

HashiCorp
Infrastructure
Automation
Certification Guide

Pass the Terraform Associate exam and manage IaC
to scale across AWS, Azure, and Google Cloud

Ravi Mishra

BIRMINGHAM—MUMBAI

HashiCorp Infrastructure Automation
Certification Guide

Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Wilson D'souza
Publishing Product Manager: Vijin Boricha
Senior Editor: Shazeen Iqbal
Content Development Editor: Romy Dias
Technical Editor: Shruthi Shetty
Copy Editor: Safis Editing
Project Coordinator: Shagun Saini
Proofreader: Safis Editing
Indexer: Subalakshmi Govindhan
Production Designer: Aparna Bhagat

First published: July 2021

Production reference: 1140721

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80056-597-5

www.packt.com

http://www.packt.com

I would like to dedicate this book to my sweet and lovely daughter, Kaira
Mishra, expecting her to be reading this book in the near future.

Contributors

About the author
Ravi Mishra (born in 1988) is a multi-cloud architect with a decade of experience in the
IT industry. He started his career as a network engineer, then later, with time, he got the
opportunity to work in the cloud domain, where he worked his hardest to become an
expert in cloud platforms such as AWS, Azure, GCP, and Oracle. Along with the cloud,
he has also developed a skillset in DevOps, containerization, Kubernetes, and Terraform.
This was what inspired him to write this book.

Ravi has an electronics engineering degree, with a postgraduate diploma in IT
project management.

Throughout his career, he has worked with multiple global MNCs.

He has more than 35 cloud certifications, including as a Microsoft Certified Trainer
and a public speaker. You can find him on LinkedIn as inmishrar.

Thanks to almighty God, who has given me the power and
notion to draft this book.

Special thanks to my wife, Kavita Mishra, for her continued support and
encouragement with everything that I do. I genuinely appreciate what you

have done for us and I love you.

To my parents, Anil Mishra and Sarita Mishra, for their blessings
throughout my life.

To my brother, Ratnesh Mishra, Hamid Raza (my Guru), and the whole
Packt team, who helped me during this entire journey.

About the reviewers
Clara McKenzie is currently a support engineer for Terraform at HashiCorp with a
long career in software, specializing in networking and embedded platforms. Born
in San Francisco, she studied mathematics at Reed College in Portland, Oregon. Her
work adventures include setting up the NFS/RPC group at Sun Microsystems, the
NetWareForMac team at Novell, the Core Software Team at Ascend Communications, the
Gracenote SDK Team, and creating test scenarios for Planets Dove Satellites. She goes by
the name cemckenzie on GitHub.

Mehdi Laruelle is an automation and cloud consultant. Mehdi has had the opportunity
to work for several years for major players in the industry. He has worked with DevOps
culture and tools leading him to use HashiCorp software such as Terraform, Vault, and
Packer. Knowledge is a passion that he likes to share, whether through training, articles,
or meetups. He is the co-organizer of the HashiCorp User Group France meetup. This
has led to him being recognized as a HashiCorp Ambassador and AWS Authorized
Instructor (AAI).

Table of Contents
Preface

Section 1: The Basics

1
Getting to Know IaC

Technical requirements� 4
Introduction to IaC� 4
Advantages of IaC� 5
Simple and speedy� 5
Configuration consistency� 5
Risk minimization� 6
Increased efficiency in software
development� 6
Cost savings� 7

Introduction to Terraform� 7
What is Terraform?� 7
Features of Terraform� 8
Terraform use cases� 9

A comparison with other IaC� 15
CloudFormation versus Terraform� 16
Azure ARM templates versus Terraform� 20
Google Cloud Deployment Manager
versus Terraform� 23

An understanding of Terraform
architecture� 27
Terraform Core� 28
Terraform plugins� 28

Summary� 31
Questions� 31
Further reading� 32

2
Terraform Installation Guide

Technical requirements� 34
Installing Terraform on
Windows� 34
Downloading Terraform� 34

Installing Terraform on Linux� 39
Downloading Terraform� 39

viii Table of Contents

Installing Terraform on macOS� 42
Downloading Terraform� 42

Summary� 45
Questions� 45
Further reading� 46

Section 2: Core Concepts

3
Getting Started with Terraform

Technical requirements� 50
Introducing Terraform
providers� 50
Terraform providers� 50

Knowing about Terraform
resources� 60
Terraform resources� 60

Understanding Terraform
variables� 63
Terraform variables� 64

Understanding Terraform
output� 70
Terraform output� 70

Understanding Terraform data� 79
Terraform data sources� 79

Summary� 82
Questions� 82
Further reading� 84

4
Deep Dive into Terraform

Technical requirements� 86
Introducing the Terraform
backend� 86
Terraform state� 86
The purpose of the Terraform state file� 87
Terraform backend types� 88

Understanding Terraform
provisioners� 96
Terraform provisioner use cases� 97
Terraform provisioner types� 99

Understanding Terraform loops�105
The count expression� 106
The for_each expression� 113
The for expression� 119

Understanding Terraform
functions� 121
Understanding Terraform
debugging� 123
Summary� 125
Questions� 126
Further reading� 127

Table of Contents ix

5
Terraform CLI

Technical requirements� 130
Introduction to the Terraform
CLI� 130
Integrating with Azure� 133
Authentication using a Service
Principal and
a Client Secret� 134
Provisioning Azure services using
Terraform� 140

Integrating with AWS� 144
Authentication using an access key ID
and secret� 144
Provisioning AWS services using

Terraform� 146

Integrating with GCP� 148
Authentication using a Google service
account by storing credentials in a
separate file� 148
Provisioning GCP services using
Terraform� 152

Understanding the Terraform
CLI commands� 154
Summary� 159
Questions� 159
Further reading� 160

6
Terraform Workflows

Technical requirements� 162
Understanding the Terraform
life cycle� 162
Terraform init � 163
Terraform validate� 167
Terraform plan� 169
Terraform apply� 175

Terraform destroy� 177

Understanding Terraform
workflows using Azure DevOps �180
Summary� 190
Questions� 190
Further reading� 192

7
Terraform Modules

Technical requirements� 194
Understanding Terraform
modules� 194
source� 196
version � 201

Writing Terraform modules
for Azure� 205
Writing Terraform modules
for AWS� 214

x Table of Contents

Writing Terraform modules for
GCP� 220
Publishing Terraform modules� 225
Key requirements� 225

Publishing a module� 226

Summary� 227
Questions� 228
Further reading� 229

Section 3: Managing Infrastructure with
Terraform

8
Terraform Configuration Files

Technical requirements� 234
Understanding Terraform
configuration files� 234
Terraform native configuration syntax� 234
Terraform override file� 236
JSON configuration syntax� 239
Data types� 241
Terraform style conventions� 242

Writing Terraform configuration
files for GCP� 244
Writing Terraform configuration
files for AWS� 247
Writing Terraform configuration
files for Azure� 250
Summary� 254
Questions� 255
Further reading� 256

9
Understanding Terraform Stacks

Technical requirements� 258
Understanding Terraform
stacks� 258
Writing Terraform stacks for
GCP� 259

Writing Terraform stacks
for AWS� 269
Writing Terraform stacks
for Azure� 273
Summary� 276
Questions� 277
Further reading� 278

Table of Contents xi

10
Terraform Cloud and Terraform Enterprise

Technical requirements� 280
Introducing Terraform Cloud� 280
Terraform Cloud workflow� 282

Understanding Terraform
Enterprise� 292

Overviewing Terraform
Sentinel� 293
Comparing different Terraform
features� 300
Summary� 301
Questions� 302
Further reading� 303

11
Terraform Glossary
Assessments
Other Books You May Enjoy
Index

Preface
Terraform is in huge demand in the IT market. There is a serious question about
managing the IT infrastructure in code format. So, Terraform is an option for users that
can help to build, configure, and manage the infrastructure.

This book provides you with a walkthrough from the very basics of Terraform to
an industry expert level. It is a comprehensive guide that starts with an explanation
of Infrastructure as Code (IaC), mainly covering what Terraform is and what the
advantages of using Terraform are. Moving further, you will be able to set up Terraform
locally in your system. In the next phase, you will get a thorough understanding of
the different blocks, such as providers, resources, variables, output, and data, used in
Terraform configuration code.

This book provides details of the Terraform backend, provisioners, loops, and inbuilt
functions, and how to perform debugging with Terraform. In this book, you will learn
how to integrate Terraform with Azure, AWS, and GCP. Along with integration, you will
also be able to write Terraform configuration files covering all the three major clouds,
which make up the best part of this book, so that you get a proper understanding of
different use cases in all the major clouds, that is, Azure, AWS, and GCP. We also explain
the complete Terraform life cycle, covering init, plan, apply, and destroy, which
will help you to get an understanding of the Terraform workflow with CI/CD tools.

In the expert section of this book, we will discuss Terraform stacks and modules. In this
section, you will understand how effectively you can write modules and combine those
modules to build a complex stack covering all three clouds – Azure, AWS, and GCP. This
helps users to manage huge enterprise-level infrastructure easily and effectively.

xiv Preface

This book also covers Terraform products such as Terraform Enterprise and Terraform
Cloud. You will get an understanding of the different features of Terraform Enterprise and
Terraform Cloud. You will also get a great understanding of Sentinel, which is policy as
code that can be implemented to ensure infrastructure is getting provisioned as per the
necessary compliance before infrastructure actually gets provisioned into cloud providers
such as Azure.

Overall, this book provides great learning for you about Terraform and using
Terraform and how effectively you can use it to build and manage your enterprise-level
infrastructure. Not only this, but with this book you can also get yourself prepared for
the Terraform Associate exam and easily crack the exam.

Who this book is for
This book is designed for those who are planning to take the Terraform Associate exam.
It is good for developers, administrators, and architects who are keen to learn about IaC,
that is, Terraform. This doesn't mean that it restricts others from learning. Anyone who
wishes to explore and learn about the HashiCorp product Terraform can read this book
and get great learning from it.

What this book covers
Chapter 1, Getting to Know IaC, looks at IaC, which is basically a way of writing
infrastructure in a code format so that the whole deployment of the infrastructure, its
updating, and its manageability can be performed easily. Terraform is an IaC product
from HashiCorp.

This chapter will cover topics that include the definition of IaC and its benefits. This
chapter will also include an introduction to Terraform and a comparison with other IaC
options such as AWS CloudFormation and Azure ARM templates. We will also discuss
Terraform architecture and the workings of Terraform, which will help you to get a
thorough understanding of how Terraform is used.

Chapter 2, Terraform Installation Guide, covers Terraform installation; before we start
working with Terraform and get our hands dirty by writing Terraform configuration
code, we need to have terraform.exe files installed on our system.

This chapter is one of the foundational pillars for learning about Terraform. It will cover
how a user can install terraform.exe on their local machine, whether it is a macOS,
Linux, or Windows system. Not only this, but it will also provide information on how
you can validate the presence of Terraform in your local system.

Preface xv

Chapter 3, Getting Started with Terraform, discusses how writing Terraform configuration
code with proper syntax is very important. This chapter consists of the core concepts of
Terraform. When we need to write Terraform configuration code, we need to define it
with some building blocks such as resources, data, variables, outputs, and providers. In
this chapter, we will be discussing the different blocks used in Terraform configuration
code and how a user can define and use them in the real world.

Chapter 4, Deep Dive into Terraform, looks at how there are many things that need to
be taken care of, such as the state file of Terraform. The state file may hold some sort of
confidential data of your infrastructure, so it needs to be stored securely.

This chapter will cover topics including use cases of the Terraform backend and how it can
be used for storing the state file. In this chapter, we are also going to talk about Terraform
provisioners and their use cases.

Like other programming languages, Terraform also supports different types of loops
that can be used while writing the Terraform configuration file. In this chapter, we will
also talk about some important topics such as different loops supported by Terraform
and Terraform inbuilt functions that help to convert respective values into the required
format. Along with this, we will explain how you can perform debugging in Terraform.

Chapter 5, Terraform CLI, looks at how if you wish to deploy infrastructure in Azure,
AWS, or GCP using Terraform, then how you can provision them. To do that, we need
to get our Terraform CLI authenticated to respective clouds.

This chapter will talk about different authentication methods used by the Terraform CLI
for cloud providers such as Azure, AWS, and GCP. Not only this, but it will also cover
different Terraform CLI commands and their uses.

Chapter 6, Terraform Workflows, covers how it is important for us to understand how
Terraform is used to perform workflows and how it is used to manage its life cycle. We
also need to understand the importance of the Terraform life cycle.

This chapter will cover the core workflow of Terraform, which includes creating a
Terraform configuration file (Write), previewing the changes (Plan), and then finally
committing those changes to the target environment (Apply). Once we are done with the
creation of the resources, we might be required to get rid of those infrastructures (Destroy).
In a nutshell, we plan to cover Terraform core workflows that mainly consist of init,
plan, apply, and destroy and the respective subcommands and their outputs. This
chapter also covers how we can use CI/CD tools such as Azure DevOps with Terraform.

xvi Preface

Chapter 7, Terraform Modules, discusses how managing a large infrastructure is a
challenging task for the administrator. So, we need to have some solution so that it could
be easy for the administrator to manage the whole infrastructure using Terraform. So,
for better understanding, in this chapter, we will cover how you can create a module and
reuse that module while drafting Terraform configuration files.

Chapter 8, Terraform Configuration Files, explains that when writing Terraform
configuration files, following the correct syntax and industry best practices is very
important. This chapter will cover different types of configuration files, that is, JSON
files and HCL files. We are also going to talk about what industry best practices can be
followed while writing a Terraform configuration file for major cloud providers such as
AWS, Azure, and GCP. We will discuss how you can use different blocks such as resources,
data sources, locals, variables, and modules in the Terraform configuration file.

Chapter 9, Understanding Terraform Stacks, looks at how sometimes it is required to
deploy a very large enterprise-level infrastructure, and writing Terraform configuration
code for it would be very lengthy, so we need to think about how we can shorten the
length of the code and make it reusable.

In this chapter, we are going to cover Terraform stacks, which are nothing but a collection
of modules. We are also going to discuss some best practices of preparing stacks and
modules for cloud providers such as AWS, GCP, and Azure.

Chapter 10, Terraform Cloud and Terraform Enterprise, covers different products of
Terraform, that is, Terraform Cloud and Terraform Enterprise. We will discuss different
source control, such as GitHub, that can be integrated with Terraform Cloud to get
Terraform configuration files. We will also discuss Terraform Sentinel, that is, policy as code.
Sometimes it is essential to ensure that our infrastructure is provisioned as per compliance
and Terraform Sentinel features that are available in most enterprise products of HashiCorp,
such as Vault Enterprise, Nomad Enterprise, Consul Enterprise, Terraform Cloud, and
Terraform Enterprise, to help us to set up a policy to check and validate before the actual
deployment of infrastructure happens. Furthermore, we will see the different features that
are present in Terraform Cloud and Enterprise as compared to the Terraform CLI.

Chapter 11, Terraform Glossary, is the most interesting chapter of the entire book. Almost
everyone wants to have a quick revision of the keywords used in the book. So, this chapter
will talk about different Terraform acronyms used in the book.

Preface xvii

To get the most out of this book
It is always good for you to have a basic understanding of different cloud services, such as
AWS, GCP, and Azure. Along with this, you should have some knowledge about DevOps
tools such as Azure DevOps and GitHub. Additionally, some experience with writing
scripting such as PowerShell or Bash would be beneficial. However, the code samples in
this book have been written using the HashiCorp Configuration Language.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

Irrespective of whether you are sitting the HashiCorp Infrastructure Automation Terraform
Associate Certification exam, it is recommended to attempt the assessment questions after
completing all the chapters. This will be a good way to assess the knowledge absorbed from
the content of the book.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/HashiCorp-Infrastructure-Automation-
Certification-Guide. In case there's an update to the code, it will be updated on the
existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Code in Action
Code in Action videos for this book can be viewed at https://bit.ly/3wrqAoP.

https://github.com/PacktPublishing/HashiCorp-Infrastructure-Automation-Certification-Guide
https://github.com/PacktPublishing/HashiCorp-Infrastructure-Automation-Certification-Guide
https://github.com/PacktPublishing/HashiCorp-Infrastructure-Automation-Certification-Guide
https://github.com/PacktPublishing/
https://bit.ly/3wrqAoP

xviii Preface

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://www.packtpub.com/sites/default/
files/downloads/9781800565975_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "This step is skipped if terraform init is run with the -plugin-
dir=<PATH> or -get-plugins=false options."

A block of code is set as follows:

Configure the Microsoft Azure provider

provider "azurerm" {

  version            = "=2.20.0"

  features {}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

  subscription_id    = "...."

  client_id          = "...."

  client_secret      = "...."

  tenant_id          = "...."

} 

Any command-line input or output is written as follows:

 mkdir terraform && cd terraform

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Now you need to set the environment variable path for Terraform.exe, and to do
that, go to This PC, right-click on it, and go to Properties | Advance system settings |
Environment Variables."

Tips or important notes	
Appear like this.

https://www.packtpub.com/sites/default/files/downloads/9781800565975_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781800565975_ColorImages.pdf

Preface xix

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Share Your Thoughts
Once you've read HashiCorp Infrastructure Automation Certification Guide, we'd love to
hear your thoughts! Please click here to go straight to the Amazon review page for this
book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1800565976

Section 1:
The Basics

Section 1 aims to introduce you to the basics of Infrastructure as Code (IaC), comparing
other IaC options such as ARM templates and AWS CloudFormation to Terraform and
how Terraform can be used to provision infrastructure. You will also get an understanding
of how Terraform can be set up on a local system.

The following chapters will be covered under this section:

•	 Chapter 1, Getting to Know IaC

•	 Chapter 2, Terraform Installation Guide

1
Getting to Know IaC

In this chapter, we are going to discuss what Infrastructure as Code (IaC) is in detail.
We will be discussing the benefits of using IaC. Furthermore, we will start describing the
basics of Terraform, and then undertake a comparison of Terraform with other available
IaC options, including AWS CloudFormation, Azure Resource Manager (ARM), and
Google Cloud Deployment Manager. Moving on, we will then discuss Terraform
architecture.

Throughout this chapter, we will be focusing on Terraform for major cloud providers,
including GCP, AWS, and Azure. The whole chapter will help you in terms of achieving
a fair understanding of Terraform (IaC) and how you can overcome the old lego system
of executing manual changes to your environment. This will help you get an idea of how
you can start using Terraform for infrastructure automation in your organization.

The following topics will be covered in this chapter:

•	 Introduction to IaC

•	 Advantages of IaC

•	 Introduction to Terraform

•	 A comparison with other IaC

•	 An understanding of Terraform architecture

4 Getting to Know IaC

Technical requirements
To follow along with this chapter, you need to have a basic knowledge of different IaC
options, including ARM templates and AWS CloudFormation, while a basic knowledge
of major cloud providers, such as GCP, AWS, and Azure, will be beneficial.

Introduction to IaC
Before learning about Terraform, let's try to understand what it basically means for us and
how it helps make users' lives easier in the IT industry. The first thing that always comes
to consumers' minds is that when they need an IT infrastructure, for example, if they want
a virtual machine, they need to raise a ticket on some ticket portal such as ServiceNow,
and someone from the backend would log in to that ticketing portal and take that ticket
from the queue and deploy the virtual machine for the consumer, either in VMware or a
HyperV environment through the management portal using some click jobs. That is the
traditional approach for infrastructure deployment, which is somewhat fine if they need
to manage infrastructure in their private data center and there is very little possibility of
performing scaling of those deployed resources, which means once it gets provisioned,
after that no one is requesting further changes to the created resource.

In all these cases, it is fine if they easily go ahead and perform all the operations manually
but what about if they need to deploy a very large infrastructure consisting of more
repeatable work in the cloud? Then it would be a really tedious job for the administrator
to provision those resources manually and also it is a very time-consuming job for them.
So, to overcome this challenging situation, most cloud vendors have come up with an
approach of IaC, which is mostly an API-driven approach. Most cloud vendors have
published APIs for all their resources. Using that API, we can easily get the resource
deployed in the cloud.

Nowadays, as most customers are moving toward the cloud, and as we all know, cloud
platforms provide us with more elasticity and scalability in terms of their infrastructure,
this means you can easily utilize the resources and pay for what you use; you don't
need to pay anything extra. Just think down the line of an administrator needing to
perform the scaling up and down of resources and how difficult it would be for them.
Let's suppose there are 1,000 resources that need to be scaled up during the day and
scaled down at night.

Advantages of IaC 5

In this case, consumers need to raise 1,000 tickets for performing the scale-up and again
1,000 more tickets for scaling down, which means by the end of the day, the system
administrator who is managing the infrastructure will get flooded with so many requests
and it would be really impossible for them to handle this. So, here we have something
called IaC, which is a way of deploying or managing the infrastructure in an automated
way. All the resources that need to be managed will be defined in code format and we can
keep that code in any source control repository, such as GitHub or Bitbucket. Later, we can
apply a DevOps approach to manage our infrastructure easily. There are many advantages
of using IaC; we are going to discuss a few of them.

Advantages of IaC
Let's discuss a few of the advantages of using IaC.

Simple and speedy
Using IaC, you would able to spin up a complete infrastructure architecture by simply
running a script.

Suppose you need to deploy infrastructure in multiple environments, such as
development, test, preproduction, and production. It would be very easy for you to
provision it with just a single click. Not only this, but say you need to deploy the same
sort of infrastructure environments in other regions where your cloud provider supports
backup and disaster recovery.

You can do all this by writing simple lines of code.

Configuration consistency
The classical approach of infrastructure deployment is very ugly because the infrastructure
is provisioned and managed using a manual approach that helps to maintain some
consistency in the infrastructure deployment process. But it always introduces human
error, which makes it difficult to perform any sort of debugging.

IaC standardizes the process of building and managing the infrastructure so that the
possibility of any errors or deviations is reduced. Definitely, this will decrease any
incompatibility issues with the infrastructure and it will help you to run your
application smoothly.

6 Getting to Know IaC

Risk minimization
When we were managing infrastructure manually, it was observed that only a handful
of Subject Matter Experts (SMEs) knew how to do it and the rest of the team members
remained blank, which introduces dependency and security risks for the organization.
Just think of a situation where the person who is responsible for managing the complete
infrastructure leaves the organization; that means whatever they knew they might not
have shared with others or they may not have updated the documents. At the end of the
day, risk has been introduced to the organization because that employee is leaving. Many
times, in such cases, the organization needs to undergo some reverse engineering to fix
any issues.

This challenging situation can be controlled by using IaC for the infrastructure. IaC will
not only automate the process, but it also serves as a form of documentation for your
infrastructure and provides insurance to the company in cases where employees leave
the company with institutional knowledge. As you know, we generally keep IaC to source
control tools such as Azure Repos or GitHub. So, if anyone makes any configuration
changes to the infrastructure, they will get recorded in the source control repository. So, if
anyone leaves or goes on vacation, it won't impact the manageability of the infrastructure
because the version control tool will have kept track of the changes that have been
performed on the infrastructure and this would definitely reduce the risk of failure.

Increased efficiency in software development
Nowadays, with the involvement of IaC for infrastructure provisioning and managing,
developers get more time to focus on productivity. Whenever they need to launch their
sandbox environments to develop their code, they are easily able to do so. The quality
analyst (QA) will be able to have a copy of the code and test it in separate environments.
Similarly, security and user acceptance testing can also be done in different staging
environments. With a single click, both the application code and infrastructure code can
be done together following Continuous Integration and Continuous Deployment
(CI/CD) techniques.

Even if we want to get rid of any infrastructure, we can include an IaC script that
will spin down the environments when they're not in use. This will shut down all the
resources that were created by the script. So, we won't end up performing a cleanup of the
orphan resources that are not in use. All this would help to increase the efficiency of the
engineering team.

Introduction to Terraform 7

Cost savings
IaC would definitely help to save costs for the company. As we mentioned earlier, IaC
script can help us create and automate the infrastructure deployment process, which
allows engineers to stop doing manual work and start spending more time in performing
more value-added tasks for the company, and because of this, the company can save
money in terms of the hiring process and engineers' salaries.

As we mentioned earlier, IaC script can automatically tear down environments when
they're not in use, which will further save companies cloud computing costs.

After getting a fair understanding of IaC and the benefits of using it, let's move ahead and
try to learn some details about one IaC technology – Terraform.

Introduction to Terraform
Welcome to this introductory guide to Terraform. For anyone who is new to Terraform and
unaware of what it is, as well as for the purpose of comparison with other IaC tools that
are currently associated with major cloud providers including AWS, Azure, and Google,
we believe that this is the best guide to begin with. In this guide, we will be focusing on
what Terraform is and what problems it can solve for you, undertaking a comparison with
other software tools, including ARM templates, AWS CloudFormation, and Google Cloud
Deployment Manager, and explaining how you can start using Terraform effectively in your
day-to-day jobs related to the provisioning and maintenance of your IT infrastructure.

What is Terraform?
Terraform is one of the open source tools that was introduced to the market by HashiCorp
in 2014 as IaC software (IaC means we can write code for our infrastructure) that is
mainly used for building, changing, and managing infrastructure safely and efficiently.
Terraform can help with multi-cloud environments by having a single workflow, in other
words, terraform init, terraform plan, terraform apply, and so on, for all
clouds. The infrastructure that Terraform manages can be hosted on public clouds such
as AWS, Microsoft Azure, and GCP, or on-premises in private clouds such as VMware
vSphere, OpenStack, or CloudStack. Terraform handles IaC, so you never have to worry
about your infrastructure drifting away from its desired configuration.

Terraform mainly uses Terraform files ending with .tf or .tf.json that hold detailed
information about what infrastructure components are required in order to run a single
application or your entire data center. Terraform generates an execution plan, which
describes what it is going to do to reach the desired state, and then executes it to build
the infrastructure described. If there is any change in the configuration file, Terraform
is able to determine what has been changed and create incremental execution plans that
can be applied.

8 Getting to Know IaC

Terraform can not only manage low-level components, such as compute instances,
storage, and networking; it can also support high-level components, such as DNS and
SaaS features, provided that the resource API is available from the providers.

After learning about what Terraform is, you might have one more question in your
mind: what exactly makes this Terraform so popular? To answer that question, first and
foremost, Terraform is cloud-agnostic, which means you can provision or manage your
infrastructure in any cloud platform. The second thing that makes Terraform very much
in demand is its standard workflow. You don't need to remember N number of parts of
the workflow; a simple init, plan, and apply from Terraform's point of view would be
enough and it is the same across any platform. The third factor is the Terraform syntaxing.
Terraform uses uniform code syntaxing whether you work on any cloud or on-premises.
There are many more exceptional factors that could encourage enterprise customers to
start using Terraform.

Features of Terraform
Let's now try to get an understanding of all of Terraform's features, which are pushing up
market demand for the product.

Infrastructure as code
Infrastructure is defined in a code format based on proper syntax in a configuration file
that can be shared and reused. The code defined in the configuration file will provide a
blueprint of your data center or the resource that you are planning to deploy. You should
be able to deploy a complete infrastructure from that configuration file following the
Terraform workflow.

Execution plans
The Terraform workflow has three steps – init, plan, and apply. During the planning
step, it generates an execution plan. The execution plan gives you information about what
Terraform will do when you call apply. This means you do not get any sort of surprise
when you perform terraform apply.

Note
We are going to cover in detail the Terraform workflow in the upcoming
chapters. So, stay tuned.

Introduction to Terraform 9

Resource graph
Terraform builds a graph of all your resources and parallelizes the creation and
modification of any non-dependent resources. Because of this resource graph, Terraform
manages to build infrastructure as efficiently as possible that is sufficiently intelligent
to understand dependencies in its infrastructure.

Changing automation
Complex changes to your defined infrastructure can be applied with minimal human
interaction. With the aforementioned execution plan and resource graph, you know exactly
what Terraform will change and in what order, thereby avoiding multiple possible human
errors.

Terraform use cases
As we have got to know what Terraform is, let's now learn about some of the use cases of
Terraform in the enterprise world. A few of them have been discussed as follows.

Heroku app setup
Heroku is one of the most popular Platforms as a Service (PaaS) for hosting web apps.
Developers use it to create an app and then attach other services, such as a database or
email provider. One of the best features of the Heroku app is its ability to elastically scale
the number of dynos or workers. However, most non-trivial applications quickly require
many add-ons and external services:

Figure 1.1 – Heroku app architecture

10 Getting to Know IaC

By using Terraform, entire things that are required for a Heroku application setup could
be codified in a configuration file, thereby ensuring that all the required add-ons are
available, and the best part of this is that with the help of Terraform, all of this can be
achieved in just 60 seconds. Any changes requested by the developer in the Heroku app
can be actioned immediately using Terraform, whether it be a complex task related to
configuring DNS to set a CNAME or setting up Cloudflare as a content delivery network
(CDN) for the app, and so on and so forth.

Multi-tier applications
N-tier architecture deployment is quite common across the industry when thinking
about the required infrastructure for an application. Generally, two-tier architecture is
more in demand. This is a pool of web servers and a database tier. As per the application
requirements, additional tiers can be added for API servers, caching servers, routing
meshes, and so on. This pattern is used because each tier can be scaled independently
and without disturbing other tiers:

Figure 1.2 – N-tier application architecture

Now, let's try to understand how Terraform can support us in achieving N-tier application
infrastructure deployment. In the Terraform configuration file, each tier can be described
as a collection of resources, and the dependencies between the resources for each tier
can either be implicit or we can define them explicitly so that we can easily control the
sequence of the resource deployment. This helps us to manage each tier separately without
disturbing the others.

Introduction to Terraform 11

Self-service clusters
In a large organization, it's quite challenging for the central operation team to provide
infrastructure to the product team as and when needed. The product team should be
able to create and maintain their infrastructure using tooling provided by the central
operations team:

Figure 1.3 – Self-service cluster

In the preceding requirement, the entire infrastructure can be codified using Terraform,
which will focus on building and scaling the infrastructure, and a Terraform configuration
file can be shared within an organization, enabling product teams to use the configuration
as a black box and use Terraform as a tool to manage their services. During deployment
of the infrastructure, if the product team encounters any issues, they can reach out to the
central operations team for help and support.

Software demos
Nowadays, software development is increasing by the day, and it is very difficult to get
the infrastructure required to test that software. We have tools such as Vagrant at our
disposal to help us build virtualized environments, and while you may be able to use that
environment for demonstration purposes, it is really difficult to perform software demos
directly on production infrastructure:

Figure 1.4 – Software demo example

12 Getting to Know IaC

A software developer can provide a Terraform configuration to create, provision, and
bootstrap a demo on cloud providers such as Azure, GCP, and AWS. This allows end users
to easily demo the software on their infrastructure, and it even allows them to perform
scale-in or scale-out of the infrastructure.

Disposable environments
In the industry, it is quite common to have multiple landscapes, including production,
staging, or development environments. These environments are generally designed as
a subset of the production environment, so as and when any application needs to be
deployed and tested, it can easily be done in the smaller environment; but the problem
with the increase in complexity of the infrastructure is that it's very difficult to manage it:

Figure 1.5 – Multiple environments

Using Terraform, the production environment that you constructed can be written in a
code format, and then it can be shared with other environments, such as staging, QA, or
dev. This configuration code can be used to spin up any new environments to perform
testing, and can then be easily removed when you are done testing. Terraform can help to
maintain a parallel environment and it can provide an option in terms of its scalability.

Introduction to Terraform 13

Software-defined networking
Software-Defined Networking (SDN) is quite famous in data centers, as it allows
operators to operate a software-defined network very smoothly and developers are able to
develop their applications, which can easily be run on top of the network infrastructure
provided. The control layer and infrastructure layer are the two main components for
defining a software-defined network:

Figure 1.6 – Software-defined network

Software-defined networks can be transformed into code using Terraform. The
configuration code written in Terraform can automatically set up and modify settings
by interfacing with the control layer. This allows the configuration to be versioned and
changes to be automated. As an example, Azure Virtual Network is one of the most
commonly used SDN implementations and can be configured by Terraform.

14 Getting to Know IaC

Resource schedulers
In large-scale infrastructures, the static assignment of applications to machines is very
challenging. In terms of Terraform, there are many schedulers available, such as Borg,
Mesos, YARN, and Kubernetes, that can be used to overcome this problem. These can
be used to dynamically schedule Docker containers, Hadoop, Spark, and many other
software tools:

Figure 1.7 – Kubernetes with Terraform

Terraform is not just limited to cloud providers such as Azure, GCP, and AWS. Resource
schedulers can also behave as providers, enabling Terraform to request resources from
them. This allows Terraform to be used in layers, to set up the physical infrastructure
running the schedulers, as well as provisioning them on the scheduled grid. There is
a Kubernetes provider that can be configured using Terraform to schedule any Pod
deployment. You can read about Kubernetes with Terraform at https://learn.
hashicorp.com/collections/terraform/kubernetes.

Multi-cloud deployment
Nowadays, every organization is moving toward multi-cloud, and one of the challenging
tasks is to deploy the entire infrastructure in a different cloud. Every cloud provider
has its own defined manner of deployment, such as ARM templates for Azure or AWS
CloudFormation. Hence, it is very difficult for an administrator to learn about all of these
while maintaining the complexity of the environment deployment:

https://learn.hashicorp.com/collections/terraform/kubernetes
https://learn.hashicorp.com/collections/terraform/kubernetes

A comparison with other IaC 15

Figure 1.8 – Multi-cloud deployment

Realizing the complexity of multi-cloud infrastructure deployments using already-existing
tools that are very specific to each cloud provider, HashiCorp came up with an approach
known as Terraform. Terraform is cloud-agnostic. A single configuration can be used
to manage multiple providers, and it can even handle cross-cloud dependencies. This
simplifies management and orchestration, helping administrators to handle large-scale,
multi-cloud infrastructures.

So far, we have covered IaC, namely, Terraform, its features, and the different use case
scenarios where we can apply Terraform. Furthermore, we have covered how Terraform
differs from other IaCs mainly used in the major cloud providers, including AWS, Azure,
and Google.

A comparison with other IaC
In the preceding section, you got to know about Terraform, and similar to Terraform,
there are many other IaC options that are more specific to individual cloud providers,
such as ARM templates for the Azure cloud, CloudFormation for AWS, and Cloud
Deployment Manager for GCP. Likewise, each provider has come up with their own IaC
that is used for their infrastructure provisioning. Now, the challenge for an administrator
or developer is to learn and remember a vast number of different template syntaxes. To
overcome this challenge, Terraform came up with a solution involving common workflows
and syntax that allows operators to operate complex infrastructure. Let's try to understand
how Terraform is different in terms of being cross-platform, as well as its modularity,
language of code, validation, readability, maintainability, workflow, error management,
state management, and so on for major cloud providers including AWS, Azure, and GCP.

16 Getting to Know IaC

CloudFormation versus Terraform
In this section, we will see how Terraform differs from CloudFormation based on various
parameters:

Figure 1.9 – CloudFormation versus Terraform

Let's get started.

Cross-platform
A major benefit of Terraform is that you can use it with a variety of cloud providers,
including AWS, GCP, and Azure. CloudFormation templates are more centric to AWS.
So here, Terraform would be more preferred than AWS CloudFormation.

Language
Terraform is written in HashiCorp Configuration Language (HCL). HCL's syntax
is very powerful and allows you to reference variables, attributes, and so on, whereas
CloudFormation uses either JSON or YAML, which are bare notation languages and
are not as powerful as HCL. With CloudFormation, you can also reference parameters,
such as other stacks, but overall, we think HCL makes Terraform more productive.

On the other hand, CloudFormation has good support for various conditional
functionalities. Terraform has the count, for_each, and for loops, which make certain
things easy (such as creating N identical resources) and certain things a bit harder (such as
the if-else type conditional structure; for example, count = var.create_eip ==
true ? 1: 0). CloudFormation has also a wait condition and creation policy, which
can be important in certain deployment situations where you may have to wait before a
certain condition is satisfied.

In terms of language, Terraform is simple and easy to draft, which would encourage
developers and administrators to start exploring Terraform, but it practically depends
upon the use case scenario, which might in some cases require you to use CloudFormation
for AWS resource deployment and manageability.

A comparison with other IaC 17

Modularity
Modularity is generally defined as how much easier it is for you to implement your
infrastructure code using Terraform or CloudFormation. Terraform's modules can be
easily written and reused as infrastructure code in multiple projects by multiple teams.
Hence, it is quite easy to modularize Terraform code. You have the option to modularize
CloudFormation code using nested stacks. You cannot modularize your CloudFormation
stack itself in the same way you can prepare stacks of stacks in Terraform. You can use
cross-stack references in CloudFormation and in the same way, it can be referenced
in Terraform using the terraform_remote_state data source, which is used for
deriving root module output from the other Terraform configuration.

Comparing both AWS CloudFormation and Terraform in terms of modularity, we can see
that Terraform seems to be more friendly and easy to use.

Validation
Both tools allow you to validate infrastructure, but there is a difference. Using
CloudFormation, you can validate AWS CloudFormation stacks, which means it will
check only the syntax of your stack. If you want to update some resources, you can use
CloudFormation change sets, which let you review the changes, meaning whether that
specific resource defined in AWS CloudFormation will get replaced or updated, before
you actually execute AWS CloudFormation stacks.

In the Terraform workflow, there is a plan phase that provides complete information
about what resources are getting modified, deleted, or created before you deploy the
infrastructure code.

In AWS CloudFormation, you have CloudFormation Designer, which can help you to
know all the resources you have defined in AWS CloudFormation. This will provide you
with insight before you actually go ahead and perform the deployment.

In terms of validation, both Terraform and AWS CloudFormation have certain options to
perform it. The only major difference that can be noticed is that in AWS CloudFormation,
you would be required to use multiple AWS services whereas in Terraform, we are easily
able to validate with just its workflow.

18 Getting to Know IaC

Readability
There is no doubt that when you write a Terraform configuration file you will find it
easier compared to AWS CloudFormation. Terraform configuration files are written in
HCL, meaning they are more presentable when you understand the syntax. When you
think about CloudFormation, which is generally written in JSON or YAML, it is quite
complex in terms of its readability, especially JSON; YAML is somewhat fine to read
and understand but the problem with YAML is regarding its whitespace and linting. In
Terraform also, there is the linting concern but Terraform has a smart way of performing
linting by just running terraform fmt -recursive, which will perform linting to
all the Terraform configuration files present in the directory, whereas in YAML, you have
to perform something manually or use some YAML validator tool that can help you with
the validations.

So, in a nutshell, Terraform has more preferred than to AWS CloudFormation.

License and support
AWS CloudFormation is a managed service from AWS offered for free whereas Terraform
is an open source infrastructure automation tool provided by HashiCorp. There is the
Terraform Cloud Enterprise product from HashiCorp that is a licensed version and
Enterprise customers need to purchase it from HashiCorp.

In terms of support plans, AWS has their own support plan that can be taken from AWS,
in the same way that Terraform has their support option that can used by customers.

AWS console support
As AWS CloudFormation is a native AWS IaC tool, it naturally provides excellent support
in the AWS console. In the AWS console, you can monitor the progress of deployments,
see all deployment events, check various errors, integrate CloudFormation with
CloudWatch, and so on. In the Terraform CLI, we don't have any console option, but in the
Terraform Cloud Enterprise version, there is a console where you can see all the progress
of the resource deployments.

Workflow
You must be thinking that AWS CloudFormation will be more mature from an operational
perspective, and this is true to a certain extent, but here you need to understand the
pain area. Let's take an example where you have a complex infrastructure of around 50
resources and you are creating it using AWS CloudFormation. After running for around
20-30 minutes, your AWS CloudFormation stack receives an error in one of the resources
and because of that, the stack fails. In that case, it may roll back and destroy whatever it

A comparison with other IaC 19

had created in AWS or sometimes, it may be able to deploy some of the resources even
though it failed provided you have disabled rollback on failure in AWS CloudFormation.
For further reading on the rollback on failure option in AWS CloudFormation, you can
refer to https://aws.amazon.com/premiumsupport/knowledge-center/
cloudformation-prevent-rollback-failure/. But to be very honest, if it did
roll back and destroyed what it had created, then as an operator, you won't be looking
for something like this because this adds more time and effort. Now, when you provision
your AWS infrastructure using the Terraform workflow, this will provision all the required
infrastructure in AWS. Even though, let's suppose, the Terraform workflow failed, then
it will maintain the existing resources that had already been created prior to the failure.
You can re-run the Terraform configuration, and this will simply provision the remaining
resources rather than creating all the resources from scratch, which will save a significant
amount of time and effort from the point of view of reworking.

So, based on the preceding paragraph, it appears that both AWS CloudFormation and
Terraform workflows can be used. It's totally depends upon the consumer and which one
they prefer.

Error message understandability
Errors thrown by Terraform can be tough for a novice to understand because sometimes
they provide a strange error that is generated from the respective provider's APIs. In
order to have an understanding of all different sorts of errors, you need to have an
understanding of the arguments that are supported by the providers in Terraform.

So, comparing the understandability of error messages between Terraform and AWS
CloudFormation, on occasion you may find that AWS CloudFormation is straightforward
as you will have experience of working with the latter, and then, with your knowledge of
Terraform, you will easily be able to figure out most of the errors.

Infrastructure state management
Both AWS CloudFormation and Terraform maintain the state of the infrastructure in their
own way. In Terraform, state files get stored in the local disk or you can provide a remote
backend location such as AWS S3 where you wish to store your Terraform state file. This
state file would be written in JSON and would hold the information of the infrastructure
that is defined in the Terraform configuration file. So, it is quite easy for Terraform to
validate and check any sort of configuration drift.

https://aws.amazon.com/premiumsupport/knowledge-center/cloudformation-prevent-rollback-failure/
https://aws.amazon.com/premiumsupport/knowledge-center/cloudformation-prevent-rollback-failure/

20 Getting to Know IaC

In contrast, AWS CloudFormation is native to AWS, so we don't need to worry about how
AWS CloudFormation would maintain its state. AWS CloudFormation used to get a signal
from the resources that got provisioned or managed through AWS CloudFormation. If
there is any configuration drift, then AWS CloudFormation may not be able to detect it.

Validation
Both tools allow you to have validation of infrastructure, but there is a difference.
Using the Azure CLI or PowerShell, you can validate a template by running az group
deployment validate, which means it will only check the syntax of your template.
To validate what all the resources are that get provisioned, you have to deploy the complete
ARM template.

Terraform provides a validation with the plan phase that checks the current deployment
in the Terraform state file, refreshes the status of the actual cloud configuration, and then
calculates the delta between the current configuration and the target configuration.

In terms of validation, if you were to compare both, then here too, Terraform wins out
over ARM templates.

Azure ARM templates versus Terraform
In this section, we will see how Terraform differs from ARM based on various parameters:

Figure 1.10 – ARM templates versus Terraform

Let's get started.

Cross-platform
The major benefit of Terraform is that you can use it with many cloud providers,
including AWS, GCP, and Azure. The ARM template is more central to Azure whereas
for Terraform, you just need to learn the HCL language syntax and Terraform workflow
and start using any cloud provider, such as GCP, Azure, or AWS. So from this, we
can understand that Terraform is cloud-agnostic and it would be easy for the user to
implement infrastructure on any of these platforms using Terraform.

A comparison with other IaC 21

Language
Terraform is written in HCL. HCL's syntax is very powerful and allows you to reference
variables, attributes, and so on, whereas ARM templates use JSON and is a little bit
complex but very powerful, because you can use conditional statements, nested templates,
and so on.

Keeping all of this in mind, here too, we would encourage end users and developers to
use Terraform.

Modularity
Modularity generally means how much easier for you it is to implement your
infrastructure code using Terraform or ARM templates. Terraform's modules can be easily
written and reused as infrastructure code in multiple projects by multiple teams. Hence, it
is quite easy to modularize the Terraform code.

You have the option to modularize ARM templates using a nested ARM template,
although you also have the option of forming a nested template, the first one in line in
your main template, and the second one using separate JSON files called from your main
template.

Here, comparing both ARM templates and Terraform, Terraform scores more points than
ARM templates, although in this case, ARM templates are still a viable option for end
users if they are planning to create resources in Azure.

Readability
There is no doubt that when you are intending to write a Terraform configuration file,
you will find it more readable compared to ARM templates. Terraform configuration files
written in HCL are more presentable when you understand their syntax, and the best part
is that if you have learned the syntax, you would be able to write and use it anywhere in
any cloud provider, including Azure, GCP, and AWS. When you consider ARM templates,
which are generally written in JSON, they are quite complex in terms of their readability.

License and support
ARM templates use an Azure-native IaC approach and are available for free, whereas
Terraform is an open source tool available from HashiCorp. There is the Terraform Cloud
Enterprise version of Terraform that enterprise customers can purchase. Regarding
support, both Azure and Terraform have their own support plans that can be utilized by
the customer.

22 Getting to Know IaC

Azure portal support
As an ARM template is a native Azure IaC tool, it naturally provides excellent support in
the Azure portal. You can monitor deployment progress in the Azure portal.

There is no Azure portal support for Terraform but if a customer is willing to use the
Terraform Cloud Enterprise product, then they can utilize a portal that shows enough
information about the infrastructure that they are planning to manage through Terraform.

Workflow
In terms of workflow, both ARM templates and Terraform have very good features. If
the deployment of resources is interrupted halfway through, both Terraform and ARM
templates have the capability to deploy the remaining resources during the second run,
ignoring existing resources.

There is one minor difference, however. ARM template deployment requires an Azure
resource group in place before you run the ARM template code, whereas Terraform
configuration code is able to create an Azure resource group during the runtime itself, just
as you would be required to define a resource group code block in the configuration file.
Hence, it seems that both ARM templates and Terraform are quite satisfactory in terms
of workflow.

Error message understandability
Terraform code can generate some weird errors. There is no doubt that in the backend,
it would be using ARM provider APIs, which would show those errors, and it might be
difficult for those end users who are new to Terraform to understand them, whereas in
ARM templates, errors can be easily identified and fixed as end users may have experience
of working with ARM templates.

So, in terms of comparing error message understandability between Terraform and ARM
templates, this process may be easier in ARM templates.

Infrastructure state management
Both ARM templates and Terraform provide good state management. Terraform provides
state file management using the backend state mechanism. In the state file, Terraform
maps the resource that's been defined in the configuration file with what has actually been
deployed so that it can easily trace any configuration drift. ARM is able to roll back to a
previous successful deployment. You may have read that ARM is stateless as it does not
store any state files.

A comparison with other IaC 23

Google Cloud Deployment Manager versus Terraform
In this section, we will see how Terraform differs from Google Cloud Deployment
Manager based on various parameters:

Figure 1.11 – Cloud Deployment Manager versus Terraform

Let's get started.

Cross-platform
As you have already seen a comparison of AWS and Azure, you should now have an
understanding of Terraform, which can be used on any platform, including GCP too. You
just need to know how you can write Terraform configuration files using HCL and their
workflow.

Cloud Deployment Manager is an infrastructure deployment service that automates the
creation and management of Google Cloud resources. So here, Terraform wins out over
Cloud Deployment Manager.

Language
Terraform is written in HCL. HCL's syntax is very easy and powerful and it allows you to
reference variables, attributes, and so on, whereas Cloud Deployment Manager uses YAML
to create a configuration file and you can define multiple templates in the configuration
file, which is written using Jinja or Python.

Keeping all of this in mind, here too we would encourage end users or developers to use
Terraform because in order to use cloud deployment, you would be required to have
command of Python or Jinja and YAML.

24 Getting to Know IaC

Modularity
Modularity means how easily you can define configuration files and reuse them for
infrastructure provisioning and management using Terraform or Cloud Deployment
Manager. Terraform's modules can be written and published easily, and these modules can
easily be consumed by other product teams in their projects. So, modularizing Terraform
code is quite straightforward.

You have the option to modularize Cloud Deployment Manager using a nested template
inside a configuration file. These templates can be written in either Python or Jinja. A
single configuration can import both Jinja and Python templates. These template files
should be present locally or placed on a third-party URL so that Cloud Deployment
Manager can access them.

Here, comparing both Cloud Deployment Manager and Terraform, Terraform scores more
points than Google Cloud Deployment Manager, although Google Cloud Deployment
Manager remains a viable option for end users here, too, if they are planning to create
resources in Google.

Validation
Both tools allow you to validate infrastructure, but there is a difference. To figure out
any syntax errors in the configuration file, you would be required to run it from Google
Cloud Deployment Manager. This will throw any possible errors, as well as validating
what resources get provisioned. In this case, you have to deploy a complete Google Cloud
Deployment Manager configuration file in Google Cloud.

Terraform provides a validation with the plan phase that tells you what resources it is
going to create, destroy, or update. It is used for comparison purposes with the existing
Terraform state file and accordingly provides detailed insights to the administrator as to
when they will run terraform plan before being deployed to Google Cloud.

In terms of validation, if you were to compare both, then here, too, Terraform wins out
over Google Cloud Deployment Manager.

Readability
If you are intending to write a Terraform configuration file, you will find it more readable
compared to a Google Cloud Deployment Manager configuration file. Terraform
configuration files written in HCL are more presentable, and the best part is that if you
have learned Terraform syntaxes, you would be able to write and use them anywhere in
any cloud, including Google, GCP, and AWS, or even on-premises.

A comparison with other IaC 25

When you think about Cloud Deployment Manager, which is generally written in
YAML, it is also easy to understand, but when you need to introduce a template in the
configuration file, which is written in Jinja or Python, then it becomes complex to read
and understand.

Therefore, I am definitely of the opinion that Terraform is easier to use compared with
Cloud Deployment Manager.

Maintainability
At a certain level, I think Terraform is more maintainable because of its superior
modularity and how you can create different resources in Google Cloud and store its state
file in Google Cloud Storage.

A Cloud Deployment Manager configuration file that is written in YAML and whose
template is written in Python or Jinja is not that easy to read, which means the consumer
needs to learn multiple coding languages. The nested template appears very complex and
you need to store the template file in localhost or a third-party URL. Defining its template
code locally in the configuration file and consuming it in the configuration file is not
possible.

Cloud Deployment Manager doesn't have any kind of state file whereas Terraform has
a state file that is stored in the remote backend.

The Terraform code configuration can be stored in any version control tool, such as Git,
Azure Repos, or Bitbucket, if we are planning to use CI/CD DevOps pipelines.

Maintaining both Terraform code and Google Cloud Deployment Manager templates
would be a little bit complex because both need to be stored either locally or in the source
control tools.

Google console support
As Google Cloud Deployment Manager is a native Google IaC tool used for the
provisioning and maintenance of infrastructure, it provides excellent support in the
Google Cloud console. You can see the progress in terms of deployment in the Google
Cloud console.

There is no Google Cloud console support for Terraform, though there is a separate portal
if you are using the Terraform Cloud Enterprise version.

26 Getting to Know IaC

Workflow
In terms of workflow, both Cloud Deployment Manager and Terraform have very good
features. If the deployment of resources is interrupted halfway through, both Terraform
and Cloud Deployment Manager have the capability to deploy the remaining resources
during the second run, ignoring existing resources.

There is one minor difference, however. Cloud Deployment Manager deployment requires
a project in place before you run the configuration file using Cloud Deployment Manager,
whereas Terraform configuration code is able to create a Google project during the
runtime itself, just as you would be required to define a Google project resource block
code in the configuration file. Therefore, I feel both of them are quite satisfactory when it
comes to the workflow.

