
Rust Programming By Example

Rust is an open source, safe, concurrent,
practical language created by Mozilla. It
runs blazingly fast, prevents segfaults,
and guarantees safety. This book gets
you started with essential software
development by guiding you through the
different aspects of Rust programming.
With this approach, you can bridge the
gap between learning and implementing
immediately.

Beginning with an introduction to Rust,
you'll learn the basic aspects such as its
syntax, data types, functions, generics,
control fl ows, and more. After this, you'll
jump straight into building your fi rst
project, a Tetris game. Next, you'll build a
graphical music player and work with fast,
reliable networking software using Tokio,
the scalable and productive asynchronous
I/O Rust library.

Through these projects, you'll see
how well Rust performs in terms of
concurrency, parallelism, reliability,
improved performance, generics, macros,
and thread safety.

By the end of the book, you'll be
comfortable building various real-world
applications in Rust.

Things you will learn:

• Compile and run Rust
projects using Cargo, the Rust
package manager

• Use Rust-SDL features such as the
Event loop, windows, infi nite loops,
and more

• Create a graphical interface using
Gtk-rs and Rust-SDL

• Incorporate concurrency and
multi-threading along with thread
safety and locks

• Learn the asynchronous programming
aspects of Rust

• Implement the FTP protocol using
an Asynchronous I/O stack with the
Tokio library

www.packtpub.com

R
u

st P
ro

g
ram

m
in

g
 B

y E
xam

p
le

G
u

illau
m

e G
o

m
ez, A

n
to

n
i B

o
u

ch
er

Enter the world of Rust by building engaging,
concurrent, reactive, and robust applications

Rust Programming
By Example

Guillaume Gomez, Antoni Boucher

Rust Programming By Example

Enter the world of Rust by building engaging, concurrent,
reactive, and robust applications

Guillaume Gomez
Antoni Boucher

BIRMINGHAM - MUMBAI

Rust Programming By Example
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Aaron Lazar
Acquisition Editor: Alok Dhuri
Content Development Editor: Akshada Iyer
Technical Editor: Mehul Singh
Copy Editor: Safis Editing
Project Coordinator: Prajakta Naik
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Graphics: Jason Monteiro
Production Coordinator: Deepika Naik

First published: January 2018

Production reference: 1090118

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78839-063-7

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the authors
Guillaume Gomez is an open source lover (let's keep this simple). He's a reviewer for the
Rust language and a member of the GNOME organization. Guillaume lives in Paris, France.

I would like to thank Sebastian Dröge for his review of the book. He did an amazing job in
helping us improve the book.

Antoni Boucher has been enjoying programming for 10 years, especially functional and
system programming. He works in the ad tech industry and strives to improve the
performance and reliability of software. He contributes to multiple open source projects and
is interested in system programming and compilers. Antoni lives in Montreal, Canada.

About the reviewers
Sebastian Dröge is a free software developer, currently working for Centricular Ltd. His
main involvement is with the GStreamer project, a cross-platform multimedia framework.
He also contributes to various other projects, such as Debian, GNOME, Rust, and WebKit.
He works as a contractor on free software.

Thanks to the authors for making the Rust programming language accessible to more
people with this book and for offering me to review this book, and to the Rust team for
creating such a useful and usable language with great documentation.

Daniel Durante is an avid coffee drinker/roaster, motorcyclist, archer, welder, and
carpenter whenever he isn't programming. From the age of 12, he has been involved with
web and embedded programming with PHP, Node.js, Golang, Rust, and C.

He has worked on text-based browser games that have reached over 1,000,000 active
players and created bin-packing software for CNC machines. He loves working with
embedded programming with cortex-m and PIC circuits, high-frequency trading
applications, and he has helped contribute to one of the oldest ORMs of Node.js
(SequelizeJS).

I would like to thank my parents, my brother, and friends who've all put up with my
insanity sitting in front of a computer day in and day out. I would not be here today if it
wasn't for their patience, guidance, and love.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Basics of Rust 6

Getting to know Rust 7
Installing Rust 8

Windows 8
Linux/Mac 8
Test your installation 10

Documentation and reference 11
Main function 11

Variables 11
Built-in data types 12

Integer types 13
Floating-point types 13
Boolean type 13
Character type 13

Control flow 14
Writing a condition 14
Creating while loops 14

Creating functions 15
Creating structures 15
References 17

Clone types 18
Copy types 19
Mutable references 20

Methods 20
Constructors 21

Tuples 22
Enumerations 22
Pattern matching 23

Irrefutable patterns 25
Traits 25

Default methods 27
Associated types 27
Rules 28

Table of Contents

[ii]

Generics 29
The Option type 29

Arrays 30
Slices 30
For loops 31

Macros 33
Multiple pattern rules 34
Repetitions 35

Optional quantifier 37
Summary 38

Chapter 2: Starting with SDL 39

Understanding Rust crates 39
Installing SDL2 39

Installing SDL2 on Linux 39
Installing SDL2 on Mac 40
Installing SDL2 on Windows 40

Windows with Build Script 40
Windows (MinGW) 42
Windows (MSVC) 43

Setting up your Rust project 44
Cargo and crates.io 45
The docs.rs documentation 47

Back to our Cargo.toml file 48
Rust's modules 49
Tetris 51
Creating a window 52
Drawing 54

Playing with Options 60
Solution 61
Loading images 64

Installing SDL2_image on Mac 64
Installing SDL2_image on Linux 64
Installing SDL2_image on Windows 65

Playing with features 65
Playing with images 66

Handling files 69
Saving/loading high scores 72
Iterators 72
Reading formatted data from files 74

Summary 77

Table of Contents

[iii]

Chapter 3: Events and Basic Game Mechanisms 78

Writing Tetris 78
Tetrimino 79
Creating tetriminos 83
Generating a tetrimino 89

Rotating a tetrimino 91
Tetris struct 95
Interacting with the game map 99
SDL events 102
Score, level, lines sent 110

Levels and lines sent 113
Highscores loading/overwriting 114

Summary 128

Chapter 4: Adding All Game Mechanisms 129

Getting started with game mechanisms 129
Rendering UI 129

Rendering initialization 130
Rendering 133

Playing with fonts 140
Install on OS X 141
Install on Linux 141
Other system/package manager 141

Loading font 142
Summary 147

Chapter 5: Creating a Music Player 148

Installing the prerequisite 148
Installing GTK+ on Linux 149
Installing GTK+ on Mac 149
Installing GTK+ on Windows 149

Creating your first window 149
Closure 152
Preventing the default behavior of an event 153

Creating a toolbar 153
Stock item 155

Improving the organization of the application 156
Adding tool button events 159

Lifetime 161
Ownership 165

Containers 166

Table of Contents

[iv]

Types of containers 166
The Box container 167

Adding a playlist 169
The MVC pattern 171

Opening MP3 files 175
Reference-counting pointer 176
ID3— MP3 metadata 177
Opening files with a file dialog 178
Deleting a song 180
Displaying the cover when playing a song 181

Summary 182

Chapter 6: Implementing the Engine of the Music Player 183

Installing the dependencies 184
Installing dependencies on Linux 184
Installing dependencies on Mac 184
Installing dependencies on Windows 184

Decoding MP3 files 185
Adding dependencies 185
Implementing an MP3 decoder 185
Getting the frame samples 189

Playing music 190
Event loop 191

Atomic reference counting 192
Mutual exclusion 193
Send trait 193
Sync trait 193
Lock-free data structures 193

Playing music 196
Mutex guard 198
RAII 198

Using the music player 200
Pausing and resuming the song 201

Interior mutability 202
Showing the progression of the song 209
Improving CPU usage 213

Condition variable 214
Showing the song's current time 216
Loading and saving the playlist 220

Saving a playlist 220
Loading a playlist 223

Table of Contents

[v]

Using gstreamer for playback 226
Summary 230

Chapter 7: Music Player in a More Rusty Way with Relm 231

Reasons to use relm instead of gtk-rs directly 232
State mutation 232
Asynchronous user interface 233
Creating custom widgets 233

Creating a window with relm 234
Installing Rust nightly 235

Widget 236
Model 236
Messages 236
View 237

Properties 238
Events 238
Code generation 238

Update function 239
Adding child widgets 240

One-way data binding 243
Post-initialization of the view 244
Dialogs 248
Other methods 250

Playlist 252
Model parameter 253

Adding a relm widget 259
Communicating between widgets 260

Communicating with the same widget 260
Emit 261
With different widgets 262

Handle messages from a relm widget 264
Syntax sugar to send a message to another relm widget 265

Playing music 269
Computing the song duration 279
Using relm on stable Rust 283
Relm widgets data binding 285
Summary 287

Chapter 8: Understanding FTP 288

File transfer protocol 288
Introduction to FTP 289

Table of Contents

[vi]

Implementing simple chunks of commands 290
Starting with basics 292

Commands implementation 300
Implementing the SYST command 300
Implementing the USER command 301
Implementing the NOOP command 303
Implementing the PWD command 304
Implementing the TYPE command 304
Implementing the LIST command 305

Implementing the PASV command 305
Back to the LIST command 308

Implementing the CWD command 311
Implementing the CDUP command 315
Full implementation of the LIST command 315
Implementing the MKD command 318
Implementing the RMD command 319

Testing it 320
Summary 321

Chapter 9: Implementing an Asynchronous FTP Server 322

Advantages of asynchronous IO 322
Disadvantages of asynchronous IO 322
Creating the new project 323
Using Tokio 328

Tokio event loop 329
Using futures 329
Handling errors 329

Unwrapping 329
Custom error type 330

Displaying the error 330
Composing error types 332
The ? operator, revisited 334

Starting the Tokio event loop 334
Starting the server 335

Handling clients 337
Handling commands 338
FTP codec 339

Decoding FTP commands 340
Encoding FTP commands 341

Handling commands 342
Managing the current working directory 344

Printing the current directory 344
Changing the current directory 345

Table of Contents

[vii]

Setting the transfer type 348
Entering passive mode 350

Bytes codec 353
Decoding data bytes 353
Encoding data bytes 354

Quitting 354
Creating directories 355
Removing directories 356
Summary 357

Chapter 10: Implementing Asynchronous File Transfer 358

Listing files 358
Downloading a file 364
Uploading files 367
Going further! 369

Configuration 369
Securing the config.toml access 381

Unit tests 382
Backtraces 385
Testing failures 386
Ignoring tests 387

Integration tests 389
Teardown 390
Print output to stdout 393

Documentation 393
Documenting a crate 394
Documenting a module 394
Headers 394
Code blocks 395
Documenting an enumeration (or any type with public fields) 395
Generating the documentation 396
Warning about public items without documentation 397
Hiding items from the documentation 398

Documentation tests 398
Tags 398

ignore 399
compile_fail 400
no_run 401
should_panic 402
Combining flags? 402

About the doc blocks themselves 403

Table of Contents

[viii]

Hiding code blocks lines 403
Fuzzing tests 404
Summary 411

Chapter 11: Rust Best Practices 412

Rust best practices 412
Slices 412
API tips and improvements 414

 Explaining the Some function 414
 Using the Path function 415

Usage tips 416
Builder pattern 416

Playing with mutable borrows 417
Playing with moves 418

Code readability 418
Big number formatting 418
Specifying types 419
Matching 420

Summary 420

Other Books You May Enjoy 421

Index 424

Preface
The aim of this book is to give a little tour of some Rust basics (playing with GUIs) and
advanced (async programming) features. Because interesting projects are always a huge
plus in a language learning process, we wrote the book with this focus. We think this
language is awesome and we hope to give you the motivation and knowledge in order to
have even more rustaceans in the future!

Who this book is for
Readers only need a basic knowledge of the Rust language to follow through this book if
they want to enjoy it the most, even though it's recommended to always have the
documentation open alongside to answer questions this book might not provide (we,
authors, aren't almighty, which is a shame, we know). For readers who don't know Rust at
all, we recommend that they first read the Rust book that you can find here at https:/ /doc.
rust-lang.org/stable/ book/ and then come back to read this one!

What this book covers
Chapter 1, Basics of Rust, covers the installation of Rust and teaches the syntax and basic
principles of the language so that you are ready to code projects with it.

Chapter 2, Starting with SDL, shows how to start using SDL and its main features, such as
events and drawings. Once the project is created, we'll make a window displaying an
image.

Chapter 3, Events and Basic Game Mechanisms, takes you deeper into how to handle events.
We'll write the tetrimino objects and make them change following the received events.

Chapter 4, Adding All Game Mechanisms, completes the game's mechanisms. At the end of
this chapter, we'll have a fully running Tetris game.

Chapter 5, Creating a Music Player, helps you start building a graphical music player. Only
the user interface will be covered in this chapter.

Chapter 6, Implementing the Engine of the Music Player, adds the music player engine to the
graphical application.

https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/stable/book/

Preface

[2]

Chapter 7, Music Player in a More Rusty Way with Relm, improves the music player to add a
playing, allowing to process the music in the list to remove the vocals.

Chapter 8, Understanding FTP, introduces the FTP protocol by implementing a synchronous
FTP server, to prepare you to write the asynchronous version in the next chapters.

Chapter 9, Implementing an Asynchronous FTP Server, implements an FTP protocol with
Tokio.

Chapter 10, Implementing Asynchronous File Transfer, implements the FTP service itself. This
is where the application will be able to upload and download files.

Appendix, Rust Best Practices, shows how to write nice Rust APIs and how to make them as
easy and nice to use as possible.

To get the most out of this book
There isn't much that you require. Besides, Rust is well supported on any operating
system. Linux is the best-supported operating system here. You can also use Rust on
Windows and macOS as well, you'll need a fairly recent computer; a gigabyte of RAM
should be enough for the purposes of this book.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[3]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Rust-Programming-By-Example. We also have
other code bundles from our rich catalog of books and videos available at https:/ /github.
com/PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /www. packtpub. com/ sites/ default/ files/
downloads/RustProgrammingByExample_ ColorImages. pdf

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

https://github.com/PacktPublishing/Rust-Programming-By-Example
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/RustProgrammingByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/RustProgrammingByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/RustProgrammingByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/RustProgrammingByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/RustProgrammingByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/RustProgrammingByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/RustProgrammingByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/RustProgrammingByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/RustProgrammingByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/RustProgrammingByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/RustProgrammingByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/RustProgrammingByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/RustProgrammingByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/RustProgrammingByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/RustProgrammingByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/RustProgrammingByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/RustProgrammingByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/RustProgrammingByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/RustProgrammingByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/RustProgrammingByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/RustProgrammingByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/RustProgrammingByExample_ColorImages.pdf

Preface

[4]

A block of code is set as follows:

html, body, #map {
 height: 100%;
 margin: 0;
 padding: 0
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

$ mkdir css
$ cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

Preface

[5]

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Basics of Rust

This chapter introduces you to the basics of Rust, a systems programming language
designed to be secure and fast. Rust is a good candidate to write concurrent software and it
helps to prevent bugs. After reading this chapter, you'll be ready to code cool projects in the
subsequent chapters. After learning about the language itself, you'll install its compiler and
package manager, and you'll start programming right away. You'll also learn about the
following concepts:

Variables
Built-in data types
Control flow (conditions and loops)
Functions
Custom data types
References
Pattern matching
Traits and Generics
Arrays and Slices
Macros

Basics of Rust Chapter 1

[7]

Getting to know Rust
Rust is a system programming language developed by Mozilla, whose version 1.0 appeared
in 2015. A system language means that you have control over the memory used by the
program—you decide whether you want to allocate the memory on the stack or the heap,
and when the memory is freed. But don't worry; in Rust, the compiler is very helpful and
prevents you from making the many mistakes you can make in C and C++ that lead to
segmentation faults. A segmentation fault arises when the programmer tries to access some
memory that is not accessible to its process. Memory unsafety leads to bugs and security
flaws.

Moreover, the compiler is smart enough to know where to insert the memory deallocation
instructions so that you don't need to manually free your memory, all of that without a
garbage collector, which is one of its greatest features. Since Rust is safe and fast, it is the
perfect candidate for writing operating systems, embedded programs, servers, and games,
but you can also use it to develop desktop applications and websites. A great example of
this power is the Servo web engine, also developed by Mozilla.

Rust is multi-paradigm: it can be used in an imperative or functional way and you can even
write concurrent applications safely. It is statically typed, meaning that every type must be
known at compile time, but since it uses type inference, we can omit the type for most local
variables. It is also strongly typed, which means that its type system prevents the
programmer from some kinds of errors, such as using the wrong type for a function
parameter. And Rust is very good at writing concurrent software because it prevents data
races, which is concurrent access to a variable where one is a write; this is an undefined
behavior in other languages. One thing to remember when reading this book is that Rust
prevents you from shooting yourself in the foot. For instance, Rust doesn't have:

null pointers
data races
use after free
use before initialization
goto
automatic coercion of Boolean, numbers and enumerations

Also, Rust helps to prevent memory leaks. However, all of this is possible with unsafe
code, which is explained in Chapter 3, Events and Basic Game Mechanisms.

Without further ado, let's install the tools we'll need throughout the book.

https://servo.org/

Basics of Rust Chapter 1

[8]

Installing Rust
In this section we'll install rustup, which allows us to install different versions of the
compiler and package manager.

Windows
Go to https://rustup. rs and follow the instructions in order to download rustup-
init.exe, then run it.

Linux/Mac
Unless your distribution provides a package for rustup, you'll need to install rustup by
typing the following command in your terminal:

$ curl https://sh.rustup.rs -sSf | sh
info: downloading installer

Welcome to Rust!

[...]

Current installation options:

 default host triple: x86_64-unknown-linux-gnu
 default toolchain: stable
 modify PATH variable: yes

1) Proceed with installation (default)
2) Customize installation
3) Cancel installation

This downloaded rustup and asked you whether you want to customize the installation.
Unless you have particular needs, you'll be okay with the default.

Note: The $ represents your shell prompt and should not be typed; you
must type the text following it. Also, a line of text that doesn't start with $
represents the text output of the program.

https://rustup.rs
https://rustup.rs
https://rustup.rs
https://rustup.rs
https://rustup.rs
https://rustup.rs
https://rustup.rs

Basics of Rust Chapter 1

[9]

To proceed with the installation, enter 1 and press Enter. This will install
the rustc compiler, and the cargo package manager, among other things:

info: syncing channel updates for 'stable-x86_64-unknown-linux-gnu'
info: latest update on 2017-07-20, rust version 1.19.0 (0ade33941
2017-07-17)
info: downloading component 'rustc'

[...]

 stable installed - rustc 1.19.0 (0ade33941 2017-07-17)

Rust is installed now. Great!

To get started you need Cargo's bin directory ($HOME/.cargo/bin) in your
PATH
environment variable. Next time you log in this will be done automatically.

To configure your current shell run source $HOME/.cargo/env

As pointed out by the installer, you need to execute the following command in order to add
the directory containing these tools in your PATH:

$ source $HOME/.cargo/env
Which is the same as executing the following:
$ export PATH="$HOME/.cargo/bin:$PATH"

(This is only needed once because the rustup installer added it to your ~/.profile file.)

Now, test that you have both cargo and rustc, as you'll need them very soon:

$ cargo -V
cargo 0.23.0 (61fa02415 2017-11-22)
$ rustc -V
rustc 1.22.1 (05e2e1c41 2017-11-22)

Cargo is Rust's package manager and build tool: it allows you to compile and run your
projects, as well as managing their dependencies.

At the time of writing this book, the stable Rust version was 1.22.0.

Basics of Rust Chapter 1

[10]

Test your installation
Let's try to build a Rust program. First, create a new project with cargo:

$ cargo new --bin hello_world
 Created binary (application) `hello_world` project

The --bin flag indicates that we want to create an executable project, as opposed to a
library (which is the default without this flag). In the Rust world, a crate is a package of
libraries and/or executable binaries.

This created a hello_world directory containing the following files and directory:

$ tree hello_world/
hello_world/
├── Cargo.toml
└── src
 └── main.rs

1 directory, 2 files

The Cargo.toml file is where the metadata (name, version, and so on) of your project
resides, as well as its dependencies. The source files of your project are in the src directory.
It's now time to run this project:

$ cd hello_world/
$ cargo run
 Compiling hello_world v0.1.0
(file:///home/packtpub/projects/hello_world)
 Finished dev [unoptimized + debuginfo] target(s) in 0.39 secs
 Running `target/debug/hello_world`
Hello, world!

The first three lines printed after cargo run are lines printed by cargo indicating what it
did: it compiled the project and ran it. The last line, Hello, world!, is the line printed by
our project. As you can see, cargo generates a Rust file that prints text to stdout (standard
output):

$ cat src/main.rs
fn main() {
 println!("Hello, world!");
}

Basics of Rust Chapter 1

[11]

If you only want to compile the project without running it, type the following instead:

$ cargo build
 Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs

This time, we didn't see Compiling hello_world because cargo did not see any changes
to the project's files, thus, there's no need to compile again.

Documentation and reference
You can find the API documentation here: https:/ /doc. rust- lang. org/ stable/ std/ . The
reference can be found here: https:/ / doc. rust- lang. org/ stable/ reference/ .

Main function
Let's look again at our first project source code:

fn main() {
 println!("Hello, world!");
}

It only contains a main function—this is where the execution of the program begins. It is a
function that takes no arguments (hence the empty parentheses) and returns a unit, also
written (). The body of the function, between curly brackets, contains a call to
the println!() macro—we can see this is a macro because it ends with !, as opposed to a
function. This macro prints the text between parentheses, followed by a new line. We'll see
what is a macro in the Macros section.

Variables
We'll now change the previous program to add a variable:

fn main() {
 let name = "world";
 println!("Hello, {}!", name);
}

https://doc.rust-lang.org/stable/std/
https://doc.rust-lang.org/stable/std/
https://doc.rust-lang.org/stable/std/
https://doc.rust-lang.org/stable/std/
https://doc.rust-lang.org/stable/std/
https://doc.rust-lang.org/stable/std/
https://doc.rust-lang.org/stable/std/
https://doc.rust-lang.org/stable/std/
https://doc.rust-lang.org/stable/std/
https://doc.rust-lang.org/stable/std/
https://doc.rust-lang.org/stable/std/
https://doc.rust-lang.org/stable/std/
https://doc.rust-lang.org/stable/std/
https://doc.rust-lang.org/stable/std/
https://doc.rust-lang.org/stable/std/
https://doc.rust-lang.org/stable/std/
https://doc.rust-lang.org/stable/reference/
https://doc.rust-lang.org/stable/reference/
https://doc.rust-lang.org/stable/reference/
https://doc.rust-lang.org/stable/reference/
https://doc.rust-lang.org/stable/reference/
https://doc.rust-lang.org/stable/reference/
https://doc.rust-lang.org/stable/reference/
https://doc.rust-lang.org/stable/reference/
https://doc.rust-lang.org/stable/reference/
https://doc.rust-lang.org/stable/reference/
https://doc.rust-lang.org/stable/reference/
https://doc.rust-lang.org/stable/reference/
https://doc.rust-lang.org/stable/reference/
https://doc.rust-lang.org/stable/reference/
https://doc.rust-lang.org/stable/reference/
https://doc.rust-lang.org/stable/reference/

Basics of Rust Chapter 1

[12]

The {} part in the string literal is replaced by the content of the name variable. Here, we see
the type inference in action—we don't have to specify the type of the name variable and the
compiler will infer it for us. We could have also written the type ourselves:

let name: &str = "world";

(From now on, I'll omit the main function, but this code should be written inside the
function.)

In Rust, variables are immutable by default. As such, writing the following will cause a
compile-time error:

let age = 42;
age += 1;

The compiler gives us a very helpful error message:

error[E0384]: cannot assign twice to immutable variable `age`
 --> src/main.rs:16:5
 |
15 | let age = 42;
 | --- first assignment to `age`
16 | age += 1;
 | ^^^^^^^^ cannot assign twice to immutable variable

To make a variable mutable, we need to use the mut keyword:

let mut age = 42;
age += 1;

Built-in data types
Let's look at the basic types provided by the language, such as integers, floats, Booleans,
and characters.

Basics of Rust Chapter 1

[13]

Integer types
The following integer types are available in Rust:

Unsigned Signed
u8 i8

u16 i16

u32 i32

u64 i64

usize isize

The u means unsigned, while the i means signed, and the number following it is the
number of bits. For instance, a number of the u8 type can be between 0 and 255, inclusive.
And a number of the i16 type can be between -32768 and 32767, inclusive. The size variants
are the pointer-sized integer types: usize and isize are 64-bit on a 64-bit CPU. The default
integer type is i32, which means that this type will be used by the type inference when it
cannot choose a more specific type.

Floating-point types
There are two floating-point types: f32 and f64, the latter being the default. The number
following f represents the number of bits for the type. An example value is 0.31415e1.

Boolean type
The bool type admits two values: true and false.

Character type
The char type represents a Unicode character. An example unicode scalar value is '€'.

Basics of Rust Chapter 1

[14]

Control flow
We'll now look at how to write conditions and loops in Rust. Conditions are useful to
execute a block of code when a certain situation happens, and loops allow you to repeat a
block of code a number of times, until a condition is met.

Writing a condition
Similar to other languages, Rust conditions are expressed with the if and else keywords:

let number1 = 24;
let number2 = 42;
if number1 > number2 {
 println!("{} > {}", number1, number2);
} else {
 println!("{} <= {}", number1, number2);
}

However, they do not require parentheses around the conditional expression. Also, this
expression must be of the bool type: you cannot use a number as you would in other
languages.

One particularity of Rust conditions, like many other constructs, is that they are
expressions. The last expression of each branch is the value of this branch. Be careful
though, the type of each branch must be the same. For instance, we can get the minimum
number of the two numbers and put it into a variable:

let minimum =
 if number1 < number2 {
 number1
 } else {
 number2
 }; // Don't forget the semi-colon here.

Creating while loops
There are multiple kinds of loop in Rust. One of them is the while loop.

Let's see how to compute the greatest common divisor using the Euclidean algorithm:

let mut a = 15;
let mut b = 40;
while b != 0 {

Basics of Rust Chapter 1

[15]

 let temp = b;
 b = a % b;
 a = temp;
}
println!("Greatest common divisor of 15 and 40 is: {}", a);

This code executes successive divisions and stops doing so when the remainder is 0.

Creating functions
We had a brief introduction to functions when we saw the main function. Let's see how to
create functions with parameters and a return value.

Here's how to write a function that returns the maximum of two numbers:

fn max(a: i32, b: i32) -> i32 {
 if a > b {
 a
 } else {
 b
 }
}

The parameters are between parentheses and must be explicitly typed since the type
inference only infers the types of local variables. This is a good thing since this acts as a
documentation. Moreover, this can prevent bugs when we change how we use the
parameters or change the value that is returned. The function can be defined after it is used
without any issue. The return type is after ->. When we return (), we can omit the -> and
type.

The last expression in the body of a function is the value returned from the function. You
don't need to use return. The return keyword is only needed when you want to return
early.

Creating structures
Sometimes, we have multiple values that only make sense together, such as the two
coordinates of a point. Structures are a way to create new types that contains multiple
members.

Basics of Rust Chapter 1

[16]

Here is how we would create the aforementioned Point structure:

struct Point {
 x: i32,
 y: i32,
}

To create a new point and access its members, we use the following syntax:

let point = Point {
 x: 24,
 y: 42,
};
println!("({}, {})", point.x, point.y);

What if we want to print the point as a whole?

Let's try the following:

println!("{}", point);

The compiler does not accept this:

error[E0277]: the trait bound `Point: std::fmt::Display` is not satisfied
 --> src/main.rs:7:20
 |
7 | println!("{}", point);
 | ^^^^^ `Point` cannot be formatted with the default
formatter; try using `:?` instead if you are using a format string
 |
 = help: the trait `std::fmt::Display` is not implemented for `Point`
 = note: required by `std::fmt::Display::fmt`

The {} syntax is used to display a value to the end user of the application. Nevertheless,
there's no standard way to display arbitrary structures. We can do what the compiler
suggests: using the {:?} syntax. That requires you to add an attribute to the structure, so
let's change it:

#[derive(Debug)]
struct Point {
 x: i32,
 y: i32,
}

println!("{:?}", point);

Basics of Rust Chapter 1

[17]

The #[derive(Debug)] attribute tells the compiler to automatically generate the code to
be able to print a debug representation of the structure. We'll see how this works in the
section about traits. It prints the following:

Point { x: 24, y: 42 }

Sometimes, the structure contains a lot of nested fields and this representation is hard to
read. To remedy that, we can use the {:#?} syntax to pretty-print the value:

println!("{:#?}", point);

This gives the following output:

Point {
 x: 24,
 y: 42
}

The documentation describes what other formatting syntax can be used: https:/ /doc.
rust-lang.org/stable/ std/ fmt/ .

References
Let's try the following code, which would work in other programming languages:

let p1 = Point { x: 1, y: 2 };
let p2 = p1;
println!("{}", p1.x);

We can see that Rust doesn't accept this. It gives the following error:

error[E0382]: use of moved value: `p1.x`
 --> src/main.rs:4:20
 |
3 | let p2 = p1;
 | -- value moved here
4 | println!("{}", p1.x);
 | ^^^^ value used here after move
 |
 = note: move occurs because `p1` has type `Point`, which does not
implement the `Copy` trait

https://doc.rust-lang.org/stable/std/fmt/
https://doc.rust-lang.org/stable/std/fmt/
https://doc.rust-lang.org/stable/std/fmt/
https://doc.rust-lang.org/stable/std/fmt/
https://doc.rust-lang.org/stable/std/fmt/
https://doc.rust-lang.org/stable/std/fmt/
https://doc.rust-lang.org/stable/std/fmt/
https://doc.rust-lang.org/stable/std/fmt/
https://doc.rust-lang.org/stable/std/fmt/
https://doc.rust-lang.org/stable/std/fmt/
https://doc.rust-lang.org/stable/std/fmt/
https://doc.rust-lang.org/stable/std/fmt/
https://doc.rust-lang.org/stable/std/fmt/
https://doc.rust-lang.org/stable/std/fmt/
https://doc.rust-lang.org/stable/std/fmt/
https://doc.rust-lang.org/stable/std/fmt/
https://doc.rust-lang.org/stable/std/fmt/

Basics of Rust Chapter 1

[18]

This means that we cannot use a value after it is moved. In Rust, values are moved by
default instead of being copied, except in some cases, as we'll see in the next sub-section.

To avoid moving a value, we can take a reference to it by prefixing it with &:

let p1 = Point { x: 1, y: 2 };
let p2 = &p1;
println!("{}", p1.x);

This code compiles and, in this case, p2 is a reference to p1, which means that it points to
the same memory location. Rust ensures that it is always safe to use a reference, since
references are not pointers, they cannot be NULL.

References can also be used in the type of a function parameter. This is a function that prints
a point, without moving the value:

fn print_point(point: &Point) {
 println!("x: {}, y: {}", point.x, point.y);
}

We can use it this way:

print_point(&p1);
println!("{}", p1.x);

We can still use the point after calling print_point, because we send a reference to the
function instead of moving the point into the function.

Clone types
An alternative to using references is to clone values. By cloning a value, we don't move it.
To be able to clone a point, we can add derive to it:

#[derive(Clone, Debug)]
struct Point {
 x: i32,
 y: i32,
}

We can now call the clone() method to avoid moving our p1 point:

fn print_point(point: Point) {
 println!("x: {}, y: {}", point.x, point.y);
}

Basics of Rust Chapter 1

[19]

let p1 = Point { x: 1, y: 2 };
let p2 = p1.clone();
print_point(p1.clone());
println!("{}", p1.x);

Copy types
Some types are not moved when we assigned a value of these types to another variable.
This is the case for basic types such as integers. For instance, the following code is perfectly
valid:

let num1 = 42;
let num2 = num1;
println!("{}", num1);

We can still use num1 even thought we assigned it to num2. This is because the basic types
implement a special marker: Copy. Copy types are copied instead of moved.

We can make our own types Copy by adding derive to them:

#[derive(Clone, Copy)]
struct Point {
 x: i32,
 y: i32,
}

Since Copy requires Clone, we also implement the latter for our Point type. We cannot
derive Copy for a type containing a value that does not implement Copy. Now, we can use a
Point without having to bother with references:

fn print_point(point: Point) {
 println!("x: {}, y: {}", point.x, point.y);
}

let p1 = Point { x: 1, y: 2 };
let p2 = p1;
print_point(p1);
println!("{}", p1.x);

Basics of Rust Chapter 1

[20]

Mutable references
If we want to be able to mutable thought a reference, we need a mutable reference, since
everything is immutable by default in Rust. To get a mutable reference, simply replace
& with &mut. Let's write a function that will increment the x field of a Point:

fn inc_x(point: &mut Point) {
 point.x += 1;
}

Here, we see that the Point type is now &mut, which allows us to update the point in the
method. To use this method, our p1 variable needs to be mut and we also need to take a
mutable reference for this variable:

let mut p1 = Point { x: 1, y: 2 };
inc_x(&mut p1);

Methods
We can add methods on custom types. Let's write a method to compute the distance of a
point to the origin:

impl Point {
 fn dist_from_origin(&self) -> f64 {
 let sum_of_squares = self.x.pow(2) + self.y.pow(2);
 (sum_of_squares as f64).sqrt()
 }
}

There are a lot of new syntaxes here (impl Point, as, and .method()), so let's explain all
of them. First of all, methods of a type are declared within the impl Type {} construct.
This method takes a special parameter: &self. This parameter is the instance the method is
called on, like this in other programming languages. The & operator before self means
that the instance is passed by immutable reference. As we can see, it is possible to call
methods on basic types in Rust—self.x.pow(2) computes the power of two of the x field.
We can find this method, and many others, in the documentation, at https:/ / doc.rust-
lang.org/stable/ std/ primitive. i32. html#method. pow . In the last expression of the
method, we cast the sum_of_squares integer to f64 before computing its square root,
because the sqrt() method is defined only on floating points.

https://doc.rust-lang.org/stable/std/primitive.i32.html#method.pow
https://doc.rust-lang.org/stable/std/primitive.i32.html#method.pow
https://doc.rust-lang.org/stable/std/primitive.i32.html#method.pow
https://doc.rust-lang.org/stable/std/primitive.i32.html#method.pow
https://doc.rust-lang.org/stable/std/primitive.i32.html#method.pow
https://doc.rust-lang.org/stable/std/primitive.i32.html#method.pow
https://doc.rust-lang.org/stable/std/primitive.i32.html#method.pow
https://doc.rust-lang.org/stable/std/primitive.i32.html#method.pow
https://doc.rust-lang.org/stable/std/primitive.i32.html#method.pow
https://doc.rust-lang.org/stable/std/primitive.i32.html#method.pow
https://doc.rust-lang.org/stable/std/primitive.i32.html#method.pow
https://doc.rust-lang.org/stable/std/primitive.i32.html#method.pow
https://doc.rust-lang.org/stable/std/primitive.i32.html#method.pow
https://doc.rust-lang.org/stable/std/primitive.i32.html#method.pow
https://doc.rust-lang.org/stable/std/primitive.i32.html#method.pow
https://doc.rust-lang.org/stable/std/primitive.i32.html#method.pow
https://doc.rust-lang.org/stable/std/primitive.i32.html#method.pow
https://doc.rust-lang.org/stable/std/primitive.i32.html#method.pow
https://doc.rust-lang.org/stable/std/primitive.i32.html#method.pow
https://doc.rust-lang.org/stable/std/primitive.i32.html#method.pow
https://doc.rust-lang.org/stable/std/primitive.i32.html#method.pow
https://doc.rust-lang.org/stable/std/primitive.i32.html#method.pow

Basics of Rust Chapter 1

[21]

Let's create a method that will update the fields of the structure:

impl Point {
 fn translate(&mut self, dx: i32, dy: i32) {
 self.x += dx;
 self.y += dy;
 }
}

The difference with the previous method is that self is now a mutable reference, &mut.

Constructors
Rust does not provide constructors, but a common idiom is to create a new() static method,
also called an associated function:

impl Point {
 fn new(x: i32, y: i32) -> Self {
 Self { x: x, y: y }
 }
}

The difference with a normal method is that it does not take &self (or one of its variations)
as a parameter.

Self is the type of the self value; we could have used Point instead of Self.

When the field name is the same as the value assigned, it is possible to omit the value, as a
shorthand:

fn new(x: i32, y: i32) -> Self {
 Self { x, y }
}

When we create an instance of Point with the call to its constructor (let point =
Point::new();), this will allocate the value on the stack.

We can provide multiple constructors:

impl Point {
 fn origin() -> Self {
 Point { x: 0, y: 0 }
 }
}

Basics of Rust Chapter 1

[22]

Tuples
Tuples and structures are similar, except that tuples' fields are unnamed. Tuples are
declared inside parentheses, with the element separated by a comma:

let tuple = (24, 42);
println!("({}, {})", tuple.0, tuple.1);

As you can see on the second line, we can access the elements of a tuple with .index,
where index is a constant and this index starts at 0.

Tuples can be used to return multiple values from a function. For instance, the
str::split_at() method returns two strings:

let (hello, world) = "helloworld".split_at(5);
println!("{}, {}!", hello, world);

Here, we assign the two elements of the tuple to the hello and world variables. We'll see
why this works in the Pattern matching section.

Enumerations
While a structure allows us to get multiple values under the same variable, enumerations
allow us to choose one value from different types of values.

For example, let's write a type representing an expression:

enum Expr {
 Null,
 Add(i32, i32),
 Sub(i32, i32),
 Mul(i32, i32),
 Div { dividend: i32, divisor: i32 },
 Val(i32),
}

let quotient = Expr::Div { dividend: 10, divisor: 2 };
let sum = Expr::Add(40, 2);

Basics of Rust Chapter 1

[23]

The Null variant does not have a value associated with it, Val has one associated value,
and Add has two. Div also has two associated values, but they are named, similar to how
we define a structure.

Pattern matching
So how can we know which variant is in a variable whose type is an enumeration and how
to get the values out of it? For that, we need to use pattern matching. The match expression
is one way to do pattern matching. Let's see how to use it to compute the result of an
expression:

fn print_expr(expr: Expr) {
 match expr {
 Expr::Null => println!("No value"),
 Expr::Add(x, y) => println!("{}", x + y),
 Expr::Sub(x, y) => println!("{}", x - y),
 Expr::Mul(x, y) => println!("{}", x * y),
 Expr::Div { dividend: x, divisor: 0 } => println!("Divisor
 is zero"),
 Expr::Div { dividend: x, divisor: y } => println!("{}",
 x/y),
 Expr::Val(x) => println!("{}", x),
 }
}

A match expression is a way to check whether a value follows a certain pattern and
executes different codes for different patterns. In this case, we match over an enumerated
type, so we check for each variant. If the expression is Expr::Add, the code on the right of
=> is executed: println!("{}", x + y). By writing variable names inside the
parentheses next to Expr::Add, we specify that the actual values of this variant are bound
to these names. By doing so, we can use these variable names on the right side of =>.

Basics of Rust Chapter 1

[24]

Figure 1.1 is a diagram showing how pattern matching works:

Figure 1.1

A match can also be used to check whether a number is within a range. This function
converts an ASCII character (represented by u8 in Rust) to uppercase:

fn uppercase(c: u8) -> u8 {
 match c {
 b'a'...b'z' => c - 32,
 _ => c,
 }
}

Here, the ... syntax represents an inclusive range. And the underscore (_) is used to mean
literally everything else, this is very useful in Rust because match needs to be exhaustive.

You can convert u8 to char using the as syntax, as shown earlier:

println!("{}", uppercase(b'a') as char);

It is also possible to match against different patterns in a match by using the | operator:

fn is_alphanumeric(c: char) -> bool {
 match c {

Basics of Rust Chapter 1

[25]

 'a'...'z' | 'A'...'Z' | '0'...'9' => true,
 _ => false,
 }
}

There are alternative syntaxes to do pattern matching. One of them is the if let construct.
Let's rewrite our uppercase function using if let:

fn uppercase(c: u8) -> u8 {
 if let b'a'...b'z' = c {
 c - 32
 } else {
 c
 }
}

Unlike a match, if let does not need to be exhaustive. It does not even require an else
branch, the rules used for the normal if expression also applies to if let. This construct
can be more appropriate than match when you only want to match against one or two
patterns.

Irrefutable patterns
Another form of pattern matching is irrefutable patterns. A pattern is irrefutable when
there's only one way to match it and it always succeeds. For instance, another way to get the
elements of a tuple is with an irrefutable pattern:

let tuple = (24, 42);
let (a, b) = tuple;
println!("{}, {}", a, b);

In the second line, we assign the first element of the tuple to a and the second to b.

Traits
Traits are a way to specify that a type must implement some methods and/or some types.
They are similar to interfaces in Java. We can implement a trait on a type and we'll be able
to use the methods of this trait on this type as long as this trait is imported. This is how we
can add methods to types defined in other crates or even the standard library.

Basics of Rust Chapter 1

[26]

Let's write a trait representing a bit set:

trait BitSet {
 fn clear(&mut self, index: usize);
 fn is_set(&self, index: usize) -> bool;
 fn set(&mut self, index: usize);
}

Here, we don't write the body of the methods, as they will be defined when we implement
this trait for a type.

Now, let's implement this trait for the u64 type:

impl BitSet for u64 {
 fn clear(&mut self, index: usize) {
 *self &= !(1 << index);
 }

 fn is_set(&self, index: usize) -> bool {
 (*self >> index) & 1 == 1
 }

 fn set(&mut self, index: usize) {
 *self |= 1 << index;
 }
}

As you can see, the bitwise not operator is ! in Rust, as opposed to ~ in other languages.
With this code, we can call these methods on u64:

let mut num = 0;
num.set(15);
println!("{}", num.is_set(15));
num.clear(15);

Remember the #[derive(Debug)] attribute? This actually implements the Debug trait on
the following type. We could also manually implement the Debug trait on our type, using
the same impl syntax, if the default implement does not suit our use case.

Basics of Rust Chapter 1

[27]

Default methods
Traits can contain default methods, which can be convenient for the implementor of the
trait since fewer methods will need to be implemented. Let's add a toggle() default
method in the trait:

trait BitSet {
 fn clear(&mut self, index: usize);
 fn is_set(&self, index: usize) -> bool;
 fn set(&mut self, index: usize);

 fn toggle(&mut self, index: usize) {
 if self.is_set(index) {
 self.clear(index);
 } else {
 self.set(index);
 }
 }
}

Since the new method has a body, we don't need to update our previous implementation.
However, we could do it to provide a more efficient implementation, for instance:

impl BitSet for u64 {
 // The other methods are the same as before.

 fn toggle(&mut self, index: usize) {
 *self ^= 1 << index;
 }
}

Associated types
We can also have types in a trait that need to be specified. For instance, let's implement
the Add trait from the standard library on our Point type that we declared earlier, which
allows us to use the + operator on our own types:

use std::ops::Add;

impl Add<Point> for Point {
 type Output = Point;

 fn add(self, point: Point) -> Self::Output {
 Point {
 x: self.x + point.x,

Basics of Rust Chapter 1

[28]

 y: self.y + point.y,
 }
 }
}

The first line is to import the Add trait from the standard library so that we can implement it
on our type. Here we specify that the associated Output type is Point. Associated types are
most useful for return types. Here, the Output of the add() method is the
associated Self::Output type.

Now, we can use the + operator on Points:

let p1 = Point { x: 1, y: 2 };
let p2 = Point { x: 3, y: 4 };
let p3 = p1 + p2;

Having to specify the output parameter with an associated type (instead of setting it to
Self) gives us more flexibility. For instance, we could implement the scalar product for the
* operator, which takes two Points and returns a number.

You can find all the operators that can be overloaded on this page, at https:/ /doc. rust-
lang.org/stable/ std/ ops/ index. html.

Since Rust 1.20, Rust also supports associated constants in addition to associated types.

Rules
There are some rules that must be followed in order to use traits. The compiler will throw
an error if they are not respected:

The trait must be imported in order to use its methods
The implementation of a trait must be in the same crate as the trait or the type

The second rule is to avoid conflicts that could otherwise happen when using multiple
libraries. We can have such a conflict when two imported traits provide the same method
for the same type.

https://doc.rust-lang.org/stable/std/ops/index.html
https://doc.rust-lang.org/stable/std/ops/index.html
https://doc.rust-lang.org/stable/std/ops/index.html
https://doc.rust-lang.org/stable/std/ops/index.html
https://doc.rust-lang.org/stable/std/ops/index.html
https://doc.rust-lang.org/stable/std/ops/index.html
https://doc.rust-lang.org/stable/std/ops/index.html
https://doc.rust-lang.org/stable/std/ops/index.html
https://doc.rust-lang.org/stable/std/ops/index.html
https://doc.rust-lang.org/stable/std/ops/index.html
https://doc.rust-lang.org/stable/std/ops/index.html
https://doc.rust-lang.org/stable/std/ops/index.html
https://doc.rust-lang.org/stable/std/ops/index.html
https://doc.rust-lang.org/stable/std/ops/index.html
https://doc.rust-lang.org/stable/std/ops/index.html
https://doc.rust-lang.org/stable/std/ops/index.html
https://doc.rust-lang.org/stable/std/ops/index.html
https://doc.rust-lang.org/stable/std/ops/index.html
https://doc.rust-lang.org/stable/std/ops/index.html
https://doc.rust-lang.org/stable/std/ops/index.html

Basics of Rust Chapter 1

[29]

Generics
Generics are a way to make a function or a type work for multiple types to avoid code
duplication. Let's rewrite our max function to make it generic:

fn max<T: PartialOrd>(a: T, b: T) -> T {
 if a > b {
 a
 } else {
 b
 }
}

The first thing to note is that there's a new part after the function name: this is where we
declare the generic types. We declare a generic T type, : PartialOrd after it means that
this T type must implement the PartialOrd trait. This is called a trait bound. We then use
this T type for both of our parameters and the return type. Then, we see the same function
body as the one from our non-generic function. We needed to add the trait bound because,
by default, no operation is allowed on a generic type. The PartialOrd trait allows us to use
the comparison operators.

We can then use this function with any type that implements PartialOrd:

println!("{}", max('a', 'z'));

This is using static dispatch as opposed to dynamic dispatch, meaning that the compiler
will generate a max function specific to char in the resulting binary. Dynamic dispatch is
another approach that resolves the right function to call at runtime, which is less efficient.

The Option type
Generics can also be used in a type. The Option type from the standard library is a generic
type, defined as such:

enum Option<T> {
 Some(T),
 None,
}

This type is useful to encode the possibility of the absence of a value. None means no value,
while Some(value) is used when there's a value.

Basics of Rust Chapter 1

[30]

Arrays
An array is a fixed-size collection of elements of the same type. We declare them with
square brackets:

let array = [1, 2, 3, 4];
let array: [i16; 4] = [1, 2, 3, 4];

The second line shows how to specify the type of an array. An alternative way to do that is
to use a literal suffix:

let array = [1u8, 2, 3, 4];

A literal suffix is the composition of a literal (that is, a constant) and a type suffix, so with
the 1 constant and the u8 type, we get 1u8. Literal suffixes can only be used on numbers.
This declares an array of 4 elements of the u8 type. Array indexing starts at 0 and bounds
checking is done at runtime. Bounds checking is used to prevent accessing memory that is
out of bounds, for instance, trying to access the element after the end of an array. While this
can slow down the software a bit, it can be optimized in many cases. The following code
will trigger a panic because the 4 index is one past the end of the array:

println!("{}", array[4]);

At runtime, we see the following message:

thread 'main' panicked at 'index out of bounds: the len is 4 but
the index is 4', src/main.rs:5:20
note: Run with `RUST_BACKTRACE=1` for a backtrace.

Another way to declare an array is:

let array = [0u8; 100];

This declares an array of 100 elements, where all of them are 0.

Slices
Arrays are fixed-size, but if we want to create a function that works with arrays of any size,
we need to use another type: a slice.

Basics of Rust Chapter 1

[31]

A slice is a view into a contiguous sequence: it can be a view of the whole array, or a part of
it. Slices are fat pointers, in addition to the pointer to the data, they contain a size. Here's a
function that returns a reference to the first element of a slice:

fn first<T>(slice: &[T]) -> &T {
 &slice[0]
}

Here, we use a generic type without bound since we don't use any operation on values of
the T type. The &[T] parameter type is a slice of T. The return type is &T, which is a
reference on values of the T type. The body of the function is &slice[0], which returns a
reference to the first element of the slice. Here's how to call this function with an array:

println!("{}", first(&array));

We can create slice for only a portion of an array, as shown in the following example:

println!("{}", first(&array[2..]));

&array[2..] creates a slice that starts at the 2 index until the end of the array (hence no
index after ..). Both indices are optional, so we could also write &array[..10] for the first
10 elements of the array, &array[5..10] for the elements with the 5 to 9 index (inclusive),
or &array[..] for all the elements.

For loops
The for loop is another form of loops that can be used in Rust. It is used to loop over
elements of an iterator. An iterator is a structure that produces a sequence of value: it could
produce the same value indefinitely or produce the elements of a collection. We can get an
iterator from a slice, so let's do that to compute the sum of the elements in a slice:

let array = [1, 2, 3, 4];
let mut sum = 0;
for element in &array {
 sum += *element;
}
println!("Sum: {}", sum);

The only surprising part here is * in sum += *element. Since we get a reference to the
elements of the slice, we need to dereference them in order to access the integers. We used &
in front of array to avoid moving it, indeed, we may still want to use this variable after the
loop.

Basics of Rust Chapter 1

[32]

Let's write a function that returns the index of an element in a slice, or None if it is not in the
slice:

fn index<T: PartialEq>(slice: &[T], target: &T) -> Option<usize> {
 for (index, element) in slice.iter().enumerate() {
 if element == target {
 return Some(index);
 }
 }
 None
}

Note: A partial equivalence relation is both symmetric and transitive, but
not reflexive. The Eq trait is used when these three properties are satisfied.

Here, we use again a generic type, but this time we use the PartialEq trait bound to be
able to use the == operator on values of the T type. This function returns Option<usize>,
meaning that it can either return no value (None) or the index (Some(index)). In the first
line of the body, we use slice.iter().enumerate() to get the index in addition to the
element of the slice. We use pattern matching right after the for keyword in order to assign
the index and the element to variables. Inside the condition, we use the return keyword to
return a value early. So if the value is found, it will return the index; otherwise, the loop will
end and the None value is returned afterward.

Let's write another function that uses a for loop. It returns the minimum and the maximum
of a slice, or None if the slice is empty:

fn min_max(slice: &[i32]) -> Option<(i32, i32)> {
 if slice.is_empty() {
 return None;
 }
 let mut min = slice[0];
 let mut max = slice[0];
 for &element in slice {
 if element < min {
 min = element;
 }
 if element > max {
 max = element;
 }
 }
 Some((min, max))
}

Basics of Rust Chapter 1

[33]

Here we return multiple values from a function by using a tuple. This time, & is on the left
side of in, while previously it was on the right side of it; this is because this for loop is
pattern matching against a reference by using &element. This is something we can do in
Rust, thus we don't need to dereference the element anymore with *.

Macros
Macro rules, also called macros by example, are a way to avoid code duplication by
generating code at compile time. We will implement a simple macro to implement our
BitSet trait for integer types:

macro_rules! int_bitset {
 ($ty:ty) => {
 impl BitSet for $ty {
 fn clear(&mut self, index: usize) {
 *self &= !(1 << index);
 }

 fn is_set(&self, index: usize) -> bool {
 (*self >> index) & 1 == 1
 }

 fn set(&mut self, index: usize) {
 *self |= 1 << index;
 }
 }
 };
}

The name of the int_bitset macro is written after macro_rules!. A macro can have
multiple rules, similar to match arms, but it matches on Rust syntactic elements instead,
with types, expressions, blocks of code, and so on. Here we only have one rule and it
matches against a single type since we use :ty. The part before :ty ($ty) is the name for
the element that was matched. Inside the curly brackets, after the => symbol, we see the
actual code that will be generated. It is the same as our previous implementation of BitSet
for u64, except that it uses the meta-variable $ty instead of u64.

To avoid a lot of boilerplate code, we can then use this macro as follows:

int_bitset!(i32);
int_bitset!(u8);
int_bitset!(u64);

Basics of Rust Chapter 1

[34]

Multiple pattern rules
Let's write a macro that will simplify the implementation of the traits to overload operators.
This macro will have two rules: one for the + and one for the - operators. Here's the first
rule of the macro:

macro_rules! op {
 (+ $_self:ident : $self_type:ty, $other:ident $expr:expr) => {
 impl ::std::ops::Add for $self_type {
 type Output = $self_type;

 fn add($_self, $other: $self_type) -> $self_type {
 $expr
 }
 }
 };
 // …

In this pattern, we use other types of syntactic elements: ident, which is an identifier, and
expr, which is an expression. The trait (::std::ops::Add) is fully qualified so
that the code using this macro won't need to import the Add trait.

And here's the rest of the macro:

 (- $_self:ident : $self_type:ty, $other:ident $expr:expr) => {
 impl ::std::ops::Sub for $self_type {
 type Output = $self_type;

 fn sub($_self, $other: $self_type) -> $self_type {
 $expr
 }
 }
 };
}

We can then use this macro with our Point type, like this:

op!(+ self:Point, other {
 Point {
 x: self.x + other.x,
 y: self.y + other.y,
 }
});

op!(- self:Point, other {
 Point {
 x: self.x - other.x,

Basics of Rust Chapter 1

[35]

 y: self.y - other.y,
 }
});

Let's see how the matching works:

For the first macro call, we start with +, so the first branch is taken because it matches +,
which is the start of this branch. Next we have self, which is an identifier, so it matches
the ident pattern and this is assigned to the $_self meta-variable. Then, we have : which
matches the colon in the pattern. After that, we have Point, which matches
the $self_type meta-variable of the ty type (for matching on a type). Then we
have , which matches the comma in the pattern. Next, we have other, which matches the
next item in the pattern, which is the $other meta-variable of the ident type. Finally, we
have { Point { … } }, which matches the expression required at the end of the pattern.
This is why these macros are called macros by example, we write what the call should look
like and the user must match the example (or pattern).

As an exercise to the reader, try the following:

Add the missing operators: * and /
Add the ability to specify the types of $other and the return type in the pattern
If you haven't already done this in the previous point, add more tokens so that it
looks more like a function declaration: +(self: Point, other: Point) ->
Point { … }

Try moving the operator in the pattern after the $self_type meta-variable to see
the limitations of macro_rules

Repetitions
In a macro pattern, it is also possible to match against an unlimited number of patterns,
using the repetition operators + and *. They behave exactly like the same operators in
regular expressions:

+ matches 1 or more times.
* matches 0, 1, or more times.

Basics of Rust Chapter 1

[36]

Let's write a very useful macro, a macro to provide syntactic sugar to create HashMaps:

Note: A HashMap is a data structure from Rust's standard library that
maps keys to values.

macro_rules! hash {
 ($($key:expr => $value:expr),*) => {{
 let mut hashmap = ::std::collections::HashMap::new();
 $(hashmap.insert($key, $value);)*
 hashmap
 }};
}

As we can see, we use the * operator here. The comma before it specify the separator token:
this token must be present between each occurrence of the pattern between parentheses
(which is the pattern that can be repeated). Don't forget the leading $ before the opening
parenthesis; without it, the macro will match the literal (. Inside the parentheses, we see a
normal pattern, an expression, followed by the => operator, followed by another
expression. The body of this rule is particular, since it uses two pairs of curly brackets
instead of only one.

First, let's look at how we use this macro, and we'll go back to this peculiarity right after:

let hashmap = hash! {
 "one" => 1,
 "two" => 2
};

If we were to use only one pair of curly brackets, like this:

macro_rules! hash {
 ($($key:expr => $value:expr),*) => {
 let mut hashmap = ::std::collections::HashMap::new();
 $(hashmap.insert($key, $value);)*
 hashmap
 };
}

The compiler will try to generate the following code, which doesn't compile:

let hashmap = let mut hashmap = ::std::collections::HashMap::new();
 hashmap.insert("one", 1);
 hashmap.insert("two", 2);
 hashmap;

Basics of Rust Chapter 1

[37]

It doesn't compile because Rust wants an expression on the right-hand side of =. To
transform this code into an expression, we simply need to add the curly brackets:

let hashmap = {
 let mut hashmap = ::std::collections::HashMap::new();
 hashmap.insert("one", 1);
 hashmap.insert("two", 2);
 hashmap
};

Hence the second pair of curly brackets.

There's one remaining line that requires an explanation in the body of the macro:

$(hashmap.insert($key, $value);)*

This means that the statement will be repeated as many times as there are pairs of
key/values. Notice that ; is inside the parentheses; and there's no separator before * because
every statement needs to end with a semicolon. But it's still possible to specify a separator
here, as shown in the following example:

let keys = [$($key),*];

This will expand all the $keys, separating them by a comma. For instance, with a call like:

hash! {
 "one" => 1,
 "two" => 2
}

It will results in:

let keys = ["one", "two"];

Optional quantifier
In the macro_rules system, there's no way to specify that a pattern is optional, like with
the ? quantifier in regular expressions. If we wanted to allow the user of our hash macro to
use a trailing comma, we could change the rule by moving the comma inside the
parentheses: ($($key:expr => $value:expr,)*).

Basics of Rust Chapter 1

[38]

However, it will force the user to write a trailing macro. If we want to allow both variants,
we can use the following trick, which uses the * operator: ($($key:expr =>
$value:expr),* $(,)*).

This means that a comma must be used between each pattern and we can use any number
of commas after the last pattern, including no comma at all.

Summary
This chapter introduced you to the basics of Rust by showing you how to use variables,
functions, control flow structures, and types. You also learned more advanced concepts
such as references and ownership to manage the memory, and you saw how you can use
traits, generics, and macros to avoid code repetition.

In the next chapter, you'll practise what you've just learned by creating a video game.

2
Starting with SDL

Before starting to write the Tetris, a few things remain to be talked about, such as crates,
which we'll be using a lot (and you'll be using a lot as well once you're rusting on your
own!). Let's start with crates!

Understanding Rust crates
In Rust, packages (both binaries and libraries) are named crates. You can find a lot of them
on crates.io. Today, we'll use the SDL2 crate in order to make our tetris, but before even
thinking about this, we need to install the SDL2 library that is used by the SDL2 crate!

Installing SDL2
Before going any further, we need to install the SDL library.

Installing SDL2 on Linux
Depending on your package management tool, run the following to install SDL2 on Linux:

apt package mananger:

$ sudo apt-get install libsdl2-dev

dnf package manager:

$ sudo dnf install SDL2-devel

Starting with SDL Chapter 2

[40]

yum package manager:

$ yum install SDL2-devel

Once done, your SDL2 installation is ready!

Installing SDL2 on Mac
To install SDL2 on Mac, Simply run the following:

$ brew install sdl2

You're good to go!

Installing SDL2 on Windows
All these installation instructions come directly from the Rust SDL2 crate.

Windows with Build Script
A few steps will be required in order to make all of it work. Follow the guide!

Download the mingw and msvc development libraries from http:/ /www. libsdl.1.
org/ (SDL2-devel-2.0.x-mingw.tar.gz and SDL2-devel-2.0.x-VC.zip).
Unpack to folders of your choice. (You can delete it afterward.)2.
Create the following folder structure in the same folder as your Cargo.toml:3.

 gnu-mingw\dll\32
 gnu-mingw\dll\64
 gnu-mingw\lib\32
 gnu-mingw\lib\64
 msvc\dll\32
 msvc\dll\64
 msvc\lib\32
 msvc\lib\64

Copy the lib and dll files from the source archive to the directories we created4.
in step 3 as follows:

SDL2-devel-2.0.x-mingw.tar.gz\SDL2-2.0.x\i686-w64-mingw32\bin ->
gnu-mingw\dll\32

http://www.libsdl.org/
http://www.libsdl.org/
http://www.libsdl.org/
http://www.libsdl.org/
http://www.libsdl.org/
http://www.libsdl.org/
http://www.libsdl.org/
http://www.libsdl.org/
http://www.libsdl.org/

Starting with SDL Chapter 2

[41]

SDL2-devel-2.0.x-mingw.tar.gz\SDL2-2.0.x\x86_64-w64-mingw32\bin ->
gnu-mingw\dll\64
SDL2-devel-2.0.x-mingw.tar.gz\SDL2-2.0.x\i686-w64-mingw32\lib ->
gnu-mingw\lib\32
SDL2-devel-2.0.x-mingw.tar.gz\SDL2-2.0.x\x86_64-w64-mingw32\lib ->
gnu-mingw\lib\64
SDL2-devel-2.0.5-VC.zip\SDL2-2.0.x\lib\x86*.dll ->
msvc\dll\32
SDL2-devel-2.0.5-VC.zip\SDL2-2.0.x\lib\x64*.dll ->
msvc\dll\64
SDL2-devel-2.0.5-VC.zip\SDL2-2.0.x\lib\x86*.lib ->
msvc\lib\32
SDL2-devel-2.0.5-VC.zip\SDL2-2.0.x\lib\x64*.lib ->
msvc\lib\64

Create a Build Script. If you don't already have one, put this in your Cargo.toml5.
file under [package]:

 build = "build.rs"

Create a file in the same directory as Cargo.toml called build.rs and write this6.
into it:

 use std::env;
 use std::path::PathBuf;

 fn main() {
 let target = env::var("TARGET").unwrap();
 if target.contains("pc-windows") {
 let manifest_dir =
 PathBuf::from(env::var("CARGO_MANIFEST_DIR").unwrap());
 let mut lib_dir = manifest_dir.clone();
 let mut dll_dir = manifest_dir.clone();
 if target.contains("msvc") {
 lib_dir.push("msvc");
 dll_dir.push("msvc");
 } else {
 lib_dir.push("gnu-mingw");
 dll_dir.push("gnu-mingw");
 }
 lib_dir.push("lib");
 dll_dir.push("dll");
 if target.contains("x86_64") {
 lib_dir.push("64");
 dll_dir.push("64");
 } else {
 lib_dir.push("32");

Starting with SDL Chapter 2

[42]

 dll_dir.push("32");
 }
 println!("cargo:rustc-link-search=all={}",
 lib_dir.display());
 for entry in std::fs::read_dir(dll_dir).expect("Can't
 read DLL dir") {
 let entry_path = entry.expect("Invalid fs entry").path();
 let file_name_result = entry_path.file_name();
 let mut new_file_path = manifest_dir.clone();
 if let Some(file_name) = file_name_result {
 let file_name = file_name.to_str().unwrap();
 if file_name.ends_with(".dll") {
 new_file_path.push(file_name);
 std::fs::copy(&entry_path,
 new_file_path.as_path()).expect("Can't copy
 from DLL dir");
 }
 }
 }
 }
 }

On build, the Build Script will copy the needed DLLs into the same directory as7.
your Cargo.toml file. You probably don't want to commit these to any Git
repositories though, so add the following line to your .gitignore file:

 /*.dll

When you're shipping your game, make sure that you copy the corresponding8.
SDL2.dll to the same directory that your compiled exe is in; otherwise, the
game won't launch.

And now your project should build and run on any Windows computer!

Windows (MinGW)
A few steps will be required in order to make all of it work. Follow the guide!

Download mingw development libraries from http:/ /www. libsdl. org/ (SDL2-1.
devel-2.0.x-mingw.tar.gz).
Unpack to a folder of your choice. (You can delete it afterward.)2.

http://www.libsdl.org/
http://www.libsdl.org/
http://www.libsdl.org/
http://www.libsdl.org/
http://www.libsdl.org/
http://www.libsdl.org/
http://www.libsdl.org/
http://www.libsdl.org/
http://www.libsdl.org/
http://www.libsdl.org/

Starting with SDL Chapter 2

[43]

Copy all lib files from the following path:3.

 SDL2-devel-2.0.x-mingw\SDL2-2.0.x\x86_64-w64-mingw32\lib

Next, copy it to this path:

 C:\Program Files\Rust\lib\rustlib\x86_64-pc-windows-gnu\lib

Alternately, you can copy to your library folder of choice and ensure that you
have a system environment variable as follows:

 LIBRARY_PATH = C:\your\rust\library\folder

For Rustup users, this folder will be at the following location:

 C:\Users\{Your Username}.multirust\toolchains\{current
 toolchain}\lib\rustlib\{current toolchain}\lib

Here, the current toolchain is probably stable-x86_64-pc-windows-gnu.

Copy SDL2.dll from the following:4.

 SDL2-devel-2.0.x-mingw\SDL2-2.0.x\x86_64-w64-mingw32\bin

The copied SDL2.dll is pasted into your cargo project, right next to your
Cargo.toml.

When you're shipping your game, make sure that you copy SDL2.dll to the5.
same directory that your compiled exe is in; otherwise, the game won't launch.

Windows (MSVC)
A few steps will be required in order to make all of it work. Follow the guide!

Download MSVC development libraries from http:/ / www.libsdl. org/ SDL2-1.
devel-2.0.x-VC.zip.
Unpack SDL2-devel-2.0.x-VC.zip to a folder of your choice. (You can delete2.
it afterward.)
Copy all lib files from the following path:3.

 SDL2-devel-2.0.x-VC\SDL2-2.0.x\lib\x64\

The lib files will be pasted here:

http://www.libsdl.org/
http://www.libsdl.org/
http://www.libsdl.org/
http://www.libsdl.org/
http://www.libsdl.org/
http://www.libsdl.org/
http://www.libsdl.org/
http://www.libsdl.org/
http://www.libsdl.org/
http://www.libsdl.org/

Starting with SDL Chapter 2

[44]

 C:\Program Files\Rust\lib\rustlib\x86_64-pc-windows-msvc\lib

Alternatively, they'll be pasted to your library folder of choice. Ensure that
you have a system environment variable with the following:

 LIB = C:\your\rust\library\folder

Here, the current toolchain is probably stable-x86_64-pc-windows-msvc.

Copy SDL2.dll from the following code snippet:4.

 SDL2-devel-2.0.x-VC\SDL2-2.0.x\lib\x64\

The copied SDL2.dll is pasted into your cargo project, right next to your
Cargo.toml.

When you're shipping your game, make sure that you copy SDL2.dll to the5.
same directory that your compiled exe is in; otherwise, the game won't launch.

Setting up your Rust project
The Rust package manager, cargo, allows us to create a new project very easily with just
one command, cargo new. Let's run it as follow:

 cargo new tetris --bin

You should have a new folder tetris containing the following:

 tetris/
 |
 |- Cargo.toml
 |- src/
 |
 |- main.rs

Note that if you ran cargo new without the --bin flag, then you will have a lib.rs file
instead of main.rs.

Starting with SDL Chapter 2

[45]

Now write this into your Cargo.toml file:

 [package]
 name = "tetris"
 version = "0.0.1"

 [dependencies]
 sdl2 = "0.30.0"

Here, we declare that our project's name is tetris, its version is 0.0.1 (it isn't really
important at the moment), and that it has a dependency on the sdl2 crate.

For the versioning, Cargo follows SemVer (Semantic Versioning). It works as follows:

[major].[minor].[path]

So here's exactly what every part means:

Update the [major] number version when you make incompatible API changes
Update the [minor] number version when adding functionalities that don't
break backward compatibility
Update the [patch] number version when you make bug fixes that don't break
backward compatibility

It's not vital to know this, but it's always nice to be aware of it in case you intend to write
crates in the future.

Cargo and crates.io
A very important thing to note with Rust's ecosystem is that Cargo is really important if not
central. It makes things much easier and all Rust projects are using it.

Starting with SDL Chapter 2

[46]

Cargo isn't only a build tool, it's also Rust's default package manager. If you need to
download a dependency, Cargo will do it. You can find all available published crates on
https://crates.io/ . Consider the following screenshot:

Figure 2.1

In the case of the sdl2 crate, we can see on its page (https:/ /crates. io/ crates/ sdl2)
some interesting and useful information:

https://crates.io/
https://crates.io/
https://crates.io/
https://crates.io/
https://crates.io/
https://crates.io/
https://crates.io/
https://crates.io/
https://crates.io/crates/sdl2
https://crates.io/crates/sdl2
https://crates.io/crates/sdl2
https://crates.io/crates/sdl2
https://crates.io/crates/sdl2
https://crates.io/crates/sdl2
https://crates.io/crates/sdl2
https://crates.io/crates/sdl2
https://crates.io/crates/sdl2
https://crates.io/crates/sdl2
https://crates.io/crates/sdl2

Starting with SDL Chapter 2

[47]

Figure 2.2

On the right-hand side, you can see the version history. It can be useful to check whether
you have the last version or not and whether the crate is still maintained.

In the middle, you have the crate's dependencies. It's always interesting to know what
you'll need to install in addition to your crate if something is missing.

And finally on the left-hand side, you have a few links that might be very useful (not
always those ones, it depends on what has been put into the Cargo.toml file):

Documentation: This is where the documentation is hosted (even though I
generally recommend docs.rs, I'll talk about it in a moment)
Repository: This is where this crate's repository is hosted
Dependent crates: This is the list of the crates depending on this one
Homepage: If the crate has a website, you can go to its link

Time to go back to docs.rs for a bit.

The docs.rs documentation
Every published crate on crates.io gets its documentation generated and hosted on
https://docs.rs/ . If the crate's documentation hasn't been published by anyone anywhere
online, you'll find it there as long as it has been published. With crates.io and rust-
lang.org, it's one of the most known places of the Rust ecosystem, so bookmark it and
doesn't lose it!

https://docs.rs/
https://docs.rs/
https://docs.rs/
https://docs.rs/
https://docs.rs/
https://docs.rs/
https://docs.rs/
https://docs.rs/
https://docs.rs/

Starting with SDL Chapter 2

[48]

Here's a screenshot of what docs.rs looks like:

Figure 2.3

Back to our Cargo.toml file
To go back to our Cargo.toml file, it's also possible to use crates directly from their
repositories; you just have to specify this when adding the dependency in your
Cargo.toml file. Generally, the published version is less advanced than the one on the
corresponding repository but will be more stable.

