

Early Praise for Rust Brain Teasers

This is a wonderful collection of brain teasers that will not only introduce you to
the most peculiar Rust quirks concepts but can also teach you a few interesting
things about programming as well. Whether you want to use Rust as your primary
language or not (well, you definitely should), this book has something great to
offer for everyone.

➤ Vladyslav Batyrenko
Software Engineer

Herbert’s latest book explores some of Rust’s oddities that are sure to catch you
out a few times as a beginner. Each puzzle is short and clear, the explanations
are great and full of knowledge and wisdom. Highly recommend picking up this
book for an afternoon full of head-scratching Rust programming puzzles, and I
guarantee you won’t be able to put this down.

➤ Olivia Ifrim

We've left this page blank to
make the page numbers the
same in the electronic and

paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”

Rust Brain Teasers
Exercise Your Mind

Herbert Wolverson

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Tammy Coron
Copy Editor: L. Sakhi MacMillan
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-680509-17-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2022

https://pragprog.com
support@pragprog.com
rights@pragprog.com

To Henry, my loyal canine coding companion
of thirteen years—who sadly didn’t live to see

the book’s release.

Contents

Acknowledgments ix
Preface xi

Part I — Rust Brain Teasers

Puzzle 1. Three and a Bit 3
Puzzle 2. Non-standard Input 7
Puzzle 3. Type Conversion 11
Puzzle 4. Byte-Sized Chunks 15
Puzzle 5. How Long Is a String? 19
Puzzle 6. Please Reboot the Universe 23
Puzzle 7. There and Back Again 27
Puzzle 8. Walks Like a Duck, Quacks Like a Duck 31
Puzzle 9. Out of Order 35
Puzzle 10. X Marks the Spot 39
Puzzle 11. Stacking Boxes 43
Puzzle 12. Amnesia 49
Puzzle 13. Reverse the Polarity of the Neutron Flow 53
Puzzle 14. Structure Sizing 59
Puzzle 15. To Infinity 63
Puzzle 16. Double or Nothing 69
Puzzle 17. How Long Is a Vector? 73
Puzzle 18. Mutable Immutables 77
Puzzle 19. Sleepless in Tokio 81
Puzzle 20. Hello, Bonjour 89
Puzzle 21. Tying a Gordian Knot 95
Puzzle 22. Waiting for Godot 101
Puzzle 23. Constant Loops 105
Puzzle 24. Home on the Range 109

Bibliography 113
Index 115

Contents • viii

Acknowledgments
This book would not have been possible without the patience, support, and
love of my wife, Mel Wolverson.

Margaret Eldridge deserves special thanks for suggesting that I write this book.
I was midway through creating Hands-on Rust when she approached me with
this title. After a brief moment of shell-shock that a publisher would come to
me, I accepted. Thanks are also due to all of the staff at PragProg—particularly
Dave Rankin and Miki Tebeka—for letting me tweak the Brain Teasers genre a
little for this title.

Thank you to Tammy Coron—the editor—for help and enthusiasm on this
project. Tammy is an amazing editor, going above and beyond the call of duty
by testing difficult code in the Rust Playground on top of keeping me focused
and shepherding me through the publication process. I wouldn’t have finished
the book without her help.

My parents—Robert Wolverson and Dawn McLaren—deserve a lot of gratitude.
They sparked my love of computers at a young age, encouraging me to
experiment and learn. They are both retired teachers and instilled in me a
life-long love of learning and teaching.

Kent Froeschle and Stephen Turner, my colleagues at iZones, get a special
“thank you” for their continual encouragement, work schedule flexibility, and
patiently dealing with both a global pandemic and my writing schedule.

This book would not be what it is without the patient and thorough help of
the tech reviewers: Jurgis Balciunas, Forest Anderson, Vladyslav Batyrenko,
Bas Zalmstra, Remco Kuijper, Andy Lester, and countless beta-readers who
submitted errata and questions. Thanks are also due to Steve Cotteril, for
acting as a sounding-board throughout the creative process.

report erratum • discuss

http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Preface
Rust is a very consistent language. The Rust Core Team has worked hard to
ensure that Rust does what you ask and doesn’t surprise you by performing
additional tasks behind your back. Rust’s toolset—particularly Clippy and
Rust’s safety guarantees—check your program for common mistakes and
often suggest improvements. It’s common for Rust programmers to notice
that writing their program in Rust takes a little longer, but when they run it,
it works as expected.

The Rust language has a few quirks. Sometimes they creep in at the cracks
between systems, and sometimes they’re a conscious design choice to avoid
doing something worse. In this book, you’ll review a series of self-contained
Rust programs that explore these quirks. Each program, known as a brain
teaser, teaches an aspect of Rust that is designed to surprise you. As you
read each brain teaser, try to guess the program’s output correctly. The pos-
sible answers are:

• The program won’t compile.

• The program produces some unexpected output (for example, “Arithmetic
still works!”).

• The program panics and terminates with an error message.

After each brain teaser, you’ll get an explanation of why the program produces
the result it does and how similar issues might affect the code you write in
your own programs. To get the most out of this book, try running the code
yourself before turning the page and reading the answer and discussion.
Taking these steps helps to reinforce what you’re learning. By understanding
these quirks, you can become a better Rust programmer—and hopefully,
avoid these pitfalls in your own projects.

report erratum • discuss

http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

About the Author
Herbert Wolverson is the author of Hands-on Rust,1 and the Rust Roguelike
Tutorial.2 He developed and maintains the bracket-lib open source library
(now part of the Amethyst Foundation) and has been involved in many open
source projects over the years.3 Herbert is the sole proprietor of Bracket
Productions.

About the Code
The example projects and code are as short as possible and focused on dis-
playing a minimal example of each brain teaser. The examples are contained
within a Rust workspace. To execute each sample, change to the example’s
directory in your terminal and type cargo run.

Some brain teasers require additional library support. In these cases, the
Cargo.toml file is displayed next to the example’s source code.

About You
This book assumes that you have a working installation of Rust and that
you’re familiar with making and running Rust applications. Thus, the brain
teasers are targeted at beginner- through intermediate-level developers. (If
you’re on the Rust Core Team, you probably know more about these quirks
than I do.)

This book doesn’t try to teach your first steps with Rust; if you’ve never used
Rust before, start with The Rust Programming Language [KN19] or Hands-on
Rust [Wol21]).4

Keep an Open Mind
This book exposes some of the quirks with Rust—and, sometimes, program-
ming in general. Rust is a fantastic language despite its oddities, and these
quirks aren’t meant as language criticism. Instead, in many cases, you’ll
discover why things are done the way they are, making them seem less quirky
and more deliberate.

As you work through this book, keep an open mind and approach each brain
teaser like a crime scene investigator. All of the clues are present, and once

1. https://pragprog.com/titles/hwrust/hands-on-rust/
2. http://bfnightly.bracketproductions.com/rustbook/
3. https://github.com/amethyst/bracket-lib
4. https://doc.rust-lang.org/book/

Preface • xii

report erratum • discuss

https://pragprog.com/titles/hwrust/hands-on-rust/
http://bfnightly.bracketproductions.com/rustbook/
https://github.com/amethyst/bracket-lib
https://doc.rust-lang.org/book/
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

you understand the discussion behind each brain teaser, you’ll have a better
understanding of why things work the way they do and how to avoid these
particular pitfalls. You might even learn some new tricks.

If you’d like to learn more, please feel free to contact Herbert at @herberticus on
Twitter or u/thebracket on Reddit.

report erratum • discuss

Keep an Open Mind • xiii

http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Part I

Rust Brain Teasers

Puzzle 1

Three and a Bit

three_and_a_bit/src/main.rs
fn main() {

const THREE_AND_A_BIT : f32 = 3.4028236;
println!("{}", THREE_AND_A_BIT);

}

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/hwrustbrain/code/three_and_a_bit/src/main.rs
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

The program will display the following output:

3.4028237

Discussion
You might have expected the program to print 3.4028236. Surprisingly, the result
is off by 0.0000001—you set a value of 3.4028236, yet the result is 3.4028237. This
difference has to do with how Rust represents 32-bit floating-point numbers
(the f32 type). Rust—like many other languages—represents floating-point
numbers using the IEEE-754 standard, which defines the memory layout of
a float as follows:

32 bits

1 bit 8 bits 23 bits

Sign Exponent Mantissa

This standard also provides a formula to extract data from a floating-point
variable in memory:

sign (-1 or 1) 2 mantissaexponent-127 1.× ×f32 =

Rust calculates that the most efficient way to represent 3.4028236 is to use
an exponent of 2 and a mantissa of 1.7014118432998657. This is a very close
approximation: 1.7014118 multiplied by 2 yields 3.4028236—the correct
answer.

As it turns out, 7014118 isn’t perfectly representable in 32 bits of binary.
Note that the beginning of the number (1.) is assumed to exist by the IEE-
754 standard but isn’t actually stored. The closest representation is
7014118432998657, which introduces the following error:

×
3.4028237 =
3.4028237 =

1 2(128-127) 1.7014118432998657
3.4028236865997314
× ×

The digit immediately following the 6 causes the result to be rounded up.

Rust Brain Teasers • 4

report erratum • discuss

http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

We’re Going to Need a Bigger Float

Sometimes you can solve floating-point precision errors by using
a larger floating-point type. You can represent 3.4028237 with an
f64. If 64 bits aren’t enough, the f128 crate can provide 128-bit
floating-point numbers (at a performance cost). This isn’t a panacea
—some numbers are stubbornly unrepresentable as floats. Some
constants such as π can’t be represented by numbers at all; you’re
always using an approximation. Others numbers can be represent-
ed, but not cleanly as an IEE-754 float.

If you really need a perfect representation, Cargo includes math
libraries (such as rug) that can provide arbitrary precision.5 These
libraries often carry a significant performance penalty, so consider
how much precision you need before applying them.

How Much Precision Do You Need?
Not every program needs the same level of precision for its floating-point
numbers. For example, in video games, small imprecisions in the placement
of graphics usually go unnoticed. If you’re working with real money, floating
point errors can be disastrous (it’s common to use an integer type including
pennies as the last two digits, or a fixed-point library for financial calculations).

You can avoid precision issues altogether with clever design. Suppose you’re
designing a space-based builder game, and you want to model constructions
on both Earth and Pluto. In that case, it’s probably a bad idea to include both
planets in the same coordinate system. Instead, you could use a “planet local”
system that:

• Allows you to use much lower-precision coordinates.

• Makes it easier to account for celestial bodies’ irritating habit of moving
all of the time.

• Doesn’t waste coordinate space on largely empty tracts of space.

As with everything in computer science, there’s a trade-off between perfor-
mance and accuracy. So, take a moment to think about the problem you’re
trying to solve with your program, and pick your numeric precision based on
what you need balanced against how fast the program needs to run. Floating
point numbers are directly supported by your CPU—and are very fast. Even

5. https://lib.rs/crates/rug

report erratum • discuss

Three and a Bit • 5

https://lib.rs/crates/rug
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

with floating point numbers, an f32 can be faster than an f64 because the 32-
bit version uses less memory—you can fit more of them into your cache.
Fixed-point and arbitrary precision libraries can be fast but are slower than
using built-in floating point support. It’s up to you to decide the accuracy/per-
formance trade-off requirements for your programs.

Further Reading

IEE-754 Floating Point Standard:
https://en.wikipedia.org/wiki/IEEE_754

RUG—Arbitrary Precision Numbers crate:
https://lib.rs/crates/rug

f128 crate:
https://lib.rs/crates/f128

fixed crate:
https://docs.rs/fixed/1.10.0/fixed/

Rust Brain Teasers • 6

report erratum • discuss

https://en.wikipedia.org/wiki/IEEE_754
https://lib.rs/crates/rug
https://lib.rs/crates/f128
https://docs.rs/fixed/1.10.0/fixed/
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Puzzle 2

Non-standard Input

standard_input/src/main.rs
use std::io::stdin;

fn main() {
println!("What is 3+2? Type your answer and press enter.");
let mut input = String::new();
stdin()

.read_line(&mut input)

.expect("Unable to read standard input");

if input == "5" {
println!("Correct!");

} else {
println!("Incorrect!");

}
}

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/hwrustbrain/code/standard_input/src/main.rs
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

The program’s interaction will look something like the following:

What is 3+2? Type your answer and press enter.❮

5➾

Incorrect!❮

Discussion
Normally, 3 + 2 would equal 5, but not when it comes to the way Rust handles
strings. To find out why, add the following line to the end of the program:

println!("{:#?}", input);

With this new line, you’re able to see the full string Rust returns from stdin:

What is 3+2? Type your answer and press enter.❮

5➾

Incorrect!❮

"5\r\n"

Note that on UNIX-based systems, you’ll see 5\n.

Rust’s standard input system includes control sequences representing the
Enter key. \r indicates a carriage return, while \n indicates a line feed. You can
sanitize non-printing characters using the trim() function.

With the following program, you can correctly identify the answer to the
arithmetic problem:

use std::io::stdin;

fn main() {
println!("What is 3+2? Type your answer and press <enter>");
let mut input = String::new();
stdin()

.read_line(&mut input)

.expect("Unable to read standard input");

if input.trim() == "5" {
println!("Correct!");

} else {
println!("Incorrect!");

}
}

Rust Brain Teasers • 8

report erratum • discuss

http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Don’t Trust Input
A good rule of thumb is to never trust input; however, there are a few things
you can do to minimize your problems when input is necessary:

• When working with strings, use trim() to remove whitespace.

• When comparing strings, use to_lowercase() or to_uppercase() to ensure that
you’re comparing strings in the same case. These functions take care of
Unicode case-folding.6

• When parsing complicated strings, use regular expressions to extract parts
of a string.

SQL Injection

Be particularly careful with input that’s passed to an SQL database
or other systems that accept text commands. A malicious user
might enter their name as: 10; DROP TABLEmembers; /*. If your program
simply concatenates strings, you may end up with the following
SQL getting executed on your database:

SELECT * FROM members WHERE id=10; DROP TABLE members; /*

That would be unfortunate—since the user just deleted your
members database table. To help avoid this problem, you can make
use of parameterized queries, which your database system should
support.

Further Reading

String
https://doc.rust-lang.org/std/string/struct.String.html

trim() function
https://doc.rust-lang.org/std/string/struct.String.html#method.trim

Regex Crate
https://crates.io/crates/regex/

SQL Injection Cheat Sheet
https://www.netsparker.com/blog/web-security/sql-injection-cheat-sheet/

6. https://github.com/rust-lang/rust/issues/9363

report erratum • discuss

Non-standard Input • 9

https://doc.rust-lang.org/std/string/struct.String.html
https://doc.rust-lang.org/std/string/struct.String.html#method.trim
https://crates.io/crates/regex/
https://www.netsparker.com/blog/web-security/sql-injection-cheat-sheet/
https://github.com/rust-lang/rust/issues/9363
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Puzzle 3

Type Conversion

type_conversion/src/main.rs
fn main() {

let x : u64 = 4_294_967_296;
let y = x as u32;
if x == y as u64 {

println!("x equals y.");
} else {

println!("x does not equal y.");
}

}

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/hwrustbrain/code/type_conversion/src/main.rs
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

The program will display the following output:

x does not equal y.

Discussion
Rust’s as keyword is lossy. And when you use it to convert between types,
you run the risk of losing precision without warning.

In this example, y is assigned the value 4_294_967_296, but the result is truncated
because the number is greater than the maximum value of a 32-bit unsigned
integer. The surprise is that neither the Rust compiler, Clippy, nor the runtime
generates any kind of warning or error that data loss has occurred.

If you do plan to use the as keyword to convert between types—as most of the
time Rust will perform the conversion just fine—keep the following points in
mind:

• Converting a smaller type into a larger type (for example, u32 to u64) cannot
lose precision, so you’re safe.

• When working with numbers that are guaranteed to fit in both types, you
won’t lose any data. However, be careful with user submitted data or the
result of calculations—if you don’t control the data, you can’t be certain
that the data will be within valid ranges.

• Be careful with floating-point to integer conversions because Rust always
rounds down. With that in mind, it’s better to indicate the desired
behavior with my_float.floor() to round down, my_float.ceil() to round up, or
my_float.round() to perform normal numerical rounding. If you want rounding,
perform the rounding before you use as.

Fortunately, Rust provides some assistance and other ways to tackle type
conversion.

Literal and Non-literal Values

If you’re working with literal values (for example, those defined directly in
your source code), the Rust compiler has a knack for detecting values that
won’t fit in a type. For instance, have a look at the following:

let x: u32 = 18_446_744_073_709_551_615;

Rust Brain Teasers • 12

report erratum • discuss

http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

This code fails to compile with the error message, “the literal 18_446_744_073_709_
551_615 does not fit into the type u32 whose range is 0..=4294967295.”

Rust can also protect you from arithmetical errors with literal values. For
example, let x = 4_294_967_295 * 2; will fail to compile.

When working with a non-literal variable (for example, user input or a calcu-
lated value), the Rust compiler can’t see the values ahead of time. When you
use as, you’re telling Rust that you know what you’re doing.

Another option is to not use as, making it easier for Rust to protect you from
unexpected behavior.

Protecting Yourself Against Precision Loss

Rust provides a trait named Into to provide compile-time safe type conversions.
For example, you can convert from a u32 to a u64 with the following code:

let y = u32::max_value();
let z: u64 = y.into();

Rust’s Into trait resolves the problem of potentially impossible conversions by
not implementing them.

The inverse of the example—converting a u64 to a u32—is impossible with Into.
If you try let z : u32 = (12_u64).into(), the into() function call will fail to compile.

For conversions that may be possible, Rust provides another trait: TryInto. The
following code uses try_into() to attempt to convert between a u64 and a u32:

use std::convert::TryInto;
let z: u32 = (5000_u64).try_into().expect("Conversion error");

The try_into() function returns a Result type. You can access the contents as you
do with other Result types. For example, you can:

• unwrap the contents and crash if the conversion failed.
• unwrap_or to substitute a default value.
• match on the Result to handle the error explicitly.
• use expect.

