280, 284-285



Index298

datacenter: 31-32, 144
debugging: 93, 161
declare: 12, 57, 169, 285
decode: 143, 215, 283
devops: 4, 6, 20, 33, 131, 272
directory: 12, 24, 47, 49-51, 53-54, 57, 63, 

81-83, 86, 88-90, 95, 97-98, 109-110, 
113-114, 118, 132-133, 145, 147, 163, 166, 
212, 232-233, 251, 265, 278-279, 281-282

docker: 45, 267, 272
domain: 175, 242, 251
dynamodb: 20-23, 54, 137-138, 167, 

203, 227, 233, 279-280

E
extract: 91, 165

F
filebase: 213, 219
filename: 84-86, 95, 131, 135-136, 183, 187, 

195, 198, 208, 212, 214-215, 218
file-path: 213
filesystem: 114, 116, 118, 123, 126, 135, 

169, 171, 181, 212-213, 219, 227
formatdate: 196-197
formatlist: 194
function: 90, 136, 143, 153, 165, 

174-175, 181-208, 210, 212-218

G
github: 4, 7, 37, 44, 80, 82, 108, 118, 120-123, 

169, 172-173, 182-183, 187, 195, 198, 208, 
212, 214-215, 218, 227-229, 238, 242, 
249-252, 254-256, 261, 271, 273, 279

H
hashicorp: 1, 9-10, 24, 31-32, 35-38, 44, 47, 52, 

56-61, 87, 109-110, 116, 119, 121-122, 
126, 143, 161, 169, 172, 177, 182, 225-226, 
228, 230-232, 236, 239, 255, 267, 285

hostname: 48, 52-53, 60, 89-90, 
136-137, 145, 265

I
iam-user: 173-175
identifier: 90, 218
instances: 6, 8, 13-14, 35, 37, 61, 65, 68, 

90, 97-98, 100, 109, 149, 164

K
keyname: 14-15
key-value: 14, 55, 143-144, 282
keyword: 61, 68-69, 80, 95, 123, 149, 274
kubeconfig: 142-143
kubernetes: 8, 45, 53, 57, 60, 62, 

132, 141-142, 267, 279

L
lambda: 203
local-exec: 282
locals: 54, 69, 72, 134, 277

M
machine: 7, 9-10, 24, 32, 37, 67, 82, 85, 

95, 108, 164, 229, 251, 281-284
maxlength: 21
maxvalue: 21-22
max-value: 204



Index 299

metadata: 12, 14, 48, 52, 56, 145, 166-167, 281
minvalue: 21-22
modifier: 156
module: 56, 59-60, 62, 64-65, 68-69, 72, 

81-83, 95, 97, 107-108, 110-127, 
148-149, 156, 170-172, 229, 236

mybucket: 54

N
namespace: 48, 57, 60, 118, 142, 218
network: 33-34, 96, 109, 111, 168, 

181, 214, 233, 266

O
object: 65-66, 70, 96, 99-100, 125, 145, 147, 

153, 155-156, 162, 218, 279-280
offset: 165, 189
overall: 6, 20, 34, 148, 271, 274
override: 60, 63, 81, 85, 95-96, 

99, 101, 162-163, 235
owners: 38, 68, 234

P
parameter: 48, 60-62, 111, 133-135, 

137, 139-141, 144, 146-147, 
149, 184-185, 197, 274-275

password: 46, 140, 142, 144, 236, 238, 283, 285
pathexpand: 212-213
plugin: 36, 38, 48, 82, 143
postgres: 140-141, 279
prefix: 24, 59, 71, 137, 139, 145-147, 

188, 191, 214, 272-273, 277-278

providers: 9-11, 18, 24, 36, 43-45, 47-49, 
51-52, 55-64, 68-69, 79, 81, 84, 126, 
131, 165, 169-170, 176-177, 227-229, 
234, 236, 243, 252, 266, 279, 281, 283

python: 4, 9, 12, 34-35, 44, 57

R
readme: 120-121, 124, 127, 170, 250
recipe: 11
recommends: 115, 120, 125
reference: 9, 14, 49, 52, 54-56, 126, 