Error message understandability
In the previous AWS and Azure comparisons, we mentioned that errors used to emanate
from the respective providers' APIs, and learning how to handle those errors comes with
experience. If you were already equipped with that knowledge, then you would easily
be able to rectify those issues. Again, compared to Google Cloud Deployment Manager,
Terraform code exhibits a number of difficult errors that would be difficult for you to
understand if you were new to Terraform. It doesn't mean that you can easily understand
Google Cloud Deployment Manager errors simply because they involve multiple coding
languages, such as YAML, JSON, or Jinja.

So, in terms of comparing the understandability of error messages between Terraform
and Google Cloud Deployment Manager, if you had experience with Google Cloud,
then it would be instinctive for you and this will help you to understand the errors easily.
Regarding handling errors with Terraform, it may take some time for you to figure it out
as Google Cloud resource APIs release errors specific to that.

Infrastructure state management
Both Cloud Deployment Manager and Terraform provide good state management.
Terraform provides state file management using a backend state mechanism and state files
can be stored in Google Cloud Storage. Cloud Deployment Manager is capable of rolling
back to a previous successful deployment, since deployment used to happen incrementally
by default, and it is quite easy to implement any changes you wish to make in terms of
Google resources using Cloud Deployment Manager.

An understanding of Terraform architecture 27

We covered how Terraform differs from other IaC options, mainly in terms of being cross-
platform, as well as its modularity, readability, infrastructure state management, language,
maintainability, workflow, cloud console support, and so on, and how it can be used by
major cloud providers such as AWS, Azure, and GCP. All these comparisons will help you
to understand how Terraform is a more powerful IaC and how you can effectively choose
Terraform IaC for your infrastructure provisioning rather than selecting any specific IaC.
Moving on, let's try to gain an understanding of Terraform architecture.

An understanding of Terraform architecture
With the help of the preceding section, we learned and became familiar with Terraform,
which is just a tool for building, changing, and versioning infrastructure safely and
efficiently. Terraform is entirely built on a plugin-based architecture. Terraform plugins
enable all developers to extend Terraform usage by writing new plugins or compiling
modified versions of existing plugins:

Figure 1.12 – Terraform architecture

As you can see in the preceding Terraform architecture, there are two key components on
which Terraform's workings depend: Terraform Core and Terraform plugins. Terraform
Core uses Remote Procedure Calls (RPCs) to communicate with Terraform plugins and
offers multiple ways to discover and load plugins to use. Terraform plugins expose an
implementation for a specific service, such as AWS, or a provisioner, and so on.

28 Getting to Know IaC

Terraform Core
Terraform Core is a statically compiled binary written in the Go programming language.
It uses RPCs to communicate with Terraform plugins and offers multiple ways to discover
and load plugins for use. The compiled binary is the Terraform CLI. If you're interested in
learning more about this, you should start your journey from the Terraform CLI, which is
the only entry point. The code is open source and hosted at github.com/hashicorp/
Terraform.

The responsibilities of Terraform Core are as follows:

•	 IaC: Reading and interpolating configuration files and modules

•	 Resource state management

•	 Resource graph construction

•	 Plan execution

•	 Communication with plugins via RPC

Terraform plugins
Terraform plugins are written in the Go programming language and are executable
binaries that get invoked by Terraform Core via RPCs. Each plugin exposes an
implementation for a specific service, such as AWS, or a provisioner, such as Bash. All
providers and provisioners are plugins that are defined in the Terraform configuration file.
Both are executed as separate processes and communicate with the main Terraform binary
via an RPC interface. Terraform has many built-in provisioners, while providers are added
dynamically as and when required. Terraform Core provides a high-level framework that
abstracts away the details of plugin discovery and RPC communication, so that developers
do not need to manage either.

Terraform plugins are responsible for the domain-specific implementation of their type.

The responsibilities of provider plugins are as follows:

•	 Initialization of any included libraries used to make API calls

•	 Authentication with the infrastructure provider

•	 The definition of resources that map to specific services

The responsibilities of provisioner plugins are as follows:

•	 Executing commands or scripts on the designated resource following creation or
destruction

http://github.com/hashicorp/Terraform
http://github.com/hashicorp/Terraform

An understanding of Terraform architecture 29

Plugin locations
By default, whenever you run the terraform init command, it will be looking for the
plugins in the directories listed in the following table. Some of these directories are static,
while some are relative to the current working directory:

You can visit the following link for more information on plugin locations:

https://www.terraform.io/docs/extend/how-terraform-works.
html#plugin-locations

Important note
<OS> and <ARCH> use the Go language's standard OS and architecture
names, for example, darwin_amd64.

Third-party plugins should usually be installed in the user plugins directory,
which is located at ~/.terraform.d/plugins on most OSes and
%APPDATA%\terraform.d\plugins on Windows.

30 Getting to Know IaC

If you are running terraform init with the -plugin-dir=<PATH> option (with
a non-empty <PATH>), this will override the default plugin locations and search only the
path that you had specified.

Provider and provisioner plugins can be installed in the same directories. Provider plugin
binaries are named with the scheme terraform-provider-<NAME>_vX.Y.Z, while
provisioner plugins use the scheme terraform-provisioner-<NAME>_vX.Y.Z.
Terraform relies on filenames to determine plugin types, names, and versions.

Selecting plugins
After finding any installed plugins, terraform init compares them to the
configuration's version constraints and chooses a version for each plugin as defined here:

•	 If there are any acceptable versions of the plugin that have already been installed,
Terraform uses the newest installed version that meets the constraint (even if
releases.hashicorp.com has a newer acceptable version).

•	 If no acceptable versions of plugins have been installed and the plugin is one of the
providers distributed by HashiCorp, Terraform downloads the newest acceptable
version from releases.hashicorp.com and saves it in .terraform/
plugins/<OS>_<ARCH>.

This step is skipped if terraform init is run with the -plugin-dir=<PATH>
or -get-plugins=false options.

•	 If no acceptable versions of plugins have been installed and the plugin is not
distributed by HashiCorp, then the initialization fails and the user must manually
install an appropriate version.

Upgrading plugins
When you run terraform init with the -upgrade option, it rechecks releases.
hashicorp.com for newer acceptable provider versions and downloads the latest
version if available.

This will only work in the case of providers whose only acceptable versions are in
.terraform/plugins/<OS>_<ARCH> (the automatic downloads directory); if
any acceptable version of a given provider is installed elsewhere, terraform init
-upgrade will not download a newer version of the plugin.

http://releases.hashicorp.com
http://releases.hashicorp.com
http://releases.hashicorp.com
http://releases.hashicorp.com

Summary 31

We have now covered Terraform architecture and learned about its core components,
in other words, Terraform Core and Terraform plugins, and how Terraform Core
communicates with Terraform plugins (provisioners and providers) using RPCs. In
conjunction with this, you now have an understanding of the different sources from where
Terraform will attempt to download plugins, because without plugins, you will not be able
to use Terraform.

Summary
With the help of this chapter, you will now have a fair understanding of what Terraform
is. Terraform is an IaC orchestration tool introduced by HashiCorp that is mainly used
for the provisioning of infrastructure for your applications in code format. It is written in
HCL, which is easily readable and understood, and we have also examined a number of
different use cases, including multi-tier applications, SDNs, multi-cloud deployment, and
resource schedulers, as well as examples of where you can use Terraform.

Moving on, you got to understand how Terraform differs from other IaCs, such as with
ARM templates and CloudFormation, in terms of language, readability, modularity, error
handling, and suchlike. Later, we explained Terraform architecture, and from there we got
to know about how Terraform Core is used to communicate with Terraform plugins using
RPCs, and by using Terraform Core, we would be able to run different Terraform CLI
commands, including init, plan, and apply.

In the next chapter, we are going to discuss how you can install terraform.exe on a
different machine, such as Windows, macOS, and Linux, which will help you in getting
started with Terraform.

Questions
The answers to these questions can be found in the Assessments section at the end of
this book:

1.	 What do you understand the definition of Terraform to be?

a) It is a virtual box.

b) It is an orchestration tool that is used for the provisioning of infrastructure.

c) It is a cloud.

d) It is a Google Chrome extension.

32 Getting to Know IaC

2.	 Which of the following are Terraform plugins? Select one or more:

a) Terraform providers

b) Terraform provisioners

c) Terraform resources

d) Terraform plan

3.	 A Terraform configuration file is written in which language?

a) Python

b) HCL

c) YAML

d) Go

4.	 Which of the following is not a Terraform provider?

a) Azure

b) AWS

c) GCP

d) SAP

5.	 Terraform is an orchestration tool developed by which company?

a) Microsoft

b) HashiCorp

c) Amazon

d) Google

Further reading
You can check out the following links for more information about the topics covered in
this chapter:

•	 What is Terraform? https://www.Terraform.io/intro/index.html

•	 Terraform use cases: https://www.Terraform.io/intro/use-cases.html

•	 How Terraform works: https://www.Terraform.io/docs/extend/
how-Terraform-works.html

•	 Terraform releases: https://github.com/hashicorp/Terraform/
releases

https://www.Terraform.io/intro/index.html
https://www.Terraform.io/intro/use-cases.html
https://www.Terraform.io/docs/extend/how-Terraform-works.html
https://www.Terraform.io/docs/extend/how-Terraform-works.html
https://github.com/hashicorp/Terraform/releases
https://github.com/hashicorp/Terraform/releases

2
Terraform

Installation Guide
In the previous chapter, we discussed Infrastructure as Code (IaC), mainly focusing on
what Terraform is, and then we covered a comparison of Terraform with other available
IaC options, such as AWS CloudFormation templates, Azure ARM templates, and Google
Cloud Deployment Manager. Moving on, we had a detailed discussion about Terraform
architecture and further learned about different versions of Terraform and their respective
available features.

In this chapter, we will be focusing on how you can install Terraform on your local
machine, whether it is Windows, Linux, or macOS. Once you are done with the installation
of Terraform, you should be able to start drafting your configuration code in Terraform and
run it locally from your system.

The following topics will be covered in this chapter:

•	 Installing Terraform on Windows

•	 Installing Terraform on Linux

•	 Installing Terraform on macOS

34 Terraform Installation Guide

Technical requirements
To follow along with this chapter, you need to have an understanding of what Terraform
is and in what scenarios you should use it, and some basic knowledge of major cloud
providers, such as GCP, AWS, and Azure, would add more benefits.

Installing Terraform on Windows
Welcome to the Terraform installation guide. In this section, we are planning to install
Terraform on a Windows machine. Then, after the installation of Terraform, we will
try to define it in an environment variable so that you will be able to run the Terraform
configuration file from any command line, such as Windows CMD, PowerShell, or Bash.

Downloading Terraform
Before you start using Terraform, you need to download the appropriate Terraform
package for your operating system and architecture. The latest version v1.0.0 of Terraform
is available and can be downloaded. After downloading the latest Terraform binary,
extract it and update terraform.exe in your environment path so that you can run
it from any command line.

Follow these steps to install Terraform on a Windows machine:

1.	 Visit the Terraform download URL, https://www.terraform.io/
downloads.html, and download the Terraform package by selecting the
Windows 32-bit or 64-bit operating system depending on your Windows
operating system, as shown in the following screenshot:

https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html

Installing Terraform on Windows 35

 Figure 2.1 – Download Terraform (Windows)

2.	 Extract the downloaded file to any location on your computer, as shown in the
following screenshot:

Figure 2.2 – Extract the terraform file

36 Terraform Installation Guide

3.	 Now, you need to set the environment variable path for terraform.exe. To
do that, go to This PC, right-click on it, and go to Properties | Advanced system
settings | Environment Variables…, as shown in Figure 2.3:

Figure 2.3 – Environment variable

Installing Terraform on Windows 37

4.	 From the Environment Variables screen, go to the System variables section, and
under Path, just add a path by locating the terraform.exe file where you saved
it after doing the extraction. Then, click OK | OK, as shown in Figure 2.4:

Figure 2.4 – Environment path variable

38 Terraform Installation Guide

Now, let's try to verify whether we have Terraform on our system or not. Just open any
CLI, such as Windows CMD or Windows PowerShell, and then type terraform –v or
terraform -h; you should see the output shown in Figure 2.5:

Figure 2.5 – Validating Terraform (Windows)

Installing Terraform on Linux 39

Important note
You can put terraform.exe in the C:\Windows\system32 location,
provided you don't want to define a separate path in the environment variables.

We have covered the installation of Terraform on Windows and learned how we
can download it from the Terraform website, https://www.terraform.io/
downloads.html, and then saw how we can set up Terraform locally on our system.
With all this, you are ready to start drafting your configuration code. So now, let's learn
how to install Terraform on a Linux machine.

Installing Terraform on Linux
As we have already learned how to install Terraform on Windows, now let's learn how
to install Terraform on a Linux machine. Then, once we're done with the installation
of Terraform, we will learn how we can verify whether a Linux machine has Terraform
installed or not. For this section, we have considered an Ubuntu Linux machine;
considering multiple Linux platforms such as CentOS, Red Hat, and SUSE is beyond the
scope of this book, but in a nutshell, if you know how to install Terraform on one of the
Linux platforms, you should easily be able to do so on other Linux platforms too.

Downloading Terraform
Before you start using Terraform, you need to download the appropriate Terraform
package for your Linux operating system and architecture. The latest version v1.0 of
Terraform is available and can be downloaded from https://www.terraform.io/
downloads.html or https://releases.hashicorp.com/terraform/1.0.0/
terraform_1.0.0_linux_amd64.zip. We have used v1.0.0 of Terraform.

Follow these steps to install Terraform on a Linux machine:

1.	 SSH to your Linux, that is, Ubuntu, machine using putty.exe or any client, then
update its library using the sudo apt update -y command:

Figure 2.6 – Linux VM update

https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html

40 Terraform Installation Guide

2.	 Create a directory with any name and get inside it using the cd command. We are
creating a directory named terraform using the mkdir terraform && cd
terraform command.

3.	 Then, download Terraform v1.0.0 using the wget command (https://
releases.hashicorp.com/terraform/1.0.0/terraform_1.0.0_
linux_amd64.zip):

Figure 2.7 – Download Terraform (Linux)

4.	 Install a software package called unzip that will help us to extract files from the
existing ZIP file:

sudo apt install unzip -y

5.	 Once installed, you can unpack the already-downloaded Terraform ZIP file using
the following command:

sudo unzip terraform_1.0.0_linux_amd64.zip

https://releases.hashicorp.com/terraform/1.0.0/terraform_1.0.0_linux_amd64.zip
https://releases.hashicorp.com/terraform/1.0.0/terraform_1.0.0_linux_amd64.zip
https://releases.hashicorp.com/terraform/1.0.0/terraform_1.0.0_linux_amd64.zip

Installing Terraform on Linux 41

After running the preceding command, you will see the following:

Figure 2.8 – Unzipping Terraform

6.	 Set the Linux path to point to Terraform with the following command:

export PATH=$PATH:$HOME/terraform

You can check whether Terraform installed or not by typing the terraform
–-version or terraform –-help command. We will validate the presence of
Terraform by using terraform console commands. You should be able to perform
some of the operations from terraform console as shown:

inmishrar@terraform-vm:~/terraform$ echo "1+7" | terraform
console

8

inmishrar@terraform-vm:~/terraform$

The previously defined terraform console command gives us an output by
calculating 1 + 7 = 8, which tells us that Terraform is working on our Linux machine.

42 Terraform Installation Guide

We have covered the installation of Terraform on Linux on an Ubuntu machine,
and learned how we can download it from the Terraform website, https://www.
terraform.io/downloads.html or https://releases.hashicorp.com/
terraform, and then saw how we can set up Terraform locally on our Linux system.
After covering the initial setup of Terraform, you should be ready to start drafting the
configuration file. So now, let's learn how to install Terraform on a macOS machine.

Installing Terraform on macOS
As you already know how to install Terraform on Linux, mainly on an Ubuntu machine,
now let's learn how to install Terraform on a Mac machine. Once we're done with
the installation of Terraform, we will learn how to verify whether a Mac machine has
Terraform installed or not.

Downloading Terraform
Before you start using Terraform, you need to download the appropriate Terraform
package for your Mac operating system and architecture. The latest version, such as v1.0.0,
of Terraform is available and can be downloaded from https://www.terraform.
io/downloads.html for a Mac system. For our case, we have used v1.0.0 of Terraform.

Follow these steps to install Terraform on a Mac machine:

1.	 To install Terraform on a MacBook, you simply have to download the Terraform
binary from https://www.terraform.io/downloads.html, as you can
see in Figure 2.9:

Figure 2.9 – Download Terraform (Mac)

https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html

Installing Terraform on macOS 43

2.	 After downloading the Terraform binary, unzip it and place it in any folder path;
you can either update the $PATH variable to point to the location where the
Terraform binary is or you can just move it to the local bin directory. If you choose
the latter, then on MacBook, you will need to execute the following command:
sudo mv ./terraform /usr/local/bin:

Figure 2.10 – Terraform path

44 Terraform Installation Guide

3.	 You can validate whether Terraform was installed successfully on your MacBook by
using either the terraform -h or terraform -v commands. You can see the
output in Figure 2.11:

Figure 2.11 – Validate Terraform (Mac)

We have covered the installation of Terraform on macOS and learned how to download it
from the Terraform website, https://www.terraform.io/downloads.html, and
then saw how to set up Terraform locally on our Mac system. After covering the initial
setup of Terraform, you should be ready to start drafting your first configuration file.

Summary 45

Summary
In this chapter, you learned how to install terraform.exe on different machines, such
as Windows, Mac, and Linux, which will help you to get started with Terraform.

In the next chapter, we will discuss all the Terraform core components, such as resources,
data, variables, output, inbuilt functions, backend, locals, iterations, providers, and
provisioners. These core components that will be discussed will cover multiple providers,
such as Azure, GCP, and AWS.

Questions
The answers to these questions can be found in the Assessment section at the end of this
book:

1.	 How can you check which version of Terraform is installed on your system?

A. terraform -psversion

B. terraform --version

C. terraform --help

D. terraform fmt

2.	 You are using a Linux machine where Terraform is already installed. As you are
very new to Terraform, you are looking for the "help" option in Terraform. Which
command will you be executing? Select all the possible answers:

A. terraform -h

B. terraform -help

C. terraform fmt

D. terraform plan

3.	 Do you need to install the Go language library on your local system if you want to
install Terraform?

A. Yes

B. No

46 Terraform Installation Guide

Further reading
You can check out the following links for more information about the topics that were
covered in this chapter:

•	 Terraform download: https://www.terraform.io/downloads.html

•	 Terraform releases: https://github.com/hashicorp/Terraform/
releases

•	 Terraform installation guide: https://learn.hashicorp.com/tutorials/
terraform/install-cli

https://www.terraform.io/downloads.html
https://github.com/hashicorp/Terraform/releases
https://github.com/hashicorp/Terraform/releases

Section 2:
Core Concepts

From this section, you will be able to get full insight into the industry's best practices
that are generally followed while provisioning enterprise-level infrastructure. You will
get an in-depth understanding of the complete Terraform life cycle and how effectively
Terraform code can be drafted and run using the Terraform CLI.

The following chapters will be covered under this section:

•	 Chapter 3, Getting Started with Terraform

•	 Chapter 4, Deep Dive into Terraform

•	 Chapter 5, Terraform CLI

•	 Chapter 6, Terraform Workflows

•	 Chapter 7, Terraform Modules

3
Getting Started with

Terraform
In the previous chapter, we discussed the installation of Terraform on your local machine,
whether it is Windows, Linux, or macOS. Once you are done with the installation of
Terraform, you should be ready to start drafting your configuration code in Terraform
and running it locally from your system.

In this chapter, we are going to discuss Terraform plugins, which include providers and
provisioners. Here, we will discuss Terraform providers, while in a later chapter, we will
discuss Terraform provisioners. Furthermore, we will see how you can take input from
users by defining Terraform variables and then, once you have provided variables and
your configuration file is ready, you can validate the output using output values. We will
even discuss how you can use already existing resources by calling the data block in your
configuration code.

The following topics will be covered in this chapter:

•	 Introducing Terraform providers

•	 Knowing about Terraform resources

•	 Understanding Terraform variables

•	 Understanding Terraform output

•	 Understanding Terraform data

50 Getting Started with Terraform

Technical requirements
To follow along with this chapter, you need to have an understanding of what Terraform
is and how you can install Terraform on your local machine. Some basic knowledge of
major cloud providers such as GCP, AWS, and Azure would add extra benefits during
the chapter.

Introducing Terraform providers
In this section, we will learn what Terraform providers are. Going further, we will try
to understand Terraform providers for the major clouds, such as GCP, AWS, and Azure.
Once you have an understanding of Terraform providers, we will see how you can
define a Terraform providers block in your configuration code and how your Terraform
configuration code downloads specific providers when you execute terraform init.

Terraform providers
You may be wondering how Terraform knows where to go and create resources in, let's
say, for example, a situation where you want to deploy a virtual network resource in
Azure. How will Terraform understand that it needs to go and create the resources in
Azure and not in other clouds? Terraform manages to identify the Terraform provider.
So, let's try to understand what the definition of a Terraform provider is:

Figure 3.1 – Terraform providers

Introducing Terraform providers 51

A provider is an executable plugin that is downloaded when you run the terraform
init command. The Terraform provider block defines the version and passes
initialization arguments to the provider, such as authentication or project details.
Terraform providers are the component that makes all the calls to HTTP APIs for
specific cloud services, that is, AzureRM, GCP, or AWS.

A set of resource types is offered by each provider plugin that helps in defining what
arguments a resource can accept and which attributes can be exported in the output
values of that resource.

Terraform Registry is the main directory of publicly available Terraform providers and
hosts providers for most major infrastructure platforms. You can also write and distribute
your own Terraform providers, for public or private use. For more understanding about
Terraform Registry, you can follow https://registry.terraform.io/.

Providers can be defined within any file ending with .tf or .tf.json but, as per best
practices, it's better to create a file with the name providers.tf or required_
providers.tf, so that it would be easy for anyone to follow and, within that file, you
can define your provider's code. The actual arguments in a provider block may vary
depending on the provider, but all providers support the meta-arguments of version
and alias.

In Terraform, there is a list of community providers that are contributed to and shared by
many users and vendors. These providers are not all tested and are not officially supported
by HashiCorp. You can see a list of the Terraform community providers at https://
www.terraform.io/docs/providers/type/community-index.html.

If you are interested in writing Terraform providers, then you can fill in this form:
https://docs.google.com/forms/d/e/1FAIpQLSeenG02tGEmz7pntIqMK
lp5kY53f8AV5u88wJ_H1pJc2CmvKA/viewform#responses or visit https://
registry.terraform.io/publish/provider.

We will not be discussing how you can write your own Terraform providers, but if you
are interested in exploring it further, you can visit https://learn.hashicorp.
com/tutorials/terraform/provider-setup and https://github.com/
hashicorp/terraform-plugin-docs.

Let's try to understand what a provider block looks like for AzureRM, GCP, and AWS.

https://registry.terraform.io/
https://docs.google.com/forms/d/e/1FAIpQLSeenG02tGEmz7pntIqMKlp5kY53f8AV5u88wJ_H1pJc2CmvKA/viewform#responses
https://docs.google.com/forms/d/e/1FAIpQLSeenG02tGEmz7pntIqMKlp5kY53f8AV5u88wJ_H1pJc2CmvKA/viewform#responses
https://registry.terraform.io/publish/provider
https://registry.terraform.io/publish/provider
https://learn.hashicorp.com/tutorials/terraform/provider-setup
https://learn.hashicorp.com/tutorials/terraform/provider-setup
https://github.com/hashicorp/terraform-plugin-docs
https://github.com/hashicorp/terraform-plugin-docs

52 Getting Started with Terraform

AzureRM Terraform provider
As we discussed regarding providers in Terraform, HashiCorp has introduced the
AzureRM provider. Now, let's try to understand the code for the Azure provider:

We strongly recommend using the required_
providers block to set the

Azure Provider source and version being used

terraform {

 required_version = ">= 1.0"

 required_providers {

 azurerm = {

 source = "hashicorp/azurerm"

 version = "2.54.0"

 }

 }

}

Configure the Microsoft Azure Provider

provider "azurerm" {

 features {}

 subscription_id = "...."

 client_id = "...."

 client_secret = "...."

 tenant_id = "...."

}

In the previous AzureRM provider code block, we had considered authentication of
Terraform to Azure using the service principle. Let's try to understand what are the
different arguments supported:

•	 features (required): Some of the Azure provider resource behaviors can be
customized by defining them in the features block.

•	 client_id (optional): The client ID can be taken from the service principle. It can
source from the ARM_CLIENT_ID environment variable.

•	 client_secret (optional): This is the client secret that you can generate for
the service principle that you have created. This can also be sourced from the
ARM_CLIENT_SECRET environment variable.

•	 subscription_id (optional): This provides your Azure subscription ID. It can
be sourced from the ARM_SUBSCRIPTION_ID environment variable.

Introducing Terraform providers 53

•	 tenant_id (optional): This provides your Azure tenant ID. It can be sourced from
the ARM_TENANT_ID environment variable.

In order to authenticate to your Azure subscription, you are required to provide values
for subscription_id, client_id, client_secret, and tenant_id. Now, it is
recommended that either you pass these values through an environment variable or use
cached credentials from the Azure CLI. As per the recommended best practice, avoid
hardcoding secret information, such as credentials, into the Terraform configuration. For
more details about how to authenticate Terraform to an Azure provider, you can refer to
https://www.terraform.io/docs/providers/azurerm/index.html.

Let's now try to get a detailed understanding of the version and features arguments
defined in the provider code.

The version argument defined in the code block is mainly used to constrain the
provider to a specific version or a range of versions. This would prevent downloading
a new provider that may contain some major breaking changes. If you don't define the
version argument in your provider code block, Terraform will understand that you
want to download the most recent provider during terraform init. If you wish to
define versions in the provider block, HashiCorp recommends that you create a special
required_providers block for Terraform configuration, as follows:

terraform {

 required_version = ">= 1.0"

 required_providers {

 azurerm = {

 source = "hashicorp/azurerm"

 version = "2.54.0"

 }

 }

}

Rather than setting the version of a provider for each instance of that provider, the
required_providers block sets it for all instances of the provider, including child
modules. Using the required_providers block makes it simpler to update the
version on a complex configuration.

Let's see what different possible options you have when passing version values in the
provider code block:

•	 >= 2.54.0: Greater than or equal to the version.

•	 = 2.54.0: Equal to the version.

https://www.terraform.io/docs/providers/azurerm/index.html

54 Getting Started with Terraform

•	 != 2.54.0: Not equal to the version.

•	 <= 2.54.0: Less than or equal to the version.

•	 ~> 2.54.0: This one is funky. It means any version in the 2.54.X range. It will
always look for the rightmost version increment.

•	 >= 2.46, <= 2.54: Any version between 2.46 and 2.54, inclusive.

One of the most common arguments is ~>, which means you want the same major
version while still allowing minor version updates. For instance, let's say there's a major
change coming to the Azure provider in version 2.0. By setting the version to ~>1.0, you
would allow all version 1 updates that come down while still blocking the big 2.0 release.

Let's try to understand what the features argument is doing within this Azure provider
code block.

As per the latest update, you can control the behavior of some of the Azure resources
using this features block. More details about what resources you can control are
defined as follows.

The features block supports the following Azure resources or services:

•	 key_vault

•	 template_deployment

•	 virtual_machine

•	 virtual_machine_scale_set

•	 log_analytics_workspace

The key_vault block supports the following arguments:

•	 recover_soft_deleted_key_vaults (optional): The default value is set to
true. It will try to recover a key vault that has previously been soft deleted.

•	 purge_soft_delete_on_destroy (optional): The default value is set to
true. This will help to permanently delete the key vault resource when we run
the terraform destroy command.

The template_deployment block supports the following argument:

•	 delete_nested_items_during_deletion (optional): The default value
is set to true. This will help to delete those resources that have been provisioned
using the ARM template when the ARM template got deleted.

Introducing Terraform providers 55

The virtual_machine block supports the following argument:

•	 delete_os_disk_on_deletion (optional): The default value is set to true.
This will help to delete the OS disk when the virtual machine got deleted.

The virtual_machine_scale_set block supports the following argument:

•	 roll_instances_when_required (optional): The default value is set to
true. This will help to roll the number of the VMSS instance when you update
SKU/images.

The log_analytics_workspace block supports the following arguments:

•	 permanently_delete_on_destroy (optional). The default value is set to
true. This will help to permanently delete the log analytics when we perform
terraform destroy.

The previously defined features block arguments have been taken from https://
www.terraform.io/docs/providers/azurerm/index.html. For more
information, you can check out that URL.

In the following example, you can see how you can define a features argument in the
Azure provider code block and can control specific properties of the Azure key vault, You
can use the same approach and customize all the previously defined arguments of the
Azure resource or services:

provider "azurerm" {

 version = "~> 2.54.0"

 features {

 key_vault {

 recover_soft_deleted_key_vaults = false

 }

 }

}

Now, let's try to understand a use case where you want to deploy multiple Azure resources
in different subscriptions. Terraform provides an argument called alias in your provider
block. Using that alias argument, you can reference same provider multiple times with
a different configuration in your configuration block.

https://www.terraform.io/docs/providers/azurerm/index.html
https://www.terraform.io/docs/providers/azurerm/index.html

56 Getting Started with Terraform

Here is an example of the code:

terraform {

 required_version = ">= 1.0"

 required_providers {

 azurerm = {

 source = "hashicorp/azurerm"

 version = "2.54.0"

 }

 }

}

Configure the Microsoft Azure Provider

provider "azurerm" {

 features {}

}

provider "azurerm" {

 features {}

 alias = "nonprod_01_subscription"

}

To Create Resource Group in specific subscription

resource "azurerm_resource_group" "example" {

 provider = azurerm.nonprod_01_subscription

 name = "example-resources"

 location = "West Europe"

}

Moving on, let's try to understand how you can define multiple different providers in the
Terraform configuration file. Here is one of the code snippets:

terraform {

 required_version = ">= 1.0"

 required_providers {

 azurerm = {

 source = "hashicorp/azurerm"

 version = "2.54.0"

 }

 random = {

 source = "hashicorp/random"

Introducing Terraform providers 57

 version = "3.1.0"

 }

 }

}

Configure the Microsoft Azure Provider

provider "azurerm" {

 features {}

}

Configure the Random Provider

provider "random" {}

resource "random_integer" "rand" {

 min = 1

 max = 50

}

resource "azurerm_resource_group" "examples" {

 name = "example1-resources-${random_integer.rand.result}"

 location = "West Europe"

}

As described in the previous code, we have defined two different providers: random
and azurerm. The random provider will help us to generate a random integer between
1 and 50 and the result of that integer will get appended to the Azure resource group
name. Using this approach, we can define multiple different providers in the same
configuration file.

Let's try to understand how we can define a provider for our AWS. This will also be using
the same approach as we observed with AzureRM.

AWS Terraform provider
We've already discussed the Terraform AzureRM provider. Similarly, HashiCorp has
introduced an AWS provider. Let's try to understand how the AWS provider can be
defined in the Terraform configuration file.

The following is a code snippet:

terraform {

 required_version = ">= 1.0"

 required_providers {

 aws = {

58 Getting Started with Terraform

 source = "hashicorp/aws"

 version = "~> 3.35.0"

 }

 }

}

provider "aws" {

 region = "us-east-1"

 access_key = "..."

 secret_key = "..."

}

There are many arguments supported by the AWS provider code block. A few of
them are described here, but for more information regarding all the arguments, you
can visit https://registry.terraform.io/providers/hashicorp/aws/
latest/docs:

•	 access_key (optional): This is the AWS access key. It must be provided, but it can
also be sourced from the AWS_ACCESS_KEY_ID environment variable, or via a
shared credentials file if a profile is specified.

•	 secret_key (optional): This is the AWS secret key. It must be provided, but it can
also be sourced from the AWS_SECRET_ACCESS_KEY environment variable, or via
a shared credentials file if a profile is specified.

•	 region (optional): This is the AWS region where you want to deploy AWS
resources. This can be sourced from the AWS_DEFAULT_REGION environment
variable, or via a shared credentials file if a profile is specified.

For authentication to your AWS account, you can define access_key and secret_key
in the environment variable because, as you know, hardcoding of a secret in the provider
code block is not recommended, so it is better to pass it during the runtime itself or define
it in the environment variable. For more details about this authentication option, you
can visit https://registry.terraform.io/providers/hashicorp/aws/
latest/docs.

The rest of the common arguments, such as alias and version, which we discussed
in the Azure provider, can be used in the AWS provider block as well, so we will skip
them here.

https://registry.terraform.io/providers/hashicorp/aws/latest/docs
https://registry.terraform.io/providers/hashicorp/aws/latest/docs
https://registry.terraform.io/providers/hashicorp/aws/latest/docs
https://registry.terraform.io/providers/hashicorp/aws/latest/docs

Introducing Terraform providers 59

Google Terraform provider
Like the AWS and Azure providers, HashiCorp has introduced a Google cloud provider.
So far, you will have a fair understanding of the Terraform providers, so let's try to see
how we can define the Terraform provider code block for Google Cloud:

terraform {

 required_version = ">= 1.0"

 required_providers {

 google = {

 source = "hashicorp/google"

 version = "3.63.0"

 }

 }

}

provider "google" {

 credentials = file("account.json")

 project = "my-google-project-id"

 region = "europe-west2"

 zone = "europe-west2-b"

}

Like the AWS and Azure providers, the Google provider also supports many arguments.
We have highlighted a few of them here:

•	 credentials (optional): This is a JSON file that holds login information to the
Google cloud. You can provide the file path and filename.

•	 project (optional): This is the name of the Google project where resources are to
be managed.

•	 region (optional): This is the region where we want to deploy our Google
resources.

•	 zone (optional): This is a specific data center within the region that can be defined.

To have an understanding of alias and version arguments, you can go back and read
the Azure provider section because the working principle in all the providers is the same;
you just need to understand the concept behind it.

60 Getting Started with Terraform

We have discussed the Terraform providers, specifically covering Azure, AWS, and
GCP. You must have understood how to define a provider code block in your Terraform
configuration file. Along with that, you should have learned how you can use multiple
same providers in your configuration file by defining alias. After learning about the
Terraform providers, let's try to understand how you can write a resource code block in
the Terraform configuration file, which is the only code actually helping you to provision
or make changes to your existing resources. We will cover resource code blocks in the
major clouds: Azure, AWS, and Google.

Knowing about Terraform resources
Havig acquired a good understanding of Terraform providers, now we are going to discuss
resources in Terraform. Let's try to understand how a resource code block is defined in
the Terraform configuration file and why it is so important. First of all, let's see what a
Terraform resource is.

Terraform resources
Resources are the most important code blocks in the Terraform language. By defining
a resource code block in the configuration file, you are letting Terraform know which
infrastructure objects you are planning to create, delete, or update, such as compute,
virtual network, or higher-level PaaS components, such as web apps and databases. When
you define a resource code block in the configuration file, it starts with the provider
name at the very beginning, for example, aws_instance, azurerm_subnet, and
google_app_engine_application.

Azure Terraform resource
It is very important for you to understand how you should write your Terraform resource
code in the configuration file. We will take a very simple example of the Azure public
IP address, which you can see in the following screenshot:

Knowing about Terraform resources 61

 Figure 3.2 – Azure Terraform resource

As you can see in Figure 3.2, the red highlighted text is an actual resource that you are
planning to update, create, or destroy. In the same way, Azure has many such resources
and you can find out detailed information about it from https://www.terraform.
io/docs/providers/azurerm/:

Figure 3.3 – Azure resources

https://www.terraform.io/docs/providers/azurerm/
https://www.terraform.io/docs/providers/azurerm/

62 Getting Started with Terraform

There, on the left-hand side of the website given previously, you will able to see all the
Azure resources as shown in Figure 3.3. You will able to write your configuration file
using those Azure resources provided.

The blue highlighted text is just a local name for the Terraform to the particular resource
code that we are writing. In Figure 3.2, we are creating an Azure resource group and a
public IP address. So, we have defined a local name for the resource group as example
and azure-pip for the Azure public IP address.

The green highlighted text in Figure 3.2 provides you with information on how you can
reference certain arguments from other resource blocks. In the preceding example, we
want to create an Azure public IP address. To provision the Azure public IP address, you
will be required to provide the resource group name and location, which can be obtained
from the earlier defined resource group code block.

With you now having an idea of how to define the Azure resource code block in the
Terraform configuration file, let's see how we can do it in AWS.

AWS Terraform resource
You may be thinking that Terraform would behave separately and that there would
be a change in the syntax when defining the resource code block in the Terraform
configuration file for AWS, but this is not true. It follows the same approach in terms of
how we can define it for the Azure resources. Let's try to discuss this using an example
of AWS:

resource "aws_instance" "web" {

 ami = "ami-a1b2c3d4"

 instance_type = "t2.micro"

}

As you can see in the preceding code snippet, we are trying to deploy an EC2 instance in
AWS. So for that, we have defined a resource block declaring a resource of a given type
("aws_instance"), which has a local name of "web". The local name is mainly used
to refer to this resource in any other resource, data, or module code block. For more
information about all the available AWS resources, you can visit https://registry.
terraform.io/providers/hashicorp/aws/latest/docs.

So far, we have looked at resource code blocks for Azure and AWS and haven't seen any
difference in the syntax. You may be thinking that it will definitely get changed in the
Google Cloud. In our next section, we are going to define how you can write a Google
resource code block in the Terraform configuration file.

https://registry.terraform.io/providers/hashicorp/aws/latest/docs
https://registry.terraform.io/providers/hashicorp/aws/latest/docs

Understanding Terraform variables 63

Google Terraform resource
We have already seen how we can define a resource block code for AWS and Azure. In
terms of Terraform resource syntax, there are no differences; the only thing that will
be different in all the providers is the resource block arguments because every provider
has its defined arguments that can be passed into the resource code block. Let's see an
example of Google Cloud Terraform resource code for creating Google App Engine:

resource "google_project" "my_project" {

 name = "My Project"

 project_id = "your-project-id"

 org_id = "1234567"

}

resource "google_app_engine_application" "app" {

 project = google_project.my_project.project_id

 location_id = "us-central"

}

Here, we are using the google_project resource block having a local name
my_project to create a Google Cloud project and google_app_engine_
application with a local name app to create a Google App Engine resource.

We have covered the Terraform resource code block and learned about how to write a
resource block for cloud providers such as AWS, Azure, and GCP. We have even learned
that there is no difference in the syntax of the resource code blocks; there may only be
differences in terms of the argument supported by each provider. Moving forward, we
are going to understand how you can take input from users, such as the name of the
EC2 instance, by defining Terraform variables.

Understanding Terraform variables
In an earlier section, you learned about how you can write a resource code block in the
Terraform configuration file. In that resource code block, we either hardcoded argument
values or we referenced them from another resource code block. Now, we will try to
understand how we can define those hardcoded values in a variable and define them
in a separate file that can be used again and again.

64 Getting Started with Terraform

Terraform variables
If you have basic experience of writing any scripting or programming language, you must
have noticed that we can define some variables and use those defined variables again and
again in the whole script. Likewise, in other programming languages, Terraform also
supports variables that can be defined in the Terraform configuration code. The only
difference between other programming language variables and Terraform variables is
that, in Terraform variables, you are supposed to define input values when you want to
execute your Terraform configuration code. We will be explaining the Terraform input
variables approach for all three clouds – Azure, AWS, and GCP.

Azure Terraform input variables
Let's try to take the same Azure public IP address example that we discussed in the
Knowing about Terraform resources section. We will try to define variables for most of the
arguments so that we can use this resource code again and again by just providing values
for the defined input variables. Here is the code snippet that will provide you with an idea
of how you can define variables in the Terraform configuration code. You can simply take
this code into any file ending with .tf. We generally try to put them into main.tf:

To Create Resource Group

resource "azurerm_resource_group" "example" {

 name = var.rgname

 location = var.rglocation

}

To Create Azure Public IP Address

resource "azurerm_public_ip" "azure-pip" {

 name = var.public_ip_name

 location = azurerm_resource_group.example.
location

 resource_group_name = azurerm_resource_group.example.name

 allocation_method = var.allocation_method

 idle_timeout_in_minutes = var.idle_timeout_in_minutes

 tags = var.tags

}

Understanding Terraform variables 65

In the preceding code, you may have observed how we defined the variables against
all the resource arguments. The syntax is <argument name> = var.<variable
name>. We have highlighted name and location in the resource group so that you get
an understanding of how generally we are supposed to define Terraform input variables.
After defining the Terraform input variable, don't forget to declare it. We can declare it in
any file ending with .tf. Generally, we prefer to declare it in a separate file with the name
variables.tf. Variables need to be defined within the variable block, in other words,
variables <variable name>. Here is a code snippet for your reference:

variables for Resource Group

variable "rgname" {

 description = "(Required)Name of the Resource Group"

 type = string

 default = "example-rg"

}

variable "rglocation" {

 description = "Resource Group location like West Europe etc."

 type = string

 default = "West Europe"

}

variables for Azure Public IP Address

variable "public_ip_name" {

 description = "Name of the Public IP Address"

 type = string

 default = "Azure-pip"

}

variable "allocation_method" {

 description = "Defines the allocation method for this IP
address. Possible values are `Static` or `Dynamic`"

 type = string

 default = "Dynamic"

}

variable "idle_timeout_in_minutes" {

 description = "Provide Idle timeout in minutes"

 type = number

 default = 30

}

variable "tags" {

66 Getting Started with Terraform

 description = "A map of tags to assign to the resource.
Allowed values are `key = value` pairs"

 type = map(any)

 default = {

 environment = "Test"

 Owner = "Azure-Terraform"

 }

}

Only declaring Terraform variables won't be helpful. In order to complete the Terraform
workflows, these variables need to get values, so there are four ways of having Terraform
variable values. The first approach that we can follow is by defining variable values in the
Terraform environment variables. Terraform will look for the values in the environment
variable, starting with TF_VAR_, followed by the name of the declared variable, as you
can see here:

$ export TF_VAR_rgname=example-rg

Secondly, we can store variable values in either a default supported file named
terraform.tfvars or terraform.tfvars.json or in a file name ending
with .auto.tfvars or .auto.tfvars.json.

We are showing here how you can define them in the terraform.tfvars file:

rgname = "Terraform-rg"

rglocation = "West Europe"

idle_timeout_in_minutes = 10

tags = {

 environment = "Preprod"

 Owner = "Azure-Terraform"

}

allocation_method = "Dynamic"

public_ip_name = "azure-example-pip"

If you are planning to define input variable values in any other file, such as testing.
tfvars, then you will be required to explicitly mention the filename in the given
Terraform cmdlet: terraform apply -var-file="testing.tfvars". This
means that Terraform will be able to read the values from that .tfvars file.

Understanding Terraform variables 67

The third way of having Terraform variable values is during runtime. If you defined the
variable in main.tf or variables.tf and its input values are missing, then it will
prompt you to provide respective variable values during the runtime itself, as can be
seen in the following snippet:

$ terraform plan

var.rglocation

 Resource Group location like West Europe etc.

 Enter a value:

The fourth way could be to define a variable value directly as a default value while
declaring the variables, as can be seen in the following code snippet:

variable "rgname" {

 description = "(Required)Name of the Resource Group"

 type = string

 default = "example-rg"

}

Using all these methods, we can take the values of variables and Terraform will be able to
complete its workflow.

In the previously defined variables.tf code, you can see many constraint types,
including number, string, and map. We will discuss these in our upcoming Chapter 7,
Terraform Modules, so for now, just understand how you can define variables and how you
can define input variable values. There is one more thing you must have noticed, in our
variable code, we have mentioned default values. Here, the question is which one should be
preferred; if you are defining variable values in a Terraform environment variables, defining
in terraform.tfvars, defining default values, or providing values during the runtime.
Hence, things happen in the following sequence: Environment variable values | values during
runtime | terraform.tfvars | default values.

AWS Terraform input variables
In the previous section, we learned about Azure Terraform input variables. You learned
about what exactly variables are and how you can define Terraform input variables. Let's
try to consider one of the examples for AWS:

You can define this code in main.tf or in any file named like
aws-ec2.tf

To create ec2 instance in AWS

resource "aws_instance" "web" {

68 Getting Started with Terraform

 ami = var.ami

 instance_type = var.instance_type

}

The previously defined AWS resource code block helps us to provision an EC2 instance in
AWS. Let's try to define the variables.tf file for it:

variables for Resource Group

variable "ami" {

 description = "Name of the AMI"

 type = string

}

variable "instance_type" {

 description = "Name of the instance type"

 type = string

}

We have to define the variables.tf file for the ec2 instance resource code. Next,
we need to have the values of those defined variables. So, let's define the values in the
terraform.tfvars file:

ami = "ami-a1b2c5d6"

instance_type = "t1.micro"

GCP Terraform input variables
We have learned about defining input variables in AWS and Azure, and there is no
difference in terms of defining it for GCP as well. Let's try to take some sample Terraform
configuration code for GCP and see how we can define input variables' code for it. We
are going to discuss this with the same resource code as earlier that is, for App Engine in
Google Cloud:

resource "google_project" "my_project" {

 name = var.myproject_name

 project_id = var.project_id

 org_id = var.org_id

}

resource "google_app_engine_application" "app" {

Understanding Terraform variables 69

 project = google_project.my_project.project_id

 location_id = var.location_id

}

Let's try to define our variables.tf file for the previous code, which is going to deploy
Google App Engine for us:

variables for Google Project

variable "myproject_name" {

 description = "Name of the google project"

 type = string

}

variable "project_id" {

 description = "Name of the project ID"

 type = string

}

variable "org_id" {

 description = "Define org id"

 type = string

}

variable "location_id" {

 description = "Provide location"

 type = string

}

We're done with defining all the variables in a variable.tf file. Now, let's try to pass
values of them in terraform.tfvars:

myproject_name = "My Project"

project_id = "your-project-id"

org_id = "1234567"

location_id = "us-central"

70 Getting Started with Terraform

We have covered Terraform variables and acquired an understanding of what the best
practices of defining Terraform variables are and how we can take input from the users
by passing variable values in Terraform environment variables, terraform.tfvars,
default values, and runtime from the CLI. The take-away from this entire topic is how
effectively you can write a Terraform configuration file with the help of Terraform
variables. In the next topic, we will be discussing Terraform output. Terraform output
will help you in validating what you can expect as output when you create or update
any resources.

Understanding Terraform output
In this section, we are going to see how you can define the Terraform output file as well
as what the best practices are for referencing the output of one resource as input for other
dependent resources. We will be discussing Terraform output for AWS, GCP, and Azure.

Terraform output
Let's try to understand what this Terraform output is and ideally, what we can achieve
from it, as well as why we need to define Terraform output for any of the Terraform
configuration files. Output values are the return values of a Terraform resource/module/
data, and they have many use cases:

•	 The output from one resource/module/data can be called into other resources/
modules/data if there is a dependency on the first resource. For example, if you want
to create an Azure subnet and you have already created an Azure virtual network,
then, in order to provide the reference of your virtual network in the subnet, you
can use the output of the virtual network and consume it in subnet resources.

•	 You can print certain output of the resources/modules/data on the CLI by running
terraform apply.

•	 If you are using a remote state, other configurations via a terraform_remote_
state data source can help you to access root module outputs.

Terraform manages all of your resource instances. Each resource instance helps you with
an export output attribute, which can be used in the other configuration code blocks.
Output values help you to expose some of the information that you might be looking
for. Once you have provisioned a particular resource instance using Terraform, or even
existing resources, output values can also be referred to using the data source's code block.

Let's try to understand how we can define Terraform output in Azure, AWS, and GCP.

Understanding Terraform output 71

Azure Terraform output
In the Terraform resource topic, we considered the Azure public IP address. Let's try to
take the same resource code block and see how we can extract output from that resource:

resource "azurerm_resource_group" "example" {

 name = "resourceGroup1"

 location = "West US"

}

resource "azurerm_public_ip" "example" {

 name = "acceptanceTestPublicIp1"

 resource_group_name = azurerm_resource_group.example.name

 location = azurerm_resource_group.example.location

 allocation_method = "Static"

 tags = {

 environment = "Production"

 }

}

From the azurerm_public_ip resource code block, we can export the following
attributes:

•	 id: The public IP ID.

•	 name: The public IP address name.

•	 resource_group_name: The resource group name of the public IP address.

•	 ip_address: The IP address value that was allocated.

•	 fqdn: The fully qualified domain name (FQDN) of the DNS record associated
with the public IP. domain_name_label must be specified to get the FQDN. This
is the concatenation of domain_name_label and the regionalized DNS zone.

72 Getting Started with Terraform

Let's see how you can define the output code block in your main.tf file, or how you can
create a separate output.tf file and define everything there itself. We recommend that
you define all your output code in a separate file, in other words, output.tf:

output "id" {

 value = azurerm_public_ip.example.id

}

output "name" {

 value = azurerm_public_ip.example.name

}

output "resource_group_name" {

 value = azurerm_public_ip.example.resource_group_name

}

output "ip_address" {

 value = azurerm_public_ip.example.ip_address

}

output "fqdn" {

 value = azurerm_public_ip.example.fqdn

}

From the previous code, we manage to get the possible output after creating an Azure
public IP address.

Important note
Dynamic public IP addresses aren't allocated until they're attached to a device
(for example, a virtual machine/load balancer). Instead, you can obtain the IP
address once the public IP has been assigned via the azurerm_public_ip
data source.

We have discussed Terraform output and seen how we can validate it. Let's try to see
how we can use a Terraform attribute reference from a resource/module/data code block
while creating any new resource. For a better understanding of the Terraform attribute
reference, we have taken an Azure load balancer resource:

Understanding Terraform output 73

Figure 3.4 – Azure Terraform attribute reference

As shown in Figure 3.4, while creating an Azure load balancer, we are taking the reference
values from Azure public IP address, in other words, the public IP address name and
public IP address resource ID. Actually, this is not a Terraform output, but it is an attribute
reference, meaning that one block value can be called into another.

AWS Terraform output
As we have learned how we can extract output when we are creating any Azure resource,
let's now see how we can define the same in AWS. If you already understand the syntax
of defining output values, this will remain the same for any Terraform providers. We are
taking an example of a VPC resource to demonstrate AWS Terraform output further:

To Create AWS VPC

resource "aws_vpc" "terraform-vpc" {

 cidr_block = "10.0.0.0/16"

 instance_tenancy = "default"

 tags = {

 Environment = "Terraform-lab"

74 Getting Started with Terraform

 }

}

Let's try to see what output values we can expect from the VPC resource block. Many
arguments can be exported, as you can see in Figure 3.5, or visit https://registry.
terraform.io/providers/hashicorp/aws/latest/docs/resources/
vpc#attributes-reference. We are going to discuss a few of these, such as id and
cidr_block . From there, you can get an idea of how output can be extracted for the
other attributes mentioned:

Figure 3.5 – AWS VPC output attributes

Understanding Terraform output 75

The following code snippet will give you an insight as to how you can validate the
respective output following creation of the AWS VPC:

output "id" {

 value = aws_vpc.terraform-vpc.id

}

output "cidr_block" {

 value = aws_vpc.terraform-vpc.cidr_block

}

You may be wondering whether you need to consume the output of this AWS VPC in any
other resource, such as an AWS subnet, and how you can do this. Let's try to understand
this, which is known as Terraform attribute referencing. Already, in the Azure Terraform
output section, we explained that by using an implicit reference, you would be able to
consume the one resource/module/data code block in another. Here is the code snippet
to create a subnet within a specific AWS VPC:

resource "aws_subnet" "terraform-subnet" {

 vpc_id = aws_vpc.terraform-vpc.id

 cidr_block = "10.0.0.0/24"

 tags = {

 Environment = "Terraform-lab"

 }

}

You can see in the previous code how we manage to perform Terraform attribute
referencing from one resource code block and consume it in another resource code block.
In the same way, you can do this with data sources and modules.