The example code uses expect. If you replace 5000 with a number that won’t
fit into a 32-bit unsigned integer, the program crashes with a panic when it
attempts the conversion.

report erratum • discuss

Type Conversion • 13

http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Excessive Type Conversions

A huge number of type conversions can be a “code smell”—an
indication that something is fishy about your reasoning. If all of
the functions that use x expect the value to be a u32, consider
making it a u32 to begin with. If later functions require the value
to be a usize, you can make your code much clearer by converting
it one time rather than in each function call.

Finding Type Conversion Errors with Clippy

Rust includes a tool named Clippy that helps you find problems with your code.
You invoke Clippy by typing cargo clippy into your terminal, which then lists the
issues Clippy has found. Clippy’s default settings won’t find any problems with
this example, but a stricter pedantic mode can notice the potential problems. To
enable pedantic mode, add one line to the beginning of your main.rs file, like so:

#[warn(clippy::pedantic)]

Clippy now reports the following warnings when you run cargo clippy:

warning: casting `u64` to `u32` may truncate the value
warning: casting `u32` to `u64` may become silently lossy if you later
change the type

Pedantic-mode Clippy eagerly reports every potential error it notices—even
when they aren’t causing problems. Many developers find this level of reporting
tiresome. Plus, pedantic checking can slow progress on large projects. A good
compromise is to periodically run Clippy in pedantic mode and then comment
out the change once you’ve digested the results.

Further Reading

“as”
https://doc.rust-lang.org/std/keyword.as.html

“as” considered harmful?
https://users.rust-lang.org/t/as-considered-harmful/35338

into
https://doc.rust-lang.org/std/convert/trait.Into.html

try_into
https://doc.rust-lang.org/std/convert/trait.TryInto.html

f32 rounding
https://doc.rust-lang.org/std/primitive.f32.html#method.round

Rust Brain Teasers • 14

report erratum • discuss

https://doc.rust-lang.org/std/keyword.as.html
https://users.rust-lang.org/t/as-considered-harmful/35338
https://doc.rust-lang.org/std/convert/trait.Into.html
https://doc.rust-lang.org/std/convert/trait.TryInto.html
https://doc.rust-lang.org/std/primitive.f32.html#method.round
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Puzzle 4

Byte-Sized Chunks

byte_sized/src/main.rs
fn main() {

let mut counter : i8 = 0;
loop {

println!("{}", counter);
counter += 1;

}
}

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/hwrustbrain/code/byte_sized/src/main.rs
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

The answer depends on how you run the program.

• If you run the program in debug mode with cargo run, the program will
display a series of numbers from 0 to 127 and then crash with the following
error message: thread 'main' panicked at 'attempt to add with overflow', overflow\src\
main.rs:6:9.

• If you run the program in release mode with cargo run --release, the program
will display a series of numbers from 0 to 127 and then from -128 to -1. It
will repeat until you stop it with Ctrl+C . If you have a background in
C/C++, this type of behavior is likely what you expected.

Discussion
Modern computers generally store signed integers in two’s complement. The
first bit of the number (in binary) indicates whether a number is positive (0)
or negative (1). If the first bit is set, the number equals the smallest possible
number for the available number of bits (-128 for an i8) minus the value of
the other digits.

Binary arithmetic works like columnar arithmetic in base-10 (decimal); how-
ever, instead of carrying numbers larger than 10, you carry numbers larger
than 1. The placement of the sign bit leads to some interesting results with
two’s complement arithmetic.

Look at the following two examples with a signed 8-bit integer:

• 1 + 1 = 2, as you’d expect.
• 127 + 1 = -128, because the final digit carried over, setting the sign bit.

Test in Debug Mode

Rust includes a lot of tests when debug mode is enabled that don’t
exist in release builds. The Rust compiler will try to help you avoid
disaster, but you have to let it.

If debug mode is too slow, but you still want the added safety of
overflow checks, you can enable debug mode with optimizations.
To do so, add the following code to Cargo.toml:

[profile.dev]
opt-level = 1 # 1 for minimal optimization and good debugging.

Rust Brain Teasers • 16

report erratum • discuss

http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Test in Debug Mode

Enabling debug optimizations will speed up your debug mode
code, but your compilation times will be longer and your debugger
may jump around if Rust has reordered your code—there’s no
such thing as a free lunch.

When You Need Overflow
Sometimes, you want numeric overflow to occur. Many cryptographic and
random number generation algorithms assume that integer wrapping will
occur. Rust lets you opt in to the behavior with the std::num::Wrapping facility.
A safe version of this program looks like this:

byte_sized_wrap/src/main.rs
use std::num::Wrapping;

fn main() {
let mut counter = Wrapping(0i8);
loop {

println!("{}", counter);
counter += Wrapping(1i8);

}
}

Detecting Overflow without Crashing
If your program doesn’t need wrapping behavior, but you’re concerned that
you might run into a situation in which you overflow the capacity of a variable,
Rust has your back. Rust’s numeric types implement a series of checked
functions: checked_add, checked_div, checked_mul, checked_sub, and a few others.7

The checked functions return an Option that will either contain Some(x) if the
operation succeeded or None if an overflow occurred, as shown in this example:

if let Some(n) = x.checked_add(b) {
// It worked, n contains the result.

} else {
// Overflow occurred - handle the error.

}

Finally, you can combine Wrapping behavior with detection using the overflowing_
functions. These functions return a tuple that contains the result, including
the overflow, and a bool indicating whether or not wrapping occurred.8

7. https://doc.rust-lang.org/std/primitive.u32.html#method.checked_add
8. https://doc.rust-lang.org/std/primitive.u32.html#method.overflowing_add

report erratum • discuss

Byte-Sized Chunks • 17

http://media.pragprog.com/titles/hwrustbrain/code/byte_sized_wrap/src/main.rs
https://doc.rust-lang.org/std/primitive.u32.html#method.checked_add
https://doc.rust-lang.org/std/primitive.u32.html#method.overflowing_add
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Further Reading

std::num::Wrapping
https://doc.rust-lang.org/std/num/struct.Wrapping.html

Two’s Complement
https://en.wikipedia.org/wiki/Two%27s_complement

Cargo Profiles
https://doc.rust-lang.org/cargo/reference/profiles.html

Rust Data Types
https://doc.rust-lang.org/book/ch03-02-data-types.html

Rust Brain Teasers • 18

report erratum • discuss

https://doc.rust-lang.org/std/num/struct.Wrapping.html
https://en.wikipedia.org/wiki/Two%27s_complement
https://doc.rust-lang.org/cargo/reference/profiles.html
https://doc.rust-lang.org/book/ch03-02-data-types.html
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Puzzle 5

How Long Is a String?

string_length/src/main.rs
const HELLO_WORLD : &'static str = "Halló heimur";

fn main() {
println!("{} is {} characters long.",

HELLO_WORLD,
HELLO_WORLD.len()

);
}

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/hwrustbrain/code/string_length/src/main.rs
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

The program will display the following output:

Halló heimur is 13 characters long.

Discussion
Your eyes aren’t deceiving you—“Halló heimur”, contains 12 characters
(including the space). Let’s step back and take a look at how Rust’s String type
works. The internal struct definition of a String is straightforward:

pub struct String {
vec: Vec<u8>,

}

Strings are just a vector of bytes (u8), representing Unicode characters in an
encoding named UTF-8. Rust automatically translates your string to UTF-8.
The encoding looks like this:

H a l l ó h e i m u r Unicode Characters (10 characters)

UTF-8 Encoding: Scalar Values (19 bytes)
0x48 0x64 0x6C 0xC6 0xC3

0xB3
0x20 0x68 0x65 0x69 0x6D 0x75 0x72

Your original string, “Halló heimur” consists of 11 ASCII characters (including
the space) and one Latin-1 Supplement character: the ó. ASCII characters
require 1 byte to encode, Latin supplements require 2 bytes.

Rust’s string encoding is smart enough to not store extra zeroes for each
Unicode character. If it did, String would be a vector of char types. Rust’s char is
exactly 4 bytes long—the maximum size of a single Unicode character.9 Char
variables don’t represent a single ASCII character; instead, they represent a
Unicode scalar value. The scalar value can represent a single glyph or modifi-
cation to another glyph.

String Length

String.len() counts the number of bytes in the string’s backing vector. If a String
was storing every character as a char, you’d expect Halló heimur to occupy 48
bytes of memory. Rust’s String isn’t storing characters; it’s storing a byte array
representing just the bytes needed to output the stored text.

9. https://doc.rust-lang.org/std/primitive.char.html#representation

Rust Brain Teasers • 20

report erratum • discuss

https://doc.rust-lang.org/std/primitive.char.html#representation
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Not all UTF-8 characters require all 4 bytes to render. For example, a space
requires only 1 byte (0x20), while most Latin Extension characters use 2 bytes.
The first byte (0xC3) indicates that the character uses the Latin Extension
character region, and the second byte (0xB3 for ó) identifies the character.

The string Halló heimur contains 11 ASCII characters—each using 1 byte of
memory—and occupies 11 bytes. Add 2 bytes for the ó and your string occu-
pies 13 bytes of memory.

Counting Characters

You can correctly count the characters in Halló heimur with the following code:

println!("{} is {} characters long.",
HELLO_WORLD,
HELLO_WORLD

.chars() // Convert to an iterator over a char sequence

.count() // Count the characters in the sequence
);

When you call my_str.chars(), you’re requesting an iterator that returns each
element of the string represented as a char.10 Rust correctly deduces that there
are a total of 12 glyphs—or Unicode scalar values—making up the string. The
iterator passes each of them to your consumer as a 4-byte char. Even if a
glyph only requires 1 or 2 bytes of memory, Rust will allocate all 4 bytes for
the char type. Traversing the iterator uses very little extra memory. If you call
collect() on the iterator—to create a vector of char data—the vector will consume
40 bytes of memory.

Use my_str.chars() to access individual characters in a String. It’s an iterator,
so you can use nth, for_each and other iterator functions to find what you’re
looking for. For example, you can access the fourth character in a string with
my_str.chars().nth(4).

Impact of UTF-8 Sizing
Unicode string sizing can be confusing at times, which can lead to surprising
results in your code. You need to be aware of the distinction between charac-
ters and bytes:

• When you’re validating string length, know what counts and what doesn’t.
For example, if you only accept usernames that are 10 characters or less,
you need to decide if you mean glyphs or bytes.

10. https://doc.rust-lang.org/std/str/struct.Chars.html

report erratum • discuss

How Long Is a String? • 21

https://doc.rust-lang.org/std/str/struct.Chars.html
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

• When storing strings in databases, you need to remember to allocate
enough space for non-English character set strings.

• When transmitting or receiving information to/from a remote API, you
need to agree on a length standard for encoding strings in transit.

• If you’re writing a program for a memory constrained system, parsing
Unicode string character by character can consume a lot more memory
than you expected. The string love: ❤ is 7 characters long, requires 12
bytes of storage in a String—and 32 bytes of memory when processed as
individual characters. This may seem like a small amount of memory,
but if your reader enters the entirety of War and Peace into your program’s
input box, per-character parsing may require more resources than you
expected.

• When accessing individual characters in a string, it’s much safer to use
chars as opposed to directly accessing the byte array. Characters are aware
of Unicode boundaries—bytes are not. Printing the first 6 bytes of “Können”
will only print “Könne”. Printing the first 6 characters will output the
entire word.

Further Reading

Char
https://doc.rust-lang.org/std/primitive.char.html

String length
https://doc.rust-lang.org/std/string/struct.String.html#method.len

Unicode Symbol Reference
https://www.compart.com/en/unicode/

Wikipedia UTF-8
https://en.wikipedia.org/wiki/UTF-8

String Source Code
https://doc.rust-lang.org/src/alloc/string.rs.html

Rust Brain Teasers • 22

report erratum • discuss

https://doc.rust-lang.org/std/primitive.char.html
https://doc.rust-lang.org/std/string/struct.String.html#method.len
https://www.compart.com/en/unicode/
https://en.wikipedia.org/wiki/UTF-8
https://doc.rust-lang.org/src/alloc/string.rs.html
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Puzzle 6

Please Reboot the Universe

reboot_universe/src/main.rs
fn main() {

if 0.1 + 0.2 == 0.3 {
println!("Arithmetic still works.");

} else {
println!("Please reboot the universe.");

}
}

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/hwrustbrain/code/reboot_universe/src/main.rs
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

The program will display the following output:

Please reboot the universe.

Discussion
You would expect 0.1 + 0.2 to equal 0.3—it does, but not in floating-point
math. The answer is really close, but the floating-point approximations prevent
the comparison from succeeding as if the arithmetic no longer works. This
scenario is related to the previous teaser, Puzzle 1, Three and a Bit, on page 3.

As you might have guessed by now, floating-point comparison is fraught with
errors—errors that may not be so obvious at first glance.

Consider a long-running program that checks to see if it’s done by examining
the floating-point product of some calculation, or perhaps you’ve got a series
of unit tests that meticulously checks your math functions against known-
good answers. In both cases, the calculated values may not be “close enough”
to correct to make things work as expected. In other words, the program may
never terminate, and the tests may fail—even when they shouldn’t.

Because the build-up of tiny errors can lead to much larger problems, many
computer science teachers tell their students to “never compare floats.”

Use Clippy to Help Catch Mistakes
Thankfully, you can use Clippy (Rust’s linter) to help spot problems before
they arise.

To see Clippy in action with this brain teaser, invoke Clippy by typing cargo
clippy in the code/float_compare example directory.

Clippy will produce the following warning:

|
|
=
=

^^^^^^^^^^^^^^^^ help: consider comparing them within some margin of error:
`(0.1 + 0.2 - 0.3).abs() < error_margin`
note: `#[deny(clippy::float_cmp)]` on by default
note: `f32::EPSILON` and `f64::EPSILON` are available for the `error_margin`
help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#float_cmp

As a bonus, Clippy offers a safe alternative to the comparison. If you include
floating-point precision limits in your comparison, you can safely compare
floats and ensure that they’re “close enough” to the answer you wanted.

Rust Brain Teasers • 24

report erratum • discuss

http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Clippy also suggests using EPSILON as a margin of error. EPSILON is built-in to
each of Rust’s floating-point types. You can restore your faith in Rust’s
arithmetic skills using the following code:

if (0.1f32 + 0.2f32 - 0.3f32).abs() < std::f32::EPSILON {
println!("Arithmetic works");

}

Comparison with EPSILON can be unwieldy. The float_cmp crate provides a conve-
nient interface for calculating approximate equality with the approx_eq! macro.11

Beware of External Libraries

Be especially careful when you’re interacting with floating-point
results from external libraries. If they were compiled with the C
fastmath extension, they might be even more inaccurate than you
expected. Fastmath takes some liberties with calculations in the
name of speed, providing answers that are very close to what you
need but not quite there. In some cases, fastmath may or may not
even elect to apply an optimization—if precision is important, try to
find a version of an external library that doesn’t use this optimization.

My team recently ported some radio frequency calculations from
an old C++ library to Rust. Despite using EPSILON, our unit tests
kept failing. After much head-scratching, we discovered that the
library we’d been using for nearly a decade was inaccurate beyond
four decimal places. The funny thing was: it didn’t matter at all
because we never needed that much precision. We used float_cmp
with a larger error margin to demonstrate that our ported code
was close enough to the known-good values we had from the old
library and carried on.

Further Reading

float-cmp crate
https://crates.io/crates/float-cmp

Float Comparison Warning from Clippy
https://rust-lang.github.io/rust-clippy/master/index.html#float_cmp

11. https://crates.io/crates/float-cmp

report erratum • discuss

Please Reboot the Universe • 25

https://crates.io/crates/float-cmp
https://rust-lang.github.io/rust-clippy/master/index.html#float_cmp
https://crates.io/crates/float-cmp
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Puzzle 7

There and Back Again

there_and_back/src/main.rs
use std::f32::consts::PI;

pub struct Degrees(pub f32);
pub struct Radians(pub f32);

impl Degrees {
pub fn new(angle: f32) -> Self {

Self(angle)
}

}

impl From<Degrees> for Radians {
fn from(item : Degrees) -> Self {

Self(item.0 * PI / 180.0)
}

}

fn main() {
let one_eighty_degrees = Degrees::new(180.0);
let one_eighty_radians : Radians = one_eighty_degrees.into();
println!("180 Degrees in Radians = {}", one_eighty_radians.0);

}

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/hwrustbrain/code/there_and_back/src/main.rs
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

The program will display the following output:

180 Degrees in Radians = 3.1415927

Discussion
The surprise here is that the Into trait wasn’t implemented, yet the program
was still able to use the into() function with the Radians type.

When you define the From trait, Rust automatically implements the reciprocal
Into trait for you. This is very convenient—and also surprising, given Rust’s
general insistence on behavior being defined explicitly. Prior to Rust version
1.4.1, this automatic implementation was only performed for types accessible
from the crate that defines the type; newer releases always include the
reciprocal.

Using the example code from this brain teaser, you can convert degrees to
radians using either let r : Radians = d.into() or let r = Radians::from(d). This conversion
works because Rust added into() to the Degrees type, and the program already
defined from(). However, because Rust didn’t add the reverse conversion, nor
did the program, you need to add the following code to convert from radians
to degrees:

impl From<Radians> for Degrees {
fn from(item: Radians) -> Self {

Self(item.0 / (PI / 180.0))
}

}

Adding this code allows you to convert between degrees and radians—and
then back again. Rust doesn’t automatically implement the conversion in
both directions because sometimes it only makes sense to convert one way.
You can turn an egg into an omelette, but it’s not so easy to turn an omelette
into an egg. The same can be true of data types. If a conversion loses any
data, Rust has no way of knowing what values it should insert into every field
of your destination type.

Failing on Impossible Conversions

As you saw in Puzzle 3, Type Conversion, on page 11, not every conversion
works. But don’t worry, you can implement your own TryFrom trait for your
types to provide conversion with the possibility of reporting failure.

