
Foreword by Allen Wyma

DAVE MACLEOD



2 EPILOGUE 

Regular ASCII

Characters can need up to 4 bytes

97

195

229

240

159

155

147

189

133 177

German Eszett
(LATIN SMALL LETTER
SHARP S)

CJK UNIFIED
IDEOGRAPH-56FD

EGYPTIAN
HIEROGLYPH
G043

Traits look like classes, but think of them as QUALIFICATIONS

Some traits:

trait French {}
trait LawyerSkill {}
trait MedicalSkill {}

With effort, anyone can learn 
French, anyone can take the bar 
exam, anyone can get a medical 
degree. You can even get all three 
if you work for it.

Rect  {
     min: Pos2,
     max: Pos2,
}

Pos2 {
    x: 100.0,
    y: 400.0
}

500.0

500.00.0
0.0

Y X

Learn Rust in a Month of Lunches takes you from the basics . . .

. . . to Rust’s more advanced concepts . . .

. . . and finishes up with six fun projects, including a laser pointer for your pet!



Learn Rust in a Month of Lunches





Learn Rust in a
Month of Lunches

DAVE MACLEOD
FOREWORD BY ALLEN WYMA

M A N N I N G
SHELTER ISLAND



For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity. 
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2024 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in 
any form or by means electronic, mechanical, photocopying, or otherwise, without prior 
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are 
claimed as trademarks. Where those designations appear in the book, and Manning 
Publications was aware of a trademark claim, the designations have been printed in initial caps 
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have 
the books we publish printed on acid-free paper, and we exert our best efforts to that end. 
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of 
elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book 
was correct at press time. The author and publisher do not assume and hereby disclaim any 
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether 
such errors or omissions result from negligence, accident, or any other cause, or from any 
usage of the information herein.

Manning Publications Co. Development editor: Ian Hough
20 Baldwin Road Review editor: Aleksandar Dragosavljević 
PO Box 761 Technical editor: Jerry Kuch 
Shelter Island, NY 11964 Production editor: Keri Hales

Copy editor: Alisa Larson
Proofreader: Mike Beady

Technical proofreader: Geert Van Laethem
Typesetter: Marija Tudor

 Cover designer: Leslie Haimes

ISBN 9781633438231
Printed in the United States of America



To MB, Windy, Gomes, and Johnny and to the cloudtops of Venus, 
the most Earth-like environment in the solar system.



vi

brief contents
1 ■ Some basics 1
2 ■ Memory, variables, and ownership 28
3 ■ More complex types 52
4 ■ Building your own types 71
5 ■ Generics, option, and result 90
6 ■ More collections, more error handling 106
7 ■ Traits: Making different types do the same thing 128
8 ■ Iterators and closures 152
9 ■ Iterators and closures again! 169

10 ■ Lifetimes and interior mutability 189
11 ■ Multiple threads and a lot more 209
12 ■ More on closures, generics, and threads 233
13 ■ Box and Rust documentation 261
14 ■ Testing and building your code from tests 282
15 ■ Default, the builder pattern, and Deref 303
16 ■ Const, “unsafe” Rust, and external crates 323
17 ■ Rust’s most popular crates 341
18 ■ Rust on your computer 373
19 ■ More crates and async Rust 396
20 ■ A tour of the standard library 412
21 ■ Continuing the tour 437
22 ■ Writing your own macros 461
23 ■ Unfinished projects: Projects for you to finish 480
24 ■ Unfinished projects, continued 503



contents
foreword xv
preface xvii
acknowledgments xix
about this book xxi
about the author xxiv

1 Some basics 1
1.1 Introducing Rust 2

A pep talk 2 ■ Rust is like a critical spouse 3

1.2 Comments 6
1.3 Primitive types: Integers, characters, and strings 7
1.4 Type inference 14
1.5 Floats 15
1.6 “Hello, World!” and printing 16
1.7 Declaring variables and code blocks 20
1.8 Display and Debug 22
1.9 Smallest and largest numbers 23

1.10 Mutability (changing) 24
1.11 Shadowing 25

2 Memory, variables, and ownership 28
2.1 The stack, the heap, pointers, and references 29
vii



CONTENTSviii
2.2 Strings 30
2.3 const and static 33
2.4 More on references 34
2.5 Mutable references 35

Rust’s reference rules 36 ■ Situation 1: Only one mutable 
reference 36 ■ Situation 2: Only immutable references 37
Situation 3: The problem situation 37

2.6 Shadowing again 38
2.7 Giving references to functions 38
2.8 Copy types 42
2.9 Variables without values 45

2.10 More about printing 45

3 More complex types 52
3.1 Collection types 52

Arrays 53 ■ Vectors 55 ■ Tuples 58

3.2 Control flow 60
Basic control flow 60 ■ Match statements 61 ■ Loops 66

4 Building your own types 71
4.1 A quick overview of structs and enums 71

Structs 72 ■ Enums 75 ■ Casting enums into integers 78
Enums to use multiple types 79 ■ Implementing structs and 
enums 81

4.2 Destructuring 83
4.3 References and the dot operator 87

5 Generics, option, and result 90
5.1 Generics 90
5.2 Option and Result 95

Option 96 ■ Result 99 ■ Some other ways to do pattern 
matching 102

6 More collections, more error handling 106
6.1 Other collections 106

HashMap (and BTreeMap) 107 ■ HashSet and BTreeSet 113
BinaryHeap 115 ■ VecDeque 116

6.2 The ? operator 118



CONTENTS ix
6.3 When panic and unwrap are good 122

7 Traits: Making different types do the same thing 128
7.1 Traits: The basics 128

All you need are the method signatures 131 ■ More complex 
examples 135 ■ Traits as bounds 140 ■ Traits are like 
qualifications 142

7.2 The From trait 145
7.3 The orphan rule 147
7.4 Getting around the orphan rule with newtypes 147
7.5 Taking a String and a &str in a function 149

8 Iterators and closures 152
8.1 Chaining methods 153
8.2 Iterators 154
8.3 Closures and closures inside iterators 161

Closures inside of methods 162 ■ Closures: Lazy and fast 164
|_| in a closure 167

9 Iterators and closures again! 169
9.1 Helpful methods for closures and iterators 170

Mapping and filtering 170 ■ Some more iterator and related 
methods 174 ■ Checking and finding items inside iterators 177
Cycling, zipping, folding, and more 180

9.2 The dbg! macro and .inspect 185

10 Lifetimes and interior mutability 189
10.1 Types of &str 189
10.2 Lifetime annotations 190

Lifetimes in functions 191 ■ Lifetime annotations in types 192
The anonymous lifetime 195

10.3 Interior mutability 199
Cell 200 ■ RefCell 201 ■ Mutex 204 ■ RwLock 206

11 Multiple threads and a lot more 209
11.1 Importing and renaming inside a function 210
11.2 The todo! macro 212
11.3 Type aliases 214



CONTENTSx
11.4 Cow 215
11.5 Rc 219

Why Rc exists 219 ■ Using Rc in practice 220 ■ Avoiding 
lifetime annotations with Rc 223

11.6 Multiple threads 225
Spawning threads 225 ■ Using JoinHandles to wait for threads 
to finish 227 ■ Types of closures 229 ■ Using the move 
keyword 230

12 More on closures, generics, and threads 233
12.1 Closures as arguments 234

Some simple closures 237 ■ The relationship between FnOnce, 
FnMut, and Fn 239 ■ Closures are all unique 240
A closure example 242

12.2 impl Trait 244
Regular generics compared to impl Trait 244 ■ Returning 
closures with impl Trait 246

12.3 Arc 249
12.4 Scoped threads 253
12.5 Channels 256

Channel basics 256 ■ Implementing a channel 257

13 Box and Rust documentation 261
13.1 Reading Rust documentation 262

assert_eq! 262 ■ Searching 263 ■ The [src] button 264
Information on traits 265 ■ Attributes 265

13.2 Box 271
Some Box basics 271 ■ Putting a Box around traits 273
Using a Box to handle multiple error types 276 ■ Downcasting 
to a concrete type 279

14 Testing and building your code from tests 282
14.1 Crates and modules 283

Module basics 283 ■ More on how the pub keyword works 285
Modules inside modules 286

14.2 Testing 289
Just add #[test], and now it’s a test 289 ■ What happens when 
tests fail 290 ■ Writing multiple tests 292



CONTENTS xi
14.3 Test-driven development 293
Building a calculator: Starting with the tests 294 ■ Putting 
the calculator together 296

15 Default, the builder pattern, and Deref 303
15.1 Implementing Default 303
15.2 The builder pattern 306

Writing builder methods 307 ■ Adding a final check to the 
builder pattern 309 ■ Making the builder pattern more 
rigorous 312

15.3 Deref and DerefMut 314
Deref basics 314 ■ Implementing Deref 316
Implementing DerefMut 318 ■ Using Deref the wrong 
way 319

16 Const, “unsafe” Rust, and external crates 323
16.1 Const generics 324
16.2 Const functions 326
16.3 Mutable statics 328
16.4 Unsafe Rust 329

Overview of unsafe Rust 329 ■ Using static mut in unsafe 
Rust 331 ■ Rust’s most famous unsafe method 332
Methods ending in _unchecked 334

16.5 Introducing external crates 335
Crates and Cargo.toml 335 ■ Using the rand crate 336
Rolling some dice with rand 337

17 Rust’s most popular crates 341
17.1 serde 342
17.2 Time in the standard library 344
17.3 chrono 349

Checking the code inside external crates 350 ■ Back to 
chrono 351

17.4 Rayon 354
17.5 Anyhow and thiserror 357

Anyhow 357 ■ thiserror 360

17.6 Blanket trait implementations 362



CONTENTSxii
17.7 lazy_static and once_cell 366
Lazy static: Lazily evaluated statics 366 ■ OnceCell: A cell to 
only write to once 369

18 Rust on your computer 373
18.1 Cargo 374

Why everyone uses Cargo 374 ■ Using Cargo and what Rust 
does while it compiles 376

18.2 Working with user input 380
User input through stdin 380 ■ Accessing command-line 
arguments 382 ■ Accessing environment variables 385

18.3 Using files 388
Creating files 388 ■ Opening existing files 389 ■ Using 
OpenOptions to work with files 389

18.4 cargo doc 392

19 More crates and async Rust 396
19.1 The reqwest crate 396
19.2 Feature flags 399
19.3 Async Rust 402

Async basics 402 ■ Checking whether a Future is ready 403
Using an async run time 405 ■ Some other details about async 
Rust 407

20 A tour of the standard library 412
20.1 Arrays 413

Arrays now implement Iterator 413 ■ Destructuring and 
mapping arrays 414 ■ Using from_fn to make 
arrays 415

20.2 char 417
20.3 Integers 419

Checked operations 419 ■ The Add trait and other similar 
traits 420

20.4 Floats 423
20.5 Associated items and associated constants 424

Associated functions 424 ■ Associated types 425 ■ Associated 
consts 427



CONTENTS xiii
20.6 bool 428
20.7 Vec 430
20.8 String 432
20.9 OsString and CString 434

21 Continuing the tour 437
21.1 std::mem 437
21.2 Setting panic hooks 442
21.3 Viewing backtraces 447
21.4 The standard library prelude 450
21.5 Other macros 451

unreachable! 452 ■ column!, line!, file!, and module_path! 454
thread_local! 456 ■ cfg! 458

22 Writing your own macros 461
22.1 Why macros exist 462
22.2 Writing basic macros 463
22.3 Reading macros from the standard library 470
22.4 Using macros to keep your code clean 475

23 Unfinished projects: Projects for you to finish 480
23.1 Setup for the last two chapters 481
23.2 Typing tutor 481

Setup and first code 481 ■ Developing the code 482
Further development and cleanup 484 ■ Over to you 486

23.3 Wikipedia article summary searcher 487
Setup and first code 487 ■ Developing the code 488
Further development and cleanup 490 ■ Over to you 492

23.4 Terminal stopwatch and clock 492
Setup and first code 492 ■ Developing the code 495
Further development and cleanup 499 ■ Over to you 501

24 Unfinished projects, continued 503
24.1 Web server word-guessing game 503

Setup and first code 504 ■ Developing the code 506
Further development and cleanup 509 ■ Over to you 512



CONTENTSxiv
24.2 Laser pointer 512
Setup and first code 512 ■ Developing the code 514
Further development and cleanup 517 ■ Over to you 520

24.3 Directory and file navigator 520
Setup and first code 521 ■ Developing the code 522
Further development and cleanup 524 ■ Over to you 526

index 529



foreword
The time to learn Rust is now. The sheer amount of C/C++ code written over the past
40 years is mind-boggling. It is used in nearly every operating system and embedded
system, even powering some of the most popular programming languages such as
Python and JavaScript. It has long been a way to make libraries portable and usable in
almost any platform from one to another, even with different CPU architectures. It
has also been the source of most hacks and vulnerabilities.

 You can think of C/C++ as a katana, but without a handle. You can easily craft what
you want, but if you squeeze too tight or aren’t very careful, you can cut yourself or
others. This has long been the tradeoff that we have made to get the run-time speed
and portability that we require when creating software. Thanks to Rust, there’s no
more need to balance risk and speed, as it addresses most of the safety issues that have
long been coupled with traditional C/C++ development.

 This book does an excellent job of easing potential Rustaceans into how Rust
works in small, easily digestible pieces that any developer can consume and under-
stand. This is the first time I’ve seen a book start off showing how to comment in the
language, which is great because you’ll always want to make notes in your code so you
can remember what it does! It’s stunning that some books don’t consider the funda-
mental needs of a beginner reader; I’m happy to report that this book does. I also
enjoy that this book slowly creeps into more advanced topics such as shadowing,
which will usually come up in a Rustacean’s career before a tutorial mentions it, but it
is still important nonetheless.

 Learning Rust isn’t a simple achievement. There’s definitely a rabbit hole of infor-
mation to burrow through, and that path will change whether you’re writing operat-
ing systems or a simple web service. This book will give you the basics and ease you
into Rust without requiring you to install it until toward the end of the book, which
xv



FOREWORDxvi
definitely can help you finish within “a month of lunches.” You’ve done yourself a
favor in buying this book; now do yourself another favor and read it cover to cover.

—ALLEN WYMA, HOST OF RUSTACEAN STATION PODCAST,
DIRECTOR AT PLANGORA LIMITED

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



preface
I’ll forever be grateful to Rust for solving a paradox in my life, that of having a
software-developer-like mind without a place to apply it. I took to programming lan-
guages like a duck to water as a child in the 1980s, which at the time meant BASIC,
which I liked, and Logo, which I didn’t. But truly getting into programming at the
time didn’t mean taking your fancy laptop to Starbucks every day to interact with peo-
ple across the globe; it meant spending days inside the computer lab at school with
the blinds shut, typing away as the rest of the world went about its business in the sun.
Without knowing that programming was much more than working on BASIC and
Logo all day (I probably would have loved Ada if I had known about it), I didn’t get
very far and eventually fell out of love with the idea of programming and moved on to
other interests like heavy metal.

 Other attempts decades later to learn a few popular programming languages never
worked, as they were either too high level, hiding details that I was interested in and
lacking in performance for what I really wanted to do (make video games), or too low
level, lacking safeguards and outright intimidating. There were no external factors
forcing me to learn to code either, as I was already an adult and working full time in
other fields.

 One day in 2019 I set myself to learn Python, Javascript, and other popular lan-
guages for the umpteenth time and thought that I might give this new language called
Rust a look. I had heard that it was challenging and incredibly low level and that you
needed to be a grizzled old software developer of decades to even hope to make heads
or tails of it. Two days later, I was hooked, and my programming language wanderlust
was gone. Without getting into too many details, suffice it to say that I had found the
language that could make what I wanted to make and that showed me the low-level
details I craved to see but with safeguards in place to avoid too many pitfalls.
xvii



PREFACExviii
 Learning Rust was a phenomenal experience, and even in 2019, there were suffi-
cient resources to do so. But I think the first encounter with Rust can be even further
refined, and that’s where this book comes from. If this book ends up being the differ-
ence for enough people between giving up on Rust and going all the way, the years
put into making it will have all been worth it.



acknowledgments
It takes so many people to put a book like this together. First, I’d like to thank all my
family and friends without citing any names in particular, because all of them are fairly
private individuals. None of them live nearby, or even on the same continent, but they
are an inexhaustible bedrock of support regardless of the physical distance.

 As far as years go, I’d like to thank 1999, 2002, and 2017–2018. And, on the subject
of years, I’d like to thank Mary Ann Day-Nasr, Mark Lennox, and my other teammates
for managing to make 2011 and subsequent years at least pretty OK. I’d also like to
thank James Massey for officially turning me from a guy who learned Rust into a pro-
fessional Rust developer by giving me my first job in the field using the language.

 At Manning, I’d like to thank Andy Waldron, my acquisition editor, for seeing the
potential of the book and making it happen in the first place; Ian Hough, develop-
ment editor, for overseeing the entire process and being my main point of contact at
Manning from start to finish; and Jerry Kuch, technical editor, for his insightful com-
ments that read much in the same way that the book itself is meant to: an experienced
yet friendly hand nudging you in the right direction. Other thanks go to Geert Van
Laethem, my technical proofreader, who assisted with checking the code to make sure
all the code samples worked as expected. Last, but not least, thanks to the entire Man-
ning production staff who worked behind the scenes to assemble this book into its
final form. 

 To all the reviewers—Adam Wendell, Al Norman, Al Pezewski, Alex Lucas, Alexey
Vyskubov, Amit Lamba, Andreas Schroepfer, Antonio Gagliardi, Balasubramanian Siv-
asankaran, Bikalpa Timilsina, Dan Sheikh, David Jacobs, David White, Francisco
Claude, Giovanni Alzetta, Giuseppe Catalano, Helmut Reiterer, Horaci Macias, Ionel
Olteanu, Jane Noesgaard Larsen, Jean Lazarou, Jean-Baptiste Bang Nteme, Jeremy
Gailor, Joel Kotarski, John Paraskevopoulos, Jonathan Camara, Jonathan Reeves,
xix



ACKNOWLEDGMENTSxx
Karol Skork, Kent Spillner, Kyle Manning, Laud Bentil, Marcello la Rocca, Marcus
Geselle, Marek Petak, Maxim Levkov, Michael Bright, Michael Wright, Mohsen
Mostafa Jokar, Olivier Ducatteeuw, Rich Yonts, Richard Meinsen, Rohit Sharma, Rosa-
lyn Williams, Sergio Britos, Seung-jin Kim, Si Dunn, Slavomir Furman, Srikar Vedan-
tam, Thomas Lockney, Thomas Peklak, Tiklu Ganguly, Tim Clark, Tim van Deurzen,
and William Wheeler—your suggestions helped make this a better book.



about this book
When Rust was released in 2015, it had to convince the world that it was worth learn-
ing. Back then, a lot of books compared Rust to languages like C++ and C because
Rust is a good alternative language for C++ and C programmers. Rust books and web-
sites were also written for people coming from Java, C#, and other such languages. 

 Now, a lot more people are learning Rust as a first language. For those people, a
book that starts with examples in other languages is going to be confusing. Learn Rust
in a Month of Lunches doesn’t assume that you know general programming terminol-
ogy: words like generics, pointers, stack and heap memory, arguments, expressions, concurrency,
and so on. All of these terms are explained one by one.

 Almost all of Learn Rust in a Month of Lunches is written using the online Rust Play-
ground, which requires nothing to install. You can, of course, use VS Code or some
other IDE you have installed, but you don’t need to. The book intends to be easy in
this sense, too: you should be able to learn most of the language just by opening up a
tab in your browser.

Who should read this book
Learn Rust in a Month of Lunches has a single goal: to be the absolute easiest way for
anyone to learn Rust as quickly as possible. I like to think of the book’s target audi-
ence as these types of people:

 People who are ambitious and want to learn Rust as quickly as possible—The simple
English used in the book gets out of your way and lets you focus more on Rust
itself.

 People with English as a second language—Most developers are good enough at
English that reading documentation is easy enough, but a full book of wordy
and complex English can be a bit of a burden for some.
xxi



ABOUT THIS BOOKxxii
 People who are curious but don’t have enough time in the day and just want to get to the
information—Maybe you only have 30 minutes a day to devote to Rust. Without
any flowery language, you can use those 30 minutes as effectively as possible to
get to the information you want.

 People who have read another introductory Rust book and want to go over the basics
again with something new. 

 People who have tried to learn Rust, but it still hasn’t clicked—Hopefully this book
will be the one that does the trick!

How this book is organized: A road map
Learn Rust in a Month of Lunches is organized into 24 separate chapters but not into
thematic sections as one often sees in a book of its type. That said, the book could be
divided into parts that represent the amount of mental effort required.

 Chapters 1 to 6 are a steady progression from Rust’s simplest types and concepts to
making your own types, working with advanced collection types, and, finally, error
handling and some of the first types and concepts that make Rust quite unique. By the
end of this section, you will have a feel for what makes Rust the language it is and
eager to dive into the rest.

 Chapters 7 to 12 are packed to the brim with new concepts and are the chapters
where Rust will finally start to click. This is probably the most fascinating yet mentally
taxing part of the book. It deals with understanding traits, iterators, closures, lifetimes,
interior mutability, multiple threads, and even a type called Cow.

 Chapters 13 to 16 are where the pace of learning starts to ease up a bit. Many new
concepts are introduced here as well, but they go in hand with beginning to look at
how to start building software in Rust, how to test it, and other tips and tricks involving
patterns you will use often as a Rust developer.

 In Chapters 17 to 19, the book begins to get into external crates: code written by
others for you to use in your own programs. This is the point at which we’ll begin to
assume that you have Rust installed on your computer. It is also the point at which we
will learn about async Rust, which is encountered quite a bit in external crates.

 Chapters 20 and 21 are a fun tour of the standard library. In these two chapters, we
kick back and relax for a bit and see what parts of the standard library we haven’t
come across yet.

 Chapter 22 is about macros, a way to generate code before the compiler begins
looking at it. If you walk away from this chapter with a general understanding of how
to read macros and when you might use them, it will have done its job.

 Chapter 23 and 24 are the last chapters of the book and are a fun send-off. Each
of these chapters contains three unfinished projects for you to pick up and develop
on your own. Each of the six projects compiles and accomplishes its basic objectives
but is left incomplete on purpose to encourage you to make your own changes and
add to them.



ABOUT THIS BOOK xxiii
About the code 
This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. 

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In some cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/learn-rust-in-a-month-of-lunches. The
complete code for the examples in the book is available for download from the Man-
ning website at https://www.manning.com/books/learn-rust-in-a-month-of-lunches.

liveBook discussion forum
Purchase of Learn Rust in a Month of Lunches includes free access to liveBook, Man-
ning’s online reading platform. Using liveBook’s exclusive discussion features, you
can attach comments to the book globally or to specific sections or paragraphs. It’s a
snap to make notes for yourself, ask and answer technical questions, and receive help
from the author and other users. To access the forum, go to https://livebook.manning
.com/book/learn-rust-in-a-month-of-lunches/discussion. You can also learn more
about Manning’s forums and the rules of conduct at https://livebook.manning.com/
discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://livebook.manning.com/book/learn-rust-in-a-month-of-lunches
https://livebook.manning.com/book/learn-rust-in-a-month-of-lunches/discussion
https://livebook.manning.com/book/learn-rust-in-a-month-of-lunches/discussion
https://livebook.manning.com/book/learn-rust-in-a-month-of-lunches/discussion
https://www.manning.com/books/learn-rust-in-a-month-of-lunches
https://livebook.manning.com/discussion
https://livebook.manning.com/discussion
https://livebook.manning.com/discussion


about the author
DAVE MACLEOD is a Canadian who has lived in Korea since 2002, living in Japan a few
years before that. As a child in the 1980s, he made small role-playing games in BASIC
on the family’s ADAM computer, but after a local Logo competition, he decided that
programming was not for him. He felt the urge to code again in the early 2010s, but it
was not until he came across Rust that he found a language to devote himself to. He
speaks a number of natural languages, including Korean and Japanese, as well as the
constructed language Occidental. He has worked as an educator, translator, project
controller, and copywriter before becoming a full-time Rust developer in Seoul,
Korea.

 
 
 

xxiv



Some basics
This first chapter is as easy as Rust gets and has a bit of everything to get started.
You’ll notice that even in Rust’s easiest data types, there’s a strong focus on the bits
and bytes that make up a computer’s system. That means there’s quite a bit of
choice, even in simple types like integers. You’ll also start to get a feel for how strict
Rust is. If the compiler isn’t satisfied, your program won’t run! That’s a good
thing—it does a lot of the thinking for you.

This chapter covers
 Introducing to Rust

 Using comments (putting human-readable hints 
in your code)

 Some primitive types (simple numbers and 
other simple types)

 Type inference (how Rust knows the type)

 “Hello, World!” and printing

 Declaring variables and code blocks

 Shadowing (giving variables the same name)
1



2 CHAPTER 1 Some basics
1.1 Introducing Rust
The Rust language was only released in 2015 and, as of 2024, isn’t even a decade old.
It’s quite new but already very popular, appearing just about everywhere you can think
of—Windows, Android, the Linux kernel, Amazon Web Services (AWS), Discord,
Cloudflare, you name it. It is incredible how popular Rust has become after less than a
decade. Rust earned its popularity by giving you almost everything you could want in a
language: the speed and control of languages like C or C++, the memory safety of
other newer languages like Python, a rich type system that lets you avoid bugs, and a
friendly compiler that helps you when you go wrong. It does this with some new ideas
that are sometimes different from other languages. That means there are some new
things to learn, and you can’t just “figure it out as you go along.” Rust is a language
you have to think about for a while to understand.

 So Rust is a language that is famously difficult to learn. But I don’t agree that Rust
is difficult. Programming itself is difficult. Rust simply shows you these difficulties
when you are writing your code, not after you start running it. That’s where this saying
comes from: “In Rust, you get the hangover first.” In many other languages, the party
starts first: your code compiles and looks great! Then you run your code, and there’s a
lot to debug. That’s when you get the hangover.

 The hangover in Rust is because you have to satisfy the compiler that you are writ-
ing correct code. If your code doesn’t satisfy the compiler, it won’t run. You can’t mix
types together, you have to handle possible errors, you have to decide what to do when
a value might be missing, etc. But as you do that, the compiler gives you hints and sug-
gestions to fix your code so that it will run. It’s tough work, but the compiler tries to
guide you along the way. And when your code finally compiles, it works great.

 In fact, because of that, Rust was the first language that I was properly able to
learn. I loved how friendly the compiler was when my code didn’t compile. The com-
piler felt like a teacher or a co-programmer. It was also interesting how the errors
taught me about how computers use memory. Rust wasn’t just a language that let me
build software; it was a language that taught me details about the inner workings of
computers that I never knew before. The more I used it, the more I wanted to know,
and that’s why I was able to learn Rust as my first language. I hope this book will help
others learn it, too, even if Rust is their first programming language.

1.1.1 A pep talk

Rust is a fairly easy language. Seriously! Well, sort of. Yes, it’s complex and takes a lot
of work to learn. Yes, most people who learn Rust have frustrating days (sometimes
unbearingly frustrating days) where they just want their code to compile and don’t
understand what to do.

 But this period does not last forever. After the period is over, Rust becomes easier
because it starts doing a lot of the thinking for you. Rust is the type of language that
allows junior developers to start working on an existing code base with confidence
because, for the most part, it simply won’t compile if there’s a problem with your



31.1 Introducing Rust
code. Sometimes you hear horror stories about junior developers who join a company
and simply aren’t able to contribute yet. They see a code base and ask if they can make
a change, but the senior developers say not to touch it “because it’s working and who
knows what will happen if you make a change.” Rust isn’t like that.

 That makes contributing and refactoring code, well, easy. If you watch Rust live
streams on YouTube or Twitch, you’ll see this happen a lot. The streamer will make a
bunch of changes to some existing code and then say, “Okay, let’s see what breaks.”
The compiler then gives a few dozen messages showing what parts don’t work any-
more, and then the streamer hunts them down one by one and makes the necessary
changes until it compiles again—usually in just a few minutes. Not a lot of languages
can do that.

1.1.2 Rust is like a critical spouse

A great analogy for Rust is that of a critical but helpful spouse. Imagine you have a job
interview and are getting ready to head out the door and ask your spouse how you
look. Let’s see how two types of spouses treat you: the lenient language spouse and the
strict Rust spouse.

 The lenient language spouse sees you going out the door and calls out: “You look
great, honey! Hope the interview goes well!” And off you go! You’re feeling good. But
maybe you don’t look great and don’t realize it. Maybe you forgot to prepare a num-
ber of important things for the interview. If you’re an expert in interviews, you’ll do
fine, but if not, you might be in trouble.

 The Rust spouse isn’t so lenient and won’t even let you out the door: “You’re going
out wearing that? It’s too hot today; you’ll be sweating by the time you get in. Put on
that suit with the lighter fabric.” You change your suit. 

 The Rust spouse looks at you again and says, “The suit you just changed into
doesn’t match your socks. You need to change to grey socks.” You grumble and go
change your socks.

 The Rust spouse still isn’t satisfied: “It’s windy today, and it’s at least a quarter-mile
walk from the parking lot to the company. Your hair is going to be messy by the time you
get there. Put some gel in.” You go back to the bathroom and put some gel in your hair.

 The Rust spouse says, “You still can’t go. The parking lot you’ll be using was built a
long time ago and doesn’t take credit cards. You need $2.50 in change for the
machine. Find some change.” Sigh. You go and look around for some loose change.
Finally, you gather $2.50.

 This repeats and repeats another 10 times. You’re starting to get annoyed, but you
know your spouse is right. You make yet another change. Is it the last one?

 Eventually, your Rust spouse looks you up and down, thinks a bit, and says: “Fine.
Off you go.” Yes! Finally! That was a lot of work.

 You head out the door, still a bit frustrated by all the changes you had to make. But
you walk by a window and see your reflection. You look great! It’s windy today, but
your hair isn’t being blown around. You pull into the parking lot and put in the
$2.50—just the right amount of change.



4 CHAPTER 1 Some basics
 You look around and see someone else arriving for the interview in a suit that’s too
heavy and is already sweating. His socks don’t match the suit. He only has a credit card
and is trying to find a store nearby to get some change. He starts walking to the store,
his hair in a mess as the wind blows it every which way. But not you—your spouse did
half of the work for you before you even started. So, in that sense, Rust is a really easy
language. 

 If you think about it, programs live at run time, but programmers can only see up to
compile time—the time before a program starts. If your code compiles, you run it and
hope for the best. You can’t control the program anymore once it starts.

 If your language isn’t strict at compile time, most of the possible errors will happen
at run time instead, and you will have to debug them. Rust is as strict as possible at
compile time, where you, the programmer, live. So Rust teaches you as much as it can
about your program before you even run it.

 Okay, what does this actually look like in practice? Let’s take a look at a real exam-
ple. We’ll go to the Rust Playground (https://play.rust-lang.org/), write some incor-
rect Rust code, and see what happens. We’ll try to make a String and then push a
single character to it and print it out:

fn main() {
    let my_name: String = "Dave";
    my_name.push("!");
    println!("{}" my_name);
}

This is pretty good for a first try at Rust, but it’s not correct yet. What does the Rust
compiler have to say about that? Quite a bit, in fact. It gives you three suggestions:

error: expected `,`, found `my_name`
  |
4 |     println!("{}" my_name);
  |               ^^^^^^^ expected `,`

error[E0308]: mismatched types
 --> src/main.rs:2:27
  |
2 |     let my_name: String = "Dave";
  |                  ------   ^^^^^^- help: try using a conversion method:
                     ➥`.to_string()`
  |                  |        |
  |                  |        expected struct `String`, found `&str`
  |                  expected due to this

error[E0308]: mismatched types
 --> src/main.rs:3:18
  |
3 |     my_name.push("!");
  |             ---- ^^^ expected `char`, found `&str`
  |             |
  |             arguments to this function are incorrect
  |

https://play.rust-lang.org/


51.1 Introducing Rust
help: if you meant to write a `char` literal, use single quotes
  |
3 |     my_name.push('!');
  |                  ~~~

If you do what the compiler suggests, it will look like this:

fn main() {
    let my_name: String = "Dave".to_string();
    my_name.push('!');
    println!("{}", my_name);
}

If you click Run again, you’ll see the compiler now has a little more to say:

error[E0596]: cannot borrow `my_name` as mutable, as it is not declared as

➥mutable
 --> src/main.rs:3:5
  |
2 |     let my_name: String = "Dave".to_string();
  |         ------- help: consider changing this to be mutable: `mut
            ➥my_name`
3 |     my_name.push('!');
  |     ^^^^^^^^^^^^^^^^^ cannot borrow as mutable

If you follow its advice here, you’ll end up with this code:

fn main() {
    let mut my_name: String = "Dave".to_string();
    my_name.push('!');
    println!("{}", my_name);
}

And it works! That’s the combination of strictness and helpfulness that the Rust com-
piler is famous for. You will understand all of this code within just a few chapters, so
don’t worry about it too much now.

 One final note before we get into chapter 1: the Rust compiler is smart enough to
know if you wrote some code you never used. In that case, it will give you a warning so
that you will remember that you wrote something you haven’t used yet. In this book,
many examples have code to teach a concept and never gets used, so don’t worry
about those warnings.

 This code, for example, compiles and runs just fine:

fn main() {
    let my_number = 9;
}

But when you run it, Rust will generate a warning:

warning: unused variable: `my_number`
 --> src/main.rs:2:9
  |



6 CHAPTER 1 Some basics
2 |     let my_number = 9;
  |         ^^^^^^^^^ help: if this is intentional, prefix it with an
            ➥underscore: `_my_number`
  |
  = note: `#[warn(unused_variables)]` on by default

This is a hint from the compiler to let you know that you created a variable but didn’t
do anything with it. It doesn’t mean there is a problem with your code, so don’t worry.

 Let’s get started!

1.2 Comments
Comments are made for programmers to read, not the computer. It’s good to write
comments to help other people understand your code. It’s also good to help you
understand your code later (many people write good code but then forget why they
wrote it). To write comments in Rust, you usually use // like in the following example:

fn main() {
    // Rust programs start with fn main()
    // You put the code inside a block. It starts with { and ends with }
    let some_number = 100; // We can write as much as we want here and the 

       ➥compiler won't look at it
}

When you write a // comment, the compiler won’t look at anything to the right of
the //.

 The let some_number = 100; part of the code, by the way, is how you make variables
in Rust. A variable is basically a piece of data with a name chosen by us—hopefully a
good name—so that later on we will remember what sort of data the variable is hold-
ing. Here, we are telling Rust to take this piece of data (the number 100) and give it
the name some_number so that we can use some_number later to access the number 100
it holds. The variable name could differ depending on the context: we might write
let perfect_score = 100;, for example, if the number 100 represented a perfect
score on a test.

 There is another kind of comment that you write with /* to start and */ to end. A
comment wrapped in /* and */ is useful to write in the middle of your code:

fn main() 
    let some_number/*: i16*/ = 100;
}

To the compiler, let some_number/*: i16*/ = 100; looks like let some_number = 100;.
The /* */ form is also useful for very long comments of more than one line. In the
following example, you can see that you need to write // for every line. But if you type
/*, the comment won’t stop until you finish it with */:

fn main() {
    let some_number = 100; // Let me tell you
    // a little about this number.



71.3 Primitive types: Integers, characters, and strings
    // It's 100, which is my favorite number.
    // It's called some_number but actually I think that...

    let some_number = 100; /* Let me tell you
    a little about this number.
    It's 100, which is my favorite number.
    It's called some_number but actually I think that... */
}

If you see /// (three slashes), that’s a “doc comment” (documentation comment). A
doc comment can be automatically made into documentation for your code. Docu-
mentation is used to explain how code works, usually for other people to read, but it
can be good for you, too, so you won’t forget. All the information on documentation
pages like http://doc.rust-lang.org/std/index.html is made with doc comments.

 So // means comments for inside the code, while /// is for more official informa-
tion to be shared beyond the code itself. Regular // comments can be very informal,
like this:

// todo: delete this after Fred updates the client. 

But /// comments are for outsiders reading your code and tend to be more formal,
like:

 /// Converts a string slice in a given base to an integer. Leading and 
trailing whitespace represent an error.

(We’ll look at doc comments later in the book. But if you have Rust installed already
and are curious, try writing some comments and then typing cargo doc --open to see
what happens.)

 So comments are pretty easy because Rust doesn’t notice them at all. Let’s move on
to another pretty easy subject: Rust’s simplest types.

1.3 Primitive types: Integers, characters, and strings
Rust has many types that let you work with numbers, characters, and so on. Some are
simple, and others are more complicated; you can even create your own.

 The simplest types in Rust are called primitive types (primitive = very basic). We will
start with two of them: integers and characters. Rust has a lot of integer types, but they
all have one thing in common: they are whole numbers with no decimal point. There
are two types of integers: signed integers and unsigned integers.

 So what does signed mean exactly? It’s simple: signed means + (plus sign) and
− (minus sign). So, signed integers can be positive or negative (e.g., +8, −8) or zero.
But unsigned integers (e.g., 8) can only be nonnegative because they do not have a
sign. The signed integer types are i8, i16, i32, i64, i128, and isize. The unsigned
integer types are u8, u16, u32, u64, u128, and usize.

 The number after the i or the u means the number of bits for the number, so num-
bers with more bits can be larger: 8 bits = 1 byte, so i8 is 1 byte, i64 is 8 bytes, and so
on. Number types with more bits can hold much larger numbers:

http://doc.rust-lang.org/std/index.html


8 CHAPTER 1 Some basics
 u8 can hold a number as large 255.
 u16 can hold a number as large as 65,535.
 u128 can hold a number as large as 

340,282,366,920,938,463,463,374,607,431,768,211,455.

A quick explanation of how integers work: computers use binary numbers, while peo-
ple use decimals. Binary means 2, and decimal means 10, so you have two possible dig-
its for binary (0 or 1) and 10 possible digits (0 to 9) for decimal.

With decimals, you move up by 10 at a time:
100 is 10 times more than 10, 1,000 is 10 times
more than 100, and so on. But computers
increase numbers in binary by 2, not 10.
Here’s what this doubling looks like over the 8
bits of a u8.

 You can see that there are eight spaces for
numbers, which are the bits. Each bit is for a
number two times larger than the last one. A bit can be a 0 or a 1—nothing else.
When a bit shows up as 0, the number isn’t counted; if it shows up as 1, it is counted.

 If you have a decimal number with eight digits, the highest number you can get is
99,999,999. Reading from right to left, you can think of this number as being made of
a 9, a 90, a 900, a 9,000, a 90,000, a 900,000, a 9,000,000, and a 90,000,000. Put them
all together, and you get 99,999,999. Now, if you do the same for binary, the highest
number you can get over eight digits is 11111111. And if you count up these numbers,
you get 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 = 255. That’s why 255 is the largest size for a
u8. And if you move to a u16, you have eight more spaces, each one two times larger
than the last. So a u16 is all those plus 256, then 512, and so on. Consequently, the
highest number for a u16 is 65,535 (a lot higher), even though it’s only two times the
size (16 bits, or 2 bytes).

 You can also think of it as this: a human cashier at the grocery who asks you to pay
$226 is asking for

 six 1s (6)
 two 10s (20)
 two 100s (200)

But what a “machine cashier” asks you for is 11100010, which is (remember, going
from right to left):

 no 1s
 one 2
 no 4s

10000000 | 1000000 | 100000 | 10000 | 1000 | 100 | 10 | 0

A single digit, either binary or decimal,
has to be filled into each box to
make a number.

  |   |   |   |   |   |   |  

||||||| 1128 64 32 16 8 4 2



91.3 Primitive types: Integers, characters, and strings
 no 8s
 no 16s
 one 32
 one 64
 one 128

Putting all that together, you get: 2 + 32 + 64
+ 128 = 226. And that’s why the u8 for 226
looks like this.

 Signed integers have a maximum value
that is only half that of an unsigned type of
the same number of bits because they also have to represent negative numbers. So a
u8 goes from 0 to 255 while an i8 goes from −128 to 127.

 So what about isize and usize, and why are there no numbers in their name?
These two types have a number of bits depending on your type of computer. (The
number of bits on your computer is called the architecture of your computer.) So isize
and usize on a 32-bit computer is like i32 and u32, and isize and usize on a 64-bit
computer is like i64 and u64.

 There are many reasons why Rust has a lot of integer sizes. One reason is com-
puter performance: a smaller number of bytes can be faster to process. For
example, the number –10 as an i8 is 11110110, but as an i64, it is
1111111111111111111111111111111111111111111111111111111111110110. The lar-
ger type has a greater maximum number but still uses the same number of bits, even if
the number is a small one. But there are quite a few other reasons for having a lot of
integer sizes. One is related to the char type, which is related to one of Rust’s integer
types.

 Characters in Rust are called char. Every char has a number: the letter A is num-
ber 65, while the character 友 is number 21451. The list of numbers is called Unicode.
Unicode uses smaller numbers for basic characters like A through Z, digits 0 through
9, or space. New languages get added to Unicode all the time, and some languages
have thousands of characters, which is why 友 is such a high number.

 As you can see, a char can be a lot of things, even an emoji:

fn main() {
    let first_letter = 'A';
    let space = ' ';    
    let other_language_char = 'Ꮔ';    
    let cat_face = ' ';    
}

So you won’t be able to fit all chars into something as small as a u8, for example. But
the characters used most (called ASCII) are represented by numbers less than 256,
and they can fit into a u8. Remember, a u8 is 0 plus all the numbers up to 255, for 256
characters in total. This means that Rust can safely “cast” a u8 into a char, using as.
(“Cast a u8 as a char” means “turn a u8 into a char.”)

1 | 1 | 1 | 0 | 0 | 0 | 1 | 0

1128 64 32 16 8 4 2

A space inside ' ' 
is also a char. Thanks to Unicode, other languages 

like Cherokee display just fine, too.

� Emojis are 
chars, too!



10 CHAPTER 1 Some basics
 Casting with as is useful because Rust is very strict. It always needs to know the type
and won’t let you use two different types together, even if they are both integers. For
example, this will not work:

fn main() {    
    let my_number = 100;    
    println!("{}", my_number as char);
}

Here is the reason:

error[E0604]: only u8 can be cast as char, not i32
 --> src\main.rs:3:20
  |
3 |     println!("{}", my_number as char);
  |                    ^^^^^^^^^^^^^^^^^

By the way, you’ll see println!, {}, and {:?} in this chapter a bit. Typing println!
will print and then add a new line, while {} and {:?} describe what type of printing.
println! is known as a macro. A macro is a function that writes code for you; all mac-
ros have a ! after them. You don’t need to worry about remembering to add the !
because the compiler will notice if you don’t:

fn main() {    
    let my_number = 100;    
    println("{}", my_number);
}

The compiler tells us exactly what to do:

error[E0423]: expected function, found macro `println`
 --> src/main.rs:3:5
  |
3 |     println("{}", my_number);
  |     ^^^^^^^ not a function
  |
help: use `!` to invoke the macro
  |
3 |     println!("{}", my_number);
  |       

We will learn more about printing in this and the next chapter.
 Now, back to our my_number as char problem. Fortunately, we can easily fix this

with as. We can’t cast i32 as a char, but we can cast an i32 as a u8. Then we can do the
same from u8 to char. So, in one line, we use as to make my_number a u8 and again to
make it a char. Now it will compile:

fn main() {
    let my_number = 100;
    println!("{}", my_number as u8 as char);
}

main() is where Rust programs start 
to run. Code goes inside {} (known 
as braces or curly brackets).

We didn’t say which integer type it will be, so 
Rust chooses i32. Rust always chooses i32 for 
integers if you don’t tell it to use a different type.



111.3 Primitive types: Integers, characters, and strings
It prints d because that is the char in place 100.
 So casting can be convenient. But be careful: when you cast a large number into a

smaller type, some unexpected things can happen. For example, a u8 can go up to
255. What happens if you cast the number 256 into a u8?

fn main() {
    let my_number = 256;
    println!("{}", my_number as u8);
}

You might think it would cut it down to 255, the largest possible size, but it returns a 0.
 What happens if you cast an i32 600 to a u8?

fn main() {
    let my_number = 600;
    println!("{}", my_number as u8);
}

Now it returns an 88. You can probably see what it’s doing now: every time it passes the
largest possible number, it starts at 0 again. So when you cast a 600 to a u8, it passes the
largest possible u8 two times, and then there are 88 left. You can think of it mathemat-
ically as 600 − 256 − 256 = 88. So be a little careful when casting into a smaller type!
When casting, make sure the old number isn’t larger than the new type’s largest possi-
ble number.

 In fact, casting is somewhat rare in Rust because there is usually no need for it. For
example, you don’t need to use a cast to get a u8. You can just tell Rust that my_
number is a u8. Here’s how you do it:

fn main() {
    let my_number: u8 = 100;             
    println!("{}", my_number as char);
}

So those are two reasons for all the different number types in Rust. Here is another
reason: usize is the size Rust uses for indexing. (Indexing means “which item is first,”
“which item is second,” etc.) A usize is the best size for indexing because

 An index can’t be negative, so it needs to be an unsigned integer with a u.
 It should have a lot of space because index numbers can get quite large (but it

can’t be a u64 because 32-bit computers can’t use a u64).

So Rust uses usize so that your computer can get the biggest number for indexing
that it can read. 

 Let’s learn some more about char. You saw that a char is always one character and
uses ' ' (single quotes) instead of " " (double quotes).

 All chars use 4 bytes of memory, since 4 bytes are enough to hold any kind of
character:

 Basic letters and symbols usually need 1 byte, (e.g., a b 1 2 + - = $ @).
 Other letters like German umlauts or accents need 2 bytes (e.g., ä ö ü ß è à ñ).
 Korean, Japanese, or Chinese characters need 3 or 4 bytes (e.g., 国 안 녕).

Change my_number 
to my_number: u8.



12 CHAPTER 1 Some basics
So, to be sure that a char can be any of these, it needs to be 4 bytes. With 2 bytes (a
u16), the largest number you can make is 65,535, which is well below the number of
letters in all the languages in the world (Chinese characters alone are more than
this!). But a u32 (4 bytes) offers more than enough space, allowing for up to
4,294,967,295 letters, which is why a char is a u32 on the inside.

 But always using 4 bytes is just for the char type. Strings are different and don’t
always use 4 bytes per single character. When a character is part of a string (not the
char type), the string is encoded to use the least amount of memory needed for each
character.

 We can use a method called .len() to see this for ourselves. Try copying and past-
ing this and clicking Run:

fn main() {
    println!("Size of a char: {}", std::mem::size_of::<char>());
    println!("Size of a: {}", "a".len());
    println!("Size of ß: {}", "ß".len());
    println!("Size of 国: {}", "国".len());
    println!("Size of : {}", " ".len());
}

(By the way, std::mem means the part of the standard library called mem where this
size_of() function is. The :: symbol is used sort of like a path to an address. It’s sort
of like writing USA::California::LosAngeles. We will learn about this later.)

 The previous code prints the following:

Size of a char: 4
Size of a: 1
Size of ß: 2
Size of 国: 3
Size of : 4

You can see that a is 1 byte, the German ß is 2, the Japanese 国 (meaning country) is 3,
and the ancient Egyptian  (a quail chick) is 4 bytes.

 Let’s try printing the length of two strings, one with six letters and the other with
three letters. Interestingly, the second one is larger:

fn main() {
    let str1 = "Hello!";
    println!("str1 is {} bytes.", str1.len());
    let str2 = "안녕!";                           
    println!("str2 is {} bytes.", str2.len());
}

This prints

str1 is 6 bytes.
str2 is 7 bytes.

str1 is six characters in length and 6 bytes, but str2 is three characters in length and
7 bytes. So be careful! The .len() method returns the number of bytes, not the num-
ber of letters or characters.

� �

�

�

Korean 
for “Hi”



131.3 Primitive types: Integers, characters, and strings
 By the way, the size of a byte is one u8: it’s a number that goes from 0 to 255. We
can use a method called .as_bytes() to see what these strings look like as bytes:

fn main() {
    println!("{:?}", "a".as_bytes());
    println!("{:?}", "ß".as_bytes());
    println!("{:?}", "国".as_bytes());
    println!("{:?}", " ".as_bytes());
}

You can see that each one is different and that to show them all in a single type, it
needs 4 bytes. And that’s why the char type is 4 bytes long:

[97]
[195, 159]
[229, 155, 189]
[240, 147, 133, 177]

Now, if .len() gives the size in bytes, what about the size in characters? You can find
this out by using two methods together. We will learn about these methods in more
detail later in the book (especially chapter 8), but for now, you can just remember
that .chars().count() will give you the number of characters or letters, not bytes.
Calling .chars() first turns a string into a collection of characters, and then .count()
counts how many of them there are.

 Let’s give that a try:

fn main() {
    let str1 = "Hello!";
    println!("str1 is {} bytes and also {} characters.", str1.len(), 

str1.chars().count());
    let str2 = "안녕!";
    println!("str2 is {} bytes but only {} characters.", str2.len(), 

str2.chars().count());
}

This prints

str1 is 6 bytes and also 6 characters.
str2 is 7 bytes but only 3 characters.

�

Regular ASCII

Characters can need up to 4 bytes

97

195

229

240

159

155

147

189

133 177

German Eszett
(LATIN SMALL LETTER
SHARP S)

CJK UNIFIED
IDEOGRAPH-56FD

EGYPTIAN
HIEROGLYPH
G043



14 CHAPTER 1 Some basics
You might have noticed already that you don’t usually need to tell Rust the type of
variable you’re making. The Rust compiler is happy with let letter = 'ß' and doesn’t
make you type let letter: char = 'ß' to declare a char. Let’s learn why!

1.4 Type inference
The term type inference means that Rust can usually decide what type a variable is even
if you don’t tell it. The term comes from the verb infer, which means to make an edu-
cated guess.

 The compiler is smart enough that it can usually “infer” the types that you are using.
In other words, it always needs to know the type of variables you are using, but most of
the time, you don’t need to tell it. For example, if you type let my_number = 8, the vari-
able my_number will be an i32. That is because the compiler chooses i32 for integers
unless you tell it to choose a different integer type. But if you say let my_number: u8
= 8, it will make my_number a u8 because you told it to make a u8 instead of an i32.

 So, usually, the compiler can guess. But sometimes you need to tell it, usually for
two reasons:

 You are doing something very complex, and the compiler can’t determine the
type you want.

 You simply want a different type (e.g., you want an i128, not an i32).

To specify a type, add a colon after the variable name:

fn main() {
    let small_number: u8 = 10;
}

For numbers, you can add the type after the number. You don’t need a space—just
type it right after the number:

fn main() {
    let small_number = 10u8;    
}

You can also add _ if you want to make the number easy to read:

fn main() {
    let small_number = 10_u8;
    let big_number = 100_000_000_i32;
}

The _ is only to make numbers easy for humans to read and does not affect the number.
It is completely ignored by the compiler. In fact, it doesn’t matter how many _ you use:

fn main() {
    let number = 0________u8;
    let number2 = 1___6______2____4______i32;
    println!("{}, {}", number, number2);
}

Same as 
u8 = 10



151.5 Floats
This prints 0, 1624.
 Interestingly, if you add a decimal point to a number, it won’t be an integer (a

whole number) anymore. Rust will instead make a float, which is an entirely different
type of number. Let’s learn how floats work now.

1.5 Floats
Floats are numbers with decimal points. 5.5 is a float, and 6 is an integer. 5.0 is also a
float, and even 5. is a float. The variable my_float in the following code won’t be an
i32 because of the decimal point that follows it:

fn main() {
    let my_float = 5.;
}

But these types are not officially called floats; they are called f32 and f64. As you can
imagine, the numbers in their type names show the number of bits needed to make
them: 32 and 64 (4 bytes and 8 bytes). In the same way that Rust chooses an i32 by
default, it will also choose f64 unless you tell it to make an f32.

 Of course, Rust is strict, so only floats of the same type can be used together. You
can’t add an f32 to an f64. We can generate an error by telling Rust to make an f64
and an f32 and then trying to add them together:

fn main() {
    let my_float: f64 = 5.0;
    let my_other_float: f32 = 8.5;

    let third_float = my_float + my_other_float;
}

When you try to run this, Rust will say

error[E0308]: mismatched types
 --> src\main.rs:5:34
  |
5 |     let third_float = my_float + my_other_float;
  |                                  ^^^^^^^^^^^^^^ expected `f64`, found 
                                     ➥`f32`

The compiler writes “expected (type), found (type)” when you use the wrong type. It
reads your code like this:

 let my_float: f64 = 5.0;—Here we specifically tell the compiler that my_
float must be an f64.

 let my_other_float: f32 = 8.5;—And here we say that my_other_float
must be an f32. The compiler does what we tell it to do.

 let third_float = my_float +—At this point, the variable that follows my_
float has to be an f64. The compiler will expect an f64 to follow.

 my_other_float;—But it’s an f32, so it can’t add them together.



16 CHAPTER 1 Some basics
So when you see “expected (type), found (type)”, you must find why the compiler
expected a different type.

 Of course, with simple numbers, it is easy to fix. You could cast the f32 to an f64
with as:

fn main() {
    let my_float: f64 = 5.0;
    let my_other_float: f32 = 8.5;

    let third_float = my_float + my_other_float as f64;   
}

But there is an even simpler method: remove the type declarations (to declare a type just
means to tell Rust to use a type) and let Rust do the work for us. Rust will choose types
that can be added together. In the following code, Rust will make each float an f64:

fn main() {
    let my_float = 5.0;
    let my_other_float = 8.5;

    let third_float = my_float + my_other_float;
}

The Rust compiler is pretty smart and will not make an f64 if we declare an f32 and
try to add it to another float:

fn main() {
    let my_float: f32 = 5.0;
    let my_other_float = 8.5;    

    let third_float = my_float + my_other_float;    
}

So those are some of the most basic concepts and types in Rust. 
 You’re probably wondering when we’re going to look at “Hello, World!,” which is usu-

ally the first example you see when learning a programming language. That time is now!

1.6 “Hello, World!” and printing
When you open a new Rust program in the Playground, it always has this code:

fn main() {
    println!("Hello, world!");
}

Let’s break this code down a bit and see what it means:

 fn means function.
 main() is the function that starts the program.
 () means that we didn’t pass the function any arguments (an argument is an

input to a function). So, that means the function is starting without any vari-
ables that it can use.

my_other_float as 
f64 = use my_other_
float like an f64

Usually Rust would choose 
f64 for my_other_float.

But now it knows you 
need to add it to an f32 
so it chooses f32 for 
my_other_float, too.



171.6 “Hello, World!” and printing

 

After that comes {}, which is called a code block. Code blocks are spaces where code
lives. If you start a variable inside a code block, it will live until the end of the block.
This is its lifetime. Let’s look at the example with floats from before, but we’ll put one
of them inside its own code block. Now, it won’t live until the end of the program:

fn main() {
    let my_float = 5.0;   
    {
        let my_other_float = 8.5;    
    }   
    // let third_float = my_float + my_other_float; 
}    

So that’s how code blocks with {} work.
 A {} doesn’t always mean a code block in Rust, though. The following code shows

{} being used to change the output in main to add a number 8 after Hello, world:

fn main() {
    println!("Hello, world number {}!", 8);
}

The {} in println! means “put the variable inside here.” In other words, the {} is
used to capture the variable. This prints Hello, world number 8!.

 We can put more in, just like we did before:

fn main() {
    println!("Hello, worlds number {} and {}!", 8, 9);
}

This prints Hello, worlds number 8 and 9!.
 Did you notice that a ; comes at the end of the line? This is a semicolon, and it has

a particular meaning in Rust.
 We can see what the semicolon is used for by creating a simple function. We’ll call

it give_number and put it above main(). (Usually, you put main() on the bottom, but
it makes no difference). Then we’ll call this function inside main by typing give_
number():

fn give_number() -> i32 {
    8
}

fn main() {
    println!("Hello, world number {}!", give_number());
}

The variable my_float lives 
inside the code block for main(). 
This is where its lifetime starts.

The variable my_other_float’s
lifetime starts here, but it’s 
inside another code block, so 
it doesn’t live as long.

This is where my_other_
float’s lifetime ends! After 
this line, you can’t use it.This won’t work anymore, so

we commented it out. The
variable my_other_float’s

lifetime is already over.

This is the end of the
block inside which

my_float lives. This is
where its lifetime ends.



18 CHAPTER 1 Some basics
This also prints Hello, world number 8!. When Rust looks at give_number(), it sees
that you are calling a function. This function

 Does not take anything because there’s nothing inside ().
 Returns an i32. The -> (called a skinny arrow) shows what the function returns.

Inside the function is just 8. Because there is no semicolon at the end of the line, this
8 (an i32) is the value the function give_number() returns. If it had a semicolon at
the end, it would not return anything (it would return a (), which is called the unit
type and means “nothing”).

 So here’s the important part: Rust will not compile this program if the function’s
body ends with a ; because the return type is i32, and with ;, the function returns (),
not i32. Let’s try adding ; to see the error. Now our code looks like this:

fn give_number() -> i32 {
    8;
}

fn main() {
    println!("Hello, world number {}", give_number());
}

The error looks like this:

error[E0308]: mismatched types
 --> src/main.rs:1:21
  |
1 | fn give_number() -> i32 {
  |    -----------      ^^^ expected `i32`, found `()`
  |    |
  |    implicitly returns `()` as its body 
  ➥has no tail or `return` expression

2 |     8;
  |      - help: remove this semicolon to return this value

This means “you told me that give_number() returns an i32, but you added a ; so it
doesn’t return anything.” So, the compiler suggests removing the semicolon.

 You can also write return 8; to return a value, but in Rust, it is normal to remove
the return. The last line of the function is what the function returns, and you don’t
need to type return to make the return happen. Of course, if you want to return a
value early from the function (before the last line), you’ll want to use return.

 Here is a simple example of a function that returns a value early. Interestingly, the
code compiles! It even returns the same Hello, world number 8 output as before:

fn give_number() -> i32 {
    return 8;
    10;
}

fn main() {



191.6 “Hello, World!” and printing
    println!("Hello, world number {}", give_number());
}

It compiles because there is nothing wrong with the code: the give_number() func-
tion returns an i32 as it is supposed to. However, Rust does notice that the function
will never reach the line below return 8; and gives a warning:

warning: unreachable expression
 --> src/main.rs:3:5
  |
2 |     return 8;
  |     -------- any code following this expression is unreachable
3 |     10;
  |     ^^ unreachable statement
  |
  = note: `#[warn(unreachable_code)]` on by default

So there is no reason for us to use an early return here, but Rust will still run the code
for us.

 When you want to give variables to a function, put them inside the (). You have to
give them a name and write the type:

fn multiply(number_one: i32, number_two: i32) {   
    let result = number_one * number_two;
    println!("{} times {} is {}", number_one, number_two, result);
}

fn main() {
    multiply(8, 9);  
    let some_number = 10;    
    let some_other_number = 2;
    multiply(some_number, some_other_number);   
}

The output for this sample is

8 times 9 is 72
10 times 2 is 20

We can also return an i32. Just take out the semicolon at the end:

fn multiply(number_one: i32, number_two: i32) -> i32 {
    let result = number_one * number_two;    
    result    
}

fn main() {
    let multiply_result = multiply(8, 9);
    println!("The two numbers multiplied are: {multiply_result}");
}

This function will take two i32s, 
and we will call them 
number_one and number_two.

We can pass in the 
two numbers directly 
to the function. Or, we can declare 

two i32 variables…

…and pass them 
into the function.

Makes a number 
called result herePuts it on the last 

line to return it



20 CHAPTER 1 Some basics
The output will be

The two numbers multiplied are: 72

In fact, we don’t even need to declare a variable before returning it. This code gener-
ates the same output:

fn multiply(number_one: i32, number_two: i32) -> i32 {
    number_one * number_two   
}

fn main() {
    let multiply_result = multiply(8, 9);
    println!("The two numbers multiplied are: {}", multiply_result);
}

One reason that Rust is so fast is that it knows exactly how long variables need to use
memory. Once the variables don’t need memory, they are dropped, and Rust frees up
that memory automatically. Let’s now learn about declaring variables and how long
they live for.

NOTE How Rust manages memory is different from garbage collection! Most
languages have a garbage collector that handles cleaning up memory. In
other languages like C and C++, you clean up memory yourself. Rust doesn’t
have a garbage collector, same as C and C++. But Rust is also different: it is
smart enough to know exactly when a variable doesn’t need to exist anymore
and frees the memory for you.

1.7 Declaring variables and code blocks
In Rust, we use the let keyword to declare a variable. A variable is just a name that
represents some type of information in the same way that a real name represents a
person:

fn main() {
    let my_number = 8;   
    println!("Hello, number {}", my_number);
}

Since 2021, you can capture variables inside the {} of println!, so you can also do
this:

fn main() {
    let my_number = 8;
    println!("Hello, number {my_number}");
}

In this book, we’ll use both methods for printing. Sometimes writing the variable
name inside {} looks better:

fn main() {
    let color1 = "red";

This means “return the result of 
number_one * number_two.”

Creates the variable my_number 
that is the number 8



211.7 Declaring variables and code blocks
    let color2 = "blue";
    let color3 = "green";

    println!("I like {color1} and {color2} and {color3}");
}

But sometimes using a comma after {} looks better:

fn main() {
    let naver_base_url = "naver";
    let google_base_url = "google";
    let microsoft_base_url = "microsoft";

    println!("The url is www.{naver_base_url}.com");         
    println!("The url is www.{google_base_url}.com");       
    println!("The url is www.{microsoft_base_url}.com");    
    
    println!("The url is www.{}.com", naver_base_url);       
    println!("The url is www.{}.com", google_base_url);      
    println!("The url is www.{}.com", microsoft_base_url);   
}

As we saw previously, a variable’s lifetime starts and ends inside a code block: {}. This
example will generate an error because my_number is inside its own code block and its
lifetime ends before we try to print it:

fn main() {
    {
        let my_number = 8;    
    }
    println!("Hello, number {}", my_number);    
}

However, you can return a value from a code block to keep it alive. Take a close look at
how this works:

fn main() {
    let my_number = {
    let second_number = 8;
        second_number + 9    
    };

    println!("My number is: {}", my_number);
}

The value of second_number is 8, and we return second_number + 9, so this is like writing
let my_number = 8 + 9. And because the block returns the value, my_number never lives
inside the block; instead, it gets its value from the return value at the end of the block.

 If you add a semicolon inside the block, it will return () (nothing):

fn main() {
    let my_number = {
    let second_number = 8;    

Printing this 
way is okay.

But this way it 
lines up much nicer.

The variable my_number starts 
here but ends just one line later!

Error: there is no my_number 
for println! to print.

No semicolon, so the code block 
returns 8 + 9. It works just like 
returning from a function.

Here we declare a variable 
second_number and add 9 to it.



22 CHAPTER 1 Some basics
        second_number + 9;   
    };

    println!("My number is: {:?}", my_number);     
}

So why did we write {:?} and not {}? We will talk about that now.

1.8 Display and Debug
Simple variables in Rust can be printed with {} inside println!. This is called Display
printing. But some variables won’t be able to use {} to print, and you need Debug print-
ing. You can think of Debug printing as printing for the programmer because it usually
shows more information—and is usually less pretty.

 How do you know if you need {:?} and not {}? The compiler will tell you. Let’s try
printing () with Display to see the error:

fn main() {
    let doesnt_print = ();
    println!("This will not print: {}", doesnt_print);
}

When we run this, the compiler says

error[E0277]: `()` doesn't implement `std::fmt::Display`
 --> src\main.rs:3:41
  |
3 |     println!("This will not print: {}", doesnt_print);
  |                                         ^^^^^^^^^^^^ `()` 
  ➥cannot be formatted with the default formatter
  |
  = help: the trait `std::fmt::Display` is not implemented for `()`
  = note: in format strings you may be able to use `{:?}` (or {:#?} 
  ➥for pretty-print) instead
  = note: required by `std::fmt::Display::fmt`

This is quite a bit of information. There is also one important word here: trait. Traits
are important in Rust, and we will learn about them throughout the book. But for
now, you can think of the word trait as “what a type can do.” So if the compiler says The
trait Display is not implemented, it means “the type doesn’t have Display
capabilities.”

 Now, here is the important part of the error message:

you may be able to use {:?} (or {:#?} for pretty-print) instead.

This means that you can try {:?} or {:#?}. {:#?}, is known as “pretty printing.” It is
the same as Debug with {:?} but prints with different formatting over more lines.

 So, with {:?}, you’ll see this sort of output:

User { name: "Mr. User", user_number: 101 }

{:#?} will look more like this, over more lines:

But we added a semicolon, so my_number is not an i32! The 
block returns a () instead, and second_number dies here.

my_number is ().



231.9 Smallest and largest numbers
User {
    name: "Mr. User",
    user_number: 101,
}

One more thing: you can also use print! without ln if you don’t want to add a new
line.

fn main() {
    print!("This will not print a new line");
    println!(" so this will be on the same line");
}

This prints This will not print a new line so this will be on the same line.
 To sum up, here are the three ways to print that we’ve learned:

 {}—Display print. More types have Debug than Display, so if a type you want to
print can’t print with Display, you can try Debug.

 {:?}—Debug print. If there is too much information on one line, you can try
{:#?}.

 {:#?}—Debug print, but pretty. Pretty means that each part of a type is printed on
its own line to make it easier to read.

There is quite a bit more to printing in Rust, and we will learn more about it in the
next chapter. Now, let’s get back to some more basic information about Rust’s easiest
types.

1.9 Smallest and largest numbers
If you want to see the smallest and biggest numbers, you can use MIN and MAX after
the name of the type:

fn main() {
    println!("The smallest i8: {} The biggest i8: {}", i8::MIN, i8::MAX);
    println!("The smallest u8: {} The biggest u8: {}", u8::MIN, u8::MAX);
    println!("The smallest i16: {} The biggest i16: {}", i16::MIN, i16::MAX);
    println!("The smallest u16: {} and the biggest u16: {}", u16::MIN, 

u16::MAX);
    println!("The smallest i32: {} The biggest i32: {}", i32::MIN, i32::MAX);
    println!("The smallest u32: {} The biggest u32: {}", u32::MIN, u32::MAX);
    println!("The smallest i64: {} The biggest i64: {}", i64::MIN, i64::MAX);
    println!("The smallest u64: {} The biggest u64: {}", u64::MIN, u64::MAX);
    println!("The smallest i128: {} The biggest i128: {}", i128::MIN, 

i128::MAX);
    println!("The smallest u128: {} The biggest u128: {}", u128::MIN, 

u128::MAX);
}

This will print the following:

The smallest i8: -128 The biggest i8: 127
The smallest u8: 0 The biggest u8: 255
The smallest i16: -32768 The biggest i16: 32767



24 CHAPTER 1 Some basics
The smallest u16: 0 and the biggest u16: 65535
The smallest i32: -2147483648 The biggest i32: 2147483647
The smallest u32: 0 The biggest u32: 4294967295
The smallest i64: -9223372036854775808 The biggest i64: 9223372036854775807
The smallest u64: 0 The biggest u64: 18446744073709551615
The smallest i128: -170141183460469231731687303715884105728 The biggest i128: 

➥170141183460469231731687303715884105727 The smallest u128: 0 

➥The biggest u128: 340282366920938463463374607431768211455

By the way, MIN and MAX are written in all capitals because they are consts (unchange-
able global values). In this case, they are consts, which are attached to their types with
a :: in between. We will learn more about consts in the next chapter.

1.10 Mutability (changing)
When you declare a variable with let, it is immutable (cannot be changed). So this
will not work:

fn main() {
    let my_number = 8;
    my_number = 10;
}

You can’t change my_number because variables are immutable if you only write let.
The compiler message is pretty detailed:

error[E0384]: cannot assign twice to immutable variable `my_number`
 --> src/main.rs:3:5
  |
2 |     let my_number = 8;
  |         ---------
  |         |
  |         first assignment to `my_number`
  |         help: consider making this binding mutable: `mut my_number`
3 |     my_number = 10;

Listing 1.1   |     ^^^^^^^^^^^^^^ cannot assign twice to immutable variable

But sometimes you want to be able to change your variable, and the compiler has
given us some advice if we want to do so. To make a variable that you can change, add
mut after let:

fn main() {
    let mut my_number = 8;
    my_number = 10;
}

Now there is no problem. However, you cannot change the type of a variable even if
you declare it as mut. So the following will not work:

fn main() {
    let mut my_variable = 8;
    my_variable = "Hello, world!";
}



251.11 Shadowing
You will see the same “expected” message from the compiler:

error[E0308]: mismatched types
 --> src/main.rs:3:19
  |
2 |     let mut my_variable = 8;
  |                           - expected due to this value
3 |     my_variable = "Hello, world!";
  |                   ^^^^^^^^^^^^^^^ expected integer, found `&str`

By the way, &str is a string type we will learn soon.

1.11 Shadowing
Now that we know the basics of mutability, it’s time to learn about shadowing. Shadow-
ing means using let to declare a new variable with the same name as another variable.
It looks like mutability, but it is completely different. Be sure not to confuse them! Shad-
owing looks like this:

fn main() {
    let my_number = 8;    
    println!("{}", my_number);
    let my_number = 9.2;   
    println!("{}", my_number);
}

Here we say that we “shadowed” my_number with a new “let binding.” The variable
my_number is now pointing to a completely different value.

 So, is the first my_number destroyed? No, but when we call my_number, we now get
my_number the f64. Because they are in the same scope block (the same {}), we can’t
see the first my_number anymore.

 But if they are in different blocks, we can see both. Let’s take the same example
and put the second my_number inside a different block to see what happens:

fn main() {
    let my_number = 8;
    println!("{}", my_number);
    {
        let my_number = 9.2;
        println!("{}", my_number);   
    }
    println!("{}", my_number);        
}

So, when you shadow a variable with a new variable with the same name, you don’t
destroy the first one. You block it.

 Imagine that there’s a classroom with a student named Brian who always says true
(he’s a bool). Every time you call out his name, he tells you his value. Then one day a
new student comes in who is also named Brian and sits in front of the other Brian.
The second Brian is shadowing the first one.

A regular i32 called 
my_number

This is an f64 with the same name. 
But it’s not the first my_number ; 
it is completely different!

This prints 9.2 because the second my_number is 
shadowing the first my_number. But the second 
my_number only lives until the end of this block. 
The first my_number is still alive!

Prints 8, not 9.2



26 CHAPTER 1 Some basics
     This second Brian is a completely differ-
ent type: he’s a string that says “I’m Brian”
every time. Now, every time you call Brian
and ask his value, you’ll get something
completely different. But let’s say that the
second Brian was only visiting from
another school and later leaves—he’s in a
smaller “scope.” Now, when you call out
the name Brian, you’ll hear true again
because the first Brian is still there (his
scope lasts longer).
    What is the advantage of shadowing?
Shadowing is good when you need to work

on a variable a lot and you don’t care about it in between. Imagine that you want to do
a lot of simple math with a variable:

fn times_two(number: i32) -> i32 {
    number * 2
}

fn main() {
    let final_number = {
        let y = 10;
        let x = 9;
        let x = times_two(x);    
        let x = x + y;           
        x                 
    };
    println!("The number is now: {}", final_number)
}

This prints The number is now: 28.
 Without shadowing, you would have to think of different names, even though you

don’t care about x. Let’s pretend we wanted to do the same thing, but Rust didn’t
allow shadowing. We would have to come up with a new variable name each time:

fn times_two(number: i32) -> i32 {
    number * 2
}

fn main() {
    let final_number = {
        let y = 10;
        let x = 9;
        let x_twice = times_two(x);  
        let x_twice_and_y = x_twice + y;   
        x_twice_and_y
    };
    println!("The number is now: {}", final_number)
}

let brian = true;

New scope starts

New scope ends

Here! true

let brian = String: :from(“l’m Brian”);

Here! “l’m Brian”

Here! true

Here! true

Brian?

Brian?

Brian?

Brian?

Shadows 
with x: 18 Shadows again 

with x: 28

Returns x: final_number 
is now the value of x

Here we would have to come 
up with a new variable name.

And here 
again!



27Summary
Shadowing can be useful when working with mutability, too. In the following example,
we have a number called x again. We’d like to change its value, and we don’t care
about the original variable called x. In this case, we can shadow it with a new mutable
variable that is a float, and now we can change it:

fn main() {
    let x = 9
    let mut x = x as f32;
    x += 0.5;              
}

In general, you see shadowing in Rust in cases like these: working quickly with vari-
ables we don’t care too much about or getting around Rust’s strict rules about types,
mutability, and so on.

 So that’s it for the first chapter. If you know another programming language, you
might have noticed that Rust is very familiar but quite different in some areas. And if
Rust is your first language, that’s fine, too. Everything will be new to you, but you
won’t have any habits to unlearn either.

 In the next chapter, we are going to learn about how memory works and how data
is owned. Ownership is one of Rust’s most unique concepts, so we’ll spend a lot of
time thinking about it.

Summary
 You can write whatever you want in your comments, and if you write them with

///, Rust can automatically use them to document your code.
 You can tell Rust the type name of a variable you are making, but most of the

time, you don’t need to.
 Understanding how binary works gives you a sense of which integer type is best

to use.
 Variables live inside {} code blocks (scopes). Variables created inside can’t

leave them unless they are the return value into another larger scope.
 You can change a variable in Rust if you make it mutable with mut. Otherwise,

the compiler will give an error if you try.
 Shadowing is completely different from mutability: it’s just a variable with the

same name that blocks the other one.

The value 
is now 9.5.



Memory, variables,
and ownership
In this chapter, you’ll see how Rust keeps you thinking about the computer itself.
Rust keeps you focused on how the computer’s memory is being used for your pro-
gram and what ownership is (who owns the data). Remember this word,
ownership—it’s probably Rust’s most unique idea. We’ll start with the two types of
memory a computer uses: the stack and the heap.

 Oh, and there’s quite a bit more to learn about printing to build on what you
learned in the last chapter. Look for that at the end!

This chapter covers
 The stack, the heap, pointers, and 

references

 Strings, the most common way to work 
with text

 const and static, variables that last forever

 More on shadowing

 Copy types

 More about printing
28



292.1 The stack, the heap, pointers, and references
2.1 The stack, the heap, pointers, and references
Understanding the stack, the heap, pointers, and references is very important in Rust.
We’ll start with the stack and the heap, which are two places to keep memory in com-
puters. Here are some important points to keep in mind:

 The stack is very fast, but the heap is not so fast. It’s not super slow either, but
the stack is usually faster.

 The stack is fast because it is like a stack: memory for a variable gets stacked on
top of the last one, right next to it. When a function is done, it removes the
value of the variables starting from the last one that was added, and now the
memory is freed again. Some people compare the stack to a stack of dishes: you
put one on top of the other, and if you want to unstack them, you take the top
one off first, then the next top one, and so on. The dishes are all right on top of
each other, so they are quick to find. But you can’t use the stack all the time.

 Rust needs to know the size of a variable at compile time. So simple variables like
i32 can go on the stack because we know their exact size. You always know that
an i32 is 4 bytes because 32 bits = 4 bytes. So, i32 can always go on the stack. 

 Some types don’t know the size at compile time. And yet, the stack needs to
know the exact size. So what do you do? First, you put the data in the heap
because the heap can have any size of data. (You don’t have to do this yourself;
the program asks the computer for a piece of memory to put the data in.) And
then, to find it, a pointer goes on the stack. This is fine because we always know
the size of a pointer. So, then the computer first goes to the pointer, reads the
address information, and follows it to the heap where the data is.

 Sometimes you can’t even use heap memory! If you are programming in Rust
for a small embedded device, you are going to have to use only stack memory.
There’s no operating system to ask for heap memory on a small embedded
device.

Pointers sound complicated,
but they don’t have to be.
Pointers are like a table of con-
tents in a book. Take this book,
for example.

 This table of contents is like
five pointers. You can read
them and find the information
they are talking about. Where
is the chapter “My life”? It’s on
page 1 (it points to page 1).
And where is the chapter “My
job”? It’s on page 23.

MY BOOK

By me

Table of contents

1: My life 1

2: My cat 15

3: My job 23

4: My family 30

5: Future plans 43

Chapter Page



30 CHAPTER 2 Memory, variables, and ownership
 The pointer you usually see in Rust is called a reference, which you can think of as a
memory-safe pointer: a reference point to owned memory and not just unsafe random
memory locations. The important thing to know about a reference is this: a reference
points to the memory of another value. A reference means you borrow the value, but
you don’t own it. It’s the same as our book: the table of contents doesn’t own the
information. The chapters own the information. In Rust, references have a & in front
of them:

 let my_variable = 8 makes a regular variable.
 let my_reference = &my_variable makes a reference to the data held by my_

variable.

You read my_reference = &my_variable like this: “my_reference is a reference to my_
variable” or “my_reference refers to my_variable.” This means that my_reference is
only looking at the data of my_variable; my_variable still owns its data.

 You can even have a reference to a reference or any number of references:

fn main() {
    let my_number = 15;             
    let single_reference = &my_number;        
    let double_reference = &single_reference; 
    let five_references = &&&&&my_number;    
}

These are all different types, just in the same way that “a friend of a friend” is different
from “a friend.” In practice, you probably won’t see references that are five deep, but
you will sometimes see a reference to a reference.

2.2 Strings
Rust has two main types of strings: String and &str. Why are there two types, and
what is the difference?

 A &str is a simple string. It’s just a pointer to the data plus the length. Usually,
you’ll hear it pronounced like “ref-stir.” With the pointer to the data plus the
length, Rust can see where it starts and where it ends. When you write let my_
variable = "Hello, world!", you create a &str. It is also called a string slice.
That’s because &str uses the pointer to find the data and the length to know
how much to look at. It might just be a partial view of the data owned by some
other variable, so just a slice of it.

 String is a bit more complicated string. It may be a bit slower, but it has more
functionality. A String is a pointer with data on the heap. The biggest differ-
ence is that a String owns its data, while a &str is a slice (a view into some
data). A String is easy to grow, shrink, mutate, and so on.

Also, note that &str has the & in front of it because you need a reference to use a str
for the same previously discussed reason: the stack needs to know the size, and a str
can be of any length. So we access it with a &, a reference. The compiler knows the size

This is 
an i32.

This is an &i32. This is 
an &&i32.

This is an &&&&&i32.



312.2 Strings
of a reference’s pointer, and it can then use the & to find where the str data is and
read it. Also, because you use a & to interact with a str, you don’t own it. But a String
is an “owned” type. We will soon learn why that is important to know.

 Both &str and String are encoded with UTF-8, which is the main character-
encoding system used worldwide. So the content inside a &str or String can be in any
language:

fn main() {
    let name = "자우림";   
    let other_name = String::from("Adrian Fahrenheit Țepeș");   
}

You can see in String::from("Adrian Fahrenheit Țepeș") that it is easy to make a
String from a &str. This second variable is an owned String.

 You can even write emojis, thanks to UTF-8:

fn main() {
    let name = " ";
    println!("My name is actually {}", name);
}

On your computer, that will print My name is actually  unless your command line
can’t print it. Then it will show something like My name is actually  . But Rust itself
has no problem with emojis or any other Unicode, even if your command line can’t
display them.

 Let’s look at the reason for using a & for strs again to make sure we understand. A
str is a dynamically sized type. Dynamically sized means that the size can be different.
For example, the two names we saw before (자우림 and Adrian Fahrenheit Țepeș)
are not the same size. We can see this with two functions: size_of, which shows the
size of a type, and size_of_val, which shows the size of a value pointed to. It looks
like this:

fn main() {
    let size_of_string = std::mem::size_of::<String>();    
    let size_of_i8 = std::mem::size_of::<i8>();
    let size_of_f64 = std::mem::size_of::<f64>();
    let size_of_jaurim = std::mem::size_of_val("자우림");   
    let size_of_adrian = std::mem::size_of_val("Adrian Fahrenheit Țepeș");

    println!("A String is Sized and always {size_of_string} bytes.");
    println!("An i8 is Sized and always {size_of_i8} bytes.");
    println!("An f64 is always Sized and {size_of_f64} bytes.");
    println!("But a &str is not Sized: '자우림' is {size_of_jaurim} bytes.");
    println!("And 'Adrian Fahrenheit Țepeș' is {size_of_adrian} bytes - not 

Sized.");
}

This &str of a Korean rock band’s 
name is no problem; Korean 
characters are UTF-8, too.

This String holding a famous vampire’s name is
no problem either: Ţ and ș are valid UTF-8.

�

�

std::mem::size_of::
<Type>() gives you the 
size of a type in bytes.

std::mem::size_of_val()
gives you the size in

bytes of a value.



32 CHAPTER 2 Memory, variables, and ownership
This prints

A String is Sized and always 24 bytes.
An i8 is Sized and always 1 bytes.
An f64 is always Sized and 8 bytes.
But a &str is not Sized: '자우림' is 9 bytes.
And 'Adrian Fahrenheit Țepeș' is 25 bytes - not Sized.

That is why we need a & because it makes a pointer, and Rust knows the size of the
pointer. So, only the pointer goes on the stack. If we wrote str, Rust wouldn’t know
what to do because it doesn’t know the size. Actually, you can try it out by telling it to
make a str instead of a &str:

fn main() {
    let my_name: str = "My name";
}

Here’s the error:

error[E0308]: mismatched types
 --> src/main.rs:2:24
  |
2 |     let my_name: str = "My name";
  |                  ---   ^^^^^^^^^ expected `str`, found `&str`
  |                  |
  |                  expected due to this

error[E0277]: the size for values of type `str` 

➥cannot be known at compilation time
 --> src/main.rs:2:9
  |
2 |     let my_name: str = "My name";
  |         ^^^^^^^ doesn't have a size known at compile-time
  |
  = help: the trait `Sized` is not implemented for `str`
  = note: all local variables must have a statically known size
  = help: unsized locals are gated as an unstable feature
help: consider borrowing here
  |
2 |     let my_name: &str = "My name";
  |                  +

Not a bad error message! The compiler itself seems to enjoy teaching Rust.
 There are many ways to make a string. Here are some:

 String::from("This is the string text");—This is a method for String
that takes text and creates a string.

 "This is the string text".to_string()—This is a method for &str that
makes it into a String.

 The format! macro—This works just like println!, except it creates a string
instead of printing. So you can do this:

fn main() {
    let name = "Billybrobby";



332.3 const and static
    let country = "USA";
    let home = "Korea";
    let together = format!("I am {name} from {country} but I live in {home}.");
}

Now we have a String named together, but we have not printed it yet.
 Another way to make a String is called .into(), but it is a bit different because

.into() isn’t for making a string; it’s for converting from one type into another type.
Some types can easily convert to and from another type using From:: and .into(); if
you have From, you also have .into(). From is clearer because you already know the
types: you know that String::from("Some str") is a String from a &str. But with
.into(), sometimes the compiler doesn’t know:

fn main() {
    let my_string = "Try to make this a String".into();
}

NOTE How does this happen? It’s thanks to something called a blanket trait
implementation. We’ll learn about that much later.

Rust doesn’t know what type you want because many types can be made from a &str. It
is saying, “I can make a &str into a lot of things, so which one do you want?”

error[E0282]: type annotations needed
 --> src\main.rs:2:9
  |
2 |     let my_string = "Try to make this a String".into();
  |         ^^^^^^^^^ consider giving `my_string` a type

So, you can do this:

fn main() {
    let my_string: String = "Try to make this a String".into();
}

And now you get a String.
 Next up are two keywords that let you make global variables. Global variables last

forever, so you don’t need to think about ownership for them!

2.3 const and static
There are two other ways to declare values without the keyword let. These two are
known as const and static. Another difference is that Rust won’t use type inference
for them: you need to write their type. These are for values that don’t change (const
means constant). Well, technically, static can change, but we will learn about that
later. The two main differences are 

 const is for values that don’t change and are created at compile time.
 static is similar to const but has a fixed memory location. It might not be cre-

ated at compile time.



34 CHAPTER 2 Memory, variables, and ownership
For the time being, you can think of them as almost the same. For a global variable,
Rust programmers will usually use const, but there are good reasons for the static
keyword, too. You’ll know about the key differences between the two by the end of
chapter 16. 

 You write them with ALL CAPITAL LETTERS and usually outside of main so that
they can live for the whole program. Two quick examples are

const NUMBER_OF_MONTHS: u32 = 12;
static SEASONS: [&str; 4] = ["Spring", "Summer", "Fall", "Winter"];

Because they are global, you can access them anywhere, and they don’t get dropped.
Here’s a quick example. Note that this print_months() function has no input, but no
problem—NUMBER_OF_MONTHS can be accessed from anywhere:

const NUMBER_OF_MONTHS: u32 = 12;

fn print_months() {             
    println!("Number of months in the year: {NUMBER_OF_MONTHS}");
}

fn main() {
    print_months();
}

That was pretty convenient. So, why not just make everything global? One reason is that
these types are made at compile time, before the program runs. If you don’t know what
a value is during compile time, you can’t make it a const or static. Also, you can’t use
the heap during compile time because the program needs to perform a memory allo-
cation (an allocation is like a reservation for heap memory). Don’t worry: you don’t
need to allocate memory yourself. Rust takes care of memory allocation for you.

 const and static are pretty easy: if the compiler lets you make one, you have it to
use anywhere, and you don’t have to worry about ownership. So let’s move on to refer-
ences because for those you need to understand ownership, and that takes a bit longer
to learn.

2.4 More on references
We have learned about references in general, and we know that we use & to create a
reference. Let’s look at an example of some code with references:

fn main() {
    let country = String::from("Austria");
    let ref_one = &country;
    let ref_two = &country;
    println!("{}", ref_one);
}

This prints Austria.
 Inside the code is the variable country, which is a String and, therefore, owns its

data. We then created two references to country. They have the type &String, which is

This function 
takes no input!



352.5 Mutable references
a “reference to a String.” These two variables can look at the data owned by country.
We could create 3 references or 100 references to country, and it would be no prob-
lem because they are just viewing the data.

 But this next code is a problem. Let’s see what happens when we try to return a ref-
erence to a String from a function:

fn return_str() -> &String {
    let country = String::from("Austria");
    let country_ref = &country;
    country_ref
}

fn main() {
    let country = return_str();
}

Here’s what the compiler says:

error[E0515]: cannot return value referencing local variable country
 --> src/main.rs:4:5
  |
3 |     let country_ref = &country;
  |                       -------- `country` is borrowed here
4 |     country_ref
  |     ^^^^^^^^^^^ returns a value referencing data owned by the current 

function

The function return_str() creates a String, and then it creates a reference to the
String. Then it tries to return the reference. But the String called country only lives
inside the function, and then it dies (remember, a variable only lives as long as its code
block). Once a variable is gone, the computer will clean up the memory so that it can
be used for something else. So after the function returns, country_ref would be
referring to memory that is already gone. Definitely not okay! Rust prevents us from
making a mistake with memory here.

 This is the important part about the “owned” type that we talked about previously.
Because you own a String, you can pass it around. But a &String will die if its String
dies, and you don’t pass around ownership with it.

2.5 Mutable references
If you want to use a reference to change data, you can use a mutable reference. For a
mutable reference, you write &mut instead of &:

fn main() {
    let mut my_number = 8;        
    let num_ref = &mut my_number;
}

So what are these two types called? my_number is an i32, and num_ref is &mut i32. In
speech, you call this a “mutable reference to an i32” or a “ref mut i32.”

Don’t forget to 
write mut here!



36 CHAPTER 2 Memory, variables, and ownership
 Let’s use it to add 10 to my_number. However, you can’t write num_ref += 10 because
num_ref is not the i32 value; it is an &i32. There’s nothing to add inside a reference.
The value to add is actually inside the i32. To reach the place where the value is, we
use *. Using * lets you move from the reference to the value behind the reference. In
other words, * is the opposite of &. Also, one * erases one &.

 The following code demonstrates these two concepts. It uses * to change the value
of a number through a mutable reference and shows that one * equals one &.

fn main() {
    let mut my_number = 8;
    let num_ref = &mut my_number;
    *num_ref += 10;                
    println!("{}", my_number);

    let second_number = 800;
    let triple_reference = &&&second_number;
    println!("Are they equal? {}", second_number == ***triple_reference);
}

This prints

18
Are they equal? true

Because using & is called referencing, using * is called dereferencing.

2.5.1 Rust’s reference rules

Rust has two rules for mutable and immutable references. They are very important
but easy to remember because they make sense:

 Rule 1 (immutable references)—You can have as many immutable references as you
want: 1 is fine, 3 is fine, 1,000 is fine. It’s no problem because you’re just viewing
data.

 Rule 2 (mutable references)—You can only have one mutable reference. Also, you
can’t have an immutable reference and a mutable reference together. 

Because mutable references can change the data, you could have problems if you
change the data when other references are reading it. A good way to understand is to
think of a presentation made with Powerpoint or on Google Docs. Let’s look at some
ownership situations through a comparison with real life and determine whether they
are okay or not.

2.5.2 Situation 1: Only one mutable reference

Say you are an employee writing a presentation using Google Docs online. You own
the data. Now you want your manager to help you. You log in with your account on
your manager’s computer and ask the manager to help by making edits. Now, the
manager has a mutable reference to your presentation but doesn’t own your computer.

Use * to change 
the i32 value.



372.5 Mutable references
The manager can make any changes wanted and then log out after the changes are
done. This is fine because nobody else is looking at the presentation.

2.5.3 Situation 2: Only immutable references

Say you are giving the presentation to 100 people. All 100 people can now see your
data. They all have an immutable reference to your presentation. This is fine because they
can see it, but nobody can change the data. One thousand or 1 million more people
can come to the presentation, and it wouldn’t make any difference.

2.5.4 Situation 3: The problem situation

Say you log in on your manager’s computer, as before. The manager now has a
mutable reference. Then you give the presentation to 100 people, but the manager
hasn’t logged out yet. This is definitely not fine because the manager can still do any-
thing on the computer. Maybe the manager will delete the presentation and start typ-
ing an email or even something worse! Now, the 100 people have to watch the
manager’s random computer activity instead of the presentation. That’s unexpected
behavior and exactly the sort of situation that Rust prevents.

 Here is an example of a mutable borrow with an immutable borrow:

fn main() {
    let mut number = 10;
    let number_ref = &number;
    let number_change = &mut number;
    *number_change += 10;
    println!("{}", number_ref);
}

The compiler prints a helpful message to show us the problem:

error[E0502]: cannot borrow `number` as mutable because it is also borrowed 
as immutable

 --> src\main.rs:4:25
  |
3 |     let number_ref = &number;
  |                      ------- immutable borrow occurs here
4 |     let number_change = &mut number;
  |                         ^^^^^^^^^^^ mutable borrow occurs here
5 |     *number_change += 10;
6 |     println!("{}", number_ref);
  |                    ---------- immutable borrow later used here

Take a close look at the next code sample. In the sample, we create a mutable variable
and then a mutable reference. The code changes the value of the variable through the
reference. Finally, it creates an immutable reference and prints the value using the
immutable reference. That sounds like a mutable borrow together with an immutable
borrow, but the code works. Why?

fn main() {
    let mut number = 10;



38 CHAPTER 2 Memory, variables, and ownership
    let number_change = &mut number;
    *number_change += 10;
    let number_ref = &number;
    println!("{}", number_ref);
}

It prints 20 with no problem. The code works because the compiler is smart enough to
understand it. It knows that we used number_change to change number but didn’t use
it again, so that is the end of the mutable borrow. No problem! We are not using
immutable and mutable references together.

 Earlier in Rust’s history, this kind of code actually generated an error, but the com-
piler is smarter than it used to be. It can understand not just what we type but when
and how we use (almost) everything.

2.6 Shadowing again
Remember when we learned in the last chapter that shadowing doesn’t destroy a value
but blocks it? We can prove this now that we know how to use references. Take a look at
this code and think about what the output will be. Will it be Austria 8 or 8 8?

fn main() {
    let country = String::from("Austria");
    let country_ref = &country;
    let country = 8;
    println!("{country_ref} {country}");
}

The answer is Austria, 8. First, we declare a String called country. Then we create
the reference country_ref to this string. Then we shadow country with 8, which is an
i32. But the first country was not destroyed, so country_ref still points to "Austria",
not 8. Here is the same code with some comments to show how it works:

fn main() {
    let country = String::from("Austria");   
    let country_ref = &country;             
    let country = 8;                       

    println!("{country_ref}, {country}");    
}

References get even more interesting when we pass them into functions because of
ownership: functions take ownership, too! The first code example in the next section
is a surprise for most people who are learning Rust for the first time. Let’s take a look.

2.7 Giving references to functions
One of the rules of values in Rust is that value can only have one owner. This makes
references very useful for functions because you can give a function a quick view of
some data without having to pass ownership.

We have a String 
called country. Makes a reference 

to the String data

Next, we have a variable called country 
that is an i8. It blocks the original 
String, but the String is not destroyed.

The reference still
points to the String.



392.7 Giving references to functions
 The following code doesn’t work, but it gives us some insight into how ownership
works:

fn print_country(country_name: String) {
    println!("{country_name}");
}

fn main() {
    let country = String::from("Austria");
    print_country(country);                  
    print_country(country);              
}

It does not work because country ends up destroyed, and the memory gets cleaned up
after the first calling of the print_country() function. Here’s how:

 Step 1—We create the String called country. The variable country is the owner
of the data.

 Step 2—We pass country to the function print_country, which now owns the
data. The function doesn’t have a ->, so it doesn’t return anything. After
print_country finishes, our String is now dead.

 Step 3—We try to give country to print_country, but we already did that, and it
died inside the function! The data that country used to own doesn’t exist
anymore.

This is also called a move because the data moves into the function, and that is where it
ends. You will see this in the error output, which calls it a use of moved value. In other
words, you tried to use a value that was moved somewhere else. The compiler is help-
ful enough to show you exactly which line moved the data:

error[E0382]: use of moved value: `country`
 --> src/main.rs:8:19
  |
6 |     let country = String::from("Austria");
  |         ------- move occurs because `country` has type 
  ➥`String`, which does not implement the `Copy` trait
7 |     print_country(country);
  |                   ------- value moved here
8 |     print_country(country);
  |                   ^^^^^^^ value used here after move

This example shows why software written in Rust is fast. A string allocates memory,
and if you do a lot of memory allocation, your program might slow down. 

NOTE Of course, a few extra allocations won’t slow anything down for the
small examples in this book. But sometimes, you need to write software that
doesn’t use any extra memory at all. For software like multiplayer games and
large data processing, you don’t want to use any extra memory if you don’t
have to.

Prints 
"Austria".

That was fun. 
Let’s do it again!



40 CHAPTER 2 Memory, variables, and ownership
Rust won’t allocate new memory for another string unless you want it to. Instead, it
just gives ownership of the same data to something else. In this case, the function
becomes the owner of the same data. (Also note the part of the error message that
says which does not implement the 'Copy' trait. We’ll learn about this shortly.)

 So what do we do? Well, we could make print_country give the String back, but
that would be awkward:

fn print_country(country_name: String) -> String {   
    println!("{}", country_name);
    country_name
}

fn main() {
    let country = String::from("Austria");
    let country = print_country(country);    
    print_country(country);
}

Now it prints

Austria
Austria

This way is awkward on both sides: you have to make the function return the value,
and you have to declare a variable to hold the value that the function returns. Fortu-
nately, there is a better method—just add &:

fn print_country(country_name: &String) {
    println!("{}", country_name);
}

fn main() {
    let country = String::from("Austria");
    print_country(&country);    
    print_country(&country);
}

Now print_country() is a function that takes a reference to a String: a &String.
Thanks to this, the print_country() function can only view the data but never takes
ownership.

 Now let’s do something similar with a mutable reference. Here is an example of a
function that uses a mutable variable:

fn add_hungary(country_name: &mut String) {    
    country_name.push_str("-Hungary");   
    println!("Now it says: {country_name}");
}

fn main() {
    let mut country = String::from("Austria");
    add_hungary(&mut country);    
}

Now this function doesn’t 
just print the String; it 
prints it and returns it …,

… which means that we have to grab 
the return value from the function 
and assign it to a variable again.

Note that you have 
to pass in &country, 
not country.

This time we are giving a &mut 
String instead of a &String.

The push_str() method 
adds a &str to a String.

Also note here that we need to pass in 
a &mut country, not just a &country.



412.7 Giving references to functions

y 
This prints Now it says: Austria-Hungary.
 So, to conclude,

 fn function_name(variable: String) takes a String and owns it. If it doesn’t
return anything, then the variable dies inside the function.

 fn function_name(variable: &String) borrows a String and can look at it.
The variable doesn’t die inside the function.

 fn function_name(variable: &mut String) borrows a String and can change
it. The variable doesn’t die inside the function.

Pay very close attention to this next example. It looks like a mutable reference, but it
is different. There is no &, so it’s not a reference at all:

fn main() {
    let country = String::from("Austria");   
    adds_hungary(country);
}

fn adds_hungary(mut string_to_add_hungary_to: String) {   
    string_to_add_hungary_to.push_str("-Hungary");
    println!("{}", string_to_add_hungary_to);
}

The output is Austria-Hungary, but that’s not the interesting part.
 How is this possible? mut string_to_add_hungary_to is not a reference:

adds_hungary owns country now. Remember, it takes a String and not a &String.
The moment you call adds_hungary, this function becomes the full owner of the data.
The variable string_to_add_hungary_to doesn’t need to care about the variable
country at all because its data has moved and country is now gone. So adds_hungary
can take country as mutable, and it is perfectly safe to do so—nobody else owns it.

 Remember our employee and manager situation? In this situation, it is like you just
quit your job and gave your whole computer to the manager. You’re gone. You won’t
ever touch it again, so the manager can do anything at all to it.

 Even more interesting, if you declare country a mutable variable on line 2, the
compiler will give you a small warning. Why do you think that is?

fn main() {
    let mut country = String::from("Austria");   
    adds_hungary(country);
}

fn adds_hungary(mut string_to_add_hungary_to: String) {
    string_to_add_hungary_to.push_str("-Hungary");
    println!("{}", string_to_add_hungary_to);
}

Let’s look at the warning:

warning: variable does not need to be mutable
 --> src/main.rs:2:9

The variable country is not 
mutable, but we are going to 
print Austria-Hungary. How?

Here’s how: adds_hungar
takes the String and 
declares it mutable!

Here we have declared 
country as mut.



42 CHAPTER 2 Memory, variables, and ownership
  |
2 |     let mut country = String::from("Austria");
  |         ----^^^^^^^
  |         |
  |         help: remove this `mut`
  |
  = note: `#[warn(unused_mut)]` on by default

This makes sense because on line 2 we have an owner called country that owns this
mutable String. But it doesn’t mutate it! It simply passes it into the adds_hungary
function. There was no need to make it mutable. But the adds_hungary function takes
ownership and would like to mutate it, so it declares it as a mut string_to_add_
hungary_to. (It could have called it mut country, but with a different name, we can
make it clear that ownership has completely passed to the function.)

 To take the employee and manager comparison again, it is as if you started at a
new job, got assigned a computer, and then quit and gave it to your manager without
even booting it up. There was no need to have mutable access in the first place
because you never even touched it.

 Also note the position: it’s mut country: String and not country: mut String.
This is the same order as when you use let like in let mut country: String.

2.8 Copy types
Rust’s simplest types are known as Copy types. They are all on the stack, and the com-
piler knows their size. That means that they are very easy to copy, so the compiler
always copies their data when you send these types to a function. Copy types are so
small and easy that there is no reason not to. In other words, you don’t need to worry
about ownership for these types.

 We saw that in the previous section, too: the compiler said that the data for String
moved because a String isn’t a Copy type. If it was a Copy type, the data would be cop-
ied, not moved. Sometimes you’ll see this difference expressed as move semantics and
copy semantics. You also see the word trivial to talk about Copy types a lot, such as “It’s
trivial to copy them.” That means “it’s so easy to copy them that there is no reason not
to copy them.” Copy types include integers, floats, booleans (true and false), char,
and others.

 How do you know if a type “implements” (can use) copy? You can check the docu-
mentation. For example, the documentation for char can be found at https://
doc.rust-lang.org/std/primitive.char.html. On the left in the documentation, you can
see Trait Implementations. There you can see, for example, Copy, Debug, and
Display. With that, you know that a char

 is copied when you send it to a function (Copy)
 can use {} to print (Display)
 can use {:?} to print (Debug)

Let’s look at a code sample similar to the previous one, except that it involves a func-
tion that takes an i32 (a Copy type) instead of a String. You don’t need to think about

https://doc.rust-lang.org/std/primitive.char.html
https://doc.rust-lang.org/std/primitive.char.html
https://doc.rust-lang.org/std/primitive.char.html
https://doc.rust-lang.org/std/primitive.char.html


432.8 Copy types
ownership anymore in this case because the i32 simply gets copied every time it passes
into the print_number() function:

fn prints_number(number: i32) {    
    println!("{}", number);
}

fn main() {
    let my_number = 8;
    prints_number(my_number);    
    prints_number(my_number);    
}

But if you look at the documentation for String (https://doc.rust-lang.org/std/
string/struct.String.html), it is not a Copy type.

 On the left in Trait Implementations, you can look in alphabetical order (A, B,
C, etc.); there is no Copy in C. But there is one called Clone. Clone is similar to Copy
but usually needs more memory. Also, you have to call it with .clone()—it won’t
clone just by itself in the same way that Copy types copy themselves all on their own.

 Let’s get back to the previous example with the prints_country() function.
Remember that you can’t pass the same String in twice because the function takes
ownership:

fn prints_country(country_name: String) {
    println!("{country_name}");
}

fn main() {
    let country = String::from("Kiribati");
    prints_country(country);
    prints_country(country);
}

But now we understand the message:

error[E0382]: use of moved value: `country`
 --> src\main.rs:4:20
  |
2 |     let country = String::from("Kiribati");
  |         ------- move occurs because `country` 
  ➥has type `std::string::String`, which does not implement the `Copy` trait
3 |     prints_country(country);
  |                    ------- value moved here
4 |     prints_country(country);
  |                    ^^^^^^^ value used here after move

The important part is String, which does not implement the `Copy` trait.
 But what if this was someone else’s code, and we couldn’t change the

prints_country() function to take a &String instead of a String? Or what if we
wanted to take a String by value for some reason? Well, in the documentation, we saw
that String implements the Clone trait. So we can add .clone() to our code. This

There is no -> so the function does not return 
anything. If number was not a Copy type, the 
function would take it, and we couldn’t use it again.

prints_number gets a 
copy of my_number.

And again here. It’s not a problem 
because my_number is a Copy type!

https://doc.rust-lang.org/std/string/struct.String.html
https://doc.rust-lang.org/std/string/struct.String.html
https://doc.rust-lang.org/std/string/struct.String.html


44 CHAPTER 2 Memory, variables, and ownership
creates a clone, and we send the clone to the function. Now country is still alive, so we
can use it:

fn prints_country(country_name: String) {
    println!("{}", country_name);
}

fn main() {
    let country = String::from("Kiribati");
    prints_country(country.clone());    
    prints_country(country);
}

Of course, if the String is very large, .clone() can use a lot of memory. One String
could be a whole book in length, and every time we call .clone(), it will copy the con-
tents of the book. So using & for a reference is faster, if you can. For example, the fol-
lowing code pushes a &str onto a String and then makes a clone every time it gets
used in a function:

fn get_length(input: String) {    
    println!("It's {} words long.", 
    input.split_whitespace().count());   
}

fn main() {
    let mut my_string = String::new();
    for _ in 0..50 {
        my_string.push_str("Here are some more words ");
        get_length(my_string.clone());
    }
}

It prints

It's 5 words long.
It's 10 words long.
...
It's 250 words long.

That’s 50 clones. Here it is using a reference instead, which is better:

fn get_length(input: &String) {
    println!("It's {} words long.", input.split_whitespace().count());
}

fn main() {
    let mut my_string = String::new();
    for _ in 0..50 {
        my_string.push_str("Here are some more words ");
        get_length(&my_string);
    }
}

Instead of 50 clones, it’s zero.

Makes a clone and gives it to the 
function. Only the clone goes in, and 
the country variable is still alive.

This function takes 
ownership of a String.

Here we split to count the 
number of words. (Whitespace 
means the space between words.)



452.10 More about printing
 Here’s a good rule of thumb with references and functions: if you can use an
immutable reference, go with that. You won’t have to worry about a function taking
ownership of some data: the function will simply take a look at it and be done. For
functions, if you don’t need to transfer ownership, a reference is always easiest!

 The final memory-related subject in this chapter is pretty short: variables that have
a name but no values.

2.9 Variables without values
A variable without a value is called an uninitialized variable. Uninitialized means
“hasn’t started yet.” They are simple: just write let and then the variable name and (if
necessary) the type:

fn main() {
    let my_variable: i32;
}

You can’t use it yet, and Rust won’t compile if you try to use a value that isn’t initial-
ized. But sometimes they can be useful. Some examples are when

 You have a code block, and the value for your variable is inside it.
 The variable needs to live outside of the code block.
 You want people reading your code to notice the variable name before the

block.

Here’s a simple example:

fn main() {
    let my_number;
    {                   
        let calculation_result = {      
            57                         
        };
        my_number = calculation_result;  
        println!("{my_number}");
    }
}

This prints 57.
 You can see that my_number was declared in the main() function, so it lives until the

end of the function. It gets its value from inside a different block, but that value lives
as long as my_number because my_number holds the value.

 Also note that my_number is not mut and doesn’t have to be. We didn’t give it a
value until we gave it 57, so it never mutated its value. In the end, my_number is just a
number that finally gets initialized with the value 57.

2.10 More about printing
We learned the basics of printing in the last chapter, but there is quite a bit more to
know. You can print in a lot of ways in Rust: complex formatting, printing as bytes,

Pretend we need to have 
this code block. We are 
writing some complex logic. Pretend there is 

code here, too.

Lots of code and 
then the result

And, finally, gives 
my_number a value



46 CHAPTER 2 Memory, variables, and ownership
displaying pointer addresses (the part in memory where the pointer is), and a lot
more. Let’s take a look at all of that now.

 Adding \n will make a new line, and \t will make a tab:

fn main() {       
    print!("\t Start with a tab\nand move to a new line");
}

This prints

         Start with a tab
and move to a new line

Inside a single "" you can write over multiple lines, but be careful with the spacing:

fn main() {      
    println!("Inside quotes
you can write over
many lines
and it will print just fine.");

    println!("If you forget to write
    on the left side, the spaces
    will be added when you print.");
}

This prints

Inside quotes
you can write over
many lines
and it will print just fine.
If you forget to write
    on the left side, the spaces
    will be added when you print.

If you want to print characters like \n, you can add an extra \ (a backslash). This is
what is known as an “escape”:

fn main() {
    println!("Here are two escape characters: \\n and \\t");
}

This prints

Here are two escape characters: \n and \t

Sometimes you end up using too many escape characters and just want Rust to print a
string as you see it. To do this, you can add r# to the beginning and # to the end. The
r here stands for raw:

fn main() {
    println!("He said, \"You can find the file at
    ➥c:\\files\\my_documents\\file.txt.\" Then I found the file.");    

This is print!, 
not println!

After the first line, you have to start on 
the far left. If you write directly under 
println!, it will add the spaces.

We had to use \ eight times
here—kind of annoying.



472.10 More about printing
    println!(r#"He said, "You can find the file at 
c:\files\my_documents\file.txt." Then I found the file."#);       

}

The output is exactly the same:

He said, "You can find the file at c:\files\my_documents\file.txt." 

➥Then I found the file.
He said, "You can find the file at c:\files\my_documents\file.txt." 

➥Then I found the file.

But the code for the second println! is easier to read.
 But what if # marks the end of the string and you need to print text with a #"

inside? In that case, you can start with r## and end with ##. You can keep adding # to
the beginning and end if you have longer instances of the # symbol in your text.

 This is best understood with a few examples:

fn main() {

    let my_string = "'Ice to see you,' he said.";
    let quote_string = r#""Ice to see you," he said."#;
    let hashtag_string = r##"The hashtag "#IceToSeeYou" had become 
    ➥very popular."##;
    let many_hashtags = r####""You don't have to type "###" to 
    ➥use a hashtag. You can just use #."####;

    println!("{}\n{}\n{}\n{}\n", my_string, quote_string, 
    ➥hashtag_string, many_hashtags);
}

The output of these four examples is

'Ice to see you,' he said.
"Ice to see you," he said.
The hashtag "#IceToSeeYou" had become very popular.
"You don't have to type "###" to use a hashtag. You can just use #.

If you want to print the bytes of a &str or a char, you can write b before the string.
This works for all ASCII characters (https://theasciicode.com.ar/).

 So when you add a b to print as follows,

fn main() {
    println!("{:?}", b"This will look like numbers");
}

you will get an output that shows all the bytes:

[84, 104, 105, 115, 32, 119, 105, 108, 108, 32, 108, 111, 111, 107, 32, 108, 
105, 107, 101, 32, 110, 117, 109, 98, 101, 114, 115]

Much better!

https://theasciicode.com.ar/


48 CHAPTER 2 Memory, variables, and ownership
You can also put b and r together if you need to:

fn main() {
    println!("{:?}", br##"I like to write "#"."##);
}

That will print [73, 32, 108, 105, 107, 101, 32, 116, 111, 32, 119, 114, 105,
116, 101, 32, 34, 35, 34, 46].

 There is also a Unicode escape that lets you print any Unicode character inside a
string: \u{}. A hexadecimal number goes inside the {} to print it. Here is a short
example of how to get the Unicode number as a u32, which you can then use with \u
to print it out again:

fn main() {
    println!("{:X}", '행' as u32);       
    println!("{:X}", 'H' as u32);
    println!("{:X}", '居' as u32);
    println!("{:X}", 'い' as u32);

    println!("\u{D589}, \u{48}, \u{5C45}, \u{3044}");    
}

We know that println! can print with {} for Display and {:?} for Debug, plus {:#?}
for pretty printing. But there are many other ways to print.

 For example, if you have a reference, you can use {:p} to print the pointer
address. Pointer address means the location in your computer’s memory:

fn main() {
    let number = 9;
    let number_ref = &number;
    println!("{:p}", number_ref);
}

This prints an address, like 0xe2bc0ffcfc. It might be different every time, depending
on how and where your computer stores it. Or you can print binary, hexadecimal, and
octal:

fn main() {
    let number = 555;
    println!("Binary: {:b}, hexadecimal: {:x}, octal: {:o}", number, number, 

number);
}

This prints Binary: 1000101011, hexadecimal: 22b, octal: 1053.
 You can also add numbers inside {} to change the order of what gets printed. The

first variable following the string will be in index 0, the next in index 1, and so on:

fn main() {
    let father_name = "Vlad";
    let son_name = "Adrian Fahrenheit";
    let family_name = "Țepeș";

Casts char as u32 to get 
the hexadecimal value

Tries printing them 
with unicode escape \u



492.10 More about printing
    println!("This is {1} {2}, son of {0} {2}.", 
    father_name, son_name, family_name);
}

Here, father_name is in position 0, son_name is in position 1, and family_name is in
position 2. So it prints This is Adrian Fahrenheit Țepeș, son of Vlad Țepeș.

 You can also use a name instead of an index value to do the same thing. In this
case, you have to use the = sign to indicate which name applies to which value:

fn main() {
    println!(
        "{city1} is in {country} and {city2} 
    is also in {country},
but {city3} is not in {country}.",
        city1 = "Seoul",
        city2 = "Busan",
        city3 = "Tokyo",
        country = "Korea"
    );
}

That example prints

Seoul is in Korea and Busan is also in Korea,
but Tokyo is not in Korea.

Very complex printing is also possible in Rust if you want to use it. Complex printing
in Rust is based on this format:

{variable:padding alignment minimum.maximum}

Let’s look at this one step at a time to understand it:

 Do you want a variable name? Write that first, like when we wrote {country}.
(Then add a : after it if you want to do more things.)

 Do you want a padding character? For example, 55 with three “padding zeros”
looks like 00055.

 What alignment (left/middle/right) do you want for the padding?
 Do you want a minimum length? (Just write a number.)
 Do you want a maximum length? (Write a number with a . in front.)
 Then, at the end, you can add a question mark if you want to Debug print.

We use this format every time we print, actually. If you type println!("{my_
type:?}");, you are choosing the following:

 The variable’s name is my_type.
 Nothing for padding, alignment, minimum, and maximum.
 Finally, there is a ? to specify Debug printing.

Let’s look at some complex printing examples. If you want to write a with five Korean
ㅎ characters on the left and five ㅎ characters on the right, you would write this:



50 CHAPTER 2 Memory, variables, and ownership
fn main() {
    let letter = "a";
    println!("{:ㅎ^11}", letter);
}

This prints ㅎㅎㅎㅎㅎaㅎㅎㅎㅎㅎ. Let’s look at 1 to 5 again to understand how the
compiler reads it:

 Do you want a variable name? {:ㅎ^11} No, there is no variable name. There is
nothing before the :.

 Do you want a padding character? {:ㅎ^11} Yes, ㅎ comes after the :, so that is
the padding character.

 Do you want an alignment? {:ㅎ^11} Yes, the ^ means alignment in the middle,
< means alignment on the left, and > means alignment on the right.

 Do you want a minimum length? {:ㅎ^11} Yes, there is an 11 after.
 Do you want a maximum length? {:ㅎ^11} No, there is no number with a .

before it.

Here is an example of many types of formatting:

fn main() {
    let title = "TODAY'S NEWS";
    println!("{:-^30}", title);             
    let bar = "|";
    println!("{: <15}{: >15}", bar, bar);   
    let a = "SEOUL";
    let b = "TOKYO";
    println!("{city1:-<15}{city2:->15}", city1 = a, city2 = b);   
}

It prints

---------TODAY'S NEWS---------
|                            |
SEOUL--------------------TOKYO

This chapter had a lot of concepts that are unique to Rust regarding memory and
ownership. Let’s think of one more comparison to make sure we understand it before
we finish the chapter.

 Ownership is sort of like how you own your computer. You have

 Immutable references—You can show your coworker what’s on your screen as many
times as you want with no problem.

 Mutable references—If your coworker wants to sit down and use your computer
for a bit, there should be a good reason for it. And you can’t have two coworkers
sitting at your computer at the same time typing away—they’ll just make a mess.

 Transferring ownership—If your coworker wants to own your computer, there bet-
ter be a good reason for it because you can’t ask for it back. They can declare it
mutable and do absolutely whatever they want with it.

No variable name; pad with -; ^ to 
put in center; 30 characters long

No variable name; pad with space; 
15-character minimum length 
(one to the left, one to the right)

Variable names city1 and city2; pad
with -; 15 character minimum length

(one to the left, one to the right)



51Summary
Finally, there are Copy types: they are “trivial” to copy. Think of them as cheap office
pens, paperclips, and stickies. If your coworker needs a paperclip, do you care about
ownership? No, you just hand it over and forget about it because it’s such a trivial
item.

 Now that you understand ownership, we are going to move on to some more inter-
esting types in Rust. So far, we’ve only looked at the most primitive types and String,
but there’s a lot more out there. In the next chapter we’ll start to look at Rust’s collec-
tion types.

Summary
 const and static can be used anywhere and for the whole life of a program.
 You take ownership of data by default in Rust; if you want to borrow, use a

reference.
 Even strings in Rust have the concept of ownership: String for an owned type,

and &str for a borrowed string.
 Copy types are so cheap that you don’t need to worry about ownership. They use

“copy semantics,” not “move semantics.”
 Uninitialized variables are rare, but you can use them as long as the variable is

initialized later somewhere.
 The println! macro has its own syntax with a surprisingly large amount of

functionality.



More complex types
We’re now moving past Rust’s simplest types to collection types. Rust has a lot of
collection types, and in this chapter, we’ll learn three of them: arrays, vectors, and
tuples. Unsurprisingly, Rust gives you a lot of options to choose from; this chapter
only shows a few. After collection types, we’ll learn about control flow, which means
telling Rust how to run your code depending on the situation. One of the coolest
parts of control flow in Rust is the keyword match, so keep an eye out for that.

3.1 Collection types
Rust has a lot of types for making collections. Collections are used when you have
more than one value and want to hold them in a single place with some sort of

This chapter covers
 Arrays—simple, fast, immutable collections 

of the same type

 Vectors—similar to arrays but growable 
and with more functionality

 Tuples (a grouping of various types)

 Control flow—making your code run differently 
depending on the situation
52



533.1 Collection types
order. For example, you could have information on all the cities in your country
inside one collection.

 The collection types we are going to look at now are arrays, vectors, and tuples.
These are the easiest collection types in Rust to learn. There are other, more complex
collection types in Rust, but those won’t come up until chapter 6! We will start with
arrays. Arrays are simpler types than vectors, so they can be used in places like tiny
embedded devices where you can’t allocate memory. At the same time, they have the
least functionality for the user. They are a little bit like &str in that way.

3.1.1 Arrays

To create an array, just put some data inside square brackets separated by commas.
But arrays have some pretty strict rules: 

 Arrays must only contain the same type.
 Arrays cannot change their size.

Arrays have a somewhat interesting type: [type; number]. For example, the type of
["One", "Two"] is [&str; 2], while the type of ["One"] is [&str; 1]. This means that
even these two arrays are of different types:

fn main() {
    let array1 = ["One", "Two"];        

    let array2 = ["One", "Two", "Five"];  
}

Here is a good tip for arrays as well as other types: to find the type of a variable, you
can “ask” the compiler by giving it bad instructions, such as trying to call a method
that doesn’t exist. Take this code for example:

fn main() {
    let seasons = ["Spring", "Summer", "Autumn", "Winter"];
    let seasons2 = ["Spring", "Summer", "Fall", "Autumn", "Winter"];
    seasons.ddd();        
    seasons2.thd();       
}

The compiler says, “What? There’s no .ddd() method for seasons and no .thd()
method for seasons 2 either!!” as the error output shows us:

error[E0599]: no method named `ddd` found for array `[&str; 4]` in the 
current scope

 --> src\main.rs:4:13
  |
4 |     seasons.ddd();                                  
  |             ^^^ method not found in `[&str; 4]`

error[E0599]: no method named `thd` found for array `[&str; 5]` 

➥in the current scope

This one is type [&str; 2].

But this one is type 
[&str; 3]. Different type!

Compiler: ❗
Compiler 
again: ❗❗



54 CHAPTER 3 More complex types
 --> src\main.rs:5:14
  |
5 |     seasons2.thd();                              
  |              ^^^ method not found in `[&str; 5]`

So when the compiler tells you method not found in `[&str; 4]`, that’s the type.
 If you want an array with all the same value, you can declare it by entering the

value, then a semicolon, and then the number of times you need it to repeat:

fn main() {
    let my_array = ["a"; 5];
    println!("{:?}", my_array);
}

This prints ["a", "a", "a", "a", "a"].
 This method is used a lot to create byte buffers, which computers use when doing

operations like downloading data. For example, let mut buffer = [0u8; 640] creates
an array of 640 u8 zeroes, which means 640 bytes of empty data. Its type will then be
[u8; 640]. When data comes in, it can change each zero to a different u8 number to
represent the data. This buffer can change up to 640 of these zeroes before it is “full.”
We won’t try to do any of these operations in Rust in this chapter, but it’s good to
know what arrays can be used for.