So for example, if we want to use the repository version for the sdl2 crate, we need to write
in our Cargo.toml file:

[dependencies]
sdl2 = { git = "https://github.com/Rust-SDL2/rust-sdl2" }

https://docs.rs/

Starting with SDL Chapter 2

[49]

Easy right? Cargo can also start tests or benchmarks, install binaries, handle special builds
through a build file (by default in build.rs), or handle features (we'll come back to this
point later in this part).

To put it simply, it's a complete tool, and explaining most of its features would take a lot of
time and space, so we'll just stick to the basics for the moment.

You can find a very good documentation/tutorial on Cargo at http:/ /doc.
crates. io/ index. html.

Rust's modules
Before going any further, we need to talk about how file hierarchy works in Rust through
its modules.

The first thing to know is that files and folders are handled as modules in Rust. Consider
the following:

|- src/
 |
 |- main.rs
 |- another_file.rs

If you want to declare that a module is in the another_file.rs file, you'll need to add to
your main.rs file:

 mod another_file;

You will now have access to everything contained in another_file.rs (as long as it's
public).

Another thing to know: you can only declare modules whose files are on the same level as
your current module/file. Here's a short example to sum this up:

|- src/
 |
 |- main.rs
 |- subfolder/
 |- another_file.rs

http://doc.crates.io/index.html
http://doc.crates.io/index.html
http://doc.crates.io/index.html
http://doc.crates.io/index.html
http://doc.crates.io/index.html
http://doc.crates.io/index.html
http://doc.crates.io/index.html
http://doc.crates.io/index.html
http://doc.crates.io/index.html
http://doc.crates.io/index.html
http://doc.crates.io/index.html
http://doc.crates.io/index.html

Starting with SDL Chapter 2

[50]

If you try to declare a module referring to another_file.rs directly into main.rs, as
shown preceding, it'll fail because there are no another_file.rs in src/. In this case,
you'll need to do three things:

Add a mod.rs file into the subfolder folder.1.
Declare another_file into mod.rs.2.
Declare subfolder into main.rs.3.

You certainly wonder, why mod.rs? It's the norm in Rust—when you import a module,
which is a folder, the compiler will look for a file named mod.rs into it. The mod.rs files
are mainly used for re-exporting modules' content outside.

Let's now write down the code to do this:

Inside mod.rs:

 pub mod another_file;

Inside main.rs:

 mod subfolder;

Now, you can use everything that is in another_file (as long as it's public!). Consider the
following example:

 use subfolder::another_file::some_function;

You will certainly have noticed that we declared another_file publicly in mod.rs. It's
simply because main.rs won't be able to access its content otherwise, as it's not at the same
module level. However, a child module can access a parent's private items.

To conclude this small part, let's talk about the third type of modules: the module blocks
(yes, as simple as that).

Just like you import a file or a folder, you can create a module block by using the same
keyword:

 mod a_module {
 pub struct Foo;
 }

And you now created a new module named a_module containing a public structure. The
rules described previously are applied the same way to this last kind of module.

Starting with SDL Chapter 2

[51]

You now know how to use modules to import files and folders. Let's start writing down our
game!

Tetris
Okay, we're now ready to start writing down our tetris!

First, let's fulfill our main.rs file in order to check whether everything is working as
expected:

 extern crate sdl2;

 use sdl2::pixels::Color;
 use sdl2::event::Event;
 use sdl2::keyboard::Keycode;
 use std::time::Duration;
 use std::thread::sleep;

 pub fn main() {
 let sdl_context = sdl2::init().expect("SDL initialization
 failed");
 let video_subsystem = sdl_context.video().expect("Couldn't get
 SDL video subsystem");

 let window = video_subsystem.window("rust-sdl2 demo: Video", 800,
 600)
 .position_centered()
 .opengl()
 .build()
 .expect("Failed to create window");

 let mut canvas = window.into_canvas().build().expect("Failed to
 convert window into canvas");

 canvas.set_draw_color(Color::RGB(255, 0, 0));
 canvas.clear();
 canvas.present();
 let mut event_pump = sdl_context.event_pump().expect("Failed to
 get SDL event pump");

 'running: loop {
 for event in event_pump.poll_iter() {
 match event {
 Event::Quit { .. } |
 Event::KeyDown { keycode: Some(Keycode::Escape), .. } =>

Starting with SDL Chapter 2

[52]

 {
 break 'running
 },
 _ => {}
 }
 }
 sleep(Duration::new(0, 1_000_000_000u32 / 60));
 }
 }

You'll note the following line:

 ::std::thread::sleep(Duration::new(0, 1_000_000_000u32 / 60));

It allows you to avoid using all your computer CPU time needlessly and only rendering 60
times every second at most.

Now run the following in your terminal:

$ cargo run

If you have a window filled with red (just as shown in the following screenshot), then
everything's fine!

Figure 2.4

Creating a window
The previous example created a window and drew into it. Now let's see how it did that!

Starting with SDL Chapter 2

[53]

Before going any further, we need to import the SDL2 crate, as follows:

 extern crate sdl2;

With this, we now have access to everything it contains.

Now that we've imported sdl2, we need to initialize an SDL context:

 let sdl_context = sdl2::init().expect("SDL initialization failed");

Once done, we need to get the video subsystem:

 let video_subsystem = sdl_context.video().expect("Couldn't get SDL
 video subsystem");

We can now create the window:

 let window = video_subsystem.window("Tetris", 800, 600)
 .position_centered()
 .opengl()
 .build()
 .expect("Failed to create window");

A few notes on these methods:

The parameters for the window method are title, width, height
.position_centered() gets the window in the middle of the screen
.opengl() makes the SDL use opengl to render
.build() creates the window by applying all previously received parameters
.expect panics with the given message if an error occurred

If you try to run this sample of code, it'll display a window and close it super quickly. We
now need to add an event loop in order to keep it running (and then to manage user
inputs).

At the top of the file, you need to add this:

 use sdl2::event::Event;
 use sdl2::keyboard::Keycode;

 use std::thread::sleep;
 use std::time::Duration;

Starting with SDL Chapter 2

[54]

Now let's actually write our event manager. First, we need to get the event handler as
follows:

 let mut event_pump = sdl_context.event_pump().expect("Failed to
 get SDL event pump");

Then, we create an infinite loop to loop over events:

 'running: loop {
 for event in event_pump.poll_iter() {
 match event {
 Event::Quit { .. } |
 Event::KeyDown { keycode: Some(Keycode::Escape), .. } => {
 break 'running // We "break" the infinite loop.
 },
 _ => {}
 }
 }
 sleep(Duration::new(0, 1_000_000_000u32 / 60));
 }

To go back on these two lines:

 'running: loop {
 break 'running

loop is a keyword that allows creating an infinite loop in Rust. An interesting feature
though is that you can add a label to your loops (so, while and for as well). In this case, we
added the label running to the main loop. The point is to be able to break directly an upper
loop without having to set a variable.

Now, if we receive a quit event (pressing the cross of the window) or if you press the Esc
key, the program quits.

Now you can run this code and you'll have a window.

Drawing
We now have a working window; it'd be nice to draw into it. First, we need to get the
window's canvas before starting the main loop:

 let mut canvas = window.into_canvas()
 .target_texture()
 .present_vsync()
 .build()

Starting with SDL Chapter 2

[55]

 .expect("Couldn't get window's canvas");

A few explanations for the preceding code:

into_canvas transforms the window into a canvas so that we can manipulate it
more easily
target_texture activates texture rendering support
present_vsync enables the v-sync (also known as vertical-
synchronization) limit
build creates the canvas by applying all previously set parameters

Then we'll create a texture that we'll paste onto the window's canvas. First, let's get the
texture creator, but before that, add this include at the top of the file:

 use sdl2::render::{Canvas, Texture, TextureCreator};

Now we can get the texture creator:

 let texture_creator: TextureCreator<_> = canvas.texture_creator();

OK! Now we need to create a rectangle. To make things easier to read, we'll create a
constant that will be the texture's size (better to put it at the head of the file, just after the
imports, for readability reasons):

 const TEXTURE_SIZE: u32 = 32;

Let's create a texture with a 32x32 size:

 let mut square_texture: Texture =
 texture_creator.create_texture_target(None, TEXTURE_SIZE,
 TEXTURE_SIZE)
 .expect("Failed to create a texture");

Good! Now let's color it. First, add this import at the top of the file:

 use sdl2::pixels::Color;

We use the canvas to draw our square texture:

 canvas.with_texture_canvas(&mut square_texture, |texture| {
 texture.set_draw_color(Color::RGB(0, 255, 0));
 texture.clear();
 });

Starting with SDL Chapter 2

[56]

An explanation of the preceding code is as follows:

set_draw_color sets the color to be used when drawing occurs. In our case, it's
green.
clear washes/clears the texture so it'll be filled with green.

Now, we just have to draw this square texture onto our window. In order to make it work,
we need it to be drawn into the main loop but right after the event loop.

One thing to note before we continue: when drawing with the SDL2, the (0, 0) coordinates
are at the top-left of a window, not at the bottom-left. The same goes for all shapes.

Add this import at the top of your file:

 use sdl2::rect::Rect;

Now let's draw. In order to be able to update the rendering of your window, you need to
draw inside the main loop (and after the event loop). So firstly, let's fill our window with
red:

 canvas.set_draw_color(Color::RGB(255, 0, 0));
 canvas.clear();

Next, we copy our texture into the window in the top-left corner with a 32x32 size:

 canvas.copy(&square_texture,
 None,
 Rect::new(0, 0, TEXTURE_SIZE, TEXTURE_SIZE))
 .expect("Couldn't copy texture into window");

Finally, we update the window's display:

 canvas.present();

So if we take a look at the full code, we now have the following:

 extern crate sdl2;

 use sdl2::event::Event;
 use sdl2::keyboard::Keycode;
 use sdl2::pixels::Color;
 use sdl2::rect::Rect;
 use sdl2::render::{Texture, TextureCreator};

 use std::thread::sleep;
 use std::time::Duration;

Starting with SDL Chapter 2

[57]

 fn main() {
 let sdl_context = sdl2::init().expect("SDL initialization
 failed");
 let video_subsystem = sdl_context.video().expect("Couldn't get
 SDL video subsystem");

 // Parameters are: title, width, height
 let window = video_subsystem.window("Tetris", 800, 600)
 .position_centered() // to put it in the middle of the screen
 .build() // to create the window
 .expect("Failed to create window");

 let mut canvas = window.into_canvas()
 .target_texture()
 .present_vsync() // To enable v-sync.
 .build()
 .expect("Couldn't get window's canvas");

 let texture_creator: TextureCreator<_> =
 canvas.texture_creator();
 // To make things easier to read, we'll create a constant
 which will be the texture's size.
 const TEXTURE_SIZE: u32 = 32;

 // We create a texture with a 32x32 size.
 let mut square_texture: Texture =
 texture_creator.create_texture_target(None, TEXTURE_SIZE,
 TEXTURE_SIZE)
 .expect("Failed to create a texture");

 // We use the canvas to draw into our square texture.
 canvas.with_texture_canvas(&mut square_texture, |texture| {
 // We set the draw color to green.
 texture.set_draw_color(Color::RGB(0, 255, 0));
 // We "clear" our texture so it'll be fulfilled with green.
 texture.clear();
 }).expect("Failed to color a texture");

 // First we get the event handler:
 let mut event_pump = sdl_context.event_pump().expect("Failed
 to get SDL event pump");

 // Then we create an infinite loop to loop over events:
 'running: loop {
 for event in event_pump.poll_iter() {
 match event {
 // If we receive a 'quit' event or if the user press the
 'ESC' key, we quit.

Starting with SDL Chapter 2

[58]

 Event::Quit { .. } |
 Event::KeyDown { keycode: Some(Keycode::Escape), .. } => {
 break 'running // We "break" the infinite loop.
 },
 _ => {}
 }
 }

 // We set fulfill our window with red.
 canvas.set_draw_color(Color::RGB(255, 0, 0));
 // We draw it.
 canvas.clear();
 // Copy our texture into the window.
 canvas.copy(&square_texture,
 None,
 // We copy it at the top-left of the window with a 32x32 size.
 Rect::new(0, 0, TEXTURE_SIZE, TEXTURE_SIZE))
 .expect("Couldn't copy texture into window");
 // We update window's display.
 canvas.present();

 // We sleep enough to get ~60 fps. If we don't call this,
 the program will take
 // 100% of a CPU time.
 sleep(Duration::new(0, 1_000_000_000u32 / 60));
 }
 }

If you run this code, you should have a red window with a small green rectangle at the top-
left (just as shown in the following screenshot):

Figure 2.5

Starting with SDL Chapter 2

[59]

Now, what about switching the color of our small rectangle every second? Alright, first
thing, we need to create another rectangle. To make things easier, we'll write a small
function that will create texture.

As usual, add the following import at the top of your file:

 use sdl2::video::{Window, WindowContext};

For convenience, we'll create a small enum to indicate the color as well:

 #[derive(Clone, Copy)]
 enum TextureColor {
 Green,
 Blue,
 }

To make our lives easier, we'll handle errors outside of the next function, so no need to
handle them directly here:

 fn create_texture_rect<'a>(canvas: &mut Canvas<Window>,
 texture_creator: &'a TextureCreator<WindowContext>,
 color: TextureColor, size: u32) -> Option<Texture<'a>> {
 // We'll want to handle failures outside of this function.
 if let Ok(mut square_texture) =
 texture_creator.create_texture_target(None, size, size) {
 canvas.with_texture_canvas(&mut square_texture, |texture| {
 match color {
 TextureColor::Green =>
 texture.set_draw_color(Color::RGB(0, 255, 0)),
 TextureColor::Blue =>
 texture.set_draw_color(Color::RGB(0, 0, 255)),
 }
 texture.clear();
 }).expect("Failed to color a texture");
 Some(square_texture)
 } else {
 None
 }
 }

You'll note that the function returns an Option type, wrapping a texture. Option is an
enum containing two variants: Some and None.

Starting with SDL Chapter 2

[60]

Playing with Options
To explain briefly how it works, when the Option type is Some, it simply means it contains
a value whereas None doesn't. It has already been explained in Chapter 1, Basics of Rust, but
here's a little recap just in case you need one. We can compare this mechanism with pointers
in C-like languages; when the pointer is null, there is no data to access. The same goes for
None.

Here's a short example:

 fn divide(nb: u32, divider: u32) -> Option<u32> {
 if divider == 0 {
 None
 } else {
 Some(nb / divider)
 }
 }

So here, if the divider is 0, we can't divide or we'll get an error. Instead of setting an error or
returning a complicated type, we just return an Option:

 let x = divide(10, 3);
 let y = divide(10, 0);

Here, x is equal to Some(3) and y is equal to None.

The biggest advantage of this type compared to null is that if we have Some, you're sure
that the data is valid. And in addition, when it's None, you can't accidentally read its
content, it's simply impossible in Rust (and if you try to unwrap it, your program will
panic immediately, but at least, you'll know what failed and why—no magical
segmentation fault).

You can take a look at its documentation at https:/ /doc. rust- lang. org/ std/ option/
enum.Option.html.

Let's explain what happens here:

We create a texture or return None if the creation fails.1.
We set the color and then fulfill the texture with it.2.
We return the texture.3.

If we return None, it simply means an error occurred. Also, for now, this function only
handles two colors, but it's pretty easy to add more if you want.

https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html

Starting with SDL Chapter 2

[61]

It might look a bit complicated at the moment, but it'll make our life easier afterward. Now,
let's call this function by creating a blue square of size 32x32:

 let mut blue_square = create_texture_rect(&mut canvas,
 &texture_creator,
 TextureColor::Blue,
 TEXTURE_SIZE).expect("Failed to create a texture");

Easy, right?

Now we can just put pieces together. I'll let you try to handle the color
switch. A small tip: take a look at the SystemTime struct. You can refer to
its documentation at https:/ / doc.rust- lang. org/ stable/ std/time/
struct. SystemTime. html.

Solution
I guess you did it without any issues, but in any case, here's the code:

 extern crate sdl2;

 use sdl2::event::Event;
 use sdl2::keyboard::Keycode;
 use sdl2::pixels::Color;
 use sdl2::rect::Rect;
 use sdl2::render::{Canvas, Texture, TextureCreator};
 use sdl2::video::{Window, WindowContext};

 use std::thread::sleep;
 use std::time::{Duration, SystemTime};

 // To make things easier to read, we'll create a constant which
 will be the texture's size.
 const TEXTURE_SIZE: u32 = 32;

 #[derive(Clone, Copy)]
 enum TextureColor {
 Green,
 Blue,
 }

 fn create_texture_rect<'a>(canvas: &mut Canvas<Window>,
 texture_creator: &'a TextureCreator<WindowContext>,
 color: TextureColor,
 size: u32) -> Option<Texture<'a>> {

https://doc.rust-lang.org/stable/std/time/struct.SystemTime.html
https://doc.rust-lang.org/stable/std/time/struct.SystemTime.html
https://doc.rust-lang.org/stable/std/time/struct.SystemTime.html
https://doc.rust-lang.org/stable/std/time/struct.SystemTime.html
https://doc.rust-lang.org/stable/std/time/struct.SystemTime.html
https://doc.rust-lang.org/stable/std/time/struct.SystemTime.html
https://doc.rust-lang.org/stable/std/time/struct.SystemTime.html
https://doc.rust-lang.org/stable/std/time/struct.SystemTime.html
https://doc.rust-lang.org/stable/std/time/struct.SystemTime.html
https://doc.rust-lang.org/stable/std/time/struct.SystemTime.html
https://doc.rust-lang.org/stable/std/time/struct.SystemTime.html
https://doc.rust-lang.org/stable/std/time/struct.SystemTime.html
https://doc.rust-lang.org/stable/std/time/struct.SystemTime.html
https://doc.rust-lang.org/stable/std/time/struct.SystemTime.html
https://doc.rust-lang.org/stable/std/time/struct.SystemTime.html
https://doc.rust-lang.org/stable/std/time/struct.SystemTime.html
https://doc.rust-lang.org/stable/std/time/struct.SystemTime.html
https://doc.rust-lang.org/stable/std/time/struct.SystemTime.html
https://doc.rust-lang.org/stable/std/time/struct.SystemTime.html
https://doc.rust-lang.org/stable/std/time/struct.SystemTime.html
https://doc.rust-lang.org/stable/std/time/struct.SystemTime.html
https://doc.rust-lang.org/stable/std/time/struct.SystemTime.html

Starting with SDL Chapter 2

[62]

 // We'll want to handle failures outside of this function.
 if let Ok(mut square_texture) =
 texture_creator.create_texture_target(None, size, size) {
 canvas.with_texture_canvas(&mut square_texture, |texture| {
 match color {
 // For now, TextureColor only handles two colors.
 TextureColor::Green => texture.set_draw_color(Color::RGB(0,
 255, 0)),
 TextureColor::Blue => texture.set_draw_color(Color::RGB(0,
 0, 255)),
 }
 texture.clear();
 }).expect("Failed to color a texture");
 Some(square_texture)
 }
 else {
 // An error occured so we return nothing and let the function
 caller handle the error.
 None
 }
 }

 fn main() {
 let sdl_context = sdl2::init().expect("SDL initialization
 failed");
 let video_subsystem = sdl_context.video().expect("Couldn't get
 SDL video subsystem");

 // Parameters are: title, width, height
 let window = video_subsystem.window("Tetris", 800, 600)
 .position_centered() // to put it in the middle of the screen
 .build() // to create the window
 .expect("Failed to create window");

 let mut canvas = window.into_canvas()
 .target_texture()
 .present_vsync() // To enable v-sync.
 .build()
 .expect("Couldn't get window's canvas");

 let texture_creator: TextureCreator<_> =
 canvas.texture_creator();

 // We create a texture with a 32x32 size.
 let green_square = create_texture_rect(&mut canvas,
 &texture_creator,
 TextureColor::Green,
 TEXTURE_SIZE).expect("Failed to create a texture");

Starting with SDL Chapter 2

[63]

 let blue_square = create_texture_rect(&mut canvas,
 &texture_creator,
 TextureColor::Blue,
 TEXTURE_SIZE).expect("Failed to create a texture");

 let timer = SystemTime::now();

 // First we get the event handler:
 let mut event_pump = sdl_context.event_pump().expect("Failed
 to get SDL event pump");

 // Then we create an infinite loop to loop over events:
 'running: loop {
 for event in event_pump.poll_iter() {
 match event {
 // If we receive a 'quit' event or if the user press the
 'ESC' key, we quit.
 Event::Quit { .. } |
 Event::KeyDown { keycode: Some(Keycode::Escape), .. } => {
 break 'running // We "break" the infinite loop.
 },
 _ => {}
 }
 }

 // We fill our window with red.
 canvas.set_draw_color(Color::RGB(255, 0, 0));
 // We draw it.
 canvas.clear();

 // The rectangle switch happens here:
 let display_green = match timer.elapsed() {
 Ok(elapsed) => elapsed.as_secs() % 2 == 0,
 Err(_) => {
 // In case of error, we do nothing...
 true
 }
 };
 let square_texture = if display_green {
 &green_square
 } else {
 &blue_square
 };
 // Copy our texture into the window.
 canvas.copy(square_texture,
 None,
 // We copy it at the top-left of the window with a 32x32
 size.

Starting with SDL Chapter 2

[64]

 Rect::new(0, 0, TEXTURE_SIZE, TEXTURE_SIZE))
 .expect("Couldn't copy texture into window");
 // We update window's display.
 canvas.present();

 // We sleep enough to get ~60 fps. If we don't call this,
 the program will take
 // 100% of a CPU time.
 sleep(Duration::new(0, 1_000_000_000u32 / 60));
 }
 }

You can now see the small rectangle at the top-left switching color every second.

Loading images
Uptill now, we've only created simple textures, but what about loading images instead?

Before trying to go through this, check whether you have installed the SDL2_image library
(it's not included by default with the SDL2 library!). If not, you can install it by following
the upcoming sections.

Installing SDL2_image on Mac
Just run the following:

$ brew install SDL2_image

And you're good to go!

Installing SDL2_image on Linux
Depending on your package management tool, run the following to install SDL2_image on
Linux:

For apt package manager use the following command:

 $ sudo apt-get install libsdl2-image-2.0-0-dev

For dnf package manager use the following command:

 $ sudo dnf install SDL2_image-devel

Starting with SDL Chapter 2

[65]

For yum package manager use the following command:

 $ yum install SDL2_image-devel

And you're good to go!

Installing SDL2_image on Windows
For the Windows platform, the simplest way is to go to https:/ /www. libsdl. org/
projects/SDL_image/ and download it.

Playing with features
By default, you can't use the image module with sdl2, we need to activate it. To do so, we
need to update our Cargo.toml file by adding a new section as follows:

 [features]
 default = ["sdl2/image"]

default means that by default, the following features ("sdl2/image") will be enabled.
Now, let's explain what "sdl2/image" means; sdl2 refers to the crate where we want to
enable a feature and image is the feature we want to enable.

Of course, if you want to enable a feature on the current project, you don't need the sdl2/
part. Consider the following example:

 [features]
 network = []
 default = ["network"]

As I am sure you understood, it's absolutely possible to chain features activation and even
to activate multiple features at once! If you want to enable features depending on a version
number, for example:

 [features]
 network_v1 = []
 network_v2 = ["network_v1"]
 network_v3 = ["network_v2"]
 v1 = ["network_v1"]
 v2 = ["v1", "network_v2"]
 v3 = ["v2", "network_v3"]

https://www.libsdl.org/projects/SDL_image/
https://www.libsdl.org/projects/SDL_image/
https://www.libsdl.org/projects/SDL_image/
https://www.libsdl.org/projects/SDL_image/
https://www.libsdl.org/projects/SDL_image/
https://www.libsdl.org/projects/SDL_image/
https://www.libsdl.org/projects/SDL_image/
https://www.libsdl.org/projects/SDL_image/
https://www.libsdl.org/projects/SDL_image/
https://www.libsdl.org/projects/SDL_image/
https://www.libsdl.org/projects/SDL_image/
https://www.libsdl.org/projects/SDL_image/
https://www.libsdl.org/projects/SDL_image/
https://www.libsdl.org/projects/SDL_image/
https://www.libsdl.org/projects/SDL_image/

Starting with SDL Chapter 2

[66]

So if you enable the v3 feature, all the others will be activated as well! It can be incredibly
useful when you need to handle multiple versions at once.

Now let's go back to our images.

Playing with images
Just like textures, we need to initialize the image context. Now that we've activated the
image feature, we can call the linked functions and import them. Let's add some new
imports:

 use sdl2::image::{LoadTexture, INIT_PNG, INIT_JPG};

Then we create the image context:

 sdl2::image::init(INIT_PNG | INIT_JPG).expect("Couldn't initialize
 image context");

Now that the context has been initialized, let's actually load the image:

 let image_texture =
 texture_creator.load_texture("assets/my_image.png")
 .expect("Couldn't load image");

A few explanations for the preceding code:

load_texture takes a file path as an argument. Be very careful with paths, even more
when they're relative!

After that, it's just like we did with other textures. Let's put our image into our Window's
background:

 canvas.copy(&Image_texture, None, None).expect("Render failed");

To sum everything up, here's what your project's folder should look like now:

|- your_project/
 |
 |- Cargo.toml
 |- src/
 | |
 | |- main.rs
 |- assets/
 |
 |- my_image.png

Starting with SDL Chapter 2

[67]

And that's it!

Here's the full code in case you missed a step:

 extern crate sdl2;
 use sdl2::pixels::Color;
 use sdl2::event::Event;
 use sdl2::keyboard::Keycode;
 use sdl2::render::TextureCreator;
 use sdl2::image::{LoadTexture, INIT_PNG, INIT_JPG};
 use std::time::Duration;

 pub fn main() {
 let sdl_context = sdl2::init().expect("SDL initialization
 failed");
 let video_subsystem = sdl_context.video().expect("Couldn't
 get SDL video subsystem");

 sdl2::image::init(INIT_PNG | INIT_JPG).expect("Couldn't
 initialize
 image context");

 let window = video_subsystem.window("rust-sdl2 image demo", 800,
 600)
 .position_centered()
 .opengl()
 .build()
 .expect("Failed to create window");

 let mut canvas = window.into_canvas().build().expect("Failed to
 convert window into canvas");

 let texture_creator: TextureCreator<_> =
 canvas.texture_creator();
 let image_texture =
 texture_creator.load_texture("assets/my_image.png")
 .expect("Couldn't load image");

 let mut event_pump = sdl_context.event_pump().expect("Failed to
 get SDL event pump");

 'running: loop {
 for event in event_pump.poll_iter() {
 match event {
 Event::Quit { .. } |
 Event::KeyDown { keycode: Some(Keycode::Escape), .. }
 => {

Starting with SDL Chapter 2

[68]

 break 'running
 },
 _ => {}
 }
 }
 canvas.set_draw_color(Color::RGB(0, 0, 0));
 canvas.clear();
 canvas.copy(&image_texture, None, None).expect("Render
 failed");
 canvas.present();
 ::std::thread::sleep(Duration::new(0, 1_000_000_000u32 / 60));
 }
 }

In my case, it gives the following output:

Figure 2.6

Starting with SDL Chapter 2

[69]

Now that we know how to make Windows and play with events and textures, let's see how
to save and load high scores from files!

Handling files
Let's start with the basics. First, let's open and write into a file:

 use std::fs::File;
 use std::io::{self, Write};

 fn write_into_file(content: &str, file_name: &str) -> io::Result<()> {
 let mut f = File::create(file_name)?;
 f.write_all(content.as_bytes())
 }

Now let's explain this code:

 use std::fs::File;

Nothing fancy, we just import the File type:

 use std::io::{self, Write};

This set of imports is more interesting: we import the io module (self) and the Write trait.
For the second, if we didn't import it, we wouldn't be able to use the write_all method
(because you need to import a trait to use its methods):

 fn write_into_file(content: &str, file_name: &str) -> io::Result<()> {

We declared a function named write_into_file that takes a filename and the content
you want to write into the file as arguments. (Note that the file will be overwritten by this
content!) It returns an io::Result type. It is an alias over the normal Result type (its
documentation is at https:/ /doc. rust- lang.org/ stable/ std/ result/ enum. Result. html)
declared as follows:

 type Result<T> = Result<T, Error>;

The only difference is that in case of error, the error type is already defined.

I recommend that you to take a look at its documentation in case you want
to go further, at https:/ /doc. rust- lang. org/ stable/ std/ io/type.
Result. html.

https://doc.rust-lang.org/stable/std/result/enum.Result.html
https://doc.rust-lang.org/stable/std/result/enum.Result.html
https://doc.rust-lang.org/stable/std/result/enum.Result.html
https://doc.rust-lang.org/stable/std/result/enum.Result.html
https://doc.rust-lang.org/stable/std/result/enum.Result.html
https://doc.rust-lang.org/stable/std/result/enum.Result.html
https://doc.rust-lang.org/stable/std/result/enum.Result.html
https://doc.rust-lang.org/stable/std/result/enum.Result.html
https://doc.rust-lang.org/stable/std/result/enum.Result.html
https://doc.rust-lang.org/stable/std/result/enum.Result.html
https://doc.rust-lang.org/stable/std/result/enum.Result.html
https://doc.rust-lang.org/stable/std/result/enum.Result.html
https://doc.rust-lang.org/stable/std/result/enum.Result.html
https://doc.rust-lang.org/stable/std/result/enum.Result.html
https://doc.rust-lang.org/stable/std/result/enum.Result.html
https://doc.rust-lang.org/stable/std/result/enum.Result.html
https://doc.rust-lang.org/stable/std/result/enum.Result.html
https://doc.rust-lang.org/stable/std/result/enum.Result.html
https://doc.rust-lang.org/stable/std/result/enum.Result.html
https://doc.rust-lang.org/stable/std/result/enum.Result.html
https://doc.rust-lang.org/stable/std/result/enum.Result.html
https://doc.rust-lang.org/stable/std/result/enum.Result.html
https://doc.rust-lang.org/stable/std/result/enum.Result.html
https://doc.rust-lang.org/stable/std/io/type.Result.html
https://doc.rust-lang.org/stable/std/io/type.Result.html
https://doc.rust-lang.org/stable/std/io/type.Result.html
https://doc.rust-lang.org/stable/std/io/type.Result.html
https://doc.rust-lang.org/stable/std/io/type.Result.html
https://doc.rust-lang.org/stable/std/io/type.Result.html
https://doc.rust-lang.org/stable/std/io/type.Result.html
https://doc.rust-lang.org/stable/std/io/type.Result.html
https://doc.rust-lang.org/stable/std/io/type.Result.html
https://doc.rust-lang.org/stable/std/io/type.Result.html
https://doc.rust-lang.org/stable/std/io/type.Result.html
https://doc.rust-lang.org/stable/std/io/type.Result.html
https://doc.rust-lang.org/stable/std/io/type.Result.html
https://doc.rust-lang.org/stable/std/io/type.Result.html
https://doc.rust-lang.org/stable/std/io/type.Result.html
https://doc.rust-lang.org/stable/std/io/type.Result.html
https://doc.rust-lang.org/stable/std/io/type.Result.html
https://doc.rust-lang.org/stable/std/io/type.Result.html
https://doc.rust-lang.org/stable/std/io/type.Result.html
https://doc.rust-lang.org/stable/std/io/type.Result.html
https://doc.rust-lang.org/stable/std/io/type.Result.html
https://doc.rust-lang.org/stable/std/io/type.Result.html

Starting with SDL Chapter 2

[70]

So if our function worked without errors, it'll return Ok(()); it's the Ok variant containing
an empty tuple which is considered the Rust equivalent of the void type. In case of error,
it'll contain an io::Error, and it'll be up to you to handle it (or not). We'll come back to
error handling a bit later.

Now let's look at the next line:

 let mut f = File::create(file_name)?;

Here, we call the static method create of the File type. If the file exists, it'll be truncated
and if it doesn't, it'll be created. More information about this method can be found at
https://doc.rust- lang. org/ stable/ std/ fs/struct. File. html#method. create.

Now let's look at this strange ? symbol. It's a syntactic sugar over the try! macro. The try!
macro is very simple to understand and its code can be resumed as this:

 match result {
 Ok(value) => value,
 Err(error) => return Err(error),
 }

So that's pretty easy, but annoying to rewrite over and over, so the Rust teams decided to
first introduce the try! macro and then after a long consensus, decided to add the ?
syntactic sugar over it (it also works with the Option type). However, both code pieces are
still working, so you can perfectly do as well:

 use std::fs::File;
 use std::io::{self, Write};

 fn write_into_file(content: &str, file_name: &str) ->
 io::Result<()> {
 let mut f = try!(File::create(file_name));
 f.write_all(content.as_bytes())
 }

It's exactly the same. Alternatively, you can write the full version too:

 use std::fs::File;
 use std::io::{self, Write};

 fn write_into_file(content: &str, file_name: &str) -> io::Result<()>
 {
 let mut f = match File::create(file_name) {
 Ok(value) => value,
 Err(error) => return Err(error),
 };

https://doc.rust-lang.org/stable/std/fs/struct.File.html#method.create
https://doc.rust-lang.org/stable/std/fs/struct.File.html#method.create
https://doc.rust-lang.org/stable/std/fs/struct.File.html#method.create
https://doc.rust-lang.org/stable/std/fs/struct.File.html#method.create
https://doc.rust-lang.org/stable/std/fs/struct.File.html#method.create
https://doc.rust-lang.org/stable/std/fs/struct.File.html#method.create
https://doc.rust-lang.org/stable/std/fs/struct.File.html#method.create
https://doc.rust-lang.org/stable/std/fs/struct.File.html#method.create
https://doc.rust-lang.org/stable/std/fs/struct.File.html#method.create
https://doc.rust-lang.org/stable/std/fs/struct.File.html#method.create
https://doc.rust-lang.org/stable/std/fs/struct.File.html#method.create
https://doc.rust-lang.org/stable/std/fs/struct.File.html#method.create
https://doc.rust-lang.org/stable/std/fs/struct.File.html#method.create
https://doc.rust-lang.org/stable/std/fs/struct.File.html#method.create
https://doc.rust-lang.org/stable/std/fs/struct.File.html#method.create
https://doc.rust-lang.org/stable/std/fs/struct.File.html#method.create
https://doc.rust-lang.org/stable/std/fs/struct.File.html#method.create
https://doc.rust-lang.org/stable/std/fs/struct.File.html#method.create
https://doc.rust-lang.org/stable/std/fs/struct.File.html#method.create
https://doc.rust-lang.org/stable/std/fs/struct.File.html#method.create
https://doc.rust-lang.org/stable/std/fs/struct.File.html#method.create
https://doc.rust-lang.org/stable/std/fs/struct.File.html#method.create
https://doc.rust-lang.org/stable/std/fs/struct.File.html#method.create
https://doc.rust-lang.org/stable/std/fs/struct.File.html#method.create
https://doc.rust-lang.org/stable/std/fs/struct.File.html#method.create

Starting with SDL Chapter 2

[71]

 f.write_all(content.as_bytes())
 }

It's up to you, but now you know what options you have!

Now let's check the last line:

 f.write_all(content.as_bytes())

Nothing fancy here; we write all our data into the file. We just need to convert (it's not
really a conversion in this case, more like getting internal data) our &str into a slice of u8
(so a &[u8]).

Now that we have a function to write a file, it'd be nice to be able to read from a file as well:

 use std::fs::File;
 use std::io::{self, Read};

 fn read_from_file(file_name: &str) -> io::Result<String> {
 let mut f = File::open(file_name)?;
 let mut content = String::new();
 f.read_to_string(&mut content)?;
 Ok(content)
 }

Now let's go over what this function does quickly:

 fn read_from_file(file_name: &str) -> io::Result<String> {

This time, it only takes a filename as an argument and returns a String if the reading was
successful:

 let mut f = File::open(file_name)?;
 let mut content = String::new();
 f.read_to_string(&mut content)?;

Just like before, we open the file. Then we create a mutable String where the file content
will be stored and finally we read all the file content at once with the read_to_string
method (the String is reallocated as many times as needed). This method will fail if the
string isn't proper UTF-8.

And to finish, if everything went fine, we return our content:

 Ok(content)

Starting with SDL Chapter 2

[72]

So now, let's see how we can use this in our future tetris.

Saving/loading high scores
To keep things simple, we'll have a very simple file format:

On the first line, we store the best scores
On the second line, we store the highest number of lines

Let's start by writing the save function:

 fn slice_to_string(slice: &[u32]) -> String {
 slice.iter().map(|highscore| highscore.to_string()).
 collect::<Vec<String>>().join(" ")
 }

 fn save_highscores_and_lines(highscores: &[u32],
 number_of_lines: &[u32]) -> bool {
 let s_highscores = slice_to_string(highscores);
 let s_number_of_lines = slice_to_string(number_of_lines);
 write_into_file(format!("{}\n{}\n", s_highscores,
 s_number_of_lines)).is_ok()
 }

It was a small lie: there are actually two functions. The first one is just here to make the code
smaller and easier to read even though we need to explain what it does, because we're
about to talk about a big feature from Rust—iterators!

Iterators
The Rust documentation describes an iterator as Composable external iteration.

They're used a lot in idiomatic Rust code on collection types (slice, Vec, HashMap, and so
on) so it's very important to learn to master them. This code will allow us to have a nice
introduction. Let's look at the code now:

 slice.iter().map(|highscore| highscore.to_string()).
 collect::<Vec<String>>().join(" ")

This is quite difficult to read and understand for the moment, so let's rewrite it as follows:

 slice.iter()
 .map(|highscore| highscore.to_string())

Starting with SDL Chapter 2

[73]

 .collect::<Vec<String>>()
 .join(" ")

Better (or at least more readable!). Now let's go step by step, as follows:

 slice.iter()

Here, we create an iterator from our slice. A really important and fundamental thing to note
about iterators in Rust; they're lazy. Creating an iterator doesn't cost anything more than the
size of the type (generally a structure containing a pointer and an index). Until the next()
method is called, nothing happens.

So now we have an iterator, awesome! Let's check the next step:

 .map(|highscore| highscore.to_string())

We call the iterator's map method. What it does is simple: it converts the current type into
another one. So here, we convert a u32 into a String.

Really important to note: at this point, the iterator still hasn't done anything. Keep in mind
that nothing is done until the next() method is called!

 .collect::<Vec<String>>()

And now we call the collect() method. It'll call the next() method of our iterator as
long as it didn't get all elements and store them into a Vec. This is where the map() method
will be called on every element of our iterator.

And finally the last step:

 .join(" ")

This method (as its name indicates) joins all the elements of the Vec into a String
separated by the given &str (so, " " in our case).

Finally, if we give &[1, 14, 5] to the slice_to_string function, it'll return a String
containing "1 14 5". Pretty convenient, right?

If you want to go a bit deeper with the iterators, you can take a look at the
blog post at https:/ /blog. guillaume- gomez. fr/articles/ 2017- 03-
09+Little+tour+of+multiple+iterators+implementation+in+Rust or
directly take a look at the iterator official documentation at https:/ /doc.
rust- lang. org/ stable/ std/iter/ index. html.

https://blog.guillaume-gomez.fr/articles/2017-03-09+Little+tour+of+multiple+iterators+implementation+in+Rust
https://blog.guillaume-gomez.fr/articles/2017-03-09+Little+tour+of+multiple+iterators+implementation+in+Rust
https://blog.guillaume-gomez.fr/articles/2017-03-09+Little+tour+of+multiple+iterators+implementation+in+Rust
https://blog.guillaume-gomez.fr/articles/2017-03-09+Little+tour+of+multiple+iterators+implementation+in+Rust
https://blog.guillaume-gomez.fr/articles/2017-03-09+Little+tour+of+multiple+iterators+implementation+in+Rust
https://blog.guillaume-gomez.fr/articles/2017-03-09+Little+tour+of+multiple+iterators+implementation+in+Rust
https://blog.guillaume-gomez.fr/articles/2017-03-09+Little+tour+of+multiple+iterators+implementation+in+Rust
https://blog.guillaume-gomez.fr/articles/2017-03-09+Little+tour+of+multiple+iterators+implementation+in+Rust
https://blog.guillaume-gomez.fr/articles/2017-03-09+Little+tour+of+multiple+iterators+implementation+in+Rust
https://blog.guillaume-gomez.fr/articles/2017-03-09+Little+tour+of+multiple+iterators+implementation+in+Rust
https://blog.guillaume-gomez.fr/articles/2017-03-09+Little+tour+of+multiple+iterators+implementation+in+Rust
https://blog.guillaume-gomez.fr/articles/2017-03-09+Little+tour+of+multiple+iterators+implementation+in+Rust
https://blog.guillaume-gomez.fr/articles/2017-03-09+Little+tour+of+multiple+iterators+implementation+in+Rust
https://blog.guillaume-gomez.fr/articles/2017-03-09+Little+tour+of+multiple+iterators+implementation+in+Rust
https://blog.guillaume-gomez.fr/articles/2017-03-09+Little+tour+of+multiple+iterators+implementation+in+Rust
https://blog.guillaume-gomez.fr/articles/2017-03-09+Little+tour+of+multiple+iterators+implementation+in+Rust
https://blog.guillaume-gomez.fr/articles/2017-03-09+Little+tour+of+multiple+iterators+implementation+in+Rust
https://blog.guillaume-gomez.fr/articles/2017-03-09+Little+tour+of+multiple+iterators+implementation+in+Rust
https://doc.rust-lang.org/stable/std/iter/index.html
https://doc.rust-lang.org/stable/std/iter/index.html
https://doc.rust-lang.org/stable/std/iter/index.html
https://doc.rust-lang.org/stable/std/iter/index.html
https://doc.rust-lang.org/stable/std/iter/index.html
https://doc.rust-lang.org/stable/std/iter/index.html
https://doc.rust-lang.org/stable/std/iter/index.html
https://doc.rust-lang.org/stable/std/iter/index.html
https://doc.rust-lang.org/stable/std/iter/index.html
https://doc.rust-lang.org/stable/std/iter/index.html
https://doc.rust-lang.org/stable/std/iter/index.html
https://doc.rust-lang.org/stable/std/iter/index.html
https://doc.rust-lang.org/stable/std/iter/index.html
https://doc.rust-lang.org/stable/std/iter/index.html
https://doc.rust-lang.org/stable/std/iter/index.html
https://doc.rust-lang.org/stable/std/iter/index.html
https://doc.rust-lang.org/stable/std/iter/index.html
https://doc.rust-lang.org/stable/std/iter/index.html
https://doc.rust-lang.org/stable/std/iter/index.html
https://doc.rust-lang.org/stable/std/iter/index.html

Starting with SDL Chapter 2

[74]

It's time to go back to our saving function:

 fn save_highscores_and_lines(highscores: &[u32],
 number_of_lines: &[u32]) -> bool {
 let s_highscores = slice_to_string(highscores);
 let s_number_of_lines = slice_to_string(number_of_lines);
 write_into_file(format!("{}\n{}\n", s_highscores,
 s_number_of_lines), "scores.txt").is_ok()
 }

Once we have converted our slices to String, we write them into the scores.txt file. The
is_ok() method call just informs the caller of the save_highscores_and_lines()
function if everything has been saved as expected or not.

Now that we can save scores, it'd be nice to be able to get them back when the tetris game is
starting!

Reading formatted data from files
As you will certainly have guessed at this point, we'll use iterators once again. This is what
the loading function will look like:

fn line_to_slice(line: &str) -> Vec<u32> {
 line.split(" ").filter_map(|nb|
nb.parse::<u32>().ok()).collect()
}

fn load_highscores_and_lines() -> Option<(Vec<u32>, Vec<u32>)> {
 if let Ok(content) = read_from_file("scores.txt") {
 let mut lines = content.splitn(2, "\n").map(|line|
 line_to_slice(line)).collect::<Vec<_>>();
 if lines.len() == 2 {
 let (number_lines, highscores) = (lines.pop().unwrap(),
 lines.pop().unwrap());
 Some((highscores, number_lines))
 } else {
 None
 }
 } else {
 None
 }
}

Starting with SDL Chapter 2

[75]

Once again, not easy to understand, at first sight. So let's explain all this!

fn line_to_slice(line: &str) -> Vec<u32> {

Our line_to_slice() function does the opposite of slice_to_string(); it transforms a
&str into a slice of u32 (or &[u32]). Let's see the iterator now:

 line.split(" ").filter_map(|nb| nb.parse::<u32>().ok()).collect()

Just like last time, let's split the calls:

 line.split(" ")
 .filter_map(|nb| nb.parse::<u32>().ok())
 .collect()

A bit better! Now let's explain:

 line.split(" ")

We create an iterator that will contain all strings between spaces. So a b will contain a and
b:

 .filter_map(|nb| nb.parse::<u32>().ok())

This method is particularly interesting since it's the merge of two others: filter() and
map(). We already know map() but what about filter()? If the condition isn't verified
(so if the returned value of the closure is false), the iterator won't pass the value to the
next method call. filter_map() works the same at this point: if the closure returns None,
the value won't be passed to the next method call.

Now let's focus on this part:

 nb.parse::<u32>().ok()

Here, we try to convert &str into u32. The parse() method returns a Result but the
filter_map() expects an Option so we need to convert it. That's what the ok() method is
for! If your Result is an Ok(value), then it'll convert it into a Some(value). However, if
it's an Err(err), it'll convert it into a None (but you'll lose the error value).

To sum this up, this whole line tries to convert a &str into a number and ignores it if the
conversion fails so it's not added to our final Vec. Amazing how much we can do with such
small code!

Starting with SDL Chapter 2

[76]

And finally:

 .collect()

We collect all the successful conversions into a Vec and return it.

That's it for this function, now let's look at the other one:

 fn load_highscores_and_lines() -> Option<(Vec<u32>, Vec<u32>)> {

Here, if everything went fine (if the file exists and has two lines), we return an Option
containing in the first position the highest scores and in the second position the highest
number of lines:

 if let Ok(content) = read_from_file("scores.txt") {

So if the file exists and we can get its content, we parse the data:

 let mut lines = content.splitn(2, "\n").map(|line|
 line_to_slice(line)).collect::<Vec<_>>();

Another iterator! As usual, let's rewrite it a bit:

 let mut lines = content.splitn(2, "\n")
 .map(|line| line_to_slice(line))
 .collect::<Vec<_>>();

I think you're starting to get how they work, but just in case you don't know, here's how:

 content.splitn(2, "\n")

We make an iterator containing at most two entries (because of the 2 as the first argument)
splitting lines:

 .map(|line| line_to_slice(line))

We transform each line into a Vec<u32> by using the function described in the preceding
code:

 .collect::<Vec<_>>();

And finally, we collect those Vecs into a Vec<Vec<u32>>, which should only contain two
entries.

Let's look at the next line now:

 if lines.len() == 2 {

Starting with SDL Chapter 2

[77]

As said before, if we don't have two entries inside our Vec, it means something is wrong
with the file:

 let (number_lines, highscores) = (lines.pop().unwrap(),
 lines.pop().unwrap());

In case our Vec has two entries, we can get the corresponding values. Since the pop method
removes the last entry of the Vec, we get them in reverse (even though we return high
scores first then the highest number of lines):

 Some((highscores, number_lines))

Then everything else is just the error handling. As we said previously, if any error occurs,
we return None. In this case, it's not really important to handle the error since it's just high
scores. If we have errors with the sdl libraries, nothing will work as expected, so we need
to handle them to avoid a panic.

It's now time to really start the game!

Summary
In this chapter, we saw a lot of important things like how to use Cargo (through the
Cargo.toml file), how to import new crates into a project, thanks to Cargo, and the basics
for Rust modules handling. We even covered how to use iterators and read and write
files, SDL2 basics like how to create a window and fill it with colors, and loading/creating
new textures and images (thanks to the SDL2-image library!).

In Chapter 3, Events and Basic Game Mechanisms, we'll start the implementation of the tetris
game, so be sure to master everything explained in this chapter before starting the next one!

3
Events and Basic Game

Mechanisms
In the last chapter, we saw how to add dependencies into a project thanks to Cargo and the
basics of the SDL2 library.

We now have all the Rust basics in order to write the Tetris game. Time to look at how we
will actually write Tetris.

In this chapter, we will cover the following topics:

Tetrimino
Creating tetriminos
Generating a tetrimino
Tetris struct
Interacting with the game map
SDL events
Score, level, lines sent

Writing Tetris
First, let's review the Tetris rules (just in case):

There is a grid with a height of 16 blocks and a width of 10 blocks.
You have seven different tetrimino (a tetris piece) that are all composed of four
blocks.

Events and Basic Game Mechanisms Chapter 3

[79]

A new tetrimino appears at the top of the game's grid every time the previous
one cannot descend any more (because the block below is already occupied or
because you've reached the game's floor).
The game is over when a new tetrimino cannot appear anymore (because there
is already a tetrimino at the top of the grid).
Every time a line is full (all blocks are occupied by a tetrimino part), it
disappears and all lines above descend by one line.

Now that we all agree on the game rules, let's see how to actually write those mechanisms.

First, we need to actually create those tetriminos.

Tetrimino
As said previously, every tetrimino has four blocks. Another thing to note is that they can
rotate. So for example you have this tetrimino:

Figure 3.1

It can also rotate in the three following positions:

Figure 3.2

Theoretically, every tetrimino should have four states, but in reality, not all of them do.
For example, this one has no transformation so to speak:

Events and Basic Game Mechanisms Chapter 3

[80]

Figure 3.3

And these three only have two states:

Figure 3.4

We have two ways of handling these rotations: using matrix rotation or storing the different
states. To have a code that's easy to read and update, I picked the second option, but don't
hesitate to try using matrix on your own, it could help you learn a lot of new things!

Events and Basic Game Mechanisms Chapter 3

[81]

So first, let's write down a struct for tetriminos:

struct Tetrimino {
 states: Vec<Vec<Vec<u8>>>,
 x: isize,
 y: usize,
 current_state: u8,
}

Everything seems fine except this line:

states: Vec<Vec<Vec<u8>>>,

Pretty ugly, right? Let's make it look a bit better by using type aliasing!

So what is our states field representing? Simply a list of states. Each state represents a
piece's transformation. I suppose it's a bit hard to understand all of this. Let's write an
example:

vec![vec![1, 1, 0, 0],
 vec![1, 1, 0, 0],
 vec![0, 0, 0, 0],
 vec![0, 0, 0, 0]]

In here, 0 means the block is empty, otherwise, it's a tetrimino block. So from reading this
code, I suppose you could guess that we were representing the square:

Figure 3.5

In case you wondered, we have four lines with four blocks because the biggest tetrimino
has a height (or a width, depending the transformation) of four:

Events and Basic Game Mechanisms Chapter 3

[82]

Figure 3.6

This isn't mandatory (we could make it fit the form of each tetrimino), but it makes our
lives easier, so why not?

Coming back to our type aliasing: a piece is basically a vector or vector of numbers. It's long
to write it down every time, so let's alias it as follows:

type Piece = Vec<Vec<u8>>;

Now we can rewrite the states field declaration as follows:

states: Vec<Piece>,

Way better and more explicit, right? But since we'll be using those states as well, why not
alias them too?

type States = Vec<Piece>;

And now our states field declaration becomes:

states: States,

Let's explain the other fields (just in case):

struct Tetrimino {
 states: States,
 x: isize,
 y: usize,
 current_state: u8,
}

Events and Basic Game Mechanisms Chapter 3

[83]

A little explanation of this struct:

states (if you didn't already understand it) is the list of possible states of the
tetrimino

x is the x position of the tetrimino
y is the y position of the tetrimino
current_state is the state in which the tetrimino is currently

Ok, so far so good. Now how should we handle the creation of this type generically? We
don't want to rewrite this for every tetrimino. This is where traits kick in!

Creating tetriminos
We wrote the type that will be used in our game, but we didn't write its
initialization/creation yet. This is where Rust traits will be useful.

Let's start by writing a generator trait that will be implemented on all tetriminos:

trait TetriminoGenerator {
 fn new() -> Tetrimino;
}

And that's it. This trait just provides a function that creates a new Tetrimino instance. It
maybe doesn't like this very much, but thanks to this trait, we'll be able to easily create all
our tetriminos.

Time to write our first tetrimino:

struct TetriminoI;

No need to look for more code, this is what a tetrimino really looks like. It's an empty
structure. The interesting part comes just after:

impl TetriminoGenerator for TetriminoI {
 fn new() -> Tetrimino {
 Tetrimino {
 states: vec![vec![vec![1, 1, 1, 1],
 vec![0, 0, 0, 0],
 vec![0, 0, 0, 0],
 vec![0, 0, 0, 0]],
 vec![vec![0, 1, 0, 0],
 vec![0, 1, 0, 0],
 vec![0, 1, 0, 0],

Events and Basic Game Mechanisms Chapter 3

[84]

 vec![0, 1, 0, 0]]],
 x: 4,
 y: 0,
 current_state: 0,
 }
 }
}

Which is:

Figure 3.7

In here, a number represents a color and 0 means no color (because there is no block).

And that's it. Now you can create this tetrimino just by calling:

let tetrimino = TetriminoI::new();

It'll return an instance of the Tetrimino structure and that's the one you'll be using in the
game. The other tetrimino structures (such as TetriminoI in here) are just used to
generically create the Tetrimino structure with the related information.

We now need to create all the other tetrimino as well, so let's do it:

struct TetriminoJ;

impl TetriminoGenerator for TetriminoJ {
 fn new() -> Tetrimino {
 Tetrimino {
 states: vec![vec![vec![2, 2, 2, 0],
 vec![2, 0, 0, 0],
 vec![0, 0, 0, 0],
 vec![0, 0, 0, 0]],
 vec![vec![2, 2, 0, 0],
 vec![0, 2, 0, 0],
 vec![0, 2, 0, 0],
 vec![0, 0, 0, 0]],
 vec![vec![0, 0, 2, 0],
 vec![2, 2, 2, 0],
 vec![0, 0, 0, 0],
 vec![0, 0, 0, 0]],
 vec![vec![2, 0, 0, 0],

Events and Basic Game Mechanisms Chapter 3

[85]

 vec![2, 0, 0, 0],
 vec![2, 2, 0, 0],
 vec![0, 0, 0, 0]]],
 x: 4,
 y: 0,
 current_state: 0,
 }
 }
}

In case you're wondering why the blocks have 2 as values, it's simply so that we can
differentiate them when displaying them (having all tetrimino with the same color
wouldn't be very pretty...). It has no other meaning.

This tetrimino looks like this:

Figure 3.8

Let's go for the next one:
struct TetriminoL;

impl TetriminoGenerator for TetriminoL {
 fn new() -> Tetrimino {
 Tetrimino {
 states: vec![vec![vec![3, 3, 3, 0],
 vec![0, 0, 3, 0],
 vec![0, 0, 0, 0],
 vec![0, 0, 0, 0]],
 vec![vec![0, 3, 0, 0],
 vec![0, 3, 0, 0],
 vec![3, 3, 0, 0],
 vec![0, 0, 0, 0]],
 vec![vec![3, 0, 0, 0],
 vec![3, 3, 3, 0],

Events and Basic Game Mechanisms Chapter 3

[86]

 vec![0, 0, 0, 0],
 vec![0, 0, 0, 0]],
 vec![vec![3, 3, 0, 0],
 vec![3, 0, 0, 0],
 vec![3, 0, 0, 0],
 vec![0, 0, 0, 0]]],
 x: 4,
 y: 0,
 current_state: 0,
 }
 }
}

This tetrimino looks like this:

Figure 3.9

Another tetrimino:
struct TetriminoO;

impl TetriminoGenerator for TetriminoO {
 fn new() -> Tetrimino {
 Tetrimino {
 states: vec![vec![vec![4, 4, 0, 0],
 vec![4, 4, 0, 0],
 vec![0, 0, 0, 0],
 vec![0, 0, 0, 0]]],
 x: 5,
 y: 0,
 current_state: 0,
 }
 }
}

Events and Basic Game Mechanisms Chapter 3

[87]

This tetrimino looks like this:

Figure 3.10

Another tetrimino (will it ever end?!):

struct TetriminoS;

impl TetriminoGenerator for TetriminoS {
 fn new() -> Tetrimino {
 Tetrimino {
 states: vec![vec![vec![0, 5, 5, 0],
 vec![5, 5, 0, 0],
 vec![0, 0, 0, 0],
 vec![0, 0, 0, 0]],
 vec![vec![0, 5, 0, 0],
 vec![0, 5, 5, 0],
 vec![0, 0, 5, 0],
 vec![0, 0, 0, 0]]],
 x: 4,
 y: 0,
 current_state: 0,
 }
 }
}

This tetrimino looks like this:

Figure 3.11

Events and Basic Game Mechanisms Chapter 3

[88]

Guess what? Another tetrimino:

struct TetriminoZ;

impl TetriminoGenerator for TetriminoZ {
 fn new() -> Tetrimino {
 Tetrimino {
 states: vec![vec![vec![6, 6, 0, 0],
 vec![0, 6, 6, 0],
 vec![0, 0, 0, 0],
 vec![0, 0, 0, 0]],
 vec![vec![0, 0, 6, 0],
 vec![0, 6, 6, 0],
 vec![0, 6, 0, 0],
 vec![0, 0, 0, 0]]],
 x: 4,
 y: 0,
 current_state: 0,
 }
 }
}

This tetrimino looks like this:

Figure 3.12

And the last one (finally!):

struct TetriminoT;

impl TetriminoGenerator for TetriminoT {
 fn new() -> Tetrimino {
 Tetrimino {
 states: vec![vec![vec![7, 7, 7, 0],
 vec![0, 7, 0, 0],
 vec![0, 0, 0, 0],
 vec![0, 0, 0, 0]],
 vec![vec![0, 7, 0, 0],
 vec![7, 7, 0, 0],
 vec![0, 7, 0, 0],

Events and Basic Game Mechanisms Chapter 3

[89]

 vec![0, 0, 0, 0]],
 vec![vec![0, 7, 0, 0],
 vec![7, 7, 7, 0],
 vec![0, 0, 0, 0],
 vec![0, 0, 0, 0]],
 vec![vec![0, 7, 0, 0],
 vec![0, 7, 7, 0],
 vec![0, 7, 0, 0],
 vec![0, 0, 0, 0]]],
 x: 4,
 y: 0,
 current_state: 0,
 }
 }
}

And finally, this tetrimino looks like this:

Figure 3.13

Phew... That was quite a lot of code! Easy code, but still a lot!

It's now time to see how we can generate a new tetrimino randomly.

Generating a tetrimino
In order to do so, we'll need to import another crate—rand. This crate is used to
generate random numbers and that is exactly what we need here.

First, add the following line to your Cargo.toml file (in the [dependencies] section):

rand = "0.3"

Next, add the following line to your main.rs file:

extern crate rand;

Events and Basic Game Mechanisms Chapter 3

[90]

And we're done! Now we can write the generation function of the tetrimino:

fn create_new_tetrimino() -> Tetrimino {
 let rand_nb = rand::random::<u8>() % 7;
 match rand_nb {
 0 => TetriminoI::new(),
 1 => TetriminoJ::new(),
 2 => TetriminoL::new(),
 3 => TetriminoO::new(),
 4 => TetriminoS::new(),
 5 => TetriminoZ::new(),
 6 => TetriminoT::new(),
 _ => unreachable!(),
 }
}

Pretty easy, right? Though, please note that this is a bit too random. It'd be problematic if
we had the same tetrimino generated more than twice in a row (which is already a lot!),
so let's improve this function a bit by adding a static variable:

fn create_new_tetrimino() -> Tetrimino {
 static mut PREV: u8 = 7;
 let mut rand_nb = rand::random::<u8>() % 7;
 if unsafe { PREV } == rand_nb {
 rand_nb = rand::random::<u8>() % 7;
 }
 unsafe { PREV = rand_nb; }
 match rand_nb {
 0 => TetriminoI::new(),
 1 => TetriminoJ::new(),
 2 => TetriminoL::new(),
 3 => TetriminoO::new(),
 4 => TetriminoS::new(),
 5 => TetriminoZ::new(),
 6 => TetriminoT::new(),
 _ => unreachable!(),
 }
}

A bit of explanation might be helpful here. First, what is a static variable? It's a variable
that will keep its value and won't be destroyed when the scope it has been created inside
has been left. An example:

fn foo() -> u32 {
 static mut VALUE: u32 = 12;
 unsafe {
 VALUE += 1;

Events and Basic Game Mechanisms Chapter 3

[91]

 VALUE
 }
}

for _ in 0..5 {
 println!("{}", foo());
}

If you execute this code, it'll print out:

13
14
15
16
17

Here are the other properties of the static variable:

It cannot have a destructor (it's possible to avoid this limitation by using the
lazy_static crate though, but we won't talk about it here) so only simple types
that don't implement the Drop trait can be used as static
Changing the value of a static variable is unsafe (that's why there are unsafe
blocks) for the simple reason that the static is shared between all threads in the
program and can be modified and read at the same time
Reading the value of a mutable static is unsafe (for the reason mentioned
previously)

We now have a function that can generate a tetrimino. We now need to add the following
functionalities:

Rotating
Changing position

Let's start with the rotation part!

Rotating a tetrimino
Thanks to how we created the Tetrimino type, it's quite easy to do:

impl Tetrimino {
 fn rotate(&mut self) {
 self.current_state += 1;
 if self.current_state as usize >= self.states.len() {
 self.current_state = 0;

Events and Basic Game Mechanisms Chapter 3

[92]

 }
 }
}

And we're done. However, we don't check anything: what happens if there is a block
already used by another tetrimino? We'll just overwrite it. Such a thing cannot be
accepted!

In order to perform this check, we'll need the game map as well. It's simply a vector line and
a line is a vector of u8. Or, more simply:

Vec<Vec<u8>>

Considering that it isn't too hard to read, we'll just keep it this way. Now let's write the
method:

fn test_position(&self, game_map: &[Vec<u8>],
 tmp_state: usize, x: isize, y: usize) -> bool {
 for decal_y in 0..4 {
 for decal_x in 0..4 {
 let x = x + decal_x;
 if self.states[tmp_state][decal_y][decal_x as usize] != 0
 &&
 (y + decal_y >= game_map.len() ||
 x < 0 ||
 x as usize >= game_map[y + decal_y].len() ||
 game_map[y + decal_y][x as usize] != 0) {
 return false;
 }
 }
 }
 return true;
}

Before explaining this function, it seems important to explain why the game map became a
&[Vec<u8>]. When you send a non-mutable reference over a vector (Vec<T>), it is then
dereferenced into a &[T] slice, which is a constant view over the vector's content.

And we're done (for this method)! Now time for explanations: we loop over every block of
our tetrimino and check whether the block is free in the game map (by checking whether
it is equal to 0) and if it isn't going out of the game map.

Events and Basic Game Mechanisms Chapter 3

[93]

Now that we have our test_position method, we can update the rotate method:

fn rotate(&mut self, game_map: &[Vec<u8>]) {
 let mut tmp_state = self.current_state + 1;
 if tmp_state as usize >= self.states.len() {
 tmp_state = 0;
 }
 let x_pos = [0, -1, 1, -2, 2, -3];
 for x in x_pos.iter() {
 if self.test_position(game_map, tmp_state as usize,
 self.x + x, self.y) == true {
 self.current_state = tmp_state;
 self.x += *x;
 break
 }
 }
}

A bit longer, indeed. Since we can't be sure that the piece will be put where we want it to
go, we need to make temporary variables and then check the possibilities. Let's go through
the code:

let mut tmp_state = self.current_state + 1;
if tmp_state as usize >= self.states.len() {
 tmp_state = 0;
}

This is exactly what our rotate method did before, except that now, we use temporary
variables before going further:

let x_pos = [0, -1, 1, -2, 2, -3];

This line on its own doesn't make much sense but it'll be very useful next: in case the piece
cannot be placed where we want, we try to move it on the x axis to see if it'd work in some
other place. It allows you to have a Tetris that is much more flexible and comfortable to
play:

for x in x_pos.iter() {
 if self.test_position(game_map, tmp_state as usize,
 self.x + x, self.y) == true {
 self.current_state = tmp_state;
 self.x += *x;
 break
 }
}

Events and Basic Game Mechanisms Chapter 3

[94]

With the explanations given previously, this loop should be really easy to understand. For
each x shift, we check whether the piece can be placed there. If it works, we change the
values of our tetrimino, otherwise we just continue.

If no x shift worked, we just leave the function without doing anything.

Now that we can rotate and test the position of a tetrimino, it'd be nice to actually move it
as well (when the timer goes to 0 and the tetrimino needs to go down, for example). The
main difference with the rotate method will be that, if the tetrimino cannot move, we'll
return a Boolean value to allow the caller to be aware of it.

So the method looks like this:

fn change_position(&mut self, game_map: &[Vec<u8>], new_x: isize,
new_y: usize) -> bool {
 if self.test_position(game_map, self.current_state as usize,
 new_x, new_y) == true {
 self.x = new_x as isize;
 self.y = new_y;
 true
 } else {
 false
 }
}

Another difference that you have certainly already spotted is that we don't check multiple
possible positions, just the one received. The reason is simple; contrary to a rotation, we
can't move the tetrimino around when it receives a move instruction. Imagine asking the
tetrimino to move to the right and it doesn't move, or worse, it moves to the left! We can't
allow it and so we're not doing it.

Now about the method's code: it's very simple. If we can put the tetrimino in a place, we
update the position of the tetrimino and return true, otherwise, we do nothing other than
return false.

Most of the work is performed in the test_position method, allowing our method to be
really small.

With these three methods, we have almost everything we need. But for even more
simplicity in the future, let's add one more:

fn test_current_position(&self, game_map: &[Vec<u8>]) -> bool {
 self.test_position(game_map, self.current_state as usize,
 self.x, self.y)
}

Events and Basic Game Mechanisms Chapter 3

[95]

We'll use it when we generate a new tetrimino: if it cannot be placed where it appeared
because another tetrimino is already there, it means the game is over.

We can now say that our Tetrimino type is fully implemented. Congratulations! Time to
start the game type!

Tetris struct
This type will be the one holding all the game's information:

Game map
Current level
Score
Number of lines
The current tetrimino
Some potential other information (such as a ghost, or the preview of the next
tetrimino!)

Let's write down this type:

struct Tetris {
 game_map: Vec<Vec<u8>>,
 current_level: u32,
 score: u32,
 nb_lines: u32,
 current_piece: Option<Tetrimino>,
}

Once again, pretty simple. I don't think any additional information is required so let's
continue!

Let's start by writing the new method for this new type:

impl Tetris {
 fn new() -> Tetris {
 let mut game_map = Vec::new();
 for _ in 0..16 {
 game_map.push(vec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
 }
 Tetris {
 game_map: game_map,
 current_level: 1,
 score: 0,

Events and Basic Game Mechanisms Chapter 3

[96]

 nb_lines: 0,
 current_piece: None,
 }
 }
}

Nothing really complicated except maybe the loop. Let's look at how it works:

let mut game_map = Vec::new();
for _ in 0..16 {
 game_map.push(vec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
}

We know that a tetris map has a width of 10 blocks and a height of 16 blocks. This loop
creates our game map by looping over the number of lines and generating an empty vector
of 10 blocks, which will be a line.

Apart from this, everything else is very straightforward:

You start at level 1
With your score at 0
With 0 lines sent
No current tetrimino

Let's start by generating a new tetrimino randomly. For this, you'll require the rand crate.
Add the following to your Cargo.toml file:

rand = "0.3"

Then add this at the top of your main file:

extern crate rand;

Then we can write the method:

fn create_new_tetrimino(&self) -> Tetrimino {
 static mut PREV: u8 = 7;
 let mut rand_nb = rand::random::<u8>() % 7;
 if unsafe { PREV } == rand_nb {
 rand_nb = rand::random::<u8>() % 7;
 }
 unsafe { PREV = rand_nb; }
 match rand_nb {
 0 => TetriminoI::new(),
 1 => TetriminoJ::new(),
 2 => TetriminoL::new(),

Events and Basic Game Mechanisms Chapter 3

[97]

 3 => TetriminoO::new(),
 4 => TetriminoS::new(),
 5 => TetriminoZ::new(),
 6 => TetriminoT::new(),
 _ => unreachable!(),
 }
}

Explanations:

static mut PREV: u8 = 7;

The static keyword is the same in Rust as it is in C and C++ for variables: the value set to
the variable will be kept between the function calls. So for example, if you write the
following function:

fn incr() -> u32 {
 static mut NB: u32 = 0;
 unsafe {
 NB += 1;
 NB
 }
}

And you then call it, as follows:

for _ in 0..5 {
 println!("{}", incr());
}

You'll get the following output:

1
2
3
4
5

So now, why do we have these unsafe blocks? The reason is quite simple: in case the static
variable is accessed and modified from different threads, you can't be sure that you won't
have data race, concurrency errors, or even memory errors.

In this case, since we don't have threads, it's fine. However, keep in mind
that you should ALWAYS try to avoid unsafe at all costs and use it ONLY
when nothing else can be done.

Events and Basic Game Mechanisms Chapter 3

[98]

However, if our static variable wasn't mutable, then we could access its value without
needing the unsafe blocks. The reason once again is simple: even if multiple threads try to
access its value at the same time, since this value cannot change, you can't have data race
and therefore it is safe.