Rust Brain Teasers • 28

report erratum • discuss

http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Suppose you want to constrain a numeric type to only accept values between
0 and 10; you might do something like this to implement try_from:

use std::convert::TryFrom;

struct ZeroToTen(i32);

impl TryFrom<i32> for ZeroToTen {
type Error = &'static str;

fn try_from(value: i32) -> Result<Self, Self::Error> {
if value < 0 || value > 10 {

Err("Value must be between 0 and 10")
} else {

Ok(Self(value))
}

}
}

Just like the From trait, defining TryFrom automatically creates a reciprocal Try-
Into for you.

Use Strong Types to Reduce Bugs

Suppose you’re working with different units of measurement, like
meters, feet, inches, and centimeters. To reduce the potential
mistake of an inches to centimeters conversion, you can define
the units of measurement and the conversions between them.
Then, when you perform a calculation that requires a unit of
measure, you can define the unit type in the function’s parameters.

Some languages—notably Ada—let you limit types to a certain
range. This range limitation is helpful in cases where a value
should never fall outside of the defined range. By defining a range-
limited type, you can automatically include this test whenever
type-conversion is performed.

Strong types can help transform logical errors—such as using
degrees when you meant radians—into compile-time errors, leading
to fewer bugs in your code.

Further Reading

std::convert::From trait
https://doc.rust-lang.org/std/convert/trait.From.html

std::convert::TryFrom trait
https://doc.rust-lang.org/std/convert/trait.TryFrom.html

report erratum • discuss

There and Back Again • 29

https://doc.rust-lang.org/std/convert/trait.From.html
https://doc.rust-lang.org/std/convert/trait.TryFrom.html
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Puzzle 8

Walks Like a Duck, Quacks Like a Duck

quack/src/main.rs
fn double_it(n: u64, _: i32) -> u64 {

n * 2
}

fn main() {
let one: i32 = 1;
let n = double_it(one as _, 3);
println!("{}", n);

}

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/hwrustbrain/code/quack/src/main.rs
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

The program will display the following output, showing no warnings or errors:

2

Discussion
We find two surprises:

• You can name a function parameter _, requiring users of that function to
send a variable in that parameter location. The variable will never be used
and will instead get optimized away in release builds.

• one as _ compiles and works. The i32 was converted to a u64 without having
to specify a type.

Rust doesn’t support duck typing—automatic conversion between types if any
similar type is available—and is generally very strict about type conversions.

Rust’s underscore (or placeholder) symbol has different meanings in different
contexts:

• When used as a variable name prefix (for example, _ignore_me : i32), the
underscore indicates to Rust that the variable is deliberately unused and
suppresses “unused variable” warnings.

• When used as an entire variable name, you’re telling Rust that you never
intend to use the variable. When used in a match statement (for example,
_ => { .. }), the underscore indicates a default action. If no other match
branch is selected, then the default action will be evaluated.

• Underscores can be used with functions that return a value marked with
#[must_use]. For example, let _ = my_important_function() will ignore the result of
the function, suppressing errors or warnings that you’re not using the
result.

When used with an as keyword, _ indicates that Rust should try to convert
the value into whatever type is expected in this context. For example, func-
tion_that_requires_a_u32(x as _) will try to convert x—irrespective of its type—to a
u32. If x is of a type that can never be converted to a u32, the Rust compiler
will stop with an error. If it’s a type that might be convertible, Rust will try
and convert it—with the same potential precision-loss issues you saw in
Puzzle 7, There and Back Again, on page 27.

Rust Brain Teasers • 32

report erratum • discuss

http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

This is called inferred typing. Rust will try to infer the desired type of a variable
from the context in which it’s used. In the example, the function requires a
u64, so Rust tries to convert your variable into a 64-bit unsigned integer.

Inferred typing can be a very helpful shorthand, especially with complex type
names, but you shouldn’t use it everywhere.

Why Not Use Inferred Typing Everywhere?

It’s very tempting to use as _ everywhere in your code and stop worrying about
type conversions. Most of the time, this will work—subject to data truncation.
So why wouldn’t you want to do this?

The Rust documentation is clear that the language doesn’t want you to use
as _ everywhere:

as can also be used with the _ placeholder when the destination type can be
inferred. Note that this can cause inference breakage and usually such code
should use an explicit type for both clarity and stability.12

The disadvantages to using as _ may be summarized as follows:

• Using clearly named types—and naming them clearly—can make the
intent of your code much easier to deduce. Even if you’re working alone,
when you return to the project after several weeks, it can be difficult to
remember what you were thinking when you wrote x as _.

• Sometimes, Rust’s type inference breaks when chains of variables need
to have their types inferred.

• Many development environments will struggle to show you the concrete
type of variables after inferred conversion.

• You can introduce subtle bugs if Rust’s type inference decides that a type
will work and it isn’t the type you were expecting.

So even though Rust is tempting you with a duck typing solution, it usually
isn’t a great idea to use it all the time. When you combine type inference issues
with the potential precision loss from the as keyword, you’re inviting trouble.
In many cases, you should use into() (or try_into()) instead of as altogether.

When Should You Use Inferred Typing?

The most common use-case for as _ is low-level pointer code. The following
code clones a type and returns it as a pointer:

12. https://doc.rust-lang.org/std/keyword.as.html

report erratum • discuss

Walks Like a Duck, Quacks Like a Duck • 33

https://doc.rust-lang.org/std/keyword.as.html
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

unsafe fn clone_ptr(&self) -> *mut () {
Box::into_raw(Box::new(self.clone())) as _

}

You don’t often need to do this, but when you do, as _ helps simplify some
already difficult-to-read code. It’s also common to encounter as _ in libraries
that are still in early development. The library developers may not be certain
what type an interface will use yet, so examples with as _ are common until
the API is stabilized.

Converting Types in Real Code

In larger programs, it’s inevitable that you will have to convert
between types. You can use as _ when Rust can be certain of the
desired type—but it isn’t recommended as your first port of call.
Generally, try to favor type conversions in the following order of
preference:

1. Using into() is precise and optimizes very well.
2. try_into() lets you handle failed conversions.
3. Use as type when you are certain that conversions are safe.
4. Use as _ when you are really stuck.

Further Reading

Underscore
https://runrust.miraheze.org/wiki/Underscore

As
https://doc.rust-lang.org/std/keyword.as.html

Rust Brain Teasers • 34

report erratum • discuss

https://runrust.miraheze.org/wiki/Underscore
https://doc.rust-lang.org/std/keyword.as.html
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Puzzle 9

Out of Order

out_of_order/src/main.rs
fn main() {

let mut floats = vec![3.1, 1.2, 4.5, 0.3];
floats.sort();

println!("{:#?}", floats);
}

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/hwrustbrain/code/out_of_order/src/main.rs
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

The program will fail to compile, and you’ll receive the following error message:

the trait `Ord` is not implemented for `{float}`

Discussion
Rust makes it easy to sort vectors of most types. A vector’s sort() function can
sort a vector of strings alphabetically or a vector of integers numerically
without issue. So why doesn’t sorting a vector of floating-point numbers work?
Since floating-point numbers aren’t always numbers (more on that in a
minute), they aren’t always naturally sortable. Rust generally makes sorting
values easy, but it’s also careful to avoid implicit behavior that can surprise
the programmer.

Consider the following “impossible” math calculations:

• The tangent of 90° is infinity, so there’s no appropriate result.
• Dividing by zero yields infinity or negative infinity.
• Comparing infinity with infinity doesn’t make sense.
• Comparing non-number floats with anything also doesn’t make any sense.

In each example, the result is not a number. To make calculations like this
possible, floating-point numbers can also store Not a Number (NaN) and Infinity.

Rust introduced the PartialOrd and PartialEq traits—and the accompanying par-
tial_cmp() function—to represent numeric types that are generally comparable
but may feature cases in which two numbers cannot be naturally compared
or ordered.

tan(90°)

The tangent of 90° is NaN. Entertainingly, floating-point inaccura-
cies make demonstrating this difficult:

println!("{}", (90.0 * (std::f32::consts::PI/180.0)).tan());

This snippet prints -22877334.0. The conversion of 90° to radians
has lost precision, resulting in an angle that does have a tangent.

Rust’s floating-point number supports both PartialOrd and PartialEq, so they can
be sorted, but not with the same syntax as other types.

Rust Brain Teasers • 36

report erratum • discuss

http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Safely Sorting Floats
You can sort a vector of floats using the following code:

let mut floats = vec![3.1, 1.2, 4.5, 0.3];
floats.sort_by(|a, b| a.partial_cmp(b).unwrap());

The partial_cmp function (provided via the PartialOrd trait) returns an Option. You
can access the contained ordering information by calling unwrap on the result.
Unwrapping an empty option will crash your program if the value could not
be ordered—because an INFINITY or NaN snuck into your data.

If you’re sure that you won’t be dealing with invalid floating-point numbers,
you can simply unwrap() the results of partial_cmp and use that to sort your data
in the sort_by() function.

If your code might encounter an invalid value, you can use unwrap_or to provide
a default sort order for invalid numbers:

use std::cmp::Ordering::Less;
let mut floats = vec![

3.1, 1.2, 4.5, 0.3, std::f32::INFINITY, std::f32::NAN
];
floats.sort_by(|a, b| a.partial_cmp(b).unwrap_or(Less));

The even longer sort_by call works and is safe with invalid numbers, but it’s a
lot of code to type whenever you need to sort a slice of floating-point numbers.
To help solve this problem, here’s a handy function you can keep in your
toolbox to simplify this process:

fn float_sort<T : PartialOrd>(data: &mut [T]) {
use std::cmp::Ordering::Less;
data.sort_by(|a, b| a.partial_cmp(b).unwrap_or(Less));

}

You can then use the float_sort function to safely sort any slice (collection of
numbers, typically the contents of an array or vector) of floating-point numbers:

let mut floats = vec![
3.1, 1.2, 4.5, 0.3, std::f32::INFINITY, std::f32::NAN

];
float_sort(&mut floats);

What Do You Mean, Slice?

Slice is Rust-ese for the contents of a container. A vector or array
containing [1,2,3] can refer to the contents as a slice without
having to know how the container works.

report erratum • discuss

Out of Order • 37

http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Further Reading

Ord trait
https://doc.rust-lang.org/std/cmp/trait.Ord.html

PartialOrd trait
https://doc.rust-lang.org/std/cmp/trait.PartialOrd.html

f32 primitive
https://doc.rust-lang.org/std/primitive.f32.html

Rust Brain Teasers • 38

report erratum • discuss

https://doc.rust-lang.org/std/cmp/trait.Ord.html
https://doc.rust-lang.org/std/cmp/trait.PartialOrd.html
https://doc.rust-lang.org/std/primitive.f32.html
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Puzzle 10

X Marks the Spot

x_marks_spot/src/main.rs
fn main() {

if 'X' == 'Χ' {
println!("It matches!");

} else {
println!("It doesn't match.");

}
}

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/hwrustbrain/code/x_marks_spot/src/main.rs
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

The program will display the following output:

It doesn't match.

Discussion
Unicode allows for homoglyphs, which are very similar or identical characters
that can be encoded in different ways. The first X is the Latin Unicode charac-
ter, encoded as 0x58. The second Χ is the Greek capital letter Chi, encoded in
UTF-8 as 0xCE 0xA7. If you look closely, they aren’t identical, but in some
fonts—notably Consolas on Windows—they are indistinguishable.

Homoglyphs are popular in phishing attacks. The domain name bertbank.com
may look like it’s innocently asking you to change your password, but the e
is actually Cyrillic (0xD0 0xB5). You’re not in the habit of handing over your
login details to a fake bank, but it’s not so easy to see the fake domain name
at first glance.

Homoglyph Help Is on the Way

A Rust compiler warning is currently in development to help you
identify when you’re using confusingly similar characters in your
code.13 It isn’t perfect, but when this compiler feature is complete,
it’ll generate a warning when you compile your code. You can also
use the Nettfiske crate to detect likely obfuscations in text.

A second surprising effect of homoglyphs relates to string length. X requires
only a single byte inside of a String (it’s still 4 bytes long as a char). The Cyrillic
Χ is 2 bytes long. You should be careful to either sanitize user input length
to expected values or be sufficiently flexible to handle input from users with
non-English keyboards.

Multi-Glyph Homoglyphs
Just in case you weren’t already confused, UTF-8 introduces another way to
generate the same character. Some Unicode characters serve to modify the
output of the next or previous character in the string. For example, you can
express Mañana using the Latin Small Letter N with Tilde (0xC3 0xB1), or you can
express it as man\u{0303}ana using the UTF-8 symbol 0x0303. The 0x0303 symbol
applies a tilde to the previous character, the n.

13. https://rust-lang.github.io/rfcs/2457-non-ascii-idents.html

Rust Brain Teasers • 40

report erratum • discuss

https://rust-lang.github.io/rfcs/2457-non-ascii-idents.html
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

This is especially problematic if you modify the string. For example, reversing
mañana with the Latin character correctly gives anañam. Using the same
.chars().rev().collect() to reverse the version with the modifier incorrectly gives you
anãnam—the tilde is in the wrong place. The unicode-reverse crate can help with
this particular case, but you need to be extra careful when editing UTF-8
strings because of this problem.

Modifier characters are often used to enter crazy-looking text on forums such
as Reddit. The following examples are all in a sans-serif font, but they use
UTF-8 modifiers to adjust the text:

Further Reading

Wikipedia Homoglyphs
https://en.wikipedia.org/wiki/Homoglyph

Homoglyph Attack Generator
https://www.irongeek.com/homoglyph-attack-generator.php

Nettfiske—Homoglyph Detector Crate
https://crates.io/crates/nettfiske

Unicode Reverse Crate
https://crates.io/crates/unicode-reverse

Weird Text Generator
https://lingojam.com/WeirdTextGenerator

report erratum • discuss

X Marks the Spot • 41

https://en.wikipedia.org/wiki/Homoglyph
https://www.irongeek.com/homoglyph-attack-generator.php
https://crates.io/crates/nettfiske
https://crates.io/crates/unicode-reverse
https://lingojam.com/WeirdTextGenerator
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Puzzle 11

Stacking Boxes

boxes/src/main.rs
fn main() {

let c = Box::new([0u32; 10_000_000]);
println!("{}", c.len());

}

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/hwrustbrain/code/boxes/src/main.rs
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

In debug mode, the program will crash with the message thread 'main' has overflowed
its stack. In release mode, the program will display the following output: 10000000.

Discussion
10,000,000 32-bit integers requires 40Mb of memory to store—larger than
the default stack. Attempting to get around this limitation, the code uses Box
to place the structure on the heap. However, in debug mode, Rust first allocates
the array on the stack and then moves it to the heap, crashing the program.

To better understand the example, let’s look at how program memory is
arranged. Computer programs use two distinct areas of memory while oper-
ating: the stack and the heap.

What Is the Stack?

Every program running on your computer maintains its own stack—a small
resource that uses 2 megabytes per thread by default.14 Stacks are intention-
ally kept small for better performance.

Because the stack is small, it’s likely to fit entirely inside your CPU’s memory
cache. Your program runs faster, and the stack remains “hot”—unlikely to
be evicted from cache or paged into virtual memory.

The stack stores local variables, function parameters, and the call stack—a
list of functions your program has called, and the point to which execution
should return when a function finishes execution.

Stacks are considered LIFO—last in, first out. To better understand this concept,
think of a stack like a pile of dinner plates. The last plate you add to the pile is
the first plate you can access later on. Adding an element to the stack is known
as pushing, whereas removing the topmost element from the stack is known as
popping.

The stack sees constant use while your program runs:

• Whenever you create a local variable (a variable that exists only in the
current scope), the variable gets pushed to the stack. Local variables can
be references, in which case the reference is stored on the stack—but the
referred-to data may be anywhere.

14. https://doc.rust-lang.org/std/thread/

Rust Brain Teasers • 44

report erratum • discuss

https://doc.rust-lang.org/std/thread/
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

• Whenever you leave a scope, the scope’s variables are popped from the
stack.

• Whenever you call a function, the parameters to the function are pushed
to the stack, along with the memory address to which the function should
return when its operation is complete.

The stack also provides a handy debugging tool. Every function call is pushed
to the stack; if your program crashes, Rust walks the stack to show you a
stack trace describing the state of your program when it crashed.

What Is the Heap?

The heap—another area of memory that every program maintains—is limited
by your computer’s available memory, virtual memory, and operating system
limitations. Heap memory is large and may or may not be contiguous, depending
upon your operating system.

Storing data on the heap requires more steps than storing data on the stack.
First, Rust’s standard library needs to request a heap allocation that returns
a pointer to a usable area of memory. It then needs to store the pointer before
it can write data to the heap.

Reading data from the heap also requires a little more work: to read data,
your program first needs to read the pointer to determine where the heap
data is stored. Once it knows the location, the program can read the data
from there.

Because of the extra steps required for heap read/write access—particularly
with frequent allocations—accessing data on the heap can be a lot slower
than accessing data on the stack. Why? Because the CPU’s memory cache
will try its best to keep your heap data available—but heap-allocated data is
often large and is more likely to be evicted from the cache than the program’s
stack. The heap is also less likely to be contiguous in memory than the stack,
making cache misses more likely.

Most of Rust’s container types automatically use the heap. For example, the
Vec type is defined as follows:15

pub struct Vec<T, A: Allocator = Global> {
buf: RawVec<T, A>,
len: usize,

}

15. https://doc.rust-lang.org/src/alloc/vec/mod.rs.html

report erratum • discuss

Stacking Boxes • 45

https://doc.rust-lang.org/src/alloc/vec/mod.rs.html
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

A vector is just a pointer to an area of memory (abstracted inside RawVec) and
the length of the stored data.

Now that you understand the differences between the stack and the heap,
let’s consider some strategies for storing large data structures on the heap.

Storing Large Blocks of Data on the Heap
The Box type represents a smart pointer to heap memory, making it a natural
way to store large arrays on the heap. Unfortunately, constructing a box with
Box::new first creates the array on the stack and then moves it to the heap.
This process causes your stack to overflow and the program to crash.

Several methods ensure that data is stored on the heap, solving the issue in
this example:

• Replace your array with a Vec, which automatically uses the heap.
• Use Box to wrap a pointer to the heap.
• Use compiler optimizations to avoid the issue in this example.