 As you can see, you can change the data inside an array as much as you want (if it’s
mut, of course). You just can’t add or remove items or change the type of the items inside.

 We can use the b prefix that we learned in the previous chapter to take a look at an
array of bytes. This example won’t compile yet, but the error message is interesting:

fn main() {
    println!("{}", b"Hello there");
}

It says:

error[E0277]: `[u8; 11]` doesn't implement `std::fmt::Display`
 --> src/main.rs:2:20
  |
2 |     println!("{}", b"Hello there");
  |                    ^^^^^^^^^^^^^^ `
  ➥[u8; 11]` cannot be formatted with the default formatter
  |

The solution is to use {:?} instead of {}, but we don’t care about that: what’s interest-
ing is the type. It’s [u8; 11]. So when you use b, it turns a &str into a byte array: an
array of u8.

 You can index (get) entries in an array with []. The first entry is [0], the second is
[1], and so on:

fn main() {
    let my_numbers = [0, 10, -20];
    println!("{}", my_numbers[1]);        
}

Prints 10



553.1 Collection types
You can also get a slice (a piece) of an array. First, you need a & because the compiler
doesn’t know the size (a slice can be any length, so it is not Sized). Then you can use
.. to show the range. A range between index 2 and 5, for example, is 2..5. But
remember, in 2..5, 2 means the third item (because indexes start at 0), and 5 means
“up to index 5, but not including it.”

 This is easier to understand with examples. Let’s use the array [0, 1, 2, 3, 4, 5,
6, 7, 8, 9] and slice it in different ways:

fn main() {
    let array_of_ten = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];

    let two_to_five = &array_of_ten[2..5];   
    let start_at_one = &array_of_ten[1..];    
    let end_at_five = &array_of_ten[..5];    
    let everything = &array_of_ten[..];      

    println!("Two to five: {two_to_five:?},
Start at one: {start_at_one:?},
End at five: {end_at_five:?},
Everything: {everything:?}");
}

This prints

Two to five: [2, 3, 4],
Start at one: [1, 2, 3, 4, 5, 6, 7, 8, 9],
End at five: [0, 1, 2, 3, 4],
Everything: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Because a range like 2..5 doesn’t include index 5, it’s called exclusive. But you can also
have an inclusive range, which means it includes the last number, too. To do this, add =
to write ..= instead of the regular .. two dots. So instead of [0..2] you can write
[0..=2] if you want the first, second, and third item (these are also called the zeroth,
first, and second index).

3.1.2 Vectors

In addition to arrays, we have vectors. The difference between the two is similar to the
difference between &str and String: arrays are simpler, with less flexibility and func-
tionality, and may be faster, while vectors are easier to work with because you can
change their size. (Note that arrays are not dynamically sized like a &str, so the com-
piler always knows their size. That’s why we didn’t need a reference to use them in the
previous examples.)

 The vector type is written Vec, and most people simply call it a Vec. It rhymes with
deck. There are two main ways to declare a vector. One is similar to making a String
using new:

fn main() {
    let name1 = String::from("Windy");    
    let name2 = String::from("Gomesy");   

2..5 means from index 
2 up to index 5 but not 
including index 5.

1.. means from index 
1 until the end.

..5 means from the beginning up 
to but not including index 5.

Using .. means to slice the whole 
array: beginning to end.

Cat’s name
Another cat’s name



56 CHAPTER 3 More complex types
    let mut my_vec = Vec::new();        
    my_vec.push(name1);  
    my_vec.push(name2);
}

You can see that Vec always has something else inside it, and that’s what the <> (angle
brackets) are for. A Vec<String> is a vector with one or more Strings. You can put
anything inside a Vec—for example:

 Vec<(i32, i32)>—This is a Vec where each item is a tuple: (i32, i32). We will
learn tuples right after Vecs.

 Vec<Vec<String>>—This is a Vec that has Vecs of Strings. Say, for example,
you wanted to save the words of your favorite book as a Vec<String>. Then you
do it again with another book and get another Vec<String>. To hold both
books, you would put them into another Vec, and that would be a
Vec<Vec<String>>.

Instead of using .push() to have Rust decide the type (using type inference), you can
declare the type:

fn main() {
    let mut my_vec: Vec<String> = Vec::new();     
}

All items in a Vec must all have the same type, so you can’t push an i32 or anything
else into a Vec<String>.

 Another easy way to create a Vec is with the vec! macro. It looks like an array dec-
laration but has vec! in front of it. Most people make Vecs this way because it’s so easy:

fn main() {
    let mut my_vec = vec![8, 10, 10];
}

You can slice a vector, too, just like in an array. The following code is the same as the
previous array example, except it uses Vecs instead of arrays:

fn main() {
    let vec_of_ten = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
    let three_to_five = &vec_of_ten[2..5];
    let start_at_two = &vec_of_ten[1..];
    let end_at_five = &vec_of_ten[..5];
    let everything = &vec_of_ten[..];

    println!("Three to five: {:?},
start at two: {:?}
end at five: {:?}
everything: {:?}", three_to_five, start_at_two, end_at_five, everything);
}

Vecs allocate memory, so they have some methods to reduce memory usage and make
them faster. A Vec has a capacity, which means the amount of memory given to the Vec

If we run the program now, the 
compiler will give an error. It 
doesn’t know the type of Vec.

Now it knows: it’s 
a Vec<String>

The compiler knows that it 
is a Vec<String>, so it 
won’t generate an error.



573.1 Collection types
to use. As you push new items onto the Vec, it gets closer and closer to the capacity. It
won’t give an error if you go past the capacity, so don’t worry. However, if you go past
the capacity, it will double its capacity and copy the items into this new memory space.

 For example, imagine that you have a Vec with a capacity of 4 and four items inside
it. If you add one more item, it will need a new memory space that can hold all five
items. So, it will double its capacity to 8 and copy the five items over into the new
memory space. This is called reallocation. You can imagine that this will use extra
memory if you keep pushing a lot. We’ll use a method called .capacity() to look at
the capacity of a Vec as we add items to it, as in the following example:

fn main() {
    let mut num_vec = Vec::new();
    println!("{}", num_vec.capacity());     
    num_vec.push('a');                        
    println!("{}", num_vec.capacity());        
    num_vec.push('a');                      
    num_vec.push('a');                       
    num_vec.push('a');                        
    println!("{}", num_vec.capacity());       
    num_vec.push('a');                     
    println!("{}", num_vec.capacity());       
}

This prints

0
4
4
8

This vector has two reallocations: 0 to 4 and 4 to 8. We can make it more efficient by
giving it a capacity of 8 to start:

fn main() {
    let mut num_vec = Vec::with_capacity(8);  
    num_vec.push('a');                      
    println!("{}", num_vec.capacity());    
    num_vec.push('a');                       
    println!("{}", num_vec.capacity());      
    num_vec.push('a');                       
    println!("{}", num_vec.capacity());       
    num_vec.push('a');                       
    num_vec.push('a');                       
    println!("{}", num_vec.capacity()); 
}

This vector had just a single first allocation, which is much better. If you think you
know how many elements you need, you can use Vec::with_capacity() to use less
memory and make your program more efficient.

 We saw in the previous chapter that you can use .into() to make a &str into a
String. You can also use the same method to make an array into a Vec. Interestingly,

Zero elements: 
prints 0

Adds a character
One element: prints 4. 
Vecs with one item always 
start with capacity 4.

Adds one more
Adds one more

Adds one more Four elements: 
still prints 4

Adds one more

Prints 8. We have five elements, but it 
doubled four to eight to make space.

Gives it capacity 8

Adds one 
characterPrints 8

Adds one more
Prints 8

Adds one more
Prints 8

Adds one more

Adds one more. Now 
we have five elements.Still 8



58 CHAPTER 3 More complex types
you have to declare that you want to use .into() to make a Vec, but you don’t have to
say which kind! You can simply write Vec<_>, and thanks to type inference, Rust will
change the array into a Vec for you:

fn main() {
    let my_vec: Vec<u8> = [1, 2, 3].into();
    let my_vec2: Vec<_> = [9, 0, 10].into();    
}

The last collection type in this chapter is called a tuple, which is quite different
because it lets you hold a collection of different types together. Internally, tuples are
different, too. Let’s see how.

3.1.3 Tuples

Tuples in Rust use (). We have seen many empty tuples already because nothing in a
function means an empty tuple. The signature

fn do_something() {}

is short for

fn do_something() -> () {}

That function gets nothing (an empty tuple) and returns nothing (an empty tuple).
We have been using tuples a lot already. When you don’t return anything in a func-
tion, you return an empty tuple. In Rust, this empty tuple is called the unit type. Take a
look at the following example and think about what is being returned in both the pre-
vious function and inside main():

fn just_makes_an_i32() {
    let unused_number = 10;
}

fn main() {
    just_makes_an_i32()
}

In the function just_makes_an_i32(), we make an i32 that we never use. It gets
declared inside the function and is followed with a semicolon. When you end a line
with a semicolon nothing is returned—just an empty tuple. So, the return value for
this function is also (). Then main() starts, and main() is also a function that returns
nothing—an empty tuple. The interesting part is that just_makes_an_i32() isn’t fol-
lowed by a semicolon, but the code still works! That is because just_makes_an_i32()
returns a (), and that becomes the return value for the main function because
just_makes_an_i32() is on the last line. Of course, it looks much better to write
just_makes_an_i32(); with a semicolon. But this is a good lesson to see that the Rust
compiler isn’t concerned with whether you use semicolons; it’s a compiler, not a for-
matter. It is only interested in having the expected inputs and outputs match.

This makes a 
Vec<i32>.



593.1 Collection types
 Let’s go beyond empty tuples and look at tuples that hold values. Items inside a
tuple are also accessed with numbers 0, 1, 2, and so on. But to access them, you use a
. (dot) instead of a []. There is a good reason for this: tuples are more like objects
than indexed collections. In the next chapter, we will learn how to make objects called
structs that use the same . (dot) notation.

 Okay, let’s put a whole bunch of types into a single tuple:

fn main() {
    let random_tuple = ("Here is a name", 8, vec!['a'], 'b', [8, 9, 10], 7.7);
    println!(
        "Inside the tuple is: First item: {:?}
Second item: {:?}
Third item: {:?}
Fourth item: {:?}
Fifth item: {:?}
Sixth item: {:?}",
        random_tuple.0,
        random_tuple.1,
        random_tuple.2,
        random_tuple.3,
        random_tuple.4,
        random_tuple.5,
    )
}

This prints

Inside the tuple is: First item: "Here is a name"
Second item: 8
Third item: ['a']
Fourth item: 'b'
Fifth item: [8, 9, 10]
Sixth item: 7.7

The type of a tuple depends on the types of the items inside it. So this tuple is of type
(&str, i32, Vec<char>, char, [i32; 3], f64).

 You can use a tuple to create multiple variables at the same time. Take a look at this
code:

fn main() {
    let strings = ("one".to_string(), 
    ➥"two".to_string(), "three".to_string());
}

This strings tuple has three items in it. What if we want to pull them out and use
them separately? We can use another tuple for that:

fn main() {
    let strings = ("one".to_string(), 
    "two".to_string(), "three".to_string());

    let (a, b, c) = strings;



60 CHAPTER 3 More complex types
    println!("{b}");
    // println!("{strings:?}");   
}

That prints two, which is the value that b holds. This is known as destructuring because
the variables are first inside a structure, but then we made a, b, and c separately to pull
this structure apart. A String is not a Copy type, so the values are moved into a, b, and
c, and strings can’t be accessed anymore.

 Destructuring only works when the pattern matches. The following code works
because each side has three items—the patterns match:

fn main() {
    let tuple_of_three = ("one", "two", "three");
    let (a, b, c) = tuple_of_three;
}

But you can’t destructure if the pattern doesn’t match. The next code sample is trying
to use a tuple of two items to destructure three items, but the patterns don’t match,
and Rust can’t tell what kind of destructuring you are trying to do:

fn main() {
    let tuple_of_three = ("one", "two", "three");
    let (a, b) = tuple_of_three;                 
}

If you write let (a, b, c) instead of let (a, b), then they will match, and you will
have the variables a, b, and c to use. But what if you only want to use two items? No
problem, just make sure the pattern matches but use _ instead of a variable name:

fn main() {
    let tuple_of_three = ("one", "two", "three");
    let (_, b, c) = tuple_of_three;
}

Now Rust can tell that you want b and c to have the values "two" and "three", and
"one" doesn’t get assigned to any variable.

 In chapter 6, we’ll see more collection types, and we’ll see more ways to use them
all throughout the book as well. But for the remainder of this chapter, we will learn
control flow.

3.2 Control flow
Control flow involves telling your code to do something in a certain situation but to
do something else in another situation. What should the code do if a certain condi-
tion is true, or a number is even or odd, or some other case? Rust has quite a few ways
to manage control flow, and we’ll start with the simplest form: the keyword if.

3.2.1 Basic control flow

The simplest form of control flow is if followed by {}. Rust will execute the code
inside {} if the condition is true and will do nothing otherwise:

This wouldn’t 
compile.

Should _b_ be "two" or 
"three"? Rust can’t tell.



613.2 Control flow
fn main() {
    let my_number = 5;
    if my_number == 7 {
        println!("It's seven");
    }
}

This code will print nothing because my_number is not 7.
 Also note that you use == and not =. Using == is to compare, while = is to assign (to

give a value). Also note that we wrote if my_number == 7 and not if (my_number == 7).
You don’t need parentheses with if in Rust. Using if will work with parentheses, but
the compiler will tell you that you didn’t need to use them.

 You can use else if and else to give you more control:

fn main() {
    let my_number = 5;
    if my_number == 7 {
        println!("It's seven");
    } else if my_number == 6 {
        println!("It's six")
    } else {
        println!("It's a different number")
    }
}

This prints It's a different number because my_number isn’t equal to 7 or 6.
 You can add more conditions with && (and) and || (or):

fn main() {
    let my_number = 5;
    if my_number % 2 == 1 && my_number > 0 {   
        println!("It's a positive odd number");
    } else if my_number == 6 {
        println!("It's six")
    } else {
        println!("It's a different number")
    }
}

This prints It's a positive odd number because when you divide it by 2, you have a
remainder of 1, and it’s greater than 0.

3.2.2 Match statements

You can already see that using if, else, and else if too much can make your code
difficult to read. In this case, you can use match instead, which looks much cleaner.
But Rust will make you match for every possible situation and won’t compile the code
otherwise. For example, this will not work:

fn main() {
    let my_number: u8 = 5;
    match my_number {
        0 => println!("it's zero"),

This % is called modulo and 
gives the number that remains 
after dividing. 9 % 3 would give 
0, and 5 % 2 would give 1.



62 CHAPTER 3 More complex types
        1 => println!("it's one"),
        2 => println!("it's two"),
    }
}

The compiler says

error[E0004]: non-exhaustive patterns: `3u8..=std::u8::MAX` not covered
 --> src\main.rs:3:11
  |
3 |     match my_number {
  |           ^^^^^^^^^ pattern `3u8..=std::u8::MAX` not covered

The compiler is saying, “You told me about 0 to 2, but u8s can go up to 255. What
about 3? What about 4? What about 5?” And so on. In this case, you can add _ (under-
score), which means “anything else.” This is sometimes called a wildcard:

fn main() {
    let my_number: u8 = 5;
    match my_number {
        0 => println!("it's zero"),
        1 => println!("it's one"),
        2 => println!("it's two"),
        _ => println!("It's some other number"),
    }
}

That prints It's some other number.
 Remember these points for match:

 You write match, then the name of the item to match against, and then a {}
code block.

 Write the pattern on the left and use a => (fat arrow) to say what to do when the
pattern also matches.

 Each line is called an arm.
 Put a comma between the arms (not a semicolon).

You can declare a value with a match:

fn main() {
    let my_number = 5;
    let second_number = match my_number {
        0 => 0,
        5 => 10,
        _ => 2,
    };
}

The variable second_number will be 10. Do you see the semicolon at the end? That is
because after the match is over, we told the compiler this: let second_number = 10;.

 You can match on more complicated patterns, too. You can use a tuple to do it:



633.2 Control flow
fn main() {
    let sky = "cloudy";
    let temperature = "warm";

    match (sky, temperature) {
        ("cloudy", "cold") => println!("It's dark and unpleasant today"),
        ("clear", "warm") => println!("It's a nice day"),
        ("cloudy", "warm") => println!("It's dark but not bad"),
        _ => println!("Not sure what the weather is."),
    }
}

This prints It's dark but not bad because it matches "cloudy" and "warm" for sky
and temperature.

 You can even put if inside of match. This is called a match guard:

fn main() {
    let children = 5;
    let married = true;

    match (children, married) {
        (children, married) if married == false => 
    println!("Not married with {children} kids"),
        (children, married) if children == 0 && married == true => {
            println!("Married but no children")
        }
        _ => println!("Married? {married}. Number of children: {children}."),
    }
}

This will print Married? true. Number of children: 5.
 You also don’t need to write == true or == false when checking a bool. Instead,

you can write the name of the variable by itself (to check if true) or the name of the
variable with an exclamation mark in front (to check if false). Here’s the same code
as before using this shortcut:

fn main() {
    let children = 5;
    let married = true;

    match (children, married) {
        (children, married) if !married => 
         ➥println!("Not married with {children} kids"),
        (children, married) if children == 0 && married => 
         ➥println!("Married but no children")
        _ => println!("Married? {married}. 
        ➥Number of children: {children}."),
    }
}

You can use _ as many times as you want in a match. In this match on colors, we have
three to match on, but only check one at a time:



64 CHAPTER 3 More complex types
fn match_colors(rgb: (i32, i32, i32)) {
    match rgb {
        (r, _, _) if r < 10 => println!("Not much red"),
        (_, g, _) if g < 10 => println!("Not much green"),
        (_, _, b) if b < 10 => println!("Not much blue"),
        _ => println!("Each color has at least 10"),
    }
}

fn main() {
    let first = (200, 0, 0);
    let second = (50, 50, 50);
    let third = (200, 50, 0);

    match_colors(first);
    match_colors(second);
    match_colors(third);
}

This prints

Not much green
Each color has at least 10
Not much blue

This example also shows how match statements work because in the first example, it
only prints Not much blue. But first also has “not much green.” A match statement
always stops when it finds a match and doesn’t check the rest. This is a good example
of code that compiles well but is probably not the code you want.

 You can make a really big match statement to fix it, but it is probably better to use a
for loop. We will learn to use for loops very soon.

 Each arm of a match has to return the same type. So you can’t do this:

fn main() {
    let my_number = 10;
    let some_variable = match my_number {
        10 => 8,
        _ => "Not ten",
    };
}

The compiler tells you that

error[E0308]: `match` arms have incompatible types
  --> src\main.rs:17:14
   |
15 |       let some_variable = match my_number {
   |  _________________________-
16 | |         10 => 8,
   | |               - this is found to be of type `{integer}`
17 | |         _ => "Not ten",
   | |              ^^^^^^^^^ expected integer, found `&str`
18 | |     };
   | |_____- `match` arms have incompatible types



653.2 Control flow
The following will also not work for the same reason:

fn main() {
    let some_variable = if my_number == 10 { 8 } else { "something else "};
    let my_number = 10;
}

But the following example using if and else works because if and else are followed
by {}, which is a separate scope. The variable some_variable lives and dies inside a sep-
arate scope, and so it has nothing to do with if and else:

fn main() {
    let my_number = 10;

    if my_number == 10 {
        let some_variable = 8;
    } else {
        let some_variable = "Something else";
    }
}

You can also use @ to give a name to the value of a match expression, and then you can
use it. In this example, we match an i32 input in a function. If it’s 4 or 13, we want to
use that number in a println! statement. Otherwise, we don’t need to use it:

fn match_number(input: i32) {
    match input {
        number @ 4 => println!("{number} is unlucky in China (sounds 
        ➥close to 死)!"),
        number @ 13 => println!("{number} is lucky in Italy! In 
        ➥bocca al lupo!"),
        number @ 14..=19 => println!("Some other number that ends 
        ➥with -teen: {number}"),
        _ => println!("Some other number, I guess"),
    }
}

fn main() {
    match_number(50);
    match_number(13);
    match_number(16);
    match_number(4);
}

This prints

Some other number, I guess
13 is lucky in Italy! In bocca al lupo!
Some other number that ends with -teen: 16
4 is unlucky in China (sounds close to 死)!

Now let’s move on to the last part of control flow in this chapter: the loop.



66 CHAPTER 3 More complex types
3.2.3 Loops

With loops, you can tell Rust to repeat something until you tell it to stop. The keyword
loop lets you start a loop that does not stop unless you tell the code when to break. So
this program will never stop:

fn main() {
    loop {}
}

That’s not very helpful, so let’s tell the compiler when it can break the loop (and
therefore finish the program):

fn main() {
    let mut counter = 0;            
    loop {
        counter +=1;                
        println!("The counter is now: {counter}");
        if counter == 5 {             
            break;
        }
    }
}

This will print

The counter is now: 1
The counter is now: 2
The counter is now: 3
The counter is now: 4
The counter is now: 5

Rust allows you to give a loop a name, which is helpful when you are within a loop that
is inside another loop. You can use a ' (called a tick) followed by a colon to give it a
name:

fn main() {
    let mut counter = 0;
    let mut counter2 = 0;
    println!("Now entering the first loop.");

    'first_loop: loop {       
        counter += 1;
        println!("The counter is now: {}", counter);
        if counter > 5 {
            println!("Now entering the second loop.");

            'second_loop: loop {                                    
                println!("The second counter is now: {}", counter2); 
                counter2 += 1;
                if counter2 == 3 {
                    break 'first_loop;                              
                }

Sets a counter 
to 0

Increases the 
counter by 1

Stops when 
counter == 5

Gives the first 
loop a name

Starts a second loop 
inside the first loopNow, we are inside

'second_loop.

Breaks out of 'first_loop so 
we can exit the program



673.2 Control flow
            }
        }
    }
}

If we wrote break; or break second_loop; inside this code, the program would never
end. The loop would keep on entering 'second_loop and then would exit but stay
inside 'first_loop, enter 'second_loop again, and continue forever. Instead, the
program completes and prints:

Now entering the first loop.
The counter is now: 1
The counter is now: 2
The counter is now: 3
The counter is now: 4
The counter is now: 5
The counter is now: 6
Now entering the second loop.
The second counter is now: 0
The second counter is now: 1
The second counter is now: 2

Another kind of loop is called a while loop. A while loop is a loop that continues
while something is still true. For each loop, Rust will check whether it is still true. If it
becomes false, Rust will stop the loop:

fn main() {
    let mut counter = 0;

    while counter < 5 {       
        counter +=1;
        println!("The counter is now: {counter}");
    }
}

This prints the same result as the previous code sample that used a counter to keep
track of the number of loops, but this time it was much simpler to write:

The counter is now: 1
The counter is now: 2
The counter is now: 3
The counter is now: 4
The counter is now: 5

Another kind of loop is a for loop. A for loop lets you tell Rust what to do each time.
But in a for loop, the loop stops after a certain number of times instead of checking
to see whether a condition is true. for loops use ranges very often. We learned before
that

 .. creates an exclusive range—0..3 gives you 0, 1, 2.
 ..= creates an inclusive range—0..=3 gives you 0, 1, 2, 3.

Counter < 5` is 
either true or false.



68 CHAPTER 3 More complex types
So let’s use these in a loop!

fn main() {
    for number in 0..3 {
        println!("The number is: {}", number);
    }

    for number in 0..=3 {
        println!("The next number is: {}", number);
    }
}

This prints

The number is: 0
The number is: 1
The number is: 2
The next number is: 0
The next number is: 1
The next number is: 2
The next number is: 3

Also notice that number becomes the variable name for the numbers from 0..3. We
could have called it n or ntod_het___hno_f or anything else. We can then use that
name to print the number or do some other operation with it.

 If you don’t need a variable name, use _ (an underscore):

fn main() {
    for _ in 0..3 {
        println!("Printing the same thing three times");
    }
}

This prints the same thing three times because there is no number to print each loop
anymore:

Printing the same thing three times
Printing the same thing three times
Printing the same thing three times

If you give a variable name and don’t use it, Rust will tell you:

fn main() {
    for number in 0..3 {
        println!("Printing the same thing three times");
    }
}

This prints the same thing as the previous example. The program compiles fine, but
Rust will remind you that you didn’t use number:

warning: unused variable: `number`
 --> src\main.rs:2:9



693.2 Control flow
  |
2 |     for number in 0..3 {
  |         ^^^^^^ help: if this is intentional, 
  ➥prefix it with an underscore: `_number`

Rust suggests writing _number instead of _. Putting _ in front of a variable name means
“Maybe I will use it later.” But using just _ means “I don’t care about this variable at
all.” So you can put _ in front of variable names if you will use them later and don’t
want the compiler to warn you about them.

 You can also use break to return a value. You write the value right after break and
use a ;. Here is an example with a loop and a break that gives my_number its value:

fn main() {
    let mut counter = 5;
    let my_number = loop {
        counter +=1;
        if counter % 53 == 3 {
            break counter;
        }
    };
    println!("{my_number}");
}

This code prints 56. The break counter; code at the end means “Break and return
the value of counter.” And because the whole block starts with let, my_number gets the
value.

 Now that we know how to use loops, here is a better solution to our match problem
with colors from before. The new solution is better because we want to compare every-
thing instead of matching and breaking out early when a condition matches. A for
loop is different, as it looks at every item in the way we tell it to do:

fn match_colors(rbg: (i32, i32, i32)) {
    let (red, blue, green) = (rbg.0, rbg.1, rbg.2);    
    println!("Comparing a color with {red} red, {blue} blue, and 
    ➥{green} green:");
    let color_vec = vec![(red, "red"), (blue, "blue"), 
    ➥(green, "green")];                              
    let mut all_have_at_least_10 = true;             
    for (amount, color) in color_vec {    
        if amount < 10 {
            all_have_at_least_10 = false;
            println!("Not much {color}.");
        }
    }
    if all_have_at_least_10 {
        println!("Each color has at least 10.")
    }

This is a good example of destructuring. We have a
tuple called rbg, and instead of using rbg.0, rbg.1, and
rbg.2, we can give each item a readable name instead.

Put the colors in a 
vec. Inside are tuples 
with the color names.

Use this variable to track if all colors are 
at least 10. It starts as true and will be 
set to false if one color is less than 10.

Some more destructuring here, 
letting us give a variable name to 
the amount and the color name



70 CHAPTER 3 More complex types
    println!();                                       
}

fn main() {
    let first = (200, 0, 0);
    let second = (50, 50, 50);
    let third = (200, 50, 0);

    match_colors(first);
    match_colors(second);
    match_colors(third);
}

This prints

Comparing a color with 200 red, 0 blue, and 0 green:
Not much blue.
Not much green.

Comparing a color with 50 red, 50 blue, and 50 green:
Each color has at least 10.

Comparing a color with 200 red, 50 blue, and 0 green:
Not much green.

Hopefully, you are starting to feel excited about Rust by now. In the previous chapter,
we learned concepts called low level: how computer memory works, ownership of data,
and so on. But Rust is also focused on the programmer experience, so the syntax is
also very high level in places, as we saw in this chapter. Match statements, ranges, and
destructuring are three examples: they are very readable and quick to type, yet no less
strict than anything else in Rust.

 In the next chapter, we are going to start creating our own types. The tuples that
you learned about in this chapter will help you there. 

Summary
 Arrays are extremely fast but have a set size and a single type.
 Vectors are sort of like Strings: they are owned types and very flexible.
 Tuples hold items that can be accessed with numbers, but they act more like

new types of their own rather than indexed collections.
 Using match can make your code really readable.
 Rust makes sure you match everything in a match statement.
 Destructuring is powerful: it lets you pull types apart in almost any way you

want.
 Ranges are a nice human-readable way to express when something starts and

when it ends.
 If you have a loop inside a loop, you can name the loops to tell the code which

one to break out of.

Adds one 
more line



Building your own types
It’s now time to look at the main ways to build your own types in Rust: structs and
enums. You’ll also learn how to implement functions attached to and called on
these types, called methods. These methods use the keyword self a lot, so get ready
to see it!

4.1 A quick overview of structs and enums
Structs and enums have a similar syntax and are easiest to learn together, so that’s
what we’ll do here. They also work together because structs can contain enums,

This chapter covers
 Structs, which you can use to group values to 

build your own types

 Enums, which are similar syntax to structs but 
used for choices, not groupings

 Implementing types, which gives methods to your 
structs and enums

 More on destructuring and taking types apart

 References and the dot operator
71



72 CHAPTER 4 Building your own types
and enums can contain structs. Because they look similar, sometimes users new to
Rust confuse them. But here’s a rule of thumb to start: if you have a lot of things to
group together, that’s a struct, but if you have a lot of choices and need to select one,
that’s an enum.

 If this book, Learn Rust in a Month of Lunches, were a struct, it would have its own
properties, too. It would have a title (that’s a String), an author_name (also a String),
and a year_of_publication (maybe an i32). But it also has more than one way to buy
it: you can choose to buy it either as a printed book or as an eBook. That’s an enum!
So keep that simple example in mind as we learn how structs and enums work.

4.1.1 Structs

With structs, you can create your own type. You can probably guess that the name is
short for structure; you construct your own type with them. You will use structs all the
time in Rust because they are so convenient. Structs are created with the keyword
struct, followed by its name. The name of a struct should be in UpperCamelCase
(capital letter for each word with no spaces). The code will still work if you write a
struct in all lowercase, but the compiler will give a warning recommending that you
change its name to UpperCamelCase.

 There are three types of structs. One is a unit struct. Unit means “doesn’t have
anything” (like the unit type). For a unit struct, you simply write the name and a
semicolon:

struct FileDirectory;

The next type is a tuple struct, or an unnamed struct. It is “unnamed” because you
only need to write the types inside the tuple, not the field names. Tuple structs are
good when you need a simple struct and don’t need to remember names. You access
their items in the same way as other tuples: .0, .1, and so on:

struct ColorRgb(u8, u8, u8);

fn main() {
    let my_color = ColorRgb(50, 0, 50);        
    println!("The second part of the color is: {}", my_color.1);
}

This prints The second part of the color is: 0.
 The third type is the named struct, which is the most common struct. In this struct,

you declare field names and types inside a {} code block. Note that you don’t write a
semicolon after a named struct because there is a whole code block after it:

struct ColorRgb(u8, u8, u8);  

struct SizeAndColor {
    size: u32,
    color: ColorRgb,          
}

Makes a color out of 
red, green, and blue

Declares the same 
Color tuple struct

Puts it in our 
new named struct



734.1 A quick overview of structs and enums
fn main() {
    let my_color = ColorRgb(50, 0, 50);

    let size_and_color = SizeAndColor {
        size: 150,
        color: my_color
    };
}

You separate fields by commas in a named struct, too. For the last field, you can add a
comma or not—it’s up to you. SizeAndColor had a comma after color:

struct ColorRgb(u8, u8, u8);

struct SizeAndColor {
    size: u32,
    color: ColorRgb,    
}

But you don’t need it to compile the program. It can be a good idea to always put a
comma because sometimes you will change the order of the fields:

struct ColorRgb(u8, u8, u8);

struct SizeAndColor {
    size: u32,
    color: ColorRgb     
}

Then we cut and paste to change the order of the parameters:

struct SizeAndColor {
    colour: ColorRgb    
    size: u32,
}

But it is not very important either way.
 Now, let’s create a Country struct as our first concrete example. The Country struct

has the fields population, capital, and leader_name. To declare a Country, we simply
give it all the values it needs. Rust won’t instantiate (start) a Country for us unless we
give it a value for each of its three parameters:

struct Country {
    population: u32,
    capital: String,
    leader_name: String
}

fn main() {
    let population = 500_000;
    let capital = String::from("Elista");
    let leader_name = String::from("Batu Khasikov");

Note the 
comma here.

No comma 
here

Whoops! Now this 
doesn’t have a comma.



74 CHAPTER 4 Building your own types
    let kalmykia = Country {
        population: population,
        capital: capital,
        leader_name: leader_name,
    };
}

Did you notice that we wrote the same thing twice? We wrote population: popula-
tion, capital: capital, and leader_name: leader_name. In fact, you don’t need to
do that. One nice convenience in Rust is that if the field name and variable name are
the same, you don’t have to write both. Let’s give that a try:

struct Country {
    population: u32,
    capital: String,
    leader_name: String
}

fn main() {
    let population = 500_000;
    let capital = String::from("Elista");
    let leader_name = String::from("Batu Khasikov");

    let kalmykia = Country {
        population,
        capital,
        leader_name,
    };
}

And, of course, you can just put a struct together without making variables first:

struct Country {
    population: u32,
    capital: String,
    leader_name: String
}

fn main() {
    let kalmykia = Country {
        population: 500_000,
        capital: String::from("Elista"),
        leader_name: String::from("Batu Khasikov")
    };
}

Now, let’s say you wanted to add a climate (weather) property to Country. You would
use it to pick a climate type for each country: Tropical, Dry, Temperate, Continental,
and Polar (those are the main climate types). You would write let kalmkia = Country
and eventually get to climate and would write something to choose one of the five.
That’s what an enum is for! Let’s learn them now.



754.1 A quick overview of structs and enums
4.1.2 Enums

An enum is short for enumerations (we’ll find out soon why they are called that). They
look very similar to structs but are different:

 Use struct when you want one thing and another thing.
 Use enum when you want one thing or another thing.

So structs are for many things together, while enums are for many possible choices.
 To declare an enum, write enum and use a code block with the options separated by

commas. Just like a struct, the last part can have a comma or not. To make a choice
when using an enum, use the enum name, followed by two :: (colons), and then the
name of the variant (the choice). That means you can choose by typing
Climate::Tropical, Climate::Dry, and so on.

 Here is our Climate enum, which the Country struct now holds:

enum Climate {
    Tropical,
    Dry,
    Temperate,
    Continental,
    Polar,
}

struct Country {
    population: u32,
    capital: String,
    leader_name: String,
    climate: Climate,    
}

fn main() {
    let kalmykia = Country {
        population: 500_000,
        capital: String::from("Elista"),
        leader_name: String::from("Batu Khasikov"),
        climate: Climate::Continental,    
    };
}

Now let’s change examples and create a simple enum called ThingsInTheSky:

enum ThingsInTheSky {
    Sun,
    Stars,
}

This, too, is an enum because you can either see the sun or the stars: you have to
choose one.

 Now let’s create some functions related to the enum so that we can work with it a
bit:

As noted before, a struct can hold an 
enum, and an enum can hold a 
struct. This is one example of that.

This is the important part: you use :: 
to make a choice inside an enum.



76 CHAPTER 4 Building your own types
enum ThingsInTheSky {
    Sun,
    Stars,
}

fn create_skystate(time: i32) -> ThingsInTheSky {    
    match time {
        6..=18 => ThingsInTheSky::Sun,
        _ => ThingsInTheSky::Stars,
    }
}

fn check_skystate(state: &ThingsInTheSky) {   
    match state {
        ThingsInTheSky::Sun => println!("I can see the sun!"),
        ThingsInTheSky::Stars => println!("I can see the stars!")
    }
}

fn main() {
    let time = 8;                
    let skystate = create_skystate(time);              
    check_skystate(&skystate);
}

This prints I can see the sun!
 But what makes Rust’s enums special is that they don’t just contain choices; they

can hold data. A struct can hold an enum, an enum can hold a struct, and an enum
can hold other types of data, too. Let’s give ThingsInTheSky some data:

enum ThingsInTheSky {
    Sun(String),
    Stars(String),
}

fn create_skystate(time: i32) -> ThingsInTheSky {
    match time {   
        6..=18 => ThingsInTheSky::Sun(String::from("I can see the sun!")),
        _ => ThingsInTheSky::Stars(String::from("I can see the stars!")),
    }
}

fn check_skystate(state: &ThingsInTheSky) {
    match state {
        ThingsInTheSky::Sun(description) => 
    println!("{description}"),    
        ThingsInTheSky::Stars(n) => println!("{n}"),
    }
}

fn main() {
    let time = 8;
    let skystate = create_skystate(time);
    check_skystate(&skystate);
}

This function is pretty simple: it takes a number to
represent the hour of the day and returns a

ThingsInTheSky based on that. You can see the Sun
between 6 and 18 o’clock; otherwise, you can see Stars.

This second function takes a 
reference to a ThingsInTheSky and 
prints a message depending on which 
variant of ThingsInTheSky it is.

It’s 
8 o’clock. Returns a 

ThingsInTheSky

Now that the enum variants 
hold a String, you have to 
provide a String, too, when 
creating ThingsInTheSky.

Now, when we match on our 
reference to ThingsInTheSky, we have 
access to the data inside (in this case, 
a String). Note that we can give the 
inner String any name we want here: 
description, n, or anything else.



774.1 A quick overview of structs and enums
This prints the same thing: I can see the sun!
 With the use keyword, you can also “import” an enum, so you don’t have to type so

much. Here’s an example with a Mood enum where we have to type Mood:: every time
we match on it:

enum Mood {
    Happy,
    Sleepy,
    NotBad,
    Angry,
}

fn match_mood(mood: &Mood) -> i32 {
    let happiness_level = match mood {
        Mood::Happy => 10,              
        Mood::Sleepy => 6,            
        Mood::NotBad => 7,             
        Mood::Angry => 2,               
    };
    happiness_level
}

fn main() {
    let my_mood = Mood::NotBad;
    let happiness_level = match_mood(&my_mood);
    println!("Out of 1 to 10, my happiness is {happiness_level});
}

It prints Out of 1 to 10, my happiness is 7. Let’s try the use keyword to import this
enum’s variants so that we can type less. To import everything, write *:

enum Mood {
    Happy,
    Sleepy,
    NotBad,
    Angry,
}

fn match_mood(mood: &Mood) -> i32 {
    use Mood::*;    
    let happiness_level = match mood {
        Happy => 10,
        Sleepy => 6,
        NotBad => 7,
        Angry => 2,
    };
    happiness_level
}

fn main() {
    let my_mood = Mood::Happy;
    let happiness_level = match_mood(&my_mood);
    println!("Out of 1 to 10, my happiness is {happiness_level}");
}

Here we type 
Mood:: every time.

This imports every variant inside the 
Mood enum. Using * is the same as 
writing use Mood::Happy; then use 
Mood::Sleepy; and so on for each variant.



78 CHAPTER 4 Building your own types
This use keyword isn’t just for enums, by the way: it’s used any time you use :: too
much and want to type less. Do you remember this example from chapter 2 where we
used a function called std::mem::size_of_val() to check the size of two names?
That was a lot of typing:

fn main() {
    let size_of_jaurim = std::mem::size_of_val("자우림");
    let size_of_adrian = std::mem::size_of_val("Adrian Fahrenheit Țepeș");
    println!("{size_of_jaurim}, {size_of_adrian}");
}

This prints their size in bytes: 9 and 25 bytes. But we could have gone with use to
import the function so that we only have to write size_of_val every time we use it:

use std::mem::size_of_val;   

fn main() {
    let size_of_jaurim = size_of_val("자우림");
    let size_of_adrian = size_of_val("Adrian Fahrenheit ?epe?");
    println!("{size_of_jaurim}, {size_of_adrian}");
}

4.1.3 Casting enums into integers

If an enum doesn’t contain any data, then its variants can be cast into an integer.
That’s because Rust gives each variant of these simple enums a number that starts with
0 for its own use. (That’s where the name enum comes from: the num in enum is the
same as the num in number.)

 Here is a quick example:

enum Season {
    Spring,          
    Summer,
    Autumn,
    Winter,
}

fn main() {
    use Season::*;
    let four_seasons = vec![Spring, Summer, Autumn, Winter];
    for season in four_seasons {
        println!("{}", season as u32);
    }
}

This prints

0
1
2
3

The use keyword can be used inside main or inside or outside 
another function. If you use it inside a smaller scope, like a 
separate function, then it will only apply inside that scope.

If this was Spring(String) or 
something it wouldn’t work.



794.1 A quick overview of structs and enums
However, you can also choose a different number if you like. The compiler doesn’t
care and can use it in the same way, as long as two variants aren’t using the same num-
ber. To do this, add an = and your number to the variant that you want to have a num-
ber. You don’t have to give all of them a number. But if you don’t, Rust will add 1 from
the variant before to give it a number:

enum Star {
    BrownDwarf = 10,
    RedDwarf = 50,
    YellowStar = 100,
    RedGiant = 1000,
    DeadStar,          
}

fn main() {
    use Star::*;
    let starvec = vec![BrownDwarf, RedDwarf, YellowStar, RedGiant, DeadStar];
    for star in starvec {
        match star as u32 {
            size if size <= 80 => println!("Not the biggest star."),
            size if size >= 80 && size <= 200 => 
            ➥println!("This is a good-sized star."),
            other_size => 
            ➥println!("That star is pretty big! It's {other_size}"),      
        }
    }
}

This prints

Not the biggest star.
Not the biggest star.
This is a good-sized star.
That star is pretty big! It's 1000
That star is pretty big! It's 1001

If we hadn’t chosen our own numbers, then Rust would have started with 0 for each
variant. Thus BrownDwarf would have been a 0 instead of a 10, DeadStar would have
been 4 instead of 1001, and so on.  

4.1.4 Enums to use multiple types

We learned in the last chapter that items in a Vec, array, etc., all need the same type
and that only tuples are different. However, enums give us a bit of flexibility here
because they can carry data, and that means that you can use an enum to hold differ-
ent types inside a collection.

 Imagine we want to have a Vec that holds either u32s or i32s. Rust will let us create
a Vec<u32> or a Vec<i32>, but it won’t let us make a Vec<u32 or i32>. However, we
can make an enum (let’s call it Number) and then put it inside a Vec. That will give us a

Think about this one. 
What number will it have?

We need to have this final arm of the match so that Rust can decide
what to do if the u32 it gets is some other value that’s not smaller

than 80, or in between 80 and 200. We called the variable
other_size here, but we could have called it size or anything else.



80 CHAPTER 4 Building your own types
type Vec<Number>. The Number enum can have two variants, one of which holds a u32
and another that holds an i32. Here is what it would look like:

enum Number {
    U32(u32),
    I32(i32),
}

So there are two variants: the U32 variant with a u32 inside and the I32 variant with
i32 inside. U32 and I32 are simply names we made. They could have been UThirtyTwo
and IThirtyTwo or anything else.

 The compiler doesn’t mind that a Vec<Number> can hold either a u32 or i32
because they are all inside a single type called Number. And because it’s an enum, you
have to pick one, which is what we want. We will use the .is_positive() method to
pick. If it’s true, we will choose U32, and if it’s false, we will choose I32. Now the code
looks like this:

enum Number {
    U32(u32),
    I32(i32),
}

fn get_number(input: i32) -> Number {
    let number = match input.is_positive() {
        true => Number::U32(input as u32),   
        false => Number::I32(input),    
    };
    number
}

fn main() {
    let my_vec = vec![get_number(-800), get_number(8)];

    for item in my_vec {
        match item {
            Number::U32(number) => println!("A u32 with the value {number}"),
            Number::I32(number) => println!("An i32 with the value 

{number}"),
        }
    }
}

This prints what we wanted to see:

An i32 with the value -800
A u32 with the value 8

We used a few functions in our previous samples to match on enums and print out dif-
ferently depending on which variant the function received. But wouldn’t it be nice if
we could make functions that are a part of the structs and enums themselves? Indeed,
we can: this is called implementing.

Changes the number to 
a u32 if it’s positive

Otherwise, keeps the number as 
an i32 because a u32 can’t be 
made from a negative number



814.1 A quick overview of structs and enums
4.1.5 Implementing structs and enums

This is where you can start to give your structs and enums some real power. To write
functions for a struct or an enum, use the impl keyword and then a scope with {} to
write the functions (this is called an impl block). These functions are called methods.
There are two kinds of methods in an impl block:

 Methods—These take self in some form (&self or &mut self or self). Regular
methods use a . (a period). .clone() is an example of a regular method.

 Associated functions (known as static methods in some languages)—These do not take
self. Associated means “related to.” Associated functions are called differently,
by typing :: in between the type name and the function name. String::from()
is an associated function, and so is Vec::new(). You see associated functions
most often used to create new variables.

This simple example shows why associated functions don’t use a period:

fn main() {
    let mut my_string = String::from("I feel excited");    
    my_string.push('!');   
}

NOTE Actually, you can call all methods using :: if you want, but methods
that take self use . for convenience. There is sometimes a good reason to
use :: for a method that takes self, but we will look at that later. It’s not very
important to know just yet.

One more thing to know before we get to creating an impl block: a struct or enum
needs to have Debug if you want to use {:?} to print it. Rust has a convenient way to do
this: if you write #[derive(Debug)] above the struct or enum, you can print it with
{:?}. These messages with #[] are called attributes. You can sometimes use them to tell
the compiler to give your struct an ability like Debug. There are many attributes, and
we will learn about them later. But derive is probably the most common, and you see
it a lot above structs and enums, so it’s good to learn now.

 Okay, let’s make an enum block now. In the next example, we are going to create
animals and print them:

#[derive(Debug)]
enum AnimalType {
    Cat,
    Dog,
}

#[derive(Debug)]
struct Animal {
    age: u8,
    animal_type: AnimalType,
}

The variable my_string doesn’t exist yet, so you can’t call
my_string.some_method_name(). Instead, we use

String::from to create a String.

But now the variable my_string exists, so we can use . to 
call a method on it. One method that we already know is 
.push(). my_string now holds the value "I feel excited!"



82 CHAPTER 4 Building your own types
impl Animal {
    fn new_cat() -> Self { 
        Self { 
            age: 10,
            animal_type: AnimalType::Cat,
        }
    }

    fn check_type(&self) {
        match self.animal_type {
            AnimalType::Dog => println!("The animal is a dog"),
            AnimalType::Cat => println!("The animal is a cat"),
        }
    }

    fn change_to_dog(&mut self) {  
        self.animal_type = AnimalType::Dog;
        println!("Changed animal to dog! Now it's {self:?}");
    }

    fn change_to_cat(&mut self) {
        self.animal_type = AnimalType::Cat;
        println!("Changed animal to cat! Now it's {self:?}");
    }

}

fn main() {
    let mut new_animal = Animal::new_cat();   
    new_animal.check_type();
    new_animal.change_to_dog();
    new_animal.check_type();
    new_animal.change_to_cat();
    new_animal.check_type();
}

This prints

The animal is a cat
Changed animal to dog! Now it's Animal { age: 10, animal_type: Dog }
The animal is a dog
Changed animal to cat! Now it's Animal { age: 10, animal_type: Cat }
The animal is a cat

Remember that Self means the type Self, and self means the variable called self
that refers to the object itself. So, in our code, Self means the type Animal. Also, fn
change_to_dog(&mut self) means fn change_to_dog(&mut Animal).

 Here is one more short example. This time, we will use impl on an enum:

enum Mood {
    Good,
    Bad,
    Sleepy,
}

Here, Self means Animal. You can also 
write Animal instead of Self. To the 
compiler, it is the same thing.

When we write Animal::new(), we 
always get a cat that is 10 years old.

Because we are inside impl Animal, &mut self means 
&mut Animal. Use .change_to_dog() to change the 
cat to a dog. Taking &mut self lets us change it.

This associated function 
will create a new Animal 
for us: a cat, 10 years old



834.2 Destructuring
impl Mood {
    fn check(&self) {
        match self {
            Mood::Good => println!("Feeling good!"),
            Mood::Bad => println!("Eh, not feeling so good"),
            Mood::Sleepy => println!("Need sleep NOW"),
        }
    }
}

fn main() {
    let my_mood = Mood::Sleepy;
    my_mood.check();
}

This prints Need sleep NOW.
 You could take these two examples and develop them a bit if you like. How would

you write a function that lets you create a new Animal that is an AnimalType::Dog?
How about letting the user of the function choose an age instead of always generating
a Cat that is 10 years old? Or how about giving the enum Mood to the Animal struct,
too?

 Using structs, enums, and impl blocks is one of the most common things you’ll do
in Rust, so you’ll quickly get into the habit of putting them together. In the next sec-
tion, you’ll learn to do the complete opposite! Because if you have a fully constructed
struct or other type, you can also destructure it in the same way that we have learned
to destructure tuples. Let’s take a look at that now.

4.2 Destructuring
Let’s look at some more destructuring. You can get the values from a struct or enum by
using let backward. We learned in the last chapter that this is destructuring because it
creates variables that are not part of a structure. We’ll start with a simple example. You’ll
recognize the following character if you’ve seen the movie 8 Mile before:

struct Person {              
    name: String,
    real_name: String,
    height: u8,
    happiness: bool
}

fn main() {
    let papa_doc = Person { 
        name: "Papa Doc".to_string(),
        real_name: "Clarence".to_string(),
        height: 170,
        happiness: false
    };

    let Person {             
        name,

A simple 
Person struct

Creates variable 
papa_doc

Destructures 
papa_doc



84 CHAPTER 4 Building your own types
        real_name,
        height,
        happiness,
    } = papa_doc;

    println!("They call him {name} but his real name is {real_name}. 
    He is {height} cm tall and is he happy? {happiness}");
}

This prints They call him Papa Doc but his real name is Clarence. He is 170
cm tall and is he happy? false

 You can see that destructuring works backward:

 let papa_doc = Person { fields }; lets you create a struct.
 let Person { fields } = papa_doc; then destructures it.

You can also rename variables as you destructure. The following code is the same as
the previous code, except that we chose the name fake_name for the name parameter
and cm for the height parameter:

struct Person {
    name: String,
    real_name: String,
    height: u8,
    happiness: bool
}

fn main() {
    let papa_doc = Person {
        name: "Papa Doc".to_string(),
        real_name: "Clarence".to_string(),
        height: 170,
        happiness: false
    };

    let Person {
        name: fake_name,   
        real_name,
        height: cm,    
        happiness
    } = papa_doc;

    println!("They call him {fake_name} but his real name is {real_name}.
    ➥He is {cm} cm tall and is he happy? {happiness}");
}

Now, let’s look at a bigger example. In this example, we have a City struct. We give it a
new function to make it. Then we have a process_city_values function to do things
with the values. In the function, we just create a Vec, but you can imagine that we can
do much more after we destructure it:

struct City {
    name: String,
    name_before: String,

Here, we choose to call 
the variable fake_name.

And here, we choose 
to call the variable cm.



854.2 Destructuring
    population: u32,
    date_founded: u32,
}

impl City {
    fn new(
        name: &str,
        name_before: &str,
        population: u32,
        date_founded: u32,
    ) -> Self {
        Self {
            name: String::from(name),
            name_before: String::from(name_before),
            population,
            date_founded,
        }
    }
    fn print_names(&self) {
        let City {
            name,
            name_before,
            population,
            date_founded,
        } = self;
        println!("The city {name} used to be called {name_before}.");
    }
}
fn main() {
    let tallinn = City::new("Tallinn", "Reval", 426_538, 1219);
    tallinn.print_names();
}

This prints The city Tallinn used to be called Reval.
 You’ll notice that the compiler tells us that we didn’t use the variables population

and date_founded. We can fix that! If you don’t want to use all the properties of a
struct, just type .. after you finish the properties you want to use. The print_names()
method in the following code will now only destructure with the name and name_
before parameters:

struct City {
    name: String,
    name_before: String,
    population: u32,
    date_founded: u32,
}

impl City {
    fn new(
        name: &str, 
        name_before: &str, 
        population: u32, 
        date_founded: u32
    ) -> Self {

Now, we have the values 
to use separately.



86 CHAPTER 4 Building your own types
        Self {
            name: String::from(name),
            name_before: String::from(name_before),
            population,
            date_founded,
        }
    }
    fn print_names(&self) {
        let City {
            name,
            name_before,
            ..    
        } = self;
        println!("The city {name} used to be called {name_before}.");
    }
}

fn main() {
    let tallinn = City::new("Tallinn", "Reval", 426_538, 1219);
    tallinn.print_names();
}

Interestingly, you can even destructure inside the signature of a function. Let’s give
this a try with the same sample with Papa Doc:

struct Person {    
    name: String,
    real_name: String,
    height: u8,
    happiness: bool,
}

fn check_if_happy(person: &Person) {   
    println!("Is {} happy? {}", person.name, person.happiness);
}

fn check_if_happy_destructured(Person { name, happiness, .. }: &Person) {  
    println!("Is {name} happy? {happiness}");
}

fn main() {
    let papa_doc = Person {
        name: "Papa Doc".to_string(),
        real_name: "Clarence".to_string(),
        height: 170,
        happiness: false,
    };

    check_if_happy(&papa_doc);
    check_if_happy_destructured(&papa_doc);
}

Here is the output:

Is Papa Doc happy? false
Is Papa Doc happy? false

These two dots tell Rust 
not to care about the other 
parameters inside City.

This is the exact same 
struct as the previous 
sample—no changes here.

Next is a function that takes 
a &Person and checks whether 
the person is happy.

And, finally, a function that does the
same thing, except that it destructures

the Person struct. This gives direct
access to the name and happiness

parameters and uses .. to ignore the
rest of the struct’s parameters.



874.3 References and the dot operator
So that finishes up the basics of structs and enums. For the final section in this chap-
ter, we’ll learn an interesting fact about the . operator: the “dot operator.” It has a cer-
tain magic to it that keeps syntax clean when using methods for your types.

4.3 References and the dot operator
We learned in chapter 2 that when you have a reference, you need to use * to get to
the value. A reference is a different type, so the following won’t work:

fn main() {
    let my_number = 9;
    let reference = &my_number;

    println!("{}", my_number == reference);
}

The compiler prints

error[E0277]: can't compare `{integer}` with `&{integer}`
 --> src\main.rs:5:30
  |
5 |     println!("{}", my_number == reference);
  |                              ^^ no implementation for 
  ➥`{integer} == &{integer}`

So we changed line 5 to println!("{}", my_number == *reference); and now it
prints true because it’s now i32 == i32, not i32 == &i32. This is called dereferencing.

 Now let’s look at something interesting. First, let’s make a simple String. We’ll see
if it’s empty:

fn main() {
    let my_name = "Billy".to_string();
    println!("{}", my_name.is_empty());
}

Easy, right? It just says false.
 And, just like before, you can’t compare a reference to something that’s not a ref-

erence. So if we try to compare a String to a &String, we will get an error:

fn main() {
    let my_name = "Billy".to_string();
    let other_name = "Billy".to_string();
    println!("{}", my_name == &other_name);
    // println!("{}", &my_name == &&other_name);   
}

But take a look at this example. Do you think it will compile?

fn main() {
    let my_name = "Billy".to_string();
    let double_ref = &&my_name;
    println!("{}", double_ref.is_empty());
}

You can’t compare a &String with 
a &&String. Uncommenting this 
will generate an error, too.



88 CHAPTER 4 Building your own types
It does! The method .is_empty() is for the String type, but we called it on a
&&String. That’s because when you use a method, Rust will dereference for you until
it reaches the original type. The . in a method is called the dot operator, and it does
dereferencing for free. Without it, you would have to write this:

fn main() {
    let my_name = "Billy".to_string();
    let double_ref = &&my_name;
    println!("{}", (&**double_ref).is_empty());
}

And that compiles, too! That’s one * to get to the type itself and then an & to take a
reference to it (because .is_empty() takes a &self). But the dot operator will deref-
erence as much as needed, so you don’t have to write * and & everywhere just to use
the methods for a type. This works just fine, too:

fn main() {
    let my_name = "Billy".to_string();
    let my_ref = &my_name;
    println!("{}", &&&&&my_ref.is_empty());
}

That was a lot to think about, but, fortunately, the conclusion is easy: when you use the
dot operator, you don’t need to worry about *.

 As a Rust programmer, you are going to use structs and enums everywhere. You’ll
soon get into the habit of making one, starting an impl block, and then adding meth-
ods. It’s also nice that you can already see that some of the types you’ve learned are
structs and enums. A String is, in fact, a struct String, a Vec is a struct Vec, and
there are impl String and impl Vec blocks, too. There’s nothing magic about them,
and you’re already starting to see how they work. We haven’t learned any types in the
standard library that are enums yet, but we will in the next chapter! Two of Rust’s most
famous types are structs and enums, and now you’re ready to learn how they work.

Summary
 Structs are a little bit like tuples with names. They can hold all sorts of different

types inside.
 Structs can hold enums, and enums can hold structs.
 Usually, after making a struct or enum, you’ll start an impl block and give it

some methods. Most of the time, they’ll take &self or &mut self if you need to
change it.

 Not all methods inside an impl block need self: if you want one to start a new
struct or enum, it will create a Self and return it. You might even want one
without self that returns something else. The compiler doesn’t care whether
you have self inside an impl block.

 To get data from inside an enum, you’ll usually use match or something similar.
An enum is about having only one choice, so you have to check which one was
chosen!



89Summary
 Enums are a good way to get around Rust’s strict rules. Make one enum and put
in as many types as you need!

 Destructuring can look strange at first, but it’ll work every time if you take a
normal let statement and turn the code around.



Generics, option,
and result
Rust is a strict language with concrete types, but after this chapter, you’ll have three
important tools to work with. Generics let you describe to Rust “some sort of type”
that Rust will turn into a concrete type without you having to do it. After that, we’ll
learn about two interesting enums called Option and Result. Option tells Rust
what to do when there might not be a value, and Result tells Rust what to do when
something might go wrong.

5.1 Generics
We’ve known since chapter 1 that Rust needs to know the concrete type for the
input and output of a function. The following return_item() function has i32 for
both its input and output, and no other type will work—only i32:

This chapter covers
 Generics—when to use more than one type

 Option—when an operation might produce a value 
but might not

 Result—when an operation might succeed but 
might not
90



915.1 Generics
fn return_item(item: i32) -> i32 {
    println!("Here is your item.");
    item
}

fn main() {
    let item = return_item(5);
}

But what if you want the function to accept more than i32? It would be annoying if
you had to write all these functions:

fn return_i32(number: i32) -> i32 {  }
fn return_i16(number: i16) -> i16 {  }
fn return_u8(number: u8) -> u8 {  }        

You can use generics for this. Generics basically means “maybe one type, maybe
another type.”

 For generics, you use angle brackets with the type inside, like this: <T>. This means
“any type you put into the function.” Rust programmers usually use one capital letter
for generics (T, U, V, etc.), but the name doesn’t matter, and you don’t have to use one
letter. The only part that matters is the angle brackets: <>.

 This is how you change the function to make it generic:

fn return_item<T>(item: T) -> T {
    println!("Here is your item.");
    item
}

fn main() {
    let item = return_item(5);
}

The important part is the <T> after the function name. Without this, Rust will think
that T is a concrete (concrete = not generic) type, like String or i8. When talking
about generics, people say that something is “generic over (name of the type).” So, for
the return_item function, you would say, “The function return_item is generic over
type T.”

 Type names in generics are easier to understand if we choose a name instead of
just T. See what happens when we change T to MyType:

fn return_item(item: MyType) -> MyType {
    println!("Here is your item.");
    item
}

The compiler gives the error cannot find type `MyType` in this scope. As you can
see, MyType is concrete, not generic: the compiler is looking for something called

And so on, 
and so on.



92 CHAPTER 5 Generics, option, and result
MyType and can’t find it. To tell the compiler that MyType is generic, we need to write it
inside the angle brackets:

fn return_item<MyType>(item: MyType) -> MyType {
    println!("Here is your item.");
    item
}

fn main() {
    let item = return_item(5);
}

Because of the angle brackets, now the compiler sees that this is a generic type that we
are calling MyType. Without the angle brackets, it’s not generic.

 Let’s look at the first part of the signature one more time to make sure we under-
stand it. Here is the signature:

fn return_item<MyType>(item: MyType)

The compiler reads this as

 fn—This is a function.
 <MyType>—Ah, the function is generic! There will be some type in it that the

programmer wants to call MyType.
 item: MyType—The function takes a variable called item, which will be of the

type MyType that the programmer declared inside the angle brackets.

You could call it anything as long as you put it in angle brackets so the compiler knows
that the type is generic. Now, we will go back to calling the type T because Rust code
usually uses single letters. You can choose your own names in your own generic code,
but it’s good to get used to seeing these single letters and recognizing them as a hint
that we are dealing with generic types.

 You will remember that some types in Rust are Copy, some are Clone, some are
Display, some are Debug, and so on. In other words, they implement the traits Copy,
Clone, and so on. With Debug, we can print with {:?}.

 The following code sample tries to print a generic item called T, but it won’t work.
Can you guess why?

fn print_item<T>(item: T) {
    println!("Here is your item: {item:?}");
}

fn main() {
    print_item(5);
}

The function print_item() needs T to have Debug to print item, but is T a type with
Debug? Maybe not. Maybe it doesn’t have #[derive(Debug)]—who knows? The com-
piler doesn’t know either, so it gives an error:



935.1 Generics
error[E0277]: `T` doesn't implement `Debug`
 --> src/main.rs:2:34
  |
2 |     println!("Here is your item: {item:?}");
  |                                  ^^^^^^^^ `T` cannot be formatted 
  ➥using `{:?}` because it doesn't implement `Debug`

There’s no guarantee that T implements Debug. Somebody using the function might
pass in a type that implements Debug, but also might not! Do we implement Debug for
T? No, because we don’t know what T is—right now, anyone can use the function and
put in any type. Some of them will have Debug; some won’t.

 However, we can tell the function: “Don’t worry, any type T that we pass into this
function will implement Debug.” It’s sort of a promise to the compiler:

use std::fmt::Debug;              

fn print_item<T: Debug>(item: T) {  
    println!("Here is your item: {item:?}");
}

fn main() {
    print_item(5);
}

Now the compiler knows: “Okay, this type T is going to have Debug.” Now the code works
because i32 has Debug. Now, we can give it many types: String, &str, and so on because
they all have Debug. The code will now compile, and the compiler won’t let any type be
the variable item in this function unless it has Debug (you can’t trick the compiler).

 Now, we can create a struct and give it Debug with #[derive(Debug)], so we can
print it, too. Our function can take i32, the struct Animal, and more:

use std::fmt::Debug;

#[derive(Debug)]
struct Animal {
    name: String,
    age: u8,
}

fn print_item<T: Debug>(item: T) {
    println!("Here is your item: {item:?}");
}

fn main() {
    let charlie = Animal {
        name: "Charlie".to_string(),
        age: 1,
    };

    let number = 55;

    print_item(charlie);
    print_item(number);
}

The Debug trait is located 
at std::fmt::Debug.

<T: Debug> is the 
important part.



94 CHAPTER 5 Generics, option, and result
This prints

Here is your item: Animal { name: "Charlie", age: 1 }
Here is your item: 55

Sometimes, we need more than one generic type in a generic function. To do this, we
have to write out each generic type name and think about how we want to use it. What
traits should each type be able to use?

 In the following example, we want two types. First, we want a type called T that we
would like to print. Printing with {} is nicer, so we will require Display for T.

 Next is a generic type that we will call U and two variables, num_1 and num_2, which
will be of type U. We want to compare them, so it will need PartialOrd. The
PartialOrd trait lets us use comparison operators like <, >, ==, and so on. But we want
to print them, too, so we require Display for U as well. You can use + if you want to
indicate more than one trait.

 To sum up, <U: Display + PartialOrd> means there is a generic type that we are
calling U, and it needs to have these two traits:

use std::fmt::Display;
use std::cmp::PartialOrd;

fn compare_and_display<T: Display, U: Display + PartialOrd>(statement: T,

➥input_1: U, input_2: U) {
    println!("{statement}! Is {input_1} greater than {input_2}? {}",
    ➥input_1 > input_2);
}

fn main() {
    compare_and_display("Listen up!", 9, 8);
}

This prints Listen up!! Is 9 greater than 8? true. So,

fn compare_and_display<T: Display, U: Display + PartialOrd>(statement: T,

➥num_1: U, num_2: U) 

says the following:

 The function name is compare_and_display().
 The first type is T, and it is generic. It must be a type that can print with {}.
 The next type is U, and it is generic. It must be a type that can print with {}.

Also, it must be a type that can be compared (so that it can use >, <, and ==).

We can give compare_and_display() different types if we want. The variable
statement can be a String, a &str, or anything with Display.

 To make generic functions easier to read, we can also use the keyword where right
before the code block:

use std::cmp::PartialOrd;
use std::fmt::Display;

fn compare_and_display<T, U>(statement: T, num_1: U, num_2: U)   

Now the part after compare_and_display
only has <T, U>, which is a lot

cleaner to read.



955.2 Option and Result
where   
    T: Display,
    U: Display + PartialOrd,
{
    println!("{statement}! Is {num_1} greater than {num_2}? {}", 
    num_1 > num_2);
}

fn main() {
    compare_and_display("Listen up!", 9, 8);
}

Using where is a good idea when you have many generic types. Also note the following:

 If you have one variable of type T and another variable of type T, they must be
the same type.

 If you have one variable of type T and another variable of type U, they can be dif-
ferent types. But they can also be the same. For example,

use std::fmt::Display;

fn say_two<T: Display, U: Display>(statement_1: T, 

➥statement_2: U) {   
    println!("I have two things to say: {statement_1} and {statement_2}");
}

fn main() {
    say_two("Hello there!", String::from("I hate sand."));   
    say_two(String::from("Where is Padme?"), 
    String::from("Is she all right?"));    
}

This prints

I have two things to say: Hello there! and I hate sand.
I have two things to say: Where is Padme? and Is she all right?

Now that we understand both enums and generics, we can understand Option and
Result. These are two enums that Rust uses to help us write code that will not crash.

5.2 Option and Result
The beginning of the chapter describes Option as a type “for when you might get a
value, but maybe not,” and Result as a type “for when an operation might succeed,
but maybe not.” If you remember that, you should have a good idea of when to use
one and when to use the other.

 A person in real life, for example, would have an Option<Spouse>. You might have
one, and you might not. Not having a spouse simply means that you don’t have a
spouse, but it’s not an error—just something that might or might not exist.

Then we use the where keyword 
and indicate the traits needed 
on the following lines.

Types T and U both need to
implement Display, but they

can be different types.

Type T is a &str, but type U is
a String. No problem: both of

these implement Display.Here both types are String.
No problem: T and U don’t
have to be different types.



96 CHAPTER 5 Generics, option, and result
 But the function go_to_work() would return a Result because it might fail! Most
times go_to_work() succeeds, but one day, it might snow too much, and you have to
stay home. 

 Meanwhile, simple functions like print_string() or add_i32() always produce
output and can’t fail, so they don’t need to deal with Option or a Result. With that in
mind, let’s start with Option.

5.2.1 Option

You use Option when something might or might not exist. When a value exists, it is
Some(value), and when it doesn’t, it’s None. Here is an example of bad code that can
be improved with Option:

fn take_fifth_item(value: Vec<i32>) -> i32 {
    value[4]
}

fn main() {
    let new_vec = vec![1, 2];
    let index = take_fifth_item(new_vec);
}

This code panics when we run it. Here is the message:

thread 'main' panicked at 'index out of bounds: 

➥the len is 2 but the index is 4', src\main.rs:34:5

Panic means that the program stops before the problem happens. Rust sees that the
function wants something impossible and stops. It “unwinds the stack” (takes the val-
ues off the stack) and tells you, “Sorry, I can’t do that.”

 To fix this, we will change the return type from i32 to Option<i32>. This means
“give me a Some(i32) if it’s there, and give me None if it’s not.” We say that the i32 is
“wrapped” in an Option, which means it’s inside an Option. If it’s Some, you have to do
something to get the value out:

fn try_take_fifth(value: Vec<i32>) -> Option<i32> {
    if value.len() < 5 {    
        None
    } else {
        Some(value[4])
    }
}

fn main() {
    let small = vec![1, 2];
    let big = vec![1, 2, 3, 4, 5];
    println!("{:?}, {:?}", try_take_fifth(small), try_take_fifth(big));
}

This prints None, Some(5). Our program doesn’t panic anymore, so this is better than
before. But in the second case, the value 5 is still inside the Option. How do we get the
5 out of there?

.len() gives the length of the 
Vec. Here, we are checking 
that the length is at least 5.



975.2 Option and Result

T

in
 We can get the value inside an Option with a method called .unwrap(), but be
careful with .unwrap(). It’s just like unwrapping a present: maybe there’s something
good inside, or maybe there’s an angry snake inside. You only want to .unwrap() if
you are sure. If you unwrap a value that is None, the program will panic:

fn try_take_fifth(value: Vec<i32>) -> Option<i32> {
    if value.len() < 5 {
        None
    } else {
        Some(value[4])
    }
}

fn main() {
    let small = vec![1, 2];
    let big = vec![1, 2, 3, 4, 5];
    println!("{:?}, {:?}",
        try_take_fifth(small).unwrap(),   
        try_take_fifth(big).unwrap()
    );
}

The message is

thread 'main' panicked at 'called 

➥`Option::unwrap()` on a `None` value', src\main.rs:14:9

But we don’t have to use .unwrap(). We can use a match instead. With match, we can
print the value if we have Some and not touch it if we have None. For example:

fn try_take_fifth(value: Vec<i32>) -> Option<i32> {
    if value.len() < 5 {
        None
    } else {
        Some(value[4])
    }
}

fn handle_options(my_option: &Vec<Option<i32>>) {
    for item in my_option {
        match item {
            Some(number) => println!("Found a {number}!"),
            None => println!("Found a None!"),
        }
    }
}

fn main() {
    let small = vec![1, 2];
    let big = vec![1, 2, 3, 4, 5];
    let mut option_vec = Vec::new();    

    option_vec.push(try_take_fifth(small));    
    option_vec.push(try_take_fifth(big));    

    handle_options(&option_vec);    
}

This one returns None. 
.unwrap() will panic!

Makes a new Vec to hold our Options. 
The vec is type: Vec<Option<i32>>. 
That means a Vec of Option<i32>.

This pushes None 
into the Vec.his pushes

Some(5)
to the vec. handle_option() looks at every option 

in the Vec. It prints the value if it is 
Some. It doesn’t touch it if it is None.



98 CHAPTER 5 Generics, option, and result
This prints

Found a None!
Found a 5!

This was a good example of pattern matching. Some(number) is a pattern, and None is
another pattern. We use match to decide what to do when each of these patterns hap-
pens. The Option type has two possible patterns, so we have to decide what to do when
we see one pattern and what to do when we see another. 

 So, what does the actual Option type look like? Because we know generics, we are
able to read the code for Option. It is quite simple—just an enum:

enum Option<T> {
    None,
    Some(T),
}

The important point to remember is with Some, you have a value of type T (any type).
Also, note that the angle brackets after the enum name around T tell the compiler that
it’s generic. It has no trait like Display or anything to limit it; it can be anything. But
with None, you don’t have any value inside.

 So, in a match statement for Option you can’t say

Some(value) => println!("The value is {}", value),
None(value) => println!("The value is {}", value),

because None doesn’t hold a T inside it. Only the Some variant will hold a value.
 There are easier ways to use Option. In the next code sample, we will use a method

called .is_some() to tell us if it is Some. (Yes, there is also a method called
.is_none().) Using this means that we don’t need handle_option() anymore:

fn try_take_fifth(value: Vec<i32>) -> Option<i32> {
    if value.len() < 5 {
        None
    } else {
        Some(value[4])
    }
}

fn main() {
    let small = vec![1, 2];
    let big = vec![1, 2, 3, 4, 5];
    for vec in vec![small, big] {
        let inside_number = try_take_fifth(vec);
        if inside_number.is_some() {   
            println!("We got: {}", inside_number.unwrap());    
        } else {
            println!("We got nothing.");
        }
    }
}

The .is_some() method 
returns true if we get 
Some, false if we get None.

We already checked that inside_number
is Some, so it is safe to use .unwrap().

There is an easier way to do this called
'if let' that we will learn soon.



995.2 Option and Result
This prints

We got nothing.
We got: 5

Now imagine that we wanted this take_fifth() function or some other function to
give us a reason for why it fails. We don’t want to get None; we want to know why it
failed. When it fails, we’d like to have some information on what went wrong so we
can do something about it. Something like Error: Vec wasn't long enough to get
the fifth item. That’s what Result is for! Let’s learn that now.

5.2.2 Result

Result looks similar to Option, but here is the difference:

 Option holds a Some or None (value or no value).
 Result holds an Ok or Err (okay result or error result).

You often see both Option and Result at the same time. For example, you might want
to get data from a server. First, you use a function to connect. The connection might
fail, so that’s a Result. And after connecting, there might not be any data. That’s an
Option. So the entire operation would be an Option inside a Result: a
Result<Option<SomeType>>.

 To compare the two, here are the signatures for Option and Result:

enum Option<T> {
    None,
    Some(T),
}

enum Result<T, E> {
    Ok(T),
    Err(E),
}

Note that Result has a value inside of Ok and inside of Err. That is because errors are
supposed to contain information that describes what went wrong. Also, note that Ok
holds a generic type T, and Err holds a generic type E. As we learned in this chapter,
they can be different types (and usually are) but could be the same.

 Result<T, E> means you need to think of what you want to return for Ok and what
you want to return for Err. In fact, you can return anything you like. Even returning a
() in each case is okay:

fn check_error() -> Result<(), ()> {
    Ok(())
}

fn main() {
    check_error();
}



100 CHAPTER 5 Generics, option, and result
check_error() says, “Return () if we get Ok, and return () if we get Err.” Then we
return Ok with a () inside it. The program works with no problem!

 The compiler gives us an interesting warning, though:

warning: unused `std::result::Result` that must be used
 --> src\main.rs:6:5
  |
6 |     check_error();
  |     ^^^^^^^^^^^^^^
  |
  = note: `#[warn(unused_must_use)]` on by default
  = note: this `Result` may be an `Err` variant, which should be handled

This is true: we only returned the Result, but it could have been an Err. So, let’s han-
dle the error a bit, even though we’re still not really doing anything:

fn see_if_number_is_even(input: i32) -> Result<(), ()> {
    if input % 2 == 0 {
        return Ok(())
    } else {
        return Err(())
    }
}

fn main() {
    if see_if_number_is_even(5).is_ok() {
        println!("It's okay, guys")
    } else {
        println!("It's an error, guys")
    }
}

This prints It's an error, guys. We just handled our first error! Something went
wrong, we told Rust what to do in case of an error, and the program didn’t panic.
That’s what Result helps you with.

 The four methods to easily check the state of an Option or a Result are as follows:

 Option—.is_some(), .is_none()
 Result—.is_ok(), .is_err()

Sometimes a function with Result will use a String for the Err value. This is not a
true error type yet, but it contains some information and is a little better than what
we’ve done so far. Here’s a simple example showing a function that expects the num-
ber 5 and gives an error otherwise. Using a String now lets us show some extra
information:

fn check_if_five(number: i32) -> Result<i32, String> {
    match number {
        5 => Ok(number),
        _ => Err(format!("Sorry, bad number. Expected: 5 Got: {number}")),
    }
}



1015.2 Option and Result
fn main() {
    for number in 4..=7 {
        println!("{:?}", check_if_five(number));
    }
}

Here is the output:

Err("Sorry, bad number. Expected: 5 Got: 4")
Ok(5)
Err("Sorry, bad number. Expected: 5 Got: 6")
Err("Sorry, bad number. Expected: 5 Got: 7")

Just like unwrapping a None for Option, using .unwrap() on Err will panic:

fn main() {
    let error_value: Result<i32, &str> = 
    ➥Err("There was an error");                       
    error_value.unwrap();  
}

The program panics and prints

thread 'main' panicked at 'called `Result::unwrap()` on an `Err` value: 

➥"There was an error"', src/main.rs:3:17

This information helps you fix your code. src\main.rs:3:17 means “go to the folder
src, then the file main.rs, and then to line 3 and column 17 where the error hap-
pened.” So you can go there to look at your code and fix the problem.

 You can also create your own error types. Result functions in the standard library
and other people’s code usually do this. For example, look at this function from the
standard library:

pub fn from_utf8(vec: Vec<u8>) -> Result<String, FromUtf8Error>

This function takes a vector of bytes (u8) and tries to make a String. So the success
case for the Result is a String, and the error case is FromUtf8Error. You can give your
error type any name you want. To make a type into a true error type in Rust, it needs
to implement a trait called Error. Doing so lets it be used in generic code that expects
a type that implements Error in the same way that generic code might expect a type to
implement Debug, Display, or PartialOrd as we saw in this chapter. 

 We will start to learn about traits in detail in chapter 7, but we have some more
things to learn before then. One of them is more pattern matching, as Rust has a lot
of other ways to do pattern matching besides the match keyword. Let’s see why we
might want to use them instead of always using match.

A Result is just a regular enum, so we can
create one whenever we like. Both Option and
Result and their variants are already in scope,
so we can just write Err instead of Result::Err.

Unwraps
it. Boom!



102 CHAPTER 5 Generics, option, and result
5.2.3 Some other ways to do pattern matching

IF LET

Using a match with Option and Result sometimes requires a lot of code. For example,
take the .get() method, which is used on a Vec to see whether there is a value at a
given index. It returns an Option:

fn main() {
    let my_vec = vec![2, 3, 4];
    let get_one = my_vec.get(0);     
    let get_two = my_vec.get(10);   
    println!("{:?}", get_one);
    println!("{:?}", get_two);
}

This prints

Some(2)
None

We learned that matching is a safe way to work with an Option. Let’s do that with a
range from indexes 0 to 10 to see whether there are any values:

fn main() {
    let my_vec = vec![2, 3, 4];

    for index in 0..10 {
      match my_vec.get(index) {
        Some(number) => println!("The number is: {number}"),
        None => {}
      }
    }
}

The code works fine and prints what we expected:

The number is: 2
The number is: 3
The number is: 4

We weren’t doing anything in case of None because we were only interested in what
happens when we get a Some, but we still had to tell Rust what to do in case of None.
Here we can make the code shorter by using if let. Using if let means “do some-
thing if it matches, and don’t do anything if it doesn’t.” if let is for when you don’t
care about matching for everything:

fn main() {
    let my_vec = vec![2, 3, 4];

    for index in 0..10 {
      if let Some(number) = my_vec.get(index) {
        println!("The number is: {number}");
      }
    }
}

Checks the 
0th index: Some

Checks the 
10th index: None



1035.2 Option and Result
Two important points to remember: 

 if let Some(number) = my_vec.get(index) means “if you get the pattern
Some(number) from my_vec.get(index).”

 It uses one = and not == because it is a pattern match, not a boolean.

LET ELSE

Rust 1.65, released in November 2022, added an interesting new syntax called let
else. Let’s take a look at the same if let example but add a let else and see what
makes it different. First, try reading this sample on your own and think about what is
different between if let and let else:

fn main() {
    let my_vec = vec![2, 3, 4];

    for index in 0..10 {
        if let Some(number) = my_vec.get(index) {  
            println!("The number is: {number}");
        }
        let Some(number) = my_vec.get(index) else {    
        continue;
      };
        println!("The number is: {number}");
    }
}

The difference between the two is as follows:

 if let checks to see whether my_vec.get() gives the pattern Some. If it gets a
Some, it calls the variable inside it number and opens up a new scope inside the
{} curly brackets. Inside this scope, you are guaranteed to have a variable called
number. If .get() doesn’t give the pattern Some, it will simply do nothing and go
to the next line.

 let else tries to make a variable number from the pattern Some. If you take out
the else part for a moment, you can see that it is trying to do this: let
Some(number) = my_vec.get();. In other words, it is trying to make this vari-
able called number.

But on the next line, it prints out the variable number, so the variable has to
exist at this point. So how can this work? It can work thanks to what is called
diverging code. Diverging code is basically any code that lets you escape before
going to the next line. The keyword continue will do this, as will the keyword
break, an early return, and so on.

You can write as much as you want inside the block after else, as long as you end with
diverging code. For example,

fn main() {
    let my_vec = vec![2, 3, 4];

    for index in 0..10 {
        let Some(number) = my_vec.get(index) else {   

This is the same if let from the 
previous example. It only 
cares about the Some pattern.

This is the let else syntax. 
It also is only interested in 
the Some pattern and 
doesn’t care about None.

The block after else starts here. We have a whole
block to do whatever we like. We end with break.

This means the code will never get to the line
below, which needs the variable called number.



104 CHAPTER 5 Generics, option, and result

y 
            println!("Looks like we got a None!");
            println!("We can still do whatever we want inside this block");
            println!("We just have to end with 'diverging code'");
            print!("Because after this block, ");
            println!("the variable 'number' has to exist");
            println!("Time to break the loop now, bye");
            break;
       // return ();   
        };
        println!("The number is: {number}");
    }
}

You can see that we printed out quite a bit after we finally got a None. And finally, at
the end of all this printing, we use the keyword break to diverge the code, and the
program never got down to the next line. Here is the output:

The number is: 2
The number is: 3
The number is: 4
Looks like we got a None!
We can still do whatever we want inside this block
We just have to end with 'diverging code'
Because after this block, the variable 'number' has to exist
Time to break the loop now, bye

WHILE LET

while let is like a while loop for if let. Imagine that we have weather station data
like this, in which we would like to parse certain strings into numbers:

["Berlin", "cloudy", "5", "-7", "78"]
["Athens", "sunny", "not humid", "20", "10", "50"]

To parse the numbers, we can use a method called parse::<i32>(). First is .parse(),
which is the method name, followed by ::<i32>, which is the type to parse into. It will
therefore try to turn the &str into an i32 and give it to us if it can. It returns a Result
because it might not work (for example, if you wanted it to parse the name “Billy-
brobby”—that’s not a number).

 We will also use .pop(). This takes the last item off of the vector:

fn main() {
    let weather_vec = vec![
        vec!["Berlin", "cloudy", "5", "-7", "78"],
        vec!["Athens", "sunny", "not humid", "20", "10", "50"],
    ];
    for mut city in weather_vec {
        println!("For the city of {}:", city[0]);    
        while let Some(information) = city.pop() {   

This is another example of diverging code. 
The keyword break; is used to break out of a 
loop, while return will return early from the 
function. The function main() returns an empt
tuple, as we learned in chapter 3, so using 
return(); will return a (), the function will be 
over, and we never got to the line below.

In our data, every first 
item is the city name.

while let Some(information) = city.pop() means to keep going until
finally city runs out of items and .pop() returns None instead of Some.



105Summary
            if let Ok(number) = information.parse::<i32>() {   
                println!("The number is: {number}");
            }   
        }
    }
}

This will print

For the city of Berlin:
The number is: 78
The number is: -7
The number is: 5
For the city of Athens:
The number is: 50
The number is: 10
The number is: 20

This chapter was the most “rusty” one so far. That’s because the three concepts you
learned, generics, Option, and Result, aren’t even in most languages! So you’re
already learning concepts that many other languages don’t even have.

 But you probably also noticed that they aren’t weird, abstract concepts either. They
are real, practical ways to help you write and work with your code. It’s nice not to have
to write a new function for every type (generics). It’s nice to check whether a value is
there or not (Option). And it’s nice to check whether an error has happened and
decide what to do if it does (Result). The creators of Rust took some of these ideas
from exotic languages but use them in a practical manner, as you saw in this chapter.

 The next chapter isn’t too hard compared to this one. In it, you’ll learn some more
about Result and error handling, and we’ll see some more complex collection types
than the ones you saw in chapter 3.

Summary
 Generics let you use more than one type in your types or functions. Without

them, you would need to repeat your code every time you wanted a different
type.

 You can write anything for generic types, but most of the time, people will just
write T.

 After T, you write what traits the type will have. Having more traits means T can
do more things. But it also means that the function can take fewer types
because any type needs all of the traits you wrote.

 Rust is still concrete, though: it turns generic functions into concrete ones at
compile time. There’s nothing extra that happens at run time.

 If you have a function that could panic, try turning its output into an Option or
a Result. By doing so, you can write code that never crashes.

 Don’t forget that the Err value of a Result doesn’t have to be an official error!
If you are still learning Rust, returning a String for the Err value is easier.

Here we try to parse the variable we
called information into an i32. This

returns a Result. If it’s Ok(number),
we will now have a variable called

number that we can print.

Nothing happens here 
because we only care about 
getting an Ok. We never see 
anything that returns an Err.



More collections,
more error handling
Rust has a lot more collection types than the ones we learned in chapter 3. You
might not need all of them right away, but be sure to give each collection type a
read so that you’ll remember when you might need each one of them. This chapter
also introduces one of Rust’s most loved operators: ? (Yes, it’s just a question
mark.)

6.1 Other collections
Rust has many more types of collections besides the ones we learned in chapter 3. All
of them are contained in the same spot: the std::collections module in the stan-
dard library. The best way to use them is to bring them into scope with a use state-
ment, like we did with our enums in the last chapter. The page for the collections

This chapter covers
 Other collections—more complex and interesting 

ones this time

 The question mark operator—just type ? to 
handle errors

 When panic and unwrap are good
106



1076.1 Other collections
module (http://mng.bz/27yd) on the standard library has a really nice summary of
when to use which collection type and for what reasons, so be sure to bookmark it.

 We will start with HashMap, which is extremely common.

6.1.1 HashMap (and BTreeMap)

A HashMap is a collection made out of keys and values. You use the key to look up the
value that matches the key. An example of a key and a value is email and my_email@
.address.com (email is the key; the address is the value).

 Creating a new HashMap is easy: you can just use HashMap::new(). After that, you
can use the .insert(key, value) method to insert items.

 The keys of a HashMap are not ordered, so if you print every key in a HashMap
together it will probably print differently. We can see this in an example:

use std::collections::HashMap;     

struct City {
    name: String,
    population: HashMap<i32, i32>,    
}

fn main() {

    let mut tallinn = City {
        name: "Tallinn".to_string(),
        population: HashMap::new(),   
    };

    tallinn.population.insert(2020, 437_619);    
    tallinn.population.insert(1372, 3_250);
    tallinn.population.insert(1851, 24_000);    

    for (year, population) in tallinn.population {   
        println!("In {year}, Tallinn had a population of {population}.");
    }
}

Here the three keys are 2020, 1372, and 1851. If a HashMap were ordered, the order
would be 1372, 1851, and 2020. But because a HashMap does not order its keys, we will
see them in any order. So, the code might print

In 1372, Tallinn had a population of 3250.
In 2020, Tallinn had a population of 437619.
In 1851, Tallinn had a population of 24000.

or it might print

In 1851, Tallinn had a population of 24000.
In 2020, Tallinn had a population of 437619.
In 1372, Tallinn had a population of 3250.

This is so we can just write HashMap instead 
of std::collections::HashMap every time.

This will have the year and 
the population for the year.

So far the HashMap 
is empty.

Inserts
three
dates Just so we remember, there is no 

difference between 24_000 and 
24000. The _ is just for readability.

The HashMap is
HashMap<i32, i32>, so it

returns two items each time.

http://mng.bz/27yd


108 CHAPTER 6 More collections, more error handling
You can see that the keys do not appear in any particular order.
 If you want a HashMap that gives you its keys in order, you can use a BTreeMap.

Underneath, they are different types, but fortunately, their method names and signa-
tures are very similar. That means we can quickly change our HashMap to a BTreeMap
without needing to change almost anything. For our simple example, the code
(besides the name BTreeMap) hasn’t changed at all:

use std::collections::BTreeMap;             

struct City {
    name: String,
    population: BTreeMap<i32, i32>, 
}

fn main() {

    let mut tallinn = City {
        name: "Tallinn".to_string(),
        population: BTreeMap::new(), 
    };

    tallinn.population.insert(2020, 437_619);
    tallinn.population.insert(1372, 3_250);
    tallinn.population.insert(1851, 24_000);

    for (year, population) in tallinn.population {
        println!("In {year}, Tallinn had a population of {population}.");
    }
}

Now, it will always print in this order:

In 1372, Tallinn had a population of 3250.
In 1851, Tallinn had a population of 24000.
In 2020, Tallinn had a population of 437619.

Now, we will go back to HashMap.
 The simplest but least rigorous way to get a value in a HashMap is by putting the key

in [] square brackets, similar to typing [0] or [1] to index a Vec. In this next example,
we will use this method to look for the value for the key Bielefeld, which is Germany.
But be careful because the program will crash if there is no key, just like when indexing
a Vec. If you write println!("{:?}", city_hashmap["Bielefeldd"]);, for example, it
will panic because Bielefeldd doesn’t exist.

 If you are not sure there will be a key, you can use .get(), which returns an
Option. If it exists, it will be Some(value), and if not, you will get None instead of pan-
icking the program. That’s why .get() is the safer way to get a value from a HashMap:

use std::collections::HashMap;

fn main() {
    let canadian_cities = vec!["Calgary", "Vancouver", "Gimli"];
    let german_cities = vec!["Karlsruhe", "Bad Doberan", "Bielefeld"];

Changes HashMap 
to BTreeMap

Here, too

And here, too



1096.1 Other collections
    let mut city_hashmap = HashMap::new();

    for city in canadian_cities {
        city_hashmap.insert(city, "Canada");
    }
    for city in german_cities {
        city_hashmap.insert(city, "Germany");
    }

    println!("{:?}", city_hashmap["Bielefeld"]);
    println!("{:?}", city_hashmap.get("Bielefeld"));
    println!("{:?}", city_hashmap.get("Bielefeldd"));
}

This prints

"Germany"
Some("Germany")
None

This is because Bielefeld exists, but Bielefeldd does not exist.
 If a HashMap already has a key when you try to put it in, using .insert() will over-

write its value:

use std::collections::HashMap;

fn main() {
    let mut book_hashmap = HashMap::new();

    book_hashmap.insert(1, "L'Allemagne Moderne");
    book_hashmap.insert(1, "Le Petit Prince");
    book_hashmap.insert(1, "섀도우 오브 유어 스마일");
    book_hashmap.insert(1, "Eye of the World");

    println!("{:?}", book_hashmap.get(&1));    
}

This prints Some("Eye of the World") because it was the last one we used .insert()
for. It is easy to prevent this by checking whether an entry exists since .get() returns
an Option:

use std::collections::HashMap;

fn main() {
    let mut book_hashmap = HashMap::new();
    book_hashmap.insert(1, "L'Allemagne Moderne");

    let key = 1;
    match book_hashmap.get(&key) {
        Some(val) => println!("Key {key} has a value already: {val}"),
        None => {
            book_hashmap.insert(key, "Le Petit Prince");
        }
    }
    println!("{:?}", book_hashmap.get(&1));
}

The .get() method takes 
a reference, which is 
why we have &1 here.



110 CHAPTER 6 More collections, more error handling
This prints Some("L\'Allemagne Moderne") because there was already a key for 1, so
we didn’t insert Le Petit Prince.

 You might be wondering why we put book_hashmap.insert() inside a {} but
didn’t do the same for the print statement. That’s because .insert()returns a value:
an Option that holds the old value if the value was overwritten. And because each arm
of a match statement has to return the same type, we can have the part with .insert()
return a () by enclosing it in {} and ending it with a semicolon.

 Let’s try grabbing the old value from the .insert() method and storing it some-
where else so we don’t lose it. In this next sample, we will have a Vec that will hold any
old values that have been returned by the .insert() method when an existing value
has been overwritten:

use std::collections::HashMap;

fn main() {
    let mut book_hashmap = HashMap::new();
    let mut old_hashmap_values = Vec::new();

    let hashmap_entries = [
        (1, "L'Allemagne Moderne"),
        (1, "Le Petit Prince"),
        (1, "섀도우 오브 유어 스마일"),
        (1, "Eye of the World"),
    ];

    for (key, value) in hashmap_entries {    
        if let Some(old_value) = book_hashmap.insert(key, value) {
            println!("Overwriting {old_value} with {value}!");
            old_hashmap_values.push(old_value);
        }
    }
    println!("All old values: {old_hashmap_values:?}");
}

Here’s what the output looks like:

Overwriting L'Allemagne Moderne with Le Petit Prince!
Overwriting Le Petit Prince with 섀도우 오브 유어 스마일!
Overwriting 섀도우 오브 유어 스마일 with Eye of the World!
All old values: ["L'Allemagne Moderne", "Le Petit Prince", "섀도우 오브 유어 스

마일"]

THE .ENTRY() METHOD

HashMap has a very interesting method called .entry() that you definitely want to try
out. It’s a little complicated, so let’s look at it one bit at a time.

 With .entry(), you can try to make an entry and then another method like
.or_insert() to insert a default value if there is no key. The interesting part is that
the second method also returns a mutable reference, so you can change it if you want.
First is an example where we insert true every time we insert a book title into the
HashMap.

Don’t forget to destructure here! You 
don’t have to, but destructuring into 
(key, value) is much nicer to work with 
than something like entry.0 and entry.1.



1116.1 Other collections
 Let’s pretend that we have a library and want to keep track of our books:

use std::collections::HashMap;

fn main() {
    let book_collection = vec![
        "L'Allemagne Moderne",
        "Le Petit Prince",
        "Eye of the World",
        "Eye of the World",       
    ];

    let mut book_hashmap = HashMap::new();

    for book in book_collection {
        book_hashmap.entry(book).or_insert(true);
    }
    for (book, true_or_false) in book_hashmap {
        println!("Do we have {book}? {true_or_false}");
    }
}

This prints

Do we have Eye of the World? true
Do we have Le Petit Prince? true
Do we have L'Allemagne Moderne? true

This worked, but so far, we’ve only used .entry() and .or_insert() like the
.insert() method. Maybe it would be better to count the number of books so that we
know that there are two copies of Eye of the World.

 Here’s how it works. Let’s look at what .entry() does and then what .or_insert()
does. First is .entry(), which only takes a key. It then returns an enum called Entry:

pub fn entry(&mut self, key: K) -> Entry<K, V>

The page for Entry can be found at http://mng.bz/1JXV. Here is a simple version of
its code. K means key, and V means value:

enum Entry<K, V> {
    Occupied(OccupiedEntry<K, V>),
    Vacant(VacantEntry<K, V>),
}

So, when you use .entry(), the HashMap will check the key that it got and return an
Entry to let you know whether there is a value.

 The next method, .or_insert(), is a method on the Entry enum. This method
looks at the enum and decides what to do:

fn or_insert(self, default: V) -> &mut V {
    match self {
        Occupied(entry) => entry.into_mut(),
        Vacant(entry) => entry.insert(default),
    }
}

Note that Eye of the 
World appears twice.

http://mng.bz/1JXV


112 CHAPTER 6 More collections, more error handling
The interesting part is that it returns a mutable reference: &mut V. It either returns a
mutable reference to the existing value, or it inserts the default value and then returns
a mutable reference to it. In either case, it returns a mutable reference.

 That means you can use let to attach the mutable reference to a variable name
and change the variable to change the value in the HashMap. So let’s give that a try. For
every book, we will insert a default 0 if there is no entry and then get a mutable refer-
ence to the value. We will then increase it by 1. That means that inserting the first
book will return a 0, which we will increment to 1: one book. If we insert the same
book again, it will return a 1, which we will increment to 2: two books. And so on.

 Now the code looks like this:

use std::collections::HashMap;

fn main() {
    let book_collection = vec![
        "L'Allemagne Moderne",
        "Le Petit Prince",
        "Eye of the World",
        "Eye of the World",
    ];

    let mut book_hashmap = HashMap::new();

    for book in book_collection {
        let return_value = book_hashmap.entry(book).or_insert(0);
        *return_value += 1;
    }

    for (book, number) in book_hashmap {
        println!("{book}, {number}");
    }
}

The important part is 

let return_value = book_hashmap.entry(book).or_insert(0); 

If you take out the let, you get book_hashmap.entry(book).or_insert(0). Without
let, it does nothing: it inserts 0, and no variable holds onto the mutable reference to
0. We bind it to return_value so we can keep the 0. Then we increase the value by 1,
which gives at least 1 for every book in the HashMap. Then when .entry() looks at Eye
of the World again, it doesn’t insert anything, but it gives us a mutable 1. Then we
increase it to 2, and that’s why it prints this:

L'Allemagne Moderne, 1
Le Petit Prince, 1
Eye of the World, 2

You can also do things with .or_insert(), such as insert a Vec and then push a value
onto it. Let’s pretend that we asked men and women on the street what they think of a

The variable return_value is a
mutable reference. If nothing

is there, it will be 0.

Now return_value is at least 1. And if 
there was another book, the number it 
returns will now be increased by 1.



1136.1 Other collections
politician. They give a rating from 0 to 10. We want to put the numbers together to see
whether the politician is more popular with men or women. It can look like this:

use std::collections::HashMap;

fn main() {
    let data = vec![           
        ("male", 9),
        ("female", 5),
        ("male", 0),
        ("female", 6),
        ("female", 5),
        ("male", 10),
    ];

    let mut survey_hash = HashMap::new();

    for item in data {         
        survey_hash.entry(item.0).or_insert(Vec::new()).push(item.1);   
    }

    for (male_or_female, numbers) in survey_hash {
        println!("{male_or_female}: {numbers:?}");
    }
}

This prints

"female", [5, 6, 5]
"male", [9, 0, 10]

Or it might print "male" first—remember, a HashMap is unordered. Here as well you
could use the same code with a BTreeMap if you wanted the keys to be ordered.

 The important line is

survey_hash.entry(item.0).or_insert(Vec::new()).push(item.1);

So if the HashMap sees the key "female", it will check to see whether this key is already
in the HashMap. If not, it will insert a Vec::new() and return a mutable reference to it;
then we can use .push() to push the first number in. If it sees "female" already in the
HashMap, it will not insert a new Vec, but it will return a mutable reference to that Vec,
and then we can push a new number into it.

 The next collection type is pretty similar to HashMap (even the name is similar) but
simpler!

6.1.2 HashSet and BTreeSet

A HashSet is actually just a HashMap that only has keys. The documentation page for
HashSet (https://doc.rust-lang.org/std/collections/struct.HashSet.html) has a pretty
simple explanation for this: “implemented as a HashMap where the value is ().” That
means that a HashSet is useful as a collection that lets you know whether a key exists
or not.

This is the 
raw data.

This gives a 
tuple of (&str, i32).

Here we push the number into
the Vec inside. This is possible
because after .or_insert(), we

have a mutable reference to
the data, which is a Vec<i32>.

https://doc.rust-lang.org/std/collections/struct.HashSet.html


114 CHAPTER 6 More collections, more error handling

 

 Imagine that you have 50 random numbers, and each number is between 1 and 50.
Some numbers will appear more than once, while some won’t appear at all. If you put
them into a HashSet, you will have a list of all the numbers that appeared:

use std::collections::HashSet;

fn main() {
    let many_numbers = vec![
        37, 3, 25, 11, 27, 3, 37, 21, 36, 19, 37, 30, 48, 28, 16, 33, 2,
        ➥10, 1, 12, 38, 35, 30, 21,
        20, 38, 16, 48, 39, 31, 41, 32, 50, 7, 15, 1, 20, 3, 33, 12, 1, 11,
        ➥34, 38, 49, 1, 27, 9,
        46, 33,
    ];

    println!("How many numbers in the Vec? {}", many_numbers.len());

    let mut number_hashset = HashSet::new();

    for number in many_numbers {
        number_hashset.insert(number);
    }

    let hashset_length = number_hashset.len();   
    println!(
        "There are {hashset_length} unique numbers, so we are missing {}.",
        50 - hashset_length
    );

    println!("It does not contain: ");   
    for number in 0..=50 {
        if number_hashset.get(&number).is_none() {
            print!("{number} ");
        }
    }
}

This prints

How many numbers in the Vec? 50
There are 31 unique numbers, so we are missing 19.
It does not contain: 
0 4 5 6 8 13 14 17 18 22 23 24 26 29 40 42 43 44 45 47 

A BTreeSet is similar to a HashSet in the same way that a BTreeMap is similar to a
HashMap. If we print each item in the HashSet, we don’t know what the order will be:

for entry in number_hashset {
    print!("{} ", entry);
}

Maybe it will print 

48, 27, 36, 16, 32, 37, 41, 20, 7, 25, 15, 35, 3, 33, 21, 39, 12,

➥2, 46, 19, 31, 30, 10, 49, 28, 34, 50, 11, 1, 38, 9. 

Like a Vec, the other collection types
have a .len() method, too, that tells 
you how many items it holds.

Let’s see what numbers 
we are missing.



1156.1 Other collections
But it will almost never print these numbers in the same way again.
 Here as well, it is easy to change your HashSet to a BTreeSet if you decide you

need ordering. In our code, we only need to make two changes to switch from a
HashSet to a BTreeSet.

 Instead of just printing out the numbers in a BTreeSet, let’s demonstrate that each
number is greater than the last. To do this, we can keep track of the latest number and
then compare it to the next number the BTreeSet contains. What do you think the
following code will print?

use std::collections::BTreeSet;

fn main() {
    let many_numbers = vec![37, 3, 25, 11, 27, 3, 37, 21, 36, 19, 37, 30, 48,
        28, 16, 33, 2, 10, 1, 12, 38, 35, 30, 21, 20, 38, 16, 48, 39, 31, 41,
        32, 50, 7, 15, 1, 20, 3, 33, 12, 1, 11, 34, 38, 49, 1, 27, 9, 46, 33];

    let mut current_number = i32::MIN;   
    let mut number_set = BTreeSet::new();
    for number in many_numbers {
        number_set.insert(number);
    }
    for number in number_set {
        if number < current_number {  
            println!("This will never happen");
        }
        current_number = number;    
    }
}

This code should print nothing at all because each number is greater than the last.
 Two more collection types left! The next one is more rarely used than the others so

far but has a very clear purpose.

6.1.3 BinaryHeap

A BinaryHeap is an interesting collection type because it is mostly unordered but has a
bit of order. It keeps the item with the greatest value in the front, but the other items
are in any order. Some languages call this a priority queue. We will use another list of
items for an example, but this time, smaller:

use std::collections::BinaryHeap;

fn main() {
    let many_numbers = vec![0, 5, 10, 15, 20, 25, 30];
    let mut heap = BinaryHeap::new();
    for num in many_numbers {
        heap.push(num);
    }
    println!("First item is largest, others are out of order: {heap:?}");
    while let Some(num) = heap.pop() {

We are going to compare increasingly large 
numbers, so the best way to start is with a 
number that is lower than any number in 
the BTreeSet. We could have gone with -1, 
but another interesting way is to pick the 
lowest number possible for an i32.

For each number, we will check to 
see whether it is less than the last 
number. That will never happen, 
though, because each number will 
be larger than the last.

Don’t forget to set current_number to
the most recent number that we saw.

Note that these numbers are in order. They
won’t be in the same order once we put

them inside our BinaryHeap, though.

The .pop() method returns Some(number) if a number
is there, and None if not. It pops from the front, which

is where the item with the greatest value is.



116 CHAPTER 6 More collections, more error handling
        println!("Popped off {num}. Remaining numbers are: {heap:?}");
    }
}

This prints

First item is largest, others are out of order: [30, 15, 25, 0, 10, 5, 20]
Popped off 30. Remaining numbers are: [25, 15, 20, 0, 10, 5]
Popped off 25. Remaining numbers are: [20, 15, 5, 0, 10]
Popped off 20. Remaining numbers are: [15, 10, 5, 0]
Popped off 15. Remaining numbers are: [10, 0, 5]
Popped off 10. Remaining numbers are: [5, 0]
Popped off 5. Remaining numbers are: [0]
Popped off 0. Remaining numbers are: []

You can see that the number in the 0th index is always largest: 30, 25, 20, 15, 10, 5, and
then 0. But the other items are all in random order.

 A good way to use a BinaryHeap is for a collection of things to do. Here we create a
BinaryHeap<(u8, &str)> where the u8 is a number for the importance of the task.
The &str is a description of what to do:

use std::collections::BinaryHeap;

fn main() {
    let mut jobs = BinaryHeap::new();

    jobs.push((100, "Reply to email from the CEO"));   
    jobs.push((80, "Finish the report today"));
    jobs.push((5, "Watch some YouTube"));
    jobs.push((70, "Tell your team members thanks for always working hard"));
    jobs.push((30, "Plan who to hire next for the team"));

    for (_, job) in jobs {                              
        println!("You need to: {job}");
    }
}

Because the largest item always shows up first, this will always print

You need to: Reply to email from the CEO
You need to: Finish the report today
You need to: Tell your team members thanks for always working hard
You need to: Plan who to hire next for the team
You need to: Watch some YouTube

Finally, we have the famous VecDeque, a sort of special Vec that also has a very clear
purpose.

6.1.4 VecDeque

A VecDeque (pronounced “vec-deck”) is a Vec that is optimized for (i.e., good at) pop-
ping items both off the front and the back. Rust has VecDeque because Vecs are great
for popping off the back (the last item) but not so great off the front. When you use

Adds jobs to do 
throughout the day

Here’s a nice example of destructuring 
again. We don’t care to print out the 
number, just the description. 



1176.1 Other collections
.pop() on a Vec, it just takes off the last item on the right, and nothing else is moved.
But if you remove an item from anywhere else inside a Vec, all the items to the right of
it are moved over one position to the left. You can see this in the description for
.remove():

Removes and returns the element at position index within the vector,

➥shifting all elements after it to the left.

Take this example:

fn main() {
    let mut my_vec = vec![9, 8, 7, 6, 5];
    my_vec.remove(0);
}

What happens when we remove the number 9 from index 0? Well, all the other ele-
ments have to move one step left. The 8 in index 1 will move to index 0, the 7 in index
2 will move to index 1, and so on. It’s sort of like a traffic jam. If you remove one car
from the front, then all the rest have to move forward a bit.

 With a big Vec, this is a lot of work for the computer. In fact, if you run it on the
Playground, it will probably just give up because it’s too much work. And if you run
this on your own computer, it should take about a minute to finish:

fn main() {
    let mut my_vec = vec![0; 600_000];
    for _ in 0..600000 {
        my_vec.remove(0);
    }
}

It’s easy to imagine why. We start with a Vec of 600,000 zeros. Every time you use
remove(0) on it, it moves each remaining zero one space to the left. And then it does
it 600,000 times. So that’s 599,999 items moved, then 599,998 items moved, then
599,997 moves, and so on—600,000 times in total.

 You don’t have to worry about that with a VecDeque (it uses something called a ring
buffer to make this possible). In general, it is a bit slower than a Vec, but if you have to
do things on both ends, it is much faster, thanks to the buffer. You can use Vec-
Deque::from() with a Vec to make one. Our previous code then looks like this:

use std::collections::VecDeque;

fn main() {
    let mut my_vec = VecDeque::from(vec![0; 600000]);
    for i in 0..600000 {
        my_vec.pop_front();   
    }
}

It is now much faster, and the code on the Playground should finish in under a second.
 That’s the last collection type we have to learn in this book. For the rest of the chap-

ter, we’re going to change subjects a bit and learn some tips about error handling.

pop_front is like .pop 
but for the front.



118 CHAPTER 6 More collections, more error handling
6.2 The ? operator
There is an even shorter way to deal with Result, shorter than match and even shorter
than if let. It is called the “question mark operator,” and you simply type ? to use it.
After anything that returns a Result, you can add ?. This will

 Give what is inside the Result if it is Ok.
 Pass the error back if it is Err (this is called an early return).

In other words, it does almost everything for you. 

NOTE The ? operator works with Option, too, although the majority of the
time you see it used to handle a Result.

We can try this with .parse() again. We will write a function called parse_and_log_
str that tries to turn a &str into an i32, prints a message, and returns the number. It
looks like this:

use std::num::ParseIntError;   

fn parse_and_log_str(input: &str) -> Result<i32, ParseIntError> {
    let parsed_number = input.parse::<i32>()?;    
    println!("Number parsed successfully into {parsed_number}");
    Ok(parsed_number)
}

This function takes a &str. If it is Ok, it gives an i32 wrapped in Ok. If it is an Err, it
returns a ParseIntError, and the function is over. So when we try to parse the num-
ber, we add ?, which means “check whether it is an error, and give what is inside the
Result if it is Ok.” If it is not Ok, it will return the error, and the function ends. But if it
is Ok, it will go to the next line, and the function will not need to return early. This is
why we can then type println!("Number parsed successfully into {parsed_
number}"); because if it had returned an Err, the function would have already
returned, and we never would have reached this line.

 On the last line is the number inside of Ok(). We need to wrap it in Ok because the
return value is Result<i32, ParseIntError>, not i32.

 By the way, the ? operator is just short for a match. You could write the
parse_str() function without ? , but it is a lot more typing. Here is what ? does:

use std::num::ParseIntError;

fn parse_and_log_str(input: &str) -> Result<i32, ParseIntError> {
    let parsed_number = match input.parse::<i32>() {
        Ok(number) => number,
        Err(e) => return Err(e),
    };
    println!("Number parsed successfully into {parsed_number}");
    Ok(parsed_number)
}

How did we know where to find this error 
type? We’ll find out in just a moment.

This is the key line in the function. If the &str parses
successfully, you will have a variable called

parsed_number that is an i32. If it doesn’t parse
successfully, the function ends here and returns an error.



1196.2 The ? operator
Now, we can try out our function. Let’s see what it does with a Vec of &strs.

use std::num::ParseIntError;

fn parse_and_log_str(input: &str) -> Result<i32, ParseIntError> {
    let parsed_number = input.parse::<i32>()?;
    println!("Number parsed successfully into {parsed_number}");
    Ok(parsed_number)
}

fn main() {
    let str_vec = vec!["Seven", "8", "9.0", "nice", "6060"];
    for item in str_vec {
        let parsed = parse_and_log_str(item);
        println!("Result: {parsed:?}");
    }
}

This prints

Result: Err(ParseIntError { kind: InvalidDigit })
Number parsed successfully into 8
Result: Ok(8)
Result: Err(ParseIntError { kind: InvalidDigit })
Result: Err(ParseIntError { kind: InvalidDigit })
Number parsed successfully into 6060
Result: Ok(6060)

You might be wondering how we know to use std::num::ParseIntError. One easy way
is to “ask” the compiler again (although if you have Rust installed and an IDE like Visual
Studio, then hovering your mouse over the type will show what the signature is):

fn main() {
    let failure = "Not a number".parse::<i32>();
    failure.rbrbrb();       
}

The compiler doesn’t understand why we are trying to call a method called .rbrbrb()
on a Result enum, and tells us what type we are trying to use this method on:

error[E0599]: no method named `rbrbrb` found for enum 

➥`std::result::Result<i32, std::num::ParseIntError>` in the current scope
 --> src\main.rs:3:13
  |
3 |     failure.rbrbrb();
  |             ^^^^^^ method not found in `std::result::Result<i32,
  ➥std::num::ParseIntError>`

So std::result::Result<i32, std::num::ParseIntError> is the signature we need.
 We don’t need to write std::result::Result because Result is always in scope

(in scope = ready to use). Rust does this for all the types we use a lot, so we don’t have
to write std::result::Result, std::collections::Vec, etc. This full path is known
as the fully qualified path.

Compiler: “What 
is rbrbrb()???”



120 CHAPTER 6 More collections, more error handling

 

 In our example with our parse_int() function, we are handling the result of the
function inside main(). But is it possible to use the question mark inside main()? After
all, main is expecting a return type of (), but the question mark operator here returns
a Result, not (). The answer is yes: main can return a few other things besides (), one
of which is Result (see https://doc.rust-lang.org/std/process/trait.Termination
.html). Let’s try parsing some numbers in main() and see what happens:

use std::num::ParseIntError;

fn main() -> Result<(), ParseIntError> {
    for item in vec!["89", "8", "9.0", "eleven", "6060"] {
        let parsed = item.parse::<u32>()?;    
        println!("{parsed}");
    }
    Ok(())   
}

Here is the output:

89
8
Error: ParseIntError { kind: InvalidDigit }

As you can see, the third item failed to parse and main() returned early instead of try-
ing to parse the rest. Note that this was not a panic: the main() function simply
returned early with an Err value.

 So using the question mark operator in main should be used when you don’t mind
ending the whole program early when there is an error. One good example of this is if
you are starting up an app that has a lot of components that all need to work properly:
a certain file needs to be found, a connection to the database needs to be set up, and
so on. In that case, you definitely want the program to end early if any of these go
wrong so you can find the problem and fix it.

 The ? operator becomes even more useful once we know how to deal with multiple
error types because you can use one ? after another in a single line. At this point in
the book, we don’t know how to work with multiple error types at the same time, but
we can put together a useless but quick example that will at least give you a taste.
Instead of making an i32 with .parse(), we’ll do a lot more. We’ll make a u16, then
turn it to a String, then a u32, then to a String again, and finally to an i32:

use std::num::ParseIntError;

fn parse_str(input: &str) -> Result<i32, ParseIntError> {
    let parsed_number = input
        .parse::<u16>()?
        .to_string()
        .parse::<u32>()?
        .to_string()
        .parse::<i32>()?;
    println!("Number parsed successfully into {parsed_number}");

Here we use the question mark operator.
What do you think will happen when 
we get a number that fails to parse?

Now main() expects a Result. If all of the 
numbers parse, we will reach this line 
and now simply wrap an () inside of Ok.

https://doc.rust-lang.org/std/process/trait.Termination.html
https://doc.rust-lang.org/std/process/trait.Termination.html
https://doc.rust-lang.org/std/process/trait.Termination.html


1216.2 The ? operator
    Ok(parsed_number)
}

fn main() {
    let str_vec = vec!["Seven", "8", "9.0", "nice", "6060"];
    for item in str_vec {
        let parsed = parse_str(item);
        println!("{parsed:?}");
    }
}

The output is the same as the example before:

Err(ParseIntError { kind: InvalidDigit })
Number parsed successfully into 8
Ok(8)
Err(ParseIntError { kind: InvalidDigit })
Err(ParseIntError { kind: InvalidDigit })
Number parsed successfully into 6060
Ok(6060)

At the moment, we only know how to use ? when returning a single error type. Here is
why. Imagine that you want to take some bytes, turn them into a String, and then
parse it into a number. First, you need to successfully create a String from the bytes
using a method called String::from_utf8(). And then it needs to successfully parse
into a number. We could write it like this:

fn turn_into_string_and_parse(bytes: Vec<u8>) -> i32 {
    let as_string = String::from_utf8(bytes).unwrap();
    let as_num = as_string.parse::<i32>().unwrap();
    as_num
}

fn main() {
    let num = turn_into_string_and_parse(vec![49, 53, 53]);
    println!("{num}");
}

Fortunately, we give it an input that worked: the bytes 49, 53, and 53 turn into the
String "155", which parses successfully into a 155. But this is bad error handling
(actually, it’s no error handling). If any input returns an Err, the whole program will
panic. It would be nice to use the ? operator here in both cases. But as we start writing
the code, we get to this point and stop:

use std::num::ParseIntError;
use std::string::FromUtf8Error;

fn turn_into_string_and_parse(bytes: Vec<u8>) -> 

➥Result<i32, ????> {                                    
    let num = String::from_utf8(bytes)?.parse::<i32>()?;    
    Ok(num)
}

What will the error type be? Two 
possible errors can be returned, but 
we only know how to return one.

This is what we would like to write if we only knew how. Then we
could handle the error and do everything we want on a single line.



122 CHAPTER 6 More collections, more error handling
The problem is the return type. If String::from_utf8() fails, it will return
Err<FromUtf8Error>. And if .parse() fails, it will return an Err<ParseIntError>.
But we can’t return a Result<i32, ParseIntError or FromUtf8Error>—the errors
are completely different types. To solve this requires learning a lot more about traits.
We will start to learn about traits in the next chapter, and by chapter 13, we will finally
know enough to solve this problem. In the meantime, let’s think about panic! and
.unwrap() some more.

6.3 When panic and unwrap are good
Rust has a panic! macro that you can use to make it panic. It is easy to use:

fn main() {
    panic!();
}

Easy! The program panics and gives us this output:

thread 'main' panicked at 'explicit panic', src/main.rs:2:5

Or you can panic with a message:

fn main() {
    panic!("Time to panic!");
}

This time, the message Time to panic! displays when you run the program:

thread 'main' panicked at 'Time to panic!', src/main.rs:2:5

You will remember that src/main.rs is the directory and filename, and 2:3 is the line
and column name. With this information, you can find the code and fix it.

 panic! is a good macro to use to make sure that you know when something
changes in your code. For example, the function called print_all_three_things
always prints index [0], [1], and [2] from a vector. It is okay at the moment because
we always give it a vector with three items:

fn print_all_three_things(vector: Vec<i32>) {
    println!("{}, {}, {}", vector[0], vector[1], vector[2]);
}

fn main() {
    let my_vec = vec![8, 9, 10];
    print_all_three_things(my_vec);
}

It prints 8, 9, 10, and everything is fine.
 But imagine that later on we write more and more code and forget that my_vec can

only be three things. Now my_vec in this part has six things:

fn main() {
  let my_vec = vec![8, 9, 10, 10, 55, 99];   

Now my_vec has 
six things.



1236.3 When panic and unwrap are good
  print_all_three_things(my_vec);
}

fn print_all_three_things(vector: Vec<i32>) {
  println!("{}, {}, {}", vector[0], vector[1], vector[2]);
}

No error happens because [0], [1], and [2] are all inside this longer vector. But what
if it was really important to only have three items in the Vec? We wouldn’t know that
there was a problem because the program doesn’t panic. This is known as a logic bug:
the code runs fine, but the logic is wrong. Telling the code to panic in certain cases is
a good way to watch out for logic bugs:

fn print_all_three_things(vector: Vec<i32>) {
    if vector.len() != 3 {
        panic!("my_vec must always have three items");
    }
    println!("{}, {}, {}", vector[0], vector[1], vector[2]);
}

fn main() {
    let my_vec = vec![8, 9, 10, 10, 55, 99];
    print_all_three_things(my_vec);
}

And now this code will panic as we told it to:

thread 'main' panicked at 'my_vec must always have three items',

➥src/main.rs:3:9

Thanks to panic!, we now remember that my_vec should only have three items. So
panic! is a good macro to create reminders in your code.

 There are three other macros that are similar to panic! that you use a lot in test-
ing. They are assert!, assert_eq!, and assert_ne!. Here is what they mean:

 assert!—If the part inside () is not true, the program will panic.
 assert_eq!—The two items inside () must be equal.
 assert_ne!—The two items inside () must not be equal (ne means “not

equal”).

Some examples are as follows:

fn main() {
    let my_name = "Loki Laufeyson";

    assert!(my_name == "Loki Laufeyson");
    assert_eq!(my_name, "Loki Laufeyson");
    assert_ne!(my_name, "Mithridates");
}

This will do nothing because all three assert macros are okay (this is what we want).



124 CHAPTER 6 More collections, more error handling
 You can also add a message to these methods if you want:

fn main() {
    let my_name = "Loki Laufeyson";

    assert!(
        my_name == "Loki Laufeyson",
        "Name {my_name} is wrong: should be Loki Laufeyson"
    );
    assert_eq!(
        my_name, "Loki Laufeyson",
        "{my_name} and Loki Laufeyson should be equal"
    );
    assert_ne!(
        my_name, "Mithridates",
        "You entered {my_name}. Input must not equal Mithridates"
    );
}

These messages will only display if the program panics. So, if you run 

fn main() {
    let my_name = "Mithridates";

    assert_ne!(
        my_name, "Mithridates",
        "You entered {my_name}. Input must not equal Mithridates"
    );
}

it will display

thread 'main' panicked at 'assertion failed: `(left != right)`
  left: `"Mithridates"`,
  right: `"Mithridates"`: You entered Mithridates. Input must not equal
  ➥Mithridates', src\main.rs:4:5

The output is telling us, “You said that left != right, but left == right.” And it displays
our custom message that says You entered Mithridates. Input must not equal
Mithridates.