Let's continue with our function's code explanations:

let mut rand_nb = rand::random::<u8>() % 7;

This line generates a random u8 and then limits its value between 0 (included) and 6
(included) because we have seven different tetrimino:

if unsafe { PREV } == rand_nb {
 rand_nb = rand::random::<u8>() % 7;
}

If the generated tetrimino is the same as the previous one, we generate another one. It
enables you to prevent having the same tetrimino too many times at once. It isn't the best
way to do it, having a specific balancing for each tetrimino would be better, but this
solution is acceptable enough (and a lot easier to write!):

unsafe { PREV = rand_nb; }

We now set the generated tetrimino ID to our static variable:

match rand_nb {
 0 => TetriminoI::new(),
 1 => TetriminoJ::new(),
 2 => TetriminoL::new(),
 3 => TetriminoO::new(),
 4 => TetriminoS::new(),
 5 => TetriminoZ::new(),
 6 => TetriminoT::new(),
 _ => unreachable!(),
}

Nothing much to say about this pattern matching. Every ID matches a tetrimino and then
we call the corresponding constructor. The only really interesting thing about this
construction is the following line:

_ => unreachable!(),

This macro is really useful. It allows us to add a security over the matched value. If the code
ever enters this pattern matching, it'll panic right away (because, as the macro's name
suggests, it's not supposed to happen).

Events and Basic Game Mechanisms Chapter 3

[99]

Interacting with the game map
Ok, we can now move all the tetrimino and generate them. Two mechanisms are still
missing: checking lines to see whether one can be sent (that is, removed since complete) and
making a tetrimino permanent (that is, not movable anymore).

Let's start with the line check:

fn check_lines(&mut self) {
 let mut y = 0;

 while y < self.game_map.len() {
 let mut complete = true;

 for x in &self.game_map[y] {
 if *x == 0 {
 complete = false;
 break
 }
 }
 if complete == true {
 self.game_map.remove(y);
 y -= 1;
 // increase the number of self.lines
 }
 y += 1;
 }
 while self.game_map.len() < 16 {
 self.game_map.insert(0, vec![0, 0, 0, 0, 0, 0, 0, 0, 0,
0]);
 }
}

For now, I didn't add the score, lines sent counting, nor level handling but this is here that'll
do it later.

Now time to explain this method a bit. Its purpose is to remove lines when they're full
(meaning when every block is occupied by a tetrimino block). So we just go through the
game map line by line and run the check on each.

The code itself doesn't use much of the Rust-specific syntax, but you might wonder why we
did it like this. I'm talking about this loop:

while y < self.game_map.len() {

Events and Basic Game Mechanisms Chapter 3

[100]

When we could have just used:

for line in self.game_map {

This is actually a good question and the answer is simple, but maybe hard to understand, if
you're used to how Rust ownership works.

All the problems actually come from this line:

self.game_map.remove(y);

In here, we mutably borrow self.game_map in order to remove a line. However,
self.game_map would already be non-mutably borrowed by the for loop! A quick
reminder on how the borrowing rules work:

You can non-mutably borrow a variable as many times as you want
You can mutably borrow a variable only if there are no other borrows (either
mutable or non-mutable)

So in our case, the for loop would break the second rule since we'd have a non-mutable
borrow when trying to get mutable access to self.game_map.

In this case, we have two solutions:

Iterate over the game map "by hand" (with an index variable)
Store lines to remove into a second vector and then remove them after we get out
of the loop

Both solutions are more or less equivalent in this case so I just picked the first one.

Once the first loop is finished, we have filled the game map with empty lines to replace the
one(s) we deleted:

while self.game_map.len() < 16 {
 self.game_map.insert(0, vec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
}

And we're done with this method! Let's write the other one.

So now it's time to write the make_permanent method. Just like the previous one, it won't
be a complete version, but in the future, this is where we'll update the score (we update it
when a tetrimino is made permanent).

Events and Basic Game Mechanisms Chapter 3

[101]

So let's write it:

fn make_permanent(&mut self) {
 if let Some(ref mut piece) = self.current_piece {
 let mut shift_y = 0;

 while shift_y < piece.states[piece.current_state as
 usize].len() &&
 piece.y + shift_y < self.game_map.len() {
 let mut shift_x = 0;

 while shift_x < piece.states[piece.current_state as
 usize][shift_y].len() &&
 (piece.x + shift_x as isize) <
 self.game_map[piece.y +
 shift_y].len() as isize {
 if piece.states[piece.current_state as usize]
 [shift_y][shift_x] != 0 {
 let x = piece.x + shift_x as isize;
 self.game_map[piece.y + shift_y][x as usize] =
 piece.states[piece.current_state as usize]
 [shift_y][shift_x];
 }
 shift_x += 1;
 }
 shift_y += 1;
 }
 }
 self.check_lines();
 self.current_piece = None;
}

This code doesn't seem very encouraging... Brace yourselves, explanations are coming:

if let Some(ref mut piece) = self.current_piece {

It's simple pattern matching. If self.current_piece is Some, then we enter the condition
and the value contained by Some that is bound into the piece variable:

while shift_y < piece.states[piece.current_state as usize].len() &&
 piece.y + shift_y < self.game_map.len() {

This loop and its condition allow us to avoid a buffer overflow error by checking whether
we're not outside of the game map limit for the current rotation (that
is, self.current_state).

Events and Basic Game Mechanisms Chapter 3

[102]

The same goes for the inner loop (which iterates over the blocks of a line):

while shift_x < piece.states[piece.current_state as
usize][shift_y].len() &&
 (piece.x + shift_x as isize) < self.game_map[piece.y +
shift_y].len() as isize {

It is in this loop that we write the blocks of the current tetrimino into the game map:

if piece.states[piece.current_state as usize][shift_y][shift_x] !=
0 {
 let x = piece.x + shift_x as isize;
 self.game_map[piece.y + shift_y][x as usize] =
 piece.states[piece.current_state as
usize][shift_y][shift_x];
}

If the current block of the current tetrimino isn't empty, then we put it into the game map
(it's as simple as that).

Once done, this is where we call the check_lines method. But now you'll certainly
wonder why we don't call it directly inside the if let condition. Well, it's for the exact
same reason that we didn't use the for loop inside the check_lines method, self is
already mutably borrowed by the following line:

if let Some(ref mut piece) = self.current_piece {

That's right: if an element of a type is borrowed, then its parent is mutably borrowed as
well!

With these two methods, our Tetris type is now fully implemented (minus the small
required modifications that will come later). Time to add the SDL events handling!

SDL events
There aren't many different events to handle:

Left and right arrow keys to move the tetrimino to the right or the left
Up arrow key to make the tetrimino rotate
Down arrow key to make the tetrimino descend one block
Spacebar to make the tetrimino descend to the bottom instantly
Escape to quit the game

Events and Basic Game Mechanisms Chapter 3

[103]

It's still possible to add some later on (such as pausing the game with the return key, for
example) but for now, let's focus on these ones. For this, go back inside the main loop of the
game (inside the main function) and replace the current event handling with the following
function:

fn handle_events(tetris: &mut Tetris, quit: &mut bool, timer: &mut
SystemTime,
 event_pump: &mut sdl2::EventPump) -> bool {
 let mut make_permanent = false;
 if let Some(ref mut piece) = tetris.current_piece {
 let mut tmp_x = piece.x;
 let mut tmp_y = piece.y;

 for event in event_pump.poll_iter() {
 match event {
 Event::Quit { .. } |
 Event::KeyDown { keycode: Some(Keycode::Escape), .. } =>
 {
 *quit = true;
 break
 }
 Event::KeyDown { keycode: Some(Keycode::Down), .. } =>
 {
 *timer = SystemTime::now();
 tmp_y += 1;
 }
 Event::KeyDown { keycode: Some(Keycode::Right), .. } =>
 {
 tmp_x += 1;
 }
 Event::KeyDown { keycode: Some(Keycode::Left), .. } =>
 {
 tmp_x -= 1;
 }
 Event::KeyDown { keycode: Some(Keycode::Up), .. } =>
 {
 piece.rotate(&tetris.game_map);
 }
 Event::KeyDown { keycode: Some(Keycode::Space), .. } =>
 {
 let x = piece.x;
 let mut y = piece.y;
 while piece.change_position(&tetris.game_map, x, y + 1)
 == true {
 y += 1;
 }
 make_permanent = true;

Events and Basic Game Mechanisms Chapter 3

[104]

 }
 _ => {}
 }
 }
 if !make_permanent {
 if piece.change_position(&tetris.game_map, tmp_x, tmp_y)
 ==
 false &&
 tmp_y != piece.y {
 make_permanent = true;
 }
 }
 }
 if make_permanent {
 tetris.make_permanent();
 *timer = SystemTime::now();
 }
 make_permanent
}

Quite a big one:

let mut make_permanent = false;

This variable will tell us whether the current tetrimino is still falling. If not, then it
becomes true, the tetrimino is then put into the game map and we generate a new one.
Luckily for us, we already wrote all the needed functions to perform these operations:

if let Some(ref mut piece) = tetris.current_piece {

This is simple pattern binding. If our game doesn't have a current piece (for some reason),
then we don't do anything and just leave:

let mut tmp_x = piece.x;
let mut tmp_y = piece.y;

If there is a move on the x or on the y axis, we'll write it into these variables and then we'll
test whether the tetrimino can actually go there:

for event in event_pump.poll_iter() {

As there can be multiple events that happened since the last time we came into this
function, we need to loop over all of them.

Events and Basic Game Mechanisms Chapter 3

[105]

Now we're arriving at the interesting part:

match event {
 Event::Quit { .. } |
 Event::KeyDown { keycode: Some(Keycode::Escape), .. } => {
 *quit = true;
 break
 }
 Event::KeyDown { keycode: Some(Keycode::Down), .. } => {
 *timer = SystemTime::now();
 tmp_y += 1;
 }
 Event::KeyDown { keycode: Some(Keycode::Right), .. } => {
 tmp_x += 1;
 }
 Event::KeyDown { keycode: Some(Keycode::Left), .. } => {
 tmp_x -= 1;
 }
 Event::KeyDown { keycode: Some(Keycode::Up), .. } => {
 piece.rotate(&tetris.game_map);
 }
 Event::KeyDown { keycode: Some(Keycode::Space), .. } => {
 let x = piece.x;
 let mut y = piece.y;
 while piece.change_position(&tetris.game_map, x, y + 1) ==
 true {
 y += 1;
 }
 make_permanent = true;
 }
 _ => {}
}

We can almost consider this small code as the core of our application, without it, no
interaction with the program is possible. If you want more interactions, this is where you'll
add them:

Event::Quit { .. } |
Event::KeyDown { keycode: Some(Keycode::Escape), .. } => {
 *quit = true;
 break
}

Events and Basic Game Mechanisms Chapter 3

[106]

If we receive a quit event from sdl or if we receive an Escape, KeyDown event, we set the
quit variable to true. It'll be used outside of this function to then leave the main loop--and
therefore leave the program itself. Then we break; no need to go further since we know that
we're leaving the game:

Event::KeyDown { keycode: Some(Keycode::Down), .. } => {
 *timer = SystemTime::now();
 tmp_y += 1;
}

If the down arrow is pressed, we need to make our tetrimino descend by one block and
also put the timer value to now. timer is used to know at what speed the
tetrimino blocks are falling. The shorter the time, the faster they'll descend.

For now, it isn't used in this function, so we'll see how to handle it outside of it:

Event::KeyDown { keycode: Some(Keycode::Right), .. } => {
 tmp_x += 1;
}
Event::KeyDown { keycode: Some(Keycode::Left), .. } => {
 tmp_x -= 1;
}

In here, we handle the right and left arrow keys. It's just like the down arrow key, except we
don't need to change the timer variable:

Event::KeyDown { keycode: Some(Keycode::Up), .. } => {
 piece.rotate(&tetris.game_map);
}

If we receive an up arrow key pressed event, we rotate the tetrimino:

Event::KeyDown { keycode: Some(Keycode::Space), .. } => {
 let x = piece.x;
 let mut y = piece.y;
 while piece.change_position(&tetris.game_map, x, y + 1) == true {
 y += 1;
 }
 make_permanent = true;
}

And finally the last of our events: the spacebar key pressed event. Here, we move the
tetrimino down as much as we can and then set the make_permanent variable to true.

Events and Basic Game Mechanisms Chapter 3

[107]

With this, that's it for our events. However, like we said before if you want to add more
events, this is where you should put them.

Time to put all this into our main loop:

fn print_game_information(tetris: &Tetris) {
 println!("Game over...");
 println!("Score: {}", tetris.score);
 // println!("Number of lines: {}", tetris.nb_lines);
 println!("Current level: {}", tetris.current_level);
 // Check highscores here and update if needed
}

let mut tetris = Tetris::new();
let mut timer = SystemTime::now();

loop {
 if match timer.elapsed() {
 Ok(elapsed) => elapsed.as_secs() >= 1,
 Err(_) => false,
 } {
 let mut make_permanent = false;
 if let Some(ref mut piece) = tetris.current_piece {
 let x = piece.x;
 let y = piece.y + 1;
 make_permanent =
 !piece.change_position(&tetris.game_map,
 x, y);
 }
 if make_permanent {
 tetris.make_permanent();
 }
 timer = SystemTime::now();
 }

 // We need to draw the tetris "grid" in here.

 if tetris.current_piece.is_none() {
 let current_piece = tetris.create_new_tetrimino();
 if !current_piece.test_current_position(&tetris.game_map) {
 print_game_information(&tetris);
 break
 }
 tetris.current_piece = Some(current_piece);
 }
 let mut quit = false;
 if !handle_events(&mut tetris, &mut quit, &mut timer, &mut

Events and Basic Game Mechanisms Chapter 3

[108]

 event_pump) {
 if let Some(ref mut piece) = tetris.current_piece {
 // We need to draw our current tetrimino in here.
 }
 }
 if quit {
 print_game_information(&tetris);
 break
 }

 // We need to draw the game map in here.

 sleep(Duration::new(0, 1_000_000_000u32 / 60));
}

Doesn't seem that long, right? Just a few comments where we're supposed to draw our
Tetris, but otherwise everything is in there, which means that our Tetris is now fully
functional (even though it isn't displayed).

Let's explain what's happening in there:

let mut tetris = Tetris::new();
let mut timer = SystemTime::now();

In here, we initialize both our Tetris object and the timer. The timer will be used to let us
know when the tetrimino is supposed to descend by one block:

if match timer.elapsed() {
 Ok(elapsed) => elapsed.as_secs() >= 1,
 Err(_) => false,
} {
 let mut make_permanent = false;
 if let Some(ref mut piece) = tetris.current_piece {
 let x = piece.x;
 let y = piece.y + 1;
 make_permanent = !piece.change_position(&tetris.game_map,
 x, y);
 }
 if make_permanent {
 tetris.make_permanent();
 }
 timer = SystemTime::now();
}

Events and Basic Game Mechanisms Chapter 3

[109]

This code checks whether it's been one second or more since the last time the
tetrimino descended by one block. If we want to handle levels, we'll need to replace the
following line:

Ok(elapsed) => elapsed.as_secs() >= 1,

Its replacement will need to be something more generic and we'll add an array to store the
different levels' speed of descent.

So coming back to the code, if it's been one second or more then we try to make the
tetrimino descend by one block. If it cannot, then we put it into the game map and re-
initialize the timer variable.

Once again, you might wonder why we had to create the make_permanent variable instead
of directly checking the output of:

!piece.change_position(&tetris.game_map, x, y)

It has an if condition, right? Well, just like the previous times, it's because of the borrow
checker. We borrow tetris here:

if let Some(ref mut piece) = tetris.current_piece {

So as long as we're in this condition, we can't use tetris mutably, which is why we store
the result of the condition in make_permanent so we can use the make_permanent method
after:

if tetris.current_piece.is_none() {
 let current_piece = tetris.create_new_tetrimino();
 if !current_piece.test_current_position(&tetris.game_map) {
 print_game_information(&tetris);
 return
 }
 tetris.current_piece = Some(current_piece);
}

If there is no current tetrimino, we need to generate a new one, which we do by calling
the create_new_tetrimino method. Then we check whether it can be put into the game
on the top line by calling the test_current_position method. If not, then it means the
game is over and we quit. Otherwise, we store the newly-generated tetrimino
in tetris.current_piece and we move on.

Events and Basic Game Mechanisms Chapter 3

[110]

Two things are missing here:

Since we don't handle the increase of lines sent, nor the score, nor the level,
there's no need to print them
We didn't add yet the highscores loading/overwrite

Of course, we'll add all this later on:

let mut quit = false;
if !handle_events(&mut tetris, &mut quit, &mut timer, &mut
event_pump) {
 if let Some(ref mut piece) = tetris.current_piece {
 // We need to draw our current tetrimino in here.
 }
}
if quit {
 print_game_information(&tetris);
 break
}

This code calls the handle_events function and acts according to its output. It returns
whether the current tetrimino has been put into the game map or not. If it is the case, then
there is no need to draw it.

We now need to do the following remaining things:

Add the score, levels, and number of lines sent
Load/overwrite the highscores if needed
Actually draw the Tetris

Seems like we're getting very close to the end! Let's start by adding the score, number of
lines sent, and levels!

Score, level, lines sent
The biggest required change will be the level handling. You need to create an array with
different times to increase the tetrimino's speed of descent and to check whether the level
needs to be changed or not (based on the number of lines).

Events and Basic Game Mechanisms Chapter 3

[111]

The score will be updated in the following cases:

When the tetrimino is made permanent
When a line is sent
When the player makes a Tetris (no more blocks in the game map)

Let's start with the easiest change—the score.

First, let's add the following method into our Tetris type:

fn update_score(&mut self, to_add: u32) {
 self.score += to_add;
}

We can suppose that no additional explanations are required here.

Next, let's update a few methods:

fn check_lines(&mut self) {
 let mut y = 0;
 let mut score_add = 0;

 while y < self.game_map.len() {
 let mut complete = true;

 for x in &self.game_map[y] {
 if *x == 0 {
 complete = false;
 break
 }
 }
 if complete == true {
 score_add += self.current_level;
 self.game_map.remove(y);
 y -= 1;
 }
 y += 1;
 }
 if self.game_map.len() == 0 {
 // A "tetris"!
 score_add += 1000;
 }
 self.update_score(score_add);
 while self.game_map.len() < 16 {
 // we'll add this method just after!
 self.increase_line();

Events and Basic Game Mechanisms Chapter 3

[112]

 self.game_map.insert(0, vec![0, 0, 0, 0, 0, 0, 0, 0, 0,
 0]);
 }
}

As usual, we create a temporary variable (here, score_add) and once the borrow of self is
over, we call the update_score method. There is also the usage of the increase_line
method. We haven't defined it yet; it'll come just after.

The second method is make_permanent:

fn make_permanent(&mut self) {
 let mut to_add = 0;
 if let Some(ref mut piece) = self.current_piece {
 let mut shift_y = 0;

 while shift_y < piece.states[piece.current_state as
 usize].len() &&
 piece.y + shift_y < self.game_map.len() {
 let mut shift_x = 0;

 while shift_x < piece.states[piece.current_state as usize]
 [shift_y].len() &&
 (piece.x + shift_x as isize) < self.game_map[piece.y
 + shift_y].len() as isize {
 if piece.states[piece.current_state as usize][shift_y]
 [shift_x] != 0 {
 let x = piece.x + shift_x as isize;
 self.game_map[piece.y + shift_y][x as usize] =
 piece.states[piece.current_state as usize]
 [shift_y][shift_x];
 }
 shift_x += 1;
 }
 shift_y += 1;
 }
 to_add += self.current_level;
 }
 self.update_score(to_add);
 self.check_lines();
 self.current_piece = None;
}

Include this just above the self.check_lines call.

With these two methods updated, we now have the score handling fully implemented.

Events and Basic Game Mechanisms Chapter 3

[113]

Levels and lines sent
The next two being strongly bound (the level depends directly on the number of lines sent),
we'll implement them at the same time.

Before doing anything else, let's define the two following const:

const LEVEL_TIMES: [u32; 10] = [1000, 850, 700, 600, 500, 400, 300,
250, 221, 190];
const LEVEL_LINES: [u32; 10] = [20, 40, 60, 80, 100, 120, 140,
160, 180, 200];

The first one corresponds to the times before the current tetrimino descends by one block.
Each case being a different level.

The second one corresponds to how many lines the player needs before getting to the next
level.

Next, let's add the following method in our Tetris type:

fn increase_line(&mut self) {
 self.nb_lines += 1;
 if self.nb_lines > LEVEL_LINES[self.current_level as usize - 1]
{
 self.current_level += 1;
 }
}

Nothing complicated. Just be careful when reading the LEVEL_LINES const because our
current_level variable starts at 1 and not 0.

Next, we'll need to update how we determine whether the time is up or not. To do so, let's
write another function:

fn is_time_over() {
 match timer.elapsed() {
 Ok(elapsed) => {
 let millis = elapsed.as_secs() as u32 * 1000 +
 elapsed.subsec_nanos() / 1_000_000;
 millis > LEVEL_TIMES[tetris.current_level as usize - 1]
 }
 Err(_) => false,
 }
}

Events and Basic Game Mechanisms Chapter 3

[114]

A small but tricky one. The problem is that the type returned by timer.elapsed (which is
Duration) doesn't provide a method to get the number of milliseconds, so we need to get it
ourselves.

First, we get the number of seconds elapsed and then multiply it by 1,000 (because 1 second
= 1,000 milliseconds). Finally, we get the number of nanoseconds (in the current second)
and divide it by 1,000,000 (because 1 millisecond = 1 million nanoseconds).

We can now compare the results to see whether the tetrimino should descend or not and
return the result:

if is_time_over(&tetris, &timer) {
 let mut make_permanent = false;
 if let Some(ref mut piece) = tetris.current_piece {
 let x = piece.x;
 let y = piece.y + 1;
 make_permanent = !piece.change_position(&tetris.game_map,
 x, y);
 }
 if make_permanent {
 tetris.make_permanent();
 }
 timer = SystemTime::now();
}

And with this, we've finished this part. Let's make the last one now: the highscore
loading/overwriting!

Highscores loading/overwriting
We already saw how to perform the I/O operations in the previous chapter, so it'll be very
quick to do:

const NB_HIGHSCORES: usize = 5;

fn update_vec(v: &mut Vec<u32>, value: u32) -> bool {
 if v.len() < NB_HIGHSCORES {
 v.push(value);
 v.sort();
 true
 } else {
 for entry in v.iter_mut() {
 if value > *entry {
 *entry = value;
 return true;

Events and Basic Game Mechanisms Chapter 3

[115]

 }
 }
 false
 }
}

fn print_game_information(tetris: &Tetris) {
 let mut new_highest_highscore = true;
 let mut new_highest_lines_sent = true;
 if let Some((mut highscores, mut lines_sent)) =
 load_highscores_and_lines() {
 new_highest_highscore = update_vec(&mut highscores,
 tetris.score);
 new_highest_lines_sent = update_vec(&mut lines_sent,
 tetris.nb_lines);
 if new_highest_highscore || new_highest_lines_sent {
 save_highscores_and_lines(&highscores, &lines_sent);
 }
 } else {
 save_highscores_and_lines(&[tetris.score], &
 [tetris.nb_lines]);
 }
 println!("Game over...");
 println!("Score: {}{}",
 tetris.score,
 if new_highest_highscore { " [NEW HIGHSCORE]"} else {
 "" });
 println!("Number of lines: {}{}",
 tetris.nb_lines,
 if new_highest_lines_sent { " [NEW HIGHSCORE]"} else {
 "" });
 println!("Current level: {}", tetris.current_level);
}

Not much to explain with this code. For the moment, we limited the number of each
highscore to 5. Just update it as you want.

And with this code, all the mechanisms are implemented. All that's left is to actually draw
the game!

Events and Basic Game Mechanisms Chapter 3

[116]

Here is the full code for this chapter:

extern crate rand;
extern crate sdl2;

use sdl2::event::Event;
use sdl2::keyboard::Keycode;
use sdl2::pixels::Color;
use sdl2::rect::Rect;
use sdl2::render::{Canvas, Texture, TextureCreator};
use sdl2::video::{Window, WindowContext};

use std::fs::File;
use std::io::{self, Read, Write};
use std::thread::sleep;
use std::time::{Duration, SystemTime};

const TETRIS_HEIGHT: usize = 40;
const HIGHSCORE_FILE: &'static str = "scores.txt";
const LEVEL_TIMES: [u32; 10] = [1000, 850, 700, 600, 500, 400, 300,
250, 221, 190];
const LEVEL_LINES: [u32; 10] = [20, 40, 60, 80, 100, 120, 140,
160, 180, 200];
const NB_HIGHSCORES: usize = 5;

type Piece = Vec<Vec<u8>>;
type States = Vec<Piece>;

trait TetriminoGenerator {
 fn new() -> Tetrimino;
}

struct TetriminoI;

impl TetriminoGenerator for TetriminoI {
 fn new() -> Tetrimino {
 Tetrimino {
 states: vec![vec![vec![1, 1, 1, 1],
 vec![0, 0, 0, 0],
 vec![0, 0, 0, 0],
 vec![0, 0, 0, 0]],
 vec![vec![0, 1, 0, 0],
 vec![0, 1, 0, 0],
 vec![0, 1, 0, 0],
 vec![0, 1, 0, 0]]],
 x: 4,
 y: 0,
 current_state: 0,

Events and Basic Game Mechanisms Chapter 3

[117]

 }
 }
}

struct TetriminoJ;

impl TetriminoGenerator for TetriminoJ {
 fn new() -> Tetrimino {
 Tetrimino {
 states: vec![vec![vec![2, 2, 2, 0],
 vec![2, 0, 0, 0],
 vec![0, 0, 0, 0],
 vec![0, 0, 0, 0]],
 vec![vec![2, 2, 0, 0],
 vec![0, 2, 0, 0],
 vec![0, 2, 0, 0],
 vec![0, 0, 0, 0]],
 vec![vec![0, 0, 2, 0],
 vec![2, 2, 2, 0],
 vec![0, 0, 0, 0],
 vec![0, 0, 0, 0]],
 vec![vec![2, 0, 0, 0],
 vec![2, 0, 0, 0],
 vec![2, 2, 0, 0],
 vec![0, 0, 0, 0]]],
 x: 4,
 y: 0,
 current_state: 0,
 }
 }
}

struct TetriminoL;

impl TetriminoGenerator for TetriminoL {
 fn new() -> Tetrimino {
 Tetrimino {
 states: vec![vec![vec![3, 3, 3, 0],
 vec![0, 0, 3, 0],
 vec![0, 0, 0, 0],
 vec![0, 0, 0, 0]],
 vec![vec![0, 3, 0, 0],
 vec![0, 3, 0, 0],
 vec![3, 3, 0, 0],
 vec![0, 0, 0, 0]],
 vec![vec![3, 0, 0, 0],
 vec![3, 3, 3, 0],
 vec![0, 0, 0, 0],

Events and Basic Game Mechanisms Chapter 3

[118]

 vec![0, 0, 0, 0]],
 vec![vec![3, 3, 0, 0],
 vec![3, 0, 0, 0],
 vec![3, 0, 0, 0],
 vec![0, 0, 0, 0]]],
 x: 4,
 y: 0,
 current_state: 0,
 }
 }
}

struct TetriminoO;

impl TetriminoGenerator for TetriminoO {
 fn new() -> Tetrimino {
 Tetrimino {
 states: vec![vec![vec![4, 4, 0, 0],
 vec![4, 4, 0, 0],
 vec![0, 0, 0, 0],
 vec![0, 0, 0, 0]]],
 x: 5,
 y: 0,
 current_state: 0,
 }
 }
}

struct TetriminoS;

impl TetriminoGenerator for TetriminoS {
 fn new() -> Tetrimino {
 Tetrimino {
 states: vec![vec![vec![0, 5, 5, 0],
 vec![5, 5, 0, 0],
 vec![0, 0, 0, 0],
 vec![0, 0, 0, 0]],
 vec![vec![0, 5, 0, 0],
 vec![0, 5, 5, 0],
 vec![0, 0, 5, 0],
 vec![0, 0, 0, 0]]],
 x: 4,
 y: 0,
 current_state: 0,
 }
 }
}

Events and Basic Game Mechanisms Chapter 3

[119]

struct TetriminoZ;

impl TetriminoGenerator for TetriminoZ {
 fn new() -> Tetrimino {
 Tetrimino {
 states: vec![vec![vec![6, 6, 0, 0],
 vec![0, 6, 6, 0],
 vec![0, 0, 0, 0],
 vec![0, 0, 0, 0]],
 vec![vec![0, 0, 6, 0],
 vec![0, 6, 6, 0],
 vec![0, 6, 0, 0],
 vec![0, 0, 0, 0]]],
 x: 4,
 y: 0,
 current_state: 0,
 }
 }
}

struct TetriminoT;

impl TetriminoGenerator for TetriminoT {
 fn new() -> Tetrimino {
 Tetrimino {
 states: vec![vec![vec![7, 7, 7, 0],
 vec![0, 7, 0, 0],
 vec![0, 0, 0, 0],
 vec![0, 0, 0, 0]],
 vec![vec![0, 7, 0, 0],
 vec![7, 7, 0, 0],
 vec![0, 7, 0, 0],
 vec![0, 0, 0, 0]],
 vec![vec![0, 7, 0, 0],
 vec![7, 7, 7, 0],
 vec![0, 0, 0, 0],
 vec![0, 0, 0, 0]],
 vec![vec![0, 7, 0, 0],
 vec![0, 7, 7, 0],
 vec![0, 7, 0, 0],
 vec![0, 0, 0, 0]]],
 x: 4,
 y: 0,
 current_state: 0,
 }
 }
}

Events and Basic Game Mechanisms Chapter 3

[120]

struct Tetrimino {
 states: States,
 x: isize,
 y: usize,
 current_state: u8,
}

impl Tetrimino {
 fn rotate(&mut self, game_map: &[Vec<u8>]) {
 let mut tmp_state = self.current_state + 1;
 if tmp_state as usize >= self.states.len() {
 tmp_state = 0;
 }
 let x_pos = [0, -1, 1, -2, 2, -3];
 for x in x_pos.iter() {
 if self.test_position(game_map, tmp_state as usize,
 self.x + x, self.y) == true {
 self.current_state = tmp_state;
 self.x += *x;
 break
 }
 }
 }

 fn test_position(&self, game_map: &[Vec<u8>],
 tmp_state: usize, x: isize, y: usize) -> bool
{
 for shift_y in 0..4 {
 for shift_x in 0..4 {
 let x = x + shift_x;
 if self.states[tmp_state][shift_y][shift_x as
usize] != 0 &&
 (y + shift_y >= game_map.len() ||
 x < 0 ||
 x as usize >= game_map[y + shift_y].len() ||
 game_map[y + shift_y][x as usize] != 0) {
 return false;
 }
 }
 }
 return true;
 }

 fn test_current_position(&self, game_map: &[Vec<u8>]) -> bool {
 self.test_position(game_map, self.current_state as usize,
self.x, self.y)
 }

Events and Basic Game Mechanisms Chapter 3

[121]

 fn change_position(&mut self, game_map: &[Vec<u8>], new_x:
isize, new_y: usize) -> bool {
 if self.test_position(game_map, self.current_state as
usize, new_x, new_y) == true {
 self.x = new_x as isize;
 self.y = new_y;
 true
 } else {
 false
 }
 }
}

struct Tetris {
 game_map: Vec<Vec<u8>>,
 current_level: u32,
 score: u32,
 nb_lines: u32,
 current_piece: Option<Tetrimino>,
}

impl Tetris {
 fn new() -> Tetris {
 let mut game_map = Vec::new();
 for _ in 0..16 {
 game_map.push(vec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
 }
 Tetris {
 game_map: game_map,
 current_level: 1,
 score: 0,
 nb_lines: 0,
 current_piece: None,
 }
 }

 fn update_score(&mut self, to_add: u32) {
 self.score += to_add;
 }

 fn increase_level(&mut self) {
 self.current_level += 1;
 }

 fn increase_line(&mut self) {
 self.nb_lines += 1;
 if self.nb_lines > LEVEL_LINES[self.current_level as usize
- 1] {

Events and Basic Game Mechanisms Chapter 3

[122]

 self.increase_level();
 }
 }

 fn check_lines(&mut self) {
 let mut y = 0;
 let mut score_add = 0;

 while y < self.game_map.len() {
 let mut complete = true;

 for x in &self.game_map[y] {
 if *x == 0 {
 complete = false;
 break
 }
 }
 if complete == true {
 score_add += self.current_level;
 self.game_map.remove(y);
 y -= 1;
 }
 y += 1;
 }
 if self.game_map.len() == 0 {
 // A "tetris"!
 score_add += 1000;
 }
 self.update_score(score_add);
 while self.game_map.len() < 16 {
 self.increase_line();
 self.game_map.insert(0, vec![0, 0, 0, 0, 0, 0, 0, 0, 0,
0]);
 }
 }

 fn create_new_tetrimino(&self) -> Tetrimino {
 static mut PREV: u8 = 7;
 let mut rand_nb = rand::random::<u8>() % 7;
 if unsafe { PREV } == rand_nb {
 rand_nb = rand::random::<u8>() % 7;
 }
 unsafe { PREV = rand_nb; }
 match rand_nb {
 0 => TetriminoI::new(),
 1 => TetriminoJ::new(),
 2 => TetriminoL::new(),
 3 => TetriminoO::new(),

Events and Basic Game Mechanisms Chapter 3

[123]

 4 => TetriminoS::new(),
 5 => TetriminoZ::new(),
 6 => TetriminoT::new(),
 _ => unreachable!(),
 }
 }

 fn make_permanent(&mut self) {
 let mut to_add = 0;
 if let Some(ref mut piece) = self.current_piece {
 let mut shift_y = 0;

 while shift_y < piece.states[piece.current_state as
usize].len() &&
 piece.y + shift_y < self.game_map.len() {
 let mut shift_x = 0;

 while shift_x < piece.states[piece.current_state as
usize]
 [shift_y].len() &&
 (piece.x + shift_x as isize) <
self.game_map[piece.y +
 shift_y].len() as isize {
 if piece.states[piece.current_state as
usize][shift_y][shift_x]
 != 0 {
 let x = piece.x + shift_x as isize;
 self.game_map[piece.y + shift_y][x as
usize] =
 piece.states[piece.current_state as
usize][shift_y]
 [shift_x];
 }
 shift_x += 1;
 }
 shift_y += 1;
 }
 to_add += self.current_level;
 }
 self.update_score(to_add);
 self.check_lines();
 self.current_piece = None;
 }
}

fn handle_events(tetris: &mut Tetris, quit: &mut bool, timer: &mut
SystemTime,
 event_pump: &mut sdl2::EventPump) -> bool {

Events and Basic Game Mechanisms Chapter 3

[124]

 let mut make_permanent = false;
 if let Some(ref mut piece) = tetris.current_piece {
 let mut tmp_x = piece.x;
 let mut tmp_y = piece.y;

 for event in event_pump.poll_iter() {
 match event {
 Event::Quit { .. } |
 Event::KeyDown { keycode: Some(Keycode::Escape), ..
} => {
 *quit = true;
 break
 }
 Event::KeyDown { keycode: Some(Keycode::Down), .. }
=> {
 *timer = SystemTime::now();
 tmp_y += 1;
 }
 Event::KeyDown { keycode: Some(Keycode::Right), ..
} => {
 tmp_x += 1;
 }
 Event::KeyDown { keycode: Some(Keycode::Left), .. }
=> {
 tmp_x -= 1;
 }
 Event::KeyDown { keycode: Some(Keycode::Up), .. }
=> {
 piece.rotate(&tetris.game_map);
 }
 Event::KeyDown { keycode: Some(Keycode::Space), ..
} => {
 let x = piece.x;
 let mut y = piece.y;
 while piece.change_position(&tetris.game_map,
x, y + 1) == true
 {
 y += 1;
 }
 make_permanent = true;
 }
 _ => {}
 }
 }
 if !make_permanent {
 if piece.change_position(&tetris.game_map, tmp_x,
tmp_y) == false &&
 tmp_y != piece.y {

Events and Basic Game Mechanisms Chapter 3

[125]

 make_permanent = true;
 }
 }
 }
 if make_permanent {
 tetris.make_permanent();
 *timer = SystemTime::now();
 }
 make_permanent
}

fn write_into_file(content: &str, file_name: &str) ->
io::Result<()> {
 let mut f = File::create(file_name)?;
 f.write_all(content.as_bytes())
}

fn read_from_file(file_name: &str) -> io::Result<String> {
 let mut f = File::open(file_name)?;
 let mut content = String::new();
 f.read_to_string(&mut content)?;
 Ok(content)
}

fn slice_to_string(slice: &[u32]) -> String {
 slice.iter().map(|highscore|
highscore.to_string()).collect::<Vec<String>>().join(" ")
}

fn save_highscores_and_lines(highscores: &[u32], number_of_lines:
&[u32]) -> bool {
 let s_highscores = slice_to_string(highscores);
 let s_number_of_lines = slice_to_string(number_of_lines);
 write_into_file(&format!("{}\n{}\n", s_highscores,
s_number_of_lines), HIGHSCORE_FILE).is_ok()
}

fn line_to_slice(line: &str) -> Vec<u32> {
 line.split(" ").filter_map(|nb|
nb.parse::<u32>().ok()).collect()
}

fn load_highscores_and_lines() -> Option<(Vec<u32>, Vec<u32>)> {
 if let Ok(content) = read_from_file(HIGHSCORE_FILE) {
 let mut lines = content.splitn(2, "\n").map(|line|
line_to_slice(line)).collect::<Vec<_>>();
 if lines.len() == 2 {
 let (lines_sent, highscores) = (lines.pop().unwrap(),

Events and Basic Game Mechanisms Chapter 3

[126]

lines.pop().unwrap());
 Some((highscores, lines_sent))
 } else {
 None
 }
 } else {
 None
 }
}

fn update_vec(v: &mut Vec<u32>, value: u32) -> bool {
 if v.len() < NB_HIGHSCORES {
 v.push(value);
 true
 } else {
 for entry in v.iter_mut() {
 if value > *entry {
 *entry = value;
 return true;
 }
 }
 false
 }
}

fn print_game_information(tetris: &Tetris) {
 let mut new_highest_highscore = true;
 let mut new_highest_lines_sent = true;
 if let Some((mut highscores, mut lines_sent)) =
load_highscores_and_lines() {
 new_highest_highscore = update_vec(&mut highscores,
tetris.score);
 new_highest_lines_sent = update_vec(&mut lines_sent,
tetris.nb_lines);
 if new_highest_highscore || new_highest_lines_sent {
 save_highscores_and_lines(&highscores, &lines_sent);
 }
 } else {
 save_highscores_and_lines(&[tetris.score],
&[tetris.nb_lines]);
 }
 println!("Game over...");
 println!("Score: {}{}",
 tetris.score,
 if new_highest_highscore { " [NEW HIGHSCORE]"} else {
"" });
 println!("Number of lines: {}{}",
 tetris.nb_lines,

Events and Basic Game Mechanisms Chapter 3

[127]

 if new_highest_lines_sent { " [NEW HIGHSCORE]"} else {
"" });
 println!("Current level: {}", tetris.current_level);
}

fn is_time_over(tetris: &Tetris, timer: &SystemTime) -> bool {
 match timer.elapsed() {
 Ok(elapsed) => {
 let millis = elapsed.as_secs() as u32 * 1000 +
elapsed.subsec_nanos() /
 1_000_000;
 millis > LEVEL_TIMES[tetris.current_level as usize - 1]
 }
 Err(_) => false,
 }
}

fn main() {
 let sdl_context = sdl2::init().expect("SDL initialization
failed");
 let mut tetris = Tetris::new();
 let mut timer = SystemTime::now();

 let mut event_pump = sdl_context.event_pump().expect("Failed to
get SDL event
 pump");

 let grid_x = (width - TETRIS_HEIGHT as u32 * 10) as i32 / 2;
 let grid_y = (height - TETRIS_HEIGHT as u32 * 16) as i32 / 2;

 loop {
 if is_time_over(&tetris, &timer) {
 let mut make_permanent = false;
 if let Some(ref mut piece) = tetris.current_piece {
 let x = piece.x;
 let y = piece.y + 1;
 make_permanent =
!piece.change_position(&tetris.game_map, x, y);
 }
 if make_permanent {
 tetris.make_permanent();
 }
 timer = SystemTime::now();
 }

 // We need to draw the tetris "grid" in here.

 if tetris.current_piece.is_none() {

Events and Basic Game Mechanisms Chapter 3

[128]

 let current_piece = tetris.create_new_tetrimino();
 if
!current_piece.test_current_position(&tetris.game_map) {
 print_game_information(&tetris);
 break
 }
 tetris.current_piece = Some(current_piece);
 }
 let mut quit = false;
 if !handle_events(&mut tetris, &mut quit, &mut timer, &mut
event_pump) {
 if let Some(ref mut piece) = tetris.current_piece {
 // We need to draw our current tetrimino in here.
 }
 }
 if quit {
 print_game_information(&tetris);
 break
 }

 // We need to draw the game map in here.

 sleep(Duration::new(0, 1_000_000_000u32 / 60));
 }
}

Summary
Phew! That was quite the chapter! But now, all the game's mechanisms are here so adding
the last remaining parts (such as the drawing) will be a piece of cake.

Once again, be sure to understand this chapter before starting to read the next one.

4
Adding All Game Mechanisms

In the previous chapters, Chapter 1, Basics of Rust, Chapter 2, Starting with SDL, and
Chapter 3, Events and Basic Game Mechanisms, we wrote all the mechanisms that we needed.
The only missing parts are the UI rendering and the font management. In short, the easy
parts So in this chapter, we'll add the drawing of the game and some fonts handling as well.

Let's go!

Getting started with game mechanisms
Let's start with the UI rendering first and then add the font management in order to display
the game information in real time.

Rendering UI
With the current code base, very few changes are required in order to be able to have a fully
working Tetris.

Adding All Game Mechanisms Chapter 4

[130]

Rendering initialization
For now, the main function is very small. First, let's add the following lines at the top of the
function:

 let sdl_context = sdl2::init().expect("SDL initialization
 failed");
 let video_subsystem = sdl_context.video().expect("Couldn't get
 SDL video subsystem");
 let width = 600;
 let height = 800;

No need for explanations, we've already explained everything in the previous chapters, so
let's continue.

Just after the following lines:

 let sdl_context = sdl2::init().expect("SDL initialization
 failed");
 let mut tetris = Tetris::new();
 let mut timer = SystemTime::now();

 let mut event_pump = sdl_context.event_pump().expect("Failed to
 get SDL event pump");

 let grid_x = (width - TETRIS_HEIGHT as u32 * 10) as i32 / 2;
 let grid_y = (height - TETRIS_HEIGHT as u32 * 16) as i32 / 2;

Let's add the following ones:

 let window = video_subsystem.window("Tetris", width, height)
 .position_centered() // to put it in the middle of the screen
 .build() // to create the window
 .expect("Failed to create window");

 let mut canvas = window.into_canvas()
 .target_texture()
 .present_vsync() // To enable v-sync.
 .build()
 .expect("Couldn't get window's canvas");

 let texture_creator: TextureCreator<_> = canvas.texture_creator();

 let grid = create_texture_rect(&mut canvas,
 &texture_creator,
 0, 0, 0,
 TETRIS_HEIGHT as u32 * 10,

Adding All Game Mechanisms Chapter 4

[131]

 TETRIS_HEIGHT as u32 * 16).expect("Failed to create
 a texture");

 let border = create_texture_rect(&mut canvas,
 &texture_creator,
 255, 255, 255,
 TETRIS_HEIGHT as u32 * 10 + 20,
 TETRIS_HEIGHT as u32 * 16 + 20).expect("Failed to create
 a texture");

 macro_rules! texture {
 ($r:expr, $g:expr, $b:expr) => (
 create_texture_rect(&mut canvas,
 &texture_creator,
 $r, $g, $b,
 TETRIS_HEIGHT as u32,
 TETRIS_HEIGHT as u32).unwrap()
)
 }

 let textures = [texture!(255, 69, 69), texture!(255, 220, 69),
 texture!(237, 150, 37),texture!(171, 99, 237), texture!(77, 149,
 239), texture!(39, 218, 225), texture!(45, 216, 47)];

There's even a macro in the middle, so yes, a few explanations are required!

 let window = video_subsystem.window("Tetris", width, height)
 .position_centered()
 .build()
 .expect("Failed to create window");

 let mut canvas = window.into_canvas()
 .target_texture()
 .present_vsync()
 .build()
 .expect("Couldn't get window's canvas");

 let texture_creator: TextureCreator<_> = canvas.texture_creator();

We've already seen all this, so we'll just go very quickly through each:

We create the window.1.
We initialize the area where we'll draw.2.
We initialize the texture engine.3.

Adding All Game Mechanisms Chapter 4

[132]

The two next calls are more interesting and are the start of the actual UI rendering:

 let grid = create_texture_rect(&mut canvas,
 &texture_creator,
 0, 0, 0,
 TETRIS_HEIGHT as u32 * 10,
 TETRIS_HEIGHT as u32 * 16).expect("Failed to create a texture");

 let border = create_texture_rect(&mut canvas,
 &texture_creator,
 255, 255, 255,
 TETRIS_HEIGHT as u32 * 10 + 20,
 TETRIS_HEIGHT as u32 * 16 + 20).expect("Failed to create a
texture");

They both call a function defined in Chapter 2, Starting with SDL. grid is where we'll draw
the tetriminoes and border to represent the borders of the game area. The first one is black,
whereas the other one is white. The following is a screenshot of what they'll look like:

Figure 4.1

Adding All Game Mechanisms Chapter 4

[133]

So now let's write down the code to load more easily:

 macro_rules! texture {
 ($r:expr, $g:expr, $b:expr) => (
 create_texture_rect(&mut canvas,
 &texture_creator,
 $r, $g, $b,
 TETRIS_HEIGHT as u32,
 TETRIS_HEIGHT as u32).unwrap()
)
 }

We already introduced macros in Chapter 1, Basics of Rust, so we will assume you'll
understand pretty easily what this one is doing. (It calls the create_texture_rect
function with $r, $g, and $b being the color we want the texture to be.)

 let textures = [texture!(255, 69, 69), texture!(255, 220, 69),
 texture!(237, 150, 37), texture!(171, 99, 237), texture!(77, 149,
 239), texture!(39, 218, 225), texture!(45, 216, 47)];

In here, we create the textures for our tetriminoes blocks. So seven textures for seven types
of tetrimino blocks.

We initialized everything we needed for the rendering. So now, let's render!

Rendering
Still in the main function, but this time we're going into the main loop (no wordplay!). Just
after the is_time_over if condition, let's add:

 canvas.set_draw_color(Color::RGB(255, 0, 0));
 canvas.clear();
 canvas.copy(&border,
 None,
 Rect::new((width - TETRIS_HEIGHT as u32 * 10) as i32 / 2 - 10,
 (height - TETRIS_HEIGHT as u32 * 16) as i32 / 2 - 10,
 TETRIS_HEIGHT as u32 * 10 + 20, TETRIS_HEIGHT as u32 * 16 + 20))
 .expect("Couldn't copy texture into window");
 canvas.copy(&grid,
 None,
 Rect::new((width - TETRIS_HEIGHT as u32 * 10) as i32 / 2,
 (height - TETRIS_HEIGHT as u32 * 16) as i32 / 2,
 TETRIS_HEIGHT as u32 * 10, TETRIS_HEIGHT as u32 * 16))
 .expect("Couldn't copy texture into window");

Adding All Game Mechanisms Chapter 4

[134]

If we want to change the background depending on the player's actual level, we can just
change the first line. No sweat.

About the following formulas:

 Rect::new((width - TETRIS_HEIGHT as u32 * 10) as i32 / 2 - 10,
 (height - TETRIS_HEIGHT as u32 * 16) as i32 / 2 - 10,
 TETRIS_HEIGHT as u32 * 10 + 20, TETRIS_HEIGHT as u32 * 16 + 20)

I think a small explanation might come in handy here. As you certainly remember,
Rect::new takes the four following arguments:

x position
y position
width
height

For the first two, we center our game map. For example, for the x position, we need to first
compute how much width it'll take (so a width of 10 tetriminoes):

 TETRIS_HEIGHT as u32 * 10

Then we subtract this from the total width:

 width - TETRIS_HEIGHT as u32 * 10

What remains is what isn't the game map. So if we use it as x position, the game map will be
fully on the left. Not pretty. Luckily, centering is quite easy, we just have to divide this
result by 2, which is shown as follows:

 (width - TETRIS_HEIGHT as u32 * 10) as i32 / 2

And here we go! Now, about the subtraction of 10; it's because of the borders. It has a width
of 10, so we need to subtract it as well to be really centered:

 (width - TETRIS_HEIGHT as u32 * 10) as i32 / 2 - 10

Not very complicated, but it can be hard to read the first time. The same goes for the height,
so we won't make the same explanations twice. Time to speak about the width and height
computation! I think that you already got it from the previous explanations, but just in case:

 TETRIS_HEIGHT as u32 * 10

Adding All Game Mechanisms Chapter 4

[135]

A Tetris has a width of ten blocks. Therefore, our game map must have the same as well.

 TETRIS_HEIGHT as u32 * 10 + 20

We've now added the width of the total borders as well (since there is a border on each side
and a border has a width of 10 pixels, 10 * 2 = 20).

The same goes for the height.

Once you get how these formulas work, you'll get how all the others are working as well.

Since we've drawn the game environment, it's time to draw the tetriminoes. First, let's draw
the current one! In order to do this, we need to update the for loop inside the
handle_events condition:

 if !handle_events(&mut tetris, &mut quit, &mut timer, &mut
 event_pump) {
 if let Some(ref mut piece) = tetris.current_piece {
 for (line_nb, line) in piece.states[piece.current_state
 as usize].iter().enumerate() {
 for (case_nb, case) in line.iter().enumerate() {
 if *case == 0 {
 continue
 }
 // The new part is here:
 canvas.copy(&textures[*case as usize - 1],
 None,
 Rect::new(grid_x + (piece.x + case_nb as isize) as
 i32 * TETRIS_HEIGHT as i32, grid_y + (piece.y +
 line_nb) as i32 * TETRIS_HEIGHT as i32, TETRIS_HEIGHT
 as u32, TETRIS_HEIGHT as u32))
 .expect("Couldn't copy texture into window");
 }
 }
 }
 }

For each block of the current tetrimino, we paste a texture corresponding to its ID. From the
explanations of the preceding formulas, we can suppose it's not necessary to go back on
those new ones.

Adding All Game Mechanisms Chapter 4

[136]

With this, only the last part is remaining; drawing all the other tetriminoes blocks:

 for (line_nb, line) in tetris.game_map.iter().enumerate() {
 for (case_nb, case) in line.iter().enumerate() {
 if *case == 0 {
 continue
 }
 canvas.copy(&textures[*case as usize - 1],
 None, Rect::new(grid_x + case_nb as i32 * TETRIS_HEIGHT
 as i32, grid_y + line_nb as i32 * TETRIS_HEIGHT as i32,
 TETRIS_HEIGHT as u32, TETRIS_HEIGHT as u32))
 .expect("Couldn't copy texture into window");
 }
 }
 canvas.present();

In this code, we iterate over a block of each line of the game map and paste the
corresponding texture, if the game map's occupied.

Once done, we apply all the changes to the display, with:

 canvas.present();

With this, our Tetris is now complete! You can now play by launching the command:

cargo run --release

The --release is for starting the program in non-debug mode.

The full code of the main function is now the following:

 fn main() {
 let sdl_context = sdl2::init().expect("SDL initialization failed");
 let video_subsystem = sdl_context.video().expect("Couldn't get
 SDL video subsystem");
 let width = 600;
 let height = 800;
 let mut timer = SystemTime::now();
 let mut event_pump = sdl_context.event_pump().expect("Failed to get
 SDL event pump");

 let grid_x = (width - TETRIS_HEIGHT as u32 * 10) as i32 / 2;
 let grid_y = (height - TETRIS_HEIGHT as u32 * 16) as i32 / 2;
 let mut tetris = Tetris::new();

 let window = video_subsystem.window("Tetris", width, height)
 .position_centered()
 .build()

Adding All Game Mechanisms Chapter 4

[137]

 .expect("Failed to create window");

 let mut canvas = window.into_canvas()
 .target_texture()
 .present_vsync()
 .build()
 .expect("Couldn't get window's canvas");

 let texture_creator: TextureCreator<_> = canvas.texture_creator();

 let grid = create_texture_rect(&mut canvas,
 &texture_creator,
 0, 0, 0,
 TETRIS_HEIGHT as u32 * 10,
 TETRIS_HEIGHT as u32 * 16).expect("Failed to create
 a texture");

 let border = create_texture_rect(&mut canvas,
 &texture_creator,
 255, 255, 255,
 TETRIS_HEIGHT as u32 * 10 + 20,
 TETRIS_HEIGHT as u32 * 16 + 20).expect("Failed to create
 a texture");

 macro_rules! texture {
 ($r:expr, $g:expr, $b:expr) => (
 create_texture_rect(&mut canvas,
 &texture_creator,
 $r, $g, $b,
 TETRIS_HEIGHT as u32,
 TETRIS_HEIGHT as u32).unwrap()
)
 }

 let textures = [texture!(255, 69, 69), texture!(255, 220, 69),
 texture!(237, 150, 37), texture!(171, 99, 237),
 texture!(77, 149, 239), texture!(39, 218, 225),
 texture!(45, 216, 47)];

 loop {
 if is_time_over(&tetris, &timer) {
 let mut make_permanent = false;
 if let Some(ref mut piece) = tetris.current_piece {
 let x = piece.x;
 let y = piece.y + 1;
 make_permanent = !piece.change_position(&tetris.game_map,
 x, y);
 }

Adding All Game Mechanisms Chapter 4

[138]

 if make_permanent {
 tetris.make_permanent();
 }
 timer = SystemTime::now();
 }

 canvas.set_draw_color(Color::RGB(255, 0, 0));
 canvas.clear();

 canvas.copy(&border,
 None,
 Rect::new((width - TETRIS_HEIGHT as u32 * 10) as i32 / 2 - 10,
 (height - TETRIS_HEIGHT as u32 * 16) as i32 / 2 - 10,
 TETRIS_HEIGHT as u32 * 10 + 20, TETRIS_HEIGHT as u32 * 16 + 20))
 .expect("Couldn't copy texture into window");
 canvas.copy(&grid,
 None,
 Rect::new((width - TETRIS_HEIGHT as u32 * 10) as i32 / 2,
 (height - TETRIS_HEIGHT as u32 * 16) as i32 / 2,
 TETRIS_HEIGHT as u32 * 10, TETRIS_HEIGHT as u32 * 16))
 .expect("Couldn't copy texture into window");

 if tetris.current_piece.is_none() {
 let current_piece = tetris.create_new_tetrimino();
 if !current_piece.test_current_position(&tetris.game_map) {
 print_game_information(&tetris);
 break
 }
 tetris.current_piece = Some(current_piece);
 }
 let mut quit = false;
 if !handle_events(&mut tetris, &mut quit, &mut timer,
 &mut event_pump) {
 if let Some(ref mut piece) = tetris.current_piece {
 for (line_nb, line) in piece.states[piece.current_state
 as usize].iter().enumerate() {
 for (case_nb, case) in line.iter().enumerate() {
 if *case == 0 {
 continue
 }
 canvas.copy(&textures[*case as usize - 1],
 None,
 Rect::new(grid_x + (piece.x + case_nb as isize)
 as i32 * TETRIS_HEIGHT as i32,
 grid_y + (piece.y + line_nb) as i32 * TETRIS_HEIGHT
 as i32,
 TETRIS_HEIGHT as u32, TETRIS_HEIGHT as u32))

Adding All Game Mechanisms Chapter 4

[139]

 .expect("Couldn't copy texture into window");
 }
 }
 }
 }
 if quit {
 print_game_information(&tetris);
 break
 }

 for (line_nb, line) in tetris.game_map.iter().enumerate() {
 for (case_nb, case) in line.iter().enumerate() {
 if *case == 0 {
 continue
 }
 canvas.copy(&textures[*case as usize - 1],
 None,
 Rect::new(grid_x + case_nb as i32 * TETRIS_HEIGHT as i32,
 grid_y + line_nb as i32 * TETRIS_HEIGHT as i32,
 TETRIS_HEIGHT as u32, TETRIS_HEIGHT as u32))
 .expect("Couldn't copy texture into window");
 }
 }
 canvas.present();

 sleep(Duration::new(0, 1_000_000_000u32 / 60));
 }
 }

Adding All Game Mechanisms Chapter 4

[140]

And here is an example of the current output of this code:

Figure 4.2

It's now working, but what about displaying the game information, such as the current
score, level, or the number of lines sent?

Playing with fonts
To display these pieces of information, we'll need to use fonts. No additional external
dependencies are required, however, we'll need to use a feature, so we need to update our
Cargo.toml:

 [features]
 default = ["sdl2/ttf"]

Adding All Game Mechanisms Chapter 4

[141]

By default, the sdl2 crate doesn't provide the ttf module, you need to enable it by adding
the ttf feature to the compilation process. That's what we did by saying to cargo: by
default, I want the ttf feature of the sdl2 crate enabled. You can try with and without it to see
the difference, after adding this new context initialization:

 let ttf_context = sdl2::ttf::init().expect("SDL TTF initialization
 failed");

If you get a missing library compilation error, it means you didn't install
the corresponding library. To fix this issue, you need to install it through
your favorite package manager.

Install on OS X
Run the following command:

brew install sdl2_ttf

Install on Linux
Run the following command (depending on your package manager, of course):

sudo apt-get install libsdl2-ttf-dev

Other system/package manager
You can download the library at https:/ /www. libsdl. org/ projects/ SDL_ ttf/.

Follow the instructions and install it on your system, then just run the projects. If no errors
appear, then it means you installed it correctly.

Time to start the real thing!

https://www.libsdl.org/projects/SDL_ttf/
https://www.libsdl.org/projects/SDL_ttf/
https://www.libsdl.org/projects/SDL_ttf/
https://www.libsdl.org/projects/SDL_ttf/
https://www.libsdl.org/projects/SDL_ttf/
https://www.libsdl.org/projects/SDL_ttf/
https://www.libsdl.org/projects/SDL_ttf/
https://www.libsdl.org/projects/SDL_ttf/
https://www.libsdl.org/projects/SDL_ttf/
https://www.libsdl.org/projects/SDL_ttf/
https://www.libsdl.org/projects/SDL_ttf/
https://www.libsdl.org/projects/SDL_ttf/
https://www.libsdl.org/projects/SDL_ttf/
https://www.libsdl.org/projects/SDL_ttf/
https://www.libsdl.org/projects/SDL_ttf/
https://www.libsdl.org/projects/SDL_ttf/
https://www.libsdl.org/projects/SDL_ttf/
https://www.libsdl.org/projects/SDL_ttf/

Adding All Game Mechanisms Chapter 4

[142]

Loading font
Before going any further, we actually need a font. I chose Lucida console, but pick the one
you prefer, it doesn't really matter. Once downloaded, put it in the assets folder as well.
Now, time to actually load the font:

 let font = ttf_context.load_font("assets/lucida.ttf", 128).expect("
 Couldn't load the font");

Note that if you want to apply a style to your font (such as bold, italic, strikethrough, or
underline), that's the object on which you need to apply it. Here is an example:

 font.set_style(sdl2::ttf::STYLE_BOLD);

Now, two steps are remaining to be able to actually display text:

Render the text.1.
Create a texture from it.2.

Let's write a function in order to do so:

 fn create_texture_from_text<'a>(texture_creator: &'a
 TextureCreator<WindowContext>,
 font: &sdl2::ttf::Font,
 text: &str,
 r: u8, g: u8, b: u8,
) -> Option<Texture<'a>> {
 if let Ok(surface) = font.render(text)
 .blended(Color::RGB(r, g, b)) {
 texture_creator.create_texture_from_surface(&surface).ok()
 } else {
 None
 }
 }

Looks a lot like create_texture_rect, right?

Why not test it? Let's call the function and paste the texture onto the screen to see:

 let rendered_text = create_texture_from_text(&texture_creator,
 &font, "test", 255, 255, 255).expect("Cannot render text");
 canvas.copy(&rendered_text, None, Some(Rect::new(width as i32 -
 40, 0, 40, 30)))
 .expect("Couldn't copy text");

Adding All Game Mechanisms Chapter 4

[143]

And it looks like this:

Figure 4.3

For the texture rectangle, I use the following rule: one character is a block of 10 x 30 pixels.
So in this example, since test has 4 letters, we need a block of 40 x 30 pixels. Let's write a
function to make this easier:

 fn get_rect_from_text(text: &str, x: i32, y: i32) -> Option<Rect> {
 Some(Rect::new(x, y, text.len() as u32 * 20, 30))
 }

Adding All Game Mechanisms Chapter 4

[144]

Ok, so now is the time to render the game information and write a new function to do it:

 fn display_game_information<'a>(tetris: &Tetris,
 canvas: &mut Canvas<Window>,
 texture_creator: &'a TextureCreator<WindowContext>,
 font: &sdl2::ttf::Font,
 start_x_point: i32) {
 let score_text = format!("Score: {}", tetris.score);
 let lines_sent_text = format!("Lines sent: {}", tetris.nb_lines);
 let level_text = format!("Level: {}", tetris.current_level);

 let score = create_texture_from_text(&texture_creator, &font,
 &score_text, 255, 255, 255)
 .expect("Cannot render text");
 let lines_sent = create_texture_from_text(&texture_creator, &font,
 &lines_sent_text, 255, 255, 255)
 .expect("Cannot render text");
 let level = create_texture_from_text(&texture_creator, &font,
 &level_text, 255, 255, 255)
 .expect("Cannot render text");
 canvas.copy(&score, None, get_rect_from_text(&score_text,
 start_x_point, 90))
 .expect("Couldn't copy text");
 canvas.copy(&lines_sent, None, get_rect_from_text(&score_text,
 start_x_point, 125))
 .expect("Couldn't copy text");
 canvas.copy(&level, None, get_rect_from_text(&score_text,
 start_x_point, 160))
 .expect("Couldn't copy text");
 }

And then we call it, as follows:

 display_game_information(&tetris, &mut canvas, &texture_creator, &font,
 width as i32 - grid_x - 10);

Adding All Game Mechanisms Chapter 4

[145]

And now it looks like this:

Figure 4.4

Wonderful, we have the game information in real time! Isn't it awesome? What? It's ugly
and overlaps the game? Let's move the game then! Instead of centering it, we'll give it a
fixed x position (which will make our formula way simpler).

First, let's update our grid_x variable:

 let grid_x = 20;

Then, let's update so canvas.copy calls:

 canvas.copy(&border,
 None,
 Rect::new(10,
 (height - TETRIS_HEIGHT as u32 * 16) as i32 / 2 - 10,
 TETRIS_HEIGHT as u32 * 10 + 20, TETRIS_HEIGHT as u32

Adding All Game Mechanisms Chapter 4

[146]

* 16 + 20))
 .expect("Couldn't copy texture into window");
 canvas.copy(&grid,
 None,
 Rect::new(20,
 (height - TETRIS_HEIGHT as u32 * 16) as i32 / 2,
 TETRIS_HEIGHT as u32 * 10, TETRIS_HEIGHT as u32 * 16))
 .expect("Couldn't copy texture into window");

And that's it. You now have a nice Tetris playing:

Figure 4.5

Adding All Game Mechanisms Chapter 4

[147]

We could improve the display a bit by adding a border around the text, or even display a
preview of the next piece, or even add a ghost, but I think that, from this point, you can add
them easily.

That's it for this Tetris, have fun while playing with the sdl2!

Summary
We now have a fully working Tetris. In the last three chapters, we saw how to use the sdl2
crate, how to add dependencies to Rust projects, how to handle I/O (with files), and how
modules were working.

Even if we stop here for this Tetris project, you can continue this project (and it'd be even a
good idea to improve yourself in sdl2!). A few ideas of missing things you could add:

Change the background depending on the current level
Asking the players, once the game is over, if they want to start a new game
Adding the next tetrimino preview
Adding a ghost (to see where the tetrimino will fall)
And so much more. Just have fun while adding new features!

As you can see, a lot of things are possible. Have fun!

5
Creating a Music Player

In previous chapters you created an awesome game, so now let's move on to another
exciting topic—desktop applications. We'll use the Rust bindings of the GTK+ library in
order to code an MP3 music player. We'll have the opportunity to learn about threads to
code the music player itself in the next chapter. But, in this chapter, we'll focus on the
graphical interface, how to manage the layout of the interface, and how to manage user
events.

We will cover the following topics in this chapter:

Windows
Widgets
Events
Closures
Event loops
Containers

Installing the prerequisite
Since GTK+ is a C library, we'll need to install it first. The Rust bindings use GTK+ version
3, so make sure you do not install the old version 2.

Creating a Music Player Chapter 5

[149]

Installing GTK+ on Linux
On Linux, GTK+ can be installed through the package manager of your distribution.

On Ubuntu (or other Debian derivatives):

sudo apt-get install libgtk-3-dev

Installing GTK+ on Mac
On OSX, you just need to run the following command:

brew install gtk+3 gnome-icon-theme

Installing GTK+ on Windows
On Windows, you'll need to first download and install MSYS2, which provides a Unix-like
environment on Windows. After it is installed, issue the following command in a MSYS2
shell:

pacman -S mingw-w64-x86_64-gtk3

Creating your first window
Now we're ready to start using GTK+ from Rust. Let's create a new project for our music
player:

cargo new rusic --bin

Add the dependency on the gio and gtk crates in your Cargo.toml file:

gio = "^0.3.0"
gtk = "^0.3.0"

Creating a Music Player Chapter 5

[150]

Replace the content of the src/main.rs file with this:

extern crate gio;
extern crate gtk;

use std::env;

use gio::{ApplicationExt, ApplicationExtManual, ApplicationFlags};
use gtk::{
 Application,
 ApplicationWindow,
 WidgetExt,
 GtkWindowExt,
};

fn main() {
 let application = Application::new("com.github.rust-by-
 example", ApplicationFlags::empty())
 .expect("Application initialization failed");
 application.connect_startup(|application| {
 let window = ApplicationWindow::new(&application);
 window.set_title("Rusic");
 window.show();
 });
 application.connect_activate(|_| {});
 application.run(&env::args().collect::<Vec<_>>());
}

Then, run the application with cargo run. You should see a small and empty window:

Figure 5.1

Creating a Music Player Chapter 5

[151]

If you saw this window, it means you have installed GTK+ correctly.

Let's explain this code in smaller chunks:

extern crate gio;
extern crate gtk;

As usual, when using an external crate, we need to declare it.

Then, we import the types and modules we'll use from the standard library, gio, and gtk:

use std::env;

use gio::{ApplicationExt, ApplicationExtManual, ApplicationFlags};
use gtk::{
 Application,
 ApplicationWindow,
 WidgetExt,
 GtkWindowExt,
};

After that, we start the main function:

fn main() {
 let application = Application::new("com.github.rust-by-
 example",
 ApplicationFlags::empty())
 .expect("Application initialization failed");

The first line of this function creates a new gio application. We provide an application ID
that can be used to make sure the application is only run once. An Application makes it
easier to manage applications and its windows.

Next, we create the window, set its title, and show it to the screen:

 application.connect_startup(|application| {
 let window = ApplicationWindow::new(&application);
 window.set_title("Rusic");
 window.show();
 });
 application.connect_activate(|_| {});

After creating a new window, we set its title and show it.

Creating a Music Player Chapter 5

[152]

Here, we're actually handling an event; the startup is a signal that is emitted when the
application is registered- so, when it is ready to be used. As you can see in the
documentation on GTK+ (https:/ / developer. gnome. org/ gio/ stable/ GApplication.
html#GApplication- startup), signals are represented by strings. This signal is actually
called startup, but the Rust method we used to connect this signal is connect_startup.
So, we need to add connect_ before the signal name and change the dashes to underscores.

Closure
The argument of this method is somewhat special:

|application| {
 let window = ApplicationWindow::new(&application);
 window.set_title("Rusic");
 window.show();
}

This is what we call a closure. A closure is a concise way of declaring a function that does
not have a name and can capture the environment. Capturing the environment means that
it can access the variables from outside the closure, something which is not possible to do
with normal functions. The methods to connect a signal will run the function (in this case, a
closure) passed as an argument. Here, create the window.

We could have decided to create a normal function, as the following code does:

fn startup_handler(application: &Application) {
 let window = ApplicationWindow::new(&application);
 window.set_title("Rusic");
 window.show();
}

// In the main function:

 application.connect_startup(startup_handler);

But that is less convenient than using a closure. Besides the fact that you might need to
import other crates and types, you need to specify the types of the parameters and the
return type. Indeed, type inference is available for closures but not for functions. Also, the
function must be declared elsewhere, so it can become less readable than using a closure.

The rest of the main function is:

 application.run(&env::args().collect::<Vec<_>>());
}

https://developer.gnome.org/gio/stable/GApplication.html#GApplication-startup
https://developer.gnome.org/gio/stable/GApplication.html#GApplication-startup
https://developer.gnome.org/gio/stable/GApplication.html#GApplication-startup
https://developer.gnome.org/gio/stable/GApplication.html#GApplication-startup
https://developer.gnome.org/gio/stable/GApplication.html#GApplication-startup
https://developer.gnome.org/gio/stable/GApplication.html#GApplication-startup
https://developer.gnome.org/gio/stable/GApplication.html#GApplication-startup
https://developer.gnome.org/gio/stable/GApplication.html#GApplication-startup
https://developer.gnome.org/gio/stable/GApplication.html#GApplication-startup
https://developer.gnome.org/gio/stable/GApplication.html#GApplication-startup
https://developer.gnome.org/gio/stable/GApplication.html#GApplication-startup
https://developer.gnome.org/gio/stable/GApplication.html#GApplication-startup
https://developer.gnome.org/gio/stable/GApplication.html#GApplication-startup
https://developer.gnome.org/gio/stable/GApplication.html#GApplication-startup
https://developer.gnome.org/gio/stable/GApplication.html#GApplication-startup
https://developer.gnome.org/gio/stable/GApplication.html#GApplication-startup
https://developer.gnome.org/gio/stable/GApplication.html#GApplication-startup
https://developer.gnome.org/gio/stable/GApplication.html#GApplication-startup

Creating a Music Player Chapter 5

[153]

This starts the gtk event loop. This is an infinite loop that processes the user events like a
button click or a request to close a window. It also manages other things like timeouts and
asynchronous, IO-like network requests.

