

Mastering Rust

Mastering Rust helps the reader master the powerful Rust programming
language for creating stable and versatile applications and projects.

Rust is a dependable and robust programming language that was cre-
ated with today’s needs in mind, which is something that several other
scripting languages lack.

Rust was developed to provide high functions comparable to those of C
and C++, and with a focus on code integrity, which is, arguably, lacking
in languages such as C. Rust is a dynamically typed language that empha-
sizes performance and reliability, particularly in parallelism and storage
organization. Rust allows you to store data on the tower or the shedload,
and it recognizes the importance of performance optimization. It permits
even more effective memory usage as well as faster memory management
than most other programming languages in its league.

Make no mistake about it – Rust is a programming language with a
strong learning curve, and is considered complicated by even the most
experienced of developers. The rewards for learning Rust are aplenty, but
the learning process itself requires a good deal of determination and hard
work.

Nonetheless, Rust aims to provide a secure, concurrent, and practical
systems language in ways that other programming languages do not, and
this is primarily why Rust is often the preferred choice for building com-
plex and highly stable apps. Rust boasts of advantages over many other
programming languages in terms of expressiveness, speed, sound design,
and memory storage. Though the language is new and constantly changing
with time, there is an excellent opportunity in this field for future employ-
ment. That said, to learn the reliable language that is Rust, you need to
have an equally reliable companion guide in your hands, and this is where
Mastering Rust comes in.

With Mastering Rust, learning Rust programming language becomes a
charm, and will undoubtedly help readers advance their careers.

The Mastering Computer Science series is edited by Sufyan bin Uzayr, a
writer and educator with more than a decade of experience in the comput-
ing field.

Mastering Computer Science
Series Editor: Sufyan bin Uzayr

Mastering Rust: A Beginner’s Guide
Divya Sachdeva, Faruq KC, and Aruqqa Khateib

Mastering Visual Studio Code: A Beginner’s Guide
Jaskiran Kaur, D Nikitenko, and Mathew Rooney

Mastering Django: A Beginner’s Guide
Jaskiran Kaur, NT Ozman, and Reza Nafim

Mastering Ubuntu: A Beginner’s Guide
Jaskiran Kaur, Rubina Salafey, and Shahryar Raz

Mastering KDE: A Beginner’s Guide
Jaskiran Kaur, Mathew Rooney, and Shahryar Raz

Mastering Kotlin: A Beginner’s Guide
Divya Sachdeva, Faruq KC, and Aruqqa Khateib

For more information about this series, please visit: https://www​.rout-
ledge​.com​/Mastering​-Computer​-Science​/book​-series​/MCS

The “Mastering Computer Science” series of books are authored by the
Zeba Academy team members, led by Sufyan bin Uzayr.

Zeba Academy is an EdTech venture that develops courses and content
for learners primarily in STEM fields, and offers education consulting
to Universities and Institutions worldwide. For more info, please visit
https://zeba.academy

https://www.routledge.com/Mastering-Computer-Science/book-series/MCS
https://www.routledge.com/Mastering-Computer-Science/book-series/MCS
https://zeba.academy

Mastering Rust

A Beginner’s Guide

Edited by Sufyan bin Uzayr

First edition published 2023
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2023 Sufyan bin Uzayr

Reasonable efforts have been made to publish reliable data and information, but the author and publisher
cannot assume responsibility for the validity of all materials or the consequences of their use. The authors
and publishers have attempted to trace the copyright holders of all material reproduced in this publica-
tion and apologize to copyright holders if permission to publish in this form has not been obtained. If
any copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, trans-
mitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter
invented, including photocopying, microfilming, and recording, or in any information storage or retrieval
system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www​.copyright​.com or
contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-
8400. For works that are not available on CCC please contact mpkbookspermissions​@tandf​.co​​.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used
only for identification and explanation without intent to infringe.

Library of Congress Cataloging–in–Publication Data

Names: Bin Uzayr, Sufyan, editor.
Title: Mastering Rust : a beginner’s guide / edited by Sufyan bin Uzayr.
Description: First edition. | Boca Raton : CRC Press, 2022. | Includes
 bibliographical references and index.
Identifiers: LCCN 2022020964 (print) | LCCN 2022020965 (ebook) | ISBN
 9781032319049 (hbk) | ISBN 9781032319018 (pbk) | ISBN 9781003311966
 (ebk)
Subjects: LCSH: Rust (Computer program language) | Computer programming.
Classification: LCC QA76.73.R87 M355 2022 (print) | LCC QA76.73.R87
 (ebook) | DDC 005.13/3--dc23/eng/20220805
LC record available at https://lccn.loc.gov/2022020964
LC ebook record available at https://lccn.loc.gov/2022020965

ISBN: 9781032319049 (hbk)
ISBN: 9781032319018 (pbk)
ISBN: 9781003311966 (ebk)

DOI: 10.1201/9781003311966

Typeset in Minion
by Deanta Global Publishing Services, Chennai, India

http://www.copyright.com
http://www.mpkbookspermissions@tandf.co.uk
https://lccn.loc.gov/2022020964
https://lccn.loc.gov/2022020965
https://dx.doi.org/10.1201/9781003311966

v

Contents

	

 1
	 1

	 2
	 2
What Makes the Rust Programming Language Unique? 3
Concurrent Programming Has Been Simplified 4
Some Challenges to Overcome while Programming in Rust 4
What Is the Purpose of Rust? 5
	 6
	 6

	 9

	 9
	 10
	 10

	 10

	

 12
	 12
	 12
	 12

vi    ◾   ﻿ Contents

Advantages of Rust vs. Go	 12
What Makes Rust the Future?	 13

Rust Increased the Safety of Memory	 13
Rust’s Community Is Expanding	 14
Rust Is Quick and Adaptable	 14
Rust Has a Wide Range of Applications	 15
Rust Is Used by Several Large Companies	 15

Chapter 2    ◾   � Common Programming Concepts	 17
VARIABLES IN RUST	 18

Variable Naming Rules	 18
Syntax	 18

IMMUTABLE	 19

MUTABLE	 19

Variables and Constants: What Are the Differences?	 19
DATA TYPES IN RUST	 20

Variable Declaration	 21
Scalar Types	 21

Integer	 22
Illustration	 22
Integer Range	 22
Integer Overflow	 23
Float	 23
Automatic-type Casting	 24
Number Separator	 24
Boolean	 24
Character	 24
Compound Types	 25
Tuple Type	 25
Array Type	 26
Accessing the Array Elements	 27
Invalid Array Element Access	 28

﻿Contents    ◾    vii

CONSTANT IN RUST	 29

Constant Naming Convention in Rust	 29
Constants vs. Variables	 29
Variable and Constant Shadowing	 30

STRING IN RUST	 31

String Literal	 31
String Object	 32

Syntax	 32
String Object – Common Methods	 33

Illustration: new()	 33
Illustration: to_string()	 34
Illustration: replace()	 34
Illustration: as_str()	 34
Illustration: push()	 35
Illustration: push_str()	 35
Illustration: len()	 35
Illustration: trim()	 35
Illustration: split_whitespace()	 36
Illustration: split() string	 36
Illustration: chars()	 37

Concatenation of the Strings with + Operator	 37
Illustration: String Concatenation	 37
Illustration: Type Casting	 37
Illustration: Format! Macro	 38

OPERATORS IN RUST	 38

Arithmetic Operators	 38
Relational Operators	 39
Logical Operators	 39
Bitwise Operators	 39

DECISION-MAKING IN RUST	 40

If Statement	 40
Syntax	 40

viii    ◾   ﻿ Contents

If else statement	 41
Syntax	 41
Flowchart	 41

Nested If	 42
Syntax	 42

Match Statement	 43
Syntax	 43

Using an “if” statement within a “let” statement	 44
Syntax	 44

LOOPS IN RUST	 45

Loop	 45
Syntax	 46

Exit from Loops	 46
While Loop	 46

Syntax	 47
Flowchart	 47

While Loop Disadvantages	 48
FOR LOOP	 48

Syntax	 48
Distinctions between the While Loop and For Loop	 49

FUNCTIONS IN RUST	 50

Function Defining	 50
Syntax	 50

Function Invoking	 51
Syntax	 51

Illustration	 51
Returning Value from a Function	 52

Syntax	 52
Function with the Parameters	 52

Pass by Value	 53
Pass by Reference	 53

﻿Contents    ◾    ix

Passing String to a Function	 54
COMMENTS IN RUST	 54

TUPLE IN RUST	 55

Destructing	 56
ARRAY IN RUST	 56

Array Characteristics	 57
Array Declaration and Initialization	 57

Syntax	 57
Illustration: Simple Array	 58
Illustration: Array without Data Type	 58
Illustration: Default Values	 58
Illustration: Array with for Loop	 58
Illustration: Using the iter() Function	 59
Illustration: Mutable Array	 59

Passing Arrays as Parameters to the Functions	 59
Illustration: Pass by Value	 59
Illustration: Pass by Reference	 60

The Array Declaration and Constants	 60

Chapter 3    ◾   � Understanding Ownership	 63
WHAT EXACTLY IS OWNERSHIP?	 63

The Stack and the Heap	 64
Important Ownership Concepts	 65
Rules of Ownership	 65
Variable Scope	 66
String Type	 66
Memory and Allocation	 67
Ways of Variables and Data Interact: Move	 69
Variables and Data Interactions: Clone	 72
Stack-Only Data: Copy	 73
Ownership and Functions	 73
Return Values and Scope	 74

x    ◾   ﻿ Contents

REFERENCES AND BORROWING IN RUST 76

Why Borrowing? 76
Mutable Reference 78
Restrictions of the Mutable References 78
Dangling References 79
The Referencing Guidelines 80

SLICES IN RUST 81

Syntax 81
String Slices 83
Literals Are String Slices 87
String Slices as Parameters 87
Other Slices 88

Chapter 4 ◾ Using Structs for Related Data 89
WHAT IS THE DEFINITION OF A STRUCTURE? 89

When the Variables and Fields Have the Same Name, Use the
Field init Shorthand 91
Using Struct Update Syntax to Create Instances from Other
Instances 92
The Tuple Structs without Named Fields to Create Different
Types 93
Structs that Look Like Units but Don’t Have Any Fields 93
Ownership of Struct Data 94

UPDATE SYNTAX 95

An Example of a Structs Program 97
Refactoring with the Tuples 98
Using Structs for Refactoring: Adding Additional Meaning 99
Using Derived Traits to Add Useful Functionality 100

METHOD SYNTAX 103

Defining the Methods 104
Methods with More Parameters 106
Associated Functions 108
Multiple impl Blocks 108

﻿Contents    ◾    xi

Chapter 5 ◾ Enums and Pattern Matching 111
DEFINING AN ENUM 111

Enum Values 112
The Advantages of the Option Enum over Null Values 116

THE MATCH CONTROL FLOW OPERATOR 119

Patterns that Bind to Values 120
Matching with the Option<T> 122
Matches Are Exhaustive 123
Catch-all Patterns and the _ Placeholder 124

CONCISE CONTROL FLOW WITH IF LET 126

Chapter 6 ◾ Packages, Crates, and Modules 129
PACKAGES AND CRATES 131

DEFINING MODULES TO THE CONTROL SCOPE AND
PRIVACY 132

PATHS FOR REFERRING TO AN ITEM IN THE
MODULE TREE 134

Exposing Paths with pub Keyword 137
Starting Relative Paths with super 139
Making Structs and Enums Public 139

BRINGING PATHS INTO THE SCOPE WITH THE USE
KEYWORD 141

Creating the Idiomatic use Paths 143
Providing New Names with the as Keyword 144
Re-exporting Names with pub use 145

SEPARATING MODULES INTO DIFFERENT FILES 146

Chapter 7 ◾ Error Handling 149
ERROR HANDLING 149

Unrecoverable Errors with panic! 150
Unwinding Stack or Aborting in Response to a Panic 150
Using panic! Backtrace 151

xii    ◾   ﻿ Contents

RECOVERABLE ERRORS WITH THE RESULT 154

Shortcuts for the Panic on Error: unwrap and expect 158
Propagating Errors 159
Shortcut for Propagating Errors: the ? Operator 161
The ? Operator Can Be Used in Functions that Return Result 163

TO PANIC! OR NOT TO PANIC! 164

Examples, Prototype Code, and Tests 165
Cases in Which We Have More Information than the Compiler 165
Guidelines for the Error Handling 166
Creating the Custom Types for Validation 167

Chapter 8 ◾ Generic Types, Traits, and Lifetimes 171
GENERIC DATA TYPES 171

In Function Definitions 171
In the Struct Definitions 175
In Method Definitions 177
Performance of Code Using Generics 180
Traits: Defining Shared Behavior 181
Defining a Trait 181
Implementing a Trait on a Type 182

VALIDATING REFERENCES WITH LIFETIMES 184

Preventing Dangling References with Lifetimes 185
Borrow Checker 186
Generic Lifetimes in the Functions 187

Chapter 9 ◾ I/O Project: Building a Command Line
Program 189

ACCEPTING THE COMMAND LINE ARGUMENTS 190

Saving the Argument Values in the Variables 192
READING A FILE 192

Refactoring to Improve Modularity and Error Handling 194
Separation of Concerns for Binary Projects 195

﻿Contents    ◾    xiii

Extracting the Argument Parser 196
Grouping the Configuration Values 197
Creating a Constructor for the Config 198

Fixing the Error Handling 199
Improving the Error Message 199

DEVELOPING THE LIBRARY’S FUNCTIONALITY WITH THE
TEST-DRIVEN DEVELOPMENT 200

WORKING WITH THE ENVIRONMENT VARIABLES 203

Writing Failing Test for the Case-Insensitive search Function 203
Implementing search_case_insensitive Function 204

WRITING ERROR MESSAGES TO THE STANDARD ERROR
INSTEAD OF STANDARD OUTPUT 209

Checking Where Errors Are Written 209
Printing Errors to the Standard Error 210

Chapter 10 ◾ Cargo and crates.io 213
CUSTOMIZING BUILDS WITH THE RELEASE PROFILES 213

PUBLISHING A CRATE TO CRATES . IO 215

Making Useful Documentation Comments 215
Commonly Used Sections 216

Documentation Comments as Tests 217
Commenting Contained Items 217
Exporting a Convenient Public API with the pub use 218
Setting Up crates . io Account 221

CARGO WORKSPACES 221

Creating a Workspace 221
Creating the Second Package in the Workspace 223

INSTALLING BINARIES FROM CRATES . IO WITH CARGO
INSTALL 224

EXTENDING CARGO WITH THE CUSTOM COMMANDS 225

Chapter 11 ◾ Concurrency and State 227
FEARLESS CONCURRENCY 227

 ​​ 	

xiv    ◾   ﻿ Contents

USING THREADS TO RUN CODE SIMULTANEOUSLY 228

Creating New Thread with spawn 230
Waiting for All the Threads to Finish Using JoinHandle 231

USING MESSAGE PASSING TO THE TRANSFER DATA
BETWEEN THREADS 233

The Channels and Ownership Transference 236
Sending Multiple Values and Seeing the Receiver Waiting 238
Creating Multiple Producers by Cloning the Transmitter 239

SHARED-STATE CONCURRENCY 240

Using Mutexes to Allow Data Access from Only One Thread
at a Time 240
API of Mutex<T> 241
Sharing Mutex<T> Between Multiple Threads 242

EXTENSIBLE CONCURRENCY WITH SYNC AND SEND
TRAITS 244

Allowing Transference of the Ownership between Threads
with Send 244
Allowing Access from the Multiple Threads with Sync 244
Implementing the Send and Sync Manually Is Unsafe 245

Chapter 12 ◾ Object-oriented Programming in Rust 247
IMPLEMENTING AN OBJECT-ORIENTED DESIGN PATTERN 247

Defining Post and Creating New Instance in the Draft State 249
Storing the Text of the Post Content 250
Ensuring Content of a Draft Post Is Empty 251
Requesting a Review Changes the State of the Post 251
Trade-offs of the State Pattern 256

MACROS 257

Difference between Macros and Functions 258
Declarative Macros with macro_rules! for General
Metaprogramming 258
Procedural Macros for Generating Code from the Attributes 260

﻿Contents    ◾    xv

How to Write a Custom derive Macro 261
Attribute-like Macros 262
Function-like Macros 262

APPENDIX A: KEYWORDS, 265

APPENDIX B: OPERATORS AND SYMBOLS, 269

APPENDIX C: DERIVABLE TRAITS, 275

APPRAISAL, 279

BIBLIOGRAPHY, 285

INDEX, 291

https://taylorandfrancis.com/

xvii

Mastering Computer
Science Series Preface

The Mastering Computer Science covers a wide range of topics,
spanning programming languages as well as modern-day technolo-

gies and frameworks. The series has a special focus on beginner-level con-
tent, and is presented in an easy-to-understand manner, comprising:

•	 Crystal-clear text, spanning various topics sorted by relevance

•	 A special focus on practical exercises, with numerous code samples
and programs

•	 A guided approach to programming, with step-by-step tutorials for
the absolute beginners

•	 Keen emphasis on real-world utility of skills, thereby cutting the
redundant and seldom-used concepts and focusing instead on
industry-prevalent coding paradigm

•	 A wide range of references and resources to help both beginner and
intermediate-level developers gain the most out of the books

The Mastering Computer Science series of books starts from the core con-
cepts, and then quickly moves on to industry-standard coding practices,
to help learners gain efficient and crucial skills in as little time as possible.
The books assume no prior knowledge of coding, so even absolute newbie
coders can benefit from this series.

The Mastering Computer Science series is edited by Sufyan bin Uzayr, a
writer and educator with more than a decade of experience in the comput-
ing field.

https://taylorandfrancis.com/

xix

About the Editor

Sufyan bin Uzayr is a writer, coder, and entrepreneur with more than
a decade of experience in the industry. He has authored several books

in the past, pertaining to a diverse range of topics, ranging from History
to Computers/IT.

Sufyan is the Director of Parakozm, a multinational IT company spe-
cializing in EdTech solutions. He also runs Zeba Academy, an online
learning and teaching vertical with a focus on STEM fields.

Sufyan specializes in a wide variety of technologies, such as JavaScript,
Dart, WordPress, Drupal, Linux, and Python. He holds multiple degrees,
including ones in Management, IT, Literature, and Political Science.

Sufyan is a digital nomad, dividing his time between four countries. He
has lived and taught in universities and educational institutions around
the globe. Sufyan takes a keen interest in technology, politics, literature,
history, and sports, and in his spare time, he enjoys teaching coding and
English to young students.

Learn more at sufyanism​.co​m.

http://www.sufyanism.com.

https://taylorandfrancis.com/

1

C h a p t e r 1

Getting Started
with Rust

IN THIS CHAPTER

	➢ Getting started

	➢ Installation

	➢ Basic program

The Rust programming language is demonstrated for both beginners and
experts. The Rust programming language is intended to improve memory
safety; however, it is still developing.

WHAT EXACTLY IS RUST?
Rust is a system programming language created in 2006 by a Mozilla engi-
neer named Graydon Hoare. He called it a “safe, concurrent, and practical
language” that supports the functional and imperative paradigms.

Rust’s syntax is comparable to that of the C++ programming language.
Rust is free and open-source software, which means that anybody may

use it for free, and the source code is openly provided so that anyone can
enhance the product’s design.

In 2016, 2017, and 2018, the Stack Overflow Developer Survey named
Rust as one of the “most liked programming languages.”

There is no such thing as direct memory management, such as calloc or
malloc. Rust manages memory internally.

Mastering Rust Getting Started with Rust

DOI:  10.1201/9781003311966-1

10.1201/9781003311966-1

https://dx.doi.org/10.1201/9781003311966-1

2    ◾    Mastering Rust﻿

Rust was developed to deliver excellent performance comparable to
C and C++ while prioritizing code safety, which is the Achilles’ heel of
the other two languages. The Rust programming language is presently
employed by well-known software giants such as Firefox, Dropbox, and
Cloudflare. From startups to huge enterprises, many firms are adopting
this technology in production.

Who Rust Is for

The Rust programming language is excellent for many people for various
reasons.

Let’s have a look:

•	 Teams of developers: Rust has shown to be quite effective for the
“team of developers.” Low-level programming code has defects that
testers must thoroughly test. However, in the case of Rust, the com-
piler refuses to compile the code if it includes flaws. By working in
parallel with the compiler, the developer may concentrate on the
logic of the program rather than on the flaws.

•	 Students: Many people can learn to construct an operating system
using Rust. The Rust team is working to make system principles
more approachable to the general public, particularly those new to
programming.

•	 Companies: Rust is used by both large and small businesses to com-
plete various activities. Command-line tools, web services, DevOps
tooling, embedded devices, audio and video analyses and trans-
coding, cryptocurrency, bioinformatics, search engines, Internet of
Things applications, machine learning, and even large portions of
the Firefox web browser are among these activities.

•	 Developers of open-source software: Rust is an open-source lan-
guage; the source code is available to the public. As a result, they may
utilize the source code to enhance Rust’s design.

Rust’s Increasing Popularity

Rust is the most popular programming language, according to the Stack
Overflow Developer Survey 2020, which polled approximately 65,000
developers. It also won the championship for the sixth year in a row.

In addition, Linux kernel engineers recommended creating new Linux
kernel code in Rust in 2020. To be clear, they did not wish to redo the entire

Getting Started with Rust﻿    ◾    3

kernel, which was built in C initially, but rather to add new code in Rust
that would function with the current infrastructure. Linus Thorvalds, the
founder of the open-source operating system Linux, supported the idea
and is eager to see the project’s achievements.

Facebook has further extended its ties with Rust by joining the Rust
Foundation, a group created in 2021 to promote Rust development and
make it “a mainstream language of choice for systems programming
and beyond.” Rust is used by Facebook, Amazon Web Services, Google,
Huawei, Microsoft, and Mozilla.

What Makes the Rust Programming Language Unique?

Rust is a strongly typed programming language that prioritizes speed and
safety and extraordinarily safe concurrency and memory management.
Its syntax is comparable to C++. It is an open-source project that began
at Mozilla Research. The Rust Foundation has taken up the torch and is
leading the language’s development in 2021.

Rust tackles two long-standing concerns for C/C++ developers: mem-
ory errors and concurrent programming. This is regarded as its primary
advantage.

Of course, one might argue that contemporary C++ focuses more on
memory safety (for example, by implementing smart pointers), but many
issues remain unsolved.

One of these is a “use after free error,” which occurs when a program
continues to utilize a pointer after being freed, for example, by running
the lambda function after releasing its reference-captured objects.

In Rust, on the other hand, the borrow checker, the compiler compo-
nent that guarantees that references do not outlive the data they refer, is
present. This feature aids in the elimination of memory violation bugs.
Such issues are recognized during the compilation process; therefore,
trash collection is not required.

Furthermore, in Rust, each reference has a lifespan, which specifies the
scope for which that reference is valid. This innovation overcomes the prob-
lem of invalid references while also distinguishing Rust from C and C++.

When we consider that over the last 12 years memory safety concerns
have accounted for over 70% of all security flaws in Microsoft products,
the necessity of proper memory management becomes instantly clear. A
similar figure has been reported for Google Chrome.

There are two ways to write code in Rust: Safe Rust and Unsafe Rust.
Safe Rust imposes additional constraints on the programmer (for example,

4    ◾    Mastering Rust﻿

object ownership management), guaranteeing that the code functions
properly. Unsafe Rust allows the programmer more freedom (for example,
it may work on raw C-like pointers), but the code may fail.

The risky Rust mode gives you more possibilities, but we must exercise
extreme caution to guarantee our code is secure. To do this, we can encase
it in higher-level abstractions that ensure that all abstraction applications
are safe. As with other programming languages, employing unsafe code
should be treated with caution to prevent undefined behavior and reduce
the danger of segfaults and vulnerabilities caused by memory insecurity.

One of the most significant advantages of Rust is its dual-mode con-
cept. In C++, on the other hand, we never realize we’ve written dangerous
code until our product collapses or a security breach occurs.

Concurrent Programming Has Been Simplified

Rust simplifies concurrent programming by preventing data conflicts at
build time. When at least two independent instructions from different
threads attempt to access the same memory location simultaneously, at
least one of them attempts to write anything, and there is no synchroniza-
tion to create any precise order among the various accesses, a data race
occurs. Memory access without synchronization is undefined.

Data races are detected in Rust. Suppose given object access does not
allow several threads (i.e., it is not designated with an appropriate trait). In
that case, it must be synchronized by a mutex, which locks access to this
specific object for other threads.

Only one thread gets access to an object to guarantee that its operations
do not damage it.

Operations on this object are atomic from the perspective of other
threads, which implies that an observed state of the object is always valid.
We cannot witness any intermediate state arising from another thread’s
action on this object. The Rust programming language can detect and
report improper actions on such objects at build time.

Other languages have synchronization techniques, but they are unre-
lated to the objects to which they refer. The developer’s responsibility is to
ensure that the object is locked before using it.

Some Challenges to Overcome while Programming in Rust

Of course, not everything is perfect. Because Rust is a new technology,
specific desirable libraries may not yet be available. Nonetheless, the Rust
package library crates​.​io has been rapidly expanding since 2016, and the

http://www.crates.io

Getting Started with Rust﻿    ◾    5

strong community of Rust developers is a promising indication for future
growth.

Also, for developers who aren’t used to working with a language where
problems in the code are identified at compile time, seeing a slew of error
messages might be aggravating. As a result, creating code takes longer
than in more popular languages such as Python. Rust’s developers, on the
other hand, are working hard to make these error messages as helpful and
actionable as possible.

Even if seeing so many error warnings when coding might be annoy-
ing, keep your eye on the broader picture. Memory safety imposed at build
time avoids defects and security vulnerabilities from occurring after our
software has been released. Correcting problems will undoubtedly cost us
both our nerves and our money during this stage.

Last but not least, creating Rust code takes extra work due to the rel-
atively high entrance threshold. We must devote some time to learning
the language. It is also necessary to have a solid understanding of C++ or
another object-oriented programming language. The learning curve is far
from flat.

But if we can overcome all of these challenges, the advantages of utiliz-
ing Rust will be the ultimate reward for our work.

What Is the Purpose of Rust?

Rust is an established technology that is already in use in the industry. It
helps us control low-level details as a systems programming language. We
can store data on the stack (used for static memory allocation) or on the
heap (used for dynamic memory allocation). RAII (Resource Acquisition
Is Initialization) is an essential programming idiom mostly associated with
C++ but is also present in Rust: once an object exits scope, its destructor is
called, and its owned resources are released. We don’t have to perform it
by hand, and we’re safe against resource leakage problems.

As a result, memory may be used more efficiently. Tilde employed Rust
in their Skylight product to rebuild several Java HTTP endpoints. They
were able to cut their memory use from 5GiB to 50MiB due to this.

Because Rust does not have an active garbage collector, other program-
ming languages may utilize its projects as libraries via foreign-function
interfaces. This is a good case for existing projects where high performance
while preserving memory safety is crucial. In such cases, Rust code may
replace select areas of software where speed is critical without rebuilding
the entire product.

6    ◾    Mastering Rust﻿

Rust is a low-level programming language that provides direct access to
hardware and memory, making it an excellent choice for embedded and
bare-metal development. Rust may be used to create operating systems
and microcontroller applications. In reality, several operating systems
written in Rust exist, including Redox, intermezzOS, QuiltOS, Rux, and
Tock. As I said earlier, there are plans to create additional Linux kernel
enhancements in Rust. Mozilla uses it in their browser engines, where the
language was created.

Rust’s high performance and safety are the attributes that drew scien-
tists to it and led to it being used for big data analysis. Rust is lightning
fast, making it an excellent choice for computational biology and machine
learning, where enormous volumes of data must process quickly.

At CodiLime, we’re also testing whether Rust can replace C in network
contexts requiring high data speed. In our proof-of-concept, we created an
application in Rust that used DPDK libraries (written in C) to assure speed
while simultaneously ensuring memory safety.

Why Should We Use Rust?

To summarize, the significant advantages of including Rust in our next
software project are as follows:

•	 Memory safety is ensured while maintaining high performance.

•	 Concurrent programming is supported.

•	 The crates​.​io repository has an increasing number of Rust packages.

•	 A vibrant community is driving the language’s evolution.

•	 Backward compatibility and stability are both guaranteed.

Features of Rust

Rust is a programming language for systems. Rust has the following
capabilities:

•	 Zero cost abstraction

•	 Error messages

•	 Rust features

•	 Minimal time

Getting Started with Rust﻿    ◾    7

•	 Threads without data races

•	 Pattern matching

•	 Move semantics

•	 Guaranteed memory safety

•	 Safe memory space allocation

•	 Efficient C bindings (Figure 1.1)

	 1.	 Zero cost abstraction: We can introduce abstractions without
compromising the code’s runtime performance. It increases code
quality and readability without sacrificing runtime efficiency.

	 2.	 Error messages: Compared to GCC, C++ programming has sig-
nificantly improved error messages. In terms of clarity, Rust goes
one step farther. In our application, error messages are presented
with formatting and colors and also propose misspellings.

Features of
Rust

Zero cost
abstraction

Error
messages

Rust
Features

Minimal
time

Threads
without

data races
Pattern

matching

Move
semantics

Guaranteed
memory
safety

Safe
memory

space
allocation

Efficient C
bindings

FIGURE 1.1  Features of Rust.

8    ◾    Mastering Rust﻿

	 3.	 Type inference: Rust has a Type inference feature that automati-
cally detects the type of an expression.

	 4.	 Move semantics: A copy action may be replaced with a move
operation when a source object is a temporary object.

	 5.	 Threads without the data races: When two or more threads
simultaneously access the same memory address, this is referred
to as a data race. Because of the ownership mechanism, Rust sup-
ports threads without data races. Only the owners of separate
objects are sent to various threads via the ownership mechanism,
and two threads can never possess the same variable with write
access.

	 6.	 Pattern matching: Rust has a pattern matching capability. Pattern
matching in Rust uses patterns in conjunction with “match”
expressions to provide additional control over the program’s
control flow. The following are some pattern combinations:

–	 Literals

–	 Arrays, enums, structs, or tuples

–	 Variables

–	 Wildcards

–	 Placeholders

	 7.	 Guaranteed memory safety: Rust ensured memory safety by
employing the idea of ownership. Ownership compromises C’s
memory control and Java’s garbage collection. Memory space in
Rust programs is owned by variables and temporarily borrowed
by other variables. This enables Rust to ensure memory safety at
compile time, rather than relying on the garbage collector.

	 8.	 Efficient C bindings: The characteristic of “Efficient C bindings”
in Rust implies that the Rust language may interact with the
C language as it communicates itself. Rust provides a “foreign
function interface” to connect with C APIs while also leveraging
its ownership structure to ensure memory safety.

	 9.	 Safe memory space allocation: Rust uses manual memory man-
agement, implying that the programmer has complete control
over where and when memory is created and deallocated. In C,

Getting Started with Rust﻿    ◾    9

we use the malloc function to allocate memory and subsequently
initialize it, whereas Rust rejects these two actions with a single
‘~’ operator. This operation converts the smart pointer into an
int. A smart pointer is a type of value that regulates when an item
is released. Smart pointers are called “smart” because they not
only monitor the location of an object but also know how to clear
it up.

INSTALLING RUST
The first step is to install Rust. To begin, download Rust using rustup, a
command-line application for managing all Rust versions and associated
tools.

Rust in Windows Installation

•	 On Windows, navigate to https://www​.rust​-lang​.org​/install​.html
and follow the installation instructions. After completing all of the
instructions, Rust will install, and the screen will appear.

•	 Rust’s PATH variable is automatically added to your system PATH
after installation.

•	 The command prompt is opened, and the following command is
executed:

$ rustc --version

•	 After running this command, we should see the version number,
commit hash, and commit date.

https://www.rust-lang.org

10    ◾    Mastering Rust﻿

•	 If we do, it signifies Rust was successfully installed. Congratulations.

Installing Rust on Linux or macOS

•	 If we are using Linux or macOS, open a terminal and enter the fol-
lowing command:

$ curl https://sh​.rustup​.rs -sSf | sh

•	 The program above downloads a script and begins the installation of
the rustup utility. This will install the recent version of Rust. If the
installation is successful, the following message will be displayed:

Rust is now installed.

•	 After your next login, this installation will automatically add Rust to
your system path. If you wish to execute Rust without restarting the
terminal, run the following command in your shell to add the path
to our system PATH manually:

$ source $HOME/.cargo/env

A linker is required after installation. When you attempt to start our Rust
program, we will receive an error stating that a linker could not be exe-
cuted. It indicates that the linker is not present in our system. C compil-
ers always produce the right compiler. Set up a C compiler. Furthermore,
some Rust packages rely on C code and require a C compiler.

Updating and Uninstalling Rust

Update: After installing Rust with “rustup,” update to the newest version.
To upgrade to the most recent version, use the following command:

$ rustup update

Remove: To uninstall Rust, use the following command from the shell:

$ rustup self uninstall

RUST FIRST PROGRAM
Let’s write a basic program in the Rust programming language. Open the
notepad file and type the following code:

https://sh.rustup.rs

Getting Started with Rust﻿    ◾    11

fn main()
	 println!(“Hello, World”);

•	 main(): It is always the first line of code in any Rust executable.
Curly brackets {} surround the main() function. The main() method
doesn’t take any arguments and does not return any value.

•	 println!: It’s a macro in Rust. It does not contain “!” if it calls the method.

•	 “Hello, World”: It is a string passed as an argument to println! and
is printed to the console.

Procedure for Creating, Compiling, and Running the Program

	 1.	Open the notepad file and write the code in it.

	 2.	Save the file with the extension​.r​s.

	 3.	Launch the command prompt.

	 4.	Enter the directory’s path. Assume the project is on the D drive.

	 5.	Run the rustc command to compile the preceding program.

	 6.	Finally, execute the application using the command filename​.ex​e.

REASONS WHY RUST IS THE WAY OF THE FUTURE
Rust was named the most popular programming language in the Stack
Overflow 2020 survey, with 86% of engineers saying they will continue
to use it. For language designers, this is nothing new: Rust has won the
study every year since 2016. On Tiobe Index, Rust is also gaining popular-
ity, ranking #18 among the most popular languages in September. It also
scored well in our sentiment-based ranking of functional programming
languages, taking first place in the most favorable sentiment class.

Rust, which was created in 2006 as an alternative to C++ by former
Mozilla engineer Graydon Hoare, is steadily creating a name in the devel-
oper community. It is presently used to construct online applications,
embedded computers, distributed services, and command-line interfaces.
A good example of this popularity is Microsoft’s gradual shift away from
C++ (due to a growing number of security problems) and toward Rust.

Why is Rust so popular among programmers when there are so many
different languages to choose from? One of the key reasons is that Rust
addressed several obvious difficulties in other languages to the point

12    ◾    Mastering Rust﻿

where some developers claim that the architects of Rust must have known
all of the possible problems visible in C++ in mind.

Rust vs. Other Languages

Rust offers benefits over several other languages that are currently popular
among developers. Let us go through a few of them.

Advantages of Rust vs. C++
When compared to C++, Rust is safer. Rust protects both its abstractions
and the abstractions created by developers, whereas C++ does not. Specific
errors in C++ might result in arbitrary behavior, but Rust assists you in
focusing on what is truly essential. And, while C/C++ remains one of the
most popular programming languages, it frequently causes issues. Rust is
just easier to learn; the learning curve is not as steep, there is no technical
debt in Rust as there is in C++, it supports more concurrency, and its speed
is comparable. Rust allows us to write unsafe code, but it always defaults
to safe code.

Advantages of Rust vs. Java
When it comes to Java, it turns out that it is significantly slower than
Rust, especially when compared to C in several sectors. On top of that,
we should consider speedier startup times and a reduced memory foot-
print. Java employs Garbage Collection for memory management, which
reduces speed (but it is worth noting that it simplifies code).

Advantages of Rust vs. Python
Rust is well-thought-out. Rust allows us to wrap statements in lambda, and
everything is an expression, making it easy to compose specific portions
of the language. Python does not do this. Rust lacks classes; therefore,
object orientation is not as developed as in Python. Python also encoun-
ters the need to write additional tests and production outages or runtime
problems. Rust reduces the cost of identifying and fixing potential issues.

Advantages of Rust vs. Go
Go’s expressiveness is lacking. Rust is a versatile and expressive architec-
ture that enables the creation of new container types capable of holding
various components, generics, traits, and algebraic data types. We have
less control over both resources and memory while using Go.

Getting Started with Rust﻿    ◾    13

What Makes Rust the Future?
Rust Increased the Safety of Memory
Memory management difficulties are one of the most serious problems
that developers face. In other languages, it is quite simple to overlook a
coding issue, resulting in the dreaded error code and the effort required
to discover and solve it. A far more significant problem arises when a code
error leads to security breaches in today’s environment, this is too risky.
Data security breaches in major and popular websites or applications
occur far more frequently than we want. What’s the reason? Application
flaws or misconfigurations are often to blame.

Rust is thought to be memory-safe. Rust programming is not permitted
by dragging pointers, buffer overflows, and other memory-related mis-
takes. It allows you to describe how memory should handle and how val-
ues should be put out in it while also taking care of the control and safety
lines without sacrificing performance, making it a valuable asset to Rust.

Improving memory safety was one of the key aims of Rust’s creators
and one of the language’s main selling factors. Their code compiler is quite
stringent, and each variable or memory location that is utilized is exam-
ined automatically.

Suppose any syntax problems, null values, dangling modifiers, or mem-
ory safety concerns are detected. In that case, Rust will not compile the
code and warn about unsafe code, allowing for speedy identification and
correction of the underlying issue. How does it accomplish this?

Every value in Rust has an “ownership.” When a value is passed or
returned, ownership is transferred to a new scope one at a time. If the
“owner” of the value moves out of the scope, the value is discarded. Rust
maintains track of memory and automatically frees it in this manner, pre-
venting all flaws from entering the main code. That implies there will be
no surprises during runtime.

This system will examine memory management at build time, mak-
ing it easier to find and repair issues and eliminating the need for trash
collection.

However, there is more to memory than that. Building sophisticated
systems is frequently associated with significantly computation-bound
activity and generating a lot of temporary memory. Such an offload can
significantly impact the performance of any Java Virtual Machine, and
many programming languages, including Scala, are incapable of dealing
with it.

14    ◾    Mastering Rust﻿

However, Rust can. It allows for the creation of memory-efficient code
without the need for memory management or the use of modern conve-
niences such as closures, and it runs with little to no runtime overhead,
making it suitable for real-time or embedded projects and easily integrat-
ing with other languages or projects.

Rust’s Community Is Expanding
Of course, the Rust community and quantity of libraries are nowhere near
as large as, say, C++. However, as the Rust programming language grows
in popularity, so does the number of developers and enthusiasts who join.
The number of community-created frameworks, libraries, and develop-
ment tools (known as “crates”) is now close to 57,000, and more are being
uploaded daily.

Rust has an active and inviting community in addition to a growing
collection of tools and frameworks. There are various places to go if we
need assistance with a problem or to learn more about using Rust. In addi-
tion to the community chat and user forum, Rust features an active sub-
reddit section.

Rust Is Quick and Adaptable
Rust is regarded as a moderately fast language. It can run far quicker than
Scala when employing generic code, especially in performance-critical
jobs. There is a good chance that it will be three times quicker than Scala
or Java in some places. It is simple to pick up and utilize other packages,
and Rust’s cargo build tool simplifies code.

Rust is Extremely Fast Due to a Few Factors

•	 Because it is statically typed and compiled, the compiler may opti-
mize the code for speed.

•	 It provides static trait dispatch, similar to C++ templates but cleaner.

•	 It explicitly monitors variable ownership. Rust does not presume that
every variable with an address can change at any moment, allowing
for optimizations without negatively impacting the code.

•	 It assumes that variables are immutable by default (so optimization
is easier).

•	 It provides algebraic data types, which are also useful for
optimization.

Getting Started with Rust﻿    ◾    15

•	 It does not have any overheads, no runtime, and no unexpected
delays owing to a lack of trash collection.

•	 It provides no-cost abstraction.

Rust may alternatively be thought of as a programming language compa-
rable to C++, but it is easier to optimize and has fewer unpleasant advanced
programming capabilities.

Rust Has a Wide Range of Applications
If a project requires a secure and reliable execution environment, away
from the necessity of performance and low-level optimizations (but high-
level Rust functional programming approaches), Rust should pass the test.

Rust is recognized as a low-level language that is best suited for best
systems, embedded programming, and other performance-critical appli-
cations. It also used in 3D video games.

Rust Is Used by Several Large Companies
Despite being a relatively new language, developers have already recog-
nized Rust as a step in the right direction to boost programming security
and convenience of use. However, not only coders are interested in Rust;
corporations, particularly large ones, have already migrated or intend to
switch to Rust. Ryan Levick (Microsoft cloud developer evangelist) stated
at the AllThingsOpen virtual conference in May 2020 that Rust as a lan-
guage is “the industry’s greatest hope for addressing multiple issues head-
on.” While Microsoft does not intend to abandon C++ anytime soon,
many of its infrastructures gradually transition to Rust.

And Microsoft isn’t the only firm that has seen the potential benefits of
moving to the Rust programming language; Dropbox, Sentry, Amazon,
and Mozilla are among the organizations that employ the Rust program-
ming language.

In this chapter, we covered the concept of Rust, as well as its history,
characteristics, purpose, and applications. Furthermore, we learned about
Rust installation, the first Rust program, and the reasons why Rust is the
way of the future.

https://taylorandfrancis.com/

17

C h a p t e r 2

Common Programming
Concepts

IN THIS CHAPTER

	➢ Variables and mutability

	➢ Data types

	➢ Functions

	➢ Tuples

	➢ Array

	➢ Comments

	➢ Control flow

The previous chapter covered Rust’s definition, and its history, benefits,
and uses. We also learned about Rust’s installation and basic programs.

This chapter discusses concepts in practically every programming lan-
guage and how Rust operates. At their heart, many programming lan-
guages have a lot in common. None of the concepts described in this
chapter are unique to Rust, but we’ll explore them in the context of Rust
and explain how to use them.

Mastering Rust Common Programming Concepts

DOI:  10.1201/9781003311966-2

10.1201/9781003311966-2

https://dx.doi.org/10.1201/9781003311966-2

18    ◾    Mastering Rust﻿

Variables, fundamental types, functions, comments, and control flow
will be covered in detail. These fundamentals will be covered in any Rust
program, and knowing them early will provide us with a solid platform to
build on.

VARIABLES IN RUST
A variable is a sort of named storage that programs may access. Simply
put, a variable is a type of data structure that allows programs to store
values. In Rust, variables are linked with a specific data type. The data type
dictates the variable’s memory size and layout, the range of values stored
inside that memory, and the set of operations on the variable.

Variable Naming Rules

This section will go through the various rules for naming variables:

•	 A variable’s name can be letters, numbers, and the underscore
character.

•	 It starts with a letter or an underscore.

•	 Because Rust is case-sensitive, upper- and lowercase letters are
separate.

Syntax
When declaring a variable in Rust, the data type is optional. The value
assigned to the variable determines the data type.

The syntax for defining variables is as follows:

let variable_name = value; // no type-specified

let variable_name:dataType = value; //type-specified

Example:

fn main() {
	 let fees = 35_000;
	 let salary:f64 = 45_000.00;
	 println!(“fees {} and salary is {}”,fees,salary);
}

Common Programming Concepts﻿    ◾    19

IMMUTABLE
By default, variables are immutable in Rust. In other words, the value of
the variable cannot change once a value is bound to a variable name.

Let us understand this with an example:

fn main() {
	 let fees = 25_000;
	 println!(“fees is {} “,fees);
	 fees = 35_000;
	 println!(“fees changed is {}”,fees);
}

The source of the mistake is indicated in this error message; we can-
not set values to the immutable variable fees twice. This is just one of the
numerous ways Rust allows programmers to write code while benefiting
from the safety and ease of concurrency.

MUTABLE
By default, variables are immutable. To make a variable changeable, prefix
it with the term mutable. A mutable variable’s value can alter.

The syntax for defining a mutable variable is seen below:

let mut variable_name = value;

let mut variable_name:dataType = value;

Example:

fn main() {
	 let mut fees:i32 = 35_000;
	 println!(“fees is {} “,fees);
	 fees = 45_000;
	 println!(“fees changed {}”,fees);
}

Variables and Constants: What Are the Differences?

The inability to modify the value of a variable reminds us of another pro-
gramming notion seen in most other languages: constants. Like immu-
table variables, constants are values attached to a name and cannot be
changed, but there are a few distinctions between constants and variables.

20    ◾    Mastering Rust﻿

To begin with, we are not permitted to use mut with constants.
Constants are not just immutable by default; they are also immutable at
all times.

Constants are declared with the const keyword rather than the let key-
word, and the value type must annotate. Don’t worry about the technicali-
ties for now; we’ll go into types and type annotations in the “Data Types
in Rust” section. Just remember always to annotate the type.

Constants can declare in any scope, including the global scope,
making them helpful for variables that need to be known by several code
areas.

The last distinction is that constants may only be set to a constant expres-
sion, not to the result of a value that can only be computed at runtime.

Here’s an example of a constant declaration with the name THREE_
HOURS_IN_SECONDS and the value set to the result of multiplying 60
(number of seconds in a minute) times 60 (number of minutes in an hour)
by 3 (number of hours we want to count in this program):

const THREE_HOURS_IN_SECONDS: u32 = 60 * 60 * 3;

Rust’s constant name convention is all capital with underscores between
words. Because the compiler can only evaluate a restricted number of
operations at build time, we can opt to write out this value in a more
understandable and verifiable manner rather than assigning this constant
to the value 10,800. More information on what operations can be per-
formed when declaring constants can be found in the “Bibliography” sec-
tion on constant evaluation.

Constants are valid for the duration of a program’s execution within
the scope in which they were declared. Constants are important for num-
bers in your application domain that numerous portions of the program
may need to know about, such as the maximal amount of points every
game participant is permitted to gain or the speed of light.

Naming hardcoded values used throughout your software as constants
helps future code maintainers understand what those values represent. It’s
also useful to have only one location in our code that needs to be changed
if the hardcoded value needs to be modified in the future.

DATA TYPES IN RUST
The Type System represents the language’s many different types of values.
The Type System checks the provided values before the software stores or

Common Programming Concepts﻿    ◾    21

manipulates them. This ensures that the code functions correctly. Greater
code hinting and automatic documentation are also possible with the
Type System.

Rust is a statically typed programming language. In Rust, each value
has its own data type. Based on the value provided to the variable, the
compiler may automatically determine its data type.

Variable Declaration

To declare a variable, use the let keyword.

fn main() {
	 let company_string = “RustPoint”;	 // string type
	 let rating_float = 3.5;	 // float type
	 let is_growing_boolean = true;	 // boolean type
	 let icon_char = ‘♥’;	 //unicode character type
	 println!(“company name:{}”,company_string);
	 println!(“company rating on 5:{}”,rating_float);
	 println!(“company is growing :{}”,
	 is_growing_boolean);
	 println!(“company icon:{}”,icon_char);
}

The data type of the variables in the preceding example will deduce
from the values assigned to them. Rust, for instance, will assign the string
data type to the variable company string, the float data type to rating float,
and so on.

The println! macro accepts two parameters:

	 1.	A unique syntax {}, which acts as a placeholder

	 2.	The name of a variable or a constant

The variable’s value will be used to replace the placeholder.

Scalar Types

A scalar type is a value that has just one value. For instance, 10,3.14,’c’.
Rust has four distinct scalar types.

	 1.	Integer

	 2.	Floating point

22    ◾    Mastering Rust﻿

	 3.	Booleans

	 4.	Characters

Integer
A number with no fractional component is called an integer. To put it sim-
ply, the integer data type is used to represent entire integers.

Integers are further subdivided into signed and unsigned. Negative and
positive values can store in signed integers. Positive values can only store
in unsigned integers. Below is a complete discussion of integer types.

Sr. No. Size Signed Unsigned

1 8 bit i8 u8
2 16 bit i16 u16
3 32 bit i32 u32
4 64 bit i64 u64
5 128 bit i128 u128
6 Arch isize usize

An integer’s size can be arch. This indicates that the machine’s architec-
ture will determine the size of the data type. An integer of size arch is 32
bits on an x86 machine and 64 bits on an x64 system. An arch integer is
often used to index some type of collection.

Illustration

fn main() {
	 let result = 20;	 // i32 by default
	 let age:u32 = 30;
	 let sum:i32 = 5-25;
	 let mark:isize = 20;
	 let count:usize = 40;
	 println!(“result value is {}”,result);
	 println!(“sum {} and age {}”,sum,age);
	 println!(“mark {} and count {}”,mark,count);
}

Integer Range
Each signed variation may hold integers ranging from -(2^(n-1) to 2^(n-1)
-1, where n is the amount of bits used. For example, i8 may hold values
ranging from -(2^7) to 2^7 -1; in this case, we replaced n with 8.

Common Programming Concepts﻿    ◾    23

Each unsigned variation may hold numbers ranging from 0 to(2^n)-1.
For example, u8 can hold integers ranging from 0 to (2^8)-1, or 0 to 255.

Integer Overflow
An integer overflow happens when the value assigned to an integer vari-
able exceeds the data type’s Rust-specified range. Let me illustrate this
with an example:

fn main() {
	 let age:u8 = 255;
	 // 0 to 255 only allowed for u8
	 let weight:u8 = 256;	 //the overflow value is 0
	 let height:u8 = 257;	 //the overflow value is 1
	 let score:u8 = 258;	 //the overflow value is 2
	 println!(“age {} “,age);
	 println!(“weight {}”,weight);
	 println!(“height {}”,height);
	 println!(“score {}”,score);
}

The unsigned u8 variable has a permitted range of 0–255. The vari-
ables in the above example have values larger than 255 (upper limit for
an integer variable in the Rust). When the preceding code is executed, it
will produce a warning literal out of range for u8 for the weight, height,
and score variables. After 255, the overflow values will begin with 0, 1, 2,
and so on.

Float
In Rust, float data types are categorized as f32 and f64. The f32 type is a
single-precision float, whereas the f64 type is a double-precision float. The
type that is used by default is f64. Consider the following example to have
a better understanding of the float data type:

fn main() {
	 let result = 20.00;
	 let interest:f32 = 8.35;
	 let cost:f64 = 16000.600;	 //the double precision
	 println!(“result value {}”,result);
	 println!(“interest {}”,interest);
	 println!(“cost {}”,cost);
}

24    ◾    Mastering Rust﻿

Automatic-type Casting
In Rust, automatic-type casting is not permitted. Take a look at the follow-
ing code. The float variable interest is given an integer value.

fn main() {
	 let interest:f32 = 9;
	 // integer assigned to float variable
	 println!(“interest {}”,interest);
}

Number Separator
To make huge numbers easier to read, we may add a visual separator
underscore to separate digits. This is 60,000, which can be written as
60_000. This is demonstrated in the following example:

fn main() {
	 let float_with_separator = 11_000.545_001;
	 println!(“float value {}”,float_with_separator);
	 let int_with_separator = 60_000;
	 println!(“int value {}”,int_with_separator);
}

Boolean
The true or false are the only two possible values for Boolean types. To
declare a Boolean variable, use the bool keyword.

Example:

fn main() {
	 let isfun:bool = true;
	 println!(“Rust Programming Fun ? {}”,isfun);
}

Character
Rust’s character data type accepts integers, alphabets, Unicode, and spe-
cial characters. To declare a variable of the character data type, use the
char keyword. The char type in Rust represents a Unicode Scalar Value,
which implies it may represent much more than simply ASCII. The
Unicode Scalar Values span from U+0000 to U+D7FF and from U+E000
to U+10FFFF.

Common Programming Concepts﻿    ◾    25

Let’s look at an example to learn more about the Character data type:

fn main() {
	 let special_character = ‘@’; //default
	 let alphabet:char = ‘D’;
	 let emoji:char = ‘ ’;
	 println!(“special character {}”,special_character);
	 println!(“alphabet {}”,alphabet);
	 println!(“emoji {}”,emoji);
}

Compound Types
Compound types can combine multiple values into a single type. Tuples
and arrays are the two primitive compound types in Rust.

Tuple Type
A tuple is a generic means of combining several items of various kinds into
one compound type. Tuples have a set length: they cannot be increased or
decreased in size once stated.

A tuple is formed by putting a comma-separated list of values within
parentheses. Each place in the tuple has a type, and the types of the tuple’s
distinct values do not have to be the same. In this example, we’ve included
optional-type annotations:

Filename: src/themain​.​rs

fn main() {
	 let tup: (i32, f64, u8) = (600, 7.4, 2);
}

Because a tuple is considered as a single compound element, the vari-
able tup binds to the entire tuple. To extract individual values from a tuple,
we may use pattern matching to destructure a tuple value, as seen below:

Filename: src/themain​.​rs

fn main() {
	 let tup = (600, 7.4, 2);
	 let (a, b, c) = tup;

	 println!(“The value of b is: {}”, b);
}

26    ◾    Mastering Rust﻿

This program begins by creating a tuple and assigning it to the variable
tup. It then employs a pattern to divide tup into three distinct variables: a,
b, and c. This is referred to as destructuring since it divides one tuple into
three pieces. Finally, the program outputs b’s value, which is 7.4.

In addition to pattern matching, we can use a period (.) followed by the
index of the value we want to retrieve to directly access a tuple element.
Consider the following scenario:

Filename: src/themain​.​rs

fn main() {
	 let x: (i32, f64, u8) = (600, 7.4, 1);
	 let six_hundred = x.0;
	 let seven_point_four = x.1;
	 let one = x.2;
}

This program generates a tuple, x, and then creates new variables for
each element based on their indices. The initial index of a tuple is 0, as it is
in most computer languages.

The tuple with no values, (), is a peculiar type with just one value, which
is alternatively represented as (). The type is known as the unit type, while
the value is known as the unit value. If an expression does not return any
other value, it returns the unit value implicitly.

Array Type
An array is another approach to creating a collection of multiple values.
An array, unlike a tuple, must have the same type for all of its elements.
Arrays in Rust differ from arrays in other languages in that they have a
fixed length, similar to tuples.

In Rust, array values are represented as a comma-separated list within
square brackets:

Filename: src/main​.​rs

fn main() {
	 let a = [11, 22, 33, 44, 55];
}

Arrays are handy when we want our data to be allocated on the stack
rather than the heap or to ensure that we always have a set number of

Common Programming Concepts﻿    ◾    27

elements. However, an array is not as adaptable as a vector. A vector is a
similar collection type given by the standard library that may be expanded
or contracted in size. If we’re not sure whether to use an array or a vector,
go with the vector.