 Unwrapping is also good when you are first writing your program and you want it
to crash when there is a problem. Later, when your code is finished, it is good to
change unwrap() to something else that won’t crash. (You don’t want a program to
panic while a customer is using it.)

 You can also use expect, which is like unwrap but a bit better because you give it
your own message. Textbooks usually give this advice: “If you use unwrap a lot, at least
use expect for better error messages.”

 This will crash:

fn get_fourth(input: &Vec<i32>) -> i32 {
    let fourth = input.get(3).unwrap();
    *fourth
}



1256.3 When panic and unwrap are good
fn main() {
    let my_vec = vec![9, 0, 10];
    let fourth = get_fourth(&my_vec);
}

The error message is 

thread 'main' panicked at 'called Option::unwrap() on a None

➥value', src\main.rs:7:18.

Now we write our own message with expect:

fn get_fourth(input: &Vec<i32>) -> i32 {
    let fourth = input.get(3).expect("Input vector needs at least 4 items");
    *fourth
}

fn main() {
    let my_vec = vec![9, 0, 10];
    let fourth = get_fourth(&my_vec);
}

It crashes again, but the error is better: 

thread 'main' panicked at 'Input vector needs at least 4 items', 
src\main.rs:7:18 

So expect is a little better than unwrap, but it will still panic on None. The .expect()
method is also good for documentation because it allows anyone reading your code to
have an idea of what could go wrong and where.

 Now, here is an example of a bad practice: a function that tries to unwrap two
times. It takes a Vec<Option<i32>>, so maybe each part will have a Some<i32> or
maybe a None:

fn try_two_unwraps(input: Vec<Option<i32>>) {
    println!("Index 0 is: {}", input[0].unwrap());
    println!("Index 1 is: {}", input[1].unwrap());
}

fn main() {
    let vector = vec![None, Some(1000)];   
    try_two_unwraps(vector);
}

The message is 

thread 'main' panicked at 'called Option::unwrap() on a None

➥value', src\main.rs:2:32

We’re not sure if it was the first unwrap or the second unwrap until we check the line,
and in a large codebase, it can take a bit of time to find the exact file and line where a
panic occurred. It would be better to check the length and also not to unwrap. But
with expect, at least it will be a little better. Here it is with expect:

This vector has a 
None, so it will panic.



126 CHAPTER 6 More collections, more error handling
fn try_two_unwraps(input: Vec<Option<i32>>) {
    println!(
        "Index 0 is: {}",
        input[0].expect("The first unwrap had a None!")
    );
    println!(
        "Index 1 is: {}",
        input[1].expect("The second unwrap had a None!")
    );
}

fn main() {
    let vector = vec![None, Some(1000)];
    try_two_unwraps(vector);
}

So that is a bit better: 

thread 'main' panicked at 'The first unwrap had a None!', src\main.rs:2:32 

We have the line number as well so we can find it.
 There is another method called .unwrap_or() that is useful if you want to always

have a value that you want to choose. If you do this, it will never panic, which is good
because your program won’t panic, but maybe not good if you want the program to
panic if there’s a problem.

 But usually, we don’t want our program to panic, so .unwrap_or() is a good
method to use:

fn main() {
    let my_vec = vec![8, 9, 10];

    let fourth = my_vec.get(3).unwrap_or(&0);    
    println!("{fourth}");
}

This prints 0 because .unwrap_or(&0) gives a zero even if it is a None. It will never
panic.

 This chapter was a lot of expansion of what you already know, so it probably wasn’t
too hard. You learned some extra collection types on top of the ones you already
know, and we learned more about error handling. The question mark operator is new,
but it’s still based on what you already know: matching on a Result. But in the next
chapter, we will learn something new: how traits work and how to write our own traits.

Summary
 For keys and values, usually use HashMap. Change Hash to BTree if you need

alphabetical order.
 If you want to know whether something exists or not, use a HashSet. Change

Hash to BTree if you need an ordered collection.

If .get doesn’t work, we will make the value &0. .get() returns a
reference, so we need &0 and not 0 to match it. You can also write

"let *fourth" with a * if you want fourth to be a 0 and not a &0.



127Summary
 VecDeque is slower than Vec unless you need to work from both the front and
back. In that case, VecDeque is a lot faster.

 A BinaryHeap always has the largest value at the front. Everything else is
unsorted.

 Using ? is convenient because it automatically pulls out the Ok value from a
Result. If the value is an Err, it will exit the function early and return the Err.

 With Result and Option, you can avoid the program panicking, but sometimes
a panic can make sense.



Traits: Making different
types do the same thing
We’ve touched on traits a little bit here and there in the book so far, but now it’s
time to give them some needed attention. Understanding traits and how they work
will let us give traits to our own types and even make our own.

7.1 Traits: The basics
We have seen traits before: Debug, Copy, and Clone are all traits. The easiest way to
think of traits is as powers or qualifications. If a type has a trait, it can do things it
couldn’t do before. Also, if a type has a trait, you can guarantee to the compiler
that it can do something—no matter what type it is.

This chapter covers
 The basics of how to write your own traits 

 Method signatures in traits

 More complex trait examples

 The From trait

 The orphan rule—what you’re allowed to 
implement a trait on

 Taking a String or a &str in a function
128



1297.1 Traits: The basics
 To give a trait to a type, you have to implement that trait for that type. “Type X
implements Trait Y” means that Type X definitely has the methods of Trait Y. Type X
can have its own separate methods, too, and Type X might implement other traits as
well. A human equivalent would be that Person X might decide to take the bar exam
to become a lawyer. But Person X might have other qualifications, too, and might
have other personal skills, such as being able to type really fast.

 Rust uses a special syntax called attributes to automatically implement traits like
Debug because they are so common. That’s what happens when you write
#[derive(Debug)]: you are automatically implementing the Debug trait. So, all you
need to do to implement that trait is this:

#[derive(Debug)]
struct MyStruct {
    number: usize,
}

You can manually implement Debug yourself, too, if you want to, but most of the time,
people are happy with using derive to do it.

 But other traits are more difficult for the compiler to guess, so you can’t use
derive to implement them. Those traits need to be manually implemented with the
impl keyword. A good example is the Add trait (found at std::ops::Add), which is
used to add two things. Any type that implements the Add trait can use the + operator
to add. But Rust can’t guess how you want to add things, so you have to tell it. Take this
struct, for example:

struct ThingsToAdd {
    first_thing: u32,
    second_thing: f32,
}

It has a u32 and an f32 inside it. If you want to add a ThingsToAdd to another
ThingsToAdd, how do you want to do it? Do you want to

 Add first_thing to the other first_thing and second_thing to the other
second_thing to return a new ThingsToAdd?

 Add both properties together and return a u32?
 Add both properties together and return an f32?
 Turn both properties into a String and stick them next to each other?
 Do something else?

Rust can’t guess what you want, which is why there is no way to use #[derive(Add)] to
give a type the Add trait.

 Before we derive other traits, let’s first look at how to make a trait. The important
thing to remember about traits is that they are about behavior. To make a trait, write
trait and then create some methods for it:



130 CHAPTER 7 Traits: Making different types do the same thing
struct Dog {              
    name: String,
}

struct Parrot {           
    name: String,
}

trait DogLike {           
    fn bark(&self) {      
        println!("Woof woof!");
    }
    fn run(&self) {       
        println!("The dog is running!");
    }
}

impl DogLike for Dog {}    
impl DogLike for Parrot {} 

fn main() {
    let rover = Dog {
        name: "Rover".to_string(),
    };

    let brian = Parrot {
        name: "Brian".to_string(),
    };

    rover.bark();         
    rover.run();          
    brian.bark();          
}

This prints

Woof woof!
The dog is running!
Woof woof!

Now, if we were to call brian.run(); on the previous code, it would print The dog is
running! even though we are calling the method on a Parrot. What if you don’t want
to print The dog is running? Can you do that?

 The answer is yes, but you have to have the same signature. That means it needs to
take the same things and return the same things. For example, we can change the
method .run(), but we have to follow the signature. The signature says

fn run(&self) {
    println!("The dog is running!");
}

fn run(&self) means “fn run() takes &self and returns nothing.” So you can’t return
something different like this:

A simple struct—an Animal 
only has a name

Another simple struct

The dog trait gives 
some functionality

It can bark.

And it can run.

Now, Animal has 
the trait DogLike.

Anything else can 
implement DogLike, too.

Now Dog can 
use bark() And it can 

use run(),

Brian the parrot 
learned to bark, too.



1317.1 Traits: The basics
fn run(&self) -> i32 {
    5
}

Rust will tell you that the signature is wrong. The method always has to return noth-
ing, but now it’s returning an i32:

   = note: expected fn pointer `fn(&Animal)`
              found fn pointer `fn(&Animal) -> i32`

But we can do this:

struct Parrot { 
    name: String,
}

trait DogLike { 
    fn bark(&self) {                                  
        println!("Woof woof!");
    }
    fn run(&self) {                                       
        println!("The dog is running!");
    }
}

impl DogLike for Parrot{                                  
    fn run(&self) {
        println!("{} the parrot is running!", self.name);  
    }
}

fn main() {
    let brian = Parrot {
        name: "Brian".to_string(),
    };

    brian.bark();
    brian.run();
}

Now it prints Brian the parrot is running! This is okay because we are returning ()
or nothing, which is what the method signature tells us to do.

7.1.1 All you need are the method signatures

You need to be able to write your own methods for a trait because you never know
what type might use it. In fact, you can just write the function signature when making
a trait. Many traits write most of their methods like this.

 Now, when you do that, the user will have to write the function. Let’s try that. We
will change .bark() and .run() to fn bark(&self); and fn run(&self);. These
methods are now incomplete, which means that any type implementing them must
write out the methods themselves:

It can bark.

And it can run.

We’re implementing the trait 
ourselves and writing the run 
method the way we want to.

This is the interesting part. The trait itself can’t
call self.name because it doesn’t know which

types will implement it and whether they have a
name property or not. But we know that Parrot

has a name property, so we can use it here.



132 CHAPTER 7 Traits: Making different types do the same thing
struct Animal {
    name: String,
}

trait DogLike {
    fn bark(&self);    
    fn run(&self);
}

impl DogLike for Animal {
    fn bark(&self) {
        println!("{}, stop barking!!", self.name);
    }
    fn run(&self) {
        println!("{} is running!", self.name);
    }
}

fn main() {
    let rover = Animal {
        name: "Rover".to_string(),
    };

    rover.bark();
    rover.run();
}

So when you create a trait, you must think: “Which methods should I write? And
which ones should the user write?” If you think most users will use the methods the
same way every time, it makes sense for you to write a default method inside the trait.
But if you think that users will use the methods differently every time, write the
signature.

 So now that you know how to impl a trait, let’s try implementing someone else’s
trait for your own type: the Display trait. First, we will make a simple struct:

struct Cat {
    name: String,
    age: u8,
}

fn main() {
    let mr_mantle = Cat {
        name: "Reggie Mantle".to_string(),
        age: 4,
    };
}

Now we want to print mr_mantle. The Debug trait is easy to derive:

#[derive(Debug)]
struct Cat {
    name: String,
    age: u8,
}

The method .bark() says it needs a &self and returns 
nothing. .run() says it needs a &self and returns 
nothing. So now we have to write them ourselves.



1337.1 Traits: The basics
fn main() {
    let mr_mantle = Cat {
        name: "Reggie Mantle".to_string(),
        age: 4,
    };
    println!("Mr. Mantle is a {mr_mantle:?}");
}

But Debug print is not exactly the prettiest way to print. Here is what the output for
our Cat struct looks like:

Mr. Mantle is a Cat { name: "Reggie Mantle", age: 4 }

So we should implement Display for Cat if we want to display it exactly the way we
want. In the documentation for the Display trait (https://doc.rust-lang.org/std/fmt/
trait.Display.html), we can see the general information for Display, along with one
example. Here is the example that it gives:

use std::fmt;

struct Position {
    longitude: f32,
    latitude: f32,
}

impl fmt::Display for Position {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "({}, {})", self.longitude, self.latitude)
    }
}

Some parts of the previous code we don’t understand yet, like what <'_> and this f
variable are doing. But the Position struct is pretty easy to understand: it is just two
f32s. We also understand that self.longitude and self.latitude are the fields in
the struct.

 Maybe we can take this code for our struct and change the code to self.name and
self.age. Also, the write! macro looks a lot like println!, so it is pretty familiar.
Let’s steal the code and change it a bit. We’ll change 

write!(f, "({}, {})", self.longitude, self.latitude)

to 

write!(f, "{} is a cat who is {} years old.", self.name, self.age)

Now the code to implement Display for our Cat struct looks like this:

use std::fmt;

struct Cat {
    name: String,
    age: u8,
}

https://doc.rust-lang.org/std/fmt/trait.Display.html
https://doc.rust-lang.org/std/fmt/trait.Display.html


134 CHAPTER 7 Traits: Making different types do the same thing
impl fmt::Display for Cat {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{} is a cat who is {} years old", self.name, self.age)
    }
}

Let’s add a fn main() and print our Cat out:

use std::fmt;

struct Cat {
    name: String,
    age: u8,
}

impl fmt::Display for Cat {
  fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
      write!(f, "{} is a cat who is {} years old", self.name, self.age)
  }
}

fn main() {
    let mr_mantle = Cat {
        name: "Reggie Mantle".to_string(),
        age: 4,
    };
    println!("{mr_mantle}");
}

Success! We can use {} to print our Cat, which gives us the output Reggie Mantle is a
cat who is 4 years old. This looks much better.

 Sometimes implementing a trait gives you some extra, unexpected benefits. For
example, if you implement Display for a type, you get the ToString trait for free,
which gives you the .to_string() method that we already know. If you want to turn
your type into a String, simply implement Display. (The reason is that ToString uses
a blanket implementation, which means that it implements itself on any type that has
Display. We’ll learn how to do blanket implementations later.)

 We could do something like this, where we pass reggie_mantle to a function that
wants a String or anything else:

use std::fmt;
struct Cat {
    name: String,
    age: u8,
}

impl fmt::Display for Cat {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{} is a cat who is {} years old", self.name, self.age)
    }
}



1357.1 Traits: The basics
fn print_excitedly(input: String) {
    println!("{input}!!!!!");
}

fn main() {
    let mr_mantle = Cat {
        name: "Reggie Mantle".to_string(),
        age: 4,
    };

    print_excitedly(mr_mantle.to_string());    
    println!(
        "Mr. Mantle's String is {} letters long.",  
        mr_mantle.to_string().chars().count()
    );
}

This prints

Reggie Mantle is a cat who is 4 years old!!!!!
Mr. Mantle's String is 41 letters long.

The thing to remember about traits is that they are about the shared behavior of
something. How does your struct or enum act? What can it do? And how can you eas-
ily show that your type, and other types, all have this behavior? That’s what traits are
for. If you think of some of the traits we’ve seen so far, they are all about behavior:
Copy is something that a type can do. Display is also something that a type can do.
ToString is another trait, and it’s also something that a type can do: it can change into
a String. And with these traits, we can prove that any type that implements them will
all have these abilities.

 The trait examples have been pretty simple so far. Let’s look at some examples of
where we might actually want to make our own traits.

7.1.2 More complex examples

Let’s look at another example that is even more connected to just behavior. We’ll
imagine a fantasy game with some simple characters. One is a Monster; the other two
are Wizard and Ranger. There is a Monster that just has health so we can attack it, and
the other two don’t have anything yet. But we made two traits. One is called Fight-
Close and lets you fight up close. The other is FightFromDistance, which lets you
fight from far away. Only Ranger can use FightFromDistance. Let’s try putting that
together to see what it looks like:

trait FightClose {
    fn attack_with_sword(&self, opponent: &mut Monster) {
        opponent.health -= 10;
        println!(
            "Sword attack! Your opponent has {} health left.",
            opponent.health
        );

Turns Mr. Mantle into a String 
and passes it into this function

Turns Mr. Mantle into chars and counts them. Be
sure to use .chars().count() and not .len() unless you

know each character will only be 1 byte in length!



136 CHAPTER 7 Traits: Making different types do the same thing
    }
    fn attack_with_hand(&self, opponent: &mut Monster) {
        opponent.health -= 2;
        println!(
            "Hand attack! Your opponent has {} health left.",
            opponent.health
        );
    }
}
impl FightClose for Wizard {}
impl FightClose for Ranger {}

trait FightFromDistance {
    fn attack_with_bow(&self, opponent: &mut Monster, distance: u32) {
        if distance < 10 {
            opponent.health -= 10;
            println!(
                "Bow attack! Your opponent has {} health left.",
                opponent.health
            );
        }
    }
    fn attack_with_rock(&self, opponent: &mut Monster, distance: u32) {
        if distance < 3 {
            opponent.health -= 4;
        }
        println!(
            "Rock attack! Your opponent has {} health left.",
            opponent.health
        );
    }
}impl FightFromDistance for Ranger {}

fn main() {
    let radagast = Wizard {};
    let aragorn = Ranger {};

    let mut uruk_hai = Monster { health: 40 };

    radagast.attack_with_sword(&mut uruk_hai);
    aragorn.attack_with_bow(&mut uruk_hai, 8);
}

This prints

Sword attack! Your opponent has 30 health left.
Bow attack! Your opponent has 20 health left.

We pass &self inside traits all the time, but we can’t do much with it right now. That’s
because Rust doesn’t know what type is going to use it. It could be a Wizard, it could be
a Ranger, it could be a new struct called Toefocfgetobjodd, or anything else. So far,
these traits are better as regular methods because at least we would have access to a con-
crete &self and not just a &self that represents some type that will implement the trait.



1377.1 Traits: The basics
 If the type inside a trait’s definition can be anything, what can we do to make
&self more useful? It would be nice to get some idea of what types will use it and what
they can do. To give it some functionality, we can add trait bounds (necessary traits) to
the signature. If we want to print with {:?}, for example, we need Debug. You can add
it to the trait by writing it after : (a colon). Now our code looks like this:

use std::fmt::Debug;

struct Monster {
    health: i32,
}

#[derive(Debug)]        
struct Wizard {
    health: i32,
}
#[derive(Debug)]
struct Ranger {
    health: i32,
}

trait DisplayHealth {
    fn health(&self) -> i32;
}

trait FightClose: Debug {        
    fn attack_with_sword(&self, opponent: &mut Monster) {
        opponent.health -= 10;
        println!(
            "Sword attack! Opponent's health: {}. You are now at: {:?}",
            opponent.health, self      
        );
    }
    fn attack_with_hand(&self, opponent: &mut Monster) {
        opponent.health -= 2;
        println!(
            "Hand attack! Opponent's health: {}.  You are now at: {:?}",
            opponent.health, self
        );
    }
}
impl FightClose for Wizard {}
impl FightClose for Ranger {}

trait FightFromDistance: Debug {
    fn attack_with_bow(&self, opponent: &mut Monster, distance: u32) {
        if distance < 10 {
            opponent.health -= 10;
            println!(
                "Bow attack! Opponent's health: {}. You are now at: {:?}",
                opponent.health, self
            );
        }
    }

Wizard and Ranger implement 
Debug. They also have a 
property called health now.

With this bound, any type needs Debug 
first to implement FightClose. They are 
guaranteed to have the Debug trait.

With that guarantee, we can 
use {:?} to print out &self.



138 CHAPTER 7 Traits: Making different types do the same thing
    fn attack_with_rock(&self, opponent: &mut Monster, distance: u32) {
        if distance < 3 {
            opponent.health -= 4;
        }
        println!(
            "Rock attack! Opponent's health: {}.  You are now at: {:?}",
            opponent.health, self
        );
    }
}
impl FightFromDistance for Ranger {}

fn main() {
    let radagast = Wizard { health: 60 };
    let aragorn = Ranger { health: 80 };

    let mut uruk_hai = Monster { health: 40 };

    radagast.attack_with_sword(&mut uruk_hai);
    aragorn.attack_with_bow(&mut uruk_hai, 8);
}

This prints

Sword attack! Opponent's health: 30. You are now at: Wizard { health: 60 }
Bow attack! Opponent's health: 20. You are now at: Ranger { health: 80 }

In a real game, it might be better to rewrite this for each type because You are now at:
Wizard { health: 60 } looks funny. Or you could require Display instead of just
Debug. Methods inside traits are usually simple because you don’t know what type is
going to use it. You can’t write things like self.0 += 10, for example. But this example
shows that we can use other traits inside a trait we are writing, and that helps.

 You might have noticed that the trait methods need a Monster, which is a concrete
type. That might be a bit limiting unless we only have a single Monster struct for our
whole game. You could rewrite the methods so that instead of a Monster, it takes any
type that implements a trait called TakeDamage, for example.

 Let’s do that with generics. We’ll make a trait called MonsterBehavior. We’ll give it
a method .take_damage(), and another one called .display_self(). It looks like
this:

trait MonsterBehavior: Debug {
    fn take_damage(&mut self, damage: i32);
    fn display_self(&self) {
        println!("The monster is now: {self:?}");
    }
}

You’ll notice three things here:

 It’s written MonsterBehavior: Debug, so to implement this trait, a type needs to
have Debug. That’s because we want to Debug print it.



1397.1 Traits: The basics
 The .take_damage() method isn’t written out because we have no idea how to
do it. Will a struct have a .health parameter or something else to do this? No
idea. But it takes a &mut self so it can be changed and a damage: i32, which
shows what the damage is. With that information, we can implement it for
Monster, and others can implement it for their types, too.

 We write out the .display_self() method because we know a type will at least
have Debug. But if you implement it for a type that has Display, you can print it
out that way. Or maybe you want to implement it differently, too—it’s your
choice.

The code looks like this:

use std::fmt::Debug;

trait MonsterBehavior: Debug {
    fn take_damage(&mut self, damage: i32);
    fn display_self(&self) {
        println!("The monster is now: {self:?}");
    }
}

#[derive(Debug)]
struct Monster {
    health: i32,
}

impl MonsterBehavior for Monster {           
    fn take_damage(&mut self, damage: i32) {
        self.health -= damage;
    }
}

#[derive(Debug)]
struct Wizard {
    health: i32,
}
#[derive(Debug)]
struct Ranger {
    health: i32,
}

trait FightClose {                           
    fn attack_with_sword<T: MonsterBehavior>(&self, opponent: &mut T) {
        println!("You attack with your sword!");
        opponent.take_damage(10);              
        opponent.display_self();             
    }
    
    fn attack_with_hand<T: MonsterBehavior>(&self, opponent: &mut T) {  
        println!("You attack with your hand!");
        opponent.take_damage(2);
        opponent.display_self();
    }

We implement the 
trait for Monster.

And now the opponents are all 
&mut T, and T is guaranteed to 
implement MonsterBehavior.

So we can
 call this
method.

And we can call 
this one, too.

And so on, for the
rest of the code



140 CHAPTER 7 Traits: Making different types do the same thing
}
impl FightClose for Wizard {}
impl FightClose for Ranger {}

trait FightFromDistance: Debug {
    fn attack_with_bow<T: MonsterBehavior>(&self, opponent: &mut T,
    ➥distance: u32) {
        println!("You attack with your bow!");
        if distance < 10 {
            opponent.take_damage(10);
        } else {
            println!("Too far away!");
        }
        opponent.display_self();
    }
    fn attack_with_rock<T: MonsterBehavior>(&self, opponent: &mut T,
    ➥distance: u32) {
        println!("You attack with a rock!");
        if distance < 3 {
            opponent.take_damage(4);
        } else {
            println!("Too far away!");
        }
        opponent.display_self();
    }
}
impl FightFromDistance for Ranger {}

fn main() {
    let radagast = Wizard { health: 60 };
    let aragorn = Ranger { health: 80 };

    let mut uruk_hai = Monster { health: 40 };

    radagast.attack_with_sword(&mut uruk_hai);
    aragorn.attack_with_bow(&mut uruk_hai, 8);
}

This prints

You attack with your sword!
The monster is now: Monster { health: 30 }
You attack with your bow!
The monster is now: Monster { health: 20 }

7.1.3 Traits as bounds

Interestingly, a trait doesn’t need to have any methods at all. That’s because even a
trait that doesn’t have any methods can still be used as a trait bound. In other words,
the trait must be implemented even though it doesn’t add any new functionality.

 Imagine you are going to court, and you need a good lawyer to do fn
argue_in_court() for you. Your bounds for this function would probably be Lawyer
and Experienced. Any type of person could do the function as long as they have these
two traits: they are “bound” to have them. That means that any type that you want to



1417.1 Traits: The basics
pass into argue_in_court() will need to impl Lawyer and impl Experienced first.
This is basically the same as the bar exam in real life: courts have the “trait bound”
that only people who have passed the bar exam can act as lawyers. And any “type” (any
person) who wants to be one will have to “implement” this before they can argue as
lawyers in a court.

 So trait bounds can be really easy because a trait doesn’t need any methods or any-
thing at all. Let’s rewrite our previous code in a somewhat different way. (We’ll use the
concrete Monster struct again to make it simple.) This time, our trait doesn’t have any
methods, but instead, we have other functions that require traits to use:

use std::fmt::Debug;

struct Monster {
    health: i32,
}

#[derive(Debug)]
struct Wizard {
    health: i32,
}
#[derive(Debug)]
struct Ranger {
    health: i32,
}

trait Magic {}
trait FightClose {}
trait FightFromDistance {}

impl FightClose for Ranger {}
impl FightClose for Wizard {}
impl FightFromDistance for Ranger {}
impl Magic for Wizard {}

fn attack_with_bow<T>(pc: &T, opponent: &mut Monster, distance: u32)
where
    T: FightFromDistance + Debug,
{
    if distance < 10 {
        opponent.health -= 10;
        println!(
            "Bow attack! Opponent's health: {}.  You are now at: {pc:?}",
            opponent.health
        );
    }
}

fn attack_with_sword<T>(pc: &T, opponent: &mut Monster)
where
    T: FightClose + Debug,
{
    opponent.health -= 10;
    println!(

No methods for any of these 
traits! They are just trait bounds.

Each type gets 
FightClose.

But only Ranger gets 
FightFromDistance.

And only Wizard 
gets Magic.



142 CHAPTER 7 Traits: Making different types do the same thing
        "Sword attack! Opponent's health: {}. You are now at: {pc:?}",
        opponent.health
    );
}

fn fireball<T>(pc: &T, opponent: &mut Monster, distance: u32)
where
    T: Magic + Debug,
{
    if distance < 15 {
        opponent.health -= 20;
        println!(
            "A massive fireball! Opponent's health: {}. You are now at:
            ➥{pc:?}",
            opponent.health
        );
    }
}

fn main() {
    let radagast = Wizard { health: 60 };
    let aragorn = Ranger { health: 80 };

    let mut uruk_hai = Monster { health: 40 };

    attack_with_sword(&radagast, &mut uruk_hai);
    attack_with_bow(&aragorn, &mut uruk_hai, 8);
    fireball(&radagast, &mut uruk_hai, 8);
}

This prints almost the same thing:

Sword attack! Opponent's health: 30. You are now at: Wizard { health: 60 }
Bow attack! Opponent's health: 20.  You are now at: Ranger { health: 80 }

A massive fireball! Opponent’s health: 0. You are now at: Wizard { health: 60 } So
you can see there are many ways to do the same thing when you use traits. It all
depends on what makes the most sense for the program that you are writing.

7.1.4 Traits are like qualifications

The more examples of traits you see, the easier it is to get a feel for how they work. So
let’s finish up the overview of traits in this chapter by imagining a whole bunch of
imaginary traits and how they might work. We’ll look at their names and then think
about which types should implement them.

 First, sometimes, people who use other languages look at traits and think that they
are just like classes or interfaces. (If you don’t know what classes or interfaces are,
don’t worry—Rust doesn’t have them.) And while traits do look like classes, it’s easier
to think of them as qualifications. Let’s think of a few:

 



1437.1 Traits: The basics
Now let’s imagine some structs. Which of those three traits does it make sense for
them to implement?

Let’s start implementing the French trait for the following types.

Next is the trait called LawyerSkill. Which types should implement it?

Can some of them work as doctors? Looks like it. So let’s give the MedicalSkill trait
to those types.

trait French {}
trait LawyerSkill {}
trait MedicalSkill {}

With effort, anyone can learn 
French, anyone can take the bar 
exam, anyone can get a medical 
degree. You can even get all three 
if you work for it.

struct FrenchCitizen;
struct ExchangeStudentInFrance;
struct AmericanLawyer;
struct AmericanDoctor;
struct FrenchLawyer;
struct FrenchDoctor;
struct MrKnowsEverything;

Some structs. Based on their
name, what trait(s) do you
think they should have?

impl French for FrenchCitizen {}
impl French for ExchangeStudentInFrance {}
impl French for FrenchLawyer {}
impl French for FrenchDoctor {}
impl French for MrKnowsEverything {}

Lots of them
speak French...

impl LawyerSkill for AmericanLawyer {}
impl LawyerSkill for FrenchLawyer {}
impl LawyerSkill for MrKnowsEverything {}

Some of them took
the bar exam...

impl MedicalSkill for AmericanDoctor {}
impl MedicalSkill for FrenchDoctor {}
impl MedicalSkill for MrKnowsEverything {}

And some of them got
a medical degree.
(MrKnowsEverything really
knows everything!)



144 CHAPTER 7 Traits: Making different types do the same thing
Now let’s make some functions and use these traits as bounds. We don’t care what type
goes in, as long as it implements the right trait (or traits).

Now everything will match up, and the compiler won’t complain.

fn speak_french<T: French>(speaker: T) {}

fn enter_court<T: LawyerSkill>(lawyer: T) {}

fn cure_patient<T: MedicalSkill>(doctor: T) {}

fn enter_french_court<T: LawyerSkill + French>(lawyer: T) {}

fn cure_french_patient<T: MedicalSkill + French>(doctor: T) {}

fn present_medical_case_in_french_court<T: MedicalSkill + French + 

➥ LawyerSkill>(lawyer: T) {}

Now time for some generic functions.
They can take any type, as long as 
they are qualified to go in.

fn main() {
    speak_french(FrenchCitizen);
    speak_french(ExchangeStudentInFrance);
    speak_french(FrenchLawyer);
    speak_french(FrenchDoctor);
    speak_french(MrKnowsEverything);

    enter_court(AmericanLawyer);
    enter_court(FrenchLawyer);
    enter_court(MrKnowsEverything);

    cure_patient(AmericanDoctor);
    cure_patient(FrenchDoctor);
    cure_patient(MrKnowsEverything);

    enter_french_court(FrenchLawyer);
    enter_french_court(MrKnowsEverything);

    cure_french_patient(FrenchDoctor);
    cure_french_patient(MrKnowsEverything);

    present_medical_case_in_french_court(MrKnowsEverything);

    present_medical_case_in_french_court(FrenchDoctor);
}

Now we’ll start main() and call some of these functions.

Lots of French speakers!

A few lawyers...

A few doctors...

A few lawyers that
also know French...

A few doctors that
also know French...

But just one that is
a lawyer AND a doctor
AND knows French.

This one won’t work! FrenchDoctor has
French and MedicalSkill but not LawyerSkill.



1457.2 The From trait
That was a lot of comparisons and examples! Traits can take a long time to get used to,
so the more comparisons and examples, the better. Now that you have an idea of how
traits work, the next step is to start looking at real traits you’ll use a lot in your code.
Let’s start by looking at how to implement one of the main traits you will use in Rust.

7.2 The From trait
From is a very convenient trait to use, and you know this because you have seen it so
much already. With From, you can make a String from a &str, but you can make
many types from many other types. For example, Vec uses From for 18 (!) types. Here
are the ones we know:

From<&'_ [T]>
From<&'_ mut [T]>
From<&'_ str>
From<&'a Vec<T>>
From<[T; N]>
From<BinaryHeap<T>>
From<String>>
From<Vec<T>>
From<VecDeque<T>>

You can see these implementations on the left side of the documentation for Vec
(https://doc.rust-lang.org/std/vec/struct.Vec.html). That’s a lot of Vec::from() that
we haven’t tried yet! Let’s experiment with some of these and see what happens. We
will try making a Vec from [T; N], the generic name for an array (the technical term
is const generics., which we will learn more about in chapter 16). T stands for type, and N
stands for number), plus a String and a &str:

fn main() {
    let array_vec = Vec::from([8, 9, 10]);
    println!("Vec from array: {array_vec:?}");

    let str_vec = Vec::from("What kind of Vec am I?");
    println!("Vec from str: {str_vec:?}");

    let string_vec = Vec::from("What will a String be?".to_string());
    println!("Vec from String: {string_vec:?}");
}

It prints

Vec from array: [8, 9, 10]
Vec from str: [87, 104, 97, 116, 32, 107, 105, 110, 100, 32, 111, 102, 32,

➥86, 101, 99, 32, 97, 109, 32, 73, 63]
Vec from String: [87, 104, 97, 116, 32, 119, 105, 108, 108, 32, 97, 32, 83,

➥116, 114, 105, 110, 103, 32, 98, 101, 63]

The first one is no surprise: a Vec from an array of three numbers shows the three
numbers. But the Vecs from &str and String are all bytes! If you look at the signature



146 CHAPTER 7 Traits: Making different types do the same thing
for Vec from &str and String, you can see that they return a Vec<u8>. Here is the
full code, which is quite simple:

    fn from(string: String) -> Vec<u8> {
        string.into_bytes()
    }

You can see that From is quite simple: all you have to do is choose two types and decide
which one you want to turn into the other. After that, it’s completely up to you how to
make it happen. In this case, the creators of the standard library decided that it would
be convenient to implement From<String> for Vec<u8>. Let’s try implementing From
with our own types.

 We’ll make two structs and then implement From for one of them. One struct will
be City, and the other will be Country. We want to be able to write this code: let
country_name = Country::from(vector_of_cities).

 It looks like this:

#[derive(Debug)]
struct City {
    name: String,
    population: u32,
}

impl City {
    fn new(name: &str, population: u32) -> Self {  
        Self {
            name: name.to_string(),
            population,
        }
    }
}
#[derive(Debug)]
struct Country {
    cities: Vec<City>,                         
}

impl From<Vec<City>> for Country {
    fn from(cities: Vec<City>) -> Self {
        Self { cities }
    }
}
impl Country {
    fn print_cities(&self) {                              
        for city in &self.cities {                        
            println!(
                "{:?} has a population of {:?}.",
                city.name, city.population
            );
        }
    }
}
fn main() {
    let helsinki = City::new("Helsinki", 631_695);
    let turku = City::new("Turku", 186_756);

Nothing special here—just a 
convenience function that will 
do the .to_string() part for us

Our cities 
go in here.

And here is our implementation 
of From. Pretty simple!

Prints the cities 
in a Country Here we use & because 

City isn’t a Copy type.



1477.4 Getting around the orphan rule with newtypes
    let finland_cities = vec![helsinki, turku];           
    let finland = Country::from(finland_cities);          

    finland.print_cities();
}

This prints

"Helsinki" has a population of 631695.
"Turku" has a population of 186756.

While reading this section, you might have gotten some ideas for implementing From
on some other types you know in the standard library. But you’re not always allowed
to! Let’s find out why.

7.3 The orphan rule
You can imagine that From would be easy to implement on types you didn’t create like
Vec, i32, and so on. But hold on, there’s one rule that Rust has about this. It’s called
the orphan rule: 

 You can implement your trait on someone else’s type.
 You can implement someone else’s trait on your type.
 However, you can’t implement someone else’s trait on someone else’s type.

That’s because if anyone could implement anyone’s trait on anyone’s type, you could
never keep a single type consistent. Maybe you created a type for others to use that
you planned to impl Display on later, but someone else already did it in their own
way! Now, other people are using your code in a way you didn’t intend. If one person
imports it from your code, it will display in one way, but if imported from somewhere
else, it will display in another. Or it could be a much more serious problem, like if
your type is used for cryptographic security and you want very tight control over how it
is used. A company might use your type, thinking it is the one you made, but it was
actually your type plus a number of changes made by other people without asking you.
The orphan rule prevents that.

 So what’s the best way to get around the orphan rule? The easiest way is to wrap
someone else’s type in a tuple struct, thereby creating an entirely new type. This is
called the newtype idiom, and we will learn that now.

7.4 Getting around the orphan rule with newtypes
Let’s look at the so-called newtype idiom. It is actually quite simple: wrap someone
else’s type in a tuple struct. Let’s imagine that we want a type called File, which, for
the moment, will only contain a String:

struct File(String);     

fn main() {
    let my_file = File(String::from("I am file contents"));
    let my_string = String::from("I am file contents");
}

This is the 
Vec<City>.Now we can 

use From.

File is a wrapper 
around String.



148 CHAPTER 7 Traits: Making different types do the same thing
Because this is now a new type, it doesn’t have any of the traits that String has. So the
compiler will refuse to compare a File with a String, even though File has a String
inside:

struct File(String);

fn main() {
    let my_file = File(String::from("I am file contents"));
    let my_string = String::from("I am file contents");
    println!("{}", my_file == my_string);       
}

If you want to compare the String inside, you can use my_file.0:

struct File(String);

fn main() {
    let my_file = File(String::from("I am file contents"));
    let my_string = String::from("I am file contents");
    println!("{}", my_file.0 == my_string);    
}

This type doesn’t have any traits, so you can implement them yourself in the same way
you do for any of your types—with #[derive] or manually using an impl block:

#[derive(Clone, Debug)]
struct File(String);

impl std::fmt::Display for File {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let as_bytes = format!("{:?}", self.0.as_bytes());    
        write!(f, "{as_bytes}")
    }
}

fn main() {
    let file = File(String::from("I am file contents"));
    println!("{file:?}");
    println!("{file}");
}

Now, our new type has its own traits, and it’s sort of like implementing our own traits
on String itself, since File is just a wrapper around a String. Here is the output:

File("I am file contents")
[73, 32, 97, 109, 32, 102, 105, 108, 101, 32, 99, 111, 110, 116, 101, 110,

➥116, 115]

So when you use the File type here, you can clone it and Debug print it, but it doesn’t
have the methods of String unless you use .0 to get to the String inside it. We can
use .0 to access the String inside here, but that’s because we are making the File
type ourselves. In other people’s code, you could only access .0 if it’s marked pub for

Cannot compare 
File with String.

This time we are
comparing a String

with a String, so
the code compiles

and prints true.

Maybe we’d like a File by default to print by showing
the bytes inside. We can make a String using the

format! macro and then use that as output.



1497.5 Taking a String and a &str in a function
public, and most of the time, people don’t make everything pub. We will learn more
about structuring code and using the pub keyword in chapter 14.

 There is also a trait called Deref that lets you automatically use all the methods of
the type inside, which, in this case, would be a convenient way to let people use the
methods for the String inside without using pub to give them access to the String
itself. We will learn about this in chapter 15.

 Finally, let’s finish off the chapter with another trait you’ll find useful: AsRef.

7.5 Taking a String and a &str in a function
Sometimes you want a function that can take both a String and a &str. You can do
this with the AsRef trait, which is used to give a reference from one type to another
type. You can think of it as a sort of cheap version of From: instead of converting from
one type to another, you do a cheap conversion from one reference to another. Here
is how the standard library describes it:

Used to do a cheap reference-to-reference conversion. [...] If you need to do 
a costly conversion it is better to implement From with type &T or write 
a custom function.

We don’t need to think too deeply about this trait now (we aren’t going to implement
it for anything), but here is the important part: both String and str implement
AsRef<str>. Here is how they do it:

impl AsRef<str> for str {
    fn as_ref(&self) -> &str {
        self
    }
}

impl AsRef<str> for String {
    fn as_ref(&self) -> &str {
        self
    }
}

You can see that it takes &self and gives a reference to the other type, and in this case,
they both return a &str. This means if you have a generic type T in your function, you
can say that it needs AsRef<str> and then treat it as a &str inside the function.

 Let’s start thinking about using it with a generic function. We’ll start with a func-
tion that tries to print its input but won’t work yet:

fn print_it<T>(input: T) {
    println!("{}", input);
}

fn main() {
    print_it("Please print me");
}



150 CHAPTER 7 Traits: Making different types do the same thing
Rust gives an error: error[E0277]: T doesn't implement std::fmt::Display. So we
will require T to implement Display:

use std::fmt::Display;

fn print_it<T: Display>(input: T) {
    println!("{}", input);
}

fn main() {
    print_it("Please print me");
}

Now the function works and prints Please print me. That works well enough, but T
can still be too many things. It can be an i8, an f32, and anything else with Display.
We would rather take something that is a String or a &str, not just anything that
implements Display. So we change T: Display to T: AsRef<str>. Now the function
won’t accept types like i8, and it almost works:

fn print_it<T: AsRef<str>>(input: T) {
    println!("{}", input)
}

fn main() {
    print_it("Please print me");
    print_it("Also, please print me".to_string());
    // print_it(7);             
}

Here is the error: error[E0277]: `T` doesn't implement `std::fmt::Display`.
 We got this error because T is a type that implements AsRef<str>, but T itself isn’t

a type that implements Display. But we can turn it into a reference to a str, thanks to
the AsRef trait. To do that, call the trait’s method: .as_ref(). Because it is being given
a &str, and &str implements Display, the compiler is happy with our code:

fn print_it<T: AsRef<str>>(input: T) {
    println!("{}", input.as_ref())
}

fn main() {
    print_it("Please print me");
    print_it("Also, please print me".to_string());
}

This prints what we wanted to see:

Please print me
Also, please print me

You can see that traits are a big subject in Rust—we spent the whole chapter on them!
They always require some thought. If Rust is your first programming language, you
will need to learn how they work and when to use them. But you may need to do

This will 
not print.



151Summary
almost as much work if Rust isn’t your first programming language because there
might be some unlearning involved. Many people from other languages look at traits
and think, “Oh, this is the same as a class” or “Oh, this is the same as an interface.” But
traits are different and require you to sit down and think about them for a while.

 The next chapter has a lot of new concepts to learn, too. You’ll learn about itera-
tors, which let you operate on every item in a collection. And you’ll learn about clo-
sures, which are quick functions that don’t need to have a name.

Summary
 If you have a lot of types and want them all to have the same methods, write a

trait.
 Types that implement a trait will all be different. But they are all guaranteed to

have the trait’s methods.
 In the same way, every person who speaks a language will be different. But they

are all guaranteed to know the language.
 You can implement your traits on other people’s types. You can implement

other people’s traits on your types. But you can’t implement other people’s
traits on other people’s types.

 The From trait is pretty easy, and you see it everywhere. Check the code source if
you’re curious how it’s done for any particular type.

 Taking an AsRef<str> is a convenient way to take both a String and a &str in a
function.



Iterators and closures
In this chapter, we’re going to see a lot of Rust’s functional style, which is based on
expressions. This style lets you use a method that gives an output, that output
becomes the next method’s input, and you repeat until you have the final output
that you want. It works like a chain of methods, which is why people call it method
chaining. Method chaining is a lot of fun once you get used to it; it lets you do a lot
of work with not very much code. Iterators and closures are a big help here, so they
are the main focus of this chapter.

This chapter covers
 Using method chaining to call one method after 

another after another

 Using iterators, which are the most convenient 
way to work with collections

 Using closures, which are functions that don’t 
need names and can capture variables in their 
scope
152



1538.1 Chaining methods
8.1 Chaining methods
Rust is a systems programming language like C and C++, and its code can be written as
separate commands in separate lines, but it also has a functional style. Both styles are
okay, but functional style is usually shorter.

 Here is an example of the nonfunctional style (called imperative style) to make a Vec
from 1 to 10:

fn main() {
    let mut new_vec = Vec::new();
    let mut counter = 1;
    loop {
        new_vec.push(counter);
        counter += 1;
        if counter == 10 {
            break;
        }
    }
    println!("{new_vec:?}");
}

This prints [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
 Imperative means to give orders or instructions, and that’s what this example

shows. (Indeed, the word imperative and emperor are related: an emperor is the person
who gives orders to everyone else.) The code is being instructed to do a lot of individ-
ual things: start a loop, push into a Vec, increase a variable called counter, check the
value of counter, and break out of the loop at a certain point.

 But functional style is more about expressions: taking the output of an expression,
putting that into a new function, taking that output, putting it into yet another func-
tion, and so on until finally you have the result that you want.

 Here is an example of Rust’s functional style that does the same as the previous
code:

fn main() {
    let new_vec = (1..).take(10).collect::<Vec<i32>>();  
    println!("{new_vec:?}");
}

This code starts with a range (an iterator) that goes up from 1. It has a method called
.take(), which we can use to take the first 10 items. After that, you can call another
method, .collect(), to turn it into a Vec. .collect() can make collections of many
types, so we have to tell .collect() the type here.

 With functional style, you can chain as many methods as you want. Here is an
example of many methods chained together:

fn main() {
    let my_vec = vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

Or you can write it like this: let new_vec:
Vec<i32> = (1..).take(10).collect();.



154 CHAPTER 8 Iterators and closures
    let new_vec = my_vec.into_iter().skip(3).take(4).collect::<Vec<i32>>();
    println!("{new_vec:?}");
}

This creates a Vec with [3, 4, 5, 6]. This is a lot of information for one line, so it can
help to put each method on a new line. Doing that makes it easier to read and demon-
strates the functional style a lot better. Read the following code line by line and try to
guess what the output of the code will be:

fn main() {
    let my_vec = vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
    let new_vec = my_vec
        .into_iter()   
        .skip(3)    
        .take(4)   
        .collect::<Vec<i32>>(
    println!("{new_vec:?}");
}

The output will be a Vec that holds the values [3, 4, 5, 6].
 We can use this functional style best once we understand what exactly iterators and

closures are. So we will learn them next.

8.2 Iterators
An iterator is sort of like a collection type that gives you its items one at a time. It’s a
little bit like someone dealing a deck of cards. You can take one card at a time until
the deck runs out. Or you can draw the fifth card. Or you can skip 10 cards and take
the next 10. Or you can ask for the 60th card and be told that there is no 60th card in
the deck.

 We have already used iterators a lot because the for loop gives you an iterator.
When you want to use an iterator other times, you have to choose what kind:

 .iter()—For an iterator of references
 .iter_mut()—For an iterator of mutable references
 .into_iter()—For an iterator of values (not references)

A for loop is an iterator of values, so typing for item in iterator is the same as typ-
ing for item in iterator.into_iter(). Let’s look at a quick example of these three
types of iterators:

fn main() {
    let vector1 = vec![1, 2, 3];
    let mut vector2 = vec![10, 20, 30];

    for num in vector1.iter() {    
        println!("Printing a &i32: {num}");
    }
    for num in vector1 {   
        println!("Printing an i32: {num}");
    }

Iterates over the items (iterate = work 
with each item inside it). into_iter() 
gives us owned values, not references.

Skips over
three items:

0, 1, and 2
Takes the next 
four: 3, 4, 5, and 6

Puts them 
in a new 
Vec<i32>

First, we use .iter() so that 
vector1 is not destroyed.

This is the same as writing "for num 
in vector1.into_iter()." It owns the 
values, and vector1 no longer exists 
after this for loop is done.



1558.2 Iterators
    for num in vector2.iter_mut() {    
        *num *= 10;
        println!("num is now {num}");
    }
    println!("{vector2:?}");
    // println!("{vector1:?}");   
}

Here is the output:

Printing a &i32: 1
Printing a &i32: 2
Printing a &i32: 3
Printing an i32: 1
Printing an i32: 2
Printing an i32: 3
num is now 100
num is now 200
num is now 300
[100, 200, 300]

You don’t need to use for to use an iterator, though. Here is another way to use them:

fn main() {
    let vector1 = vec![1, 2, 3];
   let vector1_a = vector1
        .iter()                   
        .map(|x| x + 1)
        .collect::<Vec<i32>>();
    let vector1_b = vector1
        .into_iter()
        .map(|x| x * 10)
        .collect::<Vec<i32>>();
    let mut vector2 = vec![10, 20, 30];
    vector2.iter_mut().for_each(|x| *x +=100);

    println!("{:?}", vector1_a);
    println!("{:?}", vector1_b);
    println!("{:?}", vector2);
}

This prints

[2, 3, 4]
[10, 20, 30]
[110, 120, 130]

For the first two, we used a method called .map(). This method lets you do something
to every item (including turning it into a different type) and then pass it on to make a
new iterator. The last one we used is one called .for_each(). This method lets you do
something with every item without creating a new iterator. .iter_mut() plus
.for_each() is basically a for loop. Inside each method, we can give a name to every
item (we called it x) and use that to change it. These are called closures, and we will

This for loop takes mutable 
references, so vector2 still 
exists after it is over.

We can still print vector2, but vector1 
is gone. The compiler will give an 
error if you uncomment this last line.

Here as well, we are using .iter() first 
so that vector1 is not destroyed.



156 CHAPTER 8 Iterators and closures
learn about them in the next section. For now, just remember that a closure uses ||
where a regular function uses (), so |x| means “x gets passed into the closure (the
function).”

 Let’s go over them again, one at a time. First, we used .iter() on vector1 to get
references. We added 1 to each and passed it on with .map(). Then we collected it
into a new Vec:

let vector1_a = vector1.iter().map(|x| x + 1).collect::<Vec<i32>>();

The original vector1 is still alive because we only used references: we didn’t take by
value. Now we have vector1, and a new Vec called vector1_a. Because .map() just
passes it on, we needed to use .collect() to make it into a Vec.

 Then we used .into_iter() to get an iterator by value from vector1:

let vector1_b = vector1.into_iter().map(|x| x * 10).collect::<Vec<i32>>();

This destroys vector1 because that’s what .into_iter() does. Therefore, after we
make vector1_b, we can’t use vector1 again.

 Finally, we used .iter_mut() for vector2:

let mut vector2 = vec![10, 20, 30];
vector2.iter_mut().for_each(|x| *x +=100);

It is mutable, so we don’t need to use .collect() to create a new Vec. Instead, we
change the values in the same Vec with mutable references. Thus, vector2 is still
there after the iterator is over. We want to modify each item but don’t need to make a
new Vec, so we use the .for_each() method.

 The core of every iterator is a method called .next(), which returns an Option.
When you use an iterator, it calls .next() over and over again to see whether there are
more items left. If .next() returns Some, there are still items left, and the iterator
keeps going. If None is returned, the iteration is finished. (Well, usually. You can actu-
ally make iterators that never return None, only return None, and so on. We’ll see some
of those soon.) But generally, an iterator gives out a bunch of Somes until it runs out,
and then it only gives None. This is how the for loops in the previous examples knew
when to stop looping. If you wish, you can also manually call .next() on an iterator if
you want more control, as the next example shows.

 Do you remember the assert_eq! macro? You see it all the time in documenta-
tion. Here it is showing how an iterator works:

fn main() {
    let my_vec = vec!['a', 'b', '거', '柳'];      

    let mut my_vec_iter = my_vec.iter();         

    assert_eq!(my_vec_iter.next(), Some(&'a'));  
    assert_eq!(my_vec_iter.next(), Some(&'b'));
    assert_eq!(my_vec_iter.next(), Some(&'거'));
    assert_eq!(my_vec_iter.next(), Some(&'柳'));

Just a regular 
Vec<char>.

The Vec is an Iterator type now, but 
we haven’t called .next() on it yet. 
It’s an iterator waiting to be called.

Calls the first item with .next() 
and then again and again. Each 
time the iterator will return 
Some with the value inside.



1578.2 Iterators
    assert_eq!(my_vec_iter.next(), None);        
    assert_eq!(my_vec_iter.next(), None);  
}

The previous code will output absolutely nothing! That’s because the output of the iter-
ator matched our assertion, and so nothing happened (the code didn’t panic). This is
an interesting, indirect way to show what is happening in code without printing.

 Implementing Iterator for your own types is not too difficult. First, let’s make a
book library struct and think about how we might want to use an iterator there. The
code is pretty simple:

#[derive(Debug)]
struct Library {
    name: String,
    books: Vec<String>,
}

impl Library {
    fn add_book(&mut self, book: &str) {
        self.books.push(book.to_string());
    }

    fn new(name: &str) -> Self {
        Self {
            name: name.to_string(),
            books: Vec::new(),
        }
    }
}

fn main() {
    let my_library = Library::new("Calgary");
    println!("{my_library:?}");
}

So far, it just prints Library { name: "Calgary", books: [] }. It’s a new library, empty
and ready to put some books in. When you add books to the library, they will be inside
a Vec<String>. You can turn a Vec into an iterator whenever you want, as we just saw.
But what if you want to change the behavior a bit? Then you can implement Iterator
for your own type. Let’s look at the Iterator trait in the standard library (https://
doc.rust-lang.org/std/iter/trait.Iterator.html) and see whether we can figure it out.

 The top left of the page has the most important information we need to know:

 Required Associated Types: Item
 Required Methods: next

An associated type means “a type that goes together” (it goes together with the trait).
Returning a String sounds like a good idea for our iterator, so we will choose String
for the association type. And we want to implement it on this type of our own because
of the orphan rule we learned in the last chapter. You can’t implement Iterator for

Now the iterator is out of 
items, so it returns None.

You can keep calling .next() on the iterator,
and it will simply return None every time.

https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html


158 CHAPTER 8 Iterators and closures
Vec<String> because we didn’t create the Vec type, and we didn’t create the String
type. But we can put a Vec<String> inside our own type, and now we can implement
traits on it.

 First, we’ll change our Library a bit. The books are now a struct called Book-
Collection, which holds a Vec<String>. And we’ll add a method that clones it so we
can do what we want with it without touching the original Library. Now it looks like
this:

#[derive(Debug)]
struct Library {
    name: String,
    books: BookCollection,
}

#[derive(Debug, Clone)]
struct BookCollection(Vec<String>);    

impl Library {
    fn add_book(&mut self, book: &str) {
        self.books.0.push(book.to_string());
    }

    fn new(name: &str) -> Self {
        Self {
            name: name.to_string(),
            books: BookCollection(Vec::new()),
        }
    }
    fn get_books(&self) -> BookCollection {
        self.books.clone()
    }
}

How do we implement Iterator on this BookCollection type? Let’s look at the page
in the standard library on the Iterator trait again. That page has a simple example of
an iterator that looks like this:

struct Alternate {         
    state: i32,
}

impl Iterator for Alternate {
    type Item = i32;

    fn next(&mut self) -> Option<i32> {
        let val = self.state;
        self.state = self.state + 1;

        if val % 2 == 0 {    
            Some(val)
        } else {
            None
        }
    }
}

BookCollection is just a Vec<String> 
on the inside, but it’s our type, so we 
can implement traits on it.

An iterator which alternates 
between Some and None

If it’s even, Some(i32), 
else None



1598.2 Iterators
You can see that under impl Iterator for Alternate it says type Item = i32. This is
the associated type. Our iterator will be for our list of books, which is a Book-
Collection. When we call .next(), it will give us a String. We will copy this code
except we will use type Item = String;. That is our associated item.

 To implement Iterator, you also need to write the .next() method. This is where
you decide what the iterator should do. For BookCollection in our Library, we will
do something simple: give us the last books first. We will also imagine that we want to
print the output every time an item is found so that we can log it somewhere, so we
will stick a println! inside the .next() method to log this information. (Maybe the
library council wants to keep track of what each library is doing.) So we will match with
.pop(), which takes the last item off if it is Some. Now it looks like this:

#[derive(Debug)]
struct Library {
    name: String,
    books: BookCollection,
}

#[derive(Clone, Debug)]
struct BookCollection(Vec<String>);

impl Library {
    fn add_book(&mut self, book: &str) {
        self.books.0.push(book.to_string());
    }

    fn new(name: &str) -> Self {
        Self {
            name: name.to_string(),
            books: BookCollection(Vec::new()),
        }
    }
    fn get_books(&self) -> BookCollection {
        self.books.clone()
    }
}

impl Iterator for BookCollection {
    type Item = String;

    fn next(&mut self) -> Option<String> {
        match self.0.pop() {
            Some(book) => {
                println!("Accessing book: {book}");
                Some(book)
            }
            None => {
                println!("Out of books at the library!");
                None
            }
        }
    }
}



160 CHAPTER 8 Iterators and closures
fn main() {
    let mut my_library = Library::new("Calgary");
    my_library.add_book("The Doom of the Darksword");
    my_library.add_book("Demian - die Geschichte einer Jugend");
    my_library.add_book("구운몽");
    my_library.add_book("吾輩は猫である");

    for item in my_library.get_books() {
        println!("{item}");
    }
}

This prints

Accessing book: 吾輩は猫である
吾輩は猫である

Accessing book: 구운몽
구운몽
Accessing book: Demian - die Geschichte einer Jugend
Demian - die Geschichte einer Jugend
Accessing book: The Doom of the Darksword
The Doom of the Darksword
Out of books at the library!

You can see that .next() did indeed return None once because we told the code to
print out Out of books at the library! if None is returned from the function.

 In this example, we just popped off each item and printed it out before we passed
it off as Some, but you can implement an iterator in very different ways. You don’t ever
need to return None if you want an iterator that never ends. Here’s an iterator that just
gives the number 1 forever:

struct GivesOne;

impl Iterator for GivesOne {
    type Item = i32;
    fn next(&mut self) -> Option<i32> {
        Some(1)
    }
}

If you use a while loop that continues as long as the iterator returns Some, the pro-
gram will never stop. But you can use the .take() method we learned before to only
call it five times and then collect that into a Vec:

struct GivesOne;

impl Iterator for GivesOne {
    type Item = i32;
    fn next(&mut self) -> Option<i32> {
        Some(1)
    }
}



1618.3 Closures and closures inside iterators
fn main() {
    let five_ones: Vec<i32> = GivesOne.into_iter().take(5).collect();
    println!("{five_ones:?}");
}

This prints out [1, 1, 1, 1, 1].
 Note that the GivesOne struct doesn’t hold anything! It’s a good example of one of

the ways that an iterator differs from a collection type. In this case, the GivesOne struct
is just an empty struct that implements the Iterator trait.

 There is quite a bit more to know about iterators, but now we understand the
basics. You see closures a lot when using the iterators in Rust’s standard library, so let’s
learn about them now.

8.3 Closures and closures inside iterators
Closures are quick functions that don’t need a name—in other words, anonymous
functions. Sometimes they are called lambdas in other languages. It’s easy to notice
where closures are because they use || instead of (). They are very common in Rust,
and once you learn to use them, you will wonder how you lived without them.

 You can bind a closure to a variable, and then it looks exactly like a function when
you use it:

fn main() {
    let my_closure = || println!("This is a closure");
    my_closure();
}

This closure takes nothing: || and prints a message: This is a closure.
 In between the ||, we can add input variables and types in the same way that we

put them inside () for regular functions. This next closure takes an i32 and prints it
out:

fn main() {
    let my_closure = |x: i32| println!("{x}");

    my_closure(5);
    my_closure(5+5);
}

This prints

5
10

For longer closures, you need to add a code block. Then it can be as long as you want:

fn main() {
    let my_closure = || {
        let number = 7;
        let other_number = 10;



162 CHAPTER 8 Iterators and closures
        println!("The two numbers are {number} and {other_number}.");
    };
    my_closure();   
}

One thing that makes closures special is that they can take variables from their envi-
ronment that are outside the closure, even if you only write ||. You can think of a clo-
sure as a standalone type that can hold references in the same way that a struct can.

NOTE If you’re curious about the details of closure types, see the page in the
reference here: https://doc.rust-lang.org/reference/types/closure.html.

So you can do this:

fn main() {
    let number_one = 6;
    let number_two = 10;
    let my_closure = || println!("{}", number_one + number_two);
    my_closure();
}

Calling the closure my_closure prints 16. You didn’t need to put anything in ||
because it can just take number_one and number_two and add them. If you want to be
very correct:

 A || that doesn’t enclose a variable from outside is an anonymous function. Anon-
ymous means “doesn’t have a name.” It works more like a regular function and
can be passed into places where a function is required if the signature is the same.

 A || that encloses a variable from outside is also anonymous but called a closure.
It “encloses” the variables around it to use them.

But people will often call all || functions closures, so you don’t have to worry about
the name too much. We will call anything with a || a closure, but remember that it can
mean an anonymous function.

 Let’s look at some more things that closures can do. You can do this:

fn main() {
    let number_one = 6;
    let number_two = 10;

    let my_closure = |x: i32| println!("{}", number_one + number_two + x);
    my_closure(5);
}

This closure takes number_one and number_two. We also gave it the new variable x and
said that x is 5. Then it adds all three together to print 21.

8.3.1 Closures inside of methods

Usually you see closures in Rust inside of methods because it is very convenient to
have a closure inside. The convenience comes from the fact that the user can write the
body of the closure differently each time, depending on the situation. We saw closures

This closure can be as long as 
we want, just like a function.

https://doc.rust-lang.org/reference/types/closure.html


1638.3 Closures and closures inside iterators
in the last section with .map() and .for_each(). The closure inside .for_each(), for
example, simply takes a mutable reference to the item and returns nothing, and with
that freedom, the user of the .for_each() method can do anything inside as long as
the signature matches. Here is a quick example:

fn main() {
    (1..=3).for_each(|num| println!("{num}"));
    (1..=3).for_each(|num| {
        println!("Got a {num}!");
        if num % 2 == 0 {
            println!("It's even")
        } else {
            println!("It's odd")
        };
    });
}

The output is

1
2
3
Got a 1!
It's odd
Got a 2!
It's even
Got a 3!
It's odd

Here is another example: remember the .unwrap_or() method that we learned that
you can use to return a default value if an Option is a None or Result is an Err?
The following code will print 0 instead of panicking because we gave it the default
value 0:

fn main() {
    let nothing: Option<i32> = None;
    println!("{}", nothing.unwrap_or(0));
}

There is another similar method called .unwrap_or_else(). This method also allows
us to give a default value, except that it passes on a closure that we can use to write
some more complex logic. See whether you can guess what the output for this code
sample will be:

fn main() {
    let my_vec = vec![8, 9, 10];

    let fourth = my_vec.get(3).unwrap_or_else(|| {    
        if let Some(val) = my_vec.get(2) {    
            val
        } else {
            &0
        }

First, we try to get 
an item at index 3.

If it doesn’t work, maybe we have a 
good reason to look for an item one 
index back. Inside the closure we 
can try .get() again! And then return 
that value if it’s found at index 2.

And then finally we will return 
a &0 in case no items have 
been found at either index.



164 CHAPTER 8 Iterators and closures
    });

    println!("{fourth}");
}

The output is 10 because there was no item at index 3, but an item was then found at
index 0, which was a 10.

 A closure can, of course, be very simple. For example, you can write let fourth =
my_vec.get(3).unwrap_or_else(|| &0);. You don’t always need to use a {} and write
complicated code just because there is a closure.

 There are a lot of methods for iterators that enhance the iterator in a certain way.
For example, let’s say that you have an iterator that holds the chars 'z', 'y', and 'x'.
An iterator will return Some('z'), then Some('y'), and finally Some('x') before start-
ing to return None. But what if you wanted to also see the index of each item along
with the item itself?

 Well, it turns out that all you have to do is add .enumerate() to an iterator to make
this happen. (You might see this called zip with index in other languages.)

fn main() {
    let char_vec = vec!['z', 'y', 'x'];

    char_vec
        .iter()          
        .enumerate()      
        .for_each(|(index, c)| println!("Index {index} is: {c}"));
}

This prints

Index 0 is: 'z'
Index 1 is: 'y'
Index 2 is: 'x'

In this case, we use .for_each() instead of .map() because we didn’t need to collect
char_vec into a new iterator.

 Meanwhile, .map()is for doing something to each item and passing it on, as we previ-
ously saw. 

8.3.2 Closures: Lazy and fast

One interesting thing about .map() is that it doesn’t do anything unless you use a
method like .collect(). Let’s take a look at .map() again, first with collect. Here is
a classic example of using .map() to make a new Vec from an existing Vec:

fn main() {
    let num_vec = vec![2, 4, 6];

    let double_vec: Vec<i32> = num_vec  
        .iter()                         
        .map(|num| num * 2)             

Makes char_vec 
into an iterator Now, each item is (usize, 

char) instead of just char.

Takes 
num_vecMakes into

an iterator Multiplies each item 
by 2 and passes it on



1658.3 Closures and closures inside iterators
.collect();        
    println!("{:?}", double_vec);
}

That was pretty easy and prints [4, 8, 12]. But let’s see what happens when we don’t
collect into a Vec. The code won’t panic, but the compiler will tell you that you didn’t
do anything:

fn main() {
    let num_vec = vec![2, 4, 6];

    num_vec
.iter()
.enumerate()
.map(|(index, num)| format!("Index {index} is {num}"));

}

It says

warning: unused `Map` that must be used
 --> src/main.rs:4:5
  |
4 | /     num_vec
5 | |   .iter()
6 | |   .enumerate()
7 | |   .map(|(index, num)| format!("Index {index} is {num}"));
  | |______________________________________________________________^
  |
  = note: iterators are lazy and do nothing unless consumed

This is a warning, so it’s not an error: the program runs fine. But why doesn’t num_vec
do anything? We can look at the types to see:

 let num_vec = vec![10, 9, 8];—Right now it is a Vec<i32>.
 .iter()—Now it is an Iter<i32>, so it is an iterator with items of i32.
 .enumerate()—Now it is an Enumerate<Iter<i32>>, so it is a type Enumerate of

type Iter of i32s.
 .map()—Now it is a type Map<Enumerate<Iter<i32>>>, so it is a type Map of type

Enumerate of type Iter of i32s.

All we did was make a more and more complicated structure. So this Map<Enumerate
<Iter<i32>>> is a structure that is ready to go, but only when we tell it what to do.
This is one of the ways that Rust keeps even fancy functional-looking code as fast as
any other kind of code. Rust avoids this sort of operation:

1 Iterate over all the i32s in the Vec.
2 Enumerate over all the i32s from the iterator.
3 Map over all the enumerated i32s.

Instead, an iterator with a method and another method and another method simply
creates a single structure and waits until we decide what to do with it. If we add

And collects 
into a new Vec



166 CHAPTER 8 Iterators and closures
.collect::<Vec<i32>>(), it knows what to do. This is what iterators are lazy and
do nothing unless consumed means. The iterators don’t do anything until you “con-
sume” them (use them up).

 This is an example of an idea in Rust called zero-cost abstractions. The idea behind
zero-cost abstractions is that complicated code might or might not take longer to com-
pile, but at run time, they will be the same speed. Your program won’t be any slower if
you use a complicated iterator than if you wrote everything by hand.

 You can even create complicated things like HashMap using .collect(), so it is very
powerful. Here is an example of how to put two Vecs into a HashMap. First, we make
two vectors, one for the keys and the other for the values. We will then use
.into_iter() on each of them to get an iterator of values. Then we use the .zip()
method. This method takes two iterators and attaches them together, like a zipper.
Finally, we use .collect() to make the HashMap. Here is the code:

use std::collections::HashMap;

fn main() {
    let some_keys = vec![0, 1, 2, 3, 4, 5];
    let some_values = vec!["zero", "one", "two", "three", "four", "five"];

    let number_word_hashmap = some_keys
        .into_iter()                   
        .zip(some_values.into_iter())   
        .collect::<HashMap<_, _>>();

    println!(
        "The value at key 2 is: {}",
        number_word_hashmap.get(&2).unwrap()
    );
}

This prints The value at key 2 is: two.
 You can see that we wrote <HashMap<_, _>> because that is enough information for

Rust to decide on the type HashMap<i32, &str>. You can write .collect::<HashMap
<i32, &str>>(); if you want, or you can declare the type up front like this if you
prefer:

use std::collections::HashMap;

fn main() {
    let some_numbers = vec![0, 1, 2, 3, 4, 5];
    let some_words = vec!["zero", "one", "two", "three", "four", "five"];
    let number_word_hashmap: HashMap<_, _> = some_numbers   
        .into_iter()
        .zip(some_words.into_iter())
        .collect();    
}

Or you can turn the Vecs into iterators right away! This code also does the exact same
thing as the previous two samples:

Now it is an iter.

On this line, .zip() takes our iterator 
and zips it together with the second.

We specified 
the type here …

… so we don’t have to type anything after .collect() 
here: Rust already knows the type to collect into.



1678.3 Closures and closures inside iterators
use std::collections::HashMap;

fn main() {
    let keys = vec![0, 1, 2, 3, 4, 5].into_iter();
    let values = vec!["zero", "one", "two", "three", "four",
    ➥"five"].into_iter();    

    let number_word_hashmap: HashMap<i32, &str> = keys.zip(values).collect();

    println!(
        "The value at key 2 is: {}",
        number_word_hashmap.get(&2).unwrap()
    );
}

There is another method that is like .enumerate() for char: .char_indices(). (Indi-
ces means “indexes.”) You use it in the same way. Let’s take a big string of numbers
and print them three characters at a time with a tab-length space between them:

fn main() {
    let numbers_together = "140399923481800622623218009598281";

    for (index, num) in numbers_together.char_indices() {
        match (index % 3, num) {    
            (0 | 1, num) => print!("{num}"),   
            _ => print!("{num}\t"),    
        }
    }
}

This prints

140     399     923     481     800     622     623     218     009     598

➥281

8.3.3 |_| in a closure

Sometimes you see |_| in a closure. It’s not a special syntax, though. It only means
that the closure needs to take an argument that you give a name to (like x or num),
but you don’t want to use it. |_| means “okay, this closure takes an argument, but I
won’t give it a name because I won’t bother to use it.”

 Here is an example of an error when you don’t do that:

fn main() {
    let my_vec = vec![8, 9, 10];
    my_vec
        .iter()
        .for_each(|| println!("We didn't use the variables at all"));
}

Rust says

error[E0593]: closure is expected to take 1 argument, but it takes 0 arguments
 --> src/main.rs:5:10

Both some_keys and some_values are now
iterators. Now, the first lines are a bit

longer but the .zip() method
looks cleaner.

We’ll use the index number 
modulo 3 to get the 
remainder after dividing by 3.

You can also use | in match 
statements, meaning 
"or"—in this case, 0 or 1.

The only other possible remainder after
dividing by 3 is 2, but Rust doesn’t know

that, so we’ll use a _ wildcard.



168 CHAPTER 8 Iterators and closures
  |
5 |         .for_each(|| println!("We didn't use the variables at all"));
  |          ^^^^^^^^ -- takes 0 arguments
  |          |
  |          expected closure that takes 1 argument

It then continues with some pretty good advice:

help: consider changing the closure to take and ignore the expected argument
  |
5 |         .for_each(|_| println!("We didn't use the variables at all"));
  |                   ~~~

Sounds good. If you change || to |_|, it will work because it takes the argument but
then ignores it.

 That should be enough for an introduction to iterators and closures. Hopefully,
you enjoyed learning about what they are and how they work because they are every-
where in Rust and very convenient. We only took a quick look in this chapter, and
there’s a lot more to learn. If you don’t feel like you understand iterators and closures
yet, don’t worry—we aren’t changing subjects yet. The next chapter is also about the
same thing! In chapter 9, we will take a look at some of the most common methods for
iterators and closures.

Summary
 Method chaining can be unfamiliar at first, but it is so convenient that people

tend to use it more and more as they become familiar with Rust.
 The core method in iterators is .next(), which returns an Option. Almost all

iterators return Some until they run out of items, and after that, None.
 Iterators are lazy. To use one, call .next() or use a method like .collect() to

turn it into another type (usually a Vec).
 You can give a closure a name if you want to use the name to call the closure

later. But most of the time, you don’t give names to closures.
 A closure can capture variables in its scope. You don’t need to pass the variables

in as arguments—the closure can just grab them.
 An associated type is the type that goes with a trait. Most traits don’t have them,

but some do.
 You, as the user, decide what the concrete type of an associated type will be

when you implement a trait.



Iterators and
closures again!
Iterators and closures in Rust have so many methods that we need another full
chapter to go over them. There are a lot of these methods, but it’s worth the effort
to learn them because they do a lot of work for you. You might not memorize them
all during your first reading, but if you remember their names and what they do,
you can look them up later when you need them.

This chapter covers
 Using filtering to keep what you want in an iterator

 Reversing, zipping, and cycling iterators

 Taking just the values you want in an iterator

 Determining whether anything or everything in an 
iterator matches a condition

 Many other methods too numerous to mention 
here but essential to know

 Using the dbg! macro to see what your code is 
doing at any point
169



170 CHAPTER 9 Iterators and closures again!
9.1 Helpful methods for closures and iterators
Rust becomes an even more fun language once you become comfortable with clo-
sures. As we saw in the last chapter, with closures you can “chain” methods to each
other and do a lot of things with very little code. And the more of them you know, the
more you can chain together. This chapter is mostly going to show you how to use cer-
tain common iterator methods that work conveniently with closures.

9.1.1 Mapping and filtering

Besides mapping, another common use case for using an iterator is filtering. While
mapping lets you do something to and pass on each item in an iterator, filtering lets
you keep only items that match a certain condition. There is even a method that
enables you to do both at the same time. Let’s look at the main methods to do these
operations, starting with the .filter() method.

 The .filter() method allows you to keep the items in an iterator that you want
based on an expression that returns a bool. Let’s give this a try by filtering the months
of the year:

fn main() {
    let months = vec!["January", "February", "March", "April", "May",
    ➥"June", "July", "August", "September", "October", "November",
    ➥"December"];

    let filtered_months = months
        .into_iter()
        .filter(|month| month.len() < 5)   
        .filter(|month| month.contains("u"))   
        .collect::<Vec<&str>>();

    println!("{:?}", filtered_months);
}

This prints ["June", "July"].
 Of course, you could also type .filter(|month| month.len() < 5 && month

.contains("u")) to filter over one line. But this example shows that you can filter
and filter again as much as you want.

 The next method with a closure in it that we’ll learn has a pretty similar name:
filter_map(). You can probably guess that its name is .filter_map() because it does
both .filter() and .map(). Instead of a bool, the closure must return an Option<T>,
and then .filter_map() takes the value out of each Option if it is Some. For example,
if you were to .filter_map() and then collect() on a Vec holding Some(2), None,
Some(3)], it would return [2, 3]. So that is why it uses Option: it filters out everything
that is None. But it also maps because it passes the value on.

 We will write an example with a Company struct. Each company has a name of type
String, but the CEO might have recently quit, leaving the company without a leader.
To represent this we can make the ceo field an Option<String>. We will .filter_
map() over some companies to just keep the CEO names:

For some reason, we don’t want months 
more than 5 bytes in length. We know that 
each letter is 1 byte, so using .len() is fine.

Also, we only like months with the 
letter u. You can .filter() and .filter() 
again as many times as you like.



1719.1 Helpful methods for closures and iterators
struct Company {
    name: String,
    ceo: Option<String>,
}

impl Company {
    fn new(name: &str, ceo: &str) -> Self {
        let ceo = match ceo {
            "" => None,
            ceo => Some(ceo.to_string()),
        };                                     
        Self {
            name: name.to_string(),
            ceo,
        }
    }

    fn get_ceo(&self) -> Option<String> {
        self.ceo.clone()             
    }
}

fn main() {
    let company_vec = vec![
        Company::new("Umbrella Corporation", "Unknown"),
        Company::new("Ovintiv", "Brendan McCracken"),
        Company::new("The Red-Headed League", ""),
        Company::new("Stark Enterprises", ""),
    ];

    let all_the_ceos = company_vec
        .iter()
        .filter_map(|company| company.get_ceo())     
        .collect::<Vec<String>>();

    println!("{:?}", all_the_ceos);
}

This prints ["Unknown", "Brendan McCracken"].
 Since the closure inside .filter_map() needs to return an Option, what if you

have a function that returns a Result? No problem: there is a method called .ok()
that turns Result into Option. This method is probably called .ok() because all that
can be passed on from a Result to an Option is the information inside an Ok result, as
None doesn’t hold any information (thus, any Err information is gone). We can see
this in the documentation for the .ok() method:

Converts from Result<T, E> to Option<T>.

Since you start out with a Result<T, E>, .ok() drops the E to turn it into an
Option<T>, and any Err information that E had is now gone. If you had an Ok(some_
variable) and called .ok(), it would turn into a Some(some_variable); if you had an
Err(some_err_variable), it would turn into None. 

ceo is decided, so 
now we return Self.

Just returns a clone of the 
CEO (struct is not Copy)

filter_map needs 
Option<T>.



172 CHAPTER 9 Iterators and closures again!
 Using .parse() is an easy example of this, where we try to parse some user input
into a number. In the next example, .parse() takes a &str and tries to turn it into an
f32. It returns a Result, but we would like to use .filter_map() to filter out any pars-
ing that didn’t work. Anything that returns an Err becomes None after the .ok()
method and then gets filtered out by .filter_map().

fn main() {
let user_input = vec![
        "8.9",
        "Nine point nine five",
        "8.0",
        "7.6",
        "eleventy-twelve",
    ];

    let successful_numbers = user_input
        .iter()
        .filter_map(|input| input.parse::<f32>().ok())
        .collect::<Vec<f32>>();

    println!("{:?}", successful_numbers);
}

This prints [8.9, 8.0, 7.6].
 On the opposite side of .ok() is .ok_or() and .ok_or_else(). Both of these

methods turn an Option into a Result. This method is called .ok_or() because a
Result gives an Ok or an Err, so you have to let it know what the Err value will be if it
doesn’t return an Ok. After all, None in an Option doesn’t have any information to pass
on, so we have to provide it.

 In the last chapter, we saw the methods .unwrap_or() and .unwrap_or_else(), in
which the _or_else method took a closure. You can see the same thing here:
.ok_or_else() also takes a closure. This is the way a lot of methods in the standard
library are named.

 We can take our Option from the Company struct and turn it into a Result this way.
For long-term error handling, it is good to create your own type of error. But for now,
we will type a quick error message, which means that the method will return a
Result<String, &str>:

struct Company {   
    name: String,
    ceo: Option<String>,
}

impl Company {
    fn new(name: &str, ceo: &str) -> Self {
        let ceo = match ceo {
            "" => None,
            ceo => Some(ceo.to_string()),
        };
        Self {
            name: name.to_string(),

Everything before main() in 
this example is exactly the 
same as the last example.



1739.1 Helpful methods for closures and iterators
            ceo,
        }
    }

    fn get_ceo(&self) -> Option<String> {
        self.ceo.clone()
    }
}

fn main() {
    let company_vec = vec![
        Company::new("Umbrella Corporation", "Unknown"),
        Company::new("Ovintiv", "Brendan McCracken"),
        Company::new("The Red-Headed League", ""),
        Company::new("Stark Enterprises", ""),
    ];

    let results: Vec<Result<String, &str>> = company_vec
        .iter()
        .map(|company| company.get_ceo().ok_or("No CEO found"))
        .collect();

    for item in results {
        println!("{:?}", item);
    }
}

The following line is the biggest change:

.map(|company| company.get_ceo().ok_or("No CEO found"))

The line means “for each company, use .get_ceo() and turn it into a Result. If
.get_ceo() returns a Some, pass on the value inside Ok. If .get_ceo() returns a None,
pass on "No CEO found" inside Err.”

 When we print the Vec results, we get this:

Ok("Unknown")
Ok("Brendan McCracken")
Err("No CEO found")
Err("No CEO found")

Now we have all four entries. Let’s use .ok_or_else() so we can use a closure and get
a better error message since having a closure gives us the space to do whatever we
want. We can use format! to create a String and put the company name in that. Then
we return the String. (We could do anything else, too, because we have a whole clo-
sure to work with.) This is starting to look a bit more like real production code:

struct Company {
    name: String,
    ceo: Option<String>,
}

fn get_current_datetime() -> String {    
    "2024-01-27T23:11:23".to_string()
}

We haven’t learned to work with 
dates yet, so we’ll use a dummy 
function that gives a single date.



174 CHAPTER 9 Iterators and closures again!
impl Company {
    fn new(name: &str, ceo: &str) -> Self {
        let ceo = match ceo {
            "" => None,
            name => Some(name.to_string()),
        };
        Self {
            name: name.to_string(),
            ceo,
        }
    }

    fn get_ceo(&self) -> Option<String> {
        self.ceo.clone()
    }
}

fn main() {
    let company_vec = vec![
        Company::new("Umbrella Corporation", "Unknown"),
        Company::new("Ovintiv", "Brendan McCracken"),
        Company::new("The Red-Headed League", ""),
        Company::new("Stark Enterprises", ""),
    ];

    let results: Vec<Result<String, String>> = company_vec
        .iter()
        .map(|company| {
            company.get_ceo().ok_or_else(|| {   
                let err_message = format!("No CEO found for {}",
    company.name);    
                println!("{err_message} at {}",
    get_current_datetime());   
                err_message  
            })
        })
        .collect();

    results   
        .iter()
        .filter(|res| res.is_ok())
        .for_each(|res| println!("{res:?}"));
}

This gives us the following input:

No CEO found for The Red-Headed League at 2024-01-27T23:11:23
No CEO found for Stark Enterprises at 2024-01-27T23:11:23
Ok("Unknown")
Ok("Brendan McCracken")

9.1.2 Some more iterator and related methods

There are some methods that are commonly used inside iterators that work on Option
and Result. You’ll see these inside methods like .map() a lot.

This time we are using ok_or_else, 
which gives a lot more room.

First, we’ll construct 
an error message.

Then we’ll log the message as well as the 
date and time that the error happened . . .. . . and pass on

err_message in
case of an Err.

We’ve already logged the errors, so let’s just 
print out the Ok results this time. A quick 
.filter() and .for_each() will do the trick.



1759.1 Helpful methods for closures and iterators
 One of them is called .and_then(). This method is a helpful one that takes an
Option and lets you do something to the value inside in case it is a Some and pass it on.
Meanwhile, a None holds no value, so it will just be passed on. This method’s input is
an Option, and its output is also an Option. It is sort of like a safe “unwrap if Some, do
something to the value, and wrap again.”

 The following code shows an array that holds some &str values. We’ll check the
first five indexes in the array by using .get() to see whether there is an item at that
index. We will try to parse the &str into a u32 and then make the u32 into a char.
Because .and_then() expects an Option and not a Result, we can use .ok() to turn
each Result into an Option along the way:

fn main() {
    let num_array = ["8", "9", "Hi", "9898989898"];
    let mut char_vec = vec![];             

    for index in 0..5 {
        char_vec.push(
            num_array
                .get(index)    
                .and_then(|number| number.parse::<u32>().ok())   
                .and_then(|number| char::try_from(number).ok()),    
        );
    }
    println!("{:?}", char_vec);
}

The previous code prints

[Some('\u{8}'), Some('\t'), None, None, None]

Notice that None isn’t filtered out; it’s just passed on. Also, all the Err information has
been removed, so

 The "Hi" value couldn’t be turned into a u32.
 The "9898989898" value turned into a u32 but was too large to turn into a char.
 There was no value at index 4.

Each of these parts failed for different reasons, but all we see at the end is None.
 Another method is .and(), which is sort of like a bool for Option. You can match

many Options to each other, and if they are all Some, it will give the last one. But if one
of them is a None, it will give None.

 Here is a bool example to help you imagine. You can see that if you are using &&
(ampersands), even one false makes everything false:

fn main() {
    let one = true;
    let two = false;
    let three = true;
    let four = true;

Results go 
in here.

.get() returns 
an Option

Next, we try to parse the
number into a u32 and then use

.ok() to turn it into an Option.

We do the
same here.



176 CHAPTER 9 Iterators and closures again!
    println!("{}", one && three);                 
    println!("{}", one && two && three && four);  
}

Here is something similar using the .and() method. Imagine we did five operations
and put the results in an array that holds Option<&str> values. If we get a value, we
push Some("Okay!") into the array. We do this two more times. After that, we use
.and() to show only the indexes that got Some every time:

fn main() {
    let try_1 = [Some("Okay!"), None, Some("Okay!"), Some("Okay!"), None];
    let try_2 = [None, Some("Okay!"), Some("Okay!"), Some("Okay!"),
    ➥Some("Okay!")];
    let try_3 = [Some("Okay!"), Some("Okay!"), Some("Okay!"),
    ➥Some("Okay!"), None];

    for i in 0..try_1.len() {
        println!("{:?}", try_1[i].and(try_2[i]).and(try_3[i]));
    }
}

This prints

None
None
Some("Okay!")
Some("Okay!")
None

The first attempt (index 0) is None because there is a None for index 0 in try_2. The
second is None because there is a None in first_try. The next is Some("Okay!")
because there is no None for try_1, try_2, or try_3.

 The .flatten() method is a convenient way to ignore all None or Err values in an
iterator and only return the successful values. Let’s try parsing some strings into num-
bers again:

fn main() {
    for num in ["9", "nine", "ninety-nine", "9.9"]
        .into_iter()
        .map(|num| num.parse::<f32>())
    {
        println!("{num:?}");
    }
}

The output shows both the Ok and Err values:

Ok(9.0)
Err(ParseFloatError { kind: Invalid })
Err(ParseFloatError { kind: Invalid })
Ok(9.9)

true and true: 
prints true

true and false and true
and true: prints false



1779.1 Helpful methods for closures and iterators
That works great! However, if we don’t care about the Err values, we can add
.flatten() to directly access the values inside Ok and ignore the rest:

fn main() {
    for num in ["9", "nine", "ninety-nine", "9.9"]
        .into_iter()
        .map(|num| num.parse::<f32>())
        .flatten()
    {
        println!("{num}");
    }
}

Now the output is much simpler—just the two successful f32 values:

9
9.9

Some more common methods tell you whether an iterator contains a certain item or
whether all of the items satisfy a condition. Or you might want to know where a cer-
tain item is so you can access it later. Let’s look at those methods now.

9.1.3 Checking and finding items inside iterators

The next two iterator methods to learn are .any() and .all(), which simply return a
bool depending on whether a condition is true for any of the items or all of the items.

 In the following example, we’ll make a large Vec (about 20,000 items) with all the
chars from 'a' to '働'. Next, we will make a smaller Vec and ask it whether it is all
alphabetic (with the .is_alphabetic() method). Then we will ask it whether all the
characters are less than the Korean character '행'.

 Also, note that you put a reference in because .iter() gives a reference, and you
need an & to compare with another &:

fn in_char_vec(char_vec: &Vec<char>, check: char) {
    println!(
        "Is {check} inside? {}",
        char_vec.iter().any(|&char| char == check)
    );
}

fn main() {
    let char_vec = ('a'..'働').collect::<Vec<char>>();
    in_char_vec(&char_vec, 'i');
    in_char_vec(&char_vec, '뷁');
    in_char_vec(&char_vec, '鑿');

    let smaller_vec = ('A'..'z').collect::<Vec<char>>();
    println!(
        "All alphabetic? {}",
        smaller_vec.iter().all(|&x| x.is_alphabetic())
    );
    println!(



178 CHAPTER 9 Iterators and closures again!
        "All less than the character 행? {}",
        smaller_vec.iter().all(|&x| x < '행')
    );
}

This prints

Is i inside? true
Is 뷁 inside? false
Is 鑿 inside? false
All alphabetic? false
All less than the character 행? true

NOTE All alphabetic? returns false because there are a few nonalphabetic
characters in between the last capital letter and the first lowercase letter.

As you might have guessed, .any() only checks until it finds one matching item, and
then it stops—there’s no need to check the rest of the items at this point. This early
stop is sometimes called a short circuit. That means that if you are going to use .any()
on a Vec, it might be a good idea to push the items that might return true near the
front. Or you can use .rev() after .iter() to reverse the iterator if you think that
items that could return true might be closer to the end. Here’s one such Vec:

fn main() {
    let mut big_vec = vec![6; 1000];
    big_vec.push(5);
}

This Vec has a thousand 6s followed by one 5. Let’s pretend we want to use .any() to
see whether it contains 5. First, let’s make sure that .rev() is working. Remember, an
Iterator always has .next() that lets you check what it returns each time:

fn main() {
    let mut big_vec = vec![6; 1000];
    big_vec.push(5);

    let mut iterator = big_vec.iter().rev();
    assert_eq!(iterator.next(), Some(&5));
    assert_eq!(iterator.next(), Some(&6));
}

The code doesn’t panic, so we were right that a 5 is returned first, followed by a 6. So,
if we were to write this:

fn main() {
    let mut big_vec = vec![6; 1000];
    big_vec.push(5);

    println!("{:?}", big_vec.iter().rev().any(|&number| number == 5));
}

because we used .rev(), it only calls .next() one time and stops. If we don’t use
.rev(), it will call .next() 1,001 times before it stops. This code shows it:



1799.1 Helpful methods for closures and iterators
fn main() {
    let mut big_vec = vec![6; 1000];
    big_vec.push(5);

    let mut num_loops = 0;                    
    let mut big_iter = big_vec.into_iter();  
    loop {
        num_loops +=1;
        if big_iter.next() == Some(5) {       
            break;
        }
    }
    println!("Number of loops: {num_loops}");
}

This prints Number of loops: 1001, so we know that it had to call .next() 1,001 times
before it found 5.

 The next two iterator methods we will look at are called .find() and .position().
The .find() method returns an item if it can, while .position() simply tells you
where it is. .find() is different from .any() because it returns an Option with the
value inside (or None). Meanwhile, .position() is also an Option with the position
number or None:

 .find()—“I’ll try to get it for you.”
 .position()—“I’ll try to find where it is for you.”

Here is a simple example that tries to find numbers that can be divided by 3, followed
by numbers divided by 11:

fn main() {
    let num_vec = vec![10, 20, 30, 40, 50, 60, 70, 80, 90, 100];

    println!("{:?}", num_vec.iter().find(|number| *number % 3 == 0));
    println!("{:?}", num_vec.iter().position(|number| *number % 3 == 0));
    println!("{:?}", num_vec.iter().find(|number| *number % 11 == 0));
    println!("{:?}", num_vec.iter().position(|number| *number % 11 == 0));
}

This prints

Some(30)
Some(2)
None
None

The first Some(30) and Some(2) are saying the following:

 Some(30)—“I found an item that matches; it’s the number 30.”
 Some(2)—“I found an item that matches; it’s at index 2.”

Finally, we’ll take a look at a whole bunch of other iterator methods. You can make
iterators that run forever, zip two iterators together, cut them into pieces, add the
items together, and more. 

Starts 
counting

Makes it 
an iterator

Keeps calling .next() 
until we get Some(5)



180 CHAPTER 9 Iterators and closures again!
9.1.4 Cycling, zipping, folding, and more

With the .cycle() method, you can create an iterator that loops forever. This type of
iterator works well with .zip() to create something new, like this example, which cre-
ates a Vec<(i32, &str)>:

fn main() {
    let even_odd_iter = ["even", "odd"].into_iter().cycle();    

    let even_odd_vec: Vec<(i32, &str)> = (0..=5)
        .zip(even_odd_iter)
        .collect();
    println!("{:?}", even_odd_vec);
}

Even though even_odd_iter will never end, the other iterator only runs six times and
thus the final Vec also only has six items. The output is

[(0, "even"), (1, "odd"), (2, "even"), (3, "odd"), (4, "even"), (5, "odd")]

Something similar can be done with a range that doesn’t have an ending. If you write
0.., you create a range (which is also an iterator) that never stops. This is pretty easy
to use:

fn main() {
    let ten_chars: Vec<char> = ('a'..).take(10).collect();
    let skip_then_ten_chars: Vec<char> = 

('a'..).skip(1300).take(10).collect();

    println!("{ten_chars:?}");
    println!("{skip_then_ten_chars:?}");
}

Both print 10 characters, but the second one skips 1,300 places and prints 10 letters in
Armenian:

['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']
['յ', 'ն', 'շ', 'ո', 'չ', 'պ', 'ջ', 'ռ', 'ս', 'վ']

Another popular method is called .fold(). This method is often used to add together
the items in an iterator, but you can also do a lot more. The .fold() method is some-
what similar to .for_each() except that it returns a final value at the end. When using
.fold(), you first add a starting value, then a comma, and then the closure. The clo-
sure gives you two items: the total so far and the next item. Here is a simple example
showing .fold() to add items together:

fn main() {
    let some_numbers = vec![9, 6, 9, 10, 11];

    println!("{}", some_numbers
        .iter()
        .fold(0, |total_so_far, next_number| total_so_far + next_number)
    );
}

This iterator will first return
Some("even") and Some("odd")

forever. It will never return None.



1819.1 Helpful methods for closures and iterators
These steps explain the logic:

1 Starts with 0 and adds the next number: 9
2 Takes that 9 and adds the 6: 15
3 Takes that 15 and adds the 9: 24
4 Takes that 24 and adds the 10: 34
5 Takes that 34 and adds the 11: 45
6 Prints 45

But .fold() isn’t just useful for adding numbers. Here is another example where we
use .fold() to aggregate (combine) some events into a single struct:

#[derive(Debug)]
struct CombinedEvents {
    num_of_events: u32,
    data: Vec<String>,
}

fn main() {
    let events = [
        "Went to grocery store",
        "Came home",
        "Fed cat",
        "Fed cat again",
    ];

    let empty_events = CombinedEvents {   
        num_of_events: 0,
        data: vec![]
    };

    let combined_events =
        events
            .iter()
            .fold(empty_events, |mut total_events, next_event| {    
                total_events.num_of_events += 1; 
                total_events.data.push(next_event.to_string());
                total_events
            });
    println!("{combined_events:#?}");
}

This prints

CombinedEvents {
    num_of_events: 4,
    data: [
        "Went to grocery store",
        "Came home",
        "Fed cat",
        "Fed cat again",
    ],
}

We’ll start with an empty 
CombinedEvents struct. You could also 
use #[derive(Default)] on top and 
then write CombinedEvents::default() 
to do the same thing.

.fold() needs a default value, which is the empty struct.
Then, for every item in our events array, we get access to
the CombinedEvents struct and the next event (a &str).

We increase the number of events by
1 every time, push the next event to
the data field and pass on the struct

so it is available for the next iteration.



182 CHAPTER 9 Iterators and closures again!
There really are a lot of convenient methods for iterators. Here is a quick introduc-
tion to a few more:

 .take_while()—Takes into an iterator as long as it gets true. .take_while(|x|
x < &5) is one example.

 .cloned()—Makes a clone inside the iterator. This turns a reference into a
value.

 Many other _while methods—.skip_while(), .map_while(), and so on
 .sum()—Adds everything together.
 .by_ref()—Makes an iterator take by reference. 

.by_ref() is good if you want to use part of an iterator for something but leave the
rest of it alone. For example, the .take() method takes a self, so it takes the whole
iterator if you use it. But if you only want to take two items and leave the iterator
alone, you can use .into_iter().by_ref().take(2). Here’s a quick example that
fails to compile:

fn main() {
    let mut number_iter = [7, 8, 9, 10].into_iter();    
    let first_two = number_iter.take(2).collect::<Vec<_>>();
    let second_two = number_iter.take(2).collect::<Vec<_>>();
}

Oops! .take() took ownership of the data:

error[E0382]: use of moved value: `number_iter`
    --> src\main.rs:4:22
     |
2    |     let mut number_iter = [7, 8, 9, 10].into_iter();
     |         --------------- move occurs because `number_iter` has type
     ➥`std::array::IntoIter<i32, 4>`, which does not implement the `Copy`
     ➥trait
3    |     let first_two = number_iter.take(2).collect::<Vec<_>>();
     |                                 ------- `number_iter` moved due to
     ➥this method call
4    |     let second_two = number_iter.take(2).collect::<Vec<_>>();
     |                      ^^^^^^^^^^^ value used here after move
     |

So we’ll use .by_ref() to fix it. Now .take() won’t take ownership anymore:

fn main() {
    let mut number_iter = [7, 8, 9, 10].into_iter();
    
    let first_two = number_iter.by_ref().take(2).collect::<Vec<_>>();
    let second_two = number_iter.take(2).collect::<Vec<_>>();
}

You can also create iterators made out of cut-up pieces of a Vec or array. The
.chunks() and .windows() methods will let you do that. To use them, write the num-
ber of items you want in each piece inside the parentheses. Let’s say you have a vector



1839.1 Helpful methods for closures and iterators
with 10 items, and you want each piece to have a size of 3. Here is the difference
between the two methods:

 .chunks() will give you four slices: [0, 1, 2], [3, 4, 5], [6, 7, 8], and [9].
Note, at the end, it tries to make a slice of three items but doesn’t panic if it
doesn’t have three items left—it just returns one.

 .windows() will first give you a slice of [0, 1, 2]. Then it will move over one
and give you [1, 2, 3]. It will do that until it finally reaches the last slice of
three and stops.

So let’s use them on a simple vector of numbers. It looks like this:

fn main() {
    let num_vec = vec![1, 2, 3, 4, 5, 6, 7];

    for chunk in num_vec.chunks(3) {
        println!("{:?}", chunk);
    }
    println!();
    for window in num_vec.windows(3) {
        println!("{:?}", window);
    }
}

This prints

[1, 2, 3]
[4, 5, 6]
[7]

[1, 2, 3]
[2, 3, 4]
[3, 4, 5]
[4, 5, 6]
[5, 6, 7]

By the way, .chunks() will panic if you give it a zero. You can write .chunks(1000) for
a vector with one item, but you can’t make a .chunks(0) with a length of 0. You can
see that right in the function if you look at its source code (clicking on [src] will let
you see this):

    pub fn chunks(&self, chunk_size: usize) -> Chunks<'_, T> {
        assert!(chunk_size != 0, "chunk size must be non-zero");    
        Chunks::new(self, chunk_size)
    }

The .match_indices() method is sort of like a combination of .find() and
.position(), except that it doesn’t involve returning an Option. Instead, it returns a
tuple of the index and the item that matches.

 .match_indices() lets you pull out everything inside a String or &str that
matches your input and gives you the index, too. It is similar to .enumerate() because

There are a few parts of this code that
we don’t understand yet, but this line is

pretty clear: it will panic if given a 0.



184 CHAPTER 9 Iterators and closures again!
it returns a tuple with two items. This method is interesting because it allows you to
insert anything that matches a trait called Pattern. We don’t need to think too much
about this trait here—just remember that &str, char, and even closures can be passed
into this method. Here is a quick example:

fn main() {
    let some_str = "Er ist noch nicht erklärt. Aber es gibt Krieg. Verlaß
    ➥dich drauf.";
    for (index, item) in some_str.match_indices(|c| c > 'z') {
        println!("{item} at {index}");
    }
    for (index, item) in some_str.match_indices(". ") {
        println!("'{item}' at index {index}");
    }
}

This prints

ä at 22
ß at 53
'. ' at index 26
'. ' at index 46

The .peekable() method lets you make an iterator where you can see (peek at) the
next item. It’s like calling .next() (it gives an Option) except that the iterator doesn’t
move, so you can use it as many times as you want. You can think of peekable as “stop-
pable” because you can stop for as long as you want. The next example is a simple one
that shows that we can use .peek() forever until it is time to call .next() to move on
to the next item:

fn main() {
    let just_numbers = vec![1, 5, 100];
    let mut number_iter = just_numbers.iter().peekable();   

    for _ in 0..3 {
        println!("I love the number {}", number_iter.peek().unwrap());
        println!("I really love the number {}", number_iter.peek().unwrap());
        println!("{} is such a nice number", number_iter.peek().unwrap());
        number_iter.next();
    }
}

This prints

I love the number 1
I really love the number 1
1 is such a nice number
I love the number 5
I really love the number 5
5 is such a nice number
I love the number 100
I really love the number 100
100 is such a nice number

This creates a type of iterator called
Peekable, which has the .peek() method.

Regular iterators can’t use .peek().



1859.2 The dbg! macro and .inspect
That should be enough iterator methods for one chapter. This covers the majority of
the ones you’ll use daily. But what if you wanted to see a method for an iterator that
you didn’t see here? First, take a look in the standard library (https://doc.rust-lang
.org/std/iter/trait.Iterator.html) to see whether a method there fits what you need. If
that doesn’t have what you want, check out the itertools crate (https://docs.rs/iter
tools/latest/itertools/), which has a ton of other methods that might fit your needs.
(We will learn how to use external crates in chapter 16.)

 With iterator methods covered, we’ll finish off the chapter with something easy: a
macro and a method that will help you with quick and easy debugging of your code.

9.2 The dbg! macro and .inspect
The dbg! macro is a very useful one that prints quick information. It is a good alterna-
tive to println! because it is faster to type and gives more information:

fn main() {
    let my_number = 8;
    dbg!(my_number);
}

This prints [src\main.rs:4] my_number = 8.
 You can put dbg! in many other places and even wrap code in it. Look at this code

for example:

fn main() {
    let mut my_number = 9;
    my_number += 10;
    let new_vec = vec![8, 9, 10];
    let double_vec = new_vec.iter().map(|x| x * 2).collect::<Vec<i32>>();
}

This code creates a new mutable number and changes it. Then it creates a Vec and
uses .iter(), .map(), and .collect() to create a new Vec. Interestingly, we can put
dbg! almost everywhere in this code. dbg! essentially asks the compiler: “What are you
doing at this moment, and what expression is being returned?” This next code sample
is the same as the previous one except we have put dbg! everywhere:

fn main() {
    let mut my_number = dbg!(9);
    dbg!(my_number += 10);
    let new_vec = dbg!(vec![8, 9, 10]);
    let double_vec = dbg!(new_vec.iter().map(|x| x * 

2).collect::<Vec<i32>>());
    dbg!(double_vec);
}

Each line of the code, followed by the output from the dbg! macro, is

let mut my_number = dbg!(9);
[src\main.rs:3] 9 = 9

https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://docs.rs/itertools/latest/itertools/
https://docs.rs/itertools/latest/itertools/
https://docs.rs/itertools/latest/itertools/


186 CHAPTER 9 Iterators and closures again!
and

dbg!(my_number += 10);
[src\main.rs:4] my_number += 10 = ()

and

let new_vec = dbg!(vec![8, 9, 10]);
[src\main.rs:6] vec![8, 9, 10] = [
    8,
    9,
    10,
]

and 

let double_vec = dbg!(new_vec.iter().map(|x| x * 2).collect::<Vec<i32>>());
[src\main.rs:8] new_vec.iter().map(|x| x * 2).collect::<Vec<i32>>() = [
    16,
    18,
    20,
]

which shows you the value of the expression, and

dbg!(double_vec);
[src\main.rs:10] double_vec = [
    16,
    18,
    20,
]

Another method called .inspect() is similar to dbg!, but it is used in iterators in a
similar fashion to .map(). This method simply gives you the item to look at, which lets
you print it or do whatever you want. For example, let’s look at our double_vec again:

fn main() {
    let new_vec = vec![8, 9, 10];

    let double_vec = new_vec
        .iter()
        .map(|x| x * 2)
        .collect::<Vec<i32>>();
}

We want to know more information about what the code is doing, so we add
.inspect() in two places:

fn main() {
    let new_vec = vec![8, 9, 10];

    let double_vec = new_vec
        .iter()
        .inspect(|first_item| println!("The item is: {first_item}"))
        .map(|x| x * 2)



1879.2 The dbg! macro and .inspect
        .inspect(|next_item| println!("Then it is: {next_item}"))
        .collect::<Vec<i32>>();
}

This prints

The item is: 8
Then it is: 16
The item is: 9
Then it is: 18
The item is: 10
Then it is: 20

Because .inspect() takes a closure, we have as much space as we like to work with the
item:

fn main() {
    let new_vec = vec![8, 9, 10];

    let double_vec = new_vec
        .iter()
        .inspect(|first_item| {
            println!("The item is: {first_item}");
            match **first_item % 2 {             
                0 => println!("It is even."),
                _ => println!("It is odd."),
            }
            println!("In binary it is {:b}.", first_item);
        })
        .map(|x| x * 2)
        .collect::<Vec<i32>>();
}

This prints

The item is: 8
It is even.
In binary it is 1000.
The item is: 9
It is odd.
In binary it is 1001.
The item is: 10
It is even.
In binary it is 1010.

This chapter probably gave you a feel for why Rust code looks so functional some-
times. The reason is that the more you know about iterators and closures, the more
you want to use them, so code written by experienced Rust users tends to have a lot of
these. As you use Rust, you’ll begin to think of chains of one method after another,
much in the same way you think in English or your native language. Take this human-
readable example of an operation we might want to do: “Make an iterator, keep every-
thing greater than 5, multiply each item by 2, reverse the iterator, pull off the first 10

The first item is a 
&&i32 so we use **.



188 CHAPTER 9 Iterators and closures again!
items, and collect them into a Vec.” You can do that with one method for each. This is
pretty close to the way we think as humans and probably another reason why iterator
methods are used so much in Rust.

 The next chapter has two important concepts. The first is lifetimes, which you use
to tell Rust how long a reference will live. The next is interior mutability, which lets
you (safely!) mutate variables without needing to use the mut keyword.

Summary
 Mapping, filtering, and collecting is probably the most common use of itera-

tors. As you get more used to them, you can start trying out related methods
like .filter_map() and .and_then().

 Instead of looping over the items in an iterator, see whether there’s a _while
method for what you want to do: .take_while(), .map_while(), and so on.

 The most common methods for finding items are .any(), .all(), .find(), and
.position(). Methods like .any() short-circuit, so be sure to .rev() the itera-
tor if you think an item might be closer to the end of your iterator.

 While iterators usually return Some until they return None, there’s no rule that
you have to do so. They can return only Some, only None, or anything else you
can imagine.

 The .fold() method is usually used to sum numbers, but there’s no rule about
that either. You can find a lot of other uses for it, too.

 Some methods like .zip() and .enumerate() let you combine or expand on
the existing items in an iterator.

 You can quickly debug your code with the dbg! macro and the .inspect()
method when using iterators.



Lifetimes and
interior mutability
It is now time to learn about Rust’s famous lifetimes, used by the compiler to know
when variables can be dropped and how long references last. Usually, you don’t
need to specify lifetimes in your code, but sometimes the compiler needs a bit of
help and will ask you to tell it how long something should last. We are also going to
learn how to (safely!) mutate values without needing a mutable reference to do it!

10.1 Types of &str
We’ve been using &str for most of the book so far. But here’s an interesting fact
about them: there is actually more than one type of &str. The two ways you’ll see a
&str are as follows:

This chapter covers
 Types of &str (there’s more than one)

 Using lifetime annotations to help the compiler 
know how long a reference lives

 Using interior mutability, which provides safe 
mutability without &mut
189



190 CHAPTER 10 Lifetimes and interior mutability
 String literals—You make these when you write let my_str = "I am a &str";.
They last for the whole program because they are written directly into the
binary. They have the type &'static str. The ' means its lifetime, and string
literals have a lifetime called static.

 Borrowed str—This is the regular &str form without a 'static lifetime. If you
have a String and pass a reference to it (a &String), Rust will convert it to a
&str when you need it. This is thanks to a trait called Deref. We will learn to use
Deref in chapter 15, but, for the moment, just remember that you can pass in a
&String to a function that takes a &str.

Here is an example of a borrowed str:

fn prints_str(my_str: &str) { 
    println!("{my_str}");
}

fn main() {
    let my_string = String::from("I am a string");
    prints_str(&my_string);
}

We know that you can’t return a reference from something that only lives inside a
function because it dies as soon as the function is over. When the variable dies, you
don’t want to have a reference pointing to where the data was. That’s unsafe, so Rust
doesn’t allow it. But when using a str with a 'static lifetime, the data never disap-
pears. So, you can return a reference to it! In the following code, the first function will
work, but the second will not:

fn works() -> &'static str {
    "I live forever!"
}

// fn does_not_work() -> &'static str {
//    &String::from("Sorry, I only live inside the fn. Not 'static")
// }

You are probably getting the feeling that lifetimes are a pretty big subject in Rust.
They definitely are. Let’s start learning how they work.

10.2 Lifetime annotations
We already learned that a lifetime means “how long the variable or reference lives.”
Most of the time, Rust takes care of lifetimes for you, but sometimes, it needs a bit of
extra help. This extra help is called a lifetime annotation, which means “extra lifetime
information.” You only need to think about lifetimes with references. References
aren’t allowed to live longer than the object they come from because references point
to the same memory, and this memory gets freed up when the object is gone. It would
be a big problem if references could live longer because then they could point to
memory that is already cleaned up and used by something else. You see lifetime anno-
tations in a lot of places. We’ll start with lifetime annotations in functions.



19110.2 Lifetime annotations
10.2.1 Lifetimes in functions

Lifetimes are not too hard to work with in functions because functions have a nice
clear start and end. Here’s an example of a function that doesn’t work:

fn returns_reference() -> &str {
    let my_string = String::from("I am a string");
    &my_string
}

The problem is that my_string only lives inside returns_reference. We try to return
&my_string, but &my_string can’t exist without my_string. So the compiler says no.

 Writing the code this way doesn’t fix the problem, either:

fn returns_str() -> &str {
    let my_string = String::from("I am a string");
    "I am a str"
}

fn main() {
    let my_str = returns_str();
    println!("{my_str}");
}

In both cases, it almost works. Each time we try, the compiler says

error[E0106]: missing lifetime specifier
 --> src\main.rs:6:21
  |
6 | fn returns_str() -> &str {
  |                     ^ expected named lifetime parameter
  |
  = help: this function's return type contains a borrowed value, but there
  ➥is no value for it to be borrowed from
help: consider using the `'static` lifetime
  |
6 | fn returns_str() -> &'static str {
  |                     ^^^^^^^^

This missing lifetime specifier means that we need to add a ' to the lifetime. The
next part of the error message says that it contains a borrowed value, but there is
no value for it to be borrowed from. This message means that the return value for
the function is &str, which is a borrowed str, but I am a str isn’t borrowed from a
variable. However, the compiler guesses at what we are trying to do by suggesting
consider using the 'static lifetime by writing &'static str, which is a string
literal.

 If we try the compiler’s suggestion, the code will now compile:

fn returns_str() -> &'static str {
    let my_string = String::from("I am a string");
    "I am a str"
}



192 CHAPTER 10 Lifetimes and interior mutability
fn main() {
    let my_str = returns_str();
    println!("{my_str}");
}

Of course, the code only worked because we were outright ignoring my_string and
letting it die inside the function. But you can see that the compiler is satisfied that we
returned a &str with a lifetime of 'static. Meanwhile, my_string can only be
returned as an owned String: we can’t return a reference to it because it is going to
die after the next line.

 Now, fn returns_str() -> &'static str tells Rust: “Don’t worry; we will only
return a string literal.” String literals live for the whole program, so the compiler is
now happy with this.

 You might notice that lifetime annotations work in a similar way to generic annota-
tions. When we tell the compiler something like <T: Display>, we promise that we will
only use something that implements Display. The compiler will understand this and
reject anything that doesn’t implement Display. And when we tell the compiler that a
function returns a &'static str, it will understand and reject anything that doesn’t
have this lifetime. But writing &'static str doesn’t give anything a 'static lifetime
in the same way that writing T: Display doesn’t give anything the trait Display.

 However, 'static is not the only lifetime: every variable has a lifetime, but we
don’t usually have to write it. The compiler is pretty smart and can usually figure it out
for itself. We only have to write the lifetime for references when the compiler can’t
decide on its own.

10.2.2 Lifetime annotations in types

Here is an example of another lifetime. Imagine we want to create a City struct and
try to give it a &str for the name instead of a String. Interestingly, if we write &str
instead of String, the code won’t compile:

#[derive(Debug)]
struct City {
    name: &str,              
    date_founded: u32,
}

fn main() {
    let my_city = City {
        name: "Ichinomiya",
        date_founded: 1921,
    };
}

The compiler says:

error[E0106]: missing lifetime specifier
 --> src\main.rs:3:11
  |

Here’s the 
problem.



19310.2 Lifetime annotations
3 |     name: &str,
  |           ^ expected named lifetime parameter
  |
help: consider introducing a named lifetime parameter
  |
2 | struct City<'a> {
3 |     name: &'a str,
  |

Rust needs a lifetime for &str because &str is a reference. What happens when the
value that name points to is dropped? Its memory would be cleaned up, and the refer-
ence would point to nothing or even someone else’s data. That would be unsafe, so
Rust doesn’t allow it.

 What about 'static? Will that work? We used it before. Let’s try:

#[derive(Debug)]
struct City {
    name: &'static str,     
    date_founded: u32,
}

fn main() {
    let my_city = City {
        name: "Ichinomiya",
        date_founded: 1921,
    };

    println!("{} was founded in {}", my_city.name, my_city.date_founded);
}

Okay, that works. Maybe this is what you wanted for the struct. However, note that now
we can only take string literals, not references to something else. That’s because we
told the compiler that we would only give it something that can live for the whole life
of the program. So, this will not work:

#[derive(Debug)]
struct City {
    name: &'static str,    
    date_founded: u32,
}

fn main() {
    let city_names = vec!["Ichinomiya".to_string(), 
    "Kurume".to_string()];    

    let my_city = City { 
        name: &city_names[0],    
        date_founded: 1921,
    };

    println!("{} was founded in {}", my_city.name, my_city.date_founded);
}

Changes 
&str to &'static str

The parameter name is 'static, so it must 
be able to live for the whole program.

However, city_names does not 
live for the whole program.

This is a &str, not a &'static str. It is a 
reference to a value inside city_names.



194 CHAPTER 10 Lifetimes and interior mutability
The compiler says:

error[E0597]: `city_names` does not live long enough
  --> src\main.rs:12:16
   |
12 |         name: &city_names[0],
   |                ^^^^^^^^^^
   |                |
   |                borrowed value does not live long enough
   |                requires that `city_names` is borrowed for `'static`
...
18 | }
   | - `city_names` dropped here while still borrowed

This is important to understand because the reference we gave it does live long enough
for us to print the struct City. But we promised that we would only give it a &'static
str, and that is what it expects.

 Now, we will try what the compiler suggested before. It said to try writing struct
City<'a> and name: &'a str. This means that it will only take a reference for name if it
lives as long as City.

 You can read the <'a> and name: &'a str in the code as “The City struct has a life-
time that we will call 'a, and its name property must also live at least as long as 'a.
Other shorter lifetimes will not be accepted.”

#[derive(Debug)]
struct City<'a> {       
    name: &'a str,       
    date_founded: u32,
}

fn main() {
    let city_names = vec!["Ichinomiya".to_string(), "Kurume".to_string()];

    let my_city = City {
        name: &city_names[0],
        date_founded: 1921,
    };

    println!("{} was founded in {}", my_city.name, my_city.date_founded);
}

Also, remember that you can write anything instead of 'a if you want. This is also sim-
ilar to generics, where we write T and U but can write anything.

#[derive(Debug)]
struct City<'city> {      
    name: &'city str,      
    date_founded: u32,
}

City has 
lifetime 'a.

Name also has 
lifetime 'a.

The lifetime is 
now called 'city.

Name has the 
'city lifetime.



19510.2 Lifetime annotations
Usually, you will write 'a, 'b, 'c, etc., because it is quick and the usual way to write.
But you can change it if you want. One good tip is that changing the lifetime to a
human-readable name can help you read code if it is very complicated.

 Let’s look at the comparison to traits for generics again with this example:

use std::fmt::Display;

fn prints<T: Display>(input: T) {
    println!("T is {input}");
}

When you write T: Display, it means “Please only take T if it has the trait Display.” It
does not mean “I am giving the trait Display to T.”

 The same is true for lifetimes. Take a close look at 'a here:

#[derive(Debug)]
struct City<'a> {
    name: &'a str,
    date_founded: u32,
}

The 'a means “Please only take an input for name if it lives at least as long as City.” It
does not mean, “This will make the input for name live as long as City.”

10.2.3 The anonymous lifetime

Do you remember seeing a <'_> back in chapter 7 when we implemented Display for
our Cat struct? Here’s what we wrote:

impl fmt::Display for Cat {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{} is a cat who is {} years old.", self.name, self.age)
    }
}

Now, we can finally learn what this <'_> means. This is called the anonymous lifetime
and is an indicator that references are being used. Rust will suggest it to you when you
are implementing structs, for example. Here is one struct that almost works but not
yet:

struct Adventurer<'a> {
    name: &'a str,
    hit_points: u32,
}

impl Adventurer {
    fn take_damage(&mut self) {
        self.hit_points -= 20;
        println!("{} has {} hit points left!", self.name, self.hit_points);
    }
}



196 CHAPTER 10 Lifetimes and interior mutability
We did what we needed to do for the struct: we said that name comes from a &str. That
means we need to indicate a lifetime, so we gave it <'a>. But then Rust tells us to indi-
cate a lifetime again inside the impl block:

error[E0726]: implicit elided lifetime not allowed here
 --> src\main.rs:6:6
  |
6 | impl Adventurer {
  |      ^^^^^^^^^^- help: indicate the anonymous lifetime: `<'_>`

It wants us to add that anonymous lifetime to show that there is a reference being
used. If we write that, it will be happy:

struct Adventurer<'a> {
    name: &'a str,
    hit_points: u32,
}

impl Adventurer<'_> {
    fn take_damage(&mut self) {
        self.hit_points -= 20;
        println!("{} has {} hit points left!", self.name, self.hit_points);
    }
}

This lifetime was made so that you don’t always have to write things like impl<'a>
Adventurer<'a>, because the struct already shows the lifetime.

 Hold on, though. Why does the impl block need to talk about lifetimes, too? Let’s
pretend there is a trait that needs to deal with two lifetimes. It might look like this:

trait HasSomeLifeTime<'a, 'b> {}

You might also have a struct that also has two references, and each one has its own life-
time for some reason. (Don’t worry, this isn’t something you usually see in Rust. It’s
just to explain.)

struct SomeStruct<'a, 'b> {
    name: &'a str,
    other: &'b str
}

Imagine you want to implement HasSomeLifeTime for SomeStruct. The trait has its
own lifetimes to deal with, and the struct has its own lifetimes to deal with. Both the
struct and the trait choose to call them 'a and 'b, but 'a and 'b in the struct Some-
Struct have nothing to do with 'a and 'b in the trait HasSomeLifeTime. Therefore,
when you use impl, you declare some lifetimes, and that’s when you can decide how
long one lifetime must be compared to the other.

 You might implement the trait like this:

impl <'a, 'b> HasSomeLifeTime<'a, 'b> for SomeStruct<'a, 'b> {}



19710.2 Lifetime annotations
This means “We are talking about two different lifetimes here, 'a and 'b.” Now, the 'a
and 'b for the trait and the struct are the same lifetime.

 But maybe you don’t want to say that they will all be the same, and maybe you don’t
want to use the same names either. You could even write this:

impl <'one, 'two, 'three, 'four> HasSomeLifeTime<'one, 'three> for

➥SomeStruct<'two, 'four> {}

This means “There are four lifetimes involved here,” and the trait has its own two
while the struct has its own two. The four lifetimes can now all be separate from each
other.

 But you almost never need to worry about lifetimes to this point in Rust, so don’t
worry. Even in this complex example, you can just elide the lifetimes and let Rust
figure it out:

impl HasSomeLifeTime<'_, '_> for SomeStruct<'_, '_> {}

That means “Each one has its own two lifetimes; you figure it out.” To emphasize this
point again: it is very rare to deal with this many lifetimes in Rust!

 Lifetimes can be difficult in Rust, but here are some tips to avoid getting too
stressed about them:

 You can stay with owned types, use clones, etc., if you want to avoid lifetimes for
the time being. If you get a &'a str in a function, you can just turn it into a
String and put that on your struct! Rust is extremely fast, even when you do
this.