Let’s start by not using arrays at all.

Solving Stack Overflow with Vectors

You can avoid exhausting stack memory by using a Vec instead of an array.
Vectors always allocate their contents on the heap, allowing much larger data
sets to be safely used. The following code allocates memory directly to the
heap in a vector:

#[feature(box_syntax)]
fn main() {

let x = vec![0u32; 10_000_000];
}

Stack vs. Heap in Other Languages

Readers coming from C, C++, or other systems languages will have
encountered similar problems. The stack is a finite resource in
most languages, and its usage for large data-structures should
be weighed carefully. In C, you may solve the problem by using
malloc to allocate an area of memory for your data structure. In
C++, new or a smart pointer provides the same service. Just like
Box, you’re allocating to the heap instead of the stack.

Using a Vec adds a small amount of overhead—the size of the vector
is stored. If you don’t extend your vector once it’s created, it oth-
erwise performs exactly the same as an array allocated on the

Rust Brain Teasers • 46

report erratum • discuss

http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Stack vs. Heap in Other Languages

heap in other languages. Rust also gives you overflow detection
in debug-mode builds (and elides them in optimized builds), giving
you extra development safety—and no speed overhead in a release
build. Using Vec instead of an array is a very small price to pay for
the additional memory safety Rust brings to the table.

Using a vector wastes a few bytes of memory (storing the size) but provides
equivalent operation. In most cases, this is “good enough.” However, if you
have your heart set on using an array, the compiler can help you out.

Solving Stack Overflow with Compiler Optimizations

When you run the example in release mode, the program works fine. This is
because LLVM (the compiler engine underneath Rust) is smart enough to
detect an allocation being immediately moved to the heap and skips the stack
allocation altogether. However, there are two problems with relying on this
optimization:

1. You can’t always be 100% certain the optimization will be applied; it
usually will, but compilers aren’t perfect.

2. You can’t run your program in debug mode anymore.

Relying on the compiler to save the day can work, but it’s not optimal. The
Rust Core Team is aware of the issue and is working to resolve it. A new Box
syntax—not yet stabilized in mainline Rust—can solve the entire problem.

Solving Stack Overflow with Nightly/Unstable Rust

You can also make use of the proposed box_syntax feature, but it’s not yet sta-
bilized in core Rust. There’s general agreement on the need for box syntax,
and little progress in stabilizing it—so it’s unclear when/if this feature will
be promoted to stable Rust. The following code uses the proposed Box syntax
to allocate directly to the heap:

#[feature(box_syntax)]
fn main() {

let x = box [0; 10_000_000];
}

The new Box syntax is currently available only in the unstable branch of Rust.
Using unstable features requires that you enable the nightly Rust toolchain.
If you’d like to default to the nightly toolchain—which isn’t always perfectly
stable—you can switch your default with rustup:

rustup default nightly

report erratum • discuss

Stacking Boxes • 47

http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

You can also compile your program with Cargo, using an additional command-
line flag:

cargo +nightly run

Unstable Isn’t Stable

nightly offers many upcoming Rust features, including ones that
won’t make it to the stable channel. Nightly features may change,
and can even vanish. Use them at your own risk.

Also, a beta channel provides access to nearly stable features
scheduled for inclusion in the main compiler.

At some point, Rust will stabilize the new Box syntax. Until then, your choices
aren’t all that great: you can replace your array with a Vec, rely on the compiler,
or use not-yet-stabilized syntax. Of those choices, Vec is probably the best
because vectors are very stable, operate like arrays, and perform very well.

Further Reading

The Stack and the Heap
https://doc.rust-lang.org/1.22.0/book/first-edition/the-stack-and-the-heap.html

Box Type
https://doc.rust-lang.org/std/boxed/struct.Box.html

box_syntax
https://doc.rust-lang.org/beta/unstable-book/language-features/box-syntax.html

Rust Brain Teasers • 48

report erratum • discuss

https://doc.rust-lang.org/1.22.0/book/first-edition/the-stack-and-the-heap.html
https://doc.rust-lang.org/std/boxed/struct.Box.html
https://doc.rust-lang.org/beta/unstable-book/language-features/box-syntax.html
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Puzzle 12

Amnesia

amnesia/src/main.rs
fn main() {

loop {
let buffer = (0..1000).collect::<Vec<u32>>();
std::mem::forget(buffer);
print!(".");

}
}

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/hwrustbrain/code/amnesia/src/main.rs
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

The program will display the following output, forever:

.

Discussion
The program running endlessly isn’t surprising since the program loops for-
ever without a break to stop the loop. The surprise comes when you let it run
for a while as it eventually consumes all of your computer’s memory or is
terminated by your operating system. Allocating memory, losing the reference
to it, and never cleaning up after yourself is known as a memory leak.

Equally surprising is that Rust generally makes you wrap violations of mem-
ory safety guarantees in unsafe tags; however, no unsafe tags are shown in this
example.

Rust makes strong—compiler-guaranteed—promises regarding memory
safety. Yet, surprisingly, memory leaks are not a violation of memory safety.
In fact, Rust even provides std::mem::forget and Box::leak to let you explicitly cause
a memory leak.

Memory Leaks Are Safe?

The forget function used to be marked as unsafe, but the Rust Core Team
decided that memory leaks fall outside of Rust’s memory protection guarantee.
Huon Wilson (Rust Core Team Alumni) summarizes Rust’s philosophy on
memory leaks as follows:

Put simply: memory unsafety is doing something with invalid data, a memory
leak is not doing something with valid data.16

The Rust documentation adds to this statement:

forget is not marked as unsafe, because Rust’s safety guarantees do not include a
guarantee that destructors will always run. For example, a program can create
a reference cycle using Rc, or call process::exit to exit without running destructors.
Thus, allowing mem::forget from safe code does not fundamentally change Rust’s
safety guarantees.17

Rust provides two ways to stop using a variable:

16. http://huonw.github.io/blog/2016/04/memory-leaks-are-memory-safe/
17. https://doc.rust-lang.org/std/mem/fn.forget.html

Rust Brain Teasers • 50

report erratum • discuss

http://huonw.github.io/blog/2016/04/memory-leaks-are-memory-safe/
https://doc.rust-lang.org/std/mem/fn.forget.html
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

The first is to use std::mem::drop as it guarantees that any destructors—imple-
mented with the Drop trait—will get executed. Using std::mem::drop generally
cleans up memory and is the preferred approach. With std::mem::drop, or when
a variable leaves scope, any Drop destructors are executed for you.

The other approach is to use std::mem::forget, which skips the destructor and
simply “forgets” the reference to the area of memory that the forgotten variable
is pointing to. With std::mem::forget, the forgotten variable is still allocated and
using memory.

Despite memory leaks being safe, Rust does help you avoid them.

Rust Does Help Prevent Leaks

In normal usage, Rust helps you avoid memory leaks by default. When a
variable “drops” out of scope, it’s drop destructor is automatically called. The
following code drops the vector when the scope exits:

{
let my_vec = vec![100; 100];

}

The previous code is functionally equivalent to the following code:

let my_vec = vec![100; 100];
std::mem::drop(my_vec);

In both cases, the vector’s destructor is called. For a vector, this safely deletes
the allocated buffer and remembers to call drop on every stored item. Automatic
cleanup is provided by all of Rust’s built-in collection types. Likewise, Rust’s
built-in variable types clean up after themselves. In most cases, any type you
create will do the same, but if you need to explicitly release any resources,
you can always implement the Drop trait.

Many Rust programs don’t need to worry about memory management beyond
letting Rust destroy variables when they leave scope. If you need more control,
Rust provides smart pointer types.

Smart Pointers

A common way of creating a pointer to the heap is to embed your variable in
a Box. Boxes are smart pointers, similar to unique_ptr in C++. A Box contains a
pointer to its contents and implements Drop to ensure the pointer is deleted
as soon as your Box goes out of scope. Unless you explicitly call leak or forget
on the Box, it’s guaranteed to be correctly removed from memory for you.

Rust also includes an analogue to C++’s shared_ptr, which is a reference-
counted pointer. The Rc type wraps data in a pointer and increases the

report erratum • discuss

Amnesia • 51

http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

reference count when it’s cloned. Rc decreases the reference count when
dropped, destroying the entire structure and its contents if the reference
count reaches zero.

Rust also provides Arc, which is an atomic reference-counted smart pointer.
Atomic variables automatically provide thread-safe access. Arc works similarly
to regular reference-counted pointers, but it’s safe to use in a multithreaded
environment. Tasks can concurrently increase or decrease the reference count
without crashing your program or creating a data race.

Rust provides the tools you need to not leak memory—so why does it provide
the option? Sometimes you need Rust to stop managing an area of memory.

Sometimes You Need to Forget

Most experienced developers will tell you that deliberately leaking memory is
a bad idea. But there are times that you need to forget a variable. For example,
you might be passing control over an area of memory or control handle to
another program and require that Rust not delete it.

For example, if you’ve opened a file handle (with File::open) and immediately
pass that handle to another application, you need to forget the handle so that
your program doesn’t close the handle, invalidating the second program’s
access.

Another example is interoperability with another program. You might allocate
an area of memory—possibly in a specific location for interprocess memory
sharing—and then you want to hand control of that memory over to another
program. You don’t want Rust to clean the memory for you, because it’s now
the responsibility of the recipient program. The other program may not even
be written in Rust—forget is often found in C interoperability code for this
reason.18

std::mem::forget is a powerful tool but one that must be used with extreme care.
If you don’t have a very specific need for it, it’s best not to forget your memory.

Further Reading

std::mem::Forget
https://doc.rust-lang.org/std/mem/fn.forget.html

std::boxed::Box
https://doc.rust-lang.org/std/boxed/struct.Box.html

18. https://www.ralphminderhoud.com/blog/rust-ffi-wrong-way/

Rust Brain Teasers • 52

report erratum • discuss

https://doc.rust-lang.org/std/mem/fn.forget.html
https://doc.rust-lang.org/std/boxed/struct.Box.html
https://www.ralphminderhoud.com/blog/rust-ffi-wrong-way/
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Puzzle 13

Reverse the Polarity of the Neutron Flow

reverse_polarity/src/main.rs
fn display_neutron_flow(polarity: isize) {

println!(
"Neutron Flow is {}",
if polarity < 0 { "reversed"} else { "normal" }

);
}

fn main() {
let polarity = 1;
{

let polarity = polarity - 2;
display_neutron_flow(polarity);

}
display_neutron_flow(polarity);

}

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/hwrustbrain/code/reverse_polarity/src/main.rs
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

The program will display the following output:

Neutron Flow is reversed
Neutron Flow is normal

Discussion
The code creates a variable named polarity. It then creates another variable
with the same name and a different value. Reusing variable names is known
as shadowing and is a controversial topic in Rust development houses. Rust
explicitly permits the creation of shadowed variables; however, unlike many
other languages, you won’t see a compiler warning when using this feature.

Let’s take a step back and look at what let polarity = 1; really does. With this
code, the compiler:

1. Sets aside an area of memory—usually on the stack—to hold your data,
which is sized to fit your data’s type.

2. Writes the value 1 to the new area of memory.

3. Updates its list of “variable bindings” for the current scope to indicate
that polarity refers to this area of memory.

The compiler does not store the name polarity—naming variables is a conve-
nience for you, the programmer. It’s a lot easier to remember a name than a
memory address. (Debug information stores the name and association; that’s
how your debugger can show you variable information.)

The compiler performs these steps with every variable assignment. If you call
let polarity = 2; let polarity = 2; within the same scope, the first variable remains in
existence, but its variable binding is replaced and you have no way to access it.

The following diagram illustrates what’s happening:

let polarity = 1;polarity 1
{
 let polarity = polarity - 2;
 display_nuetron_flow(polarity);
}
display_nuetron_flow(polarity);

polarity -1

O
u

te
r

S
co

p
e

In
n

er
S

co
p
e

Variable Binding

Variable Binding

Rust Brain Teasers • 54

report erratum • discuss

http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

The code takes advantage of scope rules. polarity is bound to a new name within
the inner scope. When that scope terminates, the original variable binding
returns, still attached to the same area of memory. Rebinding variable
names—to a new variable—is potentially confusing, which is one reason many
development houses ask programmers not to use variable shadowing. Bear
in mind these implications with variable shadowing:

• Shadow variables don’t replace the name binding until they complete, so
you can access the previous version of a variable in the assignment
statement.

• Creating a shadow variable doesn’t affect the original variable. You haven’t
magically changed it to be mutable; the new variable has its own space
in memory. All that changes is that the name binding now points to the
new value.

• Once you’ve shadowed a variable, you can’t access the original variable
until the new binding leaves scope.

• Shadowed variables don’t have to retain the same type or mutability
requirements as the previous variable. In fact, they don’t have to be
related at all because it’s an entirely new variable.

• The initial—but unavailable—variable is still occupying memory. If you’re
concerned about RAM usage, shadowing won’t help. The Rust compiler
will often remove the unused variable for you, but it’s better to be certain
that it has been removed.

Sometimes shadowing can help improve the clarity of your code.

When Is Shadowing Useful?

Shadowing is permitted because it can make your code easier to read. The
most common argument in favor of permitting shadowing is single-letter
variables that get reused in a function. It’s not uncommon to encounter code
similar to the following:

let x = a+b;
// Do something with x
let x = c/d;
// Do something with x

For one-shot programs, reusing variable names can be useful; however, if
you have to maintain the program for a long time, short variable names aren’t
the best design choice. Consider the following scenarios:

report erratum • discuss

Reverse the Polarity of the Neutron Flow • 55

http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

• If you return to your code in the future, or you’re working with other
developers, there’s very little clue as to what x, a, and other single-letter
variable names might mean. Granted, longer variable names means more
typing, but with meaningful variable names, you can make your code a
lot easier to manage.

• If your function is performing two distinct actions, maybe each action
should be a separate function. Each function will have its own scope, so
you can use variables without the need to shadow their names.

• If you really don’t want to use separate functions, consider restricting the
use of short-lived variables to a scope. Scoping your code makes it a lot
more obvious to someone reading the code that x doesn’t need to live
beyond the scope that defines it.

Another use for shadowing is conversion of generic inputs into a concrete
type and reusing the name for clarity. Shadowing a type conversion can
improve readability. Have a look at this example:

fn examine_a_string<S: ToString>(my_string: S) -> String {
let my_string = my_string.to_string();
// Perform lots of complicated processing here
my_string

}

The function, examine_a_string(), accepts any type that can be converted into a
String with the to_string() function. Forcing the conversion at the top of the function
allows you to use the easy-to-read name my_string throughout the func-
tion—potentially avoiding confusion. You no longer have named access to the
original my_string, and you don’t have to worry about what concrete type
matched the ToString generic requirement—my_string is guaranteed to have been
converted to a String.

Another useful case for variable shadowing is providing internal mutability
without requiring mutability in your function signature. Look at this example:

fn my_complex_function(base: f32, data: &[f32]) -> f32 {
let mut base = if (base < 0.0) { base + 100.0 } else { base };
// Iteratively calculate base. You'd probably do something more useful
// here.
data.iter().for_each(|n| base += data);
base

}

my_complex_function creates a mutable shadow of base and uses it for internal cal-
culation. Many programmers find this easier to read than making the function
signature declare mut base: f32 (which does the same thing), and the shadowed

Rust Brain Teasers • 56

report erratum • discuss

http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

variable is neatly contained within the function’s scope, so there’s limited room
for confusion. This pattern is especially common when working with a local
clone of a variable; let n = n.clone() is often more readable than let n_clone = n.clone().

When Shouldn’t I Use Variable Shadowing?

Rust’s variable shadowing rules are controversial and have led to some
heated discussions online. Many Rust development houses and experienced
developers will instruct you not to use variable shadowing at all. If your code
starts to look overly complicated because of shadowing, don’t use it. It only
takes a moment to type a new variable name, and you will thank yourself
when you return to debug your code months later and can’t remember why
you used a cool shadowing trick.

Detecting Shadowing with Clippy

If you’re used to C or C++, you’d expect a compiler warning when
you shadow a variable name. Rust specifically permits shadowing,
so by default no warning is generated. Clippy can help.

• The optional shadow_same rule can detect when you rebind a
variable to itself, for example, let mut x = &mut x.

• Another optional rule named shadow_reuse will warn you about
most of the shadowing patterns mentioned in this teaser. It
finds cases where you’ve reused a variable in a shadowed
variable. If you prefer to largely prohibit shadowing, shadow_reuse
is the rule for you. The teaser code triggers this warning.

• Another optional rule, shadow_unrelated, will warn you when you
shadow a variable without ever using the original variable of
that name.

If you’d like to enable optional Clippy rules, you may either call
Clippy with cargo clippy -- -W clippy:rule_name or add [warn(clippy::rule_name)]
statements to your code. Macros have scope: adding the macro to
the top of a file in a module applies to to that module only. You
can enable the warning crate-wide by prefixing it with an exclama-
tion point: #![warn(clippy:rule_name)].

Further Reading

Scope and Shadowing (Rust by Example)
https://doc.rust-lang.org/rust-by-example/variable_bindings/scope.html

report erratum • discuss

Reverse the Polarity of the Neutron Flow • 57

https://doc.rust-lang.org/rust-by-example/variable_bindings/scope.html
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Puzzle 14

Structure Sizing

structure_sizing/src/main.rs
use std::mem::size_of;

struct VeryImportantMessage {
_message_type: u8,
_destination: u16

}

fn main() {
println!(

"VeryImportantMessage occupies {} bytes.",
size_of::<VeryImportantMessage>()

);
}

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/hwrustbrain/code/structure_sizing/src/main.rs
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

The program will display the following output:

VeryImportantMessage occupies 4 bytes.

Discussion
_message_type and _destination are sized as you would expect, occupying 1 and 2
bytes of memory, respectively. So, why does VeryImportantMessage occupy 4 bytes
of memory?

By default, Rust makes two promises about the in-memory representation of
your structures:

• Structures may be sized differently than their contents for performance
reasons.

• Structures may store data in a different order internally than you specified
if the optimizer believes it will aid performance.