146, 152, 162-163, 282
refresh: 84, 167, 172
registry: 45, 48, 52, 57-58, 60-61, 

64, 68, 118-121, 123, 125-127, 
172, 229-231, 266, 272

relational: 140, 279
remote: 44, 52-54, 62, 84, 90-91, 96, 99-100, 

102, 108, 112, 114, 118-120, 123, 131-137, 
141, 163, 167-170, 228-229, 231, 239, 
242-246, 248, 251, 267, 279, 281, 283-284

repository: 4, 44, 73, 108, 119-120, 
172-173, 229, 242, 248-253, 256-259, 
261-262, 265, 272-273, 279

review: 3, 28-30, 34, 39-41, 75-77, 87, 
103-105, 128-130, 158-160, 172, 178-180, 
221-223, 229, 268-270, 287-289

rolename: 146
run-tasks: 230
runtime: 12, 258, 266

S
sample: 4, 9, 14, 30, 41, 52, 54-56, 61, 77, 

80, 84-85, 93, 105, 122, 130, 133-140, 
142-147, 150, 160, 180, 182-183, 187, 
223, 270-271, 276-277, 282-283, 289



Index300

script: 10, 19, 25, 34, 49, 51, 53-55, 73, 81-82, 
91, 157, 243, 273, 278, 282-283

sequence: 7, 64, 152, 192, 194, 201, 215
series: 242
server: 6, 12-13, 60, 65-67, 90, 

143-144, 164, 203, 246, 266
settings: 24-25, 27, 43, 48, 51-52, 54, 68, 74, 

82, 99, 133, 231, 245-246, 263, 276, 278
setups: 32
sign-up: 225, 236, 238
snapshot: 99, 135, 145
snippet: 274-275, 280
statefile: 147
statements: 14, 57
storage: 18, 44, 63, 88, 90, 133, 137, 144-147, 

167-168, 227-228, 231, 266, 275, 279
string: 13-14, 21, 55, 69-70, 90-92, 123, 

141, 152-153, 155-156, 164-165, 
173, 181-183, 186-195, 199-200, 
210, 212-213, 215-220, 272, 285

strings: 66, 189, 191-195, 200, 207
sub-block: 24
subcommand: 96
subfolder: 279
subnet: 214
substring: 165, 192
summary: 27, 38, 74, 102, 127, 

157, 177, 220, 267, 286
syntax: 63-64, 68-69, 72-73, 80, 107, 110, 

118, 122, 149, 154-157, 163-164, 
181-199, 203-205, 213-214, 216-218

system: 1, 10-11, 32, 34, 60, 63, 71, 116-118, 
135, 171, 212, 227-229, 242, 244

systems: 11, 31, 37, 212, 230, 235

T
tablename: 23
template: 13-14, 20-21, 23, 44, 59, 109, 112, 213
terraform: 1, 4, 7-11, 17-18, 20, 24-27, 

31, 34-38, 43-65, 67-74, 79-102, 
107-114, 116-121, 123-127, 131-157, 
161-177, 181-183, 187, 191, 193, 
195-198, 209-210, 212, 214-216, 219, 
225-267, 271-279, 281-282, 284-286

testbucket: 88, 95
testfile: 212-213
tfbackend: 135
tfconfig: 235
tfplan: 85, 93, 235
tfstate: 51, 53, 83, 86, 90, 96-98, 131, 133, 

135, 144-145, 166, 235, 278-279
tfstate-: 142
tfvars: 71, 84, 95, 124, 165-166, 232, 258, 235
timeadd: 197-198
tuples: 155
turnaround: 7, 96
typescript: 9, 12, 35

U
update: 51, 63, 68, 73, 86-87, 101, 

109, 139, 167, 176, 251, 255
usecases: 236
username: 71, 140, 142, 173, 236, 251

V
-var-file: 71, 84, 86, 95, 166
variable: 10, 46, 61, 69-71, 84-86, 89, 91-92, 

95, 111, 114, 121, 123, 138, 140-141, 
146, 155-156, 162, 164-166, 169-170, 
173-174, 182, 187, 209, 212, 231, 
246-247, 258, 272, 274, 277, 280, 285



Index 301

vendor: 20, 35-36, 242
vpc-module: 115-116

W
web-server: 13
workflow: 4-5, 17, 24, 37-38, 43-44, 52, 

73-74, 79-80, 83, 85, 89, 102, 187, 
228, 242, 244-246, 248-249, 252, 
254, 258, 263-264, 267, 272, 284