 Much of the time, when the compiler wants a lifetime, you will just end up writ-
ing <'a> in a few places, and then it will work. It’s just a way of saying, “Don’t
worry, I won’t give you anything that doesn’t live long enough.”

 You can explore lifetimes just a bit at a time. Write some code with owned values
and then make one a reference. The compiler will start to complain but also
give some suggestions. If it gets too complicated, you can undo it and try again
next time.

Let’s do this with our code and see what the compiler says. We’ll go back and take the
lifetimes out and implement Display. Display will just print the Adventurer’s name.
Here is the code again that won’t compile:

struct Adventurer {
    name: &str,
    hit_points: u32,
}

impl Adventurer {
    fn take_damage(&mut self) {
        self.hit_points -= 20;
        println!("{} has {} hit points left!", self.name, self.hit_points);
    }
}



198 CHAPTER 10 Lifetimes and interior mutability
impl std::fmt::Display for Adventurer {
        fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
            write!(f, "{} has {} hit points.", self.name, self.hit_points)
        }
}

The first complaint is this:

error[E0106]: missing lifetime specifier
 --> src\main.rs:2:11
  |
2 |     name: &str,
  |           ^ expected named lifetime parameter
  |
help: consider introducing a named lifetime parameter
  |
1 | struct Adventurer<'a> {
2 |     name: &'a str,
  |

It suggests what to do: <'a> after Adventurer and &'a str. So we do that. The code is
closer to compiling but not quite:

struct Adventurer<'a> {
    name: &'a str,
    hit_points: u32,
}

impl Adventurer {
    fn take_damage(&mut self) {
        self.hit_points -= 20;
        println!("{} has {} hit points left!", self.name, self.hit_points);
    }
}

impl std::fmt::Display for Adventurer {
        fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
            write!(f, "{} has {} hit points.", self.name, self.hit_points)
        }
}

The compiler is now happy with our changes, but it is wondering about the impl
blocks. It wants us to mention that it’s using references:

error[E0726]: implicit elided lifetime not allowed here
 --> src\main.rs:6:6
  |
6 | impl Adventurer {
  |      ^^^^^^^^^^- help: indicate the anonymous lifetime: `<'_>`

error[E0726]: implicit elided lifetime not allowed here
  --> src\main.rs:12:28
   |
12 | impl std::fmt::Display for Adventurer {
   |                            ^^^^^^^^^^- help: indicate the anonymous
                                ➥lifetime: `<'_>`



19910.3 Interior mutability
Okay, so we add the anonymous lifetime as it suggests, and now it works! Now, we can
make an Adventurer and do some things with it:

struct Adventurer<'a> {
    name: &'a str,
    hit_points: u32,
}

impl Adventurer<'_> {
    fn take_damage(&mut self) {
        self.hit_points -= 20;
        println!("{} has {} hit points left!", self.name, self.hit_points);
    }
}

impl std::fmt::Display for Adventurer<'_> {

        fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
            write!(f, "{} has {} hit points.", self.name, self.hit_points)
        }
}

fn main() {
    let mut billy = Adventurer {
        name: "Billy",
        hit_points: 100_000,
    };
    println!("{}", billy);
    billy.take_damage();
}

This prints

Billy has 100000 hit points.
Billy has 99980 hit points left!

You can see that lifetimes are often the compiler wanting to make sure. It is usually
smart enough to almost guess at what lifetimes you want and just needs you to tell it so
that it can be certain.

10.3 Interior mutability
Interior mutability means having a little bit of mutability on the inside (the interior).
Remember, in Rust, you need to use mut to change a variable. But there are also some
ways to change them without the word mut. This is because Rust has some ways to let
you safely change values inside of a struct that is itself immutable. Each way of doing
so follows some rules that make sure that changing the values is still safe.

 Let’s look at a simple example where we would want this. Imagine a struct called
PhoneModel with many fields:

struct PhoneModel {
    company_name: String,
    model_name: String,
    screen_size: f32,



200 CHAPTER 10 Lifetimes and interior mutability
    memory: usize,
    date_issued: u32,
    on_sale: bool,
}

impl PhoneModel {   
    fn method_one(&self) {}
    fn method_two(&self) {}
}

fn main() {
    let super_phone_3000 = PhoneModel {
        company_name: "YY Electronics".to_string(),
        model_name: "Super Phone 3000".to_string(),
        screen_size: 7.5,
        memory: 4_000_000,
        date_issued: 2020,
        on_sale: true,
    };

}

Maybe we want the fields in PhoneModel to be immutable because we don’t want the
data to change. The date_issued and screen_size never change, for example, and
the methods we have for PhoneModel use &self and not a &mut self, which is more
convenient for us. We’d rather not have to use &mut self if we don’t have to.

 But inside is one field called on_sale. A phone model will first be on sale (true),
but later, the company will stop selling it. Can we make just this one field mutable? We
don’t want to write let mut super_phone_3000;. If we do, the whole struct will
become mutable. Maybe there is a function we need to use that takes a &PhoneModel
as an input, not a &mut Phonemodel, but we’d still like to mutate some data inside it.

 Fortunately, there is a way to do this. Rust has four main ways to allow some safe
mutability inside of something that is immutable: Cell, RefCell, Mutex, and RwLock.
Let’s look at them now.

10.3.1 Cell

The simplest way to use interior mutability in Rust is called Cell, which its documenta-
tion describes as a “mutable memory location.” The signature of Cell is just Cell<T>,
the T being the data type you want it to hold. Let’s use Cell for our previous Phone-
Model.

 First, we write use std::cell::Cell;, so we can just write Cell instead of
std::cell::Cell every time. Then we change on_sale: bool to on_sale:

Cell<bool>. Now, it isn’t a bool: it’s a Cell that holds a bool.
 Cell has a method called .set() where you can change the value. We use .set()

to change on_sale: true to on_sale: Cell::new(false):

use std::cell::Cell;

#[derive(Debug)]
struct PhoneModel {

These methods are unfinished so they don’t do anything, 
but imagine we have a lot of methods that all take &self but 
that we’d like to mutate some data inside PhoneModel.



20110.3 Interior mutability
    company_name: String,
    model_name: String,
    screen_size: f32,
    memory: usize,
    date_issued: u32,
    on_sale: Cell<bool>,
}

impl PhoneModel {    
    fn make_not_on_sale(&self) {
        self.on_sale.set(false);
    }
}

fn main() {
    let super_phone_3000 = PhoneModel {
        company_name: "YY Electronics".to_string(),
        model_name: "Super Phone 3000".to_string(),
        screen_size: 7.5,
        memory: 4_000_000,
        date_issued: 2020,
        on_sale: Cell::new(true),
    };

Ten years later, super_phone_3000 is not on sale anymore:

    super_phone_3000.make_not_on_sale();
    println!("{super_phone_3000:#?}");
}

The input shows that the value for on_sale has changed to false without us needing
to use any mutable references:

PhoneModel {
    company_name: "YY Electronics",
    model_name: "Super Phone 3000",
    screen_size: 7.5,
    memory: 4000000,
    date_issued: 2020,
    on_sale: Cell {
        value: false,
    },
}

Cell works for all types, but it works best for simple Copy types because it gives values,
not references. Cell has a method called .get(), for example, that only works when
the inner type implements Copy.

 Another type that you can use is RefCell.

10.3.2 RefCell

A RefCell is another way to change values without needing to declare mut. It means
“reference cell” and is a bit similar not only to a Cell but also to regular references.



202 CHAPTER 10 Lifetimes and interior mutability
 Let’s make a User struct for the next example that holds a RefCell. So far, you can
see that it is similar to Cell in that it holds a value, and you use a method called new()
to create it:

use std::cell::RefCell;

#[derive(Debug)]
struct User {
    id: u32,
    year_registered: u32,
    username: String,
    active: RefCell<bool>,   
}

fn main() {
    let user_1 = User {
        id: 1,
        year_registered: 2020,
        username: "User 1".to_string(),
        active: RefCell::new(true),
    };

    println!("{:?}", user_1.active);
}

This prints RefCell { value: true }.
 There are many methods for RefCell. Two of them are .borrow() and

.borrow_mut(). With these methods, you can do the same thing you do with & and
&mut. The rules are the same:

 Having many immutable borrows is fine.
 One mutable borrow is fine. 
 Mutable and immutable borrows together is not fine.

Changing the value in a RefCell feels pretty much the same as using a mutable refer-
ence. You can create a variable that can be used to mutate the value and then change
the value that way:

    let user_1 = User {
        id: 1,
        year_registered: 2020,
        username: "User 1".to_string(),
        active: RefCell::new(true),
    };
    let mut borrow = user_1.active.borrow_mut();
    *borrow = false;

Note how similar this is to using a mutable reference without a RefCell if user_1 itself
had been declared as mut:

    let borrow = &mut user_1.active;
    *borrow = false;

In real life, this would have a 
lot more fields, but we’ll just 
include a few to keep it short.



20310.3 Interior mutability
Or you can change the value without declaring a variable to do it with:

    let user_1 = User {
        id: 1,
        year_registered: 2020,
        username: "User 1".to_string(),
        active: RefCell::new(true),
    };
    *user_1.active.borrow_mut() = false;

But you have to be careful with a RefCell because it checks borrows at run time, not
compilation time. So the following will compile, even though it is wrong:

use std::cell::RefCell;

#[derive(Debug)]
struct User {
    id: u32,
    year_registered: u32,
    username: String,
    active: RefCell<bool>,  
}

fn main() {
    let user_1 = User {
        id: 1,
        year_registered: 2020,
        username: "User 1".to_string(),
        active: RefCell::new(true),
    };

    let borrow_one = user_1.active.borrow_mut();    
    let borrow_two = user_1.active.borrow_mut();    
}

But if you run it, it will immediately panic:

thread 'main' panicked at 'already borrowed: BorrowMutError',

➥src\main.rs:21:36
Note: run with `RUST_BACKTRACE=1` environment variable to display a

➥backtrace

There are two ways to be sure that your code won’t panic when using a RefCell:

 Always immediately change the value with .borrow_mut() without assigning
this to a variable. If no variables are holding on to the output of .borrow_mut(),
there is no way the code will panic.

 Use the .try_borrow_mut() method instead of borrow_mut() if there is a
chance of a double borrow. This will return an error if the RefCell is already
borrowed.

So that was a quick introduction to Cell and RefCell, the two simplest types for inte-
rior mutability in Rust. The next two are known as Mutex and RwLock and will seem

First mutable 
borrow—okay

Second mutable
 borrow—not okay



204 CHAPTER 10 Lifetimes and interior mutability

Th
Le
sort of similar to RefCell. So why do they exist? They exist because of multiple
threads, which are used to do two things at once in your code. Cell and RefCell don’t
have any guards in place to make sure that data isn’t being changed at the same time,
so Rust won’t let you use them in multiple threads. Here is a quick teaser:

use std::cel::RefCell;

fn main() {
    let bool_in_refcell = RefCell::new(true);

    std::thread::spawn(|| {    
        *bool_in_refcell.borrow_mut() = false;
    });
}

Rust tells us exactly why it won’t let the code compile:

error[E0277]: `RefCell<bool>` cannot be shared between threads safely

We will learn to use multiple threads in the next chapter, but, for now, just remember
that this is why the next two types exist. So let’s move on to the next one!

10.3.3 Mutex

Mutex is another way to change values without declaring mut. Mutex means “mutual
exclusion,” which means “only one at a time.” This is why a Mutex is safe because it
only lets one thread change it at a time. To do this, it uses a method called .lock(),
which returns a struct called a MutexGuard. This MutexGuard is like locking a door
from the inside. You go into a room and lock the door, and now you can change
things inside the room. Nobody else can come in and stop you because you locked the
door.

 A Mutex is easier to understand through examples. In this example, note that
Mutex is located at std::sync::Mutex. Inside the standard library, sync is for types
that are thread-safe, meaning they can be used in multiple threads:

use std::sync::Mutex;

fn main() {
    let my_mutex = Mutex::new(5);    

    let mut mutex_changer = my_mutex.lock().unwrap();   

    println!("{my_mutex:?}");    

    println!("{mutex_changer:?}");  

    *mutex_changer = 6;   

    println!("{mutex_changer:?}");    
}

Here, we try to start a new thread 
to do something at the same time 
as the rest of the code. But Rust 
won’t let us use a RefCell inside it.

A new Mutex<i32>. 
We don’t need to 
declare it as mut.

mutex_changer is a 
MutexGuard, which gives 
access to the Mutex. It 
has to be mut because we 
will change it. The Mutex 
itself is now locked.

Here we can see that the Mutex is locked as it prints 
"Mutex { data: <locked> }". The only way to access 
and change the data is through mutex_changer.

is prints 5.
t’s change

it to 6.

And now
it prints 6.

mutex_changer is a MutexGuard<i32>, but 
we want to change the i32 itself. We can 
use * to change the i32 (the inner value).



20510.3 Interior mutability

m 
Here is the output:

Mutex { data: <locked>, poisoned: false, .. }
5
6

But mutex_changer still holds a lock after it is done changing the value. How do we stop
it and unlock the Mutex? A Mutex is unlocked when the MutexGuard goes out of scope
(when it is dropped). One way to do this is to put the MutexGuard into its own scope:

use std::sync::Mutex;

fn main() {
    let my_mutex = Mutex::new(5);
    {
        let mut mutex_changer = my_mutex.lock().unwrap();
        *mutex_changer = 6;
    }

    println!("{my_mutex:?}");
}

Note that the output now shows us the data inside because we print my_mutex when it
isn’t locked anymore:

Mutex { data: 6, poisoned: false, .. }

There is an easier way to unlock a Mutex, though, thanks to a convenient function
called drop(), which automatically makes an object go out of scope. We can simply
stick mutex_changer inside drop(), and it will cease to exist:

use std::sync::Mutex;

fn main() {
    let my_mutex = Mutex::new(5);
    let mut mutex_changer = my_mutex.lock().unwrap();
    *mutex_changer = 6;
    drop(mutex_changer);      

    println!("{my_mutex:?}"); 
}

You have to be careful with a Mutex because if another variable tries to .lock() it, it
will wait forever. This is known as a deadlock:

use std::sync::Mutex;

fn main() {
    let my_mutex = Mutex::new(5);
    let mut mutex_changer = my_mutex.lock().unwrap();   
    let mut other_mutex_changer = my_mutex.lock().unwrap();   

    println!("This will never print...");
}

At this point, mutex_changer goes out
of scope and is now gone, and

my_mutex isn’t locked anymore.

This drops mutex_changer. 
It is now gone, and 
my_mutex is unlocked.

Output: 
Mutex { data: 6 }

mutex_changer has
the lock after this line. But other_mutex_

changer wants the 
lock, too. The progra
will wait forever.



206 CHAPTER 10 Lifetimes and interior mutability
This behavior makes sense because Mutexes are made for usage across multiple
threads, and if you have two threads doing two things at the same time, any call to
.lock() to a Mutex that is already locked should wait until the other thread is done.
But it also means that you have to be a bit careful with your code to avoid deadlocks.

 The solutions to this are similar to the solutions mentioned in section 10.3.2 on
RefCell. Instead of .lock(), you can use a method called .try_lock(). This method
will try once, and if it doesn’t get the lock, it will give up. You can use if let or match
for this:

use std::sync::Mutex;

fn main() {
    let my_mutex = Mutex::new(5);
    let mut mutex_changer = my_mutex.lock().unwrap();
    let mut other_mutex_changer = my_mutex.try_lock();

    if let Ok(value) = other_mutex_changer {
        println!("The MutexGuard has: {value}")
    } else {
        println!("Didn't get the lock")
    }
}

This code will print Didn't get the lock instead of deadlocking and holding up the
program.

 Same as with a RefCell, you don’t need to make a variable to change the Mutex.
You can just use .lock() to change the value right away:

use std::sync::Mutex;

fn main() {
    let my_mutex = Mutex::new(5);
    *my_mutex.lock().unwrap() = 6;
}

When you type *my_mutex.lock().unwrap() = 6;, you never create a variable that
holds the lock, so you don’t need to call drop(). You can do it 100 times if you want,
and it doesn’t matter because no variable ever holds the lock:

use std::sync::Mutex;

fn main() {
    let my_mutex = Mutex::new(5);
    for _ in 0..100 {
        *my_mutex.lock().unwrap() += 1;
    }
}

10.3.4 RwLock

RwLock stands for “read–write lock.” It is not only like a Mutex because it is thread-safe,
but it is also similar to a RefCell in the way it is used: you can get mutable or



20710.3 Interior mutability
immutable references to the value inside. You use .write().unwrap() instead of
.lock().unwrap() to change it. You can also use .read().unwrap() to get read
access. RwLock is similar to RefCell because it follows the same rules that Rust uses for
references:

 Many variables with .read() access is okay.
 One variable with .write() access is okay.
 You can’t hold anything else on top of a variable returned from .write(). You

can’t have an extra variable made with .write() or even with .read(). 

But RwLock is also similar to Mutex in that the program will deadlock instead of pan-
icking if you try to use .write() when you can’t get access:

use std::sync::RwLock;

fn main() {
    let my_rwlock = RwLock::new(5);
    let read1 = my_rwlock.read().unwrap();   
    let read2 = my_rwlock.read().unwrap();   
    println!("{read1:?}, {read2:?}");
    let write1 = my_rwlock.write().unwrap();  
}

This code will print 5, 5 and then deadlock forever.
 To solve this, we can use drop() (or a new scope) just like in a Mutex:

use std::sync::RwLock;

fn main() {
    let my_rwlock = RwLock::new(5);
    let read1 = my_rwlock.read().unwrap();
    let read2 = my_rwlock.read().unwrap();
    println!("{read1:?}, {read2:?}");
    drop(read1);
    drop(read2);          

    let mut write1 = my_rwlock.write().unwrap();
    *write1 = 6;
    drop(write1);
    println!("{:?}", my_rwlock);
}

This time, there is no deadlock, and the output shows the changed value:

5, 5
RwLock { data: 6, poisoned: false, .. }

RwLock has the same .try_ methods as well to help ensure that you’ll never have a
deadlock: .try_read() and .try_write:

fn main() {
    let my_rwlock = RwLock::new(5);

One .read() 
is fine. Another .read()—

also fine
Uh oh, now 
we’re deadlocked.

We dropped both, 
so we can use .write().



208 CHAPTER 10 Lifetimes and interior mutability
    let read1 = my_rwlock.read().unwrap();
    let read2 = my_rwlock.read().unwrap();

    if let Ok(mut number) = my_rwlock.try_write() {
        *number += 10;
        println!("Now the number is {}", number);
    } else {
        println!("Couldn't get write access, sorry!")
    };
}

Once again, the code gives up with the message Couldn't get write access,

sorry! instead of deadlocking forever.
 You learned in this chapter that sometimes the compiler doesn’t know, or can’t

decide, how long a reference lives. In those rare cases, you have to tell it which life-
time to use. But the good news is that you can just use owned types in the meantime if
you find lifetimes too annoying to use. You can always get used to lifetimes a bit at a
time.

 Also, hopefully, you enjoyed learning that Rust has some more flexibility than you
thought. Rust is strict, but it’s not strict just to be strict. As long as there is a safe way to
mutate a value, Rust has no problem with it.

 The next chapter has a bunch of interesting stuff all together. You’ll learn how to
use a Cow (yes, that’s a type in Rust) and reference counters and start learning about
multiple threads to do many things at the same time.

Summary
 If you don’t want to think too much about lifetime annotations yet, you can

mostly avoid them by using owned data as much as possible.
 A lifetime annotation is another type of generic annotation. They tell the com-

piler what lifetimes to expect, but they don’t change how long references live.
 If you are using a &str in one of your types but will only give it string literals,

you can avoid lifetime annotations by having it take a &'static str instead of a
&'a str.

 If you need mutability but can’t or don’t want to use a &mut, try one of the four
interior mutability types. Cell is best for Copy types, RefCell is similar to regu-
lar references, and Mutex and RwLock can be passed between threads.

 When changing values inside a RefCell, Mutex, and RwLock, it’s easiest to
change the values outright without making a variable that holds a borrow or a
lock. Then, you won’t have to think about whether the variable that holds the
borrow or lock is dropped or not.

 If you need to use variables that hold a borrow or a lock, you can use methods
like .try_borrow() and .try_lock() to make sure that there won’t be a
deadlock.



Multiple threads
and a lot more
You’re getting pretty good at Rust by now, so it’s time to take a look at some more
advanced types. This chapter doesn’t really have a single theme. Instead, we’ll look
in turn at some advanced subjects: Cow, type aliases, Rc, and multiple threads.
Understanding how multiple threads work is probably the hardest part of this chap-
ter. The famous Cow type (yes, that’s its real name) is a little bit tricky, too. You’ll
probably like the Rc (reference counter) type as it gives you a bit of extra flexibility
when it comes to Rust’s ownership rules.

This chapter covers
 The todo! macro to make the compiler quiet 

for a while

 Type aliases to create different names but not 
new types

 The Cow enum, which allows you to choose to borrow 
or own data however you want

 Rc, which allows shared instead of unique ownership

 Using multiple threads to run many things at the 
same time
209



210 CHAPTER 11 Multiple threads and a lot more
11.1 Importing and renaming inside a function
Usually, you write use at the top of the program like this:

use std::cell::{Cell, RefCell};

But we saw that you can do this anywhere, especially in functions with enums that have
long names. Here is an example:

enum MapDirection {
    North,
    NorthEast,
    East,
    SouthEast,
    South,
    SouthWest,
    West,
    NorthWest,
}

fn give_direction(direction: &MapDirection) {
    match direction {
        MapDirection::North => println!("You are heading north."),
        MapDirection::NorthEast => println!("You are heading northeast."), 
    }
}

So now we will import MapDirection inside the function. That means that inside the
function, you can simply write North , NorthEast, and so on:

enum MapDirection {
    North,
    NorthEast,
    East,
    SouthEast,
    South,
    SouthWest,
    West,
    NorthWest,
}

fn give_direction(direction: &MapDirection) {
    use MapDirection::*;   

    match direction {
        North =>     
    }
}

We’ve seen that ::* means “import everything after the ::.” In our case, that means
North, NorthEast, and so on—all the way to NorthWest. When you import other peo-
ple’s code, you can do that, too, but if the code is very large, you might have problems.
What if it has some items that have the same name as those in your code? It’s usually

So much more left to type
before the code will compile.

Imports everything 
in MapDirection

And so on for each variant 
until the code compiles.



21111.1 Importing and renaming inside a function
best not to use ::* all the time unless you’re sure. A lot of times you see a section
called prelude in other people’s code with all the main items you probably need.
Then you will usually use it like this: name::prelude::*. We will talk about this more
in the sections for modules and crates.

 If you have duplicate names or you have some reason to change a type name, you
can use as to do it. This can be done with any type:

fn main() {
    use String as S;
    let my_string = S::from("Hi!");
}

You might find this useful when using someone else’s code and aren’t satisfied with
the naming. This enum is a bit awkwardly named:

enum FileState {
    CannotAccessFile,
    FileOpenedAndReady,
    NoSuchFileExists,
    SimilarFileNameInNextDirectory,
}

Let’s try importing this enum’s variants and giving them all a different name. Since
2021, in Rust, you can even change their names to another language:

enum FileState {
    CannotAccessFile,
    FileOpenedAndReady,
    NoSuchFileExists,
    SimilarFileNameInNextDirectory,
}

fn give_filestate(input: &FileState) {
    use FileState::{
        CannotAccessFile as NoAccess,
        FileOpenedAndReady as 잘됨,       
        NoSuchFileExists as NoFile,
        SimilarFileNameInNextDirectory as OtherDirectory
    };
    match input {
        NoAccess => println!("Can't access file."),
        잘됨 => println!("Here is your file"),
        NoFile => println!("Sorry, there is no file by that name."),
        OtherDirectory => println!("Please check the other directory."),
    }
}

Using imports in this way lets you type OtherDirectory instead of FileState::
SimilarFileNameInNextDirectory.

 Very handy! Having learned about importing and renaming, let’s move on and
take a look at the todo! macro next.

Korean for 
“works great.”



212 CHAPTER 11 Multiple threads and a lot more
11.2 The todo! macro
Rust users love the todo! macro because it lets you tell the compiler to be quiet for a
bit. Sometimes, you want to write the general structure of your code to help you imag-
ine your project’s final form (writing the general structure of your code is called proto-
typing). For example, imagine a simple project to do something with books. The
comments in the code show what you might be thinking as you write it:

// Okay, first I need a book struct.
// Nothing in there yet - will add later
struct Book;

// A book can be hardcover or softcover, so add an enum…
enum BookType {
    HardCover,
    SoftCover,
}

// should take a &Book and return an Option<String>
fn get_book(book: &Book) -> Option<String> {} 

// should take a ref Book and return a Result...
fn delete_book(book: &Book) -> Result<(), String> {} 
                                                    
// TODO: impl block and make these functions methods…
// TODO: make this a proper error
fn check_book_type(book_type: &BookType) {

// Let's make sure the match statement works
    match book_type {
        BookType::HardCover => println!("It's hardcover"),
        BookType::SoftCover => println!("It's softcover"),
    }
}

fn main() {
    let book_type = BookType::HardCover;
    // Okay, let's check this function!
    check_book_type(&book_type);
}

Unfortunately, Rust is not happy with .get_book() and .delete_book() and won’t
even compile the code:

error[E0308]: mismatched types
  --> src\main.rs:32:29
   |
32 | fn get_book(book: &Book) -> Option<String> {}
   |    --------                 ^^^^^^^^^^^^^^ expected enum
   ➥`std::option::Option`, found `()`
   |    |
   |    implicitly returns `()` as its body has no tail or `return`
   ➥expression
   |



21311.2 The todo! macro
   = note:   expected enum `std::option::Option<std::string::String>`
           found unit type `()`

error[E0308]: mismatched types
  --> src\main.rs:34:31
   |
34 | fn delete_book(book: Book) -> Result<(), String> {}
   |    -----------                ^^^^^^^^^^^^^^^^^^ expected enum
   ➥`std::result::Result`, found `()`
   |    |
   |    implicitly returns `()` as its body has no tail or `return`
   ➥expression
   |
   = note:   expected enum `std::result::Result<(), std::string::String>`
           found unit type `()`

But maybe you don’t feel like finishing the .get_book() and .delete_book() func-
tions right now because you want to finish the code’s general structure first. This is
where you can use todo!(). If you add that to the function, Rust will stop complaining
and compile your code:

struct Book;

enum BookType {
    HardCover,
    SoftCover,
}

fn get_book(book: &Book) -> Option<String> {
    todo!();
} 

fn delete_book(book: &Book) -> Result<(), String> {
    todo!();
} 
                                                    
fn check_book_type(book_type: &BookType) {
    match book_type {
        BookType::HardCover => println!("It's hardcover"),
        BookType::SoftCover => println!("It's softcover"),
    }
}

fn main() {
    let book_type = BookType::HardCover;
    check_book_type(&book_type);
}

Now the code compiles, and you can see the result of .check_book_type():

It's hardcover

Make sure that you don’t call the functions that have todo! inside. Rust will compile
our code and let us use it, but if it comes across a todo!, it will automatically panic.



214 CHAPTER 11 Multiple threads and a lot more
 Also, todo! functions still need signatures that Rust can understand. Code that
uses undeclared types, like the next example, won’t work even if you put a todo!
inside the code:

struct Book;

fn get_book(book: &Book) -> WorldsBestType {
    todo!()
}

It will say

error[E0412]: cannot find type `WorldsBestType` in this scope
  --> src\main.rs:32:29
   |
32 | fn get_book(book: &Book) -> WorldsBestType {
   |                             ^^^^^^^^^^^^^^ not found in this scope

You can use todo! in other places, too, like struct parameters:

struct Book {
    name: String,
    year: u8
}

fn make_book() -> Book {
    Book {
        name: todo!(),
        year: todo!()
    }
}

fn main() {}

Here, too, the .make_book() function never gets called so the code will compile and
run without panicking.

 One final note: todo! is the same as another macro called unimplemented!. Rust
users originally only had unimplemented! to use, but it was a bit too much to type, so
the macro todo! was created, which is shorter.

11.3 Type aliases
A type alias means “giving a new name to another type.” Type aliases are very easy
because they don’t change the type at all (just the name). Usually, you use them when
you have a long type name that makes your code difficult to read or when you want to
describe an existing type in a different way. Here are two examples of type aliases.

 First, say you have a type that is not difficult to read, but you want to make your
code easier to understand for other people (or for you):

type CharacterVec = Vec<char>;

When you have a type that makes your code difficult to read:



21511.4 Cow
fn returns_some_chars(input: Vec<char>) ->

➥std::iter::Take<std::iter::Skip<std::vec::IntoIter<char>>> {
    input.into_iter().skip(4).take(5)
}

You can change it to this:

type SkipFourTakeFive = 

➥std::iter::Take<std::iter::Skip<std::vec::IntoIter<char>>>;

fn returns_some_chars(input: Vec<char>) -> SkipFourTakeFive {
    input.into_iter().skip(4).take(5)
}

You could also import items to make the type shorter instead of using a type alias:

use std::iter::{Take, Skip};
use std::vec::IntoIter;

fn returns_some_chars(input: Vec<char>) -> Take<Skip<IntoIter<char>>> {
    input.into_iter().skip(4).take(5)
}

You can decide what looks best in your code depending on what you like.
 Keep in mind, however, that a type alias doesn’t create an actual new type. It’s just

a name to use instead of an existing type. So if you write type File = String;, the
compiler just sees a String. So this will print true:

type File = String;

fn main() {
    let my_file = File::from("I am file contents");
    let my_string = String::from("I am file contents");
    println!("{}", my_file == my_string);
}

Because a type alias isn’t a new type, it doesn’t violate the orphan rule. You can use them
on anybody’s type with no problem because you’re not touching the original type.

11.4 Cow
Cow is a very convenient enum. It means “clone on write” and lets you return a &str if
you don’t need an owned String or a String if you do. It can also do the same with
any other types that you might want to borrow but also might want to own.

 To understand it, let’s look at the signature. It’s a bit complicated, so we’ll first start
with a very simplified version:

enum Cow {
    Borrowed,
    Owned
}

Okay, so a Cow offers two choices.



216 CHAPTER 11 Multiple threads and a lot more
 Next is the generic part: Cow is generic over a single type called B (it could have
been called anything, but the creators of the standard library chose B). Both Borrowed
and Owned have it:

enum Cow<B> {
    Borrowed(B),
    Owned(B),
}

Now, let’s take a look at the real signature, which involves lifetimes:

enum Cow<'a, B>
where
    B: 'a + ToOwned + ?Sized,
 {
    Borrowed(&'a B),
    Owned(<B as ToOwned>::Owned),
}

We already know that 'a means that Cow can hold a reference. The ToOwned trait
means that B must be a type that can be turned into an owned type. For example, str
is usually a reference (&str), and you can turn it into an owned String.

 Next is ?Sized. This means “maybe Sized, but maybe not.” Remember the term
dynamically sized? Almost every type in Rust is Sized, but types like str are not. That is
why we need an & for a str because the compiler doesn’t know the size. If you want a
trait that can use something like a str, you add ?Sized, which means “might be
dynamically sized.”

 Now, let’s look at the enum’s variants, Borrowed and Owned. Imagine that you have
a function that returns Cow<'static, str>. If you tell the function to return "My
message".into(), it will look at the type: "My message" is a str. This is a Borrowed
type, so it chooses Borrowed(&'a B). It becomes Cow::Borrowed(&'static str).

 If you give it a format!("{}", "My message").into(), it will look at the type. This
time, it is a String because format!() makes a String. This time it will select "Owned"
and return that.

 Let’s put together a quick example that shows how Cow might be useful and how to
match on a Cow. We’ll have a function called generate_message() that generates mes-
sages, which are usually a &'static str. But when an error happens, we can add some
more information with a struct called ErrorInfo:

use std::borrow::Cow;

#[derive(Debug)]
struct ErrorInfo {   
    error: LocalError,
    message: String,
}

#[derive(Debug)]
enum LocalError {

No surprises in these two structs. 
LocalError is an enum, and ExtraInfo 
holds a LocalError and a String.



21711.4 Cow
    TooBig,
    TooSmall,
}

fn generate_message(
    message: &'static str, 
    error_info: Option<ErrorInfo>
) -> Cow<'static, str> {    
    match error_info {
        None => message.into(),
        Some(info) => format!("{message}: {info:?}").into(),
    }
}

fn main() {
    let msg1 = generate_message(    
        "Everything is fine",
        None
    );
    let msg2 = generate_message(
        "Got an error",
        Some(ErrorInfo {
            error: LocalError::TooBig,
            message: "It was too big".to_string(),
        }),
    );

    for msg in [msg1, msg2] {   
        match msg {
            Cow::Borrowed(msg) => {
                println!("Borrowed, didn't need an allocation:\n  {msg}")
            }
            Cow::Owned(msg) => {
                println!("Owned, because we needed an allocation:\n  {msg}")
            }
        }
    }
}

Here is the output:

Borrowed message, didn't need an allocation:
  Everything is fine
Owned message because we needed an allocation:
  Got an error: ExtraInfo { error: TooBig, message: "It was too big" }

Cow has some other methods, like into_owned or into_borrowed, so you can change
it if you need to.

 Cow is a convenient type to place on your structs and enums, too, and is another
method to take both &str and String if you want. Imagine you have a User struct that
you would like to take either &str or String, but you don’t want to clone or use
.to_string() if you don’t have to. You can use a Cow here, too:

If we only pass in a &'static str and no extra 
info, we won’t need an allocation, so the Cow 
will be a Cow::Borrowed. But if we need the 
extra info, we will need an allocation, and it 
will be a Cow::Owned that owns its data.

Now, let’s make two messages: 
one that won’t need an 
allocation and one that will.

And since Cow is just a simple enum, 
we can always match on it to see if it’s 
a Cow::Borrowed or a Cow::Owned.



218 CHAPTER 11 Multiple threads and a lot more
use std::borrow::Cow;

struct User {
    name: Cow<'static, str>,
}

fn main() {
    let user_name = "User1";
    let other_user_name = "User10".to_string();

    let user1 = User {
        name: user_name.into(),
    };

    let user2 = User {
        name: other_user_name.into(),
    };

    for name in [user1.name, user2.name] {
        match name {
            Cow::Borrowed(n) => {
                println!("Borrowed name, didn't need an allocation:\n  {n}")
            }
            Cow::Owned(n) => {
                println!("Owned name because we needed an allocation:\n  {n}")
            }
        }
    }
}

Once again, both borrowed and owned values work just fine:

Borrowed name, didn't need an allocation:
  User1
Owned name because we needed an allocation:
  User10

Both "User1" and "User10".to_string() work! Of course, if you also want to take in
a nonstatic &str, you would write User<'a> and name: Cow<'a, str> instead of
'static to let Rust know that the reference will live long enough. So this code would
work, too:

use std::borrow::Cow;

struct User<'a> {   
    name: Cow<'a, str>,
}

fn main() {
    let user_name = "User1";
    let other_user_name = &"User10".to_string();    

    let user1 = User {
        name: user_name.into(),
    };

Here we are using the lifetime 
<'a> instead of 'static . . .

. . . which means that we can now 
use a reference to a String that 
doesn’t have a 'static lifetime.



21911.5 Rc
    let user2 = User {
        name: other_user_name.into(),
    };

    for name in [user1.name, user2.name] {
        match name {
            Cow::Borrowed(n) => {
                println!("Borrowed name, didn't need an allocation:\n  {n}")
            }
            Cow::Owned(n) => {
                println!("Owned name because we needed an allocation:\n  {n}")
            }
        }
    }
}

The output shows that both names were used as a Cow::Borrowed because they are
both borrowed values:

Borrowed name, didn't need an allocation:
  User1
Borrowed name, didn't need an allocation:
  User10

We’ve had a good look at the Cow type; let’s move on to the next advanced Rust con-
cept, Rc, a useful type that provides some flexibility in a language as strict as Rust.

11.5 Rc
Rc stands for “reference counter” (or “reference counted,” depending on who you
ask). Rc is used a lot as a way to get around Rust’s strict rules on ownership—without
actually breaking them—by allowing shared ownership and by keeping a careful eye
on how long the data is being shared. Let’s learn what makes Rc useful.

11.5.1 Why Rc exists

We know that in Rust, every variable can only have one owner. That is why this doesn’t
work:

fn takes_a_string(_unused_string: String) {}

fn main() {
    let user_name = String::from("User MacUserson");
    takes_a_string(user_name);
    takes_a_string(user_name);
}

After takes_a_string takes user_name, you can’t use it anymore. For us, this is no
problem: you can give it user_name.clone(). However, sometimes, a variable is part of
a struct, and maybe you can’t clone the struct. Or maybe the String is really long, and
you don’t want to clone it. An Rc gets around this by letting you have more than one
owner. An Rc is like a good office worker: it writes down who has ownership and how



220 CHAPTER 11 Multiple threads and a lot more
many of them there are. Once the number of owners goes down to 0, the value can be
dropped.

 One interesting thing about Rc has to do with garbage collection. Rust doesn’t use
garbage collection, which is why you have to think about things like references and
lifetimes. But most other languages use garbage collection invisibly in a manner simi-
lar to Rc: the language keeps track of where memory is being shared and later cleans it
up when nobody is using it anymore. That’s why a lot of new programmers to Rust use
Rc a lot because it lets them not worry about references and lifetimes so much.

11.5.2 Using Rc in practice

Here is how you use an Rc. First, imagine two structs: one called City and another
called CityData. City has information for one city, and CityData puts all the cities
together in Vecs:

#[derive(Debug)]
struct City {
    name: String,
    population: u32,
    city_history: String,
}

#[derive(Debug)]
struct CityData {
    names: Vec<String>,
    histories: Vec<String>,
}

fn main() {
    let calgary = City {
        name: "Calgary".to_string(),
        population: 1_200_000,       
        city_history: "Calgary began as a fort called Fort Calgary
        ➥that...".to_string(),
    };
    let canada_cities = CityData {
        names: vec![calgary.name], 
        histories: vec![calgary.city_history],    
    };
    println!("Calgary's history is: {}", calgary.city_history);
}

Of course, it doesn’t work because canada_cities owns the data and calgary doesn’t.
It says

error[E0382]: borrow of moved value: `calgary.city_history`
  --> src\main.rs:27:42
   |
24 |         histories: vec![calgary.city_history],   
   |                         -------------------- value moved here
...
27 |     println!("Calgary's history is: {}", calgary.city_history);

Pretend that this
string is very, very long.

This uses calgary.name, 
which is short.

But this String is long.

But this String 
is very long.



22111.5 Rc
   |                                          ^^^^^^^^^^^^^^^^^^^^ value
   ➥borrowed here after move
   |
   = note: move occurs because `calgary.city_history` has type
   ➥`std::string::String`, which does not implement the `Copy` trait

You can easily clone the Strings, but you can also wrap everything that you want to
share inside an Rc. Here’s how to do it. First, add the use declaration:

use std::rc::Rc;

Then, put Rc around everything we want to share:

use std::rc::Rc;

#[derive(Debug)]
struct City {
    name: Rc<String>,
    population: u32,
    city_history: Rc<String>,
}

#[derive(Debug)]
struct CityData {
    names: Vec<Rc<String>>,
    histories: Vec<Rc<String>>,
}

To add a new reference, you have to clone the Rc.
 But, hold on! Didn’t we want to avoid using .clone()? Not exactly—we didn’t want

to clone the whole String. But a clone of an Rc just clones the pointer: it’s basically
free. It’s like putting a name sticker on a box of books to show two people own it
instead of making a whole new box.

 You can clone an Rc called item with Rc::clone(&item) or item.clone(). Usually,
Rc::clone(&item) is better because an Rc holds a type that might have its own meth-
ods (including .clone()!). Thus, it’s a good way to show that you are cloning the Rc,
not the object inside it.

 There is also a method for Rc called strong_count() that shows you how many
owners there are for a piece of data. We will use this method in the following code,
too. How many owners do you think there are for Calgary’s city history?

use std::rc::Rc;

#[derive(Debug)]
struct City {
    name: Rc<String>,
    population: u32,
    city_history: Rc<String>,   
}

#[derive(Debug)]
struct CityData {

A String 
inside an Rc



222 CHAPTER 11 Multiple threads and a lot more
    names: Vec<Rc<String>>,
    histories: Vec<Rc<String>>,    
}

fn main() {

    let calgary_name = Rc::new("Calgary".to_string());
    let calgary_history = Rc::new("Calgary began as a fort called Fort
    ➥Calgary that...".to_string());

    let calgary = City {
        name: Rc::clone(&calgary_name),
        population: 1_200_000,
        city_history: Rc::clone(&calgary_history)
    };

    let canada_cities = CityData {
        names: vec![Rc::clone(&calgary_name)],    
        histories: vec![Rc::clone(&calgary_history)],
    };

    println!("Calgary's history is: {}", calgary.city_history);
    println!("{}", Rc::strong_count(&calgary.city_history));
}

The answer is 3, as the output shows:

Calgary's history is: Calgary began as a fort called Fort Calgary that...
3

First, we made a String inside an Rc: one owner. Then, we cloned the Rc, and the
City struct is using it: two owners. Finally, we cloned it again, and the CityData struct
is using it: three owners.

 If there are strong pointers, are there also weak pointers? Yes, there are. Weak
pointers are useful because if two Rcs point at each other, they can’t die (to be precise,
they can’t drop their values). This is called a reference cycle. If item 1 has an Rc to item 2
and item 2 has an Rc to item 1, they can’t get to 0 and will never be able to drop their
values. In this case, you want to use weak references. Weak references still maintain a
memory allocation but allow the Rc to drop its value. Rc will count both strong and
weak references, but strong references are the only references that keep an Rc from
dropping its value. You use Rc::downgrade(&item) instead of Rc::clone(&item) to
make weak references. Also, you use Rc::weak_count(&item) to see the weak count.

 Remember the quick example with the two functions that each take a String?
Solving it with reference counters is easy now that you know how: wrap a String in an
Rc and then clone it with Rc::clone(). Change the function signatures from String
to Rc<String>, and you’re done! Now it looks like this:

use std::rc::Rc;

fn takes_a_string(input: Rc<String>) {
    println!("It is: {input}")
}

A Vec of Strings 
inside Rcs

.clone() will increase 
the count.



22311.5 Rc
fn main() {
    let user_name = Rc::new(String::from("User MacUserson"));

    takes_a_string(Rc::clone(&user_name));
    takes_a_string(Rc::clone(&user_name));
}

Finally, we have the output we wanted:

It is: User MacUserson
It is: User MacUserson

11.5.3 Avoiding lifetime annotations with Rc

Rc has been interesting so far, but the two examples haven’t really given us an over-
whelming reason to use them. If you search online, you’ll see that Rc is really popular
with new Rust users. The reason is that using Rc lets you avoid writing lifetimes while
not needing to use .clone(). Let’s look at our example from the last chapter with the
City struct, which holds a &'a str for its name. But this time, we have added two
more structs: a Country struct that holds a Vec<City> and a World struct that holds a
Vec<Country>. We write this, but it won’t compile yet:

#[derive(Debug)]
struct City<'a> {
    name: &'a str,
    date_founded: u32,
}

#[derive(Debug)]
struct Country {
    cities: Vec<City>
}

#[derive(Debug)]
struct World {
    countries: Vec<Country>
}

fn main() {
    let city_names = vec!["Ichinomiya".to_string(), "Kurume".to_string()];
    let my_city = City {
        name: &city_names[0],
        date_founded: 1921,
    };
    println!("{} was founded in {}", my_city.name, my_city.date_founded);
}

Here is the error:

error[E0106]: missing lifetime specifier
 --> src/main.rs:9:17
  |
9 |     cities: Vec<City>
  |                 ^^^^ expected named lifetime parameter



224 CHAPTER 11 Multiple threads and a lot more
  |
help: consider introducing a named lifetime parameter
  |
8 ~ struct Country<'a> {
9 ~     cities: Vec<City<'a>>
  |

City has a lifetime of <'a>, and so the compiler wants to know how long Country will
live in relation to City. Will they both share the same lifetime?

 Fine, we will give them the same lifetime:

#[derive(Debug)]
struct Country<'a> {
    cities: Vec<City<'a>>
}

The compiler gives the same error message again because World holds a
Vec<Country>, and Country has the lifetime <'a>. We indicate the lifetime again in
the same way and now the code compiles:

#[derive(Debug)]
struct World<'a> {
    countries: Vec<Country<'a>>
}

That works just fine, but it took a lot of typing. It is starting to feel a bit awkward to
keep writing this lifetime just because we don’t want to clone a String inside the
city_names Vec. Every time a City, Country, or World gets used anywhere, we will
need to specify the lifetime again.

 Let’s try an Rc instead: we’ll make city_names a Vec<Rc<String>> instead of a
Vec<String> and clone the Rc. City will take an Rc<String> for its name instead of a
&'a str, and we can get rid of all the lifetime annotations everywhere else. Now the
code looks like this:

use std::rc::Rc;

#[derive(Debug)]
struct City {
    name: Rc<String>,
    date_founded: u32,
}

#[derive(Debug)]
struct Country {
    cities: Vec<City>,
}

#[derive(Debug)]
struct World {
    countries: Vec<Country>,
}

impl World {}    

If we were still using lifetimes, you would 
need to write impl World<'_> here.



22511.6 Multiple threads
fn main() {
    let city_names = vec![
        Rc::new("Ichinomiya".to_string()),
        Rc::new("Kurume".to_string()),
    ];

    let my_city = City {
        name: Rc::clone(&city_names[0]),
        date_founded: 1921,
    };

    println!("{} was founded in {}", my_city.name, my_city.date_founded);
}

This compiles fine and prints Ichinomiya was founded in 1921.
 Hopefully, you’ll get some good use out of the Rc type. Let’s move on to the final

topic in this chapter: multiple threads.

11.6 Multiple threads
Using multiple threads allows us to do many things at the same time. Modern comput-
ers have multiple cores and multiple threads, so they can do more than one thing at
the same time, and Rust lets you use them. Rust uses threads that are called OS threads,
each of which gets its own state stack and local state, making OS threads both efficient
and independent. (Some other languages use what are known as green threads, which
need a run time and are less powerful.)

11.6.1 Spawning threads

You create threads with std::thread::spawn and a closure to tell it what to do.
Threads are interesting because they run at the same time, and it can be fun to run
your code to see what happens as they all operate at the same time. What do you think
the output of this simple example will be?

fn main() {
    std::thread::spawn(|| {
        println!("I am printing something");
    });
}

In fact, the output will be different every time. Sometimes it will print, and sometimes
it won’t (this depends on your computer, too, and usually, it won’t print in the Play-
ground). That is because sometimes main() finishes before the thread finishes, and
when main() finishes, the program is over. This is easier to see in a for loop:

fn main() {
    for _ in 0..10 {   
        std::thread::spawn(|| {
            println!("I am printing something");
        });
    }    
}        

Sets up 10 threads

Now the threads start.

How many can finish 
before main() ends here?



226 CHAPTER 11 Multiple threads and a lot more
The code goes as follows:

 The main thread loops once, starting an independent thread. This thread is
going to try to print a message.

 This loop repeats nine more times. Now a total of ten threads are inde-
pendently trying to print a message. But they might not all get the chance to
print, because…

 …the main thread quickly reaches the end of fn main() and shuts down the
program.

Usually, about four threads will print before main() ends, but it is always different. If
your computer is faster, it might not print any. Also, sometimes the threads will panic:

thread 'thread 'I am printing something
thread '<unnamed><unnamed>thread '' panicked at '<unnamed>I am printing

➥something
' panicked at 'thread '<unnamed>cannot access stdout during shutdown'

➥panicked at '<unnamed>thread 'cannot access stdout during
shutdown

This error occurs when the thread tries to do something just when the program is
shutting down.

 You could, of course, give the computer something to do after starting the threads
so that the program won’t shut down right away:

fn main() {
    for _ in 0..10 {
        std::thread::spawn(|| {
            println!("I am printing something");
        });
    }
    let mut busy_work = vec![];
    for _ in 0..1_000_000 {   
        busy_work.push(9);
        busy_work.pop();
    }
}

That will guarantee that all 10 threads have time to print their messages. But that’s a
pretty silly way to give the threads time to finish. The better way is to tell the code to
stop until the threads are done. The cool thing here is that the spawn() function actu-
ally returns something called a JoinHandle that lets us do exactly this. You can see this
in the signature for spawn():

pub fn spawn<F, T>(f: F) -> JoinHandle<T>
where
    F: FnOnce() -> T,
    F: Send + 'static,
    T: Send + 'static,

Here are two notes on the signature: 

 f is the closure. We will learn how to put closures into our functions later.

Makes the program push 9 into a Vec and then 
removes it 1 million times. It has to finish 
this before it can exit the main function.



22711.6 Multiple threads
 Did you notice that both of them need a 'static lifetime? The page in the doc-
umentation explains why (https://doc.rust-lang.org/std/thread/fn.spawn
.html): “'static means that the closure and its return value must have a life-
time of the whole program. That’s because threads can outlive the lifetime they
have been created in. . . . Since we can’t know when it will return, we need to
have them as long as possible, so until the end of the program.”

NOTE In Rust 1.63, in August 2022, Rust got a new type of thread that doesn’t
need 'static! We’ll look at that in the next chapter.

11.6.2 Using JoinHandles to wait for threads to finish

Okay, back to the JoinHandle returned by the spawn() function. Let’s make a variable
to hold a JoinHandle every time a thread is spawned:

fn main() {
    for _ in 0..10 {
        let handle = std::thread::spawn(|| {
            println!("I am printing something");
        });
    }
}

The variable handle is now a JoinHandle, but we aren’t doing anything with it yet, and
the main program is still finishing before the threads have had time to print their mes-
sages. To use the JoinHandle to tell the program to wait for the threads to finish, we
call a method called .join(). This method means “wait until the thread is done” (it
waits for the thread to “join” it). Write handle.join(), and it will wait for each of the
threads to finish:

fn main() {
    for _ in 0..10 {
        let handle = std::thread::spawn(|| {
            println!("I am printing something");
        });
        handle.join();   
    }
}

So now we won’t leave main() until all 10 threads are done. But, actually, we aren’t
using threads exactly the way we want yet. We start a thread, do something, and then
call .join() to wait—and only then we start a new thread. What we want instead is for
main() to start all the threads at the same time, get them to start working, and only
then call .join() on the threads. 

 To solve this, we can create a Vec that will hold all of the JoinHandles. Then we can
call .join() on them once all 10 of the threads are up and running:

fn main() {
    let mut join_handles = vec![];    
    for _ in 0..10 {

Waits for the 
threads to finish

Here is the Vec that will hold 
each of the JoinHandles. It 
stands outside the for loop.

https://doc.rust-lang.org/std/thread/fn.spawn.html
https://doc.rust-lang.org/std/thread/fn.spawn.html
https://doc.rust-lang.org/std/thread/fn.spawn.html


228 CHAPTER 11 Multiple threads and a lot more
        let handle = std::thread::spawn(|| {
            println!("I am printing something");
        });
        join_handles.push(handle);    
    }
    for handle in join_handles {  
        handle.join().unwrap();
    }
}

The code successfully prints I am printing something 10 times, showing us that
main() is indeed waiting for all 10 threads to finish. Success!

 Now, let’s make a small change to the code. Every thread is working on its own, so
it would be interesting to print out the thread number instead of just printing I am
printing something every time. We could do this by making a variable called num
inside the for loop and printing that out. Surprisingly, however, the code doesn’t
work:

fn main() {
    let mut join_handles = vec![];
    for num in 0..10 {   
        let handle = std::thread::spawn(|| {
            println!("Inside thread number: {num}");    
        });
        join_handles.push(handle);
    }
    for handle in join_handles {
        handle.join().unwrap();
    }
}

The error message is pretty long:

error[E0373]: closure may outlive the current function, but it borrows

➥`num`, which is owned by the current function
 --> src\main.rs:4:41
  |
4 |         let handle = std::thread::spawn(|| {
  |                                         ^^ may outlive borrowed value
  ➥`num`
5 |             println!("Inside thread number: {num}");
  |                                              --- `num` is borrowed here
  |
note: function requires argument type to outlive `'static`
 --> src\main.rs:4:22
  |
4 |           let handle = std::thread::spawn(|| {
  |  ______________________^
5 | |             println!("Inside thread number: {num}");
6 | |         });
  | |__________^

We are pushing each JoinHandle into the Vec 
and haven’t called them to .join() yet. This will 
let all 10 threads start working without waiting.

Now that all 10 threads are working, we can finally 
call .join() on each of the threads to make sure that 
they are done. Now all 10 threads are working, and 
main() will not finish until they are all done.

We write for num instead 
of for _, so we can print out 
the thread number . . .

. . . and print 
it out here.



22911.6 Multiple threads
help: to force the closure to take ownership of `num` (and any other

➥referenced variables), use the `move` keyword
  |
4 |         let handle = std::thread::spawn(move || {
  |                                         ++++

Wow. That is quite the error message. But at least the end of the error message gives us
some advice: add the move keyword. Indeed, adding this keyword fixes the problem,
and we can see the thread numbers in random order:

Inside thread number: 0
Inside thread number: 1
Inside thread number: 4
Inside thread number: 2
Inside thread number: 5
Inside thread number: 6
Inside thread number: 7
Inside thread number: 8
Inside thread number: 9
Inside thread number: 3

But what did this keyword do exactly, and why did we need it? To understand this, we
need a small detour to learn about the three types of closures. Understanding the
behavior of the three types of closures is a big help in understanding how multiple
threads work.

11.6.3 Types of closures

We will take a longer look at closures in the next chapter, but here is a quick introduc-
tion. Remember the F: FnOnce() -> T part in the spawn() function? FnOnce is the
name of one of the three traits implemented by closures. The following three are the
traits implemented by closures:

 FnOnce—Takes by value
 FnMut—Takes a mutable reference
 Fn—Takes a regular reference

When a closure captures a variable from its environment, it will try to use Fn if it can.
But if it needs to change the value, it will use FnMut, and if it needs to take by value, it
will use FnOnce. FnOnce is a good name because it explains what it does: it takes the
value once, and then it can’t take it again.

 Here is an example:

fn main() {
    let my_string = String::from("I will go into the closure");
    let my_closure = || println!("{my_string}");
    my_closure();
    my_closure();
}

The closure my_closure() doesn’t need to change or take by value, so it implements
Fn: it takes a reference. Therefore, the code compiles.



230 CHAPTER 11 Multiple threads and a lot more
 If we change my_string, the closure will implement FnMut.

fn main() {
    let mut my_string = String::from("I will be changed in the closure");
    let mut my_closure = || {
        my_string.push_str(" now");
        println!("{my_string}");
    };
    my_closure();
    my_closure();
}

This prints

I will be changed in the closure now
I will be changed in the closure now now

If you take by value, it implements FnOnce:

fn main() {
    let my_vec: Vec<i32> = vec![8, 9, 10];
    let my_closure = || {
        my_vec.into_iter().for_each(|item| println!("{item}"));    
    };
    my_closure();
    // my_closure();    
}

We took by value, so we can’t run my_closure() more than once. That is where the
name FnOnce comes from.

 We will learn a lot more about these three closure types in the next chapter, but
these basics are enough to help us solve our problem with the move keyword.

11.6.4 Using the move keyword

Let’s return to threads. Let’s try to use a value from outside:

fn main() {
    let my_string = String::from("Can I go inside the thread?");
    let handle = std::thread::spawn(|| {
        println!("{my_string}");
    });
    handle.join().unwrap();
}

As before, the compiler says that this won’t work:

error[E0373]: closure may outlive the current function, but it borrows

➥`my_string`, which is owned by the current function
  --> src\main.rs:28:37
   |
28 |     let handle = std::thread::spawn(|| {
   |                                     ^^ may outlive borrowed value
   ➥`my_string`

into_iter takes ownership, and
my_vec is pulled into my_closure.

This won’t work because the closure, 
FnOnce, took ownership of my_vec, 
and my_vec is already gone.



23111.6 Multiple threads
29 |         println!("{}", my_string);
   |                        --------- `my_string` is borrowed here
   |
note: function requires argument type to outlive `'static`
  --> src\main.rs:28:18
   |
28 |       let handle = std::thread::spawn(|| {
   |  __________________^
29 | |         println!("{}", my_string);
30 | |     });
   | |______^
help: to force the closure to take ownership of `my_string` (and any other

➥referenced variables), use the `move` keyword
   |
28 |     let handle = std::thread::spawn(move || {
   |                                     ^^^^^^^

This time, we can understand the message and why move will solve the problem. In this
case, the closure wants to use Fn because it only wants to use my_string as a reference
to print it. As we saw in the last section, a closure will use Fn if it can because it prefers
to only use a reference. However, the spawn() method requires an FnOnce to be used,
which means to take by value. The move keyword lets us force the closure to take by
value instead of reference, and now that it owns the String, there are no lifetime
problems anymore.

 Now the code works:

fn main() {
    let mut my_string = String::from("Can I go inside the thread?");
    let handle = std::thread::spawn(move || {
        println!("{my_string}");
    });
    handle.join().unwrap();
}

That was the problem with our former code, too. Let’s look at it again:

fn main() {
    let mut join_handles = vec![];
    for num in 0..10 {
        let handle = std::thread::spawn(|| {
            println!("Inside thread number: {num}");
        });
        join_handles.push(handle);
    }
    for handle in join_handles {
        handle.join().unwrap();
    }
}

You can see that num is being declared outside of the thread, and then the println!
statement is trying to borrow num. However, the spawn() method holds an FnOnce clo-
sure, which needs to take num by value, not by reference. That’s why the move keyword
was needed here, too.



232 CHAPTER 11 Multiple threads and a lot more
 That was a lot of work! You can see that the compiler is watching your back when
you use multiple threads to make sure that no data is being borrowed in the wrong
way. In the meantime, you now have some tools that give you extra flexibility: Rc for
multiple ownership, Cow to take in either owned or borrowed data, and more know-
ledge of how closures work to help you further understand Rust’s rules on borrowing.
Chapter 13 is going to be a relaxing chapter, but we have some hard work yet to do in
chapter 12. We will continue to learn to understand threads, closures, and related
types. 

Summary
 If you feel like you are using .clone() too much, maybe think about using an

Rc (reference counter).
 If you like sketching out a high-level view of your code before you begin, use

todo! everywhere, and the compiler will leave you alone.
 Once you understand its signature, Cow is a pretty convenient type that lets you

take in both owned and borrowed values.
 If you make a new type, you can implement any traits on it you like. This is the

most common way to get around the orphan rule. But type aliases are just
new names for existing types, so using them doesn’t change their underlying
behavior.

 Because threads are independent, another thread might not be finished by the
time main() finishes. If you want to wait for a thread to finish, use the Join-
Handle that you get from the spawn() function.

 The compiler seems extra strict when using multiple threads because a thread
might live longer than the data it borrows. Usually, you use the move keyword to
solve this.



More on closures,
generics, and threads
This chapter is a bit like the last one: lots of new ideas that are tricky to understand
at first. The first section on closures as arguments in functions is probably the hard-
est but continues what we learned in the last chapter about the three types of clo-
sures. Fortunately, the rest of the chapter is made up of similar things to what
you’ve learned before. impl Trait is like regular generics but easier to write, Arc is
like Rc, and scoped threads are like threads but easier to use; you’ll understand the
channel examples fairly easily too because you already know how multiple threads
work.

This chapter covers
 Closures in functions

 impl Trait as another way to use generics

 Arc, which is like Rc but thread-safe

 Scoped threads, threads that only live inside 
a scope

 Using channels to send messages, even across 
threads
233



234 CHAPTER 12 More on closures, generics, and threads
12.1 Closures as arguments
Closures are great. We know how to make our own, but what about closures as argu-
ments in functions? Arguments need to have a type, but what exactly is a closure’s type?

 So far, we’ve seen that there are three types of closures, and we know that they can
capture variables that are in the same scope. We also know that when a closure
accesses a variable in Rust, it can take by value, by reference, or by mutable reference.
As we saw in the last chapter, a closure is able to choose on its own between Fn, FnMut,
and FnOnce when capturing variables. However, as a function argument or return
value, you have to choose one of these three. This is pretty similar to regular type
inference. When you write let my_num = 9 or let my_num = 9.0, the compiler can
determine the type, but in a function signature, you have to choose the exact type it
will be: an i32, a u8, and so on.

 A good way to get a feel for closures is by looking at a few function signatures. Here
is the one for the .all() method. We saw before that .all() checks an iterator to see
whether everything is true (depending on how you decide to return true or false).
Part of its signature says this:

fn all<F>(&mut self, f: F) -> bool
where
    F: FnMut(Self::Item) -> bool,

Let’s look at this signature bit by bit:

 fn all<F> tells you that the function involves a generic type that here is called F.
 &mut self is pretty easy: this is a method that takes a &mut self (a mutable ref-

erence to self, which is the iterator).
 f: F is usually what you see for a closure: this is the variable name and the

generic type. There is nothing special about f and F, and they could be differ-
ent names. You could write my_closure: Closure or func: Function or any-
thing else if you wanted—it doesn’t matter. But, in signatures, you almost always
see f: F. In fact, up to this line, there is nothing that tells us that f is a closure. It
could still be any other generic type.

 F: FnMut(Self::Item) -> bool is the part that tells us that the function takes a
closure. This closure implements FnMut, so it can change the values by mutable
reference. It takes a Self::Item (the associated type of the iterator), and it has
to return true or false.

You see this sort of signature a lot in the iterator methods that take closures. For exam-
ple, this is the signature for .map():

fn map<B, F>(self, f: F) -> Map<Self, F>
    where
        Self: Sized,
        F: FnMut(Self::Item) -> B,
    {
        Map::new(self, f)
    }



23512.1 Closures as arguments
The signature fn map<B, F>(self, f: F) means that the function takes two generic
types. F is a function that takes one item from the container implementing .map(),
and B is the return type of that function (the item that you pass on). After the where,
we see the trait bounds. One is Sized, and the next is the closure signature. It must be
an FnMut and do the closure on Self::Item, which is the next item from the iterator.
It returns B, which is whatever you choose to pass on. If you look at the iterator meth-
ods that we learned in chapter 9, you will see FnMut everywhere.

 Now, let’s relax a bit with maybe the simplest possible function that takes a closure:

fn do_something<F>(f: F)
where
    F: FnOnce(),
{
    f();
}

The function signature here simply says that it takes a closure that takes by value
(FnOnce) and doesn’t return anything. Now, we can write this closure that takes noth-
ing and put whatever we like inside it. We will create a Vec and then iterate over it just
to show what we can do now:

fn do_something<F>(f: F)
where
    F: FnOnce(),
{
    f();
}

fn main() {
    let some_vec = vec![9, 8, 10];
    do_something(|| {
        some_vec
            .into_iter()
            .for_each(|x| println!("The number is: {x}"));
    });
}

Here is the output:

The number is: 9
The number is: 8
The number is: 10

Because the closure is an FnOnce() (and because .into_iter() inside takes by value),
you can’t call it with some_vec again—it was taken by value and is now gone. Give it a
try! The code won’t compile now because we are calling do_something twice:

fn do_something<F>(f: F)
where
    F: FnOnce(),
{
    f();
}



236 CHAPTER 12 More on closures, generics, and threads
fn main() {
    let some_vec = vec![9, 8, 10];
    do_something(|| {
        some_vec
            .into_iter()
            .for_each(|x| println!("The number is: {x}"));
    });
    do_something(|| {
        some_vec
            .into_iter()
            .for_each(|x| println!("The number is: {x}"));
    });
}

The error message is exactly the same as when a value moves in other cases: the value
is “moved into” somewhere else and can’t be used again:

9  |     let some_vec = vec![9, 8, 10];
   |         -------- move occurs because `some_vec` has type `Vec<i32>`, 

which does not implement the `Copy` trait
10 |     do_something(|| {
   |                  -- value moved into closure here
11 |         some_vec
   |         -------- variable moved due to use in closure
...
15 |     do_something(|| {
   |                  ^^ value used here after move
16 |         some_vec
   |         -------- use occurs due to use in closure

Now, let’s try a closure that takes by reference. To do so, we can say that the closure is
an Fn(). This closure will call some_vec as many times as we like, and the variable will
still be alive:

fn do_something<F>(f: F)
where
    F: Fn(),
{
    f();
}

fn main() {
    let some_vec = vec![9, 8, 10];
    do_something(|| {
        some_vec.iter().for_each(|x| println!("The number is: {x}"));
    });

    do_something(|| {
        some_vec.iter().for_each(|x| println!("The number is: {x}"));
    });
}

The output will be the same as the last sample, just printed two times.



23712.1 Closures as arguments
 But here is something that might seem odd: try changing the F: Fn() on line 3 to
F: FnOnce(). The code compiles! This might be unexpected. Let’s find out why.

12.1.1 Some simple closures

To understand how the three closure traits work, let’s take a look at some super-simple
functions that each takes a closure. First, we have a function that takes an Fn() closure
and calls it two times:

fn takes_fn<F: Fn()>(f: F) {
    f();
    f();
}

As you can see, it’s not FnOnce, so it can be called twice (or three times or more).
 Up next is a function that takes an FnMut() closure and calls it twice. This one can

also be called more than once:

fn takes_fnmut<F: FnMut()>(mut f: F) {
    f();
    f();
}

Finally, we have a function that takes an FnOnce() closure. It won’t compile if you call
it a second time:

fn takes_fnonce<F: FnOnce()>(f: F) {
    f();
    // f();   
}

You’ll notice that functions that take closures can look extremely simple. This is
because closures can capture variables from their environment, so often you don’t
need to pass any arguments in. Each of our closures (Fn(), FnMut(), and FnOnce())
takes no arguments and returns nothing, but they can capture variables around them.

 Let’s make some actual closures to pass into these functions. Inside main(), we will
have a mutable String and three types of closures that capture it. Then we will call
each of them:

fn takes_fnonce<F: FnOnce()>(f: F) {
    f();
}
fn takes_fnmut<F: FnMut()>(mut f: F) {
    f();
    f();
}
fn takes_fn<F: Fn()>(f: F) {
    f();
    f();
}

This won’t work.



238 CHAPTER 12 More on closures, generics, and threads
fn main() {
    let mut my_string = String::from("Hello there");

    let prints_string = || {   
        println!("{my_string}");
    };
    takes_fn(prints_string);    

    let adds_exclamation_and_prints = || {    
        my_string.push('!');
        println!("{my_string}");
    };
    takes_fnmut(adds_exclamation_and_prints);    

    let prints_then_drops = || {    
        println!("Now dropping {my_string}");
        drop(my_string);
    };
    takes_fnonce(prints_then_drops);
    // takes_fnonce(prints_then_drops);     
}

Here is the output:

Hello there
Hello there
Hello there!
Hello there!!
Now dropping Hello there!!

You don’t have to name a closure, though, and it’s usually more common to just write
the closure out inside the function that uses it as an argument. The following code is
the exact same as the code we just saw, except we are just writing the closures instead
of giving them names first:

fn takes_fnonce<F: FnOnce()>(f: F) {
    f();
}
fn takes_fnmut<F: FnMut()>(mut f: F) {
    f();
    f();
}
fn takes_fn<F: Fn()>(f: F) {
    f();
    f();
}

fn main() {
    let mut my_string = String::from("Hello there");
    takes_fn(|| {
        println!("{my_string}");
    });    
    takes_fnmut(|| {
        my_string.push('!');
        println!("{my_string}");

This closure only needs to capture by 
reference, so it will be an Fn closure.

The takes_fn function takes the closure 
as an argument and calls it two times.

This next closure needs to 
capture by mutable reference, 
so it will be an FnMut closure.

The takes_fnmut function takes 
the closure as an argument 
and calls it two times.

Finally, we have a closure that captures 
by value, so it will be an FnOnce closure.

The takes_fnonce function takes 
prints_then_drops but can’t do it again.



23912.1 Closures as arguments
    });
    takes_fnonce(|| {
        println!("Now dropping {my_string}");
        drop(my_string);
    });
}

Hopefully, that makes sense: when we write a closure we are just writing another kind
of function. The regular functions call those closures once or twice. When we call
those regular functions, they call the closures once or twice, and our code inside the
closures is executed.

 Now that we have these basics down, let’s take a look at the signatures for each of
the three closure types and see what they can tell us.

12.1.2 The relationship between FnOnce, FnMut, and Fn

There is an interesting relationship among the three closure traits, which we can see
from their signature. Let’s take a look at the signature for Fn first. Here is the import-
ant part:

pub trait Fn: FnMut

Just as in any other trait, the trait after : is the trait that must be implemented first.
This means that a closure needs to implement FnMut before it can implement Fn. So
let’s take a look at FnMut:

pub trait FnMut: FnOnce

Interesting! A closure needs FnMut to implement Fn, but before it implements FnMut,
it needs FnOnce. Finally, let’s check FnOnce:

pub trait FnOnce

So, FnOnce doesn’t need any other traits to be implemented first. To sum up:

 Fn must implement the other two traits (FnMut and FnOnce).
 FnMut must implement one other trait (FnOnce).
 FnOnce doesn’t need any other traits to be implemented.

That means that all closures implement FnOnce.
 The trait after the : is known as a supertrait. FnOnce is a supertrait of FnMut, and

FnMut is a supertrait of Fn. The word super is just the Latin word meaning “over,” so
you can think of it as this:

 First, start at the top and implement FnOnce.
 With FnOnce implemented, FnMut can now be implemented.
 Finally, Fn can be implemented.

The opposite of this is subtrait, which just means under. Supertrait and subtrait are easy
to remember if you imagine implementing the first trait needed (the line above,



240 CHAPTER 12 More on closures, generics, and threads
so super) and going down to the next line to implement the next trait (the line below,
so sub).

 Why is this useful? Well, it means that if a function takes an FnOnce as an argument,
it can also take an Fn instead (because Fn also implements FnOnce) or an FnMut
(because FnMut also implements FnOnce). If a function takes an FnMut, it can also take
an Fn (because Fn implements FnMut).

 We can show this with our previous example. We will get rid of the function
takes_fn() and keep takes_fnonce() and takes_fnmut(). It still works:

fn takes_fnonce<F: FnOnce()>(f: F) {
    f();
}
fn takes_fnmut<F: FnMut()>(mut f: F) {
    f();
    f();
}

fn main() {
    let mut my_string = String::from("Hello there");
    let prints_string = || {    
        println!("{my_string}");
    };
    takes_fnonce(prints_string);    
    takes_fnmut(prints_string);   
    let adds_exclamation_and_prints = || {    
        my_string.push('!');
        println!("{my_string}");
    };
    takes_fnonce(adds_exclamation_and_prints);    
    let prints_then_drops = || {    
        println!("Now dropping {my_string}");
        drop(my_string);
    };
    takes_fnonce(prints_then_drops);    
}

This is why you sometimes see books say that Fn is the “most powerful” of the three
closure traits because it can be passed in no matter which closure trait is written. At
the same time, having a function that takes an Fn is the most restrictive because an Fn
closure must implement all three traits. No FnMut or FnOnce can be an argument in a
function that wants an Fn.

12.1.3 Closures are all unique

One interesting fact about closures is that one closure is never the same type as
another closure, even if the signature is the same. The types are always different
because Fn, FnMut, and FnOnce are traits, not concrete types.

 Let’s look at an example to prove this. Here is a function that takes a closure of
type Fn() -> i32. We’ll make a closure and give it to the function. The function does
nothing, so there is no output from the example, but the compiler is happy with this:

takes_fnonce takes an 
FnOnce, and Fn implements 
FnOnce. No problem.

takes_fnmut takes an FnMut, 
and Fn implements FnMut. 
Once again, no problem.

takes_fnonce takes an FnOnce, 
and FnMut implements FnOnce.

Finally, takes_fnonce takes 
an FnOnce, and FnOnce (of 
course) implements FnOnce.



24112.1 Closures as arguments
fn takes_a_closure_and_does_nothing<F>(f: F)
where
    F: Fn() -> i32,
{}

fn main() {
    let my_closure = || 9;    
    takes_a_closure_and_does_nothing(my_closure);
}

Now, let’s try having it take two closures with the exact same signature to pass them in:

fn takes_two_closures_and_does_nothing<F>(first: F, second: F)
where
    F: Fn() -> i32,
{
}

fn main() {
    let first_closure = || 9;
    let second_closure = || 9;
    takes_two_closures_and_does_nothing(first_closure, second_closure);
}

Interestingly, it doesn’t work! Fortunately, the compiler gives us a fantastic error that
tells us exactly what the problem is:

error[E0308]: mismatched types
  --> src/main.rs:10:56
   |
8  |     let first_closure = || 9;
   |                         -- the expected closure
9  |     let second_closure = || 9;
   |                          -- the found closure
10 |     takes_two_closures_and_does_nothing(first_closure,
   ➥second_closure);
   |     -----------------------------------                ^^^^^^^^^^^^^^
   ➥expected closure, found a different closure
   |     |
   |     arguments to this function are incorrect
   |
   = note: expected closure `[closure@src/main.rs:8:25: 8:27]`
              found closure `[closure@src/main.rs:9:26: 9:28]`
   = note: no two closures, even if identical, have the same type
   = help: consider boxing your closure and/or using it as a trait object

This makes sense because these closures are unique types that implement the trait Fn,
not a concrete type Fn. From the compiler’s point of view, the two arguments look like
this:

 Argument 1—Some type that implements Fn, takes no arguments, and returns
an i32.

Takes nothing, 
returns an i32



242 CHAPTER 12 More on closures, generics, and threads
 Argument 2—Some other type that implements Fn, takes no arguments, and
returns an i32.

Since first_closure is some type that implements a trait, and second_closure is
some other type that implements a trait, they are not the same type.

 The last part of the error message is interesting: consider boxing your closure.
We will learn what this message is talking about in the next chapter. (If you are curious
about this right away, try doing a search for the term trait object.)

 Now, if we just wanted this code to compile, we could inform the compiler that the
closures are different types by calling them F and G instead of just F. The compiler will
be happy with this:

fn takes_two_closures_and_does_nothing<F, G>(first: F, second: G)
where
    F: Fn() -> i32,
    G: Fn() -> i32,
{
}

fn main() {
    let first_closure = || 9;
    let second_closure = || 9;
    takes_two_closures_and_does_nothing(first_closure, second_closure);
}

Hopefully, this clears up some of the mysteries about closures. Let’s finish up with an
example that is a little more interesting than the simple ones we have looked at so far.

12.1.4 A closure example

Now let’s put together a closure example that actually does something interesting. In
this example, we will create a City struct again. This time, the City struct has more
data about years and populations. It has a Vec<u32> for all the years and another,
Vec<u32>, for all the populations.

 City has a single method called .change_city_data(), which takes a closure.
When we use .change_city_data(), it gives us the years and the populations and a
closure, so we can do what we want with the data. The closure type is FnMut, so we can
change the data without taking ownership. In the following example, we will just have
some fun with the closure by making some random changes to the City data. It looks
like this:

#[derive(Debug)]
struct City {
    name: String,
    years: Vec<u32>,
    populations: Vec<u32>,
}

impl City {
    fn change_city_data<F>(&mut self, mut f: F)    
    

We bring in self, and f is a generic type F. You
could write it "mut closure: GenericClosure"
or any other names you choose, but f and F

are most common in Rust.



24312.1 Closures as arguments

 

    where
        F: FnMut(&mut Vec<u32>, &mut Vec<u32>), 
    {
        f(&mut self.years, &mut self.populations)  
    }
}

fn main() {
    let mut tallinn = City {
        name: "Tallinn".to_string(),
        years: vec![1372, 1834, 1897, 1925, 1959, 1989, 2000, 2010, 2020],
        populations: vec![3_250, 15_300, 58_800,
            119_800, 283_071, 478_974,
            400_378, 406_703, 437_619,
],
        ],
    };

    tallinn.change_city_data(|x, y| {    
        x.push(2030);
        y.push(500_000);
    });

    tallinn.change_city_data(|years, populations| {    
        let new_vec = years
            .iter_mut()
            .zip(populations.iter_mut())  
            .take(3)
            .collect::<Vec<(_, _)>>();  
        println!("{new_vec:?}");
    });

    tallinn.change_city_data(|x, y| {    
        let position_option = x.iter().position(|x| *x == 1834);
        if let Some(position) = position_option {
            println!(
                "Going to delete {} at position {:?} now.",
                x[position], position
            );
            x.remove(position);
            y.remove(position);
        }
    });

    println!(
        "Years left are {:?}\nPopulations left are {:?}",
        tallinn.years, tallinn.populations
    );
}

The closure takes mutable vectors of u32, 
which are the year and population data. 
How do we make sure that the year and 
population data get passed in? Well . . .

. . . we do it by calling the closure in and passing in
these parameters as the arguments. Now, a user of the

function gets access to these parameters and can do
whatever they want with the closure every

time we use it as long as
the signature matches.

We’ll choose x and y for the two 
variables and can use them to 
add some data for the year 2030.

Or we can choose the names’
years and populations. Let’s 
put the data for three years 
together and print it.

Zips the two together and 
only takes the first three

Tells Rust to decide 
the types inside the tuple

For our final
random change

to the data, let’s
delete the data
for 1834 if the

.position()
method finds it.



244 CHAPTER 12 More on closures, generics, and threads
Running this code will print the result of all the times we called .change_city_
data():

[(1372, 3250), (1834, 15300), (1897, 58800)]
Going to delete 1834 at position 1 now.
Years left are [1372, 1897, 1925, 1959, 1989, 2000, 2010, 2020, 2030]
Populations left are [3250, 58800, 119800, 283071, 478974, 400378, 406703,

➥437619, 500000]

This might be a good example for you to pick up and experiment for a bit. One idea
you could try would be changing the closure inside change_city_data() to take a
mutable reference to all of self (the City struct) instead of the two parameters. How
would you change the signature? And what changes would you then have to make to
the rest of the code to have it compile again?

 That’s enough learning about closures for a while! You’ll see closures enough any-
way as you start to use Rust more and more. Now, let’s take a look at something else
you’ll see: another way to use generics.

12.2 impl Trait
It turns out that Rust has other ways to use generics, and now it’s time to learn the
next one: impl Trait. Don’t worry; there are good reasons for having multiple types
of generics. We first learned that generics use a type T (or any other name), which
then gets decided when the program compiles. Let’s do a quick review of the generics
we already know so that we can understand how impl Trait generics are different.

12.2.1 Regular generics compared to impl Trait

Let’s look at a concrete function to start, a very simple one that compares two numbers:

fn print_maximum(one: i32, two: i32) {
    let higher = if one > two { one } else { two };
    println!("{higher} is higher");
}

fn main() {
    print_maximum(8, 10);
}

This prints 10 is higher.
 But this only takes an i32, so now we will make it generic so we can take in more

than just i32s. We need to compare, and we want to print with {}. To do that, our type
T will need to have PartialOrd and Display. Remember, this means “only take types
that already have PartialOrd and Display.” Here it is as a generic function:

use std::fmt::Display;

fn print_maximum<T: PartialOrd + Display>(one: T, two: T) {
    let higher = if one > two { one } else { two };
    println!("{higher} is higher.");
}



24512.2 impl Trait
fn main() {
    print_maximum(8, 10);
}

Now let’s look at impl Trait, which is similar. Instead of a type T, we can bring in an
impl Trait. The function will then accept a type that implements that trait. You’ll
notice that it involves less typing but otherwise looks pretty similar:

use std::fmt::Display;

fn prints_it(input: impl Into<String> + Display) {    
    println!("You can print many things, including {input}");
}

fn main() {
    let name = "Tuon";
    let string_name = String::from("Tuon");
    prints_it(name);
    prints_it(string_name);
}

There are a few differences and limitations when you use impl Trait compared to
regular generics. One difference is that for impl Trait you can’t decide the type—the
function decides it. Take a look at this example:

use std::fmt::Display;

fn prints_it_impl_trait(input: impl Display) {
    println!("You can print many things, including {input}");
}

fn prints_it_regular_generic<T: Display>(input: T) {
    println!("You can print many things, including {input}");
}

fn main() {
    prints_it_regular_generic::<u8>(100);    
    prints_it_impl_trait(100);    
    prints_it_impl_trait(100u8);   
    // prints_it_impl_trait::<u8>(100); 
}

The difference between the two gets even clearer when we look at the impl Trait ver-
sion of our first example, the gives_higher() function. Interestingly, this code won’t
work:

use std::fmt::Display;

fn gives_higher(one: impl PartialOrd + Display, two: impl PartialOrd +

➥Display) {
    let higher = if one > two { one } else { two };

Takes anything that can
turn into a String and

also implements Display

You can specify
u8 if you want. Here you can’t—it’ll be 

an i32 because Rust 
chooses i32 by default.

Well, we could pass in a u8 in this way. 
But we’re not telling the function what 
concrete type to choose; we’re just giving 
it a concrete type that it will react to.This last one won’t work for just

this reason: you can’t decide the
type when calling the function.



246 CHAPTER 12 More on closures, generics, and threads
    println!("{higher} is higher.");
}

fn main() {
    gives_higher(8, 10);
}

The code doesn’t work because regular generics specify a type name, like T. Writing T:
PartialOrd + Display means, “There is a single type named T, and it will implement
PartialOrd and Display.” But writing impl PartialOrd + Display means, “This argu-
ment will be some type that implements PartialOrd and Display.” But there is noth-
ing to say that they will be the same type, and PartialOrd is used to compare two
variables of the same type! There is no type T to tell the compiler that we are talking
about a single type.

 The compiler error is pretty funny and one of the rare examples where the com-
piler is confusing to the reader:

4 |     let higher = if one > two { one } else { two };
  |                     ---   ^^^ expected type parameter `impl PartialOrd
  ➥+ Display`, found a different type parameter `impl PartialOrd +
  ➥Display`
  |                     |
  |                     expected because this is `impl PartialOrd + Display`
  |
  = note: expected type parameter `impl PartialOrd + Display` (type
  ➥parameter `impl PartialOrd + Display`)
             found type parameter `impl PartialOrd + Display` (type
  ➥parameter `impl PartialOrd + Display`)

Hopefully, this compiler message will be improved in the future.
 Another limitation is that impl Trait can only be a parameter or return type of a

regular function (http://mng.bz/46mj). It cannot appear when implementing traits.
It can’t be the type of a let binding. And it can’t appear inside a type alias. 

 So far, we’ve only talked about the disadvantages of impl Trait! But it has a big
advantage: we can return impl Trait from a function, and that lets us return closures
because their function signatures are traits. In other words, you can write functions
that return functions! Let’s see how that works.

12.2.2 Returning closures with impl Trait

Since we can return impl Trait from a function, we can also use it to return a closure.
To return a closure, use impl and then the closure signature. Once you return it, you
can use it just like any other closure.

 Here is a small example of a function that gives you a closure depending on the
text you put in. If you put "double" or "triple" in, it multiplies it by 2 or 3; other-
wise, it gives you the same number. Let’s also print a message while we’re at it:

fn returns_a_closure(input: &str) -> impl FnMut(i32) -> i32 {
    match input {

http://mng.bz/46mj


24712.2 impl Trait
        "double" => |mut number| {
            number *= 2;
            println!("Doubling number. Now it is {number}");
            number
        },
        "triple" => |mut number| {
            number *= 3;
            println!("Tripling number. Now it is {number}");
            number
        },
        _ => |number| {
            println!("Sorry, it's the same: {number}.");
            number
        },
    }
}

fn main() {
    let my_number = 10;

    let mut doubles = returns_a_closure("double");    
    let mut triples = returns_a_closure("triple");   
    let mut does_nothing = returns_a_closure("HI");  

    let doubled = doubles(my_number);
    let tripled = triples(my_number);
    let same = does_nothing(my_number);
}

The output is

Doubling number. Now it is 20
Tripling number. Now it is 30
Sorry, it's the same: 10.

So you can see that returns_a_closure() is just like any other function: it has a
return type that you have to follow. Except that its return type is not a number or
some other type but a closure of FnMut(i32) -> i32. And if that’s what the closure
returns, the compiler will let your code compile.

 Here is a bit longer example. Let’s imagine a game where your character is facing
monsters that are stronger at night. We can make an enum called TimeOfDay to keep
track of the day. Your character is named Simon and has a number called character_
fear, which is an f64. It goes up at night and down during the day. We will make a
make_fear_closure() function that not only changes his fear but also does other
things like write messages. It could look like this:

enum TimeOfDay {
    Dawn,
    Day,
    Sunset,
    Night,
}

Makes three closures



248 CHAPTER 12 More on closures, generics, and threads
fn make_fear_closure(input: TimeOfDay) -> 

➥impl FnMut(&mut f64) {   
    match input {
        TimeOfDay::Dawn => |x: &mut f64| {
            *x *= 0.5;
            println!(
                "The morning sun has vanquished the horrible night.
You no longer feel afraid.\n  Fear: {x}"
            );
        },
        TimeOfDay::Day => |x: &mut f64| {
            *x *= 0.2;
            println!("What a nice day!\n  Fear: {x}");
        },
        TimeOfDay::Sunset => |x: &mut f64| {
            *x *= 1.4;
            println!("The sun is almost down! Oh dear.\n Fear: {x}");
        },
        TimeOfDay::Night => |x: &mut f64| {
            *x *= 5.0;
            println!("What a horrible night to have a curse.\n Fear: {x}");
        },
    }
}

fn main() {
    use TimeOfDay::*;
    let mut fear = 10.0;   

    let mut make_daytime = make_fear_closure(Day);   
    let mut make_sunset = make_fear_closure(Sunset);
    let mut make_night = make_fear_closure(Night);
    let mut make_morning = make_fear_closure(Dawn);

    make_daytime(&mut fear);   
    make_sunset(&mut fear);
    make_night(&mut fear);
    make_morning(&mut fear);
}

This prints

What a nice day!
 Fear: 2
The sun is almost down! Oh dear.
 Fear: 2.8
What a horrible night to have a curse.
 Fear: 14
The morning sun has vanquished the horrible night.
You no longer feel afraid.
 Fear: 7

Is that the best way to write this code for a video game? Probably not. But it’s good
practice for returning closures because being able to return a function like this can be
very powerful.

The function takes a TimeOfDay and returns 
a closure. We use impl FnMut(&mut f64) to 
say that it needs to change the value.

Starts Simon 
with 10 Makes four closures to 

call every time we want 
to change Simon’s fear

Calls the closures on Simon’s 
fear. They give a message and 
change the fear number.



24912.3 Arc
12.3 Arc
You may remember in the previous chapter we used an Rc to give a variable more than
one owner. If we are doing the same thing in a thread, we need an Arc. Arc stands for
atomic reference counter. Atomic means that it uses atomic operations. Atomic operations
are called atomic because they are indivisible (cannot be divided). For computer oper-
ations, this means that atomic operations can’t be seen in progress—they are either
completed or not completed. This is why they are thread-safe because no other
threads can interfere when an atomic operation is happening. Each computer proces-
sor does atomic operations in its own way. We don’t need to think about those details,
but you might be wondering: If atomic operations happen on the processor level, are
there processors that don’t have them? The answer is yes, but they are very rare. We
can see a few of them in the documentation on Rust’s atomic types (https://doc.rust
-lang.org/std/sync/atomic/index.html):

The atomic types in this module might not be available on all platforms. The atomic
types here are all widely available, however, and can generally be relied upon
existing. Some notable exceptions are:

– PowerPC and MIPS platforms with 32-bit pointers do not have AtomicU64 or
AtomicI64 types.

– ARM platforms like armv5te that aren’t for Linux only provide load and
store operations, and do not support Compare and Swap (CAS) opera-
tions… (and so on and so on).

So, as long as you are not building your Rust code on a very old or rare computer, you
will have access to thread-safe types like Arc.

 Atomic operations are important because if two threads write data at the same
time, you will get an unexpected result. For example, imagine if you could do some-
thing like this in Rust without a thread-safe type like Arc:

let mut x = 10;

for i in 0..10 {    
    x += 1;
}
for i in 0..10 {    
    x += 1;
}

If thread 1 and thread 2 start together, maybe this will happen:

 Thread 1 sees 10 and adds 1; now it’s 11. Then, thread 2 sees 11 and adds 1;
now it’s 12. No problem so far.

 Thread 1 sees 12. At the same time, thread 2 sees 12. Thread 1 adds 1, and now
it’s 13. But thread 2 still thinks it’s 12 and writes 13. Now we have 13, but it
should be 14. That’s a big problem.

Inside thread 1

Inside thread 2

https://doc.rust-lang.org/std/sync/atomic/index.html
https://doc.rust-lang.org/std/sync/atomic/index.html
https://doc.rust-lang.org/std/sync/atomic/index.html


250 CHAPTER 12 More on closures, generics, and threads
An Arc uses atomic operations to make sure this doesn’t happen (atomic operations
don’t allow more than one access at one time), so it is the method you must use when
you have threads. You don’t want an Arc for just one thread, though, because Rc is a
bit faster. So stick with an Rc unless you have multiple threads.

 You can’t change data with just an Arc, though—it’s just a reference counter. You
must wrap the data in a Mutex, and then you wrap the Mutex in an Arc. Now it can have
multiple owners (because it’s a reference counter); it’s thread-safe (because it’s
atomic); and it’s changeable (because it’s inside a Mutex).

 So, let’s use a Mutex inside an Arc to change the value of a number. First, let’s set
up one thread:

fn main() {

    let handle = std::thread::spawn(|| {    
        println!("The thread is working!") 
    });

    handle.join().unwrap();                 
    println!("Exiting the program");
}

So far, this prints

The thread is working!
Exiting the program

Good. Now let’s put it in a for loop for 0..5:

fn main() {

    let handle = std::thread::spawn(|| {
        for _ in 0..5 {
            println!("The thread is working!")
        }
    });

    handle.join().unwrap();
    println!("Exiting the program");
}

This works, too. We get the following:

The thread is working!
The thread is working!
The thread is working!
The thread is working!
The thread is working!
Exiting the program

Now, let’s make one more thread. Each thread will do the same thing. You can see that
the threads are working at the same time. Sometimes, it will say Thread 1 is working!

Just testing 
the thread

With .join(), we wait here 
until the thread is done.



25112.3 Arc
first, but other times Thread 2 is working! is first. This is called concurrency, which
comes from a Latin word meaning “running together.”

fn main() {
    let thread1 = std::thread::spawn(|| {
        for _ in 0..5 {
            println!("Thread 1 is working!")
        }
    });

    let thread2 = std::thread::spawn(|| {
        for _ in 0..5 {
            println!("Thread 2 is working!")
        }
    });

    thread1.join().unwrap();
    thread2.join().unwrap();
    println!("Exiting the program");
}

Now, we want to change the value of my_number. Right now, it is an i32. We will change
it to an Arc<Mutex<i32>>, an i32 that can be changed, wrapped in an Arc:

let my_number = Arc::new(Mutex::new(0));

Now that we have this, we can clone it, and each clone can go into a different thread.
We have two threads, so we will make two clones. One will go into the first thread, and
the second, into the second thread:

let my_number = Arc::new(Mutex::new(0));

let cloned_1 = Arc::clone(&my_number);
let cloned_2 = Arc::clone(&my_number);

Now that we have thread-safe clones attached to my_number, we can move them into
other threads with no problem:

use std::sync::{Arc, Mutex};

fn main() {
    let my_number = Arc::new(Mutex::new(0));

    let cloned_1 = Arc::clone(&my_number);
    let cloned_2 = Arc::clone(&my_number);

    let thread1 = std::thread::spawn(move || {    
        for _ in 0..10 {
            *cloned_1.lock().unwrap() += 1;       
        }
    });

    let thread2 = std::thread::spawn(move || {   
        for _ in 0..10 {

The thread uses the move 
keyword to take ownership, 
but it’s only taking ownership 
of a clone of the Arc, so 
my_number is still around.

Locks the Mutex and 
changes the value here

Only the clone goes 
into thread 2.



252 CHAPTER 12 More on closures, generics, and threads
            *cloned_2.lock().unwrap() += 1;
        }
    });

    thread1.join().unwrap();
    thread2.join().unwrap();
    println!("Value is: {my_number:?}");
    println!("Exiting the program");
}

The program prints this every time:

Value is: Mutex { data: 20, poisoned: false, .. }
Exiting the program

It was a success!
 We can then join the threads together in a single for loop, which lets us use many

more threads without having to write a lot of extra code. We need to save the handles
somewhere so we can call .join() on each one outside of the loop, as we learned
before:

use std::sync::{Arc, Mutex};

fn main() {
    let my_number = Arc::new(Mutex::new(0));
    let mut handle_vec = vec![];   

    for _ in 0..10 {   
        let my_number_clone = Arc::clone(&my_number);   
        let handle = std::thread::spawn(move || {    
            for _ in 0..10 {
                *my_number_clone.lock().unwrap() += 1;
            }
        });
        handle_vec.push(handle);  
    }

    handle_vec.into_iter().for_each(|handle| handle.join().unwrap());   
    println!("{my_number:?}");
}

Finally, this prints Mutex { data: 100, poisoned: false, .. }.
 This looks complicated, but Arc<Mutex<SomeType>>> is used very often in Rust,

and using this pattern quickly becomes natural. In the meantime, you could also
rewrite your code to make it easier for you to read while you are still getting used to
the syntax. Here is the same code with one more use statement and two functions.
The functions don’t do anything new, but they move some code out of main() and
might make reasoning about the code a little easier:

use std::sync::{Arc, Mutex};

use std::thread::spawn;    

Our JoinHandles 
will go inside here.

Let’s use 10 
threads this time. Makes a clone before 

starting the thread

Uses move to make the 
thread own the clone

Saves the JoinHandle so we can call 
.join() on it outside of the loop

Finally, calls .join()
on all the handles

We can write spawn 
to start a new thread.



25312.4 Scoped threads

 in 
e 

.

fn make_arc(number: i32) -> Arc<Mutex<i32>> {    
    Arc::new(Mutex::new(number))
}

fn new_clone(input: &Arc<Mutex<i32>>) -> Arc<Mutex<i32>> {    
    Arc::clone(&input)
}

fn main() {
    let mut handle_vec = vec![];
    let my_number = make_arc(0);

    for _ in 0..10 {
        let my_number_clone = new_clone(&my_number);
        let handle = spawn(move || {
            for _ in 0..10 {
                let mut value_inside = my_number_clone.lock().unwrap();
                *value_inside += 1;
            }
        });
        handle_vec.push(handle);
    }
    handle_vec.into_iter().for_each(|handle| handle.join().unwrap());
    println!("{my_number:?}");
}

After all this learning about threads, we have another kind of thread to learn. But
don’t worry, this one is actually easier to use! Let’s take a look.

12.4 Scoped threads
Scoped threads are a fairly recent addition to Rust, as they were only stabilized in
August 2022 when Rust 1.63 was released. Remember in the last example how you had
to clone the Arc for regular threads and use move to take ownership because regular
threads need a 'static guarantee? Scoped threads don’t need this because they are
guaranteed to live inside a single scope (inside the {} curly brackets). Here’s what the
documentation says (http://mng.bz/5onD): “Unlike non-scoped threads, scoped
threads can borrow non-'static data, as the scope guarantees all threads will be
joined at the end of the scope.”

 Nice! That means you don’t need to use .join() either because the threads will be
automatically joined at the end of the scope. Let’s look at the difference. With a regu-
lar thread, you use thread::spawn() to start a thread:

use std::thread;

fn main() {
    thread::spawn(|| {   
     
    });
    thread::spawn(|| {    
        
    });
       
}

A function that makes a Mutex wrapped
an Arc. We’re using it to shrink the cod
a bit and make it easier to understand

Same here—just a function
to make this thread

example easier to read.

Do more thread stuff.

Do more thread stuff.

Don’t forget to join them here; otherwise, 
main() might end before the threads do.

http://mng.bz/5onD


254 CHAPTER 12 More on closures, generics, and threads
With scoped threads, you start with a scope, using thread::scope(). The threads will
only live inside there. Then you use the closure that scope gives you to spawn the
threads:

use std::thread;

fn main() {
    thread::scope(|s| {   
        s.spawn(|| {
            
        });
        s.spawn(|| {
            
        });#
    });     
}

Now, let’s take our previous example and put it in scoped threads instead. Look at
how much simpler the code is. You still need a Mutex because more than one thread is
changing my_number, but you don’t need an Arc anymore. You don’t need to use move
because the threads aren’t forced to take ownership: they can just borrow the values
because the threads are guaranteed to not exist after the scope is over:

use std::sync::Mutex;
use std::thread;

fn main() {
    let my_number = Mutex::new(0);
    thread::scope(|s| {
        s.spawn(|| {
            for _ in 0..10 {
                *my_number.lock().unwrap() += 1;
            }
        });
        s.spawn(|| {
            for _ in 0..10 {
                *my_number.lock().unwrap() += 1;
            }
        });
    });
}

In fact, you don’t need a Mutex at all if only one thread is using your data. Scoped
threads follow all the regular borrowing rules in Rust, so if only one has a mutable
borrow, there will be no problem. Let’s add two regular numbers (one mutable, one
immutable) to our scoped threads and take a look:

use std::sync::Mutex;
use std::thread;

fn main() {
    let mutex_number = Mutex::new(0);    

We are just calling it "s" here. 
You could call it anything.

Do thread stuff.

Do thread stuff.

The threads automatically join here, so 
there’s no need to think about JoinHandles.

Both threads use this, so we 
use a thread-safe Mutex.



25512.4 Scoped threads
    let mut regular_mut_number = 0;    
    let regular_unmut_number = 0; 

    thread::scope(|s| {
        s.spawn(|| {
            for _ in 0..3 {
                *mutex_number.lock().unwrap() += 1;
                regular_mut_number += 1;
                println!("Multiple immutable borrows is fine! 

{regular_unmut_number}");
            }
        });
        s.spawn(|| {
            for _ in 0..3 {
                *mutex_number.lock().unwrap() += 1;
                // regular_mut_number += 1;   
                println!("Borrowing {regular_unmut_number} here too, it's
                ➥just fine!");
            }
        });
    });

    println!("mutex_number: {mutex_number:?}");
    println!("regular_mut_number: {regular_mut_number}");
}

The output will look different each time because of the multiple threads working at
the same time but will be something similar to this:

Borrowing 0 here too, it's just fine!
Multiple immutable borrows is fine! 0
Multiple immutable borrows is fine! 0
Borrowing 0 here too, it's just fine!
Multiple immutable borrows is fine! 0
Borrowing 0 here too, it's just fine!
mutex_number: Mutex { data: 6, poisoned: false, .. }
regular_mut_number: 3

If you want to see a busier (but easier to read) example, just try something like this:

use std::thread;

fn main() { 
    thread::scope(|s| {
        for thread_number in 0..1000 {
            s.spawn(move|| {
                println!("Thread number {thread_number}");   
            });
        };
    });
}

If you run this, you will see that there are, indeed, a lot of threads running at the same
time. The output will be different every time. One example while writing the book
looked like this:

Only one thread will modify this, 
so there’s no need for a Mutex.

This variable isn’t 
variable, so both threads 
can borrow it.

This part is commented out 
because it won’t work: it’s 
two mutable references at 
the same time, which is 
never allowed in Rust.



256 CHAPTER 12 More on closures, generics, and threads
Thread number 2
Thread number 305
Thread number 176
Thread number 50
Thread number 175
Thread number 3
Thread number 4
Thread number 5
Thread number 6
Thread number 7

So, if you are okay with your threads only living inside a single scope, be sure to check
out scoped threads. Regular threads have the advantage of living forever as long as
your program is running, but scoped threads are easy to spawn and use if you have a
task to accomplish and don’t need them after the task is done.

12.5 Channels
Using a channel in the Rust standard library is an easy way to send information to one
receiver, even between threads. Channels are fairly popular because they are thread-
safe but pretty simple to put together. The flexibility of channels is another reason for
their popularity. A channel has one or more senders and one receiver, which you can
put wherever you want, such as on other structs and inside other functions. But once
you have opened a channel between them, you can send from a sender to the receiver
no matter where they are located.

12.5.1 Channel basics

You can create a channel in Rust with the channel() function in std::sync::mpsc.
The letters mpsc stand for “multiple producer, single consumer”—in other words,
“many senders sending to one place.” The name channel is well chosen because an
mpsc channel is like the channels of a river: you can have many small streams, but they
all flow into the same larger river downstream. To start a channel, use the channel()
function, which creates a Sender and a Receiver. These two are tied together, and
both hold the same generic type. You can see this in the function signature:

pub fn channel<T>() -> (Sender<T>, Receiver<T>)

One sends a T; the other receives a T. Simple!
 The output of the channel() function is a tuple, so the best way to start out is to

choose one name for the sender and one for the receiver (destructuring). Usually,
you see something like let (sender, receiver) = channel(); to start. Because the
function is generic, Rust won’t know the type if all you do is type channel():

use std::sync::mpsc::channel;

fn main() {
    let (sender, receiver) = channel();
}



25712.5 Channels
The compiler says

error[E0282]: type annotations needed for `(std::sync::mpsc::Sender<T>,

➥std::sync::mpsc::Receiver<T>)`
  --> src\main.rs:30:30
   |
30 |     let (sender, receiver) = channel();
   |         ------------------   ^^^^^^^ cannot infer type for type
   ➥parameter `T` declared on the function `channel`
   |         |
   |         consider giving this pattern the explicit type
   ➥`(std::sync::mpsc::Sender<T>, std::sync::mpsc::Receiver<T>)`,
   ➥where the type parameter `T` is specified

It suggests adding a type for the Sender and Receiver. You could specify the type if
you want:

use std::sync::mpsc::{channel, Sender, Receiver};

fn main() {
    let (sender, receiver): (Sender<i32>, Receiver<i32>) = channel();
}

But you don’t have to. Once you start using the Sender and Receiver, Rust will be able
to infer the type.

12.5.2 Implementing a channel

Let’s look at the simplest way to use a channel:

use std::sync::mpsc::channel;

fn main() {
    let (sender, receiver) = channel();

    sender.send(5);
    receiver.recv();      
}

We have sent a 5, which is an i32, from the Sender to the Receiver, so now Rust knows
the type.

 Each of these methods might fail, so they each return a Result. The .send()
method for sender returns a Result<(), SendError<i32>> and the receiver’s
method returns a Result<i32, RecvError>. You can use .unwrap() to see whether
the sending works or use better error handling. Let’s add .unwrap() and also
println! to see what we get:

use std::sync::mpsc::channel;

fn main() {
    let (sender, receiver) = channel();

    sender.send(5).unwrap();
    println!("{}", receiver.recv().unwrap());
}

recv stands for 
“receive,” not “rec v.”



258 CHAPTER 12 More on closures, generics, and threads
This prints 5, showing that we successfully sent the value from the Sender to the Receiver.
 A channel is like an Arc because you can clone it and send the clones into other

threads. Let’s make two threads and send values to receiver:

use std::sync::mpsc::channel;

fn main() {
    let (sender, receiver) = channel();
    let sender_clone = sender.clone();

    std::thread::spawn(move || {
        sender.send("Send a &str this time").unwrap();    
        sender.send("Send a &str this time").unwrap();    
    });

    std::thread::spawn(move || {
        sender_clone.send("And here is another &str").unwrap();    
        sender_clone.send("And here is another &str").unwrap();    
    });

    while let Ok(res) = receiver.recv() {
        println!("{res}");
    }
}

This will print those four &strs in the order the Receiver gets them. 
 Be careful, though: .recv() is a blocking function. A Sender gets dropped at the

end of its scope (same as any other variable in Rust), but the Receiver using .recv()
will keep blocking if the Sender is still alive. So, if a Sender thread is taking a long time
to process before sending, the Receiver will just keep waiting.

 In fact, our Receiver does wait quite a bit in this example. If you change the last
part to while let Ok(res) = receiver.try_recv(), you probably won’t see any output
because the Receiver will quickly see whether there is anything to receive, see that
nothing has been sent yet, and give up right away.

 In addition, if you change .recv() to .try_recv(), you might get a panic because
the Receiver gets dropped after trying just once while the Senders are still trying to
send. That’s because we’re using .unwrap() here, of course. In real code, you don’t
want to.unwrap() everywhere.

 Let’s finish up by quickly looking at how the .send() and .recv() methods can
fail. The .send() method will always fail if the Receiver has been dropped. We can
easily try this out by dropping the Receiver and trying to send:

use std::sync::mpsc::channel;

fn main() {
    let (sender, receiver) = channel();

    drop(receiver);
    if let Err(e) = sender.send(5) {
        println!("Got an error: {e}")
    }
}

Moves sender in

Moves 
sender_clone in



25912.5 Channels
This will print

Got an error: sending on a closed channel

That’s easy enough. Meanwhile, .recv() will return an Err if the Sender has been
dropped and there is no more data to receive. However, if there is still sent data for
the Receiver to receive, it will return Ok with the data inside even if the Sender has
been dropped.

 For example, if the Sender sends twice and the Receiver tries to receive three
times, it will keep blocking and the program will never end:

use std::sync::mpsc::channel;

fn main() {
    let (sender, receiver) = channel();

    sender.send(5).unwrap();
    sender.send(5).unwrap();
    
    println!("{:?}", receiver.recv());
    println!("{:?}", receiver.recv());
    println!("{:?}", receiver.recv());
}

But if the Sender is first dropped, the .recv() method will not block anymore on the
third try. Instead, it will recognize that the data has all been received and the channel
has been closed, so it returns an Err instead of blocking:

use std::sync::mpsc::channel;

fn main() {
    let (sender, receiver) = channel();

    sender.send(5).unwrap();
    sender.send(5).unwrap();
    drop(sender);
    
    println!("{:?}", receiver.recv());
    println!("{:?}", receiver.recv());
    println!("{:?}", receiver.recv());
}

The output is

Ok(5)
Ok(5)
Err(RecvError)

This chapter was a lot of work. We learned how to pass closures into your own func-
tions by picking among Fn, FnMut, and FnOnce and writing the closure’s signature. We
also learned about impl Trait and how it differs from regular generics. Finally, we got
to some more thread-related functionality: Arc (like Rc but thread-safe), scoped



260 CHAPTER 12 More on closures, generics, and threads
threads as an alternative to regular threads, and channels as another thread-safe way
to pass information from one end to another.

 After all the hard work in the latest chapters, we are now a little bit more than half-
way through the book. Here is a pleasant surprise: you’ve already covered a lot of
Rust’s most difficult concepts. Good work! There is a lot more content to learn as we
move toward the end of the book, but the learning curve will not be as steep. The next
chapter will be easy compared to this one, as we learn to read documentation and
about the smart pointer known as a Box and what makes it so useful. 

Summary
 One closure will never be the same type as another closure. The only thing they

have in common is which trait (Fn, FnMut, and FnOnce) they implement and the
rest of their signature.

 When using a closure as an input, first imagine it as a function: what arguments
will it take, and what will it return? After that, change fn to whichever of the
three closure traits you need: Fn to take by reference, FnMut to take by mutable
reference, or FnOnce to take by value.

 impl Trait is more flexible than regular generics in some areas and less flexi-
ble in others. The best way to get a feel for the difference is practice: if you are
using regular generics somewhere, see whether you can use impl Trait in its
place, and vice versa. The compiler will tell you if you can’t.

 When regular threads capture items, they need to have a 'static lifetime. That
lets you spawn a thread and forget about it, or you can use .join() to wait for a
thread to end.

 Channels in the standard library let you make as many senders as you like. To
get a feel for this, try making a channel and putting senders everywhere you can
think of: as parameters of structs, in function inputs, in their own threads, and
so on. This will give you a feel for just how useful they can be.

 Scoped threads let you use threads without having to think about the 'static
lifetime. Just make sure that your threads eventually end because if they don’t,
their scope will also never end (and then your program will never end).



Box and Rust
documentation
This chapter is a bit of a break after the last two, with Box being the only really new
concept. But Box is one of the most important types in Rust because it makes a lot
of things possible that otherwise wouldn’t be, especially when working with traits.
You’ll be glad to know it! To start off the chapter, though, we will relax a bit and
learn how to read documentation, which in Rust is always generated in the same
way. This is nice because once you get used to reading documentation in Rust, you
will be able to understand the documentation for anyone else’s code. We’ll also
learn about attributes, which are the small pieces of code that start with a # that you
see above a type (like #[derive(Debug)], for example) or at the beginning of a file.

This chapter covers
 Reading Rust documentation

 Attributes, which are small bits of extra 
information

 Box, a smart pointer that gives a lot of extra 
flexibility
261



262 CHAPTER 13 Box and Rust documentation
13.1 Reading Rust documentation
It’s important to know how to read documentation in Rust so you can understand
what other people write. As the saying goes, reading other people’s code is just as
important as writing your own. Fortunately, Rust excels here, too, because Rust docu-
mentation is always put together in the same way. In chapter 18, we’ll look at the tool
that makes documentation in more detail, but if you have Rust installed and can’t wait
to try it out, type cargo doc —-open in any directory that has your Rust code. It will put
the documentation together and open it up in your browser like magic! If you have
Cargo installed already, check out the documentation (https://doc.rust-lang.org/
cargo/commands/cargo-doc.html) for other flags to add to the cargo doc command.

 The cargo doc tool is used to make the documentation for the standard library and
just about everything else, so you only need to learn how to read Rust documentation
once. Let’s look at some things you need to know when reading Rust documentation.

13.1.1 assert_eq!

We previously saw that assert_eq! is used when adding guarantees inside your code.
If you put two items inside the macro, the program will panic if they are not equal.
Here is a simple example where we need an even number:

fn main() {
    prints_number(56);
}

fn prints_number(input: i32) {
    assert_eq!(input % 2, 0);    
    println!("The number is not odd. It is {input}");
}

The output is

The number is not odd. It is 56, 

which shows that it satisfied the assert_eq! macro by returning true, and thus, the
program did not panic.

 Maybe you don’t have any plans to use assert_eq! in your code, but it is every-
where in Rust documentation. Otherwise, you would need to use println! and have
readers actually run your code to see the output. Plus, you would require Display or
Debug for anything you needed to print. That’s why documentation has assert_eq!
everywhere. The following example comes from the std::vec::Vec documentation
(https://doc.rust-lang.org/std/vec/struct.Vec.html), which shows how to use a Vec:

fn main() {
    let mut vec = Vec::new();
    vec.push(1);
    vec.push(2);

    assert_eq!(vec.len(), 2);
    assert_eq!(vec[0], 1);

The variable number must be even. If 
the number % 2 is not 0, it panics.

https://doc.rust-lang.org/cargo/commands/cargo-doc.html
https://doc.rust-lang.org/cargo/commands/cargo-doc.html
https://doc.rust-lang.org/std/vec/struct.Vec.html


26313.1 Reading Rust documentation
    assert_eq!(vec.pop(), Some(2));
    assert_eq!(vec.len(), 1);

    vec[0] = 7;
    assert_eq!(vec[0], 7);

    vec.extend([1, 2, 3].iter().copied());

    for x in &vec {
        println!("{}", x);
    }
    assert_eq!(vec, [7, 1, 2, 3]);
}

In such examples, you can think of assert_eq!(a, b) as saying, “At this point, a and b
will be the same.” Now, look at the same example with annotations on the right that
show what it actually means:

fn main() {
    let mut vec = Vec::new();
    vec.push(1);
    vec.push(2);

    assert_eq!(vec.len(), 2);         
    assert_eq!(vec[0], 1);             

    assert_eq!(vec.pop(), Some(2));    
    assert_eq!(vec.len(), 1);         

    vec[0] = 7;
    assert_eq!(vec[0], 7);            

    vec.extend([1, 2, 3].iter().copied());

    for x in &vec {
        println!("{}", x);
    }
    assert_eq!(vec, [7, 1, 2, 3]);      
}

Because assert_eq! will panic if the two items aren’t equal, you can also run the
code, and if it doesn’t panic, you know that the items inside are correct. We will see a
lot more of this macro in chapter 15, which is devoted to testing.

13.1.2 Searching

The search bar always shows up at the top of the page in Rust documentation and
shows you results as you type. When you go down a page, you can’t see the search bar
anymore, but if you press the S key on the keyboard, it will take you back up to the
top. So, pressing S anywhere lets you search right away (see figure 13.1). 

Now the length 
of vec is 2. Now the value 

of vec[0] is 1.

When you use .pop() here, 
it returns Some(2).Now vec contains 

one item.

Now the value 
of vec[0] is 7.

Now vec contains 
[7, 1, 2, 3].



264 CHAPTER 13 Box and Rust documentation
 

13.1.3 The [src] button

Usually, the code for a method, struct, etc., will not be shown in full. You don’t usually
need to see the full source to know how it works, and the full code can be confusing.
Also, items that aren’t pub won’t show up in the documentation. But if you do want to
see everything, you can always click [src]. For example, on the page for String, you
can see this signature for with_capacity():

pub fn with_capacity(capacity: usize) -> String

Okay, so you put a number in, and it gives you a String. That’s easy, but maybe we are
curious and want to see more. How does it actually work? If you click [src], you can
see the full code:

pub fn with_capacity(capacity: usize) -> String {
    String { vec: Vec::with_capacity(capacity) }
}

Interesting! This shows us that String is a kind of Vec. Actually, the type String is a
vector of u8 bytes, which is interesting to know. You didn’t need to know that to use
the with_capacity() method, so the entire code is only shown if you click [src].
Thus, clicking [src] is a good idea if the document doesn’t have much detail and you
want to know more.

 Let’s take a look at the source code for another type we recently learned, Cell. In
chapter 10, we learned that the .get() method for Cell only works when the inner

Figure 13.1
Just press S to 
jump to the top.



26513.1 Reading Rust documentation
type implements Copy. It’s fine to remember this directly, but if we look at the docu-
mentation (https://doc.rust-lang.org/src/core/cell.rs.html#435), it becomes even
clearer:

impl<T: Copy> Cell<T> {
    pub fn get(&self) -> T {
        // Function details…
    }

    pub fn update<F>(&self, f: F) -> T
    where
        F: FnOnce(T) -> T,
    {
        // Function details…
    }
}

Cell also only lets you .clone() if the inner type is Copy:

impl<T: Copy> Clone for Cell<T> {
    fn clone(&self) -> Cell<T> {
        Cell::new(self.get())
    }
}

Interesting! So these methods don’t exist if the inner type doesn’t implement Copy
because they are written in separate impl blocks that start with impl<T: Copy>, thus
requiring T to be Copy to be used.

 Looking at the source details of the code can help you remember in a more inter-
esting and effective way than just repeating that “Cell’s .get() and .update() and
.clone() methods only work if the inner type implements Copy.”

13.1.4 Information on traits

The important part of the documentation for a trait is “Required Methods” on the
left. If you see that a trait has required methods, you will probably have to write the
method yourself. For example, for Iterator, you need to write the .next() method.
For From, you need to write the from() method. However, some traits can be imple-
mented with just an attribute, as we see in #[derive(Debug)]. Debug needs the .fmt()
method, but usually, you just use #[derive(Debug)] unless you want to do it yourself.
That’s why the page on std::fmt::Debug says, “Generally speaking, you should just
derive a Debug implementation.”

13.1.5 Attributes

Let’s look at attributes in more detail. An attribute is a small piece of code that the
compiler interprets in different ways. They are not always easy to create, but they are
very easy to use. Some attributes are built into the language, some are used to derive
traits (like #[derive(Debug)]), and some are for configuring tools (the previously
mentioned cargo doc is one example of a tool).

https://doc.rust-lang.org/src/core/cell.rs.html#435


266 CHAPTER 13 Box and Rust documentation
 If you write an attribute with just #, it will affect the code on the next line. But if
you write it with #!, it will affect everything in the file.

 An attribute with a # is called an outer attribute because it stands outside of the item
that follows it. An attribute with a #! is called an inner attribute because it affects every-
thing inside its file. An inner attribute needs to be placed at the very top of the file or
module it is used in. Files and modules are another subject we will learn in chapter 15.
For now, just remember this easy rule: put inner attributes at the very top! 

 And in any case, the compiler will complain if you don’t put inner attributes above
everything else. For example, if you run 

fn empty_function() {}

#![allow(dead_code)]

the compiler will tell you exactly what is wrong and the reason why:

error: an inner attribute is not permitted in this context
 --> src/lib.rs:3:1
  |
3 | #![allow(dead_code)]
  | ^^^^^^^^^^^^^^^^^^^^
  |
  = note: inner attributes, like `#![no_std]`, annotate the item enclosing
  ➥them, and are usually found at the beginning of source files
  = note: outer attributes, like `#[test]`, annotate the item following them

Let’s look at some attributes you will see a lot.
 #[allow(dead_code)] and #[allow(unused_variables)]. If you write code that

you don’t use, Rust will still compile, but it will let you know. For example, here is a
struct with nothing in it and one variable. We don’t use either of them:

struct JustAStruct {}

fn main() {
    let some_char = 'ん';
}

If you write this, Rust will remind you that you didn’t use them:

warning: unused variable: `some_char`
 --> src\main.rs:4:9
  |
4 |     let some_char = 'ん';
  |         ^^^^^^^^^ help: if this is intentional, prefix it with an
  ➥underscore: `_some_char`
  |
  = note: `#[warn(unused_variables)]` on by default

warning: struct is never constructed: `JustAStruct`
 --> src\main.rs:1:8
  |



26713.1 Reading Rust documentation
1 | struct JustAStruct {}
  |        ^^^^^^^^^^^
  |
  = note: `#[warn(dead_code)]` on by default

We know that you can write an _ before the name to make the compiler be quiet:

struct _JustAStruct {}

fn main() {
    let _some_char = 'ん';
}

But you can also use attributes. You’ll notice in the message that it uses
#[warn(unused_variables)] and #[warn(dead_code)]. In our code, JustAStruct is
dead code, and some_char is an unused variable. The opposite of warn is allow, so we
can write this and it will not say anything:

#![allow(dead_code)]
#![allow(unused_variables)]

struct Struct1 {}       
struct Struct2 {}       
struct Struct3 {}       
struct Struct4 {}       
struct Struct5 {}      

fn main() {
    let char1 = 'ん';                                    
    let char2 = ';';                                     
    let some_str = "I'm just a regular &str";           
    let some_vec = vec!["I", "am", "just", "a", "vec"]; 
}

You can combine these two into a single attribute if you want the compiler to be quiet
about everything that isn’t being unused: #![allow(unused)].

 Of course, dealing with dead code and unused variables is important. But some-
times, you want the compiler to be quiet for a while. Or you might need to show some
code or teach people Rust and don’t want to confuse them with compiler messages.

 #[derive(TraitName)] lets you derive some traits for structs and enums that you
create. This works with many common traits that can be automatically derived. Some,
like Display, can’t be automatically derived because Display is meant for a nice,
human-readable display, and that requires a human to decide how to do it. So this
won’t work:

#[derive(Display)]
struct HoldsAString {
    the_string: String,
}

Creates five structs

Creates four variables. We 
don’t use any of them but 
the compiler is quiet.