We might want to use an array rather than a vector in a program that
needs to know the names of the months of the year. Because such a pro-
gram is unlikely to need to add or subtract months, we may use an array
because we know it will always have 12 elements:

let month = [“Jan”, “Feb”, “Mar”, “April”, “May”, “June”, “July”,

 	  “Aug”, “Sep”, “Oct”, “Nov”, “Dec”];

We would write the type of an array in square brackets, followed by the
type of each element, a semicolon, and then the number of items in the
array, as follows:

let a: [i32; 5] = [11, 22, 33, 44, 55];

Each element is of type i32 in this case. The number 5 after the semicolon
indicates that the array has five elements.

This syntax for writing an array’s type seems similar to the syntax for
initializing an array: if we want to construct an array with the same value
for each member, we specify the initial value, followed by a semicolon, and
then the length of the array in square brackets, as demonstrated here:

let a = [33; 55];

The array named a will contains five elements that will initially be set to
the value 33. This is same as writing let a = [33, 33, 33, 33, 33], but more
concisely.

Accessing the Array Elements
An array is a single fixed-size block of memory that may be allocated on
the stack. Indexing may be used to access items in an array, as seen below:

Filename: src/themain​.​rs

fn main() {
	 let x = [11, 22, 33, 44, 55];

28    ◾    Mastering Rust﻿

	 let first = x[0];
	 let second = x[1];
}

Because the value at position [0] in the array is 1, the first variable will
receive 1. The variable second will receive the value 2 from the array’s
index [1].

Invalid Array Element Access
What happens if try to access an array element that is past the array’s end?
Consider the following example:

Filename: src/themain​.​rs

use std::io;
fn main() {
	 let x = [11, 22, 33, 44, 55];
	 println!(“Enter array index.”);
	 let mut index = String::new();
	 io::stdin()
	 	 .read_line(&mut index)
	 	 .expect(“Failed to read the line”);
	 let index: usize = index
	 	 .trim()
	 	 .parse()
	 	 .expect(“Index entered was not number”);
	 let element = x[index];
	 println!(
	 	 “Value of the element at index {} is: {}”,
	 	 index, element
);
}

This code has been successfully compiled. If we run this code with
cargo run and input 0, 1, 2, 3, or 4, the program will output the value at
that index in the array. If we instead input a number past the end of the
array, such as 15, we will get an error.

The program generated a runtime error when it used an incorrect value
in the indexing procedure. The program terminated with an error mes-
sage, however the last println! instruction was not executed. Rust checks

Common Programming Concepts﻿    ◾    29

to see if the index we’ve specified is less than the array length when using
indexing to access an element. Rust will panic if the index is larger than
or equal to the length. This check must occur at runtime, especially in this
scenario, because the compiler does not know what value a user would
provide when they execute the code.

This is one of Rust’s memory safety ideas in action. This type of check
is not performed in many low-level languages, and if an erroneous index
is provided, invalid memory can access. Rust protects us from this type of
mistake by leaving immediately rather than allowing the memory access
and continuing.

CONSTANT IN RUST
Constants are values that cannot alter. When we declare a constant, its
value cannot change. The term const denotes constants. Constants must
be typed explicitly. The syntax for declaring a constant is as follows:

const VARIABLE_NAME:dataType = value;

Constant Naming Convention in Rust

The naming convention for constants is identical to that of variables. In a
continuous name, all characters usually are in the capital. When declaring
a constant, the let keyword is not utilized, as it is when declaring variables.

In the following example, we utilized constants in Rust:

fn main() {
	 const USER_LIMIT:i32 = 110; // Declare integer constant
	 const PI:f32 = 3.14; 	 //Declare float constant
	 println!(“user limit {}”,USER_LIMIT);
� //Display value of constant
	 println!(“pi value {}”,PI);
� //Display value of constant
}

Constants vs. Variables

This section will look at the differences between constants and variables.

•	 The const keyword is used to declare constants, while the let key-
word is used to declare variables.

30    ◾    Mastering Rust﻿

•	 A variable declaration may or may not include a data type, but a
constant declaration must have a data type. As a result, using const
USER LIMIT=110 will result in an error.

•	 A variable declared with let keyword is immutable by default. You
may, however, change it by using the mut keyword. Constants are
unchangeable.

•	 Constants may only set to a constant expression, not the result of a
function call or any other value computed at runtime.

•	 Constants can declare in any scope, including the global scope, mak-
ing them handy for variables that need to be known by several por-
tions of the code.

Variable and Constant Shadowing

In Rust, programmers can specify variables with the same name. In this
scenario, the new variable takes precedence over the prior variable.

fn main() {
	 let salary = 110.00;
	 let salary = 2.50;
	 // reads the first salary
	 println!(“Value of salary :{}”,salary);
}

The code above declares two variables called salary. The first declara-
tion is given a value of 110.00, whereas the second declaration is given a
value of 2.50. While displaying output, the second variable shadows or
hides the first variable.

While shadowing, Rust supports variables of various data types.
Consider the following scenario:
The code uses the term uname to declare two variables. The first

declaration is given a string value, whereas the second is given an integer
value. The len function determines how many characters are in a string
value.

fn main() {
	 let uname = “Mohtash”;
	 let uname = uname​.l​en();

Common Programming Concepts﻿    ◾    31

	 println!(“name changed to the integer : {}”,uname);
}

Constants, unlike variables, cannot be shadowed. Compiler will pro-
duce an error if the variables in the above program are replaced with
constants.

fn main() {
	 const NAME:&str = “Mohtash”;
	 const NAME:usize = NAME​.l​en();
	 //Error: `NAME` already defined
	 println!(“name changed to the integer : {}”,NAME);
}

STRING IN RUST
In Rust, the string data type is divided into the following categories:

•	 String Literal(&str)

•	 String Object(String)

String Literal

When value of a string is known at build time, string literals (&str) are
utilized. String literals are a collection of characters that have been hard-
coded into a variable. Assume company=“Rust Point” is an example.
String literals can be find in the std::str package. String literals are also
referred to as string slices.

The string literals firm and location are declared in the following
example:

fn main() {
	 let company:&str=“RustPoint”;
	 let location:&str = “Ludhiana”;
	 println!(“company : {} location :{}”,
	 company,location);
}

32    ◾    Mastering Rust﻿

String literals are by default static. This ensures that string literals are
guaranteed to be valid throughout the program. We may also specify the
variable directly as static, as seen below:

fn main() {
	 let company:&’static str = “RustPoint”;
	 let location:&’static str = “Ludhiana”;
	 println!(“company : {} location :{}”,
	 company,location);
}

String Object

The String object type is available in the Standard Library. Unlike the
string literal, the String object type is not part of the core language. The
standard library pub struct String defines it as a public structure. The
string is a collection that can expand. It is a mutable type with UTF-8
encoding. The String object type can use to represent string values that
are sent to the program at runtime. The heap is used to allocate a String
object.

Syntax
We may use any of the following syntax to build a String object:

String::new()

The preceding syntax generates an empty string.

String::from()

This generates a string containing a default value passed as a parameter
to the from() function.

The example shows how to utilize a String object.

fn main(){
	 let empty_string = String::new();
	 println!(“length {}”​,empty​_string​.len());
	 let conte​nt_st​ring ​= Str​ing::​from(​“Rust​Point​”);
	 println!(“length {}”​,content​_string​.len());
}

Common Programming Concepts﻿    ◾    33

The above example uses the new method to generate an empty String
object and the from method to build a String object from a string literal.

String Object – Common Methods

Sr.
No. Method Signature Description

1 new() pub const fn new() → String This function generates a new empty
string

2 to_string() fn to_string(&self) → String The provided value is converted to
string

3 replace() pub fn replace<‘a, P>(&’a
self, from: P, to:
&str) → String

All pattern matches are replaced with
another string

4 as_str() pub fn as_str(&self) → &str The entire string is extracted as a
string slice

5 push() pub fn push(&mut self, ch:
char)

This string is added with the provided
character

6 push_str() pub fn push_str(&mut self,
string:&str)

This method appends a specified string
slice to the end of this string

7 len() pub fn len(&self) → usize This function returns the length of this
string in bytes

8 trim() pub fn trim(&self) → &str Removes preceding and trailing
whitespace from a string slice

9 split_whitespace() pub fn split​_whit​espac​e(&se​
lf) →​ Spli​tWhit​espac​e

Returns an iterator after splitting a
string slice by whitespace

10 split() pub fn split<‘a, C>(&’a self,
pat: C) → Split<‘a, C> ,
where C is pattern can be
&str, char, or closure that
determines the split

Iterates through substrings of this
string slice that are split by characters
matched by a pattern

11 chars() pub fn chars(&self) → Chars Iterates through the characters of a
string slice

Illustration: new()
The new() function constructs an empty String object with the value hello.

Example:

fn main(){
	 let mut a = String::new();
	 a.push_str(“helloo”);
	 println!(“{}”,a);
}

34    ◾    Mastering Rust﻿

Illustration: to_string()
To access all String object methods, use the to_string() function to con-
vert a string literal to object type.

Example:

fn main(){
	 let names = “Hello RustPoint,
	 Hello!”.to_string();
	 println!(“{}”,names);
}

Illustration: replace()
The replace() method accepts two parameters: the first is a string pattern
to search for, and the second is the new value to be replaced. Hello appears
twice in the names1 string in the preceding example.

The replace function replaces all the instances of the string Hello with
the string Rowdy.

Example:

fn main(){
	 let names1 = “Hello RustPoint,
	 Hello!”.to_string(); 	 //the String object
	 let names​2 = n​ames1​.repl​ace(“​Hello​”,”Ro​wdy”)​;
� //​find and replace
	 println!(“{}”,names2);
}

Illustration: as_str()
The str() method returns a string slice that includes the entire string.

Example:

fn main() {
	 let examp​le_st​ring1​ = St​ring:​:from​(“exa​mple_​strin​g”);
	 print_literal(example_string1.as_str());
}
fn print_literal(data:&str){
	 println!(“displaying the string literal {}”,data);
}

Common Programming Concepts﻿    ◾    35

Illustration: push()
The push() method adds the specified character to the end of this string.

Example:

fn main(){
	 let mut company1 = “Rust”.to_string();
	 company1​.pu​sh(‘s’);
	 println!(“{}”,company1);
}

Illustration: push_str()
Push str() appends a specified string slice to the end of a string.

Example:

fn main(){
	 let mut company1 = “Rust”.to_string();
	 company1.push_str(“ Point”);
	 println!(“{}”,company1);
}

Illustration: len()
The total number of characters in a string is returned by the len() function
(including spaces).

Example:

fn main() {
	 let fullnames = “ Rust Point”;
	 println!(“length {}”​,fullnames​.len());
}

Illustration: trim()
The trim() eliminates leading and trailing spaces from a string. Please
keep in mind that this function will not remove inline spaces.

Example:

fn main() {
	 let fullname = “ Rust Point \r\n”;
	 println!(“Before-trim “);

36    ◾    Mastering Rust﻿

	 println!(“length {}”​,fullname​.len());
	 println!();
	 println!(“After-trim “);
	 println!(“length {}”​,fullname​.trim().len());
}

Illustration: split_whitespace()
The split whitespace() function divides the input string into several strings.
As seen below, it returns an iterator, so we loop through the tokens.

Example:

fn main(){
	 let msg = “Rust Point has good tutorials”.to_string();
	 let mut x = 1;
	 for token in msg.split_whitespace(){
	     println!(“token {} {}”,x,token);
	     x+=1;
	 }
}

Illustration: split() string
The split() returns an iterator that iterates across substrings of a string
slice divided by characters that match a pattern. The split() function has
the constraint that the result cannot be stored for later use. The collect
method may save the split() result as a vector.

Example:

fn main() {
	 let fulln​ame =​ “Can​an,Ru​dhash​aran,​Rustp​oint”​;
	 for token in fullname​.spl​it(“,”){
	     println!(“token is {}”,token);
	 }
	 //the store in a Vector
	 println!(“\n”);
	 let token​s:Vec​<&str​>= fu​​llnam​​e​.sp​l​​it(“,​”).co​llect​();
	 println!(“firstName {}”,tokens[0]);
	 println!(“lastname {}”,tokens[1]);
	 println!(“company {}”,tokens[2]);
}

http://www.,fullname.len
http://www.,fullname.trim
http://www.fullname.split
http://www.fullname.split

Common Programming Concepts﻿    ◾    37

Illustration: chars()
Example:
The chars method can be used to retrieve individual characters in a string.
To further comprehend this, consider the following scenario.
fn main(){
	 let nm1 = “Rust”.to_string();
	 for nm in nm1​.cha​rs(){
	     println!(“{}”,nm);
	 }
}

Concatenation of the Strings with + Operator

Appending a string value to another string is possible. This is referred to
as concatenation or interpolation. String concatenation produces a new
string object. Internally, the + operator employs an add method. The add
function’s syntax accepts two parameters. The first parameter is self, which
is a String object itself, and the second is a reference to the second string
object. This is depicted below:

//add the function
add(self,&str)->String {
	 // returns String object
}

Illustration: String Concatenation
Example:
fn main(){
	 let nm1 = “Rust”.to_string();
	 let nm2 = “Points”.to_string();
	 let nm3 = nm1 + &nm2; // n2 reference is passed
	 println!(“{}”,nm3);
}

Illustration: Type Casting

Example:
fn main(){
	 let number = 2022;
	 let number_as_string = number.to_string();
	 // convert the number to string
	 println!(“{}”,number_as_string);
	 println!(“{}”,number_as_string==“2022”);
}

http://www.nm1.chars

38    ◾    Mastering Rust﻿

Illustration: Format! Macro
A macro function called format can also be used to combine String
objects together. The following is an example of how Format! may be used.

Example:

fn main(){
	 let nm1 = “Rust”.to_string();
	 let nm2 = “Points”.to_string();
	 let nm3 = format!(“{} {}”,nm1,nm2);
	 println!(“{}”,nm3);
}

OPERATORS IN RUST
An operator specifies a function that will apply to the data. The data on
which operators operate is referred to as operands. Consider the following
expression:

6 + 4 = 10

In this case, the operands are 6, 4, and 10, whereas the operators are + and =.
Rust’s major operators are characterized as follows:

•	 Arithmetic

•	 Bitwise

•	 Comparison

•	 Logical

•	 Conditional

Arithmetic Operators

Assume that variables x and y have 11 and 4, respectively.

Sr. No Operator Description Example

1 + Returns the sum of operands x + y is 12
2 − Returns the difference of values x−y is 3
3 * Returns the product of values x*y is 40
4 / Performs division operation and returns the quotient x / y is 3
5 % Performs division operation and returns the remainder x % y is 0

Common Programming Concepts﻿    ◾    39

Relational Operators

Relational operators are used to test or specify the type of relationship that
exists between two items. When comparing two or more values, relational
operators are utilized. Relational operators yield either true or false as a
Boolean value.

Assume X equals 15 and Y equals 25.

Sr. No Operator Description Example

1 > Greater than (X > Y) is false
2 < Lesser than (X < Y) is true
3 >= Greater than or equal to (X >= Y) is false
4 <= Lesser than or equal to (X <= Y) is true
5 == Equality (X == Y) is false
6 != Not equal (X != Y) is true

Logical Operators

Logical operators are used for joining two or more conditions together.
Logical operators, like all other operators, yield a Boolean value. Assume
variable X has a value of 15 and variable Y has a value of 25.

Sr.
No Operator Description Example

1 && The operator returns true only if all
expressions specified return true

(X > 15 && Y > 15) is
false

2 || Operator returns true if one of the
expressions specified return true

(X > 15 || Y >15) is true

3 ! Operator returns inverse of the expression’s
result. For e.g. !(>5) returns false

!(X >15) is true

Bitwise Operators

Assume variable X = 3 and variable Y = 4.

Sr.
No Operator Description Example

1 & (Bitwise
AND)

Each bit of its integer parameters is processed to a
Boolean AND operation

(X & Y) is 3

2 | (BitWise OR) Each bit of its integer parameters is applied to a
Boolean OR operation

(X | Y) is 4

3 ^ (Bitwise
XOR)

On each bit of its integer parameters, it performs
a Boolean exclusive OR operation. Exclusive OR
denotes that either operand one or operand two
must be true, but neither must be true

(X ^ Y) is 1

40    ◾    Mastering Rust﻿

4 ! (Bitwise Not) It is unary operator that reverses all of the
operand’s bits

(!Y) is 5

5 << (Left Shift) It shifts all of the bits in its first operand to the left
by the number of places in its second operand.
Zeros are used to fill new bits. Shifting a value
left by one place is comparable to multiplying it
by two, shifting it to two positions is equivalent
to multiplying it by four, and so on

(X << 1) is 4

6 >> (Right
Shift Binary
Operator)

The value of the left operand is shifted right by
the number of bits given by the right operand

(X >> 1) is 1

7 >>> (Right
shift with
Zero)

This operator works same way as the >> operator,
except that the bits moved to the left are always
zero

(X >>> 1) is
1

DECISION-MAKING IN RUST
The programmer must define one or more conditions to be evaluated or
tested by the program, a statement or statements to be performed if the
condition is judged to be true, and optionally, other statements to be run
if the condition is decided to be false.

Sr. No Statement and Description

1 If statement
A Boolean expression is followed by one or more assertions in an if statement.

2 If…else statement
When Boolean expression is false, the if…else statement follows the statement.

3 Else…if and nested if statement
The if or else if statement can be used inside another if or else if statement.

4 Match statement
A match statement checks a variable against a set of values.

If Statement

Before executing a piece of code, the if…else construct evaluates a
condition.

Syntax

if boolean_expression {
	 // statement �will execute if boolean expression is

true
}

Common Programming Concepts﻿    ◾    41

If Boolean expression returns true, the code within the if statement is per-
formed. If the Boolean expression returns false, the first code set after the
conclusion of the if statement (after the closing curly brace) is performed.

Example:

fn main(){
	 let num:i32 = 9;
	 if num > 0 {
	     println!(“number positive”);
	 }
}

As long as the condition stated by the if block is true, the above example
will output a positive number.

If else statement

The if…else statement can follow the statement. If the Boolean expression
checked by the if statement returns false, the else block will be executed.

Syntax

if boolean_expression {
	 // statement �will execute if boolean expression is

true
} else {
	 // statement �will execute if boolean expression is

false
}

Flowchart
The if statement protects the conditional phrase. If the Boolean expression
evaluates to true, the block associated with the if statement is performed
(Figure 2.1).

The if an else statement optionally follows the statement. If the expres-
sion evaluates to false, the instruction block associated with the else block
is performed.

42    ◾    Mastering Rust﻿

Example:
fn main() {
	 let num = 15;
	 if num % 2==0 {
	 	 println!(“Evennum”);
	 } else {
	 	 println!(“Oddnum”);
	 }
}

Nested If

The else…if ladder is good for testing many circumstances. The syntax is
presented below.

Syntax

if boolean_expression1 {
	 //statement if expression1 evaluates to true
} else if boolean_expression2 {
	 //statement if expression2 evaluates to true
} else {
	 //statement �if both the expression1 and expression2

result to false
}

start

if code

after if

exit

Condition
false

true
else code

FIGURE 2.1  Statement of if…else.

Common Programming Concepts﻿    ◾    43

There are a few things to remember while utilizing if…else…if and else
statements.

•	 An if can have a value of zero or one, and it must come after anything
else…if.

•	 If there are zero or more else…if in an if, they come first.

•	 If an else…if succeeds, none of the remaining else…if or else will be
tried.

Example:

fn main() {
	 let numb = 4;
	 if numb > 0 {
	 	 println!(“{} positive”,numb);
	 } else if numb < 0 {
	 	 println!(“{} negative”,numb);
	 } else {
	 	 println!(“{} neither positive nor negative”,numb);
	 }
}

Match Statement

The match statement checks whether a current value matches one from a
list of values; it is similar to the switch statement in C. First and foremost,
the expression after the match keyword does not need to be enclosed in
parentheses.

Syntax

let expressionResult = match variable_expression {
	 constant_expr1 => {
	 	 //statement;
	 },
	 constant_expr2 => {
	 	 //statement;
	 },
	 _ => {
	 	 //default
	 }
};

44    ◾    Mastering Rust﻿

In the following example, state code is compared to a set of values MH,
KL, KA, and GA; a string value is returned to the variable state if a match
is found. The default case matches returns the value Unknown if no match
is found.

Example:

fn main(){
	 let state_code = “IN”;
	 let state = match state_code {
	 	 “DL” => {println!(“Found match “); “Delhi”},
	 	 “IN” => “India”,
	 	 “KL” => “Kolkatta”,
	 	 “AB” => “Ahmdabad”,
	 	 _ => “Unknown”
	 };
	 println!(“State name:{}”,state);
}

Using an “if” statement within a “let” statement

The “if” expression is used on the right side of the let statement, and the
value of “if” expression is assigned to “let” statement.

Syntax

Let vari_name= if condition{
//blocks  of code
}
else{
//code
}

If the condition is true, the value of the “if” expression is assigned to the
variable; if the condition is false, the value of “else” is allocated to the
variable.

Example 1:

fn main()
 let x=if true
	 	 {
	 	 	 2

Common Programming Concepts﻿    ◾    45

	 	 }
	 	 else
	 	 {
	 	 	 4
	 	 };
 println!(“value of x is: {}”, x);

Example 2:

fn main()
 let x=if false
	 	 {
	 	 	 10
	 	 }
	 	 else
	 	 {
	 	 	 ”Rustpoint”
	 	 };
 println!(“value of x is: {}”, x);

In this example, the “if ” block evaluates to an integer value, whereas the
“else” section evaluates to a string value. As a result, this program generates
an error since both blocks contain values of different types.

LOOPS IN RUST
If we want to run the block of statements more than once, we may use the
idea of the loop. A loop performs the code within the loop body to the end
and then restarts from the beginning.

Rust is made up of three types of loops:

	 1.	 loops

	 2.	 for loop

	 3.	while loop

Loop

It is not a conditional loop. It is a term that tells Rust to execute the block
of code again and over until you explicitly halt the loop.

46    ◾    Mastering Rust﻿

Syntax

loop{
	 // statements block
}

Block statements in the preceding syntax are run indefinitely.

Example:

fn main()
 loop
 {
	 	 println!(“Hello everyone”);
}
In this example, “Hello everyone” is displayed
repeatedly until we manually stop the loop. In most
cases, the “ctrl+c” command is used to exit the loop.

Exit from Loops

To exit a loop, use the “break” keyword. If the “break” keyword is not
provided, the loop will run indefinitely.

Example:

  fn main()
let mut x=1;
 loop
 {
	 	 println!(“Hello everyone”);
	 	 if x==7
	 	 {
	 	 	 break;
	 	 }
 x+=1;
 }}

While Loop

A “while loop” is a type of conditional loop. The conditional loop is used
when a program needs to evaluate a condition. The loop is invoked if the
condition is true; otherwise, the loop is terminated.

Common Programming Concepts﻿    ◾    47

Syntax

while condition

// statements block;

The while loop in the preceding syntax evaluates the condition. If the con-
dition is true, block statements are performed; else, the loop is terminated.
This built-in construct in Rust can be used in conjunction with a “loop,”
“if,” “else,” or “break” declaration.

Flowchart
The general process of loop runtime can be summarized as in Figure 2.2.

while
loop ends

false

while loop start

Test
condition?

Execute loop
body

FIGURE 2.2  Statement of while loop.

48    ◾    Mastering Rust﻿

Example 1:

fn main()
{
	 let mut x=1;
	 while x<=10
{
	 print!(“{}”, x);
	 print!(“ “);
	 x=x+1;
}
}

Example 2:

fn main()
{
  let array=[20,30,35,42,60,90];
  let mut x=0;
  while x<60
  {
	 print!(“{}”,array[x]);
	 print!(“ “);
	 x=x+1;
 }
}

While Loop Disadvantages

•	 If the index length is wrong, the while loop might cause a problem.

•	 It is also slow since the compiler adds runtime code to execute the
conditional check on each loop iteration.

FOR LOOP
The for loop is a conditional loop, which means it runs for a specific amount
of time. The behavior of the for loop in the rust language differs slightly from
that of other languages. The for loop executes until the condition is met.

Syntax

for var in expression
{
	 //statements
}

Common Programming Concepts﻿    ◾    49

An expression in the preceding syntax can turn into an iterator that iterates
across the elements of a data structure. An iterator is used to retrieve the value
of each iteration. The loop ends when there are no more values to be fetched.

Example 1:

fn main()
{
  for x in 1..12
  {
	 print!(“{} “,x);
 }
}

Example 2:

fn main()
{
let mut result;
for x in 1..12
{
result=2*x;
println!(“2*{}={}”,x,result);
}
}

Example 3:

fn main()
let fruit​s=[�“a​pple”​,”ora​nge”,​”mang​o”,”b​anana​”,

”wa​terme​lon”]​;
	 for s in fruits​.it​er()
{
	 print!(“{} “,s);
}

In the above example, the iter() function is used to retrieve each entry of
the fruits variable. The loop ends when it reaches the last element of an array.

Distinctions between the While Loop and For Loop

If index length of an array is raised at runtime, the while loop exhibits the
problem, but this does not occur in the case of the for loop. As a result, we

50    ◾    Mastering Rust﻿

can argue that the for loop enhances the safety of the code and eliminates
the possibility of problems.

FUNCTIONS IN RUST
Functions are the building blocks of understandable, manageable, and
reusable code. A function is a collection of statements used to carry out a
specified activity. Functions structure the program into logical pieces of
code. Functions can invoke access code after they have been defined. As
a result, the code is reusable. Furthermore, functions make the program’s
code easier to comprehend and maintain.

The name, return type, and function parameters are all specified
in a function declaration. A function definition defines the body of the
function.

Sr. No Function and Description

1 Defining a function
The specification of a TA function explains what and how a given job would
complete.

2 Calling or invoking a function
To run a function, it must be invoked.

3 Returning functions
Functions may also return value as well as control to the caller.

4 Parameterized function
Parameters are a way for values to be sent to functions.

Function Defining

A function definition describes what and how a given activity would
carry out. A function must specify before it may use it. The function body
includes the code that the function should run. The guidelines for naming
a function are the same as those for naming variables. The fn keyword is
used to define functions. The following is the syntax for defining a stan-
dard function.

Syntax

fn function_name(param1,param2..paramN)
{
	 //body of function
}

Common Programming Concepts﻿    ◾    51

A function declaration may or may not include parameters/arguments.
Functions employ parameters to transmit values to them.

Example:

//Defining function
fn fn_hello(){
	 println!(“hello fn_hello “);
}

Function Invoking

To run a function, it must be invoked. This is known as function invoca-
tion. When calling a function, arguments’ values should pass. The func-
tion that calls another function is referred to as the caller function.

Syntax

function_name(val1,val2,valN)

Example:

fn main(){
	 // function calling
	 fn_hello();
}

Illustration

The function fn_hello() is defined in the following example. A message
is printed to the console using this function. The fn_hello() function is
called by the main() function:

fn main(){
	 //calling function
	 fn_hello();
}
//Defining function
fn fn_hello(){
	 println!(“hello fn_hello “);
}

52    ◾    Mastering Rust﻿

Returning Value from a Function

The functions can also return a value to the caller along with control. Such
functions are referred to as returning functions.

Syntax
To define a function with a return type, use any of the following syntax.

With the Return Statement

// Syntax-1
fn function_name() -> return_type {
	 //statement
	 return value;
}

Shorthand Syntax without the Return Statement

//Syntax-2
fn function_name() -> return_type {
	 value //no-semicolon means this value is returned
}

Example:

fn main(){
	 println!(“pi value {}”,get_pi());
}
fn get_pi()->f64 {
	 22.0/7.0
}

Function with the Parameters

Parameters are a way for values to be sent to functions. The function’s
signature includes parameters. During the function’s call, the argument
values are supplied to it. Unless otherwise indicated, the number of values
provided to a function must equal the number of arguments defined.

One of the following methods can be used to send parameters to a
function.

Common Programming Concepts﻿    ◾    53

Pass by Value
A new storage location for each value argument is generated when a
method is called. The real parameter values are transferred into them. As
a result, changes to the parameter within the called method do not affect
the argument.

The example below declares a variable no, which is initially set to 7. The
variable is passed as a parameter (by value) to the method mutate_no_to_
zero(), which transforms the value to zero. When control returns to the
main method after the function call, the value will be the same.

fn main(){
	 let no:i32 = 7;
	 mutate_no_to_zero(no);
	 println!(“Value of no:{}”,no);
}
fn mutate_no_to_zero(mut param_no: i32) {
	 param_no = param_no*0;
	 println!(“param_no value:{}”,param_no);
}

Pass by Reference
In contrast to value parameters, when we send parameters by reference, no
new storage place is generated for these parameters. The reference param-
eters are stored in the same memory location as the method’s real argu-
ments. By prefixing the variable name with an &, parameter values can be
passed by reference.

In the following example, we have a variable no initially set to 7. The
mutate_no_to_zero() method is given a reference to the variable no. The
function is applied to the original variable. When control returns to the
main method after the function call, the original variable’s value will be
zero.

fn main() {
	 let mut no:i32 = 7;
	 mutate_no_to_zero(&mut no);
	 println!(“Value of no:{}”,no);
}
fn mutate_no_to_zero(param_no:&mut i32){
	 *param_no = 0; //de reference
}

54    ◾    Mastering Rust﻿

The * operator is used to access values stored in the memory address
as the variable param no. This is sometimes referred to as dereferencing.

Passing String to a Function
The display() method receives a String object from the main() function.

fn main(){
	 let name:String = String::from(“RustPoint”);
	 display(name);
	 //cannot access the name after display
}
fn display(param_name:String){
	 println!(“param_name value:{}”,param_name);
}

COMMENTS IN RUST
Every programmer strives to make their code understandable, but there
are instances when more explanation is required. In certain circum-
stances, programmers provide annotations, or comments, in their source
code that the compiler ignores but that individuals viewing the code may
find beneficial.

Here’s a basic comment:

// hello, everyone

The idiomatic comment style in Rust begins a comment with two slashes
and continues until the end of the line. For comments that go beyond a
single line, use // on each line, as seen here:

// doing something complicated here
// multiple �lines of comments to do it. Hopefully, the

comment will
// explain what is going on.

The comments can also be added to the end of code lines:

Filename: src/themain​.​rs

fn main() {
	 let lucky_numb = 13; //feeling lucky today
}

Common Programming Concepts﻿    ◾    55

However, we’ll see them more often in this style, with the comment on
a separate line above the code it is annotating:

Filename: src/themain​.​rs

fn main() {
	 //feeling lucky today
	 let lucky_numb = 13;
}

TUPLE IN RUST
A tuple is a form of compound data. A scalar type can only store one type
of data. An i32 variable, for example, may only store a single integer value.
In compound types, we can store multiple values at once, and they can be
of various types.

Tuples have a set length; once stated, they cannot be increased or
decreased in size. The tuple index begins at 0.

//Syntax-1

let tuple​_name​s:(da​ta_ty​pe1,d​ata_t​ype2,​data_​type3​) = (​value​1,val​ue2,v​alue3​);

//Syntax-2

let tuple_names = (value1,value2,value3);

Example:

fn main() {
	 let tuples:(i32,f64,u8) = (-326,4.8,23);
	 println!(“{:?}”,tuples);
}

The println!(“{}”,tuple) syntax cannot be used to show tuple values. This
is because a tuple is a compound type. To print values in a tuple, use the
println!(“{:?}”, tuple name) syntax.

Example:
The example below prints each value in a tuple.

fn main() {
	 let tuple:(i32,f64,u8) = (-326,4.8,23);
	 println!(“integer :{:?}”,tuple.0);

56    ◾    Mastering Rust﻿

	 println!(“float :{:?}”,tuple.1);
	 println!(“unsigned integer :{:?}”,tuple.2);
}

Example:
The following example calls a function using a tuple as an argument.

Tuples are provided to functions by value.

fn main(){
	 let a:(i32,bool,f64) = (120,true,11.9);
	 print(a);
}
//pass tuple as a parameter
fn print(y:(i32,bool,f64)){
	 println!(“print method inside”);
	 println!(“{:?}”,y);
}

Destructing

Destructing assignment is a Rust feature that allows us to unpack the val-
ues of a tuple. This is accomplished by allocating a tuple to each variable.

fn main(){
	 let a:(i32,bool,f64) = (32,true,7.8);
	 print(a);
}
fn print(y:(i32,bool,f64)){
	 println!(“print method inside”);
	 let (age,is_male,cgpa) = y; //assigns tuple to
	 different variables
	 println!(“Age {}, isMale? {},cgpa is
	 {}”,age,is_male,cgpa);
}

The variable y is a tuple assigned to the let statement. Each variable –
age, is male, and cgpa – will have a tuple with the corresponding values.

ARRAY IN RUST
We’ll learn about arrays and the various features that come with them.
Before we go into arrays, let’s look at how an array differs from a variable.

Common Programming Concepts﻿    ◾    57

Variables have the following constraints:
Variables have a scalar nature. To put it another way, a variable dec-

laration can only have one value at a time. This indicates that n variable
declarations will be required to store n values in a program. As a result,
the usage of variables is not viable for storing a larger collection of values.

Variables in a program are assigned memory in a random sequence,
making it impossible to retrieve/read the values in the order they were
declared.

A collection of values that are all the same is referred to as an array. An
array is a collection of elements of the same data type.

Array Characteristics

An array has the following characteristics:

•	 An array declaration allocates memory blocks in sequential order.

•	 Arrays are not dynamic. This means that it cannot resize after an
array has been initialized.

•	 Each memory block corresponds to a single array element.

•	 Array elements are identified by a unique number known as the ele-
ment’s subscript/index.

•	 Array initialization is the process of populating the array elements.

•	 The values of array elements can be edited or modified but not erased.

Array Declaration and Initialization

In Rust, use the following syntax to define and initialize an array.

Syntax

//Syntax-1

let variable_names = [value1,value2,value3];

//Syntax-2

let varia​ble_n​ames:​[data​Type;​size]​ = [v​alue1​,valu​e2,va​lue3]​;

//Syntax-3

let varia​ble_n​ames:​[data​Type;​size]​ = [d​efaul​t_val​ue_fo​r_ele​ments​,size​];

58    ◾    Mastering Rust﻿

The type of the array is inferred in the first syntax from the data type of
the array’s first element during initialization.

Illustration: Simple Array
The array’s size and data type are explicitly specified in the following
example. The println!() function’s {:?} syntax is used to print all values in
the array. The array’s size is determined by the len() method.

fn main(){
	 let arra:[i32;4] = [20,30,80,50];
	 println!(“array {:?}”,arra);
	 println!(“array size :{}”​,arra​.len());
}

Illustration: Array without Data Type
The following program declares a four-element array. The datatype is
not stated explicitly during variable declaration. The array will be of
type integer in this situation. The array’s size is determined by the len()
method.

fn main(){
	 let arrs = [20,30,80,50];
	 println!(“array {:?}”,arra);
	 println!(“array size :{}”​,arra​.len());
}

Illustration: Default Values
The following example builds an array and assigns a value of -1 to all of
its elements.

fn main() {
	 let arra:[i32;4] = [-1;4];
	 println!(“array {:?}”,arra);
	 println!(“array size :{}”​,arra​.len());
}

Illustration: Array with for Loop
The following example iterates over an array, printing the indices and val-
ues as it passes. The loop retrieves values from 0 to 4 indexes (index of the
last array element).

Common Programming Concepts﻿    ◾    59

fn main(){
	 let arra:[i32;4] = [20,30,80,50];
	 println!(“array {:?}”,arra);
	 println!(“array size :{}”​,arra​.len());
	 for index in 0..4 {
	 	 println!(“index is: {} & value :
{}”,index,arra[index]);
	 }
}

Illustration: Using the iter() Function
The iter() method returns the values of all array items.

fn main(){
let arra:[i32;4] = [20,30,80,50];
	 println!(“array {:?}”,arr);
	 println!(“array size :{}”​,arra​.len());
	 for vals in arra​.it​er(){
	 	 println!(“value :{}”,vals);
	 }
}

Illustration: Mutable Array
A mutable array may be declared using the mut keyword. The example
below declares a mutable array and alters the value of the second array
element.

fn main(){
	 let mut arra:[i32;4] = [20,30,80,50];
	 arra[1] = 0;
	 println!(“{:?}”,arra);
}

Passing Arrays as Parameters to the Functions

An array can be passed to functions as a value or as a reference.

Illustration: Pass by Value

fn main() {
	 let arra = [20,40,80];
	 update(arra);

60    ◾    Mastering Rust﻿

	 print!(“Inside-main {:?}”,arra);
}
fn update(mut arra:[i32;3]){
	 for i in 0..3 {
	 	 arra[i] = 0;
	 }
	 println!(“Inside-update {:?}”,arra);
}

Illustration: Pass by Reference

fn main() {
	 let mut arra = [20,40,90];
	 update(&mut arra);
	 print!(“Inside-main {:?}”,arra);
}
fn update(arra:&mut [i32;3]){
	 for i in 0..3 {
	 	 arra[i] = 0;
	 }
	 println!(“Inside-update {:?}”,arra);
}

The Array Declaration and Constants

Consider the following example to better understand array declaration
and constants:

fn main() {
	 let N: usize = 30;
	 let arra = [0; N]; //�Error: non-constant used with

the constant
	 print!(“{}”,arra[20])
}

The compiler will throw an exception. Because the length of an array
must be known at build time, this is the case. The value of the variable “N”
will decide at runtime in this case. Variables, in other words, cannot be
used to specify the size of an array.

The following program, on the other hand, is valid.

fn main() {
	 const N: usize = 30;
	 // pointer sized

Common Programming Concepts﻿    ◾    61

	 let arra = [0; N];
	 print!(“{}”,arra[20])
}

The value of a const-prefixed identifier is determined at build time and
cannot be changed during runtime. usize is pointer-sized; therefore, its
real size is specified on the architecture for which we are developing our
program.

This chapter covered variables and mutability, data types, and func-
tions. Moreover, we learned comments, tuples, array, and control flow
with appropriate syntax and examples.

https://taylorandfrancis.com/

63

C h a p t e r 3

Understanding
Ownership

IN THIS CHAPTER

	➢ What is ownership?

	➢ References and borrowing

	➢ The slice type

The previous chapter covered variables, functions, and data types.
Furthermore, we also covered comments and control statements. This
chapter will cover ownership, references, and borrowing and slice type.

WHAT EXACTLY IS OWNERSHIP?
The primary aspect of Rust is ownership. Although the characteristic is
simple to describe, it has deep implications for the rest of the language.

All programs must manage how they use memory while running on a
computer. Some languages offer garbage collection, which searches for no
longer utilized memory while the program runs; in others, the program-
mer must actively allocate and delete memory. Rust has a third approach:
memory is controlled using an ownership system with rules that the com-
piler validates at compile time. While our software is running, none of the
ownership aspects will slow it down.

We discussed what ownership, references, and borrowing are in this
chapter. Slice Type was also discussed. The good news is that as we gain

Mastering Rust Understanding Ownership

DOI:  10.1201/9781003311966-3

10.1201/9781003311966-3

https://dx.doi.org/10.1201/9781003311966-3

64    ◾    Mastering Rust﻿

expertise with Rust and the rules of the ownership system, we will be able
to write secure and efficient code intuitively.

When we grasp ownership, we’ll have a solid basis for comprehend-
ing the characteristics that distinguish Rust. This chapter will learn about
ownership by working through several examples that focus on a fairly
popular data structure: strings.

The Stack and the Heap

Many programming languages don’t need us to think about the stack or
the heap very much. However, in a systems programming language like
Rust, whether an item is on the stack or the heap has a greater impact on
how the language acts and why certain decisions must be made. Parts of
ownership in connection to the stack and heap will be discussed later in
this chapter, so here’s a quick primer.

The stack and heap are two alternative memory structures that our pro-
grams may utilize at runtime. The stack saves items in the order in which
they are received and removes values in the opposite order. This is known
as last in, first out. Consider a stack of plates: as we add additional plates,
we stack them on top, and when we need a plate, we remove one from the
top. Adding or deleting plates from the middle or bottom would be inef-
fective. Adding data is referred to as pushing onto the stack, while remov-
ing data is popping off the stack.

The size of all data placed on the stack must be known and fixed. Data
having an uncertain size or a size that may vary at compile time must be
put on the heap instead. We require a specific amount of space when we
put data on the heap. The memory allocator selects an empty space in the
heap that is large enough, marks it as in use, and returns a reference to that
location’s address. This is known as allocating on the heap, and it is com-
monly abbreviated as just allocating. Allocating does not include pushing
values into the stack.

Because the pointer has a known, constant size, it may store on the
stack, but we must follow the pointer to access the real data.

Consider being seated in a restaurant. When we go in, we tell the staff
how many people are in our company, and they find an empty table that
accommodates everyone and guides us there. If a member of our party
arrives late, they might enquire where we’ve been seated to locate us.

Pushing to the stack is faster than heap allocating because the allocator
never has to look for a new area to store new data because the top of the
stack is always available.

Understanding Ownership﻿    ◾    65

On the other hand, allocating heap space necessitates more effort since
the allocator must first find a large enough place to contain the data and
then do accounting to prepare for the next allocation.

Accessing data in a heap takes slower than accessing data on the stack
because we have to follow a pointer to get there. Modern CPUs are speed-
ier when they move about in memory less. Imagine a waitress in a restau-
rant taking orders from many tables to continue the analogy. It’s best to
complete all of the orders at one table before going on to the next.

Taking one order from table A, then another from table B, then another
from A, and then another from B would be a significantly slower procedure.
Similarly, a processor can perform better if it works on data close to other
data (as it is on the stack) rather than further away data (as it can be on the
heap). Allocating a big quantity of heap space might also take some time.

When code calls a function, the values given into the function (includ-
ing possibly heap-based pointers) and the function’s local variables are
put into the stack. When the function is finished, the values are removed
from the stack.

Ownership addresses difficulties such as keeping track of which por-
tions of code use which data on the heap, minimizing the amount of
duplicate data on the heap, and cleaning away unnecessary data on the
heap so we don’t run out of space. After we grasp ownership, we won’t
need to think about the stack or the heap as much, but understanding
that managing heap data is why ownership exists may help explain why it
works the way it does.

Important Ownership Concepts

•	 The “owner” can modify the ownership value of a variable based on
its mutability.

•	 The ownership of a variable can transfer to another variable.

•	 In Rust, ownership is just a matter of semantics.

•	 In addition, the ownership concept ensures safety.

Rules of Ownership

•	 In Rust, each value has a variable called its owner.

•	 At any one moment, there can only be one owner.

•	 When the owner exits the scope, the value is destroyed.

66    ◾    Mastering Rust﻿

Variable Scope

We previously went through an example of a Rust program. We won’t
include all of the fn main() code in examples now that we’ve moved past
the basic syntax; so if we’re following along, we’ll have to place the follow-
ing examples within the main function manually. As a result, examples
will be a little shorter, allowing us to concentrate on the important aspects
rather than boilerplate code.

We’ll look at the scope of several variables as a first illustration of
ownership. A scope is the range of items that are valid within a program.
Assume we have a variable that looks something like this:

let st = “hello”;

The variable s refers to a literal string, the value of which is hardcoded
into the program’s text. The variable is valid from the time it is declared
until the current scope expires. Listing includes comments that indicate
when the variable st is valid.

	 {	 	 // �st is not valid here, it’s
not yet declared

		 let st = “hello”;	 // �st is valid from this point
forward

		 // do stuff with s
	 }	 	 // �this scope is now over, and

st is no longer valid

In other words, there are two critical time points here:

	 1.	It is valid when s enters the scope.

	 2.	It is still valid until it is going out of scope.

The connection between the scope and when variables are valid is compa-
rable to that of other programming languages at this stage. We’ll now add
to this understanding by introducing the String type.

String Type

To demonstrate the laws of ownership, we need a data type that is more
sophisticated than the ones taught in the “Data Types in Rust” section. All
of the previously mentioned types have a known size, can be stored on the

Understanding Ownership﻿    ◾    67

stack and popped off when their scope is complete, and can be quickly and
simply cloned to create a new, independent instance if another piece of code
needs to use the same value in a different scope. But we’d want to look at
data kept on the heap and see how Rust understands when to clear it up.

We’ll take String as an example and focus on the sections of String that
are related to ownership. These considerations also apply to other compli-
cated data types, whether offered by the standard library or developed by
us.

We’ve already encountered string literals, which are instances in which
a string value is hardcoded into our software. String literals are useful, but
they aren’t appropriate for every circumstance where we utilize text. One
reason is that they are unchangeable. Another issue is that not every string
value can be known when creating code: what if we want to collect user
input and store it? The String is a second string type in Rust that is useful
in these scenarios. This type maintains heap data and may thus hold a
large quantity of text unknown to us at build time. Using from function,
we can produce a String from a string literal, as seen below:

let st = String::from(“helloo”);

The double colon (::) is an operator that allows us to namespace this
particular from function as String rather than using a name like string.

This type of string can be changed:

let mut st = String::from(“helloo”);
	 st.push_str(“, everyone”); // �push_str() appends

literal to a String
	 println!(“{}”, st); // �This will print `hello,

everyone`

So, what’s the distinction here? Why can a String be changed but not a
literal? The distinction is in how these two types deal with memory.

Memory and Allocation

Because we know the contents of a string literal at compilation time, the
text is hardcoded directly into the final executable. Because of this, string
literals are quick and efficient. However, these features are derived entirely
from the string literal’s immutability. Unfortunately, we can’t include a
blob of memory in the binary for each piece of text whose size is unknown
at build time and may vary while the application is executing.

68    ◾    Mastering Rust﻿

To enable changeable, growable text with the String type, we must allo-
cate an amount of memory on the heap that is unknown at compilation
time to contain the contents. That is to admit:

•	 At runtime, memory must request from the memory allocator.

•	 When we’re finished processing our String, we need the means to
return this memory to the allocator.

We handle the first part: when we call String::from, its implementation
requests its memory. This is rather common in programming languages.

On the other hand, the second component is unique. In languages
with a garbage collector, the GC maintains track of and cleans up mem-
ory that is no longer in use, so we don’t have to bother about it. Without
a GC, we must recognize when memory is no longer being utilized and
call code to explicitly return it, as we did to request it. Historically, doing
this right has been a challenging programming task. We will waste
memory if we forget. We’ll have an invalid variable if do it too soon.
It’s also a bug if we do it twice. We must match precisely one allocate to
exactly one free.

Rust has a different approach: when the variable that owns the memory
exits scope, the memory is immediately returned. Here’s a variant of our
Listing scope example that uses a String instead of a string literal:

{
	 let st = String::from(“helloo”); // st is valid from
		 this point forward
	 // do stuff with st
}	 	 // this scope is now over, and st is no
	 	 // longer valid

When st passes out of scope, we may naturally return the memory our
String requires to the allocator. When a variable is no longer in scope, Rust
invokes a specific function for us. Drop is the name of this method, and
it is where the author of String may write the code to return the memory.
Rust calls are dropped automatically at the final curly bracket.

This pattern has a significant influence on how Rust code is written. It
may appear easy today, but code behavior might be unexpected in more
complex cases where we want several variables to consume the data we’ve
placed on the heap. Let’s look at some of those scenarios now.

Understanding Ownership﻿    ◾    69

Ways of Variables and Data Interact: Move

In Rust, several variables can interact with the same data in various ways.
In Listing, we’ll look at an example with an integer.

let a = 8;
let b = x;

“Bind the value 8 to a; then make a copy of the value in x and bind
it to b,” we may probably estimate. We now have two variables, a and b,
equal to 8. This is correct because integers are simple values with a known,
defined size, and these two 8 values are placed into the stack.

Let’s have a look at the String version:

let st1 = String::from(“hello”);
	 let st2 = st1;

This code appears to be quite similar to the preceding code, so we can
conclude that the function is the same: the second line would duplicate the
value in st1 and bind it to st2. However, this is not the case.

The length specifies how much memory (in bytes) the String’s contents
presently occupy. The capacity is the entire amount of memory that the
allocator gives the String in bytes. The distinction between length and
capacity is essential, but not in this context, so ignore the capacity for the
time being (Figure 3.1).

When we assign st1 to st2, the String data is duplicated, which means
we copy the stack’s pointer, length, and capacity. We do not replicate the

name

st1

ptr

len

Capacity

5

value

5

valueindex

0

1

2

3

4

h

e

1

1

0

FIGURE 3.1  Memory representation of a String with the value “hello” linked to
st1.

70    ◾    Mastering Rust﻿

data on the heap to which the pointer points. To put it another way, the
data representation in memory (Figure 3.2).

The representation does not like the image below, which depicts what
memory would look like if Rust replicated the heap data. If Rust imple-
mented this, the st2 = st1 transaction might be highly costly in runtime
performance if the data on the heap was large (Figure 3.3).

Rust automatically executes the drop function when a variable exits
scope and cleans away the heap memory for that variable. However, in
Figure 3.3, both data pointers point to the same place. This is an issue
because when st2 and st1 exit scope, they will attempt to free the same
memory. This is referred to as a double free mistake, and it is one of the
previously described memory safety flaws. Memory corruption can result
from freeing memory twice, leading to security vulnerabilities.

There is one additional element to what occurs in this circumstance
in Rust to ensure memory safety. Rust considers st1 invalid after letting
st2 = st1. As a result, when st1 exits scope, Rust does not need to release
anything. Examine what happens if we try to utilize st1 after st2 is gener-
ated; it will not work:

let st1 = String::from(“hello”);
	 let st2 = st1;

	 println!(“{}, everyone”, st1);

name

ptr

len

Capacity

5

value

5

valueindex

0

1

2

3

4

h

e

1

1

0

st1

name

ptr

len

Capacity

5

value

5

st2

FIGURE 3.2  Variable st2’s memory representation, which contains a duplicate of
st1’s pointer, length, and capacity.

Understanding Ownership﻿    ◾    71

Because Rust restricts us from utilizing the invalidated reference, we’ll
get an error like this:

$ cargo run
	 Compiling ownership v0.1.0 (�file:///projects/

ownership)
error[E0382]: borrow of moved value: `st1`
	 --> src/main​.rs​:5​​:28
	|
2	|  	 let st1 = String::from(“hello”);
	|	 -- �move occurs because `st1` has type

`String`, which does not implement the
`Copy` trait

3	|	 let st2 = st1;
	|	 -- value moved here
4	|
5	|	 println!(“{}, world!”, st1);
	|	 	 ^^ �value borrowed

here after move

name

ptr

len

Capacity

5

value

5

valueindex

0

1

2

3

4

h

e

1

1

0

st1

name

ptr

len

Capacity

5

value

5

valueindex

0

1

2

3

4

h

e

1

1

0

st2

FIGURE 3.3  Another option for what st2 = st1 could do if Rust also copied the
heap data.

http://www.main.rs:5:28

72    ◾    Mastering Rust﻿

If we’ve heard the terms shallow copy and deep copy while dealing with
other languages, duplicating the pointer, length, and capacity sounds like
a shallow copy without copying the data. However, because Rust invali-
dates the first variable, it is referred to as a move rather than a shallow
copy. In this case, we would state that st1 was relocated to st2. Figure 3.4
depicts what occurs.

That takes care of our issue! With just st2 valid, when it exits scope, it
will release the memory on its own, and we’re done.

Furthermore, this implies a design choice: Rust will never automati-
cally build “deep” copies of our data. As a result, any automated copying
may be presumed to be low cost in terms of runtime performance.

Variables and Data Interactions: Clone

We may use the clone method to thoroughly duplicate the String’s heap
data rather than merely the stack data. We’ve undoubtedly encountered
them before because they are frequent in many programming languages.

Here’s an example of how to use the clone method:

name

ptr

len

Capacity

5

value

5

valueindex

0

1

2

3

4

h

e

1

1

0

st1

name

ptr

len

Capacity

5

value

5

st2

FIGURE 3.4  Memory representation after s1 has been invalidated.

Understanding Ownership﻿    ◾    73

let st1 = String::from(“hello”);
	 let st2 = st1​.clo​ne();

	 println!(“st1 = {}, st2 = {}”, st1, st2);

This works well and generates the behavior depicted in the rust-
copiedtheheap​.j​pg example above, where the heap data is explicitly copied.

When we observe a clone call, we know that some arbitrary code is
being performed and that code might be costly. It’s a visual cue that some-
thing unusual is going on.

Stack-Only Data: Copy

There’s one more wrinkle we haven’t addressed yet. This code use integers,
a portion of which was demonstrated in Figure 3.4:

let a = 8;
	 let b = a;

	 println!(“a = {}, b = {}”, a, b);

However, this code appears to contradict what we have just learned:
there is no call to clone, but a is still valid and was not transferred into b.

This is because types with known sizes at build time, like integers, are
wholly stored on the stack; thus, copies of the actual values are quickly
produced. There is no reason to prevent a from being valid after we have
created the variable b. In this case, there is no distinction between deep
and shallow copying. Therefore, invoking clone would perform nothing
more than shallow copying so that we can leave it out.

Rust has a particular annotation called the Copy trait that we may apply
to types like integers stored on the stack. If a type has the Copy trait, an
older variable can still be used after the assignment. Rust will not allow us
to annotate a type with the Copy trait if the type or any of its components
has the Drop trait implemented. If we add the Copy annotation to a type
that requires anything specific to happen when the value is out of scope,
we will get a compile-time error.

Ownership and Functions

Passing a value to a function has semantics comparable to giving a value
to a variable. Passing a variable to a function will cause it to move or copy,

74    ◾    Mastering Rust﻿

much like an assignment. The following is an example with annotations
indicating where variables enter and exit scope:

Filename: src/themain​.​rs

fn main() {
	 let st = String::from(“hello”); // �s comes into scope
	 takes_ownership(st);	 // st’s value moves
into the function...
	 	 //... and so is no
longer valid

	 let a = 5;	 	 // a comes into scope

	 makes_copy(a);		 // move into the
function,
	 	 // but i32 is Copy, so
okay to still
use afterward

} // Here, a goes out of scope, then s. But because
st’s value was moved, nothing
	 // specialhappens.

Fn takes_ownership(some_string: String) {//some_string
comes into the scope
println!(“{}”, some_string);
} // Here, some_string goes out of the scope and a
`drop` is called. The backing
	 // memory is freed.

Fn makes_copy(some_integer: i32) {//some_integer comes
into the scope
println!(“{}”, some_integer);
} // Here, some_integer goes out of the scope. Nothing
special happens.

Return Values and Scope

Ownership can also be transferred by returning values. The above code
shows an example with comments identical to those in the following
example:

Understanding Ownership﻿    ◾    75

Filename: src/themain​.​rs

fn main() {
	 let st1 = gives_ownership();    // �gives_ownership

moves its return
	 // value into st1

	 let st2 = String::from(“hello”);  // �st2 comes into
the scope

	 let st3 = takes_and_gives_back(st2); // �st2 is moved
into

	 // takes_and_gives_back, which also
	 // moves its return value into st3
} // �Here, st3 goes out of the scope and is dropped.