Z
zipmap: 208





www.packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as 
industry leading tools to help you plan your personal development and advance your career. For more 
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over 

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range 
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://www.packtpub.com
http://www.packtpub.com


Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Developing Solutions for Microsoft Azure AZ-204 Exam Guide

Paul Ivey, and Alex Ivanov

ISBN: 978-1-83508-529-5

• Identify cloud models and services in Azure

• Develop secure Azure web apps and host containerized solutions in Azure

• Implement serverless solutions with Azure Functions

• Utilize Cosmos DB for scalable data storage

• Optimize Azure Blob storage for efficiency

• Securely store secrets and configuration settings centrally

• Ensure web application security with Microsoft Entra ID authentication

• Monitor and troubleshoot Azure solutions



299Other Books You May Enjoy

Azure Data Engineer Associate Certification Guide

Giacinto Palmieri, Surendra Mettapalli, and Surendra Mettapalli

ISBN: 978-1-80512-468-9

• Design and implement data lake solutions with batch and stream pipelines

• Secure data with masking, encryption, RBAC, and ACLs

• Perform standard extract, transform, and load (ETL) and analytics operations

• Implement different table geometries in Azure Synapse Analytics

• Write Spark code, design ADF pipelines, and handle batch and stream data

• Use Azure Databricks or Synapse Spark for data processing using Notebooks

• Leverage Synapse Analytics and Purview for comprehensive data exploration

• Confidently manage VMs, VNETS, App Services, and more



300

Share Your Thoughts
Now you’ve finished HashiCorp Terraform Associate (003) Exam Guide, we’d love to hear your thoughts! 
If you purchased the book from Amazon, please click here to go straight to the 
Amazon review page for this book and share your feedback or leave a review on the site that 
you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering 

excellent quality content.

https://www.amazon.in/review/create-review/?asin=1804618845
https://www.amazon.in/review/create-review/?asin=1804618845


301

Download a Free PDF Copy of This Book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical 
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content 
in your inbox daily.

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781804618844

2. Submit your proof of purchase.

3. That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781804618844



	Cover
	FM
	Copyright
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction to Infrastructure as Code (IaC) and Concepts
	Making the Most Out of This Book – Your Certification and Beyond
	Technical Requirements
	What Is IaC?
	Scenario

	Basic Concepts of IaC
	Declarative Approach versus Imperative Approach
	Version Control
	Idempotency
	Infrastructure Provisioning and Configuration Management

	IaC Tools in the Market
	How to Choose the Right IaC Tool
	HashiCorp Terraform
	Progress Chef
	Creating Your First Recipe
	Puppet
	Pulumi
	AWS CloudFormation

	IaC Use Cases
	Multi-Cloud Deployments
	Application Deployments, Scaling, and Monitoring Tools
	Policy Compliance and Management
	Testing Environments and Software Demos

	Benefits of IaC
	Rapid Deployments and Tool Integration
	Lower Costs and Error Reduction
	Configuration Drift Elimination
	Improved Infrastructure Consistency
	DevOps and CI/CD
	Don’t Repeat Yourself (DRY)
	Creating a Simple AWS DynamoDB Table Using a CloudFormation Template
	Creating an AWS S3 Bucket Using Terraform

	Summary
	Exam Readiness Drill – Chapter Review Questions

	Chapter 2: Why Do We Need Terraform?
	History of Infrastructure Provisioning
	Why Is the Cloud Model a Good Fit for Infrastructure Automation?

	Infrastructure Automation Using IaC
	Advantages of IaC
	Various Options for Implementing IaC
	Ad Hoc Scripts
	Configuration Management Tools
	Cloud-Based IaC Services
	Cloud-Agnostic IaC Tools


	What Is Terraform?
	Features of Terraform
	Cloud/Vendor Agnostic
	A Pioneer in IaC
	Wide Partner Integration
	Declarative
	Idempotent
	Easy Learning Curve
	Version Controlled
	Automation
	Documentation
	Community Support


	Licensing Change from Version 1.5.5 (Aug 2023)
	Summary
	Exam Readiness Drill – Chapter Review Questions

	Chapter 3: Basics of Terraform and Core Workflow
	Technical Requirements
	How Terraform Works
	Getting Started with Terraform
	Terraform CLI Installation Check
	AWS CLI Installation Check
	Creating Your First Terraform Resource – AWS IAM User
	Setting up AWS Credentials
	Terraform Configuration
	Creating the AWS IAM User