GCP Terraform output
In this section, we will try to understand how you can define output values for GCP
resources. Let's start by understanding the output with a simple Google Cloud resource.
In the following code, we have defined the resource code block for creating a Google App
Engine resource:

resource "google_project" "my_project" {

 name = "My Project"

 project_id = "your-project-id"

76 Getting Started with Terraform

 org_id = "1234567"

}

resource "google_app_engine_application" "app" {

 project = google_project.my_project.project_id

 location_id = "us-central"

}

Here is a list of the attributes you can export as output from the Google App Engine
resource:

Figure 3.6 – GCP App Engine output attributes

From the list of arguments defined in Figure 3.6, we will consider id and name, which, as
you can see in the following code snippet, you can define within main.tf or in a separate
file such as output.tf:

output "id" {

 value = google_app_engine_application.app.id

}

output "name" {

 value = google_app_engine_application.app.name

}

Understanding Terraform output 77

Terraform output optional arguments
Terraform output supports some arguments such as description, sensitive, and
depends_on, which are described as follows:

•	 description: In the output values for your reference, you can define its
description so that you can understand what you are getting as an output value.
You can refer to the following code snippet to get an understanding of how you
can define description in the output code block:

output "instance_ip_addr" {

 value = aws_instance.server.private_ip

 description = "The private IP address of the main
server instance."

}

•	 sensitive: If you want to set output values that have sensitive information, then
you can define the sensitive argument. In the following code snippet, we have
declared the sensitive argument in the output value code block:

output "db_password" {

 value = aws_db_instance.db.password

 description = "The password for logging in to the
database."

 sensitive = true

}

When you define output values as sensitive, this prevents Terraform from
showing its values on the Terraform CLI after running terraform apply. Still,
there is some chance that it may be visible in the CLI output for some other reasons,
such as if the value is referenced in a resource argument. This has been taken care
of in Terraform version 0.14 and above, which prevents the displaying of sensitive
output in the CLI output. You can refer to the following blog post regarding it:
https://www.hashicorp.com/blog/terraform-0-14-adds-the-
ability-to-redact-sensitive-values-in-console-output.

Even if you have defined output values as sensitive, they will still be recorded in
the state file, and they will be visible in plain text to anyone who has access to the
state file.

https://www.hashicorp.com/blog/terraform-0-14-adds-the-ability-to-redact-sensitive-values-in-console-output
https://www.hashicorp.com/blog/terraform-0-14-adds-the-ability-to-redact-sensitive-values-in-console-output

78 Getting Started with Terraform

•	 depends_on: Output values are just used to extract information of the resource
that got provisioned or that already exists. You may be thinking, why do we need
to define any kind of dependency for the output values? Just as you generally define
depends_on while using the resource/module/data code level so that Terraform
will understand and maintain the resource dependency graph while creating or
reading the existing resources, in the same way, if you wish to define an explicit
depends_on argument in your output values, then you can define it as shown in
the following code snippet:

output "instance_ip_addr" {

 value = aws_instance.server.private_ip

 description = "The private IP address of the main
server instance."

 depends_on = [

 # Security group rule must be created before this IP
address could

 # actually be used, otherwise the services will be
unreachable.

 aws_security_group_rule.local_access,

]

}

Important note
The depends_on argument should be used only as a last resort. When using
it, always include a comment explaining why it is being used, so as to help
future maintainers understand the purpose of the additional dependency.

We have discussed the Terraform output. You should now have a fair understanding of
how you can use Terraform output values for the validation of the resources that you have
provisioned, and you also got to know how you perform Terraform attribute referencing
from one resource/module/data code block to another resource/module/data code
block. In the upcoming section, we are going to discuss Terraform data. From there, you
will learn how you can read already existing resources in your infrastructure. For the
explanations, we will again be considering our three major cloud services: Azure, AWS,
and GCP.

Understanding Terraform data 79

Understanding Terraform data
In this section, we are going to discuss how you can define Terraform data sources. You
can also refer to https://www.terraform.io/docs/configuration/data-
sources.html to see under which circumstances you would be able to use Terraform
data sources. Just as with Terraform output, resources, providers, and variables, we will be
concentrating on Terraform data sources for AWS, GCP, and Azure.

Terraform data sources
Let's try to understand Terraform data sources with the help of an example. Matt and
Bob are two colleagues working for a company called Obs based out in the US. Obs
is a shipping company that does business all over the world and recently, they started
using multi-cloud AWS and Azure. A heated conversation is ongoing between Bob
and Matt. Bob is saying that he will be doing all the IT infrastructure deployment
using Azure-provided ARM templates, while Matt is saying that he would prefer to use
Terraform. Now, the problem is that Bob has already provisioned some of the production
infrastructures in Azure using the ARM template. Let's say, for example, he provisioned
one virtual network, five subnets, and five virtual machines. Matt has been asked to create
five more virtual machines in those existing virtual networks and subnets. He wants to use
Terraform to perform this deployment. He has many questions in mind, such as how will
he be able to read the existing infrastructure and how will he be able to write a Terraform
configuration file for the new deployment? After some searching, he learns about
Terraform data sources, which allow you to extract output or information from already
existing resources that got provisioned by any other Terraform configuration, or manually
or by any other means.

Azure Terraform data sources
In this section, we will explain how you can define Terraform data sources specific to
Azure. Let's try to understand this with the help of an example. Suppose you already have
an Azure virtual network created and now you are trying to create a new subnet in that
existing virtual network. In this instance, how can you define your Terraform data source's
code block? In the following code snippet, we demonstrate how you can get an output
value from the existing virtual network:

data "azurerm_virtual_network" "example" {

 name = "production-vnet"

 resource_group_name = "Terraform-rg"

}

output "virtual_network_id" {

80 Getting Started with Terraform

 value = data.azurerm_virtual_network.example.id

}

If you want to create a subnet in the existing virtual network, then the following
defined code snippet can help you out by extracting the existing resource group and
virtual network, and then allowing you to provision a new subnet inside that existing
virtual network:

data "azurerm_resource_group" "example" {

 name = "Terraform-rg"

}

data "azurerm_virtual_network" "example" {

 name = "production-vnet"

 resource_group_name = data.azurerm_resource_group.example.
name

}

resource "azurerm_subnet" "example" {

 name = "terraform-subnet"

 resource_group_name = data.azurerm_resource_group.example.
name

 virtual_network_name = data.azurerm_virtual_network.example.
name

 address_prefixes = ["10.0.1.0/24"]

}

As with Azure virtual networks, there are Terraform data sources for each Azure
service. If you wish to understand the syntax of writing an Azure Terraform data source
code block in your Terraform configuration file, you can refer to https://www.
terraform.io/docs/providers/azurerm/.

AWS Terraform data sources
Similar to the way in which we defined our Azure Terraform data sources code block, let's
try to understand how we can define Terraform data sources for AWS. We want to create
a subnet in an existing AWS VPC. You can refer to the following code snippet where we
have defined vpc_id as an input variable:

variable "vpc_id" {}

data "aws_vpc" "example" {

 id = var.vpc_id

https://www.terraform.io/docs/providers/azurerm/
https://www.terraform.io/docs/providers/azurerm/

Understanding Terraform data 81

}

resource "aws_subnet" "example" {

 vpc_id = data.aws_vpc.example.id

 availability_zone = "us-west-2a"

 cidr_block = cidrsubnet(data.aws_vpc.example.cidr_
block, 4, 1)

}

For detailed information about each AWS service that can be defined in AWS Terraform
data sources, you can refer to the AWS providers website at https://registry.
terraform.io/providers/hashicorp/aws/.

GCP Terraform data sources
In this section, we are going to discuss how you can define the GCP Terraform data
sources code in your configuration. To aid understanding, let's take a simple example of
extracting existing GCP compute instance details. The following code snippet will give
you an idea of how you can draft GCP Terraform data sources:

data "google_compute_instance" "example" {

 name = "Terraform-server"

 zone = "us-central1-a"

}

If you want more information, you can refer to the Terraform Google provider website at
https://www.terraform.io/docs/providers/google/, where each Google
service is explained along with its data sources.

We have covered data sources' code blocks in the Terraform configuration files. We have
learned how we can draft our Terraform configuration file using data sources for different
providers such as Azure, AWS, and GCP. Data sources help to read already existing
configurations and use that output in new or updated infrastructures.

https://registry.terraform.io/providers/hashicorp/aws/
https://registry.terraform.io/providers/hashicorp/aws/

82 Getting Started with Terraform

Summary
In this chapter, you gained an understanding of Terraform's core components, including
providers, resources, variables, output, and data sources. In a nutshell, a provider is an
API plugin that you need if you want to deploy/update services for your infrastructure.
Resources are the actual services that you are planning to update/deploy for your
respective providers. Variables are input from the users that makes your configuration
code reusable. The output is what you are expecting when you are creating/updating your
resources. Data sources help you out with extracting existing resource configurations. All
of these help you to draft your Terraform configuration file.

In the next chapter, we will get into a detailed discussion regarding backend configuration,
provisioners, and inbuilt functions, how to perform debugging in Terraform, and how you
can perform different kinds of iteration using for and other loops in Terraform.

Questions
The answers to these questions can be found in the Assessments section at the end of
this book:

1.	 Terraform is written using the HashiCorp Configuration Language (HCL). What
other syntax can Terraform be written in?

A. JSON

B. YAML

C. TypeScript

D. XML

2.	 The following is a Terraform code snippet from your Terraform configuration file:

provider "aws" {

region = "us-east-1"

}

provider "aws" {

region = "us-east-2"

}

When validated, it results in the following error:
Error: Duplicate provider configuration

on main.tf line 5:

provider "aws" {

Questions 83

A default provider configuration for "aws" was already
given at

main.tf:1,1-15. If multiple configurations are required,
set the "______"

argument for alternative configurations.

Fill in the blank in the error message with the correct string from the following list:

A. version

B. multi

C. label

D. alias

3.	 Referring to the following Terraform code, what is the local name for the resource
that is defined?

resource "aws_instance" "example" {

ami = "ami-082b5a644766e6e6f"

instance_type = "t2.micro"

count = 2

}

A. aws_instance

B. example

C. ami-082b5a644766e0e6f

D. t2.micro

4.	 Matt is implementing Terraform in his environment. He is looking to deploy some
virtual machines with the virtual network in Azure. He has ascertained that one of
his colleagues has already created a virtual network in Azure, and now he needs to
create a virtual machine within that already existing virtual network. Suggest what
he should use in his Terraform configuration code block:

A. Make use of Terraform variables for the virtual network.

B. Make use of a Terraform resource block for the virtual network.

C. Make use of a data source for the virtual network.

D. None of the above.

84 Getting Started with Terraform

5.	 You have been given a Terraform configuration file and have been asked to make it
dynamic and reusable. What exactly will you be using to convert static parameters?

A. Output values

B. Terraform input variables

C. Data sources

D. Regular expressions

Further reading
You can check out the following links for more information about the topics that have
been covered in this chapter:

•	 Terraform environment variables: https://www.terraform.io/docs/
commands/environment-variables.html

•	 Terraform variables: https://upcloud.com/community/tutorials/
terraform-variables/

•	 Terraform data sources: https://stackoverflow.com/
questions/47721602/how-are-data-sources-used-in-terraform

•	 Terraform best practices: https://www.terraform-best-practices.
com/key-concepts

•	 Terraform providers: https://registry.terraform.io/browse/
providers

•	 Terraform resources: https://www.cloudreach.com/en/resources/
blog/guide-terraform-resource-dev/

https://www.terraform.io/docs/commands/environment-variables.html
https://www.terraform.io/docs/commands/environment-variables.html
https://upcloud.com/community/tutorials/terraform-variables/
https://upcloud.com/community/tutorials/terraform-variables/
https://stackoverflow.com/questions/47721602/how-are-data-sources-used-in-terraform
https://stackoverflow.com/questions/47721602/how-are-data-sources-used-in-terraform
https://www.terraform-best-practices.com/key-concepts
https://www.terraform-best-practices.com/key-concepts
https://registry.terraform.io/browse/providers
https://registry.terraform.io/browse/providers
https://www.cloudreach.com/en/resources/blog/guide-terraform-resource-dev/
https://www.cloudreach.com/en/resources/blog/guide-terraform-resource-dev/

4
Deep Dive into

Terraform
In the previous chapter, we discussed Terraform providers, which mainly help Terraform
to understand which API to use for deployment. We also covered Terraform resources,
which help you to consume the provider's service API to provision the respective services.
Moving on, we discussed taking input from users by defining Terraform variables, which
make Terraform code reusable. We also saw how you can validate the output of the
resources that you have provisioned or that already exist using Terraform output, and
finally, we discussed how you can use already-existing resources by calling the Terraform
data block in your configuration code.

In this chapter, we are going to discuss the Terraform backend, which helps you to store
your Terraform tfstate file. Furthermore, we will be covering Terraform provisioners,
which help you to execute script within the Terraform configuration code. Later, we
will be discussing different Terraform loops (iterations) that can be used within the
Terraform configuration code. We will also see what different Terraform built-in
functions are and how effectively you can use these functions in your configuration code.
Finally, we will look at some options that Terraform provides in terms of debugging.

The following topics will be covered in this chapter:

•	 Introducing the Terraform backend

•	 Understanding Terraform provisioners

86 Deep Dive into Terraform

•	 Understanding Terraform loops

•	 Understanding Terraform functions

•	 Understanding Terraform debugging

Technical requirements
To follow along with this chapter, you need to have an understanding of writing Terraform
configuration code by defining providers, resources, variables, data, and output. Along
with this, some basic knowledge about major cloud providers such as GCP, AWS, and
Azure would add benefit during the entire course. You can find all the code used in
this chapter at the following link: https://github.com/PacktPublishing/
HashiCorp-Infrastructure-Automation-Certification-Guide/tree/
master/chapter4.

Check out the following link to see the Code in Action video:

https://bit.ly/2SY35WS

Introducing the Terraform backend
In this section, we are going to talk about the Terraform state file and the Terraform
backend. As you know, Terraform follows a desired state configuration model where you
describe the environment you would like to build using declarative code and Terraform
attempts to make that desired state a reality. A critical component of the desired state
model is mapping what currently exists in the environment and what is expressed in the
declarative code. Terraform tracks this mapping through a JSON formatted data structure
called a state file. We are going to look at where the Terraform state file can be stored, how
it can be configured and accessed, and what the best practices for keeping a Terraform
tfstate file are.

Terraform state
You are already aware of when you write the Terraform configuration file and how while
executing terraform init, plan, and apply, it is used to generate a state file that
stores information about your complete infrastructure or the services that you are trying to
deploy using Terraform. The state file is used by Terraform to map real-world resources with
your Terraform configuration file. By default, Terraform stores terraform.tfstate in
the current working directory; you can store this state file in a remote storage location as
well, such as Amazon S3 or Azure Blob storage. Terraform combines the configuration with
the state file, as well as refreshing the current state of elements in the state file to create plans.

https://github.com/PacktPublishing/HashiCorp-Infrastructure-Automation-Certification-Guide/tree/master/chapter4
https://github.com/PacktPublishing/HashiCorp-Infrastructure-Automation-Certification-Guide/tree/master/chapter4
https://github.com/PacktPublishing/HashiCorp-Infrastructure-Automation-Certification-Guide/tree/master/chapter4
https://bit.ly/2SY35WS

Introducing the Terraform backend 87

It performs a second round of refreshing when the apply phase is executed.

Terraform state files are just JSON files; it is not recommended to edit or make any changes
to the state file. Generally, state files are used to hold a one-to-one binding of the configured
resources with remote objects. Terraform creates each object and records its identity in
the state file. If you wish to destroy any resources, then remove the configuration of the
resource from the configuration file and run terraform apply, which will remove that
specific resource from the state file. Remember, it is not recommended to remove resource
bindings from the state file.

If you are adding or removing resources by some other means – let's suppose you created
a resource manually and want to use that resource in Terraform – then you would be
required to create a configuration matching the resource and then import that resource
in the state file using the terraform import cmdlet. In the same way, if you want
Terraform to forget one of the objects, then you can use the terraform state rm
cmdlet, which would remove that object from the state file.

The purpose of the Terraform state file
As you know, Terraform generates a state file. You might be thinking, why does Terraform
Infrastructure as Code (IaC) need a state file, and what will happen if Terraform
doesn't have a state file? To answer that question, a state file in Terraform stores current
knowledge of the state of the configured infrastructure, which reduces the complexity
of the resource deployment when you are handling large Enterprise infrastructures. We
are going to discuss what the main purpose of having a Terraform state file is and how it
benefits us:

•	 Mapping to the real world: Terraform needs to have a database to map the
Terraform configuration to the real world. When you define a resource such
as resource "azurerm_resource_group" "example" in your
configuration, Terraform defines this code block in JSON format in the state file
mapping to a specific object. This tells you that Terraform has created an Azure
resource group and in the future when you make any changes in the configuration
code block, it will try to check the existing resource in the state file and will let you
know accordingly whether that resource is being created, amended, or destroyed,
whenever you run terraform plan. This helps to understand any kind of
infrastructure deviation from the existing resources.

•	 Metadata: Along with the mapping between resources and objects that are there in
the state file, Terraform needs to maintain metadata such as resource dependencies.
Terraform is intelligent enough to understand which resource is to be created or
destroyed and in what sequence. To perform these activities, Terraform stores
resource dependencies in the state file.

88 Deep Dive into Terraform

•	 Performance: Terraform has basic mapping. It also stores a cache of all the
attributes in the state file, which is one of the optional features of Terraform and is
used only for performance improvements. When you run the terraform plan
command, Terraform needs to know the current state of the resources in order to
know the changes it needs to make, to reach out to the desired configuration.

For small infrastructures, Terraform can easily get the latest attributes from all your
resources, which is the default behavior of Terraform, to sync all resources in the
state before performing any operations such as plan and apply.

For large enterprise infrastructures, Terraform can take many hours to query all
the attributes of the resources, totally depending on the size of the infrastructure,
and it may surprise you in terms of the total time it takes. Many cloud providers
don't provide an API that can support querying multiples resources at once. So,
in this scenario, many users set -refresh=false as well as the -target flag,
and because of this, the cached state is treated as the record of truth, which helps
Terraform to cut down the plan phase time by almost half.

•	 Syncing: By default, Terraform stores the state file in the current working directory
where you have kept your configuration file. This is acceptable if you are the only
user who is using the Terraform configuration code. But what about if you have
multiple team members working together on the same Terraform configuration
code? Then, in that scenario, you just have to keep your Terraform state file in a
remote state. Terraform uses remote locking so that only one person is able to run
Terraform at a time. If at the same time other users try to run the Terraform code,
then Terraform will throw an error saying that the state file is in a locked state. This
feature of Terraform ensures that every time Terraform code is run, it should refer
to the latest state file.

We have learned about Terraform state files and their purpose. Now, let's try to
understand the Terraform backend types.

Terraform backend types
The Terraform state file needs to be stored at either the local or remote backend. We are
going to discuss both the local and remote backends.

Introducing the Terraform backend 89

Local backend
Terraform generates a state file and it should be stored somewhere. In the absence of a
remote backend configuration, it would be stored in the directory where you have kept
the Terraform configuration file, which is the default behavior of Terraform. Let's see the
folder structure for an example configuration:

.

├── .terraform

├── main.tf

└── terraform.tfstate

This Terraform configuration has been initialized and run through plan and apply. As
a result, the .terraform directory holds the plugin information that you would have
defined in the configuration file. In our case, we have taken the Azure provider, so in the
.terraform directory, Terraform downloads the azurerm provider. The terraform.
tfstate file holds the state of the configuration.

In the following code snippet, we have shown you how you can change the location of the
local state file by using the -state=statefile command-line flag for terraform
plan and terraform apply:

root@terraform-vm:~# terraform apply -state=statefile

Apply complete! Resources: 0 added, 0 changed, 0 destroyed.

inmishrar@terraform-vm:~#

inmishrar@terraform-vm:~# ls

main.tf statefile terraform-lab

inmishrar@terraform-vm:~# cat statefile

{

 "version": 4,

 "terraform_version": "1.0.0",

 "serial": 1,

 "lineage": "03e0af5c-c3a0-c2ae-9d40-d067358067dd",

 "outputs": {},

 "resources": []

}

90 Deep Dive into Terraform

Let's try to understand what will happen to the state file if you use terraform
workspace. In our case, we have created a new Terraform workspace with the name
development. After creating a new workspace and running terraform plan and
terraform apply, we can see that Terraform creates a terraform.tfstate.d
directory and a subdirectory for each workspace. In each workspace directory, a new
terraform.tfstate file got created:

inmishrar@terraform-vm:~# terraform workspace new development

Created and switched to workspace "development"!

You're now on a new, empty workspace. Workspaces isolate their
state,

so if you run "terraform plan" Terraform will not see any
existing state

for this configuration.

inmishrar@terraform-vm:~# terraform workspace list

 default

* development

inmishrar@terraform-vm:~# terraform apply

Apply complete! Resources: 0 added, 0 changed, 0 destroyed.

inmishrar@terraform-vm:~# tree

.

├── main.tf

├── .terraform.lock.hcl

├── terraform.tfstate

└── terraform.tfstate.d

 └── development

 └── terraform.tfstate

From the previously defined code block, we can understand that the same configuration
file can be used under a different Terraform workspace (that is, a landscape such as
development or test).

Introducing the Terraform backend 91

Remote backend
As we mentioned earlier, Terraform uses a local file backend by default. There are some
advantages to using remote backends. A few of them have been explained as follows:

•	 Working in a team: Remote backends help you to store state files in a remote
storage location and protect them with a state lock feature so that the state file will
never get corrupted. The state file goes into a locked state whenever any of the
team members are running the Terraform configuration file so that there won't be
any conflict, which means no two team members will be able to run the Terraform
configuration code simultaneously. Some Terraform backends, such as Terraform
Cloud, hold the history of all the state revisions.

•	 Keeping sensitive information off disk: The Terraform state file usually has
sensitive data such as passwords that is very critical. So, if you're using remote
backends, then this information would be stored in remote storage and you can
retrieve it from backends on demand and ensure it is only stored in memory. Most
remote backends provide data encryption at rest. So, the state file inside remote
backends will be secure and confidential.

•	 Remote operations: Suppose you are dealing with very large infrastructures
or performing certain configuration changes. Because of that, the terraform
apply command may take longer than expected to be executed. Some remote
backends support remote operations that enable them to perform operations
remotely. In this case, you can turn off your computer and you will find that the
Terraform operation will keep on running remotely until it is completed. This
remote operation is only supported by the SaaS product of HashiCorp, that is,
Terraform Cloud.

Remote backends store your state data in a remote location based on the backend
configuration you've defined in your configuration. Not all backends are the same,
and HashiCorp defines two classes of backend:

•	 Standard: Includes state management and possibly locking

•	 Enhanced: Includes remote operations on top of standard features

The enhanced remote backends are either Terraform Cloud or Terraform Enterprise,
which will be covered in Chapter 10, Terraform Cloud and Terraform Enterprise. Both
of these services allow you to run your Terraform operations, such as plan and apply,
on the remote service as well as locally.

92 Deep Dive into Terraform

Going through all the standard backends is beyond scope of this book. Still, we will
be discussing a couple of them, such as AWS S3, Azure Storage, and Google Cloud
Storage (GCS).

Let's look at the Azure Storage backend as an example:

terraform {

 backend "azurerm" {

 storage_account_name = "terraform-stg"

 container_name = "tfstate"

 key = "terraform.tfstate"

 access_key = "tyutyutyutryuvsd68564568..."

 }

}

From the previously defined code block, you will be required to define an access key
to get full access to Azure Blob storage. Generally speaking, it is not recommended to
define access_key in the backend code configuration. Defining credentials in the
configuration file has a couple of issues; for example, you might be required to change the
credentials at regular intervals, which means you would be required to keep on changing
the backend configuration file. It's also not good practice to define credentials in plain text
and store them on a source control or local machine.

Now, the problem is how you would define credentials in the backend configuration file. You
don't have an option to define them as a variable because the backend configuration file runs
during the initialization itself and until then, Terraform will not be able to understand the
variables. In order to overcome this challenge, you can define partial backend configuration
in the root module and the rest of the information at the runtime itself.

In the previously defined code block, we saw how to define backend configuration
code for Azure Blob storage, but we were defining access_key in plain text in the
backend configuration, which is not at all recommended. So, we will define the backend
configuration code using the partial method. The following code snippet will give you an
idea of how you are supposed to define a partial backend configuration:

terraform {

 backend "azurerm" {

 container_name = "tfstate"

 key = "terraform.tfstate"

 }

}

Introducing the Terraform backend 93

The values for storage_account_name and access_key can be supplied in one
of three ways:

•	 When you run terraform init, you can pass values at the interactive terminal
of the CLI.

•	 Through the -backend-config flag with a set of key-value pairs.

•	 Through the -backend-config flag with a path to a file with key-value pairs.

You even have the option to take the values from the environment variables; for example,
you can define ARM_ACCESS_KEY as an environment variable in your local machine
and during the Terraform initialization, Terraform will be able to take values from those
environment variables. You can check the Azure Storage backend configuration to find
out what arguments are supported in the environment variables: https://www.
terraform.io/docs/backends/types/azurerm.html.

After doing the Terraform initialization for the first time with all the backend values,
you won't be required to supply the values again for other commands. The backend
information and other initialization data are stored in a local file in the .terraform
subdirectory of your configuration. When you are pushing your configuration code to
source control, make sure not to push this .terraform directory because it may have
sensitive data, such as the authentication credentials of the backend configuration.

Important note
When you create a new repository on GitHub, in the repository, when you
create a .gitignore file, you can select Terraform as one of the options. It
will automatically exclude the .terraform directory, as well as files such
as terraform.tfvars and terraform.tfstate. We recommend
using .gitignore on any new project with those exemptions. You can
further learn about .gitignore for Terraform at https://github.
com/github/gitignore/blob/master/Terraform.
gitignore.

Let's try to understand how the Terraform remote backend will help with collaboration
within a team using an example.

https://www.terraform.io/docs/backends/types/azurerm.html
https://www.terraform.io/docs/backends/types/azurerm.html
https://github.com/github/gitignore/blob/master/Terraform.gitignore
https://github.com/github/gitignore/blob/master/Terraform.gitignore
https://github.com/github/gitignore/blob/master/Terraform.gitignore

94 Deep Dive into Terraform

Suppose you are collaborating with John, the network administrator, on a network
configuration. Both of you will be updating your local copy of the configuration and then
pushing it to version control. When it is time to update the actual environment, you run
the plan and apply phases. During that period, the remote state file will be in a locked
state, so John won't be able to make any changes simultaneously. When John runs the next
plan, it will be using the updated remote state data from your most recent apply phase.
Azure Blob storage has a native capability to support state locking and data consistency.

So, using the following code block, you can extract output from the existing remote
backend using the Terraform data block. For more information about Azure Blob storage
backend configuration and authentication, you can see https://www.terraform.
io/docs/backends/types/azurerm.html:

data "terraform_remote_state" "example" {

 backend = "azurerm"

 config = {

 storage_account_name = "terraform-stg"

 container_name = "tfstate"

 key = "terraform.tfstate"

 }

}

Now, let's try to see the remote backend configuration for the AWS S3 bucket. As with
Azure Blob storage, AWS S3 also supports remote backend configuration for storing the
Terraform state file, but if you want to have state locking and consistency, then you would
be required to use Amazon DynamoDB:

terraform {

 backend "s3" {

 bucket = "terraform-state-dev"

 key = "network/terraform.tfstate"

 region = "us-east-1"

 }

}

https://www.terraform.io/docs/backends/types/azurerm.html
https://www.terraform.io/docs/backends/types/azurerm.html

Introducing the Terraform backend 95

Let's try to read output from the AWS S3 backend configuration using data sources. The
following code block will help you to understand how you can extract the respective output:

data "terraform_remote_state" "example" {

 backend = "s3"

 config = {

 bucket = "terraform-state-dev"

 key = "network/terraform.tfstate"

 region = "us-east-1"

 }

}

The terraform_remote_state data source will return the following values:

data.terraform_remote_state.example:

 id = 2016-10-29 01:57:59.780010914 +0000 UTC

 addresses.# = 2

 addresses.0 = 52.207.220.222

 addresses.1 = 54.196.78.166

 backend = s3

 config.% = 3

 config.bucket = terraform-state-dev

 config.key = network/terraform.tfstate

 config.region = us-east-1

 elb_address = web-elb-790251200.us-east-1.elb.amazonaws.com

 public_subnet_id = subnet-1e05dd33

Let's see how we can define the Terraform backend using GCS. For your knowledge, GCS
stores the state file and supports state locking by default. The following is a code snippet:

terraform {

 backend "gcs" {

 bucket = "tf-state-prod"

 prefix = "terraform/state"

 }

}

96 Deep Dive into Terraform

Now, the question is, how can you read output from the already-configured Terraform
backend in GCS? You can use the following code block:

data "terraform_remote_state" "example" {

 backend = "gcs"

 config = {

 bucket = "terraform-state"

 prefix = "prod"

 }

}

resource "template_file" "terraform" {

 template = "${greeting}"

 vars {

 greeting = "${data.terraform_remote_state.example.
greeting}"

 }

}

In this section, we learned about the Terraform backend, both the local backend and the
remote backend. By default, Terraform stores the state file in the local backend, but if you
are looking for collaboration and security, then Terraform provides you with the option
to store the state file in the remote backend. We have discussed how you can configure
the remote backend using AWS S3, Azure Blob storage, and GCS. Along with this, we
also discussed how you can read the content of the configured backend using Terraform
data sources. With all this, you will have gained a strong understanding of the Terraform
backend and its importance. In the upcoming section, we are going to discuss Terraform
provisioners and will try to discuss some real-time examples of Terraform provisioners.

Understanding Terraform provisioners
In this section, we are going to talk about Terraform provisioners. Let's try to understand
them with an example. Suppose you are working with one of your colleagues, Mark. You
have both been given a task to deploy a complete enterprise infrastructure in Microsoft
Azure that contains almost 10 Ubuntu servers, 10 virtual networks, 1 subnet per virtual
network, and 5 load balancers, and all these virtual machines should have Apache
installed by default before handing over to the application team. Mark suggests that in
order to have Apache installed on all those servers, you can use Terraform provisioners.
Now you're thinking, what is this Terraform provisioner and how can we use it?

Understanding Terraform provisioners 97

Let's try to understand Terraform provisioners. Suppose you are creating some resources
and you need to run some sort of script or operations that you want to perform locally
or on the remote resource. You can fulfill this expectation using Terraform provisioners.
The execution of Terraform provisioners does not need to be idempotent or atomic, since
it is executing an arbitrary script or instruction. Terraform will not be able to track the
results and status of provisioners in the same way it is used to doing for other resources.
Because of this, HashiCorp recommends the use of Terraform provisioners as a last resort
when you don't have any other option to complete your goal.

Important note
Don't use Terraform provisioners unless there is absolutely no other way to
accomplish your goal because Terraform doesn't store provisioners' details in
the state file, which makes it difficult to perform troubleshooting. So, in this
case, you can use some third-party tools such as CircleCI or Jenkins to perform
some operations or run any script. This can also help you to get more detailed
debug logs.

Terraform provisioner use cases
Let's try to understand some of the use cases of Terraform provisioners. There could be
many use cases, totally depending on different scenarios. A few of them are as follows:

•	 Loading data into a virtual machine

•	 Bootstrapping a virtual machine for a config manager

•	 Saving data locally on your system

98 Deep Dive into Terraform

The remote-exec provisioner connects to a remote machine via WinRM or SSH and
helps you to run a script remotely. The remote machine should allow remote connection;
otherwise, the Terraform remote-exec provisioner will not be able to run the provided
script. Instead of using remote-exec to pass data to a virtual machine, most cloud
providers provide built-in tools to pass data, such as the user_data argument in AWS
or custom_data in Azure. All of the public clouds support some sort of data exchange
that doesn't require remote access to the machine; for further reading about built-in tools
to pass data in different clouds, you can refer to https://www.terraform.io/
docs/language/resources/provisioners/syntax.html. A few of them are
shown here:

Figure 4.1 – Cloud data passing options

As you can see in the figure, different data exchange arguments are supported by different
cloud providers. This would help you to find data that you are looking for on those
resources during the creation or update. There are many Linux OS images, such as Red
Hat, Ubuntu, and SUSE, that have an built-in software called cloud-init that allows
you to run arbitrary scripts and perform some basic system configuration during the
initial deployment of the server itself, and because of this, you won't be required to take
SSH of the server explicitly.

https://www.terraform.io/docs/language/resources/provisioners/syntax.html
https://www.terraform.io/docs/language/resources/provisioners/syntax.html

Understanding Terraform provisioners 99

In addition to the remote-exec provisioner, there are also configuration management
provisioners for Chef, Puppet, Salt, and so on. They allow you to bootstrap the virtual
machine to use your config manager of choice. One of the best alternatives is to create
a custom image with the config manager software already installed and get it to register
with your config management server at bootup using one of the data loading options
mentioned in the previous paragraph. We are now going to have a detailed discussion
about the types of Terraform provisioners.

Terraform provisioner types
Now that we have some understanding about Terraform provisioners, let's see what
different types of provisioners are available to us.

The local-exec provisioner
Using the local-exec provisioner, you will run the Terraform configuration code
locally to extract some information. In some cases, there is a provider that already has
the functionality you're looking for. For instance, a local provider can interact with files
on your local system. Still, there could be a situation where you would be required to
run a local script using the local-exec provisioner. HashiCorp recommends using
local-exec as a temporary workaround if the feature that you are looking for is not
available in the provider.

The following is a code snippet that would help you to define the local-exec code
block in your Terraform configuration code:

resource "aws_instance" "example" {

 # ...

 provisioner "local-exec" {

 command = "echo The EC2 server IP address is ${self.
private_ip}"

 }

}

In the previously defined code block, if you notice, we have defined a local-exec
provisioner code block inside the resource code block of the AWS instance. This would
help you to extract the server IP address when it gets created. We have defined an object
named self that represents the provisioner's parent resource and has the ability to
extract all of that resource's attributes. In our case, we have defined self.public_ip,
which is referencing aws_instance's public_ip attribute.

100 Deep Dive into Terraform

Suppose you are trying to run the local-exec provisioner and it is failing. Then, let's
see how you can define the code block handling the failure behavior of the provisioner.
The on_failure argument can be used with all the provisioners:

resource "aws_instance" "example" {

 # ...

 provisioner "local-exec" {

 command = "echo The EC2 server IP address is ${self.
private_ip}"

 on_failure = continue

 }

}

In the preceding code, we have defined on_failure = continue. You have two
supported values for on_failure arguments: either continue or fail:

•	 continue: Continuing with creation or destruction by ignoring the error, if any.

•	 fail: If there is any error, stop applying the default behavior. If this happens with
the creation provisioner, it will taint the resource.

You might be wondering, what will happen to the provisioner when you're looking to
destroy your resources? The following is a code sample of how you can define when,
an argument, with the value destroy (that is, when = destroy):

resource "google_compute_instance" "example" {

 # ...

 provisioner "local-exec" {

 when = destroy

 command = "echo We are discussing Destroy-time provisioner"

 }

}

Destroy provisioners are run before the resource is destroyed. If it fails, Terraform
will throw an error and rerun the provisioners again when you perform terraform
apply the next time. Due to this behavior, you need to be careful when running destroy
provisioners multiple times.

Understanding Terraform provisioners 101

Destroy-time provisioners can only run if they exist in the configuration file at the
time when a resource is being destroyed. If you remove the resource code block with
a destroy-time provisioner, its provisioner configurations will also be removed along
with it and because of that, you won't be able to run the destroy provisioner.

Let's see how we can define multiple provisioners. The following code block will give you
an idea of how to define multiple provisioners:

resource "google_compute_instance" "example" {

 # ...

 provisioner "local-exec" {

 command = "echo We have executed first command
successfully"

 }

 provisioner "local-exec" {

 command = "echo We have executed second command
successfully"

 }

}

From the previously defined code block, we can understand that we can define as many
provisioner code blocks inside the resource code block as we wish.

Let's take one more example of local-exec, where we will show you how you can
define a PowerShell script that is in your local directory and how you can run that script
by defining it in a null_resource code block:

resource "null_resource" "script" {

 triggers = {

 always_run = "${timestamp()}"

 }

 provisioner "local-exec" {

 command = "${path.module}/script.ps1"

 interpreter = ["powershell", "-File"]

 }

}

102 Deep Dive into Terraform

Suppose you are willing to export some output of the resource to the local file. Then, you
can write the following code block. As you can see from this code block, we would be able
to get the AWS instance's private IP address to our local private_ips.txt filename
and that will be created in the local directory:

resource "aws_instance" "example" {

 # ...

 provisioner "local-exec" {

 command = "echo ${aws_instance.example.private_ip} >>
private_ips.txt"

 }

}

For more information about the local-exec provisioner, you can read https://
www.terraform.io/docs/provisioners/local-exec.html.

The file provisioner
Now that you understand Terraform provisioners, there is one other type of provisioner,
named the file provisioner, which helps us to copy files or directories from the machine
where Terraform is being executed to the newly created resource. The file provisioner
supports both types of connections, that is, ssh and winrm. The following code block
will help you to understand how you can use file provisioners:

resource "aws_instance" "example" {

 # ...

 # Copies the app.conf file to /etc/app.conf

 provisioner "file" {

 source = "conf/app.conf"

 destination = "/etc/app.conf"

 }

 # Copies the string in content into /tmp/amifile.log

 provisioner "file" {

 content = "ami used: ${self.ami}"

 destination = "/tmp/amifile.log"

 }

 # Copies the configs.d folder to /etc/configs.d

 provisioner "file" {

https://www.terraform.io/docs/provisioners/local-exec.html
https://www.terraform.io/docs/provisioners/local-exec.html

Understanding Terraform provisioners 103

 source = "conf/configs.d"

 destination = "/etc"

 }

 # Copies all files and folders in apps/apptest to D:/IIS/
webapp

 provisioner "file" {

 source = "apps/apptest/"

 destination = "D:/IIS/webapp"

 }

}

In the previously defined code block, you can see that some of the arguments are
supported by file provisioners:

•	 source: This is the source folder or file that you want to be copied. You can define
a source relative to the current working directory or as an absolute path. You won't
be able to specify a source attribute with the content attribute. Either source
or content can be defined in file provisioners.

•	 content: This attribute will help you to copy content to its destination. If the
destination is a file, the content will get written on that file. In the case of a directory,
a new file named tf-file-content is created. It is recommended to use a file
as the destination so that the content is copied into that defined file. You will not be
able to use this attribute with the source attribute.

•	 destination (required): An absolute path that you want to copy to.

A file provisioner can be used with the defined nested connection code block. The
following provisioner code will give you an insight into how you can define connection
details such as ssh or winrm in the code itself:

Copies the file as the root user using SSH

provisioner "file" {

 source = "conf/app.conf"

 destination = "/etc/app.conf"

 connection {

 type = "ssh"

 user = "root"

 password = var.root_ssh_password

 host = var.host_name

 }

104 Deep Dive into Terraform

}

Copies the file as the Administrator user using WinRM

provisioner "file" {

 source = "conf/app.conf"

 destination = "C:/App/app.conf"

 connection {

 type = "winrm"

 user = "TerraformAdmin"

 password = var.windows_admin_password

 host = var.host_name

 }

}

This whole code can be defined in the resource or the provisioner. If you want more
information about connections within the provisioner, then you can refer to https://
www.terraform.io/docs/provisioners/connection.html.

The remote-exec provisioner
The remote-exec provisioner helps you to run a script on the remote resource once it is
created. You can use the remote-exec provisioner to run a configuration management
tool, bootstrap into a cluster, and so on. It also supports both ssh and winrm type
connections. The following code block will give you an idea of how you can define the
remote-exec provisioner:

resource "aws_instance" "example" {

 # ...

 provisioner "remote-exec" {

 inline = [

 "puppet apply",

 "consul join ${aws_instance.example.private_ip}",

]

 }

}

The previously defined code block has the following arguments:

•	 inline: This is a list of commands that are executed in sequence the way you would
define them in the code block. This cannot be written with script or scripts.

https://www.terraform.io/docs/provisioners/connection.html
https://www.terraform.io/docs/provisioners/connection.html

Understanding Terraform loops 105

•	 script: This is the relative path of a local script that will be copied to the remote
resource and then executed. This cannot be combined with inline or scripts.

•	 scripts: This is a list of relative paths to local scripts that are copied to the remote
resource and then executed. It is used to execute in the order you have defined in
the code block. You will not be able to define this with inline or script.

For further reading about remote-exec of provisioners, you can visit https://www.
terraform.io/docs/language/resources/provisioners/remote-exec.
html.

In this section, we discussed Terraform provisioners. You will now understand
different types of provisioners, such as file provisioners, local provisioners, and remote
provisioners. We also mentioned that you should choose to use a provisioner only
when you don't have any other option. In a nutshell, a Terraform provisioner helps you
to run some sort of script either locally or remotely in order to achieve some goal. In
the upcoming section, we are going to discuss different types of loops supported by
Terraform so that you will be able to define a code block for meeting a certain N number
of requirements.

Understanding Terraform loops
In this section, we will be discussing different methods of Terraform loops. Like other
programming languages, Terraform also supports some sorts of loops and this will help
you to perform N number of Terraform operations very smoothly. Let's try to understand
this with an example. Suppose you are working with your colleague, Mark, in one of the
multinational companies (MNCs). You are both discussing one of the requirements – the
need to deploy an Azure virtual network with 10 different subnets along with a Network
Security Group (NSG) associated with all these subnets. You tell Mark that this can be
easily done using Terraform loops rather than writing the same code block for the subnet
again and again.

We will explain how effectively we can write our Terraform configuration code block
using Terraform loops. The following loops are supported by Terraform:

•	 count: Looping over resources

•	 for_each: Looping over resources and inline blocks within a resource

•	 for: Looping over defined lists and maps

Let's look at each of them in detail.

https://www.terraform.io/docs/language/resources/provisioners/remote-exec.html
https://www.terraform.io/docs/language/resources/provisioners/remote-exec.html
https://www.terraform.io/docs/language/resources/provisioners/remote-exec.html

106 Deep Dive into Terraform

The count expression
Let's understand how we can use count parameters. For a better understanding, we
have the following Terraform code block, which will help us to create a resource group
in Azure:

To Create Resource Group

resource "azurerm_resource_group" "example" {

 name = "Terraform-rg"

 location = "West Europe"

}

Now, let's suppose that you want to create three resource groups in Azure. Then, how
would you achieve this requirement? You might be planning to use a traditional loop
approach that you might have seen in other programming languages, but Terraform
doesn't support that approach:

This pseudo code will not work in Terraform.

for (i = 0; i < 3; i++) {

resource "azurerm_resource_group" "example" {

 name = "Terraform-rg"

 location = "West Europe"

 }

}

As you know, this previously defined code block will not work in Terraform. Now, the
question is, how do we define this loop in Terraform? You can use the count parameter
to create three resource groups in Azure. The following code snippet will be able to
perform that job for us:

To Create Resource Group

resource "azurerm_resource_group" "example" {

 count = 3

 name = "Terraform-rg"

 location = "West Europe"

}

Understanding Terraform loops 107

There is one problem in the previously defined code: the name of the resource group in
Azure should be unique. You can use count.index to make the name of the resource
group unique. The following code snippet will give you an idea of how to define count
and count.index:

To Create Resource Group

resource "azurerm_resource_group" "example" {

 count = 3

 name = "Terraform-rg${count.index}"

 location = "West Europe"

}

If you are running terraform plan, you can see the following code snippet, which
clearly shows that it will be provisioning three different resource groups in Azure when
you run the terraform apply command:

$ terraform plan

Refreshing Terraform state in-memory prior to plan...

The refreshed state will be used to calculate this plan, but
will not be

persisted to local or remote state storage.

--

An execution plan has been generated and is shown below.

Resource actions are indicated with the following symbols:

 + create

Terraform will perform the following actions:

 # azurerm_resource_group.example[0] will be created

 + resource "azurerm_resource_group" "example" {

 + id = (known after apply)

 + location = "westeurope"

 + name = "Terraform-rg0"

 }

 # azurerm_resource_group.example[1] will be created

 + resource "azurerm_resource_group" "example" {

 + id = (known after apply)

 + location = "westeurope"

 + name = "Terraform-rg1"

108 Deep Dive into Terraform

 }

 # azurerm_resource_group.example[2] will be created

 + resource "azurerm_resource_group" "example" {

 + id = (known after apply)

 + location = "westeurope"

 + name = "Terraform-rg2"

 }

Plan: 3 to add, 0 to change, 0 to destroy.

The Terraform-rg0, Terraform-rg1, and Terraform-rg3 resource group names
don't look nice. We can give them our own defined names, rather than take them through
count.index. We can perform this customization by defining a variable code block:

variable "rg_names" {

 description = "list of the resource group names"

 type = list(string)

 default = ["Azure-rg", "AWS-rg", "Google-rg"]

}

Now, as we have defined the names of the resource groups in the variable code block,
our actual resource code block will look as follows:

To Create Resource Group

resource "azurerm_resource_group" "example" {

 count = length(var.rg_names)

 name = var.rg_names[count.index]

 location = "West Europe"

}

As you can see in the previously defined code block, we used a length function that
returns the number of items in the given list. When you run the terraform plan
command, you can see that Terraform wants to create three resource groups with the
names Azure-rg, AWS-rg, and Google-rg in Azure:

$ terraform plan

Refreshing Terraform state in-memory prior to plan...

The refreshed state will be used to calculate this plan, but
will not be persisted to local or remote state storage.

--

Understanding Terraform loops 109

An execution plan has been generated and is shown below.

Resource actions are indicated with the following symbols:

 + create

Terraform will perform the following actions:

 # azurerm_resource_group.example[0] will be created

 + resource "azurerm_resource_group" "example" {

 + id = (known after apply)

 + location = "westeurope"

 + name = "Azure-rg"

 }

 # azurerm_resource_group.example[1] will be created

 + resource "azurerm_resource_group" "example" {

 + id = (known after apply)

 + location = "westeurope"

 + name = "AWS-rg"

 }

 # azurerm_resource_group.example[2] will be created

 + resource "azurerm_resource_group" "example" {

 + id = (known after apply)

 + location = "westeurope"

 + name = "Google-rg"

 }

Plan: 3 to add, 0 to change, 0 to destroy.

Note that as you have used count on the resource, it is no longer a single resource, but
it became a list of resources. Since it is a list of resources, if you want to read an attribute
from a specific resource, then you would be required to define it in the following way:

<PROVIDER>_<TYPE>.<NAME>[INDEX].ATTRIBUTE

Let's try to get the id attribute from the Azure-rg resource group. The following code
block will provide us with the id attribute:

output "rg_id" {

 value = azurerm_resource_group.example[0].id

 description = "The Id of the resource group"

}

110 Deep Dive into Terraform

If you want the IDs of all the resource groups, you will be required to use a splat
expression, *, instead of the index:

output "All_rg_id" {

 value = azurerm_resource_group.example[*].id

 description = "The Id of all the resource group"

}

When you run the terraform apply command, rg_id will give you the output of the
Azure-rg resource group and All_rg_id will provide you with the output of all the
resource groups:

$ terraform apply

An execution plan has been generated and is shown below.

Resource actions are indicated with the following symbols:

Terraform will perform the following actions:

Plan: 0 to add, 0 to change, 0 to destroy.

Apply complete! Resources: 0 added, 0 changed, 0 destroyed.

Outputs:

All_rg_id = [

 "/subscriptions/97c3799f-2753-40b7-a4bd-157ab464d8fe/
resourceGroups/Azure-rg",

 "/subscriptions/97c3799f-2753-40b7-a4bd-157ab464d8fe/
resourceGroups/AWS-rg",

 "/subscriptions/97c3799f-2753-40b7-a4bd-157ab464d8fe/
resourceGroups/Google-rg",

]

rg_id = /subscriptions/97c3799f-2753-40b7-a4bd-157ab464d8fe/
resourceGroups/Azure-rg

We have just seen how we can define the count parameter, but there are some limitations
to it and because of that, the use of the count parameter is reducing.

The first limit is when using count over an entire resource, you won't be able to use
count within a resource to loop an inline code block. For example, say you are planning
to create a virtual network in Azure and multiple subnets inside that virtual network.
This subnet code block contains the properties and has its configuration. So, if we want
to iterate over those properties, then we may not be able to use the count expression.

Understanding Terraform loops 111

The second limitation with count is what will happen if you try to make any changes
to your defined list. Let's continue with the same variable code that we defined for the
resource groups:

variable "rg_names" {

 description = "list of the resource group names"

 type = list(string)

 default = ["Azure-rg", "AWS-rg", "Google-rg"]

}

Consider how you have removed AWS-rg from the list. So, our new variable code would
look as follows:

variable "rg_names" {

 description = "list of the resource group names"

 type = list(string)

 default = ["Azure-rg", "Google-rg"]

}

Now, let's try to understand how exactly Terraform will behave when we run terraform
plan:

$ terraform plan

Refreshing Terraform state in-memory prior to plan...

The refreshed state will be used to calculate this plan, but
will not be

persisted to local or remote state storage.

--

An execution plan has been generated and is shown below.

Resource actions are indicated with the following symbols:

 - destroy

-/+ destroy and then create replacement

Terraform will perform the following actions:

 # azurerm_resource_group.example[1] must be replaced

-/+ resource "azurerm_resource_group" "example" {

 ~ id = "/subscriptions/97c3799f-2753-40b7-a4bd-
157ab464d8fe/resourceGroups/AWS-rg" -> (known after apply)

 location = "westeurope"

112 Deep Dive into Terraform

 ~ name = "AWS-rg" -> "Google-rg" # forces replacement

 - tags = {} -> null

 }

 # azurerm_resource_group.example[2] will be destroyed

 - resource "azurerm_resource_group" "example" {

 - id = "/subscriptions/97c3799f-2753-40b7-a4bd-
157ab464d8fe/resourceGroups/Google-rg" -> null

 - location = "westeurope" -> null

 - name = "Google-rg" -> null

 - tags = {} -> null

 }

Plan: 1 to add, 0 to change, 2 to destroy.

With terraform plan, you can see that it is going to destroy Google-rg and recreate
it. But this isn't something that we are looking to do; we don't want that Google-rg to be
destroyed and recreated if we are removing AWS-rg from our variables list.

When you define the count parameter on a resource, Terraform treats that resource as
a list or array of resources and because of that, it is used to identify each resource defined
within the array by its positional index in that array. The internal representation of these
resource groups looks something like this when you run terraform apply:

azurerm_resource_group.example[0]: Azure-rg

azurerm_resource_group.example[1]: AWS-rg

azurerm_resource_group.example[2]: Google-rg

When you remove an item from the middle of an array, all the items after it shift back by
one, so after running plan with just two items, Terraform's internal representation will
be something like this:

azurerm_resource_group.example[0]: Azure-rg

azurerm_resource_group.example[1]: Google-rg

You may have noticed how Google-rg has moved from index 2 to index 1 and because
of this, Terraform understands to "rename the item at index 1 to Google-rg and delete
the item at index 2." In other words, whenever, you use count in your code to provision
a list of resources, and suppose you remove any of the middle items from the list,
Terraform will recreate all those resources that come after that middle item again from
scratch, which is something we are definitely not looking for. To solve these limitations
of the count parameter, Terraform provides for_each expressions.