268 CHAPTER 13 Box and Rust documentation
fn main() {
    let my_string = HoldsAString {
        the_string: "Here I am!".to_string(),
    };
}

The error message will tell you that:

error: cannot find derive macro `Display` in this scope
 --> src\main.rs:2:10
  |
2 | #[derive(Display)]
  |

For traits that you can automatically derive, you can put in as many as you like. Let’s
give HoldsAString seven traits in a single line, just for fun, even though at the
moment it only needs one. You see this practice a lot in Rust:

#[derive(Debug, PartialEq, Eq, Ord, PartialOrd, Hash, Clone)]
struct HoldsAString {
    the_string: String,
}

fn main() {
    let my_string = HoldsAString {
        the_string: "Here I am!".to_string(),
    };
    println!("{:?}", my_string);
}

Also, you can make a struct Copy if (and only if) it also implements Clone and if fields
all implement Copy. HoldsAString has String, which is not Copy, so you can’t use
#[derive(Copy)] for it. But for this struct, you can:

#[derive(Clone, Copy)]
struct NumberAndBool {
    number: i32,         
    true_or_false: bool   
}

fn does_nothing(input: NumberAndBool) {}

fn main() {
    let number_and_bool = NumberAndBool {
        number: 8,
        true_or_false: true
    };

    does_nothing(number_and_bool);
    does_nothing(number_and_bool);      
}

i32 is Copy.

bool is also Copy, 
so no problem.

This would Err if it 
didn’t have Copy.



26913.1 Reading Rust documentation
#[cfg()] is another attribute that stands for configuration and tells the compiler things
like whether to run code or not. You usually see it like this: #[cfg(test)]. You use
that when writing test functions so that it knows not to compile and run them unless
you are testing. Then you can have tests next to your code, but the compiler will
ignore them unless you tell it not to. We will learn about testing in the next chapter.

 One other example of the cfg attribute is #[cfg(target_os = "windows")]. With
that, you can tell the compiler to run the code only on Windows, or Linux, or any-
thing else.

 #![no_std] is an interesting attribute that tells Rust not to bring in the standard
library. That means you don’t have Vec, String, and anything else in the standard
library. You will see this in code for small devices that don’t have much memory or
space and thus can only use the stack, never the heap.

 #[non_exhaustive], when placed above a type, lets the compiler know that it may
have more variants or fields in the future. This is used almost entirely with enums.
These enums can still be used by anyone, but when matching on a #[non_
exhaustive] enum created by someone else, you will have to include a final check
after all the variants just in case a new one is added in the future.

 #[deprecated] lets you mark an item, usually a function, as deprecated (not used
anymore). This attribute won’t stop people from using the function, but it will give a
warning. Letting people still use the old item makes sense because a new item or type
might be completely different, and people using your code might have to do some
work to figure it out. Here is the easiest way to give this attribute a try:

#[deprecated]
fn deprecated_function() {}

fn main() {
    deprecated_function();
}

As expected, we get a warning that the function is deprecated, but the code compiles
and runs:

warning: use of deprecated function `deprecated_function`
  --> src/main.rs:17:5
   |
17 |     deprecated_function();
   |     ^^^^^^^^^^^^^^^^^^^
   |
   = note: `#[warn(deprecated)]` on by default

Inside an IDE you’ll probably see special highlighting for these functions, like a strike-
through, to make it clear that they are deprecated. Figure 13.2 shows what the previ-
ous code looks like inside Visual Studio Code.



270 CHAPTER 13 Box and Rust documentation
 
You can add a note inside the deprecated attribute to give some more information.
Usually, such a note is used to advise the user which function to use instead or to warn
that it will be entirely removed later. Here is a quick example of a deprecated function
with a note:

#[deprecated(note = "Always panics for some reason, not sure why. Please

➥use new_function instead")]
fn old_function() {
    panic!();
    println!("Works well");
}

fn new_function() {
    println!("Works well");
}

fn main() {
    old_function();
}

As expected, the program gives the full message and then panics:

warning: use of deprecated function `old_function`: Always panics for some

➥reason, not sure why. Please use new_function instead
  --> src/main.rs:14:5
   |
14 |     old_function();
   |     ^^^^^^^^^^^^
   |
   = note: `#[warn(deprecated)]` on by default

You can see many more attributes in the documentation (https://doc.rust-lang.org/
reference/attributes.html). 

Figure 13.2
Many IDEs will 
recognize the 
#[deprecated]
attribute.

https://doc.rust-lang.org/reference/attributes.html
https://doc.rust-lang.org/reference/attributes.html


27113.2 Box
 So far, this chapter has been fairly passive, with learning about reading documenta-
tion and using attributes that are already built in. We will now turn to a type that you
will use actively and probably quite frequently: Box. Let’s see what makes a Box special
and often even necessary.

13.2 Box
A Box is a type of pointer and a very convenient type in Rust. When you use a Box,
you can put a variable’s data on the heap instead of the stack. To make a new Box,
use Box::new() and put the item inside. Let’s put an i32 inside a Box and see what
happens:

fn just_takes_a_variable<T>(item: T) {}       

fn main() {
    let my_number = 1;    
    just_takes_a_variable(my_number);
    just_takes_a_variable(my_number);        

    let my_box = Box::new(1);    
    just_takes_a_variable(my_box.clone());    
    just_takes_a_variable(my_box);
}

Hmm, so what’s the point of that? Let’s find out.

13.2.1 Some Box basics

At first, it is hard to imagine where to use it, but let’s start with the basics of how Box
works. You can think of a Box as sort of like a reference, except that it owns its data.

 We learned that & is used for str because the compiler doesn’t know the size of a
str: it can be any length. But the & reference is always the same length, so the com-
piler can use it. Box is similar, but it owns the data. Also, you can use * on a Box to get
to the value, just like with &:

fn main() {
    let my_box = Box::new(1);    
    let an_integer = *my_box;     
}

A Box is called a “smart pointer” because it is like a & reference (a kind of pointer) but
can do more things.

 You can also use a Box to create structs with the same struct inside. These are
called recursive, which means that inside struct A is maybe another struct A. You can’t
do this in Rust (the compiler will tell you).

 But if you want to create a recursive struct, you can use a Box. Let’s make a simple
struct called a Holder that might hold another Holder inside itself. Here’s what hap-
pens if you try without a Box:

struct Holder {
    next_holder: Option<Holder>,
}

Takes anything 
and drops it

This is an i32.
Using this function twice is not 
a problem because it’s Copy.

This is a Box<i32>.

Without .clone(), the second function 
would produce an error because 
Box does not implement Copy.

This is a 
Box<i32>.

This is an i32.



272 CHAPTER 13 Box and Rust documentation
You can see that when making a Holder, you can choose to give it a Some<Holder>
(another Holder) or None. Because you can choose None, you can make a Holder that
doesn’t always need another Holder inside. For example, you might want to make a
Holder that has a Some(Holder), which itself holds a Some(Holder), but finally ends
with None. However, this won’t compile! 

struct Holder {
    next_holder: Option<Holder>
}

fn main() {
    let x = Holder {
        next_holder: Some(Holder {
            next_holder: Some(Holder { next_holder: None }),
        }),
    };
}

It won’t compile because the compiler doesn’t know the size:

error[E0072]: recursive type `Holder` has infinite size
 --> src/main.rs:1:1
  |
1 | struct Holder {
  | ^^^^^^^^^^^^^
2 |     next_holder: Option<Holder>, 
  |                         ------ recursive without indirection
  |
help: insert some indirection (e.g., a `Box`, `Rc`, or `&`) to break the

➥cycle
  |
2 |     next_holder: Option<Box<Holder>>, 
  |                         ++++      +

You can see that the error even suggests trying a Box and shows us exactly how to write
it. So, let’s put a Box around Holder:

struct Holder {
    item: Option<Box<Holder>>,
}
fn main() {}

The compiler is now fine with the Holder because everything is behind a Box, and the
compiler knows the size of a Box. Now we can use Box::new() to put the next Holder
inside, and the code we tried previously will now work:

#[derive(Debug)]
struct Holder {
    next_holder: Option<Box<Holder>>
}

fn main() {
    let x = Holder {



27313.2 Box
        next_holder: Some(Box::new(Holder {
            next_holder: Some(Box::new(Holder { next_holder: None })),
        })),
    };

    println!("{x:#?}");
}

Here is the output:

Holder {
    next_holder: Some(
        Holder {
            next_holder: Some(
                Holder {
                    next_holder: None,
                },
            ),
        },
    ),
}

Even with a type as simple as this, the code looks a bit complicated, and Rust does not
use recursiveness very much.

 If you are coming from another programming language, you may now be thinking
that a Box can help you make a linked list in Rust, but be warned: Rust’s strict rules on
borrowing and ownership make this a pain. In fact, there is a whole book online
(https://rust-unofficial.github.io/too-many-lists/) that explains just what a pain it is to
write a linked list in Rust. Nevertheless, if you are curious, give the book a read. It is a
good example of a common pattern in other languages that simply does not work in
Rust without a lot of pain.

 A Box also lets you use drop() on it because it’s on the heap. That can be conve-
nient sometimes.

 So, Boxes let you put data on the heap, and you can make recursive types with
them, and you could use one to make a data structure (that doesn’t fit Rust very well).
But none of this explains why Boxes are so popular in Rust. Let’s finally get to the
main reason, which is that Boxes are very useful, even necessary sometimes, when
dealing with traits. Let’s see how that works.

13.2.2 Putting a Box around traits

We know that we can write traits in generic functions like in this example:

use std::fmt::Display;

struct DoesntImplementDisplay {}

fn displays_it<T: Display>(input: T) {
    println!("{}", input);
}

https://rust-unofficial.github.io/too-many-lists/


274 CHAPTER 13 Box and Rust documentation
This code only takes something with Display, so it can’t accept our struct Doesnt-
ImplementDisplay. But it can take in a lot of others like String that do implement
Display.

 You also saw that we can use impl Trait to return other traits or closures. A Box
can be used in a similar way. You can use a Box because, otherwise, the compiler won’t
know the size of the value. This example with a bunch of different structs and enums
shows that a trait can be used on something of any size:

use std::mem::size_of;                   

trait JustATrait {}

enum EnumOfNumbers {
    I8(i8),
    AnotherI8(i8),
    OneMoreI8(i8),
}
impl JustATrait for EnumOfNumbers {}

struct StructOfNumbers {
    an_i8: i8,
    another_i8: i8,
    one_more_i8: i8,
}
impl JustATrait for StructOfNumbers {}

enum EnumOfOtherTypes {
    I8(i8),
    AnotherI8(i8),
    Collection(Vec<String>),
}
impl JustATrait for EnumOfOtherTypes {}

struct StructOfOtherTypes {
    an_i8: i8,
    another_i8: i8,
    a_collection: Vec<String>,
}
impl JustATrait for StructOfOtherTypes {}

struct ArrayAndI8 {
    array: [i8; 1000],                 
    an_i8: i8,
    in_u8: u8,
}
impl JustATrait for ArrayAndI8 {}

fn main() {
    println!(
        "{}, {}, {}, {}, {}",
        size_of::<EnumOfNumbers>(),
        size_of::<StructOfNumbers>(),
        size_of::<EnumOfOtherTypes>(),

This function gives 
the size of a type.

We will implement 
this on everything.

This one will 
be very large.



27513.2 Box
        size_of::<StructOfOtherTypes>(),
        size_of::<ArrayAndI8>(),
    );
}

When we print the size of these, we get 2, 3, 32, 32, 1002. Each one of these clearly
has a different size. So, if you were to write a function that returns a JustATrait, it
would give an error:

fn returns_just_a_trait() -> JustATrait {
    let some_enum = EnumOfNumbers::I8(8);
    some_enum
}

It says

error[E0746]: return type cannot have an unboxed trait object
  --> src\main.rs:53:30
   |
53 | fn returns_just_a_trait() -> JustATrait {
   |                              ^^^^^^^^^^ doesn't have a size known at
   ➥compile-time

And this is true because the size could be 2, 3, 32, 1002, or anything else. So, we put it
in a Box instead. Here we also add the keyword dyn. dyn shows that you are talking
about a trait, not a struct or anything else.

 The technical term is dynamic dispatch, which is like generics, except Rust accesses
the type at run time, not compile time. That’s where the dyn comes from.

 Dynamic means “moving,” and dispatch means “sending” or “passing on.” The
opposite of dynamic dispatch is static (i.e., not moving) dispatch. Static dispatch hap-
pens when the compiler turns a generic type into a concrete type before run time, so
nothing is moving: the types have been made concrete before the program even
started. So, you can change the function to this:

trait JustATrait {}

enum EnumOfNumbers {
    I8(i8),
    AnotherI8(i8),
    OneMoreI8(i8),
}
impl JustATrait for EnumOfNumbers {}

fn returns_just_a_trait() -> Box<dyn JustATrait> {
    let some_enum = EnumOfNumbers::I8(8);
    Box::new(some_enum)
}

And now it works because on the stack is a Box, and the compiler knows the size of a
Box.



276 CHAPTER 13 Box and Rust documentation
NOTE Box<T> is 8 bytes, Box<&T> (a reference) is also 8 bytes, but a Box<[T]>
(a slice) is 16 bytes. Why is that? It’s because a slice can be any size (any
length), so the Box needs to store the length, too, and that takes 8 more
bytes. If it doesn’t need to know the length, it just stores the memory address,
and that’s just 8 bytes, not 16. In either case, the compiler knows the size and
will be happy with it.

You see dynamic dispatch a lot in the form Box<dyn Error> because, as we saw in pre-
vious chapters, sometimes you have to work with more than one possible error. Let’s
learn about how that works now.

13.2.3 Using a Box to handle multiple error types

To make an official error type, you have to implement std::error::Error. That part
is easy because the Error trait doesn’t have any required methods: just write impl
std::error::Error {}. But errors also need Debug and Display so they can give infor-
mation about the problem. You can see this in the signature for the trait, which is pub
trait Error: Debug + Display.

 Debug is easy with #[derive(Debug)], but Display needs the fmt() method. We
learned how to implement Display back in chapter 7.

 Let’s quickly create two error types to explore how implementing Error works.
The code looks like this:

use std::error::Error;
use std::fmt;

#[derive(Debug)]
struct ErrorOne;

impl Error for ErrorOne {}           

impl fmt::Display for ErrorOne {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "You got the first error!")
    }
}

#[derive(Debug)]
struct ErrorTwo;

impl Error for ErrorTwo {}

impl fmt::Display for ErrorTwo {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "You got the second error!")
    }
}

fn returns_errors(input: u8) -> Result<String, Box<dyn Error>> {    
    match input {

ErrorOne is now an error type with 
Debug as long as it has Display as well. 
Now it’s time to implement Display.

This function will return either a String or
an Error. By returning a Box<dyn Error>,

we can return a Box that holds anything
that implements the Error trait.



27713.2 Box
        0 => Err(Box::new(ErrorOne)),                              
        1 => Err(Box::new(ErrorTwo)),
        _ => Ok("Looks fine to me".to_string()),                  
    }

}

fn main() {

    let vec_of_u8s = vec![0_u8, 1, 80];                       

    for number in vec_of_u8s {
        match returns_errors(number) {
            Ok(input) => println!("{}", input),
            Err(message) => println!("{}", message),
        }
    }
}

This will print

You got the first error!
You got the second error!
Looks fine to me

If we didn’t have a Box<dyn Error> and wrote this, we would have a problem:

fn returns_errors(input: u8) -> Result<String, Error> {
    match input {
        0 => Err(ErrorOne),
        1 => Err(ErrorTwo),
        _ => Ok("Looks fine to me".to_string()),
    }
}

It will tell you

21  | fn returns_errors(input: u8) -> Result<String, Error> {
    |                                 ^^^^^^^^^^^^^^^^^^^^^ doesn't have a
    ➥size known at compile-time

This is not surprising because we know that a trait can be implemented on many
things, and chances are the error types will have different sizes. Even in this case,
where ErrorOne and ErrorTwo have the same size, it still isn’t allowed because Rust is
concerned with type safety, not just size.

NOTE When you use types behind a trait in this way, they are called trait
objects. A trait object represents some type that implements a trait but does not
show you what the concrete object is. In other words, you have access to the
type’s implementation of a trait but not the concrete type itself. Not knowing
the concrete type is called type erasure because the concrete type is erased: the
function only says it’s some type that has this trait. It could be almost anything.

Don’t
forget

to put it
in a Box.

This is the 
success type.

Three numbers 
to try out



278 CHAPTER 13 Box and Rust documentation
Sometimes, you don’t care to know the exact type. All errors can be printed, so you
can, of course, just print them out:

fn handle_error_inside_function() {
    println!("{:?}", "seven".parse::<i32>());
}

fn main() {
    handle_error_inside_function();
}

This says Err(ParseIntError { kind: InvalidDigit }). Good enough.
 Or you might know the error type if it panics. The following example shows a func-

tion with two types of possible errors: an error when parsing into an i32 and an error
when parsing into an f64. Then we try to add them together and return them as an
f64. But two possible errors could happen, so we will return a Result<f64, Box<dyn
Error>>. Then we use the question mark operator, see what happens, and then
unwrap:

use std::error::Error;

fn parse_numbers(int: &str, float: &str) -> Result<f64, Box<dyn Error>> {
    let num_1 = int.parse::<i32>()?;
    let num_2 = float.parse::<f64>()?;
    Ok(num_1 as f64 + num_2)
}

fn main() {
    let my_number = parse_numbers("8", "ninepointnine").unwrap();
}

The error message tells us what it is: 

thread 'main' panicked at 'called Result::unwrap() on an Err value:

➥ParseFloatError { kind: Invalid }', src/main.rs:10:57.

But what if you have some dyn Error trait objects and don’t know their exact type but
want to know? Let’s imagine the worst error possible. We’ll derive Error for it, as well
as Debug and Display, but make the error messages tell the user nothing about what
actually went wrong. We can even make Debug extra terrible by implementing it man-
ually. Implementing Debug in this way looks a bit similar to Display but uses a method
called .debug_struct() to do it. Just like Display, you can find an example in the doc-
umentation and just change it a bit, which is what we will do here:

use std::fmt;

enum MyError {
    TooMuchStuff,
    CantConnect,
    NoUserRegistered,
    SomethingElse,
}



27913.2 Box
impl std::error::Error for MyError {}

impl fmt::Display for MyError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
        write!(f, "Wouldn't you like to know...")
    }
}

impl fmt::Debug for MyError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Lol not telling you what went wrong").finish()
    }
}

fn main() {
    let err = MyError::TooMuchStuff;
    println!("{err}");
    println!("{err:?}");
}

This prints

Wouldn't you like to know...
Lol not telling you what went wrong

If this were a dyn Error trait object, you’d never know what it was. Even if the mes-
sages were good, you still might want to get the concrete type back and do a match
over the enum: TooMuchStuff, CantConnect, and so on. Just having a String printed
out sometimes isn’t enough. Fortunately, there is a method called downcasting that lets
us try to turn a trait object back into a concrete type.

13.2.4 Downcasting to a concrete type

The Error trait lets us downcast through a method called .downcast() (and
.downcast_ref() and .downcast_mut()). You can use this method to try to turn a dyn
Error trait object back into an error type. We’ll use our unhelpful error and pick one
more at random from the standard library. Let’s go with RecvError, which can be
returned from the channels that we learned to use in the last chapter. Then we’ll try
downcasting them.

 In this example, we’ll make a function that gives a boxed MyError if it gets true
and a boxed RecvError if it gets false. But these two error types will show up as trait
objects with the signature Box<dyn Error>, and you won’t know the exact error type
unless you downcast (or .downcast_ref() or .downcast_mut()) them: 

use std::sync::mpsc::RecvError;
use std::error::Error;
use std::fmt;

enum MyError {
    TooMuchStuff,
    CantConnect,



280 CHAPTER 13 Box and Rust documentation
    NoUserRegistered,
    SomethingElse,
}

impl std::error::Error for MyError {}

impl fmt::Display for MyError {     
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {

write!(f, "Wouldn't you like to know...")
    }
}

impl fmt::Debug for MyError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

f.debug_struct("Lol not telling you what went wrong")
    .finish()

    }
}

fn give_error_back(is_tru: bool) -> Box<dyn Error> {     
    if is_true {

Box::new(MyError::TooMuchStuff)
    } else {

Box::new(RecvError)
    }
}

Make a vec of these errors:

fn main() {
    let errs = [true, false, false, true]

.into_iter()

.map(|boolean| give_error_back(boolean))

.collect::<Vec<_>>();

Then print them out:

    println!("{errs:#?}");

    for err in errs.iter() {
if let Some(my_error) = err.downcast_ref::<MyError>() {
    println!("Got a MyError!");
} else if let Some(parse_error) = err.downcast_ref::<RecvError>() {
    println!("Got a RecvError!");
}

    }
}

Here’s the output:

[
    Lol not telling you what went wrong,
    RecvError,
    RecvError,
    Lol not telling you what went wrong,

Here again, MyError is the worst error 
type possible. Neither Display nor Debug 
have any useful information at all. As a 
Box<dyn Error> trait object, you won’t 
even know that the type name is MyError.

This function returns one of the two
errors as a Box<dyn Error> trait

object. The concrete types aren’t known.

We’ll use the .downcast_ref()
method because .iter() gives

us references.

Now that the error types are concrete again,
we could match on the enum or do anything

we want with it—same as with any other
concrete type. It’s not a trait object anymore.



281Summary
]
Got a MyError!
Got a RecvError!
Got a RecvError!
Got a MyError!

You can see that the first time we printed the errors, they were Box<dyn Error> trait
objects, which means that they have the Error trait and Debug and Display (because
Error requires these two), but we don’t know anything more about them. After that,
we used .downcast_ref() to try to turn them into a MyError and a RecError and got
the concrete objects back.

 Hopefully, Rust feels a lot friendlier to you by the end of this chapter. We’ve
learned to read Rust’s documentation and can now look through the source code in
the standard library to find extra information on the types we already know. We also
now have a general sense for attributes, including some of the most widely used ones.
Maybe most importantly, we now understand why Box is used so much in Rust. The
next chapter builds on this one as we learn to structure our code and test it to prove
that it does what it should. Get ready to see the assert_eq! macro a lot!

Summary
 Clicking on the [src] button in documentation is a great habit to get into.

You’ll get more insight into how other code works even if you don’t understand
everything yet.

 The assert_eq! macro is everywhere in documentation to show the reader the
values of variables at certain points in the code.

 A Box is a smart pointer that points to data on the heap. A Box owns its data.
 Using a Box<dyn trait> lets you “erase” a type. The type inside the Box is still

concrete, but when inside the Box, it can only be used as a trait object. In other
words, you can only use its trait methods.

 You can downcast a trait object back to a concrete type as long as you know what
concrete type it might be. You can only try downcasting to one type at a time.

 Static dispatch happens at compile time, during which the compiler turns
generic types into concrete ones. Dynamic dispatch happens during run time.

 Any type can implement Error, but a type can be of any size. To satisfy the com-
piler when returning errors, you can return a Box<dyn Error> instead.



Testing and building
your code from tests
As your code grows, you’re going to want to think about its structure. The more you
write, the more you’ll find that some code belongs in its own space, separate from
other bits of code. You’ll also want to start testing your code as it grows because
even Rust’s strict compiler can’t protect you from logic errors. Tests also help to
remind you when you change your code if something has gone wrong. Writing tests
can be a bit boring at times, but, in general, the more tests you have to catch prob-
lems, the better. We’ll also learn test-driven development (TDD), which means to
write the tests before you write any code! In TDD, you write your tests, which will all
fail. Only then, you write your code to make the tests pass one by one until finally
everything works the way you intended.

This chapter covers
 Using crates and modules to structure your 

code and limit how others can use it

 Using testing to prove that your code runs as 
it should

 Using test-driven development by writing the 
tests first and then the code
282



28314.1 Crates and modules
14.1 Crates and modules
First, we are going to learn about where to put your code, what parts to make pub
(available to others to use), and so on. Every time you write code in Rust, you are writ-
ing it in a crate. A crate is the file, or files, that go together for your code. (It also has
a few other files to manage the project, but we’ll look at those later.) Inside the file
you write, you can also make modules using the keyword mod. In other programming
languages, a module is often known as a namespace. A module is a space for functions,
structs, and anything else that you think belongs inside its own space. Here are some
reasons to use a module:

 Building your code—It helps you think about the general structure of your code
and remember what code goes where. This can be important as your code gets
larger and larger.

 Defining names and keeping types from conflicting with other types with similar or the same
names—One good example is the standard library that has three traits that are
each called CommandExt. But looking at the modules they belong to, it is quite
clear why they all have the same name: they end with linux::process::Command-
Ext, unix::process::CommandExt, and windows::process::CommandExt.

 Reading your code—People can understand your code more easily. For example,
the name std::collections::HashMap tells you that it’s in std inside the mod-
ule collections. This gives you a hint that maybe there are more collection
types inside collections that you can try.

 Privacy—Everything inside a module starts out as private. Modules themselves
are also private unless you make them public. Doing this lets you keep users
from using types and functions directly. This idea is sometimes called encapsula-
tion: keeping things that are private in their own “capsules” and limiting access
to them.

You can probably see already why you might want to use modules as your code grows.
So let’s make one and see what it looks like.

14.1.1 Module basics

To make a module, just write mod and start a code block with {}. We will make a mod-
ule called print_things that has some printing-related functions:

mod print_things {
    use std::fmt::Display;

    fn prints_one_thing<T: Display>(input: T) {
        println!("{input}");
    }
}

fn main() {}



284 CHAPTER 14 Testing and building your code from tests
You can see that we wrote use std::fmt::Display; inside print_things because a
module is a separate space. If you wrote use std::fmt::Display; on the very top out-
side of the print_things module, the code wouldn’t compile because it wouldn’t be
able to find the path to the Display trait.

 We also can’t call this function from main() yet. Without the pub keyword in front
of fn it will stay private and inaccessible, so the code will not compile:

mod print_things {
    use std::fmt::Display;

    fn prints_one_thing<T: Display>(input: T) {
        println!("{}", input)
    }
}

fn main() {
    use print_things::prints_one_thing;

    prints_one_thing(6);
    prints_one_thing("Trying to print a string...".to_string());
}

Here’s the error:

error[E0603]: function `prints_one_thing` is private
  --> src\main.rs:10:30
   |
10 |     use crate::print_things::prints_one_thing;
   |                              ^^^^^^^^^^^^^^^^ private function
   |
note: the function `prints_one_thing` is defined here
  --> src\main.rs:4:5
   |
4  |     fn prints_one_thing<T: Display>(input: T) {
   |     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

It’s easy to understand that the function prints_one_thing is private. The error mes-
sage helpfully shows us with src\main.rs:4:5 where to find the function. This is help-
ful because you can write mods not just in one file but over a lot of files as well.

 The solution to this is easy: we can just write pub fn instead of fn and now every-
thing works:

mod print_things {
    use std::fmt::Display;

    pub fn prints_one_thing<T: Display>(input: T) {
        println!("{}", input)
    }
}

fn main() {
    use print_things::prints_one_thing;



28514.1 Crates and modules
    prints_one_thing(6);
    prints_one_thing("Trying to print a string...".to_string());
}

This prints

6
Trying to print a string...

The pub keyword works a little differently depending on what you are making public.
Let’s see what the differences are.

14.1.2 More on how the pub keyword works

There are small differences in what the pub keyword does depending on whether it is
in front of a struct, enum, trait, or module. These differences make sense when you
think about them. They are as follows:

 pub for a struct—pub makes the struct public, but the parameters are still private.
To make a parameter public, you have to write pub for it, too. The same rule
applies to tuple structs, too, so to make a pub Email(String) fully public, you
would have to write pub Email(pub String). So a pub Email(String) is a type
called Email which the user can use, but they can’t use .0 to access the String
inside. (In the next chapter, we will learn about a popular trait called Deref that
lets you use inner methods, like all the methods for String in this case, while
keeping a type’s parameters private.)

 pub for an enum or trait—Everything becomes public. For a trait, this means
every method in the trait, and for an enum, this means every variant of the
enum. This makes sense because traits are about giving the same behavior to
something. And enums are about choosing between variants, and you need to
see them all to choose them.

 pub for a module—A top-level module will be pub by default inside its own crate
(as we saw in the previous example) but won’t be accessible from outside with-
out pub. And modules inside modules all need pub to be public.

The Rust reference (http://mng.bz/XqGa) sums this up quite well in a single sen-
tence: “By default, everything is private, with two exceptions: items in a pub Trait are
public by default; Enum variants in a pub enum are also public by default.”

 To demonstrate, let’s make a struct called Billy inside print_things. This struct
will be almost all public, but not quite. The struct itself is public, so it will say pub struct
Billy. Inside, it will have a name and times_to_print. The parameter name will not be
public because we don’t want the user to be able to choose any name but Billy. But the
user can select the number of times to print, so that part will be public. It looks like this:

mod print_things {

    #[derive(Debug)]
    pub struct Billy {    
        name: String,

Billy, the struct, is public, but the 
parameter name inside it is private.

http://mng.bz/XqGa


286 CHAPTER 14 Testing and building your code from tests
pub times_to_print: u32,
    }

    impl Billy {
pub fn new(times_to_print: u32) -> Self {   
    Self {

name: "Billy".to_string(),   
times_to_print,

    }
}
pub fn print_billy(&self) {
    for _ in 0..self.times_to_print {

println!("{}", self.name);
    }
}

    }
}

fn main() {
    use print_things::*;

    let my_billy = Billy::new(3);    
    my_billy.print_billy();
}

This will print

"Billy"
"Billy"
"Billy"

By the way, the * to import everything is called the glob operator. Glob stands for
global—in other words, everything.

14.1.3 Modules inside modules

Inside a mod, you can create other modules. A child module (a module inside a mod-
ule) can always use anything inside a parent module. You can see this in the next
example where we have a mod city inside a mod province inside a mod country.

 You can think of the structure like this: even if you are in a country, you might not
be in a province (or state, or prefecture). And even if you are in a province, you might
not be in a city. But if you are in a certain city, you are guaranteed to be in its province
and in its country.

 Two other things to pay attention to here are crate:: and super::. If you start a
path to a type or function with crate::, it starts from the beginning—from the outside
to the inside. But if you are inside a module, you can use super:: to move up one mod-
ule. (As we learned before, the word super itself means “above,” like in “superior.”) Pay
close attention to the city module. Inside this module, we are calling the same func-
tion twice, one using the path that starts from crate:: and the other using super:: two
times to go up two modules. Those are simply two ways to call the same thing:

The user needs to use new() 
to create a Billy. The user 
can only change the number 
of times_to_print.

We choose the name; the 
user can’t. No Billy struct can 
have any name but Billy.

Now we use *, which 
imports everything from 
the module print_things.



28714.1 Crates and modules

Th
mod country {    
    fn print_country(country: &str) {    
        println!("We are in the country of {country}");
    }
    pub mod province {    
        fn print_province(province: &str) {    
            println!("in the province of {province}");
        }
        pub mod city {    
            pub fn print_city(country: &str, province: &str, city: &str) {

                crate::country::print_country(country);    
                super::super::print_country(country);       

                crate::country::province::print_province(province);  
                super::print_province(province);
                println!("in the city of {city}");
            }
        }
    }
}

fn main() {
    country::province::city::print_city("Canada", "New Brunswick", 

"Moncton");
}

Try to follow the flow of the code and imagine what the output will be if you run this
code sample.

 The interesting part is that print_city() can access print_province() and
print_country(). That’s because mod city is inside the other modules. It doesn’t
need pub in front of print_province() to use it. And that makes sense: a city doesn’t
need to do anything to be inside a province and inside a country.

 Here is the output (see figure 14.1):

We are in the country of Canada
We are in the country of Canada
in the province of New Brunswick
in the province of New Brunswick
in the city of Moncton

When putting together your own project, the general setup looks like this: a main.rs
file for the main function and related code and a lib.rs file. which is the library to
hold types, functions, and so on that aren’t related to the main running of the soft-
ware you are building. Of course, nothing is stopping you from putting everything
inside main.rs if you really want. 

 Something interesting happens when creating separate files (for example, a file
called functions.rs): Rust won’t even notice them! You can write all sorts of garbage
inside this new file and—although your IDE might notice—the program will compile
without any problems.

The top level module 
doesn’t need pub.This

function
isn’t pub.

Makes this module pub

This function 
isn’t pub either.

is module and
the function

it holds
are both pub.

The path to the print_country function can be written
from the crate level moving down or from the current

location moving up using the keyword super.

Here’s one more example
of writing the same thing

either from the crate level
down or current level up.



288 CHAPTER 14 Testing and building your code from tests
 
To have Rust notice them, go to lib.rs and declare them using the mod keyword. So if
you make a functions.rs file, you have to type mod functions; inside lib.rs. Other-
wise, Rust won’t see it. But once the file has been declared, Rust will see it, and it won’t
compile the code anymore if there is a problem with it (see figure 14.2).

Figure 14.1 Files that aren’t declared don’t exist as far as Rust is concerned…

Figure 14.2 ...but declare the file and Rust will snap to attention.



28914.2 Testing
We will look more at structuring a project in chapter 18, where we will learn about
Rust on the computer instead of just in the Playground. But, for now, let’s leave it at
that and learn how to write tests.

14.2 Testing
Testing is a good subject to learn now that we understand modules. Testing your code
is easy in Rust because you can write tests right next to your code. You can create sepa-
rate test files if you want, but you don’t have to if you don’t want to. Let’s look at the
easiest way to start testing.

14.2.1 Just add #[test], and now it’s a test

The easiest way to start testing is to add #[test] above a function. Here is a simple
one:

#[test]
fn two_is_two() {
    assert_eq!(2, 2);
}

But if you try to run it in the Playground with the Run button, it gives an error:
error[E0601]: `main` function not found in crate `playground`. That’s because
you don’t use Run for tests; you use Test. To run this in the Playground, click on ···
next to RUN on the top left and change it to TEST. Now if you click on it, it will run all
of your tests. In this case, it will just be one. (If you have Rust installed already, you will
type cargo test to do this instead of cargo run or cargo check.)

 Also, you don’t use a main() function for tests: they go outside. You can outright
delete the main() function and still run tests. 

 Here is the output of the previous test:

running 1 test
test two_is_two ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

One other point to note: test functions can’t take any arguments. So this won’t
compile:

#[test]
fn test_that_wont_work(input: i32) {}

The compiler message is as clear as day: error: functions used as tests can not
have any arguments. A test function is pretty similar to main() in this way.

 So, how does the compiler know that the test passed? It’s pretty simple: if a test
function does not panic, then it is a pass, and if it does panic, then it’s a failure. The
assert_eq! macro will panic if the two arguments inside it don’t match, or you can
use other ways to panic upon failure: .unwrap(), .expect(), the panic! macro, and
so on.



290 CHAPTER 14 Testing and building your code from tests
 The output for a passing test is pretty boring, so let’s see what happens when it
panics.

14.2.2 What happens when tests fail

Let’s change assert_eq!(2, 2) to assert_eq!(2, 3) and see what we get. When a test
fails, you get a lot more information:

running 1 test
test two_is_two ... FAILED

failures:

---- two_is_two stdout ----
thread 'two_is_two' panicked at src/lib.rs:3:5:
assertion `left == right` failed
  left: 2
 right: 3
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

failures:
    two_is_two

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered

➥out; finished in 0.00s

assert_eq!(left, right) and assert!(bool) are probably the most common ways
to test a function in Rust. For assert_eq!, if the left and right sides don’t match, it will
panic and show that the values are different: left has 2 but right has 3.

 The output for the assert! macro is almost the same:

#[test]
fn two_is_two() {
    assert!(2 == 3);
}

The output is

running 1 test
test two_is_two ... FAILED

failures:

---- two_is_two stdout ----
thread 'two_is_two' panicked at src/lib.rs:3:1:
assertion failed: 2 == 3
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

failures:
    two_is_two

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered

➥out; finished in 0.00s



29114.2 Testing
So what does RUST_BACKTRACE=1 mean? This is a setting on your computer that you
can use to get a lot more detail when an assertion fails. These settings are known as
environment variables. We will learn more about them in chapter 18, but, in the
meantime, just remember that they can be found using the function
std::env::var(). Let’s use this function to take a look at the default value for
RUST_BACKTRACE:

fn main() {
    println!("{:?}", std::env::var("RUST_BACKTRACE"));
}

By default, that will print Err(NotPresent). But in the Playground, it’s easy to enable:
click ··· next to STABLE and set backtrace to ENABLED. Or you can use the function
set_var() to do the same thing: std::env::set_var("RUST_BACKTRACE", "1"); If
you do that, it will give you a lot more information:

running 1 test
test two_is_two ... FAILED

failures:

---- two_is_two stdout ----
thread 'two_is_two' panicked at src/lib.rs:3:5:
assertion failed: 2 == 3
stack backtrace:
   0: rust_begin_unwind
             at /rustc/a28077b28a02b92985b3a3faecf92813155f1ea1/library/std/
             ➥src/panicking.rs:597:5
   1: core::panicking::panic_fmt
             at /rustc/a28077b28a02b92985b3a3faecf92813155f1ea1/library/core/
             ➥src/panicking.rs:597:5src/panicking.rs:72:14
   2: core::panicking::panic
             at /rustc/a28077b28a02b92985b3a3faecf92813155f1ea1/library/core/
             ➥src/panicking.rs:597:5src/panicking.rs:127:5
   3: playground::two_is_two
             at ./src/lib.rs:3:5
   4: playground::two_is_two::{{closure}}
             at ./src/lib.rs:2:17
   5: core::ops::function::FnOnce::call_once
             at /rustc/a28077b28a02b92985b3a3faecf92813155f1ea1/library/core/
             ➥src/panicking.rs:597:5src/ops/function.rs:250:5
   6: core::ops::function::FnOnce::call_once
             at /rustc/a28077b28a02b92985b3a3faecf92813155f1ea1/library/core/
             ➥src/panicking.rs:597:5src/ops/function.rs:250:5
note: Some details are omitted, run with `RUST_BACKTRACE=full` for a verbose

➥src/panicking.rs:597:5 backtrace.

failures:
    two_is_two

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered

➥src/panicking.rs:597:5 out; finished in 0.05s



292 CHAPTER 14 Testing and building your code from tests
You don’t need to use a backtrace unless you really can’t find where the problem is.
But, luckily, you don’t need to understand it all either. If you read from the bottom to
the top, you will soon come across where the error happens: it’s on line 4 where it says
playground—that’s where it talks about your code. Here’s that part again:

   4: playground::two_is_two
             at ./src/lib.rs:3:5
   5: playground::two_is_two::{{closure}}
             at ./src/lib.rs:2:1

You’ll also notice that the message tells us that we can set "RUST_BACKTRACE=full" for
a “verbose backtrace” (a detailed backtrace). This used to be the default backtrace on
Rust until it was improved with the less complicated output we just saw.

 The verbose backtrace output is so verbose that it would take up a full page in this
book. The Playground doesn’t have a button to enable a verbose backtrace, but we
can use std::env::set_var() to set it. Give this code a try if you want to see just how
verbose it is:

#[test]
fn two_is_two() {
    std::env::set_var("RUST_BACKTRACE", "full");
    assert!(2 == 3);
}

The output is indeed verbose: it’s about four times longer!
 Now let’s turn backtrace off again and return to regular tests. 

14.2.3 Writing multiple tests

Now, we’ll start writing multiple tests. Let’s put a few simple functions together, fol-
lowed by test functions to make sure that they work. Here are a few:

fn return_two() -> i8 {
    2
}
#[test]
fn it_returns_two() {
    assert_eq!(return_two(), 2);
}

fn return_six() -> i8 {
    4 + return_two()
}
#[test]
fn it_returns_six() {
    assert_eq!(return_six(), 6)
}

Now it runs both:

running 2 tests
test it_returns_two ... ok



29314.3 Test-driven development
test it_returns_six ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

That’s not too hard.
 Rust programmers often put their tests in their own modules. To do this, use the

mod keyword to create a new module and add #[cfg(test)] above it (remember: cfg
means “configure”). This attribute tells Rust not to compile it unless you are testing.
You also need to continue to write #[test] above each test. This is because later on,
when you install Rust, you can do more complicated testing. You will be able to run
one test, or all of them, or run a few. Also, don’t forget to write use super::*; because
the test module needs access to the functions above it. Now, it will look like this:

fn return_two() -> i8 {
    2
}
fn return_six() -> i8 {
    4 + return_two()
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn it_returns_six() {
        assert_eq!(return_six(), 6)
    }
    #[test]
    fn it_returns_two() {
        assert_eq!(return_two(), 2);
    }
}

This is the way you will usually see testing done in Rust and in other languages, too.
You write your code first, then want to make sure that it behaves in the way it should,
and then write some tests. This is probably human nature since the desire to create
and the desire to get work done is so strong. But you can also do it the other way
around by writing the tests first! Let’s take a look at how that works.

14.3 Test-driven development
You might see the words test-driven development (TDD) when reading about Rust or
another language. TDD is a bit unique, and some people like it while others prefer
something else (so it’s up to you how to test your own code).

 TDD means writing tests first, all of which will fail! Only then you start writing the
code. Then you start writing the code and keep doing that until all the tests pass. The
tests then stay to show you if something goes wrong when you add to and rewrite your
code later on. This is pretty easy in Rust because the compiler gives a lot of information



294 CHAPTER 14 Testing and building your code from tests
about what to fix. Let’s write a small example of test-driven development and see what
it looks like.

14.3.1 Building a calculator: Starting with the tests

Let’s imagine a calculator that takes user input as a String. To make the example as
simple as possible, we’ll only let the calculator subtract (we’ll call it the Subtractor).
If the user writes "5 - 6", it should return -1; if the user writes "15 - 6 - 7", it should
return 2; if the user writes "1 -- 1", it should return 2, and so on. And because we are
using TDD, we will start with test functions before a single line of code is written.

 We won’t write the Subtractor yet, but we still need to give it a bit of thought so we
can write tests that it will need to pass. The plan is to use a single function called
math() to do everything. It will return an i32 (we won’t use floats).

 For our Subtractor, the following five tests seem reasonable:

 Simple operation with one minus sign: "1 - 2" should return -1.
 Simple operation with two minus signs: "1 - - 1" should return 2.
 More complex operation: "3-3-3--3" should return 0.
 Spaces and characters after the last number should be ignored: "18  - 9     -9--

---" should return 0.
 If the input doesn’t contain a number, a space, or a minus sign, the program

should panic: "7 - seven" should panic.

The absolute minimum code to make the tests is to have an empty Subtractor struct
and a .math() method that returns an i32. For the .math() method, we’ll just have it
return a random number like 6—we’ll think about it later. The first code looks like this:

struct Subtractor;

impl Subtractor {
    fn math(&mut self, input: &str) -> i32 {
        6
    }
}

#[test]
fn one_minus_two_is_minus_one() {
    let mut calc = Subtractor;   
    assert_eq!(calc.math("1 - 2"), -1);
}
#[test]
fn one_minus_minus_one_is_two() {
    let mut calc = Subtractor;
    assert_eq!(calc.math("1 - -1"), 2);
}
#[test]
fn three_minus_three_minus_three_minus_minus_three_is_zero() {
    let mut calc = Subtractor;
    assert_eq!(calc.math("3-3-3--3"), 0);
}

So far, there’s nothing to mutate in 
Subtractor, but we plan to have it 
hold input and parse numbers, so 
it will be mutable from the start.



29514.3 Test-driven development
#[test]
fn eighteen_minus_nine_minus_nine_is_zero_even_with_characters_on_the_end() {
    let mut calc = Subtractor;
    assert_eq!(calc.math("18  - 9     -9-----"), 0);
}
#[test]
#[should_panic]    
fn panics_when_characters_not_right() {
    let mut calc = Subtractor;
    calc.math("7 - seven");
}

The first part of the test output simply tells us which tests passed or not:

running 5 tests
test eighteen_minus_nine_minus_nine_is_zero_even_with_characters_on_the_end

➥... FAILED
test nine_minus_three_minus_three_minus_three_is_zero ... FAILED
test one_minus_two_is_minus_one ... FAILED
test one_minus_minus_one_is_two ... FAILED
test panics_when_characters_not_right - should panic ... FAILED

Along with that is information per failed test on why it failed, such as thread 'tests
::one_minus_two_is_minus_one' panicked at src/lib.rs:10:5: assertion left ==
right` failed. We haven’t started the .math() method yet, so this output is still of no
use to us.

 You can also see that function names in tests are usually quite descriptive, like
one_minus_two_is_minus_one. You can probably imagine why: as your code grows,
you might end up making 10s or even 100s of tests, and descriptive test names let you
understand right away which tests have failed.

 Now it’s time to think about how to make the Subtractor. First, we will accept any
number, the minus symbol, and empty spaces. We can represent this with a const
called OKAY_CHARACTERS that contains all the possible input. To check input, we can
use .chars() on the const to make an iterator of characters and .any() to panic with
an error message if any characters aren’t contained in OKAY_CHARACTERS.

 Now, the code before the tests looks like this:

const OKAY_CHARACTERS: &str = "1234567890- ";

struct Subtractor;

impl Subtractor {
    fn math(&mut self, input: &str) -> i32 {
            if input
            .chars()
            .any(|character| !OKAY_CHARACTERS.contains(character))
        {
            panic!("Please only input numbers, -, or spaces.");
        }
        6
    }
}

Note that this test is annotated 
with #[should_panic]. If it 
doesn’t panic, that’s a failure.



296 CHAPTER 14 Testing and building your code from tests
Running the tests gives us this result:

running 5 tests
test one_minus_minus_one_is_two ... FAILED
test one_minus_two_is_minus_one ... FAILED
test panics_when_characters_not_right - should panic ... ok
test six_minus_three_minus_three_minus_minus_three_is_zero ... FAILED
test eighteen_minus_nine_minus_nine_is_zero_even_with_characters_on_the_end

➥... FAILED

One test succeeded! Our .math() method will only accept proper input now. That was
the easiest part. Now it’s time to actually put the Subtractor together.

14.3.2 Putting the calculator together

The first step in putting the Subtractor together is to think about what the .math()
method should return and how. Instead of returning a 6 every time, it should return
some total. To start, we’ll concentrate on the following:

 We’ll give the Subtractor struct a parameter called total, which starts at zero.
 First, we’ll remove any spaces from the input and trim the input string so that

any spaces or minus signs at the end are ignored. That leaves only numbers and
the minus sign as possible characters.

 We’ll then go through each character and match on it. If it’s a number, we’ll
push it into a parameter (a String) called num_to_parse. If we see a minus
sign, we will know that the number is done. For example, for the input "55-7",
we would push a 5, then push another 5, and then see a minus sign and know
that the number is done. In that case, we’ll parse num_to_parse into an i32 and
subtract it from the total.

 Since total starts at 0 and num_to_parse is an empty String, we might as well
implement Default for our Subtractor.

 As for double minus signs, we’ll think about that later. Let’s just try to get one
more test to pass.

Here is our new code:

const OKAY_CHARACTERS: &str = "1234567890- ";

#[derive(Default)]
struct Subtractor {
    total: i32,
    num_to_parse: String,
}

impl Subtractor {
    fn math(&mut self, input: &str) -> i32 {
            if input
            .chars()
            .any(|character| !OKAY_CHARACTERS.contains(character))
        {
            panic!("Please only input numbers, -, or spaces.");
        }



29714.3 Test-driven development
        let input = input
            .trim_end_matches(|x| "- ".contains(x))    
            .chars()
            .filter(|x| *x != ' ')
            .collect::<String>();

        for character in input.chars() {
            match character {
                '-' => {
                    let num = self.num_to_parse.parse::<i32>().unwrap();
                    self.total -= num;
                    self.num_to_parse.clear();
                }
                number => self.num_to_parse.push(number),
            }
        }
        self.total
    }
}

#[test]
fn one_minus_two_is_minus_one() {    
    let mut calc = Subtractor::default();
    assert_eq!(calc.math("1 - 2"), -1);
}
#[test]
fn one_minus_minus_one_is_two() {
    let mut calc = Subtractor::default();
    assert_eq!(calc.math("1 - -1"), 2);
}
#[test]
fn three_minus_three_minus_three_minus_minus_three_is_zero() {
    let mut calc = Subtractor::default();
    assert_eq!(calc.math("3-3-3--3"), 0);
}
#[test]
fn eighteen_minus_nine_minus_nine_is_zero_even_with_characters_

➥on_the_end() {
    let mut calc = Subtractor::default();
    assert_eq!(calc.math("18  - 9     -9-----"), 0);
}
#[test]
#[should_panic]
fn panics_when_characters_not_right() {
    let mut calc = Subtractor::default();
    calc.math("7 - seven");
}

NOTE .trim_end_matches() and .trim_start_matches() used to be .trim_
right_matches() and .trim_left_matches(). But people noticed that some
languages go from right to left (Persian, Hebrew, etc.) so right and left didn’t
always mean end and start. You might still see the other names in really old
Rust code.

.trim_end_matches() 
removes anything that 
matches at the end of a &str. 

The tests are the same except 
that we are using Default to 
make the Subtractor now.



298 CHAPTER 14 Testing and building your code from tests
The tests won’t change from here on, so we won’t include the test code in the code
samples anymore. Happily, one more test passes!

running 5 tests
test eighteen_minus_nine_minus_nine_is_zero_even_with_characters_on_the_end

➥... FAILED
test one_minus_minus_one_is_two ... FAILED
test panics_when_characters_not_right - should panic ... ok
test three_minus_three_minus_three_minus_minus_three_is_zero ... FAILED
test one_minus_two_is_minus_one ... ok

We still haven’t made the Subtractor smart enough to know that a minus sign can
also mean to add, so three tests have still failed. But interestingly, two of the tests have
given us an unexpected hint for what to do next. Here is the error:

---- one_minus_minus_one_is_two stdout ----
thread 'one_minus_minus_one_is_two' panicked at src/lib.rs:22:44:
called `Result::unwrap()` on an `Err` value: ParseIntError { kind: Empty }

The code is still simple enough that we can imagine what is happening here. In this
test, the input is "1 - -1". The spaces and needless input at the end are removed, turn-
ing the input to "1--". If we follow the logic, here is what the program is doing:

 Sees 1, pushes 1 to num_to_parse.
 Sees a minus sign, parses num_to_parse, adds it to the total.
 Sees a minus sign, parses num_to_parse…ah ha! It’s trying to parse a number

that doesn’t exist.

We can fix this with a quick check to see whether num_to_parse is empty or not.
Change the scope that starts with for character in input.chars() to the following:

        for character in input.chars() {
            match character {
                '-' => {
                    if !self.num_to_parse.is_empty() {
                        let num = self.num_to_parse.parse::<i32>().unwrap();
                        self.total -= num;
                        self.num_to_parse.clear();
                    }
                }
                number => self.num_to_parse.push(number),
            }
        }

With that done, three tests still fail. But at least we are not trying to parse an empty
string anymore, and the ParseIntErrors are gone. And it was thanks to the tests that
we noticed this.

 Up next, we will tell the Subtractor when it should add and when it should sub-
tract. Fortunately, this isn’t too hard: one minus sign means subtract, two minus signs
means to add, three means to subtract, and so on. We could count the number of
minus signs, but there is a way that is both easier to use and to read: use an enum. We



29914.3 Test-driven development
will make an enum called Operation with two variants: Add and Subtract. The
Subtractor will default to Add, and every time it sees a minus sign, it will simply switch. 

 Let’s give this a try:

const OKAY_CHARACTERS: &str = "1234567890- ";

#[derive(Default)]
struct Subtractor {
    total: i32,
    num_to_parse: String,
    operation: Operation,
}

#[derive(Default)]
enum Operation {
    #[default]            
    Add,
    Subtract,
}

impl Subtractor {
    fn switch_operation(&mut self) {

self.operation = match self.operation {
    Operation::Add => Operation::Subtract,
    Operation::Subtract => Operation::Add,
}

    }
    fn math(&mut self, input: &str) -> i32 {

if input
    .chars()
    .any(|character| !OKAY_CHARACTERS.contains(character))
{
    panic!("Please only input numbers, -, or spaces.");
}

let input = input
    .trim_end_matches(|x| "- ".contains(x))
    .chars()
    .filter(|x| *x != ' ')
    .collect::<String>();

for character in input.chars() {
    match character {

'-' => {
if !self.num_to_parse.is_empty() {

let num = self.num_to_parse.parse::<i32>().unwrap();
match self.operation {

                   Operation::Add => self.total += num,
                   Operation::Subtract => self.total -= num
                        }
                        self.operation = Operation::Add; 

self.num_to_parse.clear();
}
self.switch_operation();

Since Rust 1.62 (released July 2022), you can now 
pick a default variant for an enum, as long as it is 
a "unit enum variant" (has no data in it). You do 
it by using the #[derive(Default)] attribute on 
top and then #[default] over the default variant.

These two lines restore
the Subtractor to the
default now that the

operation is over.



300 CHAPTER 14 Testing and building your code from tests
}
number => self.num_to_parse.push(number),

    }
}
self.total

    }
}

Interestingly, now only one test passes! Let’s look at the failures closely (left = test out-
put, right = expected output). See whether you can tell what they all have in common:

Input: "18  - 9     -9--  ---"
left: 9, right: 0

Input: "1 - 2"
left: 1, right: -1

Input: "1 - -1"
left: 1, right: 2

"3-3-3--3"
left: -3, right: 0

Ah, yes, they are all ignoring the last number. At the very end of our iterator through
self.input, we always have a final number but just push it to self.num_to_parse and
end the program without adding or subtracting it. To fix this, we can just check at the
end whether num_to_parse is empty or not, and if it isn’t empty, we can add to or sub-
tract from the total. Since that operation will use the same code as before, we can
make a method called .do_operation() so that we aren’t duplicating code.

 And after doing this, the tests pass. Here is the final code:

const OKAY_CHARACTERS: &str = "1234567890- ";

#[derive(Default)]
struct Subtractor {
    total: i32,
    num_to_parse: String,
    operation: Operation,
}

#[derive(Default)]
enum Operation {
    #[default]
    Add,
    Subtract,
}

impl Subtractor {
    fn switch_operation(&mut self) {

self.operation = match self.operation {
    Operation::Add => Operation::Subtract,
    Operation::Subtract => Operation::Add,
}

    }



30114.3 Test-driven development
    fn do_operation(&mut self) {
let num = self.num_to_parse.parse::<i32>().unwrap();
match self.operation {
    Operation::Add => self.total += num,
    Operation::Subtract => self.total -= num,
}
self.operation = Operation::Add;
self.num_to_parse.clear();

    }

    fn math(&mut self, input: &str) -> i32 {
if input
    .chars()
    .any(|character| !OKAY_CHARACTERS.contains(character))
{
    panic!("Please only input numbers, -, or spaces.");
}

let input = input
    .trim_end_matches(|x| "- ".contains(x))
    .chars()
    .filter(|x| *x != ' ')
    .collect::<String>();

for character in input.chars() {
    match character {

'-' => {
if !self.num_to_parse.is_empty() {

self.do_operation();
}
self.switch_operation();

}
number => self.num_to_parse.push(number),

    }
}
if !self.num_to_parse.is_empty() {
    self.do_operation();
}
self.total

    }
}

Success! And now that the tests pass, we could start refactoring the code a bit. We
could return a Result instead of panicking or make some small methods to make the
code cleaner. But this section is only about testing, so we’ll leave it the way it is.

 You can see that there is a back-and-forth process in TDD. It’s something like this:

 First, you write all the tests you can think of. They will all fail because you
haven’t written the code yet to make them pass.

 Then you start writing the code. The tests will start to pass, and eventually, they
will all pass.

 As you write the code, you get ideas for other tests.



302 CHAPTER 14 Testing and building your code from tests
 You add the tests, and your tests grow as you go. The more tests you have, the
more times your code gets checked.

Of course, tests don’t check everything, and it is wrong to think that “passing all tests”
equals “the code is perfect.” At the end of the day, a test only checks what the human
programmer thinks should be checked. But tests are also great for when you change
your code. Say you change your code later on and run the tests. If one of them doesn’t
work, you will know what to fix. This is especially important when working on a team
or writing code that someone else might have to manage one day.

 In this chapter, we’ve learned about structuring and testing your project, and we
haven’t even needed to install Rust yet! This will be good practice for later on in the
book when it’s time to move on to Rust installed on your computer. But in the mean-
time, we have a lot of Rust left that can be learned on the Playground. In the next
chapter, we will learn some interesting patterns, plus a popular trait called Deref that
gives you all the methods from someone else’s type inside your types for free!

Summary
 Putting your code into modules is a good way to start thinking about what parts

of your types should be made public.
 Since Rust makes everything private by default, you can simply use the pub key-

word whenever you need it to compile your code. Or you can rewrite your code
if you don’t want to give access to your type’s parameters.

 A test function is similar to main() because it takes no arguments.
 Use #[cfg(test)] over test code to let the compiler know that it doesn’t need

to compile it unless you are doing tests. You can still keep the test code close to
your other code, just don’t forget the annotation.

 Test-driven development is great if you already know what you want your final
product to look like. It can also help if you sort of know what you want your
final product to look like. As you write the tests, you will get a clearer and
clearer picture of what you are trying to make.

 With TDD, all tests will fail in the beginning. Write as many as you can think of
and then start writing the code to make them pass.



Default, the builder
pattern, and Deref
This chapter is a fun one. You’ll learn the builder pattern, which lets you declare
variables by chaining method after method instead of writing all the parameters for
a struct. It’s especially good for writing code that other people might use because
you can control which parts they can touch and which they can’t. The Deref trait
that you’ll learn later in the chapter lets you make your own types that hold all the
methods of another type for free. This allows you to easily make types that hold
someone else’s type inside, to which you can add your own methods on top.

15.1 Implementing Default
You can implement the Default trait to give values to a struct or enum that you
think will be most common or represent the type’s base state. The builder pattern

This chapter covers
 Using the Default trait

 Using the builder pattern to control how your 
types are generated

 Using Deref and DerefMut to steal the methods 
of other types to use in your own
303



304 CHAPTER 15 Default, the builder pattern, and Deref
in the next section works nicely with this to let users easily make any changes after
starting with default values.

 Most frequently used types in the Rust standard library already implement
Default. You can see which types implement Default in the documentation (http://
mng.bz/yZgd) if you are curious. Default values are not surprising, such as 0, ""
(empty strings), false, and so on, which makes sense (you wouldn’t want defaults to
be something like "Smurf" for String or some random number like 576 for an i32!).
We can see some default values in a quick example:

fn main() {
    let default_i8: i8 = Default::default();
    let default_str: String = Default::default();
    let default_bool: bool = Default::default();

    println!("'{default_i8}', '{default_str}', '{default_bool}'");
}

This prints '0', '', 'false'.
 So Default is sort of like a new() method that can’t take any arguments. Let’s try it

with our own type. First, we will make a struct that doesn’t implement Default yet. It
has a new function, which we use to make a character named Billy with some stats:

struct Character {
    name: String,
    age: u8,
    height: u32,
    weight: u32,
    lifestate: LifeState,
}

enum LifeState {
    Alive,
    Dead,
    NeverAlive,
    Uncertain
}

impl Character {
    fn new(name: String, age: u8, height: u32, weight: u32, alive: bool) ->

➥Self {
Self {
    name,
    age,
    height,
    weight,
    lifestate: if alive {

LifeState::Alive
    } else {

LifeState::Dead
    },
}

    }
}

http://mng.bz/yZgd
http://mng.bz/yZgd


30515.1 Implementing Default
fn main() {
    let character_1 = Character::new("Billy".to_string(), 15, 170, 70, true);
}

But maybe in our world, we want most of the characters to be named Billy, age 15,
height 170, weight 70, and alive. We can implement Default so that we can just write
Character::default() and won’t need to enter any arguments. It looks like this:

#[derive(Debug)]
struct Character {
    name: String,
    age: u8,
    height: u32,
    weight: u32,
    lifestate: LifeState,
}

#[derive(Debug)]
enum LifeState {
    Alive,
    Dead,
    NeverAlive,
    Uncertain,
}

impl Default for Character {
    fn default() -> Self {

Self {
    name: "Billy".to_string(),
    age: 15,
    height: 170,
    weight: 70,
    lifestate: LifeState::Alive,
}

    }
}

fn main() {
    let character_1 = Character::default();

    println!(
"The character {:?} is {:?} years old.",
character_1.name, character_1.age

    );
}

It prints The character "Billy" is 15 years old. Much easier!
 But not having to enter arguments isn’t the main reason for implementing

Default. After all, you could just come up with any other function that returns a
Character with these parameters. So why implement Default instead of writing a
new() or some other function? Here are a few good reasons why you might want to
implement Default:



306 CHAPTER 15 Default, the builder pattern, and Deref
 Default is a trait, so if you implement Default, you can pass your type into any-
thing that requires it. Sometimes, you will come across functions or traits that
require Default to be implemented, such as the .unwrap_or_default()
method.

 Your type might need to be a parameter in another struct or enum that wants to
implement Default. To implement Default using #[derive(Default)], all of a
type’s parameters need to implement it, too.

 Having Default gives users of your types a general idea of how to use them. For
example, you might want to have a method called new() or create() to make a
type with lots of customization. But you could also implement Default so the
user can just create one without thinking about all the settings.

 Default is really convenient when working with parameters in a struct.

This last point is easiest to explain using an example. Consider this simple struct:

#[derive(Default)]
struct Size {
    height: f64,
    length: f64,
    width: f64,
}

Each of the struct’s parameters is f64, which implements Default, so we can easily use
#[derive(Default)] for it, too. That lets us write Size::default() if we want each
parameter to be 0.0, but it also lets us do something like this:

#[derive(Debug, Default)]
struct Size {
    height: f64,
    length: f64,
    width: f64,
}

fn main() {
    let only_height = Size {
        height: 1.0,            
        ..Default::default()    
    };
    println!("{only_height:?}");
}

The output is

Size { height: 1.0, length: 0.0, width: 0.0 }

You also see Default a lot in a pattern known as the builder pattern, which we will
take a look at now.

15.2 The builder pattern
The builder pattern is an interesting way to build a type (usually a struct). Some peo-
ple like this pattern because it is quite readable, as it lets you chain method after

Makes height 1.0

For the rest, uses their default 
values. Typing .. means “for 
each remaining parameter.”



30715.2 The builder pattern
method for all the parameters you want to change. For example, if we used the
builder pattern on the Size struct we just looked at, it might look something like this,
which is quite readable:

let my_size = Size::default().height(1.0).width(5.0);

The readability comes from being pretty close to how you would explain this in regu-
lar conversation: “Make a struct Size called my_size with default values but change
height to 1.0 and width to 5.0.”

 But the builder pattern isn’t just for readable syntax: it also gives you more control
over how other people use your types. Generally, the builder pattern makes the most
sense when you have a type with a lot of fields, most of which are default values. A good
example would be a database client with a lot of fields like username, password,
connect_timeout, port_address, and so on. In most cases, a user will prefer default val-
ues, but the builder pattern allows some of these values to be changed when necessary.

 To keep our examples short, though, we’ll keep using the previous Character
struct whose default name was Billy, so we will start with that as the default as we learn
this pattern. As before, most of our characters will be named Billy, but we also want to
give people the option to make some changes. Let’s learn how to do that. 

15.2.1 Writing builder methods

Let’s imagine that we have a Character struct and would like to type .height() after
declaring it to change the height. How would we do that? One way is to take the whole
struct by value, change one value, and pass it back. In other words, each builder
method will return Self. Here is what it would look like:

fn height(mut self, height: u32) -> Self {
    self.height = height;
    self
}

Notice that it takes a mut self, which is an owned self—not a mutable reference
(&mut self). It takes ownership of Self, and with mut, it will be mutable, even if it
wasn’t mutable before. That’s because .height() has full ownership, and nobody else
can touch it, so it is safe to be mutable. Then the method just changes self.height
and returns Self (which, in this case, is Character).

 Let’s have three of these builder methods. They are exceptionally easy to write. Just
take a mut self and a value, change a parameter to the value, and return self:

fn height(mut self, height: u32) -> Self {
    self.height = height;
    self
}

fn weight(mut self, weight: u32) -> Self {
    self.weight = weight;
    self
}



308 CHAPTER 15 Default, the builder pattern, and Deref
fn name(mut self, name: &str) -> Self {
    self.name = name.to_string();
    self
}

Because each of these methods gives a Self back, we can now chain methods to write
something like this to make a character: 

let character_1 = Character::default().height(180).weight(60).name("Bobby");

So far, our code looks like this:

#[derive(Debug)]
struct Character {
    name: String,
    age: u8,
    height: u32,
    weight: u32,
    lifestate: LifeState,
}

#[derive(Debug)]
enum LifeState {
    Alive,
    Dead,
    NeverAlive,
    Uncertain,
}

impl Character {
    fn height(mut self, height: u32) -> Self {

self.height = height;
self

    }

    fn weight(mut self, weight: u32) -> Self {
self.weight = weight;
self

    }

    fn name(mut self, name: &str) -> Self {
self.name = name.to_string();
self

    }
}

impl Default for Character {
    fn default() -> Self {

Self {
    name: "Billy".to_string(),
    age: 15,
    height: 170,
    weight: 70,
    lifestate: LifeState::Alive,
}



30915.2 The builder pattern
    }
}

fn main() {
    let character_1 = 

Character::default().height(180).weight(60).name("Bobby");
    println!("{character_1:?}");
}

This prints Character { name: "Bobby", age: 15, height: 180, weight: 60, life-
state: Alive }.

 That’s the first part of the builder pattern, but what about the part about giving
you greater control over how people use your types? At the moment, height is a u32,
so nothing is stopping people from making a character with a height up to
4294967295 (the highest possible number for u32). Let’s think about how to keep
people from doing that.

15.2.2 Adding a final check to the builder pattern

One last method to add in the builder pattern is usually called .build(). This method
is a sort of final check. When you give a user a method like .height() you can make
sure that they only put in a u32, but what if they enter 5000 for height? That might not
be okay in the game you are making. For our final .build() method, we will have it
return a Result. Inside the method, we will check whether the user input is okay, and
if it is, we will return an Ok(Self).

 This raises a question: How do we force a user to use this .build() method? Right
now, a user can write let x = Character::new().height(76767); and get a Character.
There are many ways to do this. First, let’s look at a quick and dirty method. We’ll add
a can_use: bool value to Character:

#[derive(Debug)]
struct Character {
    name: String,
    age: u8,
    height: u32,
    weight: u32,
    lifestate: LifeState,
    can_use: bool,
}

Next, skipping over the code in between, the implementation for Default will now
look like this:

impl Default for Character {
    fn default() -> Self {

Self {
    name: "Billy".to_string(),
    age: 15,
    height: 170,
    weight: 70,

Sets whether the user 
can use the character



310 CHAPTER 15 Default, the builder pattern, and Deref
            lifestate: LifeState::Alive,
            can_use: true,                
        }
    }
}

For the other methods, like .height(), we will set can_use to false. Only .build()
will set it to true again, so now the user has to do a final check with .build(). We will
make sure that height is not above 200 and weight is not above 300. Also, in our
game, there is a bad word called smurf that we don’t want characters to use.

 Our .build() method looks like this:

fn build(mut self) -> Result<Character, String> {
    if self.height < 200
        && self.weight < 300
        && !self.name.to_lowercase().contains("smurf")
    {
        self.can_use = true;
        Ok(self)
    } else {
        Err("Could not create character. Characters must have:
1) Height below 200
2) Weight below 300
3) A name that is not Smurf (that is a bad word)"
            .to_string())
    }
}

Using !self.name.to_lowercase().contains("smurf") makes sure that the user
doesn’t write something like "SMURF" or "IamSmurf". It makes the whole String low-
ercase (small letters) and checks for .contains() instead of ==.

 If everything is okay, we set can_use to true and give the character to the user
inside Ok.

 Now that our code is done, we will create three characters that don’t work and one
character that does work. The code now looks like this:

#[derive(Debug)]
struct Character {
    name: String,
    age: u8,
    height: u32,
    weight: u32,
    lifestate: LifeState,
    can_use: bool,
}

#[derive(Debug)]
enum LifeState {
    Alive,
    Dead,
    NeverAlive,
    Uncertain,
}

Default::()default() always gives 
a good character, so it’s true.



31115.2 The builder pattern

T

impl Default for Character {
    fn default() -> Self {

Self {
    name: "Billy".to_string(),
    age: 15,
    height: 170,
    weight: 70,
    lifestate: LifeState::Alive,
    can_use: true,
}

    }
}

impl Character {

    fn height(mut self, height: u32) -> Self {
self.height = height;
self.can_use = false;                   
self

    }

    fn weight(mut self, weight: u32) -> Self {
self.weight = weight;
self.can_use = false;
self

    }

    fn name(mut self, name: &str) -> Self {
self.name = name.to_string();
self.can_use = false;
self

    }

    fn build(mut self) -> Result<Character, String> {
  if self.height < 200

&& self.weight < 300
&& !self.name.to_lowercase().contains("smurf")
    self.can_use = true;            
    Ok(self)
} else {
    Err("Could not create character. Characters must have:

1) Height below 200
2) Weight below 300
3) A name that is not Smurf (that is a bad word)"

.to_string())
}

    }
}

    let character_with_smurf = Character::default()
.name("Lol I am Smurf!!").build();   

    let character_too_tall = Character::default()
.height(400)
.build();

    let character_too_heavy = Character::default()

Set this to false every time 
a parameter changes.

At this point, everything is okay, so set 
it to true and return the character.

This one contains 
"smurf"—not okay.

oo tall—
not okay Too heavy—

not okay



312 CHAPTER 15 Default, the builder pattern, and Deref
.weight(500)

.build();
    let okay_character = Character::default()

.name("Billybrobby")

.height(180)

.weight(100)

.build();

    let character_vec = vec![    
character_with_smurf,
character_too_tall,
character_too_heavy,
okay_character,

    ];

    for character in character_vec {
match character {
    Ok(character) => println!("{character:?}\n"),
    Err(err_info) => println!("{err_info}\n"),
}

    }
}

This will print

Could not create character. Characters must have:
1) Height below 200
2) Weight below 300
3) A name that is not Smurf (that is a bad word)

Could not create character. Characters must have:
1) Height below 200
2) Weight below 300
3) A name that is not Smurf (that is a bad word)

Could not create character. Characters must have:
1) Height below 200
2) Weight below 300
3) A name that is not Smurf (that is a bad word)

Character { name: "Billybrobby", age: 15, height: 180, weight: 100,

➥lifestate: Alive, can_use: true }

So that’s not bad as long as our code checks whether can_use is true or not. But what
if we are writing a library for other people to use? We can’t force them to check
can_use, so we can’t keep them from making a Character that is wrong. Is there a way
to not even generate a Character struct in the first place if it shouldn’t be built? Let’s
look at that pattern now.

15.2.3 Making the builder pattern more rigorous

The main way to make sure nobody can generate a Character struct on their own is to
start with a different type. This type will look similar, but can’t be used anywhere—it
can only be used to turn into a Character if the parameters are okay. We’ll call it

This character is okay. Name is 
fine; height and weight are fine.

Each of these is a 
Result<Character, String>. 
Let’s put them in a Vec so 
we can see them.



31315.2 The builder pattern
CharacterBuilder. Any functions that take a Character require a Character and
nothing else, so even though CharacterBuilder has the same properties, it’s not the
same type. And to turn a CharacterBuilder into a Character, we’ll make a method
called .try_build().

 To make this last example more readable, let’s simplify the Character struct. It
might look something like this:

#[derive(Debug)]                   
pub struct Character {            
    name: String,                  
    age: u8,                       
}
impl Default for Character {
    fn default() -> Self {
        Self {
            name: "Billy".to_string(),
            age: 15,
        }
    }
}
#[derive(Debug)]
pub struct CharacterBuilder {
    pub name: String,
    pub age: u8,
}

impl CharacterBuilder {
    fn new(name: String, age: u8) -> Self {    
        Self { name, age }
    }

    fn try_build(self) -> Result<Character, &'static str> {    
        if !self.name.to_lowercase().contains("smurf") {
            Ok(Character {
                name: self.name,
                age: self.age,
            })
        } else {
            Err("Can't make a character with the word 'smurf' inside it!")
        }
    }
}

fn do_something_with_character(character: &Character) {}    

fn main() {
    let default_character = Character::default();
    do_something_with_character(&default_character);
    let second_character = CharacterBuilder::new("Bobby".to_string(), 27)
        .try_build()
        .unwrap();
    do_something_with_character(&second_character);
    let bad_character = CharacterBuilder::new("Smurfysmurf".to_string(), 40)
    .try_build();

This is fine because we control both 
name and age. We know that these 
two parameters are acceptable.

This returns a CharacterBuilder, so 
we can give the user full control over 
the parameters. A CharacterBuilder 
on its own is useless except to try 
to turn into a Character.

A proper error type would be nice here,
but we’ll keep it simple for now and

return a &’static str for the Err case.

This function does nothing yet;
it only accepts a Character, not

a CharacterBuilder.



314 CHAPTER 15 Default, the builder pattern, and Deref
    println!("{bad_character:?}");
    // do_something_with_character(&bad_character);   
}

In this case, everything works out except bad_character. We didn’t unwrap it, but it
looks like this: Err("Can't make a character with the word 'smurf' inside it!").

 By now, we should have a pretty good idea of how to use the builder pattern.
What’s most interesting about this pattern is not that you can use slick names like
.name() but that it makes you think about how others will use your types. Starting with
Default and then adding these small methods makes it really easy to predict how peo-
ple will use your types because you have complete control over them.

 Up next, we will learn the Deref trait, which lets you make your own types that you
control and also have quick access to the methods in other people’s types.

15.3 Deref and DerefMut
Way back in chapter 7, we saw the word Deref when learning the newtype pattern.
Here is the tuple struct we used to make a new type:

struct File(String);

fn main() {
    let my_file = File(String::from("I am file contents"));
    let my_string = String::from("I am file contents");
}

We noted that the File struct holds a String, but it can’t use any of String’s methods.
If you are just writing a bit of code in a single file, then you can, of course, use .0 to
access the String inside. But if File is inside another mod and isn’t written struct
File(pub String);, you won’t be able to use .0 to access String, and you won’t be
able to use any of String’s methods. This is where the Deref trait comes in, so let’s
take a look at how that works. 

15.3.1 Deref basics

Deref is the trait that lets you use * to dereference something, which we learned pretty
early on in the book. For example, we know that a reference is not the same as a value:

fn main() {
    let value = 7;        
    let reference = &7;    
    println!("{}", value == reference);
}

This code doesn’t even return false because Rust refuses to even compare the two—
they are different types:

error[E0277]: can't compare `{integer}` with `&{integer}`
 --> src\main.rs:4:26

This bad_character variable is a Result::Err. It failed to
turn into a Character, so it can’t be used in this function.

This is an i32.
This is a &i32.



31515.3 Deref and DerefMut
  |
4 |     println!("{}", value == reference);
  |     ^^ no implementation for `{integer} ==

➥&{integer}`

As we saw before, the solution here is to use * to dereference. Now, this will print true:

fn main() {
    let value = 7;
    let reference = &7;
    println!("{}", value == *reference);
}

Now, let’s imagine a simple type that only holds a number. It would be nice if we could
use it like a Box by using * to dereference, and we have some ideas for some extra
functions for it. But there isn’t much we can do yet with a struct that only holds a
number.

 For example, we can’t use * as we could with Box:

struct HoldsANumber(u8);

fn main() {
    let boxed_number = Box::new(20);
    println!("This works fine: {}", *boxed_number);
    let my_number = HoldsANumber(20);
    println!("This fails though: {}", *my_number + 20);
}

The error is

error[E0614]: type `HoldsANumber` cannot be dereferenced
  --> src\main.rs:24:22
   |
24 |     println!("{:?}", *my_number + 20);

We can, of course, do this: println!("{:?}", my number.0 + 20);. But then we are
just manually adding the u8 to the 20. Plus, it is likely that we don’t want to make the
u8 inside it pub when other people use our code. It would be nice if we could add
them together somehow.

 The message cannot be dereferenced gives us a clue: we need to implement
Deref. Something simple that implements Deref is sometimes called a “smart
pointer.” A smart pointer can point to its item, might have information about it (meta-
data; one example of metadata in a smart pointer is Vec, which holds information on
its length), and can use its methods. Right now, we can add my_number.0, which is a
u8, but we can’t do much else with a HoldsANumber—all it has so far is Debug.

 Interestingly, String is a smart pointer to &str, and Vec is a smart pointer to array
(or other types). Box, Rc, RefCell, and so on are smart pointers too. So, we have actu-
ally been using smart pointers all this time. Let’s implement Deref now and make our
HoldsANumber struct into a smart pointer, too.



316 CHAPTER 15 Default, the builder pattern, and Deref
15.3.2 Implementing Deref

Implementing Deref is not too hard, and the examples in the standard library are
easy. Let’s take a look at the sample code from the standard library (http://mng.bz/
M94B):

use std::ops::Deref;

struct DerefExample<T> {
    value: T
}

impl<T> Deref for DerefExample<T> {
    type Target = T;

    fn deref(&self) -> &Self::Target {
&self.value

    }
}

fn main() {
    let x = DerefExample { value: 'a' };
    assert_eq!('a', *x);
}

We can follow this code and change it to fit our HoldsANumber type. With Deref, it now
looks like this:

impl Deref for HoldsANumber {
    type Target = u8;        

    fn deref(&self) -> &Self::Target {    
&self.0

    }
}

With these changes, we can now use the * operator: 

use std::ops::Deref;
#[derive(Debug)]
struct HoldsANumber(u8);

impl Deref for HoldsANumber {
    type Target = u8;

    fn deref(&self) -> &Self::Target {
&self.0

    }
}

fn main() {
    let my_number = HoldsANumber(20);
    println!("{:?}", *my_number + 20);
}

Remember, this is the associated type—a type 
that goes together with a trait. The return value 
is Self::Target, which we decided will be a u8.

Rust calls .deref() when you use * or use the 
dot operator when using a method. We just 
defined Target as a u8, so this &Self::Target is 
easy to understand: it’s a reference to a u8. If 
Self::Target is a u8, then &Self::Target is a &u8.

We chose &self.0 because it’s a tuple
struct. In a named struct, it would

be something like &self.number.

http://mng.bz/M94B
http://mng.bz/M94B


31715.3 Deref and DerefMut
That will print 40 without us needing to write my_number.0.
 And here’s the interesting part: Deref gives us access to the methods of u8, and on

top of that, we can write our own methods for HoldsANumber. Let’s write our own sim-
ple method for HoldsANumber and use another method we get from u8 called
.checked_sub(). The .checked_sub() method is a safe subtraction that returns an
Option. If it can do the subtraction within the bounds of a number, it returns the
value inside Some, and if it can’t do it, it returns a None. Remember, a u8 can’t be nega-
tive, so it’s safer to do .checked_sub() so we don’t panic:

use std::ops::Deref;

struct HoldsANumber(u8);

impl HoldsANumber {
    fn prints_the_number_times_two(&self) {

println!("{}", self.0 * 2);
    }
}

impl Deref for HoldsANumber {
    type Target = u8;

    fn deref(&self) -> &Self::Target {
&self.0

    }
}

fn main() {
    let my_number = HoldsANumber(20);
    println!("{:?}", my_number.checked_sub(100));   
    my_number.prints_the_number_times_two();
}

This prints

None
40

Deref alone doesn’t give mutable access to the inner type, though, so this won’t work:

use std::ops::Deref;

struct HoldsANumber(u8);

impl Deref for HoldsANumber {
    type Target = u8;

    fn deref(&self) -> &Self::Target {
&self.0

    }
}

fn main() {
    let mut my_number = HoldsANumber(20);

*my_number = 30;
}

A method 
from u8

Our own method



318 CHAPTER 15 Default, the builder pattern, and Deref
Here, we try to dereference and turn the number inside from 20 to 30, but the com-
piler won’t let us:

error[E0594]: cannot assign to data in dereference of `HoldsANumber`
  --> src/main.rs:21:5
   |
21 |     *my_number = 30;
   |     ^^^^^^^^^^^^^^^ cannot assign
   |
   = help: trait `DerefMut` is required to modify through a dereference, but 

it is not implemented for `HoldsANumber`

But no problem! Implementing DerefMut after we’ve already implemented Deref is
incredibly easy. Let’s do that now.

15.3.3 Implementing DerefMut

We can also implement DerefMut if we need mutable access, but you need Deref
before you can implement DerefMut, as the signature shows:

pub trait DerefMut: Deref

The signatures for Deref and DerefMut are very similar, so let’s compare the two and
see which parts are different. First, Deref:

pub trait Deref {
    type Target: ?Sized;

    fn deref(&self) -> &Self::Target;
}

Then DerefMut:

pub trait DerefMut: Deref {
    fn deref_mut(&mut self) -> &mut Self::Target;
}

Here are some items to note:

 Deref has an associated type. DerefMut looks like it doesn’t involve an associated
type, but note that it says DerefMut: Deref. That means that you need Deref to
implement DerefMut, so anything that implements DerefMut will have the asso-
ciated type Self::Target. So you don’t need to declare the associated type
again for DerefMut; it’s already there.

 That’s why you see &mut Self::Target as the output for the deref_mut()
method. If you see an associated type in a signature without an associated type
in the trait, check to see whether another required trait made the associated
type.

 The function signatures are exactly the same, except they are mutable versions.
We have &mut self instead of &self, deref_mut() instead of deref(), and &mut
Self::Target instead of &Self::Target.



31915.3 Deref and DerefMut
In other words, to implement DerefMut after Deref, you copy and paste the Deref
implementation, delete the first line, and add a bunch of muts everywhere.

 Knowing this, we can now implement both Deref and DerefMut for our Holds-
ANumber:

use std::ops::{Deref, DerefMut};

struct HoldsANumber(u8);

impl HoldsANumber {
    fn prints_the_number_times_two(&self) {

println!("{}", self.0 * 2);
    }
}

impl Deref for HoldsANumber {
    type Target = u8;

    fn deref(&self) -> &Self::Target {
&self.0

    }
}

impl DerefMut for HoldsANumber {
    fn deref_mut(&mut self) -> &mut Self::Target {

&mut self.0
    }
}

fn main() {
    let mut my_number = HoldsANumber(20);

*my_number = 30;            
    println!("{:?}", my_number.checked_sub(100));
    my_number.prints_the_number_times_two();
}

You can see that Deref gives your type a lot of power. Just implement Deref, and you
get all the methods for the type inside!

 Probably the most common use for Deref in everyday code is when you want type
safety. Let’s say you have an Email type that is an Email(String) or a Quantity type
that is a Quantity(u32). If you implement Deref, you get the methods of the type
inside. But at the same time, nobody can just use a String and a u32 where your func-
tion calls for an Email or a Quantity because they are not the same type.

 After reading this, Deref might now be your favorite new trait. It’s best to use
Deref only when it makes sense, though. Let’s see why.

15.3.4 Using Deref the wrong way

The standard library has a strong recommendation on how Deref should be used,
which says, Deref should only be implemented for smart pointers to avoid
confusion. That’s because you can do some strange things with Deref for a type that

DerefMut lets 
us do this.



320 CHAPTER 15 Default, the builder pattern, and Deref
doesn’t really have any relation with what it dereferences to. (Well, the compiler won’t
consider it strange, but anyone reading the code will!)

 Let’s try to imagine the worst possible way to use Deref to understand what they
mean. We’ll start with Character struct for a game. A new Character needs some stats
like intelligence and strength. Here is our first character:

struct Character {
    name: String,
    strength: u8,
    dexterity: u8,
    intelligence: u8,
    hit_points: i8,
}

impl Character {
    fn new(
        name: String,
        strength: u8,
        dexterity: u8,
        intelligence: u8,
        hit_points: i8,
    ) -> Self {
        Self {
            name,
            strength,
            dexterity,
            intelligence,
            hit_points,
        }
    }
}

fn main() {
    let billy = Character::new("Billy".to_string(), 9, 12, 7, 10);
}

Now, let’s imagine that we’d like to modify the character’s hit points when they get hit
(the hit points will go down) or when they heal (like when they drink a potion; the hit
points will go up). And maybe we’d like to keep character hit points in a big Vec.
Maybe we’ll put monster data in there, too, and keep it all together and do some cal-
culations later. Since hit_points is an i8, we implement Deref so we can do all sorts
of math on it. And to change the hit points, we’ll implement DerefMut, too. But look
at how strange it looks in our main() function now:

use std::ops::{Deref, DerefMut};

struct Character {
    name: String,
    strength: u8,
    dexterity: u8,
    intelligence: u8,
    hit_points: i8,



32115.3 Deref and DerefMut
}

impl Character {
    fn new(

name: String,
strength: u8,
dexterity: u8,
intelligence: u8,
hit_points: i8,

    ) -> Self {
Self {
    name,
    strength,
    dexterity,
    intelligence,
    hit_points,
}

    }
}

impl Deref for Character {    
    type Target = i8;

    fn deref(&self) -> &Self::Target {
&self.hit_points

    }
}

impl DerefMut for Character {

    fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.hit_points

    }
}

fn main() {
    let mut billy = Character::new("Billy".to_string(), 9, 12, 7, 10);
    let mut brandy = Character::new("Brandy".to_string(), 10, 8, 9, 10);

*billy -= 10;
*brandy += 1;

    let mut hit_points_vec = vec![];    
    hit_points_vec.push(*billy);
    hit_points_vec.push(*brandy);
}

Our code is now very strange for someone to read. Can a reader of the code under-
stand what happens when you -= 10 on a Character? And how could anyone know
that using .push() on a Character struct is pushing an i8? You’d have to go to the
Deref implementation to see what’s going on.

 We can read Deref just above main() and figure out that *billy means i8, but
what if there was a lot of code? Maybe our program is 2,000 lines long, and we have to

With impl Deref for Character, we can do any 
integer math we want on their hit points! And with 
DerefMut, we can change their hit points, too.

We’ll start main() by 
creating two characters.

Changes their hit points. 
It’s starting to look weird.

Starts our hit points analysis. We push 
*billy and *brandy into the Vec. Or,
rather, we push their hit points in.



322 CHAPTER 15 Default, the builder pattern, and Deref
do a lot of searching through the code to find out why we are .push()ing *billy.
Character is certainly more than just a smart pointer for i8. 

 Of course, it is not illegal to write hit_points_vec.push(*billy), and the com-
piler is happy to run this code, but it makes the code look weird. A simple .get_hp()
or .change_hp() method would be much better. Deref gives a lot of power, but it’s
good to make sure that the code is logical.

 Hopefully, this chapter has given you a lot of ideas for how to put your types
together. Rust’s rich type system and traits like Default and Deref give you a lot of
options and a great deal of control. The builder pattern we learned is not a built-in
Rust type or trait but is commonly used for all the good reasons we saw in this chapter.
In the next chapter, we will learn the final type of Rust generics called const generics
and begin looking at external crates (code written by others for us to use). We will also
look at unsafe Rust, a type of Rust that you may never need to use but that exists for
very good reasons. Unsafe Rust also serves as a good reminder of why Rust was created
in the first place.

Summary
 Implementing Default for your types has some nice benefits. Among other

benefits, it makes your code cleaner and lets your type be used wherever there
is a Default trait bound.

 The builder pattern has a lot of flexibility. You can use it just because you like
the syntax, or you can use it to give a lot of control over how your types are
used.

 Making a separate type that can only be used as a builder to turn into another
type is a great way to make sure that your types don’t get misused.

 With Deref and DerefMut, you can make your own types that have access to the
methods of other types they hold.

 Implementing DerefMut after Deref is easy: simply copy and paste the code,
remove the line with the associated type, and add the word mut everywhere.

 Deref is best used for simple types like smart pointers. Using it for more com-
plex types can make your code difficult to understand.



Const, “unsafe” Rust,
and external crates
It’s now time to learn about Rust’s third generic type (const generics) and all the
other things to do with const and static in Rust. Const generics let you be generic
over const values, which is most useful when working with arrays. Const functions
are similar to regular functions, but they can be called at compile time before your
program starts. We will also start to learn about the unsafe side of Rust, starting with
static mut, a static that is unsafe to use. We’ll also learn about why unsafe Rust
even exists and why you might never even need to touch it. Then we will start mov-
ing into external crates, which, thanks to Cargo, are extremely easy to use.

This chapter covers
 Const generics, or generics over const values

 Const functions that you can always call at 
compile time

 Mutable statics, the unsafe way to change 
static variables

 Unsafe Rust

 External crates, including rand
323



324 CHAPTER 16 Const, “unsafe” Rust, and external crates
16.1 Const generics
Up to now, we have learned two types of generic parameters in Rust:

 Generic over types—These are the generics we are most familiar with, as we
learned them back in chapter 5. A generic T: Debug means any type that imple-
ments the Debug trait. When Rust users say generics, they are usually talking
about type generics.

 Generic over lifetimes—Lifetimes are actually another sort of generics. For exam-
ple, when you have a 'static lifetime in a function, it means any type that has a
'static lifetime. We began learning about lifetimes in chapter 10.

With const generics, we will now encounter the third and final generic parameter
used in Rust. Const generics let items be generic over const values. Const generics were
implemented fairly recently in Rust, in 2021. A lot of people wanted to see const
generics because of difficulties with arrays.

NOTE The three types of generics can be seen in the Rust Reference here:
https://doc.rust-lang.org/reference/items/generics.html. They are officially
known as LifetimeParam, TypeParam, and ConstParam.

Let’s look at what the pain point was when working with arrays before const generics.
We learned that one array can only be the same type as another array if it holds both
the same type and the same number of items. So, an [i32; 3] is not the same type as
an [i32; 4] even though the second one only has one more item. This strictness in
arrays made them quite difficult to work with before const generics were introduced.

 To get a feel for this strictness, let’s imagine a struct with two arrays. These two
arrays contain some u8s and are probably byte buffers used to hold some data. With-
out const generics, you have to say exactly how many items it will have:

struct Buffers {
    array_one: [u8; 640],
    array_two: [u8; 640]
}

This works, but what if we want a larger buffer, such as 1,280 bytes instead of 640? That
would require a new struct. Let’s put one in:

struct Buffers {
    array_one: [u8; 640],
    array_two: [u8; 640]
}

struct BigBuffers {
    array_one: [u8; 1280],
    array_two: [u8; 1280]
}

Any other array size will require a new struct, too. Now, let’s think about implement-
ing a trait for our Buffers or BigBuffers struct. What if we want to implement a trait

https://doc.rust-lang.org/reference/items/generics.html


32516.1 Const generics
like Display? We would have to implement the trait for each one. What if we want a
lot of different array sizes? We’d need a different struct for each, and each struct
would need to implement the traits.

NOTE Rust users had to use macros a lot for these types of structs before
const generics were implemented. One Reddit user noted back in 2019: “By
far the single biggest pain point is const_generics. It can’t be implemented
and stabilized fast enough. I wrote an elaborate system of macros to solve the
issue for our particular system” (http://mng.bz/eE8V).

Let’s look at how const generics make this easy. We’ll turn the Buffers struct into this:

struct Buffers<T, const N: usize> {
    array_one: [T; N],
    array_two: [T; N]
}

Now, we only need a single struct to do what we were attempting to do before. Our
Buffers struct is generic in two ways. First, it is generic over a type T, and this will be a
u8 or an i32 or something like that. And the second generic is a const generic, which
we are calling N, and it’s a usize. The const keyword here shows us that it is a const
generic. Only usize will work here because Rust uses usize to index arrays. So the
type here is fixed, but the number is not: it’s N and can be any number.

 Let’s give it a try with some really small arrays so we can print them out here:

#[derive(Debug)]       
struct Buffers<T, const N: usize> {
    array_one: [T; N],
    array_two: [T; N],
}

fn main() {
    let buffer_1 = Buffers {

array_one: [0u8; 3],
array_two: [0; 3],

    };

    let buffer_2 = Buffers {
array_one: [0i32; 4],
array_two: [10; 4],

    };

    println!("{buffer_1:#?}, {buffer_2:#?}");
}

The code gives us the following output:

Buffers {
    array_one: [

0,
0,
0,

    ],

Now Debug works for any size array, 
just like for any other struct!

http://mng.bz/eE8V


326 CHAPTER 16 Const, “unsafe” Rust, and external crates
    array_two: [
0,
0,
0,

    ],
}, Buffers {
    array_one: [

0,
0,
0,
0,

    ],
    array_two: [

10,
10,
10,
10,

    ],
}

Const generics are used for more than just arrays, but working with arrays is the main
pain point that it solves.

16.2 Const functions
On top of fn, Rust also has a const fn. Rust’s documentation defines a const fn as a
function that is “permitted to call from a const context” and adds that in this case “the
function is interpreted by the compiler at compile time” (http://mng.bz/g78v). Note
the word permitted in the wording: a const fn doesn’t have to be called during compile
time, but it always can be. So a const fn can be called anywhere, not just in const con-
texts. As the reference states, “you can freely do anything with a const function that
you can do with a regular function.”

 Here’s a quick example:

const NUMBER: u8 = give_eight();

const fn give_eight() -> u8 {
    8
}

fn main() {
    let mut my_vec = Vec::new();
    my_vec.push(give_eight());
}

This give_eight() function is used to make a const, which is used by NUMBER at com-
pile time to get its value. But then down in main(), the same function is being used to
push a number to a Vec, which is an allocation (allocations aren’t allowed at compile
time). The function is being used both at compile time and after compile time.

 Now, if we change const fn give_eight() to a regular fn give_eight(), it won’t
work. Rust complains that our function isn’t const, so it can’t guarantee that it can be
called:

http://mng.bz/g78v


32716.2 Const functions
error[E0015]: cannot call non-const fn `give_eight` in constants
 --> src/main.rs:1:20
  |
1 | const NUMBER: u8 = give_eight();
  |                    ^^^^^^^^^^^^
  |
  = note: calls in constants are limited to constant functions, tuple structs 

and tuple variants

That’s why not all functions are const: not all things are allowed in a const context
(like allocations).

 If you want to give a const fn a try, add const to your function and see what the
compiler says. You might be able to find a way to make it work.

 This is a bit vague, but that’s because what you can do in a const fn in Rust can be
a bit vague and is always improving. Const functions were quite limited in the begin-
ning, but the Rust team continues to work on them to allow more and more function-
ality inside. For example, Rust 1.61 in 2022 added the following:

Several incremental features have been stabilized in this release to enable more
functionality in const functions:

– Basic handling of fn pointers—You can now create, pass, and cast function
pointers in a const fn. For example, this could be useful to build compile-
time function tables for an interpreter. However, it is still not permitted to
call fn pointers.

– Trait bounds—You can now write trait bounds on generic parameters to
const fn, such as T: Copy, where previously only Sized was allowed.

– dyn Trait types—Similarly, const fn can now deal with trait objects, dyn
Trait.

– impl Trait types—Arguments and return values for const fn can now be
opaque impl Trait types.

Note that the trait features do not yet support calling methods from those traits in a
const fn. (http://mng.bz/amAm)

By the time you start learning Rust, there might be more and more things allowed in
const fn than when this book was published.

 On top of that, each Rust version will usually have a list of functions that are now
const. Taking a look at version 1.61 again (http://mng.bz/wjM2), you can see that
these functions are const. So they wouldn’t have worked in a const context before, but
do now:

The following previously stable functions are now const:

<*const T>::offset and <*mut T>::offset
<*const T>::wrapping_offset and <*mut T>::wrapping_offset
<*const T>::add and <*mut T>::add
<*const T>::sub and <*mut T>::sub
<*const T>::wrapping_add and <*mut T>::wrapping_add
<*const T>::wrapping_sub and <*mut T>::wrapping_sub

http://mng.bz/amAm
http://mng.bz/wjM2


328 CHAPTER 16 Const, “unsafe” Rust, and external crates
Okay, those are some pretty obscure functions. Let’s look at some key functions that
were made const fairly recently (as of Rust 1.63) because they are pretty useful!

16.3 Mutable statics
Mutable global variables are used a lot in other languages, but in Rust, they are a lot
harder. You can imagine why: first, Rust has strict rules on borrowing and mutating
data. Second, global variables (consts and statics) are initialized in a const context,
which means only a const fn can be used. There are external crates that can help
work around this, but in Rust 1.63, a nice change happened: Mutex::new() and
RwLock::new() became const functions! With that, you can stick anything inside them
that can be made in a const context. That even includes some types we know on the
heap because their new() functions don’t allocate. For example, String::new(),
Vec::new()became const fns in Rust 1.39, so those are just fine.

 Let’s give this a try with a super-simple global logger that is just a Vec<Log>, in
which a Log is just a struct with two fields. This code wasn’t possible in Rust before
August 2022, so it’s a very nice change to have:

use std::sync::Mutex;

#[derive(Debug)]
struct Log {
    date: &'static str,    
    message: String,
}

static GLOBAL_LOGGER: Mutex<Vec<Log>> = Mutex::new(Vec::new());    

fn add_message(date: &'static str) {
    GLOBAL_LOGGER.lock().unwrap().push(Log {    

date,
message: "Everything's fine".to_string(),

    });
}

fn main() {
    add_message("2022-12-12");
    add_message("2023-05-05");
    println!("{GLOBAL_LOGGER:#?}");
}

This prints

Mutex {
    data: [

Log {
    date: "2022-12-12",
    message: "Everything's fine",
},
Log {
    date: "2023-05-05",
    message: "Everything's fine",

Timestamps are 
usually i64, but we’ll 
just use a &str here.

Nothing is inside, so no
allocations; thus, it’s fine as
a static. And it’s a Mutex, so
we can change what’s inside

it. Pretty convenient!

GLOBAL_LOGGER is global, 
so we don’t have to pass it 
in as a function argument.



32916.4 Unsafe Rust
},
    ],
    poisoned: false,
    ..
}

As you can see, there is nothing new for us to learn here: we are just using a regular
Mutex with a regular Vec. As long as they are empty to start with, they can be used as a
static and then modified at run time.

16.4 Unsafe Rust
Statics in Rust have another interesting property that brings us to a new subject of dis-
cussion: they can actually be mutable. Making a static mutable is as easy as making
anything else mutable: just declare a static mut instead of a static. This is another
property of statics that makes them much different from a const. And once you have
declared a static as mutable, it can be changed by anything at any time throughout
the program.

 Hopefully, this is already setting off warning bells inside your head! It seems a little
too convenient, doesn’t it?

 Indeed, mutable statics haven’t been mentioned in the book yet because a static
mut can only be used with the unsafe keyword, and Rust has many safer ways to modify
static variables compared to the early days of the language. On that note, what is
unsafe Rust, and why is the unsafe keyword needed when using a static mut?

16.4.1 Overview of unsafe Rust

So what’s unsafe Rust? Isn’t Rust supposed to be safe?
 It is, but Rust is also a systems programming language. That means that you can

use it to build an operating system, you can use it for robotics, or anything like that. As
an example, hardware often requires sending a signal to a certain memory address to
start up or accomplish some other task. The Rust compiler has no idea what is at these
memory addresses, so you need to use the unsafe keyword for that.

TIP The Writing an OS in Rust blog has many good examples of the unsafe
keyword used for such cases: https://os.phil-opp.com/testing/.

You can also use Rust to work with other languages like C and Javascript. Here again,
the Rust compiler has no idea whether their functions are safe or not, as they are
entirely different languages. So you use unsafe here, too. For example, in the bind-
ings between Rust and libc (the standard library for the C language), every function
(https://docs.rs/libc/latest/libc/#functions) is an unsafe function. A lot of work has
been done to make sure that they are as safe as possible, but Rust still can’t make any
guarantees because it’s a different language.

 There is a lot of discussion about the word “unsafe” because the keyword itself can
be a bit shocking, and the keyword unsafe does not necessarily mean that there is

https://docs.rs/libc/latest/libc/#functions
https://os.phil-opp.com/testing/


330 CHAPTER 16 Const, “unsafe” Rust, and external crates
anything wrong with a piece of code. After all, anyone can see that this code (100% safe
code just wrapped in an unsafe block) is perfectly safe:

fn main() {
    let my_name = unsafe { "My name" };
    println!("{my_name}");
}

But the unsafe keyword was chosen to be shocking on purpose to ensure that people
know that the developer now bears more responsibility because the compiler allows
some code inside an unsafe block to compile when it would not compile otherwise. In
essence, an unsafe block is more like a trust_me_i_know_what_im_doing block.

 Outside of the previously mentioned contexts, unsafe is extremely rare. If you are
not working with low-level system resources or directly connecting to functions in
other languages, you might never use unsafe. Many Rust programmers have never
even had to use a single unsafe block of code.

 Having said that, let’s take a look at some unsafe for fun. You’ll see this word in
unsafe blocks and unsafe fns. A function with unsafe code will need to be called an
unsafe fn, and to access it, you’ll need an unsafe block. So this won’t quite work:

unsafe fn uh_oh() {}

fn main() {
    uh_oh();
}

The compiler says:

error[E0133]: call to unsafe function is unsafe and requires unsafe

➥function or block
--> src/main.rs:6:5
|

6 |     uh_oh();
  |     ^^^^^^^ call to unsafe function
  |

That’s easy to fix; just add an unsafe block:

unsafe fn uh_oh() {}

fn main() {
    unsafe {

uh_oh();
    }
}

Done!

NOTE If you find yourself enjoying this section on unsafe Rust, you might also be
pleased to know that there is a whole book on unsafe code! It’s called The Rusto-
nomicon and can be read here: https://doc.rust-lang.org/nomicon/index.html.

https://doc.rust-lang.org/nomicon/index.html


33116.4 Unsafe Rust
16.4.2 Using static mut in unsafe Rust

Now let’s look at what a static mut is. As the name suggests, it is simply a static that
can be directly changed—no need for a Mutex or any other sort of wrapper to do so.
Let’s give one a try. This code almost compiles:

static mut NUMBER: u32 = 0;

fn main() {
    NUMBER += 1;
    println!("{NUMBER}");
}

However, the compiler won’t let us modify or even print NUMBER unless we put it in a
block marked unsafe. It also tells us why mutable statics are unsafe:

error[E0133]: use of mutable static is unsafe and requires unsafe function

➥or block
--> src/main.rs:4:5
|

4 |     NUMBER += 1;
  |     ^^^^^^^^^^^ use of mutable static
  |
  = note: mutable statics can be mutated by multiple threads: aliasing

➥violations or data races will cause undefined behavior

So the reason is “aliasing violations or data races will cause undefined behavior.” You’ll
see the term “undefined behavior” a lot, sometimes abbreviated as UB, when people
discuss unsafe Rust. Avoiding undefined behavior is the reason why we use types like
Arc<Mutex> to ensure that access happens the way we expect it to. Let’s see whether
we can make some undefined behavior with this static mut. We will spawn some
threads, modify NUMBER, and see what happens.

 In this example, we will spawn 10 threads, and each one will have a for loop that
loops 10 times, increasing NUMBER by 1 each time. With each of the 10 threads incre-
menting NUMBER 10 times, we are expecting to see a final result of 100:

static mut NUMBER: u32 = 0;

fn main() {
    let mut join_handle_vec = vec![];
    for _ in 0..10 {

join_handle_vec.push(std::thread::spawn(|| {
    for _ in 0..10 {

unsafe {
NUMBER += 1;

}
    }
}));

    }
    for handle in join_handle_vec {

handle.join().unwrap();
    }



332 CHAPTER 16 Const, “unsafe” Rust, and external crates
    unsafe {
println!("{NUMBER}");

    }
}

And the result is 100! No problem yet. Let’s bump the numbers up. Now, we will use
1,000 threads, and each thread will loop 1,000 times. The code will be the same as the
previous code; we are just changing each for _ in 0..10 to for _ in 0..1000. Because
1,000 times 1,000 is 1,000,000, we now expect to see 1,000,000 as the final number.

 But the output is 959,696. Or 853,775. Or 825,266. Or anything else. Now we can
see why static mut is unsafe. Each thread is adding 1 to NUMBER for each loop, but
sometimes a thread is accessing NUMBER at the same time as another one. If you add
println!("{NUMBER}"}; just after NUMBER += 1;, you will see this sort of output in the
middle of all the incrementing:

225071
225072  
225073  
225073  

In this example, NUMBER had the value 225,072, two threads accessed it, each added 1,
and gave NUMBER the new value 225,073. The threads each did what they were sup-
posed to do, but nothing was keeping them from accessing NUMBER at the same time.

 And with this, we can now understand another big difference between const and
static: a const is an unchangeable value that is evaluated at compile time, while a
static is a static location in memory. There is technically no rule that a static can-
not be mut.

16.4.3 Rust’s most famous unsafe method

Now, let’s look at Rust’s most famous unsafe function, transmute(). The documenta-
tion for the function explains it as follows: “Reinterprets the bits of a value of one type
as another type. Both types must have the same size” (https://doc.rust-lang.org/std/
mem/fn.transmute.html).

 So with transmute(), you essentially take the bits of one type and tell the compiler:
“take these bits and use them as a different type.” Here’s the function signature:

fn transmute<T, U>(e: T) -> U

So you tell it which two types (T, U) it will work on and give it a T, and it returns it as a U.
 Let’s try something simple. We’ll make an i32 and tell Rust that it’s now a u32.

Both i32 and u32 have a length of 4 bytes, so the code will compile:

use std::mem::transmute;

fn main() {
    let x = 19;
    let y = unsafe { transmute::<i32, u32>(x) };
    println!("{y}");
}

Adds 1. 
Looks good. Adds 1. 

Looks good.
Uh oh . . .

https://doc.rust-lang.org/std/mem/fn.transmute.html
https://doc.rust-lang.org/std/mem/fn.transmute.html
https://doc.rust-lang.org/std/mem/fn.transmute.html


33316.4 Unsafe Rust
That prints 19, simple enough. What if we make x a -19 instead? A u32 can’t be nega-
tive, so it can’t possibly end up as the same -19 value. Let’s try that again and see what
happens:

use std::mem::transmute;

fn main() {
    let x = -19;
    let y: u32 = unsafe { transmute::<i32, u32>(x) };
    println!("{y}");
}

Now it prints 4294967277. Quite different! Remember how to format println! to dis-
play bytes that we learned near the beginning of the book? You use {:b} to do it. If
transmute() is just reinterpreting the same bytes, then -19 and 4294967277u32
should look the same as bytes. Let’s give it a try:

fn main() {
    println!("{:b}\n{:b}", -19, 4294967277u32);
}

Indeed they do! We get the following output, which shows, indeed, that transmute()
is taking the same bytes and treating them differently:

11111111111111111111111111101101
11111111111111111111111111101101

Okay, let’s see whether we can be even more unsafe by transmuting something more
complex. Let’s make a User struct with a bit of basic info and see what its size is:

struct User {
    name: String,
    number: u32,
}

fn main() {
    println!("{}", std::mem::size_of::<User>());
}

It’s 32 bytes. So what happens if we give Rust an array of eight i32s and tell it to make
a User? Both of these are 32 bytes in length, so the program will compile, and
transmute() will simply tell Rust to treat these bytes as a User. Let’s see what happens:

use std::mem::transmute;

struct User {
    name: String,
    number: u32,
}

fn main() {
    let some_i32s = [1, 2, 3, 4, 5, 6, 7, 8];
    let user = unsafe { transmute::<[i32; 8], User>(some_i32s) };
}



334 CHAPTER 16 Const, “unsafe” Rust, and external crates
Whoops! We got a segmentation fault:

timeout: the monitored command dumped core
/playground/tools/entrypoint.sh: line 11:     8 Segmentation fault

➥timeout --signal=KILL ${timeout} "$@"

The transmute() documentation (https://doc.rust-lang.org/std/mem/fn.transmute
.html) puts it this way:

Both the argument and the result must be valid at their given type. The compiler will
generate code assuming that you, the programmer, ensure that there will never be
undefined behavior. It is therefore your responsibility to guarantee that every value
passed to transmute is valid at both types Src and Dst. Failing to uphold this
condition may lead to unexpected and unstable compilation results. This makes
transmute incredibly unsafe. transmute should be the absolute last resort. 

Any programmer choosing to use transmute() has been warned in advance!

16.4.4 Methods ending in _unchecked

The most common and “safest” form of unsafe is probably seen in the _unchecked
methods that a lot of types have. For example, Option and Result have unsafe
.unwrap_unchecked() methods that assume you have a Some or an Ok and will unwrap
without checking. But if you don’t have a Some or an Ok, then undefined behavior will
happen. People will sometimes try these methods to see whether there is any perfor-
mance improvement in their code. In that case, you will usually see a note like this to
explain why unsafe is being used:

fn main() {
    let my_option = Some(10);
    // SAFETY: my_option is declared as Some(10). It will never be None
    let unwrapped = unsafe {

my_option.unwrap_unchecked()
    };
    println!("{unwrapped}");
}

This will print 10, and no problems will happen. But once again, using an unsafe func-
tion means that all the responsibility is on you. In the previous example, if you change
the first line to let my_option: Option<i32> = None; and run it on the Playground, it
will dump the core:

     Running `target/debug/playground`
timeout: the monitored command dumped core
/playground/tools/entrypoint.sh: line 11:     8 Illegal instruction

➥timeout --signal=KILL ${timeout} "$@"

That’s pretty bad.
 And there is no guarantee that the _unchecked methods will be faster either. Some-

times, the compiler can use information from the checks in the non-unsafe methods

https://doc.rust-lang.org/std/mem/fn.transmute.html
https://doc.rust-lang.org/std/mem/fn.transmute.html
https://doc.rust-lang.org/std/mem/fn.transmute.html


33516.5 Introducing external crates
to speed up your code, resulting in _unchecked being slower than the regular safe
methods. It can be fun to experiment, but when in doubt, don’t use unsafe!

 To sum up:

 You can spend your whole life as a Rust programmer without using unsafe. You
don’t need it to build software. 

 However, if you are a low-level systems programmer or need to directly link to
other languages (like C libraries, for example), this is the way you can get the
flexibility you need.

In the early days of Rust, users of the language emphasized how easy it was to link it to
C and C++ libraries. (Here is one example from 2015: http://mng.bz/qjnJ). But as
time has gone by, more and more libraries have been written in pure Rust, and it has
become quite rare to see unsafe in a Rust external crate. And a lot of other interest-
ing developments are going on to help use unsafe even less frequently. There is even
a working group to make the transmute() function safe (http://mng.bz/7vwe)!

 On that note, it’s time to turn our attention to external crates.

16.5 Introducing external crates
An external crate simply means a crate that isn’t the one that you are working on and
is usually someone else’s crate. We learned in chapter 14 about modules and structur-
ing your code for others to use, which is the first step to creating an external crate.
When people write crates they think might be useful for others, they publish them on
https://crates.io/, and those become usable by anyone else. As of early 2024, over
130,000 crates have been published!

 For this section, you almost need to install Rust, but we can still use just the Play-
ground. That’s because the Playground has all the most-used external crates already
installed. Using external crates is important in Rust for two reasons: it is incredibly
easy to import other crates, and the Rust standard library is quite small.

 That means that it is normal in Rust to bring in an external crate for a lot of basic
functions, and that’s why the Playground includes so many. The idea is that if it is easy
to use external crates, you can choose the best one. Often, one person will make a
crate that provides some functionality, and then someone else will make a similar and
possibly better one.

 In this book, we will only look at the most popular crates, the crates that everyone
who uses Rust knows. To begin learning external crates, we will start with a pretty sim-
ple one: rand.

16.5.1 Crates and Cargo.toml

Have you noticed that we haven’t used any random number functions yet in this
book? That’s because random numbers aren’t in the standard library. But there are a
lot of crates that are “almost standard library” because everybody uses and trusts them.
These crates are also nicknamed Rust’s “blessed crates,” and there is even a website

https://crates.io/
http://mng.bz/qjnJ
http://mng.bz/7vwe


336 CHAPTER 16 Const, “unsafe” Rust, and external crates
(https://blessed.rs/crates) that lists them (called blessed.rs!). The crate rand is one of
these “blessed crates.”

 In any case, it’s very easy to bring in a crate. If you have a Cargo (Rust) project on
your computer, you should notice a file called Cargo.toml that has this information.
The Cargo.toml file looks like this when you start:

[package]
name = "rust_book"
version = "0.1.0"
authors = ["David MacLeod"]
edition = "2021"

# See more keys and their definitions at https://doc.rust-

➥lang.org/cargo/reference/manifest.html

[dependencies]

Now, if you want to add the rand crate, go to https://crates.io. Search for rand and
click on it. Now you are at https://crates.io/crates/rand. Click in the box under Or
Add the Following Line to Your Cargo.toml, which is located on the right-hand side of
the page, to copy it. Then just add it under [dependencies] like this:

[package]
name = "rust_book"
version = "0.1.0"
authors = ["David MacLeod"]
edition = "2021"

# See more keys and their definitions at https://doc.rust-lang.org/cargo/
reference/manifest.html

[dependencies]
rand = "0.8.5"

Cargo will do the rest for you. Or you can use the command cargo add rand on the
command line, and it will do the same thing. Then, when you type cargo run to run
your program, it will automatically bring in the code to use rand, and you will be able
to use this crate in the same way that we’ve been using code from the standard library.
The only difference is that the first part of the path will be rand instead of std.

 To get to the documents for rand, you can click on the docs button on its page on
crates.io, which will take you to the documentation (https://docs.rs/rand/latest/
rand/). Fortunately the documentation looks the same as that in the standard library!
Thanks to a standardized layout for documentation, you won’t have any trouble look-
ing around the rand crate to see what it holds. Now let’s give rand a try.

16.5.2 Using the rand crate

We are still using the Playground by default, which fortunately already has the top 100
crates installed. On the Playground, you can imagine that it has a long list like this
with 100 crates:

https://blessed.rs/crates
https://crates.io/crates/rand
https://crates.io
https://docs.rs/rand/latest/rand/
https://docs.rs/rand/latest/rand/


33716.5 Introducing external crates
[dependencies]
rand = "0.8.5"
some_other_crate = "0.1.0"
another_nice_crate = "1.7"

And so on. So that means we don’t need to look at Cargo.toml again until a bit later
in the book. So, to use rand, you can just do this:

use rand::random;   

fn main() {
    for _ in 0..5 {

let random_u16 = random::<u16>();
print!("{random_u16} ");

    }
}

This code will print a different u16 number every time, like 42266 52873 56528 46927
6867.

 The main functions in rand are random() and thread_rng() (rng means “random
number generator”). If you look at random(), it says: “This is simply a shortcut for
thread_rng().gen().” So, it’s actually thread_rng() that does almost everything.

 Here is a simple example of numbers from 1 to 10. To get those numbers, we use
.gen_range() between 1 and 11.

use rand::{thread_rng, Rng}; 

fn main() {
    let mut number_maker = thread_rng();   
    for _ in 0..5 {

print!("{} ", number_maker.gen_range(1..11));
    }
}

This will print something like 7 2 4 8 6.

16.5.3 Rolling some dice with rand

With random numbers, we can do fun things like make characters for a game. In this
game, our characters have six stats, and you use a d6 for them. A d6 is a die (a cube)
that gives 1, 2, 3, 4, 5, or 6 when you throw it. Each character rolls a d6 three times, so
each stat is between 3 and 18.

 But sometimes it can be unfair if your character has a really low stat, like a 3 or 4. If
your strength is 3, you can’t carry anything, for example. And a character that rolls 3
for intelligence won’t even be smart enough to know how to speak. Because of this,
there is one more dice rolling method that rolls a d6 four times and throws away the
lowest number. So, if you roll 3, 3, 1, and 6, you throw out the 1 and keep 3, 3, and 6,
giving a value of 12 (instead of 7). This method keeps characters from having stats
that are too low while still keeping 18 as the maximum.

This means the whole crate rand. On your 
computer, you can’t simply write this; you 
need to write in the Cargo.toml file first.

Or we can just use 
rand::*; if we are lazy.



338 CHAPTER 16 Const, “unsafe” Rust, and external crates
 We will make a simple character creator that lets you choose between rolling three
times and rolling four times. We create a Character struct for the stats and have a
function to roll the dice that takes an enum to choose between rolling three or four
times:

use rand::{thread_rng, Rng};

#[derive(Debug)]
struct Character {
    strength: u8,
    dexterity: u8,
    constitution: u8,
    intelligence: u8,
    wisdom: u8,
    charisma: u8,
}

#[derive(Copy, Clone)]   
enum Dice {
    Three,
    Four,
}

fn roll_dice(dice_choice: Dice) -> u8 {
    let mut generator = thread_rng();
    let mut total = 0;
    match dice_choice {

Dice::Three => {
    for _ in 0..3 {

total += generator.gen_range(1..=6);
    }
}
Dice::Four => {
    let mut results = vec![];    
    (0..4).for_each(|_| results.push(generator.gen_range(1..=6)));
    results.sort();
    results.remove(0);
    total += results.into_iter().sum::<u8>();
}

    }
    total
}

impl Character {
    fn new(dice_choice: Dice) -> Self {

let mut stats = (0..6).map(|_| roll_dice(dice_choice));
Self {
    strength: stats.next().unwrap(),    
    dexterity: stats.next().unwrap(),
    constitution: stats.next().unwrap(),
    intelligence: stats.next().unwrap(),
    wisdom: stats.next().unwrap(),
    charisma: stats.next().unwrap(),
}

Dice doesn’t hold any data 
so we might as well make it 
both Copy and Clone.

We can’t just add the numbers 
to the total when rolling four 
dice, so we will first put them 
all in a Vec. Then we’ll use 
.sort() and remove the 0th 
item (the smallest).

We’re confident that our stats 
iterator is six items in length so 
we’ll just unwrap for each.



339Summary
    }
}

fn main() {
    let weak_billy = Character::new(Dice::Three);
    let strong_billy = Character::new(Dice::Four);
    println!("{weak_billy:#?}");
    println!("{strong_billy:#?}");
}

It will print something like this:

Character {
    strength: 11,
    dexterity: 9,
    constitution: 9,
    intelligence: 8,
    wisdom: 7,
    charisma: 13,
}
Character {
    strength: 15,
    dexterity: 13,
    constitution: 5,
    intelligence: 13,
    wisdom: 14,
    charisma: 15,
}

As you can see, the character with four dice rolls is usually a bit better at most things.
 That was easy! We’ve learned that with a single line in Cargo.toml you can use exter-

nal crates in the same way that we’ve been using the standard library. We also learned
about const generics, which you won’t see as much as regular generics and lifetimes but
is good to understand. And we now have an idea of why Rust as a language needs unsafe
in certain situations and why you almost never need to use it unless you are working with
rare cases like embedded software or calling into other languages.

 We have only scraped the surface of the fantastic external crates that Rust has to
offer, so in the next chapter, we will look at some more of the “blessed” ones. Even
though they are technically external crates, you can almost think of them as exten-
sions of the standard library. You will definitely want to be familiar with their names
and what they do.

Summary
 Const generics let you be generic over const values. These generics are most

useful in arrays due to the unique type signature arrays have: both a type and a
length.

 More and more methods in the standard library are becoming const fn, which
lets you, as a Rust user, more easily make your own functions into const fns if
you want.



340 CHAPTER 16 Const, “unsafe” Rust, and external crates
 Unsafe Rust has good reasons to exist, especially because the Rust compiler
isn’t able to understand other languages and determine whether they are safe
or not.

 The word unsafe is meant to be a bit shocking so that people will not use it too
much. In reality, it is sort of a trust_me_I_know_what_Im_doing block (if you
know what you’re doing).

 To do anything with an unsafe function in Rust, you will need to put it inside an
unsafe block. The same goes for anything else that is unsafe like a static mut,
even if you just want to print it.