	Terraform Settings
	HCP Terraform Configuration Using the cloud {} block
	Terraform Backend Configuration Using the backend {} Block
	Initialization
	Partial Configuration

	The required_version Setting
	The required_providers {} Block
	Experimental Features
	Provider Metadata

	Terraform Providers
	Types of Terraform Providers
	Official Providers
	Partner Providers
	Community Providers
	Archived Providers

	Provider Requirements
	Local Names
	Source Addresses
	Version Constraints

	Provider Configuration
	Provider Meta-Arguments


	Dependency lock file (.terraform.lock.hcl)
	Resources and Data Sources
	Resources Syntax
	Resources Meta-Arguments
	depends_on
	count
	for_each
	provider
	lifecycle

	Data Sources

	Variables and Outputs
	Input Variables
	Declaring Input Variables
	Supported Arguments
	Input Variables Assignment
	Input Variables Precedence

	Output Values
	Local Values

	Core Workflow
	Write – Creating the Configuration Script
	Plan – Previewing the Changes
	Apply – Provisioning the Infrastructure


	Summary
	Exam Readiness Drill – Chapter Review Questions

	Chapter 4: Terraform Commands and State Management
	Technical Requirements
	Basic Workflow Commands
	The init Command
	The plan Command
	The apply Command
	The destroy Command

	Commands for Code Management
	The fmt Command
	The validate Command

	Special Commands
	The login Command
	The logout Command
	The console Command
	The output Command
	The show Command
	The graph Command
	The import Command

	State Management and the terraform state Command
	The state Command

	Subcommands of terraform state
	The terraform state list Command
	The terraform state show Command
	The terraform state mv Command
	The terraform state rm Command
	The terraform state replace-provider Command
	The terraform state pull Command
	The terraform state push Command

	Summary
	Exam Readiness Drill – Chapter Review Questions

	Chapter 5: Terraform Modules
	Technical Requirements
	Why Do We Need Modules?
	Complexity
	Duplication of Code
	Segregation
	Misconfiguration

	What Is a Terraform Module?
	Advantages of Modules
	Reduces Complexity
	Reduces Code Duplication
	Segregation
	Reduces Misconfigurations
	Self-Service

	Types of Modules
	The Root Module
	The Child Module
	Local Modules
	Remote Modules
	Private Modules
	Public Modules


	Module Structure
	The Module Block’s Syntax
	Key Points to Consider When You Create a Module
	Key Points to Consider While Using a Module
	Drawbacks of Modules
	Summary
	Exam Readiness Drill – Chapter Review Questions

	Chapter 6: Terraform Backends and Resource Management
	What Are Backends?
	Backend Configuration
	Configuring the backend {} Block
	Partial Configuration

	Supported Backends
	local
	remote
	s3
	http
	Environment Variable Support

	pg
	Environment Variable Support

	Kubernetes
	Consul
	azurerm
	cos
	Environment Variable Support

	gcs
	oss

	Resource Addressing and Dependencies
	Resource Addressing
	Module Path
	Resource Specifications
	Addressing Resources with the for_each {} Block

	Resource Dependencies
	Implicit Dependency
	Explicit Dependency


	Expressions and Constraints
	Data Types
	Operators
	Conditional Expressions
	for Expressions
	splat Expressions
	Type Constraints
	The any Type
	“optional”

	Version Constraints

	Summary
	Exam Readiness Drill – Chapter Review Questions

	Chapter 7: Debugging and Troubleshooting Terraform
	Configuration Errors
	override.tf File-Related Issues
	terraform validate

	Variable-Related Issues
	Type Constraint
	Input Validation
	Variable Precedence

	State-Related Issues
	Configuration Drift
	State Conflict
	Migrating the State from One Backend to Another

	Core and Provider-Related Issues
	Module-Related Issues
	Missing Features
	Output-Related Issues
	Unsupported Argument
	Version-Related Issues

	Taking Help from the Forum
	Bug Reporting
	Gotchas
	Avoid Lists Where Possible
	Using -target in Terraform Runs
	General Tips

	Summary
	Exam Readiness Drill – Chapter Review Questions

	Chapter 8: Terraform Functions
	Technical Requirements
	Function Syntax
	Numeric Functions
	The abs() Function
	The ceil() Function
	The floor() Function
	The max() Function
	The min() Function
	The pow() Function
	The log() Function
	The signum() Function
	The parseint() Function