Some event handlers require you to return a value, which is the case for the signal
delete_event where we need to return Inhibit(false).

Preventing the default behavior of an event
The Inhibit type is only a wrapper over the bool type. It is used to indicate whether we
should stop propagating the event to the default handler or not. To see what this means,
let's add an event handler for the window:

window.connect_delete_event(|_, _| {
 Inhibit(true)
});

If you run it, you'll note that we cannot close the window anymore. That's because we
returned Inhibit(true) to indicate that we want to prevent the default behavior of the
delete_event signal, which is to close the window.

Now let's try a slight variant of the previous code:

window.connect_delete_event(|_, _| {
 Inhibit(false)
});

In this case, we do not prevent the default handler from being run, so the window will be
closed.

Creating a toolbar
We'll start our music player by adding a toolbar with the buttons needed for such software:

Open a file
Play
Pause
Stop
Previous/next song
Remove song from playlist

Creating a Music Player Chapter 5

[154]

That'll be a good start for our first non-empty window.

First of all, we'll need some additional import statements:

use gtk::{
 ContainerExt,
 SeparatorToolItem,
 Toolbar,
 ToolButton,
};

Then, we'll declare a constant because we'll use this value elsewhere:

const PLAY_STOCK: &str = "gtk-media-play";

We'll explain what this is very soon.

We'll now create a toolbar and add it to the window:

fn main() {
 // Same code to initialize gtk, create the window.
 application.connect_startup(|application| {
 // …

 let toolbar = Toolbar::new();
 window.add(&toolbar);

Note: Don't call window.show() yet, as we'll use another method ahead.

This code is pretty straightforward. The only thing to note is that the gtk-rs API requires a
reference to values in most cases; in this case, we send a reference to the toolbar as a
parameter to the add() method.

You'll see this add() method called literally everywhere. It allows you to add a widget to
another. A widget is a component (visual or not) of a user interface. It can be a button, a
menu, a separator, but it can also be an invisible component such as a box allowing you to
place the widgets horizontally. We'll talk about containers like gtk::Box and how to lay
out our widgets later in this chapter.

Let's add a button to this toolbar:

 let open_button = ToolButton::new_from_stock("gtk-open");
 toolbar.add(&open_button);

Creating a Music Player Chapter 5

[155]

This creates a toolbar button and adds it to the toolbar.

Stock item
Instead of using the usual new() constructor, we decided to use the new_from_stock()
one here. This takes a string as an argument. This string is an identifier for the item that
represents a built-in menu or toolbar item, such as Open or Save. These items have an icon
and a label that is translated according to the user locale. By using stock items, you can
quickly create a beautiful application that will look the same as other applications built with
GTK+.

Let's show this window containing the toolbar:

 window.show_all();
 });

This goes right at the end of the startup event handler. Here, we use show_all() instead of
only show() because we have more widgets to show. Instead of using show_all(), we
could call show() on every single widget, but this can become cumbersome; that's why
show_all() exists.

If you run this application, you'll see the following window with an open button:

Figure 5.2

Let's add the open buttons we'll need:

 toolbar.add(&SeparatorToolItem::new());

 let previous_button = ToolButton::new_from_stock("gtk-media-previous");
 toolbar.add(&previous_button);

 let play_button = ToolButton::new_from_stock(PLAY_STOCK);
 toolbar.add(&play_button);

 let stop_button = ToolButton::new_from_stock("gtk-media-stop");
 toolbar.add(&stop_button);

Creating a Music Player Chapter 5

[156]

 let next_button = ToolButton::new_from_stock("gtk-media-next");
 toolbar.add(&next_button);

 toolbar.add(&SeparatorToolItem::new());

 let remove_button = ToolButton::new_from_stock("gtk-remove");
 toolbar.add(&remove_button);

 toolbar.add(&SeparatorToolItem::new());

 let quit_button = ToolButton::new_from_stock("gtk-quit");
 toolbar.add(&quit_button);

This code should go right before the call to window.show_all(). SeparatorToolItem ,
which was added several times to separate the buttons logically so that buttons for similar
actions are grouped together.

Now we have an application that is starting to look like a music player, as follows:

Figure 5.3

Improving the organization of the application
The main function is starting to get bigger, so we'll refactor our code a little to make it easier
to update in the upcoming sections and chapters.

First, we'll create a new module called toolbar. As a reminder, here's how to do so:

Create a new file: src/toolbar.rs.1.
Add a statement, mod toolbar;, at the top of the file main.rs.2.

Creating a Music Player Chapter 5

[157]

This new module toolbar will start with the import statement and the const declaration:

use gtk::{
 ContainerExt,
 SeparatorToolItem,
 Toolbar,
 ToolButton,
};

const PLAY_STOCK: &str = "gtk-media-play";

We'll then create a new structure holding all the widgets that compose the toolbar:

pub struct MusicToolbar {
 open_button: ToolButton,
 next_button: ToolButton,
 play_button: ToolButton,
 previous_button: ToolButton,
 quit_button: ToolButton,
 remove_button: ToolButton,
 stop_button: ToolButton,
 toolbar: Toolbar,
}

We use the pub keyword here because we want to be able to use this type from other
modules.

Then, we'll create a constructor for this struct that will create all the buttons, like we did
earlier:

impl MusicToolbar {
 pub fn new() -> Self {
 let toolbar = Toolbar::new();

 let open_button = ToolButton::new_from_stock("gtk-open");
 toolbar.add(&open_button);

 // ...

 let quit_button = ToolButton::new_from_stock("gtk-quit");
 toolbar.add(&quit_button);

 MusicToolbar {
 open_button,
 next_button,
 play_button,
 previous_button,

Creating a Music Player Chapter 5

[158]

 quit_button,
 remove_button,
 stop_button,
 toolbar
 }
 }
}

The only difference with the previous code is that we now return a struct
MusicToolbar. We'll also add a method in this impl to be able to access the
gtk::Toolbar widget from the outside:

 pub fn toolbar(&self) -> &Toolbar {
 &self.toolbar
 }

That's all for now for this toolbar module. Let's go back to the main module. First, we
need to import our new MusicToolbar type:

use toolbar::MusicToolbar;

Next, we'll create a structure like we did for our toolbar:

struct App {
 toolbar: MusicToolbar,
 window: ApplicationWindow,
}

And we will also create a constructor for it:

impl App {
 fn new(application: Application) -> Self {
 let window = ApplicationWindow::new(&application);
 window.set_title("Rusic");

 let toolbar = MusicToolbar::new();
 window.add(toolbar.toolbar());

 window.show_all();

 let app = App {
 toolbar,
 window,
 };

 app.connect_events();

Creating a Music Player Chapter 5

[159]

 app
 }
}

Here, we created the window as we did before and then created our own MusicToolbar
structure. We add the wrapped toolbar widget by sending the result of the toolbar()
method (which returns the gtk widget) to the add() method.

After that, we used a little trick that enabled us to call a method on the struct yet to be
created; we first assign the struct to a variable, then call the method and return the
variable. This method is defined next, within the same impl block:

 fn connect_events(&self) {
 }

We'll fill in this method in the next chapter.

Adding tool button events
We'll continue by adding event handlers to some of the buttons.

First of all, we'll need new use statements:

use gtk::{
 ToolButtonExt,
 WidgetExt,
};

use App;

We import ToolButtonExt, which provides methods to be called on ToolButton and App
from the main module, because we'll add a new method to this type:

impl App {
 pub fn connect_toolbar_events(&self) {
 let window = self.window.clone();
 self.toolbar.quit_button.connect_clicked(move |_| {
 window.destroy();
 });
 }
}

Creating a Music Player Chapter 5

[160]

In Rust, it's perfectly valid to declare a method in a module different to where the type was
created. Here, we say that clicking the quit button will destroy the window, which will
effectively exit the application.

Let's add another event that will toggle the play button image with the pause image:

 let play_button = self.toolbar.play_button.clone();
 self.toolbar.play_button.connect_clicked(move |_| {
 if play_button.get_stock_id() == Some(PLAY_STOCK.to_string()) {
 play_button.set_stock_id(PAUSE_STOCK);
 } else {
 play_button.set_stock_id(PLAY_STOCK);
 }
 });

This code requires a new constant to be added next to PLAY_STOCK:

const PAUSE_STOCK: &str = "gtk-media-pause";

Let's first look at the body of the closure before looking at the peculiarities of this code.
Here, we use a condition to check whether the button is showing the play image—if it is, we
switch to the pause stock item. Otherwise, we switch back to the play icon.

But why do we need to clone the button and use this move keyword before the closure?
Let's try the normal way, that is, how you would do that in most programming languages:

self.toolbar.play_button.connect_clicked(|_| {
 if self.toolbar.play_button.get_stock_id() ==
Some(PLAY_STOCK.to_string()) {
 self.toolbar.play_button.set_stock_id(PAUSE_STOCK);
 } else {
 self.toolbar.play_button.set_stock_id(PLAY_STOCK);
 }
});

If we do that, we get the following compilation error:

error[E0477]: the type `[closure@src/toolbar.rs:79:50: 85:10 self:&&App]`
does not fulfill the required lifetime
 --> src/toolbar.rs:79:34
 |
79 | self.toolbar.play_button.connect_clicked(|_| {
 | ^^^^^^^^^^^^^^^
 |
 = note: type must satisfy the static lifetime

error[E0495]: cannot infer an appropriate lifetime for capture of `self` by

Creating a Music Player Chapter 5

[161]

closure due to conflicting requirements
 --> src/toolbar.rs:79:50
 |
79 | self.toolbar.play_button.connect_clicked(|_| {
 | __^
80 | | if self.toolbar.play_button.get_stock_id() ==
Some(PLAY_STOCK.to_string()) {
81 | | self.toolbar.play_button.set_stock_id(PAUSE_STOCK);
82 | | } else {
83 | | self.toolbar.play_button.set_stock_id(PLAY_STOCK);
84 | | }
85 | | });
 | |_________^

And it continues even further to explain why the lifetime cannot be inferred.

Let's look at the signature of the connect_clicked() method to understand what's going
on:

fn connect_clicked<F: Fn(&Self) + 'static>(&self, f: F) -> u64

The Fn(&Self) part means the function requires something that looks like a function that
takes a parameter that is a reference to Self (ToolButton in this case). The 'static part is
a lifetime annotation.

Lifetime
Lifetime is one of the Rust features that the compiler uses to ensure memory safety. The
lifetime specifies the minimum duration an object must live to be used safely. Let's try to do
something that is allowed in certain programming languages, but is actually an error to do
so:

fn get_element_inc(elements: &[i32], index: usize) -> &i32 {
 let element = elements[index] + 1;
 &element
}

Creating a Music Player Chapter 5

[162]

Here, we try to return a reference from a stack-allocated value. The problem is that this
value will be deallocated when the function returns and the caller will try to access this
deallocated value. In other programming languages, this code will compile fine and
produce (hopefully) a segmentation fault at runtime. But Rust is a safe programming
language and refuses to compile such code:

error[E0597]: `element` does not live long enough
 --> src/main.rs:3:6
 |
3 | &element
 | ^^^^^^^ does not live long enough
4 | }
 | - borrowed value only lives until here

The compile noticed that the value element will be deallocated at the end of the function;
that's what the sentence on the last line means. This is right, because the lifetime of element
starts from its declaration until the end of the scope where it is declared; here, the scope is
the function. Here's an illustration of the lifetime of element:

Figure 5.4

But how does the compiler know what the required lifetime is for the returned value? To
answer this question, let's add the lifetime annotations that were added by the compiler:

fn get_element_inc<'a>(elements: &'a [i32], index: usize) -> &'a
i32 {
 let element = elements[index] + 1;
 &element
}

As you can see, the syntax for lifetimes is the same as the one used for labels—'label.
When we want to specify the lifetimes, we need to declare the lifetime names between angle
brackets, in a similar way to how we declare generic types. In this case, we specified that the
lifetime of the returned value must be the same as the one from the parameter elements.

Creating a Music Player Chapter 5

[163]

Let's annotate the code again with lifetimes:

Figure 5.5

Here, we clearly see that the lifetime of the returned value is smaller than the required one;
that's why the compiler rejected our code.

In this case, there are two ways to fix this code (without changing the signature). One way
to get a value that satisfies the lifetime 'a is to get a reference to a value of the same
lifetime; the parameter elements also has the lifetime 'a , so we can write the following
code:

fn get_element<'a>(elements: &'a [i32], index: usize) -> &'a i32 {
 &elements[index]
}

Another way is to return a reference to a value of lifetime 'static. This special lifetime is
equal to the duration of the program, that is, the value must live until the end of the
program. One way to get such a lifetime is to use a literal:

fn get_element<'a>(elements: &'a [i32], index: usize) -> &'a i32 {
 &42
}

The lifetime 'static satisfies the constraint 'a because 'static lives longer than the
latter.

In both of these examples, the lifetime annotations were not required. We didn't have to
specify the lifetime in the first place, thanks to a feature called lifetime elision; the compiler
can infer what the required lifetimes are in most cases by following these simple rules:

A different lifetime parameter is assigned to each parameter

Creating a Music Player Chapter 5

[164]

If there's only one parameter that needs a lifetime, that lifetime is assigned to
every lifetime in the return value (as for our get_element function)
If there are multiple parameters that need a lifetime, but one of them is for &self,
the lifetime for self is assigned to every lifetime in the return value

Let's go back to the method signature:

fn connect_clicked<F: Fn(&Self) + 'static>(&self, f: F) -> u64

Here, we notice that the parameter f has the 'static lifetime. We now know that this
means that this parameter must live until the end of the program. That's why we cannot use
the normal version of the closure: because the lifetime of self is not 'static , meaning the
app will get deallocated when the main function ends. To make this work, we cloned the
play_button variable:

let play_button = self.toolbar.play_button.clone();

Now we can use this new variable in the closure.

Note: Take note that cloning a GTK+ widget is really cheap; only a pointer
is cloned.

However, trying to do the following will still result in a compilation error:

let play_button = self.toolbar.play_button.clone();
self.toolbar.play_button.connect_clicked(|_| {
 if play_button.get_stock_id() == Some(PLAY_STOCK.to_string()) {
 play_button.set_stock_id(PAUSE_STOCK);
 } else {
 play_button.set_stock_id(PLAY_STOCK);
 }
});

Here's the error:

error[E0373]: closure may outlive the current function, but it borrows
`play_button`, which is owned by the current function
 --> src/toolbar.rs:80:50
 |
80 | self.toolbar.play_button.connect_clicked(|_| {
 | ^^^ may outlive
borrowed value `play_button`
81 | if play_button.get_stock_id() ==
Some(PLAY_STOCK.to_string()) {

Creating a Music Player Chapter 5

[165]

 | ----------- `play_button` is borrowed here
 |
help: to force the closure to take ownership of `play_button` (and any
other referenced variables), use the `move` keyword
 |
80 | self.toolbar.play_button.connect_clicked(move |_| {
 | ^^^^^^^^

The problem with this code is that the closure can (and will) be called after the function
returns, but the variable button is declared in the method connect_toolbar_events()
and will be deallocated when it returns. Again, Rust prevents us from having a
segmentation fault by checking if we correctly use references. The compiler talks about
ownership; let's look at what that is.

Ownership
In Rust, there's no garbage collector to deallocate the memory when it's not needed
anymore. Also, there's no need for the programmer to specify where the memory should be
deallocated. But how can this work? The compiler is able to determine when to deallocate
the memory thanks to the concept of ownership; only one variable can own a value. By this
simple rule, the matter of when to deallocate the value is simple: when the owner goes out
of scope, the value is deallocated.

Let's see an example of how deallocation is related to scope:

let mut vec = vec!["string".to_string()];
if !vec.is_empty() {
 let element = vec.remove(0);
 // element is deallocated at the end of this scope.
}

Here, we remove an element from the vector in a new scope—the block for the condition.
The variable element will own the value that was removed from the vector (we also say
that the value was moved from the vector to the variable element). Since it owns the value,
the variable is not responsible for deallocating it when it goes out of scope. Thus, after the
condition, the value "string" will be freed and cannot be accessed anymore.

Creating a Music Player Chapter 5

[166]

Let's get back to our code:

self.toolbar.play_button.connect_clicked(move |_| {
 if play_button.get_stock_id() == Some(PLAY_STOCK.to_string()) {
 play_button.set_stock_id(PAUSE_STOCK);
 } else {
 play_button.set_stock_id(PLAY_STOCK);
 }
});

We added the keyword move to closure to indicate that the value must be moved into the
closure. (That's actually what the compiler told us to do, if you remember the error
message.) By doing so, we satisfy the borrow checker because the value is not borrowed
anymore. This was causing a lifetime error, but has now been moved into the closure and
will thus live as long as the closure itself.

Don't forget to add the call to this method in the method App::new(), right after the call to
connect_events():

app.connect_events();
app.connect_toolbar_events();

Containers
We'll now add other widgets to our window: an image to show the cover of the song that is
currently being played and a cursor to see the progression of the music. However, it is not
possible to add multiple widgets to a window. To do so, we need to use containers.

Containers are a way to manage how multiple widgets will be shown.

Types of containers
Here are simple non-visual containers:

gtk::Box: disposes widgets either horizontally or vertically
gtk::Grid: disposes widgets in rows and columns, like a table
gtk::Fixed: displays widgets at a very specific position in pixels
gtk::Stack: displays only one widget at a time

All of these widgets, except gtk::Fixed , automatically rearrange the widgets when the
window is resized. That's why you should avoid using this one.

Creating a Music Player Chapter 5

[167]

Here are some more fancy containers:

gtk::Notebook: displays only one widget at a time, but the user can select
which one to show by clicking on a tab
gtk::Paned: displays two widgets, separated by a handle that the user can drag
to adjust the division between the widgets

The Box container
We'll use a gtk::Box to arrange our widgets. First of all, remove the call to
Window::add() that we added before:

window.add(toolbar.toolbar());

We remove this call because we'll instead add the toolbar to the box and the box to the
window. Let's do that, but before we do, we'll add a couple of new imports:

use gtk::{
 Adjustment,
 Image,
 ImageExt,
 Scale,
 ScaleExt,
};
use gtk::Orientation::{Horizontal, Vertical};

Then, we create the box:

let vbox = gtk::Box::new(Vertical, 0);
window.add(&vbox);

(This code goes into the App::new() method.)

Here, we fully qualified gtk::Box because Box is a type from the standard library that is
automatically imported. We specified that the orientation of the box is vertical and there's
no spacing (0) between the children widgets of the container.

Creating a Music Player Chapter 5

[168]

Now we're ready to add widgets to this box:

let toolbar = MusicToolbar::new();
vbox.add(toolbar.toolbar());

let cover = Image::new();
cover.set_from_file("cover.jpg");
vbox.add(&cover);

We first add our toolbar, then add an image and load a cover from a static file
because we haven't yet written the code to extract the cover from an MP3 file.

Let's also add the cursor widget:

let adjustment = Adjustment::new(0.0, 0.0, 10.0, 0.0, 0.0, 0.0);
let scale = Scale::new(Horizontal, &adjustment);
scale.set_draw_value(false);
vbox.add(&scale);

The cursor widget is named Scale. This widget needs an Adjustment, which is an object
that represents which values the cursor can take, and also contains the current value and
the increment values. Again, since we don't know how to fetch the duration of a song from
an MP3 file, we hardcode values for Adjustment. We also disable the feature to show the
actual value of the cursor by calling set_draw_value(false).

If you run the application, you'll see the following:

Figure 5.6

(We can almost hear the music when looking at it.)

Creating a Music Player Chapter 5

[169]

To conclude this section, we'll add a few fields to the App structure so that it becomes:

struct App {
 adjustment: Adjustment,
 cover: Image,
 toolbar: MusicToolbar,
 window: ApplicationWindow,
}

The end of the App constructor is then updated to:

impl App {
 fn new(application: Application) -> Self {
 // ...

 window.show_all();

 let app = App {
 adjustment,
 cover,
 toolbar,
 window,
 };

 app.connect_events();
 app.connect_toolbar_events();

 app
 }
}

Adding a playlist
We're now ready to add the playlist widget to our music player.

We'll use new crates, so add the following to the main.rs file:

extern crate gdk_pixbuf;
extern crate id3;

Creating a Music Player Chapter 5

[170]

The crate gdk_pixbuf will be used to show and manipulate the cover and the id3 crate to
get the metadata from MP3 files.

Also, add the following to Cargo.toml:

gdk-pixbuf = "^0.3.0"
id3 = "^0.2.0"

Next, we'll create a new module to contain this new widget:

mod playlist;

We'll start this module by adding a bunch of use statements:

use std::path::Path;

use gdk_pixbuf::{InterpType, Pixbuf, PixbufLoader};
use gtk::{
 CellLayoutExt,
 CellRendererPixbuf,
 CellRendererText,
 ListStore,
 ListStoreExt,
 ListStoreExtManual,
 StaticType,
 ToValue,
 TreeIter,
 TreeModelExt,
 TreeSelectionExt,
 TreeView,
 TreeViewColumn,
 TreeViewColumnExt,
 TreeViewExt,
 Type,
 WidgetExt,
};
use id3::Tag;

These will be followed by some constants:

const THUMBNAIL_COLUMN: u32 = 0;
const TITLE_COLUMN: u32 = 1;
const ARTIST_COLUMN: u32 = 2;
const ALBUM_COLUMN: u32 = 3;
const GENRE_COLUMN: u32 = 4;
const YEAR_COLUMN: u32 = 5;
const TRACK_COLUMN: u32 = 6;
const PATH_COLUMN: u32 = 7;

Creating a Music Player Chapter 5

[171]

const PIXBUF_COLUMN: u32 = 8;

const IMAGE_SIZE: i32 = 256;
const THUMBNAIL_SIZE: i32 = 64;

The *_COLUMN constant represents the column we'll show in the playlist. The last
one, PIXBUF_COLUMN, is a bit special: it will be a hidden column holding the cover of a
bigger size so that we can show this image in the cover widget we created earlier.

Next, we'll create a new structure to hold the widget and its model:

pub struct Playlist {
 model: ListStore,
 treeview: TreeView,
}

The MVC pattern
For the list and tree widgets, GTK+ follows the MVC pattern. MVC stands for Model-View-
Controller.

Now we can add a constructor for our playlist:

impl Playlist {
 pub fn new() -> Self {
 let model = ListStore::new(&[
 Pixbuf::static_type(),
 Type::String,
 Type::String,
 Type::String,
 Type::String,
 Type::String,
 Type::String,
 Type::String,
 Pixbuf::static_type(),
]);
 let treeview = TreeView::new_with_model(&model);
 treeview.set_hexpand(true);
 treeview.set_vexpand(true);

 Self::create_columns(&treeview);

 Playlist {
 model,
 treeview,

Creating a Music Player Chapter 5

[172]

 }
 }
}

The gtk::ListStore type is a model to represent the data as a list. Its constructor needs
the types of the columns; in this case, most of the types are strings for the metadata of the
MP3 files, such as the song title and author name. The first Pixbuf is for the thumbnail
image and the last one is for the bigger image only shown for the music currently playing.

Next, we create a TreeView, which will actually be a view for a list since we initialize it
with our list model. We then modify the widget so that it expands both vertically and
horizontally, meaning that the widget will use as much space as possible. Finally, just
before we return the struct Playlist, we call the create_columns() method, which
will create the columns to be shown in this view. Let's see this new method:

 fn create_columns(treeview: &TreeView) {
 Self::add_pixbuf_column(treeview, THUMBNAIL_COLUMN as i32,
 Visible);
 Self::add_text_column(treeview, "Title", TITLE_COLUMN as i32);
 Self::add_text_column(treeview, "Artist", ARTIST_COLUMN as i32);
 Self::add_text_column(treeview, "Album", ALBUM_COLUMN as i32);
 Self::add_text_column(treeview, "Genre", GENRE_COLUMN as i32);
 Self::add_text_column(treeview, "Year", YEAR_COLUMN as i32);
 Self::add_text_column(treeview, "Track", TRACK_COLUMN as i32);
 Self::add_pixbuf_column(treeview, PIXBUF_COLUMN as i32, Invisible);
 }

Here, we call two methods to create the different types of columns—we specify the header
label and the column number of every column. As for the last parameter of the
add_pixbuf_column() method, it indicates whether the column is visible or not. This
parameter is of a custom type, so let's declare it:

use self::Visibility::*;

#[derive(PartialEq)]
enum Visibility {
 Invisible,
 Visible,
}

We also added a use statement to be able to directly use Visible instead of having to fully
qualify it (Visibility::Visible).

Creating a Music Player Chapter 5

[173]

Let's write the add_text_column() method:

 fn add_text_column(treeview: &TreeView, title: &str, column: i32) {
 let view_column = TreeViewColumn::new();
 view_column.set_title(title);
 let cell = CellRendererText::new();
 view_column.set_expand(true);
 view_column.pack_start(&cell, true);
 view_column.add_attribute(&cell, "text", column);
 treeview.append_column(&view_column);
 }

We start by creating the column itself and setting the label of the header by calling
set_title(). Then, we create a CellRenderer, which indicates how the data from the
model should be rendered in the view; here, we only want to show some text, so we chose
CellRendererText, we set it to take up as much space as possible, and added the renderer
to the column. Next comes a very important line:

view_column.add_attribute(&cell, "text", column);

This line specifies that the view will set the text attribute from the data that comes from
the model at the specified column.

At the end, we add the column to the view.

Now we'll write a similar function for the pixbuf:

 fn add_pixbuf_column(treeview: &TreeView, column: i32, visibility:
 Visibility) {
 let view_column = TreeViewColumn::new();
 if visibility == Visible {
 let cell = CellRendererPixbuf::new();
 view_column.pack_start(&cell, true);
 view_column.add_attribute(&cell, "pixbuf", column);
 }
 treeview.append_column(&view_column);
 }

Creating a Music Player Chapter 5

[174]

Here, we create a new type of renderer (CellRendererPixbuf), which will show an image
instead of text. This time, we set the pixbuf attribute because we want to show an image.
The renderer is only created if the column is visible.

Now, all that's left is to write a function to get the actual widget to be able to add the widget
in the main module:

 pub fn view(&self) -> &TreeView {
 &self.treeview
 }

Let's go back to the method App::new() and create the playlist:

let playlist = Playlist::new();
vbox.add(playlist.view());

(Add this code right before creating the Image.)

We'll also add a playlist attribute in the structure:

struct App {
 adjustment: Adjustment,
 cover: Image,
 playlist: Playlist,
 toolbar: MusicToolbar,
 window: Window,
}

Also, don't forget to edit the creation of the structure to include the following new field:

let app = App {
 adjustment,
 cover,
 playlist,
 toolbar,
 window,
};

Creating a Music Player Chapter 5

[175]

We're now ready to launch our application again to see an empty playlist:

Figure 5.7

Opening MP3 files
Let's finish this chapter by adding the ability to open MP3 files and show their metadata in
the playlist widget we just created.

First of all, we'll remove this line:

cover.set_from_file("cover.jpg");

This is because the image will be set from the data of the MP3 files we play.

We'll use a new crate, so add this line in the [dependencies] section of your Cargo.toml:

gtk-sys = "^0.5.0"

Also, add the following line to your main.rs:

extern crate gtk_sys;

The *-sys crates of the gtk-rs ecosystem are low-level crates, the ones that directly bind
to the GTK+ C library. Since they're very low-level and require the use of unsafe code,
wrappers have been made; these are crates without the -sys suffix, such as gtk and gdk.

Creating a Music Player Chapter 5

[176]

Reference-counting pointer
We'll also change some code before we continue. Since we'll want to share our Playlist
widget with different parts of our code, including some event handlers, we need a way of
sharing a reference that will last long enough (remember the issue we had with the
lifetime). One easy way of doing so is to use a reference-counting pointer type—Rc. So, in
our App structure, let's change the playlist field to use an Rc:

struct App {
 adjustment: Adjustment,
 cover: Image,
 playlist: Rc<Playlist>,
 toolbar: MusicToolbar,
 window: Window,
}

This requires a new import at the top of the main module:

use std::rc::Rc;

Also, the creation of the playlist needs to be updated:

let playlist = Rc::new(Playlist::new());

We now wrap the Paylist inside an Rc. We can still use the playlist like before, as long as
we're calling immutable methods, that is, methods that take &self but not &mut self. So,
the next line is still valid:

vbox.add(playlist.view());

Before we create the method to add an MP3 file to the playlist, we'll need another method to
set the pixbuf values in the model from the MP3 metadata. In the impl Playlist, add
the following method:

const INTERP_HYPER: InterpType = 3;

 fn set_pixbuf(&self, row: &TreeIter, tag: &Tag) {
 if let Some(picture) = tag.pictures().next() {
 let pixbuf_loader = PixbufLoader::new();
 pixbuf_loader.set_size(IMAGE_SIZE, IMAGE_SIZE);
 pixbuf_loader.loader_write(&picture.data).unwrap();
 if let Some(pixbuf) = pixbuf_loader.get_pixbuf() {
 let thumbnail = pixbuf.scale_simple(THUMBNAIL_SIZE,
 THUMBNAIL_SIZE, INTERP_HYPER).unwrap();
 self.model.set_value(row, THUMBNAIL_COLUMN,
 &thumbnail.to_value());

Creating a Music Player Chapter 5

[177]

 self.model.set_value(row, PIXBUF_COLUMN,
 &pixbuf.to_value());
 }
 pixbuf_loader.close().unwrap();
 }
 }

The type Tag represents the metadata of an MP3 file. We get the first picture contained in
the file and we load it. If the loading was successful, we resize it to get a thumbnail and
then we set the values in the model.

ID3— MP3 metadata
We're now ready to get all the relevant metadata from the MP3 files and add them to the
playlist. Let's start the Playlist::add() method by fetching the metadata:

 pub fn add(&self, path: &Path) {
 let filename =
 path.file_stem().unwrap_or_default().to_str().unwrap_or_default();

 let row = self.model.append();

 if let Ok(tag) = Tag::read_from_path(path) {
 let title = tag.title().unwrap_or(filename);
 let artist = tag.artist().unwrap_or("(no artist)");
 let album = tag.album().unwrap_or("(no album)");
 let genre = tag.genre().unwrap_or("(no genre)");
 let year = tag.year().map(|year|
 year.to_string()).unwrap_or("(no
 year)".to_string());
 let track = tag.track().map(|track|
 track.to_string()).unwrap_or("??".to_string());
 let total_tracks = tag.total_tracks().map(|total_tracks|
 total_tracks.to_string()).unwrap_or("??".to_string());
 let track_value = format!("{} / {}", track, total_tracks);

We first get the filename without the extension and convert it to a string; we'll show this if
there's no song title in the file. Then, we read the metadata from the file and assign a default
value such as "(no artist)" in case a value is missing by calling unwrap_or(), which
gets the value from Option if or returns the argument if the value is None.

Creating a Music Player Chapter 5

[178]

Now let's see the rest of the method:

 self.set_pixbuf(&row, &tag);

 self.model.set_value(&row, TITLE_COLUMN, &title.to_value());
 self.model.set_value(&row, ARTIST_COLUMN, &artist.to_value());
 self.model.set_value(&row, ALBUM_COLUMN, &album.to_value());
 self.model.set_value(&row, GENRE_COLUMN, &genre.to_value());
 self.model.set_value(&row, YEAR_COLUMN, &year.to_value());
 self.model.set_value(&row, TRACK_COLUMN,
 &track_value.to_value());
 }
 else {
 self.model.set_value(&row, TITLE_COLUMN, &filename.to_value());
 }

 let path = path.to_str().unwrap_or_default();
 self.model.set_value(&row, PATH_COLUMN, &path.to_value());
 }

Here, we create a new row in the model and call the set_pixbuf() we created just before.
After that, we set the value in the new row. One special value is the path, which will be
useful later when we want to play the selected song from the playlist; we'll only need to
fetch the path and then play it.

Opening files with a file dialog
There's another function we'll need before we can handle the click event of the open button.
We need a function that'll show a file dialog to allow the user to select a file:

use std::path::PathBuf;

use gtk::{FileChooserAction, FileChooserDialog, FileFilter};

fn show_open_dialog(parent: &ApplicationWindow) -> Option<PathBuf>
{
 let mut file = None;
 let dialog = FileChooserDialog::new(Some("Select an MP3 audio
 file"),
 Some(parent), FileChooserAction::Open);
 let filter = FileFilter::new();
 filter.add_mime_type("audio/mp3");
 filter.set_name("MP3 audio file");
 dialog.add_filter(&filter);
 dialog.add_button("Cancel", RESPONSE_CANCEL);

Creating a Music Player Chapter 5

[179]

 dialog.add_button("Accept", RESPONSE_ACCEPT);
 let result = dialog.run();
 if result == RESPONSE_ACCEPT {
 file = dialog.get_filename();
 }
 dialog.destroy();
 file
}

This function starts by creating a new file dialog of the type open. Afterwards, it adds a
filter to this dialog so that it only shows MP3 files. Then, we add two buttons using some
constants that we'll define later. At the moment, we can show the dialog by calling run();
this function blocks until the dialog is closed and returns which button was clicked. After
that, we check whether the accept button was clicked to save the filename that was selected
by the user and we return that filename.

Here are the constants needed by the previous function:

use gtk_sys::{GTK_RESPONSE_ACCEPT, GTK_RESPONSE_CANCEL};

const RESPONSE_ACCEPT: i32 = GTK_RESPONSE_ACCEPT as i32;
const RESPONSE_CANCEL: i32 = GTK_RESPONSE_CANCEL as i32;

We're now ready to handle the click event of the open button. Add the following in the
method App::connect_toolbar_events():

 let parent = self.window.clone();
 let playlist = self.playlist.clone();
 self.toolbar.open_button.connect_clicked(move |_| {
 let file = show_open_dialog(&parent);
 if let Some(file) = file {
 playlist.add(&file);
 }
 });

In the event handler, we call the function we just defined and, if a file was selected, we call
the add() method of the playlist.

Creating a Music Player Chapter 5

[180]

You can now try the application and open an MP3 file. Here's what you'll see:

Figure 5.8

Let's add two more features before we end this chapter. The first one is to remove a song
from the playlist.

Deleting a song
We need to add a method to the Playlist struct to remove the selected item:

 pub fn remove_selection(&self) {
 let selection = self.treeview.get_selection();
 if let Some((_, iter)) = selection.get_selected() {
 self.model.remove(&iter);
 }
 }

This first starts by getting the selection and, if there was one, we remove it from the model.
We can now add an event handler for the remove button in the
App::connect_toolbar_events() method:

 let playlist = self.playlist.clone();
 self.toolbar.remove_button.connect_clicked(move |_| {
 playlist.remove_selection();
 });

There's nothing new in this code; we simply clone the reference-counted playlist and call a
method on it when the button is clicked.

Creating a Music Player Chapter 5

[181]

Displaying the cover when playing a song
The other feature to add is to show a bigger cover when we click the play button. We'll start
by adding a function to get the image from the selection in the playlist:

 pub fn pixbuf(&self) -> Option<Pixbuf> {
 let selection = self.treeview.get_selection();
 if let Some((_, iter)) = selection.get_selected() {
 let value = self.model.get_value(&iter, PIXBUF_COLUMN as i32);
 return value.get::<Pixbuf>();
 }
 None
 }

This method to be added to the Playlist structure starts by getting the selection; if there's
one, it simply gets the pixbuf from the model and returns it. Otherwise, it returns None.

We can now write a function that will fetch the cover from the playlist and show the image:

use gtk::Image;

use playlist::Playlist;

fn set_cover(cover: &Image, playlist: &Playlist) {
 cover.set_from_pixbuf(playlist.pixbuf().as_ref());
 cover.show();
}

Add this function in the toolbar module. And, finally, we can call this function from the
click event handler of the play button:

 let playlist = self.playlist.clone();
 let cover = self.cover.clone();
 self.toolbar.play_button.connect_clicked(move |_| {
 if play_button.get_stock_id() == Some(PLAY_STOCK.to_string()) {
 play_button.set_stock_id(PAUSE_STOCK);
 set_cover(&cover, &playlist);
 } else {
 play_button.set_stock_id(PLAY_STOCK);
 }
 });

Creating a Music Player Chapter 5

[182]

Here's the result after adding a song and clicking play:

Figure 5.9

Summary
This chapter started by showing you how to install GTK+ on your machine. You then
learned how to use gtk-rs to create windows, to manage user events like mouse click, to
add different types of widgets to your window, to arrange your widgets with containers,
and to show beautiful icons with stock items. You also saw how to use complex GTK+
widgets that use the MVC pattern.

You also gained more knowledge of Rust in the areas of closures, lifetimes, and ownerships,
which are key concepts in this language.

Finally, you learned how to extract the metadata of an MP3 file by getting the ID3 tags.

In the next chapter, we'll improve the music player so that it can actually play a song.

6
Implementing the Engine of the

Music Player
In the previous chapter, we implemented the user interface of the music player, but it is
unable to play any music. We'll tackle that challenge in this chapter. We'll create the engine
of the music player so that it can play MP3 files. To do this, we'll need to use threads so that
playing a song does not freeze the interface, so it will be a good opportunity to learn about
concurrency in Rust.

We will cover the following topics in this chapter:

MP3 decoder
Threads
Mutex and Mutex guards
Send/Sync traits
RAII
Thread safety
Interior mutability

Implementing the Engine of the Music Player Chapter 6

[184]

Installing the dependencies
For this chapter, we'll need two libraries: pulseaudio and libmad.

The former will be used to play the music, while the latter is for decoding MP3 files.

Installing dependencies on Linux
On Linux, these dependencies can be installed through the package manager of your
distribution.

On Ubuntu (or other Debian derivatives):

sudo apt-get install libmad0-dev libpulse-dev

Installing dependencies on Mac
On OSX, the required dependencies can be installed through the system package manager,
as follows:

brew install libmad pulseaudio

Installing dependencies on Windows
On Windows, run the following command in a MSYS2 shell:

pacman -S mingw-w64-libmad

Think, click the link to download the zip file from this page: https:/ /www. freedesktop.
org/wiki/Software/ PulseAudio/ Ports/ Windows/ Support/ (When the book was written,
the link for the current version was http:/ /bosmans. ch/ pulseaudio/ pulseaudio- 1. 1.zip).
Then, follow the same instructions as the ones from Chapter 2, Starting with SDL, to use the
library from Rust.

https://www.freedesktop.org/wiki/Software/PulseAudio/Ports/Windows/Support/
https://www.freedesktop.org/wiki/Software/PulseAudio/Ports/Windows/Support/
https://www.freedesktop.org/wiki/Software/PulseAudio/Ports/Windows/Support/
https://www.freedesktop.org/wiki/Software/PulseAudio/Ports/Windows/Support/
https://www.freedesktop.org/wiki/Software/PulseAudio/Ports/Windows/Support/
https://www.freedesktop.org/wiki/Software/PulseAudio/Ports/Windows/Support/
https://www.freedesktop.org/wiki/Software/PulseAudio/Ports/Windows/Support/
https://www.freedesktop.org/wiki/Software/PulseAudio/Ports/Windows/Support/
https://www.freedesktop.org/wiki/Software/PulseAudio/Ports/Windows/Support/
https://www.freedesktop.org/wiki/Software/PulseAudio/Ports/Windows/Support/
https://www.freedesktop.org/wiki/Software/PulseAudio/Ports/Windows/Support/
https://www.freedesktop.org/wiki/Software/PulseAudio/Ports/Windows/Support/
https://www.freedesktop.org/wiki/Software/PulseAudio/Ports/Windows/Support/
https://www.freedesktop.org/wiki/Software/PulseAudio/Ports/Windows/Support/
https://www.freedesktop.org/wiki/Software/PulseAudio/Ports/Windows/Support/
https://www.freedesktop.org/wiki/Software/PulseAudio/Ports/Windows/Support/
https://www.freedesktop.org/wiki/Software/PulseAudio/Ports/Windows/Support/
https://www.freedesktop.org/wiki/Software/PulseAudio/Ports/Windows/Support/
https://www.freedesktop.org/wiki/Software/PulseAudio/Ports/Windows/Support/
https://www.freedesktop.org/wiki/Software/PulseAudio/Ports/Windows/Support/
https://www.freedesktop.org/wiki/Software/PulseAudio/Ports/Windows/Support/
http://bosmans.ch/pulseaudio/pulseaudio-1.1.zip
http://bosmans.ch/pulseaudio/pulseaudio-1.1.zip
http://bosmans.ch/pulseaudio/pulseaudio-1.1.zip
http://bosmans.ch/pulseaudio/pulseaudio-1.1.zip
http://bosmans.ch/pulseaudio/pulseaudio-1.1.zip
http://bosmans.ch/pulseaudio/pulseaudio-1.1.zip
http://bosmans.ch/pulseaudio/pulseaudio-1.1.zip
http://bosmans.ch/pulseaudio/pulseaudio-1.1.zip
http://bosmans.ch/pulseaudio/pulseaudio-1.1.zip
http://bosmans.ch/pulseaudio/pulseaudio-1.1.zip
http://bosmans.ch/pulseaudio/pulseaudio-1.1.zip
http://bosmans.ch/pulseaudio/pulseaudio-1.1.zip
http://bosmans.ch/pulseaudio/pulseaudio-1.1.zip
http://bosmans.ch/pulseaudio/pulseaudio-1.1.zip
http://bosmans.ch/pulseaudio/pulseaudio-1.1.zip
http://bosmans.ch/pulseaudio/pulseaudio-1.1.zip
http://bosmans.ch/pulseaudio/pulseaudio-1.1.zip

Implementing the Engine of the Music Player Chapter 6

[185]

Decoding MP3 files
We'll start this chapter by learning how to decode an MP3 file to a format suitable to be
played by the operating system using the simplemad crate, a binding for libmad.

Adding dependencies
Let's add the following to Cargo.toml:

crossbeam = "^0.3.0"
pulse-simple = "^1.0.0"
simplemad = "^0.8.1"

We also added the pulse-simple and crossbeam crates because we'll need them later.
The former will be used to play the songs with pulseaudio and the latter will be used to
implement the event loop of the music player engine.

We also need to add the following statements in main.rs:

extern crate crossbeam;
extern crate pulse_simple;
extern crate simplemad;

mod mp3;

In addition to the extern crate statements, we have a mod statement since we'll create a
new module for the MP3 decoder.

Implementing an MP3 decoder
We're now ready to create this new module. Create a new mp3.rs file with the following
content:

use std::io::{Read, Seek, SeekFrom};
use std::time::Duration;

use simplemad;

Implementing the Engine of the Music Player Chapter 6

[186]

We start this module with some import statements as usual. The important one is
simplemad, which will be used to decode the frames of an MP3 file:

pub struct Mp3Decoder<R> where R: Read {
 reader: simplemad::Decoder<R>,
 current_frame: simplemad::Frame,
 current_frame_channel: usize,
 current_frame_sample_pos: usize,
 current_time: u64,
}

We saw in Chapter 1, Basics of Rust, that we can add trait bounds to generic parameters in a
function. We can also add them to the generic parameters of a type. Here we see an
alternative syntax using a where clause. The previous structure declaration is the same as
the following:

pub struct Mp3Decoder<R: Read> {
 // …
}

The where clause is useful when we have a lot a generic parameters.

This structure contains information about the current frame and time as well as the decoder
itself, which comes from the simplemad crate. This Decoder also requires a generic
parameter that implements the Read trait, so we just use our own R parameter since we
specified that it must implement this trait.

Before we move on to the constructor of this type, we'll implement a couple of utility
functions. Let's start with a function that converts Duration to a number of milliseconds
(this function will go in the main.rs file since we'll use it in another module):

fn to_millis(duration: Duration) -> u64 {
 duration.as_secs() * 1000 + duration.subsec_nanos() as u64 /
1_000_000
}

Here, we simply multiply the number of seconds by 1,000 and divide the number of
nanoseconds by 1,000,000. This function requires you to add an import statement for
Duration:

use std::time::Duration;

Implementing the Engine of the Music Player Chapter 6

[187]

Next, we'll write a function to check whether a stream of data is an MP3 file:

fn is_mp3<R>(mut data: R) -> bool where R: Read + Seek {
 let stream_pos = data.seek(SeekFrom::Current(0)).unwrap();
 let is_mp3 = simplemad::Decoder::decode(data.by_ref()).is_ok();
 data.seek(SeekFrom::Start(stream_pos)).unwrap();
 is_mp3
}

To do so, we try to decode the stream and if the result is Ok, then the data is an MP3 file. We
then go back to the beginning of the file before returning whether it is an MP3 file or not.

The next function we'll need is one to decode the next frame of an MP3 file:

fn next_frame<R: Read>(decoder: &mut simplemad::Decoder<R>) ->
simplemad::Frame {
 decoder.filter_map(|f| f.ok()).next()
 .unwrap_or_else(|| {
 simplemad::Frame {
 bit_rate: 0,
 layer: Default::default(),
 mode: Default::default(),
 sample_rate: 44100,
 samples: vec![Vec::new()],
 position: Duration::from_secs(0),
 duration: Duration::from_secs(0),
 }
 })
}

Here, we simply get the next frame from the decoder and flatten the
Option<Result<Frame>> to Option<Frame> by calling and_then(Result::ok). If
there's no frame, we return a default frame.

Now, let's implement the constructor of our MP3 decoder:

impl<R> Mp3Decoder<R> where R: Read + Seek {
 pub fn new(mut data: R) -> Result<Mp3Decoder<R>, R> {
 if !is_mp3(data.by_ref()) {
 return Err(data);
 }

 let mut reader = simplemad::Decoder::decode(data).unwrap();

 let current_frame = next_frame(&mut reader);
 let current_time = to_millis(current_frame.duration);

Implementing the Engine of the Music Player Chapter 6

[188]

 Ok(Mp3Decoder {
 reader,
 current_frame,
 current_frame_channel: 0,
 current_frame_sample_pos: 0,
 current_time,
 })
 }
}

You need to add an import statement at the top of this file to be able to use the to_millis
function, which is in the main module:

use to_millis;

Since the use statements are relative to the root of the crate, we only need to write the
function name because this function is at the crate's root.

The constructor first checks whether the stream contains MP3 data, if not, we return an
error. Otherwise, we create a Decoder from the simplemad crate. Then, we read the first
frame and get its time in milliseconds.

Next, we write two methods to get the current time and the rate of the MP3 file:

 pub fn current_time(&self) -> u64 {
 self.current_time
 }

 pub fn samples_rate(&self) -> u32 {
 self.current_frame.sample_rate
 }

These methods are to be added in the impl Mp3Decoder block. The last method to be
added to this structure is a method to compute the duration of a song:

 pub fn compute_duration(mut data: R) -> Option<Duration> {
 if !is_mp3(data.by_ref()) {
 return None;
 }

 let decoder = simplemad::Decoder::decode_headers(data).unwrap();
 Some(decoder.filter_map(|frame| {
 match frame {
 Ok(frame) => Some(frame.duration),
 Err(_) => None,
 }
 })

Implementing the Engine of the Music Player Chapter 6

[189]

 .sum())
 }

Here we create an associated function: it first checks whether it is MP3 data. Here, instead
of using Decoder::decode(), we use Decoder::decode_headers() because we only
need the frame duration and it is faster to only decode the headers. The decoder is an
iterator and we call filter_map() on it. As you saw in Chapter 2, Starting with SDL,
filter_map() transforms and filters the elements of an iterator. Transforming a value is
done by returning Some(new_value), while filtering out a value is done by returning
None. After that, we call sum() on the resulting iterator to get the sum of all the durations.

Getting the frame samples
The only remaining feature needed for our MP3 decoder is to be able to iterate over the
samples. We'll first write a function to get the next sample:

fn next_sample<R: Read>(decoder: &mut Mp3Decoder<R>) -> Option<i16>
{
 if decoder.current_frame.samples[0].len() == 0 {
 return None;
 }

 // getting the sample and converting it from fixed step to i16
 let sample =
decoder.current_frame.samples[decoder.current_frame_channel]
 [decoder.current_frame_sample_pos];
 let sample = sample.to_i32() + (1 << (28 - 16));
 let sample = if sample >= 0x10000000 { 0x10000000 - 1 } else if
sample <=
 -0x10000000 { -0x10000000 } else { sample };
 let sample = sample >> (28 + 1 - 16);
 let sample = sample as i16;

 decoder.current_frame_channel += 1;

 if decoder.current_frame_channel <
decoder.current_frame.samples.len() {
 return Some(sample);
 }

 decoder.current_frame_channel = 0;
 decoder.current_frame_sample_pos += 1;

 if decoder.current_frame_sample_pos <

Implementing the Engine of the Music Player Chapter 6

[190]

decoder.current_frame.samples[0].len() {
 return Some(sample);
 }

 decoder.current_frame = next_frame(&mut decoder.reader);
 decoder.current_frame_channel = 0;
 decoder.current_frame_sample_pos = 0;
 decoder.current_time +=
to_millis(decoder.current_frame.duration);

 return Some(sample);
}

This function is doing some bit shifting to get the sample and then fetch the next frame.
We're now ready to implement an iterator that will use this function:

impl<R> Iterator for Mp3Decoder<R> where R: Read {
 type Item = i16;

 fn next(&mut self) -> Option<i16> {
 next_sample(self)
 }

 fn size_hint(&self) -> (usize, Option<usize>) {
 (self.current_frame.samples[0].len(), None)
 }
}

As you can see, we can implement our own iterator by implementing the Iterator trait.
The only required method is next(). By implementing this simple method, we get a whole
bunch of features because this trait has a lot of default methods. The type Item is also
required. We implement the size_hint() method, even though it is an optional one.

Playing music
With the MP3 decoder done, we're now ready to play some music. We'll create a new
module, called player, which we will add at the top of main.rs:

mod player;

Implementing the Engine of the Music Player Chapter 6

[191]

We'll start this module by creating a new player.rs file with the following import
statements:

use std::fs::File;
use std::io::BufReader;
use std::path::{Path, PathBuf};
use std::sync::{Arc, Condvar, Mutex};
use std::thread;

use crossbeam::sync::SegQueue;
use pulse_simple::Playback;

use mp3::Mp3Decoder;
use self::Action::*;

We'll also create some constants:

const BUFFER_SIZE: usize = 1000;
const DEFAULT_RATE: u32 = 44100;

The buffer size is the number of samples we'll decode and play to avoid having slowdowns
when playing the song and also to avoid using 100% of the CPU by constantly reading and
decoding the data at the same time as playing. The default rate will be used when we
cannot find one in the MP3 file.

Event loop
To simplify the development of our playing engine, we'll use the concept of an event loop.
Some actions will be sent to the thread playing the music through this event loop. For
instance, we will be able to emit a Load("file.mp3") event, the thread will decode this
MP3 file, and start playing it. Another example of an event is Stop, which will stop playing
and unload the data.

Let's create an enumeration for the possible actions:

enum Action {
 Load(PathBuf),
 Stop,
}

Implementing the Engine of the Music Player Chapter 6

[192]

We're now ready to create the structure of the event loop:

#[derive(Clone)]
struct EventLoop {
 queue: Arc<SegQueue<Action>>,
 playing: Arc<Mutex<bool>>,
}

There's a lot of unknown stuff in this structure, so let's break it down.

Atomic reference counting
First of all, we use the Arc type. It is similar to the Rc type that we used in the previous
chapter, in that it is a type providing reference counting. The difference between these two
types is that Arc uses atomic operations to increment its counter. By being atomic, it is safe
to be used by multiple threads while Rc cannot be safely used across threads (and the
compiler prevents us from trying to do so). The standard library provides these two types
so that you can choose the cost you want to pay. If you don't need to share a reference-
counted value with multiple threads, choose Rc as it is more efficient than Arc. If you try to
send an Rc to another thread, the compiler will trigger an error:

error[E0277]: the trait bound `std::rc::Rc<i32>: std::marker::Send` is not
satisfied in `[closure@src/main.rs:6:19: 8:6 rc:std::rc::Rc<i32>]`
 --> src/main.rs:6:5
 |
6 | thread::spawn(move || {
 | ^^^^^^^^^^^^^ `std::rc::Rc<i32>` cannot be sent between threads
safely
 |
 = help: within `[closure@src/main.rs:6:19: 8:6 rc:std::rc::Rc<i32>]`, the
trait `std::marker::Send` is not implemented for `std::rc::Rc<i32>`
 = note: required because it appears within the type
`[closure@src/main.rs:6:19: 8:6 rc:std::rc::Rc<i32>]`
 = note: required by `std::thread::spawn`

In this case, you'll need to switch to an Arc. This error will make more sense when we see
what the Send trait is.

Implementing the Engine of the Music Player Chapter 6

[193]

Mutual exclusion
In the playing field, the Arc contains a Mutex. A mutex provides mutual exclusion,
meaning that it allows us to lock its inner value (in this case, a bool) preventing other
threads from manipulating the same value at the same time. It prevents data races, which is
a cause of undefined behavior, by preventing concurrent reads and writes on a value.

Send trait
But how can the compiler prevent us from doing data races? This is thanks to the Send and
Sync marker traits. A type that implements the Send trait is safe to be sent to another
thread. As you may have guessed, Rc does not implement Send. Since it does not use
atomic operations to increment its counter, if two threads were to increment it at the same
time, that would be a data race.

Sync trait
Let's discuss the second of these marker traits: Sync. A type that implements the Sync trait
is safe to be shared with multiple threads. An example of a Sync type is Mutex. It is safe
because the only way to get a value from Mutex is to lock it, which is mutually exclusive
(another thread cannot access the same value at the same time).

Lock-free data structures
The only remaining type to explain is SegQueue, from the crossbeam crate. This type is a
lock-free queue, meaning that it can be used concurrently by multiple threads without a
lock. The implementation of lock-free data structures is beyond the scope of this book, but it
suffices to say that it uses atomic operations behind the scenes so that we don't need to use
a Mutex to mutate this value in mutable threads at the same time. We still need to wrap this
queue in an Arc to be able to share it with multiple threads.

We're using a lock-free data structure because we'll be constantly checking whether there's a
new element in this queue while possibly adding new elements to this queue from another
thread. If we were to use Mutex<VecDeque<Action>>, it would be less efficient because
calling lock() on Mutex waits if the lock is held by another thread.

Implementing the Engine of the Music Player Chapter 6

[194]

Let's get back to our event loop. Let's add a constructor for EventLoop:

impl EventLoop {
 fn new() -> Self {
 EventLoop {
 queue: Arc::new(SegQueue::new()),
 playing: Arc::new(Mutex::new(false)),
 }
 }
}

This constructor simply creates the queue and the Boolean wrapped in a Mutex.

Before we use it, we'll create a State structure that will contain various data shared
between the GUI thread and the music player thread, put this code in the main module:

struct State {
 stopped: bool,
}

Also, add a state field in the App structure:

struct App {
 adjustment: Adjustment,
 cover: Image,
 playlist: Rc<Playlist>,
 state: Arc<Mutex<State>>,
 toolbar: MusicToolbar,
 window: Window,
}

This requires a new import statement:

use std::sync::{Arc, Mutex};

Since this value will be shared with another thread, we need to wrap it in Arc<Mutex>.
Then, in the constructor, create this value and assign it to this new field, while also sending
it to the Playlist constructor:

impl App {
 fn new() -> Self {
 // …

 let state = Arc::new(Mutex::new(State {
 stopped: true,
 }));

Implementing the Engine of the Music Player Chapter 6

[195]

 let playlist = Rc::new(Playlist::new(state.clone()));

 // …

 let app = App {
 adjustment,
 cover,
 playlist,
 state,
 toolbar,
 window,
 };

 // …
 }
}

Let's update the Playlist constructor:

impl Playlist {
 pub(crate) fn new(state: Arc<Mutex<State>>) -> Self {
 let model = ListStore::new(&[
 Pixbuf::static_type(),
 Type::String,
 Type::String,
 Type::String,
 Type::String,
 Type::String,
 Type::String,
 Type::String,
 Pixbuf::static_type(),
]);
 let treeview = TreeView::new_with_model(&model);
 treeview.set_hexpand(true);
 treeview.set_vexpand(true);

 Self::create_columns(&treeview);

 Playlist {
 model,
 player: Player::new(state.clone()),
 treeview,
 }
 }
}

Implementing the Engine of the Music Player Chapter 6

[196]

The structure requires a new field, so let's add it:

pub struct Playlist {
 model: ListStore,
 player: Player,
 treeview: TreeView,
}

This also needs new import statements:

use std::sync::{Arc, Mutex};

use State;
use player::Player;

We use the pub(crate) syntax to silent an error. Since we're using a private type (State)
in a public method, the compiler throws an error. This syntax means that the function is
public to the other modules of the crate, but other crates cannot access it. Here, we only
send the state to the Player constructor, which we will implement right away.

Playing music
We'll create a new Player structure to wrap the event loop. The player will be usable from
the main thread to control the music. Here's the structure itself:

pub struct Player {
 app_state: Arc<Mutex<super::State>>,
 event_loop: EventLoop,
}

And here's the start of its constructor:

impl Player {
 pub(crate) fn new(app_state: Arc<Mutex<super::State>>) -> Self
{
 let event_loop = EventLoop::new();

 {
 let app_state = app_state.clone();
 let event_loop = event_loop.clone();
 thread::spawn(move || {
 // …
 });
 }

Implementing the Engine of the Music Player Chapter 6

[197]

 Player {
 app_state,
 event_loop,
 }
 }
}

We start by creating a new event loop. Then, we start a new thread. We used a new scope to
avoid having to rename the variables that will be sent to the thread because these variables
are used in the initialization of the structure at the end of the constructor. Again, we need to
use a move closure because we're sending a copy of the event loop and the application state
to the thread.

Let's see the first part of the thread's closure:

thread::spawn(move || {
 let mut buffer = [[0; 2]; BUFFER_SIZE];
 let mut playback = Playback::new("MP3", "MP3 Playback", None,
 DEFAULT_RATE);
 let mut source = None;
 loop {
 if let Some(action) = event_loop.queue.try_pop() {
 match action {
 Load(path) => {
 let file = File::open(path).unwrap();
 source =
Some(Mp3Decoder::new(BufReader::new(file)).unwrap());
 let rate = source.as_ref().map(|source|
source.samples_rate()).unwrap_or(DEFAULT_RATE);
 playback = Playback::new("MP3", "MP3 Playback",
 None, rate);
 app_state.lock().unwrap().stopped = false;
 },
 Stop => {},
 }
 }
 // …
 }
});

Implementing the Engine of the Music Player Chapter 6

[198]

We start by creating a buffer to contain the samples to be played. Then we'll create a
Playback, which is an object that will allow us to play music on the hardware. We'll also
create a source variable that will contain an Mp3Decoder. We then start an infinite loop
and try to get the first element in the queue: if there's an element in the queue,
Some(action) is returned. That's why we used if let to pattern match against the result
of this method call. We then match against the action to see which action it is: if it is a Load
action, we open the file with the specified path and create an Mp3Decoder with a buffered
reader of this file. We then try to get the sample rate of the song and create a new Playback
with this rate. We'll handle the Stop action later.

Finally, we see our first use of Mutex:

app_state.lock().unwrap().stopped = false;

Let's rewrite it in another way to see what's going on:

let mut guard = app_state.lock().unwrap();
guard.stopped = false;

We first call lock(), which returns a Result<MutexGuard<T>,
PoisonError<MutexGuard<T>>>.

Mutex guard
A mutex guard is a scoped lock: this means that the mutex will be automatically unlocked
when going out of scope. It is a nice way to ensure that users will use a Mutex and won't
forget to unlock it.

RAII
But how does it work behind the scene? Rust uses the idiom of Resource Acquisition Is
Initialization(RAII) for short. With this idiom, a resource is allocated in the constructor and
released in its destructor. In Rust, destructors are implemented by the Drop trait. So, to get
back to mutex guards, the mutex is unlocked when the destructor of MutexGuard is called,
so, as in the previous example, when the guard variable goes out of scope.

Implementing the Engine of the Music Player Chapter 6

[199]

Let's get back to our infinite loop:

loop {
 if let Some(action) = event_loop.queue.try_pop() {
 // …
 } else if *event_loop.playing.lock().unwrap() {
 let mut written = false;
 if let Some(ref mut source) = source {
 let size = iter_to_buffer(source, &mut buffer);
 if size > 0 {
 playback.write(&buffer[..size]);
 written = true;
 }
 }

 if !written {
 app_state.lock().unwrap().stopped = true;
 *event_loop.playing.lock().unwrap() = false;
 source = None;
 }
 }
}

Here, we check whether the playing value is true (again using the lock().unwrap() trick).
We must use a * to access the value of a MutexGuard because it implements Deref. That
means we don't have direct access to the underlying value. But since it implements the
Deref trait, we can access it by dereferencing the guard (with a *). We didn't need this trick
before because we accessed a field and Rust automatically dereferences fields.

We then create a written variable that will be true if the player was able to play a sample.
If it was unable to play one, this means the song came to an end. In this case, we set the
stopped value to true and playing to false.

To play the samples, we call iter_to_buffer, which will take the value from the decoder
(which is an Iterator) and write them to the buffer. Afterward, it will write the buffer to
the playback in order to play the samples on your sound card.

Let's look at this iter_to_buffer function:

fn iter_to_buffer<I: Iterator<Item=i16>>(iter: &mut I, buffer: &mut
[[i16; 2]; BUFFER_SIZE]) -> usize {
 let mut iter = iter.take(BUFFER_SIZE);
 let mut index = 0;
 while let Some(sample1) = iter.next() {
 if let Some(sample2) = iter.next() {
 buffer[index][0] = sample1;

Implementing the Engine of the Music Player Chapter 6

[200]

 buffer[index][1] = sample2;
 }
 index += 1;
 }
 index
}

We start by taking BUFFER_SIZE elements from the iterator and add them to the buffer two
at a time (for two channels). We then return the number of elements written to the buffer.

Using the music player
We're now ready to use our music engine. Let's add a couple of new methods to Playlist.

Let's start with a method to get the path of the selection:

 fn selected_path(&self) -> Option<String> {
 let selection = self.treeview.get_selection();
 if let Some((_, iter)) = selection.get_selected() {
 let value = self.model.get_value(&iter, PATH_COLUMN as i32);
 return value.get::<String>();
 }
 None
 }

We start by getting the selection, then we get the iterator for the selection. From the iterator,
we can get the value at the specified column to get the path. We can now add a method to
load the selected song:

 pub fn play(&self) -> bool {
 if let Some(path) = self.selected_path() {
 self.player.load(&path);
 true
 } else {
 false
 }
 }

If there's a selected song, we load it into the music engine. We return true if a song was
loaded.

Implementing the Engine of the Music Player Chapter 6

[201]

We'll now use this method in the event handler of the play button:

impl App {
 pub fn connect_toolbar_events(&self) {
 // …

 let playlist = self.playlist.clone();
 let play_image = self.toolbar.play_image.clone();
 let cover = self.cover.clone();
 let state = self.state.clone();
 self.toolbar.play_button.connect_clicked(move |_| {
 if state.lock().unwrap().stopped {
 if playlist.play() {
 set_image_icon(&play_image, PAUSE_ICON);
 set_cover(&cover, &playlist);
 }
 } else {
 set_image_icon(&play_image, PLAY_ICON);
 }
 });

 // …
 }
}

We create a copy of the playlist variable because it is moved into the closure. In the latter,
we then call the play() method we created just before. We only change the image of the
button and show the cover if a song starts to play.

You can now try the music player: open an MP3 file, click play, and you should hear the
song. Let's continue to develop the software since many features are missing.

Pausing and resuming the song
We'll start by adding a field indicating whether the player is in pause or not. This field will
be changed by methods such as play or resume. However, remember that our Playlist is
wrapped in an Rc, so that we can use it in different places, namely in the event handlers.
Also, remember that Rust forbids mutation when there are mutable references to a value.
How can we update this field while still using a reference-counted pointer? One way is to
use interior mutability.

Implementing the Engine of the Music Player Chapter 6

[202]

Interior mutability
Interior mutability is a concept granting mutable an inner value of a type with an
immutable reference. Is this safe to do? Yes, totally, because we need to respect certain
constraints. One way to have interior mutability is to wrap our Cell type. The constraint of
this type is that if we want to get the value from the Cell from an immutable reference, the
wrapped type must implement the Copy trait. We'll see the other commonly-used type for
interior mutability later in this chapter. For now, let's add our field to the Player type:

use std::cell::Cell;

pub struct Player {
 app_state: Arc<Mutex<super::State>>,
 event_loop: EventLoop,
 paused: Cell<bool>,
}

Let's update the construction of the structure:

impl Player {
 pub(crate) fn new(app_state: Arc<Mutex<super::State>>) -> Self
{
 // …

 Player {
 app_state,
 event_loop,
 paused: Cell::new(false),
 }
 }
}

We can now add a method to check whether the music is paused or not:

 pub fn is_paused(&self) -> bool {
 self.paused.get()
 }

Implementing the Engine of the Music Player Chapter 6

[203]

Here, we need to call Cell::get() to get a copy of the inner value. We can now add
methods to play and resume the song:

 pub fn pause(&self) {
 self.paused.set(true);
 self.app_state.lock().unwrap().stopped = true;
 self.set_playing(false);
 }

 pub fn resume(&self) {
 self.paused.set(false);
 self.app_state.lock().unwrap().stopped = false;
 self.set_playing(true);
 }

Here we see that we need to call Cell::set() to update the value of the Cell. We can do
that even though we only have an immutable reference and, once again, it is completely
safe to do so. Then, we update the stopped field of the application state because the click
handler for the play button will use it to decide whether we want to play or resume the
music. We also call set_playing() to indicate to the player thread whether it needs to
continue playing the song or not. This method is defined as such:

 fn set_playing(&self, playing: bool) {
 *self.event_loop.playing.lock().unwrap() = playing;
 let (ref lock, ref condition_variable) =
*self.event_loop.condition_variable;
 let mut started = lock.lock().unwrap();
 *started = playing;
 if playing {
 condition_variable.notify_one();
 }
 }

It sets the playing variable and then notifies the player thread to wake it up if playing is
true.

We'll now add a pause() method to our Playlist type that will call the pause() method
we've just created when the user clicks pause:

 pub fn pause(&self) {
 self.player.pause();
 }

Implementing the Engine of the Music Player Chapter 6

[204]

To use it, we'll update the click handler of the play button:

self.toolbar.play_button.connect_clicked(move |_| {
 if state.lock().unwrap().stopped {
 if playlist.play() {
 set_image_icon(&play_image, PAUSE_ICON);
 set_cover(&cover, &playlist);
 }
 } else {
 playlist.pause();
 set_image_icon(&play_image, PLAY_ICON);
 }
});

We added the call to pause in the else block.

We now want to update the play() method. Now that we can pause the song, there are
two new cases to consider for this method:

If the song is playing, we want to pause it.
If the song is paused, we either want to resume the song if the same one is
selected or start a new song if another one is selected.

That's why we need a new field in our Playlist structure:

pub struct Playlist {
 current_song: RefCell<Option<String>>,
 model: ListStore,
 player: Player,
 treeview: TreeView,
}

We added a field that will contain the path of the currently playing song. Here we wrap the
Option<String> into a RefCell, which is another way to have interior mutability. We
cannot use a Cell because the String type does not implement the Copy trait. So, what is
the difference between Cell and RefCell? The RefCell type will check the borrowing
rules at runtime: if two borrows happen at the same time, it will panic. We have to be
careful when using RefCell: it is better to have compile-time borrowing checks if possible.
But when using gtk-rs, we sometimes need to share a mutable state with the event
handler and the best way to do that is to use RefCell.

Implementing the Engine of the Music Player Chapter 6

[205]

In the next chapter, we'll learn how to use a library that abstracts the state management so
that you won't need to use RefCell and you won't get any panic at runtime. This requires
a new import statement:

use std::cell::RefCell;

We need to update the constructor to initialize this value:

impl Playlist {
 pub(crate) fn new(state: Arc<Mutex<State>>) -> Self {
 // …

 Playlist {
 current_song: RefCell::new(None),
 model,
 player: Player::new(state.clone()),
 treeview,
 }
 }
}

There's one more method to add in Playlist before we move on to update the play()
method:

 pub fn path(&self) -> Option<String> {
 self.current_song.borrow().clone()
 }

This method returns a copy of the current song path. Since the field is a RefCell, we need
to call borrow() in order to get access to the inner value. This method returns the
equivalent of an immutable reference. We'll soon see how to have a mutable reference. As
with Mutex, the borrow is lexical and the borrow will end at the end of the function. We're
now ready to update the play() method:

 pub fn play(&self) -> bool {
 if let Some(path) = self.selected_path() {
 if self.player.is_paused() && Some(&path) ==
 self.path().as_ref() {
 self.player.resume();
 } else {
 self.player.load(&path);
 *self.current_song.borrow_mut() = Some(path.into());
 }
 true
 } else {
 false

Implementing the Engine of the Music Player Chapter 6

[206]

 }
 }

We call resume() if the song was paused and if the selected path is the same as the
currently playing song path. If this condition is false, we load the specified path and save
this path in our field. To do so, we call borrow_mut() to get a mutable reference. Once
again, we need to prefix the expression with * so that DerefMut::deref_mut() gets
called. Run the project and you'll see that you can pause and resume the song.