Most modern CPUs align data on 32-bit boundaries in memory and cache.
Accessing 8 bits (one byte) or 16 bits (two bytes) is fast because the CPU
provides primitives to do so, and the structures can be packed along 32-bit
boundaries.

A 24-bit (3 byte) structure doesn’t naturally align to a 32-bit memory map,
so by default, Rust wastes 8 bits of memory per struct to ensure fast access to
the structure in your computer’s memory. This behavior is especially helpful
when you’re dealing with arrays or other contiguous blocks of 3-byte struc-
tures because every other structure would start at the 24th bit of a 32-bit
block, reducing cache and read efficiency.

Sometimes this behavior can cause problems, though. For example:

• If you’re storing a very large number of 24-bit structures, wasting a byte
per structure might exceed your memory allocation—especially on
embedded systems.

• If you’re interoperating with another language, that language may expect
your structures to be exactly 24 bits in size. Conversely, a server written
in Rust may add padding to structures—surprising the client with padding
bytes.

Rust Brain Teasers • 60

report erratum • discuss

http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

• Likewise, if you’re interoperating with other languages, letting Rust rear-
range your data in memory can cause bizarre problems when passing
data to and from the other language.

Constraining Rust’s Optimizer

You can turn off both of Rust’s structure optimizations using a decoration
named #[repr()], which gives you control over how a struct is represented in
memory:

• #[repr(C)] declares that you require interoperability with the C language.
Rust won’t rearrange the content of your structure.

• #[repr(packed)] tells Rust not to waste space on your structure. This can
carry a small performance penalty but guarantees that structures are
exactly the right size.

You can combine these decorations. For example, a structure decorated with
#[repr(C, packed)] won’t rearrange or pad your structure:

#[repr(C, packed)]
struct ReallyThreeBytes {

a: u8,
b: u16

}

fn main() {
println!(
"ReallyThreeBytes occupies {} bytes.",
size_of::<ReallyThreeBytes>()

);
}

This code prints:

ReallyThreeBytes occupies 3 bytes.

Further Reading

repr(Rust)
https://doc.rust-lang.org/nomicon/repr-rust.html

Type Layout
https://doc.rust-lang.org/reference/type-layout.html

Layout of structs and tuples
https://rust-lang.github.io/unsafe-code-guidelines/layout/structs-and-tuples.html

report erratum • discuss

Structure Sizing • 61

https://doc.rust-lang.org/nomicon/repr-rust.html
https://doc.rust-lang.org/reference/type-layout.html
https://rust-lang.github.io/unsafe-code-guidelines/layout/structs-and-tuples.html
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Puzzle 15

To Infinity

linked_list/src/main.rs
use std::cell::RefCell;
use std::rc::Rc;

type Link = Option<Rc<RefCell<Node>>>;

#[derive(Debug)]
struct Node {

elem: i32,
next: Link,

}

fn main() {
let mut head = Some(Rc::new(

RefCell::new(Node{ elem: 1, next: None })
));
head

.as_mut()

.unwrap()

.borrow_mut()

.next = Some(Rc::new(RefCell::new(
Node{ elem: 2, next: head.clone() })

));

println!("{:?}", head);
}

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/hwrustbrain/code/linked_list/src/main.rs
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

The program will display node 1, node 2, and then node 1 again. The output
repeats itself until the program exits with the following message: thread 'main'
has overflowed its stack.

Discussion
Linked lists are one of the first dynamic data structures people encounter in
computer science classes and are conceptually simple: each entry in the list
contains a pointer to the next entry.19 Linked lists allow you to easily insert
items into the middle of the list—you find your insertion point and copy its
next pointer to the new element. Change the previous entry’s next to your new
entry, and you have inserted into the middle of your list without rearranging
existing nodes. You can iterate a linked list by following each node’s pointer
to the next item. You can visualize a linked list as follows:

Node 1

Contents

Next Node

Node 2

Contents

Next Node

Node 3

Contents

Next Node None
(End of List)

The Next field in each node is an Option that contains either the next node or,
in cases where you’ve reached the end of the list, None.

Implementing Linked Lists in Rust

Although Rust’s memory model makes it difficult to create linked lists,20 you
can work around these difficulties by using Rc and RefCell—two low-level
structures that are designed to add flexibility to the borrow-checker. Here’s
what they do:

• Rc provides reference counting. When you call get to access an Rc, the ref-
erence count is increased by 1. Likewise, when you drop the reference,
the count is decreased by 1. When an Rc no longer has references, the
contents are deleted. With Rc, you can safely reference the contained
structure from other structures and guarantee that the contents get
deleted when you’re done with them.21

19. https://en.wikipedia.org/wiki/Linked_list
20. https://rust-unofficial.github.io/too-many-lists/
21. https://doc.rust-lang.org/std/rc/struct.Rc.html

Rust Brain Teasers • 64

report erratum • discuss

https://en.wikipedia.org/wiki/Linked_list
https://rust-unofficial.github.io/too-many-lists/
https://doc.rust-lang.org/std/rc/struct.Rc.html
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

• RefCell provides a mutable memory location and makes borrow-checking
dynamic rather than static. When you borrow the contents of a RefCell,
Rust notes that the borrow has occurred at runtime rather than compile
time. Although a second mutable borrow can still fail, it will do so as a
runtime error rather than a compile-time error.22

What Is Reference Counting?

If you’ve used C# or Java, you may be familiar with reference
counting. Reference counting is a form of “garbage collection”—it
cleans up unused memory for you, removing the need for you to
manage memory yourself. Reference counting works by having an
object keep a count of variables that “point” or “refer” to it. Once
the reference count hits zero, nothing is using the variable—so it
may be safely deleted.

When used together, Rc and RefCell create a dynamic garbage collection struc-
ture, much like Java or C#. With this “power couple,” you can access individ-
ual nodes while remaining confident that your nodes are getting deleted when
they’re no longer needed (referenced). In addition, by implementing your own
garbage collector with Rc and RefCell, you can work around the safety concerns
that Rust’s borrow-checker has with linked lists.

Rc and RefCell are also handy when you need to make potentially cyclic data
structures, which can quickly overwhelm Rust’s guaranteed safety checks.
In this case, rather than borrowing the entire list when accessing a node, you
can dynamically borrow each element as needed. And, with reference counting,
you ensure the eventual destruction of unused nodes.

Cyclic References

The example crashes because it creates a cyclic reference where the first node’s
next element points back to the first node, causing the list iteration to continue
forever. You can visualize this reference cycle as follows:

Node 1

Contents

Next Node

Node 2

Contents

Next Node

Node 3

Contents

Next Node

22. https://doc.rust-lang.org/std/cell/struct.RefCell.html

report erratum • discuss

To Infinity • 65

https://doc.rust-lang.org/std/cell/struct.RefCell.html
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Rust cannot delete this structure from memory because the nodes retain
references to one another, causing no clear end to the list.

Cyclic references are also a problem with garbage-collected languages. Once
a reference cycle is created, there’s no way to tell when it’s safe to delete a
node from memory.

In the example, the default Debug implementation attempts to follow the next
node and print its content, which, in turn, loops back to the same node,
printing it again. Eventually, the program runs out of call-stack space and
crashes.

You can avoid this particular crash by defining your own Debug system that
does not print the next node. Don’t forget to remove #[derive(Debug)] from the
Node definition:

//#[derive(Debug)]
struct Node {

elem: i32,
next: Link,

}

use std::fmt;
impl fmt::Debug for Node {

fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "elem: {}", self.elem)

}
}

This updated code doesn’t solve the general problem of cyclic references,
though—it simply prevents a program crash.

Generally, you should avoid creating circular structures because they’re dif-
ficult to iterate safely and delete. Instead, use the Rust standard library’s
std::collections::LinkedList.23 Rust’s linked list handles node creation and linkage
for you.

Should I Use a Linked List?
Linked lists haven’t aged well. Modern CPU and memory architectures favor
contiguous data for performance, and jumping around memory following next
pointers can lead to delays while the computer loads the next area of memory.

23. https://doc.rust-lang.org/std/collections/struct.LinkedList.html

Rust Brain Teasers • 66

report erratum • discuss

https://doc.rust-lang.org/std/collections/struct.LinkedList.html
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Linked list usage remains a controversial topic, but testing shows that Vec
outperforms LinkedList in almost every benchmark. Even its primary advan-
tage—inserting an item into the middle of the list—is slower than inserting
an item into a vector and then sorting your data.24

You may have a specific need for a linked list—but if performance is important
to your application, be sure to benchmark against a vector.

Further Reading

Learn Rust with Entirely Too Many Linked Lists
https://rust-unofficial.github.io/too-many-lists/index.html

Reference Counting
https://en.wikipedia.org/wiki/Reference_counting

24. https://github.com/matklad/vec-vs-list

report erratum • discuss

To Infinity • 67

https://rust-unofficial.github.io/too-many-lists/index.html
https://en.wikipedia.org/wiki/Reference_counting
https://github.com/matklad/vec-vs-list
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Puzzle 16

Double or Nothing

double_or_nothing/src/main.rs
fn double_it(n: i32) -> i32 {

n * 2
}

fn double_it(n: f32) -> f32 {
n * 2.0

}

fn main() {
println!("2 * 4 = {}", double_it(2));

}

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/hwrustbrain/code/double_or_nothing/src/main.rs
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

The program will fail to compile, and you’ll receive the following error message:

error[E0428]: the name "double_it" is defined multiple times

Discussion
In C++ and similar languages, redefining a function with different parameter
types is known as function overloading. It’s a common idiom, allowing you to
provide similar functionality for multiple types without having to come up
with a type-specific function name for each option. For example, the following
is valid C++ code:

float double_it(float n) {
return n * 2.0;

}

int double_it(int n) {
return n * 2;

}

Function overloading works in C++ and not in Rust because of name man-
gling.25 When a function is compiled, a compiler-specific name for the function
is created and used by the linker to connect function calls to actual memory
addresses. In C++, mangled names include both the function name and the
types of the parameter. double_it(float) and double_it(int) are different functions.
Rust only mangles on the function name, so even with different parameter lists,
you can’t have two functions in the same namespace bearing the same name.

Don’t worry, Rust provides a means of accomplishing the same thing. Instead
of defining functions with multiple sets of parameters, Rust generics allow
you to create a generic function that accepts multiple parameter types.

Rust Generics

In Rust, you can still make a double_it function that operates on different types.
Rather than redefining the function, you have to use generics.26 Generics are
an extremely useful tool for creating reusable code that works across types,
but it can quickly become very complicated. Here’s a double_it function that
works with any type that supports multiplication and can be copied by value:

25. https://en.wikipedia.org/wiki/Name_mangling
26. https://doc.rust-lang.org/rust-by-example/generics.html

Rust Brain Teasers • 70

report erratum • discuss

https://en.wikipedia.org/wiki/Name_mangling
https://doc.rust-lang.org/rust-by-example/generics.html
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

double_or_nothing_working/src/main.rs
fn double_it<T>(n: T) -> T❶
where T: std::ops::Mul<Output = T> + From<i32>❷
{

n * 2.into()❸
}

fn main() {
println!("2+2 = {}", double_it(2));

}

❶ T is added as a generic type to the function signature, and the number to
double is defined as requiring type T.

❷ Rust generics constrain the types with which a generic function can
operate using the where keyword. You can separate requirements with
plus symbols.

The first constraint requires that T implement std::ops::Mul, meaning the
type must support the addition operator, and the output of the multipli-
cation must be of type T.

You add a second constraint with + From <i32>, requiring that the input
type be constructable from an integer. If you didn’t require this constraint,
* 2 would fail to compile because Rust could not guarantee that the digit
2 could be converted into a type compatible with the function parameter’s
type.

❸ Within the function body, you’ve established that the n parameter must
support multiplication and be compatible with the integer 2. You can
perform the multiplication using normal Rust operators.

Rust generics are very powerful, but they can also be intimidating at first.
Generic Rust functions and types work by combining traits, establishing the
minimum standards a type must meet for the function to be applicable. They
are worth the time invested in learning to use them, particularly in library
code. By accepting generic types, your code becomes easier for the end user
to use. The user’s code no longer requires as my_type or into() conversions—it
just works. The best part: your generic code retains all of Rust’s safety
guarantees, explicitly checked for the type the end user decided to use. The
cost: generic functions take longer to compile. This is often a price worth
paying, but if compilation times become too slow, consider easing up on the
generics.

report erratum • discuss

Double or Nothing • 71

http://media.pragprog.com/titles/hwrustbrain/code/double_or_nothing_working/src/main.rs
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Rust/C++ Interoperability

When you’re interoperating with C++, you may miss function name
overloading. If you’re declaring functions on the Rust side, declare
a new function for each parameter type—for example, fn new(name:
&str) and fn new_with_age(name: &str, age: u16).27

Consuming a C++ library that requires function name overloading
is more difficult. Rust won’t let you define multiple instances of a
function with a single name, making a one-to-one mapping with
libraries that rely on function name overloading difficult. You may
need to create a “shim” library to map overloaded functions to
different function names for Rust to be able to call into your library.

Further Reading

Generics (Rust by Example)
https://doc.rust-lang.org/rust-by-example/generics.html

Rust Generics
https://doc.rust-lang.org/book/ch10-01-syntax.html

Learn Rust—Generics
https://learning-rust.github.io/docs/b4.generics.html

The Rust Programming Language—Generics
http://web.mit.edu/rust-lang_v1.25/arch/amd64_ubuntu1404/share/doc/rust/html/book/first-
edition/generics.html

27. https://locka99.gitbooks.io/a-guide-to-porting-c-to-rust/content/features_of_rust/polymorphism.html

Rust Brain Teasers • 72

report erratum • discuss

https://doc.rust-lang.org/rust-by-example/generics.html
https://doc.rust-lang.org/book/ch10-01-syntax.html
https://learning-rust.github.io/docs/b4.generics.html
http://web.mit.edu/rust-lang_v1.25/arch/amd64_ubuntu1404/share/doc/rust/html/book/first-edition/generics.html
http://web.mit.edu/rust-lang_v1.25/arch/amd64_ubuntu1404/share/doc/rust/html/book/first-edition/generics.html
https://locka99.gitbooks.io/a-guide-to-porting-c-to-rust/content/features_of_rust/polymorphism.html
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Puzzle 17

How Long Is a Vector?

vec_size/src/main.rs
fn main() {

let mut my_vec = Vec::with_capacity(1);
my_vec.push("Hello");
println!("{}", my_vec.capacity());
my_vec.push("World");
println!("{}", my_vec.capacity());

}

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/hwrustbrain/code/vec_size/src/main.rs
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

The program will display the following output:

1
4

Discussion
Vectors contain two things: a length indicating how many elements (items)
are stored within the vector and a buffer of contiguous heap memory that
contains the data for each of the items, one after the other. This buffer is
often larger than the total number of elements stored within the vector.

Vectors are a lot like arrays, but they have a variable size. You can create a vector
with a capacity of 0 using new, or you can create a vector with a user-specified
capacity size using with_capacity. The capacity represents the total size of the vector.

When you add an item to a vector, the vector checks to see if the vector’s length—
number of actual items in the vector—is less than the vector’s capacity. If it is,
then adding to the vector is straightforward: the vector’s length is incremented,
and the item is moved to the next available space in the vector. If there isn’t free
space at the end of the buffer, the vector:

1. Allocates a new buffer with enough space for twice the new vector’s length.
2. Moves the existing buffer to the beginning of the new buffer.
3. Releases the old buffer.
4. Increments length and adds the new item to the end of the new, larger, buffer.

You can visualize a vector’s growth as follows:

1 2

2 2

3 4

4 4

5 8

6 8

7 8

8 8

9 16

Length Capacity

Rust Brain Teasers • 74

report erratum • discuss

http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Vector growth seems like a lot of work, but it comes with very real performance
benefits. The entire vector is guaranteed to be adjacent in your computer’s
memory, making it very cache-friendly—operating on vectors is very fast. Like
all benefits, it comes with a trade-off: when you exceed the vector’s capacity,
extending the vector is a much slower operation.

Vec includes a constructor named with_capacity that lets you specify the exact
size (in elements) of the new vector. If you never exceed this size, the vector
will never reallocate memory.

In the example, calling Vec::with_capacity(1) creates a new vector with enough
capacity for one element. It then adds a new entry (“Hello”) to the vector, using
that slot, and filling the vector. At this point, the vector has no idea if it’ll ever
need to increase its capacity again, so it stays at 1. The code then pushes
another new entry (“World”) into the vector; this time, however, there’s no
room, so the vector adds three more spaces to allow for future growth, leading
to a capacity of 4.

Rust’s vector growth strategy isn’t guaranteed in the language standard and
may change. At the time of this writing, Rust uses a “growth factor” of 2. In
most cases, the vector will double in size when it needs additional capacity.
If you are sequentially adding many items to a vector, this operation can
cause a lot of memory reallocation, potentially causing performance problems.

Vector Tips
When working with vectors, keep a few things in mind:

• If you have a rough idea of how much data you might need to store, use
Vec::with_capacity to reserve an appropriate amount of space ahead of
time—doing so avoids memory reallocations altogether.

• If you’re adding lots of data, try using Vec::extend so that Rust can see the
size of the data you’re adding and reallocate only once. extend only avoids
allocation when collecting data from a source with a known length.
Copying from one vector to another allows Rust to allocate exactly the
space it needs for the new vector because the length is known. Likewise,
any iterator that implements ExactSizeIterator benefits from this optimiza-
tion.28 An arbitrarily sized iterator may repeatedly allocate because the
size of the data you’re copying isn’t known ahead of time.