 To add an external crate if Rust is installed, go to Cargo.toml and type the crate
name and the version number. If you are using the Playground, you won’t even
need to do that if the crate is popular enough.



Rust’s most popular crates
This chapter is sort of a cookbook of some of the most popular external crates.
These crates are so common that you can almost think of them as extensions of the
standard library—they’re not just random crates sitting around that nobody uses.
Learning just these few crates will allow you to turn data like JSON into Rust structs,
work with time and time zones, handle errors with less code, speed up your code,
and work with global statics.

This chapter covers
 Serialization and deserialization with serde 

 Time with the time module and chrono crate

 Speeding up your code with the rayon crate

 Errors with the anyhow and thiserror crates

 Statics with the lazy_static and once_cell 
crates 

 Blanket trait implementations on other types
341



342 CHAPTER 17 Rust’s most popular crates
 You’ll also learn about blanket trait implementations, which are extremely fun.
With those, you can give your trait methods to other people’s types even if they didn’t
ask for them!

17.1 serde
The serde crate is an extremely popular crate that lets you convert to and from for-
mats like JSON, YAML, and so on. In fact, it’s so popular that it’s rare to find a Rust
programmer who has never heard of it.

 JSON is one of the most common ways to send requests and receive information
online, and it’s is pretty simple, being made up of keys and values. Here is what it
looks like:

{
   "name":"BillyTheUser",
   "id":6876
}

Here’s a longer example:

[
   {
      "name":"BobbyTheUser",
      "id":6877
   },
   {
      "name":"BillyTheUser",
      "id":6876
   }
]

So how do you turn something like "name": "BillyTheUser" into a Rust type of your
own? JSON only has seven(!) data types, while Rust has a nearly unlimited number. In
your own data type in Rust, you might want "BillyTheUser" to be a String, a &str, a
Cow, your own type such as a UserName(String), or almost anything else. Doing this
conversion between Rust and other formats like JSON is what serde is for.

 The most common way to use it is by creating a struct with serde’s Serialize and/
or Deserialize attributes on top. To work with the data from the previous example,
we could make a struct like this with serde’s attributes to let us convert between Rust
and JSON:

use serde::{Serialize, Deserialize};

#[derive(Serialize, Deserialize, Debug)]
struct User {
    name: String,
    id: u32,
}

Serialize is used to turn your Rust type into another format like JSON, while
Deserialize is the other way around: it’s the trait to turn another format into a Rust



34317.1 serde
type. That’s also where the name comes from: “Ser” from serialize and “De” from deseri-
alize make the name serde. If you are curious about how serde does this, take a look at
the page on the Serde data model at https://serde.rs/data-model.html.

 If you are using JSON, you will also need to use the serde_json crate; for YAML,
you will need serde_yaml, and so on. Each of these crates works on top of the serde
data model for its own separate data format.

 Here’s a really simple example where we imagine that we have a server that takes
requests to make new users. The request needs a user name and a user ID, so we make
a struct called NewUserRequest that has these fields. As long as these fields are in the
request, it will deserialize correctly, and our NewUserRequest will work. To do this, we
use serde_json’s from_str() method:

use serde::{Deserialize, Serialize};
use serde_json;

#[derive(Debug, Serialize, Deserialize)]
struct User {
    name: String,
    id: u32,
    is_deleted: bool,
}

#[derive(Debug, Serialize, Deserialize)]
struct NewUserRequest {
    name: String,
    id: u32,
}

impl From<NewUserRequest> for User {
    fn from(request: NewUserRequest) -> Self {

Self {
    name: request.name,
    id: request.id,
    is_deleted: false,
}

    }
}

fn handle_request(json_request: &str) {
    match serde_json::from_str::<NewUserRequest>(json_request) {

Ok(good_request) => {
    let new_user = User::from(good_request);
    println!("Made a new user! {new_user:#?}");
    println!(

"Serialized back into JSON: {:#?}",
serde_json::to_string(&new_user)

    );
}
Err(e) => {
    println!("Got an error from {json_request}: {e}");
}

    }
}

https://serde.rs/data-model.html


344 CHAPTER 17 Rust’s most popular crates
fn main() {
    let good_json_request = r#"
    {
        "name": "BillyTheUser",
        "id": 6876
    }
    "#;

    let bad_json_request = r#"
    {
        "name": "BobbyTheUser",
        "idd": "6877"
    }
    "#;

    handle_request(good_json_request);
    handle_request(bad_json_request);
}

Here’s the output:

Made a new user! User {
    name: "BillyTheUser",
    id: 6876,
    is_deleted: false,
}
Serialized back into JSON: Ok(
    "{\"name\":\"BillyTheUser\",\"id\":6876,\"is_deleted\":false}",
)
Got an error from 
    {
        "name": "BobbyTheUser",
        "idd": "6877"
    }
    : missing field `id` at line 5 column 5

And because User implements Serialize, it could then be turned back into JSON if
we needed to send it somewhere else in that format.

 Serde has a lot of customizations depending on how you want to serialize or deseri-
alize a type. For example, if you have an enum that you need to be in all capitals when
serialized, you can stick this on top: #[serde(rename_all = "SCREAMING_SNAKE_
CASE")], and serde will do the rest. The serde documentation has information on
these attributes (https://serde.rs/container-attrs.html).

17.2 Time in the standard library
The next crate we are going to look at is called chrono (https://crates.io/crates/
chrono), which is the main crate for those who need functionality for time, such as
formatting dates, setting time zones, and so on. But you might be wondering: Why not
just use the time module in the standard library? The answer is simple: std::time is
minimal, and there isn’t much you can do with std::time alone. It does have some
useful types, though, so we will start with this module before we move on to chrono.

https://serde.rs/container-attrs.html
https://crates.io/crates/chrono
https://crates.io/crates/chrono


34517.2 Time in the standard library
 The simplest way to start with the time module is by getting a snapshot of the pres-
ent moment with Instant::now(). This returns an Instant that we can print out:

use std::time::Instant;

fn main() {
    let time = Instant::now();
    println!("{:?}", time);
}

However, the output of an Instant is maybe a bit surprising. On the Playground, it
will look something like this:

Instant { tv_sec: 949256, tv_nsec: 824417508 }

If we do a quick calculation, 949,256 seconds is just under 11 days. There is a reason
for this: an Instant shows the time since the system booted up, not the time since a
set date. Obviously, this won’t be able to help us know today’s date, or the month or
the year. The page on Instant tells us that it isn’t supposed to be useful on its own,
describing it as

Opaque and useful only with Duration.

The page explains that Instant is “often useful for tasks such as measuring bench-
marks or timing how long an operation takes.” And a Duration, as you might guess, is
a struct that is used to show how much time has passed.

 We can see how Instant and Duration work together if we look at the traits imple-
mented for Instant. For example, one of them is Sub<Instant>, which lets us use the
minus symbol to subtract one Instant from another. Let’s click on the [src] button
to see the source code. It’s not too complicated:

impl Sub<Instant> for Instant {
    type Output = Duration;

    fn sub(self, other: Instant) -> Duration {
self.duration_since(other)

    }
}

It looks like Instant has a method called .duration_since() that produces a
Duration. Let’s try subtracting one Instant from another to see what we get. We’ll
make two of them by using the Instant::now() function twice, and then we’ll make
the program busy for a while. Then we’ll make one more Instant::now(). Finally,
we’ll see how long it took:

use std::time::Instant;

fn main() {
    let start_of_main = Instant::now();
    let before_operation = Instant::now();    

Nothing happened between these 
two variables, so the Duration 
should be extremely small.



346 CHAPTER 17 Rust’s most popular crates
    let mut new_string = String::new();
    loop {

new_string.push('წ');   
if new_string.len() > 100_000 {
    break;
}

    }
    let after_operation = Instant::now();   
    println!("{:?}", before_operation - start_of_main);
    println!("{:?}", after_operation - start_of_main);
}

This code will print something like this:

1.025μs
683.378μs

So that’s just over 1 microsecond versus 683 microseconds. Subtracting one Instant
from another Instant shows us that the program did indeed take some time to work
on the task that we gave it.

 There is also a method called .elapsed() that lets us do the same thing without
creating a new Instant every time. The following code gives the same output as the
previous example, except that it just calls .elapsed() to see how much time has gone
by since the first Instant:

use std::time::Instant;

fn main() {
    let start = Instant::now();
    println!("Time elapsed before busy operation: {:?}", start.elapsed());

    let mut new_string = String::new();
    loop {

new_string.push('წ');
if new_string.len() > 100_000 {
    break;
}

    }
    println!("Operation complete. Time elapsed: {:?}", start.elapsed());
}

The output is the same as before.
 By the way, the Opaque and useful only with Duration comment feels like a

challenge. Surely we can find some use for this. Let’s have some fun by implementing
a really bad random number generator. We saw that an Instant when printed using
Debug has a lot of numbers that are different each time. We can use .chars() to turn
this into an iterator and.rev() to reverse it and then filter out chars that aren’t digits.
Instead of .parse(), we can use a convenient .to_digit() method that char has that
returns an Option. The code looks like this:

use std::time::Instant;

Now we’ll give the program some busy work. It 
has to push this Georgian letter onto 
new_string until it is 100000 bytes in length.

Then we’ll make a new 
Instant after the busy 
work is done and see how 
long everything took.



34717.2 Time in the standard library
fn bad_random_number(digits: usize) {
    if digits > 9 {

panic!("Random number can only be up to 9 digits");
    }
    let now_as_string = format!("{:?}", Instant::now());

    now_as_string
.chars()
.rev()
.filter_map(|c| c.to_digit(10))    
.take(digits)
.for_each(|character| print!("{}", character));

    println!();
}

fn main() {
    bad_random_number(1);
    bad_random_number(1);
    bad_random_number(3);
    bad_random_number(3);
}

The code will print something like the following:

6
4
967
180

The function is called bad_random_number() for a good reason. For example, if we
choose to print nine digits, the final numbers won’t be very random anymore:

855482162
155882162
688592162

That’s because after a few digits we have printed out all the nanoseconds and are now
printing out the seconds, which will not change much during this short code sample.
So definitely stick with crates like rand and fastrand.

 The time module has two more items to note: a struct called SystemTime and a
const called UNIX_EPOCH, the Unix epoch representing midnight on the 1st of January,
1970. The SystemTime struct can be used to get the current date or at least the num-
ber of seconds that have passed since 1970. The page on SystemTime (https://
doc.rust-lang.org/std/time/struct.SystemTime.html) has a nice clear explanation of
what makes it different from Instant, so let’s just read what is written there:

A measurement of the system clock, useful for talking to external entities like the file
system or other processes.

Distinct from the Instant type, this time measurement is not monotonic. This
means that you can save a file to the file system, then save another file to the file
system, and the second file has a SystemTime measurement earlier than the first. In

The .to_digit() method here is taking a 10 
because we want a decimal number (0–9). 
We could have used .to_digit(2) for binary, 
.to_digit(16) for hexadecimal, and so on.

https://doc.rust-lang.org/std/time/struct.SystemTime.html
https://doc.rust-lang.org/std/time/struct.SystemTime.html


348 CHAPTER 17 Rust’s most popular crates
other words, an operation that happens after another operation in real time may
have an earlier SystemTime!

Knowing this, let’s do a quick comparison of the two by printing each one out:

use std::time::{Instant, SystemTime};

fn main() {
    let instant = Instant::now();
    let system_time = SystemTime::now();
    println!("{instant:?}");
    println!("{system_time:?}");
}

The output will look something like this:

Instant { tv_sec: 956710, tv_nsec: 22275264 }
SystemTime { tv_sec: 1676778839, tv_nsec: 183795450 }

And if we do the math, 95,6710 seconds (from Instant) turns out to be about 11 days.
But 1,676,778,839 seconds (from SystemTime) turns out to be a bit over 53 years,
which is exactly how much time has passed since 1970 when this code was run.

 For a more readable output, we can use .duration_since() and put UNIX_EPOCH
inside:

use std::time::{SystemTime, UNIX_EPOCH};

fn main() {
    println!("{:?}", SystemTime::now().duration_since(UNIX_EPOCH).unwrap());
}

This will print something like 1676779741.912581202s. And that’s pretty much all the
standard library has for printing out dates. It doesn’t have anything to turn
1,676,779,741 seconds into a human-readable date, apply a time zone, or anything like
that. 

 We have one last item in std::time before moving on to chrono: putting threads to
sleep by passing in a Duration. Inside a thread, you can use std::thread::sleep() to
make the thread stop for a while. If you aren’t using multiple threads, this function will
make the entire program sleep, as there are no other threads to do anything while the
main thread is asleep. To use this function, you have to give it a Duration. Creating a
Duration is fairly simple: pick the method that matches the unit of time you want to use
and give it a number. Duration::from_millis() is used to stop for a number of milli-
seconds, Duration::from_secs() for seconds, and so on. Here’s one example:

use std::time::Duration;
use std::thread::sleep;

fn main() {
    let three_seconds = Duration::from_secs(3);
    println!("I must sleep now.");



34917.3 chrono
    sleep(three_seconds);
    println!("Did I miss anything?");
}

The output is just the first line followed by the second line 3 seconds later:

I must sleep now.
Did I miss anything?

Enough waiting, let’s move on to chrono!

17.3 chrono
Time is a pretty complex subject, thanks to a combination of astronomy and history.
Astronomically, time basically has to do with measuring the rotation of the Earth
around the Sun, the spinning of the Earth around itself, and cutting the Earth into
time zones so that everyone can have a similar idea when they see the time on the
clock (figure 17.1). With this, 12 pm means noon when the Sun is high (well, usually),
6 am is early morning, 12 am is midnight when the day changes, and so on, no matter
where you are on the planet.

Figure 17.1 Code dealing with time is complex because time itself is complex.



350 CHAPTER 17 Rust’s most popular crates
Historically, time is just as complex. We have a lot of different calendars. One year has
365 days, one day has 24 hours (thanks to the Egyptians), and months have different
lengths (thanks to the Roman emperors), and we count using 60 instead of 100
(thanks to the Sumerians). Plus, we have leap years and even leap seconds! It’s proba-
bly not surprising that the types inside the chrono crate can be complex, too.

 But there are some fairly simple types inside chrono, which start with Naive:
NaiveDate, NaiveDateTime, and so on. Naive here means that they don’t have any
time zone info. The easiest way to create them is with the methods that start with
from_ and end with _opt. A quick example will be the easiest way to demonstrate this:

use chrono::naive::{NaiveDate, NaiveTime};

fn main() {
    println!("{:?}", NaiveDate::from_ymd_opt(2023, 3, 25));
    println!("{:?}", NaiveTime::from_hms_opt(12, 5, 30));
    println!("{:?}", NaiveDate::from_ymd_opt(2023, 3, 

25).unwrap().and_hms_opt(12, 5, 30));
}

The output is

Some(2023-03-25)
Some(12:05:30)
Some(2023-03-25T12:05:30)

Here, ymd stands for “year month day,” and hms stands for “hour minutes seconds.”
The first println! shows an Option<NaiveDate>; the second, an Option<NaiveTime>;
and the third, an Option<NaiveDateTime>. The .and_hms_opt() method turns a
NaiveDate into a NaiveDateTime by giving it the hour, minutes, and seconds needed
to know the time of day.

 You might be wondering: Why do all these methods have an _opt at the end? This
brings us to an interesting discussion. Let’s change the subject just a little bit.

17.3.1 Checking the code inside external crates

The simple answer to the previous question is that the _opt at the end of these meth-
ods is because they return an Option. But then again, none of the other methods we
have seen in this book that return an Option have an _opt at the end. Why are these
method names so long?

 It’s an interesting story. If you take a look at the history of the chrono crate, you
can see a change made as recently as November 2022 to deprecate the methods with-
out _opt, because inside there was a chance that they could panic. For example, the
from_ymd() method simply calls from_ymd_opt() with .expect(), and “panics on out-
of-range date, invalid month and/or day”:

    /// Makes a new `NaiveDate` from the [calendar date](#calendar-date)
    /// (year, month and day).
    ///
    /// Panics on the out-of-range date, invalid month and/or day.



35117.3 chrono
    #[deprecated(since = "0.4.23", note = "use `from_ymd_opt()` instead")]
    pub fn from_ymd(year: i32, month: u32, day: u32) -> NaiveDate {

NaiveDate::from_ymd_opt(year, month, day).expect("invalid or out-

➥of-range date")
}

Perhaps too many people were using methods like .from_ymd() without reading the
note on possible panics, and the crate authors decided to make it clear that the
method could fail.

 In fact, the chrono crate is planning to change these methods again (https://
github.com/chronotope/chrono/issues/970) to return a Result instead of an Option
with a different name that begins with try_, such as try_from_ymd(). So, by the time
you read this book, the chrono crate might have changed the methods a little bit.

 In any case, the small lesson here is that you should click on the source for meth-
ods you use in other crates and do a quick check for possible panics. Sometimes crate
authors decide that a small chance of panic is worth it in exchange for extra conve-
nience or if it makes sense to panic. For example, every thread made by the
thread::spawn() method in the standard library is given a certain amount of memory
to use, and the program will panic if the operating system is unable to create a thread,
which usually comes from running out of memory. (The documentation for spawn()
mentions this possibility, by the way.)

 We can give this a try ourselves! Let’s spawn 100,000 threads and see whether the
Playground runs out of memory:

fn main() {
    for _ in 0..100000 {

std::thread::spawn(|| {});
    }
}

Here is the output:

thread 'main' panicked at 'failed to spawn thread: Os { code: 11, kind:

➥WouldBlock, message: "Resource temporarily unavailable" }',

In any case, it was probably a good idea for the authors of chrono to make it clearer to
users that these methods may fail. Now, let’s return to the crate again.

17.3.2 Back to chrono

We will finish up our quick look at the chrono crate with an example that shows the
following:

 Using SystemTime and the UNIX_EPOCH const to get the number of seconds
since 1970

 Using a NaiveDateTime that uses these seconds to display the date and time
without a time zone

 Creating a DateTime<Utc> from a NaiveDateTime

https://github.com/chronotope/chrono/issues/970
https://github.com/chronotope/chrono/issues/970


352 CHAPTER 17 Rust’s most popular crates
 Creating a FixedOffset to create a time zone that differs from Utc
 Turning the DateTime<FixedOffset> back into a NaiveDateTime

This is generally the sort of tinkering you will do when working with chrono. Here is
the code:

use std::time::SystemTime;
use chrono::{DateTime, FixedOffset, NaiveDateTime, Utc};

fn main() {
    let now = SystemTime::now().duration_since(SystemTime::

➥UNIX_EPOCH).unwrap();
let seconds = now.as_secs();
println!("Seconds from 1970 to today: {seconds}");

    let naive_dt = NaiveDateTime::from_timestamp_opt

➥(seconds as i64, 0).unwrap();
println!("As NaiveDateTime: {naive_dt}");

    let utc_dt = DateTime::<Utc>::from_utc(naive_dt, Utc);   
    println!("As DateTime<Utc>: {utc_dt}");

    let kyiv_offset = FixedOffset::east_opt(3 * 60 * 60)

➥.unwrap();
    let kyiv_dt: DateTime::<FixedOffset> = DateTime::from_utc(naive_dt,

➥kyiv_offset);
println!("In a timezone 3 hours from UTC: {kyiv_dt}");

    let kyiv_naive_dt = kyiv_dt.naive_local();  
    println!("With timezone information removed: {kyiv_naive_dt}");
}

The output will look something like this:

Seconds from 1970 to today: 1683253399
As NaiveDateTime: 2023-05-05 02:23:19
As DateTime<Utc>: 2023-05-05 02:23:19 UTC
In a timezone 3 hours from UTC: 2023-05-05 05:23:19 +03:00
With timezone information removed: 2023-05-05 05:23:19

That should give us some idea of how to work with time using chrono. It requires
reading the documentation thoroughly and finding the right way to convert from one
type into another.

We learned to use SystemTime and 
.duration_since() with the UNIX_EPOCH just above, 
and this will give us a Duration to work with.

To construct a NaiveDateTime, we need to give it
seconds and nanoseconds. We could also use

as_nanos() to get the nanoseconds in the Duration,
but we don’t care about being that exact.

The .as_secs() method gave us a u64.
NaiveDateTime::from_timestamp_opt()

takes an i64, and we’re pretty sure that we
are living after 1970 when the Unix epoch
began, so the number won’t be negative.

You can make a time
zone-aware DateTime
from NaiveDateTime if

you give it a time zone.
The Utc time zone is its
own type in chrono, so
we can just stick it in.

For other time zones, we have 
to make an offset. Kyiv is three 
hours east of Utc, which is 3 
hours * 60 minutes per hour * 
60 seconds per minute.

Then we can construct a
DateTime in basically the

same way as the Utc
DateTime above.

And we can turn it back into a NaiveDateTime,
removing the time zone information.



35317.3 chrono

, 
 

t.
 For our final example, let’s think of something a bit closer to what we might build
ourselves. The following code imagines that we are working with a service that receives
events with a UTC timestamp and some data. We then need to turn these timestamps
into the Korea/Japan time zone (9 hours ahead of UTC) and make them into a
KoreaJapanUserEvent struct. This time, we’ll also create two small tests to confirm
that the data is what we expect it to be:

use chrono::{DateTime, FixedOffset, Utc};
use std::str::FromStr;   

const SECONDS_IN_HOUR: i32 = 3600;  
const UTC_TO_KST_HOURS: i32 = 9;
const UTC_TO_KST_SECONDS: i32 = UTC_TO_KST_HOURS * SECONDS_IN_HOUR;

#[derive(Debug)]    
struct UtcUserEvent {
    timestamp: &'static str,
    data: String,
}

#[derive(Debug)]    
struct KoreaJapanUserEvent {
    timestamp: DateTime<FixedOffset>,
    data: String,
}

impl From<UtcUserEvent> for KoreaJapanUserEvent {    
    fn from(event: UtcUserEvent) -> Self {

let utc_datetime: DateTime<Utc> =

➥DateTime::from_str(event.timestamp).unwrap();
let offset = FixedOffset::east_opt(UTC_TO_KST_SECONDS).unwrap();
let timestamp: DateTime<FixedOffset> =

➥DateTime::from_utc(utc_datetime.naive_utc(), offset);
Self {
    timestamp,
    data: event.data,
}

    }
}

fn main() {
    let incoming_event = UtcUserEvent {

timestamp: "2023-03-27 23:48:50 UTC",
data: "Something happened in UTC time".to_string(),

    };
    println!("Event as Utc:\n{incoming_event:?}");

    let korea_japan_event = KoreaJapanUserEvent::from(incoming_event);

    println!("Event in Korea/Japan time:\n{korea_japan_event:?}");
}

This use statement lets us use the 
DateTime::from_str() method. You’ll learn 
how this works in the section on blanket 
trait implementations just below.

Nine hours is 32,400 seconds.
We could write 32,400, but

having const values makes the
code easy for others to follow.

This UtcUserEvent 
struct represents 
data that we get from 
outside the service.

This KoreaJapanUserEvent is what we 
want to turn the UtcUserEvent into.

We construct a DateTime<Utc>
bring in the Offset to change the
time zone, and make a 
DateTime<FixedOffset> out of i



354 CHAPTER 17 Rust’s most popular crates
#[test]    
fn utc_to_korea_output_same_evening() {
    let morning_event = UtcUserEvent {

timestamp: "2023-03-27 09:48:50 UTC",
data: String::new(),

    };
    let to_korea_japan = KoreaJapanUserEvent::from(morning_event);
    assert_eq!(

&to_korea_japan.timestamp.to_string(),
"2023-03-27 18:48:50 +09:00"

    );
}

#[test]  
fn utc_to_korea_output_next_morning() {
    let evening_event = UtcUserEvent {

timestamp: "2023-03-27 23:59:59 UTC",
data: String::new(),

    };
    let korea_japan_next_morning = KoreaJapanUserEvent::from(evening_event);
    assert_eq!(

&korea_japan_next_morning.timestamp.to_string(),
"2023-03-28 08:59:59 +09:00"

    );
}

Here is the output for this final example:

Event as Utc:
UtcUserEvent { timestamp: "2023-03-27 23:48:50 UTC", data: "Something

➥happened in UTC time" }
Event in Korea/Japan time:
KoreaJapanUserEvent { timestamp: 2023-03-28T08:48:50+09:00, data:

➥"Something happened in UTC time" }

That should be enough to get you started on using chrono to work with time. To fin-
ish things off, here are two other crates to take a look at:

 The time crate (https://docs.rs/time/latest/time/), which is similar to chrono
but smaller and simpler. Both chrono and time are on the list of Rust’s
“blessed” crates.

 chrono_tz (https://docs.rs/chrono-tz/latest/chrono_tz/), which makes work-
ing with time zones in chrono much easier.

The next crate, Rayon, also has something to do with time: it’s about reducing the
time it takes for your code to run! Let’s take a look at how it works.

17.4 Rayon
Rayon is a popular crate that lets you speed up your Rust code by automatically spawn-
ing multiple threads when working with iterators and related types. Instead of using
thread::spawn() to spawn threads, you can just add par_ to the iterator methods you
already know.

Finally, two short tests with
one assertion in each. This is a

 nice way to show expected behavior
to people reading your code without

needing to print things out in main().

https://docs.rs/time/latest/time/
https://docs.rs/chrono-tz/latest/chrono_tz/


35517.4 Rayon
 For example, Rayon has .par_iter() for .iter(), while the methods .iter_mut(),
.into_iter(), and .chars() in Rayon are simply .par_iter_mut(), .par_into_
iter(), and .par_chars(). (You can probably imagine that par means parallel
because it uses threads working in parallel.)

 Here is an example of a simple piece of code that might be making the computer
do a lot of work:

fn main() {
    let mut my_vec = vec![0; 2_000_000];
    my_vec

.iter_mut()

.enumerate()

.for_each(|(index, number)| *number += index + 1);
    println!("{:?}", &my_vec[5000..5005]);
}

It creates a vector with 2,000,000 items: each one is 0. Then it calls .enumerate() to
get the index for each number and changes the 0 to the index number plus 1. It’s too
long to print, so we only print items from index 5000 to 5004 (the output is [5001,
5002, 5003, 5004, 5005]). To potentially speed this up with Rayon, you can write
almost the same code:

use rayon::prelude::*;    

fn main() {
    let mut my_vec = vec![0; 2_000_000];
    my_vec

.par_iter_mut()

.enumerate()

.for_each(|(index, number)| *number += index + 1);   
}

And that’s it! Rayon has many other methods to customize what you want to do, but at
its simplest, it is “add _par to make your program faster.”

 But how much faster? And why did we say the first code sample might be a lot of
work for a computer and that Rayon can potentially speed it up?

 We can do a simple test to see how much faster Rayon is. First, we will use a method
inside the std::thread module called available_parallelism() to see how many
threads will be spawned. Rayon uses a method similar to this to decide on the best
number of threads. Then we will create an Instant, change the Vec as in the previous
example, and then use .elapsed() to see how much time went by. We will do this 10
times and stick the result in microseconds each time into a Vec, and then print out the
average at the end:

use rayon::prelude::*;
use std::thread::available_parallelism;

fn main() {
    println!(

"Estimated parallelism on this computer: {:?}",

Imports Rayon

Adds 
par_ to iter_mut



356 CHAPTER 17 Rust’s most popular crates
available_parallelism()
    );
    let mut without_rayon = vec![];   
    let mut with_rayon = vec![];

    for _ in 0..10 {
let mut my_vec = vec![0; 2_000_000];
let now = std::time::Instant::now();
my_vec.iter_mut().enumerate().for_each(|(index, number)| {
    *number += index + 1;

*number -= index + 1;
});
let elapsed = now.elapsed();
without_rayon.push(elapsed.as_micros());   

let mut my_vec = vec![0; 2_000_000];
let now = std::time::Instant::now();
my_vec
    .par_iter_mut()
    .enumerate()
    .for_each(|(index, number)| {
        *number += index + 1;

*number -= index + 1;
    });
let elapsed = now.elapsed();
with_rayon.push(elapsed.as_micros());

    }
    println!(

"Average time without rayon: {} microseconds",
without_rayon.into_iter().sum::<u128>() / 10

    );
    println!(

"Average time with rayon: {} microseconds",
with_rayon.into_iter().sum::<u128>() / 10

    );
}

The speedup that Rayon gives will depend a lot on your code and the number of
threads on your computer. This is quite clear when using the Playground, where the
available parallelism is only 2. Surprisingly, the output will usually show only a moder-
ate benefit:

Estimated parallelism on this computer: Ok(2)
Average time without rayon: 64570 microseconds
Average time with rayon: 56822 microseconds

And using Rayon will sometimes be slower in this case. On my computer, however, and
probably on your computer, Rayon will use more threads and thus will show a much
larger improvement. Here is one output from my computer:

Estimated parallelism on this computer: Ok(12)
Average time without rayon: 27633 microseconds
Average time with rayon: 9661 microseconds

Inside these Vecs, we will 
push the time that 
elapsed during each test.

There are other methods too 
like .as_nanos() and 
.as_millis(). Microseconds 
should be precise enough for us.



35717.5 Anyhow and thiserror
And here is another surprise: if you click on Debug in the Playground and change it to
Release, the code will take longer to compile but will run faster. In this case, Rayon is
incredibly slow in comparison:

Estimated parallelism on this computer: Ok(2)
Average time without rayon: 0 microseconds
Average time with rayon: 87 microseconds

In fact, the code without Rayon is so fast that we would need to use the .as_nanos()
method instead of .as_micros() even to see how long it took. Then, it will produce
an output similar to this:

Estimated parallelism on this computer: Ok(2)
Average time without rayon: 74 microseconds
Average time with rayon: 113832 microseconds

That is a huge slowdown! This is because during release mode, the compiler tries to
compute the result of methods ahead of time—especially for one as simple as this
where we are just changing a few numbers. In effect, it just generates code to return
the result without calculating anything at run time. (This is called optimization, and
we will learn more about it in the next chapter.) But the Rayon code involves a lot of
threading that makes the code more complex. That means that the compiler isn’t able
to know the result until the code runs, so it ends up being slower. In short, Rayon
might speed up your code. But be sure to check!

17.5 Anyhow and thiserror
These two crates are used to help you with error handling. They are actually both
made by the same person (David Tolnay) and are somewhat different.

 Let’s imagine why someone might use these crates. Much of the time, Rust code is
written in the following way:

 A developer starts writing some code and uses .unwrap() or .expect() every-
where. This is fine at the beginning because you want to compile now and think
about errors later. And it doesn’t matter if the program panics at this point—
nobody else is using it.

 The code starts to work, and you want to start handling errors properly. But it
would be nice to have a single error type that’s easy to use. This is what Anyhow
is used for. (A Box<dyn Error> is another common way to do this, as we have seen.)

 Maybe later on, you decide you want your own error types, but implementing
them manually is a lot of typing, and you want something more ergonomic.
This is what thiserror is used for (although a lot of people just stick with Any-
how if it gets the job done).

17.5.1 Anyhow

Let’s think about a quick example where we might want to deal with multiple errors.
This code won’t compile yet, but you can see the idea. We would like to take a slice of



358 CHAPTER 17 Rust’s most popular crates
bytes and turn it into a &str. Then we’ll try to parse it into an i32. After that, we’ll
send it to another function of ours that will send an Ok if the number is under 1 mil-
lion. So, that’s three types of errors that could happen.

 Also note that we are using std::io::Error as the return type in one of our func-
tions. That error type is a fairly convenient one because it has an ErrorKind enum
inside it with a huge number of variants. However, in this code sample, we are trying
to use the question mark operator for methods that may return a different of error
kind, so we can’t choose std::io::Error as a return value:

use std::io::{Error, ErrorKind};

fn parse_then_send(input: &[u8]) {
    let some_str = std::str::from_utf8(input)?;
    let number = some_str.parse::<i32>()?;
    send_number(number)?;
}

fn send_number(number: i32) -> Result<(), Error> {
    if number < 1_000_000 {

println!("Number sent!");
Ok(())

    } else {
Err(Error::new(ErrorKind::InvalidData))

    }
}

fn main() {}

This is where Anyhow comes in handy. Let’s see what Anyhow’s documentation says:

Use Result<T, anyhow::Error>, or equivalently anyhow::Result<T>, as the

➥return type of any fallible function.

Looks good. We can also bring in the anyhow! macro, which makes a quick
anyhow::Error from a string or an error type. Let’s give it a try:

use anyhow::{anyhow, Error};    

fn parse_then_send(input: &[u8]) -> Result<(), Error> {
    let some_str = std::str::from_utf8(input)?;
    let number = some_str.parse::<i32>()?;
    send_number(number)?;
    Ok(())
}

fn send_number(number: i32) -> Result<(), Error> {
    if number < 1_000_000 {

println!("Number sent!");
Ok(())

    } else {
println!("Too large!");
Err(anyhow!("Number is too large"))

    }
}

What’s the 
return type?

Error now means Anyhow’s 
Error type, not std::io::Error 
as in the previous example. 
We could also write `use 
anyhow::Error as 
AnyhowError` to give it a 
different name if we wanted.



35917.5 Anyhow and thiserror
fn main() {
    println!("{:?}", parse_then_send(b"nine"));
    println!("{:?}", parse_then_send(b"10"));
}

Nice! Now anyhow’s Error is our single error type. The code gives this output:

Err(invalid digit found in string)
Number sent!
Ok(())

That’s not too bad. Note, though, that the first error is a little vague. Anyhow has a
number of methods for its Error type that can help here, but a particularly easy one is
.with_context(), which takes something that implements Display. You can use that
to add some extra info. Let’s add some context:

use anyhow::{anyhow, Context, Error};

fn parse_then_send(input: &[u8]) -> Result<(), Error> {
    let some_str = std::str::from_utf8(input)
    .with_context(|| "Couldn't parse into a str")?;
    let number = some_str
        .parse::<i32>()
        .with_context(|| format!("Got a weird str to parse: {some_str}"))?;
    send_number(number)?;
    Ok(())
}

fn send_number(number: i32) -> Result<(), Error> {
    if number < 1_000_000 {
        println!("Number sent!");
        Ok(())
    } else {
        println!("Too large!");
        Err(anyhow!("Number is too large"))
    }
}

fn main() {
    println!("{:?}", parse_then_send(b"nine"));
    println!("{:?}", parse_then_send(b"10"));
}

Now the output is more helpful:

Err(Got a weird str to parse: nine

Caused by:
    invalid digit found in string)
Number sent!
Ok(())

So that’s Anyhow. One thing Anyhow isn’t, however, is an actual error type (a type that
implements std::error::Error). Anyhow (https://docs.rs/anyhow/latest/anyhow/)
suggests using thiserror if we want an actual error type:

https://docs.rs/anyhow/latest/anyhow/


360 CHAPTER 17 Rust’s most popular crates
Anyhow works with any error type that has an impl of std::error::Error,
including ones defined in your crate. We do not bundle a derive(Error) macro
but you can write the impls yourself or use a standalone macro like thiserror.

So let’s look at that crate now. 

17.5.2 thiserror

The main convenience in thiserror is a derive macro called thiserror::Error that
will quickly turn your type into one that implements std::error::Error. If we imag-
ine that we want to make our code into a library and have a proper error type, we
could use thiserror to do this. In this small example we have three possible errors, so
let’s make an enum:

enum SystemError {
    StrFromUtf8Error,
    ParseI32Error,
    SendError
}

Now we’ll use thiserror to turn it into a proper error type. You use #[derive(Error)]
on top and then another #[error] attribute above each variant if we want a message.
This will automatically implement Display. Note that if you print using Debug, you
won’t see these extra messages.

 You can also use another attribute called #[from] to automatically implement From
for other error types. A type created from thiserror usually ends up looking something
like this:

#[derive(Error, Debug)]   

enum SystemError {
    #[error("Couldn't send: {0}")]   

    SendError(String),
    #[error("Couldn't parse into a str: {0}")]   

    StringFromUtf8Error(#[from] Utf8Error),
    #[error("Couldn't turn into an i32: {0}")]
    ParseI32Error(#[from] ParseIntError),
    #[error("Wrong color: Red {0} Green {1} Blue {2}")]  

    ColorError(u8, u8, u8),
    #[error("Something happened")]
    OtherError,
}

You can see that the error attribute has the same format as when you use the format!
macro.

 Now let’s look at almost the same example we used previously with thiserror
instead of Anyhow:

This here is thiserror’s 
Error macro. Easy to miss!

First is a variant unrelated to any 
other external error types. The zero 
in these attribute macros means .0 
used when accessing a tuple.

These next two will hold the 
information from the Utf8Error and 
ParseIntError types in the standard 
library, so we will use #[from].

We’ll throw in a ColorError while
we’re at it to really make it clear that

we are accessing the inner value in the
same way we access any other tuple.



36117.5 Anyhow and thiserror
use std::{num::ParseIntError, str::Utf8Error};

use thiserror::Error;

#[derive(Error, Debug)]
enum SystemError {
    #[error("Couldn't send: {0}")]
    SendError(String),
    #[error("Couldn't parse into a str: {0}")]
    StringFromUtf8Error(#[from] Utf8Error),
    #[error("Couldn't turn into an i32: {0}")]
    ParseI32Error(#[from] ParseIntError),
    #[error("Wrong color: Red {0} Green {1} Blue {2}")]
    ColorError(u8, u8, u8),
    #[error("Something happened")]
    OtherError,
}

fn parse_then_send(input: &[u8]) -> Result<(), SystemError> {
    let some_str = std::str::from_utf8(input)?;   
    let number = some_str.parse::<i32>()?;
    send_number(number)?;
    Ok(())
}

fn send_number(number: i32) -> Result<(), SystemError> {
    match number {

num if num == 500 => Err(SystemError::OtherError),   
num if num > 1_000_000 => Err(SystemError::SendError(format!(
    "{num} is too large, can't send!"
))),
_ => {
    println!("Number sent!");
    Ok(())
}

    }
}

fn main() {
    println!("{}", parse_then_send(b"nine").unwrap_err());   
    println!("{}", parse_then_send(&[8, 9, 0, 200]).unwrap_err());
    println!("{}", parse_then_send(b"109080098").unwrap_err());
    println!("{}", SystemError::ColorError(8, 10, 200));
    parse_then_send(b"10098").unwrap();
}

Now the output is

Couldn't turn into an i32: invalid digit found in string
Couldn't parse into a str: incomplete utf-8 byte sequence from index 3
Couldn't send: 109080098 is too large, can't send!
Wrong color: Red 8 Green 10 Blue 200
Number sent!

Pretty slick! With not too many lines of code, we have a proper error enum with all the
info we need.

Having a From impl makes the 
code pretty nice here—just use 
the question mark operator.

This is just an excuse to use the
OtherError variant. 500 is a bad

number for some reason.

The .unwrap_err() method is like .unwrap()
except it panics upon receiving an Ok

instead of when receiving an Err. It’s a quick
way to get to the error type inside.



362 CHAPTER 17 Rust’s most popular crates
 So thiserror lets us implement From for certain other error types to bring into our
error enum. What if we wanted to make a variant that implements From for all types
that implement std::error::Error? Let’s take a small detour and talk about blanket
trait implementations.

17.6 Blanket trait implementations
A blanket trait implementation lets you implement your trait for other people’s types.
Usually, it’s used for every type that implements certain other traits, but you can also
implement it on any and all other types if you want.

 Let’s start by making a trait that says “Hello”:

trait SaysHello {
    fn hello(&self) {
        println!("Hello");
    }
}

It would be nice to let every other type in the world have this trait. How do we do that?
Pretty easy—just give it to a generic type T:

trait SaysHello {
    fn hello(&self) {
        println!("Hello");
    }
}

impl<T> SaysHello for T {}

This generic type T doesn’t have any bounds like Display or Debug, so every Rust type
in the whole world counts as a type T. And now every type in our code can call
.hello(). Let’s give it a try! Now every type everywhere implements SaysHello:

trait SaysHello {
    fn hello(&self) {
        println!("Hello");
    }
}

impl<T> SaysHello for T {}

struct Nothing;

fn main() {
    8.hello();
    &'c'.hello();
    &mut String::from("Hello there").hello();
    8.7897.hello();
    Nothing.hello();
    std::collections::HashMap::<i32, i32>::new().hello();
}

All of these print Hello.



36317.6 Blanket trait implementations
 Now, usually, a blanket trait implementation is implemented for a certain type with
a trait of its own, such as <T: Debug>. We are quite familiar with this already: with a
Debug trait bound, we know that the type will implement Debug and thus can be
printed with {:?}, used as a function parameter that needs Debug, and so on.

 In our case, we can make a trait and implement it for anything that implements
std::error::Error. We can then use a blanket implementation on anything that
implements Error and, if it does, to put it into a variant of our enum. This lets us have
our own proper error type while keeping a place to put all the possible errors from
external crates. Here’s what it could look like:

use std::error::Error as StdError;   
use thiserror::Error;

#[derive(Error, Debug)]
enum SystemError {
    #[error("Couldn't send: {0}")]
    SendError(String),
    #[error("External crate error: {0}")]
    ExternalCrateError(String),   
}

trait ToSystemError<T> {
    fn to_system_error(self) -> Result<T, SystemError>;
}

impl<T, E: StdError> ToSystemError<T> for Result<T, E> { 
    fn to_system_error(self) -> Result<T, SystemError> {

self.map_err(|e| SystemError::ExternalCrateError(e.to_string()))
    }
}

This uses a blanket implementation for anything that is an Error type, turns it into a
String, and sticks it into a variant called ExternalCrateError. With this trait, you can
then just type .to_system_error()? every time you have code from another source
that you want to put into the SystemError enum. Then it looks like this:

use std::error::Error as StdError;
use thiserror::Error;

#[derive(Error, Debug)]
enum SystemError {
    #[error("Couldn't send {0}")]
    SendError(i32),
    #[error("External crate error: {0}")]
    ExternalCrateError(String),
}

trait ToSystemError<T> {
    fn to_system_error(self) -> Result<T, SystemError>;
}

impl<T, E: StdError> ToSystemError<T> for Result<T, E> {

Gives Error (in the standard 
library) and Error (in the 
thiserror crate) different names

This variant will hold 
all the external errors.

This function will turn a
Result<T, E> to a Result

<T, SystemError>. Anything
with std::error::Error will

implement Display, so
we can call .to_string()

and put it inside the
ExternalCrateError variant.



364 CHAPTER 17 Rust’s most popular crates
    fn to_system_error(self) -> Result<T, SystemError> {
self.map_err(|e| SystemError::ExternalCrateError(e.to_string()))

    }
}

fn parse_then_send(input: &[u8]) -> Result<(), SystemError> {
    let some_str = std::str::from_utf8(input).to_system_error()?;
    let number = some_str.parse::<i32>().to_system_error()?;
    send_number(number).to_system_error()?;
    Ok(())
}

fn send_number(number: i32) -> Result<(), SystemError> {
    if number < 1_000_000 {

println!("Number sent!");
Ok(())

    } else {
println!("Too large!");
Err(SystemError::SendError(number))

    }
}

fn main() {
    println!("{}", parse_then_send(b"nine").unwrap_err());   
    println!("{:?}", parse_then_send(b"nine"));
    println!("{:?}", parse_then_send(b"10"));
}

This prints

External crate error: invalid digit found in string
Err(ExternalCrateError("invalid digit found in string"))
Number sent!
Ok(())

The standard library has a lot of other blanket implementations that you can find by
looking for impl on generic types (usually T). Let’s take a look at a few.

 This first one is familiar: with Display, we get the .to_string() method from the
ToString trait for free:

impl<T> ToString for T
where T: Display + ?Sized,

This next one is also familiar. If you implement From, you get Into for free:

impl<T, U> Into<U> for T
where
    U: From<T>,

This next one is interesting. If you have From, you get Into for free, and if you have
Into, you also get TryFrom for free:

impl<T, U> TryFrom<U> for T
where
    U: Into<T>,

We are calling the function
twice to compare the

Display and Debug output.



36517.6 Blanket trait implementations
This also makes sense because it would be weird to have a function or parameter that
requires a TryFrom<T> but refuses a type that implements From<T>!

 Here is the simplest possible example showing these two blanket traits:

#[derive(Debug)]
struct One;
#[derive(Debug)]
struct Two;

impl From<One> for Two {    
    fn from(one: One) -> Self {

Two
    }
}

fn main() {
    let two: Two = One.into();   
    let try_two = Two::try_from(One);
    println!("{two:?}, {try_two:?}");
}

This prints Two, Ok(Two).
 There are tons and tons of blanket implementations for From. Let’s pick a fancy

one. But if you read it slowly, you’ll be able to figure it out:

impl<K, V, const N: usize> From<[(K, V); N]> for BTreeMap<K, V>
  where
    K: Ord,

Let’s break this down:

 The implementation involves a K (a key) and a V (a value), which makes sense—
a BTreeMap uses keys and values.

 There is also a const N: usize. That’s const generics! We learned them just in
the last chapter.

 The [(K, V); N] signature means an array of length N (in other words, any
length) that holds tuples of (K, V).

 BTreeMaps order their contents, so their keys need to implement Ord.

So, it looks like this is a blanket implementation to construct a BTreeMap from an array
of tuples of keys and values, where the keys can be ordered. Let’s try this out to see
whether we can make a BTreeMap straight from an array:

use std::collections::BTreeMap;

fn main() {
    let my_btree_map = BTreeMap::from([

("customer_1_money".to_string(), 10),
("customer_2_money".to_string(), 200),

    ]);
}

We implement 
From<One>.

Now we get both Into<Two> 
and TryFrom<One> for free!



366 CHAPTER 17 Rust’s most popular crates
It works! The array here is of type [(String, i32]; 2].
 It’s time to get back to external crates with our last two: lazy_static and Once-

Cell.

17.7 lazy_static and once_cell
Remember the section in the last chapter on mutable static variables? We saw that
starting in Rust 1.63 (summer 2022), this sort of expression became possible because
all of these functions are const fns:

static GLOBAL_LOGGER: Mutex<Vec<Log>> = Mutex::new(Vec::new());

Before Rust 1.63, you needed either the crate lazy_static or the crate once_cell to
do this.

 However, there are still a lot of other static variables you might want to have but
can’t initialize with a const fn, and that is what these two crates allow you to do. They
are called lazily initiated statics, meaning that they are initiated at run time instead of
compile time. lazy_static is the older and simpler crate, so we’ll look at it first.

17.7.1 Lazy static: Lazily evaluated statics

Let’s imagine that our GLOBAL_LOGGER also wants to send data to a server somewhere
else over HTTP. It would be nice to give it a Vec<Log> for the info, a String for the
URL to send the requests to, and a Client that will post the data. So something like
this would be good to start:

use reqwest::Client;

#[derive(Debug)]
struct Logger {
    logs: Vec<Log>,
    url: String,
    client: Client,
}

#[derive(Debug)]
struct Log {
    message: String,
    timestamp: i64,
}

By the way, reqwest (note the spelling) is the next external crate that we will look at.
For this code sample, we won’t do anything with it, but just remember that
reqwest::Client is used for POST, GET, and all other HTTP actions.

 But making it a static like this won’t work for us:

use reqwest::Client;
use std::sync::Mutex;

#[derive(Debug)]
struct Logger {



36717.7 lazy_static and once_cell
    logs: Mutex<Vec<Log>>,
    url: String,
    client: Client,
}

#[derive(Debug)]
struct Log {
    message: String,
    timestamp: i64,
}

static GLOBAL_LOGGER: Logger = Logger {
    logs: Mutex::new(vec![]),
    url: "https://somethingsomething.com".to_string(),
    client: Client::default()
};

fn main() {

}

The compiler lets us know that this Logger struct involves functions that aren’t const
and thus can’t be called:

error[E0015]: cannot call non-const fn `<str as ToString>::to_string` in

➥statics
error[E0015]: cannot call non-const fn `<reqwest::Client as

➥Default>::default` in statics

Even if we change the URL to a Mutex<String>, the Client itself is a non-const fn, so
no luck there. And we might want to add more parameters to our Logger struct
anyway. 

 This is where lazy_static comes in. It’s pretty easy. Here’s how its crate describes
it (https://docs.rs/lazy_static/latest/lazy_static/):

Using this macro, it is possible to have statics that require code to be executed at
runtime in order to be initialized. This includes anything requiring heap allocations,
like vectors or hash maps, as well as anything that requires function calls to be
computed.

To initiate a lazy static, you can use the lazy_static! and declare a static ref instead
of a static. Note that static ref is a term only used by this crate: there’s nothing in
Rust itself called a static ref. But it’s called a static ref because of the following:

For a given static ref NAME: TYPE = EXPR;, the macro generates a unique type
that implements Deref<TYPE> and stores it in a static with name NAME. (Attributes
end up attaching to this type.)

Cool. But we don’t even need to think about that if we don’t want to. Just make a
lazy_static! block and put statics in there that we now call static ref instead of
static. This part of the code is almost identical to before:

https://docs.rs/lazy_static/latest/lazy_static/


368 CHAPTER 17 Rust’s most popular crates
lazy_static! {   
    static ref GLOBAL_LOGGER: Logger = Logger {   
  logs: Mutex::new(vec![]),
        url: "https://somethingsomething.com".to_string(),

client: Client::default()
    };
}

And with just those two changes, we have a static that can be called anywhere from the
program. Here is what the code looks like now:

use lazy_static::lazy_static;
use reqwest::Client;
use std::sync::Mutex;

#[derive(Debug)]
struct Logger {
    logs: Mutex<Vec<Log>>,
    url: String,
    client: Client,
}

#[derive(Debug)]
struct Log {
    message: String,
    timestamp: i64,
}

lazy_static! {
    static ref GLOBAL_LOGGER: Logger = Logger {

logs: Mutex::new(vec![]),
url: "https://somethingsomething.com".to_string(),
client: Client::default()

    };
}

fn main() {
    GLOBAL_LOGGER.logs.lock().unwrap().push(Log {

message: "Everything's going well".to_string(),
timestamp: 1658930674

    });
    println!("{:#?}", *GLOBAL_LOGGER.logs.lock().unwrap());
}

So that’s lazy_static. The other one is called once_cell and is a bit harder to use
but more flexible. OnceCell is also in the process of being added to the standard
library, so it’s good to know. In fact, it might even be done by the time you read this
book. As of June 2023, parts of the once_cell crate can be used in the standard library
(http://mng.bz/mj84). Even after the rest of the functionality is ported to the stan-
dard library, we will probably see the once_cell crate in use in Rust code for many
years to come.

We call the 
lazy_static! 
macro.

We call it a static 
ref instead of a 
static. Everything 
else is the same.

http://mng.bz/mj84


36917.7 lazy_static and once_cell
17.7.2 OnceCell: A cell to only write to once

As the name suggests, a OnceCell is a cell that is written to once. You start it off as a
OnceCell::new() of some type (like a OnceCell<String> or OnceCell<Logger>) and
then call .set() to initialize the type that it holds.

 A OnceCell feels pretty similar to a Cell and has similar method names, too, such
as .set() and .get().

 So what makes a OnceCell more flexible than lazy_static? Here are some high-
lights:

 A OnceCell can hold a whole type (like our whole Logger), or it can be a
parameter inside another type.

 You can use a OnceCell with variables that we don’t know until much later in
the program. Maybe we don’t know our Logger’s URL yet and need to get it
somewhere. We can start main(), get the URL much later, and then stick it
inside our Logger using .set().

 For a OnceCell, you can choose a sync or unsync version. If you don’t need to
send it between threads, just choose unsync.

Let’s give OnceCell a try with the same Logger struct as before. We’ll make the same
GLOBAL_LOGGER, but this time, it will be a OnceCell<Logger>. To start a OnceCell, just
use OnceCell::new(). It looks like this:

static GLOBAL_LOGGER: OnceCell<Logger> = OnceCell::new();

This gives us an empty cell that is ready for us to call .set()to initialize the value
inside. The whole thing looks like this:

use once_cell::sync::OnceCell;
use reqwest::Client;
use std::sync::Mutex;

#[derive(Debug)]
struct Logger {
    logs: Mutex<Vec<Log>>,
    url: String,
    client: Client,
}

#[derive(Debug)]
struct Log {
    message: String,
    timestamp: i64,
}

static GLOBAL_LOGGER: OnceCell<Logger> = OnceCell::new();

fn fetch_url() -> String {

    "http://somethingsomething.com".to_string()  
}

We’ll pretend that 
this function needs to 
do something at run 
time to find the url.

Pretend that there 
is a lot of code here.

Finally returns 
the URL



370 CHAPTER 17 Rust’s most popular crates

 
 
 

fn main() {
    let url = fetch_url();

    GLOBAL_LOGGER                         
.set(Logger {
    logs: Mutex::new(vec![]),
    url,
    client: Client::default(),
})
.unwrap();           

    GLOBAL_LOGGER                    
.get()                             
.unwrap()
.logs
.lock()
.unwrap()
.push(Log {
message: "Everything's going well".to_string(),
timestamp: 1658930674,

    });

    println!("{GLOBAL_LOGGER:?}");     
}

This prints out everything inside our GLOBAL_LOGGER. It works! You can see the mes-
sage inside it:

OnceCell(Logger { logs: Mutex { data: [Log { message: "Everything's going

➥well", timestamp: 1658930674 }], poisoned: false, .. }, url:

➥"http://somethingsomething.com", client: Client { accepts: Accepts,

➥proxies: [Proxy(System({}), None)], referer: true, default_headers:

➥{"accept": "*/*"} } })

And don’t worry about the porting of OnceCell to the standard library, as the code is
almost exactly the same. Here is the same example as before except that we are using
the standard library instead. The only difference here is that a std::cell::OnceCell
in the standard library is not thread-safe, while the thread-safe version is called a
std::sync::OnceLock. Other than that, though, the code is exactly the same!

use reqwest::Client;
use std::sync::Mutex;
use std::sync::OnceLock;

#[derive(Debug)]
struct Logger {
    logs: Mutex<Vec<Log>>,
    url: String,
    client: Client,
}

#[derive(Debug)]
struct Log {
    message: String,

The program has started, and we got the URL. 
Now it’s time to set the GLOBAL_LOGGER by 
putting a Logger struct inside.

.set() returns a Result but 
will return an error if the 
cell has already been set.

GLOBAL_LOGGER is initialized. 
Let’s get a reference to it.

.get()returns a None if the cell hasn’t 
been set yet. We’ll unwrap here, too.

Finally, we are accessing .logs 
inside the Logger struct, which
is a Mutex. The rest of the code
involves locking the Mutex and
pushing a message to the 
Vec<Log> that it holds.

Done!



371Summary
    timestamp: i64,
}

static GLOBAL_LOGGER: OnceLock<Logger> = OnceLock::new();

fn fetch_url() -> String {    
    "http://somethingsomething.com".to_string()
}

fn main() {
    let url = fetch_url();

    GLOBAL_LOGGER    
.set(Logger {
    logs: Mutex::new(vec![]),
    url,
    client: Client::default(),
})
.unwrap();    

    GLOBAL_LOGGER
.get()    
.unwrap()
.logs
.lock()    
.unwrap()
.push(Log {
message: "Everything's going well".to_string(),
timestamp: 1658930674,

    });
    println!("{GLOBAL_LOGGER:?}");
}

So that’s how OnceCell works. You must be curious about the reqwest crate by now,
but we won’t see it in detail until chapter 19 because there are a few items to take care
of first. One of them is installing Rust on your computer because the Rust Playground
won’t let people use reqwest to make HTTP requests. (Who knows what people would
use that for . . .)

 This means that we’ve finally reached the part of the book that deals with Rust on
your computer (although you’ve probably already installed Rust if you’ve read this far
in the book). In the next chapter, we’ll go over the basics of using Rust on your com-
puter: installing Rust, setting up a project using Cargo, using Cargo doc to automati-
cally generate your documentation, and all the other nice things that come with using
Cargo to set up a project and run your code instead of just the Playground.

Summary
 External crates are used all the time in Rust, even for key functionality like deal-

ing with time.
 If you are doing a lot of heavy computing with iterators (and don’t feel like

spawning extra threads yourself), try bringing in the rayon crate.



372 CHAPTER 17 Rust’s most popular crates
 Anyhow is the most frequently used external crate for dealing with multiple
errors, while thiserror can be used to easily create your own error types.

 The lazy_static and once_cell crates are used for creating global variables
that can’t be constructed at compile time.

 The functionality of both lazy_static and once_cell are being ported to the
standard library, so eventually you may not need to use any external crates at all
to create any global variables.

 Blanket implementations let you give trait methods to any types you want.
These are used everywhere in the standard library, too, such as when you get
the .to_string() method for free for anything that implements Display.



Rust on your computer
We have seen that it is possible to learn almost anything in Rust just using the Play-
ground. But if you have read this far in the book, you probably already have Rust
installed on your computer. And there are always things that you can’t do with the
Playground, such as working with files or writing code in more than just one file.
Some other things that are best done on your computer for are user input and
command-line arguments. But most important is that with Rust on your computer,
you can use external crates. We have already learned a few crates, but the Play-
ground only has access to the most popular ones. With Rust on your computer, you
can use any external crate at all. The tool that binds this all together is called
Cargo, Rust’s package manager.

This chapter covers
 Cargo, Rust’s package manager

 cargo doc, Rust’s documentation tool

 Working with user input

 Using files
373



374 CHAPTER 18 Rust on your computer
18.1 Cargo
One of the largest selling points of Rust is that pretty much everyone uses Cargo to
build and manage their projects. Using Cargo gives Rust projects a common structure
that makes it easy to work with external code written by multiple people at the same
time. To understand why Cargo is found almost everywhere in Rust code, let’s first see
what writing Rust is like without it.

18.1.1 Why everyone uses Cargo

The Rust compiler is called rustc and is what does the actual compiling. A Rust file
ends with an .rs. Technically, you can compile programs on your own with commands
like rustc main.rs, but it quickly gets annoying.

 But let’s give it a try. Make a new directory and create a new file called test.rs. Then
put something simple in like this:

fn main() {
    println!("Does this work?");
}

After that, type rustc test.rs. You should see a file called test.exe. That’s your pro-
gram! Now just type test, and you should see something like this:

c:\nothing>test
Does this work?

c:\nothing>

Not bad! But how do you handle bringing in external code? If we want a random
number, we will probably use the rand crate:

use rand::{thread_rng, Rng};

fn main() {
    let mut rng = thread_rng();
    println!("Today's lucky number: {}", rng.gen::<u8>());
}

But no luck. A lonely compiler doesn’t know what to do with this sudden rand
keyword:

error[E0432]: unresolved import `rand`
 --> test.rs:1:5
  |
1 | use rand::{thread_rng, Rng};
  |     ^^^^ maybe a missing crate `rand`?
  |
  = help: consider adding `extern crate rand` to use the `rand` crate

It is just as confused even if we add extern crate rand as it suggests:

error[E0463]: can't find crate for `rand`
 --> test.rs:1:1



37518.1 Cargo
  |
1 | extern crate rand;
  | ^^^^^^^^^^^^^^^^^^ can't find crate

Technically, you can type rustc –help and start looking around for the right way to
link external code. But nobody does this when building programs with Rust because
there is a package manager and build tool called Cargo that takes care of all of this.
Cargo uses rustc to compile, too; it automates the process to make it a nearly painless
experience.

 One note about the name: it’s called cargo because when you put crates together,
you get cargo. A crate is a wooden box that you see on ships or trucks (figure 18.1),
but you remember that every Rust project is also called a crate. When you put them
together you get the whole cargo. So cargo comes from the idea of putting all the
crates together to make a full project.

You can see this when you use Cargo to run a project. To start a project in Cargo, type
cargo new and its name. For example, you could type cargo new my_project. A
directory will be created with the same name, inside of which is Cargo.toml and a
directory called /src for the code. Inside this directory is main.rs, which is where you
start writing your code. If you want to write a library (i.e., code that is meant for others
to use), add --lib to the end of the command. Then Rust will create a lib.rs instead
of main.rs in the /src directory.

 With a new project started, let’s add rand = "0.8.5" to Cargo.toml, as we learned
previously, and write some code to randomly choose between eight letters:

use rand::seq::SliceRandom;   

fn main() {
    let my_letters = vec!['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'];
    let mut rng = rand::thread_rng();
    for _ in 0..6 {
        print!("{} ", my_letters.choose(&mut rng).unwrap());
    }
}

This will print something like b c g h e a. But let’s first see what Cargo does before
the program starts running. To use Cargo to both build and run a program, type
cargo run. But there is quite a bit of output during compiling, too. It will look some-
thing like this:

Figure 18.1 You can 
think of Cargo as this 
ship holding all of the 
external crates together 
in the same place.

This is a blanket trait that lets us use a 
method called .choose() for slices, so 
we need to bring it into scope to use it.



376 CHAPTER 18 Rust on your computer
   Compiling rand_core v0.6.4
   Compiling rand_chacha v0.3.1
   Compiling rand v0.8.5
   Compiling random_test v0.1.0 (C:\rust\random_test)
    Finished dev [unoptimized + debuginfo] target(s) in 2.61s
     Running `target\debug\random_test.exe`

It looks like Cargo didn’t just bring in a single crate called rand, but some others, too.
That’s because we need rand for our crate, but rand also has code that needs other
crates, too. Cargo will find all the crates we need and put them together. In our case,
we only had a few, but on other projects, you may have 200, 600, or sometimes even
more crates to bring in. In this case, the program took 2.61 seconds to compile, but
this time will, of course, vary.

18.1.2 Using Cargo and what Rust does while it compiles

Compiling time is where you can see the tradeoff for Rust: compiling ahead of time is
one reason why Rust is so fast, but you have to wait while Rust compiles your code.
However, Rust does use incremental compilation. Incremental compilation means that
when you make a change to your code, Rust will only recompile the changes, not the
whole program. In our case, imagine that we add the letter i to my_letters and type
cargo run again:

let my_letters = vec!['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i'];

In this case, the crates such as rand_core are already brought in so they don’t get
recompiled, and the whole process is a lot quicker:

   Compiling random_test v0.1.0 (C:\rust\random_test)
    Finished dev [unoptimized + debuginfo] target(s) in 0.55s
     Running `target\debug\random_test.exe`
f h i d e d 

This time, it only took 0.55 seconds. So, to speed up your development time, try typing
cargo build every time you add an external crate as you work on your code. Rust will
compile your code in the background as you work, and every cargo build or cargo
run thereafter will be a faster incremental compilation.

 Rust optimizes (speeds up) its code in a number of ways, such as by turning
generic functions and types into concrete ones. For example, here is some simple
generic code that you might write:

use std::fmt::Display;

fn print_and_return<T: Display>(input: T) -> T {
    println!("You gave me {input} and now I will give it back.");
    input
}

fn main() {
    let my_name = print_and_return("Windy");
    let small_number = print_and_return(9.0);
}



37718.1 Cargo
This function can take anything with Display, so we gave it a &str and next gave it an
f64, both of which implement Display. However, (unseen to us) the compiler
changes generic functions to concrete ones for each type that it will use, which allows
the program to be faster at run time.

 So when it looks at the first part with "Windy" (a &str), it doesn’t just produce a fn
print_and_return<T: Display>(input: T) -> T to use at run time. Instead, it turns it
into something like fn print_and_return_str(input: &str) -> &str. It does the
same on the next line with the input 9.0, turning the function into something like fn
print_and_return_f64(input: f64) -> f64. All this is done during compile time.
This is why generic functions take (slightly) longer to compile because the compiler
generates a concrete function for each different type to be used at run time.

 You’ll sometimes see this called a specialized definition or monomorphization. That is,
when the compiler turns the generic function above into something like fn print_
and_return_f64(input: f64) -> f64, it has turned the generic function into a func-
tion that is specialized to the f64 type. And monomorphism, which is a Greek term for
“single form-ism,” means that the function is now concrete and only has a single form.
When we write a generic function, it is polymorphic (“multiple form”) because it can
take on a lot of different forms in practice. The compiler then takes these generic
functions, specializing them to the input type, and turns them into monomorphic (“single
form”) functions.

 Thankfully, you don’t have to think about any of this to write your code—the com-
piler does it all without showing you. But it’s nice to know some of the reasons why
Rust takes a while to compile but runs really fast once the compiling is done.

 One more thing: the makers of Rust work hard on lowering compile time because
compile time is one of Rust’s largest pain points. However, almost every version of
Rust compiles a bit faster than the previous version, and Rust today compiles much
faster than it did a few years ago. If you are curious about some of these details, check
out this blog by a Rust developer who writes about recent compiler improvements in a
pretty readable way: https://nnethercote.github.io/.

 Here are the most basic commands about Cargo to know:

 cargo build will build your program as an executable so you can run it. You’ll
find the executable inside the /target folder.

 cargo run will build your program and run it.
 cargo build --release and cargo run --release will do the same but in

release mode. You will usually use release mode when your code is finally done
and you want it to be as optimized as possible. In release mode, Rust will take
even longer to compile, but it is worth it because the compiler uses everything it
knows to make it faster. Release mode is actually a lot faster than regular mode,
which is called Debug mode because it compiles quicker and has more debug
information. The regular cargo build is called a “debug build” and cargo
build --release is called a “release build.” A debug build will go inside the
/target/debug folder and release build inside the /target/release folder.

https://nnethercote.github.io/


378 CHAPTER 18 Rust on your computer
 cargo check is the fastest way to check your code. It’s like compiling, except
that it won’t actually build the program, which is why it doesn’t take as long. If
you are in the middle of some coding and just curious whether your program
will compile, use cargo check.

The best way to see the difference between debug and release mode is to look at a
small function like this that uses a loop that runs 1,000 times:

pub fn add() -> i32 {
    let mut sum = 0;
    for _ in 0..1000 {

sum += 1
    }
    sum
}

You’ll notice that the code is asking the computer to do a lot of work (looping 1,000
times), but the code is pretty simple. Even humans can look at this and know what the
final output will be. Rust can do this sometimes, too.

 In Debug mode, the compiler will quickly put the code together to run this loop at
run time, as well as add some debug info. The focus in debug mode is on compiling
quickly and helping the developer. You can see this if you paste this function into the
website Godbolt (https://rust.godbolt.org/), which shows the assembly code gener-
ated. For this function, you’ll see 100+ lines of code generated. Even if you don’t know
any assembly, you’ll notice that the compiler is generating the code needed to run the
loop. Figure 18.2 shows there are a lot of terms like Iterator, Range, into_iter,
PartialOrd, and so on, so quite a bit of code relating to iterators and comparing
numbers.

Figure 18.2
Compiling in 
debug mode 
takes less time 
but the code itself 
ends up doing 
more work.

https://rust.godbolt.org/


37918.1 Cargo
You can see the debug info at the end of the file, too, such as an error message in case
the number overflows and the program needs to panic (figure 18.3).

Now, here comes the fun part: release mode. Click on the triangle on the top right
next to Compiler Options, select -C opt-level=val, and change val to 3 (3 is the
optimization level for release builds). The compiler will then try to optimize as much
as possible (figure 18.4)—and now the assembly is only three lines long!

 The compiler has spent some extra time in release mode to analyze the loop and
sees that it will always return 1,000. So why bother adding any extra code at run time?

Figure 18.3 And some parts of the compiled code in debug mode are easily readable.

Figure 18.4 Release mode takes a lot longer, but the compiled code is most efficient.



380 CHAPTER 18 Rust on your computer
That is essentially how optimization at compile time works. If you choose to spend the
extra time to compile in release mode, the compiler will have the extra time to ana-
lyze the code and shorten it as much as possible.

 Here are some more Cargo commands:

 cargo clippy will run clippy. It takes less time than cargo run and has all the
opinions from clippy on how to improve your code.

 cargo build --timings (or cargo run --timings) will generate a nice report in
HTML that shows you how long each crate took when compiling.

By the way, the --release part of the command is called a “flag.” That means extra
information in a command.

 Let’s finish up this section with a few more useful Cargo commands:

 cargo clean removes everything that was generated during the previous times
that you compiled your code. When you add crates to Cargo.toml, the com-
puter will download all the files it needs, which can take a lot of space (often a
few gigabytes). If you don’t want them on your computer anymore, type cargo
clean. This also cleans up any artifacts (the binaries and related files) gener-
ated when compiling your code. You can see this in action, as the /target folder
will disappear when you type cargo clean.

 cargo add followed by a crate name will add the latest version of an external
crate to your Cargo.toml file (you can add it to Cargo.toml directly too).

 cargo doc will build the documentation for your code. We’ll learn about cargo
doc in just a few pages.

18.2 Working with user input
Now that we have Rust installed, we can work with user input. Generally, there are two
ways to do this: while the program is running through stdin (that is, through the
user’s keyboard) and before the program runs through command line arguments. 

18.2.1 User input through stdin

The easiest way to take input from the user is with std::io::stdin. This is pro-
nounced “standard in,” which in this case is the input from the keyboard. With the
stdin() function, you can get a Stdin struct, which is a handle to this input and has a
method called .read_line() that lets you read the input to a &mut String. Here is a
simple example of that, which is a loop that continues forever until the user presses
the x key. It sort of works, but not quite in the right way. If you are feeling adventur-
ous, try running the code yourself on your computer and think about why it doesn’t
quite work as expected:

use std::io;

fn main() {
    println!("Please type something, or x to escape:");
    let mut input_string = String::new();



38118.2 Working with user input
    while input_string != "x" {
input_string.clear();   
io::stdin().read_line(&mut input_string).unwrap();   
println!("You wrote {input_string}");

    }
    println!("See you later!");
}

Here is some possible output:

Please type something, or x to escape:
something
You wrote something

Something else
You wrote Something else

x
You wrote x

x
You wrote x

It takes our input and gives it back, and it even knows that we typed x. But it doesn’t
exit the program. The only way to get out is by closing the window or by typing Ctrl +
C to shut the program down. Did you notice the space after the output that says, “You
wrote x”? That’s a hint. Let’s change the {} to {:?} in println!() to see whether
there is any more more information. Doing this shows us what is going on:

Please type something, or x to escape:
something
You wrote "something\r\n"
Something else
You wrote "Something else\r\n"
x
You wrote "x\r\n"
x
You wrote "x\r\n"

Ah ha! This is because the keyboard input is actually not just something; it is
something and the Enter key. When pressing Enter, Windows will add a \r\n (a car-
riage return and a new line), while other operating systems will add a \n (new line). In
either case, we aren’t getting a simple x output when we press x to exit the program.

 There is an easy method to fix this called .trim(), which removes all the
whitespace. Whitespace, by the way, is defined as any of these characters (https://
doc.rust-lang.org/reference/whitespace.html):

U+0009 (horizontal tab, '\t')
U+000A (line feed, '\n')
U+000B (vertical tab)
U+000C (form feed)
U+000D (carriage return, '\r')

First, clear the 
String during 
every loop. 
Otherwise, it will 
just get longer 
and longer.

Then use read_line to
read the input from the

user into read_string.

https://doc.rust-lang.org/reference/whitespace.html
https://doc.rust-lang.org/reference/whitespace.html


382 CHAPTER 18 Rust on your computer
U+0020 (space, ' ')
U+0085 (next line)
U+200E (left-to-right mark)
U+200F (right-to-left mark)
U+2028 (line separator)
U+2029 (paragraph separator)

Using .trim() will turn x\r\n (or x\n) into just x. Now it works:

use std::io;

fn main() {
    println!("Please type something, or x to escape:");
    let mut input_string = String::new();

    while input_string.trim() != "x" {
        input_string.clear();
        io::stdin().read_line(&mut input_string).unwrap();
        println!("You wrote {input_string}");
    }
    println!("See you later!");
}

Now it will print

Please type something, or x to escape:
something
You wrote something

Something
You wrote Something

x
You wrote x

See you later!

The std::io module has a lot of other structs (https://doc.rust-lang.org/std/io/
index.html#structs) and methods if you need finer control over user input and pro-
gram output.

 With that quick introduction to user input done, let’s take a look at another type of
user input: input that happens before the program even starts.

18.2.2 Accessing command-line arguments

Rust has another kind of user input called std::env::Args. This Args struct holds
what the user types when starting the program, known as command-line arguments.
There is actually always at least one Arg in a program, no matter what the user types.
Let’s write a program that only prints them using std::env::args() to see what it is:

fn main() {
    println!("{:?}", std::env::args());
}

https://doc.rust-lang.org/std/io/index.html#structs
https://doc.rust-lang.org/std/io/index.html#structs


38318.2 Working with user input
If we type cargo run, it prints something like this:

Args { inner: ["target\\debug\\rust_book.exe"] }

You can see that Args will always give you the name of the program, no matter what.
 Let’s give it more input and see what it does. Try typing cargo run but with some

extra words. It gives us

Args { inner: ["target\\debug\\rust_book.exe", "but", "with", "some",

➥"extra", "words"] }

So it looks like every word after cargo run is recognized and can be accessed via this
args() method. When we look at the documentation for Args (https://doc.rust-
lang.org/std/env/struct.Args.html), we see that it implements IntoIterator, which is
quite convenient. So we can just put it in a for loop:

use std::env::args;

fn main() {
    let input = args();
    for entry in input {

println!("You entered: {}", entry);
    }
}

Now it says

You entered: target\debug\rust_book.exe
You entered: but
You entered: with
You entered: some
You entered: extra
You entered: words

Since the first argument is always the program name, you will often want to skip it. We
can do that with the .skip() method that all iterators have:

use std::env::args;

fn main() {
    let input = args();
    input.skip(1).for_each(|item| {

println!(
    "You wrote {item}, which in capital letters is {}",
    item.to_uppercase()
);

    })
} 

The code will print

You wrote but, which in capital letters is BUT
You wrote with, which in capital letters is WITH
You wrote some, which in capital letters is SOME

https://doc.rust-lang.org/std/env/struct.Args.html
https://doc.rust-lang.org/std/env/struct.Args.html


384 CHAPTER 18 Rust on your computer
You wrote extra, which in capital letters is EXTRA
You wrote words, which in capital letters is WORDS

We can do more with these command line arguments inside our program besides
print them. They are just strings, so it is easy enough to check to see if any arguments
have been entered, and match on them if an argument is found. Here’s a small exam-
ple that either makes letters big (capital) or small (lowercase):

use std::env::args;

enum Letters {
    Capitalize,
    Lowercase,
    Nothing,
}

fn main() {
    let mut changes = Letters::Nothing;
    let input = args().collect::<Vec<_>>();

    if let Some(arg) = input.get(1) {
match arg.as_str() {
    "capital" => changes = Letters::Capitalize,
    "lowercase" => changes = Letters::Lowercase,
    _ => {}
}

    }

    for word in input.iter().skip(2) {
match changes {
Letters::Capitalize => println!("{}", word.to_uppercase()),
Letters::Lowercase => println!("{}", word.to_lowercase()),
_ => println!("{}", word)

}
    }
}

Let’s look at some examples of input. Try to imagine what will be printed out.
 Input: cargo run please make capitals:

In this case, it will look at index 1, which is please. This input please doesn’t match
capital or lowercase, so it will print out the remaining words without any change:

make capitals

Input: cargo run capital
 In this case, it will match as before, but there is nothing after index 1 to print out,

so there is no output.
 Now, let’s look at some arguments from a user who is starting to figure out how the

program works:
 Input: cargo run capital I think I understand now

I
THINK
I



38518.2 Working with user input
UNDERSTAND
NOW

Input: cargo run lowercase Does this work too?

does
this
work
too?

In practice, command-line arguments are used in a pretty similar way for most
command-line interfaces (CLIs). An example of this is cargo run --help, which Cargo
recognizes as a request to print out a menu to help the user know which commands
are available. The main crate used by Rust users to work with command-line argu-
ments is known as clap (CLAP = Command Line Argument Parser; https://docs.rs/
clap/latest/clap/), which is highly recommended if you are putting together a CLI
that needs to take in a lot of different types of arguments and flags.

18.2.3 Accessing environment variables

Besides Args, there are also Vars, which are environment variables. Those can be seen
when using std::env::args() and are the basic settings for the operating system and
program that the user didn’t type in. These variables will include information like URLs.

 Even the simplest program will have a lot of environment variables that vary by com-
puter. Using std::env::vars() allows you to see them all as a (String, String) (a key
and a value). Let’s take a look at what the Vars on the Rust Playground look like:

fn main() {
    for (key, value) in std::env::vars() {

println!("{key}: {value}");
    }
}

There’s quite a bit!

CARGO: /playground/.rustup/toolchains/stable-x86_64-unknown-linux-gnu/bin/cargo
CARGO_HOME: /playground/.cargo
CARGO_MANIFEST_DIR: /playground
CARGO_PKG_AUTHORS: The Rust Playground
CARGO_PKG_DESCRIPTION: 
CARGO_PKG_HOMEPAGE: 
CARGO_PKG_LICENSE: 
CARGO_PKG_LICENSE_FILE: 
CARGO_PKG_NAME: playground
CARGO_PKG_REPOSITORY: 
CARGO_PKG_VERSION: 0.0.1
CARGO_PKG_VERSION_MAJOR: 0
CARGO_PKG_VERSION_MINOR: 0
CARGO_PKG_VERSION_PATCH: 1
CARGO_PKG_VERSION_PRE: 
DEBIAN_FRONTEND: noninteractive
HOME: /playground
HOSTNAME: 637927f45315

https://docs.rs/clap/latest/clap/
https://docs.rs/clap/latest/clap/


386 CHAPTER 18 Rust on your computer
LD_LIBRARY_PATH: /playground/target/debug/build/libsqlite3-sys-

➥7c00a5831fa0c673/out:/playground/target/debug/build/ring-

➥c92344ea3efaac76/out:/playground/target/debug/deps:/playground/target

➥/debug:/playground/.rustup/toolchains/stable-x86_64-unknown-linux-

➥gnu/lib/rustlib/x86_64-unknown-linux-gnu/lib:/playground

➥/.rustup/toolchains/stable-x86_64-unknown-linux-gnu/lib

➥PATH: /playground/.cargo/bin:/usr/local/sbin:/usr/local/bin:/usr

➥/sbin:/usr/bin:/sbin:/bin
PLAYGROUND_EDITION: 2021
PLAYGROUND_TIMEOUT: 10
PWD: /playground
RUSTUP_HOME: /playground/.rustup
RUSTUP_TOOLCHAIN: stable-x86_64-unknown-linux-gnu
RUST_RECURSION_COUNT: 1
SHLVL: 1
SSL_CERT_DIR: /usr/lib/ssl/certs
SSL_CERT_FILE: /usr/lib/ssl/certs/ca-certificates.crt
USER: playground
_: /usr/bin/timeout

Environment variables can also be set while a program is running using
std::env::set_var(). The following code will add an extra key and value for each
existing key and value, except with an exclamation mark at the end:

fn main() {
    for (mut key, mut value) in std::env::vars() {

key.push('!');
value.push('!');
std::env::set_var(key, value);

    }
    for (key, value) in std::env::vars() {

println!("{key}: {value}");
    }
}

The output will show that there are now twice as many environment variables, half of
which have exclamation marks everywhere. Here is part of the output:

CARGO!: /playground/.rustup/toolchains/stable-x86_64-unknown-linux-gnu/bin/
cargo!

CARGO_HOME!: /playground/.cargo!
CARGO_MANIFEST_DIR!: /playground!
CARGO_PKG_AUTHORS!: The Rust Playground!

Now, let’s take a look at a more real example of set_var(). 
 Programs often send logging information to an external service that displays the

data in a nice format that makes it easy to understand. Most logging in Rust uses the
RUST_LOG environment variable to keep track of how detailed logs should be. The five
main logging levels are

 TRACE (maximum level of detail)
 DEBUG (detailed information)
 INFO (general information)



38718.2 Working with user input
 WARN (something to keep an eye on)
 ERROR (actual errors)

You can see these logging levels in crates like env_logger (https://docs.rs/env_
logger/latest/env_logger/).

 Services are generally first deployed to a Dev environment for developers to work
on and test, in which case RUST_LOG will be set to DEBUG, or maybe even TRACE. Then,
when the developers are more confident in the service, they will move it to Prod (pro-
duction), which will probably use a quieter logging level like INFO—but not always.

 The following code represents a case where an app starting up will first check for
RUST_LOG, and if nothing is set, will check to see if some other environment variable
(we’ll call it "LOGGER_URL") shows a url to send logging information to. If the
LOGGER_URL matches the dev url, it will assume that the logging level is DEBUG, and if
LOGGER_URL matches the prod url, it will assume that the logging level is INFO. And if
neither of these can be found, then RUST_LOG will be set to INFO:

use std::env;
const DEV_URL: &str = "www.somedevurl.com";
const PROD_URL: &str = "www.someprodurl.com";

fn main() {
  match std::env::var("RUST_LOG") {
    Ok(log) => println!("Logging at {log} level"),
    Err(_) => match std::env::var("LOGGER_URL") {
      Ok(url) if url == DEV_URL => {
        println!("Dev url indicated, defaulting to debug");
        env::set_var("RUST_LOG", "DEBUG");
      }
      Ok(url) if url == PROD_URL => {
        println!("Prod url indicated, defaulting to info");
        env::set_var("RUST_LOG", "INFO");
      }
      _ => {
        println!("No valid url indicated, defaulting to info");
        env::set_var("RUST_LOG", "INFO");
      }
    },
  }

}

If run on the Playground, you will see this output, showing that the environment vari-
able hasn’t been set:

No valid url indicated, defaulting to info

You probably didn’t find this section particularly difficult. Working with user input
usually involves more thinking about how your software works than writing code that
you need to work hard at to compile. There are, of course, many other forms of user
input. The last two chapters of the book include working with instantaneous user
input (e.g., keyboard presses), so feel free to take a look at those chapters if you are
curious and want to know now. 

https://docs.rs/env_logger/latest/env_logger/
https://docs.rs/env_logger/latest/env_logger/
https://docs.rs/env_logger/latest/env_logger/
http://www.somedevurl.com
http://www.someprodurl.com


388 CHAPTER 18 Rust on your computer
18.3 Using files
With Rust installed on the computer, we can now start working with files. You will notice
that a lot of this code involves working with Results. This makes sense, as many things
can go wrong when it comes to working with files. A file might not even exist, maybe the
computer can’t read it, or you might not have permission to access it. All of these pos-
sible things that can go wrong make the ? operator really handy when working with files.

18.3.1 Creating files

Let’s try working with files for the first time. The std::fs module contains methods
for working with files, and with the std::io::Write trait in scope, you can write to
them. With that, we can use .write_all() to write into the file. Here is a simple
example that creates a file and writes some data to it:

use std::fs;
use std::io::Write;

fn main() -> std::io::Result<()> {
    let mut file = fs::File::create("myfilename.txt")?;  
    file.write_all(b"Let's put this in the file")?;    
    Ok(())
}

Then, if you click on the new file myfilename.txt, you can see the Let's put this in
the file text inside.

 We don’t even need to use two lines to do this, though, thanks to the question
mark operator. It will pass on the result we want if it works, kind of like when you
chain methods on an iterator:

use std::fs;
use std::io::Write;

fn main() -> std::io::Result<()> {
    fs::File::create("myfilename.txt")?

.write_all(b"Let's put this in the file")?;
    Ok(())
}

In fact, there is also a function that does both of these things together. It’s called
std::fs::write(). Inside it, you give it the file name you want and the content you
want to put inside. Again, careful! It will delete everything in that file if it already
exists. It even lets you write a &str without b in front because write() takes anything
that implements AsRef<[u8]> and str implements AsRef<[u8]>:

pub fn write<P: AsRef<Path>, C: AsRef<[u8]>>(path: P, contents: C) -> Result<()>

This makes it very simple:

use std::fs;

fn main() -> std::io::Result<()> {
    fs::write("calvin_with_dad.txt", 

Creates a file with this name. Be
careful! If you have a file with this

name already, it will be deleted.

Files take bytes, so don’t 
forget the b in front.



38918.3 Using files
"Calvin: Dad, how come old photographs are always black and white? Didn't 
they have color film back then?

Dad: Sure they did. In fact, those photographs are in color. It's just the 
world was black and white then.")?;

    Ok(())
}

18.3.2 Opening existing files

Opening a file is just as easy as creating one. You just use open() instead of create().
After that (if the program finds your file), you can use methods like read_to_
string(), which lets you read the contents of a file into a String. It looks like this:

use std::fs;
use std::fs::File;
use std::io::Read;     

fn main() -> std::io::Result<()> {
     fs::write("calvin_with_dad.txt", 
"Calvin: Dad, how come old photographs are always black and white? Didn't

➥they have color film back then?
Dad: Sure they did. In fact, those photographs are in color. It's just the

➥world was black and white then.")?;

    let mut calvin_file = File::open("calvin_with_dad.txt")?;   
    let mut calvin_string = String::new();   
    calvin_file.read_to_string(&mut calvin_string)?;   
    calvin_string.split_whitespace().for_each(|word| print!("{} ",
           word.to_uppercase()));  
    Ok(())
}

That will print

CALVIN: DAD, HOW COME OLD PHOTOGRAPHS ARE ALWAYS BLACK AND WHITE? DIDN'T

➥THEY HAVE COLOR FILM BACK THEN? DAD: SURE THEY DID. IN FACT, THOSE

➥PHOTOGRAPHS ARE IN COLOR. IT'S JUST THE WORLD WAS BLACK AND WHITE

➥THEN.

18.3.3 Using OpenOptions to work with files

What if we only want to create a file if there is no other file with the same name? This
would let us avoid deleting any existing files when trying to make a new one. The
std::fs module has a struct called OpenOptions that lets us do this, along with other
custom behavior.

 Interestingly, we’ve been using OpenOptions all this time and didn’t even know it.
The source code for File::open() shows us the OpenOptions struct being used to
open a file:

pub fn open<P: AsRef<Path>>(path: P) -> io::Result<File> {
        OpenOptions::new().read(true).open(path.as_ref())
    }

That looks familiar! It’s the builder pattern that we learned in chapter 15. The same
pattern shows up inside the File::create() method:

This is to use the function 
.read_to_string().

Opens the file 
we just made

This String 
will hold the 
contents of 
the file.Reads the file into the

String using the
read_to_string methodNow that we have it as a String, we’ll

capitalize the whole thing just for fun.



390 CHAPTER 18 Rust on your computer
pub fn create<P: AsRef<Path>>(path: P) -> io::Result<File> {
    OpenOptions::new().write(true).create(true).truncate(true).open(path.as_ref

➥())
}

So, it looks like OpenOptions has a lot of methods to set whether to carry out certain
actions when working with files. If you go to the documentation page for OpenOptions
(https://doc.rust-lang.org/std/fs/struct.OpenOptions.html), you can see all the
methods that you can choose from. Most take a bool:

 .append()—To add to the content that’s already there instead of deleting.
 .create()—This lets OpenOptions create a file.
 .create_new()—Only creates a file if it’s not there already, failing otherwise.
 .read()—Set this to true if you want it to be able to read a file.
 .truncate()—Set this to true if you want to cut the file content to 0 (delete

the contents) when you open it.
 .write()—Allows writing to a file.

Then, at the end, you use .open() with the filename, and that will give you a Result.
 Since Rust 1.58, you can access this OpenOptions struct directly from File through

a method called options(). In the next example, we will make an OpenOptions with
File::options(). Then we will give it the ability to write. After that, we’ll set .create_
new() to true and try to open the file we made. It won’t work, which is what we want:

use std::fs::{write, File};

fn main() -> std::io::Result<()> {
    write("calvin_with_dad.txt", 
"Calvin: Dad, how come old photographs are always black and white? Didn't

➥they have color film back then?
Dad: Sure they did. In fact, those photographs are in color. It's just the

➥world was black and white then.")?;

let calvin_file = File::options()
.write(true)
.create_new(true)
.open("calvin_with_dad.txt")?;

    Ok(())
}

The error shows us that the file already exists, so the program exits with an error:

Error: Os { code: 80, kind: AlreadyExists, message: "The file exists." }

Next, let’s try using .append() so we can write to an existing file. We’ll also use the
write! macro this time, which is yet another option available to us. We saw this macro
before when implementing Display for our structs:

use std::fs::{read_to_string, write, File};
use std::io::Write;

fn main() -> std::io::Result<()> {

https://doc.rust-lang.org/std/fs/struct.OpenOptions.html


39118.3 Using files

B

    write("calvin_with_dad.txt", 
"Calvin: Dad, how come old photographs are always black and white? Didn't

➥they have color film back then?
Dad: Sure they did. In fact, those photographs are in color. It's just the

➥world was black and white then.")?;

    let mut calvin_file = File::options()
.append(true)
.read(true)
.open("calvin_with_dad.txt")?;

    calvin_file.write_all(b"Calvin: Really?\n")?;
    write!(&mut calvin_file, "Dad: Yep. The world didn't turn color until

➥sometime in the 1930s...\n")?;
println!("{}", read_to_string("calvin_with_dad.txt")?);
Ok(())

}

Thanks to the ability to append, the file now holds a bit more of the conversation
between Calvin and his dad:

Calvin: Dad, how come old photographs are always black and white? Didn't

➥they have color film back then?
Dad: Sure they did. In fact, those photographs are in color. It's just the

➥world was black and white then.
Calvin: Really?
Dad: Yep. The world didn't turn color until sometimes in the 1930s...

Finally, Rust has a convenient macro called include_str! that simply pulls the con-
tents of a file into a &'static str at compile time—right into the binary. If the file
can’t be found, the program won’t compile. This next sample will simply take the con-
tents of main.rs and print it out:

fn main() {
    // Text, text, text
    let main = include_str!("main.rs");
    println!("Here's what main.rs looks like:\n\n{main}");
}

So the include_str! macro not only gives compile-time checking and a file conve-
niently located in memory but also increases the size of the binary. For example, try
copying the contents of Bram Stoker’s Dracula (https://www.gutenberg.org/files/
345/345-h/345-h.htm) into a file, use include_str!(), and then type cargo build.
The file size inside the target/debug directory should be about 999 KB. But if you use
std::fs::read_to_string() instead, you will have to access the file and handle the
error (or unwrap) at run time, but the file size should be a much smaller 166 KB. In
other words, the include part of the name of the macro refers to including the con-
tent inside the binary:

fn main() {
    let content = include_str!("dracula.txt");    
    // let content = std::fs::read_to_string("dracula.txt").unwrap();  
}

999 KB
166 K

https://www.gutenberg.org/files/345/345-h/345-h.htm
https://www.gutenberg.org/files/345/345-h/345-h.htm


392 CHAPTER 18 Rust on your computer
As you can see, opening and writing to files isn’t particularly difficult. Just be careful
that you don’t end up deleting existing files when creating a new one. Starting with
File::options() is good default behavior to make sure that you are reviewing how
you want your program to react when it comes across files with the same name.

18.4 cargo doc
You might have noticed that Rust documentation looks almost the same whether the
code is from the standard library or someone else’s external crate. The left side of the
documentation shows structs and traits, code examples are on the right, and so on in
pretty much every crate you can find. This is because you can automatically make doc-
umentation just by typing cargo doc, and this convenience leads to almost everyone
using it.

 Even making a project with just a simple struct or two can help you learn about traits
in Rust. For example, here are two structs that do almost nothing and nothing else:

pub struct DoesNothing {}
pub struct PrintThing {}

impl PrintThing {
    pub fn prints_something() {
        println!("I am printing something");
    }
}

With just two empty structs and one method, you would think that cargo doc would
generate just the struct names and one method. But if you type cargo doc --open
(--open will open up the documentation in your browser once it is done), you can see
a lot more information than you expected. The front page looks like figure 18.5,
which does look fairly empty.

But if you click on one of the structs, it will show you a lot of traits that you didn’t
think were there. If you click on the DoesNothing struct, it will show us quite a few

Figure 18.5 Cargo doc makes 
your documentation look 
professional even if all you did 
was make two empty structs.



39318.4 cargo doc
traits even though we didn’t type a single word of code to implement them. First, we
see a number of traits that are automatically implemented:

Auto Trait Implementations
impl RefUnwindSafe for DoesNothing
impl Send for DoesNothing
impl Sync for DoesNothing
impl Unpin for DoesNothing
impl UnwindSafe for DoesNothing

And after that come some blanket implementations, which we learned about in the
last chapter:

Blanket Implementations
impl<T> Any for T where T: 'static + ?Sized,
impl<T> Borrow<T> for T where T: ?Sized,
impl<T> BorrowMut<T> for T where T: ?Sized,
impl<T> From<T> for T
impl<T, U> Into<U> for T where U: From<T>,
impl<T, U> TryFrom<U> for T where U: Into<T>,
impl<T, U> TryInto<U> for T where U: TryFrom<T>

Then, if we add some documentation comments with /// you can see them when you
type cargo doc. Here is the same code with a few comments above each struct and
method:

/// This is a struct that does nothing
pub struct DoesNothing {}

/// This struct only has one method.
pub struct PrintThing {}

impl PrintThing {
    /// This function just prints a message.
    pub fn prints_something() {

println!("I am printing something");
    }
}

These comments will now show up in the documentation (figure 18.6).

Figure 18.6 Structs 
with comments added



394 CHAPTER 18 Rust on your computer
When you click on PrintThing, it will show this struct’s methods as well (figure 18.7).

cargo doc is particularly nice when using a lot of external code. Because these crates
are all on different websites, it can take some time to search them all. But if you use
cargo doc, you will have them all in the same place on your hard drive. If you don’t
want to document all the external code, you can pass in a --no-deps (no dependen-
cies) flag, which will only compile your code. 

 Cargo is one of the main reasons for Rust’s popularity as a language, and after this
chapter, you can probably see why. It allows you to start a project, build your code,
document it, check it, add external crates, and much more. With Rust and Cargo
installed by now, we were also able to take in user input and command-line arguments
for the first time and work with files.

 With Rust installed, we can also start to do HTTP requests, and in the next chapter,
we will do just that with the reqwest crate that we first saw in the last chapter. Not only
will we learn how the crate works, but it will also give us our first introduction to async
Rust: Rust code that doesn’t block its thread while doing some work. We’ll also learn
how to use feature flags to only take in part of an external crate, allowing us to shorten
compile time a little.

Summary
 Use cargo check when building your code to see if it compiles, and cargo run

to test it out. Don’t forget that it won’t be optimized for speed unless you build
with the --release flag!

 If you are curious whether code is being optimized, try using Godbolt on differ-
ent optimization levels. Even without knowing assembly, you can get a general
sense of what is happening on a lower level.

Figure 18.7 Showing 
methods via PrintThing



395Summary
 Debug printing a String will give more insight into what actual input is being
passed in when working with user input. Display output looks cleaner but may
hide some important information.

 Args are arguments passed in on the command line, while Vars are the envi-
ronment variables that have to do with overall configuration. An example of an
argument is --open for cargo doc, and an example of an environment variable
is RUST_BACKTRACE that we saw in chapter 14.

 Be sure to take extra care when working with files, and use File::options()
unless you are absolutely sure that no files will be unknowingly deleted when
creating a new one.

 Make use of the cargo doc --open command a lot if you are writing open
source code for other people to use. This will show you right away how well doc-
umented your code is to someone reading it for the first time.



More crates and
async Rust
In this chapter, we will finally get around to using the reqwest crate. As you read
through this chapter, you’ll soon see why we didn’t learn it until now: it’s because
the reqwest crate is the first one we have encountered that involves async Rust!
Well, sort of. Read on to find out.

 While we’re at it, we’ll also learn about feature flags, which let you bring in just
part of an external crate and thereby help keep compilation time down.

19.1 The reqwest crate
Back in chapter 17, we had a code sample that included a Client (http://mng.bz/
mjv4) from the reqwest crate in one of our structs. We didn’t use it at the time

This chapter covers
 Another external crate: reqwest

 Using feature flags to compile part of a crate

 Using async Rust for code that doesn’t block
396

http://mng.bz/mjv4
http://mng.bz/mjv4


39719.1 The reqwest crate
because (among other reasons) the Rust Playground doesn’t allow you to make HTTP
requests. The code looked like this:

use reqwest::Client;

struct Logger {
    logs: Vec<Log>,
    url: String,
    client: Client,
}

Let’s simplify this even more by removing the Logger struct and just creating a Client:

use reqwest::Client;

fn main() {
    let client = Client::default();
}

That was easy. So how do we use it? We can use our Client to .post() data, .get() it,
.delete(), and so on. The easiest method to use is .get(). With this, we can ask a
server to give you the HTML for a website or a response in a form like JSON from a
server. The .get() method is pretty simple:

pub fn get<U: IntoUrl>(&self, url: U) -> RequestBuilder

This IntoUrl trait is one that the reqwest crate made, not the standard library, so you
don’t have to remember it. But you can guess from the name that IntoUrl means any-
thing that can become a URL, and it’s implemented for both &str and String. In other
words, we can use .get() and stick a website URL inside. The .get() method gives us
a RequestBuilder, which is a struct that has a lot of configuration methods like
.timeout(), .body(), .headers(), and so on. But one of them is called .send(), and
since we don’t need to configure anything in particular to use it, that’s the one we want.

 Let’s give it a try:

use reqwest::Client;

fn main() {
    let client = Client::default();
    client.get("https://www.rust-lang.org").send().unwrap();
}

Surprisingly, we get a cryptic error! 

no method named `unwrap` found for opaque type `impl Future<Output =

➥Result<Response, reqwest::Error>>` in the current scope
 --> src\main.rs:5:52
  |
5 |     client.get("https://www.rust-lang.org").send().unwrap();
  |                                                    ^^^^^^ method not
  ➥found in `impl Future<Output = Result<Response, reqwest::Error>>`



398 CHAPTER 19 More crates and async Rust
  |
help: consider `await`ing on the `Future` and calling the method on its

➥`Output`
|

5 |     client.get("https://www.rust-lang.org").send().await.unwrap();
  |     ++++++

It seems to be returning a type called impl Future<Output = Result<Response,
reqwest::Error>>! The Future trait is used in async Rust, which we haven’t learned
yet. We’ll learn about this return type in the next section and see what Future and
async mean. But in the meantime, let’s go back to the main page of reqwest and see
if it can help. On the page, we see the following information:

The reqwest::Client is asynchronous. For applications wishing to only make

➥a few HTTP requests, the reqwest::blocking API may be more convenient.

Okay, so it looks like there is a so-called “blocking” Client that isn’t async. We still have
no idea what async is, but the documentation suggests a blocking Client as an option,
so we’ll go with that. The blocking Client can be found at reqwest::blocking::Cli-
ent, so we’ll give it a try.

 However, the message here has given us a hint about what async is because we
have seen the word blocking in places like the .lock() method for Mutex, which
“acquires a mutex, blocking the current thread until it is able to do so” (http://
mng.bz/5o7a). So it’s reasonable to assume that blocking means blocking the current
thread. And if regular Rust is blocking (operations block the thread until they are
done), then async Rust must be non-blocking (they don’t block the thread). But more
on that later. Let’s try the blocking Client:

fn main() {
    let client = reqwest::blocking::Client::default();
    client.get("https://www.rust-lang.org").send();
}

What? Another cryptic error!

error[E0433]: failed to resolve: could not find `blocking` in `reqwest`
 --> src\main.rs:2:37
  |
2 |     let client = reqwest::blocking::Client::default();
  |                                     ^^^^^^ not found in

➥`reqwest::blocking`
|

help: consider importing this struct
  |
1 | use reqwest::Client;
  |
help: if you import `Client`, refer to it directly
  |
2 -     let client = reqwest::blocking::Client::default();
2 +     let client = Client::default();
  |

http://mng.bz/5o7a
http://mng.bz/5o7a


39919.2 Feature flags
Now, this is certainly odd. The blocking Client is right there in the documentation
(http://mng.bz/5oda), clear as day. But why can’t the compiler find it? To find out,
we’ll take a very short detour and learn what feature flags are.

19.2 Feature flags
Rust code can sometimes take a while to compile. To try to reduce this as much as pos-
sible, a lot of crates use something called feature flags, which let you compile just a
part of the crate. Crates that use flags have some code enabled by default, and if you
want to add more functionality, you have to indicate them inside Cargo.toml.

 We didn’t need to do this in the Playground because the Playground has all fea-
tures enabled for every crate. But in our own projects, we don’t want to spend time
compiling things we won’t use and must be more selective when it comes to which fea-
tures we want to enable. 

 This is where the problem came up in the previous section: as far as Rust is con-
cerned, if a feature flag isn’t enabled, the code doesn’t exist. When we tried to create
a blocking Client, there simply wasn’t any code for the compiler to look at, which is
why there was no nice error message suggesting that we enable the feature flag.
Because for the compiler to give a nice error message, it would first need to pull in the
code, and if it pulled in the code, that would increase compile time, which nobody
wants. The end result is that Rust users sometimes need to look at the source code
directly to see whether a feature is hidden behind a feature flag.

 Let’s try using the command cargo add reqwest again. This command adds the
reqwest crate but also shows which features are enabled, which is particularly useful
here. The features that are enabled by default have a + to the left, and those that
aren’t enabled have a - instead. One of them is called blocking:

      Adding reqwest v0.11.18 to dependencies.
             Features:
             + __tls
             + default-tls
             + hyper-tls
             + native-tls-crate
             + tokio-native-tls
             - __internal_proxy_sys_no_cache
             - __rustls
             - async-compression
             - blocking
             - brotli
             - cookie_crate
             - cookie_store
             - cookies
             - deflate
             - gzip
             - hyper-rustls
             - json
             - mime_guess
             - multipart
             - native-tls

http://mng.bz/5oda


400 CHAPTER 19 More crates and async Rust
             - native-tls-alpn
             - native-tls-vendored
             - proc-macro-hack
             - rustls
             - rustls-native-certs
             - rustls-pemfile
             - rustls-tls
             - rustls-tls-manual-roots
             - rustls-tls-native-roots
             - rustls-tls-webpki-roots
             - serde_json
             - socks
             - stream
             - tokio-rustls
             - tokio-socks
             - tokio-util
             - trust-dns
             - trust-dns-resolver
             - webpki-roots

Now you can see why most features aren’t enabled by default. All we want to do is
make a simple HTTP request, and we certainly don’t want to bring in code for
cookies, gzip, cookie_store, socks, and so on.

 To see feature flags in the documentation, click on the Feature Flags button on the
top near the center. The page begins as follows:

reqwest
This version has 42 feature flags, 5 of them enabled by default.

default:
default-tls

default-tls:
hyper-tls
native-tls-crate
__tls
tokio-native-tls
... (and many others)

It has a flag called default-tls that enables four other flags. Fine, but how do we get
the blocking Client? With cargo add, it’s pretty easy. Change cargo add reqwest to
cargo add reqwest --feature blocking, and now it will be there. Or, inside Cargo
.toml, you can manually change it from

reqwest = "0.11.22" 

to

reqwest = { version = "0.11.22", features = ["blocking"] }

Besides looking at the documentation, you can also find out whether a feature is behind
a feature flag by looking through the source code for the attribute #[cfg(feature =
"feature_name")]. You’ll usually find this in a crate’s lib.rs file where the module



40119.2 Feature flags
declarations are. A sample from the reqwest crate (http://mng.bz/vPy4) shows the
exact location where the blocking feature is being hidden behind a feature flag:

async_impl;
cfg(feature = "blocking")]
mod blocking;
connect;
cfg(feature = "cookies")]
mod cookie;
mod dns;
proxy;
mod redirect;
cfg(feature = "__tls")]
mod tls;
util;

In short, if Rust can’t find something, check to see whether there’s a feature flag for it.
 Armed with this knowledge, we can get back to the blocking Client. With the fea-

ture enabled, this code no longer gives an error:

fn main() {
    let client = reqwest::blocking::Client::default();
    client.get("https://www.rust-lang.org").send();
}

The compiler warns us that there is a Result we haven’t used. We’ll just unwrap for
now. That gives us a struct called a Response—the response to our .get(). The
Response struct (http://mng.bz/6n8A) has its own methods, too, like .status(),
.content_length(), and so on, but the one we are interested in is .text(): it gives a
Result<String>. Let’s unwrap that and print it out:

fn main() {
    let client = reqwest::blocking::Client::default();
    let response = client.get("https://www.rust-lang.org").send().unwrap();
    println!("{}", response.text().unwrap());
}

Success! Our output starts with this:

<!doctype html>
<html lang="en-US">
  <head>
    <meta charset="utf-8">
    <title>

    Rust Programming Language

</title>
    <meta name="viewport" content="width=device-width,initial-scale=1.0">
    <meta name="description" content="A language empowering everyone to

➥build reliable and efficient software.">

http://mng.bz/vPy4
http://mng.bz/6n8A


402 CHAPTER 19 More crates and async Rust
And much, much more. It gave us the text of the whole home page.
 If you are using reqwest, you probably already know what you want to use it for, so

take a look around the documentation to see what fits your needs. If you want to post
something in JSON format, for example, you can use a method called .json()
(http://mng.bz/orQp). At least here, it lets us know that it is behind a feature flag:

Available on crate feature json only.

So, that was reqwest, or at least part of it. However, the Client on reqwest is async by
default, so it looks like it’s time to learn what async is about.

19.3 Async Rust
We saw that regular Rust code will block the thread it is in while waiting. Async Rust is
the opposite of regular Rust code because it doesn’t block. The reqwest crate is the
perfect example of why async Rust is often used: What if you send a get or a post that
takes a long time? Rust code is extremely fast, but if you have to wait around for a
server somewhere to respond, you aren’t getting the full benefits of the speed Rust
offers. One of the solutions to that is async, namely allowing other parts of the code to
take care of other tasks while you wait. Let’s see how this is done. 

19.3.1 Async basics

async Rust is possible through a trait called Future. (Some languages have something
similar and call it a “promise,” but the underlying structure is different.) The Future
trait is well named as it refers to a value that will be available at some time in the future.
The “future” might be 1 microsecond away (in other words, basically instantaneous),
or it might be 10 seconds away.

 The Future trait is interesting as it looks sort of like Option. If a Future is Ready, it
will have a value inside, and if it’s still Pending (not ready), there will naturally be no
value to access:

pub enum Poll<T> {
    Ready(T),
    Pending,
}

Here is the signature for the trait:

pub trait Future {
    type Output;
    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) ->
    ➥Poll<Self::Output>;
}

Pin is used to pin the memory in place, the reasons for which are explained quite well
in the book Asynchronous Programming in Rust (http://mng.bz/n1m2). But a deep
understanding of Pin isn’t necessary to use async in Rust, so feel free to ignore it for
the time being unless you are really curious.

http://mng.bz/orQp
http://mng.bz/n1m2


40319.3 Async Rust
 What is important is that there is an associated type called Output and that the
main method in async is called poll—in other words, to check whether it’s ready.
We’ll look at poll in more detail shortly.

 The first big difference you’ll notice in async is that functions begin with async fn
instead of fn. Interestingly, though, the return types look the same!

fn give_8() -> u8 {
    8
}

async fn async_give_8() -> u8 {
    8
}

Both functions return a u8 but in different ways. The fn function returns one right
away, but the async fn returns something that will be a u8 when it’s done. Maybe it’ll
be done right away, or maybe it won’t. And because it’s async, if it’s not done yet, your
code can do other work as it waits.

 Rust is actually hiding something here. An async_give_8() -> u8 is not returning
just a u8. Let’s use our trusty method to see the true type by making the compiler mad
via a method that doesn’t exist:

async fn async_give_8() -> u8 {
    8
}

fn main() {
    let y = async_give_8(); 

y.thoethoe(); //
}

Here’s the error:

error[E0599]: no method named `thoethoe` found for opaque type `impl

➥Future<Output = u8>` in the current scope
--> src/main.rs:12:7
|

12 |    y.thoethoe();
   |    ^^^^^^^^ method not found in `impl Future<Output = u8>`

So there’s the type. It’s not a u8, it’s an impl Future<Output = u8>! That’s the actual
type signature that Rust hides from us. The makers of async Rust decided that this
would be better than making people type impl Future<Output = u8> all the time.

19.3.2 Checking whether a Future is ready

Now comes the poll method. Poll means to ask whether a Future is ready and, if it’s
not ready, to come back later to check again. The main way to poll a future in Rust is
by adding the .await keyword, which gets the run time to handle the polling. (More
on what an async run time is in the next section.) And every time a future is polled, it
will return one of two things:

Gets the output 
from async_give_8

Makes up a method that 
doesn’t exist to see the error



404 CHAPTER 19 More crates and async Rust
 Poll::Pending—if it’s not ready
 Poll::Ready(val)—if it’s ready

This is the part that looks like Option:

 Option has None if there’s nothing, while poll has Pending if there’s nothing
yet. None isn’t holding a value, and neither is Pending.

 Option has Some(T) if there’s something, while poll has Ready(T) if the Future
is ready. Some holds a value and so does Pending.

Okay, let’s give it a try. We’ll add .await to try to turn this impl Future<Output = u8>
into an actual u8. There’s no complex code inside the function, so the poll should
resolve right away:

async fn async_give_8() -> u8 {
    8
}

fn main() {
    let some_number = async_give_8().await;
}

It doesn’t work yet! This is why:

error[E0728]: `await` is only allowed inside `async` functions and blocks
 --> src/main.rs:6:37
  |
5 | fn main() {
  |    ---- this is not `async`
6 |     let some_number = async_give_8().await;
  |     ^^^^^^ only allowed inside `async`

➥functions and blocks

Ah, so .await can only be used inside a function or block that has the async keyword.
And since we are trying to use .await in main, which is a function, main should be an
async fn, too. Let’s try it again. Change fn main() to async fn main():

error[E0752]: `main` function is not allowed to be `async`
 --> src/main.rs:5:1
  |
5 | async fn main() {
  | ^^^^^^^^^^^^^^^ `main` function is not allowed to be `async`

What?!
 On second thought, this sort of makes sense because main can only return a (), a

Result, or an ExitStatus (http://mng.bz/n152). But an async fn returns a Future,
which is not one of those three return types. Plus, if main returned a Future, wouldn’t
that mean that something else would have to call .await on that Future? Where does
it end?

 On top of this, remember how .await polls a future and then comes back later to
ask again if it’s not ready yet? Who decides this? The answer to both of these is that

http://mng.bz/n152


40519.3 Async Rust
you need an async run time, something that takes care of all of this. Rust doesn’t have
an official async run time, but as of 2023, almost everything uses a crate called Tokio
(https://tokio.rs/). It’s not the official run time, but everybody uses it, and it can be
thought of as Rust’s default async run time.

19.3.3 Using an async run time

After all this explaining, fortunately, the solution is quite simple: you can make main
into an async main through Tokio by adding #[tokio::main] above it. Do this, and
the code will work:

use tokio;

async fn async_give_8() -> u8 {
    8
}

#[tokio::main]   
async fn main() {
    let some_number = async_give_8().await;
}

Now some_number ends up as a regular u8, and the program finishes.
 So how does async suddenly, magically work without needing to poll main? Tokio

does this by invisibly making a scope inside main where it does all of its async work.
After it’s done, it exits and goes back into the regular main function, and the program
exits. It’s sort of a fake async main, but for our purposes it’s real.

 In fact, we can see this in the Playground by clicking on Tools > Expand Macros.
Let’s see what this async fn main() actually is! We’ll use almost the same code but add
an extra .await and print out the result:

use tokio;

async fn async_give_8() -> u8 {
    8
}

#[tokio::main]
async fn main() {
    let some_number = async_give_8().await;
    let second_number = async_give_8().await;
    println!("{some_number}, {second_number}");
}

Here is the expanded code (with unrelated parts removed):

use tokio;

async fn async_give_8() -> u8 {
    8
}

The Playground enables all feature flags by default 
automatically so this code will run as is, while on your 
computer, you need to enable two feature flags: "macros" to 
bring in the macro above main and "rt-multi-thread" to 
enable Tokio’s multithreaded run time. All together, adding 
this to Cargo.toml will make the code compile: tokio = { 
version = "1.35.0", features = ["macros", "rt-multi-thread"]}.

https://tokio.rs/


406 CHAPTER 19 More crates and async Rust
fn main() {   
    let body = async {    

let some_number = async_give_8().await;
let second_number = async_give_8().await;
{
    ::std::io::_print(format_args!("{0}, {1}\n", some_number,

➥second_number));
};

    };

    {
return tokio::runtime::Builder::new_multi_thread()    
    .enable_all()
    .build()
    .expect("Failed building the Runtime")
    .block_on(body);    

    }
}

So, at the end of the day, an async fn main() is just a regular fn main() that Tokio
manages by blocking until everything inside has run to completion. And when it’s
done, it returns whatever the output of the async block is, and fn main(), along with
the entire program, is also done.

 These are the main points when getting started with async:

 You need to be inside an async fn or an async block to use the .await keyword.
 Type .await to turn output into a concrete type again. (You don’t need to man-

ually use the poll method.)
 You need a run time to manage the polling, which usually means adding

#[tokio::main].
 Regular functions can’t await async functions, so if you have a regular function

that needs to call an async function, it will become async, too. So once you start
to use async you’ll see a lot of your other functions becoming async, too.

 async functions can call regular functions. This is usually no problem, but
remember that regular functions will block the thread until they are done.

Knowing this, let’s try reqwest again. This time, we are finally using the default Client,
which is async. Knowing what we know, it’s now pretty easy:

use reqwest;
use tokio;

#[tokio::main]
async fn main() {
    let client = reqwest::Client::default();
    let response = client

.get("https://www.rust-lang.org")

.send()

Look here—async fn is a lie! It’s actually just a 
regular fn main(). As far as Rust is concerned, 
the main() function is not async at all.

First, everything gets enclosed inside a 
big async block called body. The .await 
keyword can be used inside here.

Now the Tokio run time starts.
It uses the builder pattern to

set some configuration.

And, finally, the part that matters: a method
called block_on(). Tokio is actually just

blocking until everything has been resolved!



40719.3 Async Rust
        .await
        .unwrap();
    println!("{}", response.text().await.unwrap());
}

See the difference? Each async function has an .await after it. And here we are just
unwrapping, but in real code, you would want to handle errors properly, which usually
means using the ? operator. That’s why you see .await? everywhere in async code.

19.3.4 Some other details about async Rust

You might have noticed that we still haven’t used async Rust in a very async way just
yet. So far, our code has just used .await to resolve values before moving on to the
next line. Technically, this isn’t a problem, as the code still compiles and works just
fine. But to take advantage of async Rust, we’ll need to set up our code to poll many
futures at the same time. One of the ways to do this is by using the join! macro.

 First, let’s look at an example that doesn’t use this macro. We’ll make a function
that uses rand to wait a bit and then return a u8. Inside tokio is an async function
called sleep() that results in a non-blocking sleep—in this case, between 1 and 100
milliseconds. (We’ll learn about sleep() and Duration in the next section.) After the
sleep is over, it gives the number. Then we’ll get three numbers and see what order we
get them in:

use std::time::Duration;
use rand::*;
use tokio::time::sleep;

async fn wait_and_give_u8(num: u8) -> u8 {
    let mut rng = rand::thread_rng();
    let wait_time = rng.gen_range(1..100);
    sleep(Duration::from_millis(wait_time)).await;
    println!("Got a number! {num}");
    num
}

#[tokio::main]
async fn main() {
    let num1 = wait_and_give_u8(1).await;
    let num2 = wait_and_give_u8(2).await;
    let num3 = wait_and_give_u8(3).await;

    println!("{num1}, {num2}, {num3}");
} 

When you run this, it will always be the same:

Got a number! 1
Got a number! 2
Got a number! 3
1, 2, 3

So we await one value, get it, and then call the next function, await it, and so on. It will
always be 1, then 2, and then 3.

This function is behind another 
feature flag called "time," so add 
that to Cargo.toml if you are 
running this code on your computer.



408 CHAPTER 19 More crates and async Rust
 Now, let’s change it a bit by joining them. Instead of .await on each, we’ll use
join, which will poll them all at the same time. Change the code to this:

use rand::*;
use tokio::join;
use std::time::Duration;

async fn wait_and_give_u8(num: u8) -> u8 {
    let mut rng = rand::thread_rng();
    let wait_time = rng.gen_range(1..100);
    tokio::time::sleep(Duration::from_millis(wait_time)).await;
    println!("Got a number! {num}");
    num
}

#[tokio::main]
async fn main() {

    let nums = join!(
wait_and_give_u8(1),
wait_and_give_u8(2),
wait_and_give_u8(3)

    );

    println!("{nums:?}");
}

Here, too, the numbers (inside the nums variable) will always be (1, 2, 3), but the
println! shows us that it is now polling in an async way. Sometimes it will print this:

Got a number! 1
Got a number! 2
Got a number! 3
(1, 2, 3)

But other times, it might print this:

Got a number! 1
Got a number! 3
Got a number! 2
(1, 2, 3)

That’s because each time the function waits for a random length of time, and one
might finish before the other. As soon as they finish, they print out the number, and
the polling is done. So this join! is what you want to use if you want to get the most
speed out of your async code as possible.

 As you use async code you might want to do more things than just using .await
and the join! macro. For example, what if you have multiple functions that you want
to poll at the same time and just take the first one that finishes? You can do that with a
macro called select!. This macro uses its own syntax that looks like this:

name_of_variable = future => handle_variable



40919.3 Async Rust

s 
In other words, you first assign a name to the future you are polling and then add a =>
and decide what to do with the output. This is particularly useful when polling futures
that don’t return the same type because you can modify the output to return the same
type, which will allow the code to compile.

 This is best understood with an example. Here, we will poll four futures at the
same time. Three of them sleep for very similar lengths of time, so the output will dif-
fer depending on which one finishes first. The fourth future has no name and simply
returns after 100 milliseconds have passed, indicating a timeout. Try changing the
sleep time to see different results, such as lowering the timeout duration:

use std::time::Duration;
use tokio::{select, time::sleep};

async fn sleep_then_string(sleep_time: u64) -> String {   
    sleep(Duration::from_millis(sleep_time)).await;
    format!("Slept for {sleep_time} millis!")
}

async fn sleep_then_num(sleep_time: u64) -> u64 {         
    sleep(Duration::from_millis(sleep_time)).await;
    sleep_time
}

#[tokio::main]
async fn main() {
    let num = select!(     
        first = sleep_then_string(10) => first,
        second = sleep_then_string(11) => second,
        third = sleep_then_num(12) => format!("Slept for {third} millis!"),
        _ = sleep(Duration::from_millis(100)) =>
            format!("Timed out after 100 millis!")   
    );

    println!("{num}");
}

There are many other similar macros, such as try_join!, which joins unless one of
the futures fails, in which case it returns an Err. Here is a quick example of the try_
join! macro:

use tokio::try_join;

async fn wait_then_u8(num: u8, worked: bool) -> Result<u8, &'static str> {
    if worked {
        Ok(num)
    } else {
        Err("Oops, didn't work")
    }
}

#[tokio::main]
async fn main() {

This async function sleep
and returns a String.

But this async function 
sleeps and returns a u64.

The first three futures in this select! sleep 
for almost the same length of time, so it’s 
not certain which one will return first.

The variable num has
to be a String, so we

can’t just pass on the
variable third here. But
with a quick format!, it

is now a String, too.

Finally, we’ll add a timeout to the select. If
neither of the first three return before

100 milliseconds have passed, the select
will finish with a timeout message.