Understanding Terraform loops 113

The for_each expression
Terraform has come up with the for_each expression, which helps you to loop over
a set of strings or maps. By using for_each, you can create multiple copies of the entire
resource or multiple copies of the inline code block, which is defined inside the resource
code block.

Let's try to understand how we can write a for_each code block just for the resource
code block. For our reference, we are going to consider the same example of creating three
resource groups in Azure:

To Create Resource Group

resource "azurerm_resource_group" "example" {

 for_each = toset(var.rg_names)

 name = each.value

 location = "West Europe"

}

We have used the toset Terraform function to convert the var.rg_names list into
a set of strings. for_each only supports a set of strings and maps in the resource code
block. If we use a for_each loop over this set, then each.value or each.key will
provide the names of the resource groups. Generally, each.key is used for maps where
you have key-value pairs.

Once we have defined for_each on a resource code block, it becomes a map of the
resource rather than a single resource. In order to see what exactly we are talking about,
let's define an output variable named all_rg and an input variable named rg_names
with default values:

output "all_rg" {

 value = azurerm_resource_group.example

}

variable "rg_names" {

 description = "list of the resource group names"

 type = list(string)

 default = ["Azure-rg", "AWS-rg", "Google-rg"]

}

114 Deep Dive into Terraform

Here is what you can expect when you run the terraform apply command:

$ terraform apply

An execution plan has been generated and is shown below.

Resource actions are indicated with the following symbols:

 + create

Terraform will perform the following actions:

 # azurerm_resource_group.example["AWS-rg"] will be created

 + resource "azurerm_resource_group" "example" {

 + id = (known after apply)

 + location = "westeurope"

 + name = "AWS-rg"

 }

 # azurerm_resource_group.example["Azure-rg"] will be created

 + resource "azurerm_resource_group" "example" {

 + id = (known after apply)

 + location = "westeurope"

 + name = "Azure-rg"

 }

 # azurerm_resource_group.example["Google-rg"] will be created

 + resource "azurerm_resource_group" "example" {

 + id = (known after apply)

 + location = "westeurope"

 + name = "Google-rg"

 }

Plan: 3 to add, 0 to change, 0 to destroy.

Outputs:

all_rg = {

 "AWS-rg" = {

 "id" = "/subscriptions/97c3799f-2753-40b7-a4bd-
157ab464d8fe/resourceGroups/AWS-rg"

 "location" = "westeurope"

 "name" = "AWS-rg"

 "tags" = {}

 }

 "Azure-rg" = {

Understanding Terraform loops 115

 "id" = "/subscriptions/97c3799f-2753-40b7-a4bd-
157ab464d8fe/resourceGroups/Azure-rg"

 "location" = "westeurope"

 "name" = "Azure-rg"

 "tags" = {}

 }

 "Google-rg" = {

 "id" = "/subscriptions/97c3799f-2753-40b7-a4bd-
157ab464d8fe/resourceGroups/Google-rg"

 "location" = "westeurope"

 "name" = "Google-rg"

 "tags" = {}

 }

}

As you can see, Terraform created three resource groups in Azure and the all_rg output
variable has outputted a map where the keys represent the resource group name. Let's
suppose you are looking for the ID with the name all_id in all the respective resource
groups. Then, you would be required to do something extra; that is, you would be
required to define values, which is a Terraform built-in function, to extract exact values.
The Terraform output code can be defined in this way:

output "all_id" {

 value = values(azurerm_resource_group.example)[*].id

}

Now, when you run the terraform apply command again, you can expect the
following output:

$ terraform apply

(...)

Apply complete! Resources: 0 added, 0 changed, 0 destroyed.

Outputs:

all_id = [

 "/subscriptions/97c3799f-2753-40b7-a4bd-157ab464d8fe/
resourceGroups/AWS-rg",

 "/subscriptions/97c3799f-2753-40b7-a4bd-157ab464d8fe/
resourceGroups/Azure-rg",

116 Deep Dive into Terraform

 "/subscriptions/97c3799f-2753-40b7-a4bd-157ab464d8fe/
resourceGroups/Google-rg",

]

The best thing about the for_each expression is you are getting a map of the resource
rather than a list of resources that you were getting with count. Let's try to remove the
same middle resource group name, that is, AWS_rg, from the input variable and then try
to run the terraform plan command. You can expect the following code snippet:

$ terraform plan

An execution plan has been generated and is shown below.

Resource actions are indicated with the following symbols:

 - destroy

Terraform will perform the following actions:

 # azurerm_resource_group.example["AWS-rg"] will be destroyed

 - resource "azurerm_resource_group" "example" {

 - id = "/subscriptions/97c3799f-2753-40b7-a4bd-
157ab464d8fe/resourceGroups/AWS-rg" -> null

 - location = "westeurope" -> null

 - name = "AWS-rg" -> null

 - tags = {} -> null

 }

Plan: 0 to add, 0 to change, 1 to destroy.

Changes to Outputs:

 ~ all_id = [

 - "/subscriptions/97c3799f-2753-40b7-a4bd-157ab464d8fe/
resourceGroups/AWS-rg",

 "/subscriptions/97c3799f-2753-40b7-a4bd-157ab464d8fe/
resourceGroups/Azure-rg",

 "/subscriptions/97c3799f-2753-40b7-a4bd-157ab464d8fe/
resourceGroups/Google-rg",

]

As you can see from terraform plan, it is only deleting the AWS_rg resource group
name without touching any other resource groups. That means the challenge that we had
in the count expression can be overcome by using a for_each expression.

Understanding Terraform loops 117

Let's try to understand how we can use a for_each expression for the inline code block
inside the resource code block. Dynamically, we will try to have multiple subnets within
the virtual network in Azure. The following code block will give you insight into how you
can define multiple subnets within a virtual network using a for_each expression:

resource "azurerm_resource_group" "example" {

 name = "Terraform-rg"

 location = "West Europe"

}

resource "azurerm_virtual_network" "vnet" {

 name = var.vnet_name

 location = azurerm_resource_group.example.location

 resource_group_name = azurerm_resource_group.example.name

 address_space = var.address_space

 dynamic "subnet" {

 for_each = var.subnet_names

 content {

 name = subnet.value.name

 address_prefix = subnet.value.address_prefix

 }

 }

}

variable "subnet_names" {

 default = {

 subnet1 = {

 name = "subnet1"

 address_prefix = "10.0.1.0/24"

 }

 subnet2 = {

 name = "subnet2"

 address_prefix = "10.0.2.0/24"

 }

 }

}

variable "vnet_name" {

 default = "terraform-vnet"

}

118 Deep Dive into Terraform

variable "address_space" {

 default = ["10.0.0.0/16"]

}

If you run the terraform apply command, you will find that it will create a new
virtual network with two subnets. Similarly, if you want to have multiple subnets inside
virtual network resources, you can use a dynamic for_each expression:

$ terraform apply

(...)

azurerm_virtual_network.vnet will be created

 + resource "azurerm_virtual_network" "vnet" {

 + address_space = [

 + "10.0.0.0/16",

]

 + guid = (known after apply)

 + id = (known after apply)

 + location = "westeurope"

 + name = "terraform-vnet"

 + resource_group_name = "Terraform-rg"

 + subnet = [

 + {

 + address_prefix = "10.0.1.0/24"

 + id = (known after apply)

 + name = "subnet1"

 + security_group = ""

 },

 + {

 + address_prefix = "10.0.2.0/24"

 + id = (known after apply)

 + name = "subnet2"

 + security_group = ""

 },

]

 }

Understanding Terraform loops 119

In the previous code block, we showed how you can use a dynamic block expression,
which is used to produce one or more nested blocks. The subnet label name lets Terraform
know that this will be a set of nested blocks of each type of subnet. Within the block,
we have to provide some data to use for the creation of the nested blocks. We have stored
our subnet configuration in the variable named subnet_names. So, we have seen the
for_each loop. Now, let's try to understand the for expression.

The for expression
We have discussed the count and for_each loop expressions in Terraform. Now, let's
try to understand the for expression. You can use the for expression for both list and
map. The following is the syntax for defining the for expression in a code block:

[for <ITEM> in <LIST> : <OUTPUT>]

[for <KEY>, <VALUE> in <MAP> : <OUTPUT>]

Here, ITEM is the local variable name assigned to each item in LIST and LIST is the list
through which you will be iterating. OUTPUT is a transformed ITEM.

Similarly, for a map, KEY and VALUE are the local variable names assigned to each
key-value pair in MAP. MAP is the map through which you will be iterating, and OUTPUT
is a transformed expression from KEY and VALUE.

The following code block helps to give you an idea of how you can define a for
expression in a list:

variable "cloud" {

 description = "A list of cloud"

 type = list(string)

 default = ["azure", "aws", "gcp"]

}

output "cloud_names" {

 value = [for cloud_name in var.cloud : upper(cloud_name)]

}

If you run the terraform apply command, you can expect the following:

$ terraform apply

Apply complete! Resources: 0 added, 0 changed, 0 destroyed.

Changes to Outputs:

 + cloud_names = [

120 Deep Dive into Terraform

 + "AZURE",

 + "AWS",

 + "GCP",

]

Let's see how to define the for expression in the code block for a map. In this code block,
we have defined a variable named cloud_map and provided a default key and values:

variable "cloud_map" {

 description = "map"

 type = map(string)

 default = {

 Azure = "Microsoft"

 AWS = "Amazon"

 GCP = "Google"

 }

}

output "cloud_mapping" {

 value = [for cloud_name, company in var.cloud_map : "${cloud_
name} cloud is founded by ${company}"]

}

When you run the terraform apply command, you can expect the following:

$ terraform apply

Apply complete! Resources: 0 added, 0 changed, 0 destroyed.

Outputs:

cloud_mapping = [

 "AWS cloud is founded by Amazon",

 "Azure cloud is founded by Microsoft",

 "GCP cloud is founded by Google",

]

In this section, we discussed the different available loops in Terraform, such as count,
for_each, and for. Now you will understand how to iterate in Terraform configuration
code. In the upcoming section, we will discuss the different available built-in functions
in Terraform that you can use to transform your requirements into configuration code as
and when needed.

Understanding Terraform functions 121

Understanding Terraform functions
There are many built-in Terraform functions that you can use to transform data into
the format you might be looking to consume in the respective configuration code. Often,
it may be that the format of the data returned by the data source and resource is not
compatible with the data format that you need for passing to other resources. Terraform
provides built-in functions in the following categories:

•	 Numeric

•	 String

•	 Collection

•	 Encoding

•	 Filesystem

•	 Date and time

•	 Hash and crypto

•	 IP network

•	 Type conversion

It is not possible to discuss all the Terraform built-in functions here. If you are interested
in knowing about all the Terraform functions, you can refer to https://www.
terraform.io/docs/configuration/functions.html. It is most important
for you to understand how to use functions and how to test the Terraform function using
the Terraform console.

If you are already familiar with any programming language, then defining a Terraform
function works the same. The basic format for writing a Terraform function is
function(arguments,...).

Let's see a few of the Terraform function syntaxes:

•	 max(number1, number2, number3,…): To determine the highest number
from the given numbers

•	 lower("text"): To convert a string to lower

Each Terraform function takes specific types of arguments and returns a value of a specific
type. You can even combine multiple functions together to get the desired data type, for
example, abs(max(-1,-10,-5). Here, in this example, the max function will return
the highest value out of the given numbers, and then the abs function will provide you
with the absolute value of that output.

https://www.terraform.io/docs/configuration/functions.html
https://www.terraform.io/docs/configuration/functions.html

122 Deep Dive into Terraform

By using the Terraform console, you can test all the Terraform functions. You can simply
open any CLI, such as the CMD terminal of Windows, and then type terraform
console. Remember one thing: the Terraform console never makes any changes to
the state file. If you have opened a terminal in the current directory where you have the
Terraform configuration file, then it will load the current state so that you get access
to the state data and you can test functions accordingly.

Let's try to understand this with an example:

 variable "address_space" {

 type = list(string)

 default = ["10.0.0.0/16"]

}

resource "azurerm_resource_group" "azure-rg" {

 name = "Terraform-rg"

 location = "eastus"

}

resource "azurerm_virtual_network" "vnet" {

 name = "prod-vnet"

 location = azurerm_resource_group.azure-rg.
location

 resource_group_name = azurerm_resource_group.azure-rg.name

 address_space = var.address_space

 subnet {

 name = "subnet1"

 address_prefix = cidrsubnet(var.address_space[0], 8, 1)

 }

}

In the previously defined code, we have defined a virtual network address space value
using a variable called address_space, and then in order to calculate the subnet
address_prefix value, we use the cidrsubnet Terraform function.

Understanding Terraform debugging 123

Let's see how we can test the value of address_prefix using the Terraform console.
In order to perform that testing, you just need to open any CLI and run the terraform
console command, which will load the configuration file and provide the following output:

$ terraform console

> var.address_space[0]

10.0.0.0/16

> cidrsubnet(var.address_space[0],8,1)

10.0.1.0/24

As you can see, the Terraform console helps us to test the Terraform built-in functions.
So, whenever you are planning to consume any of the Terraform built-in functions, you
can test them and define them accordingly in the configuration code block.

In this section, we have learned about the Terraform built-in functions and how we can
use Terraform functions effectively, and we even got to know how we can test a Terraform
function using the Terraform console. Next, we will discuss the Terraform debugging
option and get an understanding of how to use the Terraform debugging options.

Understanding Terraform debugging
Terraform provides multiple options for debugging. You can get detailed logs of Terraform
by enabling an environment variable named TF_LOG to any value. TF_LOG supports any
of the following log levels: TRACE, DEBUG, INFO, WARN, or ERROR. By default, the TRACE
log level is enabled, which is the recommended one by Terraform because it provides the
most detailed logs.

If you want to save these logs to a certain location, then you can define TF_LOG_PATH in
the environment variable of Terraform and point it to the respective location where you
want to save your log file. Just remember that in order to enable the log, you need to use
TF_LOG with any of the earlier described log levels, such as TRACE or DEBUG. To set the
TF_LOG environment variable, you can use the following:

export TF_LOG=TRACE

Similarly, if we want to set TF_LOG_PATH, then we can do so in this way:

export TF_LOG_PATH=./terraform.log

124 Deep Dive into Terraform

Suppose while running the Terraform configuration code you find that Terraform crashes
suddenly. Then, it will save a log file called crash.log, which would have all the debug
logs of the session as well as the panic message and backtrace. As Terraform end users,
these log files are of no use to us. You need to pass on these logs to the developer via
GitHub's issues page (https://github.com/hashicorp/terraform/issues).
However, if you are curious to see what went wrong with your Terraform, then you can
check the panic message and backtrace, that will be holding information related to the
issue. You should see something like this:

panic: runtime error: invalid memory address or nil pointer
dereference

goroutine 123 [running]:

panic(0xabc100, 0xd93000a0a0)

 /opt/go/src/runtime/panic.go:464 +0x3e6

github.com/hashicorp/terraform/builtin/providers/aws.
resourceAwsSomeResourceCreate(...) /opt/gopath/src/github.
com/hashicorp/terraform/builtin/providers/aws/resource_aws_
some_resource.go:123 +0x123

github.com/hashicorp/terraform/helper/schema.(*Resource).
Refresh(...) /opt/gopath/src/github.com/hashicorp/terraform/
helper/schema/resource.go:209 +0x123

github.com/hashicorp/terraform/helper/schema.(*Provider).
Refresh(...) /opt/gopath/src/github.com/hashicorp/terraform/
helper/schema/provider.go:187 +0x123

github.com/hashicorp/terraform/rpc.(*ResourceProviderServer).
Refresh(...)

 /opt/gopath/src/github.com/hashicorp/terraform/rpc/
resource_provider.go:345 +0x6a

reflect.Value.call(...)

 /opt/go/src/reflect/value.go:435 +0x120d

reflect.Value.Call(...)

 /opt/go/src/reflect/value.go:303 +0xb1

net/rpc.(*service).call(...)

 /opt/go/src/net/rpc/server.go:383 +0x1c2

created by net/rpc.(*Server).ServeCodec

 /opt/go/src/net/rpc/server.go:477 +0x49d

https://github.com/hashicorp/terraform/issues

Summary 125

The first two lines hold key information that involves hashicorp/terraform. See the
following example:

github.com/hashicorp/terraform/builtin/providers/aws.
resourceAwsSomeResourceCreate(...)

 /opt/gopath/src/github.com/hashicorp/terraform/builtin/
providers/aws/resource_aws_some_resource.go:123 +0x123

The first line tells us which method failed, which in this example is
resourceAwsSomeResourceCreate. With that, we can understand that something
went wrong during AWS resource creation.

The second line tells you the exact line of code that caused the panic. This panic message
is enough for a developer to quickly figure out the cause of the issue.

As a user, this information will help you to perform some level of troubleshooting
whenever you observe a Terraform crash.

Important note
While uploading Terraform logs for any issue on GitHub (https://
github.com/hashicorp/terraform/issues), ensure that it
doesn't contain any confidential data or secrets.

In this section, we learned about Terraform logs, which you can collect by setting different
trace levels to TF_LOG, and you can save these log files by defining TF_LOG_PATH in
Terraform environment variables. We also discussed the crash.log file, which you
can send to the developer using a GitHub issue so that they can help you out.

Summary
In this chapter, you learned about the Terraform backend configuration, which is used
to store the Terraform state file, provisioners, which are mainly used to run some sort
of script, and built-in functions, which are used to transform data into the desired form
so that it can be used in other code configuration blocks. Moving on, we learned how
you can perform different kinds of iteration using for and other loops in Terraform,
which are helpful when you are looking to provision multiple resources at a time. Then,
finally, we discussed Terraform debugging, where you can set the TF_LOG Terraform
environment variable to some log level and store it in the provided destination accordingly
by defining the Terraform environment variable, such as TF_LOG_PATH.

https://github.com/hashicorp/terraform/issues
https://github.com/hashicorp/terraform/issues

126 Deep Dive into Terraform

In the next chapter, we will discuss the authentication of Terraform to Azure, AWS, and
GCP. Moving on, we will also be discussing the use of the Terraform CLI, where we will
see how we can run different Terraform workflow commands and the respective output
from them.

Questions
1.	 Which of the following environment variables needs to be set to get Terraform

detailed logs?

A) TF_LOG

B) TF_TRACE

C) TF_DEBUG

D) TF_INFO

2.	 What is the result of the following Terraform function?

max(2, 5, 10,- 10)

A) 2

B) 5

C) 10

D) -10

3.	 The Terraform "backend" is used to keep the Terraform state file and helps with
Terraform operations. Which of the following is not a supported backend type?

A) S3

B) Artifactory

C) azurerm

D) GitHub

4.	 You need to execute some PowerShell script on the virtual machine that you are
planning to create using Terraform configuration code. Which of the following
properties would you use?

A) Terraform resource

B) Terraform data source

C) Terraform provisioner (local-exec or remote-exec)

D) Terraform function

Further reading 127

5.	 You have been asked to create multiple subnets with a specific attribute inside an
Azure virtual network. Which of the following iteration methods can help you to
achieve this goal?

A) The count expression

B) The for expression

C) The if expression

D) A dynamic expression

Further reading
You can check out the following links for more information about the topics that were
covered in this chapter:

•	 Terraform backends: https://www.terraform.io/docs/backends/
index.html

•	 Terraform provisioners: https://www.terraform.io/docs/
provisioners/index.html

•	 Terraform functions: https://www.terraform.io/docs/
configuration/functions.html

•	 Terraform debugging: https://www.terraform.io/docs/internals/
debugging.html

•	 Terraform loops: https://www.hashicorp.com/blog/hashicorp-
terraform-0-12-preview-for-and-for-each

•	 Terraform GCS backend: https://www.terraform.io/docs/language/
settings/backends/gcs.html

https://www.terraform.io/docs/backends/index.html
https://www.terraform.io/docs/backends/index.html
https://www.terraform.io/docs/provisioners/index.html
https://www.terraform.io/docs/provisioners/index.html
https://www.terraform.io/docs/configuration/functions.html
https://www.terraform.io/docs/configuration/functions.html
https://www.terraform.io/docs/internals/debugging.html
https://www.terraform.io/docs/internals/debugging.html
https://www.hashicorp.com/blog/hashicorp-terraform-0-12-preview-for-and-for-eac
https://www.hashicorp.com/blog/hashicorp-terraform-0-12-preview-for-and-for-eac
https://www.terraform.io/docs/language/settings/backends/gcs.html
https://www.terraform.io/docs/language/settings/backends/gcs.html

5
Terraform CLI

In the previous chapter, we discussed the Terraform backend, Terraform provisioner,
Terraform loops (iterations), and Terraform built-in functions. In this chapter, we
are going to discuss the Terraform command-line interface (Terraform CLI), which
is an open source software maintained and supported by HashiCorp. We will further
see how we can authenticate the Terraform CLI with major cloud providers such as
Azure, Amazon Web Services (AWS), and Google Cloud Platform (GCP). In the later
sections, we will discuss some of the Terraform CLI commands and try to understand the
importance of each command.

The following topics will be covered in this chapter:

•	 Introduction to the Terraform CLI

•	 Integrating with Azure

•	 Integrating with AWS

•	 Integrating with GCP

•	 Understanding the Terraform CLI commands

130 Terraform CLI

Technical requirements
To follow this chapter, you need to have an understanding of writing Terraform
configuration code that includes providers, resources, variables, data, output, provisioners,
and functions. Along with this, some basic knowledge of major cloud providers
such as GCP, AWS, and Azure would be of additional benefit throughout the entire
course. You can find all the code used in this chapter at the following GitHub link:
https://github.com/PacktPublishing/HashiCorp-Infrastructure-
Automation-Certification-Guide/tree/master/chapter5.

Check out the following link to see the Code in Action video:

https://bit.ly/36re4es

Introduction to the Terraform CLI
The Terraform CLI is an open source command-line application provided by HashiCorp
that allows you to run different commands and subcommands. The main commands
that cover the Terraform workflows are init, plan, and apply. You can run the
subcommands flag after the main commands. In order to see a list of the commands
supported by the Terraform CLI, you can simply run terraform on any terminal and
you will see the following output:

$ terraform

Usage: terraform [global options] <subcommand> [args]

The available commands for execution are listed below.

The primary workflow commands are given first, followed by

less common or more advanced commands.

Main commands:

 init Prepare your working directory for other
commands

 validate Check whether the configuration is valid

 plan Show changes required by the current
configuration

 apply Create or update infrastructure

 destroy Destroy previously-created infrastructure

All other commands:

https://github.com/PacktPublishing/HashiCorp-Infrastructure-Automation-Certification-Guide/tree/master/chapter5
https://github.com/PacktPublishing/HashiCorp-Infrastructure-Automation-Certification-Guide/tree/master/chapter5

Introduction to the Terraform CLI 131

 console Try Terraform expressions at an interactive
command prompt

 fmt Reformat your configuration in the standard
style

 force-unlock Release a stuck lock on the current workspace

 get Install or upgrade remote Terraform modules

 graph Generate a Graphviz graph of the steps in an
operation

 import Associate existing infrastructure with a
Terraform resource

 login Obtain and save credentials for a remote host

 logout Remove locally-stored credentials for a remote
host

 output Show output values from your root module

 providers Show the providers required for this
configuration

 refresh Update the state to match remote systems

 show Show the current state or a saved plan

 state Advanced state management

 taint Mark a resource instance as not fully
functional

 untaint Remove the 'tainted' state from a resource
instance

 version Show the current Terraform version

 workspace Workspace management

Global options (use these before the subcommand, if any):

 -chdir=DIR Switch to a different working directory before
executing the

 given subcommand.

 -help Show this help output, or the help for a
specified subcommand.

 -version An alias for the "version" subcommand.

132 Terraform CLI

If you wish to see supported commands and subcommands, then you can get these by
adding a -h flag to the main command. This will open the help menu of that specific
command. For example, to see subcommands for a Terraform graph, run the following
command:

$ terraform graph -h

Usage: terraform graph [options] [DIR]

 Outputs the visual execution graph of Terraform resources
according to configuration files in DIR (or the current
directory if omitted).

 The graph is outputted in DOT format. The typical program
that can read this format is GraphViz, but many web services
are also available to read this format.

 The -type flag can be used to control the type of graph
shown. Terraform creates different graphs for different
operations. See the options below for the list of types
supported. The default type is "plan" if a configuration is
given, and "apply" if a plan file is passed as an argument.

Options:

 -draw-cycles Highlight any cycles in the graph with
colored edges. This helps when diagnosing cycle errors.

 -type=plan Type of graph to output. Can be: plan, plan-
destroy, apply, validate, input, refresh.

 -module-depth=n (deprecated) In prior versions of Terraform,
specified the depth of modules to show in the output.

Suppose you are running Terraform commands using bash or zsh as the command
shell and looking for the Tab completion option. In that case, you can install that specific
feature by running the following command:

terraform -install-autocomplete

This would help you out in terms of completing your commands or subcommands
whenever you press the Tab key on the command shell.

We now have an understanding of the Terraform CLI and how we can use it to see a list
of all the commands it supports. Let's now try to understand how we can authenticate
the Terraform CLI to Azure.

Integrating with Azure 133

Integrating with Azure
As you now know more about Terraform CLI, moving further on, we are going to talk
in this section about how you can integrate or authenticate Terraform to Azure using
Terraform CLI. In order to provision or update Azure services using Terraform CLI,
it is important that your version of the Terraform CLI should be able to talk to Azure.
In Chapter 2, Terraform Installation Guide, we already described how you can install
terraform.exe on your local machine. So, let's try to understand how Terraform
CLI can talk to Azure.

Here are the methods by which you can authenticate your Terraform CLI to Azure:

•	 Authentication using the Azure CLI

•	 Authentication using a Managed Service Identity (MSI)

•	 Authentication using a Service Principal and a Client Certificate

•	 Authentication using a Service Principal and a Client Secret

It is difficult to discuss all the possible options relating to Terraform authentication
with Azure as there are so many of these. So, in order to learn about all the different
authentication options, you can read https://registry.terraform.io/
providers/hashicorp/azurerm/latest/docs.

We are now going to discuss one of the prominent authentication methods: using
a Service Principal and a Client Secret.

Important note
Please make sure you have a valid Azure subscription to perform any service
deployment in Azure. You can open a free tier account as well for learning
purposes. For more information about Azure subscription sign-up, you can
visit https://azure.microsoft.com/en-in/free/.

https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs

134 Terraform CLI

Authentication using a Service Principal and
a Client Secret
To authenticate the Terraform CLI to Azure using a Service Principal and a Client Secret,
perform the following steps:

1.	 Log in to the Azure portal at http://portal.azure.com using your Microsoft
login ID and password.

2.	 Go to Active Directory (AD) through your Azure portal and then create a new app
registration (Service Principal), as shown in the following screenshot:

Figure 5.1 – Azure app registration

http://portal.azure.com

Integrating with Azure 135

3.	 Provide the name of the app registration. We have chosen Terraform-Demo-
SPN, as you can see in the following screenshot:

Figure 5.2 – New app registration

136 Terraform CLI

4.	 Note down the Application (client) ID value and the Directory (tenant) ID value
of the Service Principal, as illustrated in the following screenshot:

Figure 5.3 – Service Principal

5.	 Generate a Service Principal secret with any name. We have chosen Terraform-
Secret, as you can see in the following screenshot:

Integrating with Azure 137

Figure 5.4 – Service Principal secret

6.	 After adding a Service Principal secret, you will get the secret value, as shown in the
following screenshot. Note down this value because it will be not available to you later:

Figure 5.5 – Service Principal secret key

138 Terraform CLI

7.	 Provide Contributor access either at the subscription, resource group, or
resource level, depending on whether you want to manage the following identity
and access management (IAM) roles of Azure (https://docs.microsoft.
com/en-gb/azure/role-based-access-control/built-in-roles).
In our case, we have given Contributor access to the subscription level, as you
can see in the following screenshot:

Figure 5.6 – Azure role-based access control (RBAC)

8.	 As we have received a Service Principal credential, there are multiple ways of
configuring this. We are going to place the Service Principal client ID, tenant ID,
subscription ID, and Client Secret into the Environment Variables field of the local
machine, which you can see in the following screenshot. You can refer to the Azure
Resource Manager (ARM) provider block (https://registry.terraform.
io/providers/hashicorp/azurerm/latest/docs) to know about all the
arguments supported:

https://docs.microsoft.com/en-gb/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-gb/azure/role-based-access-control/built-in-roles

Integrating with Azure 139

Figure 5.7 – Environment Variables
In our example, we have set environment variables in a local machine using a user
interface (UI), but it is strongly recommended to use any CLI, such as PowerShell,
to store credentials in local environment variables in the following specified way:

$env:ARM_CLIENT_ID=". . ."

$env:ARM_CLIENT_SECRET=". . ."

$env:ARM_SUBSCRIPTION_ID=". . ."

$env:ARM_TENANT_ID=". . ."

9.	 Now, you can write any file with a name ending with .tf that would be holding the
Terraform configuration file. We have created a providers.tf file and placed the
following code block within it:

terraform {

 required_providers {

 azurerm = {

 source = "hashicorp/azurerm"

 version = "=2.55.0"

 }

 }

}

140 Terraform CLI

provider "azurerm" {

 features {}

}

10.	 You can open any CLI and run a terraform init command, which will create
a folder named .terraform. This will contain a subfolder with a named plugin,
and within that there will be an azurerm provider, which you can see in the
following structure:

.

├── .terraform

│ ├── environment

│ └── providers

│ ├── registry.terraform.io

│ │ └── hashicorp

│ │ └── azurerm

│ │ └── 2.55.0

│ │ └── windows_amd64

│ │ └── terraform-provider-
azurerm_v2.55.0_x5.exe

├── .terraform.lock.hcl

└── providers.tf

7 directories, 4 files

Important note
Please don't refer to the Service Principal that has been used above in the
Azure authentication section.

Provisioning Azure services using Terraform
We have already authenticated Terraform to Azure using a Service Principal. Let's try
to create some Azure services using Terraform. We will try to create an Azure virtual
machine (VM) using the Terraform code. The following code snippet contains a tree
block where we have placed code for the VM with a key vault in the main.tf file. We
have defined all the input variables in a variables.tf file and we are passing all the
input variable values from a terraform.tfvars file:

inmishrar@terraform-vm:~/code# tree

.

Integrating with Azure 141

├── main.tf

├── providers.tf

├── terraform.tfvars

└── variables.tf

0 directories, 4 files

You can get the full code block inside the main.tf file from the GitHub link presented in
the Technical requirements section. Here is an excerpt of this:

resource "azurerm_resource_group" "rgname" {

 name = var.rgname

 location = var.location

 tags = var.tags

}

resource "azurerm_virtual_network" "vnet" {

 name = var.vnet_name

 address_space = var.address_space

 location = azurerm_resource_group.rgname.location

 resource_group_name = azurerm_resource_group.rgname.name

 tags = var.tags

}

resource "azurerm_subnet" "subnet" {

 name = var.subnet_name

 resource_group_name = azurerm_resource_group.rgname.name

 virtual_network_name = azurerm_virtual_network.vnet.name

 address_prefixes = [cidrsubnet(var.address_
space[0], 8, 1)]

}

...

This full code block inside the variables.tf file is available on the GitHub link
presented in the Technical requirements section. You can take it directly from there,
but an excerpt is provided here:

variable "rgname" {

 type = string

 description = "name of resource group"

142 Terraform CLI

}

variable "location" {

 type = string

 description = "location name"

}

variable "vnet_name" {

 type = string

 description = "vnet name"

}

...

The code block inside terraform.tfvars looks like this:

rgname = "Terraform-rg"

location = "West Europe"

tags = {

 Environment = "prod"

 Owner = "Azure-Terraform"

}

vm_size = "Standard_F2"

vm_name = "Terraform-vm"

admin_username = "azureterraform"

vm_publisher = "MicrosoftWindowsServer"

vm_offer = "WindowsServer"

vm_sku = "2016-Datacenter"

vm_version = "latest"

sku_name = "premium"

vnet_name = "Terraform-vnet"

address_space = ["10.1.0.0/16"]

subnet_name = "Terraform-subnet"

nic_name = "Terraform-nic"

keyvault_name = "Terraform-keyvault2342"

keyvault_secret_name = "Terraform-vm-password"

Integrating with Azure 143

When you run terraform init, plan, and apply, it will then create the Azure
services, as shown in the following screenshot:

Figure 5.8 – Azure services

We have managed to provision Azure resources using Terraform. This way, you can
provision new resources in Microsoft Azure, as well as update resources using the
Terraform configuration file provided, if you have the state of those resources in the
tfstate file.

In this section, we discussed how you can authenticate Terraform to Azure, and then we
discussed how to write a Terraform configuration file to provision resources in Azure.
While creating a configuration file, we mentioned how you create separate files such as
providers.tf, main.tf, and variables.tf, and we explained how to take input
variable values using terraform.tfvars.

In our upcoming section, we will be discussing the authentication of Terraform to AWS
and will accordingly try to provision some resources in AWS in the same way we did
in Azure.

144 Terraform CLI

Integrating with AWS
As we discussed earlier how you can authenticate Terraform to Azure, let's now try to
understand how we can authenticate Terraform with AWS. Here are the methods that
allow Terraform to get authenticated in AWS:

•	 Static credentials
•	 Environment variables
•	 Shared credentials/configuration file
•	 CodeBuild, Elastic Container Service (ECS), and Elastic Kubernetes Service

(EKS) roles
•	 Elastic Compute Cloud (EC2) Instance Metadata Service (IMDS), and IMDSv2

For detailed information about how you can authenticate Terraform to AWS, you can
visit https://registry.terraform.io/providers/hashicorp/aws/
latest/docs. Discussing all of the methods is beyond the scope of this book, but
we will nevertheless discuss one of the methods and show you how you can provision
services in AWS.

Authentication using an access key ID and secret
To authenticate using an access key ID and secret, perform the following steps:

1.	 Log in to your AWS console at https://console.aws.amazon.com/ using
your IAM/Root login ID and password.

2.	 Go to My Security Credentials and create a new access key, as illustrated in the
following screenshot:

Figure 5.9 – AWS access key

https://registry.terraform.io/providers/hashicorp/aws/latest/docs
https://registry.terraform.io/providers/hashicorp/aws/latest/docs
https://console.aws.amazon.com/

Integrating with AWS 145

3.	 You can store AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY in the
environment variable by executing the following commands on the Bash CLI:

export AWS_ACCESS_KEY_ID="AKIAIMQ4GX4XAJR7ZS2A"

export AWS_SECRET_ACCESS_KEY="qQi4E0DQItP2utPE..."

For setting environment variables on a Windows machine, you can refer to the
Integrating with Azure section and follow that approach to set AWS_ACCESS_KEY
and AWS_SECRET_ACCESS_KEY.

You can create a configuration file with any name ending with .tf. For simplicity, we
have named this providers.tf and placed the following code block in it:

terraform {

 required_providers {

 aws = {

 source = "hashicorp/aws"

 version = "~> 3.0"

 }

 }

}

provider "aws" {

 region = var.aws_region

}

4.	 You can run the terraform init command on any CLI to download the AWS
provider and get it stored in the .terraform folder, which you can see in the
following code snippet:

inmishrar@terraform-vm:~/code# tree -a

.

├── .terraform

│ ├── environment

│ └── providers

│ ├── registry.terraform.io

│ │ └── hashicorp

│ │ └── aws

│ │ └── 3.36.0

│ │ └── linux_amd64

146 Terraform CLI

│ │ └── terraform-provider-aws_
v3.36.0_x5.exe

├──.terraform.lock.hcl

└── providers.tf

7 directories, 4 files

We have finally managed to download the AWS provider and can now provision or update
AWS services using Terraform. Let's try to understand how we can write the Terraform
configuration code for the AWS provider.

Provisioning AWS services using Terraform
You have managed to authenticate Terraform to AWS, so let's now see how we can
provision AWS services using Terraform. It is not possible to explain all the AWS services
available, so we are considering a very simple example of creating an AWS virtual private
cloud (VPC). If you wish to explore the Terraform resource code block for the AWS
provider, you can refer to https://registry.terraform.io/providers/
hashicorp/aws/latest/docs.

The following code block will help you to provision a VPC in AWS. In order to provision
an AWS VPC, we created the following files and placed them in our GitHub repository:

inmishrar@terraform-vm:~/code# tree

.

├── main.tf

├── providers.tf

├── terraform.tfvars

└── variables.tf

0 directories, 4 files

In the main.tf file, we have kept the following code block:

resource "aws_vpc" "terraform_aws_vpc" {

 cidr_block = var.cidr_block

 instance_tenancy = "default"

 tags = {

 Name = "terraform_aws_vpc"

 }

}

Integrating with AWS 147

Similarly, in the variables.tf file, we have kept the following defined code:

variable "cidr_block" {

 description = "provide VPC range"

}

variable "aws_region" {

 description = "provide AWS region"

}

We are going to take user input values of the variables from terraform.tfvars
as follows:

cidr_block = "10.0.0.0/16"

aws_region = "ap-southeast-1"

When you run the terraform plan and apply commands, this will create a new VPC
in AWS, as shown in the following screenshot:

Figure 5.10 – AWS services

Finally, we managed to create an AWS VPC using the Terraform configuration code.
Suppose tomorrow you want to create more services along with this VPC. You just need
to define that resource or module code block in your Terraform configuration file, and
Terraform will provision or update those particular services.

Important note
You should use an IAM user account rather than using a root account for
integrating AWS with Terraform. For more information on IAM accounts,
you can refer to https://docs.aws.amazon.com/IAM/latest/
UserGuide/id_credentials_access-keys.html.

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

148 Terraform CLI

In this section, we discussed how you can authenticate Terraform to AWS, and then
we explained how to write a Terraform configuration file to provision services in AWS
by taking a simple example of an AWS VPC. In our next section, we will discuss the
authentication of Terraform to GCP and, accordingly, we will try to create some services
in GCP.

Integrating with GCP
As we have seen how we authenticate Terraform to Azure and AWS, we will similarly try
to understand how Terraform can get authenticated to GCP.

There are multiple methods to authenticate Terraform to GCP, outlined as follows:

•	 Authentication using the Google Cloud Software Development Kit (SDK) CLI

•	 Authentication using a Google service account by storing credentials in a
separate file

•	 Authentication using a Google service account by defining values in the
environment variable

•	 Authentication using a Google service account by means of a valid token

Discussing all of the aforementioned methods is somewhat beyond the scope of this book,
so we will just consider one method of authentication.

Authentication using a Google service account by
storing credentials in a separate file
To authenticate a Google service account, perform the following steps:

1.	 Log in to Google Cloud Console at https://console.cloud.google.com/
using your login ID and password.

2.	 Create a new project with any name. We have created a project with the name
Terraform-project.

https://console.cloud.google.com/

Integrating with GCP 149

3.	 Create a service account by navigating to IAM and the admin page from the Google
Cloud Console, as shown in the following screenshot:

Figure 5.11 – GCP service account

150 Terraform CLI

4.	 Grant an Editor role for that service account to your GCP project so that it can
perform read/write operations, as illustrated in the following screenshot:

Figure 5.12 – GCP service account role

5.	 Once you have created a service account in GCP, create a key in JavaScript Object
Notation (JSON) format, as illustrated in the following screenshot:

Integrating with GCP 151

Figure 5.13 – GCP service account key

Important note
The GCP service account file contains credential information, so keep this
secure as it can access services in GCP.

6.	 You can create a providers.tf file and define the following code block within it:

provider "google" {

 credentials = file("terraform-project-xxxx.json")

 project = "Terraform-project"

 region = "asia-south1"

}

7.	 You can run the terraform init command, which will download the
Google provider plugin to the .terraform folder, as illustrated in the following
code snippet:

inmishrar@terraform-vm:~/code# tree -a

.

├── .terraform

│ ├── environment

│ └── providers

│ ├── registry.terraform.io

│ │ └── hashicorp

│ │ └── google

152 Terraform CLI

│ │ └── 3.63.0

│ │ └── linux_amd64

│ │ └── terraform-provider-
google_v3.63.0_x5.exe

├──.terraform.lock.hcl

└── providers.tf

7 directories, 4 files

By using the terraform init command, we managed to download Google provider.
Now, we are ready to start provisioning or manipulating Google Cloud services
using Terraform.

Provisioning GCP services using Terraform
We have already authenticated Terraform to our GCP account, so let's take an example
of deploying the Google App Engine service within Google Cloud using Terraform.
Following our best practices, we have kept the following code in the respective files:

inmishrar@terraform-vm:~/code# tree

.

├── main.tf

├── providers.tf

├── terraform.tfvars

└── variables.tf

0 directories, 4 files

In the main.tf file, we have defined the following code:

data "google_project" "terraform_project" {

 project_id = var.project_id

}

resource "google_app_engine_application" "terraform_app" {

 project = data.google_project.terraform_project.project_
id

 location_id = var.location_id

}

Integrating with GCP 153

In the variables.tf file, the following code is present:

variable "location_id"{

 type = string

 description = "provide location name"

}

variable "project_id"{

 type = string

 description = "provide Google Project ID"

}

In the terraform.tfvars file, we have kept the following code block:

project_id = "terraform-project-56745"

location_id = "asia-south1"

Now, when we run terraform plan and apply the command from the CLI, it
will provision the App Engine service in the Google Cloud, which you can see in the
following screenshot:

Figure 5.14 – GCP App Engine

154 Terraform CLI

We have finally managed to provision the GCP App Engine application service using
the Terraform code. So, in future, if you are planning to make changes or add new
infrastructure to Google Cloud, you can use Terraform infrastructure as code (IaC).
In our next section, we are going to learn about the different Terraform CLI commands
and their use.

Understanding the Terraform CLI commands
The Terraform CLI supports many commands, and in this section we will try to cover
some of the main commands and their respective outputs. We will discuss the Terraform
workflows in our upcoming chapter, Chapter 6, Terraform Workflows, but we will now
discuss some of the basic the Terraform CLI commands, as follows:

•	 terraform console: You can run this command on the CLI to open a
Terraform console, where you can test or get the output of the code of certain
Terraform functions. The following example shows how you can use this command:

$ terraform console

> max(5,10,-5)

10

>

•	 terraform fmt: You can run this command to rewrite configuration files to
a canonical format and style. This command performs some sort of adjustment
so that your configuration code is in a readable format, and even helps you make
some changes to follow Terraform's language-style conventions. To know more
about Terraform language-style conventions, you can read https://www.
terraform.io/docs/configuration/style.html. The following
subcommand flags are supported by the terraform fmt command:

$ terraform fmt -h

Usage: terraform fmt [options] [DIR]

 Rewrites all Terraform configuration files to
a canonical format. Both configuration files (.tf) and
variables files (.tfvars) are updated. JSON files (.tf.
json or .tfvars.json) are not modified.

 If DIR is not specified then the current working
directory will be used.

 If DIR is "-" then content will be read from
STDIN. The given content must be in the Terraform
language native syntax; JSON is not supported.

https://www.terraform.io/docs/configuration/style.html
https://www.terraform.io/docs/configuration/style.html

Understanding the Terraform CLI commands 155

Options:

 -list=false Don't list files whose formatting
differs

 (always disabled if using STDIN)

 -write=false Don't write to source files

 (always disabled if using STDIN or
-check)

 -diff Display diffs of formatting changes

 -check Check if the input is formatted. Exit
status will be 0 if all input is properly formatted and
non-zero otherwise.

 -no-color If specified, output won't contain any
color.

 -recursive Also process files in subdirectories. By
default, only the given directory (or current directory)
is processed.

•	 terraform graph: This command helps you to generate a visual representation
of the Terraform configuration or execution plan. You can expect output in a DOT
format. You can use Graphviz (http://www.graphviz.org/) to generate
charts. This helps you to have a visual dependency graph of Terraform resources as
per the defined configuration file in the DIR (or in the current directory). You can
have the following subcommand flags with terraform graph:

$ terraform graph -h

Usage: terraform graph [options] [DIR]

 Outputs the visual execution graph of Terraform
resources according to configuration files in DIR (or the
current directory if omitted).

 The graph is outputted in DOT format. The typical
program that can read this format is GraphViz, but many
web services are also available to read this format.

 The -type flag can be used to control the type of graph
shown. Terraform creates different graphs for different
operations. See the options below for the list of types
supported. The default type is "plan" if a configuration
is given, and "apply" if a plan file is passed as an
argument.

Options:

http://www.graphviz.org/)

156 Terraform CLI

 -draw-cycles Highlight any cycles in the graph with
colored edges. This helps when diagnosing cycle errors.

 -type=plan Type of graph to the output. Can be:
plan, plan-destroy, apply, validate, input, refresh.

As you now know that the output of a Terraform graph is in DOT format, you can
easily convert that into an image by using the dot command provided by Graphviz,
as illustrated in the following diagram:

Figure 5.15 – Terraform graph
In Figure 5.15, you can see all the resources specific to the AWS cloud, and from
this graph itself you can understand how Terraform is able to understand implicit
dependency automatically. We will be discussing depends_on for defining explicit
dependency in our upcoming chapter, Chapter 7, Terraform Modules.

•	 terraform output: This command yields the following output:

 10.1.1.4

To understand how the preceding command works, you can read more details at
https://www.terraform.io/docs/commands/output.html.

https://www.terraform.io/docs/commands/output.html

Understanding the Terraform CLI commands 157

•	 terraform refresh: This command helps you to update the Terraform state
file, comparing it with the real-world infrastructure. It doesn't make changes to the
infrastructure directly, but your infrastructure may expect changes when you run
the terraform plan and apply commands after terraform refresh. This
command also helps to figure out whether there is any kind of drift from the last-
known state and updates the state file accordingly. For a better understanding of this
command, refer to the following link: https://www.terraform.io/docs/
commands/refresh.html.

•	 terraform show: This command can help you see outputs on the CLI itself from
the state file, and these will be in a human-readable format. If you are looking for
specific information from your state file, you can use this command.

•	 terraform taint: Using this command, you can mark specific resources to get
destroyed and recreated. Many times, if you encounter some sort of deployment
error, then this command can be very useful. This command doesn't modify the
infrastructure but it does perform changes to the state file, which means that if you
are going to run terraform apply, it will destroy the specific resource that has
been marked as tainted and recreate it. Let's see how we can taint a specific resource,
as follows:

$ terraform taint aws_security_group.rdp_allow

The aws_security_group.rdp_allow resource has been marked as tainted,
so this specific resource will get destroyed and recreated when we perform
terraform apply.

You can read more about the terraform taint command at https://www.
terraform.io/docs/commands/taint.html.

•	 terraform workspace: Terraform supports a command named workspace
that helps you to create multiple landscapes. Suppose you want to use the same
Terraform configuration in multiple landscapes. In that case, you can use this
workspace command. For example, if you have three environments such as dev,
test, and production, then by using this workspace command, you can create
these virtual environments for Terraform's reference, and Terraform will maintain
the state file and plugins for the respective environment accordingly. For more
information about terraform workspace, you can read https://www.
terraform.io/docs/state/workspaces.html and https://www.
terraform.io/docs/commands/workspace/index.html.

https://www.terraform.io/docs/commands/taint.html
https://www.terraform.io/docs/commands/taint.html

158 Terraform CLI

•	 terraform force-unlock: Suppose your state file got locked by some other
user in the remote backend provided. In that case, you could use terraform
force-unlock LOCK_ID[DIR]. This command would help you to unlock
your state file. This is only possible when you have stored your state file in a
remote backend; if you have kept the state file in your local machine, then it can't
be unlocked by any other process. One more thing: this command doesn't make
any changes to your environment. Let's try to understand this with the following
example, where the state file got locked by one of the users:

ID: f20d9093-5116-53c5-4037-ab2e8cb8f77d

Path: terraform

Operation: OperationTypeApply

Who: inmishrar1@tv-az29-815

Version: 1.0.0

Created: 2021-07-01 08:28:44.546798004 +0000 UTC

Info:

When a state file gets locked, if you try to run any Terraform command, it will not
let you execute that command until you unlock the state file. We need to run the
following commands to unlock a state file:

terraform force-unlock f20d9093-5116-53c5-4037-
ab2e8cb8f77d

•	 terraform validate: If you have some sort of syntax error in your
configuration file, then, by using the terraform validate command, you
can get detailed information about the error. This command should not be run
individually because when you run the terraform plan or apply commands,
Terraform automatically runs the terraform validate command in the
backend to check any sort of syntax error within your configuration code block.

•	 terraform import: If you want to import some already existing resources or
services into your Terraform state file, you can do this by referring to the resource
ID of that specific resource. Let's try to understand how you can import a resource
in the state file, with the following example:

terraform import aws_instance.abc i-acdf10234

In the previously defined command, we are trying to import an already existing AWS
instance named abc into the state file, which has a resource ID of i-acdf10234.

We have now learned about different commands supported by the Terraform CLI. For
more details about all the commands supported by the Terraform CLI, you can visit
https://www.terraform.io/docs/commands/index.html.

https://www.terraform.io/docs/commands/index.html

Summary 159

Summary
From this complete chapter, you have received an understanding of the Terraform CLI.
We also discussed how you can authenticate Terraform to Azure, AWS, and GCP. Moving
ahead, we also explained different Terraform commands and subcommands supported
by the Terraform CLI. After reading this entire chapter, you should be able to use the
Terraform CLI for major cloud providers such as AWS, Azure, and GCP, helping you to
provision and update resources in these cloud providers.

In our next chapter, we will be discussing Terraform workflows, where we will focus on
the main commands of the Terraform CLI—that is, init, plan, apply, and destroy.

Questions
The answers to the following questions can be found in the Assessments section at the end
of this book:

1.	 Which of the following subcommands would you use in order to unlock the
Terraform state file?

A) Unlock

B) force-unlock

C) Removing the lock on a state file is not possible

D) state-unlock

2.	 Which Terraform command will force a marked resource to be destroyed and
recreated on the next apply?

A) terraform destroy

B) terraform refresh

C) terraform taint

D) terraform fmt

3.	 What does the terraform fmt command do?

A) Deletes the existing configuration file

B) Rewrites Terraform configuration files to a canonical format and style

C) Updates the font of the configuration file to the official font supported by
HashiCorp

D) Formats the state file in order to ensure the latest state of resources can be obtained

160 Terraform CLI

4.	 Person A has created one Azure virtual network in the Azure cloud using an ARM
template. Now, you want to update this virtual network using a Terraform. Which
command would you run to bring the Azure virtual network configurations into
the Terraform state file?

A) terraform import

B) terraform fmt

C) terraform output

D) terraform show

5.	 Which Terraform command checks and reports errors within modules,
attribute names, and value types to make sure they are syntactically valid
and internally consistent?