28. https://doc.rust-lang.org/std/iter/trait.ExactSizeIterator.html

report erratum • discuss

How Long Is a Vector? • 75

https://doc.rust-lang.org/std/iter/trait.ExactSizeIterator.html
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

• Add elements to the end of your vectors using push rather than at a specific
slot using insert. Although insert gives you more control, it’s a lot slower
than push because Rust needs to rearrange the vector to make room for
your new element. If you need to insert an element at the front, the VecDeque
structure is a better choice.29

Further Reading

std::vec::Vec
https://doc.rust-lang.org/std/vec/struct.Vec.html

29. https://doc.rust-lang.org/std/collections/struct.VecDeque.html

Rust Brain Teasers • 76

report erratum • discuss

https://doc.rust-lang.org/std/vec/struct.Vec.html
https://doc.rust-lang.org/std/collections/struct.VecDeque.html
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Puzzle 18

Mutable Immutables

mutable_immutable/src/main.rs
fn main() {

let life_the_universe = &mut 41;
*life_the_universe += 1;
println!("Life, the Universe and Everything: {}", life_the_universe);

}

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/hwrustbrain/code/mutable_immutable/src/main.rs
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

The program will display the following output:

Life, the Universe and Everything: 42

Discussion
The surprising part of this teaser is that the life_the_universe variable is immutable,
yet you’re able to change its contents. To understand how this is possible,
look at the following illustration:

let life_the_universe = &mut 41;

Create an immutable variable
named life_the_universe.

life_the_universe contains a
mutable reference to an
area of memory.

The area of memory exists in
temporary (scope lifetime)
memory, and contains the number
41.

Notice a few tricks in play here:

• You can declare a reference to a literal.30 When you do, Rust creates a
temporary area of memory containing the desired value, and because the
literal is mutable, you can change it.31

• The life_the_universe reference itself remains immutable—once you define
the reference, it forever points to the same area of memory, and you can’t
change it.

• You can de-reference your immutable reference using the * operator, which
gives you mutable access to its contents.

The following code works on variables, as well, and is a little clearer:

let mut life = 40;
let the_universe = &mut life;
*the_universe += 2;
println!("{}", the_universe);

Making life a mutable variable clearly marks life as a variable that expects
changes. So when you take a mutable reference to life (the_universe), you expect

30. https://doc.rust-lang.org/reference/expressions/literal-expr.html
31. https://doc.rust-lang.org/reference/expressions.html#temporary-lifetimes

Rust Brain Teasers • 78

report erratum • discuss

https://doc.rust-lang.org/reference/expressions/literal-expr.html
https://doc.rust-lang.org/reference/expressions.html#temporary-lifetimes
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

to be able to change its contents. The mutability and borrow-checking rules
enforced by the Rust compiler are still obeyed:

• life is mutable and may change.
• the_universe is immutable because it will always point at life once it’s been set.
• De-referencing the_universe allows you to change the contents of life.
• Rust’s borrow-checking rules still apply to mutable references. You can’t

mutably borrow the memory area pointed to by life more than once, can’t
reference it once it has left the active scope, and can’t mutably share it
between threads without synchronization primitives.

You can arrange your code either way—but making life’s mutability obvious
makes it easier to read. Rust’s mutability rules don’t mind which way you lay
out the code; it works the same either way. The pattern of a mutable variable—
a label for an area of memory—accessed by other variables is a common one.

Borrowed Mutability

It’s rare that you’ll need to borrow a literal in this fashion. Most of the time, it’s
much clearer to create a variable of the native type as mutable and work on it
directly. The mutability is less confusing, and your code is potentially faster
when the compiler doesn’t optimize (by removing) de-references. You generally
won’t need to directly declare the contents of a variable as a mutable reference.

Mutably borrowed variables are very useful. You can pass x: &mut my_type into
functions, and the function can change the original (borrowed) value rather
than having to return an all-new structure. You’re still benefitting from the
immutability of the x variable because x is a pointer to an area in memory,
which means you can’t inadvertently change the pointer itself or the memory
location to which the reference points. You can, however, change the data to
which the reference points because the borrow remains mutable.

In embedded systems and driver code, it’s common to encounter pointers and
references to mutable memory. Rust code can act just like C code in this
respect but with added protection against mutating state by mistake.32

Further Reading

References and Borrowing
https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html

Mutability (Rust by Example)
https://doc.rust-lang.org/rust-by-example/scope/borrow/mut.html

32. https://docs.rust-embedded.org/book/peripherals/a-first-attempt.html

report erratum • discuss

Mutable Immutables • 79

https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html
https://doc.rust-lang.org/rust-by-example/scope/borrow/mut.html
https://docs.rust-embedded.org/book/peripherals/a-first-attempt.html
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Puzzle 19

Sleepless in Tokio

sleepless/Cargo.toml
[package]
name = "sleepless"
version = "0.1.0"
edition = "2018"

[dependencies]
tokio = { version = "1.7", features = ["full"] }

sleepless/src/main.rs
use tokio::join;
use std::time::Duration;

async fn count_and_wait(n: u64) -> u64 {
println!("Starting {}", n);
std::thread::sleep(Duration::from_millis(n * 100));
println!("Returning {}", n);
n

}

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {

// Join runs multiple tasks concurrently and returns when they all
// complete execution.
join!(count_and_wait(1), count_and_wait(2), count_and_wait(3));
Ok(())

}

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/hwrustbrain/code/sleepless/Cargo.toml
http://media.pragprog.com/titles/hwrustbrain/code/sleepless/src/main.rs
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

The program will display the following output:

Starting 1
Returning 1
Starting 2
Returning 2
Starting 3
Returning 3

Discussion
The outcome is surprising because the join macro promises to run the three
instances of count_and_wait concurrently, but the output shows that the tasks
are running sequentially, which tends to surprise newcomers to Rust’s async
system. Understanding the differences between asynchronous and thread
programming can help you avoid pitfalls—and help you pick the right model
for your program.

Asynchronous programs and multithreaded programs operate differently,
each with their own strengths and weaknesses. Asynchronous (Future-based)
tasks aren’t the same as threaded tasks, and they require some care to ensure
that they operate concurrently. However, it’s entirely possible to run an
asynchronous program on one thread.

The diagram on page 83 shows the basic differences between threaded and
asynchronous execution:

In a threaded model, each task operates inside a full operating system-sup-
ported thread. Threads are scheduled independently of other threads and
processes. An asynchronous model stores tasks in a task queue and runs
them until they yield control back to the executing program.

Let’s examine a few approaches to running this teaser concurrently.

Native Threads

Threads are preemptively scheduled by your operating system. While the
thread is suspended, other threads continue to run. A purely threaded version
of this teaser looks like this:

async_threaded/src/main.rs
use std::thread;
use std::time::Duration;

Rust Brain Teasers • 82

report erratum • discuss

http://media.pragprog.com/titles/hwrustbrain/code/async_threaded/src/main.rs
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Sleep 100ms

Thread 2

Sleep 100ms

Thread 3

Sleep 100ms

Spawn Threads

Join

Operating
System

Scheduler

Threaded Execution:

Task 1

Task 2

Task 3

Spawn Tasks
Asynchronous Execution:

Task Queue

Run until yield

Task 2

Task 3

Task Queue

Run until yield

Task 3

Task Queue

Run until yield

fn count_and_wait(n: u64) -> u64 {
println!("Starting {}", n);
std::thread::sleep(Duration::from_millis(n * 100));
println!("Returning {}", n);
n

}

fn main() -> Result<(), Box<dyn std::error::Error>> {
let a = thread::spawn(|| count_and_wait(1));
let b = thread::spawn(|| count_and_wait(2));
let c = thread::spawn(|| count_and_wait(3));
a.join().unwrap();
b.join().unwrap();
c.join().unwrap();
Ok(())

}

report erratum • discuss

Sleepless in Tokio • 83

http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

The program spawns three threads, and they each run concurrently. Because
the program calls sleep and delays execution on each thread, you’re
almost—subject to having a really busy computer—sure to see the following
output:

Starting 1
Starting 2
Starting 3
Returning 1
Returning 2
Returning 3

Threads provide excellent concurrency, but it comes at a cost. Threads have
their own context maintained by the operating system. Starting a thread
requires a system call, which can be slow if you need to make many threads.
Different operating systems have varying limitations, but there’s a hard limit
to the number of threads you can create—and your OS is generally not
designed to schedule thousands of threads at a time. Native thread syntax
can also be clunkier than an equivalent async join or await call.

Threads start running as soon as you call Thread::spawn. The thread then
runs—scheduled by the operating system—until it’s done or sent a termination
signal.

Asynchronous Tasks

Asynchronous tasks are cooperatively scheduled. The operating system doesn’t
intervene to ensure that each thread gets a fair allocation of execution time.
Tasks run until they yield control. Yielding returns control to the executor—the
code responsible for maintaining the async environment. Tasks yield when:

• The task returns a result (either an error message or a value).
• The task completes execution.
• The task awaits one or more tasks.
• The task explicitly calls yield_now(), suspending itself until the executor

resumes it.

Used correctly, asynchronous task-based code can provide fantastic perfor-
mance. This is especially true for I/O bound programs—programs that have
to wait for databases, files on disk, or other processes to complete. Lightweight
tasks send requests to the other systems and await a result. Each task queue
can then keep processing requests very fast, executing tasks only when the
requested data is ready for them.

Rust Brain Teasers • 84

report erratum • discuss

http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

What Is an Executor?

Rust’s async implementation provides everything you need to make
an asynchronous environment, but it only provides the function-
ality required to implement an executor. The executor is responsible
for tracking spawned tasks, executing them, and providing services
such as yield.

Tokio is one of the most popular executors, providing a “batteries-
included” system with functionality available for most common
tasks. The std-async and futures crates are also popular. If you need
specific functionality, you can also write your own executor.

Many executors allocate tasks to queues in a group of threads,
but they don’t have to. Most schedule multiple tasks per thread—
known as M:N green threading—but an async setup can be entirely
single-threaded.

Other platforms use this paradigm as well. NodeJS, Erlang/Elixir,
and various .NET systems provide similar functionality.

As it turns out, asynchronous tasks only provide outstanding performance
if you play by their rules and avoid any blocking calls. Blocking calls suspend
process execution and resume when the call is complete. Furthermore,
blocking calls don’t yield control back to the executor—a call to Thread::sleep
suspends the entire thread’s execution, including the executor. That’s why
the example program runs serially, even though the join macro promises
concurrency.

For the common task of sleeping, Tokio provides a safe, nonblocking call to
make a task pause for the specified time. Replace Thread::sleep the count_and_wait
function with the following code:

tokio::time::sleep(Duration::from_millis(n*100)).await;

Run the program, and you’ll see the same output as the threaded version,
meaning your program ran concurrently.

Asynchronous Blocking Tasks

Sometimes, you need to block execution; for example, when you have a long-
running task, need to communicate with some hardware that doesn’t provide
an async friendly code wrapper, or have to use another library. tokio provides
a function for these situations that won’t stall the execution pipeline:

report erratum • discuss

Sleepless in Tokio • 85

http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

let blocking_task = tokio::spawn_blocking(|| {
// Do something really slow and blocking here

});

// Run the task
blocking_task.await.unwrap();

The spawn_blocking code tells tokio that your task will block, and tokio will spawn
it inside its own thread, suspending the current task until the thread returns.
Your task runs in the background, and your executor can keep processing
other tasks. Notice that the blocking task still awaits a return; Tokio will
awaken the parent task when the blocking task completes.

Long-Running Asynchronous Tasks

Occasionally, you need to perform some heavy computation inside your async
task. A task may call yield_now at any time to suspend operation and let other
tasks run. When the scheduler returns to the task, it’ll continue where it left
off. For example, have a look at this code:

async fn my_big_task() {
for i in 0..1_000_000 {

// Do something intensive with i
tokio::task::yield_now();

}
}

This task will yield control back to the executor after each calculation, which
reduces the stalling effects of your heavy calculation without creating a thread.

Choosing Threaded or Asynchronous Operation

tokio and other systems provide an async version of the more common operations
that require input/output. Reading and writing files, connections to databases,
and even logging are available in executor-friendly formats. Task-based
asynchronous code can be amazingly fast for programs that frequently have
to wait for another system. Web and other servers often benefit significantly
from a task-based structure and provide very high throughput.

Threads are more appropriate for CPU-bound tasks and tasks that must block.
Threads incur their own overhead, but if the threaded task is sufficiently
“heavy” in terms of CPU load, they can outperform asynchronous task-based
systems. In the embedded world, or when writing performance-critical code,
you often want to favor threads because you can control their scheduling
properties (and pin them to individual CPUs)—providing much more of a
guarantee of execution time.

Rust Brain Teasers • 86

report erratum • discuss

http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Rayon: Task-Based Threading

Rayon is a popular Rust crate that implements task-based
threading. Rayon creates a pool of threads that sit idly, waiting to
be given work. When you create a Rayon task, the next available
thread executes it. The task executes independently and doesn’t
stall the pipeline when you make a blocking call. Rayon can provide
the best of both worlds for CPU-heavy tasks—task-based syntax,
easier management, and lower overhead.

Rayon performs very well but is still frequently outperformed on
input/output bound server tasks by a more traditional asyn-
chronous setup. Of course, you can mix the two, but you’ll have
to pay attention to the size of your worker thread pools to ensure
that your executor isn’t starved of CPU time.

Further Reading

Asynchronous Programming in Rust
https://rust-lang.github.io/async-book/01_getting_started/01_chapter.html

Rust Futures
https://github.com/rust-lang/futures-rs

Tokio
https://github.com/rayon-rs/rayon

Async-Std
https://github.com/async-rs/async-std

Rayon
https://github.com/rayon-rs/rayon

report erratum • discuss

Sleepless in Tokio • 87

https://rust-lang.github.io/async-book/01_getting_started/01_chapter.html
https://github.com/rust-lang/futures-rs
https://github.com/rayon-rs/rayon
https://github.com/async-rs/async-std
https://github.com/rayon-rs/rayon
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Puzzle 20

Hello, Bonjour

hello_bonjour/src/main.rs
fn main() {

let hello = || println!("Hello World");
let hello = || println!("Bonjour le monde");
hello();

}

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/hwrustbrain/code/hello_bonjour/src/main.rs
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

The program will display the following output:

Bonjour le monde

Discussion
In Puzzle 16, Double or Nothing, on page 69, you saw that you cannot shadow
functions with identical names—even if the parameter list is different. Function
shadowing rules don’t apply to closures (sometimes known as lambda functions).

Closures don’t actually have names. The variable that holds a closure is a
pointer to the area of memory containing the function. The variables that point
to the closures are subject to the same shadowing rules as other variables
(Puzzle 13, Reverse the Polarity of the Neutron Flow, on page 53). Function name
mangling doesn’t apply, because closures don’t have function names to mangle;
they’re, instead, identified by the variable that points to them.

You may create as many shadow lambda functions as you like, subject to the
same scoping rules as variables. Once you’ve re-declared an identifier to point
to a different closure, the original variable remains inaccessible until—or
if—the new declaration leaves the active scope.

Shadowing closure definitions in this way isn’t particularly useful—it illus-
trates the fact that closures obey variable rather than function shadowing
rules.

Rather than creating a closure and immediately replacing it, you probably
want to select one to run. You can perform this selection at compilation time
with static dispatch, or at runtime with dynamic dispatch.

Static Dispatch

Static dispatch allows your program to make behavioral decisions at compile
time. Two major approaches to implementing static dispatch in Rust are condi-
tional compilation and constant functions. Let’s start by looking at conditional
compilation.

Feature Flags and Conditional Compilation

Rust supports a broad range of conditional compilation systems.33 You can
change how your program compiles on different platforms, on different

33. https://doc.rust-lang.org/reference/conditional-compilation.html

Rust Brain Teasers • 90

report erratum • discuss

https://doc.rust-lang.org/reference/conditional-compilation.html
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

compilers, or even in response to your shell’s environment variables. Feature
flags can be very useful for tweaking how your program interacts with different
systems. Rust also provides feature flags, allowing you to customize your
code to fit the end user’s requirements.34

Let’s test conditional compilation by adding some feature flags to the Cargo.toml file:

hello_bonjour_static/Cargo.toml
[package]
name = "hello_bonjour_static"
version = "0.1.0"
edition = "2018"

[features]
english = []
french = []

[dependencies]

Next, we modify the code to make each definition of hello conditional upon a
feature flag:

hello_bonjour_static/src/main.rs
fn main() {

#[cfg(feature = "english")]
let hello = || println!("Hello World");
#[cfg(feature = "french")]
let hello = || println!("Bonjour le monde");
hello();

}

If you run the program with cargo run, it will fail to compile because no hello
function is defined. However, you can run the program with cargo run --features
english to be greeted in English or cargo run --features french to be greeted in French.

Constant Functions

If you’re working within the ever-growing subset of code that can be executed
inside constant functions (with const fn), you can also implement static dispatch
using these functions. Here’s an example:

hello_bonjour_const/src/main.rs
enum Language { English, French }

const fn hello(language: Language) -> &'static str {
match language {

Language::English => "Hello World",
Language::French => "Bonjour le monde",

}
}

34. https://doc.rust-lang.org/cargo/reference/features.html

report erratum • discuss

Hello, Bonjour • 91

http://media.pragprog.com/titles/hwrustbrain/code/hello_bonjour_static/Cargo.toml
http://media.pragprog.com/titles/hwrustbrain/code/hello_bonjour_static/src/main.rs
http://media.pragprog.com/titles/hwrustbrain/code/hello_bonjour_const/src/main.rs
https://doc.rust-lang.org/cargo/reference/features.html
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

fn main() {
println!("{}", hello(Language::English));

}

In this code, hello() is a constant function. It’s evaluated entirely at compile time,
so the language parameter must come from a constant source.

At the other end of the spectrum, dynamic dispatch makes decisions while
your program runs. Let’s have a look.

Dynamic Dispatch

Dynamic dispatch is a fancy computer-science phrase for “use a match state-
ment to decide what to do at runtime.” The following is an example:

enum Language = { English, French };
let language = Language::English;
let hello = match language {

Language::English => || println!("Hello World"),
Language::French => || println!("Bonjour le monde"),

};

Dynamic dispatch is slower than compile-time decision-making, but not by
much. A simple match statement is very fast on modern computers—more
complicated match statements may be slower, especially when they occur inside
a large loop. Notice that the closures still act like a variable: you can return
complete closures from a match statement. This is because they are variables,
of type Fn (for immutable functions) or FnMut (that can mutate captured vari-
ables). Runtime selection of closures is very powerful when you need to cus-
tomize your execution flow.