St2 was moved, so nothing
// happens. St1 goes out of the scope and is dropped.

Fn gives_ownership() -> String {	 // �gives_ownership
will move its

	 // �return the
value into
function

 that calls it
	 let some_string = String::from(“yours”);
� // the some_string comes into scope
some_string	 // the some_string is returned and
	 // moves out to calling
	 // function
}

// This function takes String and returns one
fn takes_and_gives_back(a_string: String) -> String
 � {// a_string comes into
              	 // scope
a_string // a_string is returned and moves out to the
calling a function
}

Every time, the ownership of a variable follows the same pattern:
assigning a value to another variable changes it. When a variable that
includes heap data exits scope, the value is destroyed unless the data has
been transferred to be held by another variable.

76    ◾    Mastering Rust﻿

Taking ownership and then restoring ownership with each function is
time-consuming. What if we want a function to utilize a value but not
own it? It is inconvenient because whatever we give in, in addition to any
data originating from the function’s body that we might want to return,
must also be sent back if we want to use it again.

A tuple can be used to return many values, as illustrated in the code
below:

Filename: src/themain​.​rs

fn main() {
	 let st1 = String::from(“hello”);
	 let (st2, len) = calculate_length(st1);

	 println!(“length of ‘{}’ is {}.”, st2, len);
}
fn calculate_length(st: String) -> (String, usize) {
	� let length = st​.l​en(); // len() returns the length

of a String
	 (st, length)
}

REFERENCES AND BORROWING IN RUST
A reference is an address passed as an argument to a function. Borrowing
is similar to when we borrow something and then return it after we are
through with it. Borrowing and references are mutually exclusive, which
means that when a reference is released, the borrowing also ends.

Why Borrowing?

The borrowing notion is utilized for the following reasons:

•	 Borrowing allows for many references to a single resource while
requiring a “single owner.”

•	 In C, references are similar to pointers.

•	 A reference is a type of object. There are two kinds of references:
changeable references and immutable references. Immutable refer-
ences are copied, whereas mutable references are relocated.

Understanding Ownership﻿    ◾    77

Example:

fn main()
{
	 let str1=String::from(“Rustpoint”);
	 let len1=calculate_length(&str1);
	 println!(“length of string {}”,len1);
}
fn calculate_length(st:&String)->usize
{
	 st​.l​en()
}

In the above example, the calculate_length() method refers to string
str1 as an argument without taking ownership of it.

let str1=String::from(“Rustpoint”);
et len1=calculate_length(&str1);

In the above example, &str1 refers to variable str1, but it does not own
it. As a result, even if the reference is out of scope, the value referred by it
will not be lost.

fn calculate_length(st:&String)->usize

 st​.l​en()

In the above example, variable “st” is valid until the control returns to
the main() method. When the variables are passed to the function as a
reference rather than actual values, we don’t need to return the values to
regain ownership.

Let’s see if we can change the borrowed value:

fn main()
{
	let a=3;
	value_changed(&a)
}
	fn value_changed(b:&i32)
{
	*b=8;
}

78    ◾    Mastering Rust﻿

Mutable Reference

We may correct the above mistake by utilizing a mutable reference.
Mutable references are those that can change. Example:

fn main()
{
	let mut a=3;
	value_changed(&mut a);
	println!(“After modifying, the value of a is {}”,a);
}
	fn value_changed(b:&mut i32)
{
	*b=8;
}

In the above example, we construct a changeable reference, &mut a,
and the reference is directed by &i32 variable y. We may now adjust the
value referenced by the ‘b’ variable. We assign the number 8 (i.e.,*b=8).
As a result, the value x also becomes 8 because both variables point to the
same memory address.

Restrictions of the Mutable References

In a given scope, we can only have one changeable reference to a piece of
data.

Example:

let mut str1=String::from(“Rustpoint”);
let x= &mut str1;
let y= &mut str1;

The compiler throws an error in the preceding case because it contains
two mutable references, which are not allowed in the Rust language.

If we have an immutable reference in our program, we cannot have a
changeable reference.

Example:

let mut str1=String::from(“Rustpoint”);
let x= &str1;
let y=&str1;
let c=&mut str1;

Understanding Ownership﻿    ◾    79

The compiler throws an error in the preceding case because we cannot
have a mutable reference while also having an immutable reference.

Dangling References

In pointer-based languages, it’s possible to construct a dangling pointer,
which refers to a place in memory that may have been passed to someone
else, by releasing some memory while retaining a pointer to that region. In
contrast, the compiler in Rust ensures that references are never dangling:
if we have a reference to some data, the compiler will ensure that the data
does not go out of the scope before the reference to the data does.

Let’s attempt making a dangling reference, which Rust would reject
with a compile-time error:

Filename: src/themain​.​rs

fn main() {
	 let reference_to_nothing = dangle();
}
fn dangle() -> &String {
	 let st = String::from(“hello”);

	 &st
}

Here’s the error:

$ cargo run
	 Compiling ownership v0.1.0 (�file:///projects/

ownership)
error[E0106]: missing lifetime specifier
	--> src/main​.rs​:5​​:16
	 |
5	| fn dangle() -> &String {
	 |	 ^ expected named lifetime parameter
	 |
	 = help: this function’s return type contains the
borrowed value, but there is no value for it to be
borrowed from
help: consider using the `’static` lifetime
	 |
5	| fn dangle() -> &’static String {
	 |	 ^^^^^^^^

80    ◾    Mastering Rust﻿

This error message alludes to a topic we haven’t yet discussed: lifetimes.
However, if we ignore the bits concerning lifetimes, the message contains
the key to why this code is problematic:

this function’s return type contains the borrowed
value, but there is no value
for it to be borrowed from.

Let’s take a look at what’s going on in each level of our dangling code:

Filename: src/themain​.​rs

fn dangle() -> &String {// dangle returns a reference
to a String
	 let st = String::from(“hello”); // �st is a new

String

	 &st // we return a reference to the String, st
} // �Here, st goes out of scope, and is dropped. Its

memory goes away.
	 // Danger!

Because st is generated within dangle, after dangle’s code is complete, st
will be deallocated. However, we attempted to return a reference to it. As a
result, this reference would link to an incorrect String. That is not accept-
able; Rust will not allow us to do so.

The approach here is to just return the String:

fn no_dangle() -> String {
	 let st = String::from(“hello”);

	 st
}

This works without a problem. Nothing has been deallocated, and own-
ership has been transferred.

The Referencing Guidelines

Let’s go through everything we’ve spoken about in terms of references:

•	 We can have one changeable reference or any number of immutable
references at any given moment.

Understanding Ownership﻿    ◾    81

•	 References must always be correct.

•	 Following that, we’ll look at a new type of reference: slices.

SLICES IN RUST
A slice is a pointer to a memory block. Slices can access data stored in con-
tiguous memory blocks in small blocks. It works with arrays, vectors, and
strings, among other data structures. Index numbers are used to retrieve
data slices. At runtime, the size of a slice is calculated.

Slices are references to the underlying data. They’re passed to functions
through reference, also known as borrowing.

For example, slices can be used to get a piece of a string value. A pointer
to the real string object is a sliced string. As a result, the beginning and end-
ing indexes of a String must be specified. Indexes, like arrays, begin at zero.

Syntax

let slice​d_val​ue = ​&data​_stru​cture​[star​​t​-ind​​ex.​.e​​nd​​-in​​dex]

Here’s a little programming challenge: create a function that takes a string
and returns the first word found within it. If the function doesn’t discover
a space in the string, the entire string must be one word; hence it should
return in its entirety.

Consider the following function’s signature:

fn first_word(st: &String) -> ?

The first_word method takes &String parameter. This is OK because we
don’t want ownership. What, on the other hand, should we bring back? We
don’t have a good way to communicate about a string segment. We might,
however, return the index of the word’s end.

Filename: src/themain​.​rs

fn first_word(st: &String) -> usize {
	 let bytes = st.as_bytes();

	 for (x, &item) in bytes​.it​er().enumerate() {
		 if item == b’ ‘ {
			 return x;

82    ◾    Mastering Rust﻿

		 }
	 }

	 st​.l​en()
}

We’ll use the as_bytes method to convert our String to an array of bytes
because we’ll need to walk through it element by element to determine if
a value is a space:

let bytes = st.as_bytes();

The iter method is then used to generate an iterator across the array of
bytes:

for (i, &item) in bytes​.it​er().enumerate() {

The iter returns each element in a collection, and that enumerate wraps
iter’s result and returns each element as a tuple instead. The index is the
first element of the tuple returned by enumerate, followed by a reference
to the element. This is a little more convenient than figuring out the index
independently.

We can use patterns to destructure the tuple returned by the enumerate
method because it returns a tuple. In the following chapters, we’ll go into
patterns in greater depth. So, we specify a pattern using x for the tuple’s
index and &item for the tuple’s single byte in the for loop. We use & in the
pattern because​.it​er().enumerate() returns a reference to the element.

Using the literal byte syntax, we search for the byte representing
the space inside the for loop. If space is found, the position is returned.
Otherwise, we use st​.l​en() to get the length of the string:

		 if item == b’ ‘ {
			 return x;
		 }
	 }

	 st​.l​en()

We now know how to find the index of the first word in the string’s end,
but there’s a catch. We’re returning a usize by itself, but it is only useful
when combined with &String. In other words, because it is not part of the

Understanding Ownership﻿    ◾    83

String, there is no guarantee that it will remain valid in the future. Take a
look at the program that makes use of the first_word function.

Filename: src/themain​.​rs

fn main() {
	 let mut st = String::from(“hello everyone”);

	 let word = first_word(&st); // �everyone will get the
value 8

	 st​.cle​ar(); // �this empties the String, making it
equal to ““

	 // �everyone still has the value 8 here, but there’s
no more string that

	 // �we could meaningfully use the value 8 with.
everyone is now totally invalid!

	 }

After invoking it, this program compiles without issues and would do
so again if we called st​.cle​ar(). Even though no one is related to st state,
everyone has the value 8. We could try to extract the first word using that
value 8 and the variable st, but this would be a problem because st’s con-
tents have changed since we saved 8 in everyone.

It is annoying and error-prone to worry about the index in everyone
going out of sync with the data in st. If we build a second word function,
managing these indices becomes considerably more difficult. Its signature
would have to be as follows:

fn second_word(st: &String) -> (usize, usize) {

We now have a starting and ending index and even more values that
were derived from data in a specific state but are unrelated to that state.
We now have three unconnected variables in the mix that must be kept in
sync.

Fortunately, Rust has a solution for us: string slices.

String Slices

A string slice is a reference to a portion of a string that looks something
like this:

84    ◾    Mastering Rust﻿

let st = String::from(“hello world”);

let hello = &st[0..5];
let world = &st[6..11];

This is similar to using the [0..5] bit to get a reference to the entire
String. Instead of referring to the complete String, it just refers to a subset.

By stating [starting​_index.​.end​ing index], where starting_index is the
first position in slice and ending_index is one more than the last point in
the slice, we may generate slices using a range within brackets. The slice data
structure internally contains the slice’s starting location and length, cor-
responding to ending_index minus starting_index. Let world = &st[6..11];
for example, the world would be a slice containing a pointer to the byte at
index 6 of st with a length value of 5.

If we want to start at index zero, we can drop the value before the two
periods in Rust.. range syntax. To put it another way, these are equal
(Figure 3.5):

let st = String::from(“hello”);

let slice = &st[0..2];
let slice = &st[..2];

name

ptr

len

Capacity

11

value

11

valueindex

0

1

2

3

4

h

e

l

1

0

5

6

7

8

9

10

w

0

r

l

d

st

name value

ptr

len 5

FIGURE 3.5  The term “string slice” refers to a String section.

Understanding Ownership﻿    ◾    85

Similarly, we can remove the trailing number if our slice includes the
String’s last byte. That is to say, they are both equal:

let st = String::from(“hello”);

let len = st​.l​en();

let slice = &st[3.​.l​en];
let slice = &st[3..];

Alternatively, we can drop both values to get a slice of the complete
string. As a result, these are equal:

let st = String::from(“hello”);

let len = st​.l​en();

let slice = &st[0.​.l​en];
let slice = &st[..];

The indices for string slice ranges must occur at valid UTF-8 character
boundaries. Our program will exit with an error if we try to generate a
string slice in the middle of a multibyte character.

Let’s rework first_word to return a slice with all of this information in
mind. &str: is the type that represents a “string slice.”

Filename: src/themain​.​rs

fn first_word(st: &String) -> &str {
	 let bytes = st.as_bytes();

	 for (i, &item) in bytes​.it​er().enumerate() {
		 if item == b’ ‘ {
			 return &st[0..i];
		 }
	 }

	 &st[..]
}

We get the index for the end of the word the same way we got the
index for the beginning of the word in the program: we seek for the first

86    ◾    Mastering Rust﻿

occurrence of a space. We return a string slice with the start of the string
and the index of the space as the starting and terminating indices when
we locate a space.

We now get a single value that is connected to the underlying data when
we call first_word. A reference to the slice’s starting point and the number
of components in the slice make up the value.

For a second word function, returning a slice would also work:

fn second_word(st: &String) -> &str {

Because the compiler ensures that the references into the String remain
valid, we now have a simple API that is far more difficult to mess up.
Remember how, in the above program, we got the index to the end of the
first word but then emptied the string, rendering our index invalid. That
code was conceptually erroneous, but it didn’t display any faults right
away. If we kept using the first word index with an empty string, the dif-
ficulties would appear later. Slices eliminate this flaw and alert us that we
have a problem with our code much sooner. A compile-time error will
occur if you use the slice version of first_word:

Filename: src/themain​.​rs

fn main() {
	 let mut st = String::from(“hello everyone”);

	 let words = first_word(&st);

	 st​.cle​ar(); // error!

	 println!(“First word is: {}”, words);
}

The compiler error is as follows:

$ cargo run
	 Compiling ownership v0.1.0 (�file:///projects/

ownership)
error[E0502]: �cannot borrow `st` as mutable because it

is also borrowed as immutable
	 --> src/main​.rs​:1​8:5

Understanding Ownership﻿    ◾    87

	 |
	16 |	 let words = first_word(&st);
	 |	 -- immutable borrow occurs here
	17 |
	18 |	 st​.cle​ar(); // error!
	 |	 ^^^^^^^^^ mutable borrow occurs here
	19 |
	20 |	 println!(“First word is: {}”, words);
	 |	 ---- �immutable borrow later used

here

Remember from the borrowing rules that we can’t take a changeable
reference if we have an immutable reference. Clear requires a mutable ref-
erence because it must truncate the String. The reference in word is used
by println! after the call to clear; therefore, the immutable reference is still
active at that point. Compilation fails in Rust because the mutable refer-
ence is clear, and the immutable reference in word cannot exist simultane-
ously. Not only has Rust made our API more user-friendly, but it has also
eliminated a whole class of compile-time errors.

Literals Are String Slices

String literals are only considered string slices since they are stored in
binary. Let’s have a look:

let str = “Hello Rustpoint”;

‘&str’ is the type of ‘str’. It’s a slice that points to a certain binary point.
‘&str’ is an immutable reference, and string literals are immutable.

String Slices as Parameters

We can pass a string slice directly if we have one. To make an API more
broad and useful without losing its functionality, we give the string slice
as an argument to the method instead of the reference.

fn main()
{
let str= String:: from(“technology”);
let first_word= �first_word(&str[..]); //first_word

function finds the first word of the
string.

88    ◾    Mastering Rust﻿

let st=“technology”; //string literal
let first_word=�first_word(&st[..]); // first_word

function finds the first word of the
string.

let first_word=�first_word(st); //string slice is same
as string literal. Therefore, it can
also be

	 written in this way also.
}

Other Slices

Slices can be used to treat an array. They have the same behavior as a string
slice. The type of the slice is [&i32]. They work in the same way as a string
slice, with a reference as the first element and length as the second.

Consider the following array:

let arra = [110,220,320,440,510]; // array initialization
et x = &arra[1..=4]; // �retrieving second,third and

fourth element

Example:

fn main()
let arra = [120,210,330,420,540,630];
let mut c=0;
let x=&arra[1..=4];
let len​=x​.​len();
println!(“Elements of ‘x’ array:”);
while c<len
{
 println!(“{}”,x[c]);
 c=c+1;
}
}

We have discussed what ownership, references, and borrowing are in
this chapter. Slice Type has also been discussed.

89

C h a p t e r 4

Using Structs for
Related Data

IN THIS CHAPTER

	➢ Defining and instantiating structs

	➢ An example program using structs

	➢ Method syntax

We covered ownership, borrowing, and slice type in the previous chapter.
This chapter will discuss the definition of struct and its installation with
its relevant examples and syntax.

WHAT IS THE DEFINITION OF A STRUCTURE?
Tuples, explored in the section “Tuple Type” in Chapter 2 are analogous
to structures (structs). The parts of a struct, like tuples, can be of many
kinds. Unlike tuples, we’ll name each item of data so that the meaning of
the values is clear. Structs are more versatile than tuples because of their
names: we don’t have to rely on the order of the data to specify or retrieve
the values of an instance.

To create a struct, we use the keyword struct and give it a name. The
name of a struct should represent the importance of the items being put
together. The names and types of the data bits, which we call fields, are
then defined inside curly brackets.

Mastering Rust Using Structs for Related Data

DOI:  10.1201/9781003311966-4

10.1201/9781003311966-4

https://dx.doi.org/10.1201/9781003311966-4

90    ◾    Mastering Rust﻿

struct User {
	 actives: bool,
	 usernames: String,
	 e-mail: String,
	 sign_in_counts: u64,
}

We create an instance of a struct after creating it and specify specific val-
ues for each field to use it. We make an instance by specifying the struct’s
name, followed by curly brackets holding key: value pairs, with the keys
being the field names and the values being the data we wish to put in those
fields. The fields don’t have to be specified in the same order as declared in
the struct. In other words, the struct definition acts as a general template
for the type, with instances filling in the blanks with specific data to pro-
vide type values. We can, for example, declare a specific user as shown.

let user1 = User {
	 	 e-mail: String::from(“example​@example​.​com”),
	 	 usernames: String::from(“example1234”),
	 	 actives: true,
	 	 sign_in_counts: 1,
  };

We can use dot notation to get a specific value from a struct. We could
use user1​.ema​il anywhere we wanted to utilize this value if we only desired
this user’s e-mail address. If the instance is mutable, we can alter a value by
assigning it to a specific field using the dot notation. The following example
explains how to update the value of a mutable User instance’s e-mail field.

let mut user1 = User {
	 	 e-mail: String::from(“example​@example​.​com”),
	 	 usernames: String::from(“example1234”),
	 	 actives: true,
	 	 sign_in_counts: 1,
	 };
	 us​​er1​.e​​​mail ​= Str​ing::​from(​“�anot​​herex​​ample​​@exam​​ple​​

.c​​om”);​

It’s important to note that the entire instance must modify; Rust does
not enable us to make simply some fields mutable. As the last expression
in function body, we can generate a new instance of the struct to automati-
cally return that new instance, exactly like any other expression.

Using Structs for Related Data﻿    ◾    91

The build user function returns a User object with the specified e-mail
and username in the following code. The active field is set to true, and the
sign in counts field is set to one.

fn build_user(e-mail: String, usernames: String) -> User {
	 User {
	 	 e-mail: e-mail,
	 	 usernames: usernames,
	 	 actives: true,
	 	 sign_in_counts: 1,
	 }
}

Although it makes sensible to name the function parameters the same
as the struct fields, repeating the e-mail and usernames field names and
variables is inconvenient. Repeating each name would become even
more tedious if the struct had more fields. Fortunately, there is a handy
shorthand.

When the Variables and Fields Have the Same
Name, Use the Field init Shorthand

Because the parameter and struct field names are the same in the above
code, we can use the field init shorthand syntax to rewrite the build user.
As seen in the example, it operates identically but without the e-mail and
username repetition.

fn build_user(e-mail: String, usernames: String) -> User {
	 User {
	 	 e-mail,
	 	 usernames,
	 	 actives: true,
	 	 sign_in_counts: 1,
	 }
}

We’re going to make a new instance of the User struct, which has an
e-mail field. We want to set the value of the e-mail field to the value of the
build user function’s e-mail parameter. We simply need to write e-mail
rather than e-mail: e-mail because the e-mail field and the e-mail param-
eter have the same name.

92    ◾    Mastering Rust﻿

Using Struct Update Syntax to Create Instances from Other Instances

It’s frequently helpful to build a new instance of a struct that retains most
of the values of an older instance but modifies others. This can do with the
struct update syntax.

First, without using the update syntax, the program demonstrates how
to create a new User instance in user2. We change the e-mail value, but
otherwise keep the values from user1 that we created in the previous codes.

let user2 = User {
	 	 actives: user1.actives,
	 	 usernames: user1.usernames,
	 	 e-mail: String::from(“example​@example​.​com”),
	 	 sign_in_counts: user1.sign_in_counts,
	 };

We may achieve the same effect with fewer code by using the struct
update syntax. The syntax.. implies that all fields that aren’t explicitly set
should have the same value as the fields in the current instance.

let user2 = User {
	 	 e-mail: String::from(“example​@example​.​com”),
	 	 ..user1
  };

The code generates a user2 instance with a different e-mail value, but
the same values for the usernames, actives, and sign_in_counts columns
as user1. The ..user1 must come last to indicate that any remaining fields
should obtain their values from the corresponding fields in user1. Still, we
can give values for as many fields as we like in any order, regardless of the
order in which the elements in the struct’s specification are defined.

Because it moves the data, the struct update syntax is similar to assign-
ment with =, as we saw in the “Ways of Variable and Data Interact: Move”
section in Chapter 3. We can no longer use user1 after establishing user2
since the String in the username field of user1 was moved to user2. If we
had provided user2 new String values for e-mail and usernames and so
just used the actives and sign_in_counts variables from user1, user1 would
still be valid after we created user2. Because the types actives and sign_in_
counts implement the Copy trait, the behavior described in “Stack-Only
Data: Copy” section in Chapter 3 would apply.

Using Structs for Related Data﻿    ◾    93

The Tuple Structs without Named Fields to Create Different Types

We can also define tuple structs, which appear like tuples. Tuple structs
have the added meaning of the struct name, but they don’t have names for
their fields; instead, they have the types of fields. When we want to give the
entire tuple a name and make it a different type from other tuples, naming
each field as in a typical struct would be too lengthy or redundant, we can
use a tuple struct.

To create a tuple struct, start with the struct keyword and the struct
name, then the tuple types. Here are the definitions and uses of two tuple
structs named Color and Point, for example:

  struct Colors(i32, i32, i32);
	 struct Points(i32, i32, i32);

	 let black = Colors(0, 0, 0);
	 let origin = Points(0, 0, 0);

Because they’re instances of distinct tuple structs, the black and origin
values are different types. Even if the struct fields have identical types,
each struct we construct has its unique type. Despite the fact that both
types are made up of three i32 values, a method that takes a Colors param-
eter cannot accept a Point as an input. Otherwise, tuple struct instances
behave like tuples: we may destructure them into separate parts, access
individual values with a. followed by the index, and so on.

Structs that Look Like Units but Don’t Have Any Fields

We can also create structs that don’t have any fields! These are known as unit-
like structs() because they operate similarly to the unit type we discussed in
the section “Tuple Type” in Chapter 2. Unit-like structs are handy when we
need to implement a trait on a type but don’t have any data to store. Here’s an
example of declaring and instantiating the AlwaysEqual unit struct:

 struct AlwaysEqual;

	 let subjects = AlwaysEqual;

We use the struct keyword, the desired name, and a semicolon to define
AlwaysEqual. There are no curly brackets or parentheses required! Then,
in the subject variable, we may retrieve an instance of AlwaysEqual using

94    ◾    Mastering Rust﻿

the name we defined, without any curly brackets or parentheses. Consider
that we’ll be implementing behavior for this type. Every example is always
equal to every instance of every other type, possibly to provide a predict-
able outcome for testing. To implement that behavior, we wouldn’t need
any data.

Ownership of Struct Data

Instead of using the &str string slice type, we used the owned String type
in the User struct definition. This is an intentional choice because we want
instances of this struct to own all of its data and for that data to remain
valid for the same amount of time as the rest of the struct.

Structs can store references to data that belongs to someone else,
but doing so requires the usage of lifetimes, a Rust feature that we’ll go
over later. Lifetimes guarantee that data referenced by a struct is valid
for the same amount of time as the struct itself. Consider the following
example of attempting to save a reference in a struct without defining
lifetimes:

Filename: src/themain​.​rs

struct User {
	 usernames: &str,
	 e-mail: &str,
	 sign_in_counts: u64,
	 actives: bool,
}

fn main() {
	 let user1 = User {
	 	 e-mail: “example​@example​.​com”,
	 	 usernames: “example1234”,
	 	 actives: true,
	 	 sign_in_counts: 1,
	 };
}

The compiler will complain that lifetime specifiers are required:

$ cargo run
	 Compiling structs v0.1.0 (file:///projects/structs)

Using Structs for Related Data﻿    ◾    95

error[E0106]: missing lifetime specifier
 --> src/main​.rs​:2​​:15
	 |
2 |	 usernames: &str,
	 |	 	 	 ^ expected named lifetime parameter
	 |
help: consider introducing a named lifetime parameter
	 |
1 |	 struct User<‘a> {
2 |	 usernames: &’a str,
	 |

error[E0106]: missing lifetime specifier
 --> src/main​.rs​:3​​:12
	 |
3 |	 e-mail: &str,
	 |	 	 	 ^ expected named lifetime parameter
	 |
help: consider introducing a named lifetime parameter
	 |
1 |	 struct User<‘a> {
2 |	 usernames: &str,
3 |	 e-mail: &’a str,
	 |

error: aborting due to 2 previous errors

UPDATE SYNTAX
Using Struct update syntax, create a new instance from the existing ones.

We use the struct update syntax when a new instance uses most of
the values from an older instance. Consider the following two workers:
employees1 and employees2.

•	 Create the employees1 instance of the Employees structure first.

 let employees1 = Employees{
employees_name : String::from(“Ankush Jain”),
employees_id: 12,
employees_profile : String::from(“Computer Science”),
active : true,
};

96    ◾    Mastering Rust﻿

•	 Second, create the employees2 instance. Some of the values in
the employees2 instance are identical to those in the employees1
instance. The employees2 instance can be declared in two ways.

The first method is to declare the employees2 object without changing the
syntax.

 let employees2 = Employees{
employees_name : String::from(“Aarushi Sharma”),
employees_id: 11,
employees_profile : employees1.employees_profile,
active : employees1​.activ​e,
};

The second method is to use syntax update to declare the employees2
instance.

let employees2 = Employees{
employees_name : String::from(“Aarushi Sharma”),
employees_id: 11,
..employees1
};

The ‘..’ syntax indicates that the remaining fields are not explicitly set
and have the same value as the fields in the given instance.

Example:

 struct Triangles
{
base:f64,
height:f64,
}

fn main()
{
let trian​gle= ​Trian​gles{​base:​22.0,​heigh​t:32.​0};
print!(“Area of right angled triangle {}”,
area(&triangle));
}

fn area(t:&Triangles)->f64

Using Structs for Related Data﻿    ◾    97

{
0.5 * t.base * t.height
}

The structure of a triangle is established in the preceding example, and
it contains two variables: the base and height of a right-angled triangle.
Within the main() method, a Triangle instance is generated.

An Example of a Structs Program

Let’s construct a program that estimates the area of a rectangle to see
when we might want to use structs. We’ll start with single variables and
gradually restructure the code until we utilize structs.

Let’s create a new binary project named rectangles with Cargo that will
accept the width and height of a rectangle specified in pixels and calculate
the area of the rectangle.

Filename: src/themain​.​rs

fn main() {
	 let width = 40;
	 let height = 60;

	 println!(
	 	 “Area of the rectangle {} square pixels.”,
	 	 area(width, height)
);
}

fn area(width: u32, height: u32) -> u32 {
	 width * height
}

Now, use cargo run to run this program:

$ cargo run
	 Compiling �rectangles v0.1.0 (file:///projects/

rectangles)
	 Finished �dev [unoptimized + debuginfo] target(s) in

0.42s
	 Running `target/debug/rectangles`
The area of the rectangle is 2400 square pixels.

98    ◾    Mastering Rust﻿

We can do better than this, even if the program works and calculates
the area of the rectangle by invoking the area function with each dimen-
sion. Because the width and height combine to form a rectangle, they are
connected to one another.

The problem with this code may be seen in the area signature:

fn area(width: u32, height: u32) -> u32 {

Although the area function is intended to determine the area of a single
rectangle, the function we created contains two parameters. Although the
parameters are linked, this isn’t specified elsewhere in our program. It
would be easier to read and manage if width and height were combined.

Refactoring with the Tuples

Program displays a tuple-based version of our program.

Filename: src/themain​.​rs

fn main() {
	 let rec1 = (40, 60);

	 println!(
	 	 “Area of the rectangle {} square pixels.”,
	 	 area(rec1)
);
}

fn area(dimensions: (u32, u32)) -> u32 {
	 dimensions.0 * dimensions.1
}

This program is superior in one way. Tuples allow us to add some struc-
ture, and we’re only passing one parameter now. However, this version is
less apparent in another way. Because tuples do not have names for their
pieces, our calculation has become more complicated because we must
index into the tuple’s sections.

It doesn’t matter if we mess up width and height while calculating
area, but if we want to draw the rectangle on the screen, it is important
to remember that the width is tuple index 0 and the height is tuple index
1. Someone else working on the code would have to figure this out and
remember it as well.

Using Structs for Related Data﻿    ◾    99

Because we haven’t conveyed the meaning of our data in our code, it
would be easy to forget or mix up these values, resulting in problems.

Using Structs for Refactoring: Adding Additional Meaning

We use structs to provide meaning to the data by labeling it. As illustrated,
we may convert the tuple into a data type with a name for the entire and
names for the pieces.

Filename: src/themain​.​rs

struct Rectangles {
	 width: u32,
	 height: u32,
}

fn main() {
	 let rect1 = Rectangles {
	 	 width: 40,
	 	 height: 60,
	 };

	 println!(
	 	 “Area of the rectangle {} square pixels.”,
	 	 area(&rect1)
 );
}

fn area(rectangle: &Rectangles) -> u32 {
	 rectangle​.wid​th * rectangle​.heig​ht
}

Here, we’ve created a struct called Rectangle. We defined the fields as
width and height, both of which are of type u32, inside the curly brackets.
Then, in the main, we generated a Rectangle instance with a width of 40
and a height of 60 pixels.

Our area method now has a single parameter called a rectangle, whose
type is an immutable borrow of a struct Rectangle instance. As the previ-
ous chapter indicates, we don’t want to assume ownership of the struct.
This ensures that the main retains ownership of rect1 and can continue to
utilize it, so we use the & in the function signature and call it.

The area function accesses the width and height fields of the Rectangle
instance. Calculate the area of the Rectangle using its width and height

100    ◾    Mastering Rust﻿

fields, as stated in our function signature for the area. This indicates that
the width and height are connected, and instead of utilizing the tuple
index values of 0 and 1, descriptive names are given to the values. This is a
victory for transparency.

Using Derived Traits to Add Useful Functionality

It would be good to print an instance of Rectangle and view the values for
all of its fields when debugging our program. The following demonstrates
how to use the println! macro, which we’ve seen in previous chapters.
This, however, will not work.

Filename: src/themain​.​rs

truct Rectangles {
	 width: u32,
	 height: u32,
}

fn main() {
	 let rect1 = Rectangles {
	 	 width: 40,
	 	 height: 60,
  	 };

	 println!(“rect1 is {}”, rect1);
}

We got an issue with this core message when we compiled this code:

error[E0277]: �̀Rectangle` doesn’t implement
`std::fmt::Display`

The println! macro can do a variety of formats, and the curly brackets
tell println! to utilize Display: output intended for direct end-user con-
sumption by default. Because there’s just one way to present a 1 or any
other primitive type to a user, the primitive types we’ve seen so far imple-
ment Display by default. However, because there are additional display
options with structs, the way println! should format the result is less clear:
Do we want commas in our sentences or not? Do we want the curly braces
to be printed? Is it necessary to display all of the fields? Because of this

Using Structs for Related Data﻿    ◾    101

uncertainty, Rust doesn’t try to infer what we want, and structs don’t have
a Display implementation.

If we continue reading the errors, we’ll come across this useful note:

	 = help: �the trait `std::fmt::Display` is not
implemented for `Rectangles`

	 = note: �in format strings you may be able to use
`{:?}` (or {:#?} for pretty-print) instead

The println! macro will now be printed as println! (“rect1 is {:?}”, rect1);.
Inside the curly braces, the specifier :? informs println! We’d like to use
the Debug output format. The Debug trait allows us to print our struct in
a developer-friendly manner to view its value while debugging our code.

Compile the code after we’ve made this change. Drat! We’re still getting
this error:

error[E0277]: `Rectangles` doesn’t implement `Debug`

But, once again, the compiler provides us with a useful note:

  = help: �the trait `Debug` is not implemented for
`Rectangles`

  = note: �add `#[derive(Debug)]` to `Rectangles` or
manually `impl Debug for Rectangles`

Although Rust includes printing debugging information, we must
explicitly opt to make that feature available for our type. Before the struct
definition, we add the outside attribute #[derive(Debug)].

Filename: src/themain​.​rs

#[derive(Debug)]
struct Rectangles {
	 width: u32,
	 height: u32,
}

fn main() {
	 let rect1 = Rectangles {
	 	 width: 40,
	 	 height: 60,

102    ◾    Mastering Rust﻿

  	 };

	 println!(“rect1 is {:?}”, rect1);
}

We won’t get any errors now when we run the program, and we’ll get
the following output:

$ cargo run
	 Compiling �rectangles v0.1.0 (file:///projects/

rectangles)
	 Finished �dev [unoptimized + debuginfo] target(s) in

0.48s
	 Running `target/debug/rectangles`
rect1 is Rectangles {width: 40, height: 60}

It’s not the most attractive output, but it displays the values of all the
fields for this instance, which is useful for troubleshooting. It’s nice to have
the output that’s a little simpler to read when we have longer structs; in
those circumstances, we can use {:#?} instead of {:?} in the println! string.
The output will look like this when we use the {:#?} style in the example:

$ cargo run
	 Compiling �rectangles v0.1.0 (file:///projects/

rectangles)
	 Finished �dev [unoptimized + debuginfo] target(s) in

0.48s
	 Running ��target/debug/rectangles`
rect1 is Rectangles {
	 width: 40,
	 height: 60,
}

The dbg! macro can also print out a value in the Debug format. The dbg!
macro takes ownership of an expression, publishes the file and line num-
ber of the dbg! macro call in our code and the expression’s resulting value,
and then returns ownership of the value. In contrast to println! which
prints to the standard output console stream, the dbg! macro prints to the
standard error console stream (stderr) (stdout). Here’s an example where
the value assigned to the width field and the value of the entire struct in
rect1 are of interest.

Using Structs for Related Data﻿    ◾    103

#[derive(Debug)]
struct Rectangles {
	 width: u32,
	 height: u32,
}

fn main() {
	 let scale = 3;
	 let rect1 = Rectangles {
	 	 width: dbg!(40 * scale),
	 	 height: 60,
  	 };
	 dbg!(&rect1);
}

Because dbg! returns ownership of the expression’s value, we may place
dbg! around the expression 40 * scale, and the width field will obtain the
same value as if we didn’t have the dbg! function there. We don’t want dbg!
to own rect1, thus in the next call, we utilize a reference to dbg! Here’s
what this example’s output looks like:

$ cargo run
	 Compiling �rectangles v0.1.0 (file:///projects/

rectangles)
	  Finished �dev [unoptimized + debuginfo] target(s) in

0.61s
	   Running `target/debug/rectangles`
[src/main​.rs​​:10] 40 * scale = 120
[src/main​.rs​​:14] &rect1 = Rectangle {
	 width: 120,
	 height: 60,
}

The first bit of output came from debugging the expression 40 * scale,
which is 120 (the Debug formatting implemented for integers is to print
only their value).

METHOD SYNTAX
Methods are declared in the same way functions are: with the fn keyword
and their name. They may have parameters as well as a return value. They
include code that is executed when they are called from another location.

104    ◾    Mastering Rust﻿

On the other hand, methods are defined within the context of a struct,
and its first parameter is always self, which represents the instance of the
struct being called on.

Defining the Methods

Let’s replace the area function with an area method defined on the
Rectangle struct, which takes a Rectangle instance as a parameter.

Filename: src/themain​.​rs

#[derive(Debug)]
struct Rectangles {
	 width: u32,
	 height: u32,
}

impl Rectangle {
	 fn area(&self) -> u32 {
	 	 self​.wid​th * self​.heig​ht
  	 }
}

fn main() {
	 let rect1 = Rectangles {
	 	 width: 40,
	 	 height: 60,
  };

	 println!(
	 	 “Area of the rectangle {} square pixels.”,
	 	 rect1​.ar​ea()
 );
}

We start an impl (implementation) block for Rectangles to specify the
function within the context of Rectangles. The Rectangles type will apply
to everything in this impl block. Then, within the impl curly brackets, we
transfer the area function and change the first parameter to self in the
signature and throughout the body. Instead of calling the area function
with rect1 as an argument in main, we may use method syntax to call the

Using Structs for Related Data﻿    ◾    105

area method on our Rectangles instance. After an instance, the method
syntax is added: a dot, followed by the method name, parentheses, and
any parameters.

Instead of a rectangle, we use &self in the area signature: &Rectangles.
&Self is an abbreviated form of the word “self.” The type Self is an alias for
type that impl block is for within an impl block. Because methods must
contain a parameter named self of type Self as their first argument, Rust
allows us to shorten it to self. To signal that this method borrows the Self
instance, we must use the & in front of the self-shorthand, exactly as we
did in a rectangle: &Rectangles. Methods can assume ownership of self,
borrow it immutably as we did above, or borrow it mutably like any other
parameter.

We picked &self for the same reason we used &Rectangles in the func-
tion version: we don’t want to assume ownership of the struct, and we only
want to read its data, not write it. If we wanted to change the instance we
called the method on as part of the method’s functionality, we’d use &mut
self as the first parameter. It’s uncommon to have a method that takes
ownership of an example by passing only self as the initial parameter; this
technique is typically employed when one transforms oneself into some-
thing else. We don’t want the caller to utilize the original instance after
the transformation.

Apart from using method syntax and not repeating the type of self in
every method’s signature, the most significant advantage of using meth-
ods instead of functions is organization. Rather than making future users
of code seek for capabilities of Rectangles in multiple locations throughout
the library we supply, we’ve put everything we can do with an instance of
a type in one impl block.

impl Rectangles {
	 fn width(&self) -> bool {
	 	 self​.wid​th > 0
  	 }
}

fn main() {
	 let rect1 = Rectangles {
	 	 width: 40,
	 	 height: 60,
  };

106    ◾    Mastering Rust﻿

	 if rect1​.wid​th() {
	 	 println!(�“Rectangle has a nonzero width; it

is {}”, rect1​.wid​th);
  	 }
}

We’ve decided to make the width method return true if the value in the
instance’s width field is larger than 0 and false if the value is 0: we can uti-
lize a field within a method of the same name for any purpose we choose.
When we use parentheses after rect1​.wid​th in main, Rust understands that
we mean the method width. Rust understands that we’re referring to the
field width when we don’t use parenthesis.

Methods with the same name as just a field are frequently, but not
always, defined to merely return the value in the field and do nothing else.
Getters are methods like this, and unlike some other languages, Rust does
not implement them automatically for struct fields. Getters are important
because they offer read-only access to a field by making the field private
but the method public as part of the type’s public API.

Methods with More Parameters

Let’s get some practice with methods by adding a second one to the
Rectangles struct. This time, we want a Rectangles instance to take
another Rectangles instance and return true if the second Rectangles can
completely fit within self; otherwise, it should return false. That is, once
we’ve developed the can hold method, we want to be able to write the pro-
gram shown below:

Filename: src/themain​.​rs

fn main() {
	 let rect1 = Rectangles {
	 	 width: 30,
	 	 height: 50,
  	 };
	 let rect2 = Rectangles {
	 	 width: 20,
	 	 height: 30,
  	 };
	 let rect3 = Rectangles {
	 	 width: 70,

Using Structs for Related Data﻿    ◾    107

	 	 height: 55,
  	 };

	 println!(�“Can rect1 hold rect2? {}”, rect1.
can_hold(&rect2));

	 println!(�“Can rect1 hold rect3? {}”, rect1.
can_hold(&rect3));

}

Because both dimensions of rect2 are smaller than those of rect1, but
rect3 is wider than rect1, the predicted outcome would be as follows:

Can rect1 hold rect2? true
Can rect1 hold rect3? false

Because we know we’ll be defining a method, we’ll put it in the impl
Rectangle block. The method will be called can hold, and it will take an
immutable borrow of another Rectangles as an argument. By looking at
the code that calls the method, we can figure out what type of parameter
it will &rect2, an immutable borrow to rect2, an instance of Rectangle, is
passed in by rect1.can_hold(&rect2). This makes sense as we only need to
read rect2 (rather than write, that would require a mutable borrow), and
we want main to keep ownership of rect2 after executing the can_hold
method. The implementation will verify whether the width and height of
self are greater than the width and height of the other Rectangle, and the
return value of can_hold will be a Boolean.

Filename: src/themain​.​rs

impl Rectangles {
	 fn area(&self) -> u32 {
	 	 self​.wid​th * self​.heig​ht
  	 }
	 fn can_hold(&self, other: &Rectangles) -> bool {
	 	 self​.�wid​th > other​.wid​th && self​.heig​ht > other​

.heig​ht
  	 }
}

We’ll get the desired result if we run this code using the main func-
tion. Multiple arguments can add to a method’s signature after the self

108    ◾    Mastering Rust﻿

parameter, and those parameters behave similarly to parameters in
functions.

Associated Functions

Because they’re related to the type named after the impl, any functions
created within an impl block are termed associated functions. Because we
don’t need an instance of the type to interact with, we can write related
functions that don’t have self as their first parameter (and hence aren’t
methods). The String::from function, defined on the String type, is an
example of a function like this.

For constructors that return a new struct instance, associated func-
tions that aren’t methods are frequently employed. For example, instead
of needing to specify the same value twice, we might provide an associated
function with one dimension parameter that can be used as both width
and height, making it easier to generate a square Rectangle:

Filename: src/themain​.​rs

impl Rectangles {
	 fn square(size: u32) -> Rectangles {
	 	 Rectangles {
	 	 	 width: size,
	 	 	 height: size,
	   	 }
  	 }
}

We use the :: syntax with struct name to call this associated function;
for example, let sq = Rectangles::squares(3); The struct:: syntax is used
for both associated functions and namespaces generated by modules to
namespace this function.

Multiple impl Blocks

Multiple impl blocks are allowed in each struct.

impl Rectangles {
	 fn area(&self) -> u32 {
	 	 self​.wid​th * self​.heig​ht
  	 }
}

Using Structs for Related Data﻿    ◾    109

impl Rectangles {
	 fn can_hold(&self, other: &Rectangles) -> bool {
	 	 self​�.wid​th > other​.wid​th && self​.heig​ht > other​

.heig​ht
  	 }
}

It isn’t necessary to divide these methods up into numerous impl blocks
in this case, but it’s acceptable syntax.

In this chapter, we covered struct and Instantiating of the struct. We
also discussed programs using struct and method syntax.

https://taylorandfrancis.com/

111

C h a p t e r 5

Enums and Pattern
Matching

IN THIS CHAPTER

	➢ Defining an enum

	➢ The match control flow operator

	➢ Concise control flow with if let

In the previous chapter, we covered defining and instantiating structs with
relevant examples. In this chapter, we will discuss enumerations (enums)
and match control flow operator. We will also cover concise control flow
with if let.

DEFINING AN ENUM
Let’s look at a circumstance we would want to represent in code and see
why enums are more useful and appropriate in this case than structs. Let’s
pretend we have to operate with IP addresses. Two primary standards are
now in use for IP addresses: version four (IPv4) and version six (IPv6).
These are the only IP address options our program will encounter: we can
enumerate all conceivable versions of the term “enumeration.”

Any IP address can be either version four or version six, but not both
at once. The enum data structure is appropriate because enum values can
only be one of the several types of IP addresses. Because both version four
and version six addresses are fundamentally IP addresses, they should be

Mastering Rust Enums and Pattern Matching

DOI:  10.1201/9781003311966-5

10.1201/9781003311966-5

https://dx.doi.org/10.1201/9781003311966-5

112    ◾    Mastering Rust﻿

handled as the same type when the code is dealing with situations involv-
ing any sort of IP address.

This concept can be expressed in code by defining an IpAddrKind enu-
meration, which contains the many types of IP addresses that can exist,
such as V4 and V6. These are the enum’s variants:

enum IpAddrKind {
	 V4,
	 V6,
}

We can now utilize IpAddrKind as a custom data type in other parts of
our code.

Enum Values

We may make instances of each of the two IpAddrKind versions as follows:

let five = IpAddrKind::V5;
let seven = IpAddrKind::V7;

Note that the enum’s variations are namespaced under its identi-
fier, and a double colon separates the two. This is advantageous because
both IpAddrKind::V5 and IpAddrKind::V7 are now of the same type:
IpAddrKind. Then, for example, we may write a function that accepts any
IpAddrKind.

fn route(ip_kind: IpAddrKind) {}

And we can call this function one of two ways:

	 rout​e(IpA​ddrKi​nd::V​5);
	 route(IpAddrKind::V7);

There are many more benefits to using enums. In terms of our IP
address type, we don’t have a mechanism to save the actual IP address
data at the time; we only know what type it is. Because we recently learned
about structs in Chapter 4, we might approach this problem with the show.

enum IpAddrKind {
	 	 V5,
	 	 V7,
  	 }

Enums and Pattern Matching﻿    ◾    113

	 struct IpAddr {
	 	 kind: IpAddrKind,
	 	 address: String,
  	 }

	 let home = IpAddr {
	 	 kind: IpAddrKind::V4,
	 	 address: String::from(“127.0.0.1”),
  	 };

	 let loopback = IpAddr {
	 	 kind: IpAddrKind::V6,
	 	 address: String::from(“::1”),
  	 };

We’ve built a struct IpAddr with two fields: an address field of type
String and a kind field of type IpAddrKind (the enum we defined pre-
viously). This struct is duplicated twice. The first, home, has the value
IpAddrKind::V5 as its kind and 127.0.0.1 as its associated address data.
The second instance, loopback, is connected with address::1 and has the
other type of IpAddrKind, V7, as its kind value. Because we used a struct
to combine the kind and address values, the variation is now linked to the
value.

By placing data directly into each enum version, we can represent the
same concept more compactly using simply an enum rather than an enum
inside a struct. Both V5 and V7 variations will have associated String val-
ues, according to this updated specification of the IpAddr enum.

enum IpAddr {
	 	 V4(String),
	 	 V6(String),
  	 }

	 let home ​= IpA​ddr::​V5(St​ring:​:from​(“127​.0.0.​1”));​

	 let loopb​ack =​ IpAd​dr::V​7(Str​ing::​from(​“::1”​));

Because we immediately attach data to each enum version, there is no
need for a second struct. Another aspect of how enums operate is that the
name of each enum variant that we declare also becomes a function that

114    ◾    Mastering Rust﻿

creates an instance of the enum. In other words, IpAddr:: V5() is a func-
tion that accepts a String as an argument and returns an IpAddr instance.
As a result of declaring the enum, this constructor function is automati-
cally defined.

Another benefit of utilizing an enum over a struct is that each ver-
sion can have different types and amounts of data associated with it. IP
addresses of the version four kind will always have four numeric compo-
nents with values ranging from 0 to 255. With a struct, we wouldn’t store
V5 addresses as four u8 values while still expressing V7 addresses as one
String value. This is an easy case for enums to handle:

enum IpAddr {
	 	 V5(u8, u8, u8, u8),
	 	 V7(String),
  	 }

	 let home = IpAddr::V5(127, 0, 0, 1);

	 let loopb​ack =​ IpAd​dr::V​7(Str​ing::​from(​“::1”​));

We’ve gone over a few different approaches to creating data structures
for storing IP addresses in versions five and seven. However, it turns out
that storing IP addresses and encoding which kind they are is so ubiq-
uitous that we can use a definition from the standard library. Let’s look
at how IpAddr: is defined in the standard library. It uses the same enum
and variants that we used, but it embeds the address data in the varia-
tions using two different structs that are defined individually for each
variant:

struct Ipv4Addr {
}

struct Ipv6Addr {

}

enum IpAddr {
	 V5(Ipv4Addr),
	 V7(Ipv6Addr),
}

Enums and Pattern Matching﻿    ◾    115

This code demonstrates that an enum version can contain any sort of
data, such as texts, numeric types, or structs. We can even include another
enum! Furthermore, standard library types are frequently not much more
complex than we may devise.

Even though the standard library provides an IpAddr definition, we
can still develop and use our own without conflicting with the standard
library’s definition since we haven’t brought the standard library’s defini-
tion into our scope.

Let’s look at another enum, this one with a wide range of types embed-
ded in its variants.

enum Messages {
	 Quit,
	 Move {x: i32, y: i32},
	 Write(String),
	 ChangeColor(i32, i32, i32),
}

There are four different types of this enum:

	 1.	There is no data associated with Quit.

	 2.	Move, like structs, has named fields.

	 3.	A single String is included in Write.

	 4.	Three i32 values are included in ChangeColor.

Defining an enum with variants, such as those in the preceding pro-
gram, is comparable to defining several types of struct definitions, with
the exception that the enum does not utilize the struct keyword, and all
variants are grouped under the Message type. The following structs could
store the same data as the enum variations before them:

struct QuitMessages; // unit struct
struct MoveMessages {
	 x: i32,
	 y: i32,
}
struct WriteMessages(String); // tuple struct
struct ChangeColorMessages(i32, i32, i32); // tuple struct

116    ◾    Mastering Rust﻿

However, we couldn’t quickly write a function to take any of these types
of messages if we used the different structs, each of which has its type, as
we could with the Message enum defined in the previous example, which
has a single type.

Another similarity between enums and structs is that we can define
methods on enums using impl, just as we can define methods on structs
using impl. Here’s a call method that we might add to our Message enum:

impl Messages {
	 	 fn call(&self) {
	 	 	 // the method body would be defined here
	   	 }
  	 }

	 let m1 = ​Messa​ges::​Write​(Stri​ng::f​rom(“​hello​o”));​
	 m1​.ca​ll();

The method’s body would get the value we invoked the method on
by using self. We’ve created a variable m with the value in this example.
Messages:: Write(String::from(“helloo”)), and when m1​.ca​ll() is called, self
will be in the body of the call method.

Let’s look at another frequent and useful enum in the standard library:
Option.

The Advantages of the Option Enum over Null Values

We saw how the IpAddr enum allowed us to use Rust’s type system to
embed more information than simply data into our program in the previ-
ous section. The option is another enum defined by the standard library,
and this section looks at a case study of it. Because it encapsulates the rela-
tively typical circumstance where a value could be anything or nothing,
the Option type is widely used.

When we express this concept in terms of the type system, the compiler
may check to see if we’ve handled all of the cases we should be managing;
this functionality can help us avoid common issues in other programming
languages.

It’s common to think of programming language design in terms of
which features to include, but it’s also vital to consider what features to
leave out. Rust lacks the null feature found in many other languages. Null
is a value that indicates that it has no value. Variables in languages that
support null can always be null or not null.

Enums and Pattern Matching﻿    ◾    117

The issue with null values is that attempting to use one as a not-null
value will result in an error of some sort. Because the null or not-null
property is so widely used, it’s very easy to make a mistake like this.

However, the concept that null is attempting to represent remains use-
ful: a null is a value that is currently invalid or absent for some reason.

The problem isn’t with the concept, but with how it’s been carried out.
As a result, Rust lacks nulls, although it contains an enum representing
the presence or absence of a value. Option<T> is the name of this enum,
which is defined as follows in the standard library:

enum Option<T> {
	 None,
	 Some(T),
}

The Option<T> enum is so helpful that it’s included in the preamble;
there’s no need to bring it into scope explicitly. Its variations are also sup-
ported: we can use Some and None without the Option:: prefix. Some(T)
and None are still variants of type Option<T>, and the Option<T> enum
is still just a standard enum.

We haven’t yet discussed the <T> syntax, which is a feature of Rust.
Because it’s a generic type parameter, we need to know that <T> indicates
that Some variants of the Option enum can carry one piece of data of
any type and that any concrete type substituted for T changes the overall
Option<T> type. Here are examples of how Option values can be used to
store numeric and string types:

let some_number = Some(6);
	 let some_string = Some(“string”);

	 let absent_number: Option<i32> = None;

Option<i32> is the type of Some number. Option<&str> is the type of
string, which is a different type. Because we specified a value inside the
Some variant, Rust may infer these types. Rust demands that we annotate
the overall Option type for absent number: the compiler can’t infer the type
that the associated some variant will hold based on a none value alone. We
inform Rust that the absent number should be of type Option<i32> here.

We know there is a value present when we have a Some value since the
value is held within the Some. In some ways, having a None value is the

118    ◾    Mastering Rust﻿

same as having a null value: we don’t have a valid value. So, why is having
Option<T> preferable to having null?

In other words, the compiler won’t let us use an Option<T> value as if
it were a valid value because Option<T> and T (where T can be any type)
are different kinds. This code, for example, will not compile because it
attempts to add an i8 to an Option<i8>:

let a: i8 = 6;
	 let b: Option<i8> = Some(6);

	 let sum = a + b;

We get an error message when we run this code.

$ cargo run
	 Compiling enums v0.1.0 (file:///projects/enums)
error[E0277]: cannot add `Option<i8>` to `i8`
 --> src/main​.rs​:5​​:17
	 |
5	|	 let sum = a + b;
	 |	 	 ^ no implementation for `i8 + Option<i8>`
	 |
	 = help: �the trait `Add<Option<i8>>` is not

implemented for `i8`

This error message indicates that Rust is unable to add an i8 and an
Option<i8> because they are of different types. In Rust, when we have a
value of a type like i8, the compiler ensures that we have a valid value at all
times. We don’t need to check for null before utilizing that value to move
forward with confidence. We only have to worry about not having a value
when we’re working with an Option<i8> (or whatever sort of value we’re
working with), and the compiler will make sure we address that scenario
before utilizing the value.