A) terraform validate

B) terraform show

C) terraform format

D) terraform fmt

Further reading
You can check out the following links for more information on the topics covered in
this chapter:

•	 The Terraform CLI: https://www.terraform.io/docs/commands/
index.html

•	 Terraform for Azure: https://learn.hashicorp.com/collections/
terraform/azure-get-started

•	 Terraform for AWS: https://learn.hashicorp.com/collections/
terraform/aws-get-started

•	 Terraform for GCP: https://learn.hashicorp.com/collections/
terraform/gcp-get-started

https://www.terraform.io/docs/commands/index.html
https://www.terraform.io/docs/commands/index.html
https://learn.hashicorp.com/collections/terraform/azure-get-started
https://learn.hashicorp.com/collections/terraform/azure-get-started
https://learn.hashicorp.com/collections/terraform/aws-get-started
https://learn.hashicorp.com/collections/terraform/aws-get-started
https://learn.hashicorp.com/collections/terraform/gcp-get-started
https://learn.hashicorp.com/collections/terraform/gcp-get-started

6
Terraform
Workflows

In the previous chapter, we discussed the Terraform command-line interface (CLI) and
saw some outputs from Terraform commands.

In this chapter, we will take a look at a core workflow of the Terraform tool, which
involves creating a Terraform configuration file (write), previewing the changes (plan),
then finally committing those changes to the target environment (apply). Once we are
done with the creation of the resources, we might be required to get rid of infrastructures
(destroy). In a nutshell, we are planning to cover Terraform core workflows, which
mainly consist of terraform init, terraform plan, terraform apply, and
terraform destroy operations, and the respective subcommands and their outputs.
Understanding Terraform workflows will help you to provision and update infrastructure
using Terraform infrastructure as code (IaC). We will also be explaining the integration
of Terraform workflows with major cloud providers such as Azure. Moving further, we are
going to discuss Terraform workflows using Azure DevOps service.

The following topics will be covered in this chapter:

•	 Understanding the Terraform life cycle

•	 Understanding Terraform workflows using Azure DevOps

162 Terraform Workflows

Technical requirements
To follow along with this chapter, you will need to have an understanding of the Terraform
CLI and of various methods of authenticating Terraform to major cloud providers such
as Azure, Google Cloud Platform (GCP), and Amazon Web Services (AWS). You
should also know how to install Terraform on various machines and need to have a
basic understanding of writing a Terraform configuration file. Some knowledge of Azure
DevOps and Git would be an added advantage. You can find all the code used in this
chapter at the following GitHub link: https://github.com/PacktPublishing/
HashiCorp-Infrastructure-Automation-Certification-Guide/tree/
master/chapter6.

Check out the following link to see the Code in Action video:

https://bit.ly/3qVPyf8

Understanding the Terraform life cycle
As you have become familiar with how to use the Terraform CLI and run the respective
Terraform commands, you must have also been wondering how Terraform creates or
updates an infrastructure. Terraform follows a sequence of commands that are defined
under the Terraform life cycle. Let's try to understand how the Terraform life cycle works
with terraform init, terraform plan, terraform apply, and terraform
destroy. A Terraform workflow starts with writing the Terraform code file,
downloading all the providers and plugins, displaying in preview which actions Terraform
is going to perform, and then—finally—whether you wish to deploy the resources that
have been defined in the Terraform configuration code file. After creating or updating this
infrastructure, let's suppose you wish to have these resources destroyed—how would you
do this? All this can be clarified by following a Terraform workflow, which is depicted in
the following diagram:

Figure 6.1 – Terraform life cycle workflow

https://github.com/PacktPublishing/HashiCorp-Infrastructure-Automation-Certification-Guide/tree/master/chapter6
https://github.com/PacktPublishing/HashiCorp-Infrastructure-Automation-Certification-Guide/tree/master/chapter6
https://github.com/PacktPublishing/HashiCorp-Infrastructure-Automation-Certification-Guide/tree/master/chapter6

Understanding the Terraform life cycle 163

Terraform init
terraform init is the first and foremost Terraform command that you generally run
to initialize Terraform in the working directory. There could be several reasons to run the
terraform init command, such as the following:

•	 When you have added a new module, provider, or provisioner

•	 When you have updated the required version of a module, provider, or provisioner

•	 When you want to change or migrate the configured backend

Terraform modules (which we will be discussing in the upcoming chapter, Chapter
7, Terraform Modules) and these downloaded files get stored in the current working
directory that you have provided. The terraform init command supports many
subcommands or arguments. You can get all the supported arguments by typing
terraform init -h, and here we share a few of them:

•	 -backend=true: Configures the backend for this configuration.

•	 -backend-config=path: This can either be a path to a Hashicorp Configuration
File (HCL) file with key/value assignments (same format as terraform.tfvars)
or a key=value format. This is merged with what is in the configuration file, which
can be specified multiple times. The backend type must be in the configuration itself.

•	 -from-module=SOURCE: Copies the contents of a given module into the target
directory before initialization.

•	 -lock=true: Locks the state file when locking is supported.

•	 -no-color: If specified, the output won't contain any color.

•	 -plugin-dir: Directory containing plugin binaries. This overrides all default
search paths for plugins and prevents the automatic installation of plugins. This
flag can be used multiple times.

•	 -reconfigure: Reconfigures the backend, ignoring any saved configuration.

•	 -upgrade=false: If installing modules (-get) or plugins (-get-plugins),
ignores previously downloaded objects and installs the latest version allowed
within configured constraints.

•	 -verify-plugins=true: Verifies the authenticity and integrity of automatically
downloaded plugins.

164 Terraform Workflows

Let's try to understand what exactly happens when we run the terraform init
command with some simple example code. In this example, we are taking an Azure
Resource Manager (AzureRM) provider. In the following code snippet, we have
placed it in the providers.tf file:

terraform {

 required_version = ">= 1.0"

 required_providers {

 azurerm = {

 source = "hashicorp/azurerm"

 version = "2.55.0"

 }

 }

}

provider "azurerm" {

 features {}

}

In terms of the actions performed when we run terraform init, if we look closely at
the next code snippet, we can easily understand what terraform init has done. We
can see that it has performed initialization of the backend to store the state file as well as
downloading provider plugins from HashiCorp. Terraform will not be able to download
third-party plugins. These can instead be manually installed in the user plugins directory,
located at

~/.terraform.d/plugins on Linux/Mac operating systems and %APPDATA%\
terraform.d\plugins on Windows. For detailed information about third-party
plugins, you can refer to https://www.hashicorp.com/blog/automatic-
installation-of-third-party-providers-with-terraform-0-13.
You can see the code here:

$ terraform init

Initializing the backend...

Initializing provider plugins...

- Finding hashicorp/azurerm versions matching "2.55.0"...

- Installing hashicorp/azurerm v2.55.0...

- Installed hashicorp/azurerm v2.55.0 (signed by HashiCorp)

Terraform has created a lock file .terraform.lock.hcl to record
the provider selections it made above. Include this file in
your version control repository so that Terraform can guarantee

Understanding the Terraform life cycle 165

to make the same selections by default when you run "terraform
init" in the future.

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running
"terraform plan" to see any changes that are required for your
infrastructure. All Terraform commands should now work. If
you ever set or change modules or backend configuration for
Terraform, rerun this command to reinitialize your working
directory. If you forget, other commands will detect it and
remind you to do so if necessary.

In the following code snippet, you can see that after running terraform init, this has
created a .terraform folder in the current working directory, which contains azurerm
provider plugins:

PS C:\terraform> tree

.

├── .terraform

│ ├── environment

│ └── providers

│ ├── registry.terraform.io

│ │ └── hashicorp

│ │ └── azurerm

│ │ └── 2.55.0

│ │ └── windows_amd64

│ │ └── terraform-provider-azurerm_
v2.55.0_x5.exe

├── .terraform.lock.hcl

└── providers.tf

Let's try to understand how we can perform Terraform initialization in the current local
directory by providing a path of the Terraform files. In order to understand this, we have
moved the providers.tf file to the provider folder and have then run terraform
init -backend-config='C:\provider' from the current directory. This has
downloaded all the provider plugins to the present working directory. The code is
illustrated in the following snippet:

$ terraform init -backend-config='C:\provider'

Initializing the backend...

Initializing provider plugins...

166 Terraform Workflows

- Finding hashicorp/azurerm versions matching "2.55.0"...

- Installing hashicorp/azurerm v2.55.0...

- Installed hashicorp/azurerm v2.55.0 (signed by HashiCorp)

Warning: Missing backend configuration

-backend-config was used without a "backend" block in the
configuration.

If you intended to override the default local backend
configuration, no action is required, but you may add an
explicit backend block to your configuration to clear this
warning:

terraform {

 backend "local" {}

}

However, if you intended to override a defined backend, please
verify that the backend configuration is present and valid.

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running
"terraform plan" to see any changes that are required for your
infrastructure. All Terraform commands should now work.

If you ever set or change modules or backend configuration
for Terraform, rerun this command to reinitialize your working
directory. If you forget, other commands will detect it and
remind you to do so if necessary.

As you can see, we are getting some sort of warning related to the backend configuration
while performing terraform init. If we want to set the remote backend—for example,
Azure Blob storage—then we can have the following code in the providers.tf file:

terraform {

 required_version = ">= 1.0"

 required_providers {

 azurerm = {

 source = "hashicorp/azurerm"

 version = "2.55.0"

 }

 }

 backend "azurerm" {

 resource_group_name = "terraform-rg"

Understanding the Terraform life cycle 167

 storage_account_name = "terraformstatestg"

 container_name = "tfstate-container"

 key = "tfstate"

 }

}

provider "azurerm" {

 features {}

}

This earlier defined code would help us in keeping the Terraform state file in the remote
backend. If we don't define the remote backend, then Terraform would use the local
backend as a default and store the state file in it.

We are not able to discuss all the subcommands of terraform init, which is why
we have already shared a list of the subcommands/arguments and their respective
descriptions at the beginning of this section so that you can get an idea of what exactly
it can do for you.

Important note
The terraform init command is always safe to run multiple times.
Though subsequent runs may give errors, this command will never delete your
configuration or state.

Terraform validate
If you have some Terraform syntax errors in the configuration code, then you must
be thinking: Does Terraform provide any way to get these errors checked? The answer to
this is yes—Terraform has an built-in command, terraform validate, which will
let you know if there are any syntax errors in the Terraform configuration code in the
specified directory.

You can run the terraform validate command explicitly, otherwise validation of
the configuration file will be done implicitly during the execution of the terraform
plan or terraform apply commands, so it is not mandatory to run this command.
Terraform is knowledgeable enough to run validation during other Terraform workflows
such as terraform plan or terraform apply workflows.

168 Terraform Workflows

The only thing needed before Terraform performs validation of the configuration code is
the terraform init command, which downloads all plugins and providers by default.
Here is a quick example, to give a walkthrough of some possible syntax validation errors:

terraform {

 required_version = ">= 1.0"

 required_providers {

 azurerm = {

 source = "hashicorp/azurerm"

 version = "2.55.0"

 }

 }

}

provider "azurerm" {

 features {}

}

resource "azurerm_resource_group" "example" {

 name = "Terraform-lab-RG"

 location = "eastus"

 terraform_location = "eastus"

}

If we run terraform validate against this configuration, we will get the following
error:

PS C:\provider> terraform validate

Error: Unsupported argument

 on resourcegroup.tf line 16, in resource "azurerm_resource_
group" "example":

 16: terraform_location = "eastus"

An argument named "terraform_location" is not expected here.

This is showing that terraform_location is not a valid argument for azurerm_
resource_group.

Understanding the Terraform life cycle 169

Let's see what will happen if we remove the terraform_location argument from the
configuration code and then execute terraform validate. You can see the result in
the following code snippet:

PS C:\provider> terraform validate

Success! The configuration is valid.

So, we can conclude that terraform validate can help us to perform a syntax check
of the Terraform configuration code in the directory we are referencing.

Important note
The terraform validate command does not check Terraform
configuration file formatting (for example, tabs versus spaces, newlines,
comments, and so on). For formatting, you can use the terraform fmt
command.

Terraform plan
After executing terraform init, you are supposed to run the terraform plan
command, which would generate an execution plan. When the terraform plan
command is being run, Terraform performs a refresh in the backend (unless you have
explicitly disabled it), and Terraform then determines which actions it needs to perform
to meet the desired state you have defined in the configuration files. If there is no change
to the configuration files, then terraform plan will let you know that it is not
performing any change to the infrastructure. Some of the subcommands/arguments that
we can run with terraform plan are listed here—a complete list of the subcommands/
arguments supported by the terraform plan phase can be seen by running the
terraform plan -h command:

•	 -destroy: If set, a plan will be generated to destroy all resources managed by the
given configuration and state.

•	 -input=true: Asks for input for variables if not directly set.

•	 -out=path: Writes a plan file to the given path. This can be used as input to the
apply command.

•	 -state=statefile: Provides a path to a Terraform state file to use to look up
Terraform-managed resources. By default, it will use the terraform.tfstate
state file if it exists.

•	 -target=resource: Provides a resource to target. The operation will be limited
to this resource and its dependencies. This flag can be used multiple times.

170 Terraform Workflows

•	 -var 'foo=bar': Sets a variable in the Terraform configuration. This flag can be
set multiple times.

•	 -var-file=foo: Sets variables in the Terraform configuration from a file. If a
terraform.tfvars files or any .auto.tfvars files are present, they will be
automatically loaded.

In order to understand the terraform plan command, here is a line of code that's
been defined in the resourcegroup.tf file:

resource "azurerm_resource_group" "example" {

 name = "Terraform-lab-RG"

 location = "east us"

}

When we run the terraform plan command, we can expect the following output:

PS C:\terraform> terraform plan

Acquiring state lock. This may take a few moments...

Refreshing Terraform state in-memory prior to plan...

The refreshed state will be used to calculate this plan, but
will not be persisted to local or remote state storage.

--

An execution plan has been generated and is shown below.

Resource actions are indicated with the following symbols:

 + create

Terraform will perform the following actions:

 # azurerm_resource_group.example will be created

 + resource "azurerm_resource_group" "example" {

 + id = (known after apply)

 + location = "eastus"

 + name = "Terraform-lab-RG"

 }

Plan: 1 to add, 0 to change, 0 to destroy.

--

Understanding the Terraform life cycle 171

Note: You didn't specify an "-out" parameter to save this plan,
so Terraform can't guarantee that exactly these actions will be
performed if "terraform apply" is subsequently run.

Releasing state lock. This may take a few moments...

From the previously defined output from the terraform plan command, we got
to know all the resources Terraform is going to create or update. In our example, it is
showing that it is going to create a resource group with the name Terraform-lab-RG.

Let's try to understand how to store the terraform plan output into any file. In order
to store the terraform plan output, we need to run the terraform plan -out
<filename> command, as follows:

PS C:\provider> terraform plan -out plan.txt

Acquiring state lock. This may take a few moments...

Refreshing Terraform state in-memory prior to plan...

The refreshed state will be used to calculate this plan, but
will not be persisted to local or remote state storage.

--

An execution plan has been generated and is shown below.

Resource actions are indicated with the following symbols:

 + create

Terraform will perform the following actions:

 # azurerm_resource_group.example will be created

 + resource "azurerm_resource_group" "example" {

 + id = (known after apply)

 + location = "eastus"

 + name = "Terraform-lab-RG"

 }

Plan: 1 to add, 0 to change, 0 to destroy.

--

This plan was saved to: plan.txt

To perform exactly these actions, run the following command to
apply:

 terraform apply "plan.txt"

Releasing state lock. This may take a few moments...

172 Terraform Workflows

The terraform plan -out plan.txt command has created a plan.txt file in
the local present working directory and will have a binary file of the terraform plan
output, which you can see here in the expanded directory:

PS C:\provider> ls

Directory: C:\provider

Mode LastWriteTime Length Name

---- ------------- ------ ----

d----- 09-12-2020 03:53 .terraform

-a---- 09-12-2020 16:41 2040 plan.txt

-a---- 09-12-2020 03:53 316 providers.tf

-a---- 09-12-2020 16:21 105
resourcegroup.tf

If we want to use this stored binary file (that is, plan.txt) during the terraform
pply command, then we can run terraform apply "plan.txt".

Moving on further, let's try to understand whether we need to pass a variable value input
during the Terraform runtime or if we should pass a variable value from a local file.

In resourcegroup.tf, we have defined the following code:

resource "azurerm_resource_group" "example" {

 name = var.rgname

 location = "eastus"

}

As we have defined name = var.rgname, we then need to declare a rgname variable
that we have kept in a separate file, variables.tf, as follows:

variable "rgname"{

 description = "name of the resource group"

 type = string

}

After running terraform plan, we can see in the following code snippet that
Terraform is looking for the rgname value that we can provide during the runtime:

PS C:\provider> terraform plan

var.rgname

Understanding the Terraform life cycle 173

 name of the resource group

 Enter a value:

Once we provide the input, it will then proceed further and let us know which resource it
is going to provision, as illustrated in the following code snippet:

PS C:\provider> terraform plan

var.rgname

 name of the resource group

 Enter a value: terraform-lab-rg

Refreshing Terraform state in-memory prior to plan...

The refreshed state will be used to calculate this plan, but
will not be persisted to local or remote state storage.

--

An execution plan has been generated and is shown below.

Resource actions are indicated with the following symbols:

 + create

Terraform will perform the following actions:

 # azurerm_resource_group.example will be created

 + resource "azurerm_resource_group" "example" {

 + id = (known after apply)

 + location = "eastus"

 + name = "terraform-lab-rg"

 }

Plan: 1 to add, 0 to change, 0 to destroy.

--

Note: You didn't specify an "-out" parameter to save this plan,
so Terraform can't guarantee that exactly these actions will be
performed if "terraform apply" is subsequently run.

174 Terraform Workflows

If we want to pass the variable value as input from any file, then we can do so. First of all,
Terraform will look for any file ending with .tfvars or .auto.tfvars in the present
working directory. If such a file is found, then Terraform will read the variable value from
that file. Suppose you had defined a variable value in the testing.txt file—in that case,
during the execution of the terraform plan command, you need to provide that file's
pathname in this way: terraform plan -var-file="testing.txt". We have
defined a variable value in the testing.txt file —that is, rgname = "terraform-
lab-rg".

You will get the following code output when you run the aforementioned command:

PS C:\provider> terraform plan -var-file="testing.txt"

Refreshing Terraform state in-memory prior to plan...

The refreshed state will be used to calculate this plan, but
will not be persisted to local or remote state storage.

--

An execution plan has been generated and is shown below.

Resource actions are indicated with the following symbols:

 + create

Terraform will perform the following actions:

 # azurerm_resource_group.example will be created

 + resource "azurerm_resource_group" "example" {

 + id = (known after apply)

 + location = "eastus"

 + name = "terraform-lab-rg"

 }

Plan: 1 to add, 0 to change, 0 to destroy.

--

Note: You didn't specify an "-out" parameter to save this plan,
so Terraform can't guarantee that exactly these actions will be
performed if "terraform apply" is subsequently run.

From this, we understand how terraform plan can take variable values in multiple
ways. Terraform takes variable values in the following sequence:

Terraform CLI >> any filename/terraform.tfvars >> default value
provided in the variable declaration

Understanding the Terraform life cycle 175

We have already shared a list of the subcommands/arguments supported by the
terraform plan command (with their description) at the very beginning of this topic,
so we will not explain all the subcommands here. To read more about terraform plan,
you can go to https://www.terraform.io/docs/commands/plan.html.

Terraform apply
After executing terraform init and terraform plan, if you find things are
changing as per your expectations, you can then run terraform apply to help you
provision or update the infrastructure. This will update the Terraform state file and will
get it stored in the local or remote backend. Here is a list of the subcommand flags you can
run with terraform apply—you can see this list by running the terraform apply
-h command:

•	 -auto-approve: Skip interactive approval of the plan before applying.

•	 -backup=path: Provides a path to back up the existing state file before modifying
it. Defaults to the -state-out path with a .backup extension. Set to - to disable
backup.

•	 -compact-warnings: If Terraform produces any warnings that are not
accompanied by errors, show them in a more compact form that includes only
summary messages.

•	 -input=true: Asks for input for variables if not directly set.

•	 -lock=true: Locks the state file when locking is supported.

•	 -lock-timeout=0s: Duration to retry a state lock.

•	 -no-color: If specified, the output won't contain any color.

•	 -parallelism=n: Limits the number of concurrent operations. Defaults to 10.

•	 -refresh=true: Updates state prior to checking for differences.

•	 -state=path: Provides a path to read and save state (unless state-out is
specified). Defaults to terraform.tfstate.

•	 -state-out=path: Provides a path to write state to that is different than
-state. This can be used to preserve the old state.

•	 -target=resource: Provides a resource to target. The operation will be limited
to this resource and its dependencies. This flag can be used multiple times.

https://www.terraform.io/docs/commands/plan.html

176 Terraform Workflows

•	 -var 'foo=bar': Sets a variable in the Terraform configuration. This flag can be
set multiple times.

•	 -var-file=foo: Sets variables in the Terraform configuration from a file. If a
terraform.tfvars file or any .auto.tfvars files are present, these will be
automatically loaded.

In continuation of the example from the terraform plan phase (that is, testing.
txt is holding the Terraform variable value), let's try to understand how terraform
apply will work with that example, as follows:

PS C:\provider> terraform apply -var-file="testing.txt"

An execution plan has been generated and is shown below.

Resource actions are indicated with the following symbols:

 + create

Terraform will perform the following actions:

 # azurerm_resource_group.example will be created

 + resource "azurerm_resource_group" "example" {

 + id = (known after apply)

 + location = "eastus"

 + name = "terraform-lab-rg"

 }

Plan: 1 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?

 Terraform will perform the actions described above.

 Only 'yes' will be accepted to approve.

 Enter a value:

Now, we can enter a yes value here to continue, or we can provide any value other than
yes to cancel terraform apply and come out of the execution terminal. If we want
that during the terraform apply phase, it shouldn't ask for further confirmation, and
we can simply put terraform apply -auto-approve. In our case, we can define
terraform apply -var-file="testing.txt" -auto-approve, to result in
the following output:

azurerm_resource_group.example: Creating...

azurerm_resource_group.example: Creation complete after 3s
[id=/subscriptions/97c3799f-2753-40b7-a4bd-157ab464d8fe/
resourceGroups/terraform-lab-rg]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

Understanding the Terraform life cycle 177

As you can see, the preceding command didn't prompt for any confirmation and managed
to create a resource group in Azure.

We saw all the subcommand flags supported by terraform apply, along with their
descriptions, at the start of this section. You can read and check the output of each
command on the Terraform CLI. To read more about terraform apply, you can
visit https://www.terraform.io/docs/commands/apply.html.

Important note
You are not recommended to run the terraform apply -auto-
approve command because many times, it is essential to check exactly what
Terraform is going to perform, and we can cancel execution if we don't want to
proceed with the terraform apply phase.

Terraform destroy
You might be wondering why we need to have destroy in the life cycle of the
infrastructure. There could be cases where you want to get rid of the resources that
you have provisioned using terraform apply, and in such cases you can run the
terraform destroy command. This will delete all the resources or services you
defined in the configuration file and update the state file accordingly. The terraform
destroy command is a very powerful command, which is why when you execute it, it
will present you with an execution plan for all resources it is going to delete and later ask
for confirmation, because once the command gets executed it cannot be undone. Some of
the subcommand flags or arguments supported by the terraform destroy command
are listed here—you can get a full list of supported arguments by running terraform
destroy -h:

•	 -backup=path: Provides a path to back up the existing state file before modifying
it. Defaults to the -state-out path with a .backup extension. Set to - to
disable backup.

•	 -auto-approve: Skip interactive approval before destroying.

•	 -lock=true: Locks the state file when locking is supported.

•	 -refresh=true: Update state file prior to checking for differences. This has no
effect if a plan file is given to apply.

•	 -state=path: Provides a path to read and save state (unless state-out is
specified). Defaults to terraform.tfstate.

•	 -state-out=path: Provides a path to write state to that is different from
-state. This can be used to preserve the old state.

178 Terraform Workflows

•	 -target=resource: Provides a resource to target. The operation will be limited
to this resource and its dependencies. This flag can be used multiple times.

•	 -var 'foo=bar': Sets a variable in the Terraform configuration. This flag can be
set multiple times.

•	 -var-file=foo: Sets variables in the Terraform configuration from a file. If a
terraform.tfvars file or any .auto.tfvars files are present, they will be
automatically loaded.

You may have noticed that all the subcommands supported by terraform apply are
also supported by terraform destroy. terraform destroy performs exactly
the opposite operations of the terraform apply command. Likewise, we have seen
that the terraform apply command helps us to provision or update infrastructure;
similarly, the terraform destroy command helps us to delete all infrastructure that
is present in the Terraform state file.

We will not discuss terraform destroy subcommands/arguments here but you
can refer to the terraform apply subcommand use cases, and accordingly, if you
are planning to use terraform destroy, just replace terraform apply with
terraform destroy, followed by the appropriate subcommands.

You might be wondering how we can delete an infrastructure without using the
terraform destroy command, so let's see how we can perform this activity. In our
terraform apply section, we created a terraform-lab-rg resource group name. Let's
try to delete that resource group without using the terraform destroy command
directly, as follows:

PS C:\provider> terraform apply -var-file="testing.txt" -auto-
approve

azurerm_resource_group.example: Creating...

azurerm_resource_group.example: Creation complete after 3s
[id=/subscriptions/97c3799f-2753-40b7-a4bd-157ab464d8fe/
resourceGroups/terraform-lab-rg]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

Firstly, we will run terraform plan with a destroy flag and save the terraform
plan output in delete.txt (that is, the terraform plan -destroy -out
delete.txt command), and then follow this with terraform apply "delete.
txt", as illustrated in the following code snippet:

PS C:\provider> terraform plan -var-file="testing.txt" -destroy
-out delete.txt

Refreshing Terraform state in-memory prior to plan...

Understanding the Terraform life cycle 179

The refreshed state will be used to calculate this plan, but
will not be persisted to local or remote state storage.

azurerm_resource_group.example: Refreshing state... [id=/
subscriptions/97c3799f-2753-40b7-a4bd-157ab464d8fe/
resourceGroups/terraform-lab-rg]

--

An execution plan has been generated and is shown below.

Resource actions are indicated with the following symbols:

 - destroy

Terraform will perform the following actions:

 # azurerm_resource_group.example will be destroyed

 - resource "azurerm_resource_group" "example" {

 - id = "/subscriptions/97c3799f-2753-40b7-a4bd-
157ab464d8fe/resourceGroups/terraform-lab-rg" -> null

 - location = "eastus" -> null

 - name = "terraform-lab-rg" -> null

 - tags = {} -> null

 }

--

This plan was saved to: delete.txt

To perform exactly these actions, run the following command to
apply:

 terraform apply "delete.txt"

PS C:\provider> terraform apply "delete.txt"

azurerm_resource_group.example: Destroying... [id=/
subscriptions/97c3799f-2753-40b7-a4bd-157ab464d8fe/
resourceGroups/terraform-lab-rg]

azurerm_resource_group.example: Still destroying... [id=/
subscriptions/97c3799f-2753-40b7-a4bd-...4d8fe/resourceGroups/
terraform-lab-rg, 10s elapsed]

azurerm_resource_group.example: Destruction complete after 11s

Apply complete! Resources: 0 added, 0 changed, 1 destroyed.

180 Terraform Workflows

From this, we got to know how easily we can delete resources using terraform plan
and terraform apply sequentially without using terraform destroy. This is
just another way of deleting resources, and you can use this in place of the terraform
destroy command.

Important note
Run terraform destroy only when you want to perform a cleanup of
resources because it will permanently delete the resource or services you have
created during the terraform apply operation. It works in a totally
opposite way to terraform apply.

By default, Terraform performs terraform refresh before executing
terraform init, terraform plan, terraform apply, or
terraform destroy operations.

Whenever you perform any Terraform workflow commands such as
terraform init, terraform plan, terraform apply, or
terraform destroy, the Terraform state file goes into a locking state to
avoid anyone making changes to the state file simultaneously.

We discussed core Terraform workflows that consist of terraform init, terraform
plan, terraform apply, and terraform destroy. You now have a fair
understanding of how you can run a complete Terraform workflow from your local
machine using the Terraform CLI. Now, we will explain Terraform workflows using an
Azure DevOps Services.

Understanding Terraform workflows using
Azure DevOps
It is very important to understand how we can use Terraform with any continuous
integration/continuous deployment (CI/CD) tool because you know that these days,
DevOps is in demand, and almost 90% of companies are using a DevOps approach. So,
in order to understand Terraform with CI/CD tools, we will look at Azure DevOps tools.

Understanding Terraform workflows using Azure DevOps 181

Let's try to understand how we can keep our code in the Azure Repo and then use Azure
Pipelines to perform the deployment of the infrastructure. In our example, we are going
to use the Azure cloud platform, but you can use Azure DevOps with other major cloud
providers such as GCP, AWS, and so on.

Have a look at the following diagram, which provides an overview of using Terraform
with CI/CD workflows:

Figure 6.2 – Terraform with CI/CD workflows image

182 Terraform Workflows

The following steps show you how to use Azure DevOps Service for infrastructure
deployment in Azure using Terraform:

1.	 To perform this demonstration, we have created a project named Terraform-
lab-Project in Azure DevOps, as shown in the following screenshot:

Figure 6.3 – Azure DevOps project

Understanding Terraform workflows using Azure DevOps 183

2.	 The next step is to integrate our Azure DevOps project with Azure, and for that, you
need to go to the Project Settings | Service connections option, where you will be
able to see a list of possible connections that are supported by Azure DevOps. Here,
select Azure Resource Manager, as illustrated in the following screenshot:

Figure 6.4 – Azure DevOps service connection

184 Terraform Workflows

After selecting the Azure Resource Manager option, click on Next. We will then be
able to see multiple options to build integration from Azure DevOps to the Azure
portal, as shown in the following screenshot. We are going to use the first option
(which is the recommended one) to automatically create a service principal in Azure
and get proper access so that it can make changes to the Azure subscription:

Figure 6.5 – Azure service principal

Understanding Terraform workflows using Azure DevOps 185

3.	 On the next screen, we select our Azure subscription and resource group and
provide a name for the connection. We have already created a Terraform-
lab-rg resource group in Azure, as well as a Terraform-lab-connection
connection, as you can see in the following screenshot. You can keep the Grant
access permission to all pipelines option checked so that you can use this
connection with all pipelines in this project:

Figure 6.6 – Terraform-lab-connection

186 Terraform Workflows

We are now all set in terms of integration of Azure DevOps with Azure, so let's make
a clone of the Azure Repo and add all our Terraform configuration files to the Azure
Repo. To perform this task, you should have Git Bash or any integrated development
environment (IDE) such as Visual Studio Code (VS Code). For the initial Git setup,
you can follow https://git-scm.com/book/en/v2/Getting-Started-
First-Time-Git-Setup. We have taken an example of creating a web app in Azure
using Terraform through Azure DevOps. We have kept all the required Terraform and
build pipeline code in our GitHub code bundle for this chapter, which is available in the
Technical requirements section. We have pushed all Terraform configuration files and CI
pipeline code to the Azure Repo, as shown in the following screenshot:

Figure 6.7 – Terraform and CI code

Now, we need to create a CI pipeline where we will be using the Azure-pipeline.
yaml filename that's already been pushed to the Azure Repo. In the following screenshot,
you can see that this CI pipeline has been successfully run:

Understanding Terraform workflows using Azure DevOps 187

Figure 6.8 – Terraform-lab-Project-CI pipeline

What's next now that we are done with integration and our CI pipeline? Well, we now
need to create a release pipeline to provision our Azure web app. So, to create the release
pipeline, we need to define the Azure Artifact. Then we set the source type as Build,
as shown in figure 6.9:

Figure 6.9 – Terraform-IaC-Deployment-Pipeline

188 Terraform Workflows

In the release pipeline under the Terraform-IaC-Deployment-Pipeline stage
name, we have defined all the tasks, as shown in the following screenshot:

Figure 6.10 – Release pipeline tasks

Important note
You can provision an infrastructure using a CI/build pipeline—there is no
need for a release pipeline. We have included a release pipeline here to help you
understand the complete CI/CD workflow.

It's great to see that our pipeline ran successfully, as demonstrated in the following
screenshot:

Understanding Terraform workflows using Azure DevOps 189

Figure 6.11 – Azure CD pipeline status

In the following screenshot, we can see that Terraform has created an Azure web app
service and App Service plan for us in the Terraform-lab-rg resource group:

Figure 6.12 – Azure services

From this section, you should now understand how CI/CD tools (that is, Azure
DevOps tools) can be used with Terraform for infrastructure management (updating or
provisioning) in the Azure cloud. In the same way, you should be able to use this learning
for the deployment of resources in AWS and GCP.

190 Terraform Workflows

Summary
From this complete chapter, you will have developed an understanding of Terraform
workflows, including terraform init, terraform plan, terraform
validate, terraform apply, and terraform destroy workflows. You should
now be capable of provisioning or updating infrastructure in a major cloud provider such
as AWS, Azure, or GCP. We also discussed how we can use a CI/CD pipeline (that is, an
Azure DevOps pipeline) with Terraform to provision services in Azure.

In our next chapter, we are going to discuss how we can write a Terraform module for
Azure, AWS, and Azure, and how this can be published and consumed.

Questions
The answers to the following questions can be found in the Assessments section at the end
of this book:

1.	 Which of the following actions are performed during a terraform init
operation?

A. Initializes downloaded or installed providers

B. Downloads the declared provider

C. Provisions the declared resources

D. Initializes the backend config

2.	 What can the terraform plan command do?

A. Provision declared resources

B. Perform initialization of the backend

C. Create an execution plan and determine which changes need to be made to
achieve the desired state in the configuration file

D. Perform linting on the Terraform configuration file

3.	 You have defined the following configuration code block:

resource "azurerm_resource_group" "example" {

 name = var.rgname

 location = "eastus"

}

Questions 191

In which possible ways can Terraform take the rgname variable value?

A. By creating a terraform.tfvars file and placing it into
rgname="Terraform-lab-rg"

B. By running terraform apply -var 'rgname=Terraform-lab-rg'

C. By running terraform plan

D. By running terraform apply -var-file="example.txt"

4.	 You are getting an error like this while executing the terraform apply
command:

resource "azurerm_resource_group" "example" {

 name = "Terraform-lab-RG"

 location = "eastus"

 terraform_location = "eastus"

}

Error: Unsupported argument

 on resourcegroup.tf line 4, in resource "azurerm_
resource_group" "example":

 4: terraform_location = "eastus"

An argument named "terraform_location" is not expected
here.

Which command could you have run to check such an error in advance?

A. terraform init

B. terraform validate

C. terraform plan

D. terraform apply

5.	 Your team has created an AWS infrastructure using Terraform, and now they want
to get rid of that infrastructure. Which command could you run to do this?

A. terraform validate

B. terraform plan

C. terraform destroy

D. terraform init

192 Terraform Workflows

Further reading
You can check out the following links for more information about the topics that were
covered in this chapter:

•	 terraform init: https://www.terraform.io/docs/commands/
init.html

•	 terraform plan: https://www.terraform.io/docs/commands/
plan.html

•	 terraform apply: https://www.terraform.io/docs/commands/
apply.html

•	 terraform destroy: https://www.terraform.io/docs/commands/
destroy.html

•	 Terraform DevOps lab: https://azuredevopslabs.com/labs/
vstsextend/terraform/

https://www.terraform.io/docs/commands/init.html
https://www.terraform.io/docs/commands/init.html
https://azuredevopslabs.com/labs/vstsextend/terraform/
https://azuredevopslabs.com/labs/vstsextend/terraform/

7
Terraform Modules

In our previous chapter, we discussed the core workflow of the Terraform tool, which
consists of creating a Terraform configuration file (write), previewing the changes
(terraform plan), and then finally committing those changes to the target
environment (terraform apply). Once we are done with the creation of the resources,
we might be required to get rid of those infrastructures (terraform destroy). In
a nutshell, we discussed complete Terraform core workflows, which mainly consist of
terraform init, terraform plan, terraform apply, terraform destroy,
and the respective subcommands and their outputs.

In this chapter, we will discuss Terraform modules for Amazon Web Services (AWS),
Azure, and Google Cloud Platform (GCP) cloud providers. From this chapter, you will
learn how you can write modules and how you can publish and consume them. Learning
about Terraform modules is important as this will help you to deploy large enterprise-
scalable and repeatable infrastructure and will also reduce the total number of hours
required for provisioning infrastructure.

The following topics will be covered in this chapter:

•	 Understanding Terraform modules

•	 Writing Terraform modules for Azure

•	 Writing Terraform modules for AWS

•	 Writing Terraform modules for GCP

•	 Publishing Terraform modules

194 Terraform Modules

Technical requirements
To follow along with this chapter, you will need to have an understanding of the Terraform
command-line interface (CLI). You should know how to install Terraform on various
machines and need to have a basic understanding of writing a Terraform configuration
file. You can find all the code used in this chapter at the following GitHub link:
https://github.com/PacktPublishing/HashiCorp-Infrastructure-
Automation-Certification-Guide/tree/master/chapter7.

Check out the following link to see the Code in Action video:
https://bit.ly/36pJouo

Understanding Terraform modules
So far, we have written Terraform configuration code, but have you ever thought about
how effectively we can make it reusable? Just consider that you have many product teams
with whom you are working, and they wish to use Terraform configuration code for their
infrastructure deployment. Now, you may be wondering if it's possible to write code once
and share it with these teams so that they don't need to write the same code again and
again. This is where Terraform modules come in. Let's try to get an idea of what these are.

A Terraform module is basically a simple configuration file ending with .tf or tf.json,
mainly consisting of resources, inputs, and outputs. There is a main root module that
has the main configuration file you would be working with, which can consume multiple
other modules. We can define the hierarchical structure of modules like this: the root
module can ingest a child module, and that child module can invoke multiple other
child modules. We can reference or read submodules in this way:

module.<rootmodulename>.module.<childmodulename>

However, it is recommended to keep a module tree flat and have only one level of child
module. Let's try to understand about module composition, with an example of a virtual
private cloud (VPC) and a subnet of AWS. Here is the resource code block:

resource "aws_vpc" "vpc" {

 cidr_block = var.cidr_block

}

resource "aws_subnet" "subnet" {

 vpc_id = aws_vpc.vpc.id

 availability_zone = "us-east-1a"

 cidr_block = cidrsubnet(aws_vpc.vpc.cidr_block, 4, 1)

}

variable "cidr_block" {

https://github.com/PacktPublishing/HashiCorp-Infrastructure-Automation-Certification-Guide/tree/master/chapter7
https://github.com/PacktPublishing/HashiCorp-Infrastructure-Automation-Certification-Guide/tree/master/chapter7
https://bit.ly/36pJouo

Understanding Terraform modules 195

 default = "10.0.0.0/16"

 type = string

 description = "provide cidr block range"

}

When we try to write module code blocks, the configuration appears more hierarchical
than flat. Each of the modules would have its own set of resources and child modules
that may go deeper and create a complex tree of resource configurations.

Here is a code example, to explain how a module can be referenced in another module:
module "aws_network" {

 source = "./modules/network"

 cidr_block = "10.0.0.0/8"

}

module "aws_instance" {

 source = "./modules/instance"

 vpc_id = module.aws_network.vpc_id

 subnet_ids = module.aws_network.subnet_ids

}

In our preceding example, you can see how we referenced one module in another module.
It is always suggested to have a one-level module reference rather than referencing
complex modules and submodules.

In simple words, we can define a module as a container with multiple resources that
can be consumed together. We will discuss in more detail writing child modules and
later consuming them as and when needed by creating a Terraform stack in Chapter 9,
Understanding Terraform Stacks.

The syntax for defining Terraform modules, whereby we need to start with the module
and provide its local name, is shown here:

module "name" {}

Terraform modules support some key arguments such as source, version, and input
variable, and loops such as for_each and count. We can define a module code
block in this way:

module "terraform-module" {

 source = "terraform-aws-modules/vpc/aws"

 version = "2.55.0"

}

196 Terraform Modules

In the previously defined code block, we have defined a module with a local name
of terraform-module. We can give any name to a module—it's totally up to us,
because it's just a local name. You may be wondering what these source and version
arguments are doing inside the module code block. An explanation for this follows.

source
This argument is mandatory, referring to either the local path where the module
configuration file is located or the remote reference Uniform Resource Locator (URL) from
where it should be downloaded. The same source path can be defined in multiple modules
or in the same file and can be called multiple times, making modules more efficient for
reuse. The next code example will give you an idea of how a module can be defined.

For local referencing, you can define a module in the following way:

module "terraform-module" {

 source = "../terraform-module"

}

In the previously defined code block, we are referencing the local path where the module
configuration file is located. We have two options for referencing a local path: ./ and
../. We have used ../, which takes the terraform-module directory (that is, the
parent directory). In this case, when we run terraform init and terraform
plan, the module file doesn't get downloaded as it already exists on the local disk. It is
also recommended to use a local file path for closely related modules that are used for
the factoring of repeated code. This referencing won't work if you are working in a team
and they want to consume a different version of a module. In that case, a remote file
path would help because the published version of the code would be there in the remote
location, and anyone could easily reference it by providing the respective file URL.

The next aspect you need to know about is the different remote ways of referencing
supported by Terraform that can be defined in the source block of the Terraform module.
For in-depth learning about remote referencing, you can refer to https://www.
terraform.io/docs/language/modules/sources.html. Here are a few
ways in which you can reference remotely:

•	 Terraform Registry
•	 GitHub
•	 Bitbucket
•	 Generic Git; Mercurial repositories
•	 HyperText Transfer Protocol (HTTP) URLs

https://www.terraform.io/docs/language/modules/sources.html
https://www.terraform.io/docs/language/modules/sources.html

Understanding Terraform modules 197

•	 Simple Storage Service (S3) buckets

•	 Google Cloud Storage (GCS) buckets

Terraform Registry
Terraform Registry has a list of published modules written by community members.
This is a public registry, and it's very easy for others to start consuming it directly in their
code. Terraform Registry supports versioning of published modules. It can be referenced
using the specified syntax <NAMESPACE>/<NAME>/<PROVIDER>—for example,
hashicorp/consul/aws, as illustrated in the following code snippet:

module "Terraform-consul" {

 source = "hashicorp/consul/aws"

 version = "0.8.0"

}

For a detailed understanding about usage of the consul module for AWS, you can read
more at https://registry.terraform.io/modules/hashicorp/consul/
aws/latest.

If you want to use modules that are hosted in a private registry similar to Terraform
Cloud, then you can reference them in code by providing a source path with the syntax
<HOSTNAME>/<NAMESPACE>/<NAME>/<PROVIDER>. For a detailed understanding
of private registry referencing, you can read more at https://www.terraform.io/
docs/cloud/registry/using.html.

Have a look at the following code example:

module "aws-vpc" {

 source = "app.terraform.io/aws_vpc/vpc/aws"

 version = "1.0.0"

}

In this example, we have shown the Software-as-a-Service (SaaS) version of Terraform
Cloud, which has a private registry hostname of app.terraform.io. If you are
going to use any other private registry, you can replace this hostname with your private
registry hostname.

Important note
You might be required to configure credentials to access modules, depending
upon the private registry you are referencing for the module source path.

https://registry.terraform.io/modules/hashicorp/consul/aws/latest
https://registry.terraform.io/modules/hashicorp/consul/aws/latest
https://www.terraform.io/docs/cloud/registry/using.html
https://www.terraform.io/docs/cloud/registry/using.html

198 Terraform Modules

GitHub
Terraform will able to recognize github.com URLs and understand them as Git repository
sources. The following code snippet shows cloning over HTTP Secure (HTTPS):

module "terraform-module" {

 source = "github.com/hashicorp/terraform-module"

}

To clone over Secure Shell (SSH), you can use the following code:

module "terraform-module" {

 source = "git@github.com:hashicorp/terraform-module.git"

}

GitHub supports a ref argument that helps select a specific version of a module. You
would be required to pass credentials to get authenticated to a private repository.

Bitbucket
Similar to GitHub, Terraform manages to recognize bitbucket.org and is able to
understand it as Bitbucket repository sources. The following code snippet illustrates this:

module "terraform-module" {

 source = "bitbucket.org/hashicorp/terraform-module"

}

If you are using a public repository, then the previously defined code form will help
Terraform use the Bitbucket application programming interface (API) to learn whether
the defined source is using a Git source or a Mercurial source. When using a private
repository, you would be required to have proper authentication.

Generic Git repository
You can define any valid Git repository by prefixing the address with git::. Both SSH
and HTTPS can be defined in the following ways:

module "terraform-module" {

 source = "git::https://example.com/terraform-module.git"

}

module "terraform-module" {

http://github.com
http://bitbucket.org

Understanding Terraform modules 199

 source = "git::ssh://username@example.com/terraform-module.
git"

}

Terraform downloads modules from the Git repository by executing git clone. If you
are trying to access a private repository, you would then be required to provide an SSH
key or credentials so that it can be accessed.

If you are looking for a specific version of a module from the Git repository, then you can
pass that version value into the ref argument, as follows:

module "terraform-module" {

 source = "git::https://example.com/terraform-module.
git?ref=v1.2.0"

}

Generic Mercurial repository
Terraform will be able to understand any generic Mercurial URL through an hg:: prefix,
as illustrated in the following code snippet:

module "terraform-module" {

 source = "hg::http://example.com/terraform-module.hg"

}

Terraform is able to install modules from Mercurial repositories by running hg clone,
but if you are accessing a non-public repository then an SSH key or credentials need to
be provided. Terraform helps you to download a specific version of the module from
Mercurial repositories by supporting the ref argument, as illustrated in the following
code snippet:

module "terraform-module" {

 source = "hg::http://example.com/terraform-module.
hg?ref=v1.2.0"

}

HTTP URLs
Terraform has the capability to perform a GET operation if you are providing an HTTP or
HTTPS URL. It manages to install modules over HTTP/HTTPS easily, provided there is
no authentication required. If authentication is required, then you would be required to
provide credential details in the .netrc file of the home directory.

200 Terraform Modules

Terraform manages to read the following archival file extensions:

•	 zip

•	 tar.bz2 and tbz2

•	 tar.gz and tgz

•	 tar.xz and txz

Here is an example that shows how Terraform can access archival files using HTTPS:

module "terraform-module" {

 source = "https://example.com/terraform-module.zip"

}

Let's suppose you are not sure about the archived file extension and you want Terraform
to be able to read it. In that case, you can define an archive argument to force Terraform
to interpret it, as follows:

module "terraform-module" {

 source = "https://example.com/terraform-module?archive=zip"

}

S3 bucket
You can publish and store a module in an AWS S3 bucket. If you want to reference a S3
bucket in a Terraform module, just place a S3:: prefix followed by the S3 bucket object
URL, as follows:

module "terraform-module" {

 source = "s3::https://s3-eu-west-1.amazonaws.com/terraform-
modules/tfmodules.zip"

}

Terraform can access S3 buckets using the S3 API, provided authentication to AWS
has been handled. The Terraform module installer will look for AWS credentials in the
following locations:

•	 The defined value of AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY in
the environment variables

•	 Credentials stored in the .aws/credentials file in your home directory

Understanding Terraform modules 201

GCS bucket
As with a S3 bucket in AWS, you can archive your module configuration in a GCS bucket.
If you wish to reference it in a module code block, then just place a gcs:: prefix followed
by the GCS bucket object URL, as illustrated in the following code snippet:

module "terraform-module" {

 source = "gcs::https://www.googleapis.com/storage/v1/modules/
terraform-module.zip"

}

The module installer uses the Google Cloud software development kit (SDK) to get
authenticated with GCS. You can provide the file path of the Google service account
key file so that it can get authenticated.

We have discussed different available sources for Terraform modules. For more information,
you can go to https://www.terraform.io/docs/modules/sources.html.

version
This argument is optional—if you are referencing the local path in the source, then you
won't able to define a version. Providing a version value is very important if you want to
download a specific version of a module when you run terraform init, and it will
also protect you from any unwanted outages due to a change in the configuration code.
You need to define version arguments in a module code block in this way:

module "terraform-module" {

 source = "terraform-aws-modules/vpc/aws"

 version = "2.5.0"

}

In the preceding code block, we have defined the version value as "2.5.0" so that
whenever we are running terraform init, it will download that specific version
of the module. You are probably wondering what will happen if you don't provide this
version in a module code block. If you don't define the version in a module code block,
then Terraform will always install the latest module version. So, in order to protect
infrastructure from any breakage, it's recommended to provide version constraints in a
module. You can provide a version value with the simple = operator, but there are many
other version constraint operators supported by Terraform, such as the following:

•	 >= 2.5.0: version 2.5.0 or newer

•	 <= 2.5.0: version 2.5.0 or older

https://www.terraform.io/docs/modules/sources.html

202 Terraform Modules

•	 ~>2.5.0: any version in the 2.5.x family; version 2.6.x would not work

•	 >= 2.0.0, <= 2.5.0: any version between 2.0.0 and 2.5.0 inclusive

If you are installing a module from a module registry such as Terraform Registry or
Terraform Cloud's private module registry, then you can provide version constraints.
Other registries such as GitHub, Bitbucket, and so on provide their own way of defining
version details in the source URL itself, which we already discussed in our source section.

The Terraform modules support some meta-arguments, along with source and
version. These are outlined as follows:

•	 count—You can define this argument within a module code block if you willing to
create multiple instances from a single module block. For a greater understanding of
the count expression, you can refer to the Understanding Terraform loops section
of Chapter 4, Deep Dive into Terraform, where we already discussed how you can
use count for a resource code block. The same approach is followed in a module
block as well, so we won't discuss it again here. For further reading, you can go to
the count expression page of the Terraform documentation, at https://www.
terraform.io/docs/configuration/meta-arguments/count.html.

•	 for_each—As with the count expression, the for_each expression is also
used for creating multiple instances of a module from a single module block. We
already discussed this in Chapter 4, Deep Dive into Terraform, where we discussed
for_each loops respective to a resource code block, and you can apply the same
approach here as well; therefore, we won't discuss this again here. If you want to read
more about the for_each expression, you can visit https://www.terraform.
io/docs/configuration/meta-arguments/for_each.html.

•	 providers—This is an optional meta-argument that you can define within a
module code block. You may be wondering why we need to define a providers
argument inside a module code block. Basically, you need to define this when you
want to have multiple configurations in a module of the same provider. You can
then call them by placing alias for the provider in the following way:

terraform {

 required_version = ">= 1.0"

 required_providers {

 aws = {

 source = "hashicorp/aws"

 version = "~> 3.0"

 }

https://www.terraform.io/docs/configuration/meta-arguments/count.html
https://www.terraform.io/docs/configuration/meta-arguments/count.html
https://www.terraform.io/docs/configuration/meta-arguments/for_each.html
https://www.terraform.io/docs/configuration/meta-arguments/for_each.html

Understanding Terraform modules 203

 }

}

provider "aws" {

 region = "us-east-1"

}

An alternate configuration is also defined for a
different

region, using the alias "terraform_aws_west".

provider "aws" {

 alias = "terraform_aws_west"

 region = "us-west-1"

}

module "terraform-module" {

 source = "./terraform-module"

 providers = {

 aws = aws.terraform_aws_west

 }

}

In this example, we defined the same provider multiple times, one with an alias
and another without an alias. If we hadn't defined a providers arguments in the
child module code block, it would have taken the default provider that we defined
without an alias. So, in order to use a specific provider within the module, we
defined aws=aws.terraform_aws_west. From this expression, you can easily
understand that the providers argument inside the child module is a map that
will be supporting only the key and the value, without placing them in double quotes.