When Should I Use Dynamic vs. Static Dispatch?

Dynamic dispatch is a good place to start, but static dispatch is very useful
when:

• You need to keep your program as small as possible, excluding features
that won’t be used on a given target.

• You want to optionally support additional features. For example, a graphics
library may require a wasm feature flag to enable Web Assembly support.
Using conditional compilation is necessary when you need to only compile
parts of your code when targeting specific environments—WASM-specific
functions won’t exist when compiling against other targets. Conditional
compilation can also let you change your program’s behavior when compiled
to target a specific operating system.

Rust Brain Teasers • 92

report erratum • discuss

http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

• You want to implement several algorithms and test which one is best.
Static dispatch lets you pick one at compilation time, with no additional
cost added to your benchmarks.

Localization

It’s uncommon for larger applications to provide text in multiple
languages with different functions. It’s far more common to define
all the text in your application in “language files” and load the
appropriate language specified in your program’s configuration file.

Further Reading

Features
https://doc.rust-lang.org/cargo/reference/features.html

Const Functions
https://doc.rust-lang.org/reference/const_eval.html#const-functions

Closures
https://doc.rust-lang.org/book/ch13-01-closures.html

report erratum • discuss

Hello, Bonjour • 93

https://doc.rust-lang.org/cargo/reference/features.html
https://doc.rust-lang.org/reference/const_eval.html#const-functions
https://doc.rust-lang.org/book/ch13-01-closures.html
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Puzzle 21

Tying a Gordian Knot

gordian_knot/src/main.rs
#[derive(Debug)]
struct Parser<'a> {

body: String,
subtext : &'a str,

}

fn main() {
let mut document = Parser {

body: "Hello".to_string(),
subtext: ""

};
document.subtext = &document.body;

let b = document;
println!("{:?}", b);

}

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/hwrustbrain/code/gordian_knot/src/main.rs
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

The program will fail to compile with the following message:

error[E0505]: cannot move out of `document` because it is borrowed
--> gordian_knot\src\main.rs:14:13

Discussion
It’s not surprising that this example fails to compile; setting up references
within a structure to other parts of the structure looks like a code smell. What
is surprising is that the compiler makes it nearly to the end of the code before
it flags an error on the second-to-last line.

Structural References
Storing a reference in a struct is entirely valid, but you must provide a lifetime
annotation for both the struct and the reference. In this example, the structure
itself has a lifetime specified: struct Parser<'a>. And the structure’s lifetime is
tied to the stored reference: subtext : &'a str. The lifetime syntax is illustrated as
follows:

struct Parser<'a> {
 body: String,
 subtext : &'a str,
}

Introduce a lifetime named a
that applies to the structure.

Specify that the reference stored in
subtext uses lifetime a.

Connecting the struct lifetime to the reference’s lifetime helps Rust provide
a lifetime guarantee. You cannot instantiate a variable of type Parser unless
the reference it contains is certain to remain valid longer than the structure’s
lifetime. Lifetime annotations help Rust’s lifetime checker help you. You can’t
inadvertently create a reference, destroy the original variable, and then use
the Parser variable by mistake; attempting to use an expired reference will
generate a compilation error.

But don’t be fooled—lifetimes and references in the structure are not the
cause of the problem. What about the self-referential assignment? Could that
be the problem? Let’s find out.

Rust Brain Teasers • 96

report erratum • discuss

http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Self-Referential Assignment
The example assigns part of a Parser structure to another part of itself:

a.subtext = &a.body;

Self-referential assignments may look suspicious, but surprisingly, the code
is valid, so it compiles. The assignment doesn’t violate any of Rust’s memory
safety rules:

• Storing a reference to itself does not violate the lifetime specifications. A
reference to part of the structure has to live as long as the structure. No
problem there.

• body is borrowed immutably, and only once. No borrow checker rules are
violated.

If the borrow checker and lifetimes are also not the problem, then why won’t
the example compile?

Valid but Unchangeable Structures
Once document is assigned a self-reference, it’s in an unusual state: it remains
valid but cannot be modified. As a result, the following Rust safety constraints
kick in:

• The lifetime a requires that the struct’s body member remain valid. Drop-
ping body would invalidate the lifetime guarantee for subtext.

• The borrow checker remembers that subtext is immutably borrowing body.
Any attempt to mutate body—including changing or dropping it—will fail.

Oddly enough, Rust lets you create a Gordian knot—a complicated problem
that seems too difficult to solve. document is valid, but using it is almost always
not. When you assign subtext to be a reference (pointer) to body—a reference
within the same structure—you create two safety guarantees:

Parser {
 body: “Hello World”
 subtext: pointer
}

subtext is borrowing body

Lifetime a
subtext and Parser share the

same lifetime requirement.

Assign subtext to body:

a

a

The innocuous-looking statement let b = a triggers a borrow-checker violation.
Assigning document to b triggers a move. The memory storing document is moved
into b. This counts as a mutation, and the borrow checker refuses to let you
perform the move because document.body is borrowed immutably. The move fails
even in a release mode build—where the compiler will almost certainly optimize

report erratum • discuss

Tying a Gordian Knot • 97

http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

away the actual memory copying/movement. The borrow-checking violation
occurs because your Parser is borrowing from itself:

Parser {
 body: “Hello World”
 subtext: pointer
}

Assigning b to document:
d
o
cu

m
en

t

b

Compiler error

subtext is borrowing body
body cannot be moved

!

Editing document is also very difficult. If you attempt to edit document.body with
document.body = "World".to_string(), the borrow checker flags the edit and prevents
you from doing so. You have created a mutable read-only variable.

It’s also really difficult to get rid of document. std::mem::drop(document) also fails
with a borrow-checker error. Rust’s attempts to Drop the structure violate the
borrow checker’s rules, because the stucture is already borrowed.

So, how do you untie this seemingly impossible knot?

Untying the Gordian Knot
One method of untying the Gordian knot is to place it in its own scope. The
following code compiles:

fn main() {
{

let mut a = Parser {
body: "Hello".to_string(),
subtext: ""

};
a.subtext = &a.body;

}
}

You can safely use self-referential structures inside of functions for this reason.
Rust knows that the entire structure is vanishing when it leaves the active
scope, and it disposes of it in one fell swoop.

Why Use Self-Referential Structures?
If your structure holds a large amount of data, storing references to part of
the stored data can be very useful. For example, a parser might need to store
references to parts of the source code it’s reading. Here are a few suggestions
to help you when you need to do this:

• Consider extracting self-referential systems into separate structures that
refer to the parent variable. This solution makes deletion of the objects

Rust Brain Teasers • 98

report erratum • discuss

http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

explicit: you can safely drop the child object at any time, but Rust’s lifetime
protection still guarantees that the parent object must outlive its children.

• Limit the use of self-referencing objects to short-lived scopes that can be
safely deleted.

• If you’re referencing index data, you could store the index to which you
are referring rather than a direct reference/pointer to the referenced data.

• If all else fails, use reference counting (Rc) and weak pointers to untangle
your data.35

Rust’s borrow-checking and lifetime checking features can sometimes add a
little complexity to your code. It’s a trade-off: on one hand, it’s very difficult
to create dangerous code. On the other, sometimes you’d like to perform a
safe operation but have to jump through a few extra hoops to prove that your
operation is safe to Rust.

Further Reading

Validating References with Lifetimes
https://doc.rust-lang.org/book/ch10-03-lifetime-syntax.html

References and Borrowing
http://web.mit.edu/rust-lang_v1.25/arch/amd64_ubuntu1404/share/doc/rust/html/book/first-
edition/references-and-borrowing.html

35. https://doc.rust-lang.org/std/rc/struct.Weak.html

report erratum • discuss

Tying a Gordian Knot • 99

https://doc.rust-lang.org/book/ch10-03-lifetime-syntax.html
http://web.mit.edu/rust-lang_v1.25/arch/amd64_ubuntu1404/share/doc/rust/html/book/first-edition/references-and-borrowing.html
http://web.mit.edu/rust-lang_v1.25/arch/amd64_ubuntu1404/share/doc/rust/html/book/first-edition/references-and-borrowing.html
https://doc.rust-lang.org/std/rc/struct.Weak.html
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Puzzle 22

Waiting for Godot

waiting_for_godot/Cargo.toml
[package]
name = "waiting_for_godot"
version = "0.1.0"
edition = "2018"

[dependencies]
tokio = { version = "1", features = ["full"] }

waiting_for_godot/src/main.rs
async fn hello() {

println!("Hello, World!")
}

#[tokio::main]
pub async fn main() -> Result<(), Box<dyn std::error::Error>> {

hello();
Ok(())

}

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/hwrustbrain/code/waiting_for_godot/Cargo.toml
http://media.pragprog.com/titles/hwrustbrain/code/waiting_for_godot/src/main.rs
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

The program will not print anything.

Discussion
You explored asynchronous task scheduling in Puzzle 19, Sleepless in Tokio
, on page 81, where you learned that tasks are executed by your program’s
Executor, running until they yield control back to the task queue. Tasks only
yield when they return a value or error, call another asynchronous task, finish
execution, or call yield_now. Tasks also don’t start when you call them. When
you call a function decorated with the async keyword, it returns a Future.36

Calling an async-decorated function doesn’t execute the function—instead, it
packages it up for future execution.

Let’s take a look at the life cycle of an asynchronous function:

1. Create an asynchronous function, using the async keyword.

async fn my_function() { ... }

2. Executing the function creates a Future, wrapping your function in a promise of future execution.

let promise = my_function() Returns a Future<my_function>
my_function does not execute yet!

3. Add the Future<my_function> to the Executor’s task queue:
my_function().await
spawn(promise)
join!(promise, -other futures-)
select!(promise, -other futures-)

You may use any
of these methods

Executing an async function is a two-step process. The first creates a promise
of future execution. Separating these steps gives you the flexibility to decide
how you want to actually run your function.

Asynchronous Future Choices

When you call a function decorated with the async keyword, the function
doesn’t automatically start. Instead, it returns a variable implementing the
Future trait.37 Futures are the primary building block of asynchronous program-
ming. When you create a Future, you’re indicating that your task is packaged
up and ready to go. Once you have a Future, you may:

• Call spawn to add the task to your executor’s task queue and not wait
around for an answer.

36. https://doc.rust-lang.org/std/future/index.html
37. https://doc.rust-lang.org/std/future/trait.Future.html

Rust Brain Teasers • 102

report erratum • discuss

https://doc.rust-lang.org/std/future/index.html
https://doc.rust-lang.org/std/future/trait.Future.html
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

• await a result from the task, yielding control to other tasks until a result
is available.

• Use join macros to execute several tasks at once and wait for all of them
to complete.

• Call select to execute several tasks and continue when one of them returns
a result.

Let’s use await to execute the hello() function.

Executing Hello

You can make the program print Hello, World! by telling the main function to
await a result from hello(). To do so, you’d adjust your code as follows:

#[tokio::main]
pub async fn main() -> Result<(), Box<dyn std::error::Error>> {

hello().await;
Ok(())

}

The await instructs the tokio executor to suspend task execution and commence
execution of hello. When the hello() function finishes executing, the function
yields control to the main function—which then exits. With this modification,
the program will operate as you probably expect, displaying the following
output:

Hello, World!

Future Enhancements to Clippy

Creating a Future but not executing it (via spawning the task or using
the await keyword) is a very common error for developers new to Rust
asynchronous programming. The Rust compiler emits a warning
that your function will not execute unless you await or spawn it.

Further Reading

Asynchronous Programming in Rust
https://rust-lang.github.io/async-book/

Rust Futures
https://doc.rust-lang.org/std/future/trait.Future.html

Demystifying Closures, Futures and async-await in Rust-Part 3: Async & Await
https://medium.com/@alistairisrael/demystifying-closures-futures-and-async-await-in-rust-part-
3-async-await-9ed20eede7a4

report erratum • discuss

Waiting for Godot • 103

https://rust-lang.github.io/async-book/
https://doc.rust-lang.org/std/future/trait.Future.html
https://medium.com/@alistairisrael/demystifying-closures-futures-and-async-await-in-rust-part-3-async-await-9ed20eede7a4
https://medium.com/@alistairisrael/demystifying-closures-futures-and-async-await-in-rust-part-3-async-await-9ed20eede7a4
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Puzzle 23

Constant Loops

const_loop/src/main.rs
const fn fib(n: u128) -> u128 {

let mut a = 1;
let mut b = 1;
for _ in 2..n {

let tmp = a + b;
a = b;
b = tmp;

}
b

}

fn main() {
for i in 0..5 {

println!("Fib {} = {}", i, fib(i));
}

}

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/hwrustbrain/code/const_loop/src/main.rs
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

The program will fail to compile with the following error message:

'for' is not allowed in a 'const fn'

Discussion
Marking a function as const causes the function to run at compile time rather
than at runtime. When a function runs at compile time, the compiler calculates
the results beforehand from constant inputs, which can help speed up complex
calculations that you might need later.

Suppose your program requires a lot of Fibonacci numbers. Without a const
function, your program would need to recalculate the numbers as needed,
and possibly more than once. However, by using a const function, you can
store these numbers as constant values in your program, dramatically
improving your program’s performance.

const functions—a relatively new Rust feature—are gradually becoming more
powerful. However, at the time of this publication, you cannot use the following
Rust features inside of a constant function:38

• Floating-point operations (you can move them around, but you can’t work
with them).

• Dynamic trait types.

• Generic bounds on parameters other than Sized.

• Raw pointer operations.

• Union (enum) field access.

• transmute and similar memory operations.

As it turns out, for loops fall into the unavailable category because they require
a Range—prohibited because of the generic bounds restriction. This makes
the example code fail to compile.

Other loop types work fine, though. For example, you can rewrite the example
using a while loop:

38. https://doc.rust-lang.org/reference/const_eval.html#const-functions

Rust Brain Teasers • 106

report erratum • discuss

https://doc.rust-lang.org/reference/const_eval.html#const-functions
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

const_loop_works/src/main.rs
const fn fib(n: u128) -> u128 {

let mut a = 1;
let mut b = 1;
let mut counter = 2;
while counter < n {

let tmp = a + b;
a = b;
b = tmp;
counter += 1;

}
b

}

fn main() {
for i in 0..5 {

println!("Fib {} = {}", i, fib(i));
}

}

Rust is adding more and more const fn support over time, as the compile-time
environment is extended to support it.

Constant Guarantees

C++ includes a facility to label a function as constexpr. In C++, this
doesn’t guarantee that the function runs at compile-time—it sug-
gests it. Rust is more strict: constant functions must run at com-
pile time and not during regular program execution. This ensures
that you know exactly what resources you are utilizing by executing
the function: nothing at runtime, at the expense of longer compi-
lation times.39

C++ constexpr launched with a very restrictive set of supported fea-
tures, and added to the available functionality over time. Rust is
following a similar trajectory.

Using Constant Functions
As you just learned, constant functions can shift some of the calculation
burden to compile time, helping to speed up your program’s execution. Here
are a few scenarios in which constant functions are useful:

• Programs often rely on the results of complex calculations with limited
sets of input. With const variables and functions, you can build lookup

39. https://en.cppreference.com/w/cpp/language/constexpr

report erratum • discuss

Constant Loops • 107

http://media.pragprog.com/titles/hwrustbrain/code/const_loop_works/src/main.rs
https://en.cppreference.com/w/cpp/language/constexpr
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

tables of the required results, skipping the need to perform these calcula-
tions at runtime.

• Sometimes your program relies on a predetermined piece of math, yet
showing the work can help explain what your program does. Moving that
work to compile time removes the runtime performance penalty for per-
forming the calculation—and you’re still free to tweak the math in the
source code.

Note, however, that constant functions have some serious limitations on the
types of data they can use. An alternative is to write a separate program to
calculate a lookup table and then copy and paste the results into a const
variable.

Further Reading

Const Functions
https://doc.rust-lang.org/reference/const_eval.html#const-functions

Rust Brain Teasers • 108

report erratum • discuss

https://doc.rust-lang.org/reference/const_eval.html#const-functions
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Puzzle 24

Home on the Range

morse_code/src/main.rs
fn main() {

..;
}

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/hwrustbrain/code/morse_code/src/main.rs
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

The program will compile and run, but it won’t display any output.

Discussion
The .. symbol has a few meanings in Rust:

• .. without numbers indicates a range containing every available value.

• 1..3 creates a range that starts at 1 and stops at 2.

• 1.. creates a range that starts at 1 and continues forever.

• ..10 creates a range that includes every number up to but not includ-
ing 10.

• Used on an indexed type, [..] creates a RangeFull value.

• In a match or if let statement, MyOption(field, ..) ignores all other parameters
that you haven’t explicitly named.

The example is accumulating range expressions. No ranges are provided, but
the syntax remains technically valid. The example compiles, but it is very
unlikely that you will ever need it.

Rust was developed in the open and has accumulated a surprising number
of expressions that compile but aren’t useful. The Rust language repository
contains a collection of these oddities.40 The repo even includes an example
that takes this example to an extreme length:

fn punch_card() -> impl std::fmt::Debug {
..=..=..=.. ..
..=.. ..=..=..=..=..
..=.. ..=.. ..=.. ..=..=..=..=.. ..
..=..=..=.. ..=.. ..=..=.. ..
..=.. ..=.. ..=.. ..=..=..=.. ..
..=.. ..=.. ..=.. ..=..=..=.. ..
..=.. ..=..=..=.. ..=..=..=.. ..

}

Every language has accumulated a similar list of not so helpful—yet entertain-
ing—syntax that surprises you by compiling. Finding them can be fun.

40. https://github.com/rust-lang/rust/blob/master/src/test/ui/weird-exprs.rs

Rust Brain Teasers • 110

report erratum • discuss

https://github.com/rust-lang/rust/blob/master/src/test/ui/weird-exprs.rs
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Placeholders

When I found out that you could use .. as a function body, I was
very tempted to use it to indicate placeholders—code that still
needed to be written. Rust has a built-in solution: the todo! macro.41

Further Reading

Rust Weird Expressions
https://github.com/rust-lang/rust/blob/master/src/test/ui/weird-exprs.rs

41. https://doc.rust-lang.org/std/macro.todo.html

report erratum • discuss

Home on the Range • 111

https://github.com/rust-lang/rust/blob/master/src/test/ui/weird-exprs.rs
https://doc.rust-lang.org/std/macro.todo.html
http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Bibliography

[KN19] Steve Klabnik and Carol Nichols. The Rust Programming Language (Covers
Rust 2018). No Starch Press, San Francisco, CA, 2019. Steve Klabnik and
Carol Nichols. The Rust Programming Language (Covers Rust 2018). No
Starch Press, San Francisco, CA, 2019.