So, if we have a value of type Option<T>, how do you obtain the T
value out of some variation so that we can utilize it? The Option<T> enum
contains many methods that can be useful in a variety of circumstances;
the documentation for them can be found here. In our Rust adventure,
becoming familiar with Option<T> methods will be highly beneficial.

In general, we’ll need code to handle each version if we use an
Option<T> value. We want some code that will only run if you have a
Some(T) value, and we want it to be able to use the inner T. If we have a

Enums and Pattern Matching﻿    ◾    119

none value, we want some other code to run, but that code doesn’t have a
T value. When used with enums, the match expression does precisely that:
it runs different codes depending on whatever variant of the enum it con-
tains, and that code can use the data inside the matching value.

THE MATCH CONTROL FLOW OPERATOR
The match is a powerful control flow operator in Rust that lets us com-
pare a value to a sequence of patterns and then execute code based on
which pattern matches. Patterns can be composed of literal values, vari-
able names, wildcards, and various other elements. The expressiveness of
the patterns and the fact that the compiler validates that all conceivable
scenarios are handled give match its power.

Consider a match expression similar to a coin-sorting machine: coins
slide down a track with variously sized holes, and each coin falls into the
first hole it encounters. Similarly, values pass through each pattern in a
match, and if the value “fits” the first pattern, it is placed in the related
code block to be used during execution.

Let’s use coins to utilize match because we just stated them. As seen
here, we can construct a function that takes an unknown US coin and,
similar to the counting machine, determines which coin it is and returns
its worth in cents.

enum Coins {
	 Penny,
	 Nickel,
	 Dime,
	 Quarter,
}

fn value_in_cents(coin: Coins) -> u8 {
	 match coin {
	 	 Coins::Penny => 1,
	 	 Coins::Nickel => 5,
	 	 Coins::Dime => 10,
	 	 Coins::Quarter => 25,
  	 }

Let’s take a glimpse at the value in the cents function’s match. The
match keyword is listed first, followed by an expression, in this exam-
ple, the value coin. This looks a lot like an if expression, but there’s a key

120    ◾    Mastering Rust﻿

difference: with if, the expression must return a Boolean value, whereas
here it can be any type. The Coins enum, which we defined on line 1, is the
type of coin in this case.

The match arms come next. There are two parts to an arm: a pattern and
Some code. The first arm contains a pattern with the value Coins::Penny,
followed by the => operator, which separates the pattern from the code
to be executed. In this situation, the code is simply the value 1. A comma
separates each arm from the one before it.

When the match expression runs, it compares the result to the pattern
of each arm, one by one. If the value matches a pattern, the code associ-
ated with that pattern is run. If the pattern doesn’t match the value, the
machine moves to the next arm, similar to a coin sorter.

The code associated with each arm is an expression, and the value
returned for the complete match expression results from the expression
in the matching arm.

When the match arm code is short, curly brackets are often not utilized
in the example where each arm returns a value. Curly brackets can run
numerous lines of code in a single match arm. The following code, for
example, would output “Lucky penny!” every time the method was called
with a Coins::Penny, but it would still return the block’s last value, 1:

fn value_in_cents(coin: Coins) -> u8 {
	 match coin {
	 	 Coins::Penny => {
	 	 	 println!(“Lucky-penny”);
	 	 	 1
	   	 }
	 	 Coins::Nickel => 5,
	 	 Coins::Dime => 10,
	 	 Coins::Quarter => 25,
  	 }
}

Patterns that Bind to Values

Match arms also can bind to the sections of the values that match the pat-
tern. We can retrieve values from enum variations in this way.

Let’s update one of our enum variants to hold data as an example.
The United States struck quarters with different designs for each of the
50 states on one side from 1999 to 2008. Only quarters have this extra
worth because no other coins include state designs. We can include this

Enums and Pattern Matching﻿    ◾    121

information in our enum by modifying the Quarter variation to include a
UsState value stored within it, as we’ve done above.

#[derive(Debug)] //we can inspect the state in a minute
enum UsState {
	 Alabama,
	 Alaska,
}

enum Coins {
	 Penny,
	 Nickel,
	 Dime,
	 Quarter(UsState),
}

Assume that one of our friends is attempting to collect all 50 state quar-
ters. We’ll call out the state’s name connected with each quarter as we sort
our loose change by coin kind, so if it’s one our friend doesn’t have, they
can add it to their collection.

We add a variable named state to the pattern in the match expression
for this code that matches values of the variety Coins::Quarter. When a
Coins::Quarter is matched, the state variable is set to that quarter’s state
value. Then, in the code for that arm, we can use the state as follows:

fn value_in_cents(coin: Coins) -> u8 {
	 match coin {
	 	 Coins::Penny => 1,
	 	 Coins::Nickel => 5,
	 	 Coins::Dime => 10,
	 	 Coins::Quarter(state) => {
	 	 	 println!(“State quarter {:?}!”, state);
	 	 	 25
	   	 }
  	 }
}

Coins would be Coins::Quarter(UsState::Alaska) if we called value​
_in_c​ents(​Coins​::Qua​rter(​UsSta​te::A​laska​)). When we compare that value
to each match arm, we discover that none of them match until we get to
Coins::Quarter(state). The value UsState::Alaska will be the binding for

122    ◾    Mastering Rust﻿

state at that point. The inner state value of the Coins enum variation
for Quarter may then be obtained by using that binding in the println!
expression.

Matching with the Option<T>
We needed to obtain the inner T value out of some case when using
Option<T> in the previous section; we can also handle Option<T> with
match, as we did with the Coins enum! We’ll compare the versions of
Option<T> instead of coins, but the match expression will still function
the same way.

Let’s imagine we want to construct a function that takes an
Option<i32> and adds 1 to whatever value it contains if a value exists. If
no value is present, the function should return none and not attempt to
conduct any operations.

fn plus_one(a: Option<i32>) -> Option<i32> {
	 	 match a {
	 	 	 None => None,
	 	 	 Some(x) => Some(x + 1),
	   	 }
  	 }

	 let five = Some(5);
	 let six = plus_one(five);
	 let none = plus_one(None);

Let’s take a look at the initial plus_one execution. The variable x in the
body of plus_one will have the value Some (5) when we call plus_one(five).
After that, we compare it to each match arm.

	 	 None => None,

Because the value Some(5) does not match the pattern None, we go on
to the next arm.

	 	 ​Some(​x) =>​ Some​(x + ​1),

Is Some(5) the same as Some(i)? It certainly does! The version is the
same for both of us. Because i is bound to the value in Some, it takes 5. The
match arm’s code is then run, so we add 1 to the value of i and construct a
new Some value with our total of 6 inside.

Enums and Pattern Matching﻿    ◾    123

When there is none, let’s look at the second plus one call in the above
code. We begin the match by comparing the first arm to the second.

	 	 None => None,

It’s the same! Because there is nothing to add, the program comes to a
halt and returns the none value on the right side of =>. No more arms are
compared because the first arm matched.

In many circumstances, combining match and enums is beneficial. In
Rust code, we’ll see this pattern a lot: match against an enum, bind a vari-
able to the data within, and run code depending on it. It’s a little challeng-
ing initially, but once we get the hang of it, we’ll wish we had it in every
language. It’s a popular choice among users.

Matches Are Exhaustive

There’s one more part of match that needs to be addressed. Consider this
bugged version of our plus_one function, which will not compile:

fn plus_one(a: Option<i32>) -> Option<i32> {
	 	 match a {
	 	 	 Some(x) => Some(x + 1),
	   	 }
  	 }

Because we didn’t handle any situation, this code will fail. Fortunately,
it’s a bug that Rust is adept at catching. We will get the following error if
we try to compile this code:

$ cargo run
	 Compiling enums v0.1.0 (file:///projects/enums)
error[E0004]: �non-exhaustive patterns: `None` not

covered
	 --> src/main​.rs​:3​​:15
	 |
3	 |	 	 match a {
	 |	 	 	 ^ pattern `None` not covered
	 |
	 = help: �ensure that all possible cases are being

handled, possibly by adding wildcards or
more match arms

	 = note: the matched value is of type `Option<i32>`

124    ◾    Mastering Rust﻿

Rust is well aware that we didn’t cover every scenario and even under-
stands which pattern we overlooked! In Rust, matches are exhaustive: we
must exhaust every possible option for the code to be legitimate. Rust
saves us from committing the earlier billion-dollar mistake by keeping us
from neglecting to explicitly handle the None situation, especially in the
case of Option<T>.

Catch-all Patterns and the _ Placeholder

Consider the following scenario: we want to take unique actions for a few
specific values while taking a single default action for all other values.
Assume we’re designing a game in which a value of 2 on a dice roll results
in our player receiving a new fancy hat rather than moving. Our player
loses a fancy hat if we roll a 6. Our player moves that amount of squares
on the game board for all other values. Here’s a match that implements
that logic, with the dice roll result hardcoded rather than a random value,
and all other logic represented by functions without bodies because actual
implementation is beyond the scope of this example:

	 let dice_roll = 8;
	 match dice_roll {
	 	 2 => add_fancy_hat(),
	 	 6 => remove_fancy_hat(),
	 	 other => move_player(other),
  	 }

	 fn add_fancy_hat() {}
	 fn remove_fancy_hat() {}
	 fn move_player(num_spaces: u8) {}

The patterns for the first two arms are the literal values 2 and 6. The pat-
tern for the last arm, which covers all other possible values, is the variable
we’ve named other. The variable is passed to the move_player function in
the code that runs for the other arm.

Even though we haven’t stated all of the potential values for an u8, this
code compiles since the last pattern matches all values not specifically
listed. This catch-all pattern satisfies the criterion of an exhaustive match.
Because the patterns are examined in order, we must put the catch-all arm
last. Rust will notify us that the following arms will never match if we add
arms after a catch-all.

Enums and Pattern Matching﻿    ◾    125

When we don’t want to use the value from the catch-all pattern:, we can
use the pattern, which is a special pattern that matches any value but does
not bind to it. This notifies Rust that we do not intend to use the value to
warn us about it.

Let’s tweak the game’s rules such that you must roll again if we roll
anything other than a 2 or a 6. In that scenario, we don’t need to utilize
the value, thus we can alter our code to use_ instead of the other variable:

let dice_roll = 8;
	 match dice_roll {
	 	 2 => add_fancy_hat(),
	 	 6 => remove_fancy_hat(),
	 	 _ => reroll(),
  	 }
	 fn add_fancy_hat() {}
	 fn remove_fancy_hat() {}
	 fn reroll() {}

This example also passes the exhaustiveness criteria because all other
values in the last arm are expressly ignored; we haven’t neglected anything.

If we alter the game’s rules one more time, such that if we roll anything
other than a 2 or a 6, nothing happens on our turn, we can express that by
using the unit value (the empty tuple type we stated in the section “Tuple
Type” in Chapter 2) as the code for the _arm:

let dice_roll = 8;
	 match dice_roll {
	 	 2 => add_fancy_hat(),
	 	 6 => remove_fancy_hat(),
	 	 _ => (),
  	 }

	 fn add_fancy_hat() {}
	 fn remove_fancy_hat() {}

We’re explicitly telling Rust that we won’t use any other value that
doesn’t match a pattern in a previous arm and that we won’t run any code
in this situation.

For now, we’ll move on to the if let syntax, which comes in handy when
the match expression is a little lengthy.

126    ◾    Mastering Rust﻿

CONCISE CONTROL FLOW WITH IF LET
If we combine and let into the if let syntax, we can handle values that match
one pattern while disregarding the remainder less verbosely. Consider the
program which checks the config max variable for an Option<u8> value
but only wants to run code if the value is the Some variation.

	 let config_max = Some(3u8);
	 match config_max {
	 	 Some(max) => println!(�“Maximum is configured to

be {}”, max),
	 	 _ => (),
  	 }

We want to print the value in the Some variation if the value is Some,
which we do by assigning the value to the variable max in the pattern.
With the None value, we don’t want to do anything. After analyzing just
one version, we must add _ => () to satisfy the match expression, which is
tedious boilerplate code to add.

  let config_max = Some(3u8);
	 if let Some(max) = config_max {
	 	 println!(“Maximum is configured to be {}”, max);
  	 }

A pattern and an expression are separated by an equal sign in the if
let syntax. It functions similarly to a match in that the phrase is passed
to the match, and the pattern is its first arm. In this case, the pattern is
Some(max), and the max binds to the value inside the Some. Then, just
like we did with the analogous match arm, we can utilize max in the body
of the if let block. If the value does not match the pattern, the function in
the if let block is not executed.

Using if let saves time by reducing typing, indentation, and boilerplate
code. We do, however, lose the match’s exhaustive checking. The decision
between match and if allowed is based on what you’re doing in your situ-
ation and whether gaining conciseness is a good trade-off for losing thor-
ough checking.

In other words, consider if let to be syntax sugar for a match that
executes code when the value matches one pattern and ignores all other
values.

Enums and Pattern Matching﻿    ◾    127

With an if let, we may include an else. The code that goes with the else
is identical to the code that goes with the _case in the match expression,
which is comparable to the if let and else. Remember how the Quarter
variation of the Coin enum also included a UsState value? We could use a
match expression like this to count all non-quarter coins we see while also
notifying the status of the quarters:

	 let mut counts = 0;
	 match coin {
	 	 ​Coin:​:Quar​ter(�s​tate)​ => p​rintl​n!(“S​tate

quarter{:?}!”, state),
	 	 _ => count += 1,
  }

Alternatively, we might use an if let and else expression like this:

 let mut counts = 0;
	 if let Coin::Quarter(state) = coin {
	 	 println!(“State quarter {:?}!”, state);
  	 } else {
	 	 counts += 1;
  	 }

Keep in mind that if let is also in our Rust toolkit if we ever find our-
selves in a situation where our program’s reasoning is too long to describe
with a match.

This chapter covered enum definition, match control flow operator, and
concise control flow with if let.

https://taylorandfrancis.com/

129

C h a p t e r 6

Packages, Crates,
and Modules

IN THIS CHAPTER

	➢ Packages and crates

	➢ Defining modules to control scope and privacy

	➢ Paths for referring to an item in the module tree

	➢ Bringing paths into scope with use keyword

	➢ Separating modules into different files

In the previous chapter, we covered enums and pattern matching with its
appropriate syntax and examples. This chapter will discuss packages and
crates, defining modules, paths for referring, and how to separate modules
into different files.

Organizing our code will become increasingly critical because as we
build larger programs, keeping track of our entire program in our brain
will become impractical. We’ll discover code that implements a certain
feature and where to go to change how a feature works by comparable
grouping functionality and separating code with separate features.

So far, all of the programs we’ve built have been contained within a sin-
gle module and a single file. As a project grows, we can organize code by

Mastering Rust Packages, Crates, and Modules

DOI:  10.1201/9781003311966-6

10.1201/9781003311966-6

https://dx.doi.org/10.1201/9781003311966-6

130    ◾    Mastering Rust﻿

breaking it down into different modules and many files. Multiple binary
crates and one library crate can be included in a package.

We can isolate components of a package into distinct crates that become
external dependencies as it expands. All of these strategies are covered in
this chapter.

Encapsulating implementation details, in addition to grouping func-
tionality, allows us to reuse code at a higher level: after we’ve implemented
an operation, other programs can call it via the code’s public interface
without knowing how it works.

Which portions of your code are public for other code to use and which
parts are secret implementation details that we reserve the right to change
depend on how we design it. This is another approach for keeping the
amount of information in our heads to a minimum.

The scope is a similar concept: in the hierarchical context in which code
is written, a collection of names is defined as “in scope.” When reading,
writing, and compiling code, programmers and compilers must deter-
mine whether a given name refers to a variable, function, struct, enum,
module, constant, or other items, as well as what that item means. We can
make scopes and adjust which names are included or excluded.

There can’t be two things with the same name in the same scope; mech-
anisms to resolve name conflicts are available.

Rust includes several capabilities for managing the organization of
your code, such as which details are exposed, which details are private,
and which names are in each scope in our applications. These features,
which are sometimes referred to as the module system as a whole, include:

•	 Packages: Packages are Cargo functionality that allows us to create,
test, and share crates.

•	 Crates: Crates are a collection of modules that form a library or
executable.

•	 Modules and use: Modules and their application allows us to man-
age the path’s organization, scope, and privacy.

•	 Paths: Paths are names like structs, functions, and modules.

We’ll go over all of these features in this chapter and how they interact,
and how to use them to manage scope. We should have a firm grasp of the
module system and work with scopes like a pro by the end!

Packages, Crates, and Modules﻿    ◾    131

PACKAGES AND CRATES
Packages and crates are the first aspects of the module system we’ll look
at. A binary or library is referred to as a crate. The crate root is a source file
that the Rust compiler uses to build the root module of your crate (we’ll
go through modules in more detail in the section “Defining Modules to
the Control Scope and Privacy”). A package is a collection of crates that
provide a set of features. A Cargo​.to​ml file in a package defines how to
construct those crates.

What a package can include is determined by a set of rules. A package
can only have one library crate in it. It can have as many binary crates as
we want, but at least one must be present (either library or binary).

Let’s have a look at the steps involved in creating a package. First, we’ll
use the cargo new command:

$ cargo new myproject
	 Created binary (application) `myproject` package
$ ls myproject
Cargo​.to​ml
src
$ ls myproject/src
main​.​rs

Cargo built a Cargo​.to​ml file and gave us a package when we entered
the command. There is no mention of src/main​.​rs in Cargo​.to​ml because
Cargo uses the convention that src/main​.​rs is the crate root of a binary
crate with the same name as the package. Similarly, if the package direc-
tory contains src/lib​.r​s, Cargo understands that the package contains a
library crate with the same name as the package, and src/lib​.​rs is the crate
root. To build the library or binaries, Cargo sends the crate root files to
rustc.

We have a package with only src/main​.r​s, which only has a binary crate
named myproject. If src/main​.​rs and src/lib​.​rs are included in a package,
it contains two crates: a library and a binary, both with the same name as
the package. A package can have several binary crates by storing files in
the src/bin directory: each file will be a separate binary crate.

A crate will group comparable functionality in scope to be easily shared
across many projects.

Using the rand crate in our project’s scope may use that feature in our
projects. The rand crate’s name, rand, provides access to all of the crate’s
functionality.

132    ◾    Mastering Rust﻿

Keeping a crate’s functionality in its scope clarifies whether a feature
is defined in our crate or the rand crate, avoiding potential conflicts. The
rand crate, for example, has a trait called Rng.

In our crate, we can also define a struct named Rng. When we add rand
as a dependency, the compiler isn’t confused about the name Rng because
a crate’s functionality is namespaced in its scope. It refers to the struct Rng
that we defined in our crate. We’d use rand::Rng to get the Rng trait from
the rand crate.

DEFINING MODULES TO THE CONTROL
SCOPE AND PRIVACY
We’ll discuss modules and other aspects of the module system in this sec-
tion, including paths, which allow you to name objects, the use keyword,
which puts a way into scope, and the pub keyword, which makes items
public. The as keyword, external packages, and the glob operator will also
be discussed. Let’s concentrate on modules for the time being.

Modules allow us to group code within a crate for easier reading and
reuse. Modules also manage item privacy, which determines whether an
item can be utilized by outside code (public) or is an internal implementa-
tion detail that isn’t accessible to the public (private).

Let’s say we want to create a library crate that has the functionality of
a restaurant. To focus on the organization of the code rather than imple-
menting a restaurant in code, we’ll specify the signatures of functions but
leave their bodies empty.

Some restaurant areas are referred to as the front of house and others as
back of house in the restaurant industry. Customers are served at the front
of the house, where hosts seat them, servers receive orders and payments,
and bartenders mix beverages. Chefs and cooks labor in the kitchen, dish-
washers clean up, while managers do administrative tasks at the back of
the house.

We may organize the functions into nested modules to structure our
crate like a real restaurant does. By executing cargo new --lib restaurant,
you may create a new library named restaurant and then put the program’s
code into src/lib​.​rs to define modules and function signatures.

Filename: src/thelib​.​rs

mod front_of_houses {
	 mod hostings {

Packages, Crates, and Modules﻿    ◾    133

	 	 fn add_to_waitlist() {}

	 	 fn seat_at_table() {}
  	 }

	 mod servings {
	 	 fn take_order() {}

	 	 fn serve_order() {}

	 	 fn take_payment() {}
  	 }
}

We start by using the mod keyword and then specify the module’s
name (in this case, front_of_houses) and put curly brackets around the
module’s body. Other modules can be contained within modules, as in
this example with the hosting and serving modules. As seen above, mod-
ules can also hold definitions for additional elements like structs, enums,
constants, characteristics, and program functions.

We can group related definitions together and name why they’re con-
nected by utilizing modules. Programmers could explore the code based
on the groups rather than read through all of the definitions, making it
easier to find the definitions they needed. Programmers who want to add
additional functionality to this code would know where to put it so that
the program stays orderly.

Crate roots are src/main​.​rs and src/lib​.r​s, as we said earlier. The con-
tents of any of these two files constitute a module named crate at the root
of the crate’s module structure, known as the module tree, which is the
reason for their names.

crate
 └── front_of_houses
	 ├── hostings
	 │  	 ├── add_to_waitlist
	 │  	 └── seat_at_table
	 └──	servings
	 	 ├── take_order
	 	 ├── serve_order
	 	 └── take_payment

134    ◾    Mastering Rust﻿

This tree depicts how some of the modules nest (for example, hosting
nests within front of house). The tree also reveals that some modules are
siblings, implying that they are created in the same module (for example,
hosting and serving both are defined in front of house). To continue the
family metaphor, we might say that module A is the child of module B and
that module B is the parent of module A if it is contained within module B.
It’s worth noting that the entire module tree is rooted in the crate implicit
module.

The module tree may remind us of the directory tree on our comput-
er’s disc; this is an interesting observation. Modules are used to arrange
our code in the same way directories are used in a filesystem. We need a
mechanism to find our modules, just like we need a way to find files in a
directory.

PATHS FOR REFERRING TO AN ITEM IN THE MODULE TREE
We use a path in the same way as we explore a filesystem to show Rust
where to find an item in a module tree. We need to know the path of a
function to call it.

A path can be one of two types:

	 1.	A literal crate or a crate name can use to start an absolute route from
a crate root.

	 2.	A relative path starts with the current module and uses self, super, or
an identifier.

One or more identifiers separated by double colons (::) follow both abso-
lute and relative pathways.

Let’s go back to the previous example. What is the syntax for calling the
add to waitlist function? What is the path of the add_to_waitlist function?
We reduced our code by deleting several of the modules and functions
below. We’ll illustrate two ways to invoke the add_to_waitlist function
from the crate root’s new eat_at_restaurant function. The pub keyword is
used to indicate that the eat_at_restaurant method is part of our library
crate’s public API. We’ll look over the pub in further depth in the section
“Exposing Paths with pub Keyword.” This example will not compile at this
time; we’ll explain why in a moment.

Packages, Crates, and Modules﻿    ◾    135

Filename: src/thelib​.​rs

mod front_of_houses {
	 mod hostings {
	 	 fn add_to_waitlist() {}
  	 }
}

pub fn eat_at_restaurant() {
	 // Absolute path
	 cr​ate::​front​_of_h​ouses​::hos​ting:​:add_​to_wa​itlis​t();

	 // Relative path
	 fr​ont_o​f_hou​ses::​hosti​ng::a​dd_to​_wait​list(​);
}

We use an absolute path the first time we run the add_to_wait-
list method in eat at restaurant. Because the add_to_waitlist method is
defined in the same crate as eat_at_restaurant, we may start an absolute
route using the crate keyword.

Following crate, we include each subsequent module until we reach
add_to_waitlist. Imagine a filesystem with the same structure, and we’d
execute the add_to_waitlist program from the path/​front​_of_h​ouses​/host​
ing/a​dd_to​_wait​list;​ using the crate name to start from the crate root is
similar to using/to start from the filesystem root in our shell.

We utilize a relative path the second time we run add to waitlist in
eat_at_restaurant. The path begins with front_of_houses, the module’s
name declared at the same level as eat at restaurant in the module tree. The
filesystem equivalent would be front_of_houses/hosting/add_to_waitlist
in this case. The path is relative if it starts with a name.

We’ll have to decide whether to utilize a relative or absolute path
depending on our project. The decision should be based on whether we’re
more likely to relocate item definition code independently from code that
utilizes the item or together. We’d need to adjust the absolute route to
add_to_waitlist if we moved the front_of_houses module and the eat_at_
restaurant function into a module called customer_experience, but the
relative path would still be acceptable.

The absolute route to the add_to_waitlist call would remain the same if
we relocated the eat_at_restaurant function into its module called eating,

136    ◾    Mastering Rust﻿

but the relative path would need to be adjusted. We use absolute routes
because code definitions and item calls are more likely to be moved inde-
pendent of one another.

Let’s see if we can build the code and figure out why it isn’t working.

$ cargo build
	 Compiling restaurant v0.1.0 (file:�///projects/

restaurant)
error[E0603]: module `hostings` is private
 -->  src/lib​.rs​:9​​:28
	 |
9	 |	 crate​::fro​nt_of​_hous​es::�h​ostin​gs::a​dd_to​_wait​

list(​);
	 |	 ^^^^^^^ private module
	 |
note: the module `hostings` is defined here
 --> src/lib​.rs​:​2:5
	 |
2	 |	 mod hostings {
	 |	 ^^^^^^^^^^^

error[E0603]: module `hostings` is private
  -->  src/lib​.rs​:12​​:21
	 |
12	|	 front​_of_h​ouses​::hos​ting:​:add_​to_wa​itlis​t();
	 |	 ^^^^^^^ private module
	 |
note: the module `hostings` is defined here
  -->  src/lib​.rs​:​2:5
	 |
2	 |	 mod hostings {
  	 |	 ^^^^^^^^^^^

Module hosting is private, according to the problem messages. In other
words, the hosting module and the add to waitlist function have the cor-
rect locations, but Rust won’t let us use them since it doesn’t have access
to the private parts.

Modules are useful for more than just structuring our code. They also
define Rust’s privacy border, which is the line that contains the implemen-
tation details that external code is not allowed to know about, call, or rely
on in Rust. So, if we want a function or struct to be private, we must place
it in a module.

Packages, Crates, and Modules﻿    ◾    137

In Rust, privacy is enforced by default on all things (functions, meth-
ods, structs, enums, modules, and constants). Items in a parent module
cannot access private things in child modules, whereas child modules
can access items in ancestor modules. Although child modules wrap and
hide their implementation details, they can observe the context in which
they’re defined, this is the case. Consider the privacy rules as the back
office of a restaurant: what happens there is private to restaurant custom-
ers, but office managers can see and do everything in the restaurant they
operate.

Rust designed the module system in this fashion to make it default
to hide core implementation details. We’ll be able to tell which parts of
the inner code we can alter without damaging the outer code in this way.
However, using the pub keyword to make an object public, we can expose
inner parts of child modules’ code to outer ancestor modules.

Exposing Paths with pub Keyword

Returning to the error in the above program, the hosting module is pri-
vate; let’s look at it again. We want the parent module’s eat_at_restaurant
function to access the child module’s add to waitlist method, so we desig-
nate the hosting module with the pub keyword, as shown below.

Filename: src/thelib​.​rs

mod front_of_houses {
	 pub mod hostings {
	 	 fn add_to_waitlist() {}
  	 }
}

pub fn eat_at_restaurant() {
	 // the Absolute path
	 cr​ate::​front​_of_h​ouses​::hos​tings​::add​_to_w​aitli​st();​

	 // the Relative path
	 fr​ont_o​f_hou​ses::​hosti​ngs::​add_t​o_wai​tlist​();
}

Regrettably, the code still generates an error.
When you use the pub keyword in front of mod hosting, the mod-

ule becomes public. With this update, we can now access hosting if we

138    ◾    Mastering Rust﻿

can access front_of_houses. On the other hand, the contents of hosting
remain private; making the module public does not make the contents of
hosting public. A module’s pub keyword allows only code in its ancestor
modules to refer to it.

According to the previous code, the add_to_waitlist method is private,
as noted in the error generated. Privacy laws cover structures, enums,
functions, methods, and modules.

Add the pub keyword before the add_to_waitlist function’s definition
to make it public.

Filename: src/thelib​.​rs

mod front_of_houses {
	 pub mod hostings {
	 	 pub fn add_to_waitlist() {}
  	 }
}

pub fn eat_at_restaurant() {
	 // the Absolute path
	 cr​ate::​front​_of_h​ouse:​:host​ings:​:add_​to_wa​itlis​t();

	 // the Relative path
	 fr​ont_o​f_hou​ses::​hosti​ngs::​add_t​o_wai​tlist​();
}

The code will now compile. Let’s look at the absolute and relative paths
and see why using the pub keyword in add_to_waitlist allows us to use
these paths while following the privacy restrictions.

We begin with the crate, the root of our crate’s module tree, in the abso-
lute path. Then, in the crate root, the front_of_houses module is defined.
Although the front_of_houses module isn’t public, we can refer to it from
eat_at_restaurant since the eat_at_restaurant function is defined in the
same module as front_ of_houses (i.e., eat_at_restaurant and front_of_
houses are siblings). The hostings module, denoted by the letter pub, comes
next. We can go to the parent module of hostings, which allows us to get to
hostings. Finally, the add_to_waitlist function is marked with pub, and its
parent module can access; thus, this function call works!

The relative path follows the same reasoning as the absolute path, with
the exception of the first step, which starts at front_of_houses rather than

Packages, Crates, and Modules﻿    ◾    139

the crate root. Because the front_of_houses module is defined in the same
module as eat_at_restaurant, the relative path starting from the eat at res-
taurant module works. The rest of the path works, and this function call is
valid because hosting and add_to_waitlist are marked with pub.

Starting Relative Paths with super

We can also use super at the start of the path to create relative pathways
that start in the parent module. This is the same as using the.. syntax to
begin a filesystem path. Why would we want to do something like this?

Consider the below code, which simulates a case in which a chef cor-
rects an inaccurate order and delivers it to the customer personally. By
specifying the path to serve order beginning with super:, the method fixes
incorrect order invokes the function serve order.

Filename: src/thelib​.​rs

fn serve_order() {}

mod back_of_houses {
	 fn fix_incorrect_order() {
	 	 cook_order();
	 	 super::serve_order();
  	 }

	 fn cook_order() {}
}

We may use super to go to the parent module of back_of_houses, which
is crate, the root because the fix_incorrect_order method is in that module.
We then search for serve_order and locate it. Success! Should we decide to
reorganize the crate’s module tree, we believe the back_of_houses module
and the serve_order function will likely continue in the same relationship
and be moved together. As a result, we utilized super to have fewer loca-
tions to update code if this code is relocated to a different module in the
future.

Making Structs and Enums Public

We can also use the pub to make structs and enums public, but there
are some additional considerations. When we use pub before a struct
definition, the struct becomes public, but the fields remain private. On a

140    ◾    Mastering Rust﻿

case-by-case basis, we can make each field public or private. We defined
a public back_of_houses::Breakfast struct with a public toast field but a
private seasonal_fruit field in the below example. This is similar to the
situation in a restaurant where the customer can choose the sort of bread
that comes with their meal, but the chef chooses the fruit that goes with it
based on what’s in season and available.

Customers cannot choose or even see the fruit they will receive because
the available fruit changes frequently.

Filename: src/thelib​.​rs

mod back_of_houses {
	 pub struct Breakfast {
	 	 pub toast: String,
	 	 seasonal_fruit: String,
  	 }

	 impl Breakfast {
	 	 pub fn summer(toast: &str) -> Breakfast {
	 	 	 Breakfast {
	 	 	 	 toast: String::from(bread),
	 	 	 	 seasonal_fruit: String::from(“grapes”),
	 	   	 }
	   	 }
  	 }
}

pub fn eat_at_restaurant() {
	 // Order a breakfast in the summer with Rye toast
	 let mut meal ​= bac​k_of_​house​::Bre​akfas​t::su​mmer(​“Rye”​);
	 // Change our mind about what bread we’d like
	 me​​al​.to​​​ast =​ Stri​ng::f​rom(“​brown​”);
	 println!(“I would like {} toast “, meal​.toa​st);

}

Because the toast field in the back_of_houses::Breakfast struct is pub-
lic, we can use dot notation to write and read to it in eat_at_restaurant. We
can’t utilize the seasonal_fruit field in eat_at_restaurant since it belongs
to someone else. To check what error we got, uncomment the line that
modifies the seasonal_fruit field value.

Packages, Crates, and Modules﻿    ◾    141

When we make an enum public, all of its variations become public.
As illustrated below, the pub keyword is only required before the enum
keyword.

Filename: src/thelib​.​rs

mod back_of_houses {
	 pub enum Appetizer {
	 	 Kebab,
	 	 Noodles,
  	 }
}

pub fn eat_at_restaurant() {
	 let order​1 = b​ack_o​f_hou​ses::​Appet​izer:​:Keba​b;
	 let order​2 = b​ack_o​f_hou​ses::​Appet​izer:​:Nood​les;
}

We can utilize the Kebab and Noodles variations in eat_at_restaurant
because we made the Appetizer enum public. Enum variants aren’t ben-
eficial unless they’re public; it would be inconvenient to annotate every
enum variant with the pub in every situation; therefore, the public is the
default. Because struct fields are frequently useful without being public,
they follow the general rule that everything is private by default unless
annotated with pub.

We haven’t addressed one more scenario utilizing pub yet: the use key-
word, which is our last module system feature. We’ll start with use on its
own and then illustrate how to mix pub and use.

BRINGING PATHS INTO THE SCOPE
WITH THE USE KEYWORD
The paths we’ve written so far to call functions may appear to be incon-
veniently long and repetitive. For example, we used the absolute or rela-
tive route to the add_to_waitlist function in previous examples; we had to
specify front_of_houses and hosting every time we wished to call add_to_
waitlist. There is a way to make things easier and with the use keyword,
we may bring a path into a scope once and then call the things in that path
as local items.

We bring the crate::front_of_houses::hosting module into the scope of
the eat at restaurant function in the example below, so we simply have to

142    ◾    Mastering Rust﻿

provide hosting::add to waitlist to use the eat at restaurant function’s add
to waitlist method.

Filename: src/thelib​.​rs

mod front_of_houses {
	 pub mod hostings {
	 	 pub fn add_to_waitlist() {}
  	 }
}

use crate::front_of_houses::hostings;

pub fn eat_at_restaurant() {
	 hostings::add_to_waitlist();
	 hostings::add_to_waitlist();
	 hostings::add_to_waitlist();
}

Adding use and a path is comparable to creating a symbolic link in
the filesystem in a scope. Because use crate::front of houses::hostings was
added to the crate root, hostings is now a valid name in that scope, just
as if the hostings module had declared there. Like all other paths, paths
brought into scope with use check for privacy.

Use and a relative path can also bring an item into scope. The program
below demonstrates how to define a relative route to achieve the same
results as the program above.

Filename: src/thelib​.​rs

mod front_of_houses {
	 pub mod hostings {
	 	 pub fn add_to_waitlist() {}
  	 }
}

use self::front_of_houses::hostings;

pub fn eat_at_restaurant() {
	 hostings::add_to_waitlist();
	 hostings::add_to_waitlist();
	 hostings::add_to_waitlist();
}

Packages, Crates, and Modules﻿    ◾    143

Creating the Idiomatic use Paths

We might be wondering why, in the previous code, we used use
crate::front_of_houses::hostings and then used hostings::add_to_waitlist
in eat_at_restaurant instead of using the use path out to the add_to_wait-
list function.

Filename: src/thelib​.​rs

mod front_of_houses {
	 pub mod hostings {
	 	 pub fn add_to_waitlist() {}
  	 }
}

use crate​::fro​nt_of​_hous​es::h​ostin​gs::a​dd_to​_wait​list;​

pub fn eat_at_restaurant() {
	 add_to_waitlist();
	 add_to_waitlist();
	 add_to_waitlist();
}

Even though the previous example accomplishes the same goal, it is
the idiomatic way to bring a function into scope with use. When we use
to get the function’s parent module into scope, we must specify the parent
module when invoking the function. When invoking a function, specify-
ing the parent module makes it apparent that the function isn’t local while
also reducing the number of times the whole path is repeated.

However, when bringing in structs, enums, and other things with use,
specifying the complete path is idiomatic. The code below demonstrates
how to introduce the HashMap struct from the standard library into the
scope of a binary crate in an idiomatic fashion.

Filename: src/themain​.​rs

use std::collections::HashMap;
fn main() {
	 let mut map1 = HashMap::new();
	 map1​.inse​rt(2, 1);
}

144    ◾    Mastering Rust﻿

This idiom has no compelling reason: it’s simply a tradition that has
formed, and people have grown accustomed to reading and creating Rust
code in this manner.

This idiom is only broken if we use statements to bring two items with
the same name into scope, which Rust doesn’t allow. The following exam-
ple demonstrates how to scope two Result types with the same name but
separate parent modules and how to refer to them.

Filename: src/thelib​.​rs

use std::fmt;
use std::io;

fn function1() -> fmt::Results {

}

fn function2() -> io::Results<()> {

}

As we can see, the two Result types are distinguished by using the par-
ent modules. Instead of using std::fmt::Result, we may use std::io::Result.
If we used Result, we’d have two Result types in the same scope, and Rust
wouldn’t know which one we meant.

Providing New Names with the as Keyword

Another way to solve the problem of bringing two types with the same
name into the same scope with use is to specify as and a new local name,
or alias, for the type after the path. The below example shows a different
approach to writing the code above by using as to rename one of the two
Result types.

Filename: src/thelib​.​rs

use std::fmt::Results;
use std::io::Results as IoResult;

fn function1() -> Results {
	 // --snip--
}

Packages, Crates, and Modules﻿    ◾    145

fn function2() -> IoResult<()> {
	 // --snip--
}

We chose the new name IoResult for the std::io::Results type in the sec-
ond use statement so that it doesn’t clash with the Result from std::fmt that
we’ve also brought into scope.

Re-exporting Names with pub use

When we use the use keyword to bring a name into scope, the name that
appears in the new scope is private. We can mix pub and use to allow the
code that calls our code to refer to that name as if it were defined in that
code’s scope. This approach is known as re-exporting because we’re bring-
ing an item into the scope and making it available for others to bring into
their scope.

Filename: src/thelib​.​rs

mod front_of_houses {
	 pub mod hostings {
	 	 pub fn add_to_waitlist() {}
  	 }
}

pub use crate::front_of_houses::hostings;

pub fn eat_at_restaurant() {
	 hostings::add_to_waitlist();
	 hostings::add_to_waitlist();
	 hostings::add_to_waitlist();
}

External code can now use hostings::add_to_waitlist to call the add_
to_waitlist method utilizing pub usage. The eat_at_restaurant function
may call hostings::add_to_waitlist in its scope if we hadn’t specified pub
usage, but external code couldn’t take advantage of this new path.

When the internal structure of our code differs from how programmers
calling your code would think about the domain, re-exporting is useful.
For example, in this restaurant metaphor, the individuals in charge of the
restaurant consider “front of house” and “back of house.” On the other

146    ◾    Mastering Rust﻿

hand, customers visiting a restaurant are unlikely to think of the restau-
rant’s components in those terms. We can write our code with the one
structure but disclose a different structure with pub usage. As a result, our
library is well-organized for programmers working on it and program-
mers calling it.

SEPARATING MODULES INTO DIFFERENT FILES
So far, this chapter’s examples have all declared several modules in a single
file. To make the code easier to navigate, we might want to transfer the
definitions of large modules to a different file.

Starting with the previous code, we may relocate the front of houses
module to its file src/front of house​.​rs by altering the crate root file to
include the below code. The crate root file, in this case, is src/lib​.r​s, but
this approach also works with binary crates with src/main​.​rs as the crate
root file.

Filename: src/thelib​.​rs

mod front_of_houses;

pub use crate::front_of_houses::hostings;

pub fn eat_at_restaurant() {
	 hostings::add_to_waitlist();
	 hostings::add_to_waitlist();
	 hostings::add_to_waitlist();
}

In addition, there’s src/front_of_houses. As seen, rs gets the definitions
from the front_of_houses module’s body.

Filename: src/front​_of​_houses​​.rs

pub mod hostings {
	 pub fn add_to_waitlist() {}
}

Rather than using a block following mod front_of_houses, a semico-
lon informs Rust to load the module’s contents from another file with the
same name. To keep our example going and remove the hosting module

Packages, Crates, and Modules﻿    ◾    147

to its file, we update src/front​_of​_houses​​.rs only to contain the hosting
module declaration:

Filename: src/front​_of​_houses​​.rs

pub mod hostings;

Then we create an src/front of house directory and a file, src/front of
house/hostings​.r​s, to hold the hosting module’s definitions:

Filename: src/front_of_houses/hostings​.​rs

pub fn add_to_waitlist() {}

Even if the definitions are in distinct files, the module tree remains the
same, and the function calls in eat_at_restaurant will operate without
modification. As modules grow in size, you can use this technique to relo-
cate them to new files.

It’s worth noting that the pub use crate::front_of_houses::hosting state-
ment in src/lib​.​rs hasn’t changed, and neither has a use, which has no
bearing on which files are compiled as part of the crate. The mod keyword
declares modules, and Rust looks for the code that goes into that module
in a file with the same name as the module.

This chapter covered packages and crates, defining modules to control
scope and privacy, paths for referring to an item in the module tree, and
bringing paths into scope with the use keyword. We also covered separat-
ing modules into different files.

https://taylorandfrancis.com/

149

C h a p t e r 7

Error Handling

IN THIS CHAPTER

	➢ Unrecoverable errors with panic!

	➢ Recoverable errors with Result

In the previous chapter, we discussed managing growing projects with
packages, crates, and modules. In this chapter, we will cover error han-
dling, where we will discuss unrecoverable errors with panic! and recover-
able errors with Result.

ERROR HANDLING
Rust’s dedication to dependability goes to error handling as well. Errors
are an inevitable part of software development; thus, Rust offers several
capabilities for dealing with them. Before your code can compile, Rust
often needs us to acknowledge the potential of an error and take action.
This criterion improves the robustness of our program by guaranteeing
that mistakes are discovered and handled effectively before our code is
pushed to production.

Mistakes are divided into two kinds by Rust: recoverable and unrecov-
erable errors. It’s appropriate to notify the user of a recoverable error, such
as a file not found error, and retry the action. Unrecoverable errors, such
as trying to access a place beyond the end of an array, are always signs of
a bug.

Mastering Rust Error Handling

DOI:  10.1201/9781003311966-7

10.1201/9781003311966-7

https://dx.doi.org/10.1201/9781003311966-7

150    ◾    Mastering Rust﻿

Most programming languages don’t differentiate between these two
types of problems and treat them the same way, using techniques like
exceptions. There are no exceptions in Rust. Instead, it has the panic!
macro that stops execution when the program encounters an unrecover-
able error and the type Result for recoverable errors. This chapter starts
with panic! and then moves on to returning Result values. We’ll also con-
sider factors to consider when choosing whether to try to recover from an
error or terminate execution.

Unrecoverable Errors with panic!

Bad things happen in our code from time to time, and there’s nothing
we can do about it. Rust has the panic! macro for certain situations. Our
program will print a failure message, unwind and clean up the stack, and
then terminate when the panic! macro runs. This usually occurs when a
bug has been discovered and the programmer is unsure how to handle the
error.

Unwinding Stack or Aborting in Response to a Panic
When a panic happens by default, the program unwinds, which means
Rust walks up the stack and cleans up the data from each function it
encounters. However, returning and cleaning up is a lot of work. The other
option is to stop the program right away, which will end it without clean-
ing up. The operating system will then have to clean up the program’s
memory. If we need to make the final binary as small as possible in our
project, we may switch from unwinding to aborting upon a panic by add-
ing panic = ‘abort’ to the appropriate [profile] sections in our Cargo​.to​ml
file. For example, if we want to abort when there is a panic in release mode,
we may add this:

[profile.release]

panic = ‘abort’

Let’s make a panic! call in a straightforward program:

Filename: src/themain​.​rs

fn main() {
	 panic!(“crash & burn”);
}

Error Handling﻿    ◾    151

When we run the program, we see something like this:

$ cargo run
	 Compiling panic v0.1.0 (file:///projects/panic)
	  Finished �dev [unoptimized + debuginfo] target(s) in

0.29s
	 	 Running `target/debug/panic`
thread �‘main’ panicked at ‘crash & burn’, src/main​.rs​:​2:5
note: run with the `RUST_BACKTRACE=1` environment
variable to the display backtrace

The panic causes the error message in the last two lines! command.
Our panic message and the location in our source code where the panic
occurred are shown in the first line: it’s the second line, the fifth character
of our src/themain​.​rs file, as indicated by src/themain​.rs​:2​​:5.

In this case, we can see the panic! macro call if we go to that line. In
other circumstances, the panic! macro may call in code that our code
calls, and the filename and line number shown by the error message will
be someone else’s code, not the line of our code that eventually led to the
panic! call. We can utilize the backtrace of the panic! call’s methods to
work out which section of our code is causing the issue. Next, we’ll go over
what a backtrace is in greater depth.

Using panic! Backtrace
Let’s look at another scenario to see how it feels when we’re in a panic!
because of a flaw in our code. In this case, the call comes from a library
rather than from our code directly contacting the macro. Some code tries
to retrieve an element in a vector in the program by index.

Filename: src/themain​.​rs

fn main() {
	 let v1 = vec![1, 2, 3];

	 v1[99];
}

We’re trying to get to the 100th element of our vector (index 99 because
indexing starts at zero), but there are only three elements. Rust will panic
in this situation. Although [] is supposed to return an element, if we give
an invalid index, there is no element that Rust can return that is correct.

152    ◾    Mastering Rust﻿

Reading beyond the end of a data structure is undefined behavior in
C. Even if the memory doesn’t belong to that structure, we might retrieve
whatever is at the place in memory that corresponds to that element in
the data structure. This is known as a buffer overread, and it can lead to
security flaws if an attacker can change the index so that they can read
data they shouldn’t be permitted to read after the data structure has been
saved.

If we try to read an element at an index that doesn’t exist, Rust will stop
execution and refuse to proceed, protecting our application from this type
of vulnerability.

$ cargo run
	 Compiling panic v0.1.0 (file:///projects/panic)
	  Finished �dev [unoptimized + debuginfo] target(s) in

0.29s
	 	 Running `target/debug/panic`
thread ‘main’ panicked at the ‘index out of bounds:
len is 3, but the index is 99’, src/main​.rs​:​4:5
note: run with the `RUST_BACKTRACE=1` environment
variable to display backtrace

This problem occurs when we try to access index 99 on line 4 of our
main​.​rs file. The RUST_BACKTRACE environment variable can be set
to acquire a backtrace of exactly what happened to trigger the problem,
according to the next note line. A backtrace lists all the functions used to
get to this point. Backtraces in Rust function similarly to backtraces in
other languages: the key to reading a backtrace is to start at the beginning
and read until we see the files created. That is the location where the issue
began.

The lines above and below the lines mentioning our files are code that
was called by our code, and the lines below are code that was called by our
code. These lines could contain Rust core code, standard library code, or
crates we’re utilizing. Set the RUST_BACKTRACE environment variable
to any value other than 0 to see if we can get a backtrace.

$ RUST_BACKTRACE=1 cargo run
thread �‘main’ panicked at ‘index out of bounds: the

len is 3 but the index is 99’, src/themain​.rs​:​
4:5

stack backtrace:

http://www.themain.rs:4:5

Error Handling﻿    ◾    153

  0: rust_begin_unwind
	 	 	 �at /rust​c/7ea​c88ab​b2e57​e752f​3302f​02be5​

f3ce3​d7adf​b4/li​brary​/std/​src/p​​anick​​ing​.r​​​s​
:483​

  1: core::panicking::panic_fmt
	 	 	 �at /rust​c/7ea​c88ab​b2e57​e752f​3302f​02be5​

f3ce3​d7adf​b4/li​brary​/core​/src/​panic​​king.​​rs​​
:85​

  2: core::panicking::panic_bounds_check
	 	 	 �at /rust​c/7ea​c88ab​b2e57​e752f​3302f​02be5​

f3ce3​d7adf​b4/li​brary​/core​/src/​panic​​king.​​rs​​
:62​

  3: <usize �as core:​:slic​e::in​dex::​Slice​Index​<[T]>​
>::in​dex

	 	 	 �at /rust​c/7ea​c88ab​b2e57​e752f​3302f​02be5​
f3ce3​d7adf​b4/li​brary​/core​/src/​slice​/inde​​x​
.rs:​​​255

  4: core::�slice::index::<impl core::ops::index::
Index for [T]>::index

	 	 	 �at /rust​c/7ea​c88ab​b2e57​e752f​3302f​02be5​
f3ce3​d7adf​b4/li​brary​/core​/src/​slice​/inde​​x​
.rs:​​​15

  5: <alloc:�:vec::Vec<T> as core::ops::index::Index<I>
>::index

	 	 	 �at /rust​c/7ea​c88ab​b2e57​e752f​3302f​02be5​
f3ce3​d7adf​b4/li​brary​/allo​c/src​/vec.​​rs​:19​​​82

  6: panic::main
	 	 	 �at./src/main​.rs​:4
  7: core::ops::function::FnOnce::call_once
	 	 	 �at /rust​c/7ea​c88ab​b2e57​e752f​3302f​02be5​

f3ce3​d7adf​b4/li​brary​/core​/src/​ops/f​​uncti​​on​
.rs​​​:227

note: some �details are omitted, run with the `RUST_
BACKTRACE=full` for a verbose backtrace.

That’s a significant amount of output! Depending on our operating sys-
tem and Rust version, the exact output that appears may differ. Debug
symbols must enable to get backtraces using this information. When run-
ning cargo build or cargo run without the --release flag, as we have above,
debug symbols are enabled by default.

Line 6 of the backtrace in the output leads to the problematic line in
our project: line 4 of src/themain​.r​s. If we don’t want program to panic,

154    ◾    Mastering Rust﻿

we should start looking at the place indicated by the first line mentioning
a file we created. The solution to remedy the panic in the preceding code,
where we purposefully built code that would panic to explain how to use
backtraces, is to not request an element at index 99 from a vector that only
includes three items. If our code panics again, we’ll need to figure out
what action it’s performing with what values to create the panic and what
it should do instead.

We’ll return to panic!, and when it should and should not be used to
handle error scenarios, in the section “To Panic! or Not to Panic!” later in
this chapter. In the meantime, we’ll look at how to use Result to recover
from an error.

RECOVERABLE ERRORS WITH THE RESULT
The majority of errors aren’t substantial enough to cause the software to
shut down completely. When a function fails, it may be for a reason that is
simple to understand and respond to: if we attempt to access a file and it
fails because the file does not exist, instead of terminating the process, we
might wish to create the file.

enum Result<T, E> {
	 Ok(T),
	 Err(E),
}

The T and E are the generic type parameters, which we’ll go over in more
depth later. We need to know right now that T stands for the type of value
returned in a success scenario within the Ok variant, and E stands for the
type of error received in a failure event within the Err variant. Because
Result contains these general type arguments, we may use it and the func-
tions supplied in the standard library on it in various circumstances where
the successful and error values we want to return are different.

Because the function could fail, we’ll term it a function that returns a
Result value. We try to open a file.

Filename: src/themain​.​rs

use std::fs::File;

fn main() {
	 let f1 = File::open(“helloo​.t​xt”);
}

Error Handling﻿    ◾    155

What evidence do we have that File::open returns a Result? We could
consult the documentation for the standard library API, or we could sim-
ply ask the compiler! If we provide f with a type annotation that isn’t the
function’s return type and then try to compile the code, the compiler
will complain about the types not matching. The error message will then
inform us of the f type. Let’s give it a shot! Because we know File::open’s
return type isn’t u32, we’ll update the let f statement to this:

	 let f1: u32 = File::open(“helloo​.t​xt”);

When we try to compile now, we get the following result:

$ cargo run
	 Compiling error-handling v0.1.0 (file:///projects/
error-handling)
error[E0308]: mismatched types
 --> src/main​.rs​:4​​:18
	 |
4	|	 let f1: u32 = File::open(“helloo​.t​xt”);
	 |	 	 ---  �̂^^^^^^^^^^^^^^^^^^^^^^ expected

`u32`, found enum `Result`
	 |	 	 |
	 |	 	 expected due to this
	 |
	 = note: expected type `u32`
	 	 	 found enum `Result<File, std::io::Error>`

This indicates that the File::open function’s return type is a Result. The
type of success value, std::fs::File, which is a file handle, has been filled in
for the generic argument T. std::io::Error is the type of E used in the error
value.

This return type indicates that the File::open method may succeed and
return a file handle from which we can read or write. The function call
could fail because the file does not exist or we do not have permission to
access it. The File::open function must be able to indicate if it succeeded or
failed and provide the file handle or error information. The Result enum
gives exactly this information.

If File::open succeeds, the value of f in the variable f will be an instance
of Ok containing a file handle. If it fails, the value in f will be an instance
of Err with additional details about the type of mistake that occurred.

156    ◾    Mastering Rust﻿

We must add to the above code to perform different actions depending
on the value. The command File::open returns. As seen in the example
below, the match expression is a simple technique that may be used to
handle the Result.

Filename: src/themain​.​rs

use std::fs::File;

fn main() {
	 let f1 = File::open(“helloo​.t​xt”);

	 let f1 = match f {
	 	 Ok(file) => file,
	 	 Err(error) => panic!(�“Problem opening file:

{:?}”, error),
  	 };
}

The preamble brought the Result enum and its variations into scope,
just like the Option enum, so we don’t need to mention Result:: before the
Ok and Err variants in the match arms.

We instruct Rust to return the inner file value from the Ok variant
when the result is Ok, and we then add that file handle value to the vari-
able f. After the match, we can read or write to the file handle.

The other arm of the match deals with the case where File::open returns
an Err value. We’ve opted to call the panic! macro in this example. If there
is no file named hello​.t​xt in our current directory when we run this code,
the panic! macro will provide the following output:

$ cargo run
	 Compiling error-handling v0.1.0 �(file:///projects/

error-handling)
	  Finished dev [unoptimized + debuginfo] target(s) in 0.73s
	   Running `target/debug/error-handling`
thread �‘main’ panicked at the ‘Problem opening file:

Os {code: 2, kind: NotFound, message: “No such
file or directory”}’, src/main​.rs​:8​​:23

note: �run with the `RUST_BACKTRACE=1` environment
variable to display backtrace

This output, as usual, shows us exactly what went wrong.

Error Handling﻿    ◾    157

The code above will cause panic! regardless of why File::open failed.
Instead, we want to do different actions depending on the reason for the
failure: if File::open failed because the file didn’t exist, we want to create
it and return the handle to the new file. We still want the code to panic
if File::open fails for any other reason because we don’t have permission
to open the file in the same way it did previously. Look at the code below,
which includes an inner match expression.