410 CHAPTER 19 More crates and async Rust
    let failed_join = try_join!(
        wait_then_u8(1, true),
        wait_then_u8(2, false),
        wait_then_u8(3, true)
    );

    let successful_join = try_join!(
        wait_then_u8(1, true),
        wait_then_u8(2, true),
        wait_then_u8(3, true)
    );

    println!("{failed_join:?}");
    println!("{successful_join:?}");
}

The output for this will be

Err("Oops, didn't work")
Ok((1, 2, 3))

Async is a large subject in Rust, but hopefully this has made it less mysterious. The
async ecosystem in Rust is still somewhat new, so a lot of it takes place in external
crates (the main one is the futures crate; https://docs.rs/futures/latest/futures/).
The futures_concurrency crate (http://mng.bz/or6p) is another convenient crate
that contains traits to deal with joining, chaining, merging, zipping, and other such
methods on futures. And, of course, Tokio (https://docs.rs/tokio/latest/tokio/
index.html) is filled to the brim with ways to work with async code.

 Much of the async ecosystem is slowly moving into the standard library. For example,
the Stream trait in the futures crate showed up as an experimental AsyncIterator
trait in the standard library in 2022 (http://mng.bz/6nBA). One other example is the
async_trait crate (https://docs.rs/async-trait/latest/async_trait/), which contains a
macro that allows traits to be async. This crate was needed because async traits simply
weren’t possible until Rust 1.75, which was released just a few days before the end of
2023. As the only way to make async traits in Rust before version 1.75, you will still see
the async_trait crate in a lot of code. So, by the time you read this book, some of the
macros or traits inside the async external crates might be in the standard library!

 With this introduction to async Rust out of the way, we are going to relax a bit by
spending the next two chapters on a quick tour of the standard library. There are a lot
of modules and types in there that we haven’t come across yet, plus more methods
and internal details about types we already know.

Summary
 If the compiler can’t find a type for no good reason, check to see whether you

need a feature flag to enable it.
 The most important thing to remember about async is that it doesn’t block

threads. Regular functions block them.

http://mng.bz/or6p
https://docs.rs/futures/latest/futures/
https://docs.rs/tokio/latest/tokio/index.html
https://docs.rs/tokio/latest/tokio/index.html
http://mng.bz/6nBA
https://docs.rs/async-trait/latest/async_trait/


411Summary
 An async function just returns a Future, which doesn’t do anything. You have to
.await it to get some actual usable output.

 There are many ways of working with multiple futures. You can join! them
together, select! to race them against each other and take the first that com-
pletes, and so on.

 Much of this functionality in the async ecosystem is found in external crates.
These often work as staging grounds for testing out new functionality to stabi-
lize and add to the standard library.



A tour of the
standard library
Good work! You’re almost through the book—there are only five chapters left. For
this chapter and the next, we are going to sit back and relax and go on a short tour
of the standard library, including further details on some of the types we already
know. You will certainly end up encountering these modules and methods as you
continue to use Rust, so we might as well learn them now so that they are already
familiar to you. Nothing in this chapter will be particularly difficult to learn, and
we’ll keep things pretty brief and run through one type per section.

This chapter covers
 A more in-depth look at familiar types

 Associated constants

 A summary of the three associated items 
in Rust

 Recently added functions such as from_fn 
and then_some

 New types, such as OsString and CString
412



41320.1 Arrays
20.1 Arrays
Arrays have become easier to work with over time, as we saw in the chapter on const
generics. Some other nice changes have taken place that we’ll take a look at now.

20.1.1 Arrays now implement Iterator

In the past (before Rust 1.53), arrays didn’t implement Iterator, and you needed to
use methods like .iter() on them in for loops. (Another method was to use & to get
a slice in for loops). So, the following code didn’t work in the past:

fn main() {
    let my_cities = ["Beirut", "Tel Aviv", "Nicosia"];

    for city in my_cities {
println!("{}", city);

    }
}

The compiler used to give the following message:

error[E0277]: `[&str; 3]` is not an iterator
 --> src\main.rs:5:17
  |
  |     ^^^^^^^^^ borrow the array with `&` or call `.iter()`

➥ on it to iterate over it

Luckily, that isn’t a problem anymore! If you see any old Rust tutorials that mention
that arrays can’t be used as iterators, remember that this isn’t the case anymore. So all
three of these work:

fn main() {
    let my_cities = ["Beirut", "Tel Aviv", "Nicosia"];

    for city in my_cities {
println!("{city}");

    }
    for city in &my_cities {

println!("{city}");
    }
    for city in my_cities.iter() {

println!("{city}");
    }
}

This prints

Beirut
Tel Aviv
Nicosia
Beirut
Tel Aviv



414 CHAPTER 20 A tour of the standard library
Nicosia
Beirut
Tel Aviv
Nicosia

20.1.2 Destructuring and mapping arrays

Destructuring works with arrays as well. To pull out variables from an array, you can put
their names inside [] to destructure it in the same way as in a tuple or a named struct.
This is the same as using a tuple in match statements or to get variables from a struct:

fn main() {
    let my_cities = ["Beirut", "Tel Aviv", "Nicosia"];
    let [city1, _city2, _city3] = my_cities;
    println!("{city1}");
}

This prints Beirut.
 Here’s an example of some more complex destructuring, which pulls out the first

and last variable in an array:

fn main() {
    let my_cities = [
        "Beirut", "Tel Aviv", "Calgary", "Nicosia", "Seoul", "Kurume",
    ];
    let [first, .., last] = my_cities;
    println!("{first}, {last}");
}

The output this time will be Beirut, Kurume.
 Arrays have a .map() method as well that lets you return an array of the same size

but of a different type (or the same type, if you wish). It’s like the .map() method for
iterators, except you don’t have to call .collect() because it already knows the array
length and type. Here is a quick example:

fn main() {
    let int_array = [1, 5, 9, 13, 17, 21, 25, 29];
    let string_array = int_array.map(|i| i.to_string());
    println!("{int_array:?}");
    println!("{string_array:?}");
}

The output is no surprise, but note that the original array is not destroyed:

[1, 5, 9, 13, 17, 21, 25, 29]
["1", "5", "9", "13", "17", "21", "25", "29"]

And here is an example of the same method that is a bit more interesting. We’ll make
an Hours enum that implements From<u32> to determine whether an hour is a work-
ing hour, a non-working hour, or an error (an hour greater than 24):

#[derive(Debug)]
enum Hours {



41520.1 Arrays
    Working(u32),
    NotWorking(u32),
    Error(u32),
}

impl From<u32> for Hours {
    fn from(value: u32) -> Self {
        match value {
            hour if (8..17).contains(&hour) => 
            ➥Hours::Working(value),   
            hour if (0..=24).contains(&hour) => 
            ➥Hours::NotWorking(value),   
            wrong_hour => Hours::Error(wrong_hour),
        }
    }
}

fn main() {
    let int_array = [1, 5, 9, 13, 17, 21, 25, 29];
    let hours_array = int_array.map(Hours::from);
    println!("{hours_array:?}");
}

Here is the output:

[NotWorking(1), NotWorking(5), Working(9), Working(13), NotWorking(17),

➥NotWorking(21), Error(25), Error(29)]

Knowing this .map() method will come in handy for the next method, called
from_fn(). 

20.1.3 Using from_fn to make arrays

The from_fn() method was released fairly recently in the summer of 2022 with Rust
1.63; it allows you to construct an array on the spot. The from_fn() method was intro-
duced with the following code sample. Don’t worry if it doesn’t make much sense
because a lot of people felt the same way when they first saw it:

fn main() {
    let array = std::array::from_fn(|i| i);
    assert_eq!(array, [0, 1, 2, 3, 4]);
}

You can imagine that there was a lot of discussion about this sample. How does it even
work? How can you just write (|i| i) and get [0, 1, 2, 3, 4]? This sample was later
improved to reduce confusion, but let’s take a look on our own to see why the code
works. First, we’ll look at the code inside from_fn():

pub fn from_fn<T, const N: usize, F>(mut cb: F) -> [T; N]
where
    F: FnMut(usize) -> T,
{
    let mut idx = 0;

Here, we will use an exclusive range 
(up to, but not including, 17) 
because if you work until 5 pm, and 
it’s 5 pm, you’re already going 
home and not working anymore.

For the rest of the numbers, we 
will make the range inclusive. 
We already checked for working 
hours, so we are safe to match 
on anything between 0 and 24.



416 CHAPTER 20 A tour of the standard library
    [(); N].map(|_| {
let res = cb(idx);
idx += 1;
res

    })
}

The first lines tell us that this method makes an array of type T and a length of N and
that it takes a closure. The closure is called cb (for callback), but it could be called
anything: f, my_closure, and so on. Then, inside the function, it starts with a variable
called idx (the index), which starts at 0. Then it quickly makes an array of unit types
(the () type) of the same length as N and uses .map() to make the new array. For each
item, it carries out the instructions inside, which include increasing the index by 1
each time before returning the value under the variable name res.

 In other words, when you call from_fn, you have the option to use the index num-
ber. If you don’t want to, you can write |_| instead. Here’s an example:

fn main() {   
    let array = std::array::from_fn(|_| "Don't care about the index");
    assert_eq!(

array,
[
    "Don't care about the index",
    "Don't care about the index",
    "Don't care about the index",
    "Don't care about the index",
    "Don't care about the index"
]

    );
}

So far, so good. But how did it know the length? Here, this is because of type infer-
ence. An array can only be compared to an array of the same type and length, so when
you add an assert_eq!, the compiler will know that the array to compare will also
have to be the same type and length. And that means that if you take out the
assert_eq!, the code won’t compile!

fn main() {
    let array = std::array::from_fn(|_| "Don't care about the index");
}

The error message shows us that the compiler was able to determine the type of the
array but not its length:

error[E0282]: type annotations needed for `[&str; _]`
 --> src\main.rs:2:9
  |
2 |     let array = std::array::from_fn(|_| "Don't care about the index");
  |         ^^^^^
  |
help: consider giving `array` an explicit type, where the the value of

➥const parameter `N` is specified

We could take the index for
the array we are creating, but

we don’t care about it.



41720.2 char
  |
2 |     let array: [&str; _] = std::array::from_fn(|_| "Don't care about

➥the index");
| +++++++++++

And because it was able to determine the type, we can either write [&str; 5] or [_;
5], and that will be enough information. So the next two arrays will work just fine:

fn main() {
    let array: [_; 5] = std::array::from_fn(|_| "Don't need the index");
    let array: [&str; 5] = std::array::from_fn(|_| "Don't need the index");
}

To sum up:

 When using from_fn() for an array, you can pull in the index of each item if
you want to use it or use |_| if you don’t need it.

 Most of the time, you will have to tell the compiler the length of the array.
 If you are comparing one array to another, you won’t need to tell the compiler

the length. But you might want to write out the length anyway for the benefit of
anyone else reading your code.

20.2 char
Our old friend char is pretty familiar by now, but let’s take a look at a few neat things
that we might have missed.

 You can use the .escape_unicode() method to get the Unicode number for a
char:

fn main() {
let korean_word = "청춘예찬";

    for character in korean_word.chars() {
print!("{} ", character.escape_unicode());

    }
}

This prints \u{ccad} \u{cd98} \u{c608} \u{cc2c}.
 You can get a char from u8 using the From trait. However, to make a char from a

u32, you have to use TryFrom because it might not work. There are many more num-
bers in u32 than characters in Unicode. We can see this with a simple demonstration.
We will first print a char from a random u8, and then try 100,000 times to make a char
from a random u32:

use rand::random;

fn main() {
    println!("This will always work: {}", char::from(100));   
    println!("So will this: {}", char::from(random::<u8>()));

    for _ in 0..100_000 {
if let Ok(successful_character) = char::try_from(random::<u32>()) {

The only implementation of From for char is
From<u8>, so Rust will automatically choose a u8.
It won’t compile if the number is too large for a u8.



418 CHAPTER 20 A tour of the standard library
    print!("{successful_character}");
}

    }
}

The output will be different every time, but even after 100,000 tries, the number of
successful characters will be very small. And most of them will end up being Chinese
characters, because there are so many of them:

This will always work:  D
So will this: Ñ

  뙨   聍    

This makes sense because, at present, Unicode has a total of 149,186 characters, while
a u32 can go up to 4,294,967,295. So, the chance of having a random u32 that is 149186
or less is extremely low. There is also a high chance that the character won’t show on
your screen if you don’t have the fonts installed for the language of the character.

 We learned near the beginning of the book that all chars are 4 bytes in length. If
you want to know how many bytes a char would be if it were a &str, you can use the
len_utf() method. Let’s put some greetings in and see how many bytes each charac-
ter would be:

fn main() {
"Hi, привіт, 안녕, "

.chars()

.for_each(|c| println!("{c}: {}", c.len_utf8()));
} 

Here is the output:

H: 1
i: 1
,: 1
 : 1
п: 2
р: 2
и: 2
в: 2
і: 2
т: 2
,: 1
 : 1
안: 3
녕: 3
,: 1
 : 1
: 4
: 4
: 4

There are a ton of convenience methods for char that are pretty easy to understand
by their name, such as .is_alphanumeric(), .is_whitespace(), and .make_

ascii_uppercase(). There’s a good chance that a convenience method already exists
if you need to validate or modify a char in your code.

� � �

�

�

�



41920.3 Integers
20.3 Integers
There are a lot of math methods for these types, like multiplying by powers, Euclidean
modulo, logarithms, and so on, that we don’t need to look at here. But there are some
other methods that are useful in our day-to-day work.

20.3.1 Checked operations

Integers all have the methods .checked_add(), .checked_sub(), .checked_mul(),
and .checked_div(). These are good to use if you think you might produce a number
that will overflow or underflow (i.e., be greater than the type’s maximum value or less
that its minimum value). They return an Option so you can safely check that your
math works without making the program panic.

 You might be wondering why Rust would even compile if a number overflows. It’s
true that the compiler won’t compile if it knows at compile time that a number will
overflow—for example:

fn main() {
    let some_number = 200_u8;
    println!("{}", some_number + 200);
}

This is pretty obvious (even to us) that the number will be 400, which won’t fit into a
u8, and the compiler knows this as well:

error: this arithmetic operation will overflow
 --> src/main.rs:3:20
  |
3 |     println!("{}", some_number + 200);
  |     ^^^^^^^^^^^^^^^^^ attempt to compute `200_u8 +

➥200_u8`, which would overflow
|
= note: `#[deny(arithmetic_overflow)]` on by default

However, if a number isn’t known at compile time, the behavior will be different:

 Debug mode—The program will panic.
 Release mode—The number will overflow.

Let’s trick the compiler into making this happen. First, we will make a u8 with a value
of 255, the highest value for a u8. Then we will use the rand crate to add 10 to it:

use rand::{thread_rng, Rng};

fn main() {
    let mut rng = thread_rng();
    let some_number = 255_u8;
    println!("{}", some_number + rng.gen_range(10..=10));   
}

In Release mode, the number will overflow, and the program will print 10 without
panicking. But in Debug mode, we will see this:

We know that a range of 10..=10 will only return
10, but the Rust compiler doesn’t know this at
compile time, so it will let us run the program.



420 CHAPTER 20 A tour of the standard library
     Running `target/debug/playground`
thread 'main' panicked at 'attempt to add with overflow', src/main.rs:6:20
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

We certainly don’t want to panic, and we also don’t want to add 10 to 255 and get 10.
So let’s use .checked_add() instead. Now we will never overflow or panic:

use rand::random;

fn add_numbers(one: u8, two: u8) {
    match one.checked_add(two) {

Some(num) => println!("Added {one} to {two}: {num}"),
None => println!("Error: couldn't add {one} to {two}"),

    }
}

fn main() {
    for _ in 0..3 {

let some_number = random::<u8>();
let other_number = random::<u8>();
add_numbers(some_number, other_number);

    }
}

The output will be different every time, but it will look something like this:

Error: couldn't add 199 to 236
Added 34 to 97: 131
Added 61 to 109: 170

Environments that silently ignore integer overflows have been to blame for all kinds
of crashes and security problems over the years, which is what makes methods like
.checked_add() particularly nice for a systems programming language. Be sure to use
the .checked_ methods whenever you think an overflow could take place! And if you
are often working with numbers that are larger than any integer in the standard
library, take a look at the num_bigint crate (https://docs.rs/num-bigint/latest/
num_bigint/).

20.3.2 The Add trait and other similar traits

You might have noticed that the methods for integers use the variable name rhs a lot.
For example, the documentation on the method .checked_add() starts with this:

pub const fn checked_add(self, rhs: i8) -> Option<i8>
Checked integer addition. Computes self + rhs, returning None if overflow

➥occurred.

The term rhs means “right-hand side”— in other words, the right-hand side when you
do some math. For example, in 5 + 6, the number 5 is on the left and 6 is on the right,
so 6 is the rhs. It is not a keyword, but you will see rhs a lot in the standard library, so
it’s good to know.

https://docs.rs/num-bigint/latest/num_bigint/
https://docs.rs/num-bigint/latest/num_bigint/


42120.3 Integers
 While we are on the subject, let’s learn how to implement Add, which is the trait
used for the + operator in Rust. In other words, after you implement Add, you can use
+ on a type that you create. You need to implement Add yourself (you can’t just use
#[derive(Add)]) because it’s impossible to guess how you might want to add one type
to another type. Here’s the example from the page in the standard library:

use std::ops::Add;   

#[derive(Debug, Copy, Clone, PartialEq)]    
struct Point {
    x: i32,
    y: i32,
}

impl Add for Point {
    type Output = Self;    

    fn add(self, other: Self) -> Self {
Self {
    x: self.x + other.x,
    y: self.y + other.y,
}

    }
}

Now let’s implement Add for our own type just for fun. Let’s imagine that we have a
Country struct that we’d like to add to another Country. As long as we tell Rust how we
want to add one to the other, Rust will cooperate, and then we will be able to use + to
add them. It looks like this:

use std::fmt;
use std::ops::Add;

#[derive(Clone)]
struct Country {
    name: String,
    population: u32,
    gdp: u32,      
}

impl Country {
    fn new(name: &str, population: u32, gdp: u32) -> Self {

Self {
    name: name.to_string(),
    population,
    gdp,
}

    }
}

impl Add for Country {
    type Output = Self;

Add is found inside the std::ops 
module, which has all the traits used 
for operations. You can probably 
guess that the other traits have 
names like Sub, Mul, and so on.PartialEq is probably the most

important part here. You want
to be able to compare numbers.

Remember, this is called an 
associated type—a type that “goes 
together” with a trait. In this case, 
it’s another Point.

Size of the 
economy



422 CHAPTER 20 A tour of the standard library
    fn add(self, other: Self) -> Self {
        Self {
            name: format!("{} and {}", self.name, other.name),    
            population: self.population + other.population,
            gdp: self.gdp + other.gdp,
        }
    }
}

impl fmt::Display for Country {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "In {} are {} people and a GDP of ${}",
            self.name, self.population, self.gdp
        )
    }
}

fn main() {
    let nauru = Country::new("Nauru", 12_511, 133_200_000);
    let vanuatu = Country::new("Vanuatu", 219_137, 956_300_000);
    let micronesia = Country::new("Micronesia", 113_131, 404_000_000);

    println!("{}", nauru);
    let nauru_and_vanuatu = nauru + vanuatu;
    println!("{nauru_and_vanuatu}");
    println!("{}", nauru_and_vanuatu + micronesia);
}

This prints

In Nauru are 12511 people and a GDP of $133200000
In Nauru and Vanuatu are 231648 people and a GDP of $1089500000
In Nauru and Vanuatu and Micronesia are 344779 people and a GDP of

➥$1493500000

The three others are called Sub, Mul, and Div, and they are basically the same to imple-
ment. There are quite a few other operators in the same module, such as +=, -=, *=,
and /=, which use traits that start with the name Assign: AddAssign, SubAssign,
MulAssign, and DivAssign. You can see the full list of such traits here: http://mng.bz/
468j. They are all named in a pretty predictable fashion. For example, % is called Rem,
- is called Neg, and so on.

 Two other convenient traits, PartialEq (http://mng.bz/JdwK) and PartialOrd,
(http://mng.bz/PRwY), are used to compare and order one variable with another.
After these traits are implemented, you will be able to use signs like < and == for your
type in the same way that implementing Add lets you use the + sign.

 Because comparing for equality and order are done among variables of the same
type, these traits are easier to implement and are usually done using #[derive], as we
saw in chapter 13. But you can also manually implement them if you want. As always,
the standard library contains some simple examples implementing these traits that

We decide that add means to concatenate
the names, combine the population, and

combine the GDP. It’s entirely up to us
what we want Add to mean.

http://mng.bz/468j
http://mng.bz/468j
http://mng.bz/JdwK
http://mng.bz/PRwY


42320.4 Floats
you can copy and paste and then change to suit your own type if you want to manually
implement them.

20.4 Floats
f32 and f64 have a very large number of methods that you use when doing math. We
won’t look at those, but here are some methods that you might use. They are:
.floor(), .ceil(), .round(), and .trunc(). All of these return an f32 or an f64 that
is like an integer (i.e., a whole number). They do the following:

 .floor()—Gives you the next lowest integer.
 .ceil()—Gives you the next highest integer.
 .round()—Gives you a higher number if 0.5 or more or the same number is

less than 0.5. This is called rounding because it gives you a “round” number (a
number that has a short, simple form).

 .trunc()—Cuts off the part after the period. Truncate means “to cut off.”

Here is a simple sample that prints them:

fn four_operations(input: f64) {
    println!(
"For the number {}:
floor: {}
ceiling: {}
rounded: {}
truncated: {}\n",

input,
input.floor(),
input.ceil(),
input.round(),
input.trunc()

    );
}

fn main() {
    four_operations(9.1);
    four_operations(100.7);
    four_operations(-1.1);
    four_operations(-19.9);
}

This prints

For the number 9.1:
floor: 9
ceiling: 10
rounded: 9
truncated: 9

For the number 100.7:
floor: 100
ceiling: 101
rounded: 101
truncated: 100

Because it’s 
less than 9.5

Because it’s 
more than 100.5



424 CHAPTER 20 A tour of the standard library
For the number -1.1:
floor: -2
ceiling: -1
rounded: -1
truncated: -1

For the number -19.9:
floor: -20
ceiling: -19
rounded: -20
truncated: -19

f32 and f64 have a method called .max() and .min() that gives you the higher or the
lower of two numbers. (For other types, you can use the std::cmp::max() and
std::cmp::min() functions.)

 These .max() and .min() methods are a good opportunity to show again that the
.fold() method for iterators isn’t just for adding numbers. In this case, you can use
.fold() to return the highest or lowest number in a Vec or anything else that imple-
ments Iterator:

fn main() {
    let nums = vec![8.0_f64, 7.6, 9.4, 10.0, 22.0, 77.345, -7.77, -10.0];
    let max = nums
        .iter()
        .fold(f64::MIN, |num, next_num| num.max(*next_num));   
    let min = nums
        .iter()
        .fold(f64::MAX, |num, next_num| num.min(*next_num));    
    println!("{max}, {min}");
}

With this, we get the highest and the lowest values: 77.345 and −10.0.
 On the left side of the documentation for Rust’s float types, you might notice that

there are a lot of consts, known as “associated constants”: DIGITS, EPSILON, INFINITY,
MANTISSA_DIGITS, and so on. Plus, in the previous sample, we’ve used MIN and MAX,
which we’ve also used with other types such as integers. How are these consts made
anyway? Let’s take a quick look at that.

20.5 Associated items and associated constants
Rust has three types of associated items. We are already familiar with the first two and
are now going to learn the third one, so this is a good time to sum up all three. Associ-
ated items are connected to the type or trait they are associated with by the :: double
colon. Let’s start with the first one, which we know very well: functions. 

20.5.1 Associated functions

When you implement a method on a type or a trait, you are giving it an associated func-
tion. Most of the time, we see it in variable_name.function() format when there is a

To get the highest number, start
with the lowest possible f64 value.

Conversely, start with the highest possible
f64 value to get the lowest number.



42520.5 Associated items and associated constants
self parameter. But this is just a convenience instead of using forms like TypeName::
function(&variable_name) or TypeName::function(&mut variable_name). When
you use the dot operator (a period) to call a method, Rust is actually just using the ::
syntax, unseen to you, to call the function. Let’s look at a quick example:

struct MyStruct(String);

impl MyStruct {   
    fn print_self(&self) {

println!("{}", self.0);
    }
    fn add_exclamation(&mut self) {

self.0.push('!')
    }
}

fn main() {
    let mut my_struct = MyStruct("Hi".to_string());

    my_struct.print_self();    
    MyStruct::print_self(&my_struct);

    my_struct.add_exclamation();   
    MyStruct::add_exclamation(&mut my_struct);

    MyStruct::print_self(&my_struct);
}

This sample is pretty easy, with an output of Hi, Hi, and Hi!!.

20.5.2 Associated types

The next item we’ve seen is an associated type, which is the type you define when
implementing a trait. We saw this most recently with the Add trait:

pub trait Add<Rhs = Self> {
    type Output;

    fn add(self, rhs: Rhs) -> Self::Output;    
}

Here, type Output is defined when you implement the trait, and this also gets
attached to the type with the :: double colon. Here, as well, we can use the full associ-
ated type signature. Let’s use a really simple example: adding 10 to 10. This time, we
will start with the full signature and work backward:

use std::ops::Add;

fn main() {
    let num1 = 10;
    let num2 = 10;

    print!("{} ", i32::add(num1, num2));    

MyStruct has two methods; 
99.9% of the time, we 
would use the dot operator

We are calling .print_self(). 
On this line, we use the dot 
operator, but on the 
following line, we use the 
associated item syntax. It’s 
exactly the same thing!

The same thing happens here, too. 
my_struct.add_exclamation() takes a 
&mut my_struct without us needing 
to specify that. But if we want, we 
can use the full associated item 
syntax like we do on the next line.

Required 
method

The i32 type implements Add, 
which gives it the add function: 
i32::add(). This function takes 
self plus another number.



426 CHAPTER 20 A tour of the standard library
    print!("{} ", num1.add(num2));    
    print!("{}", num1 + num2);   
}

On each line, we are doing the same operation, so the output is just 20 20 20.
 Now let’s look at a simple example of our own. This time, we’ll have a trait that just

requires that a type destroy itself and turn into another form. This is defined by who-
ever implements the trait and can be anything:

trait ChangeForm {

    type SomethingElse;    
    fn change_form(self) -> Self::SomethingElse;    
}

impl ChangeForm for String {   
    type SomethingElse = char;
    fn change_form(self) -> Self::SomethingElse {

self.chars().next().unwrap_or(' ')
    }
}

impl ChangeForm for i32 {
    type SomethingElse = i64;
    fn change_form(self) -> Self::SomethingElse {

println!("i32 just got really big!");
i64::MAX

    }
}

fn main() {
    let string1 = "Hello there!".to_string(); 
    println!("{}", string1.change_form());

    let string2 = "I'm back!".to_string();
    println!("{}", String::change_form(string2));

    let small_num = 1;
    println!("{}", small_num.change_form());

    let also_small_num = 0;
    println!("{}", i32::change_form(also_small_num));
}

Here’s the output:

H
I
i32 just got really big!

Since we have a self parameter, we 
can use the dot operator as well.

This last step is built into the language: if you 
implement Add, you can use + to add. This makes 
sense: nobody would want to use Rust if they had 
to type use std::ops::Add and 10.add(10) all the 
time just to add 10 and 10 together.

The type is called SomethingElse 
and can be anything.

Note the signature here: it’s 
associated with Self and attached 
with the :: double colon.

We’ll implement it for String and 
char. It’s our own trait, so we can 
implement it on external types, too.

Here, as well, there are two 
ways to call the function: the 
method signature with the 
dot operator or the full 
associated type signature.



42720.5 Associated items and associated constants
9223372036854775807
i32 just got really big!
9223372036854775807

The associated function and type signature with the :: should look pretty familiar by
now!

 And with that, we are now at the last associated item: associated consts.

20.5.3 Associated consts

Associated consts are actually incredibly easy to use. Just start an Impl block, type
const CONST_NAME: type_name = value, and you’re done! Here’s a quick example:

struct SizeTenString(String);

impl SizeTenString {
    const SIZE: usize = 5;
}

fn main() {
    println!("{}", SizeTenString::SIZE);
}

With this associated const, our SizeFiveString can pass on this SIZE const to what-
ever needs it.

 Here is a longer yet still simple example of this associated const. In this example,
we can use the associated const to ensure that this type will always be 10 characters in
length:

#[derive(Debug)]
struct SizeTenString(String);

impl SizeTenString {
    const SIZE: usize = 10;
}

impl TryFrom<&'static str> for SizeTenString {
    type Error = String;
    fn try_from(input: &str) -> Result<Self, Self::Error> {
        if input.chars().count() == Self::SIZE {
            Ok(Self(input.to_string()))
        } else {
            Err(format!("Length must be {} characters!", Self::SIZE))
        }
    }
}

fn main() {
    println!("{:?}", SizeTenString::try_from("This one's long"));
    println!("{:?}", SizeTenString::try_from("Too short"));
    println!("{:?}", SizeTenString::try_from("Just right"));
}



428 CHAPTER 20 A tour of the standard library

.

An associated const can be used with traits, too, in a similar way to functions on traits.
A type can override these associated consts, too, in the same way that you can write
your own trait method even if there is a default method:

trait HasNumbers {
    const SET_NUMBER: usize = 10;   
    const EXTRA_NUMBER: usize;   
    // fn set_number() -> usize { 10 }    
    // fn extra_number() -> usize;
}

struct NothingSpecial;

impl HasNumbers for NothingSpecial {
    const EXTRA_NUMBER: usize = 10;
    // const SET_NUMBER: usize = 20;   
}

fn main() {
  print!("{} ", NothingSpecial::SET_NUMBER);
  print!("{}", NothingSpecial::EXTRA_NUMBER);
}

So this code will print 10 10, but if you uncomment the one line out, it will print 20 10.
 That was a long enough detour, so let’s get on to our next standard library type!

20.6 bool
Booleans are pretty simple in Rust but are quite robust compared to some other lan-
guages. (For comparison, one example of the difficulties of working with booleans in
C can be found at http://mng.bz/1J51.) There are a few ways to use a bool that we
haven’t come across yet, so let’s look at them now.

 In Rust, you can turn a bool into an integer if you want because it’s safe to do that.
But you can’t do it the other way around. As you can see, true turns to 1, and false
turns to 0:

fn main() {
    let true_false = (true, false);
    println!("{} {}", true_false.0 as u8, true_false.1 as i32);
}

This prints 1 0. Or you can use .into() if you tell the compiler the type:

fn main() {
    let true_false: (i128, u16) = (true.into(), false.into());
    println!("{} {}", true_false.0, true_false.1);
}

This prints the same thing.

The value of the const SET_NUMBER is
10, so you don’t need to decide the
value when implementing the trait. This other const, however, is 

unknown. You have to choose its 
value when implementing this trait

These two commented-out functions are 
similar in behavior to the consts. One has a 
default implementation, while the other only 
shows the return type and has to be written 
out by anyone implementing the trait.

If you uncommented this, the struct 
NothingSpecial would have a value of 
20 for SET_NUMBER instead of 10.

http://mng.bz/1J51


42920.6 bool

 

 As of Rust 1.50 and 1.62, there are two methods, .then() and .then_some(), that
turn a bool into an Option. With .then(), you write a closure, and the closure is
called if the item is true. Whatever is returned from the closure gets wrapped in an
Option. Here’s a small example:

fn main() {
    let (tru, fals) = (true.then(|| 8), false.then(|| 8));
    println!("{:?}, {:?}", tru, fals);
}

This prints Some(8), None.
 These methods can be pretty nice for error handling. The following code shows

how a simple Vec<bool> can be turned into a Vec of Results with some extra info as it
is handled.

use std::time::{SystemTime, UNIX_EPOCH};

fn timestamp() -> f64 {
    SystemTime::now()

.duration_since(UNIX_EPOCH)

.unwrap()

.as_secs_f64()
}

fn send_data_to_user() {}

fn main() {
    let bool_vec = vec![true, false, true, false, false];

    let result_vec = bool_vec
.into_iter()
.enumerate()
.map(|(index, b)| {
    b.then(|| {

let timestamp = timestamp();
send_data_to_user();
timestamp

    })
    .ok_or_else(|| {

let time = timestamp();
format!("Error with item {index} at {time}")

    })
})
.collect::<Vec<_>>();

    println!("{result_vec:#?}");
} 

The output at the end will look something like this:

    Ok(
1685149117.2468076,

    ),
    Err(

"Error with item 1 at 1685149117.246808",

A small function to generate a 
timestamp as an f64 to make the 
following code easier to read

This function is empty, but pretend that 
it sends the users of our system some 
data in case it comes across as true.

We turn the bool into an Option<f64>
(the timestamp), sending the user the 
data before passing it on.

With ok_or_else(), we turn the Option 
into a Result and add some error info 
(the index number that failed).



430 CHAPTER 20 A tour of the standard library
    ),
    Ok(

1685149117.246833,
    ),
    Err(

"Error with item 3 at 1685149117.2468333",
    ),
    Err(

"Error with item 4 at 1685149117.2468338",
    ),
]

20.7 Vec
Vec has a lot of methods that we haven’t looked at yet. Let’s start with .sort(). The
.sort() method is not surprising at all. It uses a &mut self to sort a vector in place
(nothing is returned):

fn main() {
    let mut my_vec = vec![100, 90, 80, 0, 0, 0, 0, 0];
    my_vec.sort();
    println!("{:?}", my_vec);
}

This prints [0, 0, 0, 0, 0, 80, 90, 100]. But there is one more interesting way to sort
called .sort_unstable(), and it is usually faster. It can be faster because it doesn’t
care about the order of items if they are the same value. In regular .sort(), you know
that the last 0, 0, 0, 0, 0 will be in the same order after .sort() is performed. But
.sort_unstable() might move the last zero to index 0, then the third last zero to
index 2, and so on. The documentation in the standard library explains it pretty well:

It is typically faster than stable sorting, except in a few special cases, e.g., when the
slice consists of several concatenated sorted sequences.

.dedup() means “de-duplicate.” It will remove items that are the same in a vector, but
only if they are next to each other. This next code will not just print "sun", "moon":

fn main() {
    let mut my_vec = vec!["sun", "sun", "moon", "moon", "sun", "moon",

➥"moon"];
my_vec.dedup();
println!("{:?}", my_vec);

}

Instead, it only gets rid of "sun" next to the other "sun", then "moon" next to one
"moon", and again with "moon" next to another "moon". The result is: ["sun",
"moon", "sun", "moon"].

 So, if you want to use .dedup() to remove every duplicate, just .sort() first:

fn main() {
    let mut my_vec = vec!["sun", "sun", "moon", "moon", "sun", "moon",

➥"moon"];



43120.7 Vec
    my_vec.sort();
    my_vec.dedup();
    println!("{:?}", my_vec);
}

The result is["moon", "sun"].
 You can split a Vec with .split_at(), while .split_at_mut() lets you do the same

if you need to change the values. These give you two slices while leaving the original
Vec intact:

fn main() {
    let mut big_vec = vec![0; 6];
    let (first, second) = big_vec.split_at_mut(3);

    std::thread::scope(|s| {
s.spawn(|| {
    for num in first {
        *num += 1;
    }
});
s.spawn(|| {
    for num in second {
        *num -= 5;
    }
});

    });
    println!("{big_vec:?}");
}

The output is [1, 1, 1, -5, -5, -5].
 The .drain() method lets you pull a range of values out of a Vec, giving you an

iterator. This iterator keeps a mutable borrow on the original Vec so doing something
like collecting it into another Vec or outright using the drop() method will let you
access the original Vec again:

fn main() {
    let mut original_vec = ('A'..'K').collect::<Vec<_>>();
    println!("{original_vec:?}");

    let drain = original_vec.drain(2..=5);
    println!("Pulled these chars out: {drain:?}");
    drop(drain);
    println!("Here's what's left: {original_vec:?}");

    let drain_two = original_vec.drain(2..=4).collect::<Vec<_>>();
    println!("Original vec: {original_vec:?}\nSecond drain: {drain_two:?}");
}

Here’s the output:

['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J']
Pulled these chars out: Drain(['C', 'D', 'E', 'F'])
Here's what's left: ['A', 'B', 'G', 'H', 'I', 'J']



432 CHAPTER 20 A tour of the standard library
Original vec: ['A', 'B', 'J']
Second drain: ['G', 'H', 'I']

20.8 String
We learned before that a String is kind of like a Vec, because it holds one (a Vec<u8>).
A String isn’t just a simple smart pointer over a Vec<u8>, but sometimes it almost feels
like one because so many of the methods are exactly the same.

 One of these is String::with_capacity(). This method can help avoid too many
allocations if you are pushing chars to it with .push() or pushing &strs to it with
.push_str(). Here’s an example of a String that has too many allocations:

fn main() {
    let mut push_string = String::new();

    for _ in 0..100_000 {
        let capacity_before = push_string.capacity();   
        push_string.push_str("I'm getting pushed into the string!");
        let capacity_after = push_string.capacity();
        if capacity_before != capacity_after {
            println!("Capacity raised to {capacity_after}");
        }
    }
}

This prints

Capacity raised to 35
Capacity raised to 70
Capacity raised to 140
Capacity raised to 280
Capacity raised to 560
Capacity raised to 1120
Capacity raised to 2240
Capacity raised to 4480
Capacity raised to 8960
Capacity raised to 17920
Capacity raised to 35840
Capacity raised to 71680
Capacity raised to 143360
Capacity raised to 286720
Capacity raised to 573440
Capacity raised to 1146880
Capacity raised to 2293760
Capacity raised to 4587520

We had to reallocate (copy everything over) 18 times. But now we know the final
capacity. So we’ll give it the capacity right away, and we don’t need to reallocate—just
one String capacity is enough:

fn main() {
    let mut push_string = String::with_capacity(4587520);   

We check the capacity before and
after the &str is pushed and print out

the new capacity if it has changed.

We know the exact number in this case. Even if you only
have a general idea (like “at least 10,000”), you could
still use with_capacity() to avoid too many allocations.



43320.8 String
    for _ in 0..100_000 {
let capacity_before = push_string.capacity();
push_string.push_str("I'm getting pushed into the string!");
let capacity_after = push_string.capacity();
if capacity_before != capacity_after {
    println!("Capacity raised to {capacity_after}");
}

    }
}

And this prints nothing. Perfect! We never had to reallocate.
 Of course, the actual length is certainly smaller than the final 4,587,520, which is

simply a doubling of the previous capacity when it was 2,293,760. We can shrink it,
though, with .shrink_to_fit(), which is another Vec method. But only do this once
you are sure of the final length because the capacity will double again even if you push
a single extra char to the Vec:

fn main() {
    let mut push_string = String::with_capacity(4587520);

    for _ in 0..100_000 {
push_string.push_str("I'm getting pushed into the string!");

    }
    println!("Current capacity as expected: {}", push_string.capacity());
    push_string.shrink_to_fit();
    println!("Actual needed capacity: {}", push_string.capacity());
    push_string.push('a');
    println!("Whoops, it doubled again: {}", push_string.capacity());
    push_string.shrink_to_fit();
    println!("Shrunk back to actual needed capacity: {}", 

push_string.capacity());
}

This prints

Current capacity: 4587520
Actual needed capacity: 3500000
Whoops, it doubled again: 7000000
Shrunk back to actual needed capacity: 3500001

The .pop() method works for a String, just like for a Vec:

fn main() {
    let mut my_string = String::from(".daer ot drah tib elttil a si gnirts

➥sihT");
while let Some(c) = my_string.pop() {

print!("{c}");
    }
}

Try reading the String backward to see what the output will be for this sample.
 By the way, look at how readable the .pop() method is: there’s no magic to it. At

this point in the book, you could easily write this method yourself!



434 CHAPTER 20 A tour of the standard library
    pub fn pop(&mut self) -> Option<char> {
let ch = self.chars().rev().next()?;
let newlen = self.len() - ch.len_utf8();
unsafe {
    self.vec.set_len(newlen);
}
Some(ch)

    }

One convenient method for String is .retain(), which is a little bit like the
.filter() method we know for iterators. This method passes in a closure that we can
use to evaluate whether to keep each character or not. The following code keeps only
the characters inside a String that are letters or spaces:

fn main() {
    let mut my_string = String::from("Age: 20 Height: 194 Weight: 80");
    my_string.retain(|ch| ch.is_alphabetic() || ch == ' ');
    dbg!(my_string);
} 

This prints

[src\main.rs:4] my_string = "Age  Height  Weight "

20.9 OsString and CString
The std::ffi module of the standard library is the one that helps you use Rust with
other languages or operating systems. This module includes types like OsString and
CString, which are like String for the operating system or String for the language C.
They each have their own &str type, too: OsStr and CStr. The three letters ffi stand
for foreign function interface.

 You can use OsString when you have to work with an operating system that doesn’t
use UTF-8. All Rust strings are UTF-8, but certain operating systems express strings in
different ways. Here is a simplified version of the page in the standard library on why
we have OsString:

 A string on Unix (Linux, etc.) might be a sequence of bytes together that don’t
have zeros, and sometimes you read them as Unicode UTF-8.

 A string on Windows might be made of sequences of 16-bit values that don’t
have zeros.

 In Rust, strings are always valid UTF-8, which may contain zeros.

So an OsString is made to be read by all of them.
 You can do all the regular things with an OsString like OsString::from("Write

something here"). It also has an interesting method called .into_string() that tries
to make it into a regular String. It returns a Result, but the Err part is just the origi-
nal OsString:

pub fn into_string(self) -> Result<String, OsString>



435Summary
So if it doesn’t work, you just get the previous OsString back. You can’t call .unwrap()
because it will panic, but you can use match to get the OsString back. We can quickly
prove that the Err value is an OsString by calling methods that don’t exist:

use std::ffi::OsString;

fn main() {
    let os_string = OsString::from("This string works for your OS too.");
    match os_string.into_string() {

Ok(valid) => valid.thth(),
Err(not_valid) => not_valid.occg(),

    }
}

Then the compiler tells us exactly what we want to know:

error[E0599]: no method named `thth` found for struct `std::string::String`

➥in the current scope
--> src/main.rs:6:28
|

6 |         Ok(valid) => valid.thth(),
  |     ^^^^ method not found in `std::string::String`

error[E0599]: no method named `occg` found for struct `std::ffi::OsString`

➥in the current scope
--> src/main.rs:7:37
|

7 |         Err(not_valid) => not_valid.occg(),
  |     ^^^^ method not found in

➥`std::ffi::OsString`

This book doesn’t get into any FFI for Rust, but this module is a good place to start.
 And with that, we are halfway through the tour! Hopefully, it has been pretty relax-

ing and enlightening so far, with nothing particularly difficult. The tour will finish up
in the next chapter as we learn a lot of the methods related to memory, how to set up
panic hooks and view backtraces, and some of the other convenient macros that we
haven’t learned yet.

Summary
 Even everyday types like bool and char have new methods added to them all

the time, so keep an eye on the release notes for every new version of Rust to
see what has been made available.

 Be sure to use checked operations if you ever think any of your numeric types
may overflow. They require a bit more typing, but the extra guarantees are
worth it.

 With associated consts, we now know all three associated items. The other two
are associated functions and associated types.



436 CHAPTER 20 A tour of the standard library
 Despite the long name, associated items are not that intimidating: associated
functions are just functions, associated types are just types declared inside a
trait, and associated constants are just const values on a type or a trait.

 Try doing your own tour as well by taking a look at the methods and traits for
the types you use the most in Rust. There is a lot in the standard library that we
have only scratched the surface of.



Continuing the tour
This is the second of two chapters touring the standard library, with a lot of new
(but not difficult) types that you’ll find useful to know. Near the end, we will look at
some macros we haven’t encountered before, which will lead into the next chapter,
where you will learn how to write your own!

21.1 std::mem
As the name implies, the std::mem module has types and functions for dealing with
memory. The functions inside this module are particularly interesting (and conve-
nient). We have seen some of them already, such as size_of(), size_of_val(),
and drop():

This chapter covers
 The mem module

 The std library prelude

 Setting panic hooks and viewing backtraces

 Other macros
437



438 CHAPTER 21 Continuing the tour
use std::mem;

fn main() {
    println!("Size of an i32: {}", mem::size_of::<i32>());
    let my_array = [8; 50];
    println!("Size of this array: {}", mem::size_of_val(&my_array));
    let some_string = String::from("Droppable because it's not Copy");
    drop(some_string);
    // some_string.clear();    
}

This prints

Size of an i32: 4
Size of this array: 200

Note that in the previous code we didn’t need to write mem::drop(), just drop(),
because this function is part of the prelude. We will look at the prelude shortly.

 Technically, you can call drop() on a Copy type, but it will have no effect. As the
function documentation states:

This effectively does nothing for types which implement Copy, e.g., integers. Such
values are copied and then moved into the function, so the value persists after this
function call. (https://doc.rust-lang.org/std/mem/fn.drop.html)

Let’s look at some other functions in std::mem.
 The swap() function lets you switch the values between two variables. You use a

mutable reference for each to do it. This is particularly helpful when you have two
things you want to switch and Rust doesn’t let you because of borrowing rules or
because the parameter isn’t an Option that you could use take() to replace with None.
(More on the take() function in a moment.)

 Let’s use this function to do some owner swapping of the One Ring from Lord of the
Rings:

use std::mem;

#[derive(Debug)]
struct Ring {
    owner: String,
    former_owners: Vec<String>,
}

impl Ring {   
    fn switch_owner_to(&mut self, name: &str) {

if let Some(position) = self.former_owners.iter().position(|n| n ==

➥name) {
mem::swap(&mut self.owner, &mut self.former

➥_owners[position])
} else {
    println!("Nobody named {name} found in former_owners, sorry!");
}

    }
}

If we uncommented this, 
it wouldn’t compile.

This method will try to find a character inside 
former_owners that matches the search key and, if 
so, switch owners. We could return a Result or 
Option here, but to keep it simple, we’ll print an 
error message if no matching character is found.

Directly accessing a Vec through an index can
be risky, so we’ll use the position method to
ensure that we found a String that matches

the name we are searching for.

https://doc.rust-lang.org/std/mem/fn.drop.html


43921.1 std::mem
fn main() {
    let mut one_ring = Ring {   
        owner: "Frodo".into(),
        former_owners: vec!["Gollum".into(), "Sauron".into()],
    };

    println!("Original state: {one_ring:?}");
    one_ring.switch_owner_to("Gollum");  
    println!("{one_ring:?}");
    one_ring.switch_owner_to("Sauron");
    println!("{one_ring:?}");
    one_ring.switch_owner_to("Billy");
    println!("{one_ring:?}");
}

This will print

Original state: Ring { owner: "Frodo", former_owners: ["Gollum", "Sauron"] }
Ring { owner: "Gollum", former_owners: ["Frodo", "Sauron"] }
Ring { owner: "Sauron", former_owners: ["Frodo", "Gollum"] }
Nobody named Billy found in former_owners, sorry!
Ring { owner: "Sauron", former_owners: ["Frodo", "Gollum"] }

The next function inside std::mem is called replace(). It is similar to .swap() and
actually uses swap() inside. The function is extremely simple:

pub fn replace<T>(dest: &mut T, mut src: T) -> T {
    swap(dest, &mut src);
    src
}

So, replace()does a swap and then returns the other item—that’s all there is to it. In
other words, .replace() replaces the value with what you put in and returns the old
value, which makes it useful with a let binding to create a variable. Here’s a quick
example:

use std::mem;

struct City {
    name: String,
}

impl City {
    fn change_name(&mut self, name: &str) {
        let former = mem::replace(&mut self.name, name.to_string());
        println!("{former} is now called {new}.", new = self.name);
    }
}

fn main() {
    let mut capital_city = City {
        name: "Constantinople".to_string(),
    };
    capital_city.change_name("Istanbul");
}

For most of the book, the owner of
the ring is Frodo, while both Gollum

and Sauron are looking for it.

Now let’s do some 
owner switching.



440 CHAPTER 21 Continuing the tour
This code prints Constantinople is now called Istanbul.
 Now, let’s get to the function take() that we previously mentioned. As the name

implies, this function outright takes the value from something and returns it. But
take() doesn’t drop the existing variable; instead, it leaves its default value in its
place. And that’s why this function requires the type we are take()-ing from to imple-
ment Default:

pub fn take<T>(dest: &mut T) -> T
where
    T: Default,

So you can do something like this:

use std::mem;

fn main() {
    let mut number_vec = vec![8, 7, 0, 2, 49, 9999];
    let mut new_vec = vec![];

    number_vec.iter_mut().for_each(|number| {
let taker = mem::take(number);
new_vec.push(taker);

    });
    println!("{:?}\n{:?}", number_vec, new_vec);
}

As you can see, it replaced all the numbers with 0: no index was deleted:

[0, 0, 0, 0, 0, 0]
[8, 7, 0, 2, 49, 9999]

Of course, for your own type you can implement Default to whatever you want. The
following code shows a bank in a country called Klezkavania that gets robbed all the
time. Every time it gets robbed, it replaces the money at the front with 50 credits (the
default):

use std::mem;

#[derive(Debug)]
struct Bank {
    money_inside: u32,
    money_at_desk: DeskMoney,
}

#[derive(Debug)]
struct DeskMoney(u32);

impl Default for DeskMoney {
    fn default() -> Self {

Self(50)     
    }
}

default is always 
50, not 0.



44121.1 std::mem
fn main() {
    let mut bank_of_klezkavania = Bank {    

money_inside: 5000,
money_at_desk: DeskMoney(500),

    };

    let money_stolen = mem::take(&mut bank_of_klezkavania.money_at_desk);
    println!("Stole {} Klezkavanian credits", money_stolen.0);
    println!("{bank_of_klezkavania:?}");
}

This will print

Stole 500 Klezkavanian credits
Bank { money_inside: 5000, money_at_desk: DeskMoney(50) }

You can see that there is always $50 at the desk.
 In practice, the take() function is often used as a convenience method to quickly

turn a Some into a None without having to do any pattern matching. The following
example shows just how short your code can be when using this function:

use std::time::Duration;

struct UserState {
    username: String,
    connection: Option<Connection>,   
}

struct Connection {
    url: String,
    timeout: Duration,
}

impl UserState {
    fn is_connected(&self) -> bool {

self.connection.is_some()
    }
    fn connect(&mut self, url: &str) {   

self.connection = Some(Connection {
    url: url.to_string(),
    timeout: Duration::from_secs(3600),
});

    }
    fn disconnect(&mut self) {

self.connection.take();  
    }
}

fn main() {
    let mut user_state = UserState {

username: "Mr. User".to_string(),
connection: None,

    };
    user_state.connect("someurl.com");

Sets up our bank

We could have the Connection struct hold 
the state of the connection, but another 
way to do it is to wrap it in an Option. In 
this case, Some represents a connected 
state, and None, a nonconnected state.

A real connect method would 
be more complicated than 
this, but you get the idea.

To disconnect, just take() the 
value and do nothing with it, 
leaving None in its place.



442 CHAPTER 21 Continuing the tour
    println!("Connected? {}", user_state.is_connected());
    user_state.disconnect();
    println!("Connected? {}", user_state.is_connected());
}

The output is pretty simple:

Connected? true
Connected? false

21.2 Setting panic hooks
We learned back in chapter 5 that a panic in Rust is actually not very panicky. A panic
is simply the program seeing that there is a problem that it can’t deal with, so it gives
up. For example, there is nothing a program can do when it sees this code:

println!("{}", vec![1, 2][3]);

The programmer here is telling the program to access the fourth item of a Vec that
has two items, and that isn’t allowed, so the only option is to give up. The program
then prints a message and unwinds the stack, which cleans up the memory for the
thread. And if the thread is the main thread, then the program is over. (Maybe it was
named panic because the developer is the one who panics when it happens!)

 In any case, because a panic is an orderly process, we can modify its behavior a bit.
There is a module in the standard library that is also called std::panic that lets us
modify what happens when a panic takes place.

 First, let’s review the output we see whenever a program panics. We’ll start by just
using the panic! macro, which is the easiest way to do it:

fn main() {
    panic!();
}

The output is

thread 'main' panicked at 'explicit panic', src\main.rs:2:5
note: run with `RUST_BACKTRACE=1` environment variable to display a

➥backtrace

The panic! macro can take a message, which will change the output somewhat:

fn main() {
    panic!("Oh man, something went wrong");
}

Now the output contains our message instead of just 'explicit panic':

thread 'main' panicked at 'Oh man, something went wrong', src\main.rs:2:5
note: run with `RUST_BACKTRACE=1` environment variable to display a

➥backtrace

Now let’s take a look at what happens with a panic that happens outside of the panic!
macro. First, we will try to parse a number without unwrapping, which will generate a



44321.2 Setting panic hooks
Result with the error info. After that, we’ll unwrap and compare the panic info to
what we printed out:

fn main() {
    let try_parse = "my_num".parse::<u32>();
    println!("Error output: {try_parse:?}");
    let my_num = try_parse.unwrap();
}

We can see that when a panic happens, it first tells us which thread panicked, why it
panicked, any error info, the location in the code where the panic happened, and a
note about how to display a backtrace:

Error output: Err(ParseIntError { kind: InvalidDigit })
thread 'main' panicked at 'called `Result::unwrap()` on an `Err` value:

➥ParseIntError { kind: InvalidDigit }', src/main.rs:4:28
note: run with `RUST_BACKTRACE=1` environment variable to display a

➥backtrace

So, that’s the default behavior. But we can change all of this if we want by using a
method called set_hook(). This sets up a global panic hook, which will be called
instead of the default panic hook. Inside this method is a closure in which we can do
whatever we like when a panic happens. Let’s make a really simple one that prints out
a message or two when a panic happens—one in English and another in Korean:

fn main() {
    std::panic::set_hook(Box::new(|_| {

println!("Oops, that didn't work.");
println!("앗 뭔가 잘못 됐네요.");

    }));

    panic!();
}

The panic hook does exactly what we told it to do, and even the location and error
information is gone. This is all we see now when we run the program:

Well, that didn't work.
앗 뭔가 잘못 됐네요.

Where does the default information in a panic message come from? It would be nice
if we could display that as well.

 You might have noticed that inside set_hook() is a closure with an argument that
we ignored by using |_|. If we give the argument a name, we can see that it is a struct
called PanicInfo, which implements both Debug and Display. Let’s print it out:

fn main() {
    std::panic::set_hook(Box::new(|info| {

println!("Well, that didn't work: {info}");
    }));
    panic!();
}

Korean for “Oops, 
something’s gone wrong.”



444 CHAPTER 21 Continuing the tour
This will print

Well, that didn't work: panicked at 'explicit panic', src\main.rs:6:5

The PanicInfo struct itself is fairly interesting, as it has a parameter called payload
that implements Any:

pub struct PanicInfo<'a> {
    payload: &'a (dyn Any + Send),
    message: Option<&'a fmt::Arguments<'a>>,
    location: &'a Location<'a>,
    can_unwind: bool,
}

Back in chapter 13 we learned that the Error trait has methods that let us try to down-
cast it into a concrete type. The Any trait is another trait that includes methods for
downcasting and is automatically implemented on any type unless it contains a non-
'static reference. In other words, the payload parameter will hold a trait object
behind, which technically could be almost anything.

 However, the documentation for the .payload() method for the PanicInfo struct
tells us which type the payload will usually be:

Returns the payload associated with the panic.
This will commonly, but not always, be a &'static str or String.

Let’s give this downcasting a try:

fn main() {
    std::panic::set_hook(Box::new(|info| {

if let Some(payload) = info.payload().downcast_ref::<&str>() {
    println!("{payload}");    
} else {
    println!("No payload!");
}

    }));
    panic!("Oh no");
}

The .downcast_ref::<&str>() method returns a Some, so this will simply print Oh no.
 This brings us to an important point: .downcast_ref() is a method that can fail,

so we made sure to use if let to ensure that a panic did not occur. Avoiding panics is
important in any case, but when setting a panic hook, it is especially important
because a panic during a panic will lead to an abort, which means it won’t unwind the
stack and just hand everything over to the operating system to clean up.

 The output for an abort will depend on your operating system, but it can look
pretty ugly. On the Playground, a panic inside a panic (in other words, an abort) looks
like this:

thread panicked while processing panic. aborting.
timeout: the monitored command dumped core
/playground/tools/entrypoint.sh: line 11:     8 Aborted

➥timeout --signal=KILL ${timeout} "$@"



44521.2 Setting panic hooks
And on Windows it will look something like this:

thread panicked while processing panic. aborting.
error: process didn't exit successfully: `target\release\rmol.exe` (exit

➥code: 0xc0000409, STATUS_STACK_BUFFER_OVERRUN)

So, be sure to be extra careful when setting a panic hook.
 This does bring up an interesting point, though: sometimes people will choose to

abort by default instead of panicking because that can reduce the size of the binary by
a bit. The smaller size is because there will now be no cleanup code inside the binary.
You don’t want to set a panic inside a panic hook to do this, though. Instead, just add
this to your Cargo.toml file:

[profile.release]
panic = 'abort'

Then run or build the binary in release mode (cargo run –release or cargo build
–release), and it will be a little smaller. But the vast majority of the time, you won’t
want to abort when a panic happens.

 Let’s finish up this section with a somewhat larger (but imaginary) example of
where we might want to use a panic hook. Here, we are running some sort of software
that accesses a database. We want to make sure that the database gets shut down prop-
erly even if there is a panic, before the stack unwinds and the program stops. We’ll
also add some pretend types and functions that demonstrate how our system is work-
ing and what sometimes goes wrong:

use rand::Rng;

struct Database {
    data: Vec<String>,
}

fn get_hour() -> u32 {
    let mut rng = rand::thread_rng();
    rng.gen_range(0..=30)   
}

fn shut_down_database(hour: u32) -> Result<(), String> {    
    match hour {
        h if (6..18).contains(&h) => {
                                                       
            Ok(())
        }
        h if h > 24 => Err(format!("Internal error: hour {h} shouldn't
        ➥exist")),
        h => Err(format!("Hour {h} is not working hours, can't shut down")),
    }
}

fn main() {
    std::panic::set_hook(Box::new(|info| {

Uh oh, someone made a mistake, and 
sometimes the hour of the day is greater 
than 24. We’ll represent this with a simple 
function that returns a number up to 30.

 This method will only shut down the
database during working hours.

Outside of working hours, it will leave
it running and log a message; it also

checks for incorrect hours of the day.

Do some database 
shutting down stuff.



446 CHAPTER 21 Continuing the tour
println!("Something went wrong / 문제가 생겼습니다!");
println!("Panic info: {info}");
let hour = get_hour();
match shut_down_database(hour) {
    Ok(()) => println!("Shutting down database at {hour}

➥o'clock!"),
Err(e) => println!("Couldn't shut down database before panic

➥finished: {e}"),
}

    }));
    let mut db = Database { data: vec![] };
    db.data.push("Some data".to_string());
    panic!("Database broke");
}

The output will always include this:

Something went wrong / 문제가 생겼습니다!
Panic info: panicked at 'Database broke', src\main.rs:38:5

The rest of the output will be one of these three lines, depending on the hour of the
day returned by get_hour():

Couldn't shut down database before panic finished: Internal error: hour 27

➥shouldn't exist
Shutting down database at 17 o'clock!
Couldn't shut down database before panic finished: Hour 1 is not working

➥hours, can't shut down

Finally, what if you want to undo the panic hook? That’s easy, just use the take_hook()
method. It looks something like this:

fn main() {
    std::panic::set_hook(Box::new(|_| {

println!("Something went wrong / 문제가 생겼습니다!");
    }));

    let _ = std::panic::take_hook();
    panic!();
}

This will just print out the regular thread 'main' panicked at 'explicit panic',
src\main.rs:8:5 panic message. We are using let _ because take_hook() returns the
PanicInfo struct that was set in set_hook() in the previous example, and we don’t
need it here. But if you do need it, you can give it a variable name and use it however
you like.

 Before we finish this section, let’s take a quick look at the take_hook() method.
Don’t worry about all the details inside, but do you notice a method that we learned in
this chapter? There it is—our old friend mem::take()! You can see that it’s being used
to grab the old panic hook, after which it returns it to us:

pub fn take_hook() -> Box<dyn Fn(&PanicInfo<'_>) + 'static + Sync + Send> {
    if thread::panicking() {



44721.3 Viewing backtraces
        panic!("cannot modify the panic hook from a panicking thread");
    }
    let mut hook = HOOK.write().unwrap_or_else(PoisonError::into_inner);
    let old_hook = mem::take(&mut *hook);
    drop(hook);
    old_hook.into_box()
}

And since mem::take() leaves a default value behind, let’s take a look at the Hook
mentioned here to see what it looks like and what its default value is. It’s pretty simple,
just an enum that represents either a default panic hook or a custom panic hook.

enum Hook {
    Default,
    Custom(Box<dyn Fn(&PanicInfo<'_>) + 'static + Sync + Send>),
}

So, at this point in the book, there’s not much code in the standard library that you
can’t understand.

 The next part of the standard library is very closely related: backtraces.

21.3 Viewing backtraces
We learned about backtraces in chapter 14 in the section on testing our code. Viewing
backtraces when a panic occurs has been a feature of Rust since the language began.
However, being able to view a backtrace at run time is fairly new: it was added with
Rust 1.65 in November 2022. Before this, the only way to see backtraces at run time
was through a crate called backtrace.

 But now it can be done without any external code, and viewing a backtrace is
pretty simple: just use a function called Backtrace::capture(), which is located in
the std::backtrace module. There is one thing to keep in mind, though. Try run-
ning this code on the Playground or your computer and see what happens:

use std::backtrace::Backtrace;

fn main() {
    println!("{}", Backtrace::capture());
}

This only prints out the following:

disabled backtrace

The documentation explains that this method will look for either a RUST_BACKTRACE
or a RUST_LIB_BACKTRACE environment variable. Interestingly, the source code shows
us that it only cares if the environment variables are set to 0 or not:

let enabled = match env::var("RUST_LIB_BACKTRACE") {
    Ok(s) => s != "0",
    Err(_) => match env::var("RUST_BACKTRACE") {
        Ok(s) => s != "0",



448 CHAPTER 21 Continuing the tour
Err(_) => false,
    },
};

In other words, this code will still just print disabled backtrace even though we have
a RUST_BACKTRACE environment variable:

use std::backtrace::Backtrace;

fn main() {
    std::env::set_var("RUST_BACKTRACE", "0");
    println!("{:#?}", Backtrace::capture());
}

But anything else will print a backtrace at run time. This will work:

use std::backtrace::Backtrace;

fn main() {
    std::env::set_var("RUST_BACKTRACE", "1");
    println!("{}", Backtrace::capture());
}

Setting it to literally anything else will enable capturing a backtrace:

use std::backtrace::Backtrace;

fn main() {
std::env::set_var("RUST_BACKTRACE", "Hi I'm backtraceㅎㅎㅎ");

    println!("{}", Backtrace::capture());
}

Now that it is enabled, the output will look something like what we see in the follow-
ing example. (It will depend on your operating system, of course.) Here is what the
Playground displays:

   0: playground::main
     at ./src/main.rs:5:20

   1: core::ops::function::FnOnce::call_once
     at /rustc/d5a82bbd26e1ad8b7401f6a718a9c57c96905483/library

➥/core/src/ops/function.rs:507:5
   2: std::sys_common::backtrace::__rust_begin_short_backtrace

     at /rustc/d5a82bbd26e1ad8b7401f6a718a9c57c96905483/library/std/

➥src/sys_common/backtrace.rs:121:18
   3: std::rt::lang_start::{{closure}}

     at /rustc/d5a82bbd26e1ad8b7401f6a718a9c57c96905483/library/std/

➥src/rt.rs:166:18
   4: core::ops::function::impls::<impl core::ops::function::FnOnce<A> for

➥&F>::call_once
     at /rustc/d5a82bbd26e1ad8b7401f6a718a9c57c96905483/library

➥/core/src/ops/function.rs:606:13
   5: std::panicking::try::do_call

     at /rustc/d5a82bbd26e1ad8b7401f6a718a9c57c96905483/library/std

➥/src/panicking.rs:483:40



44921.3 Viewing backtraces
   6: std::panicking::try
     at /rustc/d5a82bbd26e1ad8b7401f6a718a9c57c96905483/library/std

➥/src/panicking.rs:447:19
   7: std::panic::catch_unwind

     at /rustc/d5a82bbd26e1ad8b7401f6a718a9c57c96905483/library/std

➥/src/panic.rs:137:14
   8: std::rt::lang_start_internal::{{closure}}

     at /rustc/d5a82bbd26e1ad8b7401f6a718a9c57c96905483/library/std

➥/src/rt.rs:148:48
   9: std::panicking::try::do_call

     at /rustc/d5a82bbd26e1ad8b7401f6a718a9c57c96905483/library/std

➥/src/panicking.rs:483:40
  10: std::panicking::try

     at /rustc/d5a82bbd26e1ad8b7401f6a718a9c57c96905483/library/std

➥/src/panicking.rs:447:19
  11: std::panic::catch_unwind

     at /rustc/d5a82bbd26e1ad8b7401f6a718a9c57c96905483/library/std

➥/src/panic.rs:137:14
  12: std::rt::lang_start_internal

     At /rustc/d5a82bbd26e1ad8b7401f6a718a9c57c96905483/library/std

➥/src/rt.rs:148:20
  13: std::rt::lang_start

     at /rustc/d5a82bbd26e1ad8b7401f6a718a9c57c96905483/library/std

➥/src/rt.rs:165:17
  14: main
  15: __libc_start_main
  16: _start

That was pretty easy. Now let’s finish up with an example that combines both a panic
hook and a backtrace. 

 The Backtrace struct also has a method called status() that returns an enum
called a BacktraceStatus. Instead of just printing out the Backtrace struct, we can
also match on the BacktraceStatus enum. The enum is quite simple but is interest-
ing for two reasons:

 It has the #[non_exhaustive] attribute, meaning that it may be added to later.
That means that you have to match on any extra possible variants after the
three listed in the enum, just in case new variants get added later on.

 One of the variants is Unsupported, since some architectures don’t support
backtraces:

#[non_exhaustive]
pub enum BacktraceStatus {
    Unsupported,
    Disabled,
    Captured,
}

Here is the example:

use std::{
    backtrace::{Backtrace, BacktraceStatus::*},



450 CHAPTER 21 Continuing the tour
    panic,
};

fn main() {
    panic::set_hook(Box::new(|_| {
        println!("Panicked! Trying to get a backtrace...");
        let backtrace = Backtrace::capture();    
        match backtrace.status() { 
            Disabled => println!("Backtrace isn't enabled, sorry"),
            Captured => println!("Here's the backtrace!!\n{backtrace}"),
            Unsupported => println!("No backtrace possible, sorry"),    
            // Do some database shutting down stuff 
        }
    }));

    std::env::set_var("RUST_BACKTRACE", "0");   
    panic!();
}

And the output is 

Panicked! Trying to get a backtrace...
Backtrace isn't enabled, sorry

Rust’s precise error handling means that backtraces aren’t used as much as backtraces
(also known as stack traces) in other languages because you don’t usually have to sift
through a backtrace to find out what has gone wrong in your code. But the option is
always there if you need the extra insight.

21.4 The standard library prelude
The prelude in the standard library is the reason why you don’t have to write things
like use std::vec::Vec to use a Vec or std::result::Result::Ok() instead of Ok().
You can see all the items in the documentation (http://mng.bz/2768) and will already
know almost all of them.

 There is an attribute called #![no_implicit_prelude] that disables the prelude.
Let’s give it a try and watch just how hard it becomes to write even the simplest of
code:

#![no_implicit_prelude]
fn main() {
    let my_vec = vec![8, 9, 10];
    let my_string = String::from("This won't work");
    println!("{my_vec:?}, {my_string}");
}

Now Rust has no idea what you are trying to do:

error: cannot find macro `println` in this scope
 --> src/main.rs:5:5
  |
5 |     println!("{:?}, {}", my_vec, my_string);
  |     ^^^^^^^

When a panic
happens,

we’ll try to
capture a

backtrace.

The code matches on the
BacktraceStatus enum to see

whether a backtrace has
been enabled.

It’s pretty rare to find
an architecture that
wouldn’t support a

backtrace, but if so, we
would see this message.Finally, we enable or

disable the backtrace.

http://mng.bz/2768


45121.5 Other macros
error: cannot find macro `vec` in this scope
 --> src/main.rs:3:18
  |
3 |     let my_vec = vec![8, 9, 10];
  |                  ^^^

error[E0433]: failed to resolve: use of undeclared type or module `String`
 --> src/main.rs:4:21
  |
4 |     let my_string = String::from("This won't work");
  |                     ^^^^^^ use of undeclared type or module `String`

error: aborting due to 3 previous errors

For this simple code, you need to tell Rust to use the extern (external) crate called
std and then the items you want. Here is everything we have to do just to create a Vec
and a String and print it:

#![no_implicit_prelude]

extern crate std;   
use std::convert::From;

fn main() {   
    let my_vec = std::vec![8, 9, 10];
    let my_string = std::string::String::from("This won't work");
    std::println!("{my_vec:?}, {my_string}");
}

Now it finally works, printing [8, 9, 10], This won't work. So you can see why Rust
has a prelude—it would be a horrible experience without it.

 You might be wondering why we haven’t see the extern keyword before. It’s
because you don’t need it that much anymore. Up until 2018, you had to use this
keyword when bringing in an external crate. So, to use rand in the past, you had to
write extern crate rand;, followed by use statements for whatever else you wanted
to bring into scope. But the Rust compiler doesn’t need this help anymore;
you can just use use, and it knows where to find it. So you almost never need extern
crate anymore. But in other people’s Rust code, you might still see it from time
to time.

21.5 Other macros
We are getting close to the next chapter, where we will learn to write our own macros.
But there are still quite a few macros inside the standard library that we haven’t taken
a look at yet, so let’s learn them first. As is the case with the other macros we have
used, they are all extremely easy to use and have a bit of a magical feel to them (until
we learn in the next chapter how they work internally, that is).  

We told Rust with #![no_implicit_prelude] 
that we won’t be bringing in anything from 
std, so we have to let the compiler know 
again that we will use it.

To write even this simple code, we need the 
vec! macro, String, From (to convert from a 
&str to a String), and println! to print.



452 CHAPTER 21 Continuing the tour
21.5.1 unreachable!

The unreachable! macro is kind of like todo! except it’s for code that will never be
executed. Maybe you have a match in an enum that you know will never choose one of
the arms, so the code can never be reached. If that’s so, you can write unreachable!
so the compiler knows that it can ignore that part.

 For example, let’s say you are using an external crate for a financial tool, and it
includes a big enum with all the major banks. We’re going to do a match on it, but as
we look at the list we notice something:

enum Bank {
    BankOfAmerica,
    Hsbc,
    Citigroup,
    DeutscheBank,
    TorontoDominionBank,
    SiliconValleyBank
    // And so on...
}

Silicon Valley Bank is no more! We are 100% sure that customers will never choose it,
so we don’t want to mark this variant as todo! or unimplemented!. We’re never going
to implement it. This is definitely a case for the unreachable! macro:

enum Bank {
    BankOfAmerica,
    Hsbc,
    Citigroup,
    DeutscheBank,
    TorontoDominionBank,
    SiliconValleyBank
    // And so on...
}

fn get_swift_code(bank: &Bank) -> &'static str {
    use Banks::*;
    match bank {

BankOfAmerica => "BOFAUS3N",
Hsbc => "HSBCHKHHXXX",
Citigroup => "CITIUS33XXX",
DeutscheBank => "DEUTINBBPBC",
TorontoDominionBank => "TDOMCATTTOR",
SiliconValleyBank => unreachable!()

    }
}

Another case for unreachable! is when the compiler can’t see something that we can.
The following example shows a function that gives a random number from 0 to 3 as a
usize, followed by another one called human_readable_rand_num() that gives a
human-readable version of the output: zero instead of 0, one instead of 1, and so on.
We are 100% certain that the function will never see any number that isn’t in the



45321.5 Other macros
range of 0..=3, but the compiler doesn’t know this. The unreachable! macro is per-
fect in this situation:

use rand::{thread_rng, Rng};

fn zero_to_three() -> usize {
    let mut rng = thread_rng();
    rng.gen_range(0..=3)
}

fn human_readable_rand_num() -> &'static str {
    match zero_to_three() {
        0 => "zero",
        1 => "one",
        2 => "two",
        3 => "three",
        _ => unreachable!(),
    }
}

unreachable! is nice for others reading your code as a reminder of how code works:
it’s an assertion that something will never happen. You have to be sure that the code is
actually unreachable, though. If the compiler ever calls unreachable!, the program
will panic. Just like todo!, the responsibility is on us to make sure that the macro is
never called.

 On a related note, you’ll see the word unreachable (not the macro unreachable!)
when the compiler can determine that some code will never be run. Here is a quick
example:

fn main() {
    let true_or_false = true;

    match true_or_false {
        true => println!("It's true"),
        false => println!("It's false"),
        true => println!("It's true"),
    }
}

Here, the compiler knows that the match will never reach the third line because it has
already checked for both of the possible patterns: true and false.

warning: unreachable pattern
 --> src/main.rs:7:9
  |
7 |         true => println!("It's true"),
  |         ^^^^
  |

You’ll see this “unreachable pattern” warning unexpectedly sometimes. The following
code creates an enum representing the four seasons and a function that matches on



454 CHAPTER 21 Continuing the tour
each season. Take a close look at the code and see whether you can tell why the com-
piler is going to warn us that there are unreachable parts of the code: 

pub enum Season {
    Spring,
    Summer,
    Autumn,
    Winter
}

pub fn handle_season(season: Season) {
    use Season::*;
    match season {

Spring => println!("Spring"),
summer => println!("Summer"),
Autumn => println!("Autumn"),
Winter => println!("Winter")

    }
}

Now let’s take a close look at the output:

warning: unreachable pattern
  --> src/lib.rs:13:9
   |
12 |         summer => println!("Summer"),
   |         ------ matches any value
13 |         Autumn => println!("Autumn"),
   |         ^^^^^^ unreachable pattern
   |
   = note: `#[warn(unreachable_patterns)]` on by default

warning: unreachable pattern
  --> src/lib.rs:14:9
   |
12 |         summer => println!("Summer"),
   |         ------ matches any value
13 |         Autumn => println!("Autumn"),
14 |         Winter => println!("Winter")
   |         ^^^^^^ unreachable pattern

Can you see it? We made a typo when we tried to match on Summer, writing summer
instead. Instead of matching on an enum variant, we created a wildcard variable called
summer that will match on anything. And since it matches on anything, the code will
never reach the Summer and Winter parts of the match statement.

21.5.2 column!, line!, file!, and module_path!

These four macros are incredibly easy and are just used to display the current location
in the code. Here they are together:

 column! gives you column number where the macro is called.
 file! gives the filename in which the macro is called.



45521.5 Other macros
 line! gives the line number in which the macro is called.
 module_path! gives the path to the module.

These can be useful when generating error input or even just to print out hints for
yourself that there are oddities to check out in the code. We’ll use the previous Bank
enum example again to illustrate this. In the following code, we are starting to put
some modules together to handle bank customers, and this time, we think there
might be some Silicon Valley Bank customers still somewhere in the system. Instead of
panicking, though, we’ll print out a warning and give the location in the code to make
it easy to find and devise a fix:

pub mod input_handling {

    pub struct User {
        pub name: String,
        pub bank: Bank,
    }

    #[derive(Debug, Clone, Copy)]
    pub enum Bank {
        BankOfAmerica,
        Hsbc,
        Citigroup,
        DeutscheBank,
        TorontoDominionBank,
        SiliconValleyBank,
    }

    pub mod user_input {
        use crate::input_handling::{Bank, User};
        pub fn handle_user_input(user: &User) -> Result<(), ()> {
            match user.bank {
                Bank::SiliconValleyBank => {
                    println!(
                        "Darn it, looks like we have to handle this variant
                         ➥even though Silicon Valley Bank doesn't exist
                         ➥anymore: {}:{}:{}:{}",
                        module_path!(),
                        file!(),
                        column!(),
                        line!()
                    );
                    Ok(())
                }
                other_bank => {
                    println!("{other_bank:?}, no problem");
                    Ok(())
                }
            }
        }
    }
}



456 CHAPTER 21 Continuing the tour
use crate::input_handling::{user_input::handle_user_input, Bank, User};

fn main() {
    let user = User {
        name: "SomeUser".to_string(),
        bank: Bank::SiliconValleyBank,
    };
    handle_user_input(&user).unwrap();

    let user2 = User {
        name: "SomeUser2".to_string(),
        bank: Bank::TorontoDominionBank,
    };
    handle_user_input(&user2).unwrap();
}

It prints

Darn it, looks like we have to handle this variant even though Silicon

➥Valley Bank doesn't exist anymore: playground::input_handling::user

➥_input:src/main.rs:25:28
TorontoDominionBank, no problem

21.5.3 thread_local!

This macro is similar to the lazy_static! macro that we saw in the lazy_static
crate, except that the global content is local to the thread in which it is contained. Or
rather, it might be more accurate to say that lazy_static! is similar to thread_
local! because thread_local! is much, much older—it was released along with Rust
version 1.0.0!

 In any case, when this macro is used, you can create a static that will have the
same initial value in every thread in which it is used. The value can then be accessed
with a method called .with() that gives access to the value inside within a closure.

 The easiest way to see how this works is with a simple example that compares it
with the lazy_static behavior that we already know. The following code contains
some test functions and should be run with cargo test -- --nocapture so that you
can see the output. Remember: each test runs on its own thread!

use std::cell::RefCell;
use std::sync::Mutex;

lazy_static::lazy_static! {
    static ref INITIAL_VALUE: Mutex<i32> = Mutex::new(10);   
}

thread_local! {
    static LOCAL_INITIAL_VALUE: RefCell<i32> = RefCell::new(10);  
}

This INITIAL_VALUE is accessible to
all threads. We have to wrap it in a

thread-safe Mutex or RwLock.

However, LOCAL_INITIAL_VALUE is a
static that is local to each thread—

no need for a Mutex! A regular
RefCell or Cell works just fine.



45721.5 Other macros
#[test]    
fn one() {
    let mut lock = INITIAL_VALUE.lock().unwrap();
    println!("Test 1. Global value is {lock}");

*lock += 1;
println!("Test 1. Global value is now {lock}");

    LOCAL_INITIAL_VALUE.with(|cell| {
let mut lock = cell.borrow_mut();
println!("Test 1. Local value is {lock:?}");
*lock += 1;
println!("Test 1. Local value is now {lock:?}\n");

    });
}

#[test]
fn two() {
    let mut lock = INITIAL_VALUE.lock().unwrap();
    println!("Test 2. Global value is {lock}");

*lock += 1;
println!("Test 2. Global value is now {lock}");

    LOCAL_INITIAL_VALUE.with(|cell| {
let mut lock = cell.borrow_mut();
println!("Test 2. Local value is {lock:?}");
*lock += 1;
println!("Test 2. Local value is now {lock:?}\n");

    });
}

#[test]
fn three() {
    let mut lock = INITIAL_VALUE.lock().unwrap();
    println!("Test 3. Global value is {lock}");

*lock += 1;
println!("Test 3. Global value is now {lock}");

    LOCAL_INITIAL_VALUE.with(|cell| {
let mut lock = cell.borrow_mut();
println!("Test 3. Local value is {lock:?}");
*lock += 1;
println!("Test 3. Local value is now {lock:?}\n");

    });
}

Each test is running on its own thread, so the order will always be different, but the
output will look something like this:

running 3 tests
Test 3. Global value is: 10
Test 3. Global value is now: 11
Test 3. Local value is 10
Test 3. Local value is now 11

Test 1. Global value is: 11
Test 1. Global value is now: 12

Now, we have three tests, each 
of which does the exact same 
thing. Each test increments 
INITIAL_VALUE by 1 and prints 
it and then increments 
LOCAL_INITIAL_VALUE by 1 
and prints it.



458 CHAPTER 21 Continuing the tour
Test 1. Local value is 10
Test 1. Local value is now 11

Test 2. Global value is: 12
Test 2. Global value is now: 13
Test 2. Local value is 10
Test 2. Local value is now 11

As you can see, by the end of all three tests, the INITIAL_VALUE (the global value) is
now 13. But the LOCAL_INITIAL_VALUE (the thread-local value) starts at 10 inside each
thread, and the other tests don’t affect it.

 If you check the documentation for LocalKey (the type created by the macro;
https://doc.rust-lang.org/std/thread/struct.LocalKey.html), you’ll see a lot of meth-
ods that look like the methods for Cell and RefCell. These methods were experimen-
tal for quite some time, but were stabilized shortly before the publication of this book
in Rust 1.73!

21.5.4 cfg!

We know that you can use attributes like #[cfg(test)] and #[cfg(windows)] to tell
the compiler what to do in certain cases. When you have the #[test] attribute, Rust
will run the code when running a test. And when you use windows, it will run the code
if the user is using Windows. But maybe you just want to change one tiny bit of code
depending on the configuration. That’s when this macro is useful. It returns a bool:

fn main() {
    let helpful_message = if cfg!(target_os = "windows") {
        "backslash"
    } else {
        "slash"
    };
    println!("...then type the directory name followed by a
    ➥{helpful_message}. Then you...");
} 

This will print differently, depending on your system. The Rust Playground runs on
Linux, so it will print

...then in your hard drive, type the directory name followed by a slash.

➥Then you...

The cfg! macro works for any kind of configuration. Here is an example of a function
that runs differently when you use it inside a test. We have a UserFile enum that can
hold either real data (a File) or test data (a String). If this code is run inside main(),
the open_file() function will open up the main.rs file and pass it on. If run inside a
test, though, it will simply create a dummy String and pass that on instead. Try run-
ning this code with Run and with Test in the Playground (or cargo run and cargo
test on your computer) to see the difference in behavior:

https://doc.rust-lang.org/std/thread/struct.LocalKey.html
https://doc.rust-lang.org/std/thread/struct.LocalKey.html


45921.5 Other macros
use std::fs::File;
use std::io::Read;

#[derive(Debug)]
enum UserFile {
    Real(File),
    Test(String),
}

fn open_file() -> UserFile {
    if cfg!(test) {

UserFile::Test(String::from("Just a test file"))
    } else {

UserFile::Real(File::open("src/main.rs").unwrap())
    }
}

fn get_file_content() -> String {
    let mut content = String::new();
    let file = open_file();
    match file {

UserFile::Real(mut f) => {
    f.read_to_string(&mut content).unwrap();
    content
}
UserFile::Test(s) => s,

    }
}

#[test]
fn test_file() {
    let content = get_file_content();
    println!("Content is: {content}");
    assert_eq!(content, "Just a test file");
}

fn main() {
    let content = get_file_content();
    println!("{content}");
} 

When this code is run with cargo run, it will print the entire content of the main.rs file,
but during a test with cargo test -- --nocapture, it will simply print the following:

running 1 test
Content: Just a test file
test test_file ... ok

Hopefully, you found this tour of the standard library relaxing and fruitful. There are
a lot of hidden gems in the standard library that even experienced Rust users haven’t
used before, so feel free to do your own tour and see what you can find. There are also
a lot of experimental methods that might be stabilized one day, so check the tracking
problems to see what work is being done if you find a method that you like in particular.



460 CHAPTER 21 Continuing the tour
And remember, experimental doesn’t mean unsafe! An experimental method is just a
method that might be stabilized one day or might be thrown out if it doesn’t make sense
to stabilize it.

 After these two relaxing chapters, there is only one difficult chapter left to go, and
it’s the next one: making your own macros!

Summary
 The functions in the std::mem module are really convenient for writing shorter

code and getting around lifetime problems.
 With a panic hook, you can create your own behavior when a panic happens.
 You can shrink your binary size a bit by setting the panic behavior to abort

instead of unwinding the stack.
 A backtrace is now easy to capture at run time without needing an external

crate to do it. You will probably see the backtrace crate in a lot of external
code, though, since the backtrace module is a recent addition to the standard
library.

 The cfg! macro is a quick way to write code that reacts differently depending
on the operating system or any other configuration.

 The thread_local! macro lets you create static values that don’t get shared
between threads.



Writing your own macros
It’s now time to learn how to write your own macros. Writing macros can be pretty
complicated, which is why they are here near the very end of the book. You very
rarely need to write them, but sometimes you might want to because they are very
convenient—they essentially write code for you. They have a syntax that is pretty
different from normal Rust, and they take some getting used to. Well, a lot of get-
ting used to.

 Indeed, the book Programming Rust (O’Reilly, 2021) finishes its chapter on mac-
ros with a conclusion that sums up the feeling pretty well: “Perhaps, having read all
this, you’ve decided that you hate macros.” Hopefully, that’s not the case with you,
but we’ll see! Macros offer a power that nothing else can, and they begin to feel
friendlier as you use them more and more. We'll start out with the case for macros
and why they even exist in the first place.

This chapter covers
 Why macros exist

 Understanding and writing basic macros

 Learning to read macros written by others

 Using macros to reduce code duplication
461



462 CHAPTER 22 Writing your own macros
22.1 Why macros exist
Macros are extremely common in Rust, as we have already noticed since the begin-
ning of the book. Even println! itself is a macro. But we haven’t learned yet about
what they are, besides mentioning in chapter 1 that a macro is like a function that
writes code for you. This is actually a more important point than it might seem: a
macro produces code before the compiler has even started looking at it.

 Back in chapter 16, we looked at const generics, which removed a lot of pain for
Rust users when it came to using arrays (and many other things). The chapter cites a
Reddit user back in 2018 before const generics was stabilized and how macros had to
be used instead:

By far the single biggest pain point is const_generics. It can’t be implemented and
stabilized fast enough. I wrote an elaborate system of macros to solve the issue for our
particular system. (http://mng.bz/eE8V)

So, for this user and his team, there was so much manual typing that needed to be
done that they had to resort to macros to solve the task. The team needed something
that takes some input from the user and produces code that the compiler can then
start looking at.

 For tasks like this, a regular function simply can’t get the job done. Imagine that
we need to create 100 structs. Each has a different name, and each has some parame-
ters that need names. If we tried to make a function to make these structs, we would
immediately run into problems, as the following example shows:

fn create_struct(struct_names: ???, struct_parameters: Vec<???>) -> ???? {
    struct struct_name {

struct_parameters.into_iter()???
    }
}

You can see the problem already. What is the type of struct_names? It can’t be a
String because a String is a Vec<u8>, which has memory allocated to it and later gets
dropped. And the parameters would be a Vec of what? But that doesn’t work either
because, once again, a Vec has memory allocated to it and is dropped. And what does
the function even return? Same problem. We have no way to just return a bunch of
code from a function.

 Everything we write inside a regular function lives inside the Rust compiler’s
world. There’s no way that anything we write inside this function would compile, and
in fact, we don’t even want it to compile: we want to generate something that can then
be compiled.

 The compiler wants to turn our code into machine code, but we don’t want the
compiler to evaluate what we are typing just yet. We need to take a step back before
the Rust compiler takes a look at the code. That’s what macros are for.

http://mng.bz/eE8V


46322.2 Writing basic macros
22.2 Writing basic macros
Interestingly enough, to write a macro in Rust you use a macro called macro_rules!.
After this, you add your macro name and open a {} block. Inside is sort of like a match
statement. 

 Here’s a macro that only takes ()and returns 6:

macro_rules! give_six {
    () => {
        6
    };
}

fn main() {
    let six = give_six!();
    println!("{}", six);
}

But it’s not the same as a match statement because nothing here is being checked and
compiled—the macro simply takes an input and gives an output. (Technically, it’s
called a token parser.) And only afterward the compiler checks to see whether it makes
sense.

 In fact, we can make a macro that doesn’t make any sense at all to prove that mac-
ros work before the compiler takes a look at any code. The following macro only takes
an output of Hi Calvin. and produces an interesting output:

macro_rules! pure_nonsense {
    (Hi Calvin.) => {
        GRITTINGS. MA NAM IS KAHLFIN. HEERYOR LUNBOKS. HOFFA GUT TAY ASKOOL.
    };
}

fn main() {
    
}

But if you hit Run, the code compiles! In fact, there isn’t any code because we haven’t
called the macro anywhere.

 Now, if we call the macro, that’s when we have a problem:

macro_rules! pure_nonsense {
    (Hi Calvin.) => {
        GRITTINGS. MA NAM IS KAHLFIN. HEERYOR LUNBOKS. HOFFA GUT TAY ASKOOL.
    };
}

fn main() {
    let x = pure_nonsense!(Hi Calvin.);
}

The compiler tells us that it has no idea what GRITTINGS is supposed to be and help-
fully lets us know that it’s probably the macro’s fault:



464 CHAPTER 22 Writing your own macros
error[E0425]: cannot find value `GRITTINGS` in this scope
 --> src/main.rs:3:9
  |
3 |         GRITTINGS. MA NAM IS KAHLFIN. HEERYOR LUNBOKS. HOFFA GUT TAY

➥ASKOOL.
|     ^^^^^^^^^ not found in this scope

...
8 |     let x = pure_nonsense!(Hi Calvin.);
  |             -------------------------- in this macro invocation
  |
  = note: this error originates in the macro `pure_nonsense` (in Nightly

➥builds, run with -Z macro-backtrace for more info)

A macro is only similar to a match statement in appearance. We know that a true match
statement needs to return the same type, so this won’t work:

fn main() {
    let my_number = 10;
    match my_number {

10 => println!("You got a ten"),
_ => 10,

    }
}

It will complain that you want to return () in one case and an i32 in the other:

error[E0308]: `match` arms have incompatible types
 --> src\main.rs:5:14
  |
3 | /     match my_number {
4 | |   10 => println!("You got a ten"),
  | |   ------------------------- this is found to be of type

➥`()`
5 | |   _ => 10,
  | |   ^^ expected `()`, found integer
6 | |     }
  | |_____- `match` arms have incompatible types

But as we saw previously, a macro has nothing to do with code compilation, so it is fine
with producing a completely different output from a different match arm. So, the fol-
lowing code works: 

macro_rules! six_or_print {
(6) => {

6
    };
    () => {

println!("You didn't give me 6.");
    };
}

fn main() {
    let my_number = six_or_print!(6);
    six_or_print!();
}



46522.2 Writing basic macros
This is just fine and prints You didn't give me 6.. Another way that we can see that a
macro is not a match statement is that there is no _ wildcard. We can only give it (6)
or (). Anything else will make an error. Let’s give the macro the input six_or_
print!(66) and see what the error looks like:

error: no rules expected the token `66`
  --> src/main.rs:11:35
   |
1  | macro_rules! six_or_print {
   | ------------------------- when calling this macro
...
11 |     let my_number = six_or_print!(66);
   |                                   ^^ no rules expected this token in
   ➥macro call
   |
note: while trying to match `6`
  --> src/main.rs:2:6
   |
2  |     (6) => {
   |      ^

You will see this no rules expected the token a lot when making your macros. 
 This is another interesting point: the 6 this macro can take as input isn’t even an

i32; it’s just the number 6—a token. A token doesn’t have to be just ascii or numbers
either:

macro_rules! might_print {
    (THis is strange input 하하はは哈哈 but it still works) => {
        println!("You guessed the secret message!")
    };
    () => {
        println!("You didn't guess it");
    };
}

fn main() {
    might_print!(THis is strange input 하하はは哈哈 but it still works);
    might_print!();
}

This macro only responds to two things: () and (THis is strange input 하하はは哈哈
but it still works). Nothing else. But the output is correct Rust code, so the code
above compiles, and we get the following output:

You guessed the secret message!
You didn't guess it

So, it’s pretty clear that a macro isn’t exactly Rust syntax. However, a macro doesn’t
just match on raw tokens and nothing else. It can also do something similar to declar-
ing variables in regular Rust code if you indicate what type of token it can expect to
see. For example, you can tell a macro that it will receive an expression, a type name, an



466 CHAPTER 22 Writing your own macros
identifier, and so on. (We will learn what all of these mean shortly.) Here is a simple
example of a macro that expects an expression:

macro_rules! might_print {
    ($input:expr) => {
        println!("You gave me: {}", $input);
    }
}

fn main() {
    might_print!(6);
}

This will print You gave me: 6. The $input:expr part is important. With this, you can
give the macro any expression, which can then be used inside the macro code block
with any name we choose, which, in this case, we decided to call $input. In macros,
variables (technically, they are called arguments) start with a $. In this macro, if you
give it one expression, it will print it. Let’s try it out some more using Debug print
instead of Display:

macro_rules! might_print {
    ($input:expr) => {
        println!("You gave me: {:?}", $input);
    }
}

fn main() {
    might_print!(());
    might_print!(6);
    might_print!(vec![8, 9, 7, 10]);
}

This will print

You gave me: ()
You gave me: 6
You gave me: [8, 9, 7, 10]

Note that we wrote {:?}, but the macro won’t check to see whether &input imple-
ments Debug. Fortunately, the compiler will check when we try to compile the code
that includes the macro output. 

 We can see that the macro is parsing as expected if we tell it to expect an expres-
sion but give it a statement:

macro_rules! wants_expression {
    ($input:expr) => {
        println!("You matched the macro input!");
    };
}

fn main() {
    wants_expression!(let x = 9);
}



46722.2 Writing basic macros
The error output shows us clearly that it looked at the input but didn’t find a match
from what it expected to see:

error: no rules expected the token `let`
 --> src/main.rs:8:23
  |
1 | macro_rules! wants_expression {
  | ----------------------------- when calling this macro
...
8 |     wants_expression!(let x = 9);
  |                       ^^^ no rules expected this token in macro call
note: while trying to match meta-variable `$input:expr`
 --> src/main.rs:2:6
  |
2 |     ($input:expr) => {
  |      ^^^^^^^^^^^

But if we now tell it to expect a statement and give it the same input, it will match:

macro_rules! wants_statement {
    ($input:stmt) => {   
        println!("You matched the macro input!");
    };
}

fn main() {
    wants_statement!(let x = 9);
}

So what can a macro see besides expr and stmt? Here is the full list—give it a read, but
don’t worry about memorizing it:

block | expr | ident | item | lifetime | literal  | meta | pat | path 

➥| stmt | tt | ty | vis. 

NOTE The words in the list are officially known as fragment specifiers. But you
don’t need to know that to understand and write macros.

This is the complicated part. The documentation explains what each fragment specifi-
cer means (http://mng.bz/Rmwj). Let’s go over them quickly:

 block—A block expression inside {}
 expr—An expression
 ident—An identifier, such as a variable name
 item—A struct, module, etc.
 lifetime—'a, 'static, etc.
 literal—"hello", 9, etc
 meta—The information that goes inside attributes
 pat—A path (like std::vec::Vec)
 stmt—A statement (like let x = 9), without the semicolon
 tt—A token tree, which matches almost anything

We change expr to stmt, 
instructing the macro to 
expect a statement.

http://mng.bz/Rmwj


468 CHAPTER 22 Writing your own macros
 ty—A type name
 vis—A visibility modifier like pub

There is another good site called cheats.rs (https://cheats.rs/#macros-attributes) that
explains them and gives examples for each.

 However, for most macros, you will probably use expr, ident, and tt. tt means
token tree, which sort of means any type of input. Let’s try a simple macro with a sim-
ple macro using two of them:

macro_rules! check {
    ($input1:ident, $input2:expr) => {
        println!(
            "Is {:?} equal to {:?}? {:?}",
            $input1,
            $input2,
            $input1 == $input2
        );
    };
}

fn main() {
    let x = 6;
    let my_vec = vec![7, 8, 9];
    check!(x, 6);
    check!(my_vec, vec![7, 8, 9]);
    check!(x, 10);
}

This will take one ident (such as a variable name) and an expression and see whether
they are the same. It prints

Is 6 equal to 6? true
Is [7, 8, 9] equal to [7, 8, 9]? true
Is 6 equal to 10? false

Here’s one macro that takes a tt and prints it. It uses a macro called stringify! to
make a string first:

macro_rules! print_anything {
    ($input:tt) => {
        let output = stringify!($input);
        println!("{}", output);
    };
}

fn main() {
    print_anything!(ththdoetd);
    print_anything!(87575oehq75onth);
}

This prints

ththdoetd
87575oehq75onth

https://cheats.rs/#macros-attributes


46922.2 Writing basic macros
But it won’t print if we give it something with spaces, commas, etc. The macro will think
that we are giving it more than one token or extra information and will get confused.

 This is where macros start to get difficult. To give a macro more than one item at a
time, we have to use a different syntax. Instead of $input, it will be $($input1),*. The
* means “zero or more,” while the comma before the * means that the tokens have to
be separated by commas. If you want to match on one or more tokens, use + instead of *.

 Now our macro looks like this:

macro_rules! print_anything {
    ($($input1:tt),*) => {
        let output = stringify!($($input1),*);
        println!("{}", output);
    };
}

fn main() {
    print_anything!(ththdoetd, rcofe);
    print_anything!();
    print_anything!(87575oehq75onth, ntohe, 987987o, 097);
}

So it takes any token tree separated by commas and uses stringify! to make it into a
String. Then it prints the String:

ththdoetd, rcofe

87575oehq75onth, ntohe, 987987o, 097

If we used + instead of *, it would give an error because one time we gave it no input.
So * is a bit more flexible. Also, try changing the comma in ($($input1:tt),*) to a
semicolon to see what happens. The macro will generate an error, but only because it
is expecting the tokens we give it to be separated by a semicolon now. So, if we change
the way we call this macro by entering semicolons instead of commas, it will compile
again:

macro_rules! print_anything {
    ($($input1:tt);*) => {   
        let output = stringify!($($input1),*);
        println!("{}", output);
    };
}

fn main() {
    print_anything!(ththdoetd; rcofe);    
    print_anything!();
    print_anything!(87575oehq75onth; ntohe; 987987o; 097);
}

In this next example, we will make a macro that writes a simple function for us. First, it
will match on a single identifier using $name:ident, after which it checks for repeat-
ing tokens using $($input:tt),+ and then prints them all out:

The only difference between the macro 
now and before is that it expects tokens 
to be separated by a semicolon.

If we change the commas to 
semicolons here, it will 
accept our input as before.



470 CHAPTER 22 Writing your own macros

e

macro_rules! make_a_function {
    ($name:ident, $($input:tt),+) => {  
        fn $name() {
            let output = stringify!($($input),+);    
            println!("{}", output);
        }
    };
}

fn main() {
    make_a_function!(print_it, 5, 5, 6, I);    
    print_it();
    make_a_function!(say_its_nice, this, is, really, nice);    
    say_its_nice();
}

This prints

5, 5, 6, I
this, is, really, nice

In chapter 19, we learned that the Rust Playground has an Expand button that
expands macros to show us the actual generated output. Let’s click on that to see what
the functions. The relevant part is here:

macro_rules! make_a_function {
    ($name:ident, $($input:tt),+) => {    
        fn $name() {
            let output = stringify!($($input),+); 
            println!("{}", output);
        }
    };
}

fn main() {
    fn print_it() {   
        let output = "5, 5, 6, I";   
        { ::std::io::_print(format_args!("{0}\n", output)); };    
    }
    print_it();    
    fn say_its_nice() {
        let output = "this, is, really, nice";
        { ::std::io::_print(format_args!("{0}\n", output)); };
    }
    say_its_nice();
}

22.3 Reading macros from the standard library
Let’s use what we know now to see whether we can understand other macros. Some of
the macros we’ve already been using in the standard library are pretty simple to read.
Let’s take a look at the write! macro that we used in chapter 18:

macro_rules! write {
    ($dst:expr, $($arg:tt)*) => ($dst.write_fmt($crate::format_args!($($arg)*)))
}

First, you give it one name for 
the function, and then it checks 
the rest of the input until there 
are no tokens left to check.

It makes
verything else
into a string.

We want a function called 
print_it() that prints 
everything else we give it.

Same here, but 
we change the 
function name.

The macro matched on a single identifier
here called print_it, which it uses for the
name of the function it generates. As you
can see, it looks like any other function.

Next, it looks at the
remaining tokens

(separated by commas)
and stringifies them

on this line.

Finally, it prints them out.
This part is a bit ugly as it
shows the internals of the

println! macro.

Since the function exists in this 
scope we can call it here.



47122.3 Reading macros from the standard library
So, to use it, you enter this:

 An expression (expr) that is given the name $dst.
 Everything after that. If the macro had written $arg:tt, it would have only

taken one argument, but because it wrote $($arg:tt)*, it takes zero, one, or
any number.

Then it takes $dst (which stands for “destination”) and uses a method called
write_fmt on it. Inside that, it uses another macro called format_args! that takes
$($arg)*, or all the arguments we put in, and passes them on to another macro. The
format_args! macro is used internally quite a bit:

macro_rules! format_args {
    ($fmt:expr) => {{ /* compiler built-in */ }};
    ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
}

Unfortunately, this macro uses “compiler magic” to work so we can’t look any deeper
than this. The standard library has a lot of macros with this /* compiler built-in */
message. But, in any case, format_args! is an internal macro that allows us to use {}
to capture arguments and format them.

 Now let’s take a look at the todo! macro. That’s the one you use when you want
the program to compile but haven’t written your code yet. It looks like this:

macro_rules! todo {
    () => (panic!("not yet implemented"));
    ($($arg:tt)+) => (panic!("not yet implemented: {}", 

$crate::format_args!($($arg)+)));
}

This one has two options: you can enter () or a number of token trees (tt):

 If you enter (), it just uses panic! with a message. So you could actually just write
panic!("not yet implemented") instead of todo! and it would be the same.

 If you enter some arguments, it will try to make them into a String. You can see
the same format_args! macro inside again.

Having read the code for todo!, we can now see that this macro can take the same for-
mat we use for the println! macro. Let’s give that a try:

 If you write this, it will work, too:

fn not_done() {
    let time = 8;
    let reason = "lack of time";
    todo!("Not done yet because of {reason}. Check back in {time} hours");
}

fn main() {
    not_done();
}

This will print

thread 'main' panicked at 'not yet implemented: Not done yet because of

➥lack of time. Check back in 8 hours', src/main.rs:4:5



472 CHAPTER 22 Writing your own macros
So, even if a macro is complex or obscure, we can at least take a look at the possible
inputs it can take to get an idea of how to use it.

 One interesting thing about macros is that they can even call themselves! Let’s give
this a try. See whether you can guess what the output will be for this macro:

macro_rules! my_macro {
    () => {
        println!("Let's print this.");
    };
    ($input:expr) => {
        my_macro!();
    };
    ($($input:expr),*) => {
        my_macro!();
    }
}

fn main() {
    my_macro!(vec![8, 9, 0]);
    my_macro!(toheteh);
    my_macro!(8, 7, 0, 10);
    my_macro!();
}

This one takes (), one expression, or many expressions. But take a look at what hap-
pens when it receives an expression: it ignores it and calls itself with my_macro!().
And when my_macro! gets the input (), it will print a message. So the output for the
previous code is Let's print this, four times.

 You can see the same thing in the dbg! macro, which also calls itself:

macro_rules! dbg {
    () => {
        $crate::eprintln!("[{}:{}]", $crate::file!(), $crate::line!());
    };
    ($val:expr) => {
        match $val {
            tmp => {
                $crate::eprintln!("[{}:{}] {} = {:#?}",
                    $crate::file!(), $crate::line!(), 

$crate::stringify!($val), &tmp);
                tmp
            }
        }
    };
    ($val:expr,) => { $crate::dbg!($val) };
    ($($val:expr),+ $(,)?) => {
        ($($crate::dbg!($val)),+,)
    };
}

We can try this out ourselves:

fn main() {
    dbg!();
}



47322.3 Reading macros from the standard library
With no particular input, it matches the first arm:

    () => {
        $crate::eprintln!("[{}:{}]", $crate::file!(), $crate::line!());
    };

So, it will print the filename and line name with the file! and line! macros. On the
Playground, it prints [src/main.rs:2].

 Let’s try it with this:

fn main() {
    dbg!(vec![8, 9, 10]);
}

This will match the next arm because it’s one expression:

    ($val:expr) => {
        match $val {
            tmp => {
                $crate::eprintln!("[{}:{}] {} = {:#?}",
                    $crate::file!(), $crate::line!(), $crate::stringify!
                    ➥($val), &tmp);
                tmp
            }
        }
    };

So, it looks like the macro grabs the expression given to it, prints the filename and
line number, stringifies the tokens making up the expression, and then prints out the
expression itself. For our input, it will write this:

[src/main.rs:2] vec![8, 9, 10] = [
    8,
    9,
    10,
]

And for other inputs, we can see that it calls dbg! on itself, even if you put in an extra
comma. We know a trailing comma is allowed because of the the $(,)? inside.

 Hold on, how exactly does $(,)? mean that there might be a trailing comma?
Let’s break it down bit by bit. First is the ?, which is the third of the three repetition
operators that can be used in a macro. We already know two of them, so let’s summa-
rize them together:

 Use * to signify any number of repetitions.
 Use + to signify any number of repetitions (but at least one).
 Use ? to signify zero or one occurrence.

A ? inside a macro is sort of like an Option in regular Rust code. In this case, the dbg!
macro allows a match to happen when there is a trailing comma but doesn’t do any-
thing with it.



474 CHAPTER 22 Writing your own macros
 We can practice this with our own macro:

macro_rules! comma_check {
    () => {
        println!("Got nothing!");
    };
    ($input:expr) => {
        println!("One expression!")
    };
    ($input:expr $(,)?) => {
        println!("One expression with a comma at the end!")
    };
    ($input:expr $(,)? $(,)?) => {
        println!("One expression with two commas at the end!")
    };
    ($input:expr $(;)? $(,)?) => {
        println!("One expression with a semicolon and a comma!")
    };
}

fn main() {
    comma_check!();
    comma_check!(8);
    comma_check!(8,);
    comma_check!(8,,);
    comma_check!(8;,);
}

Not too hard to read, is it? Here is the output:

Got nothing!
One expression!
One expression with a comma at the end!
One expression with two commas at the end!
One expression with a semicolon and a comma!

Now let’s finish by looking at the matches! macro, which uses the ? operator quite a
bit. This macro is used somewhat frequently in Rust, but we haven’t seen it yet in this
book. Let’s look at the code first to see whether we can figure it out:

macro_rules! matches {
    ($expression:expr, $pattern:pat $(if $guard:expr)? $(,)?) => {
        match $expression {
            $pattern $(if $guard)? => true,
            _ => false
        }
    };
}

It looks like it takes an expression and a pattern and matches the expression against
the pattern. After that, it has two optional items, but since they are optional, let’s
remove them for a moment to make it really easy to read:

macro_rules! matches {
    ($expression:expr, $pattern:pat) => {



47522.4 Using macros to keep your code clean
        match $expression {
            $pattern => true,
            _ => false
        }
    };
}

Okay, let’s match a few expressions against a few patterns:

fn main() {
    println!("{}", matches!(9, 9));
    println!("{}", matches!(9, 0..=10));
    println!("{}", matches!(9, 100..=1000));
}

Easy! This prints true, true, and false.
 Now let’s look at the optional items again. The one at the end is $(,)?, which

allows a trailing comma. This code will work and produce the same output:

fn main() {
    println!("{}", matches!(9, 9,));
    println!("{}", matches!(9, 0..=10,));
    println!("{}", matches!(9, 100..=1000,));
}

Finally comes the other optional item:

$(if $guard:expr)?

This lets us add an if clause and an expression. It calls this expression $guard and
uses it as follows:

$pattern $(if $guard)? => true,

Let’s give this a quick try:

const ALLOWS_TRUE: bool = false;

fn main() {
    println!("{}", matches!(9, 9 if ALLOWS_TRUE));
}

This code will output false even though 9 matches 9 because the guard returns
false.

 Hopefully, this has made macros a bit less intimidating. To finish up, let’s look at a
small yet more real example of where a macro might come in handy. 

22.4 Using macros to keep your code clean
Let’s imagine that we have three structs that hold a String. One should be able to
hold only small Strings, the next should be able to hold medium-sized Strings, and
the last should be able to hold larger ones. Here they are:



476 CHAPTER 22 Writing your own macros
struct SmallStringHolder(String);
struct MediumStringHolder(String);
struct LargeStringHolder(String);

The best way to make sure that these types take a String that is small enough is to use
the TryFrom trait. We’ll start with SmallStringHolder and make sure that it can only
accept a String that is up to five characters in length:

#[derive(Debug)]
struct SmallStringHolder(String);
#[derive(Debug)]
struct MediumStringHolder(String);
#[derive(Debug)]
struct LargeStringHolder(String);

impl TryFrom<&str> for SmallStringHolder {
    type Error = &'static str;

    fn try_from(value: &str) -> Result<Self, Self::Error> {
        if value.chars().count() > 5 {
            Err("Must be no longer than 5")
        } else {
            Ok(Self(value.to_string()))
        }
    }
}

fn main() {
    println!("{:?}", SmallStringHolder::try_from("Hello"));
    println!("{:?}", SmallStringHolder::try_from("Hello there"));
}

This works well! Here is the output:

Ok(SmallStringHolder("Hello"))
Err("Must be no longer than 5")

Now, it’s time to do the same for the others. But hold on, this is going to be a lot of
repetitive code. This is where you might begin to feel the temptation to use a macro.
In this case, a simple macro is pretty easy. We’ll take a type name and a length and
implement the trait:

macro_rules! derive_try_from {
    ($type:ident, $length:expr) => {
        impl TryFrom<&str> for $type {
            type Error = String;   

            fn try_from(value: &str) -> Result<Self, Self::Error> {
                let length = $length;   

We change the error type from 
&str to String because we want to 
format the error message now.

The format! macro won’t recognize {$length} (that’s macro syntax, not
regular Rust syntax), so here we declare a variable called length that is equal
to $length. Now, we can put this into format!, and it will recognize the length.



47722.4 Using macros to keep your code clean
                if value.chars().count() > length {
                    Err(format!("Must be no longer than {length}"))
                } else {
                    Ok(Self(value.to_string()))
                }
            }
        }
    };
}

Now we are able to implement TryFrom for all three types without having to repeat
ourselves over and over. The code now looks like this:

macro_rules! derive_try_from {
    ($type:ident, $length:expr) => {
        impl TryFrom<&str> for $type {
            type Error = String;

            fn try_from(value: &str) -> Result<Self, Self::Error> {
                let length = $length;
                if value.chars().count() > length {
                    Err(format!("Must be no longer than {length}"))
                } else {
                    Ok(Self(value.to_string()))
                }
            }
        }
    };
}

#[derive(Debug)]
struct SmallStringHolder(String);
#[derive(Debug)]
struct MediumStringHolder(String);
#[derive(Debug)]
struct LargeStringHolder(String);

derive_try_from!(SmallStringHolder, 5);
derive_try_from!(MediumStringHolder, 8);
derive_try_from!(LargeStringHolder, 12);

fn main() {
    println!("{:?}", SmallStringHolder::try_from("Hello there"));
    println!("{:?}", MediumStringHolder::try_from("Hello there"));
    println!("{:?}", LargeStringHolder::try_from("Hello there"));
}

The code works and the output is

Err("Must be no longer than 5")
Err("Must be no longer than 8")
Ok(LargeStringHolder("Hello there"))

Since we are using a macro, why stop here? We can declare the types themselves inside
the macro, too. Now we can shrink the code some more:



478 CHAPTER 22 Writing your own macros
macro_rules! make_type {
    ($type:ident, $length:expr) => {

#[derive(Debug)]
struct $type(String);   

impl TryFrom<&str> for $type {
    type Error = String;

    fn try_from(value: &str) -> Result<Self, Self::Error> {
let length = $length;
if value.chars().count() > length {

Err(format!("Must be no longer than {length}"))
} else {

Ok(Self(value.to_string()))
}

    }
}

    };
}

make_type!(SmallStringHolder, 5);
make_type!(MediumStringHolder, 8);
make_type!(LargeStringHolder, 12);

fn main() {
    println!("{:?}", SmallStringHolder::try_from("Hello there"));
    println!("{:?}", MediumStringHolder::try_from("Hello there"));
    println!("{:?}", LargeStringHolder::try_from("Hello there"));
}

If you are feeling up for a challenge, take a look at chapter 16 again, where we looked
at const generics. If Rust didn’t have const generics, how would you use a macro to
build an array of various sizes and implement some traits like TryFrom or Display for
each?

#[derive(Debug)]
struct Buffers<T, const N: usize> {
    array_one: [T; N],
    array_two: [T; N],
}

fn main() {
    let buffer_1 = Buffers {

array_one: [0u8; 3],
array_two: [0; 3],

    };

    let buffer_2 = Buffers {
array_one: [0i32; 4],
array_two: [10; 4],

    };
}

As you can see, macros are pretty complicated! Usually, you only want a macro to auto-
matically do something that a simple function can’t do very well. The best way to learn

Now, we declare the types themselves inside the 
macro, so derive_try_from! will both create the 
types and implement TryFrom for them.



479Summary
about macros is to look at other macro examples until you get used to the syntax and
try modifying them on your own. Macros are frequently used but rarely written, so
very few people can sit down and write a complicated macro that works on the first try.
Hopefully, this chapter has gotten you comfortable enough with them that you might
want to start trying them on your own.

 We have now reached the very last section of the book called “Unfinished Proj-
ects,” which starts in the next chapter. Over the next two chapters, we will take a look
at six small projects that work on their own but that you will probably want to expand
yourself. See you there!

Summary
 Macros are used a lot but rarely written. Very few people are macro experts, but

learning to read them is important.
 A macro can take any input, but if you tell the macro the kind of input (an

expression, statement, etc.), you can give the input a name and use it in a simi-
lar way to a variable.

 Macros can call other macros and even call themselves.
 A lot of the macros in the standard library are built into the compiler, and their

details can’t be seen.
 Most people turn to macros for the first time to save time and reduce code

duplication.



Unfinished projects:
Projects for you to finish
You made it to the last part of the book, well done! J.R.R. Tolkien, the author of
Lord of the Rings, wrote quite a few stories that he never finished during his lifetime.
These were completed by his son and published under the name Unfinished Tales.

 These last two chapters are a sort of Unfinished Tales for you, the developer, to
pick up and develop on your own. Each chapter contains three unfinished projects
for you to pick up yourself and keep developing. They are finished in the sense that
they all work: you can just type cargo run and start using them. But they are meant
to be as short as possible, and that means they only have the most basic functional-
ity. After that, it’s up to you to keep working on them if you feel like it.

 These two chapters also use quite a few new crates because the crates used for
command-line interfaces (CLIs) and graphical user interfaces (GUIs) are best

This chapter covers
 Making a typing tutor

 Making a Wikipedia article searcher

 Making a clock and stopwatch
480



48123.2 Typing tutor
learned through real use on a computer. The crates used in this chapter won’t work
on the Playground because they require access to system resources and the ability to
do things like take user input in real time and open new windows.

23.1 Setup for the last two chapters
Each of the working code samples for these six unfinished projects will be about 75 to
100 lines long. While short, that’s still a bit too long for us to look at the entire code
every time a new line is added. Instead, the code development will be divided into
four steps:

 In step 1, we will set up the project and write some code. 
 Step 2 will involve developing the code and will have most of the work. 
 Step 3 will finish up with some further development and cleanup of the code. 
 Finally, step 4 will contain some ideas for you to develop the projects further.

23.2 Typing tutor
The first unfinished project is a typing tutor. It takes a text file and displays it, and the
user’s job is to type the text that is displayed. The user will be able to see where the
text has been typed wrong, and the typing tutor will display how well the user did after
the test is over. You can do a search for “typing test” online to see what sort of func-
tionality this small app will aim for.

23.2.1 Setup and first code

This first project uses Crossterm (https://docs.rs/crossterm/latest/crossterm/), a
crate that lets you detect and react to user input as it happens. The user input that
Crossterm lets you see includes keyboard, mouse, screen resizing, and more, but we
only need to monitor the keyboard input. Another nice thing about Crossterm is its
size, as it only brings in 22 dependencies and will compile in just a few seconds.

 The name Crossterm, by the way, comes from the fact that Rust crates used to be
built almost exclusively for Unix/Linux back when the language was still small. Cross-
term was the first terminal library that was a crossover, containing support for both
Unix and Windows.

 The dependencies for this project are pretty simple. Just add this to your
Cargo.toml file:

[dependencies]
crossterm = "0.26.1"

Crossterm has a function called read() that is used to see user input, so let’s put it in a
loop and see what happens. Try running this code and typing Hi!:

use crossterm::event::read;

fn main() {
    loop {

https://docs.rs/crossterm/latest/crossterm/


482 CHAPTER 23 Unfinished projects: Projects for you to finish
println!("{:?}", read().unwrap());
    }
}

The output includes both pressing keys and releasing keys, so it will depend somewhat
on how you type, but it will probably look something like this:

Key(KeyEvent { code: Char('H'), modifiers: SHIFT, kind: Press, state: NONE

➥})
Key(KeyEvent { code: Char('i'), modifiers: NONE, kind: Press, state: NONE

➥})
Key(KeyEvent { code: Char('h'), modifiers: NONE, kind: Release, state: NONE

➥})
Key(KeyEvent { code: Char('i'), modifiers: NONE, kind: Release, state: NONE

➥})
Key(KeyEvent { code: Char('!'), modifiers: SHIFT, kind: Press, state: NONE

➥})
Key(KeyEvent { code: Char('1'), modifiers: NONE, kind: Release, state: NONE

➥})

Here, the user pressed 'H' with shift, then pressed 'i'. Then the user released 'h'
(no shift anymore), then released 'i', then pressed '!', and then released '1' (that
is, the ! but without the shift).

 If you type more slowly and deliberately, it will look like this:

Key(KeyEvent { code: Char('H'), modifiers: SHIFT, kind: Press, state: NONE

➥})
Key(KeyEvent { code: Char('h'), modifiers: NONE, kind: Release, state: NONE

➥})
Key(KeyEvent { code: Char('i'), modifiers: NONE, kind: Press, state: NONE

➥})
Key(KeyEvent { code: Char('i'), modifiers: NONE, kind: Release, state: NONE

➥})
Key(KeyEvent { code: Char('!'), modifiers: SHIFT, kind: Press, state: NONE

➥})

23.2.2 Developing the code

A look through the documentation shows that Key seen in the previous output comes
from an enum called Event, which includes events such as Key, Mouse, and Resize:

pub enum Event {
    FocusGained,
    FocusLost,
    Key(KeyEvent),
    Mouse(MouseEvent),
    Paste(String),
    Resize(u16, u16),
}

We only care about Key events, so we can use an if let to react to Key events and
ignore the rest.

 The Key variant inside Event contains a KeyEvent struct:



48323.2 Typing tutor
pub struct KeyEvent {
    pub code: KeyCode,
    pub modifiers: KeyModifiers,
    pub kind: KeyEventKind,
    pub state: KeyEventState,
}

Let’s see which parameters in the KeyEvent struct we care about:

 code—This contains information on which key was pressed. We definitely want
to use this to .push() to or .pop() to our String, which keeps track of what the
user has typed so far.

 modifiers—This refers to whether the user is pressing keys such as Shift,
CTRL, and so on. But the code parameter gives us the correct capital or lower-
case character on its own, so we don’t need to think about modifiers.

 kind—We definitely care about kind because KeyEventKind includes Press and
Release. We don’t want to add or pop every time the character releases a key, just
when the user presses one.

 state—This parameter holds a lot of extra possible state information (like
whether caps lock is on) that we don’t need to worry about.