Let's now add a way to stop the song. We'll start by adding a method to the Player, as
usual:

 pub fn stop(&self) {
 self.paused.set(false);
 self.app_state.lock().unwrap().stopped = true;
 self.emit(Stop);
 self.set_playing(false);
 }

We first set the paused field to false so that the playlist won't try to resume the song the
next time the play button is clicked. We then set the stopped field to true, this will cause
the next click of this button to play the song instead of trying to pause it. We then emit the
Stop action to the event loop and indicate to the engine thread that it should not play music
anymore.

The emit method is very simple:

fn emit(&self, action: Action) {
 self.event_loop.queue.push(action);
}

It simply pushes the action in the queue of the event loop.

Let's now handle this Stop event:

Stop => {
 source = None;
},

Implementing the Engine of the Music Player Chapter 6

[207]

We only reset the source to None because we won't need it anymore.

Then, we're ready to add a stop() method to the Playlist:

 pub fn stop(&self) {
 *self.current_song.borrow_mut() = None;
 self.player.stop();
 }

We first reset the current_song field to None in such a way that the next call to play()
won't attempt to resume the song. We then call the stop() method we created earlier.

We're now ready to use this new method by creating a new event handler for the stop
button, add this code to the connect_toolbar_events() method:

 let playlist = self.playlist.clone();
 let play_image = self.toolbar.play_image.clone();
 let cover = self.cover.clone();
 self.toolbar.stop_button.connect_clicked(move |_| {
 playlist.stop();
 cover.hide();
 set_image_icon(&play_image, PLAY_ICON);
 });

So, when we click stop, we call the Playlist::stop() method in order to stop playing the
music. We also hide the cover and set back the play button to show the play icon. You can
now try again in the music player to see this new feature in action.

Now let's add the actions for the two remaining buttons: previous and next.

We first need to create a new method in the Playlist:

 pub fn next(&self) -> bool {
 let selection = self.treeview.get_selection();
 let next_iter =
 if let Some((_, iter)) = selection.get_selected() {
 if !self.model.iter_next(&iter) {
 return false;
 }
 Some(iter)
 }
 else {
 self.model.get_iter_first()
 };
 if let Some(ref iter) = next_iter {
 selection.select_iter(iter);
 self.play();

Implementing the Engine of the Music Player Chapter 6

[208]

 }
 next_iter.is_some()
 }

We start by getting the selection. Then we check whether an item is selected: in this case, we
try to get the item after the selection. Otherwise, we get the first item on the list. Then, if we
were able to get an item, we select it and start playing the song. We return whether we
changed the selection or not.

The previous() method is similar:

 pub fn previous(&self) -> bool {
 let selection = self.treeview.get_selection();
 let previous_iter =
 if let Some((_, iter)) = selection.get_selected() {
 if !self.model.iter_previous(&iter) {
 return false;
 }
 Some(iter)
 }
 else {
 self.model.iter_nth_child(None, max(0,
 self.model.iter_n_children(None)
 - 1))
 };
 if let Some(ref iter) = previous_iter {
 selection.select_iter(iter);
 self.play();
 }
 previous_iter.is_some()
 }

However, there's no get_iter_last() method, so we get the last element with
iter_nth_child().

This requires a new import statement to be added at the top of the file:

use std::cmp::max;

Implementing the Engine of the Music Player Chapter 6

[209]

With these new methods, we're ready to handle the click events for the buttons. Let's start
with the next button:

let playlist = self.playlist.clone();
let play_image = self.toolbar.play_image.clone();
let cover = self.cover.clone();
self.toolbar.next_button.connect_clicked(move |_| {
 if playlist.next() {
 set_image_icon(&play_image, PAUSE_ICON);
 set_cover(&cover, &playlist);
 }
});

We simply call the next() method we just created and if a new song was selected, we
update the icon of the play button and show the new cover. The previous button handler is
exactly the same except that we call previous() instead:

let playlist = self.playlist.clone();
let play_image = self.toolbar.play_image.clone();
let cover = self.cover.clone();
self.toolbar.previous_button.connect_clicked(move |_| {
 if playlist.previous() {
 set_image_icon(&play_image, PAUSE_ICON);
 set_cover(&cover, &playlist);
 }
});

Showing the progression of the song
It would be nice to see the cursor moving when the song plays. Let's tackle this challenge
right now.

We'll start by adding a method to our Player to get the duration of a song:

use std::time::Duration;

 pub fn compute_duration<P: AsRef<Path>>(path: P) ->
 Option<Duration> {
 let file = File::open(path).unwrap();
 Mp3Decoder::compute_duration(BufReader::new(file))
 }

Implementing the Engine of the Music Player Chapter 6

[210]

We simply call the compute_duration() method we created earlier. Next, we'll modify
the Playlist to call this function. But before we do so, we'll modify the State type from
the main module to include additional information:

use std::collections::HashMap;

struct State {
 current_time: u64,
 durations: HashMap<String, u64>,
 stopped: bool,
}

We added a current_time field, which will contain how much time elapsed since the song
started playing. We also store the duration of the songs in a HashMap so that we only
compute it once for each path. We now need to update the initialization of the State in the
App constructor:

let current_time = 0;
let durations = HashMap::new();
let state = Arc::new(Mutex::new(State {
 current_time,
 durations,
 stopped: true,
}));

Let's go back to the Playlist. It will now contain the State in its structure:

pub struct Playlist {
 current_song: RefCell<Option<String>>,
 model: ListStore,
 player: Player,
 state: Arc<Mutex<State>>,
 treeview: TreeView,
}

Implementing the Engine of the Music Player Chapter 6

[211]

This should be reflected in its constructor:

Playlist {
 current_song: RefCell::new(None),
 model,
 player: Player::new(state.clone()),
 state,
 treeview,
}

Here, the state field was added. We'll now add a method that will compute the duration
in another thread:

use std::thread;
use to_millis;

 fn compute_duration(&self, path: &Path) {
 let state = self.state.clone();
 let path = path.to_string_lossy().to_string();
 thread::spawn(move || {
 if let Some(duration) = Player::compute_duration(&path)
 {
 let mut state = state.lock().unwrap();
 state.durations.insert(path, to_millis(duration));
 }
 });
 }

In the thread's closure, we compute the duration and when it's done, we lock the state to
insert the duration in the HashMap. We compute the duration in another thread because it
can take time and we don't want to block the user interface during this computation. We
now call this method in Playlist::add():

 pub fn add(&self, path: &Path) {
 self.compute_duration(path);

 // …
 }

We'll update the Adjustment so that its upper value is 0.0 in the beginning:

let adjustment = Adjustment::new(0.0, 0.0, 0.0, 0.0, 0.0, 0.0);

Implementing the Engine of the Music Player Chapter 6

[212]

This is to avoid seeing the cursor moving too quickly when the duration is not yet
computed.

Finally, we'll add the code to update the UI in the App::connect_events() method:

use gtk::{AdjustmentExt, Continue};
use toolbar::{set_image_icon, PAUSE_ICON, PLAY_ICON};

 fn connect_events(&self) {
 let playlist = self.playlist.clone();
 let adjustment = self.adjustment.clone();
 let state = self.state.clone();
 let play_image = self.toolbar.play_image.clone();
 gtk::timeout_add(100, move || {
 let state = state.lock().unwrap();
 if let Some(path) = playlist.path() {
 if let Some(&duration) = state.durations.get(&path)
 {
 adjustment.set_upper(duration as f64);
 }
 }
 if state.stopped {
 set_image_icon(&play_image, PLAY_ICON);
 } else {
 set_image_icon(&play_image, PAUSE_ICON);
 }
 adjustment.set_value(state.current_time as f64);
 Continue(true)
 });
 }

The gtk::timeout_add() method will be run every 100 milliseconds as long as its closure
returns Continue(false). This closure starts by checking whether the duration is in the
HashMap, and sets the upper value of the cursor as this duration. If the value is not in the
HashMap, it means it wasn't computed yet. After that, we check whether the stopped field
is true, that means the song ended and the engine thread is no longer playing it. In this case,
we want to show the play icon. If the song is still playing, we show the pause icon. Finally,
we set the current value of the cursor from the current_time field.

Implementing the Engine of the Music Player Chapter 6

[213]

The cursor will now move automatically as the song plays. Here's how the player looks
now:

Figure 6.1

Improving CPU usage
One issue you may have noticed is that when no song is playing, the software will use 100%
of the CPU. This is because of the infinite loop in the music engine thread. It will do nothing
except loop when the song is paused or when there's no song to play. Let's now fix this
issue.

Implementing the Engine of the Music Player Chapter 6

[214]

Condition variable
What we want to do is to make the thread sleep when it has nothing to do. We also want to
be able to wake the thread up from the main thread. This is exactly what condition variables
are for. So, let's add one to our engine. We'll start by adding a condition_variable field
to the EventLoop:

struct EventLoop {
 condition_variable: Arc<(Mutex<bool>, Condvar)>,
 queue: Arc<SegQueue<Action>>,
 playing: Arc<Mutex<bool>>,
}

A condition variable is usually used together with a Boolean value (wrapped in a Mutex).
We need to rewrite the constructor of EventLoop to initialize this new field:

impl EventLoop {
 fn new() -> Self {
 EventLoop {
 condition_variable: Arc::new((Mutex::new(false),
Condvar::new())),
 queue: Arc::new(SegQueue::new()),
 playing: Arc::new(Mutex::new(false)),
 }
 }
}

Next, we need to block the thread when it has nothing to do. Here's the start of the new
code of the thread in Player::new():

{
 let app_state = app_state.clone();
 let event_loop = event_loop.clone();
 let condition_variable = event_loop.condition_variable.clone();
 thread::spawn(move || {
 let block = || {
 let (ref lock, ref condition_variable) =
 *condition_variable;
 let mut started = lock.lock().unwrap();
 *started = false;
 while !*started {
 started =
 condition_variable.wait(started).unwrap();
 }
 };

Implementing the Engine of the Music Player Chapter 6

[215]

We create a copy of the condition variable and we move this copy into the thread. Then, in
the beginning of the closure, we lock the Boolean value associated with the condition
variable to set it to false. Afterward, we loop: while this value is false, we block the
current thread. We created a closure instead of a normal function because normal functions
cannot capture values. The following code is the same as before:

 let mut buffer = [[0; 2]; BUFFER_SIZE];
 let mut playback = Playback::new("MP3", "MP3 Playback", None,
 DEFAULT_RATE);
 let mut source = None;
 loop {
 if let Some(action) = event_loop.queue.try_pop() {
 match action {
 Load(path) => {
 let file = File::open(path).unwrap();
 source =
Some(Mp3Decoder::new(BufReader::new(file)).unwrap());
 let rate = source.as_ref().map(|source|
 source.samples_rate()).unwrap_or(DEFAULT_RATE);
 playback = Playback::new("MP3", "MP3 Playback",
 None, rate);
 app_state.lock().unwrap().stopped = false;
 },
 Stop => {
 source = None;
 },
 }
 } else if *event_loop.playing.lock().unwrap() {
 let mut written = false;
 if let Some(ref mut source) = source {
 let size = iter_to_buffer(source, &mut buffer);
 if size > 0 {
 app_state.lock().unwrap().current_time =
 source.current_time();
 playback.write(&buffer[..size]);
 written = true;
 }
 }

Implementing the Engine of the Music Player Chapter 6

[216]

But the rest of the closure is a bit different:

 if !written {
 app_state.lock().unwrap().stopped = true;
 *event_loop.playing.lock().unwrap() = false;
 source = None;
 block();
 }
 } else {
 block();
 }
 }
 });
}

If the player was unable to play song (that is, the song came into an end), we call the closure
to block the thread. We also block the thread if the player is paused. With the condition
variable, the software stopped using 100% CPU.

Showing the song's current time
Currently, we only display the progression of the song. The user has no way to know the
duration and for how many seconds the song has been playing. Let's fix that by adding
labels that will show the current time and the duration.

We'll need two new import statements in the main module:

use gtk::{Label, LabelExt};

We'll also add two label in our App structure:

struct App {
 adjustment: Adjustment,
 cover: Image,
 current_time_label: Label,
 duration_label: Label,
 playlist: Rc<Playlist>,
 state: Arc<Mutex<State>>,
 toolbar: MusicToolbar,
 window: Window,
}

Implementing the Engine of the Music Player Chapter 6

[217]

One label for the current time and the other for the duration. Since we want to show the
different label on the right of the cursor, we'll create a horizontal box, this code should be
added in App::new():

let hbox = gtk::Box::new(Horizontal, 10);
vbox.add(&hbox);

let adjustment = Adjustment::new(0.0, 0.0, 10.0, 0.0, 0.0, 0.0);
let scale = Scale::new(Horizontal, &adjustment);
scale.set_draw_value(false);
scale.set_hexpand(true);
hbox.add(&scale);

The Scale widget is now added to hbox instead of vbox. And we call set_hexpand() so
that the widget takes as much horizontal space as possible.

We're now ready to create our label's:

let current_time_label = Label::new(None);
hbox.add(¤t_time_label);

let slash_label = Label::new("/");
hbox.add(&slash_label);

let duration_label = Label::new(None);
duration_label.set_margin_right(10);
hbox.add(&duration_label);

We create three label; the third one being a separator. We set a right margin to the last
label so that it is not too close to the border of the window. Further, in the App constructor,
we need to update the initialization of the structure:

let app = App {
 adjustment,
 cover,
 current_time_label,
 duration_label,
 playlist,
 state,
 toolbar,
 window,
};

We added the two label.

Implementing the Engine of the Music Player Chapter 6

[218]

We'll create a function to convert a number of milliseconds to a String of
the minute:second format:

fn millis_to_minutes(millis: u64) -> String {
 let mut seconds = millis / 1_000;
 let minutes = seconds / 60;
 seconds %= 60;
 format!("{}:{:02}", minutes, seconds)
}

In this function, we first convert the milliseconds to seconds by dividing by one thousand.
We then get the number of minutes by dividing the seconds by 60. Afterward, we compute
the number of seconds that are not included in the minutes with the modulo operation.
Finally, we format the minutes and seconds as a String. As you can see, we used a
special {:02} formatter. The 2 means that we want to print the number as two characters,
even if the number is less than 0. The 0 after the colon indicates that we want to prepend 0
instead of spaces.

With this new function, we can rewrite the timer to update (in the method
App::connect_events()) the label's:

let current_time_label = self.current_time_label.clone();
let duration_label = self.duration_label.clone();
let playlist = self.playlist.clone();
let adjustment = self.adjustment.clone();
let state = self.state.clone();
let play_image = self.toolbar.play_image.clone();
gtk::timeout_add(100, move || {
 let state = state.lock().unwrap();
 if let Some(path) = playlist.path() {
 if let Some(&duration) = state.durations.get(&path) {
 adjustment.set_upper(duration as f64);
 duration_label.set_text(&millis_to_minutes(duration));
 }
 }
 if state.stopped {
 set_image_icon(&play_image, PLAY_ICON);
 } else {
 set_image_icon(&play_image, PAUSE_ICON);
current_time_label.set_text(&millis_to_minutes(state.current_time))
;
 }
 adjustment.set_value(state.current_time as f64);
 Continue(true)
});

Implementing the Engine of the Music Player Chapter 6

[219]

Here are the changes from the previous version. When we get the duration, we update the
duration label. And when the song is not stopped (that is, when it is playing), we update
the current time label.

We need to change the stop button handler so that it resets the text of these label's.

Finally, we can update the handler:

let current_time_label = self.current_time_label.clone();
let duration_label = self.duration_label.clone();
let playlist = self.playlist.clone();
let play_image = self.toolbar.play_image.clone();
let cover = self.cover.clone();
self.toolbar.stop_button.connect_clicked(move |_| {
 current_time_label.set_text("");
 duration_label.set_text("");
 playlist.stop();
 cover.hide();
 set_image_icon(&play_image, PLAY_ICON);
});

We clone the widgets to move them into the closure and set the text of the label's to the
empty string.

Here's the result you should see when running the application:

Figure 6.2

Implementing the Engine of the Music Player Chapter 6

[220]

Loading and saving the playlist
We have the ability to create a playlist in our music player, but we cannot save a playlist to
a file in order to be able to load one later. Let's add this feature to our project.

We'll save the playlist in the m3u file format and to handle this format, we'll use
the m3u crate. So let's add it to our Cargo.toml file:

m3u = "^1.0.0"

Add this line to the main module:

extern crate m3u;

Saving a playlist
We'll start by adding a button to save the playlist. First, we add a field in the
MusicToolbar structure for the button:

pub struct MusicToolbar {
 open_button: ToolButton,
 next_button: ToolButton,
 play_button: ToolButton,
 pub play_image: Image,
 previous_button: ToolButton,
 quit_button: ToolButton,
 remove_button: ToolButton,
 save_button: ToolButton,
 stop_button: ToolButton,
 toolbar: Toolbar,
}

And in the constructor, we'll create this button:

impl MusicToolbar {
 pub fn new() -> Self {
 let toolbar = Toolbar::new();

 let (open_button, _) = new_tool_button("document-open");
 toolbar.add(&open_button);

 let (save_button, _) = new_tool_button("document-save");
 toolbar.add(&save_button);

 toolbar.add(&SeparatorToolItem::new());

Implementing the Engine of the Music Player Chapter 6

[221]

 // …

 let toolbar = MusicToolbar {
 open_button,
 next_button,
 play_button,
 play_image,
 previous_button,
 quit_button,
 remove_button,
 save_button,
 stop_button,
 toolbar
 };

 toolbar
 }
}

Next, we'll add a save method in the Playlist structure:

use std::fs::File;

use m3u;

 pub fn save(&self, path: &Path) {
 let mut file = File::create(path).unwrap();
 let mut writer = m3u::Writer::new(&mut file);

 let mut write_iter = |iter: &TreeIter| {
 let value = self.model.get_value(&iter, PATH_COLUMN as
 i32);
 let path = value.get::<String>().unwrap();
 writer.write_entry(&m3u::path_entry(path)).unwrap();
 };

 if let Some(iter) = self.model.get_iter_first() {
 write_iter(&iter);
 while self.model.iter_next(&iter) {
 write_iter(&iter);
 }
 }
 }

Implementing the Engine of the Music Player Chapter 6

[222]

Here, we first create a m3u::Writer with a File that we've created. This writer will be
used to write the entry to the file. We create a closure that gets the path from an iterator of
our TreeView and writes this path to the file. We chose to create a closure to avoid
repeating the code, as we'll need this code twice. After that, we get the first iterator and
write its contents before looping until there's no more row in the view.

We're now ready to call this code. First, we'll create a function in the module toolbar to
show a save file dialog. It is similar to the show_open_dialog() function we wrote in the
previous chapter:

fn show_save_dialog(parent: &ApplicationWindow) -> Option<PathBuf>
{
 let mut file = None;
 let dialog = FileChooserDialog::new(Some("Choose a destination
 M3U playlist
 file"), Some(parent), FileChooserAct ion::Save);
 let filter = FileFilter::new();
 filter.add_mime_type("audio/x-mpegurl");
 filter.set_name("M3U playlist file");
 dialog.set_do_overwrite_confirmation(true);
 dialog.add_filter(&filter);
 dialog.add_button("Cancel", RESPONSE_CANCEL);
 dialog.add_button("Save", RESPONSE_ACCEPT);
 let result = dialog.run();
 if result == RESPONSE_ACCEPT {
 file = dialog.get_filename();
 }
 dialog.destroy();
 file
}

Here, we use the FileChooserAction::Save type instead of
FileChooserAction::Open. We use a different filter and mime type. We also call
set_do_overwrite_confirmation() which is very important. It will ask for a
confirmation if the user asks to overwrite a file. The rest of the function is exactly the same
as the one to open a file, except that the label of the button is now Save.

Implementing the Engine of the Music Player Chapter 6

[223]

We can now use this function in the event handler of the save button:

let parent = self.window.clone();
let playlist = self.playlist.clone();
self.toolbar.save_button.connect_clicked(move |_| {
 let file = show_save_dialog(&parent);
 if let Some(file) = file {
 playlist.save(&file);
 }
});

We simply call the function show_save_dialog() and give the resulting file to the
Playlist::save() method. You can now try to save a playlist in the application:

Figure 6.3

Loading a playlist
We can save playlists, but still cannot load them. Let's start by adding a load() method to
Playlist:

 pub fn load(&self, path: &Path) {
 let mut reader = m3u::Reader::open(path).unwrap();
 for entry in reader.entries() {
 if let Ok(m3u::Entry::Path(path)) = entry {
 self.add(&path);
 }
 }
 }

Here, we create a m3u::Reader with the specified path. We loop over the entry and if we
were able to retrieve a m3u::Entry::Path, we add it to the playlist widget.

Implementing the Engine of the Music Player Chapter 6

[224]

We'll now modify the open dialog to allow selecting M3U files:

fn show_open_dialog(parent: &ApplicationWindow) -> Option<PathBuf>
{
 let mut file = None;
 let dialog = FileChooserDialog::new(Some("Select an MP3 audio
file"),
 Some(parent), FileChooserAction::Open);

 let mp3_filter = FileFilter::new();
 mp3_filter.add_mime_type("audio/mp3");
 mp3_filter.set_name("MP3 audio file");
 dialog.add_filter(&mp3_filter);

 let m3u_filter = FileFilter::new();
 m3u_filter.add_mime_type("audio/x-mpegurl");
 m3u_filter.set_name("M3U playlist file");
 dialog.add_filter(&m3u_filter);

 dialog.add_button("Cancel", RESPONSE_CANCEL);
 dialog.add_button("Accept", RESPONSE_ACCEPT);
 let result = dialog.run();
 if result == RESPONSE_ACCEPT {
 file = dialog.get_filename();
 }
 dialog.destroy();
 file
}

We'll now change the open button event handler to select which action to do depending on
the file type:

impl App {
 pub fn connect_toolbar_events(&self) {
 let parent = self.window.clone();
 let playlist = self.playlist.clone();
 self.toolbar.open_button.connect_clicked(move |_| {
 let file = show_open_dialog(&parent);
 if let Some(file) = file {
 if let Some(ext) = file.extension() {
 match ext.to_str().unwrap() {
 "mp3" => playlist.add(&file),
 "m3u" => playlist.load(&file),
 extension => {
 let dialog =
 MessageDialog::new(Some(&parent),
 DialogFlags::empty(), MessageType::Error,

Implementing the Engine of the Music Player Chapter 6

[225]

 ButtonsType::Ok, &format!("Cannot open
 file with
 extension .{}", extension));
 dialog.run();
 dialog.destroy();
 },
 }
 }
 }
 });

 // …
 }
}

This requires a couple of new import statements:

use gtk::{
 ButtonsType,
 DialogFlags,
 MessageDialog,
 MessageType,
};

This new event handler now checks the file extension, if it is mp3, it will call the
Playlist::add() method as we were doing earlier. If it is m3u, we call our new
Playlist::load() method. Otherwise, we show an error message to the user:

Figure 6.4

Implementing the Engine of the Music Player Chapter 6

[226]

You can now try to load a playlist in our music player, don't forget to change the filter in
order to see M3U files in the dialog.

Using gstreamer for playback
Implementing an engine to play music was a good exercise to learn about threading.
However, for a real program, you could simply use gstreamer for the music playback. So,
let's see how to use this library in our music player.

Remove the following dependencies in your Cargo.toml:

crossbeam = "^0.3.0"
pulse-simple = "^1.0.0"
simplemad = "^0.8.1"

And remove their corresponding extern crate statements. We can also remove the mp3
and player modules as we'll use gstreamer instead. Now, we can add our dependencies
for gstreamer:

gstreamer = "^0.9.1"
gstreamer-player = "^0.9.0"

And add their corresponding extern crate statements:

extern crate gstreamer as gst;
extern crate gstreamer_player as gst_player;

At the beginning of the main function, we need to initialize gstreamer:

gst::init().expect("gstreamer initialization failed");

We no longer need our State structure, so we remove it and the state field in
the App structure. And now, we can update our playlist module. First, let's add a few
use statements:

use gst::{ClockTime, ElementExt};
use gst_player;
use gtk::Cast;

Implementing the Engine of the Music Player Chapter 6

[227]

We remove the state field and update the player one in the Playlist structure:

pub struct Playlist {
 current_song: RefCell<Option<String>>,
 model: ListStore,
 player: gst_player::Player,
 treeview: TreeView,
}

The Playlist constructor does not need the state anymore:

impl Playlist {
 pub(crate) fn new() -> Self {
 let model = ListStore::new(&[
 Pixbuf::static_type(),
 Type::String,
 Type::String,
 Type::String,
 Type::String,
 Type::String,
 Type::String,
 Type::String,
 Pixbuf::static_type(),
]);
 let treeview = TreeView::new_with_model(&model);
 treeview.set_hexpand(true);
 treeview.set_vexpand(true);

 Self::create_columns(&treeview);

 let dispatcher =
gst_player::PlayerGMainContextSignalDispatcher::new(None);
 let player = gst_player::Player::new(None,
 Some(&dispatcher.upcast::
 <gst_player::PlayerSignalDispatcher>
 ()));

 Playlist {
 current_song: RefCell::new(None),
 model,
 player,
 treeview,
 }
 }
}

Implementing the Engine of the Music Player Chapter 6

[228]

Here, we create the Player from the gstreamer crate. We need to remove the
compute_duration() method and all its uses because we'll use gstreamer to get the
song's duration:

 pub fn get_duration(&self) -> ClockTime {
 self.player.get_duration()
 }

 pub fn get_current_time(&self) -> ClockTime {
 self.player.get_position()
 }

 pub fn is_playing(&self) -> bool {
 self.player.get_pipeline()
 .map(|element| element.get_state(gst::CLOCK_TIME_NONE).1 ==
 gst::State::Playing)
 .unwrap_or(false)
 }

Here, we create a few methods that will be useful to show the time and when the song is
playing. Finally, we can update the play() method to use gstreamer instead:

 pub fn play(&self) -> bool {
 if self.selected_path() == self.player.get_uri() {
 self.player.play();
 return false;
 }
 if let Some(path) = self.selected_path() {
 let uri = format!("file://{}", path);
 self.player.set_uri(&uri);
 self.player.play();
 true
 } else {
 false
 }
 }

Let's go back to the main module to update the creation of the playlist:

let playlist = Rc::new(Playlist::new());

Implementing the Engine of the Music Player Chapter 6

[229]

One more thing to update is the code to show the current time:

gtk::timeout_add(100, move || {
 let duration = playlist.get_duration();
 adjustment.set_upper(duration.nanoseconds().unwrap_or(0) as
 f64);
 duration_label.set_text(&format!("{:.0}", duration));

 let current_time = playlist.get_current_time();
 if !playlist.is_playing() {
 set_image_icon(&play_image, PLAY_ICON);
 } else {
 set_image_icon(&play_image, PAUSE_ICON);
 current_time_label.set_text(&format!("{:.0}",
 current_time));
 }
 adjustment.set_value(current_time.nanoseconds().unwrap_or(0) as
f64);
 Continue(true)
});

We now use the methods we created a bit earlier and some from gstreamer.

Finally, we update the toolbar module. First, the play_button event handler:

self.toolbar.play_button.connect_clicked(move |_| {
 if !playlist.is_playing() {
 if playlist.play() {
 set_image_icon(&play_image, PAUSE_ICON);
 set_cover(&cover, &playlist);
 }
 } else {
 playlist.pause();
 set_image_icon(&play_image, PLAY_ICON);
 }
});

We now use the is_playing() method instead of the state. Let's also remove the
FileFilter from the show_open_dialog() function because gstreamer supports more
formats than just MP3. And to be able to open them, we need to update the open_button
event handler:

self.toolbar.open_button.connect_clicked(move |_| {
 let file = show_open_dialog(&parent);
 if let Some(file) = file {
 if let Some(ext) = file.extension() {
 match ext.to_str().unwrap() {

Implementing the Engine of the Music Player Chapter 6

[230]

 "mp3" | "ogg" => playlist.add(&file),
 "m3u" => playlist.load(&file),
 extension => {
 let dialog = MessageDialog::new(Some(&parent),
 DialogFlags::empty(), MessageType::Error,
 ButtonsType::Ok, &format!("Cannot open file
 with extension . {}", extension));
 dialog.run();
 dialog.destroy();
 },
 }
 }
 }
});

Here, we only added the ogg format, but you can also add other formats.

Summary
This chapter started by showing you how to decode MP3 data with the simplemad crate.
You then learned how to write a music engine, this showed you how to use threads and
different threading objects such as Mutex, lock-free data structures, and condition variables.
You also learned how Rust can ensure thread safety. You also saw how to mutable the
fields of a value when you have an immutable reference with interior mutability. During
the whole chapter, we added the missing features to the music player such as play, pause,
previous, and next song.

In the next chapter, we'll improve the modularity of the music player by rewriting it with
the relm crate.

7
Music Player in a More Rusty

Way with Relm
In the previous chapter, we finished our music player. It is completely fine, but using gtk-
rs directly in Rust can be error-prone. That's why we'll rewrite our music player using
relm, an idiomatic GUI library for Rust. Relm is based on gtk-rs, so the application will
look the same at the end. However, the code will be cleaner and more declarative.

We will cover the following topics in this chapter:

Relm
Relm widgets
Model-view-controller
Declarative view
Message passing

Music Player in a More Rusty Way with Relm Chapter 7

[232]

Reasons to use relm instead of gtk-rs
directly
As you have seen in the previous chapters, we used concepts that were not really obvious,
and doing certain things that would normally be easy to do aren't that easy when using
GTK+ with Rust. These are some of the many reasons to use relm.

State mutation
It might not be clear from the previous chapter, but we indirectly used Rc<RefCell<T>> to
do state mutation. Indeed, our Playlist type contains a RefCell<Option<String>> and
we wrapped our Playlist inside a reference-counted pointer. This was to be able to
mutate the state in reaction to events, for instance playing the song when clicking the play
button:

let playlist = self.playlist.clone();
let play_image = self.toolbar.play_image.clone();
let cover = self.cover.clone();
let state = self.state.clone();
self.toolbar.play_button.connect_clicked(move |_| {
 if state.lock().unwrap().stopped {
 if playlist.play() {
 set_image_icon(&play_image, PAUSE_ICON);
 set_cover(&cover, &playlist);
 }
 } else {
 playlist.pause();
 set_image_icon(&play_image, PLAY_ICON);
 }
});

Having to use all these calls to clone() is cumbersome and using the RefCell<T> type
can lead to issues that are hard to debug in complex applications. The issue with this type is
that the borrow checking happens at runtime. For instance, the following application:

use std::cell::RefCell;
use std::collections::HashMap;

fn main() {
 let cell = RefCell::new(HashMap::new());
 cell.borrow_mut().insert("one", 1);
 let borrowed_cell = cell.borrow();
 if let Some(key) = borrowed_cell.get("one") {

Music Player in a More Rusty Way with Relm Chapter 7

[233]

 cell.borrow_mut().insert("two", 2);
 }
}

Will panic:

thread 'main' panicked at 'already borrowed: BorrowMutError',
/checkout/src/libcore/result.rs:906:4

Even though it is obvious why it panics in this example (we called borrow_mut() when the
borrow was still alive in borrowed_cell), in more complex applications, it will be harder
to understand why the panic happens, especially if we wrap the RefCell<T> in an Rc and
clone it everywhere. This brings us to the second issue with this type: using Rc<T>
encourages us to clone our data and share it too much which increases the coupling
between our modules.

The relm crate takes a different approach: widgets owns their data and the different
widgets communicate between them using message passing.

Asynchronous user interface
Another common issue when creating user interfaces is that we might want to perform an
action that might take time (such as a network request) without freezing the UI. By being
based on tokio, an asynchronous I/O framework for Rust, relm allows you to easily
program graphical user interfaces that can perform network requests without freezing the
interface itself.

Creating custom widgets
In object-oriented languages, it is very easy to create new widgets and use them like built-in
widgets. In this paradigm, you only need to create a new class that inherits from a widget
and that's it.

In Chapter 5, Creating a Music Player, we created custom widgets, such as Playlist and
MusicToolbar, but we needed to create a function to get the real GTK+ widget:

pub fn view(&self) -> &TreeView {
 &self.treeview
}

Music Player in a More Rusty Way with Relm Chapter 7

[234]

An alternative would have been to implement the Deref trait:

use std::ops::Deref;

impl Deref for Playlist {
 type Target = TreeView;

 fn deref(&self) -> &TreeView {
 &self.treeview
 }
}

That implementation would allow us to add the widget to its parent like this:

parent.add(&*playlist);

(Note the leading * in front of playlist which is the call to deref().)

Instead of adding it in the following way:

parent.add(playlist.view());

But it is still different than when using normal gtk widgets.

Relm solves all of these issues. Let's start using this crate.

Creating a window with relm
First of all, we'll use the nightly version of the Rust compiler.

While using this nightly version is not strictly necessary to use relm, it
provides a syntax that is a bit nicer using a feature that is only available on
this version.

That will be a good opportunity to learn how to install a different version of the compiler.
Nightly is the unstable version of Rust; it's a version that is compiled almost every day.
Some unstable features of Rust are only available on nightly. But, don't worry, we'll also see
how to use relm on the stable version of Rust.

Music Player in a More Rusty Way with Relm Chapter 7

[235]

Installing Rust nightly
With rustup, the tool we installed in Chapter 1, Basics of Rust, it is very easy to install
nightly:

rustup default nightly

Running this command will install the nightly version of the tools (cargo, rustc, and so
on). Also, it will switch the corresponding commands to use the nightly version.

If you want to go back to the stable version, issue the following command:

rustup default stable

The nightly version is updated very frequently, so you might want to update it every week
or more often. To do so, you need to run this command:

rustup update

This will also update the stable version if a new version was released (one stable version is
released every 6 weeks).

Now that we are using Rust nightly, we're ready to create a new project:

cargo new rusic-relm --bin

Add the following dependencies in the Cargo.toml file:

[dependencies]
gtk = "^0.3.0"
gtk-sys = "^0.5.0"
relm = "^0.11.0"
relm-attributes = "^0.11.0"
relm-derive = "^0.11.0"

We still need gtk because relm is based on it. Let's add the corresponding extern crate
statements:

#![feature(proc_macro)]

extern crate gtk;
extern crate gtk_sys;
#[macro_use]
extern crate relm;
extern crate relm_attributes;
#[macro_use]
extern crate relm_derive;

Music Player in a More Rusty Way with Relm Chapter 7

[236]

relm provides some macros, that's why we needed to add #[macro_use]. We'll start
slowly by creating a simple window with relm.

Widget
This crate is centered around the concept of widgets, which are different than the gtk
widgets. In relm, a widget is composed of a view, a model, and a method to update the
model in reaction to events. The concept of widget is implemented by a trait in relm: the
Widget trait.

Model
We'll start with an empty model and we'll populate it later in this chapter:

pub struct Model {
}

As you can see, a model can be a simple structure. It could also be () if your widget don't
need a model. Actually, it can be any type you want.

Besides the model, a widget needs to know the initial value of its model. To specify what it
is, we need to implement the model() method of the Widget trait:

#[widget]
impl Widget for App {
 fn model() -> Model {
 Model {
 }
 }

 // …
}

Here, we use the #[widget] attribute provided by the relm_attributes crate. Attributes
are currently an unstable feature of the language, that's why we use nightly. We'll see in the
section about the declarative view why this attribute is needed. So, let's go back to our
model() model, we only return Model {} for now as our model does not contain any data.
Other methods are needed for this trait, so this implementation is incomplete for now.

Music Player in a More Rusty Way with Relm Chapter 7

[237]

Messages
Relm widgets communicate by sending messages to other widgets, but also to themselves.
For instance, when the delete_event signal is emitted, we can emit the Quit message to
our widget and take appropriate action when we receive this message. A message is
modeled as an enum using the custom derive Msg that is specific to relm:

#[derive(Msg)]
pub enum Msg {
 Quit,
}

This custom derive is provided by the relm_derive crate.

View
Views are created in a declarative way in relm as a part of the Widget trait:

use gtk::{
 GtkWindowExt,
 Inhibit,
 WidgetExt,
};
use relm::Widget;
use relm_attributes::widget;

use self::Msg::*;

#[widget]
impl Widget for App {
 // …

 view! {
 gtk::Window {
 title: "Rusic",
 delete_event(_, _) => (Quit, Inhibit(false)),
 }
 }
}

Music Player in a More Rusty Way with Relm Chapter 7

[238]

We first imported some stuff from the gtk crate. Then we imported the Widget trait from
relm and the widget attribute. Later, we imported the variant of our enum Msg because we
use it in this code. To declare the view, we use the view! macro. This macro is very
particular, it is not a macro that is declared as macro_rules!, as we saw in Chapter 1,
Basics of Rust. Instead, it is parsed by the procedural macro implementing the #[widget]
attribute in order to provide a syntax that is not allowed in Rust.

To declare our view, we first specify the name of the gtk::Window widget.

We cannot import gtk::Window to be able to use only Window in the
declaration of the view.

After that, we use curly brackets and inside them, we specify the properties and events
handled by the widget.

Properties
Here, we declare that the title property is "Rusic". So we transformed
the set_title() call from gtk to the title property, only the part after set_ is needed.
Actually, relm will convert the property (title: "Rusic") to
the set_title("Rusic") call, as we'll see later.

Events
The syntax of the event handler is a bit special:

delete_event(_, _) => (Quit, Inhibit(false)),

First, we only need to write delete_event(_, _) => instead of
connect_delete_event(move |_, _| { }). If we needed the arguments of the signal,
we could have written the name of an identifier instead of using underscores (_). On the
right side of the fat arrow (=>), we specify two things between parentheses and separated
by a comma. First, there's Quit, which is the message that will be sent to the current widget
when the event is emitted. And second is the value to return to the gtk callback. Here, we
return Inhibit(false) to specify that we don't want to prevent the default event handler
from running.

Music Player in a More Rusty Way with Relm Chapter 7

[239]

Code generation
The code generated by the attribute is a normal Rust method that looks like:

fn view(relm: &Relm<Self>, model: Self::Model) -> Self {
 // This method does not actually exist, but relm directly create
a window using the functions from the sys crates.
 let window = gtk::Window::new();
 window.set_title("Rusic");

 window.show();

 connect!(relm, window, connect_delete_event(_, _), return
 (Some(Quit), Inhibit(false)));

 Win {
 model,
 window: window,
 }
}

Update function
The only remaining required method of the Widget trait is update(). In this method, we'll
manage the Quit message:

#[widget]
impl Widget for App {
 fn update(&mut self, event: Msg) {
 match event {
 Quit => gtk::main_quit(),
 }
 }

 // …
}

Here, we specify that when we receive the Quit message, we call gtk::main_quit(),
which is a function similar to Application::quit() that we used in Chapter 5, Creating a
Music Player.

It should be noted that the #[widget] attribute will also generate the App structure that
will contain the widgets and the model.

Music Player in a More Rusty Way with Relm Chapter 7

[240]

We can finally show this window by calling its run() method in the main function:

fn main() {
 App::run(()).unwrap();
}

Later, we'll see why we need to specify () as a parameter to run().

Adding child widgets
We saw the basics of how to create a widget with relm. Now, let's continue the creation of
our user interface. We'll start by adding the toolbar. Besides specifying properties and
signals in the view! macro, we can also nest widgets in order to add a child to a container.
So, to add gtk::Box as a child of our window, we simply need to nest the former inside the
latter:

view! {
 gtk::Window {
 title: "Rusic",
 delete_event(_, _) => (Quit, Inhibit(false)),
 gtk::Box {
 },
 }
}

And to add a toolbar to the gtk::Box, we create a new level of nesting:

view! {
 gtk::Window {
 title: "Rusic",
 delete_event(_, _) => (Quit, Inhibit(false)),
 gtk::Box {
 orientation: Vertical,
 #[name="toolbar"]
 gtk::Toolbar {
 },
 },
 }
}

Here, we can see that there's an attribute: the #[name] attribute gives a name to a widget
which will allow us to access this widget by the specified identifier, as we'll see later. We'll
encounter other attributes in the rest of this chapter.

Music Player in a More Rusty Way with Relm Chapter 7

[241]

We'll add an attribute to our model to keep the image to be shown on the play/pause
button:

use gtk::Image;

pub const PAUSE_ICON: &str = "gtk-media-pause";
pub const PLAY_ICON: &str = "gtk-media-play";

pub struct Model {
 play_image: Image,
}

We also added the constants for the name of the images representing the state of the button.
We need to update the model() method to specify this new field:

fn model() -> Model {
 Model {
 play_image: new_icon(PLAY_ICON),
 }
}

This uses the following function to create an image:

fn new_icon(icon: &str) -> Image {
 Image::new_from_file(format!("assets/{}.png", icon))
}

Let's add the items to the toolbar:

use gtk::{
 OrientableExt,
 ToolButtonExt,
};
use gtk::Orientation::Vertical;

view! {
 gtk::Window {
 title: "Rusic",
 delete_event(_, _) => (Quit, Inhibit(false)),
 gtk::Box {
 orientation: Vertical,
 #[name="toolbar"]
 gtk::Toolbar {
 gtk::ToolButton {
 icon_widget: &new_icon("document-open"),
 clicked => Open,
 },
 gtk::ToolButton {

Music Player in a More Rusty Way with Relm Chapter 7

[242]

 icon_widget: &new_icon("document-save"),
 clicked => Save,
 },
 gtk::SeparatorToolItem {
 },
 gtk::ToolButton {
 icon_widget: &new_icon("gtk-media-previous"),
 },
 gtk::ToolButton {
 icon_widget: &self.model.play_image,
 clicked => PlayPause,
 },
 gtk::ToolButton {
 icon_widget: &new_icon("gtk-media-stop"),
 clicked => Stop,
 },
 gtk::ToolButton {
 icon_widget: &new_icon("gtk-media-next"),
 },
 gtk::SeparatorToolItem {
 },
 gtk::ToolButton {
 icon_widget: &new_icon("remove"),
 },
 gtk::SeparatorToolItem {
 },
 gtk::ToolButton {
 icon_widget: &new_icon("gtk-quit"),
 clicked => Quit,
 },
 },
 },
 }
}

Here, there's no new syntax shown. Take note that we can specify function calls as well as
model attributes in the value of a property. We needed to put a & before new_icon()
because the code is translated as such:

tool_button.set_icon_widget(&new_icon("gtk-quit"));

And this set_icon_widget() method requires something that can be converted into
an Option<&P> where P is a widget. It requires a reference, so we give it a reference.

Music Player in a More Rusty Way with Relm Chapter 7

[243]

One-way data binding
Setting a property from a model attribute is very frequent in relm and it actually creates a
one-way bond between the model attribute and the property. This means that when the
attribute is updated, the widget property will be updated as well. There are some
restrictions to this feature though:

Only an assignment to a model attribute will update the property.
This assignment must be inside an implementation decorated with the
#[widget] attribute.

These restrictions come from the fact that relm only analyzes the source code decorated by
this attribute. And it only considers assignment to be an update of the model data.

This might require changing some code. For instance, the following code will not trigger a
property update:

self.model.string.push_str("string");

You can rewrite it this way in order for relm to consider it an update:

self.model.string += "string";

As you can see, relm recognizes not only the = assignment, but also the assignments using
an operator such as +=.

We used many new messages in the previous code, so let's update our enumeration
accordingly:

#[derive(Msg)]
pub enum Msg {
 Open,
 PlayPause,
 Quit,
 Save,
 Stop,
}

Music Player in a More Rusty Way with Relm Chapter 7

[244]

We also need to change the update() method to consider these new messages:

 fn update(&mut self, event: Msg) {
 match event {
 Open => (),
 PlayPause => (),
 Quit => gtk::main_quit(),
 Save => (),
 Stop => (),
 }
 }

For now, since we only code the interface, we do nothing when we receive these messages.

Post-initialization of the view
If you run the application, you'll see that the images are not shown on the toolbar buttons.
This is because of the way relm works. When it generates the code, it calls the show()
method on every widget, instead of show_all(). So, the toolbar and the tool buttons will
be shown, but not the images, as they are only attributes of the buttons, they are not created
using the widget syntax. To solve this issue, we'll call show_all() on the toolbar in the
init_view() method:

#[widget]
impl Widget for App {
 fn init_view(&mut self) {
 self.toolbar.show_all();
 }

 // …
}

That's why we gave a name to the toolbar widget earlier: we needed to call a method on this
widget here. The init_view() method is called after the view is created. This is useful to
execute some code to customize the view when it's not possible to do so using the view!
syntax. If you run the application again, you'll see that the buttons now have an image.

Let's now add the cover image widget and the cursor widget. For the image, we'll need to
add a new crate to Cargo.toml:

[dependencies]
gdk-pixbuf = "^0.3.0"

Music Player in a More Rusty Way with Relm Chapter 7

[245]

Let's also add the corresponding extern crate statement:

extern crate gdk_pixbuf;

We also need new import statements:

use gdk_pixbuf::Pixbuf;
use gtk::{
 Adjustment,
 BoxExt,
 ImageExt,
 LabelExt,
 ScaleExt,
};
use gtk::Orientation::Horizontal;

Let's add a couple of new fields to our Model:

pub struct Model {
 adjustment: Adjustment,
 cover_pixbuf: Option<Pixbuf>,
 cover_visible: bool,
 current_duration: u64,
 current_time: u64,
 play_image: Image,
}

Most of the new fields existed in the application we developed in the two previous
chapters. The cover_visible attribute is new, though. We'll use it to know whether we
should show the image of the cover. Don't forget to update the initialization of the model:

fn model() -> Model {
 Model {
 adjustment: Adjustment::new(0.0, 0.0, 0.0, 0.0, 0.0, 0.0),
 cover_pixbuf: None,
 cover_visible: false,
 current_duration: 0,
 current_time: 0,
 play_image: new_icon(PLAY_ICON),
 }
}

Music Player in a More Rusty Way with Relm Chapter 7

[246]

We can now add the Image after the Toolbar widget:

gtk::Image {
 from_pixbuf: self.model.cover_pixbuf.as_ref(),
 visible: self.model.cover_visible,
},

Here, we call as_ref() on the cover_pixbuf attribute, because, once again, the method
(set_from_pixbuf()) requires something that can be converted into a Option<&Pixbuf>.
We also specify that the visible property of the image is bound to
the cover_visible model attribute. This means that we'll be able to hide the image by
setting this attribute to false.

We'll then add the cursor, which will give us the following view:

view! {
 gtk::Window {
 title: "Rusic",
 delete_event(_, _) => (Quit, Inhibit(false)),
 gtk::Box {
 orientation: Vertical,
 #[name="toolbar"]
 gtk::Toolbar {
 // …
 },
 gtk::Image {
 from_pixbuf: self.model.cover_pixbuf.as_ref(),
 visible: self.model.cover_visible,
 },
 gtk::Box {
 orientation: Horizontal,
 spacing: 10,
 gtk::Scale(Horizontal, &self.model.adjustment) {
 draw_value: false,
 hexpand: true,
 },
 gtk::Label {
 text:
&millis_to_minutes(self.model.current_time),
 },
 gtk::Label {
 text: "/",
 },
 gtk::Label {
 margin_right: 10,
 text:
&millis_to_minutes(self.model.current_duration),

Music Player in a More Rusty Way with Relm Chapter 7

[247]

 },
 },
 },
 }
}

This require the following method, which we saw in the previous chapter:

fn millis_to_minutes(millis: u64) -> String {
 let mut seconds = millis / 1_000;
 let minutes = seconds / 60;
 seconds %= 60;
 format!("{}:{:02}", minutes, seconds)
}

We used another way to create a widget:

gtk::Scale(Horizontal, &self.model.adjustment) {
 draw_value: false,
 hexpand: true,
}

This syntax will call the constructor of the widget, like so:

gtk::Scale::new(Horizontal, &self.model.adjustment);

We could also have used the traditional syntax to create a widget:

use gtk::RangeExt;

gtk::Scale {
 adjustment: &self.model.adjustment,
 orientation: Horizontal,
 draw_value: false,
 hexpand: true,
}

These are just two ways to do the same thing.

Music Player in a More Rusty Way with Relm Chapter 7

[248]

Dialogs
For the open and save dialog, we'll use the same functions as in the previous chapter:

use std::path::PathBuf;

use gtk::{FileChooserAction, FileChooserDialog, FileFilter};
use gtk_sys::{GTK_RESPONSE_ACCEPT, GTK_RESPONSE_CANCEL};

const RESPONSE_ACCEPT: i32 = GTK_RESPONSE_ACCEPT as i32;
const RESPONSE_CANCEL: i32 = GTK_RESPONSE_CANCEL as i32;

fn show_open_dialog(parent: &Window) -> Option<PathBuf> {
 let mut file = None;
 let dialog = FileChooserDialog::new(Some("Select an MP3 audio
file"),
 Some(parent), FileChooserAction::Open);

 let mp3_filter = FileFilter::new();
 mp3_filter.add_mime_type("audio/mp3");
 mp3_filter.set_name("MP3 audio file");
 dialog.add_filter(&mp3_filter);

 let m3u_filter = FileFilter::new();
 m3u_filter.add_mime_type("audio/x-mpegurl");
 m3u_filter.set_name("M3U playlist file");
 dialog.add_filter(&m3u_filter);

 dialog.add_button("Cancel", RESPONSE_CANCEL);
 dialog.add_button("Accept", RESPONSE_ACCEPT);
 let result = dialog.run();
 if result == RESPONSE_ACCEPT {
 file = dialog.get_filename();
 }
 dialog.destroy();
 file
}

fn show_save_dialog(parent: &Window) -> Option<PathBuf> {
 let mut file = None;
 let dialog = FileChooserDialog::new(Some("Choose a destination
M3U playlist
 file"), Some(parent), FileChooserAction::Save);
 let filter = FileFilter::new();
 filter.add_mime_type("audio/x-mpegurl");
 filter.set_name("M3U playlist file");
 dialog.set_do_overwrite_confirmation(true);

Music Player in a More Rusty Way with Relm Chapter 7

[249]

 dialog.add_filter(&filter);
 dialog.add_button("Cancel", RESPONSE_CANCEL);
 dialog.add_button("Save", RESPONSE_ACCEPT);
 let result = dialog.run();
 if result == RESPONSE_ACCEPT {
 file = dialog.get_filename();
 }
 dialog.destroy();
 file
}

But this time, we'll put the code for the open action in a method on the App widget:

use gtk::{ButtonsType, DialogFlags, MessageDialog, MessageType};

impl App {
 fn open(&self) {
 let file = show_open_dialog(&self.window);
 if let Some(file) = file {
 let ext = file.extension().map(|ext|
 ext.to_str().unwrap().to_string());
 if let Some(ext) = ext {
 match ext.as_str() {
 "mp3" => (),
 "m3u" => (),
 extension => {
 let dialog =
 MessageDialog::new(Some(&self.window),
 DialogFlags::empty(), MessageType::Error,
 ButtonsType::Ok, &format!("Cannot open file
 with extension . {}", extension));
 dialog.run();
 dialog.destroy();
 },
 }
 }
 }
 }
}

Music Player in a More Rusty Way with Relm Chapter 7

[250]

We can then call these functions in the update() method:

fn update(&mut self, event: Msg) {
 match event {
 Open => self.open(),
 PlayPause => (),
 Quit => gtk::main_quit(),
 Save => show_save_dialog(&self.window),
 Stop => (),
 }
}

Let's manage some of the other actions.

Other methods
This will require two new methods in the impl Widget:

#[widget]
impl Widget for App {
 // …

 fn set_current_time(&mut self, time: u64) {
 self.model.current_time = time;
 self.model.adjustment.set_value(time as f64);
 }

 fn set_play_icon(&self, icon: &str) {
self.model.play_image.set_from_file(format!("assets/{}.png",
icon));
 }
}

But these methods have nothing to do with a Widget, so why are we allowed to add
custom methods in a trait implementation? Well, the #[widget] attribute will take these
methods and move them to a separate impl App where they belong. But why do we want
to do this instead of placing them ourselves? That's because relm analyzes the assignments
to the model attributes in the methods in the implementation decorated by the #[widget]
attribute. As we saw earlier, an assignment to a model field will automatically update the
view. If we placed these methods in a separate impl App, relm would have been unable to
analyze these methods and generate the code to automatically update the view.

Music Player in a More Rusty Way with Relm Chapter 7

[251]

This is a frequent mistake, if your view is not updating when you're assigning to a model
attribute, it's probably because your assignment is not within an implementation decorated
by the #[widget] attribute.

We also need a new attribute for our model:

pub struct Model {
 adjustment: Adjustment,
 cover_pixbuf: Option<Pixbuf>,
 cover_visible: bool,
 current_duration: u64,
 current_time: u64,
 play_image: Image,
 stopped: bool,
}

We added a stopped attribute that we also need to add in the model initialization:

fn model() -> Model {
 Model {
 adjustment: Adjustment::new(0.0, 0.0, 0.0, 0.0, 0.0, 0.0),
 cover_pixbuf: None,
 cover_visible: false,
 current_duration: 0,
 current_time: 0,
 play_image: new_icon(PLAY_ICON),
 stopped: true,
 }
}

We can now change the update() method to use these new methods:

fn update(&mut self, event: Msg) {
 match event {
 Open => self.open(),
 PlayPause => {
 if !self.model.stopped {
 self.set_play_icon(PLAY_ICON);
 }
 },
 Quit => gtk::main_quit(),
 Save => show_save_dialog(&self.window),
 Stop => {
 self.set_current_time(0);
 self.model.current_duration = 0;
 self.model.cover_visible = false;
 self.set_play_icon(PLAY_ICON);

Music Player in a More Rusty Way with Relm Chapter 7

[252]

 },
 }
}

The update() method receives self by a mutable reference, which allows us to update the
model attributes.

Playlist
We're now ready to create a new widget: the playlist. We'll need the following new
dependencies:

[dependencies]
id3 = "^0.2.0"
m3u = "^1.0.0"

Add their corresponding extern crate statements:

extern crate id3;
extern crate m3u;

Let's create a new module for our playlist:

mod playlist;

In the src/playlist.rs file, we start by creating our model:

use gtk::ListStore;

pub struct Model {
 current_song: Option<String>,
 model: ListStore,
 relm: Relm<Playlist>,
}

The Relm type comes from the relm crate:

use relm::Relm;

Music Player in a More Rusty Way with Relm Chapter 7

[253]

It is useful to send messages to a widget. We'll learn more about that in the section about
widget communication. Let's add the model initialization function:

use gdk_pixbuf::Pixbuf;
use gtk::{StaticType, Type};

#[widget]
impl Widget for Playlist {
 fn model(relm: &Relm<Self>, _: ()) -> Model {
 Model {
 current_song: None,
 model: ListStore::new(&[
 Pixbuf::static_type(),
 Type::String,
 Type::String,
 Type::String,
 Type::String,
 Type::String,
 Type::String,
 Type::String,
 Pixbuf::static_type(),
]),
 relm: relm.clone(),
 }
 }
}

Here, we notice that we use a different signature for the model() method. How is this
possible? The method of the trait cannot change, right? It is another convenience brought by
the #[widget] crate. In many cases, we don't need these parameters, so they are
automatically added if they are needed. The first parameter is relm and we save a copy of it
in the model. The second parameter is the model initialization parameter. The ListStore is
the same as in Chapter 5, Creating a Music Player, we only save it in our model because we'll
need it later.

Model parameter
Let's talk more about this second parameter. It could be used to send data to the widget
when we create it. Remember when we called run():

App::run(()).unwrap();

Music Player in a More Rusty Way with Relm Chapter 7

[254]

Here, we specified () as the model parameter because we don't need one. But we could
have used a different value, such as 42, and this value would have been received in the
second parameter of the model() method.

We're now ready to create the view:

use gtk;
use gtk::{TreeViewExt, WidgetExt};
use relm::Widget;
use relm_attributes::widget;

#[widget]
impl Widget for Playlist {
 // …

 view! {
 #[name="treeview"]
 gtk::TreeView {
 hexpand: true,
 model: &self.model.model,
 vexpand: true,
 }
 }
}

It is really simple: we give it a name and set both the hexpand and vexpand properties to
true and we bind the model property with our ListStore.

Let's create an empty update() method for now:

#[widget]
impl Widget for Playlist {
 // …

 fn update(&mut self, event: Msg) {
 }
}

We'll see the Msg type later. We'll now add the columns exactly like we did it in Chapter
5, Creating a Music Player. Let's copy the following enumeration and constants:

use self::Visibility::*;

#[derive(PartialEq)]
enum Visibility {
 Invisible,
 Visible,

https://cdp.packtpub.com/rust_by_example/wp-admin/post.php?post=121&action=edit#post_86
https://cdp.packtpub.com/rust_by_example/wp-admin/post.php?post=121&action=edit#post_86

Music Player in a More Rusty Way with Relm Chapter 7

[255]

}

const THUMBNAIL_COLUMN: u32 = 0;
const TITLE_COLUMN: u32 = 1;
const ARTIST_COLUMN: u32 = 2;
const ALBUM_COLUMN: u32 = 3;
const GENRE_COLUMN: u32 = 4;
const YEAR_COLUMN: u32 = 5;
const TRACK_COLUMN: u32 = 6;
const PATH_COLUMN: u32 = 7;
const PIXBUF_COLUMN: u32 = 8;

And let's add new methods to the Paylist:

impl Playlist {
 fn add_pixbuf_column(&self, column: i32, visibility:
Visibility) {
 let view_column = TreeViewColumn::new();
 if visibility == Visible {
 let cell = CellRendererPixbuf::new();
 view_column.pack_start(&cell, true);
 view_column.add_attribute(&cell, "pixbuf", column);
 }
 self.treeview.append_column(&view_column);

 }

 fn add_text_column(&self, title: &str, column: i32) {
 let view_column = TreeViewColumn::new();
 view_column.set_title(title);
 let cell = CellRendererText::new();
 view_column.set_expand(true);
 view_column.pack_start(&cell, true);
 view_column.add_attribute(&cell, "text", column);
 self.treeview.append_column(&view_column);
 }

 fn create_columns(&self) {
 self.add_pixbuf_column(THUMBNAIL_COLUMN as i32, Visible);
 self.add_text_column("Title", TITLE_COLUMN as i32);
 self.add_text_column("Artist", ARTIST_COLUMN as i32);
 self.add_text_column("Album", ALBUM_COLUMN as i32);
 self.add_text_column("Genre", GENRE_COLUMN as i32);
 self.add_text_column("Year", YEAR_COLUMN as i32);
 self.add_text_column("Track", TRACK_COLUMN as i32);
 self.add_pixbuf_column(PIXBUF_COLUMN as i32, Invisible);
 }
}

Music Player in a More Rusty Way with Relm Chapter 7

[256]

The difference from these functions in Chapter 5, Creating a Music Player is that here, we
have direct access to the treeview as an attribute. This requires new import statements:

use gtk::{
 CellLayoutExt,
 CellRendererPixbuf,
 CellRendererText,
 TreeViewColumn,
 TreeViewColumnExt,
 TreeViewExt,
};

We'll now call the create_columns() method in the init_view() method:

#[widget]
impl Widget for Playlist {
 fn init_view(&mut self) {
 self.create_columns();
 }

 // …
}

Let's start interacting with the playlist. We'll create a method to add a song to the playlist:

use std::path::Path;

use gtk::{ListStoreExt, ListStoreExtManual, ToValue};
use id3::Tag;

impl Playlist {
 fn add(&self, path: &Path) {
 let filename =
path.file_stem().unwrap_or_default().to_str().unwrap_or_default();

 let row = self.model.model.append();

 if let Ok(tag) = Tag::read_from_path(path) {
 let title = tag.title().unwrap_or(filename);
 let artist = tag.artist().unwrap_or("(no artist)");
 let album = tag.album().unwrap_or("(no album)");
 let genre = tag.genre().unwrap_or("(no genre)");
 let year = tag.year().map(|year|
 year.to_string()).unwrap_or("(no year)".to_string());
 let track = tag.track().map(|track|
 track.to_string()).unwrap_or("??".to_string());
 let total_tracks =
 tag.total_tracks().map(|total_tracks|

https://cdp.packtpub.com/rust_by_example/wp-admin/post.php?post=121&action=edit#post_86

Music Player in a More Rusty Way with Relm Chapter 7

[257]

 total_tracks.to_string()).unwrap_or("??".to_string());
 let track_value = format!("{} / {}", track,
 total_tracks);

 self.set_pixbuf(&row, &tag);

 self.model.model.set_value(&row, TITLE_COLUMN,
 &title.to_value());
 self.model.model.set_value(&row, ARTIST_COLUMN,
 &artist.to_value());
 self.model.model.set_value(&row, ALBUM_COLUMN,
 &album.to_value());
 self.model.model.set_value(&row, GENRE_COLUMN,
 &genre.to_value());
 self.model.model.set_value(&row, YEAR_COLUMN,
 &year.to_value());
 self.model.model.set_value(&row, TRACK_COLUMN,
 &track_value.to_value());
 }
 else {
 self.model.model.set_value(&row, TITLE_COLUMN,
 &filename.to_value());
 }

 let path = path.to_str().unwrap_or_default();
 self.model.model.set_value(&row, PATH_COLUMN,
 &path.to_value());
 }
}

This calls the set_pixbuf() method, so let's define it:

use gdk_pixbuf::{InterpType, PixbufLoader};
use gtk::TreeIter;

const INTERP_HYPER: InterpType = 3;

const IMAGE_SIZE: i32 = 256;
const THUMBNAIL_SIZE: i32 = 64;

fn set_pixbuf(&self, row: &TreeIter, tag: &Tag) {
 if let Some(picture) = tag.pictures().next() {
 let pixbuf_loader = PixbufLoader::new();
 pixbuf_loader.set_size(IMAGE_SIZE, IMAGE_SIZE);
 pixbuf_loader.loader_write(&picture.data).unwrap();
 if let Some(pixbuf) = pixbuf_loader.get_pixbuf() {
 let thumbnail = pixbuf.scale_simple(THUMBNAIL_SIZE,
 THUMBNAIL_SIZE, INTERP_HYPER).unwrap();

Music Player in a More Rusty Way with Relm Chapter 7

[258]

 self.model.model.set_value(row, THUMBNAIL_COLUMN,
 &thumbnail.to_value());
 self.model.model.set_value(row, PIXBUF_COLUMN,
 &pixbuf.to_value());
 }
 pixbuf_loader.close().unwrap();
 }
}

It is very similar to the one created in Chapter 5, Creating a Music Player. This method will
be called when we receive the AddSong(path) message, so let's now create our message
type:

use std::path::PathBuf;

use self::Msg::*;

#[derive(Msg)]
pub enum Msg {
 AddSong(PathBuf),
 LoadSong(PathBuf),
 NextSong,
 PauseSong,
 PlaySong,
 PreviousSong,
 RemoveSong,
 SaveSong(PathBuf),
 SongStarted(Option<Pixbuf>),
 StopSong,
}

And let's modify the update() method accordingly:

 fn update(&mut self, event: Msg) {
 match event {
 AddSong(path) => self.add(&path),
 LoadSong(path) => (),
 NextSong => (),
 PauseSong => (),
 PlaySong => (),
 PreviousSong => (),
 RemoveSong => (),
 SaveSong(path) => (),
 SongStarted(_) => (),
 StopSong => (),
 }
 }

https://cdp.packtpub.com/rust_by_example/wp-admin/post.php?post=121&action=edit#post_86

Music Player in a More Rusty Way with Relm Chapter 7

[259]

Here, we call the method add() when we receive the AddSong message. But where is this
message emitted? Well, it will be emitted by the App type, when the user requests to open a
file. It is time we go back to the main module and use this new relm widget.

Adding a relm widget
First, we'll need these new import statements:

use playlist::Playlist;
use playlist::Msg::{
 AddSong,
 LoadSong,
 NextSong,
 PlaySong,
 PauseSong,
 PreviousSong,
 RemoveSong,
 SaveSong,
 SongStarted,
 StopSong,
};

And then, add the Playlist widget below the toolbar:

view! {
 #[name="window"]
 gtk::Window {
 title: "Rusic",
 gtk::Box {
 orientation: Vertical,
 #[name="toolbar"]
 gtk::Toolbar {
 // …
 },
 #[name="playlist"]
 Playlist {
 },
 gtk::Image {
 from_pixbuf: self.model.cover_pixbuf.as_ref(),
 visible: self.model.cover_visible,
 },
 gtk::Box {
 // …
 },
 },

Music Player in a More Rusty Way with Relm Chapter 7

[260]

 delete_event(_, _) => (Quit, Inhibit(false)),
 }
}

There's something different with using relm widgets and gtk widgets. Relm widgets must
not contain a module prefix, while gtk widget must contain one. This is why we imported
Playlist, but now gtk::Toolbar, for instance. But why is it needed? Well, relm widgets
are different than gtk widgets, so they are not created or added to another widget in the
same way. Thus, relm can distinguish them this way: if there's a prefix, this is a built-in gtk
widget, otherwise it is a custom relm widget. When I say gtk widgets, this even includes
gtk widgets from other crates, such as webkit2gtk::WebView.

Communicating between widgets
We'll now communicate between the widgets to indicate we want to add a song to the
playlist. But before we do so, we'll look in more detail at how a widget can communicate
with itself.

Communicating with the same widget
We previously saw how to communicate with the same widget. To send a message to the
same widget from an event handler in the view, we simply need to specify the message to
be sent on the right side of =>, like in the following example:

gtk::ToolButton {
 icon_widget: &new_icon("gtk-quit"),
 clicked => Quit,
}

Music Player in a More Rusty Way with Relm Chapter 7

[261]

Here, the Quit message is sent to the same widget (that is, App) when the user clicks this
tool button. But this is syntax sugar for a call to the emit() method on the stream of events
of a relm widget.

Emit
So, let's see how to send a message to the same widget without using this syntax: this is
useful in more complex cases, such as when we want to conditionally send a message. Let's
go back to our Playlist and add a play() method:

impl Playlist {
 fn play(&mut self) {
 if let Some(path) = self.selected_path() {
 self.model.current_song = Some(path.into());
self.model.relm.stream().emit(SongStarted(self.pixbuf()));
 }
 }
}

This line sends a message to the current widget:

self.model.relm.stream().emit(SongStarted(self.pixbuf()));

We first get the event stream from the relm widget and then call emit() on it with a
message. This play() method requires two new methods:

use gtk::{
 TreeModelExt,
 TreeSelectionExt,
};

impl Playlist {
 fn pixbuf(&self) -> Option<Pixbuf> {
 let selection = self.treeview.get_selection();
 if let Some((_, iter)) = selection.get_selected() {
 let value = self.model.model.get_value(&iter,
 PIXBUF_COLUMN as i32);
 return value.get::<Pixbuf>();
 }
 None
 }

 fn selected_path(&self) -> Option<String> {
 let selection = self.treeview.get_selection();
 if let Some((_, iter)) = selection.get_selected() {

Music Player in a More Rusty Way with Relm Chapter 7

[262]

 let value = self.model.model.get_value(&iter,
PATH_COLUMN as i32);
 return value.get::<String>();
 }
 None
 }
}

These are very similar to the ones we wrote in the previous chapters. We can now call the
play() method in the update() method:

 fn update(&mut self, event: Msg) {
 match event {
 AddSong(path) => self.add(&path),
 LoadSong(path) => (),
 NextSong => (),
 PauseSong => (),
 PlaySong => self.play(),
 PreviousSong => (),
 RemoveSong => (),
 SaveSong(path) => (),
 // To be listened by App.
 SongStarted(_) => (),
 StopSong => (),
 }
 }

I also added a comment before SongStarted to indicate that this message will not be
handled by the Paylist widget, but by the App widget. Now, let's see how to communicate
between different widgets.

With different widgets
Let's update the open() method to communicate with the playlist:

impl App {
 fn open(&self) {
 let file = show_open_dialog(&self.window);
 if let Some(file) = file {
 let ext = file.extension().map(|ext|
ext.to_str().unwrap().to_string());
 if let Some(ext) = ext {
 match ext.as_str() {
 "mp3" => self.playlist.emit(AddSong(file)),
 "m3u" => self.playlist.emit(LoadSong(file)),

Music Player in a More Rusty Way with Relm Chapter 7

[263]

 extension => {
 let dialog = MessageDialog::new(Some(&self.window),
 DialogFlags::empty(), MessageType::Error,
 ButtonsType::Ok, &format!("Cannot open file with
 extension . {}", extension));
 dialog.run();
 dialog.destroy();
 },
 }
 }
 }
 }
}

So, we call the same emit() method to send a message to another widget:

self.playlist.emit(AddSong(file))

Here, we sent a message that is not yet handled by the Playlist (LoadSong), so let's fix
that:

use m3u;

impl Playlist {
 fn load(&self, path: &Path) {
 let mut reader = m3u::Reader::open(path).unwrap();
 for entry in reader.entries() {
 if let Ok(m3u::Entry::Path(path)) = entry {
 self.add(&path);
 }
 }
 }
}

This method is called in the update() method:

fn update(&mut self, event: Msg) {
 match event {
 AddSong(path) => self.add(&path),
 LoadSong(path) => self.load(&path),
 NextSong => (),
 PauseSong => (),
 PlaySong => self.play(),
 PreviousSong => (),
 RemoveSong => (),
 SaveSong(path) => (),
 // To be listened by App.
 SongStarted(_) => (),

Music Player in a More Rusty Way with Relm Chapter 7

[264]

 StopSong => (),
 }
}

Handle messages from a relm widget
Let's now see how to handle the SongStarted message. To do so, we use a syntax similar
to the one for handling gtk events. The message is on the left side of => while the handler is
on the right side of it:

#[widget]
impl Widget for App {
 // …

 view! {
 // …
 #[name="playlist"]
 Playlist {
 SongStarted(ref pixbuf) => Started(pixbuf.clone()),
 }
 }
}

We can see here that when we receive the SongStarted message from the playlist, we emit
the Started message on the same widget (App). We needed to use ref and then clone()
the value contained in the message here because we do not own the message. Indeed,
multiple widgets can listen to the same message, the widget that emitted the message and
its parent. Before we handle this new message, we'll add it to our Msg enumeration:

#[derive(Msg)]
pub enum Msg {
 Open,
 PlayPause,
 Quit,
 Save,
 Started(Option<Pixbuf>),
 Stop,
}

Music Player in a More Rusty Way with Relm Chapter 7

[265]

This variant takes an optional pixbuf because some MP3 files do not have a cover image
inside them. And here's how we handle this message:

fn update(&mut self, event: Msg) {
 match event {
 // …
 Started(pixbuf) => {
 self.set_play_icon(PAUSE_ICON);
 self.model.cover_visible = true;
 self.model.cover_pixbuf = pixbuf;
 },
 }
}

When the song starts playing, we show the pause icon and the cover.