Filename: src/themain​.​rs

use std::fs::File;
use std::io::ErrorKind;
fn main() {
	 let f1 = File::open(“helloo​.t​xt”);

	 let f1 = match f {
	 	 Ok(file) => file,
	 	 Err(error) => match error​.ki​nd() {
	 	 	 ErrorKind::�NotFound => match

File::create(“helloo​.t​xt”) {
	 	 	 	 Ok(fc) => fc,
	 	 	 	 Err(e) => panic!(�“Problem creating

file: {:?}”, e),
	 	   	 },
	 	 	 other_error => {
	 	 	 	 panic!(�“Problem opening file: {:?}”,

other_error)
	 	   	 }
	   	 },
  	 };
}

The value returned by File::open in the Err variation is of the type
io::Error, a struct given by the standard library. We can retrieve an
io::ErrorKind value by calling the method kind on this struct. The stan-
dard library provides the enum io::ErrorKind, which has variants that
describe the many types of errors that can occur during an io operation.
The ErrorKind::NotFound variant we wish to use indicates that the file
we’re trying to open doesn’t exist yet. So we have an outer match on f1, but
an inner match on error​.ki​nd ().

We want to see if the value returned by the error in the inner match.
The ErrorKind enum’s kind method is the NotFound variation. If that’s

158    ◾    Mastering Rust﻿

the case, File::create is used to create the file. We need a second arm in
the inner match expression because File::create can also fail. A separate
error message is displayed if the file cannot be created. Because the second
arm of the outer match remains unchanged, the program panics when it
encounters any error other than a missing file error.

That’s a significant amount of match! The match expression is quite
useful, but it is also a very primitive expression.

Shortcuts for the Panic on Error: unwrap and expect

Match works fine, although it’s a little verbose and doesn’t always explain
intent clearly. Many helper methods are defined on the Result<T, E> type
to do various operations. One of those methods, unwrap, is a shorthand
method that works similarly to the match expression we wrote earlier.
Unwrap will return the value inside the Ok if the Result value is the Ok
varient. Unwrap will call the panic! macro for us if the Result is the Err
varient. Here’s an example of how unwrap works:

Filename: src/themain​.​rs

use std::fs::File;

fn main() {
	 let f1 = File::open(“helloo​.t​xt”).unwrap();
}

We’ll get an error message from the panic! if we run this code without a
helloo​.t​xt file. The unwrap method generates the following call:

thread �‘main’ panic at ‘called `Result::unwrap()` on
`Err` value: Error {

repr: �Os {code: 2, message: “No such file or
directory”}}’,

src/libcore/result​.rs​:90​6:4

Another method, expect, is similar to unwrap in that it allows us to
select the panic! error notification. Using expect instead of unwrap and
providing clear error messages might help us communicate our goal and
find the source of a panic. Expect has the following syntax:

Error Handling﻿    ◾    159

Filename: src/themain​.​rs

use std::fs::File;

fn main() {
	 let f1 = ​File:​:open​(“hel​​loo​.t​​​xt”).​expec​t(“Th​e
Failed to open helloo​.t​xt”);
}

Expect is similar to unwrap in that it returns the file handle or calls the
panic! macro. The parameter we pass to expect will be the error message
used by expect in its call to panic!, rather than the default panic! message
used by unwrap. This is how it appears:

thread �‘main’ panicked at ‘Failed to open helloo​.tx​t:
Error {repr: Os {code:

2, �message: “No such file or directory”}}’, src/
libcore/result​.rs​:90​6:4

Because this error message begins with the line Failed to open helloo​.tx​
t, it will be easier to determine where this error message originates in the
code. Because all unwrap calls that panic print identical messages, it can
take longer to determine which unwrap is generating the panic if we use
unwrap in multiple places.

Propagating Errors

Rather than handling the error within the function, we can pass it on to
the calling code to decide what to do when developing a function whose
implementation calls something that might fail. This is referred to as
propagating the error, and it gives the calling code greater power since
the calling code may have more information or logic that dictates how the
issue should be handled than we do in our code.

The example depicts a function that reads a username from a file. This
function will return errors to the code that called it if the file doesn’t exist
or can’t be read.

Filename: src/themain​.​rs

use std::fs::File;
use std::io::{self, Read};

160    ◾    Mastering Rust﻿

fn read_username_from_file() �-> Result<String,
io::Error> {

	 let f1 = File::open(“helloo​.t​xt”);

	 let mut f1 = match f1 {
	 	 Ok(file) => file,
	 	 Err(e) => return Err(e),
  	 };

	 let mut s1 = String::new();

	 match f1.read_to_string(&mut s1) {
	 	 Ok(_) => Ok(s1),
	 	 Err(e) => Err(e),
  	 }
}

This function can be written in a much shorter method, but we’ll start
by doing a lot of it manually to learn about error handling and then we’ll
show the shorter way at the end. First, let’s look at the function’s return
type: Result<String, io::Error>, a string that contains an io::Error. This
indicates that the function returns a value of type Result<T, E>, with the
generic argument T filled with the concrete type String and the generic
type E filled with the concrete type io::Error. If this function completes
successfully, the code that calls it will receive an Ok value containing a
String containing the username that this function retrieved from the file.

If this method encounters any issues, the code that calls it will receive
an Err value that contains an instance of io::Error. More details about the
issues can be found in the error message. We chose io::Error as the return
type of this function because that’s the type of error value returned from
both of the operations we’re calling in the body of this function that can
fail: the read_to_string method and the File::open function.

The body of the function begins with a call to the File::open function.
Then, instead of invoking panic!, we handle the Result value returned with
a match similar to the match in the previous code. In the Err scenario, we
exit this method early and return the error value from File::open to the
calling code as the error value for this procedure. We keep the file handle
in the variable f1 and continue if File::open succeeds.

Then, using the read to string function on the file handle in f1, we create
a new String in variable s and read the contents of the file into s1. Because

Error Handling﻿    ◾    161

the read to string method may fail even if File::open succeeded, it also
returns a Result. So we’ll need another match to deal with that Result: if
read to string succeeds, our function succeeds, and we return the user-
name from the file that’s now in s1 wrapped in an Ok. If read to string
fails, the error value is returned in the same way as the match that handled
the return value of File::open returned the error value. However, because
this is the last expression in the function, we don’t need to specify return
explicitly.

The code that runs this procedure will then handle either getting an
Ok value containing a username or getting an Err value containing an
io::Error. We don’t know what those values will be used for by the calling
code. If the calling code receives an Err value, it may issue a panic! signal.
To avoid crashing the software, use a default username or search for the
username from somewhere other than a file, for example. We don’t have
enough knowledge to figure out what the calling code is trying to do, so
we send all of the success and error information up to it to handle.

Because this propagating error pattern is so prevalent in Rust, the ques-
tion mark operator ? is provided to make it easier.

Shortcut for Propagating Errors: the ? Operator

This implementation of read_username_from_file has the same function-
ality as the previous example, except it uses the ? operator.

Filename: src/themain​.​rs

use std::fs::File;
use std::io;
use std::io::Read;

fn read_username_from_file() -> Result<String, io::Error> {
	 let mut f1 = File::open(“helloo​.t​xt”)?;
	 let mut s1 = String::new();
	 f.read_to_string(&mut s1)?;
	 Ok(s1)
}

The ? following a Result value is defined to behave similarly to the match
expressions we previously created to handle the Result values. If the Result
value is an Ok, this expression will return the value inside the Ok, and the
program will proceed. If the value is an Err, the Err will be returned from

162    ◾    Mastering Rust﻿

the entire function as if the return keyword had been used, allowing the
error value to be propagated to the calling code.

There is a distinction between the match expression and the ? operator:
error values that have the ? operator calls to them pass through the from
function, which is defined in the standard library’s From trait and is used
to convert errors from one type to another. When the from the function
is called with the ? operator, the error type received is transformed to the
error type defined in the current function’s return type.

This is useful when a function returns a single error type to repre-
sent all possible failures, even if parts may fail for various reasons. The ?
operator takes care of the conversion automatically as long as each error
type implements the from function to define how to convert itself to the
returned error type.

The value inside an Ok will be returned to the variable f1 by the? at
the end of the File::open call. If an error occurs, the? operator exits the
function early and returns any Err value to the calling code. The? at the
completion of the read_to_string call has the same effect.

The ? operator removes a lot of boilerplate and simplifies the implemen-
tation of this function. We could make this code even shorter by chaining
method calls after the ?.

Filename: src/themain​.​rs

use std::fs::File;
use std::io;
use std::io::Read;

fn read_username_from_file() �-> Result<String,
io::Error> {

	 let mut s1 = String::new();

	 Fi​le::o​pen(�“​hello​​o​.​txt​”)?.r​ead_t​o_str​ing(&​mut
s1)?;

	 Ok(s1)
}

The generation of a new String in s1 has been moved to the beginning of
the function; nothing else has changed. We’ve chained the call to read to
string right onto the result of File::open(“helloo​.t​xt”)? instead of creating

Error Handling﻿    ◾    163

a variable f1. We still have a ? at the end of the read_to_string call, and
instead of returning errors, we still return an Ok value containing the
username in s1 when both File::open and read_to_string succeed. The
functionality is the same as in the previous programs; it’s just written in a
new, more ergonomic approach this time.

This example demonstrates how we may make it even shorter when it
comes to other approaches to create this function:

Filename: src/themain​.​rs

use std::fs;
use std::io;

fn read_username_from_file() �-> Result<String,
io::Error> {

	 fs::read_to_string(“helloo​.t​xt”)
}

Because reading a file into a string is a typical task, Rust includes the
fs::read_to_string function, which opens the file, produces a new String,
reads the file’s contents, places them into that String, and returns it. Using
fs::read_to_string, however, does not allow us to illustrate all of the error
handling, so we showed it the longer way first.

The ? Operator Can Be Used in Functions that Return Result

The ? operator is defined to work in the same way as the match expres-
sion we defined in the previous code, and can be used in functions with a
return type of Result. Return Err(e) is the part of the match that requires
a Result return type; therefore, the function’s return type must be a Result
to be consistent with this return.

Let’s just see what happens if we use the ? operator in the main func-
tion, which has a return type of () as we may recall:

use std::fs::File;

fn main() {
	 let f1 = File::open(“helloo​.t​xt”)?;
}

We get an error notice when we compile this code.

164    ◾    Mastering Rust﻿

This error indicates that the ? operator can only use in functions that
return Result, Option, or another type that implements std::ops:: Try.
When writing code in a function that doesn’t return one of these types yet,
we want to use ?. We have two options for fixing this problem when calling
other functions that return Result<T, E>. If we don’t have any constraints,
changing the return type of our function to Result<T, E> is one option.
The alternative option is to use a match or one of the Result<T, E> meth-
ods to handle the Result<T, E> in any way that makes sense.

The main function is unique, and its return type must follow to cer-
tain guidelines. () is one valid return type for main, while Result<T, E> is
another convenient return type, as demonstrated here:

use std::error::Error;
use std::fs::File;

fn main() -> Result<(), Box<dyn Error>> {
	 let f1 = File::open(“helloo​.t​xt”)?;

	 Ok(())
}

A trait object is what the Box<dyn Error> type is called. For the time
being, you can interpret Box<dyn Error> as “any kind of error.” It is per-
missible to use ? in the main function with this return type.

Let’s return to the question of how to decide which is suitable to employ
in which instances now that we’ve gone over the details of calling panic!
or returning Result.

TO PANIC! OR NOT TO PANIC!
How do we know when it is time to call panic!, when we should return
Result, and when we should not? There’s no mechanism to recover when
code panics. If we choose to call panic!, we’re deciding on behalf of the
calling code that a scenario is unrecoverable, whether there’s a possible
means to recover or not.

We give the calling code options rather than deciding when we choose
to return a Result value. The calling code can choose to recover in a way
that’s appropriate for the situation, or it can decide that an Err value, in
this case, is unrecoverable, in which case it can use panic! and change our
recoverable error into an unrecoverable one. As a result, returning Result
is a sensible default choice when defining a function that may fail.

Error Handling﻿    ◾    165

In a few cases, it’s preferable to write code that panics rather than pro-
ducing a Result. Let’s look at why panicking is appropriate in situations
such as examples, prototype code, and tests. Then we’ll talk about sce-
narios where the compiler can’t identify whether something is impossible,
but we can. This chapter will end with some general rules for deciding
whether or not to panic while writing library code.

Examples, Prototype Code, and Tests

When constructing an example to demonstrate a concept, including
robust error-handling code can make the example less understandable. In
examples, it’s assumed that a call to a method like unwrap that can panic
is intended as a placeholder for how we’d like our application to handle
errors, which can vary depending on the rest of our code.

Similarly, before we decide how to handle errors, the unwrap and
expect methods come in handy for experimenting. When we’re ready to
make our program more robust, they leave explicit indicators in our code.

If a method call fails in a test, the entire test should fail, even if the
method isn’t the functionality being tested. Because panic! is how a test is
reported as a failure, we should call unwrap or expect instead.

Cases in Which We Have More Information than the Compiler

We should call unwrap when we have some logic that guarantees that the
Result has an Ok value but that logic isn’t something the compiler under-
stands. We’ll still have to deal with a Result value: whatever operation
we’re calling has the potential to fail in general, even if it’s logically impos-
sible in your specific circumstance. It’s completely okay to call unwrap if
we can verify that we’ll never have an Err variation by manually analyzing
the code. Here’s an illustration:

	 use std::net::IpAddr;

	 let home: IpAddr = “127.0.0.1”.parse().unwrap();

We’re processing a hardcoded text to create an IpAddr instance. Because
we can see that 127.0.0.1 is a legitimate IP address, we may use unwrap in
this case. However, having a hardcoded, valid string does not affect the
parse method’s return type: we still obtain a Result value, and the com-
piler will treat it as if the Err variant is a possibility since the compiler isn’t
smart enough to recognize that this string is always a valid IP address.

166    ◾    Mastering Rust﻿

We’d definitely want to handle the Result more robustly if the IP address
string came from a user rather than being hardcoded into the program,
and so had a chance of failing.

Guidelines for the Error Handling

When our code may wind up in a bad state, it’s best to have your code
panic. A bad state occurs when an assumption, guarantee, contract, or
invariant is violated, such as when invalid, conflicting, or missing values
are supplied to our code along with one or more of the following:

•	 The bad state isn’t something that happens regularly.

•	 After this point, our code must rely on the fact that we are not in this
bad state.

•	 There isn’t a good way to encode information in the kinds we employ.

If someone uses our code and passes in values that don’t make sense,
the best option is to call panic! and notify the person who is using our
library about the error in their code so that they can correct it while
developing. Similarly, panic! is frequently suitable when accessing exter-
nal code that we don’t control, and it returns an invalid state that we
can’t change.

When failure is predicted, however, returning a Result rather than
making a panic! call is preferable. Two examples are a parser receiving
malformed data or an HTTP request returning a status indicating a rate
restriction. Returning a Result in these circumstances implies that failure
is a possibility that the calling function must handle.

When our code performs operations on values, it should first check
that the values are legitimate and then panic if they aren’t. This is mainly
for security reasons: operating on erroneous data can expose our code to
vulnerabilities. This is the primary cause of panic in the standard library.
Frequent security vulnerability occurs when we attempt an out-of-bounds
memory access: trying access to memory that does not belong to the cur-
rent data structure. Contracts are common in functions: their behavior is
only guaranteed if the inputs fulfill specific criteria. Panicking when the
contract is broken makes sense since a contract violation always indicates
a caller-side issue, which we don’t want the calling code to have to deal
with explicitly. In fact, calling code has no realistic way of recovering; call-
ing programmers must modify the code. Contracts for a function should

Error Handling﻿    ◾    167

be explained in the API description for the function, especially when a
violation may result in a panic.

Having a lot of error checks in all of our functions, on the other hand,
would be verbose and unpleasant. Fortunately, we can automate many
checks by using Rust’s type system (and hence the compiler’s type check-
ing). If a specific type is used as a parameter in your function, we can
continue with the logic of our code knowing that the compiler has already
checked for an acceptable value. If we use a type instead of an Option, for
example, our program expects to see something rather than nothing.

Our code will no longer have to deal with two situations for the Some
and None variations; instead, it will have to deal with one case for a value.
Because code that attempts to send nothing to our function will fail to
build, our method will not need to check for that case at runtime. Using
an unsigned integer type like u32, for example, ensures that the parameter
is never negative.

Creating the Custom Types for Validation

Let’s take the idea of leveraging Rust’s type system to assure a valid value
a step further by defining a new type for validation. We never checked the
user’s guess against our secret number to see if it was between those num-
bers; we merely checked that it was positive. In this example, the implica-
tions were minor: our output of “Too high” or “Too low” would still be
accurate.

However, it would be a useful upgrade to assist the user toward accurate
guesses and have different reactions when the user guesses a number out
of range vs. when the user enters letters, for example.

To accept potentially negative values, parse the guess as an i32 instead
of merely an u32, and then add a check for the number being in range, as
shown below:

loop {

	 	 let guess: i32 = match guess​.tr​im().parse() {
	 	 	 Ok(numb) => numb,
	 	 	 Err(_) => continue,
	   	 };

	 	 if guess < 1 || guess > 100 {
	 	 	 println!(�“Secret number will be between 1 &

100.”);

168    ◾    Mastering Rust﻿

	 	 	 continue;
	   	 }

	 	 match guess​.c​mp(&secret_number) {
	 }

If our value is out of range, the if expression informs the user of the
problem and calls continue to begin the next loop iteration and ask for
another guess. We can proceed with the comparisons between guess and
the secret number after if expression, knowing that guess is between 1 and
100.

However, this is not the best solution: if it were necessary that the pro-
gram only operates on values between 1 and 100, having a check like this
in every function would be inconvenient (and might impact performance).

Instead of repeating the validations everywhere, we can build a new
type and place the validations in a function to generate an instance of the
type. As a result, functions can safely utilize the new type in their signa-
tures and trust the values they get. The example below shows one approach
to establishing a Guess type that will only produce a Guess instance if the
new function is assigned a value between 1 and 100.

pub struct Guess {
	 value: i32,
}

impl Guess {
	 pub fn new(value: i32) -> Guess {
	 	 if value < 1 || value > 100 {
	 	 	 panic!(�“Guess value between 1 and 100, got

{}.”, value);
	 	 }

	 	 Guess {value}
  	 }

	 pub fn value(&self) -> i32 {
	 	 self​.val​ue
  	 }
}

First, we create a struct called Guess with a value field that holds an i32.
This is the location where the number will be saved.

Error Handling﻿    ◾    169

Then we create instances of Guess values using a related function called
new on Guess. The new function is defined to take one parameter of type
i32 named value and return a Guess. The code in the new function’s body
verifies that the value is between 1 and 100.

If value fails this test, we issue a panic! call, informing the programmer
writing the calling code that a defect needs to be fixed, because creating
a Guess with a value outside of this range would violate the contract that
Guess::new relies on. The circumstances under which Guess::new may
panic should mention in its public-facing API documentation; we’ll go
over documentation conventions that indicate the likelihood of a panic! in
the API documentation. If the value passes the test, we return the Guess
and build a new one with the value field set to the value argument.

Following that, we create a value method that borrows self, has no other
parameters, and returns an i32. Because its function is to retrieve data
from its fields and return it, this type of method is sometimes referred to
as a getter. Because value field of the Guess struct is private, this public
function is required. Because the value field must be secret, code using
the Guess struct is not permitted to set the value directly: code outside the
module must construct an instance of Guess using the Guess::new func-
tion, ensuring that a Guess can’t have a value that the conditions in the
Guess::new function haven’t checked.

A function that takes or returns only values between 1 and 100 could
specify in its signature that it takes or returns a Guess instead of an i32,
eliminating the need for additional checks in the body.

In this chapter, we covered unrecoverable errors with panic! and recov-
erable errors with Result.

https://taylorandfrancis.com/

171

C h a p t e r 8

Generic Types, Traits,
and Lifetimes

IN THIS CHAPTER

	➢ Generic data types

	➢ Traits: defining shared behavior

	➢ Validating references with lifetimes

In the previous chapter, we covered unrecoverable errors with panic! and
recoverable errors with Result. This chapter will discuss generic data types,
traits: defining shared behavior, and validating references with lifetimes.

GENERIC DATA TYPES
Generics can define items such as function signatures or structs, which
can then be used with various concrete data types. Let’s start with using
generics to define functions, structs, enums, and methods. We’ll then go
through how generics affect code performance.

In Function Definitions

We place generics in the signature of a function where we would normally
define the data types of the parameters and return value. This makes our
code more flexible and gives callers of our function more functionality
while avoiding code duplication.

Mastering Rust Generic Types, Traits, and Lifetimes

DOI:  10.1201/9781003311966-8

10.1201/9781003311966-8

https://dx.doi.org/10.1201/9781003311966-8

172    ◾    Mastering Rust﻿

Keeping with our largest function, the following code demonstrates
two functions that discover the largest value in a slice.

Filename: src/themain​.​rs

fn largest_i32(list: &[i32]) -> i32 {
	 let mut large = list[0];

	 for &item in list {
	 	 if item > large {
	 	 	 large = item;
	 	 }
	 }

	 large
}

fn large_char(list: &[char]) -> char {
	 let mut large = list[0];
	 for &item in list {
	 	 if item > large {
	 	 	 largest = item;
	 	 }
	 }

	 large
}

fn main() {
	 let number_list = vec![34, 50, 25, 100, 65];

	 let result = large_i32(&number_list);
	 println!(“Large number is {}”, result);

	 let char_list = vec![‘y’, ‘m’, ‘a’, ‘q’];

	 let result = large_char(&char_list);
	 println!(“Large char is {}”, result);
}

The large_i32 function locates the largest integer in a slice. The large
char method returns the slice’s largest char. Because the function bodies

Generic Types, Traits, and Lifetimes﻿    ◾    173

are identical, let’s avoid duplication by providing a generic type parameter
in a single function.

We must name the type parameter, exactly like we do for the value
parameters in a function, to parameterize the types in the new function
we’ll build. As a type parameter name, we can use any identifier. But we’ll
choose T because parameter names in Rust are short, frequently just a
letter, and Rust uses the CamelCase type-naming standard. T stands for
“type,” and most Rust programmers use it as their default.

We must declare the parameter name in the signature when we use it
in the function’s body so that the compiler understands what it means.
In the same way, when we utilize a type parameter name in a function
signature, we must first specify the type parameter name. Place type
name declarations inside the angle brackets, < >, between the name of
the function and the parameter list, to define the generic biggest func-
tion, as shown:

  fn large<T>(list: &[T]) -> T {

According to this definition, the large function is generic over some
type T. This function takes only one parameter, list, which is a slice of type
T values. The large function will always return a value of type T.

The combined biggest function definition employing the generic data
type in its signature is shown in the following example. The listing also
demonstrates how to use a slice of i32 values or char values to invoke the
function. This code will not compile right now, but we’ll address it later in
this chapter.

Filename: src/themain​.​rs

fn large<T>(list: &[T]) -> T {
	 let mut large = list[0];

	 for &item in list {
	 	 if item > large {
	 	 	 large = item;
	 	 }
	 }

	 large
}

174    ◾    Mastering Rust﻿

fn main() {
	 let number_list = vec![37, 40, 35, 110, 75];

	 let result = large(&number_list);
	 println!(“Largest number {}”, result);

	 let char_list = vec![‘y’, ‘m’, ‘a’, ‘q’];

	 let result = large(&char_list);
	 println!(“Largest char {}”, result);
}

We’ll get the following error if we compile this code right now.

$ cargo run
	 Compiling chapter8 v0.1.0 (file:///projects/
chapter8)
error[E0369]: binary operation `>` cannot be applied
to type `T`
 --> src/main​.rs​:5​​:17
	 |
5	|	 	 if item  >   large {
	 |	 	 	 ---- ^ ------- T
	 |	 	 	 |
	 |	 	 	 T
	 |
help: consider restricting type parameter `T`
	 |
1	| fn large<T: std::cmp::PartialOrd>(list: &[T]) -> T {
	 |	 	 	 ^^^^^^^^^^^^^^^^^^^^^^

The comment mentions the trait std::cmp::PartialOrd. In the next part,
we’ll discuss characteristics. For the time being, this mistake states that
the body of large will not operate for all conceivable forms of T. We can
only employ types whose values may be sorted since we want to compare
values of type T in the body. The std::cmp::PartialOrd trait in the stan-
dard library can be used on types to enable comparisons (see Appendix C
for more on this trait). We’ll learn how to indicate that a generic type has
a specific trait, but first, let’s look at some other methods to use generic
type parameters.

Generic Types, Traits, and Lifetimes﻿    ◾    175

In the Struct Definitions

Using the < > syntax, we can also build structs to employ a generic type
argument in one or more fields. The code below demonstrates creating a
Point<T> struct that can hold any type of a and b coordinate value.

Filename: src/themain​.​rs

struct Point<T> {
	 a: T,
	 b: T,
}

fn main() {
	 let integer = Point {a: 4, b: 14};
	 let float = Point {a: 2.0, b: 3.0};
}

The syntax for using generics in struct definitions is similar to that of
function definitions. First, directly after the struct name, we declare the
name of the type argument inside angle brackets. Then, we can utilize the
generic type in the struct definition instead of specifying actual data types.

Because we only used one generic type to describe Point<T>, this defini-
tion says that the Point<T> struct is generic over some type T, and that the
fields a and b are both of that type, whatever it is. Our code will not compile
if we construct an instance of a Point<T> with values of different kinds.

Filename: src/themain​.​rs

struct Point<T> {
	 a: T,
	 b: T,
}

fn main() {
	 let wont_work = Point {a: 4, b: 3.0};
}

When we assign the integer value 4 to a in this example, we tell the
compiler that the generic type T will be an integer for this instance of
Point<T>. Then we’ll get a type mismatch error if we specify 3.0 for b,
which we’ve specified to have the same type as a:

176    ◾    Mastering Rust﻿

$ cargo run
	 Compiling chapter8 v0.1.0 (file:///projects/
chapter8)
error[E0308]: mismatched types
 --> src/main​.rs​:7​​:38
	 |
7	|	 let wont_work = Point {a: 4, b: 3.0};
	 |	 	 	 ^^^ expected �
� integer, found floating-point number

We can utilize multiple generic type parameters to build a Point struct
where a and b are both generic but distinct types. For example, where a is
of type T and b is of type U, we can change the definition of Point to be
generic over types T and U.

Filename: src/themain​.​rs

struct Point<T, U> {
	 a: T,
	 b: U,
}

fn main() {
	 let both_integer = Point {a: 5, b: 10};
	 let both_float = Point {a: 1.0, b: 4.0};
	 let integer_and_float = Point {a: 5, b: 4.0};
}

All instances of Point displayed are now permitted. In a definition, we
can use as many generic type arguments as we want, but adding more
than a few makes our code difficult to read. When we need a lot of generic
types in our code, it may be a sign that we need to break it down into
smaller chunks.

Enums, like structs, can be used to store generic data types in their
variants. Let’s review the Option<T> enum provided by the standard
library, which we utilized in Chapter 5:

enum Option<T> {
	 Some(T),
	 None,
}

Generic Types, Traits, and Lifetimes﻿    ◾    177

We should now be able to understand this definition. As we can see,
Option<T> is a generic over type T enum with two variants: Some, which
stores one type T value, and None, which does not carry any value. We
can represent the abstract concept of having an optional value using the
Option<T> enum. Because Option<T> is generic, we can utilize this
abstraction regardless of the type of optional value.

Enums can also use a variety of generic types. One example is the defi-
nition of the Result enum that we used in Chapter 7:

enum Result<T, E> {
	 Ok(T),
	 Err(E),
}

The Result enum is generic across two types, T and E, and has two vari-
ants: Ok and Err. Ok holds a type T value, whereas Err holds a type E
value. This definition allows us to use the Result enum anytime we have an
operation that can either succeed (return a value of type T) or fail (return
a value of type T) (return an error of some type E). In reality, in the forth-
coming Chapter 9 examples, we used this to open a file, where T was filled
in with the type std::. When the file was successfully opened, E was filled
in with the type std::io::Error, and when problems were opening the file, E
was filled in with the type std::io::Error.

In fact, in the forthcoming Chapter 9 example, we used this to open a
file, where T was filled in with the type std::fs::File when the file was suc-
cessfully opened, and E was filled in with the type std::io::Error when the
file was not properly opened.

When we find many struct or enum definitions in our code that differ
only in the types of values they carry, we can avoid redundancy by chang-
ing to generic types.

In Method Definitions

Methods can implement structs and enums, and generic types can be used
in their definitions.

Filename: src/themain​.​rs

struct Point<T> {
	 a: T,
	 b: T,
}

178    ◾    Mastering Rust﻿

impl<T> Point<T> {
	 fn a(&self) -> &T {
	 	 &self.a
  	 }
}

fn main() {
	 let p = Point {a: 5, b: 10};

	 println!(“p.a = {}”, p.a());
}

We’ve created a method on Point<T> called a that returns a reference
to the data in the field a.

It is worth noting that we need to declare T right after impl to use it to
indicate that we’re implementing methods on the type Point<T>. Rust
can tell that the type in the angle brackets in Point is a generic type rather
than a concrete type by declaring T as generic type after impl.

For example, instead of implementing methods on Point<T> instances
with any generic type, we may implement them only on Pointf32> instances.
We utilize the concrete type f32 in the following code, which means we
don’t define any types after impl.

Filename: src/themain​.​rs

impl Point<f32> {
	 fn distance_from_origin(&self) -> f32 {
	 	 ​(self​​.a​.po​​​wi(2)​ + se​​lf​.b.​​​powi(​2)).s​qrt()​
  	 }
}

This code indicates that the type Point<f32> will have a distance_
from_origin method, while other instances of Point<T> where T is not of
type f32 will not. The approach employs mathematical operations that are
only accessible for floating point types to determine how distant our point
is from the point at coordinates (0.0, 0.0).

Generic type parameters in struct definitions aren’t always the same as
those used in method signatures for that struct. Define the method mixup
on Point<T, U> struct from the previous code, for example. The method
accepts another Point as a parameter, which may or may not be the same

Generic Types, Traits, and Lifetimes﻿    ◾    179

type as the self Point we’re calling mixup. The method returns a new Point
instance with the a value from the passed-in Point (of type W) and the b
value from the self Point (of type T).

Filename: src/themain​.​rs

struct Point<T, U> {
	 a: T,
	 b: U,
}

impl<T, U> Point<T, U> {
	 fn mixup<V, W>(�self, other: Point<V, W>)

-> Point<T, W> {
	 	 Point {
	 	 	 a: self.a,
	 	 	 b: other.b,
	 	 }
	 }
}

fn main() {
	 let p1 = Point {a: 4, b: 10.3};
	 let p2 = Point {a: “Helloo”, b: ‘c’};

	 let p3 = p1​.mix​up(p2);

	 println!(“p3.a = {}, p3.b = {}”, p3.a, p3.b);
}

We’ve defined a Point with an i32 for a (value 4) and an f64 for b in
main (with value 10.3). P2 is a Point struct with a string slice for a (with
the value “Helloo”) and a char for b (with value c). Because fn originated
from p1, calling mixup on p1 with the argument p2 returns p3, which
will have an i32 for a. Because b came from p2, the p3 variable will have
a char for it. p3.a = 4, p3.b = c will be printed using the println! macro
function.

This example aims to show how some generic parameters are stated with
impl, while others are declared with the method description. Because they
go with the struct definition, T and U’s generic arguments are declared

180    ◾    Mastering Rust﻿

after impl. Because the generic arguments V and W are only relevant to
the method, they are stated after fn mixup.

Performance of Code Using Generics

If we’re utilizing generic type parameters, we might be wondering if there’s
a runtime cost. The great news is that Rust implements generics in such
a way that utilizing generic types does not slow down our code any more
than using concrete types.

Rust does this by doing compile-time monomorphization of code that
uses generics. Monomorphization is the process of converting generic code
to specific code by filling in the concrete types needed during compilation.

The compiler performs the opposite of the steps we took to create the
generic function: it examines all places where generic code is called and
generates code for the concrete types with which the generic code is called.

Let’s look at how this works with an example that uses the
Option<T> enum from the standard library:

let integer = Some(4);
let float = Some(4.0);

Rust performs monomorphization while compiling this code. During
this process, the compiler examines the values used in Option<T> instances
and distinguishes between two types of Option<T>: i32 and f64. As a
result, it expands Option <T>generic definition into Option i32 and
Option f64, thus replacing the generic definition with the particular
descriptions.

The following is the monomorphized version of the code. The com-
piler’s individual definitions are used in place of the generic Option<T>:

Filename: src/themain​.​rs

enum Option_i32 {
	 Some(i32),
	 None,
}

enum Option_f64 {
	 Some(f64),
	 None,
}

Generic Types, Traits, and Lifetimes﻿    ◾    181

fn main() {
	 let integer = Option_i32::Some(4);
	 let float = Option_f64::Some(4.0);
}

We pay no runtime cost for utilizing generics because Rust compiles
generic code into code that specifies the type in each instance. When the
code is run, it behaves exactly as if we had manually duplicated each dec-
laration. Rust’s generics are incredibly efficient at runtime, thanks to the
monomorphization method.

Traits: Defining Shared Behavior

A trait informs the Rust compiler about the functionality that a given type
has and can share with other kinds. In an abstract sense, traits can be used
to define shared behavior. Trait boundaries can define a generic type as
any type with specific behavior.

Defining a Trait

The methods that we can call on a type define its behavior. If we call the
same methods on all types, they have the same behavior. Method signa-
tures are grouped in trait definitions to define a set of behaviors required
to achieve a goal.

Assume we have multiple structs that hold different types and amounts
of text, such as a NewsArticle struct that holds a news story filed in a spe-
cific location and a Tweet struct that can have up to 280 characters and
metadata that indicates whether it was a new tweet, a retweet, or a reply to
another tweet.

We want to create a media aggregator library to present data summa-
ries from NewsArticle and Tweet instances. To do so, we’ll need a sum-
mary from each type, which we’ll get by calling the summarize method on
an example. The definition of a Summary trait that expresses this behavior
is shown in code:

Filename: src/thelib​.​rs

pub trait Summary {
	 fn summarize(&self) -> String;
}

182    ◾    Mastering Rust﻿

We define a trait by using the trait keyword followed by the trait’s name,
which in this example is Summary. The method signatures that define the
behaviors of the types that implement this trait, which in this example is
fn summarize(&self) -> String, are declared inside the curly brackets.

We use a semicolon instead of supplying an implementation within
curly brackets after the method signature. Each type implementing this
trait must give its specific behavior for the method’s body. The compiler
will ensure that every type having the Summary trait has the summary
method created with this exact signature.

The method signatures are listed per line, and each line ends in a semi-
colon. A trait can have numerous methods in its body.

Implementing a Trait on a Type

We can now use the Summary trait to express the appropriate behavior and
apply it to the types in our media aggregator. The code shows a NewsArticle
struct implementation of the Summary trait that creates the return value
of summary using the title, author, and location. We define summary for
the Tweet struct as the username followed by the whole text of the tweet,
assuming that the tweet’s content is already limited to 280 characters.

Filename: src/thelib​.​rs

pub struct NewsArticles {
	 pub headline: String,
	 pub location: String,
	 pub author: String,
	 pub content: String,
}

impl Summary for NewsArticles {
	 fn summarize(&self) -> String {
	 	 format!(�“{}, by {} ({})”, self.headline, self​

.autho​r, self.location)
	 }
}

pub struct Tweets {
	 pub usernames: String,
	 pub contents: String,

Generic Types, Traits, and Lifetimes﻿    ◾    183

	 pub reply: bool,
	 pub retweets: bool,
}

impl Summary for Tweets {
	 fn summarize(&self) -> String {
	 	 format!(�“{}: {}”, self.usernames, self.

contents)
	 }
}

Implementing a trait on a type is equivalent to putting ordinary meth-
ods on a type. The difference is that we write the trait name we want to
implement after impl, and then use the for keyword to define the type
we want to implement the trait for. The method signatures defined by
the trait definition are placed within the impl block. Rather than using a
semicolon after each signature, we use curly brackets and fill the method
body with the precise behavior we want the trait’s methods to have for
the given type.

We can call the methods on instances of NewsArticles and Tweets in
the same manner we call ordinary methods after implementing the trait,
for example:

let tweets = Tweets {
	 	 usernames: String::from(“horse_ebooks”),
	 	 contents: String::from(
	 	 	 “of �course, as we probably already know,

people”,
	  ),
	 	 reply: false,
	 	 retweets: false,
	 };
	 println!(“1 new tweet: {}”, tweets.summarize());

This code prints the following: 1 new tweet: horse_ebooks: of course, as
you probably already know, people.

Because the Summary trait and the NewsArticles and Tweets types
were all specified in the same lib​.r​s, they’re all in the same scope. Let’s
pretend this lib​.​rs is for a crate named aggregator, and someone else wants
to leverage the capabilities of our crate to implement the Summary trait on

184    ◾    Mastering Rust﻿

a struct declared within their library’s scope. They’d have to first include
the attribute in their scope.

They’d do so by specifying use aggregator::Summary;, allowing them
to implement Summary for their type. For another crate to implement the
Summary feature, it must be a public trait, which it is because we inserted
the pub keyword before trait.

To keep in mind trait implementations, we can only implement a trait
on a type if the trait or the type is local to our crate.

Because the type Tweet is local to our aggregator crate, we may utilize
standard library features like Display on a custom type like Tweet as part
of our aggregator crate functionality. Because the trait Summary is local
to our aggregator crate, we can also implement Summary on Vec<T> in
our aggregator crate.

However, we are unable to apply external attributes to external types.
Because Display and Vec<T> is defined in the standard library and not
local to our aggregator crate, we can’t implement the Display trait on
Vec<T> within our aggregator crate. This constraint is part of a program’s
coherence property, specifically the orphan rule, named after the absence
of the parent type. This rule assures that other people’s code cannot break
our code, and vice versa. If the rule didn’t exist, two crates might imple-
ment the same characteristic for the same type, and Rust would have no
idea which one to choose.

VALIDATING REFERENCES WITH LIFETIMES
Every reference in Rust has a lifespan, which is the scope for which that
reference is valid, which we didn’t cover in the “References and Borrowing
in Rust” section in Chapter 3. Most of the time, lifetimes are assumed and
inferred, just as types are assumed and inferred most of the time. When
numerous types are possible, we must annotate them. Similarly, when
the lifetimes of references can be associated in various ways, we must
annotate them. To verify that the actual references used at runtime are
genuine, Rust needs us to annotate the relationships using generic lifes-
pan parameters.

The concept of lifetimes is separate from other programming lan-
guages’ tools, and it is perhaps Rust’s most distinguishing characteristic.
Although we won’t go over lifetimes in detail in this chapter, we will go
through some of the most typical ways we could come across lifetime syn-
tax to get a better understanding of the ideas.

Generic Types, Traits, and Lifetimes﻿    ◾    185

Preventing Dangling References with Lifetimes

The primary goal of lifetimes is to avoid dangling references, which cause
a program to refer to data that isn’t intended to be referenced. Take a look
at the program, which has both an outer and an inner scope.

{
	 	 let s;

	 	 {
	 	 	 let y = 6;
	 	 	 s = &y;
	   	 }

	 	 println!(“s: {}”, s);
  }

The outside scope declares a variable named s with no starting value,
while the inner scope declares a variable named y with a value of 6 as its
first value. We try to set the value of s as a reference to y inside the inner
scope. The inner scope then comes to an end, and we try to print the value
in s. Because the value s refers to has gone out of scope before we try to use
it, this code will not compile. The following is the error message:

$ cargo run
	 Compiling chapter8 v0.1.0 (file:///projects/chapter8)
error[E0597]: `y` does not live long enough
	 --> src/main​.rs​:7​​:17
	 |
7	 |	 	 	 s = &y;
	 |	 	 	 	 ^^ �borrowed value does not live

long enough
8	|	 	 }
	 |	 	 - `y` dropped here while still borrowed
9	 |
10	|	 	 println!(“s: {}”, s);
	 |	 	 	 	 	 - borrow later used here

The variable y doesn’t “live long enough.” This is because when the
inner scope finishes on line 7, y will be out of scope. However, s is still
valid for the outer scope; we say it “lives longer” because its scope is bigger.

186    ◾    Mastering Rust﻿

If Rust let this code run, s would be addressing memory that had been
deallocated when y exited scope, and whatever we tried to do with s would
fail. So, how does Rust figure out if this code is legitimate or not? A borrow
checker is used.

Borrow Checker

The borrow checker in the Rust compiler examines scopes to see if all bor-
rows are valid: the same code as before, but with annotations indicating
the variable lifetimes.

{
	 	 let s;		 	 	 // ---------+-- ‘a
	 	 	 	 	 	 	 //	 	 |
	 	 {	 	 	 	 	 //	 	 |
	 	 	 let y = 6;	 	 // -+-- ‘b	 |
	 	 	 s = &y;	 	 	 //	 |	 |
	 	 }	 	 	 	 	 // -+	 |
	 	 	 	 	 	 	 //	 	 |
	 	 println!(“s: {}”, s);		 //	 	 |
	 }	 	 	 	 	 	 // ---------+

The lifetime of s has been marked with ‘a, and the lifetime of y has
been annotated with ‘b. The inner ‘b block is significantly smaller than
the outer ‘a lifetime block, as we can see. Rust analyzes the sizes of the two
lives at build time and discovers that r has a lifetime of ‘a but references to
memory with a lifetime of ‘b. Because ‘b is shorter than ‘a, the program is
rejected: the reference’s topic does not live as long as the reference.

It fixes a dangling reference in the code and ensures that it compiles
without issues.

{
	 	 let y = 6; 	 // ----------+-- ‘b
	 	 	 //	 	  |
	 	 let s = &y;	 // --+-- ‘a	 |
	 	 	 //	  |	  |
	 	 println!(“s: {}”, s);	 //	  |	  |
	 	 	 // --+	  |
	 }	 	 // ----------+

y has the lifetime ‘b, which is larger than ‘a in this case. This means that s
can refer to y since Rust knows that while y is valid, the reference in s will
always be valid.

Generic Types, Traits, and Lifetimes﻿    ◾    187

Let’s look at generic lifetimes of arguments and return values in the
context of functions now that we know where references’ lifetimes are and
how Rust evaluates lifetimes to ensure references are always valid.

Generic Lifetimes in the Functions

Let’s create a method that returns the longest string slice between two
string slices. This function returns a string slice from two string slices. The
code should print when we’ve implemented the longest function. The efgh
is the longest string.

Filename: src/themain​.​rs

fn main() {
	 let string1 = String::from(“efgh”);
	 let string2 = “abc”;

	 let result = longest(string1.as_str(), string2);
	 println!(“Longest string is {}”, result);
}

Because we don’t want the longest function to acquire ownership of
its parameters, we want the function to take string slices, which are ref-
erences. More information regarding why the parameters we use are the
ones we desire can be found in the “String Slices as Parameters” section
in Chapter 3.

It will not compile if we try to implement the longest function as shown:

Filename: src/themain​.​rs

fn longest(y: &str, z: &str) -> &str {
	 if y.len() > z.len() {
	 	 y
  	 } else {
	 	 z
  	 }
}

The error message relates to lifetimes.
This chapter discussed shared behavior and validating references with

lifetimes.

https://taylorandfrancis.com/

189

C h a p t e r 9

I/O Project
Building a Command Line Program

IN THIS CHAPTER

	➢ Accepting command line arguments

	➢ Reading a file

	➢ Refactoring to improve modularity and error handling

	➢ Developing the library’s functionality with test-driven development

	➢ Working with environment variables

	➢ Improving our I/O project

In the previous chapter, we covered generic data types, traits in which
we discussed defining shared behavior, and validating references with
lifetimes. In this chapter, we will cover accepting command line argu-
ments, reading a file, and refactoring to improve modularity and error
handling. Also, we will discuss developing the library’s functionality with
test-driven development (TDD), working with environment variables, and
improving our I/O project.

This chapter serves as a review of the various skills we’ve learned thus
far, as well as a study of a few more common library features. To put some
of the Rust principles you’ve learned to the test, we’ll create a command
line tool that interacts with file and command line input/output.

Mastering Rust I/O Project

DOI:  10.1201/9781003311966-9

10.1201/9781003311966-9

https://dx.doi.org/10.1201/9781003311966-9

190    ◾    Mastering Rust﻿

Because Rust’s speed, safety, single binary output, and cross-platform
support make it excellent for constructing command line tools, we’ll make
our own version of the traditional command line search tool grep (glob-
ally search a regular expression and print) for our project. Grep searches a
specified file for a specified string in the most basic use case.

A filename and a string are sent to grep as parameters. The program
then scans the file, looks for lines that contain the string argument, and
prints them.

We’ll teach you how to make our command line tool use terminal fea-
tures that many command line programs use along the road. To allow the
user to adjust the functionality of our tool, we’ll read the value of an envi-
ronment variable. We’ll also print error messages to the standard error
console stream (stderr) rather than standard output (stdout), so that the
user can, for example, redirect successful output to a file while still view-
ing error messages onscreen.

Andrew Gallant, a member of the Rust community, has already cre-
ated ripgrep, a fully featured and extremely fast version of grep. Our ver-
sion of grep will be simple in comparison, but this chapter will provide
us with some of the background information we’ll need to understand a
real-world project like ripgrep.

ACCEPTING THE COMMAND LINE ARGUMENTS
Let’s start a new project with cargo new, as usual. To distinguish it from
the grep utility we might already have on your machine, we’ll call our
project minigrep.

$ cargo new minigrep
	 Created binary (application) `minigrep` project
$ cd minigrep

The first step is to get minigrep to accept the filename and the string
to search for as command line arguments. That is, we want to be able to
run our program using cargo run, a string to search for, and a file path to
search in, as follows:

$ cargo run searchstring examplefilename​.t​xt

At the moment, the program created by cargo new is unable to process
the arguments we provide. Although there are already existing libraries on
crates​.​io that can assist us in developing a program that accepts command
line arguments, since we’re just learning this concept, let’s do it ourselves.

I/O Project﻿    ◾    191

We’ll need the std::env::args function from Rust’s standard library to
enable minigrep to read the values of command line arguments we pass
it. This method produces an iterator of the arguments passed to minigrep
on the command line. There are only two things we need to know about
iterators: Iterators generate a series of values, and we can use the collect
function to put them into a collection, such as a vector, that contains all of
the elements the iterator generates.

Allow our minigrep application to read any command line arguments
and then collect the values into a vector using the code.

Filename: src/themain​.​rs

use std::env;
fn main() {
	 let args: Vec<String> = env::args().collect();
	 println!(“{:?}”, args);
}

First, we use a use statement to bring the std::env module into scope
so that we may use its args function. The std::env::args function is nested
in two tiers of modules, as we can see. When a desired function is nested
in many modules, as we described in Chapter 6, it is common to bring
the parent module into scope rather than the function. We can then use
std::env other functions with ease. It is also less ambiguous than adding
use std::env::args and then calling the function with just args, because args
may easily be confused with a current module function.

We call env::args on the first line of main, and then use collect to turn
the iterator into a vector holding all of the values produced by the iterator.
Because the collect method can be used to generate a variety of collec-
tions, we give the type of args explicitly to indicate that we want a vector
of strings. Although we don’t need to annotate types very often in Rust, we
do need to annotate collect since Rust can’t deduce the type of collection
we want.

Finally, we use the debug formatter to print the vector, :? Let’s execute
the code without any arguments first, and then with two arguments:

$ cargo run
	 Compiling �minigrep v0.1.0 (�file:///projects/

minigrep)
	  Finished �dev [unoptimized + debuginfo] target(s) in

0.61s

192    ◾    Mastering Rust﻿

	   Running �̀target/debug/minigrep`
[“target/debug/minigrep”]

$ cargo run needle haystack
	 Compiling �minigrep v0.1.0 (file:///projects/

minigrep)
	  Finished �dev [unoptimized + debuginfo] target(s) in

1.57s
	   Running �̀target/debug/minigrep needle haystack`
[“target/debug/minigrep”, “needle”, “haystack”]

The name of our binary is “target/debug/minigrep,” which is the first
value in the vector. This is similar to the behavior of the arguments list in
C, which allows programs to utilize the name with which they were called
during execution. It is useful to know the program name in case we want
to print it in messages or adjust the program’s behavior based on the com-
mand line alias that was used to call it. However, for the sake of this chap-
ter, we’ll disregard it and save only the two arguments that we require.

Saving the Argument Values in the Variables

The fact that the program may access the values specified as command
line arguments was demonstrated by printing the value of the vector of
arguments. Now we must save the values of the two arguments in vari-
ables so that we can use them later in the program.

Filename: src/themain​.​rs

use std::env;
fn main() {
	 let args: Vec<String> = env::args().collect();

	 let query = &args[1];
	 let filenames = &args[2];

	 println!(“Search for {}”, query);
	 println!(“File {}”, filenames);
}

READING A FILE
We’ll now add support for reading files supplied in the filename com-
mand line option. To begin with, we’ll need a sample file (Emily Dickinson,

I/O Project﻿    ◾    193

I’m Nobody! Who are you? (260), in Poems, Series 2, 1891) to test it: the best
type of file to use to ensure that minigrep is working is one with a little
amount of text spread across numerous lines and some repeated terms.

Filename: thepoem​.t​xt

I’m nobody! Who are you?
Are you nobody, too?
Then there’s a pair of us – don’t tell!
They’d banish us, you know.

How dreary to be somebody!
How public, like a frog
To tell your name the livelong day
To an admiring bog!

After the text is in place, edit src/main​.​rs and add the following code to
read the file:

Filename: src/themain​.​rs

use std::env;
use std::fs;

fn main() {
	 // --snip--
	 println!(“File {}”, filename);

	 let contents = fs::read_to_string(filename)
	 	 .expect(“Something went wrong reading file”);

	 println!(“With the text:\n{}”, contents);
}

To begin with, we add another use line to include a necessary portion of
the standard library: we require std::fs to handle files.

We’ve added a new statement to main: fs::read to string takes a filename,
opens it, and produces a Result<String> with the contents of the file.

Following that declaration, we’ve added a temporary println! statement
that prints the contents value after the file is read, allowing us to verify
that the program is working thus far.

194    ◾    Mastering Rust﻿

Let’s execute this code using any string as the first command line input
(because the searching section hasn’t been implemented yet) and thepoem​
.t​xt file as the second argument:

$ cargo run thepoem​.t​xt
	 Compiling �minigrep v0.1.0 (file:///projects/

minigrep)
	  Finished �dev [unoptimized + debuginfo] target(s) in

0.0s
	   Running �̀target/debug/minigrep thepoem​.t​xt`
Searching for the
In file thepoem​.t​xt
With text:
I’m nobody! Who are you?
Are you nobody, too?
Then there’s a pair of us – don’t tell!
They’d banish us, you know.

How dreary to be somebody!
How public, like a frog
To tell your name the livelong day
To an admiring bog!

Great! The code read the contents of the file and then printed them.
However, there are a few problems in the code. The primary function has
numerous responsibilities: functions that are responsible for only one idea
are often clearer and easier to maintain. Another issue is that we aren’t
dealing with errors as well as we could be. Because the program is still
tiny, these faults aren’t a major issue, but when it expands, it will be more
difficult to cleanly fix them. It is a good idea to start refactoring early in the
development of a program because refactoring smaller portions of code is
considerably easier. That’s what we’ll do next.

Refactoring to Improve Modularity and Error Handling

To make our program better, we’ll fix four issues with the program’s struc-
ture and how it handles potential mistakes.

Our main function now has two functions: it parses inputs and reads
files. This isn’t a huge issue for such a short function. However, if we con-
tinue to expand our program inside main, the number of distinct tasks
handled by the main function will grow. As a function grows in complex-
ity, it gets more difficult to reason about, test, and update without breaking

I/O Project﻿    ◾    195

one of its components. It is best to keep functionality separate so that each
function is only responsible for one task.

The second issue is that, while query and filename are configuration
variables in our program, variables like contents are used to perform the
program’s logic. The longer the main becomes, the more variables we’ll
need to bring into scope; the more variables we have in scope, the more
difficult it will be to remember what each one performs. To make the
purpose of the configuration variables apparent, group them into one
structure.

The third issue is that we expect it to print an error message if reading
the file fails, but the error message simply says, “Something went wrong
reading the file.” Reading a file can fail for a variety of reasons, such as
the file being missing or not having permission to open it. We’d output
the Something went wrong reading the file error message regardless
of the situation right now, which would provide no information to the
user.

Fourth, we use expect multiple times to handle various problems, and
if the user executes our program without providing enough inputs, Rust
will throw an index out of bounds error that doesn’t explain the issue. All
of the error-handling code should be in one location so that future main-
tainers only have to look in one place if the error-handling logic has to be
changed. Having all of the error-handling code in one place also ensures
that we’re printing messages that our users will understand.

Let’s rework our project to handle these four issues.

Separation of Concerns for Binary Projects
Many binary projects have the organizational challenge of distributing
responsibility for various tasks to the core function. As a result, the Rust
community has established a process to serve as a guideline for breaking a
binary program’s various concerns when main gets too large. The steps in
the procedure are as follows:

•	 Split our program into two files, themain​.​rs and thelib​.r​s, and relo-
cate the logic to thelib​.r​s.

•	 We can keep our command line parsing logic in themain​.​rs as long
as it is minimal.

•	 Extract the command line parsing logic from themain​.​rs and relo-
cate it to thelib​.​rs when it becomes too sophisticated.

196    ◾    Mastering Rust﻿

After this process, the main function’s duties should be restricted to the
following:

•	 Using the argument values to call the command line parsing logic

•	 Any other configuration setup

•	 In thelib​.r​s, calling a run function

•	 If run returns an error, we must handle it.

This pattern emphasizes separation of concerns: themain​.​rs is in charge
of running the program. While thelib​.​rs is in charge of the task’s logic.
Because we can’t directly test the main function, this structure allows us
to move all of our program’s functionality into functions in thelib​.r​s. The
only code left in themain​.​rs will be modest enough to read and check its
accuracy. Let’s use this method to rewrite our program.

Extracting the Argument Parser
To prepare for relocating the command line parsing logic to src/thelib​.r​
s, we’ll isolate the mechanism for parsing arguments into a function that
main will call. The following example shows the revised start of main,
which calls a new function parse config, which we’ll create for the time
being in src/themain​.r​s.