Now it’s time to pull in a file for the user to try to type. Make a file called typing.txt
and put some text—any text—in there. For our output, we’ll assume that the file says
"Hi, can you type this?". We can use the read_to_string() function that we
learned in chapter 18 to read the file and put the contents into a String, and we’ll
make a String called user_input that holds everything the user has typed. And then
we’ll print out both Strings one after another. The code is now as follows:

use crossterm::{
    event::{read, Event, KeyCode, KeyEventKind},
};
use std::fs::read_to_string;

fn main() {
    let file_content = read_to_string("typing.txt").unwrap();
    let mut user_input = String::new();

    loop {
        println!("{file_content}");
        println!("{user_input}_");   
        if let Event::Key(key_event) = read().unwrap() {
            if key_event.kind == KeyEventKind::Press {
                match key_event.code {
                    KeyCode::Backspace => {
                        user_input.pop();
                    }
                    KeyCode::Esc => break,    
                    KeyCode::Char(c) => {
                        user_input.push(c);
                    }

The underscore shows the 
user where the cursor is.

This allows the user to 
escape the program without 
having to do an ugly Ctrl-C.



484 CHAPTER 23 Unfinished projects: Projects for you to finish
                    _ => {}
                }
            }
        }
    }
}

The output looks pretty good! As the user types away, the String to type against and
the current input are both showing up. The output now looks like this as you type:

Hi, can you type this?
_
Hi, can you type this?
H_
Hi, can you type this?
Hi_
Hi, can you type this?
Hi_
Hi, can you type this?
Hi_
Hi, can you type this?
Hi,_
Hi, can you type this?
Hi,_
Hi, can you type this?
Hi, _
Hi, can you type this?
Hi, _
Hi, can you type this?
Hi, c_

So far, so good, but the output quickly fills up the screen and makes it look messy
pretty quickly. And you can probably imagine how much worse it would look if we had
to type a longer text. Let’s do something about that!

23.2.3 Further development and cleanup

The next steps are as follows:

1 We want to clear the screen each time a key is pressed. Crossterm has a macro
called execute! that takes a writer (like stdout) and a command. Crossterm
commands are simple structs named after what they do: Clear, ScrollDown,
SetSize, SetTitle, EnableLineWrap, and so on. We will use Clear, which holds
an enum called ClearType that offers a number of ways to clear the screen. We
want to clear the whole screen, so we will pass in a Clear(ClearType::All).
Putting all this together, the whole line will look like this: 

execute!(stdout(), Clear(ClearType::All));

2 Instead of just printing out the user input, we can use what we learned in chap-
ter 8 to .zip() together an iterator of the content to type and another iterator
of the user’s output. With that, we can compare each character against the



48523.2 Typing tutor
other. If they are the same, we will print out the letter, and if they are different
(in other words, if the user types the wrong key), we will print out a * instead.

3 We can calculate the letters typed correctly when the user presses enter to finish
the typing test. This is pretty easy and involves another .zip() as previously
discussed.

4 We can replace some .unwrap() calls with the question mark operator. 
5 Finally, we’ll put together a quick App struct that will hold the two strings. This

will make main() a bit nicer to read.

The final code is as follows:

use crossterm::{
    event::{read, Event, KeyCode, KeyEventKind},
    execute,
    terminal::{Clear, ClearType},
};
use std::{fs::read_to_string, io::stdout};

struct App {
    file_content: String,
    user_input: String,
}

impl App {
    fn new(file_name: &str) -> Result<Self, std::io::Error> {

let file_content = read_to_string(file_name)?;
Ok(Self {
    file_content,
    user_input: String::new(),
})

    }
}

fn main() -> Result<(), std::io::Error> {
    let mut app = App::new("typing.txt")?;

    loop {
println!("{}", app.file_content);
for (letter1, letter2) in 

app.user_input.chars().zip(app.file_content.chars()) {
    if letter1 == letter2 {

print!("{letter2}");
    } else {

print!("*");
    }
}
println!("_");
if let Event::Key(key_event) = read()? {
    if key_event.kind == KeyEventKind::Press {

match key_event.code {
KeyCode::Backspace => {

app.user_input.pop();
}



486 CHAPTER 23 Unfinished projects: Projects for you to finish
                    KeyCode::Esc => break,
                    KeyCode::Char(c) => {
                        app.user_input.push(c);
                    }
                    KeyCode::Enter => {
                        let total_chars = app.file_content.chars().count();
                        let total_right = app
                            .user_input
                            .chars()
                            .zip(app.file_content.chars())
                            .filter(|(a, b)| a == b)
                            .count();
                        println!("You got {total_right} out of 

{total_chars}!");
                        return Ok(());
                    }
                    _ => {}
                }
            }
            execute!(stdout(), Clear(ClearType::All))?;
        }
    }
    Ok(())
}

The output now when using the typing app should look pretty simple—something
like this:

Hi, can you type this?
Hi, can**** type thi_

In this case, the user has typed the first characters correctly, made four mistakes, and
is now two characters away from finishing the test. The output is pretty clean, but
there’s a lot you might want to add to the app now.

23.2.4 Over to you

Now that the basic functionality for the typing tutor works, here are some ideas to con-
tinue developing it:

 Check the time it took to pass the test and give the user the typing speed in
words per minute. Chapter 17 should help you out here if you are unsure where
to start.

 Use a crate like ansi_term (https://crates.io/crates/ansi_term) to show incor-
rect entries in red instead of just an asterisk.

 Right now, user_input still increases in length if the user keeps typing after
reaching the end of the test. The extra characters aren’t displayed, but if, for
example, you are 10 characters over, you will need to hit backspace 10 times to
see the output change again. How would you keep user_input from getting
longer than the file_content string?

https://crates.io/crates/ansi_term


48723.3 Wikipedia article summary searcher
 Implement accented characters. What if you have a typing test in another lan-
guage? Can you set up the test so that the character can use dead keys (like e + '
to show é) instead of needing to switch keyboard layouts?

 Add more text samples. Maybe use the functionality in the next project to bring
in Wikipedia article summaries to use as typing tests.

 The French novel La Disparition is a book without a single instance of the letter
e. To help someone else do the same, could you remake the typing tutor into an
app that removes any word that contains the letter e as the user types?

23.3 Wikipedia article summary searcher
The second unfinished project quickly pulls up the summary of a Wikipedia article.
Getting started on this project is pretty easy because Wikipedia has an API that doesn’t
require registration or a key to use. One of the endpoints on the Wikipedia API gives
a summary and some other information for any article, which should be perfect for
us. The output from that API is a bit too messy to paste into this book, but you can see
a sample output by pasting the following link into your browser and changing
PAGE_NAME_HERE to any article name you can think of:

https://en.wikipedia.org/api/rest_v1/page/summary/PAGE_NAME_HERE

23.3.1 Setup and first code

The dependencies for this project are pretty easy because we already know how to use
crossterm, and we learned to use reqwest in chapter 19. Putting these two together
gives us 105 compiling units. Compiling shouldn’t take too long, but if you want to
reduce compiling time, you can choose a crate called ureq (https://docs.rs/ureq/
latest/ureq/), which is smaller and simpler than reqwest. Here are the dependencies:

[dependencies]
reqwest = { version = "0.11.16", features = ["blocking"] }
crossterm = "0.26.1"

We can start with something similar to the code in the typing tutor. We’ll have an App
struct with a string called user_input that grows and shrinks as before, except that
pressing Enter will search Wikipedia. The first code looks like this:

use crossterm::{
    event::{read, Event, KeyCode, KeyEventKind},
    execute,
    terminal::{Clear, ClearType},
};
use reqwest::blocking::get;
use std::io::stdout;

#[derive(Debug, Default)]
struct App {
    user_input: String
}

https://docs.rs/ureq/latest/ureq/
https://docs.rs/ureq/latest/ureq/


488 CHAPTER 23 Unfinished projects: Projects for you to finish
const URL: &str = "https://en.wikipedia.org/api/rest_v1/page/summary";

fn main() {
    let mut app = App::default();

    loop {
        if let Event::Key(key_event) = read().unwrap() {
            if key_event.kind == KeyEventKind::Press {
                execute!(stdout(), Clear(ClearType::All)).unwrap();
                match key_event.code {
                    KeyCode::Backspace => {
                        app.user_input.pop();
                        println!("{}", app.user_input);
                    }
                    KeyCode::Esc => app.user_input.clear(),
                    KeyCode::Enter => {
                        println!("Searching Wikipedia...");
                        let req = get(format!("{URL}/{}", app.user_input))
                        ➥.unwrap();
                        let text = req.text().unwrap();
                        println!("{text}");
                    }
                    KeyCode::Char(c) => {
                        app.user_input.push(c);
                        println!("{}", app.user_input);
                    }
                    _ => {}
                }
            }
        }
    }
}

Easy enough! If we type a nonsense word and press Enter, we get a nice error message:

{"type":"https://mediawiki.org/wiki/HyperSwitch/errors/not_found","title":"

➥Not found.","method":"get","detail":"Page or revision not found.",

➥"uri":"/en.wikipedia.org/v1/page/summary/Nthonthoe"}

And if we type a real word like Calgary, we get a massive JSON response that is a little
too big to fit here. The response from Wikipedia’s servers is definitely coming in, but
we should tidy it up somehow.

23.3.2 Developing the code

The JSON response has a lot of properties that we don’t need like "thumbnail",
"wikibase_item", and "revision", but three properties inside it look useful to us:
title, description, and extract. Let’s make a struct with those three properties.
Then, to deserialize into the struct as we learned in chapter 17, we are going to want
to bring in the serde and serde_json crates.

 Now, the dependencies are

[dependencies]
reqwest = { version = "0.11.16", features = ["blocking"] }



48923.3 Wikipedia article summary searcher
crossterm = "0.26.1"
serde = { version = "1.0.160", features = ["derive"] }
serde_json = "1.0.96"

By giving our struct the Deserialize trait and using serde_json::from_str() func-
tion to convert from JSON, we have a much nicer output:

use crossterm::{
    event::{read, Event, KeyCode, KeyEventKind},
    execute,
    terminal::{Clear, ClearType},
};
use serde::Deserialize;
use std::io::stdout;

#[derive(Debug, Deserialize, Default)]
struct App {
    user_input: String
}

#[derive(Debug, Deserialize, Default)]
struct CurrentArticle {
    title: String,
    description: String,
    extract: String
}

const URL: &str = "https://en.wikipedia.org/api/rest_v1/page/summary";

fn main() {
    let mut app = App::default();

    loop {
        if let Event::Key(key_event) = read().unwrap() {
            if key_event.kind == KeyEventKind::Press {
                execute!(stdout(), Clear(ClearType::All)).unwrap();
                match key_event.code {
                    KeyCode::Backspace => {
                        app.user_input.pop();
                        println!("{}", app.user_input);
                    }
                    KeyCode::Esc => app.user_input.clear(),
                    KeyCode::Enter => {
                        println!("Searching Wikipedia...");
                        let req = get(format!("{URL}/{}", app.user_input))
                        ➥.unwrap();
                        let text = req.text().unwrap();
                        let as_article: CurrentArticle = 
    serde_json::from_str(&text).unwrap();
                        println!("{as_article:#?}");
                    }
                    KeyCode::Char(c) => {
                        app.user_input.push(c);
                        println!("{}", app.user_input);
                    }



490 CHAPTER 23 Unfinished projects: Projects for you to finish
                    _ => {}
                }
            }
        }
    }
}

Okay, let’s type Interlingue (that’s the name of a language) and hit Enter. Quite
readable! The output will now look like this:

Searching Wikipedia...
CurrentArticle {
    title: "Interlingue",
    description: "International auxiliary language created 1922",
    extract: "Interlingue, originally Occidental, is an international
    ➥auxiliary language created in 1922 and renamed in 1949. Its creator,
    ➥Edgar de Wahl, sought to achieve maximal grammatical regularity and
    ➥natural character. The vocabulary is based on pre-existing words from
    ➥various languages and a derivational system which uses recognized
    ➥prefixes and suffixes.",
}

23.3.3 Further development and cleanup

Now, let’s improve the output and do some refactoring. The easiest place to start is by
removing the calls to .unwrap() and replacing them with the question mark operator.
We could use the anyhow crate, but let’s practice the Box<dyn Error> method that we
learned in chapter 13. We can move some code out of main into a method for our App
called .get_article(), which will return a Result<(), Box<dyn Error>>, which
means that main() will return a Result<(), Box<dyn Error>>, too, because it is also
using the question mark operator. Also, implementing Display for our App struct will
make the output look much nicer.

 The code after these changes is as follows:

use crossterm::{
    event::{read, Event, KeyCode, KeyEventKind},
    execute,
    terminal::{Clear, ClearType},
};
use reqwest::blocking::get;
use serde::{Deserialize, Serialize};
use std::{error::Error, io::stdout};

#[derive(Debug, Serialize, Deserialize, Default)]
struct CurrentArticle {
    title: String,
    description: String,
    extract: String,
}

#[derive(Debug, Default)]
struct App {
    current_article: CurrentArticle,
    search_string: String,



49123.3 Wikipedia article summary searcher
}

impl App {
    fn get_article(&mut self) -> Result<(), Box<dyn Error>> {

let text = get(format!("{URL}/{}", self.search_string))?.text()?;
if let Ok(article) = serde_json::from_str::<CurrentArticle>(&text) {
    self.current_article = article;
}
Ok(())

    }
}

impl std::fmt::Display for App {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {

write!(
    f,
    "

Searching for: {}

Title: {}
------------
Description: {}
------------
{}",

    self.search_string,
    self.current_article.title,
    self.current_article.description,
    self.current_article.extract
)

    }
}

const URL: &str = "https://en.wikipedia.org/api/rest_v1/page/summary";

fn main() -> Result<(), Box<dyn Error>> {
    let mut app = App::default();

    loop {
println!("{app}");
if let Event::Key(key_event) = read()? {
    if key_event.kind == KeyEventKind::Press {

match key_event.code {
KeyCode::Backspace => {

app.search_string.pop();
}
KeyCode::Esc => app.search_string.clear(),
KeyCode::Enter => app.get_article()?,
KeyCode::Char(c) => {

app.search_string.push(c);
}
_ => {}

}
    }
    execute!(stdout(), Clear(ClearType::All))?;
}

    }
}



492 CHAPTER 23 Unfinished projects: Projects for you to finish
Now the output looks pretty clean!

Searching for: Interlingue

Title: Interlingue
------------
Description: International auxiliary language created 1922
------------
Interlingue, originally Occidental, is an international auxiliary language

➥created in 1922 and renamed in 1949. Its creator, Edgar de Wahl,

➥sought to achieve maximal grammatical regularity and natural

➥character. The vocabulary is based on pre-existing words from various

➥languages and a derivational system which uses recognized prefixes and

➥suffixes.

23.3.4 Over to you

Let’s think about what could be developed with this app now that the basic functional-
ity works:

 The output is pretty clean now, but nothing is displayed when the user searches
for a page that doesn’t exist. What error info should be displayed to help the
user know what to do when something goes wrong? What about other errors
like a broken internet connection?

 You will be able to make the output even nicer after we finish the next project,
which uses a crate that lets you put together terminal interfaces that look
almost graphical.

 Wikipedia is available in more languages than just English. How could you add
an option to let the user switch languages?

23.4 Terminal stopwatch and clock
The third project we will make is a text- or terminal-based user interface (TUI) that
holds a stopwatch and a clock. In the previous examples, we used Crossterm on its
own, which worked well enough. But there are crates that allow you to put together a
terminal-based app that looks surprisingly nice. These are fairly popular because they
are quick to compile, extremely responsive, and run inside the same terminal window
we use to cargo run our programs.

23.4.1 Setup and first code

The main crate for TUIs in Rust is called ratatui (https://docs.rs/ratatui/latest/
ratatui/), which, in fact, uses crossterm on its backend. To be precise, the main crate
is/was known as tui, but the owner of the crate ran out of time to maintain the crate
(real life will do that to you sometimes; https://github.com/fdehau/tui-rs/issues/
654), and it was forked under the new name ratatui. The original tui works just fine,
but ratatui is being actively maintained and has new features added, so we will go
with ratatui.

NOTE We will use version 0.21 of ratatui, which is more or less the same as
the original tui crate, but at the time of publication ratatui has reached

https://docs.rs/ratatui/latest/ratatui/
https://docs.rs/ratatui/latest/ratatui/
https://github.com/fdehau/tui-rs/issues/654
https://github.com/fdehau/tui-rs/issues/654


49323.4 Terminal stopwatch and clock
version 0.24 with quite a few new features added! By the time you read this
book, there may be even more.

Every GUI and TUI crate has its own preferred method for building user interfaces,
meaning that the quickest way to get started is to look for a working example. Inside
ratatui is a Terminal that holds a backend, such as the crossterm backend. There is
also a method called .draw() to draw the output on the screen, which we will run in a
loop. Inside this method is a closure, which provides a struct on which we can use
methods to create widgets and then call .render_widget() to display them.

 Inside every loop, we will create a Layout, give it a direction (horizontal or verti-
cal), set the size of each part of the layout by giving them constraints, and then split
the layout into parts based on the total screen size. We want a simple horizontal app
split 50% each way, so it will be set up as follows. Note the builder pattern here:

let layout = Layout::default()
    .direction(Direction::Horizontal)
    .constraints([Constraint::Percentage(50), Constraint::Percentage(50)])
    .split(f.size()); 
let stopwatch_area = layout[0];
let utc_time_area = layout[1];

With this code, we have split up the layout, but we haven’t made anything to display
yet. To display something, we can choose among some of the widgets that ratatui
offers, such as BarChart, Block, Dataset, Row, Table, Paragraph, and so on. A
Paragraph lets us display some text, and we can put it inside a Block, which is the base
widget used to give other widgets a border. All together it looks like this:

let stopwatch_block = 
Block::default().title("Stopwatch").borders(Borders::ALL);

stopwatch_text = Paragraph::new("First block").block(stopwatch_block);

And then finally comes the .render_widget() method, which takes a widget and an
area:

f.render_widget(stopwatch_text, stopwatch_area);

That was quite a bit of typing, but nothing too complex: we are just instructing the
TUI what to display. Let’s put it all together now:

use std::io::stdout;
use ratatui::{
    backend::CrosstermBackend,
    layout::{Constraint, Direction, Layout},
    widgets::{Block, Borders, Paragraph},
    Terminal,
};

fn main() {
    let stdout = stdout();
    let backend = CrosstermBackend::new(stdout);
    let mut terminal = Terminal::new(backend).unwrap();   

The f is a struct called a Frame that the 
closure gives us access to. The f is a variable 
name and could be any other name as well.

The ratatui Terminal 
takes a crossterm 
backend.



494 CHAPTER 23 Unfinished projects: Projects for you to finish
    loop {
        terminal
            .draw(|f| {
                let layout = Layout::default()
                    .direction(Direction::Horizontal)
                    .constraints([Constraint::Percentage(50), Constraint::
                    ➥Percentage(50)])
                    .split(f.size());
                let stopwatch_area = layout[0];
                let utc_time_area = layout[1];

                let stopwatch_block = 
Block::default().title("Stopwatch").bord

     ➥ers(Borders::ALL);
                let utc_time_block = Block::default().title("UTC time").bord
                ➥ers(Borders::ALL);

                let stopwatch_text = Paragraph::new("I'm a stopwatch").block
                ➥(stopwatch_block);
                let utc_text = Paragraph::new("Hi I'm in London").block(utc_
                ➥time_block);

                f.render_widget(stopwatch_text, stopwatch_area);
                f.render_widget(utc_text, utc_time_area);

            })
            .unwrap();
        std::thread::sleep(std::time::Duration::from_millis(20));   
        terminal.clear().unwrap(); 
    }
}

If you run the code now, you should see a pretty nice-looking terminal interface (fig-
ure 23.1). It isn’t doing anything at the moment, but you can resize the window and
watch how the display changes. This is a lot slicker than just using crossterm!

The terminal is going to loop as fast as it
possibly can, so let’s put it to sleep each
time to keep the screen from flickering.

Using .sleep() can be a bad idea in complex
and async code, but we are just running a

little terminal app on a single thread.

Ratatui has a convenience method called
.clear(), so we don’t need to use a crossterm

command to clear the screen anymore.

Figure 23.1 Terminal interface



49523.4 Terminal stopwatch and clock
23.4.2 Developing the code

It’s now time to start implementing the clock and stopwatch. We’ve used the chrono
crate before in chapter 17, so this should not be too hard. Getting the current UTC
datetime is quite easy:

chrono::offset::Utc::now();

Printing this out will look something like this:

2023-06-10T04:13:05.169920165Z

That output isn’t too readable. Fortunately, the DateTime struct in chrono has a
method called .format() that lets us specify how we want it to look. This method
takes a &str that recognizes tokens after a % sign, such as %Y to display the year, %H to
display the hour, and so on (http://mng.bz/A8Gp). Let’s give it a try:

chrono::offset::Utc::now().format("%Y/%m/%d %H:%M:%S")

Now the output is much better:

2023/06/10 04:18:46

For the stopwatch, we are going to have to think a bit. A stopwatch should have three
states:

 Not started—In this state, it should display 0:00:00.
 Running—In this state, we should see the time passing as the seconds and milli-

seconds go by.
 Stopped—In this state, we should see the seconds and milliseconds that passed

when we stopped it.

That sounds like an enum with three variants. Fortunately, the state changes are easy:
if the user presses a key, the stopwatch starts running. Another key press stops it, and
the stopwatch shows the time that passed. Finally, another key resets it, bringing it
back to a “not started” state.

 The last thing to figure out is how to display the time. This isn’t too hard either,
thanks to the Instant struct we learned to use in chapter 17. When the stopwatch starts,
it should hold an Instant::now(), and as it runs or it has stopped, it should use
.elapsed().millis() on the Instant to see how much time has passed in milliseconds.

 Following this, all we need to do is to “pull off” the minutes, the seconds, and the
milliseconds—in that order. For example, if the stopwatch stops and 70,555 millisec-
onds have passed, the code should do the following steps:

1 One minute has 60,000 milliseconds. See how many minutes have passed:
70,555 / 60,000 = 1 minute.

2 Subtract the minutes in milliseconds: 70,555 − 1 * 60,000 = 10,555 milliseconds
left.

3 One second has 1,000 milliseconds. See how many seconds have passed: 10,555
/ 1,000 = 10 seconds.

http://mng.bz/A8Gp


496 CHAPTER 23 Unfinished projects: Projects for you to finish
4 Subtract the seconds in milliseconds: 10,555 − 10 * 1,000 = 555 milliseconds left.
5 Finally, divide the milliseconds by 10 to get the split seconds (hundredths of a

second).

When you put all that together, our Stopwatch struct will handle the logic like this:

    fn new() -> Self {
Self {
    now: Instant::now(),
    state: StopwatchState::NotStarted,
    display: String::from("0:00:00"),
}

    }
    fn get_time(&self) -> String {

use StopwatchState::*;
match self.state {
    NotStarted => String::from("0:00:00"),
    Running => {

let mut elapsed = self.now.elapsed().as_millis();
let minutes = elapsed / 60000;    
elapsed -= minutes * 60000;   

        let seconds = elapsed / 1000;    
        elapsed -= seconds * 1000;
        let split_seconds = elapsed / 10;

format!("{minutes}:{seconds}:{split_seconds}")
    }
    Done => self.display.clone(),
}

    }

With the stopwatch logic out of the way, we now have a working clock and stopwatch
to play around with.

 The last new entry to the code is the poll() method inside crossterm, which we
will use instead of read(). Using read() waits until a user event takes place, but we
want the stopwatch to run even if nobody is pressing any keys. The poll() method lets
you specify a Duration to wait for an event. In our case, we will enter 0 for the
Duration. Doing so will let us quickly check for a key event every loop, followed by
redrawing the screen.

 Here is the code we have so far:

use std::{
    io::stdout,
    time::Instant,
};

use crossterm::event::{poll, read, Event, KeyCode, KeyEventKind};
use ratatui::{
    backend::CrosstermBackend,
    layout::{Constraint, Direction, Layout},
    widgets::{Block, Borders, Paragraph},
    Terminal,
};

Here, we see how
many full minutes

there are to display.

Then we subtract these 
minutes in milliseconds from 
the total time elapsed.

Then we repeat with
the next largest unit,

seconds. And so on.



49723.4 Terminal stopwatch and clock
struct Stopwatch {
    now: Instant,
    state: StopwatchState,
    display: String,
}

enum StopwatchState {
    NotStarted,
    Running,
    Done,
}

impl Stopwatch {
    fn new() -> Self {

Self {
    now: Instant::now(),
    state: StopwatchState::NotStarted,
    display: String::from("0:00:00"),
}

    }
    fn get_time(&self) -> String {

use StopwatchState::*;
match self.state {
    NotStarted => String::from("0:00:00"),
    Running => {

let mut elapsed = self.now.elapsed().as_millis();
let minutes = elapsed / 60000;
elapsed -= minutes * 60000;
let seconds = elapsed / 1000;
elapsed -= seconds * 1000;
let split_seconds = elapsed / 10;
format!("{minutes}:{seconds}:{split_seconds}")

    }
    Done => self.display.clone(),
}

    }
    fn next_state(&mut self) {

use StopwatchState::*;
match self.state {
    NotStarted => {

self.now = Instant::now();
self.state = Running;

    }
    Running => {

self.display = self.get_time();
self.state = Done;

    }
    Done => self.state = NotStarted,
}

    }
}

fn main() {
    let stdout = stdout();
    let backend = CrosstermBackend::new(stdout);
    let mut terminal = Terminal::new(backend).unwrap();
    let mut stopwatch = Stopwatch::new();



498 CHAPTER 23 Unfinished projects: Projects for you to finish
    loop {
        if poll(std::time::Duration::from_millis(0)).unwrap() {
            if let Event::Key(key_event) = read().unwrap() {
                if let (KeyCode::Enter, KeyEventKind::Press) = (key_event.co
                ➥de, key_event.kind) {
                    stopwatch.next_state();
                }
            }
        }

        terminal
            .draw(|f| {
                let layout = Layout::default()
                    .direction(Direction::Horizontal)
                    .constraints([Constraint::Percentage(50), Constraint::Pe
                    ➥rcentage(50)])
                    .split(f.size());
                let stopwatch_area = layout[0];
                let utc_time_area = layout[1];

                let stopwatch_block = Block::default().title("Stopwatch").bo
                ➥rders(Borders::ALL);
                let utc_time_block = Block::default()
                    .title("UTC time")
                    .borders(Borders::ALL);
                
                let stopwatch_text = Paragraph::new(stopwatch.get_time()).bl
                ➥ock(stopwatch_block);
                let utc_text = Paragraph::new(chrono::offset::Utc::now().for
                ➥mat("%Y/%m/%d %H:%M:%S").to_string())
                    .block(utc_time_block);
                
                f.render_widget(stopwatch_text, stopwatch_area);
                f.render_widget(utc_text, utc_time_area);
            })
            .unwrap();
        std::thread::sleep(std::time::Duration::from_millis(20));
        terminal.clear().unwrap();
    }
}

The output on your screen should now look like figure 23.2.

Figure 23.2 Updated 
terminal interface



49923.4 Terminal stopwatch and clock
23.4.3 Further development and cleanup

The code is working quite well, so let’s focus on cleaning it up. As always, we can
replace calls to .unwrap() with the question mark operator. Let’s practice with anyhow
this time by returning a Result<(), anyhow::Error> inside main(). The dependen-
cies inside Cargo.toml should now look like this:

[dependencies]
anyhow = "1.0.71"
chrono = "0.4"
crossterm = "0.26.1"
ratatui = "0.21"

So what else should we clean up?
 The builder pattern in ratatui makes it easy to set up an app, but it is also quite

wordy. Let’s do some general readability cleanup, too, while we are at it. Instead of
calling Block::default().title and so on twice inside main, we can put together a
quick helper function that takes a &str and returns a Block. The same will go for the
call to generate a formatted UTC time, which makes the line in main really long. This
can be a helper function, too.

 This sort of readability cleanup is a personal decision, but a good general rule is
that helper functions can be good for readability as long as the important information
can be seen in the first function. However, too many helper functions can be bad for
readability. Writing a helper function that calls another helper function and then
another helper function can help each function be nice and small, but it will take a lot
of clicking for the reader of your code to finally find out exactly what is being done.
Imagining yourself reading your own code one year later is a good way to decide how
to refactor your code for readability.

 In any case, here is what our code looks like now with some cleanup done:

use std::{io::stdout, thread::sleep, time::Duration, time::Instant};
use chrono::offset::Utc;
use crossterm::event::{poll, read, Event, KeyCode, KeyEventKind};
use ratatui::{
    backend::CrosstermBackend,
    layout::{Constraint, Direction, Layout},
    widgets::{Block, Borders, Paragraph},
    Terminal,
};

struct Stopwatch {
    now: Instant,
    state: StopwatchState,
    display: String,
}

enum StopwatchState {
    NotStarted,
    Running,
    Done,
}



500 CHAPTER 23 Unfinished projects: Projects for you to finish
impl Stopwatch {
    fn new() -> Self {
        Self {
            now: Instant::now(),
            state: StopwatchState::NotStarted,
            display: String::from("0:00:00"),
        }
    }
    fn get_time(&self) -> String {
        use StopwatchState::*;
        match self.state {
            NotStarted => String::from("0:00:00"),
            Running => {
                let mut elapsed = self.now.elapsed().as_millis();
                let minutes = elapsed / 60000;
                elapsed -= minutes * 60000;
                let seconds = elapsed / 1000;
                elapsed -= seconds * 1000;
                let split_seconds = elapsed / 10;
                format!("{minutes}:{seconds}:{split_seconds}")
            }
            Done => self.display.clone(),
        }
    }
    fn next_state(&mut self) {
        use StopwatchState::*;
        match self.state {
            NotStarted => {
                self.now = Instant::now();
                self.state = Running;
            }
            Running => {
                self.display = self.get_time();
                self.state = Done;
            }
            Done => self.state = NotStarted,
        }
    }
}

fn block_with(input: &str) -> Block {
    Block::default().title(input).borders(Borders::ALL)
}

fn utc_pretty() -> String {
    Utc::now().format("%Y/%m/%d %H:%M:%S").to_string()
}

fn main() -> Result<(), anyhow::Error> {
    let stdout = stdout();
    let backend = CrosstermBackend::new(stdout);
    let mut terminal = Terminal::new(backend)?;
    let mut stopwatch = Stopwatch::new();

    loop {
        if poll(Duration::from_millis(0))? {



50123.4 Terminal stopwatch and clock
    if let Event::Key(key_event) = read()? {
if let (KeyCode::Enter, KeyEventKind::Press) = (key_event

➥.code, key_event.kind) {
stopwatch.next_state();

}
    }
}

terminal.draw(|f| {
    let layout = Layout::default()

.direction(Direction::Horizontal)

.constraints([Constraint::Percentage(50), Constraint::Percen

➥tage(50)])
.split(f.size());

    let stopwatch_area = layout[0];
    let utc_time_area = layout[1];

    let stopwatch_block = block_with("Stopwatch");
    let utc_time_block = block_with("Time in London");

    let stopwatch_text = Paragraph::new(stopwatch.get_time()).block(

➥stopwatch_block);
let utc_text = Paragraph::new(utc_pretty()).block(utc_time_block

➥);

f.render_widget(stopwatch_text, stopwatch_area);
f.render_widget(utc_text, utc_time_area);

})?;
sleep(Duration::from_millis(20));
terminal.clear()?;

    }
}

23.4.4 Over to you

There’s quite a bit that you might want to add to this app. Here are some ideas:

 The stopwatch outputs numbers like 0:9:1 but also numbers like 0:10:14, which
is two characters longer. Can you make the display look cleaner than this?

 Add some more cities in different time zones and line them up underneath the
time in London.

 The ratatui crate lets you build other widgets, such as charts. You could try
using a free API like open-meteo (https://open-meteo.com/) to get the
weather information for a location, displayed in a nice chart form.

 The stopwatch continues to run even if the window is not visible, so it is using
system resources even when you aren’t looking at it. The Event enum inside
crossterm includes events called FocusGained and FocusLost that could let you
avoid redrawing the screen when the user isn’t looking at the app.

 The stopwatch returns a String every time the app loops, but much of the time,
it is only showing the default time or the time when it was stopped. Could it be
worth it to find a way to not allocate memory when the stopwatch is in a
NotStarted or Done state?

https://open-meteo.com/


502 CHAPTER 23 Unfinished projects: Projects for you to finish
Hopefully, you enjoyed these first three projects! Ideally, they should give you both a
sense of satisfaction and a desire to keep working on and improving them. The next
chapter is the very last chapter of the book and will continue with another three proj-
ects for you to keep developing. See you there!

Summary
 Crates to make CLI apps are a great way to start making your own projects. They

are responsive and quick to compile, and not much can go wrong.
 GUIs and TUIs have structs with a lot of configuration options, which makes

them an ideal place to use Default and the builder pattern.
 Even a simple CLI can use a lot of system resources if it is set up to loop and

check for user input. Solutions to this include short sleeps and monitoring user
events (like FocusLost and FocusGained), only redrawing when the visual state
has changed, and so on.

 The Rust ecosystem is still fairly new. New crates pop up all the time, while older
crates sometimes stop being maintained and are forked under new names.



Unfinished projects,
continued
You’ve reached the very last chapter of the book. Congratulations! In this chapter,
we will continue with three more unfinished projects so that you’ll have something
to work on once you have finished reading the book. The first project in this chap-
ter will be a simple guessing game, except that we’ll set up a web server to do it. The
second project is a laser pointer that runs away when you try to touch it. And,
finally, we will finish up with a GUI to navigate and view the files on your computer.
Let’s get started!

24.1 Web server word-guessing game
The fourth unfinished project is a word-guessing game. A regular word-guessing
game on the command line is extremely simple, and at this point, you could

This chapter covers
 Making a web server–based word-guessing game

 Making a laser pointer for your cat

 Making a directory and file navigator

 Saying goodbye!
503



504 CHAPTER 24 Unfinished projects, continued
probably make one of those in your sleep. So, to make things more interesting, we are
going to make a guessing game that takes place over a web server instead.

 To make this, we will need to use one of Rust’s web frameworks. Rust has three
main web frameworks as of 2023, although there are many more out there. Let’s
quickly summarize the main three:

 Rocket—One of the first web frameworks, Rocket is quite slick and uses a lot of
macro magic. The documentation is also especially nice.

 Actix Web—Lots of features and maintainers and extremely fast. Generally, the
larger the project, the more likely that Actix is the right choice.

 Axum—The newest of the three but part of the Tokio project so there is a lot of
collaboration between Axum and Tokio.

For us, the decision is simple. We are making a small project, so let’s see which of the
three is the quickest to compile:

 rocket = "0.5"—174 compilation units
 actix-web = "4.4""—161 compilation units
 axum = "0.72""—87 compilation units

Axum has the smallest number of compilation units by far, so we will use it.

24.1.1 Setup and first code

For our first code, we will put together a server with a few paths and see whether they
work as expected. After typing cargo run for this code, the server will begin running
locally, and you can go to http:/./localhost:8080/ to see the responses it gives. A full
explanation of how Axum works is impossible in a small amount of space, but here is
how to quickly start a project with Axum:

 First, use axum::Router::new() to start a router, which handles the paths that
will be used to take requests.

 Add .route() to give the router a path, followed by an HTTP method (such as
get) and then an async function to handle the request.

 So, if you type .route("/", get(function_name)), it will create a route at
http:/./localhost:8080/ that takes a get. A get is the most basic HTTP
request; it is the request used whenever you view a webpage. You probably make
hundreds of get requests through your browser and phone every day.

 Another example of a route is .route("/guessing_game", get(function_
name)), which would take get requests at http:/./localhost:8080/guessing_
game. But if this server were hosted at http://yourwebsite.com instead, it
would take requests at http://yourwebsite.com/guessing_game.

 After the routes are set, put the router inside another method that binds the
router to an address, which, in our case, is 127.0.0.1:8080. In our address,
127.0.0.1 is called the localhost and represents your own computer on your
own network, and 8080 is a port number.



50524.1 Web server word-guessing game
 After this, you call the async .serve() method, which returns a Future that
holds a Server, but the Future doesn’t return until the server shuts down. In
other words, it runs forever by default.

And two more things to know before we get to the code:

 Axum uses types called extractors that are used to handle requests. In our case,
we will use the simplest one called a Path<String>. A Path<String> holds a
String of the path it is given after the router address. So, if we access the server
at 127.0.0.1:8080/guessing_game/my_guess and there is a route at
127.0.0.1:8080/guessing_game, the Path<String> extractor will give us a
String that holds "my_guess".

 Handling a route in Axum requires an async fn, which includes async clo-
sures. We’ll try both.

That was a lot of information! Everything will make much more sense once we look at
some code. Let’s put together a really simple server now. First, let’s add some depen-
dencies inside Cargo.toml:

[dependencies]
axum = "0.7.2"
fastrand = "2.0.1"
tokio = { version = "1.35", features = ["macros", "rt-multi-thread"] }

The fastrand crate is similar to rand but a bit smaller and simpler, so we’ll give it a try
here.

 And now for the code:

use axum::{extract::Path, routing::get};

async fn double(Path(input): Path<String>) -> String {   
    match input.parse::<i32>() { 

Ok(num) => format!("{} times 2 is {}!", num, num * 2),
Err(e) => format!("Uh oh, weird input: {e}")

    }
}

#[tokio::main]
async fn main() {
    let app = axum::Router::new()

.route("/", get(|| async { "The server works!" }))    

.route(   
    "/game/:guess",
    get(|Path(guess): Path<String>| async move { format!("The guess

➥is {guess}") }),

The signature here may look a bit odd,
but it is just deconstructing the input

inside the function signature. Axum
uses this syntax a lot, so we’ll copy it.

Nothing else in
this function is

particularly surprising: it tries to parse a
string into an i32 and doubles it if it can.

This first route just lets us know that
the server works, and we handle the

response inside an async closure.

For the second route, we will also use an async function. The
colon in :guess means to pass in whatever is after /game/ to

the function under the variable name guess. This time, we
need async move because we want the function to take

ownership of guess. Then we will return the guess to the user.



506 CHAPTER 24 Unfinished projects, continued
)
.route("/double/:number", get(double));   

    axum::Server::bind(&"127.0.0.1:8080".parse().unwrap())
.serve(app.into_make_service())
.await
.unwrap();

}

Now let’s run the server and test some of its output. If you try the following paths in
your browser, you should see the following output:

 Response from path: http://localhost:8080

The server works!

 Response from path: http://localhost:8080/thththth

This localhost page can't be found
No webpage was found for the web address: http://localhost:8080/thththth
HTTP ERROR 404

 Response from path: http://localhost:8080/double/10

10 times 2 is 20!

 Response from path: http://localhost:8080/double/TEN

Uh oh, weird input: invalid digit found in string

 Response from path: http://localhost:8080/double/9879879879879

Uh oh, weird input: number too large to fit in target type

 Response from path: http://localhost:8080/game/MyGuess

The guess is MyGuess

So far, so good. The server recognizes the routes we give it and is handling our input
property at the /double path. The next task is to put together the guessing game.

24.1.2 Developing the code

To stay focused on one task at a time, let’s forget about Axum for a moment, put our
guessing game together, and run it on the command line. Nothing in the following
code will be difficult for you, so you won’t need any preparation to understand. One
good read through the code with notes on the side should do it:

const RANDOM_WORDS: [&str; 6] = 
    ["MB", "Windy", "Gomes", "Johnny", "Seoul", "Interesting"];    

For the third route, we will use the previous
doubling function. Here, as well, we pass in the

path as the variable number, but inside the
function itself, it will have a different name.

Six random words: the author’s
four cats, city of residence, and

a final random word



50724.1 Web server word-guessing game

 

#[derive(Clone, Debug, Default)]    
struct GameApp {
    current_word: String,
    right_guesses: Vec<char>,
    wrong_guesses: Vec<char>,
}

enum Guess {   
    Right,
    Wrong,
    AlreadyGuessed,
}

impl GameApp {
    fn start(&mut self) {   
        self.current_word = 

RANDOM_WORDS[fastrand::usize(..RANDOM_WORDS.len())].to_lowercase();
        self.right_guesses.clear();
        self.wrong_guesses.clear();
    }
    fn check_guess(&self, guess: char) -> Guess {   
        if self.right_guesses.contains(&guess) || 

self.wrong_guesses.contains(&guess) {
            return Guess::AlreadyGuessed;
        }
        match self.current_word.contains(guess) {
            true => Guess::Right,
            false => Guess::Wrong,
        }
    }
    fn print_results(&self) {    
        let output = self
            .current_word
            .chars()
            .map(|c| {
                if self.right_guesses.contains(&c) {
                    c
                } else {
                    '*'
                }
            })
            .collect::<String>();
        println!("{output}");
    }
    fn take_guess(&mut self, guess: String) {   
        match guess.chars().count() {
            0 => println!("What are you doing? Please guess something."),
            1 => {
                let the_guess = guess.chars().next().unwrap();

                match self.check_guess(the_guess) {
                    Guess::AlreadyGuessed => {
                        println!("You already guessed {the_guess}!")
                    }
                    Guess::Right => {

The game app is pretty simple, too. Later on, 
we’ll be able to make it a static because both 
Vec::new() and String::new() are const 
functions, as we learned in chapter 16.

Three things can happen when a 
letter is chosen: it can be right, 
wrong, or already guessed.

Every time .start() is called, the app will choose a new word and 
clear its data. The fastrand::usize(..RANDOM_WORDS.len())] part
will choose a random usize index up to the length of 
RANDOM_WORDS. Note that we also made the word lowercase.

The check_guess() function 
lets us know what sort of guess 
has been given. If the letter 
is already in right_guesses 
or wrong_guesses, it has 
been guessed already. If not, 
it is either a right guess 
or a wrong guess.

This method just prints the character if the 
letter is within right_guesses or a * otherwise. 
If the random word is “school” and the user 
has guessed l and o, it will print ***ool.

Finally, we have the main 
method that handles a guess 
from the user. If the guess is 
one character in length, it is a 
letter guess; if it is more than 
one character in length, it 
assumes that the user is trying 
to guess the whole word.



508 CHAPTER 24 Unfinished projects, continued
self.right_guesses.push(the_guess);
println!("Yes, it contains a {the_guess}!")

}
Guess::Wrong => {

self.wrong_guesses.push(the_guess);
println!("Nope, it doesn't contain a {the_guess}!")

}
}
self.print_results();
println!(

"Already guessed: {}",
self.wrong_guesses.iter().collect::<String>()

);
    }

            _ => {   
        if self.current_word == guess {
        println!("You guessed right, it's {}!",
        ➥self.current_word);
        } else {
        println!(
        "Bzzt! It's not '{guess}', it's {}.\nTime to move
        ➥on to another word!",
        self.current_word
        );

}
self.start();   

    }
}

    }
}

fn main() {
    let mut app = GameApp::default();
    app.start();

    loop {
println!("Guess the word!");
let mut guess = String::new();
std::io::stdin().read_line(&mut guess).unwrap(); 
app.take_guess(guess.trim().to_lowercase());

    }
}

Now we have two things:

 The knowledge of how to make a simple web server
 A simple guessing game that runs locally

Now, it’s time to join these two together. How do we do this? Because, at the moment,
the guessing game is inside main(), and our functions to handle requests only provide
us a Path<String>, not a reference to any app:

async fn handle_request(Path(input): Path<String>) -> String {
}

We have already
checked to see

whether the length
is 0 or 1, so anything

else will have to be
longer. When this

happens, the stakes
are higher: either
the user wins or
loses right away.

Since the user either wins or loses, 
the game will reset no matter what.

Finally, don’t forget to 
.trim() the user’s guess 
and make it lowercase.



50924.1 Web server word-guessing game
All we have is a variable called input that holds a String. How do we get to the app
from here?

 The proper way on Axum to get access to a struct like our GameApp is through a
method called .with_state() (http://mng.bz/xjZ8) that allows functions inside
Axum’s router to access structs like our game app. Besides the Axum documentation,
Axum’s version 0.6 announcement in 2022 (http://mng.bz/Jd9z) also has some sim-
ple examples.

 For our quick example, however, we can make our GameApp into a static. One rea-
son is that we don’t have the space in this chapter to get into Axum’s internal details;
also, our game app is so simple that everything is on one screen.

 If you decide to continue developing the example into a server for real work, one
good place to start would be doing away with the global static and replacing it with the
.with_state() method. Doing so makes a project much easier to test as it begins to
grow.

24.1.3 Further development and cleanup

So let’s make our app into a static item. That’s pretty easy because (as we learned in
chapter 16) all of the following methods are const fn and thus don’t require an
allocation:

static GAME: Mutex<GameApp> = Mutex::new(GameApp {
    current_word: String::new(),
    right_guesses: vec![],
    wrong_guesses: vec![]
});

And then when a guess comes in on the server, we’ll pick it up through a new function
called get_res_from_static() that will pass on the String to the GameApp, which will
do its work and finally return a String as the route’s output:

    let app = axum::Router::new()
        .route("/", get(|| async { "The server is running well!" }))
        .route("/game/:guess", get(get_res_from_static));

And what does the get_res_from_static() function look like? It’s extremely simple.
It locks the Mutex to gain mutable access to static GAME and calls its .take_guess()
method:

fn get_res_from_static(guess: String) -> String {
    GAME.lock().unwrap().take_guess(guess)
}

Finally, the only changes we have left to make are for the println! statements to be
replaced with format! so that a String can be returned that will be the response from
the server. Instead of printing each piece of information as we get it, we’ll have to
build a String and use .push_str() to add the information every step of the way,
which will finally return the String at the end so that the user can see it.

http://mng.bz/xjZ8
http://mng.bz/Jd9z


510 CHAPTER 24 Unfinished projects, continued
 The full code now looks like this:

use axum::{extract::Path, routing::get};
use std::sync::Mutex;

const RANDOM_WORDS: [&str; 6] = 
    ["MB", "Windy", "Gomes", "Johnny", "Seoul", "Interesting"];

static GAME: Mutex<GameApp> = Mutex::new(GameApp {
    current_word: String::new(),
    right_guesses: vec![],
    wrong_guesses: vec![],
});

#[derive(Clone, Debug)]
struct GameApp {
    current_word: String,
    right_guesses: Vec<char>,
    wrong_guesses: Vec<char>,
}

enum Guess {
    Right,
    Wrong,
    AlreadyGuessed,
}

async fn get_res_from_static(Path(guess): Path<String>) -> String {
    GAME.lock().unwrap().take_guess(guess)
}

impl GameApp {
    fn restart(&mut self) {

self.current_word =

➥RANDOM_WORDS[fastrand::usize(..RANDOM_WORDS.len())]
.to_lowercase();

self.right_guesses.clear();
self.wrong_guesses.clear();

    }
    fn check_guess(&self, guess: char) -> Guess {

if self.right_guesses.contains(&guess) ||

➥self.wrong_guesses.contains(&guess) {
return Guess::AlreadyGuessed;

}
match self.current_word.contains(guess) {
    true => Guess::Right,
    false => Guess::Wrong,
}

    }
    fn results_so_far(&self) -> String {

let mut output = String::new();
for c in self.current_word.chars() {
    if self.right_guesses.contains(&c) {

output.push(c)
    } else {

output.push('*')
    }



51124.1 Web server word-guessing game
        }
        output
    }
    fn take_guess(&mut self, guess: String) -> String {
        let guess = guess.to_lowercase();
        let mut output = String::new();
        match guess {
            guess if guess.chars().count() == 1 => {
                let the_guess = guess.chars().next().unwrap();

                match self.check_guess(the_guess) {
                    Guess::AlreadyGuessed => {
                        output.push_str(&format!("You already guessed
                        ➥{the_guess}!\n"));
                    }
                    Guess::Right => {
                        self.right_guesses.push(the_guess);
                        output.push_str(&format!("Yes, it contains a
                        ➥{the_guess}!\n"));
                    }
                    Guess::Wrong => {
                        self.wrong_guesses.push(the_guess);
                        output.push_str(&format!("Nope, it doesn't contain
                        ➥a {the_guess}!\n"));
                    }
                }
                output.push_str(&self.results_so_far());
            }
            guess => {
                if self.current_word == guess {
                    output.push_str(&format!("You guessed right, it's {}!
                    ➥Let's play again!", self.current_word));
                } else {
                    output.push_str(&format!(
                        "Bzzt! It's not {guess}, it's {}.\nTime to move on
                        ➥to another word!",
                        self.current_word
                    ));
                }
                self.restart();
            }
        }
        output
    }
}

#[tokio::main]
async fn main() {
    GAME.lock().unwrap().restart();

    let app = axum::Router::new()
        .route("/", get(|| async { "The server is running well!" }))
        .route("/game/:guess", get(get_res_from_static));

    axum::Server::bind(&"127.0.0.1:8080".parse().unwrap())
        .serve(app.into_make_service())



512 CHAPTER 24 Unfinished projects, continued
.await

.unwrap();
}

This has been our longest example so far, but a basic web server and a game in just
105 lines of code isn’t too bad!

24.1.4 Over to you

What are some possible next steps now that the guessing game is done?

 As previously mentioned, replace the global static with .with_state() as rec-
ommended by Axum. You’ll notice that the method will pass on the struct
immutably, so you will have to use an Arc<Mutex> on the parameters to change
their values.

 Try implementing the same thing with one of the two other web frameworks to
see whether you have a preferred style. The three main web frameworks feel
pretty similar to each other much of the time. For example, Rocket also allows
accessing a struct through a type called State (https://api.rocket.rs/v0.5/
rocket/struct.State.html).

 Try deploying the app online! Deployment is beyond the scope of this book, but
a search for “deploy axum server” shows a lot of possibilities.

 Right now, the server holds a single game, so if more than one person accesses
the server at the same time, they will get some pretty confusing output. You
could try a crate like axum_sessions (https://docs.rs/axum-sessions/latest/
axum_sessions/) to create a proper session per user. Or, for something quick
and hacky, you could have the main route at "/" give a random suffix to the
URL for the user to play the game that only lasts for a short period of time. For
example, a user who visits the main address would get a URL like http://
localhost:8080/w8ll2/game/ that only they would know. Or you might have a
better idea to make this work.

 Combine the server with the graphical interface that we will learn in the very
next section!

24.2 Laser pointer
Thus far, this book has only focused on making code for humans to use, but it’s time
to make something for our cats (or other pets?). Making a moving red dot that looks
like a laser pointer should be enough to entertain them. This can be done through
the egui crate, which is a GUI that allows us to add buttons, graphics, charts, and
more. Making the dot move in random directions and at random speeds will be the
key to making this laser pointer interesting.

24.2.1 Setup and first code

egui is pretty straightforward after learning ratatui, as drawing widgets on the screen
is pretty similar: you draw them by calling methods on a struct that is passed into a clo-
sure. But let’s start one step at a time, starting with the dependencies in Cargo.toml:

https://api.rocket.rs/v0.5/rocket/struct.State.html
https://api.rocket.rs/v0.5/rocket/struct.State.html
https://docs.rs/axum-sessions/latest/axum_sessions/
https://docs.rs/axum-sessions/latest/axum_sessions/


51324.2 Laser pointer
[dependencies]
egui = "0.21.0"
eframe = "0.21.3"
fastrand = "2.0.0"

The eframe crate is the crate used to compile and run egui apps. You will almost
always use egui and eframe together in this way.

 Here is the minimum you will need to run an egui app on your computer:

 Create a struct to hold your state: numbers, strings, whatever you need to access
when the app is running.

 Implement the eframe App trait (https://docs.rs/eframe/latest/eframe/trait
.App.html) for your app struct. This trait has a required method called update()
that is called continuously when running an egui app. This method is essentially
the same as the loop we used in the ratatui example in the last chapter.

 Inside main(), use the eframe::run_native() method, which runs the app on
your computer (which is why it is called native). Into this, you pass in a Box<dyn
FnOnce(&CreationContext<'_>) -> Box<dyn App>>;. The Box<dyn App> is the
app struct that we implemented the App trait for. The CreationContext part
can be accessed once the app starts up and can be used for long-term settings
like adding fonts or anything you don’t want to happen every loop.

To get a sense of what all that means when put together, let’s build a quick app that
displays a few widgets:

#[derive(Default)]
struct NothingApp {  
    number: i32,
    text: String,
    code: String,
}

impl NothingApp {
    fn new(_cc: &eframe::CreationContext<'_>) -> Self {    
        Self {
            number: 0,
            text: String::from("Put some text in here!"),
            code: String::from(
                r#"fn main() {
    println!("Hello, world!");
}"#,
            ),
        }
    }
}

impl eframe::App for NothingApp {   
    fn update(&mut self, ctx: &egui::Context, _frame: &mut eframe::Frame) {
        egui::CentralPanel::default().show(ctx, |ui| {   

This app will hold a number that can be increased or 
decreased by clicking on buttons, some text for a text 
editor widget, plus more text for a code text editor 
widget. All of these widgets are built into egui.

Here, we make a method that creates our
app, and to follow the eframe::run_native()
method, it needs to take a CreationContext.

We don’t have any need for it, though.

And now for the App trait, which is where all of the 
update logic goes. This is where you spend the 
majority of your time when developing an egui app.

App layouts start with a panel such as a CentralPanel or SidePanel. Inside the
panel, we have access to the ui struct (https://docs.rs/egui/latest/egui/

struct.Ui.html), which has a ton of methods to create widgets.

https://docs.rs/egui/latest/egui/struct.Ui.html
https://docs.rs/egui/latest/egui/struct.Ui.html
https://docs.rs/eframe/latest/eframe/trait.App.html
https://docs.rs/eframe/latest/eframe/trait.App.html
https://docs.rs/eframe/latest/eframe/trait.App.html


514 CHAPTER 24 Unfinished projects, continued

 
 

 

    if ui.button("Counter up").clicked() {   
self.number += 1

    }
    if ui.button("Counter down").clicked() {

self.number -= 1
    }

    ui.label(format!("The counter is: {}", self.number));

    ui.text_edit_multiline(&mut self.text);
    ui.code_editor(&mut self.code);
});

    }
}

fn main() {   
    let native_options = eframe::NativeOptions::default();
    let _ = eframe::run_native(

"My egui App",
native_options,
Box::new(|cc| Box::new(NothingApp::new(cc))),

    );
}

Now if you type cargo run, the code will start compiling. Once the compiling is done,
a screen similar to figure 24.1 should suddenly pop up! You should be able to click the
buttons to change the value of the counter and type inside the two boxes.

24.2.2 Developing the code

Now that we have some understanding of egui, it’s time to put together our laser
pointer. To do this, first we have to visualize the screen that the laser will be floating
around on. The screen is a rectangle with an x-axis and a y-axis. If we have a screen

And now we call some methods
on the ui struct to create some
widgets. First, we will make 
two buttons that change the 
number when they are clicked,
then a label to display some 
text, and then a text editor 
area and a code editor area.

Finally comes the main() function, 
on which we call the run_native() 
method and add our app.

Figure 24.1
An incredibly 
basic egui app



51524.2 Laser pointer
that is 500.0 pixels by 500.0 pixels, the edge of the x-axis goes from top left at 0.0 to
the top right at 500.0. And the edge of the y-axis starts at the top left at 0.0 to the bot-
tom left at 500.0.

 egui has two structs here called a Pos2 and a Rect that help us work with the
screen dimensions. A Pos2 is simply a point in space:

pub struct Pos2 {
    pub x: f32,
    pub y: f32,
}

And a Rect holds two points: the point at the top left and the point at the bottom
right. These are inclusive ranges, as can be seen by the RangeInclusive struct on the
documentation (https://docs.rs/egui/latest/egui/struct.Rect.html) for Rect.

pub struct Rect {
    pub min: Pos2,
    pub max: Pos2,
}

If you put these all together, you get a
setup like figure 24.2. You can see where x
and y start and end, as well as a Pos2
located 100.0 pixels to the right and 400.0
pixels down.

 egui also has a struct called a Vec2,
which looks exactly like a Pos2. But
instead of representing a single point, the
x in Vec2 represents how many pixels to
the right, and the y represents how many
pixels down:

pub struct Vec2 {
    pub x: f32,
    pub y: f32,
}

With that in our minds, let’s start building the laser pointer!

use eframe::egui;
use egui::{Vec2, Color32, Sense, Pos2};

#[derive(Default)]
struct LaserPointer {   
    position: Pos2
}

impl LaserPointer {
    fn new(_cc: &eframe::CreationContext<'_>) -> Self {
        Self {
            position: Pos2 { x: 0.0, y: 0.0 }   

Rect  {
     min: Pos2,
     max: Pos2,
}

Pos2 {
    x: 100.0,
    y: 400.0
}

500.0

500.00.0
0.0

Y X

Figure 24.2 A laser pointer dot 100 pixels 
across and 400 pixels down

The LaserPointer is just 
a dot, so all we need is a 
Pos2 to represent it.

We’ll put it at the top left 
corner to begin with.

https://docs.rs/egui/latest/egui/struct.Rect.html


516 CHAPTER 24 Unfinished projects, continued
}
    }
}

impl eframe::App for LaserPointer {
   fn update(&mut self, ctx: &egui::Context, _frame: &mut eframe::Frame) {

egui::CentralPanel::default().show(ctx, |ui| {

let rect = ctx.screen_rect();   
let screen_size = Vec2 {    
    x: rect.width(),
    y: rect.height()
};
let (response, painter) =

    ui.allocate_painter(screen_size, Sense::hover());   
if response.hovered() {  
    let Pos2 {x, y} = self.position;   
    let Pos2 {x: x2, y: y2} = 

ctx.pointer_hover_pos().unwrap_or_default();

    if (x - x2).abs() < 10.0 && (y - y2).abs() < 10.0 {   
if fastrand::bool() {

self.position.x += fastrand::f32() * 20.0;
} else {

self.position.x -= fastrand::f32() * 20.0;
}

        if fastrand::bool() {
        self.position.y += fastrand::f32() * 20.0;
                } else {
           self.position.y -= fastrand::f32() * 20.0;
                }

    }
}
self.position.x += 0.5;  
self.position.y += 0.5;
let radius = 10.0;
painter.circle_filled(self.position, radius, Color32::RED);    
});

   }
}

fn main() {
    let native_options = eframe::NativeOptions::default();
let _ = eframe::run_native(

"My egui App",
native_options,
Box::new(|cc| Box::new(LaserPointer::new(cc))),

    );
}

The ctx variable lets us work with the context of
our app, which includes information like screen
size. The screen_rect() method gives us a Rect.

And now we’ll make a Vec2 out 
of the Rect because the next 
method is going to need it.

This next method is pretty
interesting. It takes in a screen
size (a Vec2) as well as a Sense.

Sense is an enum that lets it
know what sort of user input
to react to, such as clicking,

dragging, hovering, and so on.
Let’s go with hover. The

method returns two things: a
Response and a Painter.

Now we can tell the 
app what to do when 
the Response notices 
that the mouse is 
hovering. Here is 
where we add the 
laser pointer logic!

First, we’re going to try to make the laser pointer
run away when the mouse arrow gets too close.

To do that, we get the position of the laser
pointer and then use the pointer_hover_pos()

method to get the position of the mouse arrow.

And then, in these lines, we’ll instruct the laser pointer
to move in a random direction if the mouse pointer is

within 10.0 pixels. The fastrand::bool() method
randomly returns true or false, and based on that, it

will go either forward or backward by up to 20.0 pixels.

Then we’ll move the 
laser pointer across 
and down by 0.5 pixels 
per loop. We’ll develop 
this in the next section.

Finally, we’ll draw the actual laser
pointer, which is a circle. It gets a
radius of 10.0 and a color of Red.



51724.2 Laser pointer
Once all this is done, you should see something that looks like figure 24.3. The laser
pointer will move steadily across and down whenever you hover the mouse over the
screen, and if the mouse pointer gets too close, it will jump away. At this point, your
cat might already be entertained by it, but we can make it better!

24.2.3 Further development and cleanup

Our next task is to make the laser pointer move without needing the mouse pointer to
hover over the screen and to move as randomly as possible. Without the random
movement, a cat will quickly get bored with it.

 Here are some of the changes we will make:

 Speed—The laser pointer will have a few speeds that will change randomly.
Sometimes it will be still, other times it will move slowly, and other times it will
move fast or CrazyFast.

 Random movement—How do we make the pointer move in random directions?
There are many ways to do it, but one easy way to do it is to give the pointer an
invisible target that it heads toward every time it moves. The target will change
from time to time as well.

 Looping without mouse hover—At the moment, our app only loops whenever a
hover event is detected, which means we would have to keep moving our mouse
around to get the laser pointer to do anything. Fortunately, egui has a method
called request_repaint() that lets the app logic loop without needing to
detect an event from the user. All we have to do is stick this method into the
.update() method.

 Moving random movement logic—Moving a lot of the random movement logic
over to the LaserPointer’s methods so that the code doesn’t look so cluttered.

Figure 24.3 Your laser pointer



518 CHAPTER 24 Unfinished projects, continued
With all these changes made, the code now looks like the following:

use eframe::egui;
use egui::{Color32, Pos2, Rect, Sense, Vec2};

#[derive(Default, Clone, Copy)]
struct LaserPointer {
    x: f32,    
    y: f32,
    speed: Speed,
    imaginary_target: Pos2,
}

#[derive(Clone, Copy, Default)]    
enum Speed {
    #[default]
    Still,
    Slow,
    Fast,
    CrazyFast,
}

impl From<LaserPointer> for Pos2 {    
    fn from(pointer: LaserPointer) -> Self {
        Pos2 {
            x: pointer.x,
            y: pointer.y,
        }
    }
}

impl LaserPointer {
    fn random_movement(&mut self, amount: f32) {   
        if fastrand::bool() {
            self.x += fastrand::f32() * amount;
        } else {
            self.x -= fastrand::f32() * amount;
        }
        if fastrand::bool() {
            self.y += fastrand::f32() * amount;
        } else {
            self.y -= fastrand::f32() * amount;
        }
    }
    fn try_change_speed(&mut self) {   
        use Speed::*;
        if fastrand::f32() > 0.98 {
            self.speed = match fastrand::u8(0..3) {
                0 => Still,
                1 => Slow,
                2 => Fast,
                _ => CrazyFast,    
            }
        }
    }

We could have kept the Pos2 struct to represent the 
laser pointer’s position, but holding an x and a y 
instead of a Pos2 makes the code a bit cleaner.

Nothing about this enum is too difficult. 
Note the #[default] attribute, though, 
which was added fairly recently to Rust!

Implementing From here isn’t 
essential, but it helps the 
following code be a bit cleaner.

This method now handles 
the random laser pointer 
movement when the mouse 
arrow gets too close.

We don’t want the speed to change 
too frequently (cats get bored when a 
laser pointer moves too quickly), so 
we’ll use a random f32 from 0.0 to 1.0 
and only change when the number is 
greater than 0.98. In practice, this 
will mean a speed change every few 
seconds. The following try_change_ 
target() changes the invisible target 
for the pointer in the same way.

Note that we used _ here because the compiler 
doesn’t know that the random number will only go up 
to 3. Alternatively, we could have used 3 on this line 
and then added _ below and the unreachable! macro.



51924.2 Laser pointer
    fn try_change_target(&mut self, rect: Rect) {
        let bottom_right = rect.max;
        if fastrand::f32() > 0.98 {
            self.imaginary_target = Pos2 {
                x: fastrand::f32() * bottom_right.x,
                y: fastrand::f32() * bottom_right.y,
            }
        }
    }
    fn change_speed(&self) -> f32 {
        match self.speed {
            Speed::Still => 0.0,
            Speed::Slow => 0.05,
            Speed::Fast => 0.1,
            Speed::CrazyFast => 0.3,
        }
    }
    fn move_self(&mut self) {   
        let x_from_target = self.imaginary_target.x - self.x;
        let y_from_target = self.imaginary_target.y - self.y;
        self.x += fastrand::f32() * x_from_target * self.change_speed();
        self.y += fastrand::f32() * y_from_target * self.change_speed();
    }
}

impl LaserPointer {
    fn new(_cc: &eframe::CreationContext<'_>) -> Self {
        Self {
            x: 50.0,
            y: 50.0,
            speed: Speed::default(),
            imaginary_target: Pos2 { x: 50.0, y: 50.0 },
        }
    }
}

impl eframe::App for LaserPointer {
    fn update(&mut self, ctx: &egui::Context, _frame: &mut eframe::Frame) {
        ctx.request_repaint();
        egui::CentralPanel::default().show(ctx, |ui| {   
            self.try_change_speed();
            self.try_change_target(rect);
            self.move_self();

            let rect = ctx.screen_rect();
            let screen_size = Vec2 {
                x: rect.width(),
                y: rect.height()
            };
            let (_, painter) = ui.allocate_painter(screen_size,
            ➥Sense::hover());    
            let LaserPointer { x, y, .. } = self;
            let Pos2 { x: x2, y: y2 } =
            ➥ctx.pointer_hover_pos().unwrap_or_default();

Finally, we have this method to move the laser 
pointer once every loop. One of the speeds is 0.0, 
though, so it will stay absolutely still in that case.

With all of these 
methods added, the final 
code is much cleaner.

The laser pointer moves on its own now, and
we are checking to see whether the mouse

arrow is close to the laser pointer or not, so
we don’t need to use the response returned

from allocate_painter() anymore.



520 CHAPTER 24 Unfinished projects, continued
            if (*x - x2).abs() < 20.0 && (*y - y2).abs() < 20.0 {
                self.random_movement(50.0);
            }
            painter.circle_filled(Pos2::from(*self), 20.0, Color32::RED);
        });
    }
}

fn main() {
    let native_options = eframe::NativeOptions::default();
    let _ = eframe::run_native(
        "Awesome laser pointer",
        native_options,
        Box::new(|cc| Box::new(LaserPointer::new(cc))),
    );
}

With these changes made, the laser pointer should now make some pretty erratic
movements. Sometimes it will stay still, other times it will move slowly, and other times
it will suddenly jump across the screen. See whether your cat or other pet likes it!

24.2.4 Over to you

The laser pointer is probably the most complete of the six unfinished projects in these
last two chapters, but here are a few ideas for further development:

 The laser pointer uses an invisible random target to move. Why not draw that as
well? Not only would it look interesting, but it could also help you test and
refine the laser pointer’s movement.

 Cats react differently to different types of laser pointers. Some enjoy a pointer
that stays still for a while because it lets them imagine the thrill of catching it
before they pounce. Others, usually kittens, prefer a wild pointer that moves as
fast as possible. Could you add some settings to the laser pointer to allow the
user to pick between different types of movement?

 The next project also uses egui to make a directory and file navigator. Why not
stick the laser pointer inside that app, too, so that your cat can try to catch it
while you work with the files on your computer?

 Try checking out some other popular GUI crates at https://www.areweguiyet
.com/. Some popular crates include Yew, Iced, and Dioxus.

 Check out the egui web demo (https://www.egui.rs/#demo) to get a feel for all
of the possibilities that egui offers. The page includes a link to the source code,
so you can copy and paste what you need to get started.

24.3 Directory and file navigator
The last unfinished project in the book will be a simple navigator that lets you look
through the directories on your computer and view the files inside. This project will
also use egui because we still have only made some simple graphics with egui but
haven’t tried making a more complete UI with it.

https://www.areweguiyet.com/
https://www.areweguiyet.com/
https://www.areweguiyet.com/
https://www.egui.rs/#demo


52124.3 Directory and file navigator
24.3.1 Setup and first code

Before we begin working with egui again, first we need to take a look at a few types
and methods in the standard library that we haven’t seen yet for working with directo-
ries and files:

 std::env::current_dir(), which gives you the current directory. It returns the
directory in the form Result<PathBuf>.

 PathBuf, which is similar to a String but is made for working with file and
directory paths. A PathBuf has both .push() and .pop() methods, but they
work with parts of a path instead of a char. For example, if we are inside the
directory "/playground" and use the .pop() method, the directory will now be
"/".

 std::fs::read_dir(), which returns a Result<ReadDir>. A ReadDir is an itera-
tor over the contents inside a directory.

 Each entry inside a ReadDir is an io::Result<DirEntry>. A DirEntry holds the
information that we are finally looking for that can be accessed through meth-
ods like .file_name(), path(), .file_type(), and .metadata().

Let’s put this all together in a quick example that takes a look at the directories inside
the Playground:

fn main() {
    let mut current_dir = std::env::current_dir().unwrap();
    println!("Current directory: {current_dir:?}");

    let mut read_dir = std::fs::read_dir(&current_dir).unwrap();
    println!("{read_dir:?}");
    let first = read_dir.nth(1).unwrap().unwrap();    
    println!("Path: {:?} Name: {:?}", first.path(), first.file_name());

    current_dir.pop();    
    println!("Now moved back to: {current_dir:?}");

    let mut read_dir = std::fs::read_dir(&current_dir).unwrap();
    println!("{read_dir:?}");
    let first = read_dir.nth(1).unwrap().unwrap();   
    println!("Path: {:?} Name: {:?}", first.path(), first.file_name());
}

The output should look like this:

Current directory: "/playground"
ReadDir("/playground")
Path: "/playground/.bashrc" Name: ".bashrc"
Now moved back to: "/"
ReadDir("/")
Path: "/mnt" Name: "mnt"

Let’s take a look at the second item inside the directory. Note the two
unwraps here: the .nth() method might return None, while inside is

an io::Result<DirEntry>. Some of the information we can get
includes the path name and filename, so let’s print them out and see.

Use .pop() to move 
back a directory.

We’ll do the same for the second
item inside the root directory.



522 CHAPTER 24 Unfinished projects, continued
None of this code was probably all that surprising: it’s just a lot of methods for work-
ing with directories and files. These methods all return Results because they all have
the possibility of failure.

24.3.2 Developing the code

Now that we know how to work with directories and directory entries, let’s try putting
the app together. We learned how to add buttons on egui during the last section, so
we can add a button for each item we find inside a directory and .push() to the Path-
Buf whenever it is clicked. And on the top, we can add another button that holds ".."
that will move back one directory. This part is easy: just .pop() from the PathBuf
whenever it is clicked.

 We will also use a struct called RichText, which in egui allows you to create text
with extra formatting options such as color.

 Putting all this together gives us the following code:

use std::{
    env::current_dir,
    fs::read_dir,
    path::PathBuf,
};

use eframe::egui;
use egui::{Color32, RichText};   

struct DirectoryApp {  
    current_dir: PathBuf,
}

impl DirectoryApp {
    fn new(_cc: &eframe::CreationContext<'_>) -> Self {
        Self {
            current_dir: current_dir().unwrap(),   
        }
    }
}

impl eframe::App for DirectoryApp {
    fn update(&mut self, ctx: &egui::Context, _frame: &mut eframe::Frame) {
        egui::CentralPanel::default().show(ctx, |ui| {
            if ui.button(" .. ").clicked() {   
                self.current_dir.pop();
            }
            let read_dir = read_dir(&self.current_dir).unwrap();    
            for entry in read_dir.flatten() {   
                let metadata = entry.metadata().unwrap();    
                let name = entry.file_name().into_string().unwrap();

RichText is used in egui if you want to 
change the text of a widget, and 
Color32 allows us to choose a color.

The app so far holds a 
PathBuf that we will use 
.push() and .pop() on.

This is a good example of where we
might want to keep .unwrap()—or

turn it into .expect()—because if
there is a problem getting the
current directory on startup,

the whole app should crash
to allow us to try to

 fix what’s wrong.

This part is pretty
easy! Make a

button and .pop()
when it is clicked.

Now we are going to work through the
directory information. Look at all the unwraps!

Each one of these methods returns a Result.

Note that here we are using .flatten()
to ignore anything inside the read_dir()

method that returns an Err.

We get the metadata and file/directory 
name. With the metadata we can see 
whether we have a file or a directory.



52324.3 Directory and file navigator
                if metadata.is_dir() {   
                    if ui
                        .button(RichText::new(&name).color(Color32::GRAY))
                        .clicked()
                    {
                        self.current_dir.push(&name);
                    }
                } else if metadata.is_file() {
                    if ui
                        .button(RichText::new(&name).color(Color32::GOLD))
                        .clicked()
                    {}    
                } else {
                    ui.label(name);   
                }
            }
        });
    }
}

fn main() {
    let native_options = eframe::NativeOptions::default();
    let _ = eframe::run_native(
        "File explorer",
        native_options,
        Box::new(|cc| Box::new(DirectoryApp::new(cc))),
    );
}

Running this code, you should see an app like the one in figure 24.4. Directories show
up in gray letters, and clicking on them will show you the content inside. Clicking on
.. will take you up a directory. But the files themselves in gold lettering don’t do any-
thing when you click on them.

And since we are still using .unwrap() everywhere, sometimes when you click a button
the program will crash with some sort of system error. Here's one error that you might
see:

We’ll make buttons with 
different text depending on 
whether we have a file or a 
directory. If we have a 
directory, clicking the 
button will .push() to the 
PathBuf and move us into 
that directory.

If we have a file, we
should print it out. But

let’s think about that
in the next section.

If the entry isn’t a file or a 
directory, let’s print out a 
label to show what it is.

Figure 24.4
Your file 
explorer app



524 CHAPTER 24 Unfinished projects, continued
thread 'main' panicked at 'called `Result::unwrap()` on an `Err` value: Os

➥{ code: 5, kind: PermissionDenied, message: "Access is denied." }',

➥src\main.rs:112:56

But so far so good! Now let’s develop the app a little bit more and make sure that it
can never crash.

24.3.3 Further development and cleanup

We need to clean up most of the unwraps in the code and add the option to display
the content of files that the user clicks on. When a file is clicked on, the app will need
to know the address of the file, but we don’t want to change the current_dir to do
that. One way would be to create a clone of current_dir and then push the filename
in the next line, but there is a quicker way to do it: a PathBuf can be built from an
array or Vec. The PathBuf documentation gives an example of this:

let path: PathBuf = [r"C:\", "windows", "system32.dll"].iter().collect();

After that comes the TextEdit that we saw in the last example. We can set the app to
hold a String called file_content and then check whether it’s empty. If it’s not, we’ll
pull up a SidePanel (in addition to the existing CentralPanel) to display it there.
egui tends to change the size of panels when the app is being used, so to prevent this
from happening, we’ll use the same screen_rect() method from the last example to
get the size of the screen. This can then be passed into the panel with a method called
.min_width() and then again to the TextEdit with its method called .desired_
width().

 Here is the final code after all of these changes have been made:

use std::{
    env::current_dir,
    fs::{read_dir, read_to_string},
    path::PathBuf,
};

use eframe::egui;
use egui::{Color32, RichText, TextEdit};

struct DirectoryApp {
    file_content: String,
    current_dir: PathBuf,
}

impl DirectoryApp {
    fn new(_cc: &eframe::CreationContext<'_>) -> Self {
        Self {
            file_content: String::new(),
            current_dir: current_dir().unwrap(),
        }
    }
}



52524.3 Directory and file navigator
impl eframe::App for DirectoryApp {
    fn update(&mut self, ctx: &egui::Context, _frame: &mut eframe::Frame) {
        egui::CentralPanel::default().show(ctx, |ui| {
            if ui.button(" .. ").clicked() {
                self.current_dir.pop();
            }
            if let Ok(read_dir) = read_dir(&self.current_dir) {   
                for entry in read_dir.flatten() {
                    if let Ok(metadata) = entry.metadata() {
                        if metadata.is_dir() {
                            if let Ok(dir_name) =
                            ➥entry.file_name().into_string() {
                                if ui
                                    .button(RichText::new(&dir_name)
                                    ➥.color(Color32::GRAY))
                                    .clicked()
                                {
                                    self.current_dir.push(&dir_name);
                                }
                            }
                        } else if metadata.is_file() {
                            if let Ok(file_name) =
                            ➥entry.file_name().into_string() {
                                if ui
                                   .button(RichText::new(&file_name)
                                   ➥.color(Color32::GOLD))
                                    .clicked()
                                {
                                    if let Some(current_dir) =
                                    ➥self.current_dir.to_str() {
                                        let file_loc: PathBuf =    
                                            [current_dir,
                                            ➥&file_name].iter().collect();
                                        let content =
                                        ➥read_to_string(file_loc)
                                            .unwrap
                                            ➥_or_else(|e| e.to_string()); 
                                        self.file_content = content;
                                    }
                                }
                            }
                        } else {
                            ui.label(format!("{:?}", metadata.file_type()));
                        }
                    }
                }
            }
        });

        let width = ctx.screen_rect().max.x / 2.0;
        if !self.file_content.is_empty() {    #C
            egui::SidePanel::right("Text viewer")
                .min_width(width)
                .show(ctx, |ui| {

 The unwraps have been 
removed, but egui’s update() 
method doesn’t return a 
Result, so we can’t use the 
question mark operator. The if 
let syntax is helpful here.

Here is the part with the new PathBuf to get the
contents of the file if a file button has been clicked.
We then use read_to_string() to create a String to

hold the file content. If there is an error, it will show
the error information instead of the file content.

Finally, this part displays a new panel on
the side if the app holds any file content.



526 CHAPTER 24 Unfinished projects, continued
                    ui.add(TextEdit::multiline(&mut
                    ➥self.file_content).desired_width(width));
                });
        }
    }
}

fn main() {
    let native_options = eframe::NativeOptions::default();
    let _ = eframe::run_native(
        "File explorer",
        native_options,
        Box::new(|cc| Box::new(DirectoryApp::new(cc))),
    );
}

With this code, we now have a crash-free app that runs exceptionally fast. It might
even be faster than the file explorer on your computer. Figure 24.5 shows a screenshot
of the app showing the same code being used to run it.

24.3.4 Over to you

You probably have a few ideas of your own for how to develop this app further. But
here are some other ideas to think about:

 If a directory has a lot of files in it, you will see buttons go well past the height of
the screen, but no scroll bar appears. Can you find out how to add a scroll bar
in egui?

Figure 24.5 Your 
now crash-free file 
explorer app



527Summary
 The panel on the right appears when a file is clicked, but there is no way to
remove it again. You could use a regular button, a radio button, a selectable
label, or something else to allow the user to make the text on the right
disappear.

 The typing area in the panel on the right lets you copy the whole text to allow
you to save it separately, but there is no way to save the content. You could add a
way to do this, as well as keep track of whether text has been changed. You
could also keep track of whether a file has been changed to ask the user
whether the changes should be saved or not.

 The code uses a lot of if let. This is good for error handling when you can’t
return a Result, but the indentation in the code is pretty deep. You could
reduce the indentation by making a method for the app to do some of this
work. For example, the method could look through the current directory and
return a Vec of an enum called something like DirectoryContent that has Dir,
File, and Other variants.

 Errors are being handled, but error information isn’t being displayed in most
places. Most users might not care to know about this, but you could add a check
box to open a panel that displays error info for users who want to keep a close
watch on the output of every method that returns a Result.

And with that, we have reached the end of the sixth unfinished project.
 And we have also reached the end of Learn Rust in a Month of Lunches! Hopefully,

your month of lunches was a pleasant one that has given you the knowledge and con-
fidence to start writing your own tools and projects in Rust. It will be interesting to see
what further developments happen with these unfinished projects by you, the reader,
or what else you end up creating on your own.

 Finally, hopefully you have come to see Rust as a language that is complex in a
good way, a language that is always watching your back to make sure that problems are
taken care of before you run your code, not after.

Summary
 Rust is used in enterprise software and even inside Windows and the Linux ker-

nel, but it is a fantastic language for small tools like these as well. It only takes 50
to 100 lines of code to put a tool together that is quite usable, and Rust’s type
correctness and error handling can guarantee that crashes will not happen.

 As of 2024, Rust has a lot of impressive web frameworks, and no one framework
is the One Framework to Rule Them All. Be sure to find the right one that fits
your needs and preferences as a developer.

 The same goes with Rust’s GUI frameworks, which are already quite impressive
but without one single crate that stands above the rest.

 Rust has a few websites that track the progress of crates in certain domains,
all of which have the form “Are we . . . yet?” Some examples are https://

https://arewegameyet.rs


528 CHAPTER 24 Unfinished projects, continued
arewegameyet.rs for game development, https://www.arewewebyet.org for web
development, and https://www.arewelearningyet.com for machine learning.
The full list of these tracking web pages can be seen at https://wiki.mozilla.org/
Areweyet.

 Curious which Rust version is coming next and when? Check out http://
whatrustisit.com.

 You are awesome for having read all the way to the end of the book!!!

https://arewegameyet.rs
https://www.arewewebyet.org
https://www.arewelearningyet.com
https://wiki.mozilla.org/Areweyet
https://wiki.mozilla.org/Areweyet
http://whatrustisit.com
http://whatrustisit.com
http://whatrustisit.com


index
Symbols

_ wildcard 465
? operator 118, 407, 474
.. two dots 55
* (asterisk) 469
&str type 30–32, 128, 149–151, 189, 342, 434
#![no_std] attribute 269
#[cfg] attribute 269
#[deprecated] attribute 269
#[derive(Error)] attribute 360
#[derive] attribute 423
#[error] attribute 360
#[non_exhaustive] attribute 269, 449
+ operator 129

A

Add trait 129, 421
and other similar traits 420–423

Add variant 299
AddAssign trait 422
adds_hungary function 41–42
.all() method 177, 234
allocating memory, const and static 33
.and_hms_opt() method 350
.and_then() method 175
.and() method 175–176
angle brackets 91
annotations. See  lifetime annotations
anonymous functions 161–168

closures
|_| in 167
inside of methods 163–164

lazy and fast 164–167
anonymous lifetime 195–199
ansi_term crate 486
Any trait 444
.any() method 177, 295
anyhow crate 357–360, 490
anyhow! macro 358
App struct 485, 490
App trait 513
.append() method 390
Arc (atomic reference counter) 233, 249–250, 

252, 260
architecture 9
Args struct 382
args() method 383
argue_in_court() function 141
arguments 16, 466

closures as 234–244
example 242–244
relationship between FnOnce, FnMut, and 

Fn 239
simple closures 237–239
uniqueness of closures 240

arrays 53–55, 413–417
destructuring and mapping 414
implementing Iterator 413
using from_fn to make 415–417

.as_bytes() method 13

.as_micros() method 357

.as_nanos() method 357
ASCII 9, 47
AsRef trait 149–151
assert_eq! macro 123, 156, 289–290
assert_eq!() macro 416
529



INDEX530
assert_ne! macro 123
assert! macro 123, 290
Assign trait 422
associated items and associated constants

424–428
associated consts 427
associated functions 81, 425
associated types 158, 425

async block 406
async main 405
async Rust 402–410

basics of 402
checking whether Future is ready 403
feature flags 399–402
other details about 407–410
using async runtime 405–407

async_trait crate 410
AsyncIterator trait 410
atomic types 249
AtomicI64 type 249
AtomicU64 type 249
attributes 81, 129, 265–271, 289, 360, 423, 449
available_parallelism() method 355
.await keyword 403, 405–406
axum_sessions crate 512

B

b prefix 54
Backtrace struct 449
Backtrace::capture() function 447
backtraces 447–450
BacktraceStatus enum 449
.bark() method 131
basics

floats 15
printing 22

BigBuffers struct 325
BinaryHeap 115
blanket trait implementations 33, 134, 341,

 362–366
Block widget 493, 499
blocking Client (reqwest crate) 399
BookCollection struct 158–159
bool 390, 428
bounds, traits as 140–142
Box 261, 271–281

basics of 271–273
downcasting to concrete type 279–281
handling multiple error types 276–279
putting around traits 273–276

Box<dyn Error> 490

BTreeMap 107–108
BTreeSet 113
Buffers struct 325
builder pattern 303, 307–314

adding final check to 309
builder methods 307
Deref 314–322

basics 314
implementing 316
using wrong way 320–322

DerefMut 318
final check to 309
making more rigorous 313
writing builder methods 307

.by_ref() method 182
byte array 54

C

.capacity() method 57
Cargo 374–380

compiling with 376–380
reasons for using 374–376

cargo add command 380
cargo add reqwest command 399
cargo build --release 445
cargo build --timings command 380
cargo clean command 380
cargo clippy command 380
cargo doc 392–394
cargo new command 375
cargo run --release 445
Cargo.toml file and external crates 336
casting enums into integers 78
.ceil() method 423
Cell 200
cfg attribute 269
cfg! macro 458–460
chaining methods 153
.change_city_data() method 242, 244
channel() function 256
channels 256–260

basics 256
implementing 257–260

char type 9, 417
characters 7–14
.chars() method 13, 295
.chars().count() method 13
check_book_type() function 213
check_guess() function 507
checked operations 419
.checked_ methods 420



INDEX 531
.checked_add() method 419–420

.checked_div() method 419

.checked_mul() method 419

.checked_sub() method 317, 419
chrono crate 344–354, 495

checking code inside external crates 350
.chunks() method 183
City struct 84
ClearType enum 484
CLIs (command-line interfaces) 481
Clone trait 44, 92, 128
.clone() method 265
.cloned() method 182
cloning on write 215–219
closures 170–185, 233

|_| in 167
as arguments 234–244

example 242–244
relationship between FnOnce, FnMut, and 

Fn 239
simple closures 237–239
uniqueness of closures 240

checking 177–180
filtering 170–173
finding items inside 177–180
inside iterators 161–168
inside of methods 161–168
lazy and fast 164–167
mapping 170–173
methods 174–185
related methods 174–185

code
keeping clean with macros 475–479

code blocks 17
declaring variables 20

.collect() method 153, 156, 164, 414
collection types 53–60, 106–117

arrays 53–55
BinaryHeap 115
HashMap 107–108

.entry() method 110–113
HashSet 113
tuples 58–60
VecDeque 117
vectors 55–58

Color 32 522
column! macro 454
command-line arguments 382–385
command-line interfaces (CLIs) 481
comments 6–7
Company struct 170, 172
compare_and_display() function 94

complex examples 135–140
concrete &self 136
concurrency 251
const 33, 323–326

const functions 326–328, 366
mutable statics 328

const functions 326–328, 366
const generics 145, 324–326
const keyword 325
const values 324
ConstParam 324
control flow 60–70

basic 60
loops 66–70
match statements 61–65

copy semantics 42
Copy trait 92, 128, 135
Copy types 28, 42–45, 51, 438
.count() method 13
Country struct 73, 421
Cow type 209, 215–219, 342
crates 283–289, 341

error handling 357–362
Anyhow 358–359
thiserror 360–362

external 335–339
and Cargo.toml 336
rolling dice with rand crate 337–339
using rand crate 336

module 286
Rayon 354–357
reqwest crate 397–399
time crate 344–349

.create_new() method 390

.create() method 390
CreationContext 513
Crossterm 481, 487
CString type 412, 434
curly brackets 253
.cycle() method 180
cycling 180–185

D

DateTime struct 495
dbg! macro 169, 472–473
Debug mode 377–378
Debug printing 22
Debug trait 92, 128, 132, 138, 363
.debug_struct() method 278
.dedup() method 430
Default trait 303



INDEX532
Deref 149, 190, 302–303, 314–322
basics 314
implementing 316
using wrong way 320–322

DerefMut 318
implementing 304–306

.delete_book() function 212–213
deprecated attribute 270
dereferencing 36, 87
Deserialize attribute 342–343
Deserialize trait 489
.desired_width() method 524
destructuring 60, 83–87
destructuring arrays 414
directory and file navigator 520–527

developing code 522–524
further development and cleanup 524–526
setup and first code 521

DirectoryContent enum 527
DirEntry 521
Display printing 22
Display trait 92, 94, 132–135, 325, 478
.display_self() method 138–139
Div trait 422
DivAssign trait 422
diverging code 103
.do_operation() method 300
doc comments (documentation comments) 7
documentation

cargo doc 392–394
reading 262–271

[src] button 264
assert_eq! 262
attributes 265–271
searching 264
traits 265

dot operator 87
.downcast_mut() method 279
.downcast_ref() method 279, 281, 444
.downcast() method 279
downcasting 279
.drain() method 431
.draw() method 493
drop() function 206, 273, 431, 437–438
.duration_since() method 348
dyn keyword 275
dynamic dispatch 275
dynamically sized types 31, 216

E

eframe crate 513
eframe::run_native() method 513

egui crate 512
egui web demo 520
.elapsed() method 346, 355
Email type 319
Entry enum 111
.entry() method 110–113
.enumerate() method 164, 167
enums 72–83

casting into integers 78
implementing 81–83
using multiple types 79

env_logger crate 387
environment variables 385–387
error attribute 360
error handling 106, 357–362

Anyhow 358–359
panic hooks 442–447
panic! macro 122–126
thiserror 360–362

Error trait 444
ErrorKind enum 358
escape characters 46
.escape_unicode() method 417
Event enum 482, 501
exclusive range 55
execute! macro 484
ExitStatus 404
Expand button 470
.expect() method 124–125, 289
extern crate 451
external crates 323, 335–339

and Cargo.toml 336
rolling dice with rand crate 337–339
using rand crate 336

ExternalCrateError variant 363
extractors 505

F

f32 423
f64 423
fast closures 164–167
fastrand::bool() method 516
feature flags 399–402
ffi (foreign function interface) 434
File struct 314
File type 147–149
.file_name() method 521
.file_type() method 521
File::create() method 389
File::options() method 390, 392
file! macro 454, 473



INDEX 533
files 388–392
creating 388
opening existing 389
OpenOptions 389–392

.filter_map() method 170

.filter() method 170, 434
filtering 170–173
.find() method 179
.flatten() method 176
floats 15, 423
.floor() method 423
.fmt() method 265, 276
fn pointers 327
Fn trait 239, 260
FnMut trait 239, 260
FnOnce trait 229, 231, 239, 260
.fold() method 180, 424
folding 180–185
for loop 154
.for_each() method 156, 163, 180
format_args! macro 471
format! macro 32, 360
.format() method 495
formating alignment 49
fragment specifiers 467
French trait 143
From trait 33, 128, 145–147, 417
from_fn() method 412, 415–417
from_str() method 343
from_utf8() method 101
from_ymd_opt() method 350
from_ymd() method 350
from() method 265
functions

importing and renaming inside 210
lifetimes in 191

functions.rs file 288
Future trait 398, 402

checking whether Future is ready 403
futures crate 410
futures_concurrency crate 410

G

generics 90–95, 233, 324
impl Trait 244–248

regular generics compared to 244–246
returning closures with 246–248

Option and Result 95–105
.get_article() method 490
.get_book() function 212–213
get_res_from_static() function 509

.get() method 102, 175, 265, 369, 397
give_eight() function 326
gives_higher() function 245
GivesOne struct 161
glob operator 286
GLOBAL_LOGGER 366, 370
graphical user interfaces (GUIs) 481
green threads 225

H

HashMap 107–108
.entry() method 110–113

HashSet 113
heap 28–30
Hello, World! example 16–20
helper functions 499
high level 70
hms (hour minutes seconds) 350

I

if let 102, 482
if let syntax 527
immutable references 50
imperative style 153
impl block 81, 148
impl Experienced 141
impl keyword 81, 129
impl Lawyer 141
impl Trait 233, 244–248, 260

regular generics compared to 244–246
returning closures with 246–248
types 327

include_str! macro 391
inclusive range 55
incremental compilation 376
infer verb 14
inner attribute 266
.insert(key, value) method 107
Instant struct 495
Instant::now() function 345
integers 7–14, 419–423

Add trait and other similar traits 420–423
checked operations 419

interior mutability 189, 199–208
Cell 200
Mutex 204–206
RefCell 201–204
RwLock 207

into_borrowed method 217
.into_iter() method 154, 156, 355



INDEX534
into_owned method 217
.into_string() method 434
.into() method 33, 58
IntoIterator 383
IntoUrl trait 397
io::Result<DirEntry> 521
.is_alphabetic() method 177
.is_none() method 98
.is_some() method 98
isize type 7
Item associated type 157
.iter_mut() method 154, 156, 355
.iter() method 154, 355, 413
Iterator trait 157–158, 161
Iterator, arrays implementing 413
iterators 154–161, 170–185

chaining methods 153
checking 177–180
checking and finding items inside 177–180
closures

|_| in 167
lazy and fast 164–167

closures inside 161–168
cycling 180–185
filtering 170–173
finding items inside 177–180
folding 180–185
mapping 170–173
methods 174–185
zipping 180–185

J

.join() method 227, 253
JoinHandle 226–227
just_makes_an_i32() function 58

K

KeyEvent struct 482–483
KoreaJapanUserEvent struct 353

L

lambdas 161
largest numbers 23
laser pointer project 512–520

developing code 515–517
further development and cleanup 517–520
setup and first code 512–514

LawyerSkill trait 143
lazy_static crate 341, 366–371, 456

overview 366–368

lazy_static! macro 367, 456
len_utf() method 418
.len() method 12
lenient language spouse 3
let else 103
let keyword 20, 25
lib.rs file 288
libraries 450
Library struct 158
LifetimeParam 324
lifetimes 189, 324

&str 189
annotations 190–199

in functions 191
in types 192–195

anonymous lifetime 195–199
interior mutability 199–208

line! macro 454, 473
LocalKey type 458
.lock() method 398
Logger struct 367, 369
loops 66–70
low level 70

M

macros 437, 461
keeping code clean with 475–479
reading from standard library 470–475
reasons for 462
standard library 451–460

cfg! macro 458–460
column! macro 454
file! macro 454
line! macro 454
macro_rules! macro 463
matches! macro 474
module_path! macro 454
thread_local! macro 456–458
unreachable! macro 452–454

todo! macro 212–214
writing 463–470

main.rs file 288
main() function 16, 514
main() method 369
.make_book() function 214
make_fear_closure() function 247
.map_while() method 182
.map() method 156, 170, 174, 414–415
mapping 170–173
mapping arrays 414
match guard 63



INDEX 535
match keyword 52, 101
match statements 61–65
.match_indices() method 183
math() function 294–296
::MAX 23
.max() method 424
maximum length 49
MedicalSkill trait 143
mem module 12, 437
mem::drop() function 438
mem::take() function 446–447
memory 28–30

const and static 33
Copy types 42–45
std::mem module 437–442
strings 30–33

memory allocation 34
.metadata() method 521
method chaining 152
method signatures 131–135
methods 71, 81

closures inside 163–164
ending in _unchecked 334

::MIN 23
.min_width() method 524
.min() method 424
minimum length 49
mod city module 286
mod country module 286
mod keyword 288, 293
mod province module 286
modules 283–289

basics of 283
modules inside modules 286–289
pub keyword 285

monomorphism 377
MonsterBehavior trait 138
move keyword 229–231
move semantics 42
Mul trait 422
MulAssign trait 422
mut keyword 54
mut self 307
mutability 24

interior 199–208
Cell 200
Mutex 204–206
RefCell 201–204
RwLock 207

static mut 331–332
mutable references 35–38, 50

only immutable references 37

only one mutable reference 37
problem situation 37

mutable statics 328
Mutex 204–206, 250, 254
Mutex<String> 367
my_number as char problem 10
MyType type 92

N

Naive types 350
$name, ident identifier 469
Neg trait 422
newtypes 147–149
NewUserRequest struct 343
.next() method 156–157, 159, 265
num_bigint crate 420
num_to_parse String 296
numbers, smallest and largest 23

O

.ok_or_else() method 172–173

.ok_or() method 172

.ok() method 170–172, 175
OKAY_CHARACTERS const 295
once_cell crate 341, 366, 368–371

lazy_static 366–368
OnceCell 369–371

OnceCell::new() method 369
open_file() function 458
open() method 389
OpenOptions 389–392
OpenOptions struct 390
Operation enum 299
Option 90, 95–105, 156, 174, 438
options() method 390
_or_else methods 172
.or_insert() method 110–111
orphan rule 147–149
OS threads 225
OsString 434
outer attribute 266
Output type 403
ownership 28

references to functions 38–42

P

padding characters 49
Painter 516
panic 96



INDEX536
panic hooks 437, 442–447
panic! macro 122–126, 289, 442–443
PanicInfo struct 443–444
par_chars() method 355
par_into_iter() method 355
par_iter_mut() method 355
par_iter() method 355
Paragraph widget 493
parse_and_log_str() function 118
parse_int() function 120
.parse() method 104, 122, 172
PartialEq trait 422
PartialOrd trait 94, 422
.path() method 521
pattern matching 98

if let 102
let else 103
while let 104

Pattern trait 184
.payload() method 444
.peekable() method 184
Pin 402
pointer address 48
pointer_hover_pos() method 516
pointers 29–30
poll() method 403, 496
polymorphic functions 377
.pop() method 159, 433, 522
popular crates

lazy_static and once_cell 366–371
serde crate 342–344

Pos2 struct 515
Position struct 133
.position() method 179
prelude section 211
prelude, standard library 450
pretty printing 22
primitive types 7–14
print_all_three_things() function 122
print_country() function 39–40
print_item() function 92
print_names() method 85
print_number() function 43
print_things module 283
printing 16–20, 22, 46–51
println! macro 231, 471
prints_country() function 43–44
process_city_values() function 84
programmers 4
Programming Rust 461
programs 4
prototyping 212

pub keyword 149, 285
.push_str() method 509
.push() method 56, 522

Q

qualifications, traits as 142
Quantity type 319

R

rand crate
rolling dice with 337–339
using 336

rand keyword 374
RangeInclusive struct 515
ratatui crate 492, 501, 512
Rayon crate 341, 354–357
Rc (reference counter) 219–225, 250

avoiding lifetime annotations with 223–225
using in practice 220–223
why Rc exists 219

.read_line() method 380
read_to_string() method 389, 483
.read() method 390, 481
ReadDir 521
reading documentation 262–271

[src] button 264
assert_eq! 262
attributes 265–271
searching 264
traits 265

Rect struct 515
.recv() method 258–259
ref mut i32 35
RefCell 201–204
reference cycle 222
references 30, 34, 87

mutable references 35–38
only immutable references 37
only one mutable reference 37
problem situation 37

to functions 38–42
referencing 36
--release part 380
Rem trait 422
.render_widget() method 493
.replace() function 439
request_repaint() method 517
RequestBuilder struct 397
reqwest crate 366, 371, 397–399, 401–402, 406
reqwest::Client 366



INDEX 537
Response struct 401
Result enum 90, 95–105, 174
retain() method 434
return_item() function 91
.rev() method 178
RichText struct 522
.round() method 423
run_native() method 514
.run() method 131
Rust

backtraces 447–450
basics of 1
files 388–392

creating 388
opening existing 389
OpenOptions 389–392

installing
accessing command-line arguments

382–385
accessing environment variables 385–387
on computer 373
through stdin 380–382
working with user input 380–387

overview of 2–6
unsafe Rust 329–335

methods ending in _unchecked 334
overview of 329
transmute() function 332–334
using static mut in 331–332

rustc compiler 374
Rustonomicon, The 330
RwLock 207

S

SaysHello 362
scoped threads 253, 256
screen_rect() method 516, 524
searching 264
select! macro 408
self keyword 71
Self type 82
.send() method 257–258
Sense enum 516
serde crate 341–344, 488
serde_json crate 343, 488
serde_json::from_str() function 489
serde_yaml crate 343
Serialize attribute 342–343
.serve() method 505
set_hook() method 443
set_var() method 291, 387

.set() method 369
shadowing 25–27
short circuit 178
shrink_to_fit() method 433
size_of_val() function 31, 437
size_of() function 12, 437
skinny arrow 18
.skip_while() method 182
.skip() method 383
sleep() function 407
slices 55
smallest numbers 23
smurf 310
.sort_unstable() method 430
.sort() method 430
spawn() function 226–227, 229, 231, 351
specialized definition 377
.split_at_mut() method 431
.split_at() method 431
src button 264
src/main.rs 122
stack 28–30
standard library 412, 437

arrays 413–417
destructuring and mapping 414
implementing Iterator 413
using from_fn() to make 415–417

associated items and associated constants
424–428

bool 428
char 417
floats 423
integers 419–423

Add trait and other similar traits 420–423
checked operations 419

macros 451–460
cfg! macro 458–460
column! macro 454
file! macro 454
line! macro 454
module_path! macro 454
thread_local! macro 456–458
unreachable! macro 452–454

panic hooks 442–447
prelude 450
reading macros from 470–475
String 432–434
time crate 344–349
tour of 437

.start() method 507
State type 512
static methods 81



INDEX538
static mut 331–332
statics, mutable 328
status() method 449
std library 437
std::backtrace module 447
std::cell::OnceCell 370
std::cmp::max() function 424
std::cmp::min() function 424
std::env::args() method 382
std::env::set_var() function 292, 386
std::env::var() function 291
std::env::vars() function 385
std::ffi module 434
std::fs module 388–389
std::fs::read_dir() function 521
std::fs::write() function 388
std::io module 382
std::io::Write trait 388
std::mem module 12, 437–442
std::mem::size_of_val() function 78
std::ops::Add 129
std::panic module 442
std::sync::mpsc 256
std::sync::OnceLock 370
std::thread module 355
std::thread::sleep() function 348
std::thread::spawn() function 225
std::time module 344
Stdin struct 380
stdin() function 380
Stopwatch struct 496
Stream trait 410
strict Rust spouse 3
string slice 30
String type 30, 32–33, 128, 148–151, 342, 434
String::from_utf8() method 121–122
String::new() method 507
String::with_capacity() method 432
strings 7–14, 30–33
strong_count() method 221
structs 72–83

implementing 81–83
Sub trait 422
Sub<Instant> 345
SubAssign trait 422
Subtract variant 299
Subtractor struct 294
.sum() method 182
.swap() function 438–439
SystemError enum 363
SystemTime struct 347

T

.take_damage() method 138–139
take_fifth() function 99
.take_guess() method 509
take_hook() method 446
.take_while() method 182
take() function 438, 440–441
.take() method 153, 160, 182
terminal stopwatch and clock 492–502

developing code 495–498
further development and cleanup 499
setup and first code 492–494

test-driven development (TDD) 282, 293–302
building calculator 294–296
putting calculator together 296–302

testing 282, 289–293
and test-driven development 293–302
crates 283
modules 283–289

basics of 283
modules inside modules 286–289
pub keyword 285

when tests fail 290–292
writing multiple tests 292

TextEdit 524
.then_some() method 412, 429
.then() method 429
thiserror crate 341, 360–362
thread_local! macro 456–458
thread::scope() method 254
thread::spawn() method 351
threads 209, 225–233

cloning on write 215–219
move keyword 230
spawning 225–227
type aliases 214
types of closures 229
waiting for to finish 227–229

time crate 344–349
time module 341
TimeOfDay enum 247
.to_digit() method 346
.to_string() method 134, 364
todo! macro 212–214, 471
token parser 463
ToOwned trait 216
ToString trait 134–135, 364
trait bounds 137, 327
Trait Implementations 42–43
trait objects 242, 277
trait word 22



INDEX 539
traits 128–145
as bounds 140–142
as qualifications 142
AsRef trait 149–151
blanket trait implementations 362–366
From trait 145–147
information on 265
method signatures 131–135
more complex examples 135–140
orphan rule 147–149
putting Box around 273–276

transferring ownership 50
transmute() function 332–335
.trim_end_matches() method 297
.trim_left_matches() method 297
.trim_right_matches() method 297
.trim_start_matches() method 297
.trim() method 381
.trunc() method 423
.truncate() method 390
try_join! macro 409
.try_lock() method 206
.try_recv() method 258
TryFrom trait 476, 478
tt (token tree) 468
TUI (text- or terminal-based user interface) 492
tui crate 492
tuples 58–60
type aliases 214
type erasure 277
type inference 14
TypeParam 324
types 71

building 71–88
destructuring 83–87
dot operator 87
references 87
See also enums; structs

collection types 53–60
arrays 53–55
tuples 58–60
vectors 55–58

control flow 60–70
basic 60
loops 66–70
match statements 61–65

Copy types 42–45
inference 14
lifetime annotations in 192–195
more complex 52
traits 128–145
using multiple 79

typing tutor 481–487
developing code 482–484
further development and cleanup 484
ideas for further development 486
setup and first code 481

U

Ui struct 513
unfinished projects 480, 503

directory and file navigator 520–527
developing code 522–524
further development and cleanup 524–526
setup and first code 521

setup for 481
terminal stopwatch and clock 492–502

developing code 495–498
further development and cleanup 499
setup and first code 492–494

Wikipedia article summary searcher 487–492
developing code 488
further development and cleanup 490
setup and first code 487

word-guessing game 504–512
developing code 506–509
further development and cleanup 509–512
setup and first code 504–506

unit type 58
UNIX_EPOCH const 347
unreachable! macro 452–454
unsafe keyword 329–330
unsafe Rust 323, 329–335

methods ending in _unchecked 334
overview of 329
transmute() function 332–334
using static mut in 331–332

unwrap method 122–126
.unwrap_err() method 361
.unwrap_or_default() method 306
.unwrap_or_else() method 163, 172
.unwrap_or() method 163, 172
.unwrap() method 97, 257, 289, 435, 485, 490, 

523
.update() method 265, 513, 517
ureq crate 487
use keyword 77–78
use of moved value 39
use statement 252, 451
user input 380–387

accessing command-line arguments 382–385
accessing environment variables 385–387
through stdin 380–382



INDEX540
UserName(String type) 342
usize type 7
UTF-8 31

V

values, variables without 45
var() method 387
variable names 49
variant 75
Vars 385
Vec type 55–56, 147, 227, 412, 430–432
Vec::new() method 507
Vec::with_capacity() method 57
vec! macro 56
Vec2 struct 515
VecDeque 117
vectors 55–58

W

web servers
word-guessing game 504–512

developing code 506–509
further development and cleanup 509–512
setup and first code 504–506

where keyword 94

while let 104
_while methods 182
Wikipedia article summary searcher 487–492

developing code 488
further development and cleanup 490
setup and first code 487

.windows() method 183

.with_state() method 509, 512

.with() method 456
word-guessing game 504–512

developing code 506–509
further development and cleanup 509–512
setup and first code 504–506

.write_all() method 388
write_fmt() method 471
write! macro 133, 390, 470
.write() method 390

Y

ymd (year month day) 350

Z

zero-cost abstractions 166
.zip() method 166, 180
zipping 180–185



For ordering information, go to www.manning.com

RELATED MANNING TITLES

Code Like a Pro in Rust
by Brenden Matthews

ISBN 9781617299643
264 pages (estimated), $59.99

March 2024 (estimated)

Rust in Action
by Tim McNamara 

ISBN 9781617294556
456 pages, $59.99

June 2021

Rust Web Development
by Bastian Gruber 

ISBN 9781617299001
400 pages, $49.99

December 2022

Rust Servers, Services, and Apps
by Prabhu Eshwarla

ISBN 9781617298608
328 pages, $59.99

July 2023



A new online reading experience

liveBook, our online reading platform, adds a new dimension to your Manning books, 

with features that make reading, learning, and sharing easier than ever. A liveBook 

version of your book is included FREE with every Manning book.

This next generation book platform is more than an online reader. It’s packed with 

unique features to upgrade and enhance your learning experience.

• Add your own notes and bookmarks

• One-click code copy

• Learn from other readers in the discussion forum

• Audio recordings and interactive exercises

• Read all your purchased Manning content in any browser, anytime, anywhere

As an added bonus, you can search every Manning book and video in liveBook—even 

ones you don’t yet own. Open any liveBook, and you’ll be able to browse the content and 

read anything you like.*

Find out more at www.manning.com/livebook-program.

*Open reading is limited to 10 minutes per book daily



Dave MacLeod ●  Foreword by Allen Wyma

ISBN-13: 978-1-63343-823-1

L
earn how to create fast powerful programs in Rust in just 

24 short lessons! Rust gives you modern features like a 

top-notch compiler, a rich ecosystem of pre-built libraries, 

and the same low-level performance you get with a language 

like C, but without the awkward syntax, complex memory 

management, and code safety concerns. Th is book guides you 

step by step from your fi rst line of code.

Learn Rust in a Month of Lunches breaks down the Rust lan-

guage into concise hands-on lessons designed to be completed 

in an hour or less. Th e examples are fun and easy to follow, so 

you’ll quickly progress from zero Rust knowledge to handling 

async and writing your own macros. You won’t even need to 

install Rust—the book’s code samples run in the browser-based 

Rust Playground. Th ere’s no easier way to get started! 

What’s Inside
●  Build working Rust software

●  Understand messages from the compiler and Clippy

●  Use external Rust “crates” (libraries) for common tasks

●  Explore test driven development in Rust

No previous experience with Rust required.

Dave MacLeod was an educator, Korean-English translator, 

project controller, and copywriter before becoming a full-time 

Rust developer.

Th e technical editor on this book was Jerry Kuch.

For print book owners, all ebook formats are free:
https://www.manning.com/freebook

LEARN
RUST

IN A MONTH OF LUNCHES

DEVELOPMENT

M A N N I N G

“Breaks the journey down into 

manageable parts, teaching in 

small increments and making 

consistent progress. If you’ve 

put off learning Rust, this is 

the book for you!”
—Luca Palmieri, Mainmatter

“Covers all you need to start 

programming in Rust.”
—Jonathan Reeves

Wolfj aw Studios 

“Simple language and a great 

pace. Easy-to-understand 

examples cover key language 

concepts. It’s everything you 

need to know to get going.”
—Steve Fenton, Octopus Deploy

“Unlock your potential as a 

Rust programmer with this 

  exceptional guide.”
—Srikar Vedantam, Volvo Group 

See first page


	Learn Rust in a Month of Lunches
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A road map
	About the code
	liveBook discussion forum

	about the author
	1 Some basics
	1.1 Introducing Rust
	1.1.1 A pep talk
	1.1.2 Rust is like a critical spouse

	1.2 Comments
	1.3 Primitive types: Integers, characters, and strings
	1.4 Type inference
	1.5 Floats
	1.6 “Hello, World!” and printing
	1.7 Declaring variables and code blocks
	1.8 Display and Debug
	1.9 Smallest and largest numbers
	1.10 Mutability (changing)
	1.11 Shadowing
	Summary

	2 Memory, variables, and ownership
	2.1 The stack, the heap, pointers, and references
	2.2 Strings
	2.3 const and static
	2.4 More on references
	2.5 Mutable references
	2.5.1 Rust’s reference rules
	2.5.2 Situation 1: Only one mutable reference
	2.5.3 Situation 2: Only immutable references
	2.5.4 Situation 3: The problem situation

	2.6 Shadowing again
	2.7 Giving references to functions
	2.8 Copy types
	2.9 Variables without values
	2.10 More about printing
	Summary

	3 More complex types
	3.1 Collection types
	3.1.1 Arrays
	3.1.2 Vectors
	3.1.3 Tuples

	3.2 Control flow
	3.2.1 Basic control flow
	3.2.2 Match statements
	3.2.3 Loops

	Summary

	4 Building your own types
	4.1 A quick overview of structs and enums
	4.1.1 Structs
	4.1.2 Enums
	4.1.3 Casting enums into integers
	4.1.4 Enums to use multiple types
	4.1.5 Implementing structs and enums

	4.2 Destructuring
	4.3 References and the dot operator
	Summary

	5 Generics, option, and result
	5.1 Generics
	5.2 Option and Result
	5.2.1 Option
	5.2.2 Result
	5.2.3 Some other ways to do pattern matching

	Summary

	6 More collections, more error handling
	6.1 Other collections
	6.1.1 HashMap (and BTreeMap)
	6.1.2 HashSet and BTreeSet
	6.1.3 BinaryHeap
	6.1.4 VecDeque

	6.2 The ? operator
	6.3 When panic and unwrap are good
	Summary

	7 Traits: Making different types do the same thing
	7.1 Traits: The basics
	7.1.1 All you need are the method signatures
	7.1.2 More complex examples
	7.1.3 Traits as bounds
	7.1.4 Traits are like qualifications

	7.2 The From trait
	7.3 The orphan rule
	7.4 Getting around the orphan rule with newtypes
	7.5 Taking a String and a &str in a function
	Summary

	8 Iterators and closures
	Iterators and closures
	8.1 Chaining methods
	8.2 Iterators
	8.3 Closures and closures inside iterators
	8.3.1 Closures inside of methods
	8.3.2 Closures: Lazy and fast
	8.3.3 |_| in a closure

	Summary

	9 Iterators and closures again!
	9.1 Helpful methods for closures and iterators
	9.1.1 Mapping and filtering
	9.1.2 Some more iterator and related methods
	9.1.3 Checking and finding items inside iterators
	9.1.4 Cycling, zipping, folding, and more

	9.2 The dbg! macro and .inspect
	Summary

	10 Lifetimes and interior mutability
	10.1 Types of &str
	10.2 Lifetime annotations
	10.2.1 Lifetimes in functions
	10.2.2 Lifetime annotations in types
	10.2.3 The anonymous lifetime

	10.3 Interior mutability
	10.3.1 Cell
	10.3.2 RefCell
	10.3.3 Mutex
	10.3.4 RwLock

	Summary

	11 Multiple threads and a lot more
	11.1 Importing and renaming inside a function
	11.2 The todo! macro
	11.3 Type aliases
	11.4 Cow
	11.5 Rc
	11.5.1 Why Rc exists
	11.5.2 Using Rc in practice
	11.5.3 Avoiding lifetime annotations with Rc

	11.6 Multiple threads
	11.6.1 Spawning threads
	11.6.2 Using JoinHandles to wait for threads to finish
	11.6.3 Types of closures
	11.6.4 Using the move keyword

	Summary

	12 More on closures, generics, and threads
	12.1 Closures as arguments
	12.1.1 Some simple closures
	12.1.2 The relationship between FnOnce, FnMut, and Fn
	12.1.3 Closures are all unique
	12.1.4 A closure example

	12.2 impl Trait
	12.2.1 Regular generics compared to impl Trait
	12.2.2 Returning closures with impl Trait

	12.3 Arc
	12.4 Scoped threads
	12.5 Channels
	12.5.1 Channel basics
	12.5.2 Implementing a channel

	Summary

	13 Box and Rust documentation
	13.1 Reading Rust documentation
	13.1.1 assert_eq!
	13.1.2 Searching
	13.1.3 The [src] button
	13.1.4 Information on traits
	13.1.5 Attributes

	13.2 Box
	13.2.1 Some Box basics
	13.2.2 Putting a Box around traits
	13.2.3 Using a Box to handle multiple error types
	13.2.4 Downcasting to a concrete type

	Summary

	14 Testing and building your code from tests
	14.1 Crates and modules
	14.1.1 Module basics
	14.1.2 More on how the pub keyword works
	14.1.3 Modules inside modules

	14.2 Testing
	14.2.1 Just add #[test], and now it’s a test
	14.2.2 What happens when tests fail
	14.2.3 Writing multiple tests

	14.3 Test-driven development
	14.3.1 Building a calculator: Starting with the tests
	14.3.2 Putting the calculator together

	Summary

	15 Default, the builder pattern, and Deref
	15.1 Implementing Default
	15.2 The builder pattern
	15.2.1 Writing builder methods
	15.2.2 Adding a final check to the builder pattern
	15.2.3 Making the builder pattern more rigorous

	15.3 Deref and DerefMut
	15.3.1 Deref basics
	15.3.2 Implementing Deref
	15.3.3 Implementing DerefMut
	15.3.4 Using Deref the wrong way

	Summary

	16 Const, “unsafe” Rust, and external crates
	16.1 Const generics
	16.2 Const functions
	16.3 Mutable statics
	16.4 Unsafe Rust
	16.4.1 Overview of unsafe Rust
	16.4.2 Using static mut in unsafe Rust
	16.4.3 Rust’s most famous unsafe method
	16.4.4 Methods ending in _unchecked

	16.5 Introducing external crates
	16.5.1 Crates and Cargo.toml
	16.5.2 Using the rand crate
	16.5.3 Rolling some dice with rand

	Summary

	17 Rust’s most popular crates
	17.1 serde
	17.2 Time in the standard library
	17.3 chrono
	17.3.1 Checking the code inside external crates
	17.3.2 Back to chrono

	17.4 Rayon
	17.5 Anyhow and thiserror
	17.5.1 Anyhow
	17.5.2 thiserror

	17.6 Blanket trait implementations
	17.7 lazy_static and once_cell
	17.7.1 Lazy static: Lazily evaluated statics
	17.7.2 OnceCell: A cell to only write to once

	Summary

	18 Rust on your computer
	18.1 Cargo
	18.1.1 Why everyone uses Cargo
	18.1.2 Using Cargo and what Rust does while it compiles

	18.2 Working with user input
	18.2.1 User input through stdin
	18.2.2 Accessing command-line arguments
	18.2.3 Accessing environment variables

	18.3 Using files
	18.3.1 Creating files
	18.3.2 Opening existing files
	18.3.3 Using OpenOptions to work with files

	18.4 cargo doc
	Summary

	19 More crates and async Rust
	19.1 The reqwest crate
	19.2 Feature flags
	19.3 Async Rust
	19.3.1 Async basics
	19.3.2 Checking whether a Future is ready
	19.3.3 Using an async run time
	19.3.4 Some other details about async Rust

	Summary

	20 A tour of the standard library
	20.1 Arrays
	20.1.1 Arrays now implement Iterator
	20.1.2 Destructuring and mapping arrays
	20.1.3 Using from_fn to make arrays

	20.2 char
	20.3 Integers
	20.3.1 Checked operations
	20.3.2 The Add trait and other similar traits

	20.4 Floats
	20.5 Associated items and associated constants
	20.5.1 Associated functions
	20.5.2 Associated types
	20.5.3 Associated consts

	20.6 bool
	20.7 Vec
	20.8 String
	20.9 OsString and CString
	Summary

	21 Continuing the tour
	21.1 std::mem
	21.2 Setting panic hooks
	21.3 Viewing backtraces
	21.4 The standard library prelude
	21.5 Other macros
	21.5.1 unreachable!
	21.5.2 column!, line!, file!, and module_path!
	21.5.3 thread_local!
	21.5.4 cfg!

	Summary

	22 Writing your own macros
	22.1 Why macros exist
	22.2 Writing basic macros
	22.3 Reading macros from the standard library
	22.4 Using macros to keep your code clean
	Summary

	23 Unfinished projects: Projects for you to finish
	23.1 Setup for the last two chapters
	23.2 Typing tutor
	23.2.1 Setup and first code
	23.2.2 Developing the code
	23.2.3 Further development and cleanup
	23.2.4 Over to you

	23.3 Wikipedia article summary searcher
	23.3.1 Setup and first code
	23.3.2 Developing the code
	23.3.3 Further development and cleanup
	23.3.4 Over to you

	23.4 Terminal stopwatch and clock
	23.4.1 Setup and first code
	23.4.2 Developing the code
	23.4.3 Further development and cleanup
	23.4.4 Over to you

	Summary

	24 Unfinished projects, continued
	24.1 Web server word-guessing game
	24.1.1 Setup and first code
	24.1.2 Developing the code
	24.1.3 Further development and cleanup
	24.1.4 Over to you

	24.2 Laser pointer
	24.2.1 Setup and first code
	24.2.2 Developing the code
	24.2.3 Further development and cleanup
	24.2.4 Over to you

	24.3 Directory and file navigator
	24.3.1 Setup and first code
	24.3.2 Developing the code
	24.3.3 Further development and cleanup
	24.3.4 Over to you

	Summary

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

	Learn Rust in a Month of Lunches -back


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