Syntax sugar to send a message to another relm widget
Sending a message to another widget with emit() is a bit verbose, so relm provides
syntactic sugar for this case. Let's send a message to the playlist when the user clicks the
remove button:

gtk::ToolButton {
 icon_widget: &new_icon("remove"),
 clicked => playlist@RemoveSong,
}

Here, we used the @ syntax to specify that the message will be sent to another widget. The
part before the @ is the receiver widget, while the part after this character is the message. So,
this code means that whenever the user clicks the remove button, send
the RemoveSong message to the playlist widget.

Let's handle this message in the Paylist::update() method:

#[widget]
impl Widget for Playlist {
 fn update(&mut self, event: Msg) {
 match event {
 AddSong(path) => self.add(&path),
 LoadSong(path) => self.load(&path),
 NextSong => (),
 PauseSong => (),
 PlaySong => self.play(),
 PreviousSong => (),
 RemoveSong => self.remove_selection(),

Music Player in a More Rusty Way with Relm Chapter 7

[266]

 SaveSong(path) => (),
 // To be listened by App.
 SongStarted(_) => (),
 StopSong => (),
 }
 }

 // …
}

This calls the remove_selection() method, as shown here:

fn remove_selection(&self) {
 let selection = self.treeview.get_selection();
 if let Some((_, iter)) = selection.get_selected() {
 self.model.model.remove(&iter);
 }
}

This is the same method as the one from Chapter 5, Creating a Music Player. Now, let's send
the remaining messages. The PlaySong, PauseSong, SaveSong, and StopSong messages
are emitted in the update() method:

#[widget]
impl Widget for App {
 fn update(&mut self, event: Msg) {
 match event {
 PlayPause => {
 if self.model.stopped {
 self.playlist.emit(PlaySong);
 } else {
 self.playlist.emit(PauseSong);
 self.set_play_icon(PLAY_ICON);
 }
 },
 Save => {
 let file = show_save_dialog(&self.window);
 if let Some(file) = file {
 self.playlist.emit(SaveSong(file));
 }
 },
 Stop => {
 self.set_current_time(0);
 self.model.current_duration = 0;
 self.playlist.emit(StopSong);
 self.model.cover_visible = false;
 self.set_play_icon(PLAY_ICON);

https://cdp.packtpub.com/rust_by_example/wp-admin/post.php?post=121&action=edit#post_86

Music Player in a More Rusty Way with Relm Chapter 7

[267]

 },
 // …
 }
 }
}

The other messages are sent using the @ syntax in the view:

view! {
 #[name="window"]
 gtk::Window {
 title: "Rusic",
 gtk::Box {
 orientation: Vertical,
 #[name="toolbar"]
 gtk::Toolbar {
 // …
 gtk::ToolButton {
 icon_widget: &new_icon("gtk-media-previous"),
 clicked => playlist@PreviousSong,
 },
 // …
 gtk::ToolButton {
 icon_widget: &new_icon("gtk-media-next"),
 clicked => playlist@NextSong,
 },
 },
 // …
 },
 delete_event(_, _) => (Quit, Inhibit(false)),
 }
}

We'll handle these messages in the Paylist::update() method:

fn update(&mut self, event: Msg) {
 match event {
 AddSong(path) => self.add(&path),
 LoadSong(path) => self.load(&path),
 NextSong => self.next(),
 PauseSong => (),
 PlaySong => self.play(),
 PreviousSong => self.previous(),
 RemoveSong => self.remove_selection(),
 SaveSong(path) => self.save(&path),
 // To be listened by App.
 SongStarted(_) => (),
 StopSong => self.stop(),

Music Player in a More Rusty Way with Relm Chapter 7

[268]

 }
}

This requires some new methods:

fn next(&mut self) {
 let selection = self.treeview.get_selection();
 let next_iter =
 if let Some((_, iter)) = selection.get_selected() {
 if !self.model.model.iter_next(&iter) {
 return;
 }
 Some(iter)
 }
 else {
 self.model.model.get_iter_first()
 };
 if let Some(ref iter) = next_iter {
 selection.select_iter(iter);
 self.play();
 }
}

fn previous(&mut self) {
 let selection = self.treeview.get_selection();
 let previous_iter =
 if let Some((_, iter)) = selection.get_selected() {
 if !self.model.model.iter_previous(&iter) {
 return;
 }
 Some(iter)
 }
 else {
 self.model.model.iter_nth_child(None, max(0,
 self.model.model.iter_n_children(None) - 1))
 };
 if let Some(ref iter) = previous_iter {
 selection.select_iter(iter);
 self.play();
 }
}

use std::fs::File;

fn save(&self, path: &Path) {
 let mut file = File::create(path).unwrap();
 let mut writer = m3u::Writer::new(&mut file);

Music Player in a More Rusty Way with Relm Chapter 7

[269]

 let mut write_iter = |iter: &TreeIter| {
 let value = self.model.model.get_value(&iter, PATH_COLUMN
as i32);
 let path = value.get::<String>().unwrap();
 writer.write_entry(&m3u::path_entry(path)).unwrap();
 };

 if let Some(iter) = self.model.model.get_iter_first() {
 write_iter(&iter);
 while self.model.model.iter_next(&iter) {
 write_iter(&iter);
 }
 }
}

And function stop:

fn stop(&mut self) {
 self.model.current_song = None;
}

These methods are all similar to the ones we created in the previous chapters. You can run
the application to see that we can open and remove songs, but we cannot play them yet. So
let's fix this.

Playing music
First, add the mp3 module:

mod mp3;

Copy the src/mp3.rs file from the previous chapter.

We also need the following dependencies:

[dependencies]
crossbeam = "^0.3.0"
futures = "^0.1.16"
pulse-simple = "^1.0.0"
simplemad = "^0.8.1"

Music Player in a More Rusty Way with Relm Chapter 7

[270]

And add these statements to the main module:

extern crate crossbeam;
extern crate futures;
extern crate pulse_simple;
extern crate simplemad;

We'll now add a player module:

mod player;

This new module will start with a bunch of import statements:

use std::cell::Cell;
use std::fs::File;
use std::io::BufReader;
use std::path::{Path, PathBuf};
use std::sync::{Arc, Condvar, Mutex};
use std::thread;
use std::time::Duration;

use crossbeam::sync::SegQueue;
use futures::{AsyncSink, Sink};
use futures::sync::mpsc::UnboundedSender;
use pulse_simple::Playback;

use mp3::Mp3Decoder;
use playlist::PlayerMsg::{
 self,
 PlayerPlay,
 PlayerStop,
 PlayerTime,
};
use self::Action::*;

Music Player in a More Rusty Way with Relm Chapter 7

[271]

We imported a new PlayerMsg type from the playlist module, so let's add it:

#[derive(Clone)]
pub enum PlayerMsg {
 PlayerPlay,
 PlayerStop,
 PlayerTime(u64),
}

We'll define some constants:

const BUFFER_SIZE: usize = 1000;
const DEFAULT_RATE: u32 = 44100;

And let's create the types that we'll need:

enum Action {
 Load(PathBuf),
 Stop,
}

#[derive(Clone)]
struct EventLoop {
 condition_variable: Arc<(Mutex<bool>, Condvar)>,
 queue: Arc<SegQueue<Action>>,
 playing: Arc<Mutex<bool>>,
}

pub struct Player {
 event_loop: EventLoop,
 paused: Cell<bool>,
 tx: UnboundedSender<PlayerMsg>,
}

The Action and EventLoop are the same as in the previous chapter, but the Player type is
a bit different. Instead of having a field with the state of the application, it contains a sender
that will be used to send messages to the playlist and ultimately to the application itself. So,
instead of using a shared state and a timeout like we did in the previous chapter, we'll use
message passing, which is more efficient.

Music Player in a More Rusty Way with Relm Chapter 7

[272]

We'll need a constructor for EventLoop:

impl EventLoop {
 fn new() -> Self {
 EventLoop {
 condition_variable: Arc::new((Mutex::new(false),
Condvar::new())),
 queue: Arc::new(SegQueue::new()),
 playing: Arc::new(Mutex::new(false)),
 }
 }
}

Let's create the constructor for Player:

impl Player {
 pub(crate) fn new(tx: UnboundedSender<PlayerMsg>) -> Self {
 let event_loop = EventLoop::new();

 {
 let mut tx = tx.clone();
 let event_loop = event_loop.clone();
 let condition_variable = event_loop.condition_variable.clone();
 thread::spawn(move || {
 let block = || {
 let (ref lock, ref condition_variable) =
*condition_variable;
 let mut started = lock.lock().unwrap();
 *started = false;
 while !*started {
 started =
condition_variable.wait(started).unwrap();
 }
 };

 let mut buffer = [[0; 2]; BUFFER_SIZE];
 let mut playback = Playback::new("MP3", "MP3 Playback",
None,
 DEFAULT_RATE);
 let mut source = None;
 loop {
 if let Some(action) = event_loop.queue.try_pop() {
 match action {
 Load(path) => {
 let file = File::open(path).unwrap();
 source =
 Some(Mp3Decoder::new(BufReader::new(file)).unwrap());
 let rate = source.as_ref().map(|source|

Music Player in a More Rusty Way with Relm Chapter 7

[273]

source.samples_rate()).unwrap_or(DEFAULT_RATE);
 playback = Playback::new("MP3", "MP3
Playback",
 None, rate);
 send(&mut tx, PlayerPlay);
 },
 Stop => {
 source = None;
 },
 }
 } else if *event_loop.playing.lock().unwrap() {
 let mut written = false;
 if let Some(ref mut source) = source {
 let size = iter_to_buffer(source, &mut buffer);
 if size > 0 {
 send(&mut tx,
PlayerTime(source.current_time()));
 playback.write(&buffer[..size]);
 written = true;
 }
 }

 if !written {
 send(&mut tx, PlayerStop);
 *event_loop.playing.lock().unwrap() = false;
 source = None;
 block();
 }
 } else {
 block();
 }
 }
 });
 }

 Player {
 event_loop,
 paused: Cell::new(false),
 tx,
 }
 }
}

It is similar to the one we wrote in the previous chapter, but instead of using the shared
state, we send messages back to the playlist. Here's an example of how we send these
messages:

Music Player in a More Rusty Way with Relm Chapter 7

[274]

send(&mut tx, PlayerTime(source.current_time()));

This sends the current time back to the UI so that it can display it. This requires the send()
function to be defined:

fn send(tx: &mut UnboundedSender<PlayerMsg>, msg: PlayerMsg) {
 if let Ok(AsyncSink::Ready) = tx.start_send(msg) {
 tx.poll_complete().unwrap();
 } else {
 eprintln!("Unable to send message to sender");
 }
}

This code uses the future crate to send the message and it shows an error in case it fails.
The iter_to_buffer() function is the same as the one from the previous chapter:

fn iter_to_buffer<I: Iterator<Item=i16>>(iter: &mut I, buffer: &mut
[[i16; 2]; BUFFER_SIZE]) -> usize {
 let mut iter = iter.take(BUFFER_SIZE);
 let mut index = 0;
 while let Some(sample1) = iter.next() {
 if let Some(sample2) = iter.next() {
 buffer[index][0] = sample1;
 buffer[index][1] = sample2;
 }
 index += 1;
 }
 index
}

We'll now add the methods to play and pause a song:

pub fn load<P: AsRef<Path>>(&self, path: P) {
 let pathbuf = path.as_ref().to_path_buf();
 self.emit(Load(pathbuf));
 self.set_playing(true);
}

pub fn pause(&mut self) {
 self.paused.set(true);
 self.send(PlayerStop);
 self.set_playing(false);
}

pub fn resume(&mut self) {
 self.paused.set(false);
 self.send(PlayerPlay);
 self.set_playing(true);

Music Player in a More Rusty Way with Relm Chapter 7

[275]

}

They're very similar to the ones from the previous chapter, but we send a message instead
of modifying a state. They require the following methods:

fn emit(&self, action: Action) {
 self.event_loop.queue.push(action);
}

fn send(&mut self, msg: PlayerMsg) {
 send(&mut self.tx, msg);
}

fn set_playing(&self, playing: bool) {
 *self.event_loop.playing.lock().unwrap() = playing;
 let (ref lock, ref condition_variable) =
*self.event_loop.condition_variable;
 let mut started = lock.lock().unwrap();
 *started = playing;
 if playing {
 condition_variable.notify_one();
 }
}

The emit() and set_playing() methods are the same as in the previous chapter.
The send() method simply calls the send() function we defined earlier.

We'll also need these two methods:

pub fn is_paused(&self) -> bool {
 self.paused.get()
}

pub fn stop(&mut self) {
 self.paused.set(false);
 self.send(PlayerTime(0));
 self.send(PlayerStop);
 self.emit(Stop);
 self.set_playing(false);
}

Music Player in a More Rusty Way with Relm Chapter 7

[276]

The is_paused() method has not changed. And the stop() method is similar, but again,
it sends messages instead of updating the application state directly. Let's go back to our
Paylist to use this new player. The model will now contain the player itself:

use player::Player;

pub struct Model {
 current_song: Option<String>,
 player: Player,
 model: ListStore,
 relm: Relm<Playlist>,
}

The Msg type will contain a new variant called PlayerMsgRecv that will be emitted
whenever the player sends a message:

#[derive(Msg)]
pub enum Msg {
 AddSong(PathBuf),
 LoadSong(PathBuf),
 NextSong,
 PauseSong,
 PlayerMsgRecv(PlayerMsg),
 PlaySong,
 PreviousSong,
 RemoveSong,
 SaveSong(PathBuf),
 SongStarted(Option<Pixbuf>),
 StopSong,
}

We're now ready to update the model initialization:

use futures::sync::mpsc;

fn model(relm: &Relm<Self>, _: ()) -> Model {
 let (tx, rx) = mpsc::unbounded();
 relm.connect_exec_ignore_err(rx, PlayerMsgRecv);
 Model {
 current_song: None,
 player: Player::new(tx),
 model: ListStore::new(&[
 Pixbuf::static_type(),
 Type::String,
 Type::String,
 Type::String,
 Type::String,

Music Player in a More Rusty Way with Relm Chapter 7

[277]

 Type::String,
 Type::String,
 Type::String,
 Pixbuf::static_type(),
]),
 relm: relm.clone(),
 }
}

It now creates a sender and receiver pair from the mpsc type of the future crate. MPSC
stands for Multiple-Producers-Single-Consumer. We now call
the Relm::connect_exec_ignore_err() method, this method connects a Future or a
Stream to a message. This means that whenever a value is produced in the Stream, a
message will be emitted. The message needs to take a parameter of the same type as the
value produced by the Stream. A Future represents a value that is possibly not yet
available, but will be available in the future, unless an error happens. A Stream is similar,
but can produce multiple values that will be available at different times in the future.
Similar to the connect_exec_ignore_err() method, there's also
the connect_exec() method, which takes another message variant as a parameter, this
second message will be emitted when there's an error. Here, we simply ignore the errors.

In the update() method:

fn update(&mut self, event: Msg) {
 match event {
 // To be listened by App.
 PlayerMsgRecv(_) => (),
 // …
 }
}

We have nothing to do with this message because it will be handled by the App widget.
We'll now add a method to pause the player:

fn pause(&mut self) {
 self.model.player.pause();
}

Next we need to update the play() and stop() methods:

fn play(&mut self) {
 if let Some(path) = self.selected_path() {
 if self.model.player.is_paused() && Some(&path) ==
self.path().as_ref() {
 self.model.player.resume();
 } else {

Music Player in a More Rusty Way with Relm Chapter 7

[278]

 self.model.player.load(&path);
 self.model.current_song = Some(path.into());
self.model.relm.stream().emit(SongStarted(self.pixbuf()));
 }
 }
}

fn stop(&mut self) {
 self.model.current_song = None;
 self.model.player.stop();
}

The stop() method is the same, except that we can update the model directly, because we
don't need to use the RefCell type anymore. The play() method will now load or resume
the song depending on the state of the player.

The play() method requires a path() method:

fn path(&self) -> Option<String> {
 self.model.current_song.clone()
}

Let's go back to the main module to manage the messages sent by the player. First, we need
a new variant for our enum Msg:

#[derive(Msg)]
pub enum Msg {
 MsgRecv(PlayerMsg),
 // …
}

We will handle this in the update() method:

fn update(&mut self, event: Msg) {
 match event {
 MsgRecv(player_msg) => self.player_message(player_msg),
 // …
 }
}

Music Player in a More Rusty Way with Relm Chapter 7

[279]

This requires a new method to be added in impl Widget for App:

#[widget]
impl Widget for App {
 fn player_message(&mut self, player_msg: PlayerMsg) {
 match player_msg {
 PlayerPlay => {
 self.model.stopped = false;
 self.set_play_icon(PAUSE_ICON);
 },
 PlayerStop => {
 self.set_play_icon(PLAY_ICON);
 self.model.stopped = true;
 },
 PlayerTime(time) => self.set_current_time(time),
 }
 }
}

This is also a custom method, that is, a method that is not part of the Widget trait, but is
analyzed by the #[widget] attribute. We put it there instead of a separate impl App
because we updated the model. In this method, we either update the icon to display the
play button or the current time.

Computing the song duration
The only remaining feature that needs to be implemented in order to be on par with the
music player of the previous chapter is to compute and display the song duration. First, we
will copy the compute_duration() method from the previous chapter and paste it in our
Player:

pub fn compute_duration<P: AsRef<Path>>(path: P) ->
Option<Duration> {
 let file = File::open(path).unwrap();
 Mp3Decoder::compute_duration(BufReader::new(file))
}

Music Player in a More Rusty Way with Relm Chapter 7

[280]

We'll now call this method in the Playlist:

use std::thread;
use futures::sync::oneshot;

fn compute_duration(&self, path: &Path) {
 let path = path.to_path_buf();
 let (tx, rx) = oneshot::channel();
 thread::spawn(move || {
 if let Some(duration) = Player::compute_duration(&path) {
 tx.send((path, duration))
 .expect("Cannot send computed duration");
 }
 });
 self.model.relm.connect_exec_ignore_err(rx, |(path, duration)|
DurationComputed(path, duration));
}

Here, we use oneshot which is also a channel, similar to mpsc, but oneshot can only send
a message once. The message sent is a tuple, so we convert it to our Msg type by using a
new DurationComputed variant that we'll add to the type:

use std::time::Duration;

#[derive(Msg)]
pub enum Msg {
 AddSong(PathBuf),
 DurationComputed(PathBuf, Duration),
 SongDuration(u64),
 // …
}

We've also added a SongDuration message that we'll use soon.

We need to call this method in Playlist::add():

impl Playlist {
 fn add(&self, path: &Path) {
 self.compute_duration(path);
 // …
 }
}

Music Player in a More Rusty Way with Relm Chapter 7

[281]

We then need to handle the new DurationComputed message in Playlist::update():

use to_millis;

fn update(&mut self, event: Msg) {
 match event {
 DurationComputed(path, duration) => {
 let path = path.to_string_lossy().to_string();
 if self.model.current_song.as_ref() == Some(&path) {
self.model.relm.stream().emit(SongDuration(to_millis(duration)));
 }
 self.model.durations.insert(path, to_millis(duration));
 },
 // To be listened by App.
 SongDuration(_) => (),
 // …
 }
}

Here, we insert the computed duration in the model. And if the song is the one currently
being played, we send the SongDuration message so that the App widget can update itself.

This requires a new field for the durations in the model:

use std::collections::HashMap;

pub struct Model {
 current_song: Option<String>,
 durations: HashMap<String, u64>,
 player: Player,
 model: ListStore,
 relm: Relm<Playlist>,
}

Add the new model initialization:

fn model(relm: &Relm<Self>, _: ()) -> Model {
 // …
 Model {
 durations: HashMap::new(),
 // …
 }
}

Music Player in a More Rusty Way with Relm Chapter 7

[282]

This also requires the to_millis() function to be added in the main module, which is the
same as in the previous chapter:

use std::time::Duration;

fn to_millis(duration: Duration) -> u64 {
 duration.as_secs() * 1000 + duration.subsec_nanos() as u64 /
1_000_000
}

Since the duration is only computed once, we also need to send it when we start playing the
song, so let's update the Playlist::play() method:

fn play(&mut self) {
 if let Some(path) = self.selected_path() {
 if self.model.player.is_paused() && Some(&path) ==
self.path().as_ref() {
 self.model.player.resume();
 } else {
 self.model.player.load(&path);
 if let Some(&duration) =
self.model.durations.get(&path) {
self.model.relm.stream().emit(SongDuration(duration));
 }
 self.model.current_song = Some(path.into());
self.model.relm.stream().emit(SongStarted(self.pixbuf()));
 }
 }
}

We send the SongDuration message if we found it in the HashMap (it is possible that the
song starts playing before the duration is computed).

Finally, we need to handle the following message in the App view:

view! {
 Playlist {
 PlayerMsgRecv(ref player_msg) =>
MsgRecv(player_msg.clone()),
 SongDuration(duration) => Duration(duration),
 SongStarted(ref pixbuf) => Started(pixbuf.clone()),
 }
 // …
}

Music Player in a More Rusty Way with Relm Chapter 7

[283]

When we receive the SongDuration message from the playlist, we send the Duration
message to App, so we need to add this variant to its Msg type:

#[derive(Msg)]
pub enum Msg {
 Duration(u64),
 // …
}

We'll simply handle it in the update() method:

fn update(&mut self, event: Msg) {
 match event {
 Duration(duration) => {
 self.model.current_duration = duration;
 self.model.adjustment.set_upper(duration as f64);
 },
 // …
 }
}

You can now run the application and see that it works exactly the same as the one from the
previous chapter.

Using relm on stable Rust
In this whole chapter, we used Rust nightly to be able to use custom attributes, which are
currently unstable. The #[widget] attribute provided by relm provides many advantages:

Declarative view
Data bindings
Less typing

So it would be nice to be able to use a similar syntax on stable that provides the same
advantages. And it is possible to do so, by using the relm_widget! macro. We'll rewrite
the App widget to use this macro:

relm_widget! {
 impl Widget for App {
 fn init_view(&mut self) {
 self.toolbar.show_all();
 }

Music Player in a More Rusty Way with Relm Chapter 7

[284]

 fn model() -> Model {
 Model {
 adjustment: Adjustment::new(0.0, 0.0, 0.0, 0.0,
0.0, 0.0),
 cover_pixbuf: None,
 cover_visible: false,
 current_duration: 0,
 current_time: 0,
 play_image: new_icon(PLAY_ICON),
 stopped: true,
 }
 }

 fn open(&self) {
 // …
 }

 // …

 fn update(&mut self, event: Msg) {
 // …
 }

 view! {
 #[name="window"]
 gtk::Window {
 title: "Rusic",
 // …
 }
 }
 }
}

As you can see, we moved the external open() method inside the implementation
decorated by the relm_widget! macro. This is due to a limitation of this macro, while it
allows us to use the nice syntax provided by relm on stable Rust, we cannot access the fields
of the model from outside the macro. The rest is exactly the same as the previous versions.

Music Player in a More Rusty Way with Relm Chapter 7

[285]

Relm widgets data binding
There are many other features available in relm and I wanted to show you the most
important of them: the syntax that is provided to simulate property binding. As you may
have noticed by now, there's no property in relm widgets, but you can use message passing
to update the internal state of a relm widget. To make it more convenient, the #[widget]
attribute also allows you to bind a model attribute to a message, this means that whenever
the attribute is updated, the message will be emitted with this new value.

We'll add a toggle button to be able to switch between a simple and a detailed view for the
playlist. The simple view will only show the cover and the title while the detailed view will
show all the columns. First, let's add an attribute to the App model:

pub struct Model {
 detailed_view: bool,
 // …
}

 fn model() -> Model {
 Model {
 detailed_view: false,
 // …
 }
 }

This field specifies whether we're in the detailed view mode or not. We'll also need a
message that will be emitted when we click the toggle button:

#[derive(Msg)]
pub enum Msg {
 ViewToggle,
 // …
}

Then, we add the toggle button to the toolbar:

#[name="toggle_button"]
gtk::ToggleToolButton {
 label: "Detailed view",
 toggled => ViewToggle,
}

Music Player in a More Rusty Way with Relm Chapter 7

[286]

When we receive this message, we'll set the model attribute accordingly:

fn update(&mut self, event: Msg) {
 match event {
 ViewToggle => self.model.detailed_view =
self.toggle_button.get_active(),
 // …
 }
}

Now, let's a message to the Playlist:

#[derive(Msg)]
pub enum Msg {
 DetailedView(bool),
 // …
}

This is the message we'll use for the binding. Let's handle it:

fn update(&mut self, event: Msg) {
 match event {
 DetailedView(detailed) => self.set_detailed_view(detailed),
 // …
 }
}

fn set_detailed_view(&self, detailed: bool) {
 for column in self.treeview.get_columns().iter().skip(2) {
 column.set_visible(detailed);
 }
}

The latter method toggles the visible of all columns except the first two. We can now create
the binding in the App view:

use playlist::Msg::DetailedView;

view! {
 // …
 #[name="playlist"]
 Playlist {
 // …
 DetailedView: self.model.detailed_view,
 }
}

Music Player in a More Rusty Way with Relm Chapter 7

[287]

This code will send the DetailedView message with the specified attribute as the value
whenever it changes.

Summary
In this chapter, we used relm to create a music player. We saw how simple it is to use rust
nightly with rustup. We learned how to declaratively create views and use message
passing to communicate between widgets. We also learned how to structure GUI
applications by separating the model, the view, and the function to update the model in
reaction to events. In the next chapter, we'll switch to another project: an FTP server.

8
Understanding FTP

This chapter is all about asynchronous programming in Rust. In order to show you how it
works, we'll write an FTP server. However, to make it as easy as possible for you to
understand, we'll break the subject down into the following topics:

Presenting the FTP protocol
Implementing a synchronous FTP server
Presenting asynchronous programmation in Rust
 Asynchronously implementing the FTP server

These steps are all important in order to make you feel confident in Rust asynchronous
programming.

Now, let's start by talking a bit about the FTP protocol!

File transfer protocol
The file transfer protocol (FTP) was created in 1971. Its final RFC is 959. If you're curious,
you can read more about it at https:/ /tools. ietf. org/ html/ rfc959.

Being an old protocol, a few commands don't have clear specifications, so some alternative
specifications (that are more or less official) have been written in order to fill those blanks.
We'll go back to them when writing the server.

Another important point to note is that FTP uses TCP connections.

Now that we've quickly introduced you to FTP, let's see how it works.

https://tools.ietf.org/html/rfc959
https://tools.ietf.org/html/rfc959
https://tools.ietf.org/html/rfc959
https://tools.ietf.org/html/rfc959
https://tools.ietf.org/html/rfc959
https://tools.ietf.org/html/rfc959
https://tools.ietf.org/html/rfc959
https://tools.ietf.org/html/rfc959
https://tools.ietf.org/html/rfc959
https://tools.ietf.org/html/rfc959
https://tools.ietf.org/html/rfc959
https://tools.ietf.org/html/rfc959
https://tools.ietf.org/html/rfc959

Understanding FTP Chapter 8

[289]

Introduction to FTP
A client connects to a server and then sends commands to the server. Each command
receives an answer from the server with either a success or failure.

For example, the client will send the PWD command to the server:

=> PWD\r\n
<= 257 "/"\r\n

Here, the server answered 257 (which literally means pathname created) and then gave the
current working directory the client is in (which is "/", in this case).

As you can see, every command ended with "". This is another standard in FTP—every
command has to end with "". In case you don't know, "" stands for carriage return and ""
stands for the backline.

Another thing to note—the answer from the server always contains a string before the "".
Consider the following example:

=> NOOP\r\n
<= 250 Doing nothing\r\n

If the client's command doesn't require a precise output (except for the returned code), it's
all up to the server. It's generally just a small sentence giving more information about what
the server did (or what failed). On another server, the NOOP command could have given the
following:

=> NOOP\r\n
<= 250 42 is life\r\n

Lastly, FTP works with two channels:

The first channel is used to send small commands, such as updating a status
The second channel is used to send a large amount of data, such as a file transfer
or even listing a directory

Understanding FTP Chapter 8

[290]

A funny thing about this second channel is that it's up to the client to decide whether the
server connects to the client or vice versa. But in almost every case, the client asks the server
to connect to him for a second time, and the server picks a port and they're good to go.

We can now say that we're done with a quick introduction to FTP. If it still doesn't seem
perfectly clear at this point, no need to worry: it'll become more obvious as we go through
the implementation of the server.

So, let's start with a synchronous server implementation.

Implementing simple chunks of commands
Let's start slowly by first creating a very simple server that sends "hello" to a new
client and then closes the connection:

use std::net::TcpListener;
use std::io::Write;

fn main() {
 let listener =
TcpListener::bind("0.0.0.0:1234").expect("Couldn't bind this
 address...");

 println!("Waiting for clients to connect...");
 for stream in listener.incoming() {
 Ok(stream) => {
 println!("New client!);
 if let Err(_) = stream.write(b"hello") {
 println!("Failed to send hello... :'(");
 }
 }
 _ => {
 println!("A client tried to connect...")
 }
 }
}

Pretty easy, right? As usual, let's explain what the code does:

let listener = TcpListener::bind("0.0.0.0:1234").expect("Couldn't
bind this address...");

For those who don't know much about the network, the preceding line of code is the most
important for any server

Understanding FTP Chapter 8

[291]

It tries to book the port for your server only. If another software is using it, then the bind call
will fail. The given string represents the address and port we want to book. The argument
works as follows: [IP]:[PORT]. Here, we entered 0.0.0.0:1234, which means that we
want the port 1234 on the address 0.0.0.0.

It might sound strange to allow a server to pick an IP address to use, but it's actually not the
case. You can only choose between localhost (alias 127.0.0.1) and 0.0.0.0. The only
difference between those two is that 0.0.0.0 allows other computers to connect to your
own (if the port can be accessed from outside through the box provided by your internet
access provider), whereas 127.0.0.1 can only be accessed from the computer it has been
started on. But enough with network explanations—this isn't the point of this book, so let's
move on!

The only other code that requires explanation is the following:

for stream in listener.incoming() {

The incoming method call allows us to iterate infinitely on newly received connections by
returning an iterator. Then, the for loop just calls the next method of the iterator.

That's it for this small code sample. Now it's time to improve all this!

It'd be nice to handle every client separately and not close the connection as soon as we
receive a new connection, wouldn't it? So, let's just update the previous code a bit:

use std::net::{TcpListener, TcpStream};
use std::thread;

fn handle_client(mut stream: TcpStream) {
 println!("new client connected!");
 // put client code handling here
}

fn main() {
 let listener =
TcpListener::bind("0.0.0.0:1234").expect("Couldn't bind this
 address...");

 println!("Waiting for clients to connect...");
 for stream in listener.incoming() {
 Ok(stream) => {
 thread::spawn(move || {
 handle_client(stream);
 });
 }

Understanding FTP Chapter 8

[292]

 _ => {
 println!("A client tried to connect...")
 }
 }
}

Every time a new client connects to the server, we spawn a new thread and send the client's
socket into it. This way, we can now handle every client on its own.

Now that we can get new clients connected, it's time to actually start implementing the FTP
part of our server.

Starting with basics
Of course, since we need to read and write on sockets, having to do that again and again in
every function wouldn't be very efficient. Therefore, we'll start by implementing functions
to do that. For now, we won't handle errors nicely (yes, unwrap is evil).

Let's start with the write function:

use use std::net::TcpStream;
use std::io::Write;

fn send_cmd(stream: &mut TcpStream, code: ResultCode, message:
&str) {
 let msg = if message.is_empty() { CommandNotImplemented = 502,
 format!("{}\r\n", code as u32)
 } else {
 format!("{} {}\r\n", code as u32, message)
 };
 println!("<==== {}", msg);
 write!(stream, "{}", msg).unwrap()
}

OK, there's nothing fancy nor difficult to understand here. However, take a look at this:

Every message ends with "" in FTP
Every message has to be followed by a whitespace if you want to add parameters
or information.

This also works in the exact same way when a client sends us a command.

Understanding FTP Chapter 8

[293]

What? Did I forget to provide you the ResultCode type? Indeed, you're absolutely right.
Here it is:

#[derive(Debug, Clone, Copy)]
#[repr(u32)]
#[allow(dead_code)]
enum ResultCode {
 RestartMarkerReply = 110,
 ServiceReadInXXXMinutes = 120,
 DataConnectionAlreadyOpen = 125,
 FileStatusOk = 150,
 Ok = 200,
 CommandNotImplementedSuperfluousAtThisSite = 202,
 SystemStatus = 211,
 DirectoryStatus = 212,
 FileStatus = 213,
 HelpMessage = 214,
 SystemType = 215,
 ServiceReadyForNewUser = 220,
 ServiceClosingControlConnection = 221,
 DataConnectionOpen = 225,
 ClosingDataConnection = 226,
 EnteringPassiveMode = 227,
 UserLoggedIn = 230,
 RequestedFileActionOkay = 250,
 PATHNAMECreated = 257,
 UserNameOkayNeedPassword = 331,
 NeedAccountForLogin = 332,
 RequestedFileActionPendingFurtherInformation = 350,
 ServiceNotAvailable = 421,
 CantOpenDataConnection = 425,
 ConnectionClosed = 426,
 FileBusy = 450,
 LocalErrorInProcessing = 451,
 InsufficientStorageSpace = 452,
 UnknownCommand = 500,
 InvalidParameterOrArgument = 501,
 CommandNotImplemented = 502,
 BadSequenceOfCommands = 503,
 CommandNotImplementedForThatParameter = 504,
 NotLoggedIn = 530,
 NeedAccountForStoringFiles = 532,
 FileNotFound = 550,
 PageTypeUnknown = 551,
 ExceededStorageAllocation = 552,
 FileNameNotAllowed = 553,
}

Understanding FTP Chapter 8

[294]

Yep, not very beautiful... This is the exact representation of all FTP code types (errors,
information, warnings, and so on). We can't do much better here; we have to rewrite all
code so that we can understand it when we receive it and are able to give the correct code
corresponding to the clients' commands.

Now, I suppose, you can guess what's coming next. The enum Command of course! This
time, we'll fulfill it while we move forward on to the implementation of the commands:

use std::io;
use std::str;

#[derive(Clone, Copy, Debug)]
enum Command {
 Auth,
 Unknown(String),
}

impl AsRef<str> for Command {
 fn as_ref(&self) -> &str {
 match *self {
 Command::Auth => "AUTH",
 Command::Unknown(_) => "UNKN",
 }
 }
}

impl Command {
 pub fn new(input: Vec<u8>) -> io::Result<Self> {
 let mut iter = input.split(|&byte| byte == b' ');
 let mut command = iter.next().expect("command in
 input").to_vec();
 to_uppercase(&mut command);
 let data = iter.next();
 let command =
 match command.as_slice() {
 b"AUTH" => Command::Auth,
 s =>
Command::Unknown(str::from_utf8(s).unwrap_or("").to_owned()),
 };
 Ok(command)
 }
}

Understanding FTP Chapter 8

[295]

OK, let's get through this code:

enum Command {
 Auth,
 Unknown(String),
}

Every time we add a new command handling, we'll have to add a new variant to this enum.
In case the command doesn't exist (or we haven't implemented it yet), Unknown will be
returned with the command name. If the command is taking arguments, it'll be added just
like we saw for Unknown. Let's take Cwd as an example:

enum Command {
 Auth,
 Cwd(PathBuf),
 Unknown(String),
}

As you can see, Cwd contains a PathBuf. Cwd stands for change working directory and
takes the path of the directory that the client wants to go to.

Of course, you'd need to update as_ref by adding the following line to the match block:

Command::Cwd(_) => "CWD",

And you'd need to update the new method implementation by adding the following line
into the match block:

b"CWD" => Command::Cwd(data.map(|bytes|
Path::new(str::from_utf8(bytes).unwrap()).to_path_buf()).unwrap()),

Now let's explain the AsRef trait implementation. It's very convenient when you want to
write a generic function. Take a look at the following example:

fn foo<S: AsRef<str>>(f: S) {
 println!("{}", f.as_ref());
}

Thanks to this trait, as long as the type implements it, we can call as_ref on it. It's very
useful in our case when sending messages to the client since we can just take a type
implementing AsRef.

Now let's talk about the new method of the Command type:

pub fn new(input: Vec<u8>) -> io::Result<Self> {
 let mut iter = input.split(|&byte| byte == b' ');

Understanding FTP Chapter 8

[296]

 let mut command = iter.next().expect("command in
input").to_vec();
 to_uppercase(&mut command);
 let data = iter.next();
 let command =
 match command.as_slice() {
 b"AUTH" => Command::Auth,
 s =>
Command::Unknown(str::from_utf8(s).unwrap_or("").to_owned()),
 };
 Ok(command)
}

The point here is to convert the message received from the client. We need to do two things:

Get the command
Get the command's arguments (if any)

First, we create an iterator to split our vector, so we can separate the command from the
arguments:

let mut iter = input.split(|&byte| byte == b' ');

Then, we get the command:

let mut command = iter.next().expect("command in input").to_vec();

At this point, command is a Vec<u8>. To then make the matching easier (because nothing in
the RFC of the FTP talks about the fact that commands should be in uppercase or
that auth is the same as AUTH or even AuTh), we call the uppercase function, which looks
like this:

fn to_uppercase(data: &mut [u8]) {
 for byte in data {
 if *byte >= 'a' as u8 && *byte <= 'z' as u8 {
 *byte -= 32;
 }
 }
}

Next, we get the arguments by calling next on the iterator iter:

let data = iter.next();

If there are no arguments, no problem! We'll just get None.

Understanding FTP Chapter 8

[297]

Finally, we match the commands:

match command.as_slice() {
 b"AUTH" => Command::Auth,
 s =>
Command::Unknown(str::from_utf8(s).unwrap_or("").to_owned()),
}

To do so, we convert our Vec<u8>> into a &[u8] (a slice of u8). To also convert a &str
(such as AUTH) into a &[u8], we use the b operator (which is more like saying to the
compiler, Hey! Don't worry, just say it's a slice and not a &str!) to allow the matching.

And we're good! We can now write the function to actually read the data from the client:

fn read_all_message(stream: &mut TcpStream) -> Vec<u8> {
 let buf = &mut [0; 1];
 let mut out = Vec::with_capacity(100);

 loop {
 match stream.read(buf) {
 Ok(received) if received > 0 => {
 if out.is_empty() && buf[0] == b' ' {
 continue
 }
 out.push(buf[0]);
 }
 _ => return Vec::new(),
 }
 let len = out.len();
 if len > 1 && out[len - 2] == b'\r' && out[len - 1] ==
 b'\n' {
 out.pop();
 out.pop();
 return out;
 }
 }
}

Here, we read one byte at a time (and it's not a very efficient way to do so; we'll go back on
this function later) and return when we get "". We have just added a little security by
removing any whitespaces that would come before the command (so as long as we don't
have any data in our vector, we won't add any whitespace).

If there is any error, we return an empty vector and stop the reading of the client input.

Understanding FTP Chapter 8

[298]

Like I said earlier, reading byte by byte isn't efficient, but is simpler to demonstrate how it
works. So, for now, let's stick to this. This will be done completely differently once the
asynchronous programming kicks in.

So, now that we can read and write FTP inputs it's time to actually start the implementation
of the commands!

Let's start by creating a new structure:

#[allow(dead_code)]
struct Client {
 cwd: PathBuf,
 stream: TcpStream,
 name: Option<String>,
}

Here are some quick explanations for the preceding code:

cwd stands for the current working directory
stream is the client's socket
name is the username you got from user authentication (which doesn't really
matter, as we won't handle authentication in the first steps)

Now it's time to update the handle_client function:

fn handle_client(mut stream: TcpStream) {
 println!("new client connected!");
 send_cmd(&mut stream, ResultCode::ServiceReadyForNewUser,
"Welcome to this FTP
 server!");
 let client = Client::new(stream);
 loop {
 let data = read_all_message(&mut client.stream);
 if data.is_empty() {
 println!("client disconnected...");
 break;
 }
 client.handle_cmd(command::new(data));
 }
}

When a new client connects to the server, we send them a message to inform them that the
server is ready. Then we create a new Client instance, listen on the client socket, and
handle its commands. Simple, right?

Understanding FTP Chapter 8

[299]

Two things are missing from this code:

The Client::new method
The Client::handle_cmd method

Let's start with the first one:

impl Client {
 fn new(stream: TcpStream) -> Client {
 Client {
 cwd: PathBuf::from("/"),
 stream: stream,
 name: None,
 }
 }
}

Nothing fancy here; the current path is "/" (it corresponds to the root of the server, not to
the root of the filesystem!). We have set the client's stream, and the name hasn't been
defined yet.

Now let's see the Client::handle_cmd method (needless to say, it'll be the core of this
FTP server):

fn handle_cmd(&mut self, cmd: Command) {
 println!("====> {:?}", cmd);
 match cmd {
 Command::Auth => send_cmd(&mut self.stream,
 ResultCode::CommandNotImplemented,
 "Not implemented"),
 Command::Unknown(s) => send_cmd(&mut self.stream,
 ResultCode::UnknownCommand,
 "Not implemented"),
 }
}

And that's it! Ok, so that's not really it. We still have a lot to add. But my point is, we now
only have to add other commands here to make it all work.

Understanding FTP Chapter 8

[300]

Commands implementation
In the previous code, we only handled one command; any other command will receive an
unknown command answer from the server. Also, our Auth implementation says it's not
implemented. So, to sum this up, we handle one command that answers that it's not
implemented. Crazy, right? For the Auth command, we'll look at this later.

Now let's implement some commands for real. Let's start with a simple one: Syst. This is
supposed to return which system this FTP server is running on. For some reason, we won't
answer that, and we'll just send back an answer-nothing usable.

Implementing the SYST command
First, let's add a new entry into the Command enum (I won't do this every time, but the steps
will remain the same):

enum Command {
 Auth,
 Syst,
 Unknown(String),
}

Then, let's update the as_ref implementation:

impl AsRef<str> for Command {
 fn as_ref(&self) -> &str {
 match *self {
 Command::Auth => "AUTH",
 Command::Syst => "SYST",
 Command::Unknown(_) => "UNKN",
 }
 }
}

Finally, let's update the Command::new method:

impl Command {
 pub fn new(input: Vec<u8>) -> io::Result<Self> {
 let mut iter = input.split(|&byte| byte == b' ');
 let mut command = iter.next().expect("command in
 input").to_vec();
 to_uppercase(&mut command);
 let data = iter.next();
 let command =
 match command.as_slice() {

Understanding FTP Chapter 8

[301]

 b"AUTH" => Command::Auth,
 b"SYST" => Command::Syst,
 s =>
Command::Unknown(str::from_utf8(s).unwrap_or("").to_owned()),
 };
 Ok(command)
 }
}

That's it! Like I said earlier, just remember those three steps every time you add a new
command and everything should be fine.

Now let's implement the command:

fn handle_cmd(&mut self, cmd: Command) {
 println!("====> {:?}", cmd);
 match cmd {
 Command::Auth => send_cmd(&mut self.stream,
 ResultCode::CommandNotImplemented,
 "Not implemented"),
 Command::Syst => send_cmd(&mut self.stream, ResultCode::Ok,
"I won't tell"),
 Command::Unknown(s) => send_cmd(&mut self.stream,
 ResultCode::UnknownCommand,
 "Not implemented"),
 }
}

And that's it! We implemented a new command (which doesn't do much, but that isn't the
point)!

Implementing the USER command
Since we have a name in our Client structure, it'd be nice to have some use for it, right? So,
as the title says, let's implement the USER command. Since this command takes an
argument, I'll go through the command implementation steps once again, so you'll have an
example of a command taking a parameter.

First, let's update the enum Command:

enum Command {
 Auth,
 Syst,
 User(String),
 Unknown(String),
}

Understanding FTP Chapter 8

[302]

Then, we update the as_ref implementation:

impl AsRef<str> for Command {
 fn as_ref(&self) -> &str {
 match *self {
 Command::Auth => "AUTH",
 Command::Syst => "SYST",
 Command::User => "USER",
 Command::Unknown(_) => "UNKN",
 }
 }
}

Finally, we update the Command::new method:

impl Command {
 pub fn new(input: Vec<u8>) -> io::Result<Self> {
 let mut iter = input.split(|&byte| byte == b' ');
 let mut command = iter.next().expect("command in
input").to_vec();
 to_uppercase(&mut command);
 let data = iter.next();
 let command =
 match command.as_slice() {
 b"AUTH" => Command::Auth,
 b"SYST" => Command::Syst,
 b"USER" => Command::User(data.map(|bytes|
 String::from_utf8(bytes.to_vec()).expect("cannot
 convert bytes to String")).unwrap_or_default()),
 s =>
Command::Unknown(str::from_utf8(s).unwrap_or("").to_owned()),
 };
 Ok(command)
 }
}

Phew, all done! Now we just need to implement the function (which is quite simple, I
promise):

fn handle_cmd(&mut self, cmd: Command) {
 println!("====> {:?}", cmd);
 match cmd {
 Command::Auth => send_cmd(&mut self.stream,
 ResultCode::CommandNotImplemented,
 "Not implemented"),
 Command::Syst => send_cmd(&mut self.stream, ResultCode::Ok,
 "I won't tell"),
 Command::User(username) => {

Understanding FTP Chapter 8

[303]

 if username.is_empty() {
 send_cmd(&mut self.stream,
ResultCode::InvalidParameterOrArgument,
 "Invalid username")
 } else {
 self.name = username.to_owned();
 send_cmd(&mut self.stream,
ResultCode::UserLoggedIn,
 &format!("Welcome {}!", username)),
 }
 }
 Command::Unknown(s) => send_cmd(&mut self.stream,
 ResultCode::UnknownCommand,
 "Not implemented"),
 }
}

Here's a little explanation just in case you need it; if we receive an empty username (or no
username at all), we consider this as an invalid parameter and return
InvalidParameterOrArgument. Otherwise, everything is fine and we return
UserLoggedIn.

If you're wondering why we didn't return ResultCode::Ok, it's because the RFC states as
such. Once again, every command, what it does, and what it should return is described
there. If you feel lost, don't hesitate to read it again!

Implementing the NOOP command
This topic is quite a simple one. NOOP stands for no operation. It takes no argument and
does nothing. Just because I'm a nice person, here's the code for the NOOP command in the
Client::handle_cmd method:

Command::NoOp => send_cmd(&mut self.stream, ResultCode::Ok, "Doing
nothing..."),

Yes, I know, you're amazed by such wonderful code. But don't worry, you'll able to write
something as good as this when you grow older!

It's now time to implement the next command!

Understanding FTP Chapter 8

[304]

Implementing the PWD command
This command is very simple as well. PWD stands for print working directory. Once again,
it's not the one from your system but the one from your server (so again, "/" corresponds
to the folder where you started the server).

The command doesn't take any argument, so there's no need to show you everything again.
Let's just focus on the command handling:

Command::Pwd => {
 let msg = format!("{}", self.cwd.to_str().unwrap_or(""));
 if !msg.is_empty() {
 let message = format!("\"/{}\" ", msg);
 send_cmd(&mut self.stream, ResultCode::PATHNAMECreated,
 &format!("\"/{}\" ",
 msg))
 } else {
 send_cmd(&mut self.stream, ResultCode::FileNotFound, "No
 such file or directory")
 }
}

Nothing complicated; we try to display the path, and if we fail, we return an error. The only
strange thing is that if everything goes fine, we have to return PATHNAMECreated. This RFC
is really strange...

Sorry, this was the last simple command. Now we'll go deeper into the FTP and its strange
RFC. The following command is just a nice introduction to what's coming next. (I hope I
didn't scare you!)

Implementing the TYPE command
For now, we'll have an implementation of the TYPE command that does nothing. We'll come
back to it in the following chapters. However, a bit of explanation will come in handy, I
assume.

TYPE stands for the representation type. When you're transferring data over the data
connection (which is different from the command connection, which is the only one we've
been using until now), you can transfer data differently.

Understanding FTP Chapter 8

[305]

By default, the transfer type is ASCII (the main difference is that all "" have to be
transformed into ""). We'll use the image one (where you send data as you have it) to make
our lives easier.

Once again, we'll go back to this implementation in later chapters.

For now, let's just add a Type command that doesn't take any argument:

Command::Type => send_cmd(&mut self.stream, ResultCode::Ok,
"Transfer type changed successfully"),

OK, we're lying a bit, but we'll have to deal with it for the moment.

We're almost at the end of the basics, but there's one last command to implement before you
can try accessing the server using an FTP client.

Implementing the LIST command
The LIST command returns a list of the current files and folders of the current folder or at
the given parameter path. This is already very difficult itself because you need to check that
the final path is accessible to the user (for example, if you receive foo/../../ when you're
at "/", there's an issue). But that's not all! When you're transferring the files and folders list,
there is no official way to format it! Fun, right? Luckily, most of the FTP clients follow some
kind of non-official RFC for this case, and we'll use it.

In addition to all of this, this command is the first one that we'll implement that uses the
data connection. This requires you to add another command: PASV.

Implementing the PASV command
To be able to make this command work, we need to add a few new fields in our Client
struct:

struct Client {
 cwd: PathBuf,
 stream: TcpStream,
 name: Option<String>,
 data_writer: Option<TcpStream>,
}

Understanding FTP Chapter 8

[306]

We now need to update the Client::new method as well:

fn new(stream: TcpStream) -> Client {
 Client {
 cwd: PathBuf::from("/"),
 stream: stream,
 name: None,
 data_writer: None,
 }
}

The PASV command doesn't take arguments, so I'll let you add it to the structures and
everything. Let's focus on the interesting part:

// Adding some new imports:
use std::net::{IpAddr, Ipv4Addr, SocketAddr};

Command::Pasv => {
 if self.data_writer.is_some() {
 send_cmd(&mut self.stream,
ResultCode::DataConnectionAlreadyOpen, "Already
 listening...")
 } else {
 let port = 43210;
 send_cmd(&mut self.stream, ResultCode::EnteringPassiveMode,
 &format!("127,0,0,1,{},{}", port >> 8, port & 0xFF));
 let addr = SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0,
 0, 1)), port);
 let listener = TcpListener::bind(&addr).unwrap();
 match listener.incoming().next() {
 Some(Ok(client)) => {
 self.data_writer = Some(client);
 }
 _ => {
 send_cmd(&mut self.stream,
ResultCode::ServiceNotAvailable, "issues
 happen...");
 }
 }
 }
}

Understanding FTP Chapter 8

[307]

Phew... Let's explain all this:

if self.data_writer.is_some() {
 send_cmd(&mut self.stream,
ResultCode::DataConnectionAlreadyOpen, "Already listening...")
}

If we already have a data connection with this client, there's no need to open a new one, so
we don't do anything else:

let port: u16 = 43210;
send_cmd(&mut self.stream, ResultCode::EnteringPassiveMode,
 &format!("127,0,0,1,{},{}", port >> 8, port & 0xFF));

This part is a bit more tricky. First, we pick a port (the best way would be to check if the
port is available first; we'll do this in later chapters). Then, we have to tell the client where it
should connect to.

This is where things get a bit more complicated. We have to transfer the address as follows:

ip1,ip2,ip3,ip4,port1,port2

Every ip part has to be 8-bits long (so 1-byte long), whereas, each port part has to be 16-
bits long (so, 2 bytes). The first part is easy; we just print localhost. However, the second
part requires you to perform some binary operation.

To get the first byte only is simple; we just have to move 8 bits to the right. To sum this up,
take a look at this:

1010 1010 1111 1111

This is our u16. We now shift 8 bits to the right:

0000 0000 1010 1010

Tadaa!

For the second part, we could move 8 bits to the left and then 8 bits to the right, or we could
just use the and binary operator. Here's a little scheme to explain this:

1 & 1 == 1
1 & 0 == 0

Now let's take a nice binary to the hexadecimal converter and check the result:

0000 0000 1111 1111 == 0xFF

Understanding FTP Chapter 8

[308]

Now if we perform this operation, we get the following:

1111 1111 1010 1010 & 0xFF
=>
0000 0000 1010 1010

Now we have the last 8 bits only. Great! The last part of the command handling is very
easy:

let addr = SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)),
port);
let listener = TcpListener::bind(&addr).unwrap();
match listener.incoming().next() {
 Some(Ok(client)) => {
 self.data_writer = Some(client);
 }
 _ => {
 send_cmd(&mut self.stream, ResultCode::ServiceNotAvailable,
"issues
 happen...");
 }
}

We bind the address and port, wait for a client to connect, and then assign it to our data
writer. There's nothing problematic in this.

Back to the LIST command
Now that we can handle a data connection, let's implement the LIST! For now, let's
implement it without parameters (once again, we'll see in later chapters how to handle the
LIST parameter). As usual, I'll let you add everything where it's needed and we'll just focus
on the command handling:

Command::List => {
 if let Some(ref mut data_writer) = self.data_writer {
 let mut tmp = PathBuf::from(".");
 send_cmd(&mut self.stream,
ResultCode::DataConnectionAlreadyOpen,
 "Starting to list directory...");
 let mut out = String::new();
 for entry in read_dir(tmp).unwrap() {
 for entry in dir {
 if let Ok(entry) = entry {
 add_file_info(entry.path(), &mut out);
 }
 }

Understanding FTP Chapter 8

[309]

 send_data(data_writer, &out)
 }
 } else {
 send_cmd(&mut self.stream, ResultCode::ConnectionClosed,
 "No opened data connection");
 }
 if self.data_writer.is_some() {
 self.data_writer = None;
 send_cmd(&mut self.stream,
ResultCode::ClosingDataConnection, "Transfer
 done");
 }
}

There's nothing complicated here either too. Once the transfer is over, we close the client
socket and move on. What remains to be added are the send_data and the
add_file_info functions. Let's start with the first one:

fn send_data(stream: &mut TcpStream, s: &str) {
 write!(stream, "{}", s).unwrap();
}

Easy, there's no error handling, so it just stands on one line. Now let's see the
add_file_info function:

fn add_file_info(path: PathBuf, out: &mut String) {
 let extra = if path.is_dir() { "/" } else { "" };
 let is_dir = if path.is_dir() { "d" } else { "-" };

 let meta = match ::std::fs::metadata(&path) {
 Ok(meta) => meta,
 _ => return,
 };
 let (time, file_size) = get_file_info(&meta);
 let path = match path.to_str() {
 Some(path) => match path.split("/").last() {
 Some(path) => path,
 _ => return,
 },
 _ => return,
 };
 let rights = if meta.permissions().readonly() {
 "r--r--r--"
 } else {
 "rw-rw-rw-"
 };
 let file_str = format!("{is_dir}{rights} {links} {owner}

Understanding FTP Chapter 8

[310]

{group} {size} {month}
 {day} {hour}:{min} {path}{extra}\r\n",
 is_dir=is_dir,
 rights=rights,
 links=1, // number of links
 owner="anonymous", // owner name
 group="anonymous", // group name
 size=file_size,
 month=MONTHS[time.tm_mon as usize],
 day=time.tm_mday,
 hour=time.tm_hour,
 min=time.tm_min,
 path=path,
 extra=extra);
 out.push_str(&file_str);
 println!("==> {:?}", &file_str);
}

To make this code work, you'll also need the following:

#[macro_use]
extern crate cfg_if;

cfg_if! {
 if #[cfg(windows)] {
 fn get_file_info(meta: &Metadata) -> (time::Tm, u64) {
 use std::os::windows::prelude::*;
 (time::at(time::Timespec::new(meta.last_write_time())),
 meta.file_size())
 }
 } else {
 fn get_file_info(meta: &Metadata) -> (time::Tm, u64) {
 use std::os::unix::prelude::*;
 (time::at(time::Timespec::new(meta.mtime(), 0)),
 meta.size())
 }
 }
}

Don't forget to add cfg_if in your Cargo.toml:

cfg-if = "0.1.2"

cfg-if is really good at help you do conditional compilation in a more easily readable
way. A point to note about the get_file_info function now—this is one of the rare things
that can't be performed in the same way on all systems.

Understanding FTP Chapter 8

[311]

Here, Windows has its own version and Unix has another. However, the two functions take
the same argument (the import), and one function call changes. Let's go back to the
add_file_info function now:

I suppose you recognized the output of the ls command, right? Apparently, the non-official
RFC is working as follows:

dr--r--r-- 1 me me 1024 Jan 7 12:42 foo/
-rw-rw-rw- 1 me me 4 Mar 3 23:42 some_file

First, d if it's a directory or - if it isn't. Then, the rights (just like on Unix platforms):

[rwx][rwx][rwx]

The first rwx is for the owner, the second is about the group, and the last one is about
everyone. Here, r stands for read access, w stands for write access, and x stands for
execution access.

The rest seems explicit enough on its own, so there's no need to explain it.

Implementing the CWD command
The CWD command allows the user to change its current folder location. However, it's far
from easy to do.

Before going into the implementation of this command, we'll need to discuss a potential
security issue: paths.

Imagine the user is at the "/" location (which will corresponds to, say,
/home/someone/somewhere) and requests foo/../../. If we just accept the path and
move the user to this location, it'll end up at /home/someone. This means that the users
could access all of your computer without issue. You see the problem now?

Luckily for us, Rust has a nice method on Path that allows us to fix this huge security
issue. I'm talking about Path::canonicalize (which is an alias of the
fs::canonicalize function).

So, what does this function do? Let's take an example:

let path = Path::new("/foo/test/../bar.rs");
assert_eq!(path.canonicalize().unwrap(),
PathBuf::from("/foo/bar.rs"));

Understanding FTP Chapter 8

[312]

As you can see, it interprets the path, normalizes everything (.. removes the folder
component), and resolves symbolic links as well. Quite magical, right?

Of course, all good things have a downside, and so does canonicalize.: it can only work
on real paths. If a part of the path doesn't exist, the function will just fail. It's pretty easy to
get through it when you know it, but it can sound surprising at first.

So, how do we fix this? Well, we need to play with a real path. So first, we need to append
the user's server path to the real server path (the one it has on the computer). Once this is
done, we just append the path requested by the user and call canonicalize.

That's not very complicated, but is a bit annoying to play with at first. Don't worry, though,
the code is coming!

If you wonder why we're not just using the chroot function (which would solve all
problems), remember that this FTP server is supposed to work on every platform.

So first, let's add a new command entry to the enum Command :

Cwd(PathBuf),

Good, now let's add it to the Command::new method matching:

b"CWD" => Command::Cwd(data.map(|bytes|
Path::new(str::from_utf8(bytes).unwrap()).to_path_buf()).unwrap()),

Perfect! I'll let you add it into the AsRef implementation as well. Now it's time to go into
the real implementation:

Command::Cwd(directory) => self.cwd(directory),

For once, to make our life easier, we'll create a new method in our Client, so all the code
from the CWD command won't fill the enum:

fn complete_path(&self, path: PathBuf, server_root: &PathBuf) ->
Result<PathBuf, io::Error> {
 let directory = server_root.join(if path.has_root() {
 path.iter().skip(1).collect()
 } else {
 path
 });
 let dir = directory.canonicalize();
 if let Ok(ref dir) = dir {
 if !dir.starts_with(&server_root) {
 return Err(io::ErrorKind::PermissionDenied.into());
 }

Understanding FTP Chapter 8

[313]

 }
 dir
}

fn cwd(mut self, directory: PathBuf) {
 let server_root = env::current_dir().unwrap();
 let path = self.cwd.join(&directory);
 if let Ok(dir) = self.complete_path(path, &server_root) {
 if let Ok(prefix) = dir.strip_prefix(&server_root)
 .map(|p| p.to_path_buf()) {
 self.cwd = prefix.to_path_buf();
 send_cmd(&mut self.stream, ResultCode::Ok,
 &format!("Directory changed to \"{}\"",
directory.display()));
 return
 }
 }
 send_cmd(&mut self.stream, ResultCode::FileNotFound, "No such
file or directory");
}

OK, that's a lot of code. Let's now go through the execution flow:

let server_root = env::current_dir().unwrap();

For now, you can't set which folder the server is running on; it'll be changed later on:

let path = self.cwd.join(&directory);

First, we join the requested directory to the current directory of the user:

if let Ok(dir) = self.complete_path(path, &server_root) {

Things start to get funny in here. The whole canonicalization process is in there.

Now let's append the user path to the (real) server path:

let directory = server_root.join(if path.has_root() {
 path.iter().skip(1).collect()
} else {
 path
});

So, if the path is an absolute one (starting with "/" on Unix or a prefix on Windows such as
c:), we need to remove the first component of the path, otherwise, we just append it.

Understanding FTP Chapter 8

[314]

We now have a full and potentially existent path. Let's canonicalize it:

let dir = directory.canonicalize();

Now we have one more thing to check—if the path doesn't start with the server root, then it
means that the user tried to cheat on us and tried to access non-accessible folders. Here is
how we do it:

if let Ok(ref dir) = dir {
 if !dir.starts_with(&server_root) {
 return Err(io::ErrorKind::PermissionDenied.into());
 }
}

In the case that canonicalize returned an error, there's no need to check if it did (since it's
already an error). If it succeeded but doesn't start with server_root, then we return an
error.

That's it for this function. Now, we'll return the result to the caller and can go back to the
cwd method:

if let Ok(dir) = self.complete_path(path, &server_root) {
 if let Ok(prefix) = dir.strip_prefix(&server_root)
 .map(|p| p.to_path_buf()) {
 // ...
 }
}

Once we get the full directory path and have confirmed it was okay, we need to remove the
server_root prefix to get the path from our server root:

self.cwd = prefix.to_path_buf();
send_cmd(&mut self.stream, ResultCode::Ok,
 &format!("Directory changed to \"{}\"",
directory.display()));
return

Finally, once this is done, we can just set the path to the user and send back a message that
the command succeeded (and return to avoid sending back that we failed!).

If anything goes wrong, we send back the following:

send_cmd(&mut self.stream, ResultCode::FileNotFound, "No such file
or directory");

That's it for this command! You now know how to avoid a security issue by checking
received paths provided by the clients.

Understanding FTP Chapter 8

[315]

Implementing the CDUP command
CDUP is used to go up to the parent directory. In comparison to the CWD command
implementation, it'll be a piece of cake! The CDUP command doesn't take arguments, so I'll
let you add it to enums. Now, let's focus on the command implementation:

Command::CdUp => {
 if let Some(path) = self.cwd.parent().map(Path::to_path_buf) {
 self.cwd = path;
 }
 send_cmd(&mut self.stream, ResultCode::Ok, "Done");
}

And that's it. There's need to check if the parent folder exists, as it does. And if we're
already at the root, then there's no need to do anything. Isn't it wonderful?

Full implementation of the LIST command
Now that we know how to play with paths nicely, it'd be a shame not fully implement the
LIST command, right?

To complete it, you'll need to update the Command::List variant in order to make it
accept PathBuf as an argument.

So, we currently have the following code:

Command::List => {
 if let Some(ref mut data_writer) = self.data_writer {
 let mut tmp = PathBuf::from(".");
 send_cmd(&mut self.stream,
ResultCode::DataConnectionAlreadyOpen,
 "Starting to list directory...");
 let mut out = String::new();
 for entry in read_dir(tmp).unwrap() {
 for entry in dir {
 if let Ok(entry) = entry {
 add_file_info(entry.path(), &mut out);
 }
 }
 send_data(data_writer, &out)
 }
 } else {
 send_cmd(&mut self.stream, ResultCode::ConnectionClosed,
"No opened data
 connection");

Understanding FTP Chapter 8

[316]

 }
 if self.data_writer.is_some() {
 self.data_writer = None;
 send_cmd(&mut self.stream,
ResultCode::ClosingDataConnection, "Transfer
 done");
 }
}

Let's update it as follows:

Command::List(path) => {
 if let Some(ref mut data_writer) = self.data_writer {
 let server_root = env::current_dir().unwrap();
 let path = self.cwd.join(path.unwrap_or_default());
 let directory = PathBuf::from(&path);
 if let Ok(path) = self.complete_path(directory,
 &server_root) {
 send_cmd(&mut self.stream,
 ResultCode::DataConnectionAlreadyOpen,
 "Starting to list directory...");
 let mut out = String::new();
 for entry in read_dir(path).unwrap() {
 for entry in dir {
 if let Ok(entry) = entry {
 add_file_info(entry.path(), &mut out);
 }
 }
 send_data(data_writer, &out)
 }
 } else {
 send_cmd(&mut self.stream,
ResultCode::InvalidParameterOrArgument,
 "No such file or directory...");
 }
 } else {
 send_cmd(&mut self.stream, ResultCode::ConnectionClosed,
 "No opened data connection");
 }
 if self.data_writer.is_some() {
 self.data_writer = None;
 send_cmd(&mut self.stream,
 ResultCode::ClosingDataConnection, "Transfer done");
 }
}

Understanding FTP Chapter 8

[317]

To put it simply, we just added the following line:

let path = self.cwd.join(path.unwrap_or_default());
let directory = PathBuf::from(&path);
if let Ok(path) = self.complete_path(directory, &server_root) {
 // ...
} else {
 send_cmd(&mut self.stream,
ResultCode::InvalidParameterOrArgument,
 "No such file or directory...");
}

Thanks to the Client::complete_path method, things were pretty easy with the path
manipulation. So, what happens if the given path is a file? We don't check such a case but
we should! Let's replace the following lines:

for entry in read_dir(path).unwrap() {
 for entry in dir {
 if let Ok(entry) = entry {
 add_file_info(entry.path(), &mut out);
 }
 }
 send_data(data_writer, &out)
}

With:

if path.is_dir() {
 for entry in read_dir(path).unwrap() {
 for entry in dir {
 if let Ok(entry) = entry {
 add_file_info(entry.path(), &mut out);
 }
 }
 send_data(data_writer, &out)
 }
} else {
 add_file_info(path, &mut out);
}

And that's it! Luckily for us, we did things correctly the first time, so it just works.

Understanding FTP Chapter 8

[318]

Implementing the MKD command
The MKD stands for make directory (yes, exactly like the Unix command but shorter). Just
like LIST and CWD, it takes PathBuf as an argument. I'll let you handle the other adds as
usual and focus on the command implementation:

Command::Mkd(path) => self.mkd(path),

Just like last time, we'll create a new method:

use std::fs::create_dir;

fn mkd(&self, path: PathBuf) {
 let server_root = env::current_dir().unwrap();
 let path = self.cwd.join(&path);
 if let Some(parent) = path.parent().map(|p| p.to_path_buf()) {
 if let Ok(mut dir) = self.complete_path(parent,
 &server_root) {
 if dir.is_dir() {
 if let Some(filename) = path.file_name().map(|p|
 p.to_os_string()) {
 dir.push(filename);
 if create_dir(dir).is_ok() {
 send_cmd(&mut self.stream,
 ResultCode::PATHNAMECreated,
 "Folder successfully created!");
 return
 }
 }
 }
 }
 }
 send_cmd(&mut self.stream, ResultCode::FileNotFound,
 "Couldn't create folder");
}

Once again, a few things have to be done before even actually trying to make the directory.

First, we need to check whether all the elements of the given path are folders (well, only the
last one in fact since otherwise, the Client::complete_path method will fail otherwise).

Then we need to once again, canonicalize this path (by calling the
Client::complete_path method). Finally, we push the filename to the received path.

Understanding FTP Chapter 8

[319]

The main difference here is that we don't strip the server_root path from the path
returned by Client::complete_path.

Once all of this is done, we can try to create the folder by using the create_dir function. If
it goes well, we then return ResultCode::PATHNAMECreated (and for once it makes
sense!).

If any error occurs at any level, we just send that the path was incorrect.

That's it for this command!

Implementing the RMD command
Now that we can create folders, it'd be nice to be able to remove them, right? That's what
RMD (which stands for remove directory) is supposed to do!

Just like MKD (and the others), RMD takes PathBuf as an argument. Once again, and as usual,
I'll let you handle the Command part so we can focus on the command implementation:

Command::Rmd(path) => self.rmd(path),

Yep, it's a new method once again. It becomes a habit at this point I suppose?

use std::fs::remove_dir_all;

fn rmd(&self, path: PathBuf) {
 let server_root = env::current_dir().unwrap();
 if let Ok(path) = self.complete_path(path, &server_root) {
 if remove_dir_all(path).is_ok() {
 send_cmd(&mut self.stream,
 ResultCode::RequestedFileActionOkay,
 "Folder successfully removed!");
 return
 }
 }
 send_cmd(&mut self.stream, ResultCode::FileNotFound,
 "Couldn't remove folder!");
}

And that's it! This is even easier than MKD since we don't need to check if the last potential
parent is a folder. Once we have confirmed that the path was an authorized one, we can just
remove it.

With all these commands, I think we can say that we have a very fine base to build upon in
order to make a complete FTP server.

Understanding FTP Chapter 8

[320]

Testing it
You now have a (very) basic FTP server implementation. You can connect to the server and
list the files and folders in the current folder.