Filename: src/themain​.​rs

fn main() {
	 let args: Vec<String> = env::args().collect();

	 let (query, filenames) = parse_config(&args);

	 // ---snip---
}  

fn parse_config(args: &[String]) -> (&str, &str) {
	 let query = &args[1];
	 let filenames = &args[2];

	 (query, filenames)
}

Instead of assigning the argument value at index 1 to the variable
query and the argument value at index 2 to the variable filename within

I/O Project﻿    ◾    197

the main function, we give the entire vector to the parse_config function.
The logic that selects which argument belongs to which variable is stored
in the parse_config function, which then returns the data to main. The
query and filenames variables are still created in main, but it is no lon-
ger responsible for deciding how the command line inputs and variables
relate.

We’re restructuring in small, incremental steps, so this rework may
look overkill for our small program. Run the program again after making
this change to ensure that the argument parsing still works. It is a good
idea to keep track of our progress so that we can figure out what’s causing
issues when they arise.

Grouping the Configuration Values
We can improve the parse config method even more by taking another
little step. We’re now returning a tuple, but we’ll break it down into indi-
vidual components again shortly. This is an indication that we haven’t
found the right abstraction yet.

The config component of parse_config is another indicator that
there’s opportunity for improvement, as it implies that the two values
we return are connected and both are part of one configuration value.
We’re not currently conveying this meaning in the data structure other
than by grouping the two values into a tuple; we could combine the
two values into one struct and name each of the struct fields something
significant. This will make it easy for future code maintainers to under-
stand how the various values interact with one another and what their
purpose is.

The program demonstrates how the parse_config function has been
improved.

Filename: src/themain​.​rs

fn main() {
	 let args: Vec<String> = env::args().collect();

	 let config = parse_config(&args);

	 println!(“Searching for: {}”, config​.que​ry);
	 println!(“In file: {}”, config.filename);

	 let conte​nts =​ fs::​read_​to_st​ring(​confi​g.fil​ename​)
	 	 .expect(“Something went wrong reading file”);

198    ◾    Mastering Rust﻿

	 // --snip--
}

struct Config {
	 query: String,
	 filenames: String,
}

fn parse_config(args: &[String]) -> Config {
	 let query = args[1].clone();
	 let filenames = args[2].clone();

	 Config {query, filenames}
}

Creating a Constructor for the Config
So far, the code for parsing command line parameters has been taken
from main and placed in the parse_config function. As a result, we were
able to observe that the query and filename values were linked, and that
this relationship needed to be reflected in our code. Then, to be able to
return the values’ names as struct field names from the parse_config
method, we built a Config struct to identify the relevant purpose of query
and filenames.

We may alter parse_config from a plain function to a function named
new that is associated with the Config struct now that the function’s pur-
pose is to produce a Config instance. The code will become more idiomatic
as a result of this improvement. By invoking String::new, we can create
instances of types from the standard library, such as String. We can also
call Config::new to generate instances of Config by turning parse_config
into a new function associated with Config. The changes we need to make
are shown in the code.

Filename: src/themain​.​rs

fn main() {
	 let args: Vec<String> = env::args().collect();

	 let config = Config::new(&args);

	 // --snip--
}

I/O Project﻿    ◾    199

// --snip--

impl Config {
	 fn new(args: &[String]) -> Config {
	 	 let query = args[1].clone();
	 	 let filenames = args[2].clone();

	 	 Config {query, filenames}
	 }
}

We’ve changed the code in main to call Config::new instead of parse_
config. The name of parse config has been changed to new, and it has been
moved into an impl block that associates the new function with Config.
Make sure this code works by compiling it again.

Fixing the Error Handling

We’ll now focus on improving our error handling. Remember that access-
ing the values in the args vector at index 1 or 2 will cause the program
to panic if the vector has fewer than three items. If you run the program
without any arguments, it will appear as follows:

$ cargo run
	 Compiling �minigrep v0.1.0 (file:///projects/

minigrep)
	  Finished �dev [unoptimized + debuginfo] target(s) in

0.1s
	   Running `target/debug/minigrep`
thread ‘main’ panicked at ‘index out of bounds: len is
1 but the index is 1’, src/main​.rs​:27​​:21
note: run with `RUST_BACKTRACE=1` environment variable
to display backtrace

The error message “Line index out of bounds: the len is 1 but the index
is 1” is meant for programmers. It will not assist our end users in under-
standing what occurred and what they should do instead. Let’s take care
of that now.

Improving the Error Message
Before accessing indices 1 and 2, we add a check in the new function to
ensure that the slice is long enough. The program panics and displays a

200    ◾    Mastering Rust﻿

better error message than the index out of bounds message if the slice isn’t
long enough.

Filename: src/themain​.​rs

// ---snip---
	 fn new(args: &[String]) -> Config {
	 	 if args​.l​en() < 3 {
	 	 	 panic!(“not enough argument”);
	 	 }
	 	 // ---snip---

This code is similar to the panic! call we made before in the Guess::new
method when the value argument was out of the valid range. Instead of
checking for a range of values, we check that args is at least three charac-
ters long, and the rest of the function can proceed with the presumption
that this condition is met. If args contains fewer than three elements, this
condition is met, and the panic! macro is invoked to terminate the pro-
gram instantly.

Let’s run the program without any arguments again with these extra
few lines of code in new to see what the error looks like now:

$ cargo run
	 Compiling �minigrep v0.1.0 (file:///projects/

minigrep)
	  Finished �dev [unoptimized + debuginfo] target(s) in

0.0s
	   Running `target/debug/minigrep`
thread ‘main’ panicked at ‘not enough argument’, src/
themain​.rs​:26​​:13
note: run with `RUST_BACKTRACE=1` environment variable
to display backtrace

DEVELOPING THE LIBRARY’S FUNCTIONALITY
WITH THE TEST-DRIVEN DEVELOPMENT
It is much easier to build tests for the fundamental functionality of our
code now that we’ve removed the logic into src/thelib​.​rs and left the argu-
ment collection and error handling in src/themain​.r​s. Without having
to execute our binaries from the command line, we may call functions
directly with various arguments and examine return values. Feel free to
develop tests for the Config::new feature and run functions on our own.

I/O Project﻿    ◾    201

We’ll use the TDD process to add the searching logic to the minigrep
program in this part. The steps in this software development technique
are as follows:

•	 Create a failing test and execute it to ensure it fails for the expected
cause.

•	 Just enough code should be written or modified to pass the new test.

•	 Refactor the code we’ve just added or updated, and double-check
that the tests are still passing.

•	 Step 1 must be repeated!

TDD is just one of many techniques to build software, but it can also help
with code design. Writing the test first, then writing the code that passes
the test, ensures good test coverage throughout the process. We’ll run
through the implementation of the feature that searches the file contents
for the query string and returns a list of lines that match the query. This
feature will be added to a function called search.

Remove the println! statements from src/lib​.​rs and src/main​.​rs that we
used to check the program’s behavior because we no longer require them.
Then we’ll add a tests module with a test function to src/thelib​.r​s. The test
function defines the search function’s behavior: it takes a query and the
text to search for the query in, and returns only the lines from the text
that contains the query. This test is shown in the code above, but it will not
compile at this time.

Filename: src/thelib​.​rs

#[cfg(test)]
mod tests {
	 use super::*;

	 #[test]
	 fn one_result() {
	 	 let query = “duct”;
	 	 let content = “\
Rust:
safe, fast, productive.
Pick three.”;

202    ◾    Mastering Rust﻿

	 	 assert_eq!(vec![�“safe, fast, productive.”],
search(query, content));

  }
}

This test looks for the word “duct.” We’re looking for three lines of text,
but only one of them contains the word “duct” (note that the backslash
after the opening double quote tells Rust not to put a newline character
at the beginning of the contents of this string literal). We assert that the
result provided by the search function only contains the line we expected.

We can’t run this test and watch it fail as it doesn’t even compile: the
search function isn’t even implemented yet! Now we’ll add just enough
code to get the test to build and execute, as indicated, by defining the
search function to always return an empty vector. The test should then run
and fail because an empty vector does not match a vector that contains the
line “safe, fast, productive.”

Filename: src/thelib​.​rs

pub fn search�<‘c>(query: &str, content: &’a str)
-> Vec<&’c str> {

	 vec![]
}

It is worth noting that we require an explicit lifespan ‘c, which is
defined in the search signature and utilized with the contents argument
and return value. Remember from Chapter 8 that the lifetime parameters
determine which argument’s lifetime is linked to the return value’s life-
time. We specify that the returned vector should contain string slices that
relate to slices of the argument contents in this case (rather than the argu-
ment query).

In other words, we tell Rust that the data returned by the search func-
tion will last as long as the data supplied in the contents argument. This
is critical! The data referred by a slice must be legitimate in order for the
reference to be valid; if the compiler believes we’re producing query string
slices rather than contents slices, it will improperly perform its safety
checks.

If we try to compile this code without the lifetime annotations, we’ll
get an error.

I/O Project﻿    ◾    203

WORKING WITH THE ENVIRONMENT VARIABLES
Minigrep will be enhanced with the addition of a case-insensitive search
option that the user can enable via an environment variable. We might
make this a command line option that users must type every time they
want it to work, but we’ll instead use an environment variable. This
allows our users to set the environment variable once and have all of their
searches in that terminal session be case-insensitive.

Writing Failing Test for the Case-Insensitive search Function

When the environment variable is set to true, we’ll call the new search
case-insensitive method. We’ll continue the TDD process this time; there-
fore, the first step is to write a failed test. To clarify the differences between
the two tests, we’ll write a new test for the new search case-insensitive
function and change our old test from one result to case-sensitive.

Filename: src/thelib​.​rs

#[cfg(test)]
mod test {
	 use super::*;

	 #[test]
	 fn case_sensitive() {
	 	 let query = “duct”;
	 	 let content = “\
Rust:
safe, fast, productive.
Pick three.
Duct tape.”;

	 	 assert_eq!(vec![�“safe, fast, productive.”],
search(query, content));

	 }

	 #[test]
	 fn case_insensitive() {
	 	 let query = “rUsT”;
	 	 let content = “\
Rust:
safe, fast, productive.
Pick three.

204    ◾    Mastering Rust﻿

Trust me.”;

	 	 assert_eq!(
	 	 	 vec![“Rust:”, “Trust-me.”],
	 	 	 search_case_insensitive(query, content)
);
	 }
}

We’ve also changed the contents of the old test. When searching in a
case-sensitive manner, we’ve inserted a new line with the phrase “Duct
tape.” using a capital D, which shouldn’t match the query “duct.” By mak-
ing this change to the existing test, we can ensure that we don’t damage
the case-sensitive search feature we’ve already developed. This test should
pass right now, and it should keep passing as we work on the case-insen-
sitive search.

“rUsT” is the query for the new case-insensitive search test. Even if
both lines have different casing from the query, the query “rUsT” should
match the line having “Rust:” with a capital R and the line “Trust me.” in
the search case-insensitive function we’re about to implement. This is our
failing test, and it will fail to compile because the search case-insensitive
function has not yet been defined. To see the test build and fail, add a skel-
eton implementation that always returns an empty vector, similar to how
we did with the search function.

Implementing search_case_insensitive Function

The following example shows the search_case_insensitive function,
which is nearly identical to the search function. The only difference is
that we’ll lowercase the query and each line, so whatever case the input
arguments are in when we check if the line contains the query will be the
same case.

Filename: src/thelib​.​rs

pub fn search_case_insensitive<‘a>(
	 query: &str,
	 content: &’a str,
) -> Vec<&’a str> {
	 let query = query.to_lowercase();
	 let mut result = Vec::new();

I/O Project﻿    ◾    205

	 for line in content​.lin​es() {
	 	 if line.to_lowercase().contains(&query) {
	 	 	 result​.pu​sh(line);
	 	 }
	 }

	 result
}

The query string is first lowercased and stored in a shadowed vari-
able with the same name. We need to call to_lowercase on the query
so that regardless of whether the user’s query is “rust,” “RUST,” “Rust,”
or “rUsT,” we’ll treat it as if it were “rust” and ignore the case. While
to_lowercase will handle basic Unicode, it will not be accurate. We’d
want to do a little more work here if we were developing a real program,
but this section is about environment variables, not Unicode, so we’ll
leave it at that.

Because calling to_lowercase creates new data rather than referencing
current data, query is now a String rather than a string slice. Assume the
query is “rUsT”: that string slice lacks a lowercase u or t that we can utilize,
thus we must allocate a new String containing “rust.” Because the signa-
ture of the includes method is defined to take a string slice, we must now
include an ampersand when passing query as an argument.

Then, on each line, we add a call to to_lowercase before checking
whether it contains a query to lowercase all characters. Now that we’ve
transformed the line and query to lowercase, we’ll be able to locate matches
regardless of the query’s case.

Let’s have a look at the tests to check whether this implementation
passes:

$ cargo test1
	 Compiling minigrep v0.1.0 (�file:///projects/

minigrep)
	  Finished test1 [�unoptimized + debuginfo] target(s)

in 1.33s
	   Running unittests (�targ​et/de​bug/d​eps/m​inigr​ep-9c​

d200e​5fac0​fc94)​

running 2 tests
test tests::case_insensitive... ok
test tests::case_sensitive... ok

206    ◾    Mastering Rust﻿

test result: ok. 2 passed; 0 failed; 0 ignored; 0
measured; 0 filtered out; finished in 0.00s

	   Running unittests (�targ​et/de​bug/d​eps/m​inigr​ep-9c​
d200e​5fac0​fc94)​

running 0 tests

test1 result: ok. 0 passed; 0 failed; 0 ignored; 0
measured; 0 filtered out; finished in 0.00s

	 Doc-tests minigrep

running 0 tests

test1 result: ok. 0 passed; 0 failed; 0 ignored; 0
measured; 0 filtered out; finished in 0.00s

Great! They were successful. Let’s use the run function to invoke the
new search_case_insensitive function. To begin with, we’ll add a switch
to the Config struct that allows us to choose between case-sensitive and
case-insensitive search. Because we haven’t yet initialized this field, add-
ing it will result in compiler errors:

Filename: src/thelib​.​rs

pub struct Config {
	 pub query: String,
	 pub filenames: String,
	 pub case_sensitive: bool,
}

The case_sensitive field, which holds a Boolean, has been added. Next,
as shown below, we need the run function to verify the case_sensitive
field’s value and use it to determine whether to call the search function
or the search_case_insensitive function. It is worth noting that this still
won’t compile.

Filename: src/thelib​.​rs

pub fn run(config: Config) -> Result<(), Box<dyn Error>> {
	 let conte​nt = ​fs::r​ead_t​o_str​ing(c​onfig​.file​names​)?;

I/O Project﻿    ◾    207

	 let result = if config.case_sensitive {
	 	 search(&config​.quer​y, &content)
	 } else {
	 	 s​earch​_case​_inse​nsiti​ve(&c​​onfig​​.quer​​​y, &content)
	 };

	 for line in result {
	 	 println!(“{}”, line);
	 }

	 Ok(())
}

Last but not least, we must look for the environment variable. The func-
tions for interacting with environment variables are in the env module in
the standard library, so we’ll use a use std::env; line at the top of src/thelib​.​
rs to bring that module into scope. Then, as shown in example, we’ll utilize
the var function from the env module to look for an environment variable
named CASE_INSENSITIVE.

Filename: src/thelib​.​rs

use std::env;
// --snip--

impl Config {
	 pub fn new(args: &[String]) -> Result<Config, &str> {
	 	 if args​.l​en() < 3 {
	 	 	 return Err(“not enough argument”);
	 	 }

	 	 let query = args[1].clone();
	 	 let filenames = args[2].clone();

	 	 let case_​sensi​tive ​= env​::var​(�“CAS​E_INS​ENSIT​
IVE”)​.is_e​rr();​

	 	 Ok(Config {
	 	 	 query,
	 	 	 filenames,

http://www.thelib.rs

208    ◾    Mastering Rust﻿

	 	 	 case_sensitive,
	 	 })
	 }
}

We’re going to make a new variable called case_sensitive. We call the
env::var function and feed it the name of the CASE_INSENSITIVE envi-
ronment variable to set its value. If the environment variable is set, the
env::var function produces a Result that is the successful Ok variation that
contains the value of the environment variable. If the environment vari-
able is not set, it will return the Err variation.

We’re checking whether it is an error and so unset with the is_err
method on the Result, which means it should do a case-sensitive search.
The is_err will return false if the CASE_INSENSITIVE environment vari-
able is set to anything, and the application will perform a case-insensitive
search. We don’t care about the value of the environment variable; all we
care about is whether it is set or unset, so we use is_err instead of unwrap,
expect, or any of the other Result methods.

We provide the case_sensitive variable’s value to the Config instance
so that the run function may read it and decide whether to call search or
search_case_insensitive, as we did previously.

Let’s see how it goes! We’ll start by running our program without the
environment variable and with the query to, which should match any line
that has the word “to” in all lowercase:

$ cargo run to thepoem​.t​xt
	 Compiling minigrep v0.1.0 (file:///projects/minigrep)
	  Finished dev [unoptimized + debuginfo] target(s) in 0.1s
	   Running `target/debug/minigrep to thepoem​.t​xt`
Are we nobody, too?
How dreary to be somebody.

That appears to be still valid! Let’s run the program again, but this time
with CASE_INSENSITIVE set to 1 and the same query.

We’ll need to establish the environment variable and start the program
as separate commands if we’re using PowerShell:

PS> $Env:CASE_INSENSITIVE=1; cargo run to thepoem​.t​xt

CASE_INSENSITIVE will now be persistent for the rest of our shell
session. The Remove-Item cmdlet can be used to unset it:

I/O Project﻿    ◾    209

PS> Remove-Item Env:CASE_INSENSITIVE

We should get lines with the word “to” and possibly capital letters:

$ CASE_INSENSITIVE=1 cargo run to poem​.t​xt
	 Finished dev [unoptimized + debuginfo] target(s) in 0.0s
	 Running `target/debug/minigrep to poem​.t​xt`
Are we nobody, too??
How dreary to be somebody.
To tell our name the livelong day
To an admiring bog.

We also got lines with “To” in them, which is fantastic! Our minigrep
program may now perform case-insensitive searching based on a variable
in the environment. We now know how to use command line arguments
or environment variables to handle options.

For the same configuration, several programs offer arguments and
environment variables. In those situations, the programs select which one
takes precedence. Try managing case insensitivity with a command line
option or an environment variable on your own for another practice.

If the program is run with one set to case sensitive and the other set to
case insensitive, decide whether the command line input or the environ-
ment variable should take precedence.

Many more useful capabilities for dealing with environment variables
may be found in the std::env module: To see what’s accessible, look through
the documentation.

WRITING ERROR MESSAGES TO THE STANDARD
ERROR INSTEAD OF STANDARD OUTPUT
We’re currently utilizing the println! macro to write all of our output to
the terminal. Standard output (stdout) for general information and stan-
dard error (stderr) for error messages are provided by most terminals. This
distinction allows users to direct a program’s successful output to a file
while still printing error warnings on the screen.

Because the println! macro can only print to standard output, we must
use another method to print to standard error.

Checking Where Errors Are Written

Let’s start by looking at how minigrep’s output is now written to standard
output, including any error messages we want to send to standard error

210    ◾    Mastering Rust﻿

instead. We’ll accomplish this by forwarding the standard output stream
to a file while simultaneously producing an error on purpose. Because the
standard error stream will not be redirected, any content submitted to
standard error will continue to appear on the screen.

We can still see error messages on the screen even if we redirect the
standard output stream to a file because command line programs are
intended to send error messages to the standard error stream. Our pro-
gram is currently misbehaving: we’re about to discover that it saves the
output of the error message to a file instead!

Running the program with > and the filename output​.tx​t, which we
wish to redirect the standard output stream to, will demonstrate this
behavior. We will not pass any parameters, which should result in the fol-
lowing error:

$ cargo run > output​.t​xt

The > syntax instructs the shell to write standard output to output​.t​xt
rather than the screen. We didn’t see the error message we were expecting
on the screen, so it must have been saved to the file.

Problem parsing argument: not enough argument

Our error message is written to standard output, as expected. It is far
more useful to output error messages like this to standard error, so that
only data from successful runs gets up in the file. We’re going to change
that.

Printing Errors to the Standard Error

To change how error messages are printed, we’ll utilize the code in the
example. All of the code that produces error warnings are now in one func-
tion, main, thanks to the refactoring we accomplished previously in this
chapter. Because the standard library includes the eprintln! macro, which
prints to the standard error stream, we’ll replace println! with eprintln! in
the two locations where we were invoking println! to print errors.

Filename: src/themain​.​rs

fn main() {
	 let args: Vec<String> = env::args().collect();

	 let confi​g = C​onfig​::new​(&arg​s).un​wrap_​or_el​se(|e​rr| {​

I/O Project﻿    ◾    211

	 	 eprintln!(“The Problem parsing argument: {}”, err);
	 	 process::exit(1);
	 });

	 if let Err(e) = minigrep::run(config) {
	 	 eprintln!(“The Application error: {}”, e);

	 	 process::exit(1);
	 }
}

Let’s run the program again after changing println! to eprintln!, this
time without any parameters and diverting standard output using >:

$ cargo run > theoutput​.t​xt
Problem parsing argument: not enough argument

Now we see the error onscreen, and output​.t​xt is empty, as we would
expect from a command line program.

Let’s try it again with arguments that don’t throw an error but still redi-
rect standard output to a file:

$ cargo run to thepoem​.t​xt > theoutput​.t​xt

We won’t get any output to the terminal, but our results will be in out-
put​.tx​t:

Filename: theoutput​.t​xt

Are we nobody, too??
How dreary to be somebody.

This shows that, where appropriate, we’re now utilizing standard output
for successful output and standard error for error output.

In this chapter, we covered how to build a command line program,
where we discussed accepting command line arguments, reading a file,
and refactoring to improve modularity and error handling. We also cov-
ered developing the library’s functionality and working with the environ-
ment variables.

https://taylorandfrancis.com/

213

C h a p t e r 10

Cargo and crates​.​io

IN THIS CHAPTER

	➢ Customizing builds with the release profiles

	➢ Publishing crate to crates​.​io

	➢ Cargo workspaces

	➢ Installing the binaries from crates​.​io with cargo install

	➢ Extending cargo with the custom commands

In the previous chapter, we covered building a command line program.
This chapter will discuss customizing builds with release profiles, pub-
lishing a crate to crates​.​io and cargo workspaces. Also, installing binaries
from crates​.​io with cargo install and extending cargo with custom com-
mands are covered.

CUSTOMIZING BUILDS WITH THE RELEASE PROFILES
Rust’s release profiles are predefined and customizable profiles with vari-
ous configurations that give a programmer more control over specific
compiling options. Each profile is set up separately from the others.

Cargo has two major profiles: dev and release. Cargo utilizes the dev
profile when we run cargo build and the release profile when we run cargo
build --release. The release profile provides good defaults for release builds,
and the dev profile has good defaults for development.

Mastering Rust Cargo and crates​.​io

DOI:  10.1201/9781003311966-10

10.1201/9781003311966-10

http://www.crates.io
https://dx.doi.org/10.1201/9781003311966-10

214    ◾    Mastering Rust﻿

These profile names may be known from our builds’ output:

$ cargo build
	 Finished dev [unoptimized + debuginfo] target in 0.2s
$ cargo build --release
	 Finished release [optimized] target(s) in 0.1s

The compiler uses distinct profiles, as shown by the dev and release
values in this build output.

When there is no [profile.*] sections in the project’s Cargo​.to​ml file,
cargo uses default settings for each of the profiles. You can override any
subset of the default settings by adding [profile.*] sections to any profile we
want to change. For the dev and release profiles, for example, the default
settings for the opt-level setting are as follows:

Filename: Cargo​.to​ml

[profile​.d​ev]
opt-level = 0

[profile.release]
opt-level = 3

With a range of 0–3, the opt-level parameter determines how many
optimizations Rust will apply to our code. Compiling time is increased
when additional optimizations are used, thus if we’re in development and
compiling your code frequently, we’ll prefer faster compiling even if the
finished code runs slower. As a result, the default opt-level for develop-
ment is 0. It is advisable to spend extra time compiling when you’re ready
to release your code. We’ll only compile once in release mode, but you’ll
run the built program many times; therefore, release mode gives us faster
code in exchange for a longer build time. As a result, the release profile’s
default opt-level is 3.

We can override any default setting in Cargo​.to​ml by giving it an alter-
native value. If we want to employ optimization level 1 in the development
profile, for example, we may add these two lines to the Cargo​.to​ml file of
our project:

Filename: Cargo​.to​ml

[profile​.d​ev]
opt-level = 1

Cargo and crates.io﻿    ◾    215

This code overrides the default value of 0. Cargo will now use the
defaults for the dev profile and our customizations to opt-level when we
run cargo build. Cargo will apply more optimizations than the default
because opt-level is set to 1, but not as many as in a release build.

PUBLISHING A CRATE TO CRATES​.​IO
We used crates​.​io packages as project dependencies, but we may also share
our code with others by publishing our packages. Because the crate regis-
try at crates​.​io publishes our products’ source code, it mainly hosts open-
source code.

Rust and Cargo both contain features that make it easier for users to use
and find our published package in the first place. Next, we’ll go through
some of these features before showing us how to publish a package.

Making Useful Documentation Comments

It is important to take the time to produce documentation for our pack-
ages because it will help other users understand how and when to use
them. We covered how to comment Rust code with two slashes, //, in
Chapter 2. A documentation comment, often known as a standard com-
ment, is a type of comment in Rust that generates HTML documentation.
The HTML shows the contents of documentation comments for public
API items intended for programmers who want to learn how to use our
crate rather than how ours is implemented.

Documentation comments are formatted using Markdown nota-
tion and use three slashes, ///, instead of two. Documentation comments
should place directly before the thing is documented. The documentation
notes for an add_one method in a crate named my_crate are shown in the
following example:

Filename: src/thelib​.​rs

/// Add one to the number given.
///
/// # Example
///
/// ```
/// let arg = 6;
/// let answer = my_crate::add_one(arg);
///
/// assert_eq!(7, answer);

216    ◾    Mastering Rust﻿

/// ```
pub fn add_one(x: i32) -> i32 {
	 x + 1
}

We begin with explaining the add one function, then move on to a
section titled Examples, where we present code that describes how to use
the add one method. Using cargo doc, we can generate HTML documen-
tation from this documentation comment. This command launches the
rustdoc tool, creating HTML documentation and saving it in the target/
doc directory.

Running cargo doc --open in a web browser will generate HTML for
our current crate’s documentation (as well as documentation for all of our
crate’s dependencies) and open it in a web browser. We can see how the
content in the documentation comments is produced by going to the add
one function.

Commonly Used Sections
In the preceding example, we used the # Examples Markdown heading
to create a section in the HTML with the title “Examples.” Other sections
that crate writers frequently utilize in their documentation include the
following:

•	 Panics: Panic scenarios in which the function being documented
might panic. Callers of the function should avoid calling it in these
conditions if they don’t want their programs to panic.

•	 Errors: If the function returns a Result, specifying the types of errors
that might occur and the situations that might cause those problems
to be returned might assist callers to build code to handle the various
types of errors in multiple ways.

•	 Safety: If function is unsafe to call, there should be a section stating
why it is unsafe and the invariants that the function expects callers
to maintain.

Although most documentation comments do not require all of these sec-
tions, this is a useful checklist for reminding us of the aspects of our code
that people calling our code will be interested in.

Cargo and crates.io﻿    ◾    217

Documentation Comments as Tests

Including example code blocks in our documentation comments can
assist in showing how to use our library. It comes with an added bonus:
cargo test will execute the code examples in our documentation as tests!
Nothing beats documentation that includes examples. Nothing, however,
is more frustrating than examples that no longer work because the code
has changed since the documentation was created. If we run the cargo test
with documentation for the previous example’s add one function, we’ll see
something like this in the test results:

Doc-tests my_crate

running 1 test
test src/thelib​.​rs - add_one (line 5)..... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0
measured; 0 filtered out; finished in 0.98s

Now, if we alter either the function or the example so that assert_eq!
panics in the example and run cargo test again, we can see that the doc
tests catch the fact that the example and the code are out of sync!

Commenting Contained Items

//! is a different type of doc comment that adds documentation to the item
that contains the comments rather than the items that follow the com-
ments. To document crate or the module as a whole, we commonly use
these doc comments inside the crate root file (src/thelib​.​rs by standard) or
inside a module.

For instance, if we want to add the documentation to the beginning
of the src/lib​.​rs file that specifies the purpose of the my_crate crate that
includes the add_one function, we may use documentation comments
that begin with //! as shown:

Filename: src/thelib​.​rs

//! # My Crate
//!
//! `my_crate` is collection of utilities to make
performing certain

218    ◾    Mastering Rust﻿

//! calculations more convenient.

/// Adds one to number given.
// --snip--

There is no further code after the last line that begins with //!. We are
documenting the item that contains this comment rather than the item
that follows this comment since we started the comments with //! instead
of /. The src/thrlib​.​rs file, which is the crate root, is the thing that con-
tains this comment in this situation. These remarks apply to the entire
container.

These remarks will appear on the front page of the documentation for
my_crate, above the list of public things in the crate, when we run cargo
doc --open:

Exporting a Convenient Public API with the pub use

In Chapter 6, we learned how to use the mod keyword to arrange our code
into modules, make items public using the pub keyword, and use the use
keyword to bring items into a scope. However, the structure that makes
sense to us while designing a crate may not be the most practical for your
users. We could want to organize our structs in a hierarchical structure
with numerous levels, but users who want to utilize a type we created deep
in the hierarchy may have problems finding it. They might also be dis-
turbed by the fact that they have to type use my_cr​ate::​some_​modul​e::an​
other​_modu​le::U​seful​Type;​ instead of my_crate::UsefulType;

When it comes to publishing a crate, the structure of our public API is
crucial. People who use our crate are less familiar with the structure than
we are, and if our crate has a complex module hierarchy, they may have
trouble finding the bits they need.

The good news is that we don’t have to reorganize our internal structure,
if the structure isn’t easy for people to use from another library: instead,
we can use pub use to re-export items to create a public structure that
differs from our private structure. Re-exporting is the process of taking a
public object in one location and making it public in another, as though it
were defined there instead.

Let’s say we created an art library for modeling artistic concepts. Two
modules are included in this library: a kinds module with two enums
named PrimaryColor and SecondaryColor, and a utils module with a
method named mix, as shown:

Cargo and crates.io﻿    ◾    219

Filename: src/thelib​.​rs

//! # Art
//!
//! A library for modeling artistic concepts.

pub mod kinds {
	 /// The �primary colors according to the RYB color

model.
	 pub enum PrimaryColor {
	 	 Red,
	 	 Blue,
	 	 Yellow,
	 }
	
	 /// The �secondary colors according to the RYB

color model.
	 pub enum SecondaryColor {
	 	 Green,
	 	 Orange,
	 	 Purple,
	 }
}

pub mod utils {
	 use crate::kinds::*;

	 /// Combines �two primary colors in the equal
amounts to create

	 /// a secondary color.
	 pub fn mix(�c1: PrimaryColor, c2: PrimaryColor)

-> SecondaryColor {
	 	 // --snip--
	 }
}

The mix function and the PrimaryColor and SecondaryColor types are
not featured on the front page. We must first click on the types and utils
buttons to see them.

Another crate that relies on this library would need to utilize statements
to bring the objects from art into scope, specifying the current module
structure. An example of a crate that uses the PrimaryColor and combines
components from the art crate is shown below:

220    ◾    Mastering Rust﻿

Filename: src/themain​.​rs

use art::kinds::PrimaryColor;
use art::utils::mix;

fn main() {
	 let red = PrimaryColor::Red;
	 let blue = PrimaryColor::Blue;
	 mix(red, blue);
}

PrimaryColor is in the kinds module, while mix is in the utils module,
according to the author of the code that utilizes the art crate. Developers
working on the art crate are more interested in the module structure than
developers using the art crate. The internal structure that arranges parts
of the crate into the types and utils modules contains no information that
would be useful for someone to understand how to utilize the art crate.
Instead, the art crate’s module structure confuses developers by requiring
them to figure out where to look, and it is inconvenient because developers
must specify module names in use statements.

We may modify the art crate code to include pub use statements to re-
export the items at the top level to remove the internal organization from
the public API, as shown:

Filename: src/thelib​.​rs

//! # Art
//!
//! A library for modeling artistic concepts.

pub use self::kinds::PrimaryColor;
pub use self::kinds::SecondaryColor;
pub use self::utils::mix;

pub mod kinds {
	 // --snip--
}

pub mod utils {
	 // --snip--
}

Cargo and crates.io﻿    ◾    221

Setting Up crates​.​io Account

We must first register an account on crates​.​io and obtain an API token
before publishing any crates. To do so, go to crates​.​io main page and log
in with our GitHub account. (Currently, a GitHub account is required, but
the site may enable other account creation methods in the future.) After
we’ve logged in, go to https://crates​.io​/me/ and retrieve our API key from
our account settings. Then, with our API key, run the cargo login com-
mand as follows:

$ cargo login abcdefghijklmnopqrstuvwxyz012345

This command notifies Cargo of our API token, which will save locally
in ~/.cargo/credentials. This token is a secret, therefore don’t tell anyone
else about it. If we share it with anyone for any reason, we should revoke it
and create a new crates​.​io token.

CARGO WORKSPACES
We created a package using a binary crate and a library crate in Chapter 9.
As our project progresses, we may find that the library crate grows in size,
prompting us to split our package into additional library crates. Cargo has
a feature called workspaces that can help manage several related packages
that are being developed simultaneously in this case.

Creating a Workspace

A workspace is a collection of packages with the same Cargo​.lo​ck and out-
put directory. Let’s make a project with the help of a workspace. We’ll use
simple code to concentrate on the workspace’s structure. There are many
different methods to structure a workstation, and we’ll show one of the
most common ones. A workspace with a binary and two libraries will be
created. The major functionality of the binary will be dependent on the
two libraries. An add_one function will be provided by one library, and an
add_two function by the other. The workspace for these three boxes will
be the same. We’ll begin by creating a new workspace directory:

$ mkdir add
$ cd add

The Cargo​.to​ml file, which will set up the entire workspace, is then
created in the add directory. This file will lack the [package] section and

https://crates.io

222    ◾    Mastering Rust﻿

metadata seen in other Cargo​.to​ml files. Instead, it will begin with a
[workspace] section that allows us to add members to the workspace by
giving the path to the package associated with our binary crate; in this
case, that path is adder:

Filename: Cargo​.to​ml

[workspace]

members = [
	 “adder”,
]

Then, within the add directory, run cargo new to create the adder
binary crate:

$ cargo new adder
	 Created binary (application) `adder` package

At this point, we can run cargo build to create the workspace. The fol-
lowing are the files that should be in our add directory:

├── Cargo​.lo​ck
├── Cargo​.to​ml
├── adder
│	 ├── Cargo​.to​ml
│	 └── src
│	 	 └── themain​.​rs
└── target

The compiled artifacts are placed into one target directory at the top
level of the workspace; the adder package does not have its own target
directory. If we ran cargo build from within the adder directory, the com-
piled artifacts would still end up in add/target rather than add/adder/tar-
get. Because the crates in a workspace are intended to rely on each other,
Cargo constructs the target directory in a workspace in this way. Each
crate would have to recompile each of the other crates in the workspace
to have the artifacts in its target directory if each crate had its own target
directory. The crates can minimize unnecessary rebuilding by sharing a
single destination directory.

Cargo and crates.io﻿    ◾    223

Creating the Second Package in the Workspace

Next, create a new member package in the workspace and name it add-
one. Specify the add-one path in the member’s list in the top-level Cargo​
.tom​l:

Filename: Cargo​.to​ml

[workspace]

members = [
	 “adder”,
	 “add-one”,
]

After that, create a new library crate called add-one:

$ cargo new add-one --lib
	 Created library `add-one` package

These directories and files should now be in our add directory:

├── Cargo​.lo​ck
├── Cargo​.to​ml
├── add-one
│	 ├── Cargo​.to​ml
│	 └── src
│	 	 └── thelib​.​rs
├── adder
│	 ├── Cargo​.to​ml
│	 └── src
│	 	 └── themain​.​rs
└── target

Let’s add an add_one function to the add-one/src/thelib​.​rs file:

Filename: add-one/src/thelib​.​rs

pub fn add_one(c: i32) -> i32 {
	 c + 1
}

224    ◾    Mastering Rust﻿

We can have the adder package with our binary depending on the
addone package, which has our library, now that we have another package
in the workspace. First, we must include a route dependency on addone in
adder/Cargo​.tom​l.

Filename: adder/Cargo​.to​ml

a​ddone​ = {p​ath =​ “../​addon​e”}

Because Cargo does not assume that crates in a workspace would be
dependent, we must be explicit about the crates’ dependency relationships.

Then, we’ll use the add_one function from the add-one crate in the
adder crate. To bring the new add-one library crate into scope, open the
adder/src/themain​.​rs file and add a use line at the beginning. Then, as
shown in the below code, change the main function to call the add_one
method.

Filename: adder/src/themain​.​rs

use add_one;
fn main() {
	 let numb = 13;
	 println!(
	 	 “Hello, everyone. {} plus one is {}!”,
	 	 numb,
	 	 add_one::add_one(numb)
);
}

INSTALLING BINARIES FROM CRATES​
.​IO WITH CARGO INSTALL
We can install and utilize binary crates locally with the cargo install com-
mand. This is not a replacement for system packages; rather, it is meant to
be a simple way for Rust developers to install tools that have been shared
on crates​.i​o. It is important to note that you can only install packages
with binary targets. A binary target, as opposed to a library target, is a
runnable program that is constructed when a crate has a src/themain​.​rs
file or another file defined as a binary. Crates usually specify whether they
are a library, have a binary target, or both in the README file.

Cargo and crates.io﻿    ◾    225

All binaries installed with cargo install are saved in the bin folder in the
installation root. This directory will be $HOME/.cargo/bin if we installed
Rust using rustup​.​rs and don’t have any specific configurations. To start
applications installed with cargo install, make sure that directory is in our
$PATH.

For example, we explained in Chapter 9 that ripgrep is a Rust imple-
mentation of the grep tool for searching files. We may use the following
command to install ripgrep:

$ cargo install ripgrep
	 Updating crates​.​io index
	 Downloaded ripgrep v11.0.2
	 Downloaded 1 crate (243.3 KB) in 0.89s
	 Installing ripgrep v11.0.2
--snip--
	 Compiling ripgrep v11.0.2
	  Finished release [�optimized + debuginfo] target(s)

in 3m 15s
	 Installing ~/.cargo/bin/rg
	 Installed package `ripgrep v11.0.2` (executable `rg`)

The location and name of the installed binary, which in the instance of
ripgrep is rg, are shown on the second-to-last line of the output. We may
then run rg --help and start utilizing a faster, rustier tool for scanning
files as long as the installation directory is in your $PATH, as described
previously.

EXTENDING CARGO WITH THE CUSTOM COMMANDS
Cargo is built to add new subcommands without having to change them.
If we have a binary named cargo-something in our $PATH, we can launch
it as a cargo subcommand by typing cargo something. When we run cargo
--list, custom commands like this are also listed. Cargo’s design makes it
extremely straightforward to use cargo install to install extensions and
execute them exactly like the built-in cargo capabilities.

This chapter covered customizing builds with release profiles, publish-
ing a crate to crates​.i​o, and cargo workspaces. We also discussed install-
ing binaries from crates​.​io with cargo install and extending cargo with
custom commands.

https://taylorandfrancis.com/

227

C h a p t e r 11

Concurrency and State

IN THIS CHAPTER

	➢ Using the threads to run code simultaneously

	➢ Using message passing to transfer the data between threads

	➢ Shared-state concurrency

	➢ Extensible concurrency with Sync and Send traits

In the previous chapter, we discussed cargo and crates​.​io in detail, where
we covered customizing builds, publishing crates, and cargo workspaces.
Also, we covered installing binaries from crates​.​io with cargo install and
extending cargo with custom commands. This chapter will discuss using
threads to run code simultaneously, using message passing to transfer
data between threads, shared-state concurrency, and extensible concur-
rency with the Sync and Send traits.

FEARLESS CONCURRENCY
Another of Rust’s main goals is to handle concurrent programming safely
and efficiently. As more computers take advantage of their numerous pro-
cessors, concurrent programming, in which various sections of a program
execute independently, and parallel programming, in which different
parts of a program run simultaneously, are becoming more significant.
Programming in these contexts has historically been complex and error-
prone; Rust aims to remedy that.

Mastering Rust Concurrency and State

DOI:  10.1201/9781003311966-11

10.1201/9781003311966-11

https://dx.doi.org/10.1201/9781003311966-11

228    ◾    Mastering Rust﻿

Initially, the Rust team believed that ensuring memory safety and pre-
venting concurrency concerns were two distinct challenges that needed to
be addressed using different approaches. Over time, the team realized that
the ownership and type systems are robust tools for dealing with memory
safety and concurrency issues! Thanks to ownership and type checking,
many concurrency issues in Rust are compile-time mistakes rather than
runtime errors. As a result, rather than requiring you to spend a signif-
icant amount of effort attempting to duplicate the exact circumstances
in which a runtime concurrency bug arises, incorrect code will refuse to
compile and display an error message detailing the issue.

As a result, we’ll be able to fix our code while we’re working on it rather
than after it has been released to production. This feature of Rust is known
as fearless concurrency. Fearless concurrency enables us to write bug-free
code that is simple to refactor without creating new bugs.

Many languages are adamant about the answers they provide for deal-
ing with multiple difficulties simultaneously. Erlang, for example, offers
beautiful message-passing concurrency features but only a few confusing
ways to communicate state between threads. Supporting only a subset of
feasible solutions is a sensible technique for higher-level languages because
giving up some control in exchange for abstractions promises benefits. On
the other hand, lower-level languages must provide the highest perfor-
mance in any given context and have fewer abstractions over hardware.
As a result, Rust provides several tools for modeling problems in whatever
method is most relevant for our needs.

USING THREADS TO RUN CODE SIMULTANEOUSLY
The code of an executed program is run in most modern operating sys-
tems, and the operating system maintains numerous processes at once.
We can have independent components that run at the same time in our
program. Threads are the features that connect these separate sections.

Splitting your program’s computation into many threads can enhance
efficiency by allowing it to perform multiple tasks at once, but it also adds
complexity. Because threads can run simultaneously, there’s no guarantee
that pieces of our code on various threads will run in the same order. This
can result in issues such as the following:

•	 Race conditions occur when threads access data or resources in a
non-deterministic order.

Concurrency and State﻿    ◾    229

•	 Deadlocks happen when two threads wait for each other to finish
using a resource that the other thread has, preventing both threads
from proceeding.

•	 Bugs only happen in specific circumstances and are difficult to
reproduce and fix consistently.

Rust attempts to lessen the drawbacks of using threads, but programming
in a multithreaded context still demands thought and a code structure
that differs from single-threaded systems.

Threads are implemented in a variety of methods in programming lan-
guages. For creating new threads, several operating systems provide an
API. This model, in which a language uses operating system APIs to pro-
duce threads, is known as 1:1, or one operating system thread for every
language thread.

Threads are implemented differently in different computer languages.
Green threads are threads given by programming languages, and lan-
guages that employ them will execute them in the context of a different
number of operating system threads. The green-threaded paradigm is
known as the M:N model because there are M green threads per N operat-
ing system threads, where M and N are not always the same number.

Each model has its own benefits and trade-offs, with Rust’s most crucial
runtime support. The term “runtime” is a bit misleading because it can
mean different things in different situations.

In this sense, runtime refers to the language’s code in every binary. This
code can be extensive or minor depending on the language, but every non-
assembly language has some runtime code. As a result, when someone
says a language has “no runtime,” they usually mean “minimal runtime.”
Smaller runtimes contain fewer features, but they produce smaller bina-
ries, making mixing the language with other languages easier in more set-
tings. Although many languages are fine with having a larger runtime in
exchange for additional features, Rust requires a small runtime and can-
not sacrifice the ability to call into C to retain performance.

The green-threading M:N model necessitates a bigger language runtime
to manage threads. As a result, the Rust standard library only provides a
1:1 threading implementation. Because Rust is a low-level language, some
crates implement M:N threading if we’d prefer to exchange overhead for
things like more control over which threads run and cheaper context
switching costs.

230    ◾    Mastering Rust﻿

We’ve defined threads in Rust, let’s now look at how to use the thread-
related API given by the standard library.

Creating New Thread with spawn

We call the thread::spawn function and feed it a closure containing the
code we want to run in the new thread to start a new thread. The exam-
ple shows an example that displays some text from a primary thread and
some text from a new thread:

Filename: src/themain​.​rs

use std::thread;
use std::time::Duration;

fn main() {
	 thread::spawn(|| {
	 	 for x in 1..10 {
	 	 	 println!(�“hello number {} from spawned

thread!”, x);
	 	 ​	 thr​ead::​sleep​(Dura​tion:​:from​_mill​is(1)​);
	 	 }
	 });

	 for x in 1..5 {
	 	 println!(“hello number {} from main thread!”, x);
	 	 ​threa​d::sl​eep(D​urati​on::f​rom_m​illis​(1));​
	 }
}

Note that the new thread will be halted when the main thread termi-
nates, regardless of whether it has completed its execution. This program’s
output may vary somewhat from time to time, but it should look some-
thing like this:

hello number 1 from main thread!
hello number 1 from spawned thread!
hello number 2 from main thread!
hello number 2 from spawned thread!
hello number 3 from main thread!
hello number 3 from spawned thread!
hello number 4 from main thread!

Concurrency and State﻿    ◾    231

hello number 4 from spawned thread!
hello number 5 from spawned thread!

Calls to thread::sleep cause a thread to pause for a short period of time,
enabling another thread to run. The threads will most likely take turns,
but this isn’t guaranteed: how your operating system schedules the threads
is a factor. The main thread is printed first in this iteration, despite the fact
that the print statement from the spawned thread appears first in the code.
And, even though we directed the spawning thread to print until x is 9, the
main thread only got to 5 before shutting down.

If we execute this code and only get output from the main thread, or
if there is no overlap, try raising the range numbers to give the operating
system more opportunities to switch between the threads.

Waiting for All the Threads to Finish Using JoinHandle

The code in the preceding example not only terminates the spawned
thread prematurely most of the time due to the main thread’s termination,
but it also cannot ensure that the spawned thread will ever run. The fact is
that the order in which threads run is unpredictable.

By saving the return value of the thread::spawn in a variable, we can
solve the problem of the spawned thread failing to run, or failing to run
altogether. JoinHandle is the return type of thread::spawn.

A JoinHandle is an owned item that will wait for its thread to finish
before calling the join function on it. The following example shows how
to use the JoinHandle of the thread we produced in the previous code and
execute join to ensure that the spawning thread completes before the main
thread exits:

Filename: src/themain​.​rs

use std::thread;
use std::time::Duration;

fn main() {
	 let handle = thread::spawn(|| {
	 	 for x in 1..10 {
	 	 	 println!(�“hello number {} from spawned

thread!”, x);
	 	 ​	 thr​ead::​sleep​(Dura​tion:​:from​_mill​is(1)​);
	 	 }

232    ◾    Mastering Rust﻿

	 });

	 for x in 1..5 {
	 	 println!(“hello number {} from main thread!”, x);
	 	 ​threa​d::sl​eep(D​urati​on::f​rom_m​illis​(1));​
	 }

	 handle​.jo​in().unwrap();
}

Join on the handle blocks the current thread until the thread repre-
sented by the handle terminates. When a thread is blocked, it is prevented
from performing work or exiting. Running should produce output similar
to this because we placed the call to join after the main thread’s for loop.

hello number 1 from main thread!
hello number 2 from main thread!
hello number 1 from spawned thread!
hello number 3 from main thread!
hello number 2 from spawned thread!
hello number 4 from main thread!
hello number 3 from spawned thread!
hello number 4 from spawned thread!
hello number 5 from spawned thread!
hello number 6 from spawned thread!
hello number 7 from spawned thread!
hello number 8 from spawned thread!

The two threads continue to alternate, but the main thread is held up
due to a call to handle​.jo​in() and does not terminate until the spawned
thread is completed.

But let’s see what happens if we move the handle​.jo​in() instead, to before
the for loop in main, as shown below:

Filename: src/themain​.​rs

use std::thread;
use std::time::Duration;

fn main() {
	 let handle = thread::spawn(|| {
	 	 for x in 1..10 {

Concurrency and State﻿    ◾    233

	 	 	 println!(�“hello number {} from spawned
thread!”, x);

	 	 ​	 thr​ead::​sleep​(Dura​tion:​:from​_mill​is(1)​);
	 	 }
	 });

	 handle​.jo​in().unwrap();

	 for x in 1..5 {
	 	 println!(“hello number {} from main thread!”, x);
	 	 ​threa​d::sl​eep(D​urati​on::f​rom_m​illis​(1));​
	 }
}

The main thread waits for the spawned thread to complete before start-
ing its for loop, so the output is no longer interleaved, as shown here:

hello number 1 from spawned thread!
hello number 2 from spawned thread!
hello number 3 from spawned thread!
hello number 4 from spawned thread!
hello number 5 from spawned thread!
hello number 6 from spawned thread!
hello number 7 from spawned thread!
hello number 8 from spawned thread!
hello number 9 from spawned thread!
hello number 1 from main thread!
hello number 2 from main thread!
hello number 3 from main thread!
hello number 4 from main thread!

The small details, such as where join is called, can impact whether or
not our threads run concurrently.

USING MESSAGE PASSING TO THE
TRANSFER DATA BETWEEN THREADS
Message passing, in which threads or actors communicate by sending each
other messages containing data, is one increasingly popular approach to
ensuring safe concurrency. In the words of a Go language documentation
slogan, “Do not communicate by sharing memory; instead, share memory
by communicating.”

234    ◾    Mastering Rust﻿

The channel, a programming concept implemented by Rust’s standard
library, is a key tool for achieving message-sending concurrency. A chan-
nel in programming can be compared to a water channel, such as a stream
or a river. If we throw a rubber duck into a stream, it will travel down-
stream until it reaches the end of the waterway.

In programming, a channel is divided into two halves: a transmitter
and a receiver. The transmitter half is where we put rubber ducks into the
river upstream, and the receiver half is where the rubber ducks end up
downstream. One section of our code calls methods on the transmitter
with the data we want to send, while another section checks the receiving
end for messages. When either the transmitter or receiver half of a channel
is dropped, the channel is said to be closed.

In this section, we’ll build up a program with one thread that generates
values and sends them down a channel, and another thread that receives
the values and prints them out.

We’ll send simple values between threads via a channel to demonstrate
the feature. Once you’ve mastered the technique, you could use channels
to build a chat system or a system in which many threads perform dif-
ferent parts of a calculation and send the results to a single thread that
aggregates the results.

To begin with, we will create a channel but do nothing with it. It is
worth noting that this won’t compile just yet because Rust doesn’t know
what kind of values we want to send over the channel.

Filename: src/themain​.​rs

use std::sync::mpsc;

fn main() {
	 let (tx, rx) = mpsc::channel();
}

Using the mpsc::channel function, we create a new channel; mpsc stands
for multiple producers, single consumer. The way Rust’s standard library
implements channels allows for multiple sending ends that produce values
but only one receiving end that consumes those values. Consider multiple
streams merging into one large river: everything sent down any streams
will eventually end up in the same river. We start with a single producer
for now, but we will add more once we get this example working.

Concurrency and State﻿    ◾    235

The mpsc::channel function returns a tuple, with the first element
representing the sending end and the second representing the receiving
end. We name our variables accordingly because the abbreviations tx and
rx are commonly used in many fields to signify transmitter and receiver.
We’re using a let statement in conjunction with a pattern to destructure
the tuples. This method of using a let statement is a convenient way to
extract the pieces of the tuple returned by mpsc::channel.

As shown in the example, let’s move the transmitting end into a
spawned thread and send one string so that the spawned thread can
communicate with the main thread. This is equivalent to throwing a
rubber duck upstream or sending a chat message from one thread to
another.

Filename: src/themain​.​rs

use std::sync::mpsc;
use std::thread;

fn main() {
	 let (tx, rx) = mpsc::channel();

	 thread::spawn(move || {
	 	 let vals = String::from(“hello”);
	 	 tx​.se​nd(vals).unwrap();
	 });
}

Again, we’re using (thread::spawn) to start a new thread and then mov-
ing tx into the closure so that the spawned thread owns tx. To send mes-
sages through the channel, the spawned thread must own the transmitting
end of the channel.

The sending end has a send method that accepts the value we want to
send. Because the send method returns a Result type, it will return an
error if the receiving end has already been dropped and there is nowhere
to send a value. In this example, we’re instructing unwrap to panic in the
event of an error. However, we would handle it correctly in a real applica-
tion; return to Chapter 7 to go over error-handling strategies.

In the main thread, we’ll get the value from the receiving end of the
channel. This is similar to retrieving a rubber duck from the water at the
river’s mouth or receiving a chat message.

236    ◾    Mastering Rust﻿

Filename: src/themain​.​rs

use std::sync::mpsc;
use std::thread;

fn main() {
	 let (tx, rx) = mpsc::channel();

	 thread::spawn(move || {
	 	 let vals = String::from(“hello”);
	 	 tx​.se​nd(vals).unwrap();
  	 });

	 let receive = rx​.re​cv().unwrap();
	 println!(“Got: {}”, receive);
}

Recv and try_recv are two useful methods on the receiving end of a
channel. We’re using recv, which is short for receive, to block the main
thread’s execution and wait for a value to be sent down the channel. Recv
will return a Result<T, E> once a value is sent. When the channel’s sending
end closes, recv will return an error to signal that no more values will send.

The try_recv method does not block and instead returns a Result<T,
E> immediately: an Ok value containing a message if one is available and
an Err value if no messages are available this time. Suppose this thread has
other tasks to complete while waiting for messages. In that case, we could
write a loop that calls try_recv every so often, handles a message if one is
available, and otherwise does other work for a short period of time before
checking again.

For the sake of simplicity, we’ve used recv in this example; we don’t
have any other work for the main thread to do other than wait for mes-
sages, so blocking the main thread is appropriate.

When we execute the code, the following value will print from the main
thread:

Got: hello

The Channels and Ownership Transference

use std::sync::mpsc;
use std::thread;

Concurrency and State﻿    ◾    237

fn main() {
	 let (tx, rx) = mpsc::channel();

	 thread::spawn(move || {
	 	 let vals = String::from(“hello”);
	 	 tx​.se​nd(vals).unwrap();
	 	 println!(“vals is {}”, vals);
  	 });

	 let receive = rx​.re​cv().unwrap();
	 println!(“Got: {}”, receive);
}

Here, we attempt to print vals after sending it down the channel with tx​
.sen​d. Allowing this would be a bad idea because once the value is sent to
another thread, that thread may modify or drop it before using it again.
Because of inconsistent or nonexistent data, the other thread’s modifica-
tions may result in errors or unexpected results. However, when we try to
compile the code, Rust throws an error:

$ cargo run
	 Compiling �message-passing v0.1.0

(file:///projects/message-passing)
error[E0382]: borrow of moved value: `val`
	 --> src/themain​.rs​:10​​:31
	 |
8	 |	 	 let val = String::from(“hello”);
	 |	 	 	 --- �move occurs because `val` has type

`String`, which does not implement
the `Copy` trait

9	 |	 	 tx​.se​nd(vals).unwrap();
	 |	 	 	 --- value moved here
10	|	 	 println!(“val is {}”, vals);
	 |	 	 	 ^^^ �value borrowed

here after move

Our concurrency error resulted in a compile-time error. When a param-
eter is sent, the send function takes ownership of it, and when the value
is moved, the receiver takes ownership of it. This prevents us from acci-
dentally reusing the value after sending it; the ownership system ensures
everything is in order.