•	 depends_on—This meta-argument is an optional one, whereby if we need to
define an explicit dependency then we can define a depends_on argument within a
module code block. This should be used only as a very last resort because Terraform
is smart enough to follow an implicit dependency of resources, but in some cases we
need to forcefully tell Terraform that there is a dependency so that Terraform can
follow that sequence for the creation or deletion of resources. Let's try to understand
how we can define the depends_on argument within a module, as follows:

resource "aws_iam_role" "terraform-role" {

 name = "terraform-vpc-role"

}

204 Terraform Modules

We need to create AWS IAM role specific to VPC then we
are supposed to create VPC

module "terraform-module" {

 source = "terraform-aws-modules/vpc/aws"

 version = "~>2.5.0"

 depends_on = [

 aws_iam_role.terraform-role,

]

}

In this example, we mentioned explicit dependency in the module by defining
depends_on, which means that Terraform will deploy the terraform-module
module only when we already have the AWS Identity and Access Management
(IAM) role in place. Similar to this example, we can even define explicit dependency
of one module to other child modules.

There are many more aspects related to Terraform modules and we will try to discuss
them in our upcoming sections, providing examples so that you will gain a better
understanding. For now, let's try to understand how we can taint a resource within a
module. To taint a specific resource within a module, we can use Terraform's taint
command, as illustrated in the following code snippet:

$ terraform taint module.terraform_module.aws_instance.
terraform_instance

This will tell Terraform to destroy and recreate a specific resource of modules that's been
tainted during the next apply operation. Remember—you won't able to taint a complete
module; only specific resources within a module can be tainted. For further understanding
of the Terraform taint command, you can read Chapter 5, Terraform CLI. You can also
read more about the taint command at https://www.terraform.io/docs/
commands/taint.html.

From this entire section, you will have gained a fair understanding of Terraform modules,
so let's move ahead and try to write some modules for major cloud providers such as
Azure, AWS, and GCP.

https://www.terraform.io/docs/commands/taint.html
https://www.terraform.io/docs/commands/taint.html

Writing Terraform modules for Azure 205

Writing Terraform modules for Azure
When learning about Terraform modules, we need to understand how we can draft
modules for an Azure Resource Manager (azurerm) provider. This will help you out
when starting to create azurerm modules and provisioning resources in Microsoft
Azure using these modules. For a further understanding about Terraform modules for
Azure, let's try to create a virtual machine (VM) with the keyvault module. We have
created all the module Terraform files and placed them in our chapter GitHub repository
at https://github.com/PacktPublishing/HashiCorp-Infrastructure-
Automation-Certification-Guide/tree/master/chapter7/azurerm/
azurerm-virtual-machine-module.

The following files are present in our GitHub repository under the azurerm directory,
which you can clone to your local machine and then start consuming it:

inmishrar@terraform-lab-vm:~/HashiCorp-Infrastructure-
Automation-Certification-Guide/chapter7/azurerm# tree

.

├── azurerm-virtual-machine-module

│ ├── VERSION

│ ├── main.tf

│ ├── outputs.tf

│ └── variables.tf

└── azurerm-virtual-machine-module-use-case

 ├── main.tf

 ├── outputs.tf

 ├── providers.tf

 ├── terraform.tfvars

 └── variables.tf

2 directories, 9 files

https://github.com/PacktPublishing/HashiCorp-Infrastructure-Automation-Certification-Guide/tree/master/chapter7/azurerm/azurerm-virtual-machine-module
https://github.com/PacktPublishing/HashiCorp-Infrastructure-Automation-Certification-Guide/tree/master/chapter7/azurerm/azurerm-virtual-machine-module
https://github.com/PacktPublishing/HashiCorp-Infrastructure-Automation-Certification-Guide/tree/master/chapter7/azurerm/azurerm-virtual-machine-module

206 Terraform Modules

In our main.tf file, we have defined the following code block (as mentioned, the entire
code can be copied from GitHub):

resource "azurerm_resource_group" "rgname" {

 name = var.rgname

 location = var.location

 tags = var.custom_tags

}

...

In this main.tf file, we have defined one code block named locals, as illustrated in the
following code snippet:

resource "random_string" "password" {

 length = 16

 special = true

 min_upper = 2

 min_lower = 2

 min_numeric = 2

 min_special = 2

}

locals {

 vmpassword = random_string.password.result

}

locals is just a local variable, having a map data type that contains a key and a value.
It is used within the code by referencing local.key. In our example, we are storing a
value of "random_string" "password" in vmpassword. So, wherever we want
to reference or use this local variable in the Terraform configuration code, we can define
local.vmpassword and it will automatically take the content of it. Here is a code
example, just to give you an idea of how you can use locals:

resource "azurerm_key_vault_secret" "key_vault_secret" {

 name = var.keyvault_secret_name

 value = local.vmpassword

 key_vault_id = azurerm_key_vault.key_vault.id

 tags = var.custom_tags

}

Writing Terraform modules for Azure 207

There is a variables.tf file that contains the following code that you can copy from
the GitHub repository:

variable "rgname" {

 type = string

 description = "name of resource group"

}

variable "location" {

 type = string

 description = "location name"

}

...

One more file with the name outputs.tf contains the following code:

output "nic" {

 value = azurerm_network_interface.nic.private_ip_address

}

output "vm_id" {

 value = azurerm_windows_virtual_machine.virtual_machine.id

}

output "vm_name" {

 value = azurerm_windows_virtual_machine.virtual_machine.name

}

This whole code that we defined inside the azurerm-virtual-machine-module
directory explains to you how you can create a module and get this published. In our
case, we have kept the code in our GitHub repository so that you can create any modules
accordingly and get them published.

Now, a very important question is: How can we consume our created module? So, for this,
we have written code and placed this inside our Chapter7/azurerm/azurerm-
virtual-machine-module-use-case/ GitHub directory.

208 Terraform Modules

In the main.tf file, the following code is present:

module "terraform-vm" {

 source = "github.com/PacktPublishing/HashiCorp-
Infrastructure-Automation-Certification-Guide.git//chapter7/
azurerm/azurerm-virtual-machine-module?ref=v0.0.1"

 rgname = var.rgname

 location = var.location

 custom_tags = var.custom_tags

 vm_size = var.vm_size

 vm_name = var.vm_name

 admin_username = var.admin_username

 vm_publisher = var.vm_publisher

 vm_offer = var.vm_offer

 vm_sku = var.vm_sku

 vm_version = var.vm_version

 sku_name = var.sku_name

 vnet_name = var.vnet_name

 address_space = var.address_space

 subnet_name = var.subnet_name

 nic_name = var.nic_name

 keyvault_name = var.keyvault_name

 keyvault_secret_name = var.keyvault_secret_name

}

If you notice, we have defined source in the module code block and have put ref in the
source URL itself rather than defining any version argument separately because GitHub
doesn't support version argument in the module code block. If we want to define versions,
then we have to get them defined in the source URL itself.

There is one catch here—in order to define ref in the source URL of a module, you
would be required to create a releases/tags in the GitHub repository, which you can
see in the following screenshot. We have created release v0.0.1 manually in our GitHub
repository and associated it with our master branch. If you wish, you can define a script
that can automatically create a specific release version, and you can define this accordingly
in the source URL of the module code. You can refer to a given URL (that is, https://
stackoverflow.com/questions/18216991/create-a-tag-in-a-GitHub-
repository) to get an idea of creating a Releases/Tags on GitHub:

https://stackoverflow.com/questions/18216991/create-a-tag-in-a-GitHub-repository
https://stackoverflow.com/questions/18216991/create-a-tag-in-a-GitHub-repository
https://stackoverflow.com/questions/18216991/create-a-tag-in-a-GitHub-repository

Writing Terraform modules for Azure 209

Figure 7.1 – GitHub release v0.0.1

So, depending upon your repository, you can define your source URL accordingly in the
module code block.

The next aspect is the values we would be required to provide in order to consume this
module. We highlighted all the arguments (such as rgname) on the left side of the
module code block. keyvault_name is actually the variable name that we defined
while creating the module code block, and this contains all our resources and respective
variables. While consuming that module, all those variables will be working as an input
argument for us. After that, you can provide respective argument values either through
a variable or by hardcoding. We would recommend providing values through input
variables. In our case, we are going to provide all modules' variable values from the
terraform.tfvars file, as illustrated in the following code snippet:

rgname = "Terraform-rg"

location = "eastus"

custom_tags = {

 Environment = "prod"

 Owner = "Azure-Terraform"

210 Terraform Modules

}

vm_size = "Standard_F2"

vm_name = "Terraform-vm"

admin_username = "azureterraform"

vm_publisher = "MicrosoftWindowsServer"

vm_offer = "WindowsServer"

vm_sku = "2016-Datacenter"

vm_version = "latest"

sku_name = "premium"

vnet_name = "Terraform-vnet"

address_space = ["10.1.0.0/16"]

subnet_name = "Terraform-subnet"

nic_name = "Terraform-nic"

keyvault_name = "terraform-vm-keyvault"

keyvault_secret_name = "Terraform-vm-password"

We have kept the same variable that we defined while creating modules so that it is easy
for you to understand. In the variables.tf file, the following code is present. You can
copy the full code from our GitHub repository:

variable "rgname" {

 type = string

 description = "name of resource group"

}

variable "location" {

 type = string

 description = "location name"

}

variable "vnet_name" {

 type = string

 description = "vnet name"

}

...

Writing Terraform modules for Azure 211

To store the Terraform state file into Azure Blob storage, we have defined a Terraform
backend code block inside the providers.tf file. We also mentioned which version of
the azurerm provider should be used. The code is illustrated in the following snippet:

terraform {

 required_version = ">= 1.0"

 required_providers {

 azurerm = {

 source = "hashicorp/azurerm"

 version = "2.55.0"

 }

 }

 backend "azurerm" {

 storage_account_name = "terraformstg2345"

 container_name = "terraform"

 key = "terraform.tfstate"

 access_key = "KRqtJIA0Gp4oKBsElDU7RGN..."

 }

}

provider "azurerm" {

 features {}

}

Important note
While configuring the remote backend with Blob storage, you should pass the
access_key value through environment variables. It is not recommended
to hardcode the access_key value in your configuration code as this can
cause a security risk.

Finally, we want to see whether our VM got deployed or not. So, for that, we have created
a file named outputs.tf, which contains the following code:

output "vm_private_ip" {

 value = module.terraform-vm.nic

}

output "vm_name" {

 value = module.terraform-vm.vm_name

}

212 Terraform Modules

output "vm_id" {

 value = module.terraform-vm.vm_id

}

In this outputs.tf file, you can see how we defined output values referencing modules.
The syntax for defining the output of a module is module.<MODULE NAME>.<OUTPUT
NAME>. In our example, while creating the module code, in the resource code block we
mentioned the outputs.tf file where all the output names are, so when we are calling
them as output in a module, we then need to provide that same name.

Let's try to run the code that is defined in the azurerm-virtual-machine-module-
use-case directory of our GitHub repository. After executing terraform init, we
can see the following activities being performed by Terraform, and in the listed activities,
it has downloaded the following module from our GitHub repository:

$terraform init

Initializing modules...

Downloading github.com/PacktPublishing/HashiCorp-
Infrastructure-Automation-Certification-Guide.git?ref=v0.0.1
for terraform-vm...

- terraform-vm in .terraform\modules\terraform-vm\chapter7\
azurerm\azurerm-virtual-machine-module

Initializing the backend...

Successfully configured the backend "azurerm"! Terraform will
automatically use this backend unless the backend configuration
changes.

Initializing provider plugins...

- Finding hashicorp/azurerm versions matching "2.55.0"...

- Finding latest version of hashicorp/random...

- Installing hashicorp/azurerm v2.55.0...

- Installed hashicorp/azurerm v2.55.0 (signed by HashiCorp)

- Installing hashicorp/random v3.0.0...

- Installed hashicorp/random v3.0.0 (signed by HashiCorp)

The following providers do not have any version constraints in
configuration, so the latest version was installed.

To prevent automatic upgrades to new major versions
that may contain breaking changes, we recommend adding
version constraints in a required_providers block in your
configuration, with the constraint strings suggested below.

Writing Terraform modules for Azure 213

* hashicorp/random: version = "~> 3.0.0"

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running
"terraform plan" to see any changes that are required for your
infrastructure. All Terraform commands should now work.

If you ever set or change modules or backend configuration
for Terraform, rerun this command to reinitialize your working
directory. If you forget, other commands will detect it and
remind you to do so if necessary.

Further, we executed terraform plan and terraform apply. We can see the
following output, which has been defined in the outputs.tf file present inside the
azurerm-virtual-machine-module-use-case directory:

Outputs:

vm_id = /subscriptions/97c3799f-2753-40b7-a4bd-157ab464d8fe/
resourceGroups/Terraform-rg/providers/Microsoft.Compute/
virtualMachines/Terraform-vm

vm_name = Terraform-vm

vm_private_ip = 10.1.1.4

And finally, our defined module managed to create resources in Azure, which can be seen
in the following screenshot:

Figure 7.2 – Azure resources

214 Terraform Modules

Important note
To execute all Terraform code specific to Azure, you need to have
authentication to Azure in place, which we have already explained in Chapter 5,
Terraform CLI.

From this section, we managed to write a Terraform module for the Azure VM with
keyvault and were easily able to consume it. In the same way, you could write a module for
any other Azure resources and get it published to Terraform Cloud or any other repository
from where it would be easy for you to consume it as and when needed.

After learning how to write Terraform modules for Azure, you will now be interested in
learning about writing Terraform modules for AWS. Therefore, we are going to discuss
further how these can be written and consumed in our next section.

Writing Terraform modules for AWS
After successfully writing an Azure module in our previous section, you might be
wondering: Is there is any difference between drafting Terraform modules for an AWS provider
as compared to an azurerm provider? To answer that question, concept-wise it's the same,
but we just need to take care of the specific AWS resource/service arguments supported.
Thus, learning about Terraform modules for AWS shouldn't be a big deal for you. We should
be able to easily draft AWS modules and consume them for infrastructure provisioning
in AWS. Let's try to understand how we can write a module for AWS. To explain this, we
have taken an example of a VPC with a subnet. We have written modules and published
them into our GitHub repository at https://github.com/PacktPublishing/
HashiCorp-Infrastructure-Automation-Certification-Guide/tree/
master/chapter7/aws/aws-vpc-subnet-module.

This is a list of the files that have been placed into the aws folder of our GitHub repository:

inmishrar@terraform-lab-vm:~/HashiCorp-Infrastructure-
Automation-Certification-Guide/chapter7/aws# tree

.

├── aws-vpc-subnet-module

│ ├── VERSION

│ ├── main.tf

│ ├── outputs.tf

│ └── variables.tf

└── aws-vpc-subnet-module-use-case

https://github.com/PacktPublishing/Hashicorp-Infrastructure-Automation-Terraform-Associate-Exam-Guide/tree/master/chapter7/aws/aws-vpc-subnet-module
https://github.com/PacktPublishing/Hashicorp-Infrastructure-Automation-Terraform-Associate-Exam-Guide/tree/master/chapter7/aws/aws-vpc-subnet-module
https://github.com/PacktPublishing/Hashicorp-Infrastructure-Automation-Terraform-Associate-Exam-Guide/tree/master/chapter7/aws/aws-vpc-subnet-module

Writing Terraform modules for AWS 215

 ├── main.tf

 ├── outputs.tf

 ├── providers.tf

 ├── terraform.tfvars

 └── variables.tf

2 directories, 9 files

Let's discuss how we have written that module. In the main.tf file, we have placed
the resource code block of the VPC and subnet that's been taken from https://
registry.terraform.io/providers/hashicorp/aws/latest/docs/
resources/vpc and https://registry.terraform.io/providers/
hashicorp/aws/latest/docs/resources/subnet. You can get the following
code from our GitHub repository:

resource "aws_vpc" "terraform-vpc" {

 cidr_block = var.cidr_block

 instance_tenancy = "default"

 tags = {

 Name = var.vpc_name

 }

}

resource "aws_subnet" "terraform-subnet" {

 vpc_id = aws_vpc.terraform-vpc.id

 cidr_block = cidrsubnet(var.cidr_block, 8, 1)

 tags = {

 Name = var.subnet_name

 }

}

In variables.tf, we need to ensure that we have declared all the input variables. We
have defined the following code block, which you can copy from our GitHub repository:

variable "vpc_name" {

 type = string

 description = "vpc name"

}

variable "cidr_block" {

https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/vpc
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/vpc
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/vpc
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/subnet
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/subnet

216 Terraform Modules

 type = string

 description = "address space of the vpc"

 default = "10.0.0.0/16"

}

variable "subnet_name" {

 type = string

 description = "subnet name"

}

In outputs.tf, you see the output name and its respective values that are coming from
the attribute that can be exported from the VPC resource (that is, https://registry.
terraform.io/providers/hashicorp/aws/latest/docs/resources/
vpc). We have defined the following code block; you can define an attribute that can be
exported accordingly:

output "vpc_id" {

 value = aws_vpc.terraform-vpc.id

}

output "vpc_cidr_block" {

 value = aws_vpc.terraform-vpc.cidr_block

}

All this code helped us to develop a module named vpc with subnet and publish that
module to our GitHub repository. Now, you may be wondering how we can consume this
published module. To understand this, we have defined the next code block.

In our main.tf file, we need to write a small line of code that has all the variables as
arguments that have been defined while writing the module, as follows:

module "terraform-aws-vpc" {

 source = "github.com/PacktPublishing/HashiCorp-
Infrastructure-Automation-Certification-Guide.git//chapter7/
aws/aws-vpc-subnet-module?ref=v1.0.0"

 vpc_name = var.vpc_name

 cidr_block = var.cidr_block

 subnet_name = var.subnet_name

}

https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/vpc
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/vpc
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/vpc

Writing Terraform modules for AWS 217

Here, in our main.tf file, we mentioned source, which is pointing to our GitHub
repository and having a version number defined using ref, and which we created as
a release/tag to our GitHub repository, as you can see in the following screenshot.
This will help us to download a specific version of the module:

Figure 7.3 – GitHub release v1.0.0

In variables.tf, we define the following code block:

variable "vpc_name" {

 type = string

 description = "vpc name"

}

variable "cidr_block" {

 type = string

 description = "address space of the vpc"

218 Terraform Modules

 default = "10.0.0.0/16"

}

variable "subnet_name" {

 type = string

 description = "subnet name"

}

variable "region" {

 type = string

 description = "provide region where you want to deploy
resources"

}

In the following code block, you see that it has almost the same variables that were defined
while creating the module, to make this easy for you to understand. As you can see, there
is one variable named region that we have defined in the providers.tf file:

terraform {

 required_version = ">= 1.0"

 required_providers {

 aws = {

 source = "hashicorp/aws"

 version = "~> 3.0"

 }

 }

}

provider "aws" {

 region = var.region

}

Finally, we have taken all the values of the defined variables from the terraform.
tfvars file, as illustrated in the following code snippet:

subnet_name = "Terraform-aws-subnet"

vpc_name = "Terraform-aws-vpc"

cidr_block = "10.0.0.0/16"

region = "us-east-1"

Writing Terraform modules for AWS 219

To get output from the module, we have defined an outputs.tf file that contains the
following code:

output "vpc_id" {

 value = module.terraform-aws-vpc.vpc_id

}

output "vpc_cidr_block" {

 value = module.terraform-aws-vpc.vpc_cidr_block

}

When you execute terraform init, you can see the following activities have been
performed by the Terraform tool, and it clearly shows that it has downloaded the module
from our GitHub repository:

$terraform init

Initializing modules...

Downloading github.com/PacktPublishing/HashiCorp-
Infrastructure-Automation-Certification-Guide.git?ref=v1.0.0
for terraform-aws-vpc...

- terraform-aws-vpc in .terraform\modules\terraform-aws-vpc\
chapter7\aws\aws-vpc-subnet-module

Initializing the backend...

Initializing provider plugins...

- Finding hashicorp/aws versions matching "~> 3.0"...

- Installing hashicorp/aws v3.22.0...

- Installed hashicorp/aws v3.22.0 (signed by HashiCorp)

any changes that are required for your infrastructure. All
Terraform commands should now work.

If you ever set or change modules or backend configuration
for Terraform, rerun this command to reinitialize your working
directory. If you forget, other commands will detect it and
remind you to do so if necessary.

220 Terraform Modules

After executing terraform plan and terraform apply, we can see the following
output that we have defined in the outputs.tf file:

Outputs:

vpc_cidr_block = 10.0.0.0/16

vpc_id = vpc-0636e37e2a87b6d5a

From the AWS Console, we can see that a VPC with subnet got created, as shown in the
following screenshot:

Figure 7.4 – AWS resources

From this section, you should have understood how to write a module for AWS, and along
with that, you should have learned how modules can be consumed in your day-to-day
infrastructure deployment. Let's try to use this knowledge and see how we can write a
module for GCP and provision our infrastructure using that module in GCP.

Writing Terraform modules for GCP
We now have a fair understanding of writing modules for AWS and Azure. Now, we have
a question for you: What are your thoughts regarding Terraform modules for GCP? Will
there be any difference as compared to AWS and Azure modules? If you are thinking that
writing Terraform modules for GCP would be difficult and different from your previous
experience with AWS and Azure, then you are wrong, as you will able to use this previous
learning. Let's try to write a module for GCP. To explain this, we have taken a GCP
resource named google cloud storage bucket. We have written all the required
Terraform code and placed it in our GitHub repository (that is, https://github.
com/PacktPublishing/HashiCorp-Infrastructure-Automation-
Certification-Guide/tree/master/chapter7/gcp).

https://github.com/PacktPublishing/Hashicorp-Infrastructure-Automation-Terraform-Associate-Exam-Guide/tree/master/chapter7/gcp
https://github.com/PacktPublishing/Hashicorp-Infrastructure-Automation-Terraform-Associate-Exam-Guide/tree/master/chapter7/gcp
https://github.com/PacktPublishing/Hashicorp-Infrastructure-Automation-Terraform-Associate-Exam-Guide/tree/master/chapter7/gcp

Writing Terraform modules for GCP 221

Here is a list of files that have been placed under the gcp folder of our GitHub repository:

inmishrar@terraform-lab-vm:~/HashiCorp-Infrastructure-
Automation-Certification-Guide/chapter7/gcp# tree

.

├── gcp-storage-module

│ ├── main.tf

│ ├── outputs.tf

│ └── variables.tf

└── gcp-storage-module-use-case

 ├── main.tf

 ├── outputs.tf

 ├── providers.tf

 ├── terraform-lab-project-001c988dafca.json

 ├── terraform.tfvars

 └── variables.tf

2 directories, 9 files

While writing the GCP storage module, we created three files: main.tf, outputs.tf,
and variables.tf.

In the main.tf file, the following defined code is present:

resource "google_storage_bucket" "gcp-stg" {

 name = var.gcp_stg_name

 location = var.gcp_location

 force_destroy = var.force_destroy

 storage_class = var.storage_class

 project = var.project

 labels = var.labels

 versioning {

 enabled = true

 }

}

We define most of the values as a variable so that the user can provide input variable
values in their own way, and this increases the consumption of the Terraform module.

222 Terraform Modules

Next, we declare all the variables in the variables.tf file, as follows:

variable "gcp_stg_name" {

 type = string

 description = "name of the GCP storage"

}

variable "gcp_location" {

 type = string

 description = "name of the location"

}

variable "force_destroy" {

 type = bool

 description = "provide whether true or false"

 default = true

}

variable "storage_class" {

 type = string

 description = "Provide Storage Class and Supported values
include: MULTI_REGIONAL, REGIONAL, NEARLINE, COLDLINE, ARCHIVE"

}

variable "project" {

 type = string

 description = "provide project ID"

}

variable "labels" {

 type = map

 description = "provide name of the labels"

}

Once the Google storage bucket gets created, we need to see its output, so the following
code is present in the outputs.tf file:

output "gcs_self_link" {

 value = google_storage_bucket.gcp-stg.self_link

}

output "gcs_url" {

 value = google_storage_bucket.gcp-stg.url

Writing Terraform modules for GCP 223

}

output "gcs_name" {

 value = google_storage_bucket.gcp-stg.name

}

So, after writing the module and publishing it on our GitHub repository, we created a
release/tag (that is, v2.0.0), which you can see in the following screenshot:

Figure 7.5 – GitHub release v2.0.0

To consume the published module, you can directly take it from our GitHub repository;
we won't discuss the code here. Just after that, you can run terraform init, which
will provide you a complete insight into all activities Terraform is performing. The code
is shown in the following snippet:

$terraform init

Initializing modules...

Downloading github.com/PacktPublishing/HashiCorp-
Infrastructure-Automation-Certification-Guide.git?ref=v2.0.0
for terraform-gcp-gcs...

- terraform-gcp-gcs in .terraform\modules\terraform-gcp-gcs\
chapter7\gcp\gcp-storage-module

Initializing the backend...

224 Terraform Modules

Initializing provider plugins...

- Finding hashicorp/google versions matching "~> 3.0"...

- Installing hashicorp/google v3.51.0...

- Installed hashicorp/google v3.51.0 (signed by HashiCorp)

Terraform has been successfully initialized!

In the sequence following the Terraform workflow, you can run the terraform plan
and terraform apply commands. This will provision the Google storage bucket and
show us the following output, which we mentioned in our outputs.tf file:

Outputs:

gcs_name = gcpstg23423

gcs_self_link = https://www.googleapis.com/storage/v1/b/
gcpstg23423

gcs_url = gs://gcpstg23423

We can confirm by checking the Google Cloud Console that a Google storage bucket got
created, as you can see in the following screenshot:

Figure 7.6 – Google Cloud resources

Important note
To execute all Terraform code specific to GCP, you need to have authentication
to GCP in place—this has been already discussed in Chapter 5, Terraform CLI.
We published our Google service account credential file on GitHub just for
demonstration purposes so that you can see that you need to have a credential
file to authenticate Terraform to the GCP cloud platform. It is recommended
that you store this credential file in your local system or in environment
variables—never push/publish any GCP credential file to a GitHub project.

From this section, we learned about writing Terraform module code for Google Cloud,
how it can be published on GitHub, and how effectively we can consume it according
to our requirements. We also understood how a specific version of a module can be
called by defining a source in the module code block. Using this created GCP module,
we managed to deploy GCS. Similarly, we can use this knowledge to write other GCP
modules and get them consumed according to our requirements.

Publishing Terraform modules 225

What if we want to draft a module and make it available to everyone by contributing
and getting our modules published to Terraform Registry? We are going to explain
this concept in our next section.

Publishing Terraform modules
We have already learned how to publish Terraform modules to a GitHub repository
specific to your project. How about if you want to contribute to the Terraform
community? For that, HashiCorp provides you with an option of publishing your
well-written code to Terraform Registry.

Anyone can write a module and get it published to Terraform Registry. Terraform Registry
supports versioning and generates documentation, and you can even browse all the
version history. Always remember to try to write more generic modules so that they are
reusable. All the published public modules are managed through Git and GitHub. Writing
and publishing a module is very easy and doesn't take much time; once a module gets
published, you can get it updated by pushing the updated code with the respective Git
tag following proper semantic versioning (that is, either v1.03 or 0.6.0).

Key requirements
To publish a module to Terraform Registry, the following key requirements should be
in place:

•	 GitHub: The module must be available on GitHub as a public repository.

•	 Named: Naming of the published module should be done properly. It must follow
a prescribed syntax (that is, terraform-<PROVIDER>-<NAME>). Examples of
this are terraform-google-storage-bucket or terraform-aws-ec2-
instance.

•	 Repository description: A simple one-line description of the GitHub repository is
needed because this is used to populate a short description of the module.

•	 Standard module structure: The module you are publishing should adhere
to the standard structure of a module. This will allow the registry to generate
documentation, track resource usage, parse submodules and examples, and more.

•	 x.y.z tags for releases: A published module needs to have proper versioning, which
is done using release tags. The Terraform Registry is able to identify specific versions
of modules through a release tag. Release tags should follow semantic versioning
(that is, v1.0.0 or simply 0.5.0). You can define them either way.

226 Terraform Modules

Publishing a module
After writing a module by following the requirements mentioned earlier, you can visit
https://registry.terraform.io/ and select the publish module option, which
will redirect you to the sign-in page, where you can log in with your GitHub account. If
you don't have a GitHub account, then you will be required to sign up for one. There
is no other option to log in to Terraform Registry, as this is currently only allowed from
GitHub. Once you are logged in, it will ask you to select a specific module that has
a proper naming convention, as you can see in the following screenshot:

Figure 7.7 – Select a GitHub repository

After selecting a specific repository on GitHub, you can click on PUBLISH MODULE.
Your module will then shortly get published and will be available for use, provided your
written modules have followed the correct sort of formatting. The published module will
be visible to you on Terraform Registry, as shown in the following screenshot. For your
understanding, we have shown a screenshot of the AWS VPC module. Your published
module name will vary, depending totally upon the module name and provider:

https://registry.terraform.io/

Summary 227

Figure 7.8 – Terraform published module

From this section, you will have got an idea of how you can draft a module and get it
published to Terraform Registry. This is one way you can contribute to the Terraform
open source community.

Summary
From this complete chapter, you have gained an understanding of Terraform modules and
the different arguments and meta-arguments that are supported by Terraform modules,
such as depends_on, providers, source, and version. Moving further on, we
also discussed how you can write Terraform modules for Azure, AWS, and GCP. We then
discussed how they can be consumed, and finally, we discussed how you can contribute to
the Terraform community by writing and publishing your modules to Terraform Registry.
With this knowledge, you will be able to draft a Terraform module and consume it for the
deployment or manageability of an enterprise infrastructure.

In our next chapter, we are going to discuss Terraform configuration files and which
industry best practices can be followed while writing Terraform configuration files,
covering all three cloud providers, Azure, AWS, and GCP.

228 Terraform Modules

Questions
The answers to the following questions can be found in the Assessments section at the end
of this book:

1.	 Which of the following source definitions for a module is incorrect?

A. ../../terraform-module

B. github.com/terraform-module

C. \github.com/terraform-module

D. bitbucket.com/terraform-module

2.	 You have published an AWS Elastic Compute Cloud (EC2) instance module
to the Bitbucket repository. What will happen when you run the terraform
init command?

A. It downloads the EC2 module to the local directory.

B. It deletes the EC2 module from the repository.

C. It updates the version of the EC2 module.

D. It moves the EC2 instance module to other subdirectories.

3.	 What is the correct syntax for defining output from a module?

A. module.terraform-aws-vpc.vpc_id

B. terraform-aws-vpc.vpc_id

C. vpc_id

D. terraform-aws-vpc

4.	 You are working with many developers and they are all tired of writing their
Terraform Infrastructure as Code (IaC). Which of the following options would
you recommend to them so that they can have reusable IaC?

A. Terraform data sources

B. Terraform locals

C. Terraform module

D. Terraform resource

Further reading 229

5.	 From the following defined code snippet, see if you can tell what the version of the
module is:

module "servers" {

 source = "./app-cluster"

 servers = 5

}

Which of these options is correct?

A. 5

B. No version

C. >5

D. <5

Further reading
You can check out the following links for more information about the topics that were
covered in this chapter:

•	 Terraform module overview: https://www.terraform.io/docs/
configuration/blocks/modules/index.html

•	 Terraform module sources: https://www.terraform.io/docs/modules/
sources.html

•	 Terraform module publishing: https://www.terraform.io/docs/
modules/publish.html

•	 Terraform tutorials: https://learn.hashicorp.com/terraform?_
ga=2.137479925.498906489.1609060300-1551442629.1609060300

https://www.terraform.io/docs/configuration/blocks/modules/index.html
https://www.terraform.io/docs/configuration/blocks/modules/index.html
https://www.terraform.io/docs/modules/sources.html
https://www.terraform.io/docs/modules/sources.html
https://www.terraform.io/docs/modules/publish.html
https://www.terraform.io/docs/modules/publish.html
https://learn.hashicorp.com/terraform?_ga=2.137479925.498906489.1609060300-1551442629.1609060300
https://learn.hashicorp.com/terraform?_ga=2.137479925.498906489.1609060300-1551442629.1609060300

Section 3:
Managing

Infrastructure with
Terraform

This part of the book gives you some real-time experience, implementing the knowledge
of preparing stacks using Terraform code. Terraform configuration files consist of all the
defined resources, modules, variables, output, and so on. This chapter helps you to deploy
and upgrade complex infrastructure using stacks and modules.

Along with this, you will get insights into the Terraform cloud and its features such as
policy as code, that is, Sentinel.

The following chapters will be covered under this section:

•	 Chapter 8, Terraform Configuration Files

•	 Chapter 9, Understanding Terraform Stacks

•	 Chapter 10, Terraform Cloud and Terraform Enterprise

•	 Chapter 11, Terraform Glossary

8
Terraform

Configuration Files
In our last chapter, we discussed Terraform modules, module use cases, and different
arguments supported by the modules. We also discussed how we can contribute to the
Terraform community by writing Terraform modules and getting them published to the
Terraform registry so that everyone is able to consume them.

In this chapter, we are planning to discuss industry best practices for writing Terraform
configuration files. While drafting Terraform configuration, we will be using our previous
learning such as resources, data sources, locals, variables, and modules. Further, we will
be discussing how to write a configuration file for the respective cloud platforms of GCP,
Azure, and AWS.

The following topics will be covered in this chapter:

•	 Understanding Terraform configuration files

•	 Writing Terraform configuration files for GCP

•	 Writing Terraform configuration files for AWS

•	 Writing Terraform configuration files for Azure

234 Terraform Configuration Files

Technical requirements
To follow this chapter, you need to have an understanding of the Terraform CLI.
You should know about the installation of Terraform on various machines. You need
to have some basic understanding of writing the Terraform configuration file. You
can find all the code used in this chapter at the GitHub link: https://github.
com/PacktPublishing/HashiCorp-Infrastructure-Automation-
Certification-Guide/tree/master/chapter8.

Check out the following link to see the Code in Action video:

https://bit.ly/3hPvkiR

Understanding Terraform configuration files
We keep mentioning Terraform configuration files throughout the book but so far we
haven't had a chance to discuss this in detail. We will get a thorough understanding of
Terraform configuration files in this chapter.

A Terraform configuration file is a well-defined and structured file written in the
Terraform language that tells Terraform how to manage the complete infrastructure.
A Terraform configuration file can have one or more files and directories.

A Terraform configuration file can be written in two formats. A Terraform configuration
file written with HashiCorp configuration language is the recommended approach for
the writing configuration files and it ends with a file extension, that is, .tf. There is one
more way of writing a Terraform configuration file, which ends with .tf.json. The
configuration files that end with .tf are human-readable and the JSON format is machine-
readable. Every cloud provider, such as AWS, GCP, Azure, and so on, has exposed their
service/resource APIs as an endpoint that needs to be defined in the configuration file.
Terraform has the capability to understand how to call providers' APIs. The services/
resources of the providers needs to be defined in the Terraform configuration file and
accordingly it uses the respective cloud provider's service APIs to manage those endpoints.

Terraform native configuration syntax
Here is the defined syntax of the human-readable configuration file in the Terraform
language:

<BLOCK TYPE> "<BLOCK LABEL>" "<BLOCK LABEL>" {

 # Block body

 <IDENTIFIER> = <EXPRESSION> # Argument

}

https://bit.ly/3hPvkiR

Understanding Terraform configuration files 235

Let's discuss this syntax further:

•	 Blocks are the containers that represent the configuration of the objects. Having
a block type generally represents what functionality Terraform is planning to
perform, such as a resource, data, and so on. Block type has one or more block
labels, and has a body that contains arguments and nested blocks. In our following
code block for the resource, Terraform needs to have two block labels, that is,
"google_storage_bucket" "gcp-stg". After defining the block type and
labels, the block body is defined within the delimiter, that is, the { and } characters.
Within the block body, we can define arguments and blocks that may be nested.

•	 Arguments help to assign a value to a particular name. The identifier that has been
defined before the equal sign is the name of the argument and after the equal sign
has the argument value, for example, the expression image_id = "xyz354".

•	 Identifiers could be argument names, block names, and block type names such
as resources, data, and input variables. The identifiers contain letters, digits,
underscores (_), and hyphens (-). Remember, an identifier name shouldn't start
with a digit as it can create confusion with literal numbers so it must always start
with a letter.

•	 Expression is the respective value that has been defined against a specific identifier.
It could be a direct value or reference or combine multiple other values.

The Terraform language is declarative, has all the steps to reach the defined goal. The
order in which the blocks and files have been written is not so important. Terraform
only understands the implicit and explicit dependencies and accordingly, it follows the
sequence of the resource deployment.

Just to give you a sense of how the Terraform language is written with its complete syntax,
we have taken an example code of a Google cloud storage bucket; following this syntax,
you can write a Terraform code block for any service or resource:

Create Google Storage Bucket

resource "google_storage_bucket" "gcp-stg" {

 name = "gcp-bucket"

 location = "US"

 versioning {

 enabled = true

 }

}

236 Terraform Configuration Files

In the preceding code, you can see that we have defined a comment # Create Google
Storage Bucket. The following are the ways in which we can define comments in the
code block:

•	 #: Used for a single-line comment.

•	 //: This has also been used for a single-line comment and can work as an
alternative to #.

•	 /* and */: You can define code within this delimiter; Terraform will treat it as
a comment.

Out of these defined comment methods, # is the default one. If you had defined the
comment with //, the automatic formatting tools will convert it to # as the double-slash
style is not idiomatic.

Terraform configuration files support UTF-8 encoding. The delimiters used in the
configuration file are all ASCII characters and accept non-ASCII characters for identifiers,
comments, and string values.

Terraform configuration files support both Unix and Windows line ending styles. The
automatic formatting tools may transform Windows CRLF to Linux LF automatically.

Terraform override file
We learned that Terraform manages to read .tf or .tf.json files within a directory and
each file will have a different set of the configuration so that there won't be any conflict.
What will happen if we define the same configuration in the two different files and the
second file contains some additional argument? For example, if there are two files, that
is, main.tf and main.tf.json files, within the directory, then definitely when you
execute Terraform workflows such as terraform plan and terraform apply, it
will throw an error as shown in the following code block:

$ terraform plan

Error: Duplicate resource "azurerm_resource_group"
configuration

 on main.tf.json line 4, in resource.azurerm_resource_group:

 4: "rgname":{

A azurerm_resource_group resource named "rgname" was already
declared at main.tf:1,1-43. Resource names must be unique per
type in each module.

Error: Duplicate variable declaration

 on main.tf.json line 16, in variable:

Understanding Terraform configuration files 237

 16: "location": {

A variable named "location" was already declared at main.
tf:10,1-20. Variable names must be unique within a module.

Error: Duplicate output definition

 on main.tf.json line 21, in output:

 21: "id":{

An output named "id" was already defined at main.tf:14,1-12.
Output names must

be unique within a module.

Error: Duplicate output definition

 on main.tf.json line 24, in output:

 24: "name":{

An output named "name" was already defined at main.tf:17,1-14.
Output names must be unique within a module.

We can see that it is giving us an error showing duplicate entries Now the question is how
we can avoid this.

In many cases, you might be interested in overriding the values of the specific argument of
the existing configuration object by using a separate file. For example, you wish to override
some of the configurations written by the programmatically generated file in JSON syntax
with a human-edited configuration file written in the native Terraform language.

For such scenarios, Terraform has a special handling option for files ending with
_override.tf, override.tf, _override.tf.json, or override.tf.json.

If you have defined an override file while loading the configuration files, Terraform
initially will skip these files and later on try to execute it sequentially, finding the
respective argument values in the main file and the override file. Finally, it helps you
prepare a configuration with the latest values, which it got from the override file, which
means it will try to merge and overwrite the configuration files.

It is recommended that when you are using override files, you should define proper
comments in the code so that the reader can understand what made you create an
override file.

Let's try to explain how Terraform works with the override file:

We have defined the following code block in main.tf:

resource "azurerm_resource_group" "rgname" {

 name = "Terraform-rg"

 location = var.location

238 Terraform Configuration Files

 tags = {

 "environment" = "development"

 "costcenter" = "B3478"

 }

}

And in the override.tf file, the following code has been defined:

trying to update tags using override file

resource "azurerm_resource_group" "rgname" {

 tags = {

 "environment" = "preprod"

 "costcenter" = "C3478"

 }

}

Let's see what happens when we execute terraform plan. As you can see that tags is
being updated with the latest values, which means Terraform reads the contents from the
override file and it gets updated:

$ terraform plan

Refreshing Terraform state in-memory prior to plan...

The refreshed state will be used to calculate this plan, but
will not be persisted to local or remote state storage.

--

An execution plan has been generated and is shown below.

Resource actions are indicated with the following symbols:

 + create

Terraform will perform the following actions:

 # azurerm_resource_group.rgname will be created

 + resource "azurerm_resource_group" "rgname" {

 + id = (known after apply)

 + location = "eastus"

 + name = "Terraform-rg"

 + tags = {

 + "costcenter" = "C3478"

 + "environment" = "preprod"

Understanding Terraform configuration files 239

 }

 }

Plan: 1 to add, 0 to change, 0 to destroy.

We are not discussing all the possible cases with the override file; you can refer to
https://www.terraform.io/docs/configuration/override.html.

JSON configuration syntax
We have seen how easily we can write a Terraform configuration file, which is a human-
readable format. Let's try to understand how it is different from the machine-readable
Terraform configuration file, which is a JSON file. This JSON file, which ends with
.tf.json, is generated programmatically. Sometimes it is very difficult to write all the
construct of native Terraform configuration code to JSON due to limitations of JSON
grammar. It is not necessary to know HCL syntax mapping with JSON syntax. We will
try to discuss it with one example:

{

 "resource":{

 "azurerm_resource_group":{

 "rgname":{

 "//":"Create resource group in Azure",

 "name":"Terraform-rg",

 "location":"${var.location}",

 "tags":{

 "environment":"development",

 "costcenter":"B41892"

 }

 }

 }

 },

 "variable": {

 "location": {

 "default": "string",

 "default": "eastus"

 }

 },

 "output":{

https://www.terraform.io/docs/configuration/override.html

240 Terraform Configuration Files

 "id":{

 "value":"${azurerm_resource_group.rgname.id}"

 },

 "name":{

 "value":"${azurerm_resource_group.rgname.name}"

 }

 }

}

In the previously defined code block, we have written code using JSON configuration
syntax, where you can see that, at the root of a JSON based Terraform configuration file,
it has a JSON object. The top-level object property should match with the name of the
top-level block types. Suppose you are defining a block type such as a resource that
expects two labels, so it will have two levels of nesting. Similarly for the variable
where we have only one label, it follows one level of nesting of JSON objects.

In the preceding JSON code block, Terraform will ignore any value defined with "//".
So you can use this for placing comments within the JSON code block.

For referencing any value in the code, we have to define the respective contents with the
specified syntax, that is, "${<reference name>}" as we defined in the output code
block for getting id value, that is, "${azurerm_resource_group.rgname.id}".

We have written same JSON code in the Terraform language and placed it as
a main.tf into our GitHub repository, that is, https://github.com/
PacktPublishing/HashiCorp-Infrastructure-Automation-
Certification-Guide/tree/master/chapter8/Override-Files:

resource "azurerm_resource_group" "rgname" {

 #Create resource group in Azure

 name = "Terraform-rg"

 location = var.location

 tags = {

 "environment" = "development"

 "costcenter" = "B3478"

 }

}

variable "location" {

 type = string

https://github.com/PacktPublishing/Hashicorp-Infrastructure-Automation-Terraform-Associate-Exam-Guide/tree/master/chapter8/Override-Files
https://github.com/PacktPublishing/Hashicorp-Infrastructure-Automation-Terraform-Associate-Exam-Guide/tree/master/chapter8/Override-Files
https://github.com/PacktPublishing/Hashicorp-Infrastructure-Automation-Terraform-Associate-Exam-Guide/tree/master/chapter8/Override-Files

Understanding Terraform configuration files 241

 default = "eastus"

}

output "id" {

 value = "azurerm_resource_group.rgname.id"

}

output "name" {

 value = "azurerm_resource_group.rgname.name"

}

We will not discuss the entire JSON code block; for further reading, you can visit
https://www.terraform.io/docs/configuration/syntax-json.html.

Data types
After learning about the Terraform configuration file, that is, .tf or .tf.json files, you
must have questions about the data types supported by both the configuration file types.
Let's see the different data types supported by the human-readable Terraform language:

•	 string: This represents the sequence of the characters with some text, such as
«Hello-Terraform».

•	 number: This is a numeric value representing both whole numbers such as 10 and
fractional values such as 6.28.

•	 bool: This represents a Boolean value, either true or false.

•	 list (or tuple): This represent a sequence of values, such as [«abc»,15, false].
Elements in a list or tuple are identified with the whole number, starting with zero.

•	 map (or object): This is a data type where it will have a key and value such as
{name = «Terraform», environment = «development»}. In the map
data type, it can be separated by a comma or a line break.

•	 null: This is a special value that won't have any data type. Terraform will not hold
any value if you set an argument of a resource or module to null.

String, number, and bool data types are also called primitive types. Lists/tuples and maps/
objects are also called complex types, structural types, or collection types.

https://www.terraform.io/docs/configuration/syntax-json.html

242 Terraform Configuration Files

We can do mapping of the data type of the Terraform language to JSON in the
following way:

Figure 8.1 – Terraform data types

Writing the Terraform configuration content in a proper format is very important because
it not only makes it readable for the user, but also helps you to have proper alignment
of the code. So, let's discuss in detail the different style conventions Terraform supports
or follows.

Terraform style conventions
A Terraform configuration file has an idiomatic style convention, which we encourage
users to follow while writing the files. This will help you to maintain consistency across
all the Terraform configuration files. Automatic source code formatting tools will able to
apply the following conventions:

•	 Each nesting level needs two spaces of indentation.

•	 For all the arguments and their values that been defined consecutively at the same
nesting level, the equals sign should be aligned:

ami = "xyz356"

instance_type = "t1.micro"

•	 Inside a block body, when you have both arguments and blocks together, place all
the arguments together at the top and nested blocks should be placed below them.
You can use one blank line to separate both arguments and the blocks.

Understanding Terraform configuration files 243

•	 Use empty lines to separate logical groups of arguments within a block.

•	 For blocks containing both arguments and "meta-arguments" (as defined by the
Terraform language semantics), separate meta-arguments from other arguments
with one blank line. Define meta-argument blocks at the very end and separate
them from other blocks with one blank line:

resource "aws_instance" "Terraform-ec2" {

 count = 3 # meta-argument first

 ami = "xyz139"

 instance_type = "t2.micro"

 network_interface {

 # ...

 }

 lifecycle { # meta-argument block last

 create_before_destroy = true

 }

}

•	 There should be one blank line that will separate top-level blocks from one another.
Even nested blocks should also be separated by one blank line.

You don't need to remember all the Terraform style conventions. We will suggest a
simple way of getting things done: first draft the Terraform configuration file then run
the terraform fmt -recursive command. This command will perform all sorts
of formatting to the Terraform configuration file.

In this section, we learned about the Terraform configuration file, how it is different from
the JSON syntax, the best practices for writing Terraform configuration files, and the
different data types supported by the Terraform language file and JSON. We also discussed
the override file and saw a use case of it. We also discussed style conventions supported
by Terraform.

We will use this learning and try to write a Terraform configuration file for different
cloud providers such as GCP, AWS, and Azure. This will help us understand more about
Terraform configuration files and industry best practices for drafting them.

244 Terraform Configuration Files

Writing Terraform configuration files for GCP
We have learned about writing a Terraform configuration file. Let's concentrate and
try to write a simple Terraform configuration file for the GCP cloud. To have a detailed
explanation about the Terraform configuration file for GCP, we have considered the
Google cloud storage bucket and virtual private connection services of Google.

The following files are present in our GitHub repository under the gcp-files directory,
which you can clone to your local machine and start consuming:

inmishrar@terraform-lab-vm:~/HashiCorp-Infrastructure-
Automation-Certification-Guide/chapter8/gcp-files# tree

.

├── gcp-files

 ├── main.tf

 ├── outputs.tf

 ├── providers.tf

 ├── terraform.tfvars

 └── variables.tf

1 directory, 5 files

In our main.tf file, we have defined the following code block. The code is available in
the GitHub repository of this chapter:

module "terraform-gcp-gcs" {

 source = "github.com/PacktPublishing/HashiCorp-
Infrastructure-Automation-Certification-Guide.git//chapter7/
gcp/gcp-storage-module?ref=v2.0.0"

 gcp_stg_name = "${local.gcp_string}-gcpstg"

 gcp_location = var.gcp_location

 force_destroy = var.force_destroy

 storage_class = var.storage_class

 project = var.project_id

 labels = var.labels

}

...

Writing Terraform configuration files for GCP 245

If you look at the code defined in the main.tf file, you will see we have defined all the
arguments' values as an input variable. You must be wondering why we haven't hardcoded
all the arguments' values. The answer is, we want to make sure that our code is more
reusable so in the future, if we need to update any values, then just by updating the values
of the variables inside the terraform.tfvars file, we can get our service/resource, that
is, the Google cloud storage bucket and VPC, updated with that information.

As an industry best practice, we have created separate files, that is, variables.tf,
terraform.tfvars, outputs.tf, providers.tf, and main.tf, so that if we need
to make any amendment to the files then we should easily be able to do it. Some users keep
all the code in the single file itself, which introduces more complexity and the written code
will be vague so it's better to place them in a separate file. Terraform is intelligent enough
to combine all the .tf and terraform.tfvars files together and perform implicit and
explicit dependency and accordingly execute configuration files in sequence.

The following are some of the key practices that can be followed while writing the
Terraform configuration file for GCP:

•	 In providers.tf, you can mention credentials and provide a filename or file
path; it is recommended to keep this file secure as it will be holding confidential
information that would be used for accessing Google Cloud. You can define the
credentials value in the environment variables so that it will remain secure
or else you can define it in the .gitignore file so that when you push your
Terraform configuration code for GCP, it shouldn't get uploaded to the source
control. In order to set Terraform environment variables for GCP, you can refer to
https://registry.terraform.io/providers/hashicorp/google/
latest/docs/guides/getting_started and to know about .gitignore,
you can read https://git-scm.com/docs/gitignore. You can use the
following code block for the Google provider:

terraform {

 required_version = ">= 1.0"

 required_providers {

 google = {

 version = "~> 3.0"

 }

 }

}

provider "google" {

 project = var.project_name

https://registry.terraform.io/providers/hashicorp/google/latest/docs/guides/getting_started
https://registry.terraform.io/providers/hashicorp/google/latest/docs/guides/getting_started
https://git-scm.com/docs/gitignore

246 Terraform Configuration Files

 region = var.gcp_region

 zone = var.zone

}

•	 Run terraform fmt -recursive so that all the Terraform configuration files
are canonically arranged and become clearer and more readable.

•	 Using the input variables rather than hardcoding any of the values of the arguments
will help you to make an update as and when needed. This will make Terraform
configuration code more reusable.

•	 Passing the input variable values from terraform.tfvars would be the preferred
choice, so that Terraform is easily able to recognize and take values from it during the
runtime itself.

•	 It is recommended to define output in the outputs.tf file so that you can
validate which resource or service was created or updated.

•	 Using more and more modules in the Terraform configuration file is recommended
because when you want to consume the module then the length of the code will be
small enough and you will easily be able to reuse it again and again. In our example,
we have used our Google cloud storage bucket modules that we wrote in Chapter 7,
Terraform Modules.