Start it with cargo run and give it a try! I recommend that you use FileZilla. This is a
great FTP client. Connect to localhost on the port 1234 and use the anonymous username
(or none), and you should be able to have a bit of fun already:

Figure 8.1

Information on the file transfers and additional commands will be covered in later chapters.

Understanding FTP Chapter 8

[321]

Summary
In this chapter, we looked at the basics of the FTP. We now have a simple (synchronous)
server implementation, and you should have a good idea about how all of this is working.
We also looked at a potential security issue and how to fix it.

The following chapters will introduce you to asynchronous programming in Rust. Thanks
to this chapter, it'll go a lot quicker on the FTP RFC side so we can focus on the
asynchronous part.

9
Implementing an Asynchronous

FTP Server
In the previous chapter, we wrote a synchronous FTP server. Now, we'll write an
asynchronous version with tokio, the asynchronous IO (Input/Output) library for Rust.
We'll cover the following topics:

Asynchronous servers
Futures
Streams
Tokio
Async/await
Error handling

Advantages of asynchronous IO
Asynchronous IO allows us to send a request without waiting for its result, we'll get
notified somehow later when we receive the response. This enables our programs to be
more concurrent and scale better.

In the previous chapter, we used threads in order to avoid blocking other clients while we
wait for a response. Using threads has a cost, though, besides the fact that threads require
more memory, they also impose a performance cost because they require a context switch
when the code goes from one thread to the other.

Implementing an Asynchronous FTP Server Chapter 9

[323]

Disadvantages of asynchronous IO
However, using asynchronous IO does not come without drawbacks. Using asynchronous
IO is harder than using synchronous IO. With asynchronous IO, we also need a way to
know when an event has terminated. So, we need to learn a new way to manage the IO
events and it'll take more time to implement the same software that we wrote in the
previous chapter.

Creating the new project
Let's start by creating a new binary project, as usual:

cargo new --bin ftp-server

We'll add the following dependencies in the Cargo.toml file:

[dependencies]
bytes = "^0.4.5"
tokio-core = "^0.1.10"
tokio-io = "^0.1.3"

[dependencies.futures-await]
git = "https://github.com/alexcrichton/futures-await"

As you can see here, we specify a dependency via a Git URL. This dependency is using
nightly-only features, so make sure you're using the nightly compiler by running this
command:

rustup default nightly

Let's start our main module by adding the required extern crate statements:

#![feature(proc_macro, conservative_impl_trait, generators)]

extern crate bytes;
extern crate futures_await as futures;
extern crate tokio_core;
extern crate tokio_io;

As you can see, we're using some nightly features. These are needed by the futures-
await crate. We also decided to import this crate under another name, futures, because it
exports the same types and functions as the futures crate itself.

Implementing an Asynchronous FTP Server Chapter 9

[324]

We'll copy some code from the previous chapter and put them in the new module, for better
organization. Here are the new modules:

mod cmd;
mod ftp;

In a new file, called src/cmd.rs, put the following code:

use std::path::{Path, PathBuf};
use std::str::{self, FromStr};

use error::{Error, Result};

#[derive(Clone, Debug)]
pub enum Command {
 Auth,
 Cwd(PathBuf),
 List(Option<PathBuf>),
 Mkd(PathBuf),
 NoOp,
 Port(u16),
 Pasv,
 Pwd,
 Quit,
 Retr(PathBuf),
 Rmd(PathBuf),
 Stor(PathBuf),
 Syst,
 Type(TransferType),
 CdUp,
 Unknown(String),
 User(String),
}

We first have an enumeration representing the different commands and their parameters:

impl AsRef<str> for Command {
 fn as_ref(&self) -> &str {
 match *self {
 Command::Auth => "AUTH",
 Command::Cwd(_) => "CWD",
 Command::List(_) => "LIST",
 Command::Pasv => "PASV",
 Command::Port(_) => "PORT",
 Command::Pwd => "PWD",
 Command::Quit => "QUIT",
 Command::Retr(_) => "RETR",
 Command::Stor(_) => "STOR",

Implementing an Asynchronous FTP Server Chapter 9

[325]

 Command::Syst => "SYST",
 Command::Type(_) => "TYPE",
 Command::User(_) => "USER",
 Command::CdUp => "CDUP",
 Command::Mkd(_) => "MKD",
 Command::Rmd(_) => "RMD",
 Command::NoOp => "NOOP",
 Command::Unknown(_) => "UNKN", // doesn't exist
 }
 }
}

Here, we create a method to get the string representation of a command:

impl Command {
 pub fn new(input: Vec<u8>) -> Result<Self> {
 let mut iter = input.split(|&byte| byte == b' ');
 let mut command = iter.next().ok_or_else(
 || Error::Msg("empty command".to_string()))?.to_vec();
 to_uppercase(&mut command);
 let data = iter.next().ok_or_else(|| Error::Msg("no command
 parameter".to_string()));
 let command =
 match command.as_slice() {
 b"AUTH" => Command::Auth,
 b"CWD" => Command::Cwd(data.and_then(|bytes|
Ok(Path::new(str::from_utf8(bytes)?).to_path_buf()))?),
 b"LIST" => Command::List(data.and_then(|bytes|
Ok(Path::new(str::from_utf8(bytes)?).to_path_buf())).ok()),
 b"PASV" => Command::Pasv,
 b"PORT" => {
 let addr = data?.split(|&byte| byte == b',')
 .filter_map(|bytes|
 str::from_utf8(bytes).ok()
 .and_then(|string|
u8::from_str(string).ok()))
 .collect::<Vec<u8>>();
 if addr.len() != 6 {
 return Err("Invalid address/port".into());
 }

 let port = (addr[4] as u16) << 8 | (addr[5] as
 u16);
 if port <= 1024 {
 return Err("Port can't be less than
 10025".into());
 }
 Command::Port(port)

Implementing an Asynchronous FTP Server Chapter 9

[326]

 },
 b"PWD" => Command::Pwd,
 b"QUIT" => Command::Quit,
 b"RETR" => Command::Retr(data.and_then(|bytes|
Ok(Path::new(str::from_utf8(bytes)?).to_path_buf()))?),
 b"STOR" => Command::Stor(data.and_then(|bytes|
Ok(Path::new(str::from_utf8(bytes)?).to_path_buf()))?),
 b"SYST" => Command::Syst,
 b"TYPE" => {
 match TransferType::from(data?[0]) {
 TransferType::Unknown => return
 Err("command not implemented
 for that parameter".into()),
 typ => {
 Command::Type(typ)
 },
 }
 },
 b"CDUP" => Command::CdUp,
 b"MKD" => Command::Mkd(data.and_then(|bytes|
Ok(Path::new(str::from_utf8(bytes)?).to_path_buf()))?),
 b"RMD" => Command::Rmd(data.and_then(|bytes|
Ok(Path::new(str::from_utf8(bytes)?).to_path_buf()))?),
 b"USER" => Command::User(data.and_then(|bytes|
String::from_utf8(bytes.to_vec()).map_err(Into::into))?),
 b"NOOP" => Command::NoOp,
 s =>
Command::Unknown(str::from_utf8(s).unwrap_or("").to_owned()),
 };
 Ok(command)
 }
}

This constructor parses a byte string as a Command. This requires a function to convert a
byte string to uppercase:

fn to_uppercase(data: &mut [u8]) {
 for byte in data {
 if *byte >= 'a' as u8 && *byte <= 'z' as u8 {
 *byte -= 32;
 }
 }
}

Implementing an Asynchronous FTP Server Chapter 9

[327]

We simply decrement all lowercase letters by 32 to convert them to uppercase:

#[derive(Clone, Copy, Debug)]
pub enum TransferType {
 Ascii,
 Image,
 Unknown,
}

impl From<u8> for TransferType {
 fn from(c: u8) -> TransferType {
 match c {
 b'A' => TransferType::Ascii,
 b'I' => TransferType::Image,
 _ => TransferType::Unknown,
 }
 }
}

Here, we have an enumeration for the transfer type and a function to parse a byte character
to this type. And in another file, src/ftp.rs, let's write the following:

pub struct Answer {
 pub code: ResultCode,
 pub message: String,
}

impl Answer {
 pub fn new(code: ResultCode, message: &str) -> Self {
 Answer {
 code,
 message: message.to_string(),
 }
 }
}

#[derive(Debug, Clone, Copy)]
#[repr(u32)]
#[allow(dead_code)]
pub enum ResultCode {
 RestartMarkerReply = 110,
 ServiceReadInXXXMinutes = 120,
 DataConnectionAlreadyOpen = 125,
 FileStatusOk = 150,
 Ok = 200,
 CommandNotImplementedSuperfluousAtThisSite = 202,
 SystemStatus = 211,

Implementing an Asynchronous FTP Server Chapter 9

[328]

 DirectoryStatus = 212,
 FileStatus = 213,
 HelpMessage = 214,
 SystemType = 215,
 ServiceReadyForNewUser = 220,
 ServiceClosingControlConnection = 221,
 DataConnectionOpen = 225,
 ClosingDataConnection = 226,
 EnteringPassiveMode = 227,
 UserLoggedIn = 230,
 RequestedFileActionOkay = 250,
 PATHNAMECreated = 257,
 UserNameOkayNeedPassword = 331,
 NeedAccountForLogin = 332,
 RequestedFileActionPendingFurtherInformation = 350,
 ServiceNotAvailable = 421,
 CantOpenDataConnection = 425,
 ConnectionClosed = 426,
 FileBusy = 450,
 LocalErrorInProcessing = 451,
 InsufficientStorageSpace = 452,
 UnknownCommand = 500,
 InvalidParameterOrArgument = 501,
 CommandNotImplemented = 502,
 BadSequenceOfCommands = 503,
 CommandNotImplementedForThatParameter = 504,
 NotLoggedIn = 530,
 NeedAccountForStoringFiles = 532,
 FileNotFound = 550,
 PageTypeUnknown = 551,
 ExceededStorageAllocation = 552,
 FileNameNotAllowed = 553,
}

We're now ready to start working on the FTP server itself.

Using Tokio
Tokio is based on the lower-level crate mio, which is itself directly based on system calls
such as epoll (Linux), kqueue (FreeBSD), and IOCP (Windows). This crate is also based on
the futures crate, which provides abstractions to reason about a value (or multiple values)
that will be available later. As I told you when using asynchronous I/O, the calls do not
block so we need a way to know when the result of a read is available. This is where
Future and Stream, two abstractions from the futures crate, come into play.

Implementing an Asynchronous FTP Server Chapter 9

[329]

Tokio event loop
Tokio also provides an event loop, on which we will be able to execute some code (with
futures) that will be executed when some I/O events happen, such as when the result of a
socket read is ready. To do so, the event loop will register events on specific file descriptors
that represent sockets. It registers these events using the aforementioned system calls and
then waits for any of the registered events to happen. The file descriptors and the system
calls are low-level stuff that we do not need to know to use tokio, but it is important to
understand how it works at the lower level. For instance, epoll does not support regular
files, so if you try to wait for an event to happen on a regular file, it could block even though
we're using asynchronous I/O which should not block.

Using futures
A future represents a value that will be available later, or an error, similar to the Result
type. A stream represents multiple values (or errors) that will be available at different
times in the future, similar to an Iterator<Result<T>>. This crate provides many
combinators such as and_then(), map(), and others similar to the one available on the
Result type. But, we won't use them, preferring the async/await syntax that we'll see
later.

Handling errors
Before we start coding the FTP server, let's talk about how we'll be handling the errors.

Unwrapping
In the previous projects, we used the unwrap() or expect() methods a lot. These methods
are handy for fast prototyping, but when we want to write high-quality software, we
should avoid them in most cases. Since we're writing an FTP server, a software that must
keep running for a long time, we don't want it to crash because we called unwrap() and a
client sent a bad command. So, we'll do proper error handling.

Implementing an Asynchronous FTP Server Chapter 9

[330]

Custom error type
Since we can get different types of errors and we want to keep track of all of them, we'll
create a custom error type. Let's create a new module in which we'll put this new type:

mod error;

Add it to the src/error.rs file:

use std::io;
use std::str::Utf8Error;
use std::string::FromUtf8Error;

pub enum Error {
 FromUtf8(FromUtf8Error),
 Io(io::Error),
 Msg(String),
 Utf8(Utf8Error),
}

Here, we have an enum representing the different errors that can happen in our FTP server
to be implemented. There are UTF-8 errors since FTP is a string-based protocol and I/O
errors because we communicate over the network and communication issues can happen.
We created variants for error types coming from the standard library, which will be helpful
later when we want to compose different types of errors. We also created a variant Msg for
our own errors and we represent them as a String since we only want to show them in the
terminal (we could also log them to syslog, for instance).

This is the standard way in Rust to represent an error type. It's a good practice to create this
type, especially if your crate is a library, so that the users of your crate can know exactly
why an error happened.

Displaying the error
Since we want to print the error to the terminal, we'll implement the Display trait for our
Error type:

use std::fmt::{self, Display, Formatter};

use self::Error::*;

impl Display for Error {
 fn fmt(&self, formatter: &mut Formatter) -> fmt::Result {
 match *self {

Implementing an Asynchronous FTP Server Chapter 9

[331]

 FromUtf8(ref error) => error.fmt(formatter),
 Io(ref error) => error.fmt(formatter),
 Utf8(ref error) => error.fmt(formatter),
 Msg(ref msg) => write!(formatter, "{}", msg),
 }
 }
}

For the three cases where we wrap an error from another type, we just call the
corresponding fmt() method of these errors. In the case that it is a Msg, we write the string
using the write! macro. This macro is a bit similar to print!, but needs a parameter to
specify where to write the formatted data.

It is not very helpful in our case, but it is recommended to also implement the Error trait
for custom error types:

use std::error;

impl error::Error for Error {
 fn description(&self) -> &str {
 match *self {
 FromUtf8(ref error) => error.description(),
 Io(ref error) => error.description(),
 Utf8(ref error) => error.description(),
 Msg(ref msg) => msg,
 }
 }

 fn cause(&self) -> Option<&error::Error> {
 let cause: &error::Error =
 match *self {
 FromUtf8(ref error) => error,
 Io(ref error) => error,
 Utf8(ref error) => error,
 Msg(_) => return None,
 };
 Some(cause)
 }
}

The only required method of this trait is description(), which returns a short description
of the error. Again, in the three cases, we just call the description() method from the
wrapped type itself. And, for our Msg variant, we return the wrapped message.

Implementing an Asynchronous FTP Server Chapter 9

[332]

It is possible that we don't have a string to return from this method. If it is the case, we can
just return &'static str, like this:

Io(_) => "IO error",

The cause() method is optional and is used to return the cause of the error. Here, we
return the inner error when there's one in the variant and return None for our Msg variant.

The trait Error requires the Self type to implement both Display and Debug. We
implemented Display earlier, but we don't implement Debug yet. Let's fix that by adding
an attribute in front of the type declaration:

#[derive(Debug)]
pub enum Error {
 FromUtf8(FromUtf8Error),
 Io(io::Error),
 Msg(String),
 Utf8(Utf8Error),
}

It is good practice to provide a type alias named Result that is specialized for our error
type. Let's write one:

use std::result;

pub type Result<T> = result::Result<T, Error>;

By doing so, we hide the original Result type from the standard library. That's why we're
specifying a qualified version of this type. Otherwise, the compiler will assume that it is a
recursive type, which is not the case here. We'll have to be careful when we import this type
in other modules, because it hides the Result type. In case we want to use the original
Result type, we'll have to use the same trick; qualifying it.

Composing error types
The last thing we need to do in order to use all the good practices for error types in Rust is
to make them easy to compose, because, for now, if we have another error type, such
as io::Error, we would need to use the following code every time we have another type:

let val =
 match result {
 Ok(val) => val,
 Err(error) => return Err(Error::Io(error)),
 };

Implementing an Asynchronous FTP Server Chapter 9

[333]

This can quickly become cumbersome. To improve that, we'll implement the From trait for
different error types:

impl From<io::Error> for Error {
 fn from(error: io::Error) -> Self {
 Io(error)
 }
}

impl<'a> From<&'a str> for Error {
 fn from(message: &'a str) -> Self {
 Msg(message.to_string())
 }
}

impl From<Utf8Error> for Error {
 fn from(error: Utf8Error) -> Self {
 Utf8(error)
 }
}

impl From<FromUtf8Error> for Error {
 fn from(error: FromUtf8Error) -> Self {
 FromUtf8(error)
 }
}

These implementations are easy to understand: if we have an io::Error, we just wrap
them in the corresponding variant. We also added a convenient conversion from the &str
type.

This will allow us to use the following, which is not really better, but the good
old ? operator will help us to reduce the boilerplate:

let val =
 match result {
 Ok(val) => val,
 Err(error) => return Err(error.into()),
 };

Implementing an Asynchronous FTP Server Chapter 9

[334]

The ? operator, revisited
This operator will not only return the error if there is one, but will also convert it to the
required type. It converts it with a call to Into::into(), Into being a trait. But why did
we implement the From trait, instead of Into? Because there's a generic implementation of
Into which is based on From:

impl<T, U> Into<U> for T
where U: From<T>,

Thanks to this implementation, we rarely need to implement the Into trait ourselves. We
only need to implement the From trait.

This means that we can rewrite the previous code as follows:

let val = result?;

And it will behave exactly the same as before.

Starting the Tokio event loop
In tokio, the object we need to use to manage an event loop is Core. Here's how we start
an event loop using tokio (in the main module):

use tokio_core::reactor::Core;

fn main() {
 let mut core = Core::new().expect("Cannot create tokio Core");
 if let Err(error) = core.run(server()) {
 println!("Error running the server: {}", error);
 }
}

We first create a new Core object, and then call the run() method to start the event loop.
The latter method will return when the provided future ends. Here, we call server() to
get the future, so let's write this function:

use std::io;

use futures::prelude::async;

#[async]
fn server() -> io::Result<()> {
 Ok(())

Implementing an Asynchronous FTP Server Chapter 9

[335]

}

As you can see, we use the #[async] attribute. Since attributes are currently instable in
Rust, we had to specify that we are using the proc_macro feature. We also import the
async attribute from the futures_await crate (which was imported under the name
futures). So don't forget the #![feature] attribute and the extern crate statements at
the top.

This attribute allows us to write a normal function, returning a Result, and will convert
this function to actually return a Future. This function does nothing and returns Ok(()),
so when you run the program, it will end immediately.

There's another syntax we could have used that is provided by the futures-await crate:

use futures::prelude::async_block;

fn main() {
 let mut core = Core::new().expect("Cannot create tokio Core");
 let server = async_block! {
 Ok(())
 };
 let result: Result<_, io::Error> = core.run(server);
 if let Err(error) = result {
 println!("Error running the server: {}", error);
 }
}

We won't use this syntax in our FTP server, but it is worth knowing about. By using an
async_block, we are not required to create a new function.

Starting the server
The program we just wrote does absolutely nothing, so let's update it so that it at least starts
a server, using tokio. Let's write an actual body to our server() function:

use std::net::{IpAddr, Ipv4Addr, SocketAddr};

use tokio_core::reactor::Handle;
use tokio_core::net::TcpListener;

#[async]
fn server(handle: Handle) -> io::Result<()> {
 let port = 1234;
 let addr = SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0,

Implementing an Asynchronous FTP Server Chapter 9

[336]

1)), port);
 let listener = TcpListener::bind(&addr, &handle)?;

 println!("Waiting clients on port {}...", port);
 #[async]
 for (stream, addr) in listener.incoming() {
 let address = format!("[address : {}]", addr);
 println!("New client: {}", address);
 handle.spawn(handle_client(stream));
 println!("Waiting another client...");
 }
 Ok(())
}

The function now takes a Handle, which will be useful to specify on which event loop the
server must run. We start this function by specifying on which port we want to start the
server by creating a SocketAddr. Then, we create a TcpListener in a similar way to how
we would create a synchronous TcpListener from the standard library. The difference
here is that we also send the handle as an argument to specify on which event loop we
want the server to run. After that, we use the #[async] attribute again, but on a for loop
this time.

Async for loops are used to iterate over a Stream, returning an error if there is one. These
async loops can only be used in an #[async] function. In the loop, we spawn the future
returned by handle_client(). Spawning a future means that it will be executed and
handled by the event loop. The difference with Core::run() is that the future must return
() and the error should also be ().

Now that this function takes an argument, we'll need to update the main function:

fn main() {
 let mut core = Core::new().expect("Cannot create tokio Core");
 let handle = core.handle();
 if let Err(error) = core.run(server(handle)) {
 println!("Error running the server: {}", error);
 }
}

Implementing an Asynchronous FTP Server Chapter 9

[337]

Handling clients
Let's now see the handle_client() function we've just mentioned:

use std::result;

use futures::prelude::await;

#[async]
use tokio_core::net::TcpStream;

fn handle_client(stream: TcpStream) -> result::Result<(), ()> {
 await!(client(stream))
 .map_err(|error| println!("Error handling client: {}",
error))
}

It is a simple wrapper over the client future. Here, we used a new macro, await!, which
allows us to write asynchronous code in an asynchronous way. When the result of the
future inside await!() is not ready, the event loop will execute other stuff, and when it's
ready it will continue executing the code after the await!(). In this case, we print the error
returned by the client future. This is why we needed a wrapper.

Now, let's write this client future:

use futures::{Sink, Stream};
use futures::stream::SplitSink;
use tokio_io::AsyncRead;
use tokio_io::codec::Framed;

use codec::FtpCodec;
use error::Result;
use ftp::{Answer, ResultCode};

#[async]
fn client(stream: TcpStream) -> Result<()> {
 let (writer, reader) = stream.framed(FtpCodec).split();
 let writer =
await!(writer.send(Answer::new(ResultCode::ServiceReadyForNewUser,
 "Welcome to this FTP server!")))?;
 let mut client = Client::new(writer);
 #[async]
 for cmd in reader {
 client = await!(client.handle_cmd(cmd))?;
 }
 println!("Client closed");

Implementing an Asynchronous FTP Server Chapter 9

[338]

 Ok(())
}

Here, we specify that the stream will be handled by a FtpCodec, which means that we'll be
able to encode and decode structured data instead of dealing with bytes directly. We'll write
this FtpCodec soon. Then, we split the stream between a reader and a writer. This
split() method is very useful in Rust, because of ownership: we cannot have two owners,
one that will write to the socket and another that will read to it. To fix this issue, we split the
stream and we can now have an owner for the reader and another owner for the writer.

Then, we use the writer to send a welcome message. Again, we use the await! macro to
specify that the code after will be executed when the message is sent (but without blocking
the whole program, thanks to asynchronous I/O). Next, we create a Client which will be
the object that will manage a client, by executing the appropriate actions when it receives
commands and sending the right responses.

After that, we use again an #[async] for loop to iterate over a stream; here, we iterate
over the stream of the data received by this specific client. In the for loop, we call the
handle_cmd() method that we will soon write. This method, as its name indicates, will
handle the command received from this FTP client, act accordingly, and send a response
back. Here, we use await!()? with a question mark at the end. The futures-await crate
allows us to do so; this means that if the future returned an error, this error will propagate
to the client future, which is the same semantic for the normal ? operator used in a
function returning a Result. We'll see why we reassign the result to client when we write
the handle_cmd() method.

Handling commands
To handle the commands received by the FTP server, we'll have a Client struct:

type Writer = SplitSink<Framed<TcpStream, FtpCodec>>;

struct Client {
 writer: Writer,
}

The client contains a Writer object that will be useful to send messages to the client. The
Writer type represents a Sink that has been split, and uses the FtpCodec on a TcpStream.
A Sink is the opposite of a Stream: instead of representing a sequence of values that are
received, it represents a sequence of values that are sent.

Implementing an Asynchronous FTP Server Chapter 9

[339]

We used two methods on Client, so let's write them:

use cmd::Command;

impl Client {
 fn new(writer: Writer) -> Client {
 Client {
 writer,
 }
 }

 #[async]
 fn handle_cmd(mut self, cmd: Command) -> Result<Self> {
 Ok(self)
 }
}

The constructor is very simple and creates the struct with the provided argument. The
handle_cmd() receives the command sent to the FTP server by this specific client and will
handle them; we'll write the code to handle them progressively in this chapter and the next.
For now, it only returns self. Also, take note that this method receives self by move,
instead of by reference. This is due to a current limitation of the futures-await crate:
for now, async functions cannot take a reference. This issue will probably be fixed later,
which will make the code even better. This is why we reassigned to the client variable in
the client function:

client = await!(client.handle_cmd(cmd))?;

FTP codec
The only remaining thing to code before we can try our FTP server is the codec. So, let's
create a new module for the codec:

mod codec;

In the src/codec.rs file, we'll create our FTP codec:

pub struct FtpCodec;

Implementing an Asynchronous FTP Server Chapter 9

[340]

To create a codec, we must implement the traits Decoder and Encoder. These traits come
from the tokio-io crate:

use tokio_io::codec::{Decoder, Encoder};

Decoding FTP commands
Let's first write the decoder:

use std::io;

use bytes::BytesMut;

use cmd::Command;
use error::Error;

impl Decoder for FtpCodec {
 type Item = Command;
 type Error = io::Error;

 fn decode(&mut self, buf: &mut BytesMut) ->
 io::Result<Option<Command>> {
 if let Some(index) = find_crlf(buf) {
 let line = buf.split_to(index);
 buf.split_to(2); // Remove \r\n.
 Command::new(line.to_vec())
 .map(|command| Some(command))
 .map_err(Error::to_io_error)
 } else {
 Ok(None)
 }
 }
}

The Decoder trait has two associated types, Item and Error. The former is the
type produced when we're able to decode a sequence of bytes. The latter is the type of the
error. We first check if there the bytes CR and LF. If we don't find them, we return
Ok(None) to indicate that we need more bytes to parse the command. If we find them, we
get the line of the command, excluding these bytes. Then, we skip these bytes so that the
next parsing does not see them. Finally, we parse the line with Command::new().

Implementing an Asynchronous FTP Server Chapter 9

[341]

We used two new functions here that we must implement. The first one is the
Error::to_io_error() method that we'll add to the error module:

impl Error {
 pub fn to_io_error(self) -> io::Error {
 match self {
 Io(error) => error,
 FromUtf8(_) | Msg(_) | Utf8(_) =>
 io::ErrorKind::Other.into(),
 }
 }
}

If we have an Io error, we return it. Otherwise, we return the Other kind of I/O error.

The decode() methods also uses the following function:

fn find_crlf(buf: &mut BytesMut) -> Option<usize> {
 buf.windows(2)
 .position(|bytes| bytes == b"\r\n")
}

This returns the position of the byte string "\r\n" if it is present. Remember that this string
is the delimiter in the FTP protocol.

Encoding FTP commands
We still need to write an Encoder in order to have a codec that can send commands to FTP
clients:

use ftp::Answer;

impl Encoder for FtpCodec {
 type Item = Answer;
 type Error = io::Error;

 fn encode(&mut self, answer: Answer, buf: &mut BytesMut) ->
io::Result<()> {
 let answer =
 if answer.message.is_empty() {
 format!("{}\r\n", answer.code as u32)
 } else {
 format!("{} {}\r\n", answer.code as u32,
 answer.message)
 };
 buf.extend(answer.as_bytes());

Implementing an Asynchronous FTP Server Chapter 9

[342]

 Ok(())
 }
}

Here, if we have a non-empty message, we push it to the buffer, preceded by the FTP code
number. Otherwise, we only push this code number to the buffer.

We can now try the FTP server in FileZilla to see the following result:

Figure 9.1

Handling commands
Our handle_cmd() method does nothing, for now, so let's update it. First of all, we'll need
a method to send a response to a client:

impl Client {
 #[async]
 fn send(mut self, answer: Answer) -> Result<Self> {
 self.writer = await!(self.writer.send(answer))?;
 Ok(self)
 }
}

Implementing an Asynchronous FTP Server Chapter 9

[343]

This simply calls the send() method of the writer. Since it consumes it, we reassign the
result to the attribute.

Now, we'll handle the USER FTP command:

#[async]
fn handle_cmd(mut self, cmd: Command) -> Result<Self> {
 println!("Received command: {:?}", cmd);
 match cmd {
 Command::User(content) => {
 if content.is_empty() {
 self = await!
(self.send(Answer::new(ResultCode::InvalidParameterOrArgument,
"Invalid
 username")))?;
 } else {
 self =
await!(self.send(Answer::new(ResultCode::UserLoggedIn,
 &format!("Welcome {}!", content))))?;
 }
 }
 Command::Unknown(s) =>
 self =
await!(self.send(Answer::new(ResultCode::UnknownCommand,
 &format!("\"{}\": Not implemented", s))))? ,
 _ => self =
await!(self.send(Answer::new(ResultCode::CommandNotImplemented,
 "Not implemented")))?,
 }
 Ok(self)
}

Here, we pattern match to know which command was sent by the client. If it is not User,
we send a response to say that the command is not implemented. If it is User, we check the
content and if it is good, we send the welcome message. This is very similar to what we did
in the previous chapter.

Implementing an Asynchronous FTP Server Chapter 9

[344]

If we run the server again, we'll see the following:
>

Figure 9.2

Managing the current working directory
There are still a few commands missing before we can see the files in the FTP client. Let's
now add the command to print the current directory and to change it.

Printing the current directory
First of all, we'll need a new attribute for our Client structure to specify what the current
directory is:

use std::path::PathBuf;

struct Client {
 cwd: PathBuf,
 writer: Writer,
}

Implementing an Asynchronous FTP Server Chapter 9

[345]

The cwd attribute stands for current working directory. We also need to update the Client
constructor accordingly:

impl Client {
 fn new(writer: Writer) -> Client {
 Client {
 cwd: PathBuf::from("/"),
 writer,
 }
 }
}

Now, we can add the handler for the PWD command:

#[async]
fn handle_cmd(mut self, cmd: Command) -> Result<Self> {
 println!("Received command: {:?}", cmd);
 match cmd {
 Command::Pwd => {
 let msg = format!("{}",
self.cwd.to_str().unwrap_or(""));
 if !msg.is_empty() {
 let message = format!("\"/{}\" ", msg);
 self =
await!(self.send(Answer::new(ResultCode::PATHNAMECreated,
 &message)))?;
 } else {
 self =
await!(self.send(Answer::new(ResultCode::FileNotFound, "No
 such file or directory")))?;
 }
 }
 // …
 }
}

So, again, we have a code similar to the previous chapter.

Changing the current directory
Let's add another case in our match expression in the handle_cmd() method:

#[async]
fn handle_cmd(mut self, cmd: Command) -> Result<Self> {
 match cmd {
 Command::Cwd(directory) => self =

Implementing an Asynchronous FTP Server Chapter 9

[346]

await!(self.cwd(directory))?,
 // …
 }
}

It simply calls the following method:

#[async]
fn cwd(mut self, directory: PathBuf) -> Result<Self> {
 let path = self.cwd.join(&directory);
 let (new_self, res) = self.complete_path(path);
 self = new_self;
 if let Ok(dir) = res {
 let (new_self, res) = self.strip_prefix(dir);
 self = new_self;
 if let Ok(prefix) = res {
 self.cwd = prefix.to_path_buf();
 self = await!(self.send(Answer::new(ResultCode::Ok,
 &format!("Directory
changed to \"
 {}\"", directory.display()))))?;
 return Ok(self)
 }
 }
 self = await!(self.send(Answer::new(ResultCode::FileNotFound,
 "No such file or
directory")))?;
 Ok(self)
}

This code uses the following two methods, which are similar to those in the previous
chapter:

use std::path::StripPrefixError;

fn complete_path(self, path: PathBuf) -> (Self,
result::Result<PathBuf, io::Error>) {
 let directory = self.server_root.join(if path.has_root() {
 path.iter().skip(1).collect()
 } else {
 path
 });
 let dir = directory.canonicalize();
 if let Ok(ref dir) = dir {
 if !dir.starts_with(&self.server_root) {
 return (self,
 Err(io::ErrorKind::PermissionDenied.into()));
 }

Implementing an Asynchronous FTP Server Chapter 9

[347]

 }
 (self, dir)
}

fn strip_prefix(self, dir: PathBuf) -> (Self,
result::Result<PathBuf, StripPrefixError>) {
 let res = dir.strip_prefix(&self.server_root).map(|p|
p.to_path_buf());
 (self, res)
}

Since it uses a new attribute, let's add it to the Client structure:

struct Client {
 cwd: PathBuf,
 server_root: PathBuf,
 writer: Writer,
}

We also add its constructor:

impl Client {
 fn new(writer: Writer, server_root: PathBuf) -> Client {
 Client {
 cwd: PathBuf::from("/"),
 server_root,
 writer,
 }
 }
}

We also need to pass this value in a few places, first, in the client function and its
wrapper:

#[async]
fn client(stream: TcpStream, server_root: PathBuf) -> Result<()> {
 // …
 let mut client = Client::new(writer, server_root);
 // …
}

#[async]
fn handle_client(stream: TcpStream, server_root: PathBuf) ->
result::Result<(), ()> {
 await!(client(stream, server_root))
 .map_err(|error| println!("Error handling client: {}",
 error))
}

Implementing an Asynchronous FTP Server Chapter 9

[348]

Then, we need to update the server function:

#[async]
fn server(handle: Handle, server_root: PathBuf) -> io::Result<()> {
 // …
 #[async]
 for (stream, addr) in listener.incoming() {
 let address = format!("[address : {}]", addr);
 println!("New client: {}", address);
 handle.spawn(handle_client(stream, server_root.clone()));
 println!("Waiting another client...");
 }
 Ok(())
}

To send the server root to the handle_client function call.

And finally, we'll update the main function to send it to the server function:

use std::env;

fn main() {
 let mut core = Core::new().expect("Cannot create tokio Core");
 let handle = core.handle();

 match env::current_dir() {
 Ok(server_root) => {
 if let Err(error) = core.run(server(handle,
 server_root)) {
 println!("Error running the server: {}", error);
 }
 }
 Err(e) => println!("Couldn't start server: {:?}", e),
 }
}

Here, we send the current directory as the server root.

Setting the transfer type
Let's add a new command before we test our server again:

use cmd::TransferType;

#[async]
fn handle_cmd(mut self, cmd: Command) -> Result<Self> {

Implementing an Asynchronous FTP Server Chapter 9

[349]

 match cmd {
 // …
 Command::Type(typ) => {
 self.transfer_type = typ;
 self = await!(self.send(Answer::new(ResultCode::Ok,
"Transfer type
 changed successfully")))?;
 }
 // …
 }
}

This requires a new attribute for our Client structure:

struct Client {
 cwd: PathBuf,
 server_root: PathBuf,
 transfer_type: TransferType,
 writer: Writer,
}

And we need to update the constructor:

impl Client {
 fn new(writer: Writer, server_root: PathBuf) -> Client {
 Client {
 cwd: PathBuf::from("/"),
 server_root,
 transfer_type: TransferType::Ascii,
 writer,
 }
 }
}

Implementing an Asynchronous FTP Server Chapter 9

[350]

If we run this new server and connect to it through FileZilla, we'll see the following:

Figure 9.3

Entering passive mode
Let's now write the code to handle the PASV command. Add the following case in
handle_cmd():

#[async]
fn handle_cmd(mut self, cmd: Command) -> Result<Self> {
 match cmd {
 // …
 Command::Pasv => self = await!(self.pasv())?,
 // …
 }
}

For the following, we'll need four new fields in the Client structure:

use futures::stream::SplitStream;

use codec::BytesCodec;

type DataReader = SplitStream<Framed<TcpStream, BytesCodec>>;
type DataWriter = SplitSink<Framed<TcpStream, BytesCodec>>;

Implementing an Asynchronous FTP Server Chapter 9

[351]

struct Client {
 data_port: Option<u16>,
 data_reader: Option<DataReader>,
 data_writer: Option<DataWriter>,
 handle: Handle,
 // …
}

And all of them are initialized to None:

impl Client {
 fn new(handle: Handle, writer: Writer, server_root: PathBuf) ->
Client {
 Client {
 data_port: None,
 data_reader: None,
 data_writer: None,
 handle,
 // …
 }
 }
}

This requires changing a few other functions to send the Handle to the Client constructor.
First, the client function now requires a new handle parameter:

#[async]
fn client(stream: TcpStream, handle: Handle, server_root: PathBuf)
-> Result<()> {
 let (writer, reader) = stream.framed(FtpCodec).split();
 let writer =
await!(writer.send(Answer::new(ResultCode::ServiceReadyForNewUser,
 "Welcome to this FTP server!")))?;
 let mut client = Client::new(handle, writer, server_root);
 // …
}

The handle_client() method also needs to take a new parameter:

#[async]
fn handle_client(stream: TcpStream, handle: Handle, server_root:
PathBuf) -> result::Result<(), ()> {
 await!(client(stream, handle, server_root))
 .map_err(|error| println!("Error handling client: {}",
error))
}

Implementing an Asynchronous FTP Server Chapter 9

[352]

And in the server() function, you need to send the handler to the handle_client()
function:

#[async]
fn server(handle: Handle, server_root: PathBuf) -> io::Result<()> {
 // …
 #[async]
 for (stream, addr) in listener.incoming() {
 // …
 handle.spawn(handle_client(stream, handle.clone(),
server_root.clone()));
 }
}

And here is the start of the method that does the real stuff for the PASV command:

#[async]
fn pasv(mut self) -> Result<Self> {
 let port =
 if let Some(port) = self.data_port {
 port
 } else {
 0
 };
 if self.data_writer.is_some() {
 self =
await!(self.send(Answer::new(ResultCode::DataConnectionAlreadyOpen,
 "Already listening...")))?;
 return Ok(self);
 }

 // …

If a port was set by an earlier command, we use it, otherwise, we use zero to ask the system
to choose one. As you know from the previous chapter, there are two channels in FTP—the
command channel and the data channel. So, here, we check whether the data channel is
already open. If that is the case, we send the appropriate response and end the function by
returning. Here's the rest of the method:

 // …

 let addr = SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)),
port);
 let listener = TcpListener::bind(&addr, &self.handle)?;
 let port = listener.local_addr()?.port();

 self =

Implementing an Asynchronous FTP Server Chapter 9

[353]

await!(self.send(Answer::new(ResultCode::EnteringPassiveMode,
 &format!("127,0,0,1,{},{}", port >> 8, port &
0xFF))))?;

 println!("Waiting clients on port {}...", port);
 #[async]
 for (stream, _rest) in listener.incoming() {
 let (writer, reader) = stream.framed(BytesCodec).split();
 self.data_writer = Some(writer);
 self.data_reader = Some(reader);
 break;
 }
 Ok(self)
}

We start by starting the listener for the data channel. See the following line:

let port = listener.local_addr()?.port();

This is used to get the port that was chosen by the system, if we specified port 0 to let the
operating system choose a port. Then, we use an async for loop that breaks immediately
after the first iteration because we only have one client that will connect to this new
channel. In the loop, we're using the same split trick again; after saying that our stream uses
the BytesCodec, we split the stream between the writer and the reader. We'll describe
this new codec shortly. We then same both the data writer and reader.

Bytes codec
We start by creating an empty structure for the codec:

pub struct BytesCodec;

Decoding data bytes
Then, we implement the Decoder trait like we did for the FtpCodec:

impl Decoder for BytesCodec {
 type Item = Vec<u8>;
 type Error = io::Error;

 fn decode(&mut self, buf: &mut BytesMut) ->
io::Result<Option<Vec<u8>>> {
 if buf.len() == 0 {
 return Ok(None);

Implementing an Asynchronous FTP Server Chapter 9

[354]

 }
 let data = buf.to_vec();
 buf.clear();
 Ok(Some(data))
 }
}

Since the data of a transmitted file can be binary, we cannot use an Item of type String.
We instead use Vec<u8>, which we can contain every possible byte. If the buffer is empty,
we return Ok(None) to indicate to tokio that we need more data. Otherwise, we convert it
to a vector, clear the buffer and return the vector.

Encoding data bytes
Let's now see how to encode data; it's even simpler:

impl Encoder for BytesCodec {
 type Item = Vec<u8>;
 type Error = io::Error;

 fn encode(&mut self, data: Vec<u8>, buf: &mut BytesMut) ->
io::Result<()> {
 buf.extend(data);
 Ok(())
 }
}

We just extend the buffer with the data.

Quitting
Let's now implement the QUIT command. As always, we need to add a case in the
handle_cmd() method:

#[async]
fn handle_cmd(mut self, cmd: Command) -> Result<Self> {
 match cmd {
 Command::Quit => self = await!(self.quit())?,
 // …
 }
}

Implementing an Asynchronous FTP Server Chapter 9

[355]

And here is the code of the quit() method:

#[async]
fn quit(mut self) -> Result<Self> {
 if self.data_writer.is_some() {
 unimplemented!();
 } else {
 self =
await!(self.send(Answer::new(ResultCode::ServiceClosingControlConne
ction, "Closing connection...")))?;
 self.writer.close()?;
 }
 Ok(self)
}

So, we send a response back to the client and close() the writer.

To finish this chapter, let's implement the command to create and delete directories.

Creating directories
We'll start by handling the command to create a new directory. So, we add a case in
handle_cmd():

#[async]
fn handle_cmd(mut self, cmd: Command) -> Result<Self> {
 match cmd {
 Command::Mkd(path) => self = await!(self.mkd(path))?,
 // …
 }
}

And the function handling this command is:

use std::fs::create_dir;

#[async]
fn mkd(mut self, path: PathBuf) -> Result<Self> {
 let path = self.cwd.join(&path);
 let parent = get_parent(path.clone());
 if let Some(parent) = parent {
 let parent = parent.to_path_buf();
 let (new_self, res) = self.complete_path(parent);
 self = new_self;
 if let Ok(mut dir) = res {

Implementing an Asynchronous FTP Server Chapter 9

[356]

We first check that the parent directory is valid and under the server root:

 if dir.is_dir() {
 let filename = get_filename(path);
 if let Some(filename) = filename {
 dir.push(filename);
 if create_dir(dir).is_ok() {
 self = await!
 (self.send(Answer::new(ResultCode::PATHNAMECreated,
 "Folder successfully created!")))?;
 return Ok(self);
 }
 }
 }
 }
 }
 self = await!(self.send(Answer::new(ResultCode::FileNotFound,
 "Couldn't create folder")))?;
 Ok(self)
}

If it is, we create the directory. Otherwise, we send an error.

This requires two new functions:

use std::ffi::OsString;

fn get_parent(path: PathBuf) -> Option<PathBuf> {
 path.parent().map(|p| p.to_path_buf())
}

fn get_filename(path: PathBuf) -> Option<OsString> {
 path.file_name().map(|p| p.to_os_string())
}

These are simple wrappers over the methods from the standard library, doing type
conversion.

Removing directories
Finally, let's see the code to remove directories:

#[async]
fn handle_cmd(mut self, cmd: Command) -> Result<Self> {
 match cmd {

Implementing an Asynchronous FTP Server Chapter 9

[357]

 Command::Rmd(path) => self = await!(self.rmd(path))?,
 // …
 }
}

Like for the previous commands, we add a new case that calls the method that will handle
it:

use std::fs::remove_dir_all;

#[async]
fn rmd(mut self, directory: PathBuf) -> Result<Self> {
 let path = self.cwd.join(&directory);
 let (new_self, res) = self.complete_path(path);
 self = new_self;
 if let Ok(dir) = res {
 if remove_dir_all(dir).is_ok() {
 self =
await!(self.send(Answer::new(ResultCode::RequestedFileActionOkay,
 "Folder
successfully removed")))?;
 return Ok(self);
 }
 }
 self = await!(self.send(Answer::new(ResultCode::FileNotFound,
 "Couldn't remove
folder")))?;
 Ok(self)
}

Here again, we check that the directory is valid and under the server root, and delete it if
that is the case. Otherwise, we send an error message.

Summary
In this chapter, we implemented a lot of commands for our asynchronous FTP server and
learned about using tokio. We also saw in more detail what asynchronous I/O is, and its
advantages and disadvantages. We used the new async/await syntax to simplify the code
using tokio. We learned what futures and streams are, and how they interact with tokio.
We also saw how to do proper error handling and how to do it concisely. In the next
chapter, we'll complete the implementation of the FTP server and see how to test it.

10
Implementing Asynchronous

File Transfer
In the previous chapter, we started to write an asynchronous FTP server using tokio. Now,
we'll start using the second channel used in the FTP protocol: the data channel. We'll cover
the following topics:

Unit tests
Integration tests
Backtraces
Documentation
Documentation tests
Fuzzing tests

Listing files
We'll start this chapter by implementing the command to list files. This will allow us to
actually see the files in an FTP client, and we'll be able to tests some commands from the
previous chapter by navigating in the directories. So, let's add a case in the
Client::handle_cmd() method:

#[async]
fn handle_cmd(mut self, cmd: Command) -> Result<Self> {
 match cmd {
 Command::List(path) => self = await!(self.list(path))?,
 // …
 }
}

Implementing Asynchronous File Transfer Chapter 10

[359]

This simply calls the list() method, which begins as follows:

use std::fs::read_dir;

#[async]
fn list(mut self, path: Option<PathBuf>) -> Result<Self> {
 if self.data_writer.is_some() {
 let path = self.cwd.join(path.unwrap_or_default());
 let directory = PathBuf::from(&path);
 let (new_self, res) = self.complete_path(directory);
 self = new_self;
 if let Ok(path) = res {
 self = await!
(self.send(Answer::new(ResultCode::DataConnectionAlreadyOpen,
 "Starting to list
directory...")))?;

We first check that the data channel is opened and, if this is the case, we check that the
provided optional path is valid. If it is, we send a response that indicates to the client that
we're about to send it the data. The next part of the method is as follows:

 let mut out = vec![];
 if path.is_dir() {
 if let Ok(dir) = read_dir(path) {
 for entry in dir {
 if let Ok(entry) = entry {
 add_file_info(entry.path(), &mut out);
 }
 }
 } else {
 self = await!
(self.send(Answer::new(ResultCode::InvalidParameterOrArgument,
 "No such file or
 directory")))?;
 return Ok(self);
 }
 } else {
 add_file_info(path, &mut out);
 }

Implementing Asynchronous File Transfer Chapter 10

[360]

We first create a variable, out, that will contain the data to send to the client. If the specified
path is a directory, we use the read_dir() function from the standard library. We then
iterate over all files in the directory to gather the info about every file. If we were unable to
open the directory, we send an error back to the client. If the path is not a directory, for
example, if it is a file, we only get the info for this single file. Here's the end of the method:

 self = await!(self.send_data(out))?;
 println!("-> and done!");
 } else {
 self = await!
(self.send(Answer::new(ResultCode::InvalidParameterOrArgument,
 "No such file or
directory")))?;
 }
 } else {
 self =
await!(self.send(Answer::new(ResultCode::ConnectionClosed, "No
opened
 data connection")))?;
 }
 if self.data_writer.is_some() {
 self.close_data_connection();
 self =
await!(self.send(Answer::new(ResultCode::ClosingDataConnection,
 "Transfer done")))?;
 }
 Ok(self)
}

We then send the data in the right channel using the send_data() method that we'll see
later. If there was another error, we send the appropriate response to the client. If we
successfully sent the data, we close the connection and indicate this action to the client. This
code used a few new methods, so let's implement them.

First, here's the method that sends data in the data channel:

#[async]
fn send_data(mut self, data: Vec<u8>) -> Result<Self> {
 if let Some(writer) = self.data_writer {
 self.data_writer = Some(await!(writer.send(data))?);
 }
 Ok(self)
}

Implementing Asynchronous File Transfer Chapter 10

[361]

It is very similar to the send() method, but this one only sends the data if the data socket is
opened. Another method that is needed is the one that closes the connection:

fn close_data_connection(&mut self) {
 self.data_reader = None;
 self.data_writer = None;
}

We need to implement the method to gather the info about a file. Here is how it starts:

const MONTHS: [&'static str; 12] = ["Jan", "Feb", "Mar", "Apr",
"May", "Jun",
 "Jul", "Aug", "Sep", "Oct",
"Nov", "Dec"];

fn add_file_info(path: PathBuf, out: &mut Vec<u8>) {
 let extra = if path.is_dir() { "/" } else { "" };
 let is_dir = if path.is_dir() { "d" } else { "-" };

 let meta = match ::std::fs::metadata(&path) {
 Ok(meta) => meta,
 _ => return,
 };
 let (time, file_size) = get_file_info(&meta);
 let path = match path.to_str() {
 Some(path) => match path.split("/").last() {
 Some(path) => path,
 _ => return,
 },
 _ => return,
 };
 let rights = if meta.permissions().readonly() {
 "r--r--r--"
 } else {
 "rw-rw-rw-"
 };

The parameter out is a mutable reference, because we'll append the info in this variable.
Then, we gather the different required info and permissions of the file. Here's the rest of the
function:

 let file_str = format!("{is_dir}{rights} {links} {owner}
{group} {size} {month}
 {day} {hour}:{min} {path}{extra}\r\n",
 is_dir=is_dir,
 rights=rights,
 links=1, // number of links

Implementing Asynchronous File Transfer Chapter 10

[362]

 owner="anonymous", // owner name
 group="anonymous", // group name
 size=file_size,
 month=MONTHS[time.tm_mon as usize],
 day=time.tm_mday,
 hour=time.tm_hour,
 min=time.tm_min,
 path=path,
 extra=extra);
 out.extend(file_str.as_bytes());
 println!("==> {:?}", &file_str);
}

It formats the info and appends it to the variable out.

This function uses another one:

extern crate time;

use std::fs::Metadata;

#[cfg(windows)]
fn get_file_info(meta: &Metadata) -> (time::Tm, u64) {
 use std::os::windows::prelude::*;
 (time::at(time::Timespec::new(meta.last_write_time())),
meta.file_size())
}

#[cfg(not(windows))]
fn get_file_info(meta: &Metadata) -> (time::Tm, u64) {
 use std::os::unix::prelude::*;
 (time::at(time::Timespec::new(meta.mtime(), 0)), meta.size())
}

Here, we have two versions of get_file_info(): one for Windows and the other for all
non-Windows operating systems. Since we use a new crate, we need to add this line in
Cargo.toml:

time = "0.1.38"

Implementing Asynchronous File Transfer Chapter 10

[363]

We can now test, in the FTP client, that the files are indeed listed (on the right):

Figure 10.1

Implementing Asynchronous File Transfer Chapter 10

[364]

If we double-click on a directory, for instance, src, the FTP client will update its content:

Figure 10.2

Downloading a file
A very useful feature of an FTP server is the ability to download files. So, it's time to add the
command to do so.

First of all, we add the case in the handle_cmd() method:

#[async]
fn handle_cmd(mut self, cmd: Command) -> Result<Self> {
 match cmd {
 Command::Retr(file) => self = await!(self.retr(file))?,
 // …
 }
}

Implementing Asynchronous File Transfer Chapter 10

[365]

Here is the start of the retr() function:

use std::fs::File;
use std::io::Read;

use error::Error;

#[async]
fn retr(mut self, path: PathBuf) -> Result<Self> {
 if self.data_writer.is_some() {
 let path = self.cwd.join(path);
 let (new_self, res) = self.complete_path(path.clone());
 self = new_self;
 if let Ok(path) = res {
 if path.is_file() {
 self =
await!(self.send(Answer::new(ResultCode::DataConnectionAlreadyOpen,
"Starting to send file...")))?;
 let mut file = File::open(path)?;
 let mut out = vec![];
 file.read_to_end(&mut out)?;
 self = await!(self.send_data(out))?;
 println!("-> file transfer done!");

Again, we check that the data channel is opened and we check the path. If it is a file, we
open it, read its content, and send it to the client. Otherwise, we send the appropriate error:

 } else {
 self =
await!(self.send(Answer::new(ResultCode::LocalErrorInProcessing,
 &format!("\"{}\" doesn't exist",
 path.to_str().ok_or_else(|| Error::Msg("No
 path".to_string()))?))))?;
 }
 } else {
 self =
await!(self.send(Answer::new(ResultCode::LocalErrorInProcessing,
 &format!("\"{}\" doesn't exist",
 path.to_str().ok_or_else(|| Error::Msg("No
 path".to_string()))?))))?;
 }
 } else {
 self = await!

Implementing Asynchronous File Transfer Chapter 10

[366]

(self.send(Answer::new(ResultCode::ConnectionClosed, "No opened
 data connection")))?;
 }

Here, we use this pattern:

.ok_or_else(|| Error::Msg("No path".to_string()))?

This converts the Option into a Result, and returns the error if there is one.

And finally, we close the data socket if we successfully sent the file:

 if self.data_writer.is_some() {
 self.close_data_connection();
 self =
await!(self.send(Answer::new(ResultCode::ClosingDataConnection,
 "Transfer done")))?;
 }
 Ok(self)
}

Let's download a file in FileZilla to check that it works:

Figure 10.3

Implementing Asynchronous File Transfer Chapter 10

[367]

Uploading files
Now, let's do the opposite command: STOR to upload a file on the server.

As always, we'll add a case in the handle_cmd() method:

#[async]
fn handle_cmd(mut self, cmd: Command) -> Result<Self> {
 match cmd {
 Command::Stor(file) => self = await!(self.stor(file))?,
 // …
 }
}

Here is the start of the corresponding method:

use std::io::Write;

#[async]
fn stor(mut self, path: PathBuf) -> Result<Self> {
 if self.data_reader.is_some() {
 if invalid_path(&path) {
 let error: io::Error =
io::ErrorKind::PermissionDenied.into();
 return Err(error.into());
 }
 let path = self.cwd.join(path);
 self =
await!(self.send(Answer::new(ResultCode::DataConnectionAlreadyOpen,
 "Starting to send file...")))?;

Once again, we check that the data channel is opened. Then, we use a new function to check
that the path is valid, by which we mean it does not contain ... In the other cases, we used
another method, canonicalize(), and checked that the path was under the server root,
but we cannot do so here since there exists no file to upload yet. Here's the end of the
method:

 let (data, new_self) = await!(self.receive_data())?;
 self = new_self;
 let mut file = File::create(path)?;
 file.write_all(&data)?;
 println!("-> file transfer done!");
 self.close_data_connection();
 self =
await!(self.send(Answer::new(ResultCode::ClosingDataConnection,
 "Transfer done")))?;

Implementing Asynchronous File Transfer Chapter 10

[368]

 } else {
 self = await!(self.send(Answer::new(ResultCode::ConnectionClosed,
 "No opened data connection")))?;
 }
 Ok(self)
}

Here, we call receive_data(), which is a Future that will resolve to the data received
from the client. Then, we write this content in a new file. Finally, we close the connection
and send the response to indicate that the transfer is done.

Here's the method to read the data from the data socket:

#[async]
fn receive_data(mut self) -> Result<(Vec<u8>, Self)> {
 let mut file_data = vec![];
 if self.data_reader.is_none() {
 return Ok((vec![], self));
 }
 let reader = self.data_reader.take().ok_or_else(||
Error::Msg("No data
 reader".to_string()))?;
 #[async]
 for data in reader {
 file_data.extend(&data);
 }
 Ok((file_data, self))
}

Here, we take the data_reader attribute, which means it will be None after this statement.
And we iterate, using an async for loop, over the reader stream. At every iteration, we
add the data to the vector that is returned at the end.

This is the method to check if the path is valid:

use std::path::Component;

fn invalid_path(path: &Path) -> bool {
 for component in path.components() {
 if let Component::ParentDir = component {
 return true;
 }
 }
 false
}

Implementing Asynchronous File Transfer Chapter 10

[369]

Let's check that the upload does indeed work:

Figure 10.4

Going further!
Adding a bit of configuration would be nice, don't you think? Adding user authentication
would be nice as well. Let's start with the configuration!

Configuration
First, let's create a new file in src/ called config.rs. To make things easier, we'll use the
TOML format for our configuration file. Luckily for us, there is a crate for handling TOML
files in Rust, called toml. In addition to this one, we'll use serde to handle serialization and
deserialization (very useful!).

Implementing Asynchronous File Transfer Chapter 10

[370]

Ok, let's start by adding the dependencies into our Cargo.toml file:

toml = "0.4"
serde = "1.0"
serde_derive = "1.0"

Good, now let's write our Config struct:

pub struct Config {
 // fields...
}

So what should we put in there? The port and address the server should listen on to start,
maybe?

pub struct Config {
 pub server_port: Option<u16>,
 pub server_addr: Option<String>,
}

Done. We also talked about handling authentication. Why not adding it as well? We'll need
a new struct for users. Let's call it User (yay for originality!):

pub struct User {
 pub name: String,
 pub password: String,
}

Now let's add the users into the Config struct:

pub struct Config {
 pub server_port: Option<u16>,
 pub server_addr: Option<String>,
 pub users: Vec<User>,
 pub admin: Option<User>,
}

To make these two struct work with serde, we'll have to add the following tags:

#[derive(Deserialize, Serialize)]

Implementing Asynchronous File Transfer Chapter 10

[371]

And because we'll need to clone Config, we'll add Debug into the tags, which gives us:

#[derive(Clone, Deserialize, Serialize)]
pub struct Config {
 pub server_port: Option<u16>,
 pub server_addr: Option<String>,
 pub admin: Option<User>,
 pub users: Vec<User>,
}

#[derive(Clone, Deserialize, Serialize)]
pub struct User {
 pub name: String,
 pub password: String,
}

Ok, we're now ready to implement the reading:

use std::fs::File;
use std::path::Path;
use std::io::{Read, Write};

use toml;

fn get_content<P: AsRef<Path>>(file_path: &P) -> Option<String> {
 let mut file = File::open(file_path).ok()?;
 let mut content = String::new();
 file.read_to_string(&mut content).ok()?;
 Some(content)
}

impl Config {
 pub fn new<P: AsRef<Path>>(file_path: P) -> Option<Config> {
 if let Some(content) = get_content(&file_path) {
 toml::from_str(&content).ok()
 } else {
 println!("No config file found so creating a new one in
 {}",file_path.as_ref().display());
 // In case we didn't find the config file,
 we just build a new one.
 let config = Config {
 server_port: Some(DEFAULT_PORT),
 server_addr: Some("127.0.0.1".to_owned()),
 admin: None,
 users: vec![User {
 name: "anonymous".to_owned(),
 password: "".to_owned(),
 }],

Implementing Asynchronous File Transfer Chapter 10

[372]

 };
 let content =
toml::to_string(&config).expect("serialization failed");
 let mut file =
File::create(file_path.as_ref()).expect("couldn't create
 file...");
 writeln!(file, "{}", content).expect("couldn't fulfill
config file...");
 Some(config)
 }
 }
}

Let's go through the Config::new method's code:

if let Some(content) = get_content(&file_path) {
 toml::from_str(&content).ok()
}

Thanks to serde, we can directly load the configuration file from a &str and it'll return our
Config struct fully set. Amazing, right?

For information, the get_content function is just a utility function that allows the
return of the content of a file, if this file exists.

Also, don't forget to add the DEFAULT_PORT constant:

pub const DEFAULT_PORT: u16 = 1234;

In case the file doesn't exist, we can create a new one with some default values:

else {
 println!("No config file found so creating a new one in {}",
 file_path.as_ref().display());
 // In case we didn't find the config file, we just build a new
one.
 let config = Config {
 server_port: Some(DEFAULT_PORT),
 server_addr: Some("127.0.0.1".to_owned()),
 admin: None,
 users: vec![User {
 name: "anonymous".to_owned(),
 password: "".to_owned(),
 }],
 };
 let content = toml::to_string(&config).expect("serialization
failed");

Implementing Asynchronous File Transfer Chapter 10

[373]

 let mut file =
File::create(file_path.as_ref()).expect("couldn't create
 file...");
 writeln!(file, "{}", content).expect("couldn't fulfill config
file...");
 Some(config)
}

Now you might wonder, how will we actually be able to generate TOML from our Config
struct using this code? With serde's magic once again!

With this, our config file is now complete. Let get back to the main.rs one. First, we'll
need to define a new constant:

const CONFIG_FILE: &'static str = "config.toml";

Then, we'll need to update quite a few methods/functions. Let's start with the main
function. Add this line at the beginning:

let config = Config::new(CONFIG_FILE).expect("Error while loading
config...");

Now pass the config variable to the server function:

if let Err(error) = core.run(server(handle, server_root, config)) {

Next, let's update the server function:

#[async]
fn server(handle: Handle, server_root: PathBuf, config: Config) ->
io::Result<()> {
 let port = config.server_port.unwrap_or(DEFAULT_PORT);
 let addr =
SocketAddr::new(IpAddr::V4(config.server_addr.as_ref()
.unwrap_or(&"127.0.0.1".to_owned())
 .parse()
 .expect("Invalid
IpV4 address...")),
 port);
 let listener = TcpListener::bind(&addr, &handle)?;

 println!("Waiting clients on port {}...", port);
 #[async]
 for (stream, addr) in listener.incoming() {
 let address = format!("[address : {}]", addr);
 println!("New client: {}", address);
 handle.spawn(handle_client(stream, handle.clone(),

Implementing Asynchronous File Transfer Chapter 10

[374]

server_root.clone()));
 handle.spawn(handle_client(stream, handle.clone(),
server_root.clone(),
 config.clone()));
 println!("Waiting another client...");
 }
 Ok(())
}

Now, the server is started with the value from the Config struct. However, we still need
the user list for each client in order to handle the authentication. To do so, we need to give a
Config instance to each Client. In here, to make things simpler, we'll just clone.

Time to update the handle_client function now:

#[async]
fn handle_client(stream: TcpStream, handle: Handle, server_root:
PathBuf,
 config: Config) -> result::Result<(), ()> {
 await!(client(stream, handle, server_root, config))
 .map_err(|error| println!("Error handling client: {}",
error))
}

Let's update the client function now:

#[async]
fn client(stream: TcpStream, handle: Handle, server_root: PathBuf,
config: Config) -> Result<()> {
 let (writer, reader) = stream.framed(FtpCodec).split();
 let writer =
await!(writer.send(Answer::new(ResultCode::ServiceReadyForNewUser,
 "Welcome to this FTP
server!")))?;
 let mut client = Client::new(handle, writer, server_root,
config);
 #[async]
 for cmd in reader {
 client = await!(client.handle_cmd(cmd))?;
 }
 println!("Client closed");
 Ok(())
}

Implementing Asynchronous File Transfer Chapter 10

[375]

The final step is updating the Client struct:

struct Client {
 cwd: PathBuf,
 data_port: Option<u16>,
 data_reader: Option<DataReader>,
 data_writer: Option<DataWriter>,
 handle: Handle,
 name: Option<String>,
 server_root: PathBuf,
 transfer_type: TransferType,
 writer: Writer,
 is_admin: bool,
 config: Config,
 waiting_password: bool,
}

The brand new config field seems logical, however what about is_admin and
waiting_password? The first one will be used to be able to list/download/overwrite the
config.toml file, whereas the second one will be used when the USER command has been
used and the server is now expecting the user's password.

Let's add another method to our Client struct:

fn is_logged(&self) -> bool {
 self.name.is_some() && !self.waiting_password
}

Don't forget to update the Config::new method:

fn new(handle: Handle, writer: Writer, server_root: PathBuf,
config: Config) -> Client {
 Client {
 cwd: PathBuf::from("/"),
 data_port: None,
 data_reader: None,
 data_writer: None,
 handle,
 name: None,
 server_root,
 transfer_type: TransferType::Ascii,
 writer,
 is_admin: false,
 config,
 waiting_password: false,
 }
}

Implementing Asynchronous File Transfer Chapter 10

[376]

Ok, now here comes the huge update! But first, don't forget to add the Pass command:

pub enum Command {
 // variants...
 Pass(String),
 // variants...
}

Now the Command::new match:

b"PASS" => Command::Pass(data.and_then(|bytes|
String::from_utf8(bytes.to_vec()).map_err(Into::into))?),

Don't forget to also update the AsRef implementation!

Good, we're ready for the last (and very big) step. Let's head to the Client::handle_cmd
method:

use config::{DEFAULT_PORT, Config};
use std::path::Path;

fn prefix_slash(path: &mut PathBuf) {
 if !path.is_absolute() {
 *path = Path::new("/").join(&path);
 }
}

#[async]
fn handle_cmd(mut self, cmd: Command) -> Result<Self> {
 println!("Received command: {:?}", cmd);
 if self.is_logged() {
 match cmd {
 Command::Cwd(directory) => return
Ok(await!(self.cwd(directory))?),
 Command::List(path) => return
Ok(await!(self.list(path))?),
 Command::Pasv => return Ok(await!(self.pasv())?),
 Command::Port(port) => {
 self.data_port = Some(port);
 return
Ok(await!(self.send(Answer::new(ResultCode::Ok,
 &format!("Data port is now {}",
 port))))?);
 }
 Command::Pwd => {
 let msg = format!("{}",
self.cwd.to_str().unwrap_or("")); // small

Implementing Asynchronous File Transfer Chapter 10

[377]

 trick
 if !msg.is_empty() {
 let message = format!("\"{}\" ", msg);

 return Ok(await!
(self.send(Answer::new(ResultCode::PATHNAMECreated,
 &message)))?);
 } else {
 return
Ok(await!(self.send(Answer::new(ResultCode::FileNotFound,
 "No such file or directory")))?);
 }
 }
 Command::Retr(file) => return
Ok(await!(self.retr(file))?),
 Command::Stor(file) => return
Ok(await!(self.stor(file))?),
 Command::CdUp => {
 if let Some(path) =
self.cwd.parent().map(Path::to_path_buf) {
 self.cwd = path;
 prefix_slash(&mut self.cwd);
 }
 return
Ok(await!(self.send(Answer::new(ResultCode::Ok, "Done")))?);
 }
 Command::Mkd(path) => return
Ok(await!(self.mkd(path))?),
 Command::Rmd(path) => return
Ok(await!(self.rmd(path))?),
 _ => (),
 }
 } else if self.name.is_some() && self.waiting_password {
 if let Command::Pass(content) = cmd {
 let mut ok = false;
 if self.is_admin {
 ok = content ==
self.config.admin.as_ref().unwrap().password;
 } else {
 for user in &self.config.users {
 if Some(&user.name) == self.name.as_ref() {
 if user.password == content {
 ok = true;
 break;
 }
 }
 }
 }

Implementing Asynchronous File Transfer Chapter 10

[378]

 if ok {
 self.waiting_password = false;
 let name =
self.name.clone().unwrap_or(String::new());
 self = await!(
 self.send(Answer::new(ResultCode::UserLoggedIn,
 &format!("Welcome {}",
name))))?;
 } else {
 self =
await!(self.send(Answer::new(ResultCode::NotLoggedIn,
 "Invalid password")))?;
 }
 return Ok(self);
 }
 }
 match cmd {
 Command::Auth =>
 self =
await!(self.send(Answer::new(ResultCode::CommandNotImplemented,
 "Not implemented")))?,
 Command::Quit => self = await!(self.quit())?,
 Command::Syst => {
 self = await!(self.send(Answer::new(ResultCode::Ok, "I
won't tell!")))?;
 }
 Command::Type(typ) => {
 self.transfer_type = typ;
 self = await!(self.send(Answer::new(ResultCode::Ok,
 "Transfer type changed
successfully")))?;
 }
 Command::User(content) => {
 if content.is_empty() {
 self = await!
(self.send(Answer::new(ResultCode::InvalidParameterOrArgument,
 "Invalid username")))?;
 } else {
 let mut name = None;
 let mut pass_required = true;

 self.is_admin = false;
 if let Some(ref admin) = self.config.admin {
 if admin.name == content {
 name = Some(content.clone());
 pass_required = admin.password.is_empty()
== false;
 self.is_admin = true;

Implementing Asynchronous File Transfer Chapter 10

[379]

 }
 }
 // In case the user isn't the admin.
 if name.is_none() {
 for user in &self.config.users {
 if user.name == content {
 name = Some(content.clone());
 pass_required =
user.password.is_empty() == false;
 break;
 }
 }
 }
 // In case this is an unknown user.
 if name.is_none() {
 self =
await!(self.send(Answer::new(ResultCode::NotLoggedIn,
 "Unknown user...")))?;
 } else {
 self.name = name.clone();
 if pass_required {
 self.waiting_password = true;
 self = await!(
self.send(Answer::new(ResultCode::UserNameOkayNeedPassword,
 &format!("Login OK, password
needed for {}",
 name.unwrap()))))?;
 } else {
 self.waiting_password = false;
 self = await!
(self.send(Answer::new(ResultCode::UserLoggedIn,
 &format!("Welcome {}!", content))))?;
 }
 }
 }
 }
 Command::NoOp => self =
await!(self.send(Answer::new(ResultCode::Ok,
 "Doing
nothing")))?,
 Command::Unknown(s) =>
 self =
await!(self.send(Answer::new(ResultCode::UnknownCommand,
 &format!("\"{}\": Not implemented",
s))))?,
 _ => {
 // It means that the user tried to send a command while
they weren't

Implementing Asynchronous File Transfer Chapter 10

[380]

 logged yet.
 self =
await!(self.send(Answer::new(ResultCode::NotLoggedIn,
 "Please log first")))?;
 }
 }
 Ok(self)
}

I told you it was huge! The main points in here are just the flow rework. The following
commands only work when you're logged in:

Cwd

List

Pasv

Port

Pwd

Retr

Stor

CdUp

Mkd

Rmd

This command only works when you're not yet logged in and the server is waiting for the
password:

Pass

The rest of the commands work in any case. We're almost done in here. Remember when I
talked about the security? You wouldn't want anyone to have access to the configuration
file with the list of all users, I suppose.