238    ◾    Mastering Rust﻿

Sending Multiple Values and Seeing the Receiver Waiting

The code was compiled and it ran, but it didn’t clarify that two separate
threads were communicating over the channel. We’ve made some changes
that will allow us to test the code before running it concurrently: the
spawned thread will now send multiple messages, pausing for a second
between each one.

Filename: src/themain​.​rs

use std::sync::mpsc;
use std::thread;
use std::time::Duration;

fn main() {
	 let (tx, rx) = mpsc::channel();

	 thread::spawn(move || {
	 	 let vals = vec![
	 	 	 String::from(“hello”),
	 	 	 String::from(“everyone”),
	 	 	 String::from(“from”),
	 	 	 String::from(“thread”),
];

	 	 for val in vals {
	 	 	 tx​.se​nd(val).unwrap();
	 	 ​	 thr​ead::​sleep​(Dura​tion:​:from​_secs​(1));​
	 	 }
	 });

	 for receive in rx {
	 	 println!(“Got: {}”, receive);
	 }
}

This time, the spawned thread contains a string vector that we want to
send to the main thread. We iterate through them, sending each one sepa-
rately, and pause between them by calling the thread::sleep function with
a duration of 1 second.

We’re no longer explicitly calling the recv function in the main thread;
instead, we’re treating rx as an iterator. We’re printing the value for each
one that comes in. Iteration will end when the channel is closed.

Concurrency and State﻿    ◾    239

When you run the code, we should see the output below, with a 1-second
pause between each line:

Got: hello
Got: everyone
Got: from
Got: thread

We tell that the main thread is waiting for values from the spawned
thread because no code pauses or delays in the for loop in the main thread.

Creating Multiple Producers by Cloning the Transmitter

We mentioned earlier that mpsc was an acronym for multiple producers,
single consumer. Let’s use mpsc and expand the previous code to create
multiple threads that send values to the same receiver. We can accomplish
this by cloning the channel’s transmitting half:

Filename: src/themain​.​rs

	 let (tx, rx) = mpsc::channel();

	 let tx1 = tx​.clo​ne();
	 thread::spawn(move || {
	 	 let vals = vec![
	 	 	 String::from(“hello”),
	 	 	 String::from(“everyone”),
	 	 	 String::from(“from”),
	 	 	 String::from(“thread”),
];

	 	 for val in vals {
	 	 	 tx1​.se​nd(val).unwrap();
	 	 ​	 thr​ead::​sleep​(Dura​tion:​:from​_secs​(1));​
	 	 }
	 });

	 thread::spawn(move || {
	 	 let vals = vec![
	 	 	 String::from(“many”),
	 	 	 String::from(“messages”),
	 	 	 String::from(“from”),
	 	 	 String::from(“us”),

240    ◾    Mastering Rust﻿

];

	 	 for val in vals {
	 	 	 tx​.se​nd(val).unwrap();
	 	 ​	 thr​ead::​sleep​(Dura​tion:​:from​_secs​(1));​
	 	 }
	 });

	 for receive in rx {
	 	 println!(“Got: {}”, receive);
	 }

Before we create the first spawned thread this time, we call clone on the
transmitter. This will give us a new sending handle that we can pass to the
first thread that is spawned. We pass the original sending end of the chan-
nel to a second thread spawned. This results in two threads, each sending
a different message to the channel’s receiving end.

SHARED-STATE CONCURRENCY
Message passing is an excellent method for dealing with concurrency, but
it is not the only one. Consider the following phrase from the Go language
documentation: “Do not communicate by sharing memory.”

What would it look like to communicate by sharing memory?
Furthermore, why would message-passing enthusiasts not use it and
instead do the opposite?

Channels are similar to single ownership in that once a value is trans-
ferred down a channel, it should no longer be used. With shared-mem-
ory concurrency, multiple threads can access the same memory location
at the same time, similar to multiple ownership. Rust’s type system and
ownership rules are extremely helpful in getting this management right.
Consider mutexes, which are one of the most commonly used concur-
rency primitives for shared memory.

Using Mutexes to Allow Data Access from
Only One Thread at a Time

Mutex is an abbreviation for mutual exclusion, as a mutex only allows one
thread to access some data at a time. A thread must first signal its intent
to access the data in a mutex by requesting the mutex’s lock. The lock is a
mutex data structure that keeps track of who has exclusive access to the

Concurrency and State﻿    ◾    241

data at any given time. As a result, the mutex is described as protecting the
data it holds using the locking system.

Mutexes have a bad reputation for being difficult to use because of the
two rules that need to be observed:

	 1.	Before we can use the data, we must first try to obtain the lock.

	 2.	When we’re finished with the data that the mutex is protecting, we
must unlock it so that other threads can acquire the lock.

Consider a panel discussion at a conference with only one microphone as
a real-world metaphor for a mutex. Before a panelist can speak, they must
request or indicate that they wish to use the microphone. When they get
the microphone, they can speak for as long as they want before passing
it to the next panelist who requests to speak. No one else can speak if a
panelist forgets to turn off the microphone when they’re finished. If the
shared microphone is not managed correctly, the panel will not function
as intended.

Mutex management can be challenging to master, which is why so
many people are enthusiastic about channels. However, because of Rust’s
type system and ownership rules, we can’t go wrong with locking and
unlocking.

API of Mutex<T>
Let’s start with a mutex in a single-threaded context as an example of how
to use one:

Filename: src/themain​.​rs

use std::sync::Mutex;

fn main() {
	 let mt = Mutex::new(5);

	 {
	 	 let mut numb = mt​.lo​ck().unwrap();
	 	 *numb = 6;
	 }

	 println!(“mt = {:?}”, mt);
}

242    ◾    Mastering Rust﻿

We create Mutex<T> using the associated function new, as we do with
many other types. We use the lock method to acquire the lock to access the
data inside the mutex. This call will block the current thread, preventing it
from doing anything until it is our turn to have the lock.

If another thread holding the lock panicked, the call to lock would fail.
No one would ever be able to get the lock in that case, so we’ve decided to
unwrap and have this thread panic if we find ourselves in that situation.

After we’ve obtained the lock, we can treat the return value, in this case
num, as a mutable reference to the data contained within. Before we use the
value in m, the type system ensures that we obtain a lock: Mutex<i32> is
not an i32, so we must obtain the lock before using the i32 value. We must
not forget; otherwise, the type system will not allow us to access the inner
i32.

Mutex<T>, as you might expect, is a smart pointer. More specifi-
cally, the call to lock returns a MutexGuard smart pointer wrapped in a
LockResult, which we handled with the unwrap call.

Deref is used by the MutexGuard smart pointer to point to our internal
data, the smart pointer also has a Drop implementation that automatically
releases the lock when a MutexGuard exits scope, which occurs at the end
of the inner scope. As a result, we don’t have to worry about forgetting
to release the lock and preventing other threads from using the mutex
because the lock release is automatic.

We can print the mutex value after dropping the lock and see that we
could change the inner i32 to 6.

Sharing Mutex<T> Between Multiple Threads

Now, let’s see if we can use Mutex<T> to share a value between multiple
threads. We’ll start ten threads, each of which will increment a counter
value by 1, bringing the total up to ten. The following example will contain
a compiler error, which we will use to learn more about Mutex<T> and
how Rust can help us use it correctly.

Filename: src/themain​.​rs

use std::sync::Mutex;
use std::thread;

fn main() {
	 let counter = Mutex::new(0);

Concurrency and State﻿    ◾    243

	 let mut handles = vec![];

	 for _ in 0..11 {
	 	 let handle = thread::spawn(move || {
	 	 	 let mut numb = counter​.lo​ck().unwrap();
	 	 	 *numb += 1;
	 	 });
	 	 handles​.pu​sh(handle);
	 }

	 for handle in handles {
	 	 handle​.jo​in().unwrap();
	 }

	 println!(“Results: {}”, *counter​.lo​ck().unwrap());
}

As before, we create a counter variable to hold an i32 inside a Mutex.
Then, we generate ten threads by iterating over a range of numbers. We use
thread::spawn and assign the same closure to all threads, one that moves
the counter into the thread, acquires a lock on the Mutex by calling the
lock method, and then adds 1 to the mutex value. When a thread com-
pletes its closure, num exits scope and releases the lock, allowing another
thread to acquire it.

We collect all of the join handles in the main thread. Then, as before, we
call join on each handle to ensure that all of the threads are finished. The
main thread will acquire lock and print the program’s output at that point.

We alluded to the fact that this example would not compile. Let us now
investigate why!

$ cargo run
	 Compiling shared-state v0.1.0 (file:///projects/
shared-state)
error[E0382]: use of moved value: `counter`
	 --> src/themain​.rs​:9​​:36
	 |
5	 |	 let counter = Mutex::new(0);
	 |	 	 ------- �move occurs because `counter` has

the type `Mutex<i32>`, which does
not implement the `Copy` trait

...

244    ◾    Mastering Rust﻿

9	 |	 	 let handle = thread::spawn(move || {
	 |	 	 ^^^^^^^ value
moved into closure here, in previous iteration of loop
10	|	 	 	 let mut numb = counter​.lo​ck().unwrap();
	 |	 	 	 	 --------�- use occurs due

to use in closure

The error message indicates that the counter value was moved during
the previous loop iteration. So Rust is telling us that we can’t move the
ownership of the lock counter across multiple threads.

EXTENSIBLE CONCURRENCY WITH SYNC AND SEND TRAITS
Surprisingly, the Rust programming language has very few concurrency
features. Almost every concurrency feature we’ve discussed in this chap-
ter has been part of the standard library rather than the language. We are
not limited to the language or the standard library for handling concur-
rency; you can write your own concurrency features or use those written
by others.

However, the language includes two concurrency concepts: the
std::marker traits Sync and Send.

Allowing Transference of the Ownership between Threads with Send

The Send marker trait indicates that values of the type implementing Send
can be transferred between threads. Almost every Rust type is Send, but
there are a few exceptions, including Rc<T>: This cannot be sent because
if we cloned a Rc<T> value and tried to transfer ownership to another
thread, both threads may update the reference count at the same time. As
a result, Rc<T> is designed for use in single-threaded situations where we
don’t want to pay the thread-safe performance penalty.

As a result, Rust’s type system and trait bounds ensure that we never
send an Rc<T> value across threads in an unsafe manner. When we
attempted this in our example, we received the error Rc<<Mutexi32>> trait
Send is not implemented. The code compiled when we switched to Arc<T>,
which is Send.

Any type that is entirely made up of Send types is automatically marked
as Send. Except for raw pointers, almost all primitive types are Send.

Allowing Access from the Multiple Threads with Sync

The Sync marker trait indicates that the type implementing Sync can safely
reference from the multiple threads. In other words, any type T is Sync if

Concurrency and State﻿    ◾    245

&T is Send, indicating that the reference can safely be passed to another
thread. Primitive types, like Send, are Sync, and types composed entirely
of Sync types are also Sync.

For the same reasons that it is not Send, the smart pointer RcT> is
not Sync. The RefCell<T> type and its related Cell<T> types are not
Sync. RefCell<T> implementation of borrow checking is not thread-
safe. The smart pointer Mutex<T> is Sync and can be used to share the
access with multiple threads, as demonstrated in the section “Sharing
Mutex<T> Between Multiple Threads.”

Implementing the Send and Sync Manually Is Unsafe

We don’t have to manually implement Send and Sync traits because types
made up of those traits are automatically Send and Sync. They don’t even
have methods to implement as marker traits. They are only useful for
enforcing concurrency invariants.

Manually implementing these traits necessitates the use of unsafe Rust
code. The important thing to remember is that creating new concurrent
types that aren’t made up of Send and Sync components necessitates care-
ful consideration to maintain the safety guarantees.

We discussed run code simultaneously using threads, using message
passing to transfer data between threads, shared-state concurrency, and
extensible concurrency with the Sync and Send traits in this chapter.

https://taylorandfrancis.com/

247

C h a p t e r 12

Object-oriented
Programming in Rust

IN THIS CHAPTER

	➢ Implementing an object-oriented design pattern

	➢ Macros

In the previous chapter, we covered how to use threads to run code and
message passing to transfer data. We also learned shared-state concur-
rency and extensible concurrency with the Sync and Send traits. This
chapter will discuss implementing an object-oriented design pattern and
macros.

IMPLEMENTING AN OBJECT-ORIENTED DESIGN PATTERN
State pattern is a design pattern that is used in object-oriented program-
ming. The pattern’s crux is that a value has an internal state represented
by a set of state objects, and the value’s behavior changes depending on
the internal state. The functionality of the state objects is shared: in Rust,
we use structs and traits rather than objects and inheritance. Each state
object is responsible for its behavior and deciding when to change states.
The value that holds a state object is unaware of the various behaviors of
the states or when to transition between them.

Using the state pattern means that if the program’s business require-
ments change, we won’t have to change the code of the value that holds
the state or the code that uses the value. To change the rules of one of the

Mastering Rust Object-oriented Programming in Rust

DOI:  10.1201/9781003311966-12

10.1201/9781003311966-12

https://dx.doi.org/10.1201/9781003311966-12

248    ◾    Mastering Rust﻿

state objects or possibly add more state objects, we’ll only need to update
the code inside one of the state objects. Let’s look at a state design pattern
example and how to use it in Rust.

We’ll implement a blog post workflow step-by-step. The final function-
ality of the blog will look like this:

•	 An empty draft is the starting point for a blog post.

•	 When the draft is finished, the post is reviewed.

•	 The post is published once it has been approved.

•	 Unapproved posts cannot accidentally publish because only pub-
lished blog posts return content to print.

Any additional changes made to a post should have no effect. For example,
if we attempt to approve a draft blog post before requesting a review, the
post should remain unpublished.

This workflow is illustrated in the code below:
This is an example of how one can use the API in a library crate called

blog. This will not compile because we have not yet implemented the blog
crate.

Filename: src/themain​.​rs

use blog::Post;

fn main() {
	 let mut post = Post::new();

	 post.add_text(“We ate a salad for dinner today”);
	 assert_eq!(““, post.content());

	 post.request_review();
	 assert_eq!(““, post.content());

	 post.approve();
	 assert_eq!(�“we ate a salad for dinner today”,

post.content());
}

With Post::new, we want to allow the user to create a new draft blog
post. Then, while the blog post is still in draft mode, we want to allow text

Object-oriented Programming in Rust﻿    ◾    249

to be added to it. Nothing should happen if we try to get the post’s content
right away, before approval, because the post is still a draft. For demon-
stration purposes, we’ve added assert eq! to the code. An excellent unit
test would assert that a draft blog post returns an empty string from the
content method, but we won’t write tests for this example.

Next, we’d like to enable a request for a post review, and we’d like con-
tent to return an empty string while we wait for the review. When the post
is approved, it should be published, which means that the post’s text will
be returned when the content is called.

It’s worth noting that the Post type is the only one we’re interacting
with from the crate. This type will employ the state pattern and contain a
value that will be one of three state objects representing the various states
in which a post can be found draft, waiting for review, or published. The
Post type will handle the transition from one state to another internally.
The states tend to change in response to our library users’ methods on
the Post instance, but they are not required to manage the state changes
directly. Furthermore, users cannot make mistakes with the states, such as
publishing a post before being reviewed.

Defining Post and Creating New Instance in the Draft State

Let’s get started on the library’s implementation. We need a public Post
struct with some content, so we’ll start with the struct definition and an
associated public new function to create a Post instance. We’ll also create
a personal State trait. Then, in a private field named state, Post will store a
trait object of Box<dyn State> inside an Option<T>. In a moment, we’ll
understand why Option<T> is required.

Filename: src/thelib​.​rs

pub struct Post {
	 state: Option<Box<dyn State>>,
	 content: String,
}

impl Post {
	 pub fn new() -> Post {
	 	 Post {
	 	 	 state: Some(Box::new(Draft {})),
	 	 	 content: String::new(),
	 	 }

250    ◾    Mastering Rust﻿

	 }
}

trait State {}

struct Draft {}

impl State for Draft {}

The State trait defines the shared behavior of different post states, and
it will be implemented by the Draft, PendingReview, and Published states.
For the time being, the trait does not have any methods, and we will begin
by defining only the Draft state because that is the state in which we want
a post to begin.

When we make a new Post, we set its state field to Some, which includes
a Box. This Box points to a new Draft struct instance. This guarantees that
whenever we create a new instance of Post, it will begin as a draft. There is
no way to create Post in other state because the state field of Post is private!
We set the content field to new, empty String in the Post::new function.

Storing the Text of the Post Content

The preceding example demonstrated that we want to call a method named
add_text and pass it a &str, which is then added to the blog post’s text
content. Rather than exposing the content field as pub, we implement it
as a method. This means that we can later implement a method to control
how the data in the content field is read. The method of add_text is pretty
straightforward, so let’s add the implementation to the impl Post block:

Filename: src/thelib​.​rs

impl Post {
	 // ---snip---
	 pub fn add_text(&mut self, text: &str) {
	 	 self.content.push_str(text);
	 }
}

As we’re changing the Post instance that we’re calling add_text on, the
add_text method requires a mutable reference to self. Then, we call push_
str and pass the text argument to add to the saved content on the String in
content. Because this behavior is independent of the post’s state, it is not

Object-oriented Programming in Rust﻿    ◾    251

part of the state pattern. Although the add_text method has no interaction
with the state field, it is part of the behavior we want to support.

Ensuring Content of a Draft Post Is Empty

Because the post is still in the draft state, we want the content method to
return an empty string slice even after we’ve used add_text and added
some content to it. For the time being, let’s implement the content method
with the most essential thing to satisfy this requirement: always returning
an empty string slice. Later, when we can change the state of a post so that
it can be published, we’ll change this. Posts can only be in the draft state
for the time being, so the post content should always be empty. This is a
placeholder implementation, as shown in the code below.

Filename: src/thelib​.​rs

impl Post {
	 // ---snip---
	 pub fn content(&self) -> &str {
	 	 ““
	 }
}

Requesting a Review Changes the State of the Post

Following that, we must add functionality to request a review of a post,
which should change its state from Draft to PendingReview.

Filename: src/thelib​.​rs

impl Post {
	 // ---snip---
	 pub fn request_review(&mut self) {
	 	 if let Some(sm) = self​.state​.t​ake() {
	 	 	 self​.sta​te = Some(sm.request_review())
	 	 }
	 }
}

trait State {
	 fn request_review(self: Box<Self>) -> Box<dyn State>;
}

252    ◾    Mastering Rust﻿

struct Draft {}

impl State for Draft {
	 fn request_review(self: Box<Self>) -> Box<dyn State> {
	 	 Box::new(PendingReview {})
	 }
}

struct PendingReview {}

impl State for PendingReview {
	 fn request_review(self: Box<Self>) -> Box<dyn State> {
	 	 self
	 }
}

We provide Post with a public request review method, which accepts
a mutable reference to self. Then, on the current state of Post, we call an
internal request_review method, and this second request_review method
consumes the current state and returns a new state.

The request_review method has been added to the State trait; all types
that implement the trait must now implement the request_review method.
Instead of self, &self, or &mut self as the method’s first parameter, we have
self: Box<Self>. This syntax indicates that the method is only valid when
called on a Box that contains the type. This syntax takes Box<Self> own-
ership, invalidating the old state and allowing the Post’s state value to
transform into a new state.

The request_review method must take ownership of the state value to
consume the old state. This is where the Option in Post’s state field comes
in: we use the take method to remove the Some value from the state field
and replace it with a None, because Rust does not allow us to have unpop-
ulated fields in structs. This allows us to remove the state value from Post
rather than borrow it. The post’s state value will then be set to the result
of this operation.

To gain ownership of the state value, we must temporarily set state to
None rather than directly setting it with code like self​.sta​te = self​.state​
.requ​est review(). This prevents Post from reusing the old state value after
being transformed into a new state.

The request_review method on Draft must return a new, boxed instance
of a new PendingReview struct, which represents the state of a post while it is
awaiting review. The PendingReview struct implements the request_review

Object-oriented Programming in Rust﻿    ◾    253

method as well, but it does not perform any transformations. Instead, it
returns to itself because when we request a review on a post that is already
in the PendingReview state, it should remain in that state.

Now we can see the benefits of the state pattern: the request_review
method on Post is the same regardless of its state value. Each state is
responsible for its own set of rules.

We’ll leave the Post content method on its own, returning an empty
string slice. We can now have a Post in both the Draft and PendingReview
states, but we want the same behavior in the PendingReview state.

The approve method will function similarly to the request review
method in that it will set state to the value that the current state indicates
it should have when that state is approved, as shown below:

Filename: src/thelib​.​rs

impl Post {
	 // --snip--
	 pub fn approve(&mut self) {
	 	 if let Some(sm) = self​.state​.t​ake() {
	 	 	 self​.sta​te = Some(sm.approve())
	 	 }
	 }
}

trait State {
	 fn request_review(self: Box<Self>) -> Box<dyn State>;
	 fn approve(self: Box<Self>) -> Box<dyn State>;
}

struct Draft {}

impl State for Draft {
	 // --snip--
	 fn approve(self: Box<Self>) -> Box<dyn State> {
	 	 self
	 }
}

struct PendingReview {}

impl State for PendingReview {
	 // ---snip---

254    ◾    Mastering Rust﻿

	 fn approve(self: Box<Self>) -> Box<dyn State> {
	 	 Box::new(Published {})
	 }
}

struct Published {}

impl State for Published {
	 fn request_review(self: Box<Self>) -> Box<dyn State> {
	 	 self
	 }

	 fn approve(self: Box<Self>) -> Box<dyn State> {
	 	 self
	 }
}

We then add the approve method to the State trait and a new struct, the
Published state, that implements State.

Similar to request_review, calling the approve method on a Draft has
no effect because it returns self. When we use the approve method on
PendingReview, we get a new, boxed instance of the Published struct. The
Published struct in the statement implements the State trait, and it returns
itself for both the request_review and approve methods, because the post
should remain in the Published state in the cases.

The next step is to update the content method on Post so that if the state
is Published, we return the value in the post’s content field; otherwise, we
return an empty string slice, as shown below:

Filename: src/thelib​.​rs

impl Post {
	 // ---snip---
	 pub fn content(&self) -> &str {
	 	 self.​​state​​.as​_​r​​ef().​unwra​p().c​onten​t(sel​f)
	 }
	 // ---snip---
}

Because the idea is to maintain all of these rules inside the structs that
implement State, we call a content method on the value in state and send

Object-oriented Programming in Rust﻿    ◾    255

the post instance (that is, self) as an argument. Then we return the result
of calling the content method on the state value.

We invoke the as_ref method on the Option because we want a refer-
ence to the value contained within the Option rather than ownership of
the value. This is because the state is an Option<Box<dyn State>>, when
we call as_ref, we get an Option<&Box<dyn State>> back. We’d get an
error if we didn’t call as_ref as we cannot move the state out of the bor-
rowed &self of the function parameter.

Further, we call the unwrap method, which we know will never panic
because the methods on Post guarantee that state will always contain a
Some value when those methods are completed. This is one of the cases
discussed in “Cases in Which We Have More Information than the
Compiler” section in Chapter 7, where we know that a None value is never
possible, despite the compiler’s inability to understand it.

When we call content on the &Box<dyn State> at this point, deref coer-
cion will affect the & and the Box, causing the content method to be called
on the type that implements the State trait. That means we’ll need to add
content to the State trait definition, and that’s where we’ll put the logic for
what content to return based on the state we’re in, as shown below:

Filename: src/thelib​.​rs

trait State {
	 // ---snip---
	 fn content<‘a>(&self, post: &’a Post) -> &’a str {
	 	 ““
	 }
}

// ---snip---
struct Published {}

impl State for Published {
	 // ---snip---
	 fn content<‘a>(&self, post: &’a Post) -> &’a str {
	 	 &post.content
	 }
}

The content method now has a default implementation that returns an
empty string slice. This means we don’t need to add content to the Draft

256    ◾    Mastering Rust﻿

and PendingReview structs. The content method will be overridden by the
Published struct, and the value in post.content will be returned.

This method requires lifetime annotations, as discussed in Chapter 8.
We take a post reference as an argument and return a reference to a por-
tion of that post, so that the lifetime of the returned reference is related to
the lifetime of the post argument.

Trade-offs of the State Pattern

We’ve demonstrated that Rust can implement the object-oriented state
pattern to encapsulate the various types of behavior that a post should
have in each state. Post’s methods have no knowledge of the various
behaviors. Because of how we organized the code, we only need to look in
one place to learn about the various ways a published post can behave: the
implementation of the State trait on the Published struct.

If we didn’t use the state pattern, we could instead use match expres-
sions in the methods on Post or even in the main code that checks the state
of the post and changes behavior in those places. That means we’d have to
look in several places to understand all of the implications of a post being
published! As we added more states, this would only worsen: each of those
match expressions would require another arm.

The state pattern eliminates the need for match expressions in Post
methods and places where we use Post, and to add a new state, we only
need to add a new struct and implement the trait methods on that one
struct.

The state pattern implementation is simple to extend to add more func-
tionality. Try considering these suggestions to see how easy it is to main-
tain code that uses the state pattern:

•	 Add a reject method that returns the post from PendingReview to
Draft.

•	 Two calls must be approved before the state can change to Published.

•	 Allow users to add text content to a post only when it is in the Draft
state. Hint: Make the state object responsible for any changes to the
content but not for modifying the Post.

One disadvantage of the state pattern is that some of the states are cou-
pled to each other because the states implement the transitions between
states. If we add a new state between PendingReview and Published,

Object-oriented Programming in Rust﻿    ◾    257

such as Scheduled, to convert from PendingReview to Scheduled we’ll
need to alter the code in PendingReview. The work will be minimized if
PendingReview didn’t have to change with the addition of a new state, but
that would necessitate switching to a different design pattern.

Another disadvantage is that we have duplicated some logic. To reduce
duplication, we could create default implementations for the State trait’s
request_review and approve methods that return self; however, this would
violate object safety because the trait doesn’t know what the concrete self
will be. Because we want to use State as a trait object, its methods must be
object safe.

Other instances of duplication include Post’s similar implementations
of the request_review and approve methods. Both methods delegate to the
same method the implementation of the value in Option’s state field and
set the new value of the state field to the result. If we had multiple methods
on Post following this pattern, we could define a macro to eliminate the
repetition.

There’s a disadvantage as we here are not taking full advantage of Rust’s
strengths by implementing the state pattern exactly as it’s defined for
object-oriented languages. Let’s have a deep insight into some changes we
can make to the blog crate that will result in invalid states and transitions,
resulting in compile-time errors.

MACROS
Throughout this book, we’ve used macros like println!, but we haven’t
fully explored what a macro is and how it works. The term macro refers
to a Rust feature family: declarative macros with macro_rules! as well as
three types of procedural macros:

•	 Custom #[derive] macros for structs and enums that specify code
added with the derive attribute.

•	 Attribute-like macros that define custom attributes that can be
applied to any item.

•	 Function-like macros that look like function calls but perform oper-
ations on the tokens passed to them as arguments.

We’ll go over each of these in turn, but first, consider why we need macros
at all when we already have functions.

258    ◾    Mastering Rust﻿

Difference between Macros and Functions

Macros are fundamentally a method of writing code that writes other
code, a technique known as metaprogramming. We discuss the derive
attribute in Appendix C, which generates an implementation of various
traits for us. Throughout this book, we’ve also used the println! and vec!
macros. All of these macros expand to produce more code than we wrote
manually.

Metaprogramming is a useful programming tool for reducing the
amount of code that must be written and maintained, which is also one
of the roles of functions. On the other hand, Macros have some additional
capabilities that functions do not.

The number and type of parameters must declare in the function signa-
ture. On the other hand, Macros can take an unlimited number of param-
eters: we can call println!(“hello”) with one argument or println!(“hello
{}”, name) with two. Furthermore, macros are expanded before the com-
piler interprets the meaning of the code so that a macro can implement a
trait on a given type, for example. A function cannot do so because it is
called runtime, whereas a trait must be implemented at compile time.

The disadvantage of using a macro rather than a function is that macro
definitions are more complex than function definitions because we’re
writing Rust code that writes Rust code. Because of this obfuscation,
macro definitions are more difficult to read, understand, and maintain
than function definitions.

Another significant distinction between macros and functions is that
macros must be defined or brought into scope before being called in a file,
whereas functions can be defined and called anywhere.

Declarative Macros with macro_rules! for General Metaprogramming

Declarative macros are the most common type of macro in Rust. These are
also known as “macros by example,” “macro_rules! macros,” or simply “mac-
ros.” Declarative macros, at their core, allow us to write something similar
to a Rust match expression. As discussed in Chapter 5, match expressions
are control structures that take an expression, compare its resulting value
to patterns, and then run the code associated with the matching pattern.

Macros can also compare a value to patterns associated with specific
code: in this case, the value is the literal Rust source code passed to the
macro; the patterns are compared to the structure of that source code; and
the code associated with each pattern, if matched, replaces the code passed
to the macro. This all happens during the compilation process.

Object-oriented Programming in Rust﻿    ◾    259

The macro_rules! construct is used to define a macro. Let’s look at how
the vec! macro is defined to see how we can use macro rules! For instance,
the following macro generates a new vector with three integers:

let vs: Vec<u32> = vec![1, 2, 3];

The vec! macro could also create a vector of two integers or a vector of
five string slices. We couldn’t use a function to accomplish the same thing
because we wouldn’t know the number or type of values ahead of time.

The following is a slightly simplified definition of the vec! macro:

Filename: src/thelib​.​rs

#[macro_export]
macro_rules! vec {
	 ($($c:expr),*) => {
	 	 {
	 	 	 let mut temp_vec = Vec::new();
	 	 	 $(
	 	 	 	 temp​_vec​.p​ush($c);
)*
	 	 	 temp_vec
	 	 }
	 };
}

The #[macro_export] annotation indicates that this macro should be
made available whenever the crate in which it is defined enters scope. The
macro cannot bring into scope unless this annotation is present.

The macro definition then begins with macro_rules! and the name of
the macro we’re defining without the exclamation mark. The name, in this
case vec, is followed by curly brackets, which represent the body of the
macro definition.

The structure of the vec! body resembles that of a match expression.
One arm has the pattern ($($x:expr),*), followed by => and the code block
associated with this pattern. If the pattern is found, the associated block
of code is executed. Because this is the only pattern in this macro, there
is only one way to match; any other pattern will result in an error. More
complex macros will have multiple arms.

Because macro patterns are matched against Rust code structure rather
than values, valid pattern syntax in macro definitions differs from pattern

260    ◾    Mastering Rust﻿

syntax. Let’s go over the pattern pieces; see the reference for the complete
macro pattern syntax.

First, a set of parentheses surrounds the entire pattern. Following that
is a dollar sign ($), followed by a set of parentheses that capture values
that match the pattern within the parentheses for use in the replacement
code. $c:expr is a function within $() that matches any Rust expression
and gives it the name $c.

The comma after $() denotes that a literal comma separator character
may appear after the code that matches the code in $(). The * indicates that
the pattern must match zero or more of whatever comes before the *.

When we use vec![1, 2, 3]; to invoke this macro, the $c pattern matches
three times with the three expressions 1, 2, and 3.

Let’s take a look at the pattern in the code associated with this arm:
temp​_vec​.p​ush() within $()* is generated zero or more times for each part
that matches $() in the pattern, depending on how many times the pat-
tern matches. Each matched expression replaces the $c. When we call this
macro with vec![1, 2, 3];, the code that is generated to replace this macro
call is as follows:

{
	 let mut temp_vect = Vec::new();
	 temp​_vec​.p​ush(1);
	 temp​_vec​.p​ush(2);
	 temp​_vec​.p​ush(3);
	 temp_vec
}

We’ve created a macro that can take any number of arguments of any
type and generate code to create a vector with the specified elements.

With macro_rules, there are some strange edge cases! In coming years,
Rust will have a second type of declarative macro that will function simi-
larly but will address some of these edge cases. The macro_rules! will be
effectively deprecated after that update. Given this, the fact that most Rust
programmers will use macros rather than write macros, we won’t go into
detail about macro_rules! any further.

Procedural Macros for Generating Code from the Attributes

Procedural macros, which behave more like functions, are the second type
of macro (and are a type of procedure). Procedural macros accept some
code as input, operate on that code, and produce some code as output, as

Object-oriented Programming in Rust﻿    ◾    261

opposed to declarative macros, which match against patterns and replace
the code with other code.

The three types of procedural macros (custom derive, attribute-like,
and function-like) all function in the same way.

The definitions must be kept in their own crate with a unique crate
type when creating procedural macros. This is due to various technical
issues that we hope to resolve in the future. The code for using procedural
macros looks like this, where some_attribute is a placeholder for using a
specific macro.

Filename: src/thelib​.​rs
The function that defines a procedural macro accepts a TokenStream as
input and outputs a TokenStream. The proc_macro crate, included with
Rust, defines the TokenStream type, representing a sequence of tokens.
This is the heart of the macro: the source code on which the macro oper-
ates is the input TokenStream, and the code produced by the macro is the
output TokenStream. The function also has an attribute that specifies the
type of procedural macro we’re creating. In the same crate, we can have
different types of procedural macros.

Let’s dig deep into the various types of procedural macros. We’ll begin
with a custom derive macro and then explain the minor differences
between the other forms.

How to Write a Custom derive Macro
Let’s make a crate called hello_macro that defines a trait called HelloMacro
and one function called hello_macro. Instead of requiring our crate users
to implement the HelloMacro trait for each of their types, we’ll pro-
vide a procedural macro that allows users to annotate their type with
#[derive(HelloMacro)] to get a default implementation of the hello_macro
function. By default, this will be printed: “Hello, Macro! My name is
TypeName,” and TypeName is the name of the type on which this trait
has been defined. In other words, we’ll create a crate that allows another
programmer to use our crate to write code.

Filename: src/themain​.​rs

use hello_macro::HelloMacro;
use hello_macro_derive::HelloMacro;

#[derive(HelloMacro)]

262    ◾    Mastering Rust﻿

struct Pancake;

fn main() {
	 Pancake::hello_macro();
}

This code will generate a printout. Hello, Macro! My name is Pancake!
when we’re finished, The first step is to create a new library crate, as shown
below:
$ cargo new hello_macro --lib

Attribute-like Macros
Attribute-like macros are similar to custom derive macros in that they
generate code for the derive attribute instead of allowing us to create new
attributes. They’re also more versatile: derive only works on structs and
enums, whereas attributes can apply to other types of objects, such as
functions. Here’s an example of an attribute-like macro in action: assume
we have a route attribute that annotates functions in a web application
framework:

#[route(GET, “/”)]
fn index() {

The framework would define this #[route] attribute as a procedural
macro. The macro definition function’s signature would be as follows:

#​[proc​_macr​o_att​ribut​e]
pub fn route(�attr: TokenStream, item: TokenStream)

-> TokenStream {

We have two TokenStream parameters here. The first is for the attri-
bute’s contents: the GET, “/” part. The second component is the item’s body
to which the attribute is attached: in this case, fn index() and the remain-
der of the function’s body.

Aside from that, attribute-like macros function in the same way as cus-
tom derive macros: we create a crate with the proc-macro crate type and
implement a function that generates the desired code.

Function-like Macros
Function-like macros define macros that have the appearance of func-
tion calls. They are more flexible than functions, similar to macro_rules!

Object-oriented Programming in Rust﻿    ◾    263

macros; for example, they can take an unknown number of arguments.
Macro_rules! On the other hand, macros can only be defined using the
match-like syntax described earlier in the section “Declarative Macros
with macro_rules! for General Metaprogramming.” Function-like macros
take a TokenStream parameter and, like the other two types of procedural
macros, manipulate that TokenStream using Rust code. An sql! macro is
an example of a function-like macro, which could be named as follows:

let sql = sql!(SELECT * FROM posts WHERE id=2);

This macro would parse the SQL statement contained within it and
ensure that it is syntactically correct, which is far more complex process-
ing than a macro_rules! macro can perform. The sql! macro would be
defined as follows:

#[proc_macro]
pub fn sql(input: TokenStream) -> TokenStream {

This definition is similar to the signature of the custom derive macro:
we receive the tokens inside the parentheses and return the code we
wanted to generate.

In this chapter, we covered implementing an object-oriented design
pattern and macros.

https://taylorandfrancis.com/

265

Appendix A: Keywords

The keywords listed below are reserved for current or future use by
the Rust language. As a result, names of functions, variables, param-

eters, struct fields, modules, crates, constants, macros, static values, attri-
butes, types, traits, or lifetimes cannot be used as identifiers (except as raw
identifiers, as discussed in the “Raw Identifiers” section).

Keywords in Use

The functionality described below is currently attached to the following
keywords:

•	 as: perform primitive casting, disambiguate specific trait containing
an item, or rename items in use and extern crate statements

•	 async: return Future instead of blocking current thread

•	 Await: suspend execution until result of a Future is ready

•	 break: exit the loop immediately

•	 const: define constant items or constant raw pointers

•	 continue: continue to next loop iteration

•	 crate: link an external crate or macro variable representing the crate
in which macro is defined

•	 dyn: dynamic dispatch to trait object

•	 else: The fallback for if and if let control the flow constructs

•	 enum: define enumeration

Appendix A Appendix A
10.1201/9781003311966-14

266    ◾    Appendix A﻿

•	 extern: link external crate, function, or a variable

•	 false: Boolean false literal

•	 fn: define function or function pointer type

•	 for: loop over items from an iterator, implement trait, or specify a
higher ranked lifetime

•	 if: branch based on result of conditional expression

•	 impl: implement the inherent or trait functionality

•	 in: part of for loop syntax

•	 let: bind variable

•	 loop: loop unconditionally

•	 match: match value to patterns

•	 mod: module define

•	 move: make closure take ownership of all its captures

•	 mut: denote mutability in the references, raw pointers, or pattern
bindings

•	 pub: denote public visibility in the struct fields, impl blocks, or
modules

•	 ref: bind by reference

•	 return: return from the function

•	 Self: a type alias for type we are defining or implementing

•	 self: current module or method subject

•	 static: the global variable or lifetime lasting entire program execution

•	 struct: define a structure

•	 super: parent module of current module

•	 trait: trait define

•	 true: Boolean true literal

•	 type: define type alias or associated type

Appendix A﻿    ◾    267

•	 union: define union and is only a keyword when used in a union
declaration

•	 unsafe: denote the unsafe code, functions, traits, or implementations

•	 use: bring symbols into the scope

•	 where: denotes clauses that constrain type

•	 while: loop conditionally based on result of an expression

Keywords Reserved for the Future Use

The following keywords have no functionality but have been reserved by
Rust for possible future use:

•	 abstract

•	 become

•	 box

•	 do

•	 final

•	 macro

•	 override

•	 priv

•	 try

•	 typeof

•	 unsized

•	 virtual

•	 yield

Raw Identifiers

Raw identifiers are the syntax that allows us to use keywords in places
where they would usually be forbidden. A raw identifier is created by pre-
fixing a keyword with r#.

Match, for example, is a keyword. If we try to compile the following
function, which has the name match:

268    ◾    Appendix A﻿

Filename: src/themain​.​rs

fn match(needles: &str, haystack: &str) -> bool {
	 haystack.contains(needles)
}

we’ll get this error:

error: expected identifier, found keyword `match`
 --> src/themain​.rs​:​4:4
	 |
4	| fn match(needles: &str, haystack: &str) -> bool {
	 |	̂ ^^^^ expected identifier, found keyword

The error indicates that the keyword match cannot be used as the func-
tion identifier. To use match as a function name, use the raw identifier
syntax, which looks like this:

Filename: src/themain​.​rs

fn r#match(needle: &str, haystack: &str) -> bool {
	 haystack.contains(needle)
}

fn main() {
	 assert!(r#match(“foo”, “foobar”));
}

This code will compile without issue. Take note of the r# prefix on the
function name in its definition and the location of the function in main.

Raw identifiers allow us to use any word we want as an identifier, even
if it is a reserved keyword. Furthermore, raw identifiers enable us to use
libraries written in a different Rust edition than the one used by our crate.

269

Appendix B: Operators
and Symbols

This appendix includes a glossary of Rust syntax, which provides opera-
tors and other symbols that appear alone or in the context of paths, gener-
ics, trait bounds, macros, attributes, comments, tuples, and brackets.

Appendix B Appendix B

TABLE B.1   

Operator Examples Explanations Overloadable?

! ident!(...), ident!{...},
ident![...]

Macro-expansion

! !expr Bitwise or the logical complement Not
!= var != expr Nonequality comparison PartialEq
% expr % expr Arithmetic remainder Rem
%= var %= expr Arithmetic remainder and

assignment
RemAssign

& &expr, &mut expr Borrow
& &type, &mut type, &’a

type, &’a mut type
Borrowed pointer type

& expr & expr Bitwise AND BitAnd
&= var &= expr Bitwise AND assignment BitAndAssign
&& expr && expr Short-circuiting logical AND
* expr * expr Arithmetic multiplication Mul
*= var *= expr Arithmetic multiplication and

assignment
MulAssign

* *expr Dereference Deref
* *const type, *mut type Raw pointer
+ trait + trait, ’a + trait Compound type constraint
+ expr + expr Arithmetic addition Add
+= var += expr Arithmetic addition and

assignment
AddAssign

, expr, expr Argument and element separator

(Continued)

10.1201/9781003311966-14

270    ◾    Appendix B﻿

Operator Examples Explanations Overloadable?

- - expr Arithmetic negation Neg
- expr - expr Arithmetic subtraction Sub
-= var -= expr Arithmetic subtraction and

assignment
SubAssign

-> fn(...) -> type, |...| -> type Function and closure return
type

. expr​.ide​nt Member access

.. .., expr.., ..expr, expr.​.ex​pr Right-exclusive range literal PartialOrd

..= ..=expr, expr..=expr Right-inclusive range literal PartialOrd

.. ..expr Struct literal update syntax

.. variant(x,..), struct_type
{x,..}

“And the rest” pattern binding

... expr..​.ex​pr (Deprecated, use ..= instead) In
a pattern: inclusive range
pattern

/ expr / expr Arithmetic division Div
/= var /= expr Arithmetic division and

assignment
DivAssign

: pat: type, ident: type Constraints
: ident: expr Struct field initializer
: ‘a: loop {...} Loop label
; expr; Statement and item terminator
; [...; len] Part of fixed-size array syntax
<< expr << expr Left-shift Shl
<<= var <<= expr Left-shift and assignment ShlAssign
< expr < expr Less than comparison PartialOrd
<= expr <= expr Less than or equal to comparison PartialOrd
= var = expr, ident = type Assignment/equivalence
== expr == expr Equality comparison PartialEq
=> pat => expr Part of match arm syntax
> expr > expr Greater than comparison PartialOrd
>= expr >= expr Greater than or equal to

comparison
PartialOrd

>> expr >> expr Right-shift Shr
>>= var >>= expr Right-shift and assignment ShrAssign
@ ident @ pat Pattern binding
^ expr ^ expr Bitwise exclusive OR BitXor
^= var ^= expr Bitwise exclusive OR and

assignment
BitXorAssign

| pat | pat Pattern alternatives
| expr | expr Bitwise OR BitOr
|= var |= expr Bitwise OR and assignment BitOrAssign
|| expr || expr Short-circuiting logical OR
? expr? Error propagation

Appendix B﻿    ◾    271

Operators

Table B.1 includes Rust operators, an example of how the operator would
appear in context, a short explanation, and whether the operator is over-
loadable. If an operator can be overloaded, the relevant trait for overload-
ing that operator is listed.

Non-Operator Symbols

The list below includes all non-letters that do not function as operators;
they do not behave like a function or method call.

The symbols in Table B.2 appear on their own and are valid in various
contexts.

The symbols in Table B.3 appear in the context of a path through the
module hierarchy to an item.

Table B.4 displays symbols that appear when using generic type
parameters.

Table B.5 depicts the symbols that appear when constraining generic
type parameters with trait bounds.

Table B.6 displays the symbols that appear when calling or defining
macros and specifying attributes on an item.

Table B.7 displays the symbols that generate comments.
Table B.8 displays symbols that appear when tuples are used.
Curly braces are used in the following contexts, as shown in Table B.9.
The contexts in which the square brackets are used are shown in

Table B.10.

TABLE B.2   

Symbol Explanation

‘ident Named lifetime or loop label
…u8, …i32, …f64, …usize, etc. Numeric literal of specific type
“…” String literal
r”…”, r#”…”#, r##”…”##, etc. Raw string-literal, escape characters not processed
b”…” Byte string-literal; constructs a [u8] instead of a string
br”…”, br#”…”#, br##”…”##, etc. Raw byte string-literal, the combination of a raw and

byte string literal
‘…’ Character-literal
b’…’ ASCII byte-literal
|…| expr Closure
! Always empty bottom type for the diverging

functions
_ “Ignored” pattern binding; also used to make the

integer literals readable

272    ◾    Appendix B﻿

TABLE B.3   

Symbol Explanation

ident::ident Namespace path
::path Path relative to crate root (i.e., an explicitly absolute-path)
self::path Path relative to current module (i.e., an explicitly

relative-path).
super::path Path relative to the parent of the current-module
type::ident, <type as
trait>::ident

Associated constants, functions, and types

<type>::… Associated item for a type that cannot directly name
(e.g., <&T>::..., <[T]>::..., etc.)

trait::method(…) Disambiguating method call by naming the trait that
defines it

type::method(…) Disambiguating method call by naming the type for which
it is defined

<type as trait>::method(…) Disambiguating method call by naming the trait and type

TABLE B.4   

Symbol Explanation

path<…> Specifies parameters to the generic type in a type (e.g.,
Vec<u8>)

path::<…>, method::<…> Specifies parameters to the generic type, function, or
method in an expression; often referred to as turbofish
(e.g., ”42”.parse::<i32>())

fn ident<…> … Define generic-function
struct ident<…> … Define generic-structure
enum ident<…> … Define generic-enumeration
impl<…> … Define generic-implementation
for<…> type Higher-ranked lifetime-bounds
type<ident=type> Generic type where one or more associated types have the

specific assignments (e.g., Iterator<Item=T>)

TABLE B.5   

Symbol Explanation

T: U Generic parameter T constrained to the types that implement U
T: ‘a Generic type T must outlive lifetime ’a
T: ‘static Generic type T contains no borrowed references other than ‘static

ones
‘b: ‘a Generic lifetime ’b must outlive lifetime ’a
T: ?Sized Allow generic type parameter to be dynamically sized type
‘a + trait, trait + trait Compound-type constraint

Appendix B﻿    ◾    273

TABLE B.6   

Symbol Explanation

#[meta] Outer attribute
#![meta] Inner attribute
$ident Macro substitution
$ident:kind Macro capture
$(…)… Macro repetition
ident!(…), ident!{…}, ident![…] Macro invocation

TABLE B.7   

Symbol Explanation

// Line comment
//! Inner line doc comment
/// Outer line doc comment
/*…*/ Block comment
/*!…*/ Inner block doc comment
/**…*/ Outer block doc comment

TABLE B.8   

Symbol Explanation

() Empty tuple, both literal and type
(expr) Parenthesized expression
(expr,) Single-element tuple expression
(type,) Single-element tuple type
(expr,…) Tuple expression
(type,…) Tuple type
expr(expr,…) Function call expression; also used to initialize the tuple structs and

tuple enum variants
expr.0, expr.1, etc. Tuple indexing

TABLE B.9   

Context Explanation

{…} Block expression
Type {…} struct literal

274    ◾    Appendix B﻿

TABLE B.10   

Context Explanation

[…] Array literal
[expr; len] Array literal containing len-copies of expr
[type; len] Array type containing len-instances of type
expr[expr] Collection indexing. Overloadable (Index, IndexMut)
expr[​..], ​expr[​a..],​ expr​
[..b]​, exp​r[a..​b]

Collection indexing pretending to be a collection slicing, using
the Range, RangeFrom, RangeTo, or RangeFull as the “index”

275

Appendix C:
Derivable Traits

Throughout this book, we’ve discussed the derive attribute, which
can be applied to a struct or enum definition. The derive attribute

generates code that will implement a trait on the type we’ve annotated
with the derive syntax with its own default implementation.

This contains a list of all the standard library traits that can be used
with derive. Each section discusses:

•	 What this trait will enable operators and methods.

•	 What the trait implementations provided by derive does.

•	 What the trait’s implementation means about the type.

•	 The circumstances under which you are or are not permitted to use
the trait.

•	 Exemplifications of operations that necessitate the trait.

If we want to override the behavior provided by the derive attribute, con-
sult the standard library documentation for each trait for details on how
to do so.

The rest of the standard library traits cannot be implemented on your
types using derive. Because these traits have no sensible default behavior,
it is up to us to implement them in a way that makes sense for what you’re
trying to accomplish.

Display, which handles formatting for end-users, is an example of a
trait that cannot be derived. We should always think about the best way
to display a type to a user. What parts of the type should a user be able to
see? What parts would they find interesting? What would data format be

Appendix C Appendix C
10.1201/9781003311966-14

276    ◾    Appendix C﻿

most beneficial to them? Because the Rust compiler lacks this knowledge,
it cannot provide appropriate default behavior for us.

This appendix’s list of derivable traits is not exhaustive: libraries can
implement derive for their own traits, leaving the list of traits we can use
derive with truly open-ended.

Debug for Programmer Output

The Debug trait allows for debug formatting in format strings, which is
indicated by inserting:? within {} placeholders.

The Debug trait enables you to print instances of a type for debugging
purposes, allowing us and other programmers who use our type to inspect
an instance at a specific point in the program’s execution.

The Debug trait is required when using the assert_eq! macro, for
example. If the equality assertion fails, this macro prints the values of the
instances passed as arguments so that programmers can see why the two
instances were not equal.

Equality Comparisons with PartialEq and Eq

The PartialEq trait compares instances of a type to check for equality and
supports the == and != operators.

The eq method is implemented in Deriving PartialEq. When PartialEq
is applied to structs, two instances are equal only if all of their fields are
equal, and they are not equal if any of their fields are not equal. When
derived from enums, each variant is equal to itself but not to the others.

The PartialEq trait, for example, is required when using the assert_eq!
macro, which requires comparing two instances of a type for equality.

There are no methods for the Eq trait. Its purpose is to indicate that the
value is equal to itself for every value of the annotated type. The Eq trait is
only applicable to types that also implement PartialEq, and not all types that
implement PartialEq can also implement Eq. Floating point number types
are an example: the implementation of floating point numbers states that
two instances of the not-a-number (NaN) value are not equal to each other.

For keys in a HashMap<K, V>, Eq is required so that the HashMap<K,
V> can determine whether two keys are the same.

PartialOrd and Ord for Ordering Comparisons

The PartialOrd trait compares instances of the same type for sorting pur-
poses. A type that implements PartialOrd can be used with the opera-
tors <, >,< =, and >=. The PartialOrd trait can only apply to types that also
implement PartialEq.

Appendix C﻿    ◾    277

Deriving PartialOrd uses the partial_cmp method, which returns
an OptionOrdering> that is None if the given values do not produce an
ordering. The not-a-number (NaN) floating point value is an example of a
value that does not produce an ordering, despite the fact that most values
of that type can compare. When called with any floating point number
and the NaN floating point value, partial_cmp returns None.

PartialOrd compares two instances by comparing the values in each
field in the order in which the fields appear in the struct definition when
derived on structs. Variants of enum declared earlier in the enum defini-
tion are considered less than variants listed later when derived on enums.

The PartialOrd trait is required, for example, by the rand crate’s gen_
range method, which generates a random value within the range specified
by a range expression.

The Ord trait indicates that a valid ordering exists for any two values of
the annotated type. Because a valid ordering is always possible, the Ord
trait implements the cmp method, which returns an Ordering rather than
an Option<Ordering>. The Ord trait can only apply to the types that also
implement PartialOrd and Eq. cmp behaves the same way when derived
on structs and enums as the derived implementation for partial cmp does
with PartialOrd.

When storing the values in a BTreeSet<T>, a data structure that stores
the data based on the sort order of the values, Ord is required.

Clone and Copy for the Duplicating Values

The Clone trait allows us to create an explicit deep copy of a value, and
the duplication process may include running arbitrary code and copying
heap data. For more information on Clone, see the “Variables and Data
Interactions: Clone” section in Chapter 3.

Deriving Clone implements the clone method, which calls clone on
each of the type’s parts when implemented for the entire type. This means
that in order to derive Clone, all of the fields or values in the type must
also implement Clone.

For example, when calling the to_vec method on a slice, Clone is
required. The slice does not own the type instances it contains, but the
vector returned by to_vec does, so to_vec calls clone on each item. As a
result, the type stored in the slice must support Clone.

The Copy trait allows us to duplicate a value by simply copying bits
from the stack; no arbitrary code is required. For more information on
Copy, see the “Stack-Only Data: Copy” section in Chapter 3.

278    ◾    Appendix C﻿

Copy trait does not define methods to prevent programmers from over-
loading those methods and violating the assumption that no arbitrary
code is being run.

Copy can be deduced from any type whose parts all implement Copy.
Because type that implements Copy has a trivial implementation of Clone
that performs same task as Copy, a type that implements Copy must also
implement Clone.

Copy trait is rarely required; types that implement the Copy have opti-
mizations available, which means we don’t have to call clone, making the
code shorter.

Everything that Copy can do, Clone can also do, but the code may be
slower or require the use of clone in some places.

Hash for Mapping a Value to a Fixed Size Value

The Hash trait allows you to use a hash function to map an instance of a
type of arbitrary size to a fixed size value. Deriving Hash is a class that
implements hash method. The derived implementation of hash method
combines the results of calling hash on each of the type’s parts, which
means that all fields or values must also implement Hash in order to derive
Hash.

An example of when the Hash is required is when storing keys in a
HashMap<K, V> to store data efficiently.

Default for Default Values

The Default trait allows us to define a type’s default value. Deriving Default
is a function that implements the default function. To derive Default, the
derived implementation of the default function calls the default function
on each part of the type, which means that all fields or values in the type
must also implement Default.