•	 Use data sources in the Terraform configuration file when you need to read already
existing services or resources in GCP.

•	 Use locals in the Terraform configuration file if you need to use a local variable
within the code.

•	 Use Terraform inbuilt functions in the configuration files to perform some sort of
automation and it will help you to convert the current data into the required format.

•	 To store the Terraform state file, you can store it securely in the Google cloud
storage bucket as it contains some confidential information. For more information
about the Google Cloud Storage encryption, you can refer to https://cloud.
google.com/storage/docs/encryption.

When we execute terraform apply -auto-approve, we can see that Terraform
manages to deploy our Google cloud storage bucket and VPC:

$ terraform apply -auto-approve

random_string.string_name: Creating...

random_string.string_name: Creation complete after 0s
[id=vqrhfe]

https://cloud.google.com/storage/docs/encryption
https://cloud.google.com/storage/docs/encryption

Writing Terraform configuration files for AWS 247

module.terraform-gcp-gcs.google_storage_bucket.gcp-stg:
Creating...

module.terraform-gcp-gcs.google_storage_bucket.gcp-stg:
Creation complete after 3s [id=vqrhfe-gcpstg]

google_compute_network.gcp-network: Creating...

google_compute_network.gcp-network: Creation complete after 13s
[id=projects/terraform-project-2342/global/networks/vqrhfe-vpc]

google_compute_subnetwork.gcp-subnetwork: Creating...

google_compute_subnetwork.gcp-subnetwork: Creation complete
after 14s [id=projects/terraform-project-2342/regions/us-west1/
subnetworks/vqrhfesubnet]

google_compute_address.internal_with_subnet_and_address:
Creating...

google_compute_address.internal_with_subnet_and_address:
Creation complete after 3s [id=projects/terraform-project-2342/
regions/us-west1/addresses/vqrhfeinternal]

Apply complete! Resources: 5 added, 0 changed, 0 destroyed.

Outputs:

compute_address_id = projects/terraform-project-2342/regions/
us-west1/addresses/vqrhfeinternal

gcs_name = vqrhfe-gcpstg

vpc_id = projects/terraform-project-2342/global/networks/
vqrhfe-vpc

From this section, you have now got an idea of how you can draft Terraform configuration
files for GCP and what the recommended approach for writing them is.

We will use this knowledge to try to write Terraform configuration files for AWS and try
to understand if there are any differences.

Writing Terraform configuration files for AWS
How easy is it us to write a Terraform configuration file for the AWS cloud? Writing
a Terraform configuration file for AWS is similar to writing one for GCP. For better
understanding, we are going to write some Terraform configuration code for creating
a VPC and S3 bucket in AWS and keep them in our GitHub repository, that is,
https://github.com/PacktPublishing/HashiCorp-Infrastructure-
Automation-Certification-Guide/tree/master/chapter8/aws-files.

https://github.com/PacktPublishing/Hashicorp-Infrastructure-Automation-Terraform-Associate-Exam-Guide/tree/master/chapter8/aws-files
https://github.com/PacktPublishing/Hashicorp-Infrastructure-Automation-Terraform-Associate-Exam-Guide/tree/master/chapter8/aws-files

248 Terraform Configuration Files

The following files are present in our GitHub repository that you can clone and
practice with:

inmishrar@terraform-lab-vm:~/HashiCorp-Infrastructure-
Automation-Certification-Guide/chapter8/aws-files# tree

.

├── aws-files

 ├── main.tf

 ├── outputs.tf

 ├── providers.tf

 ├── terraform.tfvars

 └── variables.tf

1 directory, 5 files

In our main.tf file, we have written a code block for a VPC modules and an S3 bucket;
you can clone it from our GitHub and practice with it further. The following is the code
present in the main.tf file:

module "terraform-aws-vpc" {

 source = "github.com/PacktPublishing/HashiCorp-
Infrastructure-Automation-Certification-Guide.git//chapter7/
aws/aws-vpc-subnet-module?ref=v1.0.0"

 vpc_name = var.vpc_name

 cidr_block = var.cidr_block

 subnet_name = var.subnet_name

}

resource "aws_s3_bucket" "s3_bucket" {

 bucket = var.bucket_name

 acl = var.bucket_acl

 tags = var.custom_tags

}

In the preceding code block, you will notice we have defined all the arguments' values as
input variables so that it will be easy for us to pass those input variables' values during the
runtime itself.

Writing Terraform configuration files for AWS 249

Important note
Remember the AWS S3 bucket name should always be unique so it is better
if you can use a random string from a Terraform resource code block while
defining its name, so that you receive a unique name for the S3 bucket.

We will not explain the contents of each and every file, that is, variables.tf,
terraform.tfvars, outputs.tf, and providers.tf. You can visit our GitHub
and check the code described in the respective files. There is not much difference; we have
used our previous knowledge of writing a Terraform configuration code block from the
GCP section and followed the same approach while writing the Terraform configuration
code block for AWS.

Once you have all the Terraform configuration code blocks, you can run terraform
init, plan, and apply to check how Terraform is behaving with the defined
configuration file. And finally, we manage to see that our VPC and S3 bucket got
created in AWS, which can be confirmed by looking at the output values:

$ terraform apply -auto-approve

module.terraform-aws-vpc.aws_vpc.terraform-vpc: Creating...

aws_s3_bucket.s3_bucket: Creating...

module.terraform-aws-vpc.aws_vpc.terraform-vpc: Creation
complete after 16s [id=vpc-022e1e388557fcbbc]

module.terraform-aws-vpc.aws_subnet.terraform-subnet:
Creating...

module.terraform-aws-vpc.aws_subnet.terraform-subnet: Creation
complete after 4s [id=subnet-0d9dfb87b52abbb6e]

aws_s3_bucket.s3_bucket: Creation complete after 24s
[id=terraform-s3-bucket01]

Apply complete! Resources: 3 added, 0 changed, 0 destroyed.

Outputs:

bucket_domain_name = terraform-s3-bucket01.s3.amazonaws.com

s3_id = terraform-s3-bucket01

vpc_cidr_block = 10.0.0.0/16

vpc_id = vpc-022e1e388557fcbbc

250 Terraform Configuration Files

The following are some of the key practices that you should follow when you are writing
Terraform configuration files for AWS:

•	 Configure the Terraform backend and store the Terraform state file in our AWS S3
bucket so that it will remain secure as it contains some confidential information.
For more on the encryption of S3 buckets, you can visit https://docs.aws.
amazon.com/AmazonS3/latest/userguide/bucket-encryption.html.

•	 It is always good to use more and more modules rather than writing a resource code
block in the configuration file. Consumption of modules will help to reduce the
length of the code. In our example, we have used the AWS VPC subnet module that
we wrote in Chapter 7, Terraform Modules.

•	 For the authentication to AWS, you can provide AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY values in the system environment variable or you
can store them securely inside a CI/CD pipeline or in the AWS Secrets Manager. For
more details, you can visit https://aws.amazon.com/secrets-manager/.

•	 Terraform's inbuilt function will help you to transform data into the required
format. So, it's good to use the inbuilt function while drafting the Terraform
configuration file for AWS.

•	 Use of locals in the Terraform configuration files should be encouraged if you need
to use variables locally a number of times within the code.

•	 It is always recommended to run the terraform validate and fmt commands
so that the validate command can detect syntax errors and fmt can help you to
arrange the configuration code into canonical format and apply indentation.

From this section, you have got a fair amount of knowledge about drafting a Terraform
configuration file for AWS. We also discussed what industry best practices can be followed
while writing a configuration file for the AWS cloud.

Now, we will be using all our knowledge of Terraform configuration files to try to write
Terraform configuration for the Azure cloud.

Writing Terraform configuration files for Azure
After writing a Terraform configuration file for GCP and AWS, we will use that knowledge
and try to draft Terraform configuration files for Azure. You will notice that it also uses
the same approach; the only difference comes in terms of defining the specific supported
arguments. We explain this by considering an example of writing a configuration file for
Azure VM with the keyvault module and an Azure storage account.

https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-encryption.html
https://aws.amazon.com/secrets-manager/

Writing Terraform configuration files for Azure 251

The following files are present in our GitHub repository; you can directly clone it from there:

inmishrar@terraform-lab-vm:~/HashiCorp-Infrastructure-
Automation-Certification-Guide/chapter8/azure-files# tree

.

├── azure-files

 ├── main.tf

 ├── outputs.tf

 ├── providers.tf

 ├── terraform.tfvars

 └── variables.tf

1 directory, 5 files

In the main.tf file, we have defined the following configuration code; you can copy the
full code from our GitHub repository:

module "terraform-vm" {

 source = "github.com/PacktPublishing/HashiCorp-
Infrastructure-Automation-Certification-Guide.git//chapter7/
azurerm/azurerm-virtual-machine-module?ref=v0.0.1"

 rgname = var.rgname

 location = var.location

 custom_tags = var.custom_tags

 vm_size = var.vm_size

 vm_name = var.vm_name

 admin_username = var.admin_username

 vm_publisher = var.vm_publisher

 vm_offer = var.vm_offer

 vm_sku = var.vm_sku

 vm_version = var.vm_version

 sku_name = var.sku_name

 vnet_name = var.vnet_name

 address_space = var.address_space

 subnet_name = var.subnet_name

 nic_name = var.nic_name

 keyvault_name = var.keyvault_name

252 Terraform Configuration Files

 keyvault_secret_name = var.keyvault_secret_name

}

...

We have followed the same approach that we used in the GCP and AWS sections, such as
defining the input variable in a separate variables.tf file, the expected output in the
outputs.tf file, the input variable values from the terraform.tfvars file, and the
providers, backend, and Terraform version related information in the providers.tf file.

After executing terraform apply, we can see that Terraform manages to provision an
Azure VM, keyvault, and storage account in Azure:

$ terraform apply -auto-approve

random_string.string_name: Refreshing state... [id=lgfkrwh]

module.terraform-vm.random_string.password: Refreshing state...
[id=Q7+ZaG9}t#-EFnQV]

module.terraform-vm.data.azurerm_client_config.current_config:
Refreshing state... [id=2021-01-06 11:01:46.2776914 +0000 UTC]

module.terraform-vm.azurerm_resource_group.rgname: Refreshing
state... [id=/subscriptions/933d9410-c867-4660-bf64-
07cc62c47deb/resourceGroups/Terraform-rg]

module.terraform-vm.azurerm_virtual_network.vnet: Refreshing
state... [id=/subscriptions/933d9410-c867-4660-bf64-
07cc62c47deb/resourceGroups/Terraform-rg/providers/Microsoft.
Network/virtualNetworks/Terraform-vnet]

module.terraform-vm.azurerm_key_vault.key_vault: Refreshing
state... [id=/subscriptions/933d9410-c867-4660-bf64-
07cc62c47deb/resourceGroups/Terraform-rg/providers/Microsoft.
KeyVault/vaults/terraform-vm-keyvault]

module.terraform-vm.azurerm_subnet.subnet: Refreshing state...
[id=/subscriptions/933d9410-c867-4660-bf64-07cc62c47deb/
resourceGroups/Terraform-rg/providers/Microsoft.Network/
virtualNetworks/Terraform-vnet/subnets/Terraform-subnet]

module.terraform-vm.azurerm_key_vault_secret.key_vault_
secret: Refreshing state... [id=https://terraform-vm-
keyvault.vault.azure.net/secrets/Terraform-vm-password/
f53f55be408f4863b8e67e3b7fb13dfb]

module.terraform-vm.azurerm_network_interface.nic: Refreshing
state... [id=/subscriptions/933d9410-c867-4660-bf64-
07cc62c47deb/resourceGroups/Terraform-rg/providers/Microsoft.
Network/networkInterfaces/Terraform-nic]

Writing Terraform configuration files for Azure 253

module.terraform-vm.azurerm_Windows_virtual_machine.virtual_

machine: Refreshing state... [id=/subscriptions/933d9410-c867-
4660-bf64-07cc62c47deb/resourceGroups/Terraform-rg/providers/
Microsoft.Compute/virtualMachines/Terraform-vm]

azurerm_storage_account.stg_account: Creating...

azurerm_storage_account.stg_account: Creation complete after
35s [id=/subscriptions/933d9410-c867-4660-bf64-07cc62c47deb/
resourceGroups/Terraform-rg/providers/Microsoft.Storage/
storageAccounts/lgfkrwhazurestg]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

Outputs:

stg_id = /subscriptions/933d9410-c867-4660-bf64-07cc62c47deb/
resourceGroups/Terraform-rg/providers/Microsoft.Storage/
storageAccounts/lgfkrwhazurestg

stg_name = lgfkrwhazurestg

vm_id = /subscriptions/933d9410-c867-4660-bf64-07cc62c47deb/
resourceGroups/Terraform-rg/providers/Microsoft.Compute/
virtualMachines/Terraform-vm

vm_name = Terraform-vm

vm_private_ip = 10.1.1.4

The following are some of the key best practices that we can consider while writing a
Terraform configuration for Azure:

•	 You should define the Terraform backend and store the Terraform state file into
Azure Blob Storage so that the state file remains secure. For further information
about the encryption method of Blob storage, you can read https://docs.
microsoft.com/en-us/azure/storage/common/storage-service-
encryption.

•	 Create separate .tf files so that it will be easy for you to manage and make
amendments to the files.

•	 We encourage users to consume modules while writing the Terraform configuration
file for Azure. In our case, we used the Azure VM module that we wrote in
Chapter7, Terraform Modules. Likewise, we can write modules and consume
them while writing Terraform configuration files.

https://docs.microsoft.com/en-us/azure/storage/common/storage-service-encryption
https://docs.microsoft.com/en-us/azure/storage/common/storage-service-encryption
https://docs.microsoft.com/en-us/azure/storage/common/storage-service-encryption

254 Terraform Configuration Files

•	 For the authentication, we can use several methods. The best would be defining
Client_id, Client_secret, Tenant_id, and Subscription_id in the
system environment variables or they can be defined in CI/CD pipeline variables so
that they will remain secure. For further information about different authentication
methods, you can read the Integrating with Azure section in Chapter 5, Terraform CLI.

•	 For troubleshooting, it is good to see different syntax errors and for that, it's better
to run the terraform validate command, which will show you whether there
is any sort of syntax error in the Terraform configuration files.

•	 You should use the terraform fmt command so that the content inside the
configuration file becomes idiomatic or canonically arranged; that will make
configuration files readable.

•	 You can define the expected output in the outputs.tf file so that you can check
which resources/services in Azure were created or updated.

•	 It's always good to use the Terraform-provided inbuilt function so that data can be
formatted to the desired one, so that it can be consumed.

From this section of the chapter, you have got an understanding of Terraform configuration
files for Azure. We also discussed the best practices that we can follow while writing
Terraform configuration files for Azure.

Summary
From this chapter, you have received an understanding of the Terraform configuration
files, how they are different from the JSON syntax, and the different data types supported
by the Terraform language file and the JSON file. Moving further, we also discussed how
we can draft Terraform configuration for major cloud providers of GCP, AWS, and Azure.
We also learned about some of the best practices that can be followed while writing
Terraform configuration files.

In the next chapter, we will discuss Terraform stacks, where we will learn what a
Terraform stack is and how we can create a Terraform stack for the different cloud
platforms of GCP, AWS, and Azure. This will help you to provision a very large
enterprise infrastructure.

Questions 255

Questions
The answers to the following questions can be found in the Assessments section at the end
of this book:

1.	 How many spaces of indentation are recommended for each nesting level in the
Terraform configuration file?

A. One

B. Two

C. Three

D. Four

2.	 With which of the following ways can you place comments in the Terraform
configuration file?

A. #

B. !

C. </

D. />

3.	 Which command can be dedicatedly used to perform a syntax check of the
Terraform configuration file?

A. terraform validate

B. terraform syntax

C. terraform fmt

D. terraform plan

4.	 Suppose you have written a Terraform configuration file for Azure that will
provision a storage account in Azure. How can you validate the name of the
storage account that was provisioned?

A. Define output values in the outputs.tf file.

B. Manually go inside the state file and look for those specific values.

C. Run the terraform show command.

D. Run the terraform apply command.

256 Terraform Configuration Files

5.	 You have written a Terraform configuration file where you need to take variable
values as input. Which of the following would be your preference?

A. terraform.tf

B. terraform.txt

C. terraform.tfvars

D. terraform.vars

Further reading
You can check out the following links for more information about the topics that were
covered in this chapter:

•	 Terraform configuration files: https://www.terraform.io/docs/
configuration/syntax/index.html

•	 Terraform JSON syntax: https://www.terraform.io/docs/
configuration/syntax-json.html

•	 Terraform data types: https://www.terraform.io/docs/
configuration/expressions/types.html

•	 Terraform expressions: https://www.terraform.io/docs/
configuration/expressions/index.html

https://www.terraform.io/docs/configuration/syntax/index.html
https://www.terraform.io/docs/configuration/syntax/index.html
https://www.terraform.io/docs/configuration/syntax-json.html
https://www.terraform.io/docs/configuration/syntax-json.html
https://www.terraform.io/docs/configuration/expressions/types.html
https://www.terraform.io/docs/configuration/expressions/types.html
https://www.terraform.io/docs/configuration/expressions/index.html
https://www.terraform.io/docs/configuration/expressions/index.html

9
Understanding

Terraform Stacks
In the previous chapter, we started our journey by understanding the Terraform
configuration file, and we explored how Terraform language files, which are human-
readable, differ from JSON files, which are machine-readable. Moving further, we saw the
different data types supported by both JSON and Terraform files. We also discussed industry
best practices for writing Terraform configuration files with major cloud providers, such as
Google Cloud Platform (GCP), Azure, and Amazon Web Services (AWS).

In this chapter, we will discuss how we can handle a large enterprise infrastructure
deployment, upgrading, and so on using Terraform configuration code. We will be
discussing infrastructure deployment to GCP, Azure, and AWS using a Terraform stack.
In this chapter, you will gain a thorough understanding of Terraform stacks and modules
and how stacks can be used effectively for infrastructure deployment and updates.

The following topics will be covered in this chapter:

•	 Understanding Terraform stacks

•	 Writing a Terraform stack for GCP

•	 Writing a Terraform stack for AWS

•	 Writing a Terraform stack for Azure

258 Understanding Terraform Stacks

Technical requirements
To follow along with this chapter, you need to have an understanding of the Terraform
CLI and its workflow. You need to have a good command of writing Terraform modules
and other Terraform configuration files. You can find all the code used in this chapter at
https://github.com/PacktPublishing/HashiCorp-Infrastructure-
Automation-Certification-Guide/tree/master/chapter9.

Check out the following link to see the Code in Action video:

https://bit.ly/3yC0UHG

Understanding Terraform stacks
Suppose you are working with one of your colleagues, John. You and John have been
assigned to deploy 50 virtual machines, 20 virtual networks, 10 web apps, and 5 function
apps in Azure. You have many questions about this infrastructure deployment in Azure,
such as how you will provision this whole infrastructure, what will be the easiest way
to perform the deployment, and how you would you scale this infrastructure up or
down if, in the near future, the addition or deletion of resources needs to be performed.
In response to these questions, John says that you should be able to use Terraform
configuration files for the deployment and management of the complete infrastructure. He
also suggests writing Terraform modules for each resource and getting them published to
GitHub or Terraform Registry; then, later on, stacks of the infrastructure can be prepared
by referencing the modules. Preparing these stacks for infrastructure provisioning and
management would be the best way to go, John says. Terraform stacks are the result of
one or more modules being combined with environment-specific input parameter values.
We already know that Terraform modules are written in such a way that they can be
consumed again and again. In the same way, we can bring modules together and form a
stack that will help us manage large enterprise infrastructures, such as the one that you
and John are building:

Figure 9.1 – Terraform stacks

https://github.com/PacktPublishing/HashiCorp-Infrastructure-Automation-Certification-Guide/tree/master/chapter9
https://github.com/PacktPublishing/HashiCorp-Infrastructure-Automation-Certification-Guide/tree/master/chapter9
https://bit.ly/3yC0UHG

Writing Terraform stacks for GCP 259

That should have given you a basic understanding of what exactly Terraform stack is; you
will get an even better understanding of it when we discuss them in relation to GCP, AWS,
and Azure.

Writing Terraform stacks for GCP
To get a better understanding of Terraform stacks for GCP, let's try to write some GCP
modules and prepare a stack using them. We will prepare some modules, names vpc,
subnet, route, and storage, and using them, we will show you how you can prepare
a stack. Along with it, we will try to discuss the code that has been written while drafting
these modules. You can find all our code at our GitHub repository: https://github.
com/PacktPublishing/HashiCorp-Infrastructure-Automation-
Certification-Guide/tree/master/chapter9/gcp/modules. You can see
the following files present inside the gcp directory of our GitHub:

inmishrar@terraform-vm:~/HashiCorp-Infrastructure-Automation-
Certification-Guide/chapter9# tree

.

└── gcp

 ├── modules

 │ ├── route

 │ │ ├── main.tf

 │ │ ├── outputs.tf

 │ │ └── variables.tf

 │ ├── storage

 │ │ ├── main.tf

 │ │ ├── outputs.tf

 │ │ └── variables.tf

 │ ├── subnet

 │ │ ├── main.tf

 │ │ ├── outputs.tf

 │ │ └── variables.tf

 │ └── vpc

 │ ├── main.tf

 │ ├── outputs.tf

 │ └── variables.tf

https://github.com/PacktPublishing/Hashicorp-Infrastructure-Automation-Terraform-Associate-Exam-Guide/tree/master/chapter9/gcp/modules
https://github.com/PacktPublishing/Hashicorp-Infrastructure-Automation-Terraform-Associate-Exam-Guide/tree/master/chapter9/gcp/modules
https://github.com/PacktPublishing/Hashicorp-Infrastructure-Automation-Terraform-Associate-Exam-Guide/tree/master/chapter9/gcp/modules

260 Understanding Terraform Stacks

 ├── stacks

 │ ├── main.tf

 │ ├── outputs.tf

 │ └── variables.tf

 └── stacks_of_stacks

 ├── main.tf

 ├── providers.tf

 ├── terraform.tfvars

 └── variables.tf

Let's discuss the code that we had defined while creating the vpc module; in main.tf,
the following code is present:

resource "google_compute_network" "vpc" {

 name = var.vpc_name

 mtu = var.vpc_mtu

 description = var.vpc_description

 routing_mode = var.vpc_routing_mode

 project = var.project_id

 delete_default_routes_on_create = var.delete_default_routes_
on_create

 auto_create_subnetworks = var.auto_create_subnetworks

}

To draft the vpc module, we need to provide some of the arguments from Terraform
Registry: https://registry.terraform.io/providers/hashicorp/
google/latest/docs/resources/compute_network. We also need to provide
their respective variables, declared in the variables.tf file, which includes the
following code:

variable "project_id" {

 type = string

 description = "The ID of the project where this VPC will
be created"

}

variable "vpc_name" {

 type = string

https://registry.terraform.io/providers/hashicorp/google/latest/docs/resources/compute_network
https://registry.terraform.io/providers/hashicorp/google/latest/docs/resources/compute_network

Writing Terraform stacks for GCP 261

 description = "The name of the network being created"

}

variable "vpc_routing_mode" {

 type = string

 default = "GLOBAL"

 description = "The network routing mode (default 'GLOBAL')"

}

variable "vpc_description" {

 type = string

 description = "An optional description of this resource.
The resource must be recreated to modify this field."

 default = ""

}

variable "auto_create_subnetworks" {

 type = bool

 description = "When set to true, the network is created in
'auto subnet mode' and it will create a subnet for each region
automatically across the 10.128.0.0/9 address range. When set
to false, the network is created in 'custom subnet mode' so
the user can explicitly connect subnetwork resources."

 default = false

}

variable "delete_default_routes_on_create" {

 type = bool

 description = "If set, ensure that all routes within
the network specified whose names begin with 'default-route'
and with a next hop of 'default-internet-gateway' are deleted"

 default = false

}

variable "vpc_mtu" {

 type = number

 description = "The network MTU. Must be a value between 1460
and 1500 inclusive. If set to 0 (meaning MTU is unset), the
network will default to 1460 automatically."

 default = 0

}

262 Understanding Terraform Stacks

We defined all the argument values as input variables so that our code would be reusable,
and we should easily be able to pass the respective input variable values during runtime
for any file ending with .tfvars.

In the outputs.tf file, we kept following code block to help us to export any output
during the Terraform execution:

output "vpc_id" {

 value = google_compute_network.vpc.id

}

output "vpc_self_link" {

 value = google_compute_network.vpc.self_link

}

output "vpc_name" {

 value = google_compute_network.vpc.name

}

You can refer to the Terraform documentation of vpc at https://registry.
terraform.io/providers/hashicorp/google/latest/docs/resources/
compute_network to get an idea of the attributes that can be exported from the
vpc resource.

If you look at the vpc module code, you'll see we kept it short and sweet, without adding
any complexity to it. So, we believe you should be able to write the vpc module on
your own.

Moving on, let's try to understand the code block present inside the subnet module.
In the main.tf file, the following code is present:

locals {

 subnets = {

 for x in var.subnets :

 "${x.subnet_region}/${x.subnet_name}" => x

 }

}

/**

 Subnet Code

 ***/

resource "google_compute_subnetwork" "subnet" {

 for_each = local.subnets

https://registry.terraform.io/providers/hashicorp/google/latest/docs/resources/compute_network
https://registry.terraform.io/providers/hashicorp/google/latest/docs/resources/compute_network
https://registry.terraform.io/providers/hashicorp/google/latest/docs/resources/compute_network

Writing Terraform stacks for GCP 263

 name = each.value.subnet_name

 ip_cidr_range = each.value.subnet_ip

 region = each.value.subnet_region

 private_ip_google_access = lookup(each.value, "subnet_
private_access", "false")

 dynamic "log_config" {

 for_each = lookup(each.value, "subnet_flow_
logs", false) ? [{

 aggregation_interval = lookup(each.value, "subnet_flow_
logs_interval", "INTERVAL_5_SEC")

 flow_sampling = lookup(each.value, "subnet_flow_
logs_sampling", "0.5")

 metadata = lookup(each.value, "subnet_flow_
logs_metadata", "INCLUDE_ALL_METADATA")

 }] : []

 content {

 aggregation_interval = log_config.value.aggregation_
interval

 flow_sampling = log_config.value.flow_sampling

 metadata = log_config.value.metadata

 }

 }

 network = var.vpc_name

 project = var.project_id

 description = lookup(each.value, "description", null)

 secondary_ip_range = [

 for i in range(

 length(

 contains(

 keys(var.secondary_ranges), each.value.subnet_
name) == true

 ? var.secondary_ranges[each.value.subnet_name]

 : []

)) :

 var.secondary_ranges[each.value.subnet_name][i]

]

}

264 Understanding Terraform Stacks

Do you find the subnet module to be a little bit complex? We do too! You can see that in
that code block, we used some of the key items of Terraform stacks, such as these:

•	 locals

•	 for loops

•	 for_each loops

•	 lookup functions

•	 length functions

•	 contains functions

•	 Dynamic iteration

We discussed all these items in our previous chapters, so we will not discuss them here.
We encourage you to go back and read Chapter 4, Deep Dive into Terraform, to understand
their use.

You might be wondering why we have written such complex code for the subnet
module. The benefit of having this code is as follows: suppose you wish to deploy
hundreds of subnets within a VPC. You could easily do so by just providing the respective
subnet argument input values for Terraform to read from any file ending with .tfvars
or .tfvars.json. To provide the flexibility of defining arguments and iterations in our
code, we have used dynamic iteration and for_each and for loops.

Similarly, we wrote code blocks for route and storage modules. You can refer to and
get them directly from our GitHub repository, so we will not explain them here.

Now the question is, how can we consume these modules? We have created a directory
named stacks where we have included all the necessary code. In the main.tf file,
you can see the following:

module "vpc" {

 source = "github.com/
PacktPublishing/HashiCorp-Infrastructure-Automation-
Certification-Guide.git//chapter9/gcp/modules/vpc?ref=v1.12"

 vpc_name = var.vpc_name

 vpc_mtu = var.vpc_mtu

 vpc_description = var.vpc_description

 vpc_routing_mode = var.vpc_routing_mode

 project_id = var.project_id

 delete_default_routes_on_create = var.delete_default_routes_
on_create

Writing Terraform stacks for GCP 265

 auto_create_subnetworks = var.auto_create_subnetworks

}

module "subnet" {

 source = "github.com/PacktPublishing/HashiCorp-
Infrastructure-Automation-Certification-Guide.git//chapter9/
gcp/modules/subnet?ref=v1.13"

 project_id = var.project_id

 vpc_name = var.vpc_name

 subnets = var.subnets

 secondary_ranges = var.secondary_ranges

 depends_on = [module.vpc.id]

}

module "routes" {

 source = "github.com/PacktPublishing/HashiCorp-
Infrastructure-Automation-Certification-Guide.git//chapter9/
gcp/modules/route?ref=v1.10"

 project_id = var.project_id

 vpc_name = var.vpc_name

 routes = var.routes

 depends_on = [module.vpc.id]

}

module "storage" {

 source = "github.com/PacktPublishing/HashiCorp-
Infrastructure-Automation-Certification-Guide.git//chapter9/
gcp/modules/storage?ref=v1.11"

 stg_name = var.stg_name

 location = var.location

 force_destroy = var.force_destroy

 storage_class = var.storage_class

 project_id = var.project_id

 labels = var.labels

}

By now, you should understand what stacks are: put simply, they are collections of
modules defined in a single .tf file or multiple .tf files inside the same directory.

266 Understanding Terraform Stacks

While calling a module, if the input variables values in the resource or module code block
is variable name then that variable name should be defined as an input argument in the
new module code block. Now this input argument in the module code block can take
either value or again we can define variable. For example, in the preceding code block,
we wrote the storage module. You can see stg_name on the left side of the = sign,
which is acting as an argument, and on the right side, we define it again as a variable,
var.stg_name. Now, var.stg_name can be passed either from the CLI or from
any file ending with .tfvars or .auto.tfvars.

The benefits of creating stacks are that you get better flexibility in defining code blocks,
it reduces the length and complexity of the Terraform configuration code, and it makes
modules reusable.

Now in the gcp directory, you can see that there is a directory with the name stacks_
of_stacks. You must be wondering why we created that directory and what exactly we
defined inside it. In the main.tf file, we have the following code:

module "gcp_stacks" {

 source = "../stacks"

 zone = var.zone

 region = var.region

 project_name = var.project_name

 vpc_name = var.vpc_name

 vpc_mtu = var.vpc_mtu

 vpc_description = var.vpc_description

 vpc_routing_mode = var.vpc_routing_mode

 project_id = var.project_id

 delete_default_routes_on_create = var.delete_default_routes_
on_create

 auto_create_subnetworks = var.auto_create_subnetworks

 subnets = var.subnets

 secondary_ranges = var.secondary_ranges

 routes = var.routes

 stg_name = var.stg_name

 location = var.location

 force_destroy = var.force_destroy

 storage_class = var.storage_class

 labels = var.labels

}

Writing Terraform stacks for GCP 267

In the preceding code block, you can see that module "gcp_stacks" been referenced
as a module only. Here, we defined all the arguments that you can see on the left side of
the = sign, which are basically declared variables in our earlier-defined variables.tf
file, present inside the stacks folder. While creating stacks of stacks, we need to provide
source = "<Local Path>"; that is why we defined source = "../stacks":
so that the module will be able to take all the code present inside the stacks directory.
This stack of stacks will help to reduce the declaration of the common variables and the
code complexity.

We are all set now. Let's see what happens when we execute terraform init, plan,
and apply. The following is the code snippet we get when we run the terraform
init command:

$ terraform init

Initializing modules...

- gcp_stacks in ..\stacks

Downloading github.com/PacktPublishing/HashiCorp-
Infrastructure-Automation-Certification-Guide.git?ref=v1.10 for
gcp_stacks.routes...

- gcp_stacks.routes in .terraform\modules\gcp_stacks.routes\
chapter9\gcp\modules\route

Downloading github.com/PacktPublishing/HashiCorp-
Infrastructure-Automation-Certification-Guide.git?ref=v1.11 for
gcp_stacks.storage...

- gcp_stacks.storage in .terraform\modules\gcp_stacks.storage\
chapter9\gcp\modules\storage

Downloading github.com/PacktPublishing/HashiCorp-
Infrastructure-Automation-Certification-Guide.git?ref=v1.13 for
gcp_stacks.subnet...

- gcp_stacks.subnet in .terraform\modules\gcp_stacks.subnet\
chapter9\gcp\modules\subnet

Downloading github.com/PacktPublishing/HashiCorp-
Infrastructure-Automation-Certification-Guide.git?ref=v1.12 for
gcp_stacks.vpc...

- gcp_stacks.vpc in .terraform\modules\gcp_stacks.vpc\chapter9\
gcp\modules\vpc

Initializing the backend...

Initializing provider plugins...

- Finding hashicorp/google versions matching "~> 3.0"...

268 Understanding Terraform Stacks

- Installing hashicorp/google v3.53.0...

- Installed hashicorp/google v3.53.0 (signed by HashiCorp)

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running terraform plan to see
any changes that are required for your infrastructure. All Terraform commands should
now work.

If you ever set or change modules or backend configuration for Terraform, rerun this
command to reinitialize your working directory. If you forget, other commands will
detect it and remind you to do so if necessary.

After running terraform init, we can see that it downloads all the modules from our
GitHub repository. If we go ahead and run terraform plan and use apply, it will
provision vpc, subnet, route, and storage in GCP. The following is the code snippet
we get when we run terraform apply:

$ terraform apply

An execution plan has been generated and is shown below.

Resource actions are indicated with the following symbols:

 + create

Terraform will perform the following actions: #module.
gcp_stacks.module.routes.google_compute_route.route["egress-
internet"] will be created

 + resource "google_compute_route" "route" {

 + description = "route through IGW to access
internet"

 + dest_range = "0.0.0.0/0"

 + id = (known after apply

. . .

 }

 . . .

 #

Plan: 6 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?

Terraform will perform the actions described above. Only 'yes'
will be accepted to approve.

Writing Terraform stacks for AWS 269

We have written Terraform modules for GCP, and we have brought multiple modules
together to form stacks. We also learned how we can prepare stacks of stacks. With this,
we can easily write Terraform modules and consume them as and when required for our
GCP infrastructure.

Will there be any difference in writing Terraform stacks for AWS? In our next section,
we will write Terraform modules and prepare stacks with those modules for AWS.

Writing Terraform stacks for AWS
We have learned how to develop Terraform modules for GCP. We will use that learning
and try to write some AWS modules and combine those modules to prepare stacks. For
better understanding, it's best to write some simple modules for AWS. We have written
simple modules for vpc, subnet, and s3_bucket. You can find all the code in our
GitHub repository, inside the aws directory of chapter9. Here is the directory structure:

.

└── aws

 ├── modules

 │ ├── s3

 │ │ ├── main.tf

 │ │ ├── outputs.tf

 │ │ └── variables.tf

 │ ├── vpc-subnet

 │ │ ├── main.tf

 │ │ ├── outputs.tf

 │ │ └── variables.tf

 ├── stacks

 │ ├── main.tf

 │ ├── outputs.tf

 │ └── variables.tf

 └── stacks_of_stacks

 ├── main.tf

 ├── providers.tf

 ├── terraform.tfvars

 └── variables.tf

270 Understanding Terraform Stacks

We are not discussing all the code, just quickly demonstrating what we have written for
preparing stacks.

In the stacks directory, there is a main.tf file that contains the following code:

module "vpc" {

 source = "github.com/
PacktPublishing/HashiCorp-Infrastructure-Automation-
Certification-Guide.git//chapter9/aws/modules/vpc-
subnet?ref=v1.14"

 cidr_block = var.cidr_block

 instance_tenancy = var.instance_tenancy

 enable_dns_hostnames = var.enable_dns_hostnames

 enable_dns_support = var.enable_dns_support

 enable_classiclink = var.enable_classiclink

 enable_classiclink_dns_support = var.enable_classiclink_
dns_support

 assign_generated_ipv6_cidr_block = var.assign_generated_ipv6_
cidr_block

 vpc_name = var.vpc_name

 custom_tags = var.custom_tags

 subnet_cidr = var.subnet_cidr

 subnet_name = var.subnet_name

}

module "s3" {

 source = "github.com/PacktPublishing/HashiCorp-
Infrastructure-Automation-Certification-Guide.git//chapter9/
aws/modules/s3?ref=v1.14"

 create_bucket = var.create_bucket

 bucket_name = var.bucket_name

 bucket_acl = var.bucket_acl

 force_destroy = var.force_destroy

 acceleration_status = var.acceleration_status

 custom_tags = var.custom_tags

 depends_on = [module.vpc.id]

}

Writing Terraform stacks for AWS 271

The preceding code is the normal way of defining stacks. What if we want to reduce the
length of the code? Well, we can achieve that by building stacks of stacks. For this, there
is the following code in the main.tf file of the stacks_of_stacks directory:

module "aws_stacks" {

 source = "../stacks"

 cidr_block = var.cidr_block

 instance_tenancy = var.instance_tenancy

 enable_dns_hostnames = var.enable_dns_hostnames

 enable_dns_support = var.enable_dns_support

 enable_classiclink = var.enable_classiclink

 enable_classiclink_dns_support = var.enable_classiclink_
dns_support

 assign_generated_ipv6_cidr_block = var.assign_generated_ipv6_
cidr_block

 vpc_name = var.vpc_name

 custom_tags = var.custom_tags

 subnet_name = var.subnet_name

 subnet_cidr = var.subnet_cidr

 create_bucket = var.create_bucket

 bucket_name = var.bucket_name

 bucket_acl = var.bucket_acl

 force_destroy = var.force_destroy

 acceleration_status = var.acceleration_status

}

When we prepare stacks of stacks, we need to provide the source path of the local
directory. This method of preparing stacks of stacks is very beneficial when we need to
deploy many environments, such as dev, test, and prod environments, that have the same
infrastructure that is already defined in the stacks.

We now run terraform init. That will open and read all the .tf files containing
defined modules and start downloading the modules and placing them in the
.terraform directory. As you can see here, after running terraform init,
Terraform initializes the modules and downloads them:

$ terraform init

Initializing modules...

- aws_stacks in ..\stacks

272 Understanding Terraform Stacks

Downloading github.com/PacktPublishing/HashiCorp-
Infrastructure-Automation-Certification-Guide.git?ref=v1.14 for
aws_stacks.s3...

- aws_stacks.s3 in .terraform\modules\aws_stacks.s3\chapter9\
aws\modules\s3

Downloading github.com/PacktPublishing/HashiCorp-
Infrastructure-Automation-Certification-Guide.git?ref=v1.14 for
aws_stacks.vpc...

- aws_stacks.vpc in .terraform\modules\aws_stacks.vpc\chapter9\
aws\modules\vpc-subnet

Initializing the backend...

Initializing provider plugins...

- Using previously-installed hashicorp/aws v3.25.0

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running
"terraform plan" to see any changes that are required for your
infrastructure. All Terraform commands should now work.

If you ever set or change modules or backend configuration
for Terraform, rerun this command to reinitialize your working
directory. If you forget, other commands will detect it and
remind you to do so if necessary.

You can run terraform plan after terraform init, which will show you all the
resources that it is going to create or update. If you wish to get infrastructure deployed,
then you can run terraform apply -auto-approve. Terraform will deploy or
update infrastructure. In our case, as you can see, Terraform created vpc with subnet
and s3_bucket in AWS:

$ terraform apply -auto-approve

module.aws_stacks.module.vpc.aws_vpc.vpc: Creating...

module.aws_stacks.module.s3.aws_s3_bucket.s3_bucket[0]:
Creating...

module.aws_stacks.module.vpc.aws_vpc.vpc: Creation complete
after 16s [id=vpc-002c1a898b6caa9dc]

module.aws_stacks.module.vpc.aws_subnet.subnet: Creating...

module.aws_stacks.module.vpc.aws_subnet.subnet: Creation
complete after 4s [id=subnet-0b87c63201112d0b1]

module.aws_stacks.module.s3.aws_s3_bucket.s3_bucket[0]:
Creation complete after 29s [id=tf-s3-bucket32342]

Apply complete! Resources: 3 added, 0 changed, 0 destroyed.

Writing Terraform stacks for Azure 273

One of the main challenges when preparing stacks of stacks is that you may not be able to
define or validate the specific output from a stack because it will consist of many different
modules combined and defined as an argument.

We learned about creating modules for AWS and combining those modules to prepare
stacks and stacks of stacks. So, now it should be easy for you to write a module and
prepare stacks for AWS. Let's use this learning and try to write modules and prepare
stacks for Azure.

Writing Terraform stacks for Azure
Earlier, we discussed writing Terraform modules and preparing stacks using those
modules for AWS and GCP. Now the question is, will there be any difference in writing
modules and preparing stacks for Azure? In answer to that question, no, there is no
major difference: if you followed and understood the earlier processes of creating stacks
and modules for AWS and GCP, you can use the same knowledge to prepare stacks and
modules. Let's see how we can prepare modules for Azure Storage and Azure App Service.
We have placed all our code into our GitHub repository in the following directory:

.

└── azure

 ├── modules

 │ ├── storage

 │ │ ├── main.tf

 │ │ ├── outputs.tf

 │ │ └── variables.tf

 │ ├── webapp

 │ │ ├── main.tf

 │ │ ├── outputs.tf

 │ │ └── variables.tf

 ├── stacks

 │ ├── main.tf

 │ ├── outputs.tf

 │ └── variables.tf

 └── stacks_of_stacks

 ├── main.tf

 ├── providers.tf

 ├── terraform.tfvars

 └── variables.tf

274 Understanding Terraform Stacks

We will not be discussing all the code; you can refer to our GitHub and copy the code
directly from there to gain a full understanding of it.

After writing the module code for storage and webapp, we combined both of the
prepared modules and made a stack. Furthermore, to reduce the code length and instead
of declaring variables multiple times, we prepared stacks of stacks and kept all the code in
the stacks_of_stacks directory.

The following code is present in the main.tf file of the stacks_of_stacks directory:

module "azure_stacks" {

 source = "../stacks"

 create_resource_group = var.create_resource_group

 resource_group_name = var.resource_group_name

 location = var.location

 tags = var.tags

 app_config = var.app_config

 ip_address = var.ip_address

 app_settings = var.app_settings

 connection_string = var.connection_string

 asp_config = var.asp_config

 storage_account_name = var.storage_account_name

 account_kind = var.account_kind

 skuname = var.skuname

 allow_blob_public_access = var.allow_blob_public_access

 soft_delete_retention = var.soft_delete_retention

 containers_list = var.containers_list

}

If you observe the main.tf file present in the stacks directory, you'll see that we
defined many input variables and declared all the variables in the variables.tf file.
The declared variables will act as arguments, which will be defined on the left-hand side
of the = sign in the main.tf file of stacks_of_stacks.

We passed all the required input variables using the terraform.tfvars file, which is
also present inside the stacks_of_stacks directory.

Writing Terraform stacks for Azure 275

When we run terraform init, Terraform downloads the storage and webapp
modules from our GitHub repository and places them inside the .terraform folder,
which you can see in the following code snippet:

$ terraform init

Initializing modules...

Downloading github.com/PacktPublishing/HashiCorp-
Infrastructure-Automation-Certification-Guide.git?ref=v1.15 for
azure_stacks.storage...

- azure_stacks.storage in .terraform\modules\azure_stacks.
storage\chapter9\azure\modules\storage

Downloading github.com/PacktPublishing/HashiCorp-
Infrastructure-Automation-Certification-Guide.git?ref=v1.15 for
azure_stacks.webapp...

- azure_stacks.webapp in .terraform\modules\azure_stacks.
webapp\chapter9\azure\modules\webapp

Initializing the backend...

Initializing provider plugins...

- Using previously-installed hashicorp/azurerm v2.56.0

- Using previously-installed hashicorp/random v3.0.1

The following providers do not have any version constraints in
configuration, so the latest version was installed.

To prevent automatic upgrades to new major versions
that may contain breaking changes, we recommend adding
version constraints in a required_providers block in your
configuration, with the constraint strings suggested below.

* hashicorp/random: version = "~> 3.0.1"

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running
"terraform plan" to see any changes that are required for your
infrastructure. All Terraform commands should now work.

If you ever set or change modules or backend configuration
for Terraform, rerun this command to reinitialize your working
directory. If you forget, other commands will detect it and
remind you to do so if necessary.

276 Understanding Terraform Stacks

In order to provision webapp and storage in Azure, we can run terraform apply
-auto-approve and see that webapp and storage are provisioned in Azure, as
shown in the following figure:

Figure 9.2 – Azure resources

From this section of the chapter, you should have gained an understanding of how to
write Terraform modules and prepare stacks from those modules in Azure. You should
have understood how large and repeated enterprise infrastructure in Azure can easily be
provisioned or updated using Terraform stacks.

Summary
In this chapter, we discussed Terraform stacks. We learned about what Terraform stacks
are and how we can create Terraform stacks for different clouds, such as GCP, AWS, and
Azure. This should help you to provision or update a very large enterprise infrastructure
using Terraform IaC. In our next chapter, we are going to discuss Terraform Cloud
and the enterprise version of Terraform. We will look at how Terraform Cloud and the
enterprise product help enterprise customers and we will discover the benefits that an
enterprise customer can get from them.

Questions 277

Questions
1.	 Which of the following is the best option for managing a large enterprise

infrastructure environment using Terraform?

A. Data sources
B. Stacks and modules
C. Resources
D. Provisioners

2.	 Suppose you have created a Terraform stack and you can see that the indentation of
the Terraform code is not in the correct format. Which of the following Terraform
commands would you run?

A. terraform sources

B. terraform init

C. terraform fmt -recursive

D. terraform plan

3.	 Which command needs to be executed to download Terraform modules from the
Github source?

A. terraform init

B. terraform syntax

C. terraform fmt

D. terraform plan

4.	 You created a Terraform stack containing the following code

module "azure_stacks" {

 source = "../stacks"

 resource_group_name = var.resource_group_name

...

You executed terraform plan and see that it is prompting you to provide the
following values:

$ terraform plan

var.resource_group_name

 A container that holds related resources for an Azure
solution

 Enter a value:

278 Understanding Terraform Stacks

What could you have done to prevent it from prompting during runtime?

A. Defined resource_group_name variable value into any file ending with
.tfvars,.auto.tfvars or.tfvars.json

B. Manually provided resource_group_name value during runtime

C. Hardcoded resource_group_name = "Terraform-test-rg"

5.	 D. Run the terraform validate command

6.	 Suppose you're consuming the module and forgot to mention the version in the
module code block. What could be a major problem with not defining the version
in the module code?

A. Terraform will always reference the latest version of the modules.

B. Terraform code may fail when we run plan or apply if previously defined
module code block is not compatible with the latest version.

C.Terraform will upgrade the infrastructure as per the latest version of the modules.

D. Terraform will run terraform apply automatically.

Further reading
You can check out the following links for more information about the topics that were
covered in this chapter:

•	 AWS Modules: https://github.com/terraform-aws-modules

•	 Azure Modules: https://github.com/terraform-azurerm-modules

•	 Google Modules: https://github.com/terraform-google-modules

https://github.com/terraform-aws-modules
https://github.com/terraform-azurerm-modules
https://github.com/terraform-google-modules

10
Terraform Cloud

and Terraform
Enterprise

In our previous chapter, we discussed how we can handle a large-enterprise infrastructure
deployment and its updates—and other tasks—using Terraform configuration code. We
saw how we can effectively write Terraform modules for major cloud providers such as
Google Cloud Platform (GCP), Azure, and Amazon Web Services (AWS). Later on in
the chapter, we saw how we can club multiple modules together to prepare a composite
module also known as a stack. Using that stack, we managed to provision a large-enterprise
infrastructure.

In this chapter, we are going to introduce different versions of the Terraform product,
such as Terraform Cloud and Terraform Enterprise. We will discuss Terraform Sentinel,
which allows you to implement policies as code, and will further see which features are
present in Terraform Cloud and Terraform Enterprise as compared to the Terraform
command-line interface (Terraform CLI), to give us an insight into using Terraform
Cloud and Terraform Enterprise.

280 Terraform Cloud and Terraform Enterprise

The following topics will be covered in this chapter:

•	 Introducing Terraform Cloud

•	 Understanding Terraform Enterprise

•	 Overviewing Terraform Sentinel

•	 Comparing different Terraform features

Technical requirements
To follow this chapter, you need to have an understanding of Terraform CLI and its
workflow, as well as a basic grasp of how to write a Terraform configuration file. You can
find all the code used in this chapter at the following GitHub link: https://github.
com/PacktPublishing/HashiCorp-Infrastructure-Automation-
Certification-Guide/tree/master/chapter10.

Check out the following link to see the Code in Action video:

https://bit.ly/3qYE8aq

Introducing Terraform Cloud
Terraform Cloud is one of Terraform's software-as-a-service (SaaS) offerings. It is a
hosted service that can be accessed from https://app.terraform.io/. Terraform
Cloud provides you with the flexibility to run your Terraform configuration code
remotely, but not only this: it also allows you to run configuration code locally and
get this stored in the source control repository. If you need to work closely with many
colleagues within your team or across other teams, then Terraform Cloud provides great
collaboration features. It can hold Terraform state files and secret data safely and securely,
allowing you to access these easily. It also provides a private space where you can publish
all your modules and consume them as per your requirements, giving you an opportunity
to write a policy for governing the code sitting inside the Terraform configuration file.
As you may have noticed when using open source Terraform CLI, it uses a persistent
working directory that may introduce a single point of failure, whereas when you start
using Terraform Cloud, in order to execute Terraform configuration files, Terraform
provisions virtual machines (VMs) in their cloud infrastructure and then destroys them
once execution is completed. Completing execution in the backend is also called remote
Terraform execution or a remote operation.

https://github.com/PacktPublishing/HashiCorp-Infrastructure-Automation-Certification-Guide/tree/master/chapter10
https://github.com/PacktPublishing/HashiCorp-Infrastructure-Automation-Certification-Guide/tree/master/chapter10
https://github.com/PacktPublishing/HashiCorp-Infrastructure-Automation-Certification-Guide/tree/master/chapter10
https://bit.ly/3qYE8aq

Introducing Terraform Cloud 281

Terraform Cloud has defined workspaces instead of any persistent directories. A Terraform
Cloud workspace contains everything that it requires for provisioning the infrastructure.
The state file in Terraform Cloud gets stored in the remote storage, which has a direct
connection to the workspace so that Terraform will be able to access that state file
while executing its workflow. Terraform Cloud helps you to exchange the output of one
workspace to another, using terraform_remote_state data sources. We don't need
to have any additional authentication when we want to use the output of one workspace in
another workspace. If there is some sort of dependency from one workspace to another,
then we can define run triggers just to ensure that when the upstream workspace receives
changes, it then goes and makes the necessary updates in the downstream workspace.
To read more about the run trigger command, you can visit https://www.
terraform.io/docs/cloud/workspaces/run-triggers.html.

As with any other code, infrastructure as code (IaC)—that is, Terraform configuration
code—can also be placed inside version control tools, and Terraform Cloud supports
integration with these tools. Integrating Terraform Cloud with version control tools
is totally optional; it's not mandatory. If you are planning to use version control tools
with Terraform Cloud, then you need to link each workspace of Terraform Cloud to the
version control repository, where you can even specify the branch or subdirectory of your
version control repository. The Terraform Cloud workspace will keep an eye on the linked
version control repository, and if it sees any commit to the version control repository, then
the Terraform Cloud workspace will execute Terraform plans by taking the latest code.
Even if it observes any new pull request to the version control, then it will also execute
terraform plan with the latest code, and reviewers can easily see the expected change
from the Terraform Cloud workspace and approve the pull request accordingly.