	String Functions
	The split() Function
	The join() Function
	The endswith() Function
	The startswith() Function
	The chomp() Function
	The substr() Function
	The strrev() Function
	The lower() Function
	The upper() Function
	The trim() Function
	The trimprefix() and trimsuffix() Functions
	The trimspace() Function
	The indent() Function
	The replace() Function
	The strcontains() Function
	The title() Function
	The format() Function
	The formatlist() Function
	The regex() Function
	The regexall() Function

	Date and Time Functions
	The timestamp() Function
	The formatdate() Function
	The plantimestamp() Function
	The timeadd() Function
	The timecmp() Function

	Collection Functions
	The alltrue() Function
	The anytrue() Function
	The chunklist() Function
	The coalesce() and coalescelist() Functions
	The compact() Function
	The concat() Function
	The contains() Function
	The distinct() Function
	The element() Function
	The flatten() Function
	The keys() and values() Functions
	The index() Function
	The length() Function
	The lookup() Function
	The matchkeys() Function
	The merge() Function
	The one() Function
	The range() Function
	The reverse() Function
	Set Functions
	The setintersection() Method
	The setproduct() Method
	The setunion() Method
	The setsubtract() Method

	The slice() Function
	The sort() Function
	The sum() Function
	The transpose() Function
	The zipmap() Function

	Type Conversion Functions
	The can() Function
	The sensitive() and nonsensitive() Functions
	The try() Function
	The type() Function
	Conversion Functions

	Filesystem Functions
	The abspath() Function
	The dirname() and basename() Functions
	The pathexpand() Function
	The file() and filebase64() Functions
	The fileexists() Function
	The fileset() Function
	The templatefile() Function

	IP Network Functions
	The cidrhost() Function
	The cidrnetmask() Function
	The cidrsubnet() Function
	The cidrsubnets() Function

	Encoding Functions
	The base64encode() and base64decode() Functions
	The base64gzip() Function
	The csvdecode() Function
	The jsonencode() and jsondecode() Functions
	The textencodebase64() Function
	The textdecodebase64() Function
	The urlencode() Function
	The yamlencode() and yamldecode() Functions

	Hash and Crypto Functions
	The uuid() Function
	The uuidv5() Function

	Summary
	Exam Readiness Drill – Chapter Review Questions

	Chapter 9: Understanding HCP Terraform’s Capabilities
	Terraform Editions
	Shortcomings of Terraform Community Edition

	HCP Terraform Features
	Remote State Management
	Multiple Workflows
	Multiple Execution Modes
	Version Control System Integration
	Private Registry
	Notifications
	Run Tasks
	Role-Based Access Control
	Policy Enforcement
	Cost Estimation

	HCP Terraform Pricing
	Key Concepts of HCP Terraform
	Workspaces
	Projects
	Users
	Teams
	Permissions
	Organizations
	Locking Workspaces
	Sentinel Policies
	Explorer

	HCP Terraform Sign-Up
	Creating an Account with HCP Terraform
	Creating an Account with HCP

	Exercises on Workflows and Execution Modes
	Remote Execution Mode Using the CLI-Driven Workflow
	Local Execution Mode Using the CLI-Driven Workflow

	Remote Execution Mode Using the VCS/UI Workflow
	Creating a Public GitHub Repository and Adding Configuration Files
	Integrating the VCS Repository with HCP Terraform
	Testing the VCS/UI Workflow in HCP Terraform
	Cost Estimation Feature

	Migrating to HCP Terraform or Terraform Enterprise
	Terraform Enterprise Features
	Summary
	Exam Readiness Drill – Chapter Review Questions

	Chapter 10: Miscellaneous Topics
	Technical Requirements
	Input Validations
	Preconditions and Postconditions
	The check {} block
	Workspaces
	The dynamic {} block
	Provisioners
	The file provisioner
	The local-exec provisioner
	The remote-exec provisioner

	Handling Sensitive Data
	AWS Access Keys or Admin Credentials
	Variables
	Output Values

	Next Steps
	Summary
	Exam Readiness Drill – Chapter Review Questions

	Chapter 11: Accessing the Online Practice Resources
	Index
	Other Books You May Enjoy