The Default::default function is frequently used in conjunction with
the struct update syntax discussed in “Creating Instances from Other
Instances with Struct Update Syntax” in Chapter 4.

By using Default::default(), we can customize a few fields of a struct and
then set and use a default value for the remaining fields.

When using the method unwrap_or_default on Option<T> instances,
for example, the Default trait is required. If Option<T> is None, the
method unwrap_or_default returns the Default::default result for the type
T stored in the Option<T>.

279

Appraisal

Rust is a multi-paradigm, elevated, statically typed scripting lan-
guage. With a primary emphasis on safety and performance, this lan-

guage assists developers in developing strong and secure apps. Compared
to C/C++, which struggles with memory errors and concurrent program-
ming, Rust has already overcome these issues.

Rust language was initially designed to tackle C/C++ difficulties.
However, it has proven so successful that it is now used by many top firms,
including Dropbox, Firefox, and Cloudflare, both startups and large
corporations.

Hundreds of businesses throughout the world use Rust because of its
tremendous advantages. It is quick and low on memory. The language can
provide many performance functions, interface with other languages, and
run on embedded devices while requiring no runtime or garbage collector.

Rust’s robust type system and ownership concept enable it to eliminate
many errors at build time. It has integrated package management, multi-
editor support with type analyses, and auto-completion.

RUST’S BACKGROUND
Graydon Hoare at Mozilla Research created Rust with the assistance of a
team of collaborators. The Mozilla Foundation is behind it.

Rust is a community-driven open-source language. Many prominent
corporations, like Amazon, Google, and Microsoft, use it. Rust is a con-
current and safe language appropriate for programming codes.

WHY IS BORROW CHECKER IMPORTANT IN RUST?
The borrow checker is an essential element of the Rust programming lan-
guage and one feature that distinguishes Rust. It aids in the management
of ownership. Another distinguishing element of Rust is ownership. It

Mastering Rust Appraisal
10.1201/9781003311966-13

280    ◾    Mastering Rust﻿

allows the language to offer memory safety without requiring the use of a
garbage collector.

To begin, what does the borrow checker accomplish for us, and how does
it connect to other memory management strategies like garbage collectors
and ownership? Let’s keep things simple because there’s a lot going on.

So, what exactly is the borrow checker? Most scripting languages don’t
need us to consider where your variables are kept because the garbage collec-
tor does it for us. However, with the Rust code, the borrow checker handles
everything. Although there is no stated memory model in Rust, applications
can store data in two types of memory: the stack and the heap. Data saved
on the stack must specify size, but data saved on the heap can be of any size.

Data access is straightforward and rapid, but the data must match cer-
tain criteria. Because there are no stringent data requirements, the heap
approach is slower but more configurable. It is useful when the stack is
unavailable.

We don’t have to worry about where the data goes in a garbage-collected
language: the stack or the heap. Memory must explicitly be allocated to
the heap in C languages. Remember that memory must be removed once
we’ve avoided memory leaks, but only once.

WHAT IS THE PURPOSE OF RUST?
It’s time to see what the Rust software program can do. It can, however, be
utilized in programming. The language is excellent for developing oper-
ating systems and micro-controller applications. Rust has already been
used to build several powerful operating systems, including QuiltOS, Rux,
Redox, and intermezzOS. Mozilla also employs the language in its web
engine. In general, the Rust programming language may use to create the
following software:

SPECIAL CHARACTERISTICS OF THE RUST LANGUAGE
The greatest advantage of Rust over other scripting languages is its pri-
vacy. This is accomplished in part through error management. If a mistake
occurs during compilation that cannot be corrected, the “panic!” macro is
used. This terminates the application and an error message is displayed,
ensuring that no damage occurs.

Rust’s memory management is also safe. The benefit is that Rust
ensures memory safety without the use of a garbage collector. Memory
has been a frequent target for hackers in various computer languages.

Appraisal﻿    ◾    281

When memory runs out, it might cause faults in the system and, as a
result, a vulnerability that can exploit. A “garbage collector” guaran-
tees that unneeded things are removed from memory. This, however,
decreases the code’s execution speed. The “trash collector” is rendered
obsolete by the Rust compiler. Alternatively, it checks for any memory
errors during compilation.

However, the enhanced security protections do not come at the expense
of performance. Rust is a system software application that runs at the same
speed as C/C++. On the one hand, this relates to rejecting a “trash collec-
tor.” Fast runtime is also assured by “zero cost abstraction,” which implies
that you may write in a language with high degrees of abstraction without
experiencing performance degradation.

As a result, Rust is a hybrid of high-level and low-level computer lan-
guages. Rust, like C/C++, is near to the hardware, ensuring fast perfor-
mance while being as simple to develop as high-level languages.

Rust is easy to learn for both novice and professional programmers. The
language is similar to known alternatives in its usage. On the other hand,
the amount of work that went into the design of the error alerts is a sig-
nificant advantage. Whereas other scripting languages display mistakes
confusingly, Rust gives practical and valuable information about how to
solve them.

BENEFITS OF THE RUST PROGRAMMING LANGUAGE
Rust began as a Mozilla research project, with the goal of re-implementing
essential components of the Firefox browser. That choice was motivated by
a few significant factors: Firefox deserves to make greater use of current
multicore CPUs, and the sheer prevalence of web browsers necessitates
their safety.

However, those benefits are required by all software, not only browsers,
which is why Rust grew from a browser component effort to a full-fledged
language project. Rust achieves its safety, speed, and usability through the
following features:

•	 Rust provides memory safety: Rust will not build programs that
attempt to use unsafe memory. The majority of memory problems
are found when a program is executing. Rust’s syntax and linguistic
metaphors ensure that common memory-related issues in other lan-
guages—null or dangling pointers, data races, and so on—are never

282    ◾    Mastering Rust﻿

implemented. The compiler detects these problems and compels
them to be resolved before the execution of the program.

•	 Rust is adaptable: Rust allows us to live recklessly if necessary. Rust’s
safeties can be partially suspended when we need to directly modify
memory, such as dereferencing a raw reference in C/C++. Because
Rust’s memory safety actions can never totally deactivate, the essen-
tial term is “partially.” Even said, for most common use situations,
we virtually never have to remove the seatbelts, so the end result is
software that is safer by default.

•	 Rust is cross-platform: It runs on all three major operating sys-
tems: Linux, Windows, and MacOS. Others are supported in addi-
tion to these three. Cross-compiling or producing binaries for a
different architecture or platform than the one we’re presently run-
ning requires minimal more work, but one of Rust’s overall aims
is to reduce the amount of heavy lifting required for such tasks.
Furthermore, while Rust works on the majority of available systems,
it is not the intention of its authors to have Rust compile completely
everywhere but only on popular platforms where they do not have to
make excessive sacrifices to the language.

•	 Rust comes with a handy standard library: Rust’s bigger objective
includes encouraging C and C++ developers to choose Rust instead
of those languages wherever possible. However, C and C++ users
demand a good standard library – they want to be able to utilize
containers, collections, and iterators; manipulate strings; manage
processes and threads; do network and file I/O; and so on. Rust’s
standard library performs all of this and more. Rust’s standard
library can only contain features that can be safely transferred across
platforms since it is meant to be cross-platform. Platform-specific
functions, such as Linux’s epoll, must be provided by third-party
libraries.

•	 Rust has a strong language: Few developers like to begin working
in a new language if it offers fewer, or weaker, capabilities than the
ones they are accustomed to. Rust’s native language characteristics
are comparable to those of languages such as C++: Rust treats mac-
ros, generics, pattern matching, and composition (through “traits”)
as first-class citizens. Some capabilities prevalent in other languages,

Appraisal﻿    ◾    283

such as inline assembler, are also accessible in Rust, albeit with the
“unsafe” mark.

•	 Rust is simple to set up: If Rust’s safety and integrity features aren’t
employed, they don’t mean anything. That is why Rust’s program-
mers and community have worked hard to make the language as
helpful and friendly to novices as possible.

Everything required to build Rust binaries is included in the same
package. External compilers, such as GCC, are required only when build-
ing components outside of the Rust ecosystem (for instance, a C library
compiled from a source). Microsoft Windows users are not treated as sec-
ond-class citizens; the Rust tool chain is just as powerful on Windows as
it is on Linux and MacOS.

WHY DO COMPANIES USE RUST?
If we are concerned about memory security, Rust is a fantastic solution.
Nonetheless, many individuals began to use it after growing unhappy
with the limitations of the C and C++ programming languages. When
designing the Rust computer language, engineers focused on building an
environment with an efficient workflow.

The primary reasons why corporations prefer Rust over other scripting
languages are as follows:

	 1.	A thriving and engaged community

	 2.	Assurance of steady software performance

	 3.	Memory safety with superior efficiency

	 4.	Allowing simultaneous programming

	 5.	The ever-increasing amount of Rust documentation

https://taylorandfrancis.com/

285

Bibliography

Abiodun, A. D. (2020, June 24). A Practical Guide to Testing React Applications
with Jest — Smashing Magazine. Smashing Magazine. https://www​.smash-
ingmagazine​.com​/2020​/06​/practical​-guide​-testing​-react​-applications​-jest/

Akintayo, S. (2020, May 14). Styling Components in React — Smashing Magazine.
Smashing Magazine. https://www​.smashingmagazine​.com​/2020​/05​/styling​
-components​-react/

Atto, E. (2020, April 20). Understanding the Fundamentals of Routing in React.
The Andela Way | Medium. https://medium​.com​/the​-andela​-way​/under-
standing​-the​-fundamentals​-of​-routing​-in​-react​-b29f806b157e

Avinash, A. (n.d.). Lazy Loading in React. LoginRadius Blog. Retrieved July 9,
2022, from https://www​.loginradius​.com​/blog​/engineering​/lazy​-loading​
-in​-react/

Banks, A., & Porcello, E. (n.d.). Learning React: Functional Web Development
with React and Redux [1ed.] 1491954620, 9781491954621. Dokumen.Pub.
Retrieved July 9, 2022, from https://dokumen​.pub​/learning​-react​-func-
tional​-web​-development​-with​-react​-and​-redux​-1nbsped​-1491954620​
-9781491954621​.html

baoipc. (2022, January 20). GitHub - baoipc/JS-HTML-DOM_Basic. GitHub.
https://github​.com​/baoipc​/JS​-HTML​-DOM​_Basic

Borges, R. (n.d.). (JAVASCRIPT) - Learning React Functional Web Development
with React and Redux - Algoritmo e Programação - 38. Passei Direto.
Retrieved July 9, 2022, from https://www​.passeidireto​.com​/arquivo​
/107550538​/javascript​-learning​-react​-functional​-web​-development​-with​
-react​-and​-redux​/38

Catal, M. (2019, October 13). How to Set Up Lazy Loading Components in
React. Medium. https://muratcatal​.medium​.com​/lazy​-loading​-in​-react​
-2a43ea2b2dd1

Complex State Management with Redux - Pro React. (n.d.). Docobook.Com.
Retrieved July 9, 2022, from https://docobook​.com​/complex​-state​-manage-
ment​-with​-redux​-pro​-react​.html

Conditional Rendering. (n.d.). React. Retrieved July 9, 2022, from https://reactjs​
.org​/docs​/conditional​-rendering​.html

Context API in React​.js​. (n.d.). tutorialspoint. Retrieved July 9, 2022, from https://
www​.tutorialspoint​.com​/context​-api​-in​-react​-js

Bibliography Bibliography

https://www.smashingmagazine.com
https://www.smashingmagazine.com
https://www.smashingmagazine.com
https://www.smashingmagazine.com
https://medium.com
https://medium.com
https://www.loginradius.com
https://www.loginradius.com
https://dokumen.pub
https://dokumen.pub
https://dokumen.pub
https://github.com
https://www.passeidireto.com
https://www.passeidireto.com
https://www.passeidireto.com
https://muratcatal.medium.com
https://muratcatal.medium.com
https://docobook.com
https://docobook.com
https://reactjs.org
https://reactjs.org
https://www.tutorialspoint.com
https://www.tutorialspoint.com

286    ◾    Bibliography﻿

Dashora, S. (2022, March 24). How to Use React Context with Class Component?
ProgressiveWebNinja. https://progressivewebninja​.com​/how​-to​-use​-react​
-context​-with​-class​-components/

Egwuenu, G. (2021, January 12). Programmatically Navigate with React Router.
Telerik Blogs. https://www​.telerik​.com​/blogs​/programmatically​-navigate​
-with​-react​-router

Entering Multiple Voices with Layers. (n.d.). usermanuals​.finalemusic​.co​
m. Retrieved July 9, 2022, from https://usermanuals​.finalemusic​.com​/
FinaleWin​/Content​/Finale​/Tut2EnteringNotes4​.htm

Event Bubbling and Capturing in JavaScript. (n.d.). Javatpoint. Retrieved July 9,
2022, from https://www​.javatpoint​.com​/event​-bubbling​-and​-capturing​-in​
-javascript

Explore Microsoft Dynamics 365 Finance and Operations Together – Microsoft
Dynamics 365. (2022, June 30). Microsoft Dynamics 365. https://exploredy-
namics365​.home​.blog/

Facebook. (2022, July 8). GitHub - Facebook/Flipper: A Desktop Debugging
Platform for Mobile Developers. GitHub. https://github​.com​/facebook​/
flipper

fdecampredon. (n.d.). React-typescript/react​.d​​.ts at master · fdecampredon/react-
typescript. GitHub. Retrieved July 9, 2022, from https://github​.com​/fdecam-
predon​/react​-typescript​/blob​/master​/declarations​/react​.d​.ts

Form Validation in Java Servlet. (2021, May 12). Know Program. https://www​
.knowprogram​.com​/servlet​/form​-validation​-in​-java​-servlet/

Form Validation. (2016, July 4). Gist. https://gist​.github​.com​/ABKC​/baf​d9c4​61d6​
71e9​6655​2a13​a7ce7bdae

Fraser, D. (2018, July 17). Mocking HTTP Requests with Nock. This is a “How
To” Article on Using. Medium. https://codeburst​.io​/testing​-mocking​-http​
-requests​-with​-nock​-480e3f164851​?gi​=5da14792fe1d

Ghodekar, Y. (2021, February 13). What is DOM Manipulation?. In this Blog, We
Will Learn What is DOM. The Startup | Medium. https://medium​.com​/swlh​
/what​-is​-dom​-manipulation​-dd1f701723e3

How to Pass Parameters to a Destination URL through Tracking Links. (2022,
March 11). ClickMeter Blog. https://blog​.clickmeter​.com​/passing​-param-
eters​-through​-tracking​-link/

How to Select All Checkboxes Using JavaScript. (n.d.). JavaScript Tutorial In 2021
- W3cschoool.COM. Retrieved July 9, 2022, from https://w3cschoool​.com​/
tutorial​/how​-to​-select​-all​-checkboxes​-using​-javascript

https://vanvelzermath​.weebly​.com​/uploads​/2​/3​/5​/2​/23525212​/3​.4​_equivalent​
_linear​_relations​.pdf (It is a document randomly uploaded on google).

Introduction to Redux Saga. (n.d.). LoginRadius Blog. Retrieved July 9, 2022,
from https://www​.loginradius​.com​/blog​/engineering​/introduction​-to​
-redux​-saga/

Javascript - How to Resume Script When New Window Loads. (2011, June 17).
Stack Overflow. https://stackoverflow​.com​/questions​/6386995​/how​-to​
-resume​-script​-when​-new​-window​-loads

https://progressivewebninja.com
https://progressivewebninja.com
https://www.telerik.com
https://www.telerik.com
https://usermanuals.finalemusic.com
https://usermanuals.finalemusic.com
https://www.javatpoint.com
https://www.javatpoint.com
https://exploredynamics365.home.blog
https://exploredynamics365.home.blog
https://github.com
https://github.com
https://github.com
https://github.com
https://www.knowprogram.com
https://www.knowprogram.com
https://gist.github.com
https://gist.github.com
https://codeburst.io
https://codeburst.io
https://medium.com
https://medium.com
https://blog.clickmeter.com
https://blog.clickmeter.com
https://w3cschoool.com
https://w3cschoool.com
https://vanvelzermath.weebly.com
https://vanvelzermath.weebly.com
https://www.loginradius.com
https://www.loginradius.com
https://stackoverflow.com
https://stackoverflow.com

Bibliography﻿    ◾    287

Javascript - TypeError: Super Expression Must Be Null or a Function, not Undefined
with Babeljs. (2016, March 3). Stack Overflow. https://stackoverflow​.com​/
questions​/35777991​/typeerror​-super​-expression​-must​-be​-null​-or​-a​-func-
tion​-not​-undefined​-with​-babel

JavaScript DOM EventListener. (n.d.). W3Schools. Retrieved July 9, 2022, from
https://www​.w3schools​.com​/JS​/js​_htmldom​_eventlistener​.asp

JavaScript Form. (n.d.). Javatpoint. Retrieved July 9, 2022, from https://www​
.javatpoint​.com​/javascript​-form

JavaScript Form Validation. (n.d.). Javatpoint. Retrieved July 9, 2022, from https://
www​.javatpoint​.com​/javascript​-form​-validation

JavaScript Form Validation. (n.d.). W3Schools. Retrieved July 9, 2022, from
https://www​.w3schools​.com​/JS​/js​_validation​.asp

Jesus Becker Becker. (n.d.). Art Might - Just Art. Retrieved July 9, 2022, from
https://artmight​.com​/user​/profile​/518482

Kumar, P. (2021, August 11). Start Working with React Context API. DEV
Community. https://dev​.to​/pankajkumar​/start​-working​-with​-react​-context​
-api​-38h

Kumar, R. (2022, March 17). What is Reactjs and How it Works? An Overview and
Its Use Cases. DevOpsSchool. https://www​.devopsschool​.com​/blog​/what​-is​
-reactjs​-and​-how​-it​-works​-an​-overview​-and​-its​-use​-cases/

Laichenkov, Y. (2022, April 11). API Testing with Playwright & odottaa. Medium.
https://elaichenkov​.medium​.com​/api​-testing​-with​-playwright​-odottaa​
-77451917342f

Maurya, P. (2019, December 14). How to Import or Use Images in ReactJS.
TutorialsWebsite. https://www​.tutorialswebsite​.com​/how​-to​-import​-or​-use​
-images​-in​-reactjs/

MFC - Getting Started. (n.d.). tutorialspoint. Retrieved July 9, 2022, from https://
www​.tutorialspoint​.com​/mfc​/mfc​_getting​_started​.htm

Moreno, L. (2022, July 7). 5 Health Benefits of Chicken Wings. TheSite.Org. https://
www​.thesite​.org​/health​-benefits​-of​-chicken​-wings/

Myntra PPMP. (2021, August 3). Vinculum Knowledge Central. https://vincu-
lumhelpdesk​.freshdesk​.com​/support​/solutions​/articles​/9000198514​-myn-
tra​-ppmp

Omondi, E. (2021, July 27). Working with Styled-Components in React. Engineering
Education (EngEd) Program | Section. https://www​.section​.io​/engineering​
-education​/working​-with​-styled​-components​-in​-react/

The Power of UserDefaults in Swift. (2019, March 3). Swift by Sundell. https://
www.swiftbysundell.com/articles/the-power-of-userdefaults-in-swift/

Programmatic Navigation. (n.d.). Frontend Armory. Retrieved July 9, 2022, from
https://frontarm​.com​/navi​/en​/guides​/programmatic​-navigation/

Pros and Cons of ReactJS. (n.d.). Javatpoint. Retrieved July 9, 2022, from https://
www​.javatpoint​.com​/pros​-and​-cons​-of​-react

React Book - Router and Query Params. (n.d.). softchris​.github​. Retrieved July 9,
2022, from https://softchris​.github​.io​/books​/react​/router​-parameters/

https://stackoverflow.com
https://stackoverflow.com
https://stackoverflow.com
https://www.w3schools.com
https://www.javatpoint.com
https://www.javatpoint.com
https://www.javatpoint.com
https://www.javatpoint.com
https://www.w3schools.com
https://artmight.com
https://dev.to
https://dev.to
https://www.devopsschool.com
https://www.devopsschool.com
https://elaichenkov.medium.com
https://elaichenkov.medium.com
https://www.tutorialswebsite.com
https://www.tutorialswebsite.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.thesite.org
https://www.thesite.org
https://vinculumhelpdesk.freshdesk.com
https://vinculumhelpdesk.freshdesk.com
https://vinculumhelpdesk.freshdesk.com
https://www.section.io
https://www.section.io
https://www.swiftbysundell.com
https://www.swiftbysundell.com
https://frontarm.com
https://www.javatpoint.com
https://www.javatpoint.com
https://softchris.github.io

288    ◾    Bibliography﻿

React Form Validation. (n.d.). Educative: Interactive Courses for Software
Developers. Retrieved July 9, 2022, from https://www​.educative​.io​/answers​
/react​-form​-validation

React Introduction, Why Learn ReactJS? (n.d.). W3cschoool.COM. Retrieved July
9, 2022, from https://w3cschoool​.com​/react​-introduction

React Render Props解释_culiu9261的博客-CSDN博客 . (2001, June 11). blog​
.csdn​.ne​t. https://blog​.csdn​.net​/culiu9261​/article​/details​/107539020

React Router. (n.d.). Javatpoint. Retrieved July 9, 2022, from https://www​.javat-
point​.com​/react​-router

React.Component. (n.d.). React. Retrieved July 9, 2022, from https://reactjs​.org​/
docs​/react​-component​.html

React​.​js Render Props. (2021, March 15). GeeksforGeeks. https://www​.geeksfor-
geeks​.org​/react​-js​-render​-props/

ReactEnlightenment​.com. (n.d.). 3.1 Using react​.​js & react-dom.j. React
Enlightenment. Retrieved July 9, 2022, from https://reactenlightenment​
.com​/react​-basic​-setup​/3​.1​.html

ReactEnlightenment​.com. (n.d.). 3.2 Using JSX via Babel. React Enlightenment.
Retrieved July 9, 2022, from https://reactenlightenment​.com​/react​-basic​
-setup​/3​.2​.html

ReactEnlightenment​.com. (n.d.). 7.1 What Are Component Props? React
Enlightenment. Retrieved July 9, 2022, from https://www​.reactenlighten-
ment​.com​/react​-props​/7​.1​.html

ReactEnlightenment​.com. (n.d.). 8.2 Working with Component State. React
Enlightenment. Retrieved July 9, 2022, from https://reactenlightenment​
.com​/react​-state​/8​.2​.html

ReactEnlightenment​.com. (n.d.). 8.3 State vs. Props. React Enlightenment.
Retrieved July 9, 2022, from https://reactenlightenment​.com​/react​-state​/8​
.3​.html

ReactJS - Why is Lazy Loading not the Default for React? (2019, November 5).
Stack Overflow. https://stackoverflow​.com​/questions​/58710241​/why​-is​-lazy​
-loading​-not​-the​-default​-for​-react

Redux-Saga. (2022, June 28). redux-saga/BeginnerTutorial​.​md at master. GitHub.
https://github​.com​/redux​-saga​/redux​-saga​/blob​/master​/docs​/introduction​/
BeginnerTutorial​.md

Render Props. (n.d.). React. Retrieved July 9, 2022, from https://reactjs​.org​/docs​/
render​-props​.html

risalat. (2020, August 3). How to Get Rid of Hair Algae in a Reef Tank: Complete
Guide. Reef Craze. https://reefcraze​.com​/hair​-algae​-in​-a​-reef​-tank/

rocLv. (n.d.). Extracting Container Components Visibletodolist Addtodo | Redux
Getting Started. GitBooks. Retrieved July 9, 2022, from https://roclv​.git-
books​.io​/redux​-getting​-started​/content​/23​.redux​-extracting​-container​
-components​-visibletodolist​-addtodo​.html

S.M., it19214580 B. (2021, May 31). React js. What is React JS? Medium. https://
maleeshabulner​.medium​.com​/react​-js​-5c6420883b6a

https://www.educative.io
https://www.educative.io
https://w3cschoool.com
https://blog.csdn.net
https://www.javatpoint.com
https://www.javatpoint.com
https://reactjs.org
https://reactjs.org
http://www.React.js
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://reactenlightenment.com
https://reactenlightenment.com
https://reactenlightenment.com
https://reactenlightenment.com
https://www.reactenlightenment.com
https://www.reactenlightenment.com
https://reactenlightenment.com
https://reactenlightenment.com
https://reactenlightenment.com
https://reactenlightenment.com
https://stackoverflow.com
https://stackoverflow.com
https://github.com
https://github.com
https://reactjs.org
https://reactjs.org
https://reefcraze.com
https://roclv.gitbooks.io
https://roclv.gitbooks.io
https://roclv.gitbooks.io
https://maleeshabulner.medium.com
https://maleeshabulner.medium.com

Bibliography﻿    ◾    289

Saraf, P. (2020, October 12). The React Context API. Hello Everyone! Today We
are Going To… Medium. https://medium​.com​/cleverprogrammer​/the​-react​
-context​-api​-364da590aa73

Sebhastian, N. (2021, March 7). React Testing Library – Tutorial with JavaScript
Code Examples. freeCodeCamp.Org. https://www​.freecodecamp​.org​/news​/
react​-testing​-library​-tutorial​-javascript​-example​-code/

Sharma, V. (2019, June 28). Posting Profiles. Microsoft Dynamics AX. https://
dynamicsaxsharma​.blogspot​.com​/2019​/06​/posting​-profiles​.html

Singh, M. (2021, June 15). Top 5 React JS Training Institutes in Chandigarh.
Training Institute Mohali. https://traininginmohali​.com​/chandigarh​/top​-5​
-react​-js​-training​-institutes​-in​-chandigarh/

Sketch Me! (2021, March 19). App Store. https://apps​.apple​.com​/gb​/app​/sketch​
-me​/id364365478

softchris. (2021, January 18). React-book/lazy​-loading​​.md at master. GitHub.
https://github​.com​/softchris​/react​-book​/blob​/master​/4​-routing​/lazy​-load-
ing​.md

Taming the React Setup. (2016, May 25). Telerik Blogs. https://www​.telerik​.com​/
blogs​/taming​-react​-setup

There’s Never Been a Better Time to Study Agriculture. (2022, June 20). The
University of Sydney. https://www​.sydney​.edu​.au​/science​/news​-and​-events​
/2022​/06​/20​/there​-s​-never​-been​-a​-better​-time​-to​-study​-agriculture​.html

Top 65 React Interview Questions (2022). (n.d.). Javatpoint. Retrieved July 9, 2022,
from https://www​.javatpoint​.com​/react​-interview​-questions

Vorontsova, M. (2019, March 15). 20 JavaScript Interview Questions - Part 2 |
Theory and Practice. Soshace. https://soshace​.com​/30​-javascript​-interview​
-questions​-part​-2/

WTF is JSX? (n.d.). Egghead. Retrieved July 9, 2022, from https://egghead​.io​/
learn​/react​/beginners​/wtf​-is​-jsx

面试哥. (2020, March 28). 8.2 Working with Component State-[英文]React
Enlightenment-面试哥 . 面试哥. https://www​.mianshigee​.com​/tutorial​/
ReactEnlightenment​/react​-state​-8​.2​.md

https://medium.com
https://medium.com
https://www.freecodecamp.org
https://www.freecodecamp.org
https://dynamicsaxsharma.blogspot.com
https://dynamicsaxsharma.blogspot.com
https://traininginmohali.com
https://traininginmohali.com
https://apps.apple.com
https://apps.apple.com
https://github.com
https://github.com
https://www.telerik.com
https://www.telerik.com
https://www.sydney.edu.au
https://www.sydney.edu.au
https://www.javatpoint.com
https://soshace.com
https://soshace.com
https://egghead.io
https://egghead.io
https://www.mianshigee.com
https://www.mianshigee.com

https://taylorandfrancis.com/

291

Index

A

AlwaysEqual unit struct, 93
Arithmetic operators, 38
Arrays, 81, 82, 88, 149

accessing array elements, 27–28
characteristics, 57
declaration and constants, 60–61
declaration and initialization, 57–58
default values, 58
definition, 57
invalid array element access, 28–29
iter() method, 59
with for loop, 58–59
mutable array, 59
by reference, 60
size and data type, 58
type, 26–27
by value, 59–60
without data type, 58

Attribute-like macros, 257, 262

B

Binary crates, 130, 131, 143, 146, 221,
222, 224

Bitwise operators, 39–40
Borrow checker, 3, 186–187, 279–280
Borrowing, 63, 76–77, 81, 87, 88
Boxdyn Error type, 164

C

calculate_length() method, 77
CamelCase type-naming standard, 173
Cargo, 14, 97, 131, 132, 153, 190, 227

Cargo .to ml file, 214

compiling time, 214
with custom commands, 225
dev profile, 213, 214
functionality, 130
opt-level setting, 214
release profile, 213, 214
workspaces

add_one function, 221
add_two function, 221
Cargo .to ml files, 221–222
definition, 221
functionality, 221
new member package creation,

223–224
target directory, 222

Case-insensitive search function, 203–204
case_sensitive field, 206
compiler errors, 206
Config struct, 206
environment variable, 207
env::var function, 208
is_err method, 208
minigrep program, 209
PowerShell, 208
Remove-Item cmdlet, 208
“rUsT” query, 205
to_lowercase, 205
writing failing test, 203–204

C/C++ developers, 1–5, 7, 11, 12, 14, 15, 282
Changeable references, 76, 78, 80, 87
Clone trait, 277
CodiLime, 6
Coins enum, 120, 122, 127
Command line arguments

argument values, 192
cargo run, 190

292    ◾    Index

case-insensitive search function
case_sensitive field, 206
compiler errors, 206
Config struct, 206
environment variable, 207
env::var function, 208
is_err method, 208
minigrep program, 209
PowerShell, 208
Remove-Item cmdlet, 208
“rUsT” query, 205
to_lowercase, 205
writing failing test, 203–204

error messages, 190, 209–211
globally search a regular expression

and print (grep) tool, 190
minigrep, 190, 191
reading a file

argument parser, 196–197
binary projects, 195–196
Config struct, 198
error handling, 199
error message, 199–200
modularity and error handling,

194–195
parse_config function, 197–198
ResultString, 193
temporary println! statement, 193
thepoem​.t​xt file, 194

std::env::args function, 191
“target/debug/minigrep” binary, 192
terminal features, 190
test-driven development (TDD),

200–202
Comments, 54–55, 74, 215–218, 271
Compile-time monomorphization, 180
Concise control flow, 126–127
Concurrency, 12, 19, 287

fearless concurrency, 227–228
shared-state concurrency, 240–244
std::marker traits Sync and Send,

244–245
Concurrent programming, 3, 4, 227, 279
Config struct, 198
Constants

and declaration, 60–61
naming convention, 29
shadowing, 30–31

syntax for, 29
vs. variables, 19–20, 29–30

Copy trait, 73, 91, 277
Crates, 14, 152, 184, 239

binary crates, 130, 131
definition, 130
directory tree, 134
library crate, 130–132
module tree, 133–137
rand crate, 131
Rng, 132
src/lib​.r​s, 133
src/main​.r​s, 133

Crates . io packages
account set up, 221
add_one function, 217
binary crates installation, 224–225
//! doc comment, 217, 218
documentation comments, 215–217
errors, 216
Examples Markdown, 216
exporting public API, 218–220
panic scenarios, 216
PrimaryColor, 218–220
safety, 216
SecondaryColor, 218, 219
src/thrlib​.​rs file, 218

Custom #[derive] macros, 257, 261–262

D

Dangling references, 79–80, 185, 186
Data races, 4, 8
Data types, 12, 14, 18, 30, 31, 57, 58, 66, 67,

99, 112; see also Generis
scalar type

accessing array elements, 27–28
array type, 26–27
automatic-type casting, 24
Boolean variable, 24
character data type, 24–25
compound types, 25
float, 23
illustration, 22
integer overflow, 23
integer range, 22–23
invalid array element access, 28–29
number separator, 24

Index    ◾    293

tuple type, 25–26
Type System, 20–21
variable declaration, 21

Debug trait, 101, 276
Decision-making

If else statement, 41–42
If Statement, 40–41
“if” statement within “let” statement,

44–45
Match statement, 43–44
Nested If statement, 42–43

Declarative macros, 257–261, 263
Default::default function, 278
Default trait, 278
Deref, 242
Dereferencing, 54
Derivable traits, 275
Destructing assignment, 55–56
Directory tree, 134
Display trait, 184
Drop trait, 68, 73

E

Efficient C bindings, 8
employees2 instance, 96
Enumerations (enums), 111

constructor function, 114
IpAddrKind enumeration

address field of type, 113
data structures, 114
IpAddrKind::V5, 112–114
IpAddrKind::V7, 112, 113
kind field of type, 113
loopback, 113

Message enum, 116
Option Enum, 116–119
Option<T> enum, 176, 177
public, 139–141
Result enum, 177
structs, 114, 116, 176
types of, 115
variations, 115

eq method, 276
Error handling, 199

calling code options, 164
contracts, 166–167
Guess struct, 168–169

guidelines, 166–167
recoverable errors with the result

ErrorKind::NotFound variant, 157
error message, 155
File::create, 158
File::open failed, 157
File::open function’s return type, 155
File::open returns, 156
io::ErrorKind value, 157
the ? operator, 161–164
panic! macro, 156
propagating errors, 159–161
std::fs::File, 155
std::io::Error, 155
T and E parameters, 154
unwrap and expect, 158–159

robust error-handling code, 165
unrecoverable errors with panic! macro

backtrace, 151–154
buffer overread, 152
error message, 151
panic = ‘abort,’ 150
returning and cleaning up, 150
RUST_BACKTRACE environment,

152–153
unwrap and expect methods, 165
validation, 167–169

F

Facebook, 3
Fearless concurrency, 227–228
Function-like macros, 257, 262–263
Functions

definition, 50–51
fn_hello() function, 51
invocation, 51
with parameters

pass by reference, 53–54
pass by value, 53
passing string to function, 54

return value from function, 52

G

Garbage collector, 281
Generis

definition, 171

294    ◾    Index

in function definitions
CamelCase type-naming

standard, 173
generic type parameter, 173
large_i32 function, 172
std::cmp::PartialOrd trait, 174
type parameter name, 173

in method definitions, 177–180
performance of code, 180–181
in struct definitions, 175–177

Globally search a regular expression and
print (grep) tool, 190

Go language documentation, 233
Green-threading M:N model, 229

H

Hash trait, 278

I

Immutable references, 76, 78–80, 87
IP address version four (IPv4), 111
IP address version six (IPv6), 111
IpAddrKind enumeration

address field of type, 113
data structures, 114
IpAddrKind::V5, 112–114
IpAddrKind::V7, 112, 113
kind field of type, 113
loopback, 113

IpAddrKind::V5, 112–114
IpAddrKind::V7, 112, 113

J

JoinHandle, 231–233

L

Lambda function, 3
Library crate, 130–132
Linus Thorvalds, 3
Linux kernel code, 2
Logical operators, 39
Loops

definition, 45

exit, 46
for loop, 48–49
while loop, 46–48

M

Macros, 11, 21, 38, 100–102, 150, 151, 156,
158, 159, 179, 200, 209, 210, 247

attribute-like macros, 257, 262
custom #[derive] macros, 257, 261–262
declarative macros, 257–260
disadvantage, 258
function-like macros, 257, 262–263
metaprogramming, 258
runtime, 258

Match control flow operator
catch-all patterns, 124–125
Coins enum, 120
coin-sorting machine, 119
Coins::Penny, 120
Coins::Quarter, 121
match arms, 120
match expression, 120, 121
match keyword, 119
Option<T>, 122–124
the _ Placeholder, 124–125
plus_one function, 123

Memory safety issues, 281, 282
Message enum, 116
Message passing, 240

channels and ownership transference,
236–237

definition, 233
Go language documentation, 233
message-sending concurrency, 234
mpsc::channel function, 234, 235
Recv method, 236
send method, 235
spawned thread, 238
thread::sleep function, 238
transmitter cloning, 239–240
try_recv method, 236

Message-sending concurrency, 234
Metaprogramming, 258
Method syntax

associated functions, 108
can hold method, 106, 107

Index    ◾    295

getters, 106
impl (implementation) block for

Rectangles, 104
multiple impl blocks, 108–109
&Rectangles, 105
Rectangles instance, 106
&Self, 105
width method, 106

Microsoft, 3, 11, 15
Modules, 108, 129, 134–139, 141–144,

146–147, 169, 191, 201, 207,
217–220

definition, 130
and function signatures, 132–133
item privacy, 132
mod keyword, 133
module hosting, 136
separating modules, 146–147

Module tree, 133–137
Mozilla Foundation, 279
mpsc::channel function, 234, 235
Mutable reference, 78–79
Mutex, 4

definition, 240
Deref, 242
locking system, 240, 241
management, 241
microphone, 241
MutexGuard, 242
Mutex<T>, 241–244
rules, 241

MutexGuard, 242

N

NewsArticle struct, 181
Non-operator symbols, 271–274
Not-a-number (NaN) floating point value,

276

O

Object-oriented programming
macros

attribute-like macros, 257, 262
custom #[derive] macros, 257,

261–262

declarative macros, 257–260
disadvantage, 258
function-like macros, 257, 262–263
metaprogramming, 258
runtime, 258

state pattern implementation, 247
add_text method, 250–251
as_ref method, 255
blog crate, 248
BoxSelf syntax, 252
draft blog post creation, 248, 249
Draft struct instance, 250
empty string, 251
lifetime annotations, 256
PendingReview struct, 252–256
Post content method, 253
Post instance, 249
Post::new function, 250
request_review method, 251–252
State trait, 250
structs and traits, 247
trade-offs, 256–257
unwrap method, 255
workflow step-by-step, 248

1:1/one operating system thread, 229
Operators, 269–270

arithmetic operators, 38
bitwise operators, 39–40
logical operators, 39
relational operators, 39

Option<T> enum, 176, 177
Option Enum, 116–119
Ord trait, 277
Ownership, 8, 13, 99, 102, 103, 105, 107,

187, 228, 236–237, 240, 241, 244,
252, 255

critical time points, 66
memory and allocation, 67–68
mutability, 65
passing variable to function, 73–74
restoring ownership, 76
returning values, 74–76
rules of, 64, 65
safety, 65
stack and heap, 64–65
stack-only data, 73
string type, 66–67

296    ◾    Index

of struct data, 94–95
variables and data interaction

clone, 72–73
move, 69–72

variable scope, 66

P

Packages, 6, 10, 14, 215, 221–224
Cargo .to ml file, 131
definition, 130
src/lib . rs, 131
src/main . rs, 131

the “panic!” macro, 280
PartialEq trait, 276
PartialOrd trait, 276–277
Paths

absolute routes, 136
add_to_waitlist method, 135
crate::front_of_houses::hosting

module, 141, 142
customer_experience module, 135
definition, 130
eat_at_restaurant waitlist, 135
front_of_houses module, 135
idiomatic use paths, 143–144
module hosting, 136
providing new names, 144–145
pub keyword, 134, 137–139
re-exporting names, 145–146
relative paths, 139, 142
structs and enums public, 139–141
types of, 134
use keyword, 141

Pattern matching, 7, 8, 25, 26, 129
Point<T> method, 178
Point<T> struct, 175, 176
PowerShell, 208
PrimaryColor, 218–220
Privacy border, 136–137
Procedural macros, 260–263
Python, 5

R

Rand crate, 131
Raw identifiers, 267–268
Recoverable errors with the result

ErrorKind::NotFound variant, 157
error message, 155
File::create, 158
File::open failed, 157
File::open function’s return type, 155
File::open returns, 156
io::ErrorKind value, 157
the ? operator, 161–164
panic! macro, 156
propagating errors, 159–161
std::fs::File, 155
std::io::Error, 155
T and E parameters, 154
unwrap and expect, 158–159

References, 3, 37, 53–54, 60, 64, 82–84,
86–88, 94, 103, 189, 202, 242,
244, 245, 250, 255, 256

changeable references, 76
dangling references, 79–80
guidelines, 80–81
immutable references, 76
with lifetime

borrow checker, 186–187
dangling references prevention,

185–186
mutable reference, 78–79

Relational operators, 39
Relative paths, 134–136, 138, 139, 142
Resource Acquisition Is Initialization

(RAII), 5
Result enum, 177
Return Err(e), 163
Risky Rust mode, 4
RUST_BACKTRACE environment,

152–153
Rust Foundation, 3
Rust programming language

advantages of, 6, 281–283
for C/C++ developers, 3, 12
characteristics, 280–281
CodiLime, 6
for companies, 2
concurrent programming, 4
data races, 4
Facebook, 3
features of, 6–9, 13–15
foreign-function interfaces, 5
vs. Go, 12

Index    ◾    297

vs. Java, 12
Linux kernel code, 2
on Linux or macOS, 10
for open-source software developers, 2
operating systems, 282
program, 10–11
vs. Python, 5, 12
Resource Acquisition Is Initialization

(RAII), 5
risky Rust mode, 4
Safe Rust, 3–4
for students, 2
for teams of developers, 2
Unsafe Rust, 3–4
updating and uninstalling, 10
use after free error, 3
in Windows installation, 9–10

S

Safe Rust, 3–4
Scope, 3, 13, 20, 30, 65–68, 70, 72–75,

77–79, 115, 117, 124, 130–134,
141–146, 156, 183–186, 191, 195,
207, 218, 219, 242, 243, 258, 259

SecondaryColor, 218, 219
Separating modules, 146–147
Shared-state concurrency, 240–244
Slices

as_bytes method, 82
definition, 81
first_word method, 81, 83
index numbers, 81
iter method, 82
sliced string, 81
string slices, 83–87

Stack Overflow Developer Survey, 1, 2
String

literals, 31–32
object type

chars method, 37
len() function, 35
new() function, 33
push() method, 35
push str(), 35
replace() method, 34
split() returns, 36
split whitespace() function, 36

str() method, 34
to_string() function, 34
trim(), 35–36
UTF-8 encoding, 32

with + Operator, 37–38
Standard Library, 32

String slices
API, 86, 87
compile-time error, 86–87
indices, 85
range syntax, 84
starting_index, 84
starting point, 86
string literals, 87
trailing number, 85

Structures (structs), 114, 116, 139–141, 176
AlwaysEqual unit struct, 93
dbg! macro, 102, 103
Debug trait, 101
dot notation, 90
field init shorthand syntax, 91
instance of, 90
keyword struct, 89
names and types, 89
ownership of struct data, 94–95
printing debugging information, 101
println! macro, 100, 101
Rectangle instance, 99–100
rectangles with Cargo, 97–98
for refactoring, 99–100
struct update syntax, 92
and traits, 247
tuple-based version, 98–99
tuple structs, 93
Unit-like structs, 93–94
update syntax, 95–97
User struct, 91
value pairs, 90

Summary trait, 181–183

T

Test-driven development (TDD), 189,
200–202

Threads
APIs, 229
green-threading M:N model, 229
issues, 228–229

298    ◾    Index

JoinHandle, 231–233
message passing, 240

channels and ownership
transference, 236–237

definition, 233
Go language documentation, 233
message-sending concurrency, 234
mpsc::channel function, 234, 235
Recv method, 236
send method, 235
spawned thread, 238
thread::sleep function, 238
transmitter cloning, 239–240
try_recv method, 236

1:1/one operating system thread, 229
runtime, 229
thread::spawn function, 230–233

thread::sleep function, 238
thread::spawn function, 230–233, 243
Tiobe Index, 11
Traits, 247

Clone trait, 277
Copy trait, 73, 91, 277
Debug trait, 101, 276
Default trait, 278
definition, 181
derivable traits, 275
Display trait, 184
Drop trait, 68, 73
Hash trait, 278
method signatures, 181–183
Ord trait, 277
PartialEq trait, 276
PartialOrd trait, 276–277
State trait, 250
std::marker traits Sync and Send,

244–245
Summary trait, 181–183
Tweet struct, 181, 184
VecT, 184

Trash collector, 281
try_recv method, 236

Tuple structs, 25, 26, 55–56, 76, 82, 89, 93,
98–100, 115, 197, 235, 273

Tweet struct, 181, 182, 184

U

Unit-like structs, 93–94
Unrecoverable errors with panic! macro

backtrace, 151–154
buffer overread, 152
error message, 151
panic = ‘abort,’ 150
returning and cleaning up, 150
RUST_BACKTRACE environment,

152–153
Unsafe Rust, 3–4
Update syntax, 95–97
“use after free error,” 266
User struct, 91

V

Variables, 8, 26, 50, 57, 60, 65, 66, 68–70
Boolean variable, 24
and constants, 19–20, 29–30
and constant shadowing, 30–31
and data interaction

clone, 72–73
move, 69–72

environment variable, 207
immutable, 19
memory size and layout, 18
mutable variable, 19
naming rules, 18
syntax, 18
unsigned u8 variable, 23
variable declaration, 21
variable scope, 66

Z

Zero cost abstraction, 7, 281

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Table of Contents
	Mastering Computer Science Series Preface
	About the Editor
	Chapter 1 Getting Started with Rust
	In This Chapter
	What Exactly Is Rust?
	Who Rust Is for
	Rust’s Increasing Popularity
	What Makes the Rust Programming Language Unique?
	Concurrent Programming Has Been Simplified
	Some Challenges to Overcome while Programming in Rust
	What Is the Purpose of Rust?
	Why Should We Use Rust?
	Features of Rust

	Installing Rust
	Rust in Windows Installation
	Installing Rust on Linux or macOS
	Updating and Uninstalling Rust

	Rust First Program
	Procedure for Creating, Compiling, and Running the Program

	Reasons Why Rust Is the Way of the Future
	Rust vs. Other Languages
	Advantages of Rust vs. C++
	Advantages of Rust vs. Java
	Advantages of Rust vs. Python
	Advantages of Rust vs. Go

	What Makes Rust the Future?
	Rust Increased the Safety of Memory
	Rust’s Community Is Expanding
	Rust Is Quick and Adaptable
	Rust Has a Wide Range of Applications
	Rust Is Used by Several Large Companies

	Chapter 2 Common Programming Concepts
	In This Chapter
	Variables in Rust
	Variable Naming Rules
	Syntax

	Immutable
	Mutable
	Variables and Constants: What Are the Differences?

	Data Types in Rust
	Variable Declaration
	Scalar Types
	Integer
	Illustration
	Integer Range
	Integer Overflow
	Float
	Automatic-type Casting
	Number Separator
	Boolean
	Character
	Compound Types
	Tuple Type
	Array Type
	Accessing the Array Elements
	Invalid Array Element Access

	Constant in Rust
	Constant Naming Convention in Rust
	Constants vs. Variables
	Variable and Constant Shadowing

	String in Rust
	String Literal
	String Object
	Syntax

	String Object – Common Methods
	Illustration: new()
	Illustration: to_string()
	Illustration: replace()
	Illustration: as_str()
	Illustration: push()
	Illustration: push_str()
	Illustration: len()
	Illustration: trim()
	Illustration: split_whitespace()
	Illustration: split() string
	Illustration: chars()

	Concatenation of the Strings with + Operator
	Illustration: String Concatenation
	Illustration: Type Casting
	Illustration: Format! Macro

	Operators in Rust
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Bitwise Operators

	Decision-making in Rust
	If Statement
	Syntax

	If else statement
	Syntax
	Flowchart

	Nested If
	Syntax

	Match Statement
	Syntax

	Using an “if” statement within a “let” statement
	Syntax

	Loops in Rust
	Loop
	Syntax

	Exit from Loops
	While Loop
	Syntax
	Flowchart

	While Loop Disadvantages

	For Loop
	Syntax
	Distinctions between the While Loop and For Loop

	Functions in Rust
	Function Defining
	Syntax

	Function Invoking
	Syntax

	Illustration
	Returning Value from a Function
	Syntax

	Function with the Parameters
	Pass by Value
	Pass by Reference
	Passing String to a Function

	Comments in Rust
	Tuple in Rust
	Destructing

	Array in Rust
	Array Characteristics
	Array Declaration and Initialization
	Syntax
	Illustration: Simple Array
	Illustration: Array without Data Type
	Illustration: Default Values
	Illustration: Array with for Loop
	Illustration: Using the iter() Function
	Illustration: Mutable Array

	Passing Arrays as Parameters to the Functions
	Illustration: Pass by Value
	Illustration: Pass by Reference

	The Array Declaration and Constants

	Chapter 3 Understanding Ownership
	In This Chapter
	What Exactly Is Ownership?
	The Stack and the Heap
	Important Ownership Concepts
	Rules of Ownership
	Variable Scope
	String Type
	Memory and Allocation
	Ways of Variables and Data Interact: Move
	Variables and Data Interactions: Clone
	Stack-Only Data: Copy
	Ownership and Functions
	Return Values and Scope

	References and Borrowing in Rust
	Why Borrowing?
	Mutable Reference
	Restrictions of the Mutable References
	Dangling References
	The Referencing Guidelines

	Slices in Rust
	Syntax
	String Slices
	Literals Are String Slices
	String Slices as Parameters
	Other Slices

	Chapter 4 Using Structs for Related Data
	In This Chapter
	What Is the Definition of a Structure?
	When the Variables and Fields Have the Same Name, Use the Field init Shorthand
	Using Struct Update Syntax to Create Instances from Other Instances
	The Tuple Structs without Named Fields to Create Different Types
	Structs that Look Like Units but Don’t Have Any Fields
	Ownership of Struct Data

	Update Syntax
	An Example of a Structs Program
	Refactoring with the Tuples
	Using Structs for Refactoring: Adding Additional Meaning
	Using Derived Traits to Add Useful Functionality

	Method Syntax
	Defining the Methods
	Methods with More Parameters
	Associated Functions
	Multiple impl Blocks

	Chapter 5 Enums and Pattern Matching
	In This Chapter
	Defining an Enum
	Enum Values
	The Advantages of the Option Enum over Null Values

	The Match Control Flow Operator
	Patterns that Bind to Values
	Matching with the Option<T>
	Matches Are Exhaustive
	Catch-all Patterns and the _ Placeholder

	Concise Control Flow with if let

	Chapter 6 Packages, Crates, and Modules
	In This Chapter
	Packages and Crates
	Defining Modules to the Control Scope and Privacy
	Paths for Referring to an Item in the Module Tree
	Exposing Paths with pub Keyword
	Starting Relative Paths with super
	Making Structs and Enums Public

	Bringing Paths into the Scope with the use Keyword
	Creating the Idiomatic use Paths
	Providing New Names with the as Keyword
	Re-exporting Names with pub use

	Separating Modules into Different Files

	Chapter 7 Error Handling
	In This Chapter
	Error Handling
	Unrecoverable Errors with panic!
	Unwinding Stack or Aborting in Response to a Panic
	Using panic! Backtrace

	Recoverable Errors with the Result
	Shortcuts for the Panic on Error: unwrap and expect
	Propagating Errors
	Shortcut for Propagating Errors: the ? Operator
	The ? Operator Can Be Used in Functions that Return Result

	To panic! or Not to panic!
	Examples, Prototype Code, and Tests
	Cases in Which We Have More Information than the Compiler
	Guidelines for the Error Handling
	Creating the Custom Types for Validation

	Chapter 8 Generic Types, Traits, and Lifetimes
	In This Chapter
	Generic Data Types
	In Function Definitions
	In the Struct Definitions
	In Method Definitions
	Performance of Code Using Generics
	Traits: Defining Shared Behavior
	Defining a Trait
	Implementing a Trait on a Type

	Validating References with Lifetimes
	Preventing Dangling References with Lifetimes
	Borrow Checker
	Generic Lifetimes in the Functions

	Chapter 9 I/O Project: Building a Command Line Program
	In This Chapter
	Accepting the Command Line Arguments
	Saving the Argument Values in the Variables

	Reading a File
	Refactoring to Improve Modularity and Error Handling
	Separation of Concerns for Binary Projects
	Extracting the Argument Parser
	Grouping the Configuration Values
	Creating a Constructor for the Config

	Fixing the Error Handling
	Improving the Error Message

	Developing the Library’s Functionality with the Test-driven Development
	Working with the Environment Variables
	Writing Failing Test for the Case-Insensitive search Function
	Implementing search_case_insensitive Function

	Writing Error Messages to the Standard Error Instead of Standard Output
	Checking Where Errors Are Written
	Printing Errors to the Standard Error

	Chapter 10 Cargo and crates​.​io
	In This Chapter
	Customizing Builds with the Release Profiles
	Publishing a Crate to crates​.​io
	Making Useful Documentation Comments
	Commonly Used Sections

	Documentation Comments as Tests
	Commenting Contained Items
	Exporting a Convenient Public API with the pub use
	Setting Up crates​.​io Account

	Cargo Workspaces
	Creating a Workspace
	Creating the Second Package in the Workspace

	Installing Binaries from crates​.​io with cargo install
	Extending Cargo with the Custom Commands

	Chapter 11 Concurrency and State
	In This Chapter
	Fearless Concurrency
	Using Threads to Run Code Simultaneously
	Creating New Thread with spawn
	Waiting for All the Threads to Finish Using JoinHandle

	Using Message Passing to the Transfer Data between Threads
	The Channels and Ownership Transference
	Sending Multiple Values and Seeing the Receiver Waiting
	Creating Multiple Producers by Cloning the Transmitter

	Shared-state Concurrency
	Using Mutexes to Allow Data Access from Only One Thread at a Time
	API of Mutex<T>
	Sharing Mutex<T> Between Multiple Threads

	Extensible Concurrency with Sync and Send Traits
	Allowing Transference of the Ownership between Threads with Send
	Allowing Access from the Multiple Threads with Sync
	Implementing the Send and Sync Manually Is Unsafe

	Chapter 12 Object-oriented Programming in Rust
	In This Chapter
	Implementing an Object-oriented Design Pattern
	Defining Post and Creating New Instance in the Draft State
	Storing the Text of the Post Content
	Ensuring Content of a Draft Post Is Empty
	Requesting a Review Changes the State of the Post
	Trade-offs of the State Pattern

	Macros
	Difference between Macros and Functions
	Declarative Macros with macro_rules! for General Metaprogramming
	Procedural Macros for Generating Code from the Attributes
	How to Write a Custom derive Macro
	Attribute-like Macros
	Function-like Macros

	Appendix A: Keywords
	Keywords in Use
	Keywords Reserved for the Future Use
	Raw Identifiers

	Appendix B: Operators and Symbols
	Operators
	Non-Operator Symbols

	Appendix C: Derivable Traits
	Debug for Programmer Output
	Equality Comparisons with PartialEq and Eq
	PartialOrd and Ord for Ordering Comparisons
	Clone and Copy for the Duplicating Values
	Hash for Mapping a Value to a Fixed Size Value
	Default for Default Values

	Appraisal
	Bibliography
	Index