Terraform Cloud supports the following version control repositories:

•	 GitHub.com

•	 GitHub.com (OAuth)

•	 GitHub Enterprise

•	 GitLab.com

•	 GitLab Enterprise Edition (EE) and Community Edition (CE)

•	 Bitbucket Cloud

•	 Bitbucket Server

•	 Azure DevOps Server

•	 Azure DevOps Services

282 Terraform Cloud and Terraform Enterprise

We will not go into a detailed discussion of all the version control integrations with
Terraform Cloud, but you can read about this directly at https://www.terraform.
io/docs/cloud/vcs/index.html#supported-vcs-providers.

What about if you are using unsupported version control tools or you want to preserve
the existing deployment and validation pipeline? In that case, it's better to use the
application programming interface (API) or Terraform CLI to upload the latest
version of the configuration.

Terraform Cloud offers both free and paid plans. Free plans are good for individuals or
small teams. The free version of Terraform Cloud includes remote state storage, version
control system (VCS) integration, and remote runs. The paid version of Terraform Cloud
is suitable for a larger team—that is, mainly for medium-sized businesses.

Terraform Cloud workflow
Let's discuss how you can start exploring Terraform Cloud, as follows:

1.	 Firstly, we need to sign up or log in by visiting https://app.terraform.io/,
as illustrated in the following screenshot:

Figure 10.1 – Terraform Cloud login page

https://www.terraform.io/docs/cloud/vcs/index.html#supported-vcs-providers
https://www.terraform.io/docs/cloud/vcs/index.html#supported-vcs-providers

Introducing Terraform Cloud 283

2.	 Create a new organization in your profile, ensuring that you have provided a unique
organization, as illustrated in the following screenshot:

Figure 10.2 – Terraform Cloud organization

3.	 Create a new workspace within the created organization, as illustrated in the
following screenshot:

Figure 10.3 – Terraform Cloud workspace

284 Terraform Cloud and Terraform Enterprise

4.	 When creating a workspace in Terraform Cloud, you need to select a workflow. In
our case, we are going to select a Version control workflow workflow option—that
is, the GitHub repository, as illustrated in the following screenshot:

Figure 10.4 – Terraform Cloud workflow

Introducing Terraform Cloud 285

5.	 Provide the workspace name, branch name, and additional working directory or
subdirectory, as illustrated in the following screenshot:

Figure 10.5 – Terraform Cloud VCS

286 Terraform Cloud and Terraform Enterprise

6.	 If you have any authentication access key variables or input variables in the
configuration files, you can configure these, as illustrated in the following
screenshot:

Figure 10.6 – Terraform Cloud Configure variables button

7.	 Provide all the keys and respective values of the variables you declared in the
Terraform configuration file, as illustrated in the following screenshot:

Introducing Terraform Cloud 287

Figure 10.7 – Terraform Cloud variables values

288 Terraform Cloud and Terraform Enterprise

8.	 For a better understanding of this, we have written a configuration file for creating
an Azure resource group and placed it in our GitHub repository. The following files
are present under the terraform-cloud directory of the chapter10 folder:

inmishrar@terraform-vm:~/HashiCorp-Infrastructure-
Automation-Certification-Guide/chapter10# tree

.

└── terraform-cloud

 ├── main.tf

 ├── providers.tf

 └── variables.tf

9.	 As we have already defined an auto-trigger in the Terraform Cloud console,
it will go ahead and run terraform plan in the backend for us and will ask for
confirmation for terraform apply, as illustrated in the following screenshot:

Figure 10.8 – Terraform Cloud plan phase

10.	 After looking at the terraform plan output on the terminal of the Terraform
Cloud console, if you want to, you can choose Discard Run or Confirm & Apply,
as illustrated in the following screenshot:

Introducing Terraform Cloud 289

Figure 10.9 – Terraform Cloud plan output

290 Terraform Cloud and Terraform Enterprise

11.	 Finally, we can see in the following screenshot how easily we managed to create an
Azure resource group:

Figure 10.10 – Terraform Cloud apply output

12.	 In rare cases, if you need to destroy the infrastructure you provisioned using
Terraform Cloud, then under the Settings option you can go and select the
Destruction and Deletion option. From this page, you can delete both the
infrastructure and the Terraform Cloud workspace, as illustrated in the
following screenshot:

Introducing Terraform Cloud 291

Figure 10.11 – Terraform Cloud Destroy infrastructure option

Thus, we have learned how we can use the Terraform Cloud console for resource
deployment.

Important note
While defining variables in Terraform Cloud, you have an option to set a variable
value as sensitive. If you check a value as sensitive, that value will then be seen in
encrypted format. This is good for storing secret values that are confidential. In
Step 7, we have stored the ARM_CLIENT_SECRET value as sensitive.

292 Terraform Cloud and Terraform Enterprise

From this entire section, you have gained an understanding of what Terraform Cloud is and
how it would be effective from a business point of view when working with a small number
of people. Moving on further, we are going to discuss the Terraform Enterprise product.

Understanding Terraform Enterprise
Terraform Enterprise is a HashiCorp product that is a self-hosted variant of Terraform
Cloud. It is a private instance/server that has a Terraform Cloud application, without
having any resource limit and with some additional features such as audit logging and
Security Assertion Markup Language (SAML) single sign-on (SSO). For a detailed
understanding about different supported features of Terraform Enterprise, you can refer to
https://www.hashicorp.com/products/terraform/pricing. This product
is very good for large enterprises with higher numbers of customers. Large-enterprise
customers can procure a Terraform Enterprise license from HashiCorp. The deployment
of the Terraform Enterprise installer totally depends on the customer and the type of
reference architecture they want to refer to Terraform Enterprise. Based on customers'
experiences, Terraform has published some reference architecture documentation that
can be found at https://www.terraform.io/docs/enterprise/before-
installing/reference-architecture/index.html.

Terraform Enterprise can be installed on Red Hat Enterprise Linux (RHEL) and
CentOS. For RHEL-specific requirements for Terraform Enterprise, you can visit
https://www.terraform.io/docs/enterprise/before-installing/
rhel-requirements.html, and for CentOS-specific requirements, go to https://
www.terraform.io/docs/enterprise/before-installing/centos-
requirements.html.

Most of the time, many organizations start with Terraform open source software to build
and manage their infrastructure into clouds, using IaC. Over time, challenges mount up
when your team size increases. You need to start thinking about collaboration, policy,
security, and governance. Several questions come to mind, such as the following:

•	 When you have many members in a team, how will provisioning of workflows
get impacted?

•	 How will you establish collaboration in a team?

•	 How will the team create and manage infrastructure state?

•	 How can developers enable their self-service infrastructure?

•	 How will you enforce provisioning rules and best practices within Terraform?

https://www.hashicorp.com/products/terraform/pricing
https://www.terraform.io/docs/enterprise/before-installing/rhel-requirements.html
https://www.terraform.io/docs/enterprise/before-installing/rhel-requirements.html
https://www.terraform.io/docs/enterprise/before-installing/centos-requirements.html
https://www.terraform.io/docs/enterprise/before-installing/centos-requirements.html
https://www.terraform.io/docs/enterprise/before-installing/centos-requirements.html

Overviewing Terraform Sentinel 293

•	 How do administrators control role-based access control (RBAC) on each of the
infrastructure teams (for example: network, database, monitoring)?

•	 How can Terraform help you to enable a secure multi-cloud environment?

Most of these questions will get answered when we start using HashiCorp's Terraform
Enterprise product.

Here are a few of the key benefits we can expect when using Terraform Enterprise:

•	 Operational efficiency
•	 Risk reduction
•	 Collaboration capabilities
•	 Controlling cloud costs
•	 Governance and policy capabilities

These key benefits will help us to go ahead and start using Terraform Enterprise.

From this section, you have gained a brief understanding of Terraform Enterprise.
Discussing Terraform Enterprise in detail is somewhat beyond the scope of this book,
so we have kept this as a short overview. We are now going to discuss policy as code with
Terraform Sentinel.

Overviewing Terraform Sentinel
Terraform Sentinel is a feature that is only available in the paid version of HashiCorp
products such as Vault Enterprise, Nomad Enterprise, Consul Enterprise, Terraform
Cloud, or Terraform Enterprise. This is basically a well-defined framework written in a
code format—that is, policy as code. Terraform Sentinel has its own standard language of
writing: Sentinel language. Don't worry, as it's not difficult to learn this language: anyone
can learn it in just an hour, and you don't require any sort of programming language
experience for this. Terraform Sentinel helps to restrict or control the behavior of the
infrastructure before it actually gets deployed. Sentinel checks for defined governance
requirements, and this whole flow can be controlled and automated by placing them in
the VCS, as illustrated in the following diagram:

Figure 10.12 – Terraform Sentinel phase

294 Terraform Cloud and Terraform Enterprise

The Sentinel CLI will run and validate the defined Sentinel policies. Sentinel policies
are enforced by Terraform in between the plan and apply phases so that Terraform
will prevent the deployment of the infrastructure until it is overridden by an authorized
user or terraform plan passes through all the defined requirements checked in the
Sentinel policies; this totally depends on what sort of enforcement level has been defined
in the policy code. For more understanding about enforcement levels, you can refer to
https://www.terraform.io/docs/cloud/sentinel/manage-policies.
html#enforcement-levels.

If you want to have a Sentinel CLI installed on your system, then you can download this
from https://docs.hashicorp.com/sentinel/downloads.

Once you have downloaded Sentinel, you can validate it from the CLI by simply typing
sentinel, as illustrated in the following code snippet:

C:\>sentinel

Usage: sentinel [--version] [--help] <command> [<args>]

Available commands are:

 apply Execute a policy and output the result

 fmt Format Sentinel policy to a canonical format

 test Test policies

 version Prints the Sentinel runtime version

C:\>

For an explanation of Sentinel policies, we have taken an example to validate whether an
Azure resource group has tags or not. This policy will restrict the provisioning of a resource
group in Azure. There are many ways of placing Sentinel policies and testing them, but we
are discussing how to place Sentinel policies through a VCS and using Terraform Cloud,
as follows:

1.	 Create a policy set in Terraform Cloud and define the directory and subdirectory
from where it should fetch Sentinel policies, as illustrated in the following screenshot:

https://www.terraform.io/docs/cloud/sentinel/manage-policies.html#enforcement-levels
https://www.terraform.io/docs/cloud/sentinel/manage-policies.html#enforcement-levels

Overviewing Terraform Sentinel 295

Figure 10.13 – Terraform Sentinel policy set

296 Terraform Cloud and Terraform Enterprise

2.	 The Sentinel policy set requires a configuration filename of sentinel.hcl; this
can be found inside the terraform-sentinel directory of the chapter10
folder. The following code is present in the sentinel.hcl file:

policy "azure_tags" {

 source = "./azure_tags.sentinel"

 enforcement_level = "hard-mandatory"

}

We defined the source and gave the local path and enforcement level as hard-
mandatory so that policies must pass in order for the run to continue to the
Confirm & Apply state and no-one can bypass this enforcement. For more
details about sentinel.hcl, you can visit https://www.terraform.io/
docs/cloud/sentinel/manage-policies.html.

3.	 To test whether our Sentinel policy failed or passed, we firstly placed the following
code block in the main.tf file present inside the terraform-sentinel
directory, where we had defined a tags argument block:

resource "azurerm_resource_group" "terraform-rg" {

 name = var.rgname

 location = var.rglocation

 tags = {

 "environment" = "test"

 "costcenter" = "terraform-sentinel"

 }

}

We can see in the following screenshot that the Sentinel policy was able to test the
presence of tags and provided us with a valid output:

https://www.terraform.io/docs/cloud/sentinel/manage-policies.html
https://www.terraform.io/docs/cloud/sentinel/manage-policies.html

Overviewing Terraform Sentinel 297

Figure 10.14 – Terraform Sentinel policy pass result

298 Terraform Cloud and Terraform Enterprise

4.	 Now, let's see whether we can stop the provisioning of the Azure resource group if
tags are not present. For this, we made changes in the main.tf file and placed the
following code block within it:

resource "azurerm_resource_group" "terraform-rg" {

 name = var.rgname

 location = var.rglocation

tags = {

"environment" = "test"

"costcenter" = "terraform-sentinel"

}

}

5.	 We commented the tags argument and its values in the main.tf file and then
pushed the latest code to our GitHub repository. After that, we queued the plan
workflow in Terraform Cloud and were able to see a Policy check hard failed
message, as illustrated in the following screenshot:

Overviewing Terraform Sentinel 299

Figure 10.15 – Terraform Sentinel policy fail result

You may have noticed that our created Sentinel policy was able to validate and stopped
the flow immediately after the terraform plan phase, and this will therefore not let
Terraform run the terraform apply phase.

300 Terraform Cloud and Terraform Enterprise

In this section, we learned about Terraform Sentinel policies and saw how easily we
can write a policy that can restrict resources before they get provisioned. For a detailed
understanding of Terraform Sentinel, you can visit https://www.hashicorp.com/
resources/writing-and-testing-sentinel-policies-for-terraform.
We are now going to discuss feature differences between Terraform Cloud, Terraform
Enterprise, and Terraform CLI.

Comparing different Terraform features
We have already discussed many things about Terraform CLI throughout this entire book,
and in this chapter, we started discussing Terraform Cloud and Terraform Enterprise
and demonstrated a few examples so that you can get an idea of how they are different in
their features. The following screenshot gives you a brief idea about feature differences in
different Terraform products:

https://www.hashicorp.com/resources/writing-and-testing-sentinel-policies-for-terraform
https://www.hashicorp.com/resources/writing-and-testing-sentinel-policies-for-terraform

Summary 301

For details about feature and pricing differences, you can visit the Terraform
documentation at https://www.datocms-assets.com/2885/1602500234-
terraform-full-feature-pricing-tablev2-1.pdf.

Thus, from this section, we have learned about feature differences between different
Terraform products, and we also learned in which scenarios these Terraform
products can be used.

Summary
In this chapter, we discussed different HashiCorp products under the umbrella of
Terraform, such as Terraform Cloud and Terraform Enterprise. We also discussed how
Terraform Cloud or Terraform Enterprise can help you to collaborate between teams.
We also understood the advantages we can expect when using Terraform Cloud and
Terraform Enterprise. We further discussed Terraform Sentinel (that is, policy as code),
which can be introduced in between terraform plan and terraform apply
phases so that Terraform performs a precheck, and if the configuration passes through all
the necessary checks or the policy gets overridden by authorized users, only then will the
terraform apply phase get executed. This whole chapter should help you in selecting
the right Terraform products, depending upon the use case, and shows how you can
implement a policy check before an actual infrastructure gets provisioned.

In our next chapter, we will discuss some Terraform acronyms in brief.

https://www.datocms-assets.com/2885/1602500234-terraform-full-feature-pricing-tablev2-1.pdf
https://www.datocms-assets.com/2885/1602500234-terraform-full-feature-pricing-tablev2-1.pdf

302 Terraform Cloud and Terraform Enterprise

Questions
The answers to the following questions can be found in the Assessments section at the end
of this book:

1.	 Terraform Sentinel needs to be placed where?

A. After the apply phase

B. After the destroy phase

C. In between the plan and apply phases

D. After the init phase

2.	 Which of the following features are available in both Terraform Cloud and
Terraform Enterprise?

A. Terraform JavaScript Object Notation (JSON) files

B. Terraform Sentinel

C. terraform fmt

D. terraform plan

3.	 What does Terraform Cloud use to keep the state file?

A. Local directory

B. Remote backend in Terraform Cloud itself

C. Remote backend in GitHub

D. Local backend

4.	 There is a project team and they are using Terraform to provision their infrastructure,
and now they want to provision a VM in Azure in the West Europe location, which
is not allowed as per your company standards. You need to ensure that they are not
able to create a VM in that specified location. How can you stop them?

A. Create a Sentinel policy.

B. Ask them to run terraform plan and share output from the terminal.

C. Ask them to send a Terraform state file.

D. Just ignore them and let them do what they want to.

Further reading 303

Further reading
You can check out the following links for more information about the topics that were
covered in this chapter:

•	 Terraform Cloud and Terraform Enterprise: https://www.terraform.io/
docs/cloud/index.html

•	 Terraform Sentinel policies: https://github.com/hashicorp/
terraform-guides/tree/master/governance

•	 Terraform Enterprise: https://www.terraform.io/docs/enterprise/
index.html

•	 Terraform Enterprise key benefits: https://www.hashicorp.com/
resources/why-consider-terraform-enterprise-over-open-
source

•	 Terraform Cloud overview: https://www.terraform.io/docs/cloud/
overview.html

https://www.terraform.io/docs/cloud/index.html

https://www.terraform.io/docs/cloud/index.html

https://github.com/hashicorp/terraform-guides/tree/master/governance

https://github.com/hashicorp/terraform-guides/tree/master/governance

https://www.terraform.io/docs/enterprise/index.html
https://www.terraform.io/docs/enterprise/index.html
https://www.hashicorp.com/resources/why-consider-terraform-enterprise-over-open-source
https://www.hashicorp.com/resources/why-consider-terraform-enterprise-over-open-source
https://www.hashicorp.com/resources/why-consider-terraform-enterprise-over-open-source
https://www.terraform.io/docs/cloud/overview.html
https://www.terraform.io/docs/cloud/overview.html

11
Terraform Glossary

In this glossary, we are going to list all the acronyms and key terms used throughout
this book. This will help to clarify all the technical terms. These terms should assist in
helping you to get to grips with the different conversations currently taking place in the
Terraform community:

•	 API: An application programming interface. This is an interface that has been
designed to manipulate some functionality of an application. Terraform uses cloud
or on-premises API software to manage infrastructure. Terraform resources are
responsible for mapping to each API call that is required to create, update, or delete
the infrastructure.

Terraform Cloud also has APIs that can be used to easily manage policies
and workspaces.

•	 Apply: This is one of the phases in the Terraform life cycle that helps Terraform to
perform implementation by accepting planned changes, or to make real changes
to the Terraform providers using their resource APIs.

•	 Azure: This is a public cloud provided by Microsoft.

•	 AzureRM: This is one of the Terraform providers specific to Azure.

•	 AWS: This is a public cloud provided by Amazon.

306 Terraform Glossary

•	 Arguments: When we write a Terraform configuration file, arguments take the
form <IDENTIFIER> = <EXPRESSION> and are defined by a block of resources
and data sources. Generally, they hold the properties of the Terraform providers.

•	 Attribute: An attribute is a property of an object that can be exported. For example,
we can get an attribute value in a defined way: aws_instance.eg.id.

•	 Backend: A backend is required to store the Terraform state files, so it could be
remote or local. The choice of backend determines how the state is stored and
where Terraform will execute.

•	 Block: The HashiCorp configuration syntax used to create a container that holds all
the defined objects like a resource. A block contains one or more labels and a body
containing name and value pairs:

<BLOCK TYPE> "<BLOCK LABEL>" "<BLOCK LABEL>" {

 # Block body

 <IDENTIFIER> = <EXPRESSION> # Argument

•	 CI/CD: Continuous Integration/Continuous Delivery. CI/CD involves operating
principles and practices that enable a reliable sequence in terms of the development
and deployment of cloud resources, typically an application. This helps as regards
complete automation. In our course, we used Azure DevOps Pipeline to explain
CI/CD concepts using Infrastructure as Code using Terraform.

•	 CLI: The command-line interface. We can run Terraform commands on any
terminal, such as a Unix shell or the Windows CLI. The Terraform CLI is an open
source binary. In other words, terraform.exe can be downloaded and placed in
local system environment variables and Terraform commands can start to be used.

•	 Clone: Cloning means copying files to the local system so that it will be easy for us
to make changes and push them back to the repository. It is basically a git clone
command that helps to perform cloning from the source control repository to the
local system.

•	 Configuration language: Terraform files used to have code written in declarative
format describing the desired state of the infrastructure. It is mainly referred to as
HashiCorp Configuration Language (HCL).

•	 Data source: Like a Terraform resource code block, we have a data source
that generally helps you to fetch information regarding the already existing
infrastructure that has been deployed by some other means, for example, manually,
or using any other Terraform configuration code. In places, you may also find it
referred to as a data resource.

﻿ 307

•	 Fork: This is like a clone where one copy of the repository gets cloned into the
VCS server. It might be the case that you are copying content and history from one
repository to another. For example, suppose you need to work on the Microsoft
repository. What you can do is that you can clone it to your local VCS so that it
will be easy for you to work on it. You would be getting the full option of copying
content to your local VCS with all its branches. The main goal of a fork is to copy
a source repository to another repository.

•	 Git: A distributed version control system that will hold all the change history
that has been performed on any file or folder defined in the source code. This is
beneficial when you are working with many developers, as they would easily be able
to coordinate with one another.

•	 HCL: HashiCorp Configuration Language. This is a structured configuration syntax
that is used to write Terraform code. It uses specific block types, such as a resource,
variable, provider, and built-in function. It is written as a named value pair.

•	 IaC: Infrastructure as Code is a way of writing infrastructure in code format and
keeping it in a file so that it will be easy to manage infrastructure, for example,
Terraform configuration files.

•	 Input variables: This is a method of declaring a variable in Terraform and taking
a value from the user.

•	 Locking: A Terraform state file is used to go into a locked state so that it can avoid
another Terraform process, such as apply, when a Terraform operation is already
running.

•	 Log: This is a text-based output that gets printed to stderr following the execution
of any Terraform operations, such as plan and apply.

•	 Module: A Terraform module is more like a code function. You have input and a
module can provide output, but all processes are internal to the module. It is like
a self-defined container where it has all the Terraform configuration code that can
be used to manage the infrastructure. Other Terraform configurations can call the
module that tells Terraform to manage a resource that is defined in the module
configuration code.

•	 Output values: Suppose we want to see what Terraform operation had been
performed, irrespective of whether a defined resource was created. We can see them
during the runtime itself by defining them in the output file as an output value.

•	 Plan: This is one of the Terraform workflow operations where Terraform compares
the infrastructure's real state to the configuration, and is shown to the user in a
readable format, about the changes it is going to perform to match the desired state.

308 Terraform Glossary

•	 Policy: This is basically a rule that is enforced by Terraform to validate the plan,
irrespective of whether the resources comply with company policy.

•	 Policy set: A list of policies defined to be enforced globally or in relation to a
specific workspace.

•	 Provider: This is a plugin for Terraform that holds collections of the available
resources. There are many Terraform providers, including AWS, Azure, and GCP.
Terraform has already published a list of available providers that can be found at
https://www.terraform.io/docs/providers/index.html.

•	 Remote backend: Terraform state files can be stored in defined storage, such as
S3 and Google Cloud Storage. If we want to store the state file securely, then it's
desirable to configure the remote backend.

•	 Repository: This is a place where code files can be kept and managed. Primarily,
this will be any version control system that can hold the entire history of changes
to the file. A repository is mainly a Git repository that will retain all Terraform
configuration files except secrets.

•	 Resource: In the Terraform configuration file, we defined a resource code block that
describes one or more infrastructure objects. A resource block instructs Terraform
to manage the defined resource. Terraform uses cloud provider APIs to create, edit,
and destroy resources.

•	 Sentinel: Sentinel is a feature available in all paid HashiCorp products, including
Terraform Cloud, Terraform Enterprise, HashiCorp Enterprise Vault, and
HashiCorp Enterprise Consul, where we can define policy as code.

•	 State: Terraform generates a state file in a JSON format where it holds all the
information about the defined infrastructure and maps those resources to the real
world. Without state, Terraform can't know which resources got provisioned during
the previous run. So, it is very important to know what action has been performed
during the previous run if you are working with many people. That is why Terraform
generates state files and records all the defined infrastructure resources in the state file.

•	 VCS: A version control system, such as Git. This is a software application that tracks
changes to collections of files and helps you to monitor changes, undo changes, or
combine them.

•	 Workspace: In the Terraform CLI, a workspace is an isolated instance that can be
used to deploy multiple environments using a single Terraform configuration file.

https://www.terraform.io/docs/providers/index.html

Assessments

Chapter 1
1.	 Correct answer: B

Explanation: As covered in the What is Terraform? section, Terraform is an
orchestration tool used for infrastructure provisioning and its efficient maintenance.

2.	 Correct answers: A and B

Explanation: As covered in the Terraform architecture section, where we discussed
what a Terraform plugin is, it contains both Terraform providers and provisioners.

3.	 Correct answer: B

Explanation: As covered in the A comparison with other IaC section, we saw how
Terraform differs from other IaC, such as an ARM template and CloudFormation,
and we learned that Terraform configuration files are written in HCL.

4.	 Correct answer: D

Explanation: Given that we already know that Azure, AWS, and GCP are providers,
by following this logic, SAP is the only remaining option that is not a Terraform
provider. In the future, you may well expect Terraform to have SAP providers as
well, but this isn't the case at present.

5.	 Correct answer: B

Explanation: In the Introduction to Terraform section, we discussed what Terraform
is, and you got to know which company introduced Terraform to the market – none
other than HashiCorp.

310 Assessments

Chapter 2
1.	 Correct answer: B

Explanation: You can check the version of Terraform using any of these commands:
terraform version, terraform -v, terraform -version, or
terraform --version.

2.	 Correct answers: A and B

Explanation: There are multiple ways of opening help options in Terraform, such
as terraform -h, terraform –help, terraform -help, terraform
help, and so on.

3.	 Correct answer: B

Explanation: There is an executable file of Terraform for every operating system,
such as Windows, Linux, macOS, and so on, which is available on the Terraform
website at https://www.terraform.io/downloads.html. So, you can
directly download it based on your operating system and architecture. You don't
need the Go language library for it.

Chapter 3
1.	 Correct answer: A

Explanation: Terraform configuration can be written in JSON. For more
information, you can visit https://www.terraformf.io/docs/
configuration/syntax-json.html.

2.	 Correct answer: D

Explanation: An alias meta-argument is used when you are using the same
Terraform provider with different configurations for different resources. For
more information about multiple providers, please refer to https://www.
terraform.io/docs/configuration/providers.html#alias-
multiple-provider-instances.

3.	 Correct answer: B

Explanation: A resource code block is written by referring to the actual service
name and then the local name. You can read more about this at https://www.
terraform.io/docs/configuration/resources.html.

https://www.terraform.io/downloads.html
https://www.terraformf.io/docs/configuration/syntax-json.html
https://www.terraformf.io/docs/configuration/syntax-json.html
https://www.terraform.io/docs/configuration/providers.html#alias-multiple-provider-instances
https://www.terraform.io/docs/configuration/providers.html#alias-multiple-provider-instances
https://www.terraform.io/docs/configuration/providers.html#alias-multiple-provider-instances
https://www.terraform.io/docs/configuration/resources.html
https://www.terraform.io/docs/configuration/resources.html

Chapter 4 311

4.	 Correct answer: C

Explanation: Data source code helps you to learn about your existing infrastructure
and using that data source, you can fetch certain output that you can consume in
your other configuration code.

5.	 Correct answer: B

Explanation: By defining input variables in the Terraform configuration code, you
can make configuration code reusable and dynamic.

Chapter 4
1.	 Correct answer: A

Explanation: The Terraform support environment variable, TF_LOG, should be
enabled with some trace label so that Terraform can start collecting logs and
storing them in the defined path, TF_LOG_PATH. For more information, you can
read the Terraform debugging page at https://www.terraform.io/docs/
internals/debugging.html.

2.	 Correct answer: C

Explanation: Terraform has inbuilt functions and max is one of them, so the
maximum value among the given number is 10. For more information about
Terraform functions, you can refer to https://www.terraform.io/docs/
configuration/functions.html.

3.	 Correct answer: D

Explanation: GitHub is not a supported backend type. For more information about
Terraform backends, you can read https://www.terraform.io/docs/
backends/types/index.html.

4.	 Correct answer: C

Explanation: Terraform provisioners can be used to run some sort of script, whether
it is on a local or remote machine, but always remember that a provisioner should
be used only when you don't have any other option.

https://www.terraform.io/docs/internals/debugging.html
https://www.terraform.io/docs/internals/debugging.html
https://www.terraform.io/docs/configuration/functions.html
https://www.terraform.io/docs/configuration/functions.html
https://www.terraform.io/docs/backends/types/index.html
https://www.terraform.io/docs/backends/types/index.html

312 Assessments

5.	 Correct answer: D

Explanation: A dynamic expression of Terraform can help you to iterate over
the inline code inside a resource code block. You can read about different
Terraform iterations at https://www.hashicorp.com/blog/hashicorp-
terraform-0-12-preview-for-and-for-each, https://www.
terraform.io/docs/language/expressions/index.html
and https://learn.hashicorp.com/tutorials/terraform/
count?in=terraform/configuration-language.

Chapter 5
1.	 Correct answer: B

Explanation: The force-unlock command is used for unlocking the state file.
For more information, you can read https://www.terraform.io/docs/
commands/force-unlock.html.

2.	 Correct answer: C

Explanation: The terraform taint command marks a Terraform managed
resource as a taint and when you run apply next time, it will destroy and
recreate that specific resource. For more information, head to https://www.
terraform.io/docs/commands/taint.html.

3.	 Correct answer: B

Explanation: terraform fmt rewrites the configuration files to a canonical
format and style. For information, you can read https://www.terraform.io/
docs/commands/fmt.html.

4.	 Correct answer: A

Explanation: Using terraform import, you can bring any resources that already
exist to the state file, and once you have that resource in the state file, the life cycle of
that resource can be managed by Terraform.

5.	 Correct answer: A

Explanation: The terraform validate command will help you to check any
kind of syntax error in the configuration file.

https://www.hashicorp.com/blog/hashicorp-terraform-0-12-preview-for-and-for-each
https://www.hashicorp.com/blog/hashicorp-terraform-0-12-preview-for-and-for-each
https://www.terraform.io/docs/language/expressions/index.html
https://www.terraform.io/docs/language/expressions/index.html
https://learn.hashicorp.com/tutorials/terraform/count?in=terraform/configuration-language
https://learn.hashicorp.com/tutorials/terraform/count?in=terraform/configuration-language
https://www.terraform.io/docs/commands/force-unlock.html
https://www.terraform.io/docs/commands/force-unlock.html
https://www.terraform.io/docs/commands/taint.html
https://www.terraform.io/docs/commands/taint.html
https://www.terraform.io/docs/commands/fmt.html
https://www.terraform.io/docs/commands/fmt.html

Chapter 6 313

Chapter 6
1.	 Correct answers: A, B, and D

Explanation: The terraform init command is used to perform initialization
and download the respective modules, providers, and plugins. It also initializes
the backend config. You can read about terraform init at https://www.
terraform.io/docs/commands/init.html.

2.	 Correct answer: C

Explanation: The terraform plan lets you know what resources it is going
to update or create to achieve the desired state defined in the configuration file.
For more information, you can read https://www.terraform.io/docs/
commands/plan.html.

3.	 Correct answers: A, B, and D

Explanation: Terraform can take an input variable value in multiple ways.

4.	 Correct answer: B

Explanation: The terraform validate command will help you check if there is
any sort of syntax error.

5.	 Correct answer: C

Explanation: The terraform destroy command will help you to delete
infrastructure that has been provisioned using Terraform. For more details, you can
read https://www.terraform.io/docs/commands/destroy.html.

Chapter 7
1.	 Correct answer: C

Explanation: The Terraform module supports a local, private, or public registry.
The source URL should be defined correctly. For more information, you can read
https://www.terraform.io/docs/modules/sources.html.

2.	 Correct answer: A

Explanation: When we run terraform init, it downloads files to the local
directory and stores them inside the .terraform folder.

https://www.terraform.io/docs/commands/init.html
https://www.terraform.io/docs/commands/init.html
https://www.terraform.io/docs/commands/plan.html
https://www.terraform.io/docs/commands/plan.html
https://www.terraform.io/docs/commands/destroy.html
https://www.terraform.io/docs/modules/sources.html

314 Assessments

3.	 Correct answer: A

Explanation: When we want to get output from the module, then we need to define
module.<modulename>.<outputname>.

4.	 Correct answer: C

Explanation: The Terraform module is the best option if you are working with many
developers – it will be easy to write a module and use it again and again.

5.	 Correct answer: B

Explanation: The Terraform module has a local source path that doesn't support any
versioning; it always takes the latest version.

Chapter 8
1.	 Correct answer: B

Explanation: We already described the Terraform style convention that each nesting
level in the Terraform configuration file should have two indentation spaces. To
learn more about it, you can visit https://www.terraform.io/docs/
language/syntax/style.html.

2.	 Correct answer: A

Explanation: The default way of placing a comment in the Terraform configuration
file is using #.

3.	 Correct answer: A

Explanation: The terraform validate command will help you to check any
syntax error in the Terraform configuration file.

4.	 Correct answer: A

Explanation: If we want to see an output of the provisioned resources, then we
should define them as an output so that we can see it at runtime itself. Option
B is also quite close – no doubt we can see the name of the provisioned storage
account by looking inside the state file but it is not the recommended way of doing
it. And even option C is correct – if we run the terraform show command, it
will display everything that is there inside the state file, but as the question is
expecting to have a specific output, that is, only the storage acocunt name, that also
during the runtime itself, so option C can't be considered as a correct answer.

https://www.terraform.io/docs/language/syntax/style.html
https://www.terraform.io/docs/language/syntax/style.html

Chapter 9 315

5.	 Correct answer: C

Explanation: By default, Terraform will look for terraform.tfvars or any
filename ending with .tfvars or .auto.tfvars for its input variable value.
There's no doubt that Terraform can read input variable values from any other
files, but for that, you would be required to define the filename with terraform
apply. The specific syntax for providing the filename is terraform apply
-var-file=<filename>.

Chapter 9
1.	 Correct answer: B

Explanation: We already know that modules are written when we want to perform
some repetition of infrastructure provisioning or updating using modules and
modules can be combined together to form a stack.

2.	 Correct answer: C

Explanation: The terraform fmt command helps you to arrange all
the Terraform IaC code into the canonical format and terraform fmt
-recursive will help you to perform the formatting of all the Terraform
configuration files down the line in all the directories from where you execute
that command.

3.	 Correct answer: A

Explanation: The terraform init command helps you to download Terraform
modules to the .terraform directory inside the current working directory.

4.	 Correct answer: A

Explanation: Input variable values can be given by defining a default value in the
variable declaration file itself, by providing those values from any file ending with
.tfvars, .auto.tfvars, or .tfvars.json, by providing values during the
runtime, or you can set variable values in the system environment variables/path.

5.	 Correct answer: B

Explanation: We define versioning in the module code so that our infrastructure
continues using that version and if we forget, then it will always download the
latest version if we run terraform init. So to restrict the module to a specific
version, we need to provide version constraints.

316 Assessments

Chapter 10
1.	 Correct answer: C

Explanation: Terraform Sentinel is a policy-as-code framework that is generally
used to restrict infrastructure deployment so deployment happens only when we
execute the apply phase. So Terraform Sentinel is placed in between plan
and apply.

2.	 Correct answer: B

Explanation: Terraform Sentinel is a policy-as-code framework supported by both
the paid version of Terraform Cloud and Terraform Enterprise.

3.	 Correct answer: B

Explanation: Terraform Cloud keeps the state file in the cloud itself. We can define
it as a remote backend and point it to Terraform Cloud.

4.	 Correct answer: A

Explanation: By creating a Terraform Sentinel policy, we can restrict and force the
user to follow the defined governance in the Sentinel policy.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

318 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Repeatability, Reliability, and Scalability through GitOps

Bryan Feuling

ISBN: 978-1-80107-779-8

•	 Explore a variety of common industry tools for GitOps

•	 Understand continuous deployment, continuous delivery, and why they are important

•	 Gain a practical understanding of using GitOps as an engineering organization

•	 Become well-versed with using GitOps and Kubernetes together

•	 Leverage Git events for automated deployments

•	 Implement GitOps best practices and find out how to avoid GitOps pitfalls

https://www.packtpub.com/product/repeatability-reliability-and-scalability-through-gitops/9781801077798

Other Books You May Enjoy 319

Google Cloud for DevOps Engineers

Sandeep Madamanchi

ISBN: 978-1-83921-801-9

•	 Categorize user journeys and explore different ways to measure SLIs

•	 Explore the four golden signals for monitoring a user-facing system

•	 Understand psychological safety along with other SRE cultural practices

•	 Create containers with build triggers and manual invocations

•	 Delve into Kubernetes workloads and potential deployment strategies

•	 Secure GKE clusters via private clusters, Binary Authorization, and shielded
GKE nodes

•	 Get to grips with monitoring, Metrics Explorer, uptime checks, and alerting

•	 Discover how logs are ingested via the Cloud Logging API

https://www.packtpub.com/product/google-cloud-for-devops-engineers/9781839218019

320

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.
com and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can make
a general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

Share Your Thoughts
Now you've finished HashiCorp Infrastructure Automation Certification Guide, we'd love
to hear your thoughts! If you purchased the book from Amazon, please click here to go
straight to the Amazon review page for this book and share your feedback or leave
a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1800565976
https://packt.link/r/1800565976

Index

A
access key ID, and secret

using, for authentication 144, 145
Amazon Web Services (AWS)

about 305
Terraform configuration files,

writing for 247-250
Terraform modules, writing for 214-220
Terraform stacks, writing for 269-273
used, for authenticating Terraform 144

application programming interface
(API) 198, 282, 305

apply phase 305
arguments 306
attribute 306
AWS data sources 80, 81
AWS input variables 67, 68
AWS output 73-75
AWS provider

about 57, 58
arguments 58

AWS provider, authentication option
reference link 58

AWS resources
about 62
reference link 62

AWS S3 92
AWS services

provisioning, with Terraform 146, 147
Azure

about 305
Terraform CLI, authenticating to 133
Terraform configuration files,

writing for 250-254
Terraform modules, writing for 205-214
Terraform stacks, writing for 273-276

Azure ARM templates, versus Terraform
about 20
Azure portal support 22
cross-platform 20
error message understandability 22
infrastructure state management 22
language 21
license and support 21
modularity 21
readability 21
workflow 22

Azure data sources 79, 80

322 Index

Azure DevOps
using, with Terraform 180-189

Azure input variables 64-67
Azure output 71-73
Azure Resource Manager 205
Azure Resource Manager

(ARM) provider block
reference link 138

Azure resources
about 60
blue highlighted text 62
features block 54
green highlighted text 62
key_vault block 54
log_analytics_workspace block 55
reference link 61
template_deployment block 54
virtual_machine block 55
virtual_machine_scale_set block 55

AzureRM 305
AzureRM provider

about 52-57
arguments 52

Azure services
provisioning, with Terraform 140-143

Azure Storage 92
Azure subscription sign-up

reference link 133

B
backend 306
Bitbucket 198
block 306
blue highlighted text 62

C
CentOS 292
clone 306
CloudFormation, versus Terraform

about 16
AWS console support 18
cross-platform 16
error message understandability 19
infrastructure state management 19
language 16
license and support 18
modularity 17
readability 18
validation 17, 20
workflow 18, 19

command-line interface (CLI) 306
Community Edition (CE) 281
complex types 241
Configuration Language 306
content delivery network (CDN) 10
continuous integration/continuous

deployment (CI/CD) 6
Continuous Integration/Continuous

Delivery (CI/CD) 306
continuous integration/continuous

deployment (CI/CD) tool 180
count expression 106-112

D
data source 306
depends_on argument 78

E
Enterprise Edition (EE) 281

Index 323

F
file provisioner 102-104
for_each expression 113-119
for expression 119, 120
fork 307
fully qualified domain name (FQDN) 71

G
GCP data sources 81
GCP input variables 68-70
GCP output 75, 76
GCP services

provisioning, with Terraform 152, 153
Generic Git repository 198, 199
Generic Mercurial repository 199
Git 307
GitHub 198
Google App Engine 63
Google Cloud Deployment

Manager, versus Terraform
about 23
cross-platform 23
error message understandability 26
Google console support 25
infrastructure state management 26
language 23
maintainability 25
modularity 24
readability 24
validation 24
workflow 26

Google Cloud Platform (GCP)
Terraform, authenticating to 148
Terraform configuration files,

writing for 244-247

Terraform modules, writing for 220-224
Terraform stacks, writing for 259-269

Google Cloud Storage (GCS) 92
Google Cloud Storage (GCS) buckets 201
Google provider

about 59, 60
arguments 59

Google service account
authenticating 148-151

Google Terraform resource 63
Graphviz

URL 155
green highlighted text 62

H
HashiCorp, backend classes

enhanced 91
standard 91

HashiCorp Configuration File (HCL) 163
HashiCorp Configuration Language

(HCL) 16, 306, 307
Heroku app 9, 10
HTTPS Secure (HTTPS) 198
HyperText Transfer Protocol

(HTTP) URLs 199

I
IAM accounts

reference link 147
Identity and Access Management

(IAM) 204
Identity and Access Management

(IAM) roles, Azure
reference link 138

324 Index

Infrastructure as Code (IaC)
about 4, 5, 87, 281, 307
advantages 5-7

input variables 307
integrated development

environment (IDE) 186

J
JSON configuration syntax 239-241

L
Linux

Terraform, downloading 39-41
Terraform, installing on 39

local backend 89, 90
local-exec provisioner 99-102
locked state 88
locking 307
log 307

M
macOS

Terraform, downloading 42-44
Terraform, installing on 42

module 307
module composition 194

N
Network Security Group (NSG) 105

O
output values 307

P
plan 307
Platforms as a Service (PaaS) 9
policy 308
policy set 308
primitive types 241
provider

about 51, 308
URL 308

Q
quality analyst (QA) 6

R
Red Hat Enterprise Linux (RHEL) 292
reference architecture documentation,

Terraform Enterprise
reference link 292

remote backend
about 91-96, 308
advantages 91

remote-exec provisioner
about 104, 105
reference link 105

remote operation 280
Remote Procedure Calls (RPCs) 27
remote state 88
remote Terraform execution 280
repository 308
resources 60, 308
role-based access control (RBAC) 293
run trigger command

reference link 281

Index 325

S
Secure Shell (SSH) 198
Security Assertion Markup

Language (SAML) 292
Sentinel 308
Sentinel CLI

download link 294
Sentinel policies

reference link 294
Service Principal, and Client Secret

used, for authenticating Terraform
CLI to Azure 134-140

Simple Storage Service (S3) buckets 200
single sign-on (SSO) 292
software-as-a-service (SaaS) 197, 280
Software-Defined Networking (SDN) 13
software development kit (SDK) 201
stack 279
state 308
Subject Matter Experts (SMEs) 6
subnet 194

T
Terraform

about 7
architecture 27
authenticating, to GCP 148
authenticating, with AWS 144
Azure DevOps, using with 180-186
downloading, on Linux 39-42
downloading, on macOS 42-44
downloading, on Windows 34-39
download link 34, 39, 42, 44
installing, on Linux 39
installing, on macOS 42
installing, on Windows 34

life cycle 162
used, for provisioning AWS

services 146, 147
used, for provisioning Azure

services 140-143
used, for provisioning GCP

services 152, 153
Terraform backend 86
Terraform backend, types

about 88
local backend 89, 90
remote backend 91-96

Terraform binary
download link 42

Terraform CLI
about 130
authenticating, to Azure 133

Terraform CLI, commands
about 154
reference link 158
terraform console 154
terraform fmt 154
terraform force-unlock 158
terraform graph 155, 156
terraform import 158
terraform output 156
terraform refresh 157
terraform show 157
terraform taint 157
terraform validate 158
terraform workspace 157

Terraform Cloud
about 280-282
URL 280, 282
workflow 282-291

Terraform Cloud, version
control integration

reference link 282

326 Index

Terraform community providers
reference link 51

Terraform configuration files
about 234
data types 241, 242
JSON configuration syntax 239-241
native configuration syntax 234-236
override file 236-239
style conventions 242, 243
writing, for AWS 248-250
writing, for Azure 250-254
writing, for GCP 244-247

Terraform configuration files, for AWS
key practices 250

Terraform configuration files, for Azure
key practices 253, 254

Terraform configuration files, for GCP
key practices 245, 246

Terraform Core 28
Terraform data 79
Terraform data sources

about 79
AWS data sources 80, 81
Azure data sources 79, 80
GCP data sources 81
reference link 79

Terraform debugging 123, 125
Terraform documentation

reference link 301
URL 262

Terraform Enterprise
about 292, 293
URL 292

Terraform features
comparing 300, 301

Terraform, features
about 8
changing automation 9

execution plans 8
infrastructure as code 8
resource graph 9

Terraform functions 121-123
Terraform graph

subcommands, viewing 132
Terraform language-style conventions

reference link 154
Terraform life cycle 162
Terraform life cycle workflow

terraform apply 175-177
terraform destroy 177-180
terraform init 163-167
terraform plan 169-174
terraform validate 167-169

Terraform loops
about 105
count expression 106-112
for_each expression 113-119
for expression 119, 120

Terraform modules
about 194-196
key requirements 225
publishing 225-227
source argument 196
version argument 201-204
writing, for AWS 214-220
writing, for Azure 205-214
writing, for GCP 220-224

Terraform modules, source argument
Bitbucket 198
GCS bucket 201
Generic Git repository 198, 199
Generic Mercurial repository 199
GitHub 198
HTTP URLs 199
S3 bucket 200
Terraform Registry 197

Index 327

Terraform native configuration
syntax 234-236

Terraform output
about 70
AWS output 73-75
Azure output 71-73
GCP output 75, 76
optional arguments 77, 78

terraform output command
reference link 156

Terraform override file 236-239
Terraform plugins

about 28
plugin locations 29, 30
selecting 30
upgrading 30, 31

Terraform providers
about 50, 51
AWS provider 57, 58
AzureRM provider 52-57
Google provider 59, 60

Terraform provisioners
about 96
types 99
use cases 97, 98

terraform refresh command
reference link 157

Terraform Registry
about 51, 197
reference link 51
URL 260

Terraform resource code
block, AWS provider

reference link 146
Terraform resources

about 60
AWS resources 62

Azure resources 60
Google resources 63

Terraform Sentinel
overview 293-300
reference link 300

Terraform stacks
about 258, 259
writing, for AWS 269-273
writing, for Azure 273-276
writing, for GCP 259-269

Terraform state file
about 86, 87
purpose 87

Terraform state file, benefits
metadata 87
performance 88
real world, mapping to 87
syncing 88

terraform taint command
reference link 157

Terraform, use cases
about 9
disposable environments 12
Heroku app setup 9, 10
multi-cloud deployment 14, 15
multi-tier applications 10
resource schedulers 14
self-service clusters 11
Software-Defined Networking (SDN) 13
software demos 11

Terraform v1.0.0
download link 40

Terraform variables
about 63, 64
AWS input variables 67, 68
Azure input variables 64-67
GCP input variables 68-70

328 Index

Terraform workflows
commands 130

terraform workspace
reference link 157

types, Terraform provisioners
file provisioner 102-104
local-exec provisioner 99-102
remote-exec provisioner 104, 105

U
Uniform Resource Locator (URL) 196
unzip 40

V
Vagrant 11
version control system (VCS) 282, 308
virtual machines (VMs) 280
virtual private cloud (VPC) 194
Visual Studio Code (VS Code) 186

W
Windows

Terraform, downloading 34-39
Terraform, installing on 34

workspaces 281, 308

	Cover
	Title Page
	Copyright and credits
	Contributors
	Table of Contents
	Preface
	Section 1:
The Basics
	Chapter 1: Getting to Know IaC
	Technical requirements
	Introduction to IaC
	Advantages of IaC
	Simple and speedy
	Configuration consistency
	Risk minimization
	Increased efficiency in software development
	Cost savings

	Introduction to Terraform
	What is Terraform?
	Features of Terraform
	Terraform use cases

	A comparison with other IaC
	CloudFormation versus Terraform
	Azure ARM templates versus Terraform
	Google Cloud Deployment Manager versus Terraform

	An understanding of Terraform architecture
	Terraform Core
	Terraform plugins

	Summary
	Questions
	Further reading

	Chapter 2: Terraform Installation Guide
	Technical requirements
	Installing Terraform on Windows
	Downloading Terraform

	Installing Terraform on Linux
	Downloading Terraform

	Installing Terraform on macOS
	Downloading Terraform

	Summary
	Questions
	Further reading

	Section 2:
Core Concepts
	Chapter 3: Getting Started with Terraform
	Technical requirements
	Introducing Terraform providers
	Terraform providers

	Knowing about Terraform resources
	Terraform resources

	Understanding Terraform variables
	Terraform variables

	Understanding Terraform output
	Terraform output

	Understanding Terraform data
	Terraform data sources

	Summary
	Questions
	Further reading

	Chapter 4: Deep Dive into Terraform
	Technical requirements
	Introducing the Terraform backend
	Terraform state
	The purpose of the Terraform state file
	Terraform backend types

	Understanding Terraform provisioners
	Terraform provisioner use cases
	Terraform provisioner types

	Understanding Terraform loops
	The count expression
	The for_each expression
	The for expression

	Understanding Terraform functions
	Understanding Terraform debugging
	Summary
	Questions
	Further reading

	Chapter 5: Terraform CLI
	Technical requirements
	Introduction to the Terraform CLI
	Integrating with Azure
	Authentication using a Service Principal and
a Client Secret
	Provisioning Azure services using Terraform

	Integrating with AWS
	Authentication using an access key ID and secret
	Provisioning AWS services using Terraform

	Integrating with GCP
	Authentication using a Google service account by storing credentials in a separate file
	Provisioning GCP services using Terraform

	Understanding the Terraform CLI commands
	Summary
	Questions
	Further reading

	Chapter 6: Terraform Workflows
	Technical requirements
	Understanding the Terraform life cycle
	Terraform init
	Terraform validate
	Terraform plan
	Terraform apply
	Terraform destroy

	Understanding Terraform workflows using Azure DevOps
	Summary
	Questions
	Further reading

	Chapter 7: Terraform Modules
	Technical requirements
	Understanding Terraform modules
	source
	version

	Writing Terraform modules for Azure
	Writing Terraform modules for AWS
	Writing Terraform modules for GCP
	Publishing Terraform modules
	Key requirements
	Publishing a module

	Summary
	Questions
	Further reading

	Section 3:
Managing Infrastructure with Terraform
	Chapter 8: Terraform Configuration Files
	Technical requirements
	Understanding Terraform configuration files
	Terraform native configuration syntax
	Terraform override file
	JSON configuration syntax
	Data types
	Terraform style conventions

	Writing Terraform configuration files for GCP
	Writing Terraform configuration files for AWS
	Writing Terraform configuration files for Azure
	Summary
	Questions
	Further reading

	Chapter 9: Understanding Terraform Stacks
	Technical requirements
	Understanding Terraform stacks
	Writing Terraform stacks for GCP
	Writing Terraform stacks for AWS
	Writing Terraform stacks for Azure
	Summary
	Questions
	Further reading

	Chapter 10: Terraform Cloud and Terraform Enterprise
	Technical requirements
	Introducing Terraform Cloud
	Terraform Cloud workflow

	Understanding Terraform Enterprise
	Overviewing Terraform Sentinel
	Comparing different Terraform features
	Summary
	Questions
	Further reading

	Chapter 11: Terraform Glossary
	Assessments
	Other Books You May Enjoy
	Index