Implementing Asynchronous File Transfer Chapter 10

[381]

Securing the config.toml access
This time, not much to do! We just need to add a check when a user wants to list, download,
or overwrite the file. Which means that the three following commands have to be updated:

List

Retr

Stor

Let's start with List. Before the first add_file_info function call, just wrap the
add_file_info function call around this block:

if self.is_admin || entry.path() !=
self.server_root.join(CONFIG_FILE) {

Before the second one, add the following:

if self.is_admin || path != self.server_root.join(CONFIG_FILE)

Now let's update the retr function. Take the following condition:

if path.is_file() {

Replace it with this:

if path.is_file() && (self.is_admin || path !=
self.server_root.join(CONFIG_FILE)) {

Finally, let's update the stor function. Take the following condition:

if invalid_path(&path) {

Replace it with this:

if invalid_path(&path) || (!self.is_admin && path ==
self.server_root.join(CONFIG_FILE)) {

And we're done! You now have a configurable server that you can easily extend, following
your needs.

Implementing Asynchronous File Transfer Chapter 10

[382]

Unit tests
A good software needs tests to ensure that it works in most cases. So, we will add tests to
our FTP server by starting to write unit tests for the FTP codec.

Unit tests verify only a unit of the program, which may be a function. They are different
from the integration tests, which we will see later, that test the software as a whole.

Let's go in the codec module and add a new inner module to it:

#[cfg(test)]
mod tests {
}

We are again using the #[cfg] attribute; this time, it only compiles the following module
when running the tests. This is to avoid adding useless code in the final binary.

In this new module, we will add a few import statements that we will need later when
writing the tests:

#[cfg(test)]
mod tests {
 use std::path::PathBuf;

 use ftp::ResultCode;
 use super::{Answer, BytesMut, Command, Decoder, Encoder,
FtpCodec};
}

As you can see, we use super to access some types from the parent module (codec): this is
very frequent for unit tests because we usually test the code from the same file.

Let's now add a test function:

#[cfg(test)]
mod tests {
 // …

 #[test]
 fn test_encoder() {
 }
}

In the test_encoder() function, we will write the code that will test that the
FtpCodec, Encoder implementation works as intended.

Implementing Asynchronous File Transfer Chapter 10

[383]

We will first check that an Answer with a message produces the right output:

#[cfg(test)]
mod tests {
 // …

 #[test]
 fn test_encoder() {
 let mut codec = FtpCodec;
 let message = "bad sequence of commands";
 let answer = Answer::new(ResultCode::BadSequenceOfCommands,
message);
 let mut buf = BytesMut::new();
 let result = codec.encode(answer, &mut buf);
 assert!(result.is_ok());
 assert_eq!(buf, format!("503 {}\r\n", message));
 }
}

Here, we start by creating the objects needed to call Encode::encode, for example, a
codec and a buffer. Then, we call codec.encode(), since it is the method we actually
want to test. After that, we check if the result is Ok and we check that the buffer was filled
accordingly. To do so, we use some macros:

assert!: This checks if the value is true. If it is false, it will panic and make
the test fail.
assert_eq!: This checks that both values are equal.

This a quite simple and effective test, but it does not test every path of the function. So, let's
add more lines in this function to test the other possible path:

#[cfg(test)]
mod tests {
 // …

 #[test]
 fn test_encoder() {
 // …
 let answer =
Answer::new(ResultCode::CantOpenDataConnection, "");
 let mut buf = BytesMut::new();
 let result = codec.encode(answer, &mut buf);
 assert!(result.is_ok(), "Result is ok");
 assert_eq!(buf, format!("425\r\n"), "Buffer contains 425");
 }
}

Implementing Asynchronous File Transfer Chapter 10

[384]

Here, we test with an empty message. The rest is basically the same: we create the necessary
objects and use the assert macros. But this time, we added a new parameter to the assert
macros; this is an optional message to show when the test fails.

If we run the test with cargo test, we get the following result:

 Compiling ftp-server v0.0.1 (file:///path/to/FTP-server-rs)
 Finished dev [unoptimized + debuginfo] target(s) in 1.29 secs
 Running target/debug/deps/ftp_server-452667ddc2d724e8

running 1 test
test codec::tests::test_encoder ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

This shows the test that was run and that it passed.

Let's write a test function that fails:

 #[test]
 fn test_dummy() {
 assert!(false, "Always fail");
 }

When we run cargo test, we see the following:

 Finished dev [unoptimized + debuginfo] target(s) in 1.30 secs
 Running target/debug/deps/ftp_server-452667ddc2d724e8

running 2 tests
test codec::tests::test_encoder ... ok
test codec::tests::test_dummy ... FAILED

failures:

---- codec::tests::test_dummy stdout ----
 thread 'codec::tests::test_dummy' panicked at 'Always fail',
src/codec.rs:102:8
note: Run with `RUST_BACKTRACE=1` for a backtrace.

failures:
 codec::tests::test_dummy

Implementing Asynchronous File Transfer Chapter 10

[385]

test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured; 0 filtered
out

error: test failed, to rerun pass '--bin ftp-server'

We can see that the message we specified (Always fail) is shown. We also see that 1 test
failed.

Backtraces
As mentioned in the output, we can set the environment variable RUST_BACKTRACE to 1 in
order to get more information about where the test failed. Let's do so:

export RUST_BACKTRACE=1

 Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
 Running target/debug/deps/ftp_server-452667ddc2d724e8

running 2 tests
test codec::tests::test_encoder ... ok
test codec::tests::test_dummy ... FAILED

failures:

---- codec::tests::test_dummy stdout ----
 thread 'codec::tests::test_dummy' panicked at 'Always fail',
src/codec.rs:102:8
note: Some details are omitted, run with `RUST_BACKTRACE=full` for a
verbose backtrace.
stack backtrace:
 0: std::sys::imp::backtrace::tracing::imp::unwind_backtrace
 at /checkout/src/libstd/sys/unix/backtrace/tracing/gcc_s.rs:49
 1: std::sys_common::backtrace::_print
 at /checkout/src/libstd/sys_common/backtrace.rs:68
 2: std::panicking::default_hook::{{closure}}
 at /checkout/src/libstd/sys_common/backtrace.rs:57
 at /checkout/src/libstd/panicking.rs:381
 3: std::panicking::default_hook
 at /checkout/src/libstd/panicking.rs:391
 4: std::panicking::rust_panic_with_hook
 at /checkout/src/libstd/panicking.rs:577
 5: std::panicking::begin_panic
 at /checkout/src/libstd/panicking.rs:538
 6: ftp_server::codec::tests::test_dummy
 at src/codec.rs:102
 7: <F as test::FnBox<T>>::call_box

Implementing Asynchronous File Transfer Chapter 10

[386]

 at /checkout/src/libtest/lib.rs:1491
 at /checkout/src/libcore/ops/function.rs:223
 at /checkout/src/libtest/lib.rs:142
 8: __rust_maybe_catch_panic
 at /checkout/src/libpanic_unwind/lib.rs:99

failures:
 codec::tests::test_dummy

test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured; 0 filtered
out

error: test failed, to rerun pass '--bin ftp-server'

The important part here is the following:

6: ftp_server::codec::tests::test_dummy
 at src/codec.rs:102

This shows the file, function, and line where the code panicked.

This variable is useful even outside of testing code: when debugging a problem with a code
that panics, we can use this variable as well.

Testing failures
Sometimes, we want to test that a function will panic. To do so, we can simply add the
#[should_panic] attribute at the top of the test function:

 #[should_panic]
 #[test]
 fn test_dummy() {
 assert!(false, "Always fail");
 }

When doing so, the test now passes:

 Finished dev [unoptimized + debuginfo] target(s) in 1.30 secs
 Running target/debug/deps/ftp_server-452667ddc2d724e8

running 2 tests
test codec::tests::test_dummy ... ok
test codec::tests::test_encoder ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

Implementing Asynchronous File Transfer Chapter 10

[387]

Ignoring tests
Sometimes, we have tests that take a lot of time, or we want to avoid running a specific test
all the time. To avoid running a test by default, we can add the #[ignore] attribute above
the function:

 #[ignore]
 #[test]
 fn test_dummy() {
 assert!(false, "Always fail");
 }

When we run the test, we'll see that the test function was not running:

 Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
 Running target/debug/deps/ftp_server-452667ddc2d724e8

running 2 tests
test codec::tests::test_dummy ... ignored
test codec::tests::test_encoder ... ok

test result: ok. 1 passed; 0 failed; 1 ignored; 0 measured; 0 filtered out

As you can see, the test_dummy() test function was ignored. To run it, we need to specify
a command-line argument to the program running the tests (not to cargo itself):

cargo test -- --ignored

Note: We specified -- before --ignored to send the latter to the program
running the tests (which is not cargo).

With that argument, we see that the test indeed runs:

 Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
 Running target/debug/deps/ftp_server-452667ddc2d724e8

running 1 test
test codec::tests::test_dummy ... FAILED

failures:

---- codec::tests::test_dummy stdout ----
 thread 'codec::tests::test_dummy' panicked at 'Always fail',
src/codec.rs:102:8
note: Run with `RUST_BACKTRACE=1` for a backtrace.

Implementing Asynchronous File Transfer Chapter 10

[388]

failures:
 codec::tests::test_dummy

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 1 filtered
out

error: test failed, to rerun pass '--bin ftp-server'

To end this section, let's write a unit test for the decoder:

#[cfg(test)]
mod tests {
 // …

 #[test]
 fn test_decoder() {
 let mut codec = FtpCodec;
 let mut buf = BytesMut::new();
 buf.extend(b"PWD");
 let result = codec.decode(&mut buf);
 assert!(result.is_ok());
 let command = result.unwrap();
 assert!(command.is_none());

Here, we test that None is returned in the case when more input is needed:

 buf.extend(b"\r\n");
 let result = codec.decode(&mut buf);
 assert!(result.is_ok());
 let command = result.unwrap();
 assert_eq!(command, Some(Command::Pwd));

And here, we add the missing output to check that the command was parsed correctly:

 let mut buf = BytesMut::new();
 buf.extend(b"LIST /tmp\r\n");
 let result = codec.decode(&mut buf);
 assert!(result.is_ok());
 let command = result.unwrap();
 assert_eq!(command,
Some(Command::List(Some(PathBuf::from("/tmp")))));
 }
}

Implementing Asynchronous File Transfer Chapter 10

[389]

Finally, we test that parsing a command with an argument works. If we run cargo test
again, we get the following output:

 Finished dev [unoptimized + debuginfo] target(s) in 1.70 secs
 Running target/debug/deps/ftp_server-452667ddc2d724e8

running 2 tests
test codec::tests::test_encoder ... ok
test codec::tests::test_decoder ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

Integration tests
In the previous section, we checked that a part of our code works: now, we will check that
the program as a whole works, by writing integration tests. These tests reside in the tests/
directory, so we start by creating it:

mkdir tests

In this directory, we can create a new file, tests/server.rs, in which we'll put the
following content:

extern crate ftp;

use std::process::Command;
use std::thread;
use std::time::Duration;

use ftp::FtpStream;

We import the ftp crate which is an FTP client; it will be useful to test our FTP server. We
need to add it in Cargo.toml as well:

[dev-dependencies]
ftp = "^2.2.1"

Here we see a new section, dev-dependencies: it contains the dependencies that are
needed outside the main crate itself, like in the integration tests. By putting the dependency
here and not in [dependencies], it won't be available in the main crate, which is what we
want.

Implementing Asynchronous File Transfer Chapter 10

[390]

Let's go back to the file tests/server.rs and add a test function:

#[test]
fn test_pwd() {
 let child =
 Command::new("./target/debug/ftp-server")
 .spawn().unwrap();
 let mut controller = ProcessController::new(child);

 thread::sleep(Duration::from_millis(100));
 assert!(controller.is_running(), "Server was aborted");

 let mut ftp = FtpStream::connect("127.0.0.1:1234").unwrap();

 ftp.quit().unwrap();
}

Here, we don't need to put the code in an inner tests module because the integration tests
are compiled separately. Since our crate is a binary, we need to run it with the Command
object. We give the child process to a ProcessController that we will create later.

Note: If our crate was a library, we would add an extern crate for it,
and we would be able to call functions from it directly.

We then call thread::sleep() to give some time for our server to start. After that, we use
the ftp crate to connect to our server, and then we quit.

Teardown
In the Rust test framework, there's no setup() and teardown() functions like there are in
the test frameworks of many other languages. And here, we need to run some code when
the test is done: we need to kill our FTP server. So, we need some kind of teardown
function. We cannot simply say child.kill() at the end of the function because, if the test
panics before that, the FTP server will continue running after the test ends. To make sure
the cleanup code is always called, no matter how the function ended, we'll have to use the
RAII pattern that we discovered in Chapter 6, Implementing the Engine of the Music Player.

Implementing Asynchronous File Transfer Chapter 10

[391]

Let's write a simple teardown structure:

struct ProcessController {
 child: Child,
}

The structure contains the child process that will be killed in the destructor. So, if the test
panics, this destructor will be called. It will also be called if the function ends normally.

We'll also create a constructor and the utility method that we used in the test function:

impl ProcessController {
 fn new(child: Child) -> Self {
 ProcessController {
 child,
 }
 }

 fn is_running(&mut self) -> bool {
 let status = self.child.try_wait().unwrap();
 status.is_none()
 }
}

The function is_running() is used to ensure that the FTP server we launched is actually
running; if another instance of the application is already running, our instance will not run.
That's why we used an assert in the test function.

Finally, we need to create a destructor:

impl Drop for ProcessController {
 fn drop(&mut self) {
 let _ = self.child.kill();
 }
}

We're now ready to write the test function:

#[test]
fn test_pwd() {
 // …

 let mut ftp = FtpStream::connect("127.0.0.1:1234").unwrap();

 let pwd = ftp.pwd().unwrap();
 assert_eq!("/", pwd);

Implementing Asynchronous File Transfer Chapter 10

[392]

 ftp.login("ferris", "").unwrap();

 ftp.cwd("src").unwrap();
 let pwd = ftp.pwd().unwrap();
 assert_eq!("/src", pwd);

 let _ = ftp.cdup();
 let pwd = ftp.pwd().unwrap();
 assert_eq!("/", pwd);

 ftp.quit().unwrap();
}

In this function, we issue some FTP commands and make sure the server state is correct by
calling the assert_eq!() macro. When we run cargo test, we see the following output:

 Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
 Running target/debug/deps/ftp_server-47386d9089111729

running 2 tests
test codec::tests::test_decoder ... ok
test codec::tests::test_encoder ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

 Running target/debug/deps/server-1b5cda64792f5f82

running 1 test
Waiting clients on port 1234...
New client: [address : 127.0.0.1:43280]
Waiting another client...
Received command: Pwd
Received command: User("ferris")
Received command: Cwd("src")
Received command: Pwd
Received command: CdUp
Received command: Pwd
Received command: Quit
test test_pwd ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

A new section is added for our integration test.

Implementing Asynchronous File Transfer Chapter 10

[393]

Print output to stdout
Let's see what happens when we add a call to println!() in our test (for debug purposes,
for instance):

#[test]
fn test_pwd() {
 println!("Running FTP server");

 // …
}

It will not be printed to the terminal. In order to see it, we need to pass another parameter to
the test runner. Let's run cargo test this way to see the output to stdout:

cargo run -- --nocapture

This time, we see the following output:

…

 Running target/debug/deps/server-1b5cda64792f5f82

running 1 test
Running FTP server
Waiting clients on port 1234...
New client: [address : 127.0.0.1:43304]
Waiting another client...
Received command: Pwd
Received command: User("ferris")
Received command: Cwd("src")
Received command: Pwd
Received command: CdUp
Received command: Pwd
Received command: Quit
test test_pwd ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

Documentation
Another very important aspect of a software is documentation. It is useful to describe how
to use a project, giving some examples and detailing the complete public API: let's see how
we can document a crate in Rust.

Implementing Asynchronous File Transfer Chapter 10

[394]

Documenting a crate
Documentation is written in comments, but these doc-comments start with a special
symbol. We use the token /// to document the item following the comment, and //! to
document the item from within this item. Let's start by seeing an example of the latter.

At the top of our crate's root (specifically, in the file main.rs), we'll add the following
comment:

//! An FTP server, written using tokio and futures-await.

Here, we use the //! form because we cannot write a comment before a crate; we can only
write a comment from within the crate.

Documenting a module
Documenting a module is very similar: we add a comment of the form //! at the top of a
module's file. Let's add the following doc-comment in codec.rs:

//! FTP codecs to encode and decode FTP commands and raw bytes.

Headers
The doc-comments are written in Markdown, so let's look at some Markdown formatting
syntax. We can write headers by starting a line with a #. The more #'s, the smaller the title.

For example:

/// Some introduction text.
///
/// # Big Title
///
/// ## Less big title
///
/// ### Even less big title.
///
/// #### Small title
///
/// ...

I think you get it at this point!

Implementing Asynchronous File Transfer Chapter 10

[395]

Here is a list of common headers:

Examples
Panics
Failure

Code blocks
The code we write in doc-comments must be inserted between two pairs of ```. Usually,
the code blocks are written under an Examples header. Let's see an example using all of
these syntactic elements for a function that convert bytes to uppercase:

/// Convert a sequence of bytes to uppercase.
///
/// # Examples
///
/// ```
/// let mut data = b"test";
/// to_uppercase(&mut data);
/// ```
fn to_uppercase(data: &mut [u8]) {
 for byte in data {
 if *byte >= 'a' as u8 && *byte <= 'z' as u8 {
 *byte -= 32;
 }
 }
}

Here, we start with a short description of the function. Then, we show a code example.

It's recommended to add comments in the code if needed, to help users understand it more
easily, so don't hesitate to add some!

Documenting an enumeration (or any type with
public fields)
When we want to document an enumeration, we want not only to document the type, but
also each variant. To do so, we can simply add a doc-comment before each variant. The
same applies for a structure, for its fields.

Implementing Asynchronous File Transfer Chapter 10

[396]

Let's see an example for the Command type:

/// An FTP command parsed by the parser.
#[derive(Clone, Debug, PartialEq)]
pub enum Command {
 Auth,
 /// Change the working directory to the one specified as an
argument.
 Cwd(PathBuf),
 /// Get a list of files.
 List(Option<PathBuf>),
 /// Create a new directory.
 Mkd(PathBuf),
 /// No operation.
 NoOp,
 /// Specify the port to use for the data channel.
 Port(u16),
 /// Enter passive mode.
 Pasv,
 /// Print current directory.
 Pwd,
 /// Terminate the connection.
 Quit,
 /// Retrieve a file.
 Retr(PathBuf),
 /// Remove a directory.
 Rmd(PathBuf),
 /// Store a file on the server.
 Stor(PathBuf),
 Syst,
 /// Specify the transfert type.
 Type(TransferType),
 /// Go to the parent directory.
 CdUp,
 Unknown(String),
 User(String),
}

We see that the enum itself has a doc-comment and most of the variants also have
documentation.

Generating the documentation
We can easily generate the documentation by running the following command:

cargo doc

Implementing Asynchronous File Transfer Chapter 10

[397]

This will generate the documentation in the directory target/doc/ftp_server. Here is
how it looks:

Figure 10.5

Warning about public items without
documentation
When writing a library, it is very easy to forget to write the documentation about every
item. But, we can use the help of the tools at our disposal. By adding the
#[warn(missing_docs)] attribute in our crate's root, the compiler will warn us when
public items do not have a doc-comment. In such a case, it will print something like this:

warning: missing documentation for crate
 --> src/main.rs:9:1
 |
9 | / #![feature(proc_macro, conservative_impl_trait, generators)]
10 | | #![warn(missing_docs)]
11 | |
12 | | extern crate bytes;
... |
528 | | }
529 | | }
 | |_^
 |
note: lint level defined here
 --> src/main.rs:10:9
 |
10 | #![warn(missing_docs)]
 | ^^^^^^^^^^^^

Implementing Asynchronous File Transfer Chapter 10

[398]

Hiding items from the documentation
Sometimes, we intentionally do not want to have a public item show up in the
documentation. In this case, we can use the #[doc(hidden)] attribute:

#[doc(hidden)]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum TransferType {
 Ascii,
 Image,
 Unknown,
}

For instance, this can be useful for something that is used by a macro of the crate but is not
intended to be used directly by the user.

Documentation tests
Writing documentation is a great thing. Showing code in your documentation is even
better. However, how can you be sure that the code you're showing is still up to date? That
it won't break when users copy/paste it to test it out? Here comes another wonderful feature
from Rust: doc tests.

Tags
First, any code blocks in documentation comments will be tested by default if they don't
have ignore or any non-recognized tag. So, for example:

/// ```ignore
/// let x = 12;
/// x += 1;
/// ```

Implementing Asynchronous File Transfer Chapter 10

[399]

This block code won't be tested (luckily, because it wouldn't compile!). A few other
examples:

/// # Some text
///
/// ```text
/// this is just some text
/// but it's rendered inside a code block
/// nice, right?
/// ```
///
/// # Why not C?
///
/// ```c-language
/// int strlen(const char *s) {
/// char *c = s;
///
/// for (; *c; ++c);
/// return c - s;
/// }
/// ```
///
/// # Or an unknown language?
///
/// ```whatever
/// 010010000110100100100001
/// ```

A few other instructions might come in handy for you. Let's start with ignore!

ignore
Just like this flag name states, ignore makes the block code ignored. As simple as that. It'll
still get the Rust syntax color once rendered in the documentation. For example:

/// ```ignore
/// let x = 0;
/// ```

Implementing Asynchronous File Transfer Chapter 10

[400]

However, once rendered, it'll have a graphical notification about the fact that this block
code isn't tested:

Figure 10.6

And when you hover over the sign:

Figure 10.7

Now let's continue with compile_fail!

compile_fail
The compile_fail flag ensures that the given code blocks don't compile. As simple as that.
It's mostly used when you're showing bad code and demonstrating why it is bad. For
example:

/// ```compile_fail
/// let x = 0;
/// x += 2; // Damn! `x` isn't mutable so you cannot update it...
/// ```

Then you just write a small explanation about what went wrong and show a working
example. It's very common in tutorials, to help users understand why it's wrong and how to
fix it.

Implementing Asynchronous File Transfer Chapter 10

[401]

In addition to this, please note that there will be a graphical indication that this block is
supposed to fail at compilation:

Figure 10.8

And when you hover over the sign:

Figure 10.9

Let's continue with no_run!

no_run
The no_run flag tells rustdoc to only check if the code block compiles (and therefore, not
to run it). It's mostly used in cases involving external resources (such as files). For example:

/// ```no_run
/// use std::fs::File;
///
/// let mut f = File::open("some-file.txt").expect("file not
found...");
/// ```

If you run this test, it's very likely (but not certain, since there is a possibility that some
funny user decided to suddenly add a some-file.txt file) to fail at execution. However,
the code is perfectly fine so it'd be a shame to just ignore it, right?

Implementing Asynchronous File Transfer Chapter 10

[402]

Now, let's see what to do if you want the test to fail:

should_panic
The should_panic flag ensures that your block code panics at execution. If it doesn't, then
the test fails. Let's take the previous code block:

/// ```should_panic
/// use std::fs::File;
///
/// let mut f = File::open("some-file.txt").expect("file not
found...");
/// ```

Once again, the test should succeed (unless, again, you have a funny user who added the
file). Quite useful if you want to show some bad behavior.

Combining flags?
It's actually possible to combine flags, although it's not really useful. For example:

/// ```rust,ignore
/// let x = 0;
/// ```

You could just have written this as follows:

/// ```ignore
/// let x = 0;
/// ```

For now, it's not really useful, but who knows what will happen in the future? At least now
you know!

Implementing Asynchronous File Transfer Chapter 10

[403]

About the doc blocks themselves
I suppose you noticed that we never added a function or anything. So how does it actually
work?

Well first, it checks if the main function is defined. If not, it'll wrap the code into one.
Observe the following code:

/// ```
/// let x = 0;
/// ```

When you write the preceding code, it gets transformed into this:

/// ```
/// fn main() {
/// let x = 0;
/// }
/// ```

Also, you can use all the public items defined in your crate in your code blocks. No need to
import the crate with an extern crate (however, you still have to import the item!).

One last (very) important point remains to be talked about: hiding code blocks lines.

Hiding code blocks lines
If you want to use ?, you'll have to do it inside a function returning an Option or a Result.
But still, inside a function. However, you don't necessarily want to show those lines to the
user in order to focus on what you're trying to explain.

To put it simply, you just need to add a # at the beginning of the line. As simple as that. As
always, let's show it with a small example:

/// ```
/// # fn foo() -> std::io::Result<()> {
/// let mut file = File::open("some-file.txt")?;
/// write!(file, "Hello world!")?;
/// # Ok(())
/// # }
/// ```

Implementing Asynchronous File Transfer Chapter 10

[404]

The user will only see the following:

let mut file = File::open("some-file.txt")?;
write!(file, "Hello world!")?;

However, if they click on the Run button, they'll see the following:

fn main() {
use std::fs::File;
use std::io::prelude::*;

fn foo() -> std::io::Result<()> {
let mut file = File::open("some-file.txt")?;
write!(file, "Hello world!")?;
Ok(())
}
}

(Don't forget that the main function is added as well!).

That's it for the doc tests. With all this knowledge, you should be able to write a nice API
documentation which will always be up to date and tested (hopefully)!

Fuzzing tests
There is another type of test that is very useful but is not integrated into the Rust standard
library: fuzzing tests.

A fuzzing test will test a function's automatically generated input with the sole purpose of
crashing this function or making it behave incorrectly. Fuzzing tests can be used to
complement tests that are written manually because they can generate way more input than
we can possibly write by hand. We will use cargo-fuzz to test our command parser.

First, we need to install it:

cargo install cargo-fuzz

Next, we will use the new cargo fuzz command to create a new fuzz test crate in our FTP
server crate:

cargo fuzz init

Implementing Asynchronous File Transfer Chapter 10

[405]

This generated a few files. The most important of them and the one we will modify, is
fuzz/fuzz_targets/fuzz_target_1.rs. Let's replace its content with the following:

#![no_main]
#[macro_use] extern crate libfuzzer_sys;

mod error {
 include!("../../src/error.rs");
}

include!("../../src/cmd.rs");

fuzz_target!(|data: &[u8]| {
 let _ = Command::new(data.to_vec());
});

Since our crate is a binary instead of a library, we cannot directly import functions from it.
So, we use this little trick to get access to the functions we want:

mod error {
 include!("../../src/error.rs");
}

include!("../../src/cmd.rs");

The mod error is needed because our cmd module depends on it. With that sorted, we
include the cmd module with a macro. This macro will expand to the content of the file,
similarly to the #include preprocessor directive in C. Finally, we have our test function:

fuzz_target!(|data: &[u8]| {
 let _ = Command::new(data.to_vec());
});

Here, we just create a new command from the random input we receive. We ignore the
result since there's no way we can possibly check if it is right, except by listing all
possibilities (which would make a great unit test). So, if there's a bug in our command
parser that causes a panic, the fuzzer could find it.

To run the fuzzer, issue the following command:

cargo fuzz run fuzz_target_1

Implementing Asynchronous File Transfer Chapter 10

[406]

Here's the output:

 Fresh arbitrary v0.1.0
 Fresh cc v1.0.3
 Fresh libfuzzer-sys v0.1.0
(https://github.com/rust-fuzz/libfuzzer-sys.git#737524f7)
 Compiling ftp-server-fuzz v0.0.1 (file:///path/to/FTP-server-rs/fuzz)
 Running `rustc --crate-name fuzz_target_1
fuzz/fuzz_targets/fuzz_target_1.rs --crate-type bin --emit=dep-info,link -C
debuginfo=2 -C metadata=7eb012a2948092cc -C extra-
filename=-7eb012a2948092cc --out-dir /path/to/FTP-server-
rs/fuzz/target/x86_64-unknown-linux-gnu/debug/deps --target x86_64-unknown-
linux-gnu -L dependency=/path/to/FTP-server-rs/fuzz/target/x86_64-unknown-
linux-gnu/debug/deps -L dependency=/path/to/FTP-server-
rs/fuzz/target/debug/deps --extern libfuzzer_sys=/path/to/FTP-server-
rs/fuzz/target/x86_64-unknown-linux-
gnu/debug/deps/liblibfuzzer_sys-44f07aaa9fd00b00.rlib --cfg fuzzing -
Cpasses=sancov -Cllvm-args=-sanitizer-coverage-level=3 -Zsanitizer=address
-Cpanic=abort -L native=/path/to/FTP-server-rs/fuzz/target/x86_64-unknown-
linux-gnu/debug/build/libfuzzer-sys-b260d147c5e0139d/out`
 Finished dev [unoptimized + debuginfo] target(s) in 1.57 secs
 Fresh arbitrary v0.1.0
 Fresh cc v1.0.3
 Fresh libfuzzer-sys v0.1.0
(https://github.com/rust-fuzz/libfuzzer-sys.git#737524f7)
 Fresh ftp-server-fuzz v0.0.1 (file:///path/to/FTP-server-rs/fuzz)
 Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
 Running `fuzz/target/x86_64-unknown-linux-gnu/debug/fuzz_target_1 -
artifact_prefix=/path/to/FTP-server-rs/fuzz/artifacts/fuzz_target_1/
/path/to/FTP-server-rs/fuzz/corpus/fuzz_target_1`
INFO: Seed: 1369551667
INFO: Loaded 0 modules (0 guards):
Loading corpus dir: /path/to/FTP-server-rs/fuzz/corpus/fuzz_target_1
INFO: -max_len is not provided, using 64
INFO: A corpus is not provided, starting from an empty corpus
#0 READ units: 1
#1 INITED cov: 389 corp: 1/1b exec/s: 0 rss: 23Mb
#4 NEW cov: 393 corp: 2/4b exec/s: 0 rss: 23Mb L: 3 MS: 3 ShuffleBytes-
InsertByte-InsertByte-
#5 NEW cov: 412 corp: 3/62b exec/s: 0 rss: 23Mb L: 58 MS: 4
ShuffleBytes-InsertByte-InsertByte-InsertRepeatedBytes-
#7 NEW cov: 415 corp: 4/121b exec/s: 0 rss: 23Mb L: 59 MS: 1
InsertByte-
#21 NEW cov: 416 corp: 5/181b exec/s: 0 rss: 23Mb L: 60 MS: 5 ChangeBit-
InsertByte-ChangeBinInt-ChangeByte-InsertByte-
#707 NEW cov: 446 corp: 6/241b exec/s: 0 rss: 23Mb L: 60 MS: 1
ChangeBit-
#710 NEW cov: 447 corp: 7/295b exec/s: 0 rss: 23Mb L: 54 MS: 4

Implementing Asynchronous File Transfer Chapter 10

[407]

ChangeBit-InsertByte-EraseBytes-InsertByte-
#767 NEW cov: 448 corp: 8/357b exec/s: 0 rss: 23Mb L: 62 MS: 1 CMP-
DE: "\x01\x00"-
#780 NEW cov: 449 corp: 9/421b exec/s: 0 rss: 23Mb L: 64 MS: 4
CopyPart-InsertByte-ChangeByte-CrossOver-
#852 NEW cov: 450 corp: 10/439b exec/s: 0 rss: 23Mb L: 18 MS: 1
CrossOver-
#1072 NEW cov: 452 corp: 11/483b exec/s: 0 rss: 23Mb L: 44 MS: 1
InsertRepeatedBytes-
#85826 NEW cov: 454 corp: 12/487b exec/s: 85826 rss: 41Mb L: 4 MS: 5
ChangeBit-InsertByte-InsertByte-EraseBytes-CMP- DE: "NOOP"-
#92732 NEW cov: 456 corp: 13/491b exec/s: 92732 rss: 43Mb L: 4 MS: 1
CMP- DE: "PASV"-
#101858 NEW cov: 477 corp: 14/495b exec/s: 50929 rss: 46Mb L: 4 MS: 2
ChangeByte-CMP- DE: "STOR"-
#105338 NEW cov: 497 corp: 15/499b exec/s: 52669 rss: 47Mb L: 4 MS: 2
ShuffleBytes-CMP- DE: "LIST"-
#108617 NEW cov: 499 corp: 16/503b exec/s: 54308 rss: 48Mb L: 4 MS: 1
CMP- DE: "AUTH"-
#108867 NEW cov: 501 corp: 17/507b exec/s: 54433 rss: 48Mb L: 4 MS: 1
CMP- DE: "QUIT"-
#115442 NEW cov: 503 corp: 18/511b exec/s: 57721 rss: 50Mb L: 4 MS: 1
CMP- DE: "SYST"-
#115533 NEW cov: 505 corp: 19/515b exec/s: 57766 rss: 50Mb L: 4 MS: 2
ChangeBinInt-CMP- DE: "CDUP"-
#123001 NEW cov: 513 corp: 20/518b exec/s: 61500 rss: 52Mb L: 3 MS: 5
PersAutoDict-EraseBytes-ChangeByte-ChangeBinInt-CMP- DE: "\x01\x00"-"RMD"-
#127270 NEW cov: 515 corp: 21/521b exec/s: 63635 rss: 54Mb L: 3 MS: 4
EraseBytes-ChangeByte-InsertByte-CMP- DE: "PWD"-
#131072 pulse cov: 515 corp: 21/521b exec/s: 65536 rss: 55Mb
#148469 NEW cov: 527 corp: 22/525b exec/s: 49489 rss: 59Mb L: 4 MS: 3
ChangeBit-ChangeBit-CMP- DE: "USER"-
#151237 NEW cov: 528 corp: 23/529b exec/s: 50412 rss: 60Mb L: 4 MS: 1
CMP- DE: "TYPE"-
#169842 NEW cov: 536 corp: 24/532b exec/s: 56614 rss: 65Mb L: 3 MS: 1
ChangeByte-
#262144 pulse cov: 536 corp: 24/532b exec/s: 52428 rss: 90Mb
#274258 NEW cov: 544 corp: 25/535b exec/s: 54851 rss: 94Mb L: 3 MS: 2
ChangeBit-CMP- DE: "MKD"-
#355992 NEW cov: 566 corp: 26/539b exec/s: 50856 rss: 116Mb L: 4 MS: 1
InsertByte-
#356837 NEW cov: 575 corp: 27/558b exec/s: 50976 rss: 116Mb L: 19 MS: 1
InsertRepeatedBytes-
#361667 NEW cov: 586 corp: 28/562b exec/s: 51666 rss: 117Mb L: 4 MS: 1
PersAutoDict- DE: "MKD"-
thread '<unnamed>' panicked at 'index out of bounds: the len is 0 but the
index is 0', fuzz/fuzz_targets/../../src/cmd.rs:85:46
note: Run with `RUST_BACKTRACE=1` for a backtrace.

Implementing Asynchronous File Transfer Chapter 10

[408]

==10969== ERROR: libFuzzer: deadly signal
 #0 0x55e90764cf73 (/path/to/FTP-server-rs/fuzz/target/x86_64-unknown-
linux-gnu/debug/fuzz_target_1+0x110f73)
 #1 0x55e9076aa701 (/path/to/FTP-server-rs/fuzz/target/x86_64-unknown-
linux-gnu/debug/fuzz_target_1+0x16e701)
 #2 0x55e9076aa64b (/path/to/FTP-server-rs/fuzz/target/x86_64-unknown-
linux-gnu/debug/fuzz_target_1+0x16e64b)
 #3 0x55e907683059 (/path/to/FTP-server-rs/fuzz/target/x86_64-unknown-
linux-gnu/debug/fuzz_target_1+0x147059)
 #4 0x7f4bda433d9f (/usr/lib/libpthread.so.0+0x11d9f)
 #5 0x7f4bd9e8789f (/usr/lib/libc.so.6+0x3489f)
 #6 0x7f4bd9e88f08 (/usr/lib/libc.so.6+0x35f08)
 #7 0x55e9076c2b18 (/path/to/FTP-server-rs/fuzz/target/x86_64-unknown-
linux-gnu/debug/fuzz_target_1+0x186b18)

NOTE: libFuzzer has rudimentary signal handlers.
 Combine libFuzzer with AddressSanitizer or similar for better crash
reports.
SUMMARY: libFuzzer: deadly signal
MS: 2 CopyPart-InsertByte-; base unit:
6e9816a8e9d0388eecdb52866188c04e75e4b1b3
0x54,0x59,0x50,0x45,0x20,
TYPE
artifact_prefix='/path/to/FTP-server-rs/fuzz/artifacts/fuzz_target_1/';
Test unit written to /path/to/FTP-server-
rs/fuzz/artifacts/fuzz_target_1/crash-601e8dbb61bd6c7d63cff0bd3f749f7cb5392
2bc
Base64: VFlQRSA=
==10969==LeakSanitizer has encountered a fatal error.
==10969==HINT: For debugging, try setting environment variable
LSAN_OPTIONS=verbosity=1:log_threads=1
==10969==HINT: LeakSanitizer does not work under ptrace (strace, gdb, etc)
MS: 2 CopyPart-InsertByte-; base unit:
6e9816a8e9d0388eecdb52866188c04e75e4b1b3
0x54,0x59,0x50,0x45,0x20,
TYPE
artifact_prefix='/path/to/FTP-server-rs/fuzz/artifacts/fuzz_target_1/';
Test unit written to /path/to/FTP-server-
rs/fuzz/artifacts/fuzz_target_1/crash-601e8dbb61bd6c7d63cff0bd3f749f7cb5392
2bc
Base64: VFlQRSA=

There's actually a bug in our parser! We can see where, thanks to this line:

thread '<unnamed>' panicked at 'index out of bounds: the len is 0 but the
index is 0', fuzz/fuzz_targets/../../src/cmd.rs:85:46

Implementing Asynchronous File Transfer Chapter 10

[409]

The corresponding line in the source code is:

match TransferType::from(data?[0]) {

And indeed, if the data is empty, this will panic. Let's fix that:

impl Command {
 pub fn new(input: Vec<u8>) -> Result<Self> {
 // …
 let command =
 match command.as_slice() {
 // …
 b"TYPE" => {
 let error = Err("command not implemented for
that
 parameter".into());
 let data = data?;
 if data.is_empty() {
 return error;
 }
 match TransferType::from(data[0]) {
 TransferType::Unknown => return error,
 typ => {
 Command::Type(typ)
 },
 }
 },
 // …
 };
 Ok(command)
 }
}

The fix is simple: we check if the data is empty, in which case we return an error.

Let's try the fuzzer to see if it can find another bug. Here's the output:

INFO: Seed: 81554194
INFO: Loaded 0 modules (0 guards):
Loading corpus dir:
/home/bouanto/Ordinateur/Programmation/Rust/Projets/FTP-server-
rs/fuzz/corpus/fuzz_target_1
INFO: -max_len is not provided, using 64
#0 READ units: 27
#27 INITED cov: 595 corp: 23/330b exec/s: 0 rss: 28Mb
#21494 NEW cov: 602 corp: 24/349b exec/s: 0 rss: 28Mb L: 19 MS: 2
ShuffleBytes-CMP- DE: "STOR"-
#21504 NEW cov: 606 corp: 25/354b exec/s: 0 rss: 28Mb L: 5 MS: 2

Implementing Asynchronous File Transfer Chapter 10

[410]

InsertByte-PersAutoDict- DE: "STOR"-
#24893 NEW cov: 616 corp: 26/359b exec/s: 0 rss: 29Mb L: 5 MS: 1 CMP-
DE: "TYPE"-
#25619 NEW cov: 620 corp: 27/365b exec/s: 0 rss: 29Mb L: 6 MS: 2
PersAutoDict-InsertByte- DE: "TYPE"-
#25620 NEW cov: 621 corp: 28/379b exec/s: 0 rss: 29Mb L: 14 MS: 3
PersAutoDict-InsertByte-CMP- DE: "TYPE"-"\x00\x00\x00\x00\x00\x00\x00\x00"-
#32193 NEW cov: 628 corp: 29/398b exec/s: 0 rss: 31Mb L: 19 MS: 1 CMP-
DE: "CWD"-
#34108 NEW cov: 662 corp: 30/417b exec/s: 0 rss: 31Mb L: 19 MS: 1 CMP-
DE: "USER"-
#35745 NEW cov: 666 corp: 31/421b exec/s: 0 rss: 31Mb L: 4 MS: 3
ShuffleBytes-EraseBytes-PersAutoDict- DE: "CWD"-
#36518 NEW cov: 673 corp: 32/426b exec/s: 0 rss: 32Mb L: 5 MS: 1
PersAutoDict- DE: "USER"-
#36634 NEW cov: 685 corp: 33/433b exec/s: 0 rss: 32Mb L: 7 MS: 2 CMP-
CMP- DE: "\xff\xff"-"RETR"-
#37172 NEW cov: 688 corp: 34/437b exec/s: 0 rss: 32Mb L: 4 MS: 5
EraseBytes-ChangeBinInt-InsertByte-ChangeBit-CMP- DE: "RETR"-
#39248 NEW cov: 692 corp: 35/442b exec/s: 0 rss: 32Mb L: 5 MS: 1
PersAutoDict- DE: "RETR"-
#65735 NEW cov: 699 corp: 36/492b exec/s: 65735 rss: 39Mb L: 50 MS: 3
InsertRepeatedBytes-ChangeBit-CMP- DE: "LIST"-
#69797 NEW cov: 703 corp: 37/497b exec/s: 69797 rss: 40Mb L: 5 MS: 5
ChangeByte-CopyPart-CopyPart-EraseBytes-PersAutoDict- DE: "LIST"-
#131072 pulse cov: 703 corp: 37/497b exec/s: 65536 rss: 55Mb
#217284 NEW cov: 707 corp: 38/511b exec/s: 54321 rss: 75Mb L: 14 MS: 2
CMP-ShuffleBytes- DE: "LIST"-
#219879 NEW cov: 708 corp: 39/525b exec/s: 54969 rss: 76Mb L: 14 MS: 2
ChangeByte-ChangeBit-
#262144 pulse cov: 708 corp: 39/525b exec/s: 52428 rss: 86Mb
#524288 pulse cov: 708 corp: 39/525b exec/s: 52428 rss: 148Mb
#1048576 pulse cov: 708 corp: 39/525b exec/s: 52428 rss: 273Mb
#2097152 pulse cov: 708 corp: 39/525b exec/s: 51150 rss: 522Mb
#4194304 pulse cov: 708 corp: 39/525b exec/s: 50533 rss: 569Mb
#8388608 pulse cov: 708 corp: 39/525b exec/s: 50533 rss: 569Mb
#12628080 NEW cov: 835 corp: 40/530b exec/s: 50311 rss: 570Mb L: 5 MS:
3 ChangeBit-ChangeBinInt-ShuffleBytes-
#12628883 NEW cov: 859 corp: 41/540b exec/s: 50314 rss: 570Mb L: 10
MS: 1 CopyPart-
#12628893 NEW cov: 867 corp: 42/604b exec/s: 50314 rss: 570Mb L: 64
MS: 1 CrossOver-
#12643279 NEW cov: 868 corp: 43/608b exec/s: 50371 rss: 570Mb L: 4 MS:
2 EraseBytes-EraseBytes-
#12670956 NEW cov: 871 corp: 44/652b exec/s: 50281 rss: 570Mb L: 44
MS: 4 EraseBytes-InsertByte-ChangeBinInt-ChangeBinInt-
#12671130 NEW cov: 872 corp: 45/697b exec/s: 50282 rss: 570Mb L: 45
MS: 3 ChangeBit-CMP-InsertByte- DE: "\xff\xff\xff\xff"-

Implementing Asynchronous File Transfer Chapter 10

[411]

#12671140 NEW cov: 873 corp: 46/750b exec/s: 50282 rss: 570Mb L: 53
MS: 3 ChangeBinInt-CMP-CopyPart- DE: "\x00\x00\x00\x00\x00\x00\x00\x00"-
#12671906 NEW cov: 874 corp: 47/803b exec/s: 50285 rss: 570Mb L: 53
MS: 4 ChangeBit-ChangeByte-PersAutoDict-ShuffleBytes- DE: "CWD"-
#12687428 NEW cov: 875 corp: 48/856b exec/s: 50346 rss: 574Mb L: 53
MS: 1 ShuffleBytes-
#12699014 NEW cov: 945 corp: 49/862b exec/s: 50392 rss: 574Mb L: 6 MS:
2 InsertByte-ChangeBit-
#13319888 NEW cov: 946 corp: 50/869b exec/s: 50074 rss: 579Mb L: 7 MS:
1 InsertByte-
#13424473 NEW cov: 1015 corp: 51/878b exec/s: 50091 rss: 580Mb L: 9
MS: 1 CopyPart-
#13432333 NEW cov: 1018 corp: 52/888b exec/s: 50120 rss: 580Mb L: 10
MS: 1 CopyPart-
#13651748 NEW cov: 1019 corp: 53/901b exec/s: 50006 rss: 582Mb L: 13
MS: 1 CopyPart-
#13652268 NEW cov: 1020 corp: 54/920b exec/s: 50008 rss: 582Mb L: 19
MS: 1 CopyPart-
#13652535 NEW cov: 1025 corp: 55/978b exec/s: 50009 rss: 582Mb L: 58
MS: 3 InsertRepeatedBytes-ChangeBit-InsertByte-
#13662779 NEW cov: 1028 corp: 56/997b exec/s: 50046 rss: 582Mb L: 19
MS: 2 ChangeBit-ShuffleBytes-
#16777216 pulse cov: 1028 corp: 56/997b exec/s: 48913 rss: 589Mb
#33554432 pulse cov: 1028 corp: 56/997b exec/s: 46154 rss: 589Mb
#67108864 pulse cov: 1028 corp: 56/997b exec/s: 45343 rss: 589Mb
#134217728 pulse cov: 1028 corp: 56/997b exec/s: 44325 rss: 589Mb
#268435456 pulse cov: 1028 corp: 56/997b exec/s: 43819 rss: 589Mb
^C==16792== libFuzzer: run interrupted; exiting

So, we ran the fuzzer for a very long time and it didn't find a panic, so we ended it with
Ctrl + C. We cannot be certain that there's no bug left, but we are more confident thanks to
all these tests.

Summary
In this chapter, we finalized our FTP server. Then, we learned how to do different types of
tests. We saw how we can test a single function or type by writing unit tests. We learned
how to test a program as a whole by writing integration tests. We also learned about
documentation and fuzzing tests to make sure our examples are up to date and to find even
more bugs in our application.

In the next and ultimate chapter, we will learn about Rust's good practice and common
idioms.

11
Rust Best Practices

Rust is a powerful language, but a few things easily avoidable with practice can make your
life really hard when starting. This chapter aims to show you some good practices and tips.

We will cover the following topics in this chapter:

Best practices
API tips and improvements
Usage tips
Code readability

Now let's go!

Rust best practices
Let's start with some basics (and maybe obvious) things.

Slices
First, a little recap; a slice is a constant view over an array, and &[T] is the constant view of
a Vec<T>, whereas &str is the constant view of a String (just like Path is the constant
view of a PathBuf and OsStr is the constant view of an OsString). Now that you have
this in mind, let's continue!

Rust Best Practices Chapter 11

[413]

When a function expects a constant argument of type Vec or String, then always write
them as follows:

fn some_func(v: &[u8]) {
 // some code...
}

Instead of:

fn some_code(v: &Vec<u8>) {
 // some code
}

And:

fn some_func(s: &str) {
 // some code...
}

Instead of:

fn some_func(s: &String) {
 // some code...
}

You might be wondering why this is the case. So, let's imagine your function displays your
Vec as ASCII characters:

fn print_as_ascii(v: &[u8]) {
 for c in v {
 print!("{}", *c as char);
 }
 println!("");
}

And now you just want to print a part of your Vec:

let v = b"salut!";

print_as_ascii(&v[2..]);

Now, if the print_as_ascii only accepted references on Vec, you'd have to make a
(useless) allocation, as follows:

let v = b"salut!";

print_as_ascii(&v[2..].to_vec());

Rust Best Practices Chapter 11

[414]

API tips and improvements
When writing a public API (either for you or other users), a few tips can really make
everyone's life easier. This is where generics kick in. Let's start with Option arguments:

 Explaining the Some function
Generally, when a function expects an Option argument, it looks like this:

fn some_func(arg: Option<&str>) {
 // some code
}

And you call it as follows:

some_func(Some("ratatouille"));
some_func(None);

Now, what if I told you that you could get rid of the Some? Nice, right? Well, this is actually
pretty easy:

fn some_func<'a, T: Into<Option<&'a str>>>(arg: T) {
 // some code
}

And you can now call it as follows:

some_func(Some("ratatouille")); // If you *really* like to write
"Some"...
some_func("ratatouille");
some_func(None);

Better! However, to make users' lives easier, it'll require a bit more code for whoever's
writing the function. You can't use arg as it is; you need to add an extra step. Before, you'd
just do this:

fn some_func(arg: Option<&str>) {
 if let Some(a) = arg {
 println!("{}", a);
 } else {
 println!("nothing...");
 }
}

Rust Best Practices Chapter 11

[415]

Now, you'll need to add an .into call before being able to use arg:

fn some_func<'a, T: Into<Option<&'a str>>>(arg: T) {
 let arg = arg.into();
 if let Some(a) = arg {
 println!("{}", a);
 } else {
 println!("nothing...");
 }
}

And that's it. As we said before, it doesn't require much and makes users' lives easier, so
why not do it?

 Using the Path function
Just like the previous section, this will show you some tips to make your API more
comfortable to use by auto-converting it into a Path.

So, let's take an example with a function receiving a Path as an argument:

use std::path::Path;

fn some_func(p: &Path) {
 // some code...
}

There's nothing new in here. You can call this function just like this:

some_func(Path::new("tortuga.txt"));

The annoying thing, here, is that you have to build the Path yourself before sending it to
the function. This is way too annoying, but we can do better!

fn some_func<P: AsRef<Path>>(p: P) {
 // some code...
}

And that's it... You can now call the function as follows:

some_func(Path::new("tortuga.txt")); // If you *really* like to
build the "Path" by yourself...
some_func("tortuga.txt");

Rust Best Practices Chapter 11

[416]

And just like for the Into trait, you need to add one line of code in order to make it work:

fn some_func<P: AsRef<Path>>(p: P) {
 let p: &Path = p.as_ref();
 // some code...
}

And that's it! Now, as long as the given type implements AsRef<Path>, you can just send it
like that. For information, here's a (non-exhaustive) list of types implementing this trait:

OsStr / OsString
&str / String
Path (yes, Path implements AsRef<Path> as well!) / PathBuf
Iter

This is already quite a lot, so you should be able to do it pretty easily!

Usage tips
Now that you've seen few examples about how some small tips can make users' code more
beautiful, how about we see some others things that might make your code better?

Builder pattern
A builder pattern is meant to be able to build a final object through multiple calls that can be
chained. An excellent example is the OpenOptions type in the Rust standard library.

It's strongly recommended you use OpenOptions when you need to play
with File!

use std::fs::OpenOptions;

let file = OpenOptions::new()
 .read(true)
 .write(true)
 .create(true)
 .open("foo.txt");

Rust Best Practices Chapter 11

[417]

To make such APIs, you have two ways:

Playing with mutable borrows
Playing with moves

Let's start with the mutable borrows!

Playing with mutable borrows
The first one works just like OpenOptions:

struct Number(u32);

impl Number {
 fn new(nb: u32) -> Number {
 Number(nb)
 }

 fn add(&mut self, other: u32) -> &mut Number {
 self.0 += other;
 self
 }

 fn sub(&mut self, other: u32) -> &mut Number {
 self.0 -= other;
 self
 }

 fn compute(&self) -> u32 {
 self.0
 }
}

If you wonder about self.0, just remember that it's how you access a tuple field.

And then you can call it as follow:

let nb = Number::new(0).add(10).sub(5).add(12).compute();
assert_eq!(nb, 17);

This is the first way to do it.

You'll note that you need to add an ending method so that you can
transform your mutable borrow into an object (otherwise, you'll have a
borrow issue).

Rust Best Practices Chapter 11

[418]

Let's now take a look at the second way to do it!

Playing with moves
Instead of taking &mut every time, we'll directly take the object's ownership every time:

struct Number(u32);

impl Number {
 fn new(nb: u32) -> Number {
 Number(nb)
 }

 fn add(mut self, other: u32) -> Number {
 self.0 += other;
 self
 }

 fn sub(mut self, other: u32) -> Number {
 self.0 -= other;
 self
 }
}

Then, there's no more need for the ending method:

let nb = Number::new(0).add(10).sub(5).add(12);
assert_eq!(nb.0, 17);

I generally prefer this way of doing builder patterns but it's more of a personal opinion than
a thoughtful decision. Pick whichever seems to fit the best in your situation!

Code readability
We'll now talk about Rust's syntax itself. A few things can improve the code readability and
are important to know. Let's start with big numbers.

Big number formatting
It's not uncommon to see huge constant numbers in code, such as this:

let x = 1000000000;

Rust Best Practices Chapter 11

[419]

However, this is quite difficult to read for us (human brains aren't very efficient at parsing
such numbers). In Rust, you can insert _ characters into numbers without any problem:

let x = 1_000_000_000;

A lot better, right?

Specifying types
The Rust compiler can automatically detect the type of a variable in most cases. However,
for people reading the code, it's not always obvious what a code returns. An example? Sure!

let x = "a 10 11 coucou 12 14".split(' ')
 .filter_map(|e|
e.parse::<u32>().ok())
 .filter(|x| x % 2 == 0)
 .map(|s| format!("{}", s))
 .collect::<Vec<_>>()
 .join("::");

After reading the code carefully, you'll guess that x is a String. However, you needed to
read all those closures to get it and even then, are you really sure of the type?

In such cases, it's strongly recommended to just add the type annotation:

let x: String = "a 10 11 coucou 12 14".split(' ')
 .filter_map(|e|
e.parse::<u32>().ok())
 .filter(|x| x % 2 == 0)
 .map(|s| format!("{}", s))
 .collect::<Vec<_>>()
 .join("::");

It doesn't cost much and allows readers (including you) to go through the code so much
faster.

Rust Best Practices Chapter 11

[420]

Matching
It's common to use pattern matching through match blocks in Rust. However, it's often a
better solution to use if let conditions. Let's take a simple example:

enum SomeEnum {
 Ok,
 Err,
 Unknown,
}

Now let's say you want to perform an action only when you get Ok. With a match, you
would do this:

let x = SomeEnum::Err;

match x {
 SomeEnum::Ok => {
 // Huge code doing a lot of things...
 }
 _ => {}
}

Not really an issue, right? Now let's see it with an if let:

let x = SomeEnum::Err;

if let SomeEnum::Ok = x {
 // Huge code doing a lot of things...
}

And that's it. It basically makes the code a little shorter, while improving readability a lot.
Whenever you just need to get one value, it's often a better solution to use if let instead
of match.

Summary
With this last chapter, you should have a good overview of good practices in Rust. Keep in
mind that good code is easy to read and well commented. Even complex features can be a
lot simpler to understand with well-made documentation.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Learning Rust
Paul Johnson, Vesa Kaihlavirta

ISBN: 978-1-78588-430-6

Set up Rust for Windows, Linux, and OS X
Write effective code using Rust
Expand your Rust applications using libraries
Interface existing non-Rust libraries with your Rust applications
Use the standard library within your applications
Understand memory management within Rust and speed efficiency when
passing variables
Create more complex data types
Study concurrency in Rust with multi-threaded applications and sync threading
techniques to improve the performance of an application problem

https://www.packtpub.com/application-development/learning-rust

Other Books You May Enjoy

[422]

Mastering Rust
Vesa Kaihlavirta

ISBN: 978-1-78588-530-3

Implement unit testing patterns with the standard Rust tools
Get to know the different philosophies of error handling and how to use them
wisely
Appreciate Rust's ability to solve memory allocation problems safely without
garbage collection
Get to know how concurrency works in Rust and use concurrency primitives
such as threads and message passing
Use syntax extensions and write your own
Create a Web application with Rocket
Use Diesel to build safe database abstractions

https://www.packtpub.com/application-development/mastering-rust

Other Books You May Enjoy

[423]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
API tips, Rust
 Path function, using 415
 some function, explaining 414
application
 improving 156
arrays
 about 30
 for loops 31
 slices 30
asynchronous IO
 advantages 322
 disadvantages 323
asynchronous user interface 233

B
binary project
 creating 323, 324, 327
builder pattern
 about 416
 moves, playing 418
 mutable borrows, playing 417
built-in data types
 about 12
 Boolean type 13
 character type 13
 floating-point types 13
 integer types 13
bytes codec
 about 353
 data bytes, decoding 353
 data bytes, encoding 354

C
cargo 46

Cargo.toml file 48
child widget
 adding 240, 242
 dialogs 248
 methods 250
 one-way data binding 243
 post-initialization of view 244, 245, 247
chunks of commands
 basics 292, 297
 implementation 290, 294
clients
 handling 337
code blocks 395
code readability, Rust
 big number formatting 418
 matching 420
 types, specifying 419
commands implementation
 about 300
 CDUP command, implementation 315
 CWD command, implementation 311
 LIST command, implementation 305, 315
 MKD command, implementation 318
 NOOP command, implementation 303
 PWD command, implementation 304
 RMD command, implementation 319
 SYST command, implementation 300
 TYPE command, implementation 304
 USER command, implementation 301
commands
 handling 338, 342
config.toml access
 securing 381
configuration 369, 370, 371, 373, 375, 380
containers
 about 166
 box container 167

[425]

 types 166
control flow
 about 14
 condition, writing 14
 copy types 19
 mutable references 20
 while loops, creating 14
cover
 displaying 181
CPU usage
 condition variable 214
 improving 213
crate
 documenting 394
 reference link 46
current directory
 changing 345, 347, 348
 managing 344
 printing 344
custom widgets
 creating 233

D
dependencies
 installing 184
 installing, on Linux 184
 installing, on Mac 184
 installing, on Windows 184
dialogs 248
directories
 creating 355
 removing 356
doc blocks
 about 403
 code blocks lines, hiding 403
docs.rs documentation
 about 47
 Cargo.toml file 48
documentation
 about 393
 generating 396
 tags 398
 testing 398
drawing
 about 54

 features, playing 65
 images, loading 64
 images, playing 66
 options, playing 60
 solution 61

E
enumeration
 about 22
 documenting 395
error handling
 about 329
 error type 330
 unwrapping 329
error type
 ? operator, revisited 334
 about 330
 composing 332
 displaying 332
 error, displaying 330
event loop
 about 191
 atomic reference counting 192
 lock-free data structures 193
 mutual exclusion 193
 Resource Acquisition Is Initialization (RAII) 198
 send trait 193
 sync trait 193

F
file
 downloading 364, 366
 formatted data, reading 74
 handling 69
 high scores, loading 72
 high scores, saving 72
 iterators 72
 listing 358, 360, 361, 363
 opening, with file dialog 178
 uploading 367, 368
fonts
 installing, on Linux 141
 installing, on OS X 141
 loading 142, 144, 145, 147

[426]

 system/package manager 141
FTP 289
FTP codec 339
FTP commands
 decoding 340
 encoding 341
FTP protocol
 about 288
 chunks of commands, implementation 290
 commands implementation 300
 testing 320
functions
 creating 15
futures
 using 329

G
game map
 interacting 99, 100, 101
game mechanisms
 about 129
 fonts 140
 rendering UI 129
generics
 about 29
 option type 29
gstreamer
 used, for playback 226, 228, 229
GTK+
 installing, on Linux 149
 installing, on Mac 149
 installing, on Windows 149

H
headers 394
high scores
 loading 72, 114
 overwriting 114
 saving 72

I
ID3
 MP3 metadata 177
images

 SDL2_image, installing on Linux 64
 SDL2_image, installing on Mac 64
integration tests
 about 389
 output, printing to stdout 393
 teardown 390, 392
interior mutability 202, 203, 205, 207, 209
irrefutable patterns 25
items
 hiding, from documentation 398
iterators 72

L
level 110, 113
lines sent 110, 113
LIST command 308

M
macros
 about 33
 multiple pattern rules 34
 repetitions 35
messages 237
methods
 about 20, 250
 constructors 21
model 236
model parameter 253, 255, 256, 258
module
 documenting 394
MP3 decoder
 implementing 185, 186, 188
MP3 files
 decoding 185
 dependencies, adding 185
 frame samples 189
 opening 175
Multiple-Producers-Single-Consumer (MPSC) 277
music player
 using 200
music
 event loop 191
 mutex guard 198
 playing 190, 196, 269, 271, 274, 275, 279

[427]

MVC pattern 171

O
one-way data binding 243

P
passive mode
 bytes codec 353
 entering 350, 351, 352
PASV command
 implementation 305
pattern matching
 about 23
 irrefutable patterns 25
playlist
 about 252
 adding 169
 loading 220, 223, 225
 model parameter 253, 255, 256, 258
 MVC pattern 171
 saving 220
post-initialization of view 244, 245, 247
prerequisite
 GTK+, installing on Linux 149
 GTK+, installing on Mac 149
 GTK+, installing on Windows 149
 installing 148
public items
 warning, without documentation 397

Q
quitting 354

R
reference-counting pointer 176
references
 about 17, 18
 clone types 18
relm widget
 adding 259
 data binding 285, 286
relm
 asynchronous user interface 233
 custom widgets, creating 233

 Rust nightly, installing 235
 state mutation 232
 used, instead of gtk-rs directly 232
 used, on stable Rust 283
 window, creating 234
rendering 133
rendering initialization 130, 131, 133
repetitions, macros
 optional quantifier 37
Rust crates 39
Rust nightly
 installing 235
Rust project
 cargo 45
 crates.io 45
 docs.rs documentation 47
 setting up 44
Rust's modules 49
Rust
 about 7
 API tips 414
 best practices 412
 code readability 418
 improvements 414
 installation, testing 10
 installing 8
 Linux/Mac 8
 main function 11
 references 11
 slices 412
 usage tips 416
 variables 11
 Windows 8

S
score 110
SDL events 102, 104, 106, 108, 109
SDL2
 installing 39
 installing, on Linux 39
 installing, on Windows 40
 Windows (MinGW) 42
 Windows (MSVC) 43
 Windows, with Build 40
SDL2_image

[428]

 installing, on Windows 65
Semantic Versioning (SemVer) 45
server
 about 335
 clients, handling 337
 commands, handling 338
 FTP codec 339
slices 413
song duration
 computing 279, 281
song
 current time, displaying 216, 217, 219
 deleting 180
 pausing 201
 progression, displaying 209, 211
 resuming 201
stable Rust
 relm, used 283
state mutation 232
structures
 creating 15

T
tags, documentation
 compile_fail 400
 flags, combining 402
 ignore 399
 no_run 401
 should_panic 402
tests
 fuzzing 404, 405, 408
tetrimino
 about 79, 80, 82
 creating 83, 85, 86, 87, 89
 generating 89, 91
 rotating 91, 92, 94
tetris 51
tetris struct 95, 96, 97, 98
Tetris
 writing 78
Tokio event loop 334
Tokio
 event loop 329
 using 328
tool button events

 adding 159
 lifetime 161, 163, 164
 ownership 165
toolbar
 creating 153
 stock item 155
traits
 about 25
 associated types 27
 default methods 27
 rules 28
transfer type
 setting 348
tuples 22

U
unit tests
 about 382, 383
 backtraces 385
 failures, testing 386
 tests, ignoring 387, 388
unwrapping 329
usage tips, Rust
 builder pattern 416

V
view
 about 238
 code generation 239
 events 238
 properties 238

W
widget
 about 236
 communicating 260
 emit 261
 message, sending to relm widget 265
 messages 237
 messages, handling from relm widget 264
 method 262
 model 236
 update function 239
 view 237

widgets
 communicating 260
Window
 creating 149, 152

window
 creating 52
Window
 creating, with relm 234
 default behavior, preventing of an event 153

	Cover
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Basics of Rust
	Getting to know Rust
	Installing Rust
	Windows
	Linux/Mac
	Test your installation

	Documentation and reference
	Main function
	Variables

	Built-in data types
	Integer types
	Floating-point types
	Boolean type
	Character type

	Control flow
	Writing a condition
	Creating while loops

	Creating functions
	Creating structures
	References
	Clone types
	Copy types
	Mutable references

	Methods
	Constructors

	Tuples
	Enumerations
	Pattern matching
	Irrefutable patterns

	Traits
	Default methods
	Associated types
	Rules

	Generics
	The Option type

	Arrays
	Slices
	For loops

	Macros
	Multiple pattern rules
	Repetitions
	Optional quantifier

	Summary

	Chapter 2: Starting with SDL
	Understanding Rust crates
	Installing SDL2
	Installing SDL2 on Linux
	Installing SDL2 on Mac
	Installing SDL2 on Windows
	Windows with Build Script
	Windows (MinGW)
	Windows (MSVC)

	Setting up your Rust project
	Cargo and crates.io
	The docs.rs documentation
	Back to our Cargo.toml file

	Rust's modules
	Tetris
	Creating a window
	Drawing
	Playing with Options
	Solution
	Loading images
	Installing SDL2_image on Mac
	Installing SDL2_image on Linux
	Installing SDL2_image on Windows

	Playing with features
	Playing with images

	Handling files
	Saving/loading high scores
	Iterators
	Reading formatted data from files

	Summary

	Chapter 3: Events and Basic Game Mechanisms
	Writing Tetris
	Tetrimino
	Creating tetriminos
	Generating a tetrimino
	Rotating a tetrimino

	Tetris struct
	Interacting with the game map
	SDL events
	Score, level, lines sent
	Levels and lines sent
	Highscores loading/overwriting

	Summary

	Chapter 4: Adding All Game Mechanisms
	Getting started with game mechanisms
	Rendering UI
	Rendering initialization
	Rendering

	Playing with fonts
	Install on OS X
	Install on Linux
	Other system/package manager

	Loading font

	Summary

	Chapter 5: Creating a Music Player
	Installing the prerequisite
	Installing GTK+ on Linux
	Installing GTK+ on Mac
	Installing GTK+ on Windows

	Creating your first window
	Closure
	Preventing the default behavior of an event

	Creating a toolbar
	Stock item

	Improving the organization of the application
	Adding tool button events
	Lifetime
	Ownership

	Containers
	Types of containers
	The Box container

	Adding a playlist
	The MVC pattern

	Opening MP3 files
	Reference-counting pointer
	ID3— MP3 metadata
	Opening files with a file dialog
	Deleting a song
	Displaying the cover when playing a song

	Summary

	Chapter 6: Implementing the Engine of the Music Player
	Installing the dependencies
	Installing dependencies on Linux
	Installing dependencies on Mac
	Installing dependencies on Windows

	Decoding MP3 files
	Adding dependencies
	Implementing an MP3 decoder
	Getting the frame samples

	Playing music
	Event loop
	Atomic reference counting
	Mutual exclusion
	Send trait
	Sync trait
	Lock-free data structures

	Playing music
	Mutex guard
	RAII

	Using the music player

	Pausing and resuming the song
	Interior mutability

	Showing the progression of the song
	Improving CPU usage
	Condition variable

	Showing the song's current time
	Loading and saving the playlist
	Saving a playlist
	Loading a playlist

	Using gstreamer for playback
	Summary

	Chapter 7: Music Player in a More Rusty Way with Relm
	Reasons to use relm instead of gtk-rs directly
	State mutation
	Asynchronous user interface
	Creating custom widgets

	Creating a window with relm
	Installing Rust nightly

	Widget
	Model
	Messages
	View
	Properties
	Events
	Code generation

	Update function

	Adding child widgets
	One-way data binding
	Post-initialization of the view
	Dialogs
	Other methods

	Playlist
	Model parameter

	Adding a relm widget
	Communicating between widgets
	Communicating with the same widget
	Emit
	With different widgets
	Handle messages from a relm widget
	Syntax sugar to send a message to another relm widget

	Playing music
	Computing the song duration
	Using relm on stable Rust
	Relm widgets data binding
	Summary

	Chapter 8: Understanding FTP
	File transfer protocol
	Introduction to FTP
	Implementing simple chunks of commands
	Starting with basics

	Commands implementation
	Implementing the SYST command
	Implementing the USER command
	Implementing the NOOP command
	Implementing the PWD command
	Implementing the TYPE command
	Implementing the LIST command
	Implementing the PASV command
	Back to the LIST command

	Implementing the CWD command
	Implementing the CDUP command
	Full implementation of the LIST command
	Implementing the MKD command
	Implementing the RMD command

	Testing it

	Summary

	Chapter 9: Implementing an Asynchronous FTP Server
	Advantages of asynchronous IO
	Disadvantages of asynchronous IO
	Creating the new project
	Using Tokio
	Tokio event loop

	Using futures
	Handling errors
	Unwrapping
	Custom error type
	Displaying the error
	Composing error types
	The ? operator, revisited

	Starting the Tokio event loop
	Starting the server
	Handling clients
	Handling commands
	FTP codec
	Decoding FTP commands
	Encoding FTP commands

	Handling commands
	Managing the current working directory
	Printing the current directory
	Changing the current directory

	Setting the transfer type
	Entering passive mode
	Bytes codec
	Decoding data bytes
	Encoding data bytes

	Quitting
	Creating directories
	Removing directories
	Summary

	Chapter 10: Implementing Asynchronous File Transfer
	Listing files
	Downloading a file
	Uploading files
	Going further!
	Configuration
	Securing the config.toml access

	Unit tests
	Backtraces
	Testing failures
	Ignoring tests

	Integration tests
	Teardown
	Print output to stdout

	Documentation
	Documenting a crate
	Documenting a module
	Headers
	Code blocks
	Documenting an enumeration (or any type with public fields)
	Generating the documentation
	Warning about public items without documentation
	Hiding items from the documentation

	Documentation tests
	Tags
	ignore
	compile_fail
	no_run
	should_panic
	Combining flags?

	About the doc blocks themselves
	Hiding code blocks lines

	Fuzzing tests
	Summary

	Chapter 11: Rust Best Practices
	Rust best practices
	Slices
	API tips and improvements
	 Explaining the Some function
	 Using the Path function

	Usage tips
	Builder pattern
	Playing with mutable borrows
	Playing with moves

	Code readability
	Big number formatting
	Specifying types
	Matching

	Summary

	Chapter 12: Other Books You May Enjoy
	Index