[Wol21] Herbert Wolverson. Hands-on Rust. The Pragmatic Bookshelf, Raleigh, NC,
2021.

report erratum • discuss

http://pragprog.com/titles/hwrustbrain/errata/add
http://forums.pragprog.com/forums/hwrustbrain

Index

SYMBOLS
∗ (asterisk), de-reference oper-

ator, 78

.. (two dots) symbol, 109–111

_ (underscore), in or as an
identifier, 31–34

A
arbitrary precision library, 5–

6

Arc type, 52

arrays, 37, 44–47, 60

as keyword, 11–14, 31–34

asterisk (∗), de-reference oper-
ator, 78

async functions, executing,
101–103

async keyword, 82, 102

Async-Std, 87

asynchronous programming
about, 84–85
blocking tasks, 85
compared to threaded

programming, 81–82
executing async functions,

101–103
executor for, 85, 102
futures for, 82, 87, 102–

103
long-running tasks, 86
resources, 87
when to use, 86

atomic reference-counted
smart pointers, 52

await keyword, 84, 103

B
blocking tasks, 85

borrowing, 97–99

Box type, 44, 46, 48, 51–52

Box::leak function, 50

box_syntax feature, 47–48

C
C and C++, see also interoper-

ability
constexpr functions in, 107
floating-point precision

with libraries in, 25
function overloading in,

70
smart pointers in, 51
stack vs. heap in, 46
warnings for shadowed

variables in, 57

C#, reference counting in, 65

call stack, 44

cargo +nightly run command, 48

cargo clippy command, 14

cargo run --features command, 91

cargo run --release command, 16

cargo run command, xii

Cargo.toml file, xii

ceil() function, 12

characters, see also strings
counting, in strings, 21
homoglyphs, 39–41
non-printing characters,

8
representation of, 20, 22

chars() function, 21

checked_ functions, 17

Clippy
floating-point compar-

isons, checking, 24–25
Future warnings in, 103
shadowed variables, de-

tecting, 57
type conversions, check-

ing, 14

closures, 89–90, 93

compiler optimizations
borrowed mutability and,

79
in debug mode, 16
with fastpath library, 25
in release mode, 47
for structures, 61

concurrency, see asyn-
chronous programming;
threaded programming

conditional compilation, 90

const keyword, 106

constant functions, 91–93
loops in, 105–107
restrictions on, 106
when to use, 107–108

constant variables, 108

control sequences, in strings,
8

count() function, 21

cyclic references, 65–66

D
data structures, see arrays;

linked lists; structures;
vectors

data types, see also type con-
version

characters, 8, 20–22, 39–
41

floating-point numbers,
3–6, 12, 23–25, 35–38

inferred typing, 33–34
integers, 12, 15–17
resources for, 18
strings, 7–9, 19–22
strong types, 29

databases
parametrized queries, 9
SQL injection, 9

de-reference operator (∗), 78

debug mode
cyclic references and, 66
running program in, 16
stack overflow in, 44
testing in, 16

debugging, stack used for, 45

#[derive(Debug)] decoration, 66

dots, two (..) symbol, 109–111

duck typing, 32

dynamic dispatch, 92–93

E
EPSILON, comparisons with, 25

Erlang/Elixir, 85

examples, running, xii

executor, 85, 102

external libraries, floating-
point calculations from, 25

F
f128 crate, 5–6

f32 type, see floating-point
numbers

f64 type, 5

fastmath library, 25

feature flags, 90, 93

fixed crate, 5–6

float_cmp crate, 24–25

floating-point numbers
calculations and compar-

isons with, 23–25
converting to integers, 12
precision of, 3–6, 24
representation of, 5

resources for, 6
sorting, 35–38

floor() function, 12

From trait, 27–29

function overloading, 69–72

futures, 82, 87, 102–103

futures crate, 85

G
garbage collection, 65–66

generics, 70–72

H
heap, 45–48

Homoglyph Attack Generator,
41

homoglyphs, 39–41

I
IEE-754 Floating Point Stan-

dard, 4, 6

inferred typing, 33–34

Infinity keyword, 36

integers
converting floating-point

numbers to, 12
numeric overflow with,

15–17
representation of, 16

interoperability
forget variables for, 52
function overloading and,

72
structure sizing and, 60–

61

Into trait, 13–14, 27–29, 34

J
Java, reference counting in,

65

join macro, 82, 103

L
lambda functions, see clo-

sures

len() function, 19–22

lifetimes, 96, 99

LIFO (last in, first out), stacks
as, 44

linked lists
about, 63–64
cyclic references in, 65–

66
implementing, 64–65
whether to use, 66

literal values, type checking
by compiler, 12

literals, references to, 78

localization, 93

loops
in constant functions,

105–107
endless, 49–52

lossy type conversion, 11–13

M
M:N green threading, 85

match statement, 92

memory
heap, 45–48
protection features, 50–

52
stack, 43–48
structure sizing, 59–61

memory leaks, 49–52

multi-glyph homoglyphs, 40

&mut syntax, 78–79

mutability of variables, 77–79

N
name mangling, 70

NaN (Not a Number) keyword,
36

.NET systems, 85

Nettfiske crate, 40–41

NodeJS, 85

non-printing characters, in
strings, 8

Not a Number (NaN keyword),
36

numbers
floating-point numbers,

3–6, 12, 23–25, 35–38
integers, 12, 15–17
non-number results of

calcuations, 36

numeric overflow, 15–17

O
Ord trait, 36, 38

overflowing_ functions, 17

P
parameterized queries, 9

partial_cmp() function, 37

PartialEq trait, 36

PartialOrd trait, 36–38

Index • 116

performance
of arrays compared to

vectors, 46, 48
of asynchronous tasks,

84
of compilation of gener-

ics, 71
of constant functions,

106, 108
of debug mode, 16
of dynamic dispatch, 92
of linked lists compared

to vectors, 67
of stack, 44
structure sizing and, 60
of threads, 84, 86
trade-off with precision,

5–6
vector growth and, 75

periods, two (..) symbol, 109–
111

phishing attacks, 40

placeholder code, 111

pointers
inferred typing for, 33
reference-counted, 51
smart, 46, 51

popping the stack, 44

precision, of floating-point
numbers, 3–6, 23–25

profiles, 16, 18

pushing the stack, 44

R
Rayon, 87

Rc type, 51, 64–65

RefCell type, 64–65

reference counting, 64–65, 67

reference-counted pointers,
51

references
mutability of, 78–79
structural, 96–99

regex create, 9

regular expressions, 9

release mode
running program in, 16
stack overflow avoided in,

44, 47

#[repr()] decoration, 61

resources
asynchronous program-

ming, 87, 103
author contact informa-

tion, xiii

closures, 93
constant functions, 93,

108
feature flags, 93
floating-point numbers,

6, 25
generics, 72
homoglyphs, 41
linked lists, 67
memory leaks, 52
mutability, 79
numeric overflow, 18
Rust language, xii
shadowed variables, 57
sorting floating-point

numbers, 38
stack and heap, 48
strings, 9, 22
structural references, 99
type conversion, 14, 29
vectors, 76
weird expressions in

Rust, 111

round() function, 12

rug crate, 5–6

Rust
about, xi
learning, xii
quirks, xi–xii
unstable branches of,

using, 47–48
weird expressions in, 111

S
scope, shadowed variables

and, 55, 57

security
phishing attacks, 40
SQL injection, 9

select keyword, 103

self-referential structures, 97–
99

shadowed closures, 89–90

shadowed functions,
see function overloading

shadowed variables
about, 53–55
detecting with Clippy, 57
when not to use, 57
when to use, 55–57

slice, 37

smart pointers, 46, 51

sort() function, 36

sort_by() function, 37

sorting floating-point num-
bers, 35–38

spawn keyword, 102

SQL injection, 9

stack, 43–48

static dispatch, 90–93

std-async crate, 85

std::mem::drop function, 51, 98

std::mem::forget function, 50–52

stdin (standard input), strings
returned by, 7–9

strings, see also characters
case of, changing, 9
extracting parts of, 9
length of, 19–22, 40
representation of, 20
resources for, 9, 22
returned by stdin, 7–9
trimming, 8–9

strong types, 29

structural references, 96–99

structures (struct type), size of,
59–61

T
tangent, 36

task-based asynchronous
programming, 84, 86

task-based threading, 87

testing, debug mode for, 16

thread::sleep function, 84–85

thread::spawn function, 82–84

threaded programming
about, 82–84
compared to asyn-

chronous program-
ming, 81–82

task-based, 87
when to use, 86

to_lowercase() function, 9

to_uppercase() function, 9

todo! keyword, 111

Tokio, 87

Tokio executor, 85–86

tokio::spawn_blocking function, 86

tokio::task::yield_now function,
84, 86

tokio::time::sleep function, 85

trim() function, 8–9

TryFrom trait, 28–29

TryInto trait, 13–14, 28–29, 34

two dots (..) symbol, 109–111

two’s complement, 16, 18

Index • 117

type conversion
as keyword for, 11–14,

31–34
checking for errors with,

14
compiler checking for, 12
duck typing, 32
excessive number of, 14
Into trait for, 13–14, 27–

29, 34
resources for, 29
strong types for, 29
TryInto trait for, 13–14, 34

U
underscore (_), in or as an

identifier, 31–34

Unicode symbol reference, 22

unicode-reverse crate, 41

unsafe tags, 50

unused variables, 32

unwrap() function, 37

unwrap_or() function, 37

UTF-8 encoding
modifier characters, 40
for strings, 20–22

V
variables

borrowed mutability with,
79

de-referencing, 78–79
declaring as mutable, 78
immutable by default,

77–78

shadowed, 53–57
unused, 32

Vec::extend syntax, 75

Vec::with_capacity syntax, 75

VecDeque structure, 76

vectors
allocated on heap, 45
benefits of, 46–47
growth of, 74–75
guidelines for using, 75–

76
performance of, 67
size of, 73–74
slice of, 37

W
Weird Text Generator, 41

Wrapping facility, 17–18

Index • 118

Thank you!
We hope you enjoyed this book and that you’re already thinking about what
you want to learn next. To help make that decision easier, we’re offering
you this gift.

Head on over to https://pragprog.com right now, and use the coupon code
BUYANOTHER2022 to save 30% on your next ebook. Offer is void where
prohibited or restricted. This offer does not apply to any edition of the The
Pragmatic Programmer ebook.

And if you’d like to share your own expertise with the world, why not propose
a writing idea to us? After all, many of our best authors started off as our
readers, just like you. With a 50% royalty, world-class editorial services,
and a name you trust, there’s nothing to lose. Visit https://pragprog.com/become-
an-author/ today to learn more and to get started.

We thank you for your continued support, and we hope to hear from you
again soon!

The Pragmatic Bookshelf

SAVE 30%!
Use coupon code
BUYANOTHER2022

https://pragprog.com
https://pragprog.com/become-an-author/
https://pragprog.com/become-an-author/

Hands-on Rust
Rust is an exciting new programming language com-
bining the power of C with memory safety, fearless
concurrency, and productivity boosters—and what
better way to learn than by making games. Each
chapter in this book presents hands-on, practical
projects ranging from “Hello, World” to building a full
dungeon crawler game. With this book, you’ll learn
game development skills applicable to other engines,
including Unity and Unreal.

Herbert Wolverson
(342 pages) ISBN: 9781680508161. $47.95
https://pragprog.com/book/hwrust

Programming WebAssembly with Rust
WebAssembly fulfills the long-awaited promise of web
technologies: fast code, type-safe at compile time, exe-
cution in the browser, on embedded devices, or any-
where else. Rust delivers the power of C in a language
that strictly enforces type safety. Combine both lan-
guages and you can write for the web like never before!
Learn how to integrate with JavaScript, run code on
platforms other than the browser, and take a step into
IoT. Discover the easy way to build cross-platform ap-
plications without sacrificing power, and change the
way you write code for the web.

Kevin Hoffman
(238 pages) ISBN: 9781680506365. $45.95
https://pragprog.com/book/khrust

https://pragprog.com/book/hwrust
https://pragprog.com/book/khrust

Pandas Brain Teasers
This book contains 25 short programs that will chal-
lenge your understanding of Pandas. Like any big
project, the Pandas developers had to make some de-
sign decisions that at times seem surprising. This book
uses those quirks as a teaching opportunity. By under-
standing the gaps in your knowledge, you’ll become
better at what you do. Some of the teasers are from
the author’s experience shipping bugs to production,
and some from others doing the same. Teasers and
puzzles are fun, and learning how to solve them can
teach you to avoid programming mistakes and maybe
even impress your colleagues and future employers.

Miki Tebeka
(110 pages) ISBN: 9781680509014. $18.95
https://pragprog.com/book/d-pandas

Go Brain Teasers
This book contains 25 short programs that will chal-
lenge your understanding of Go. Like any big project,
the Go developers had to make some design decisions
that at times seem surprising. This book uses those
quirks as a teaching opportunity. By understanding
the gaps in your knowledge, you’ll become better at
what you do. Some of the teasers are from the author’s
experience shipping bugs to production, and some
from others doing the same. Teasers and puzzles are
fun, and learning how to solve them can teach you to
avoid programming mistakes and maybe even impress
your colleagues and future employers.

Miki Tebeka
(110 pages) ISBN: 9781680508994. $18.95
https://pragprog.com/book/d-gobrain

https://pragprog.com/book/d-pandas
https://pragprog.com/book/d-gobrain

Python Brain Teasers
We geeks love puzzles and solving them. The Python
programming language is a simple one, but like all
other languages it has quirks. This book uses those
quirks as teaching opportunities via 30 simple Python
programs that challenge your understanding of Python.
The teasers will help you avoid mistakes, see gaps in
your knowledge, and become better at what you do.
Use these teasers to impress your co-workers or just
to pass the time in those boring meetings. Teasers are
fun!

Miki Tebeka
(116 pages) ISBN: 9781680509007. $18.95
https://pragprog.com/book/d-pybrain

Practical Programming, Third Edition
Classroom-tested by tens of thousands of students,
this new edition of the best-selling intro to program-
ming book is for anyone who wants to understand
computer science. Learn about design, algorithms,
testing, and debugging. Discover the fundamentals of
programming with Python 3.6—a language that’s used
in millions of devices. Write programs to solve real-
world problems, and come away with everything you
need to produce quality code. This edition has been
updated to use the new language features in Python
3.6.

Paul Gries, Jennifer Campbell, Jason Montojo
(410 pages) ISBN: 9781680502688. $49.95
https://pragprog.com/book/gwpy3

https://pragprog.com/book/d-pybrain
https://pragprog.com/book/gwpy3

Kotlin and Android Development featuring Jetpack
Start building native Android apps the modern way in
Kotlin with Jetpack’s expansive set of tools, libraries,
and best practices. Learn how to create efficient, re-
silient views with Fragments and share data between
the views with ViewModels. Use Room to persist valu-
able data quickly, and avoid NullPointerExceptions
and Java’s verbose expressions with Kotlin. You can
even handle asynchronous web service calls elegantly
with Kotlin coroutines. Achieve all of this and much
more while building two full-featured apps, following
detailed, step-by-step instructions.

Michael Fazio
(444 pages) ISBN: 9781680508154. $49.95
https://pragprog.com/book/mfjetpack

Modern CSS with Tailwind
Tailwind CSS is an exciting new CSS framework that
allows you to design your site by composing simple
utility classes to create complex effects. With Tailwind,
you can style your text, move your items on the page,
design complex page layouts, and adapt your design
for devices from a phone to a wide-screen monitor.
With this book, you’ll learn how to use the Tailwind
for its flexibility and its consistency, from the smallest
detail of your typography to the entire design of your
site.

Noel Rappin
(90 pages) ISBN: 9781680508185. $26.95
https://pragprog.com/book/tailwind

https://pragprog.com/book/mfjetpack
https://pragprog.com/book/tailwind

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by professional developers for professional
developers. The titles continue the well-known Pragmatic Programmer style and continue
to garner awards and rave reviews. As development gets more and more difficult, the Prag-
matic Programmers will be there with more titles and products to help you stay on top of
your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/hwrustbrain
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up to Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this ebook, perhaps you’d like to have a paper copy of the book. Paperbacks are
available from your local independent bookstore and wherever fine books are sold.

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/hwrustbrain
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Preface
	About the Author
	About the Code
	About You
	Keep an Open Mind

	Part I—Rust Brain Teasers
	Puzzle 1. Three and a Bit
	Puzzle 2. Non-standard Input
	Puzzle 3. Type Conversion
	Puzzle 4. Byte-Sized Chunks
	Puzzle 5. How Long Is a String?
	Puzzle 6. Please Reboot the Universe
	Puzzle 7. There and Back Again
	Puzzle 8. Walks Like a Duck, Quacks Like a Duck
	Puzzle 9. Out of Order
	Puzzle 10. X Marks the Spot
	Puzzle 11. Stacking Boxes
	Puzzle 12. Amnesia
	Puzzle 13. Reverse the Polarity of the Neutron Flow
	Puzzle 14. Structure Sizing
	Puzzle 15. To Infinity
	Puzzle 16. Double or Nothing
	Puzzle 17. How Long Is a Vector?
	Puzzle 18. Mutable Immutables
	Puzzle 19. Sleepless in Tokio
	Puzzle 20. Hello, Bonjour
	Puzzle 21. Tying a Gordian Knot
	Puzzle 22. Waiting for Godot
	Puzzle 23. Constant Loops
	Puzzle 24. Home on the Range

	Bibliography
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– L –
	– M –
	– N –
	– O –
	– P –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –

